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Abstract

The present dissertation dealing with a compartmental epidemiological model to study the
propagation of malaria between two interacting population–human (host) and mosquito
(vector), is investigated. The total human population is compartmentalised into four
classes, namely, the susceptible, the exposed, the infected and the recovered class. The total
mosquito population is classified into three subclasses, e.g., the susceptible, the exposed
and the infected class. A region is found out where the model is epidemiologically feasible
and mathematically well-posed. The existence of equilibrium along with its stability is
derived. The stability criteria do depend on the reproduction number which is calculated by
the next-generation matrix technique. For a quantitative insight of the model, a thorough
large-scale numerical simulation has been performed and the predicted results are presented
graphically. The sequential and Strang-Marchuk splitting schemes together with RK4
numerical method have been leveraged to get the splitting solution of the matrix differential
equation. However, the reference solution of the unsplit system is obtained by solving the
system of ODEs by the RK4 method. Since the exact solution of the unsplit system
considered is not known, this numerical solution is compared with the numerical solution
obtained by using the explicit Euler method. The order and accuracy of the methods have
been derived both analytically and numerically, and we have also calculated the numerical
error (local/global practical error) associated with the methods. Our results agree well
with several existing results available in the literature.

iii

C
E

U
eT

D
C

ol
le

ct
io

n



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Scope of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathematical Model and Background Material 7

2.1 Equilibrium and Stability Criteria . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Equilibrium Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Routh-Hurwitz Stability Criteria . . . . . . . . . . . . . . . . . . . 7

2.2 Basic Reproduction Number . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Formulation of the Problem 9

4 Boundedness and Positivity of the Solutions 12

5 Existence and Stability of Equilibrium Points 16

5.1 Existence of Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Basic Reproduction Number . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Stability of the Disease-free Equilibrium Point . . . . . . . . . . . . . . . . 18

6 Operator Splitting Method 20

C
E

U
eT

D
C

ol
le

ct
io

n



6.1 Sequential and Strang-Marchuk Splitting . . . . . . . . . . . . . . . . . . . 21

6.1.1 Sequential Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.1.2 Strang-Marchuk Splitting . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Error and Order Analysis of the Splitting Methods . . . . . . . . . . . . . 23

6.2.1 Order of Sequential Splitting Method . . . . . . . . . . . . . . . . . 25

6.2.2 Order of Strang-Marchuk Splitting Method . . . . . . . . . . . . . . 26

7 Numerical Experiments and Discussion 31

8 Conclusion 34

9 Study Limitations and Scope of Future Work 36

C
E

U
eT

D
C

ol
le

ct
io

n



1 Introduction

1.1 Background

A model is a caricature of reality as represented by empirical data. It helps us to understand
reality because it simplifies it. The model which more closely captures essential features
of reality-we usually refer to it as a ‘better fit’. The word exact fit does not arise in model
studies as no model can wholly resembles reality. There is a temptation to assume that only
models that are incredibly detailed can be useful–but this is not the case always. A model
should be as complex as needed, depending upon the questions of interest. The choice of an
optimal level of complexity obeys good bargaining. Mathematical models help to describe
physical systems using mathematical concepts and language. For example, epidemiology
is essentially a population biology discipline concerned with public health and is thus
heavily influenced by mathematical theory. In epidemiological modelling, mathematical
models are being enriched with several biological, clinical and epidemiological phenomena
to explain the dynamics of the disease. In this context, the use of mathematical models
aims to unearth processes from a large scale perspective. The apparently unpredictable
nature of an infectious disease has been a source of fear and superstition as well since
the beginning of human civilization. One of the primary aims of epidemic modelling is
helping to understand the spatio-temporal spread of disease in host populations. The
process of systematically clarifying inherent model assumptions, interpreting its variables,
and estimating parameters are invaluable in uncovering precisely the mechanism giving
rise to the observed patterns. Deterministic models are those in which there is no element
of chance or uncertainty. When the population size is large enough so that demographic
stochasticity may be ignored, a deterministic model may be appropriate.

Infectious diseases, also known as transmissible diseases or communicable diseases consist of
clinically evident illness resulting from the infection, presence and growth of pathogenic bi-
ological agents in an individual host organism. Infectious diseases are caused by pathogenic
microorganisms, such as bacteria, viruses, parasites or fungi. The diseases can spread, di-
rectly or indirectly, from one person to another through droplet contact, fecal-oral transmis-
sion, sexual transmission, vertical transmission, iatrogenic transmission and vector-borne
transmission. Malaria, an infectious disease which remains one of the most prevalent and
lethal human infection worldwide, is caused by infection with single-celled (protozoan) par-
asites of genus Plasmodium. The parasites are transmitted to humans through the bites of
infected female Anopheles mosquitoes (vectors). Of the five parasite species (Plasmodium
falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae and Plasmodium
knowlesi) that cause malaria in humans, plasmodium falciparum is the most deadly form
and it predominates in Africa. The parasite is responsible for the greatest number of deaths
and clinical cases in the tropics. In the human body, the parasites multiply in the liver, and
then infect red blood cells. The infected red blood cells burst after 2 to 3 days to release
merozoites and gametocytes into the blood stream. Anopheles mosquitoes become infected
when they feed and ingest human blood that contains mature gametocytes. The gameto-
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cytes develop into male and female gametes that fertilize to become zygotes in the mid-gut
wall of the mosquito. The zygote elongates to become ookinete and penetrates the mid-gut
epitheliums that later develops and ultimately produce sporozoites which become infective
when they migrate to the salivary glands. Its infection can lead to serious complications
affecting the brain, lungs, kidneys, and other organs. Symptoms of malaria are gener-
ally non-specific and most commonly consist of fever, malaise, weakness, gastrointestinal
complaints (nausea, vomiting, and diarrhea), neurologic complaints(dizziness, confusion,
disorientation, and coma), headache, back pain, malign, chills, and/or cough [1].

According to a survey in 2015 [1], it affected 99 countries and territories throughout the
world, mostly afflicted sub-Saharan Africa, approximately 3000 lives were lost each day.
Annual infection reports were almost 300 to 500 million among which 700, 000 to 881, 000
resulted in death. It affected mostly the age group of 0 − 5 and pregnant women. If
malaria is not treated well, it can cause cerebral malaria which affects approximately
57500 children per year in Africa, kills 10− 40% of patients whereas 5− 20% of those who
survive experience neurological problems. Many measures have been taken to lower the
threats of malaria and ultimately to eliminate and to eradicate it, but there come many
problems such as development and spread of drug-resistant malaria parasites, mosquito
resistant to insecticides, climatic change, and many more. Malaria is very sensitive to
climatic conditions. It is most prevalent in tropical climates, where the breeding sites
are enough and favourable temperature for mosquito. The protozoan itself survives in
certain favourable temperature. Hence, a slight change in temperature can drastically
affect the lifespan and population of mosquitoes. Water is another factor that significantly
contributes to the spread of the disease owing to the fact that mosquitoes breed in pools
of water. More rainfall leads to the increase of possible breeding sites for mosquito, which
results in increase of more vectors to spread malaria. Little rainfall leads to few breeding
sites for mosquitoes.

Malaria has for many years been considered a global issue, and many epidemiologists and
other scientists invest their effort in learning the dynamics of malaria and to control its
transmission. There exist an impressive variety of epidemiological models and exhaustive
reviews to study the dynamics of malaria transmission and growth, giving an insight into
the interaction between the host and vector population. These literature also predicted
how to control malaria transmission, and eventually how to eradicate it. The use of
mathematical models increases to influence the theory and practice of disease management
and control.

Finally, to tackle such problems, an appropriate mathematical model is developed and suc-
cessfully solved numerically to get a quantitative insight of the model. The propagation of
this disease is generally modelled by a system of linear and non-linear ordinary differential
equations (ODEs) and partial differential equations (PDEs). Due to the highly nonlinear-
ity of these equations, it may not be solved analytically, in general, instead, an appropriate
numerical method may be leveraged to solve the system of equations considered.
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1.2 Objective of the Study

The main objective of the study is two-folded, namely, i) On Mathematical Modelling and
ii) On Numerical Experiments

i) On Mathematical Modelling

• to formulate appropriate mathematical model that captures the dynamics of the
propagation of malaria using a system of nonlinear differential equations.

• to study the feasiblity of the solution and the stability of the equilibria of the system.

• to analyse the simulated results of the model considered.

ii) On Numerical Experiments

• to solve numerically the system of equations by Runge-Kutta method of order 4
(RK4) and we treat the solutions as the reference solutions or the numerical solution.

• to convert the system of nonlinear differential equations into a non-homogeneous
matrix differential equations.

• to solve numerically the non-homogeneous matrix differential equation by sequential
splitting and Strang-Marchuk splitting methods and we term it as numerical split
solutions.

• to deduce the order of the splitting method analytically and order of the local prac-
tical error numerically.

• to calculate the error associated with the numerical methods used.

• to compare our results with regard to the numerical methods applied with some
established results of [2].

1.3 Significance of the Study

Despite malaria being preventable and treatable, it remains one of the deadliest infectious
disease for developing world specially in Africa. This reseach will shed light on some
important points

• to predict the propagation of the disease at long run.

• to find the parametric structures so that the disease can be controlled and eradicated.
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• to use the operator splitting methods for non-homogeneous matrix differential equa-
tions.

• to use the results as an input for the future research.

1.4 Statement of the Problem

Malaria is the fifth leading killer among infectious diseases worldwide, and the second
leading cause of death in Africa behind HIV/AIDS [3]. It continues to raise major public
health and socio-economic burdens in developing countries especially in African countries.
Malaria is the largest single component of the disease burden in Africa, causing an annual
loss of 35 million future life-years from disability and premature mortality. Each year
many international travelers fall ill with malaria while visiting countries/territories where
malaria is endemic, and well over 10000 are reported to become ill with malaria after re-
turning home. The rapid adaptability of the species to changing environmental conditions
makes it resistant to many forms of interventions developed to combat mosquito popula-
tions, and eventually, it continues to play a major role in residual malaria transmission.
Insecticide-treated nets are among the control interventions which have been promoted for
use in malaria-endemic regions. The impacts of temperature and rainfall play a pivotal role
in the transmission of malaria. The burden of malaria has been increasing due to a com-
bination of large population movements, increasing large scale epidemics, mixed infections
of Plasmodium vivax and P. falciparum, increasing parasite resistance to malaria drugs,
vector resistance to insecticides, low coverage of malaria prevention services, and general
poverty. In this research work, we are going to address the following basic questions.

1. How can we formulate a temporal mathematical model describing the disease dy-
namics?

2. What are the basic assumptions to formulate such problem?

3. What are the parametric structures so that the disease can be controlled and eradi-
cated?

4. What are the biological significances of the results simulated?

5. How can we split the operator for non-homogeneous matrix differential equation?

6. What are the numerical errors?

7. What are the order of the methods used?

4
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1.5 Scope of the Study

The present dissertation is dealt with a unique compartmental model where some char-
acteristics of the dynamical system like positiveness and boundedness of the solutions
obtained are checked. A region is found out where the model is epidemiologically feasible
and mathematically well-posed. The existence of equilibria along with their stability is
derived. The stability criteria do depend on the reproduction number which is calculated
by the next-generation matrix technique, and there are some conditions for stable and
unstable equilibrium points as well as saddle points.

For a quantitative insight of the model, a thorough large-scale numerical simulation has
been performed to get the solution of the matrix differential equation which is generated
from the given system of ODEs. The sequential and Strang-Marchuk splitting schemes
together with RK4 numerical method have been leveraged to get the splitting solution
of the matrix differential equation. However, the reference (numerical) solution of the
system is obtained by solving the system of ODEs by the RK4 method only. Since the
exact solution of the system considered is not known, this numerical solution is compared
with the numerical solution obtained by using the explicit Euler method. The order and
accuracy of the methods have been derived both analytically and numerically, and we
have also calculated the numerical error (local/global practical error) associated with the
methods. The in-house developed codes in Matlab have been used for this purpose. A
section containing limitations and the scope of future study has been included to study
forward.

1.6 Literature Review

Mathematical models play an important role in the transmission of disease and elimination
in the future. The very first epidemiological model was formulated by Daniel Bernoulli
with the aim of evaluating the impact of variolation on human life expectancy [4]. Sir
Ronald Ross discussed malaria with Manson while in the United Kingdom, but conducted
his research while serving in a military post in India, and in 1897, he demonstrated that
mosquitoes transmit malaria parasites [5]. Almost immediately thereafter, Ross argued
that mosquito population densities could be reduced through larval control and combined
with other measures to prevent mosquito-transmitted diseases [6]. Sir Ronald Ross was the
first person to develop a deterministic mathematical model to study malaria transmission
[7]. This model has an important role in understanding the dynamics of disease and con-
trolling it. There are two types of the mathematical model of malaria so far– deterministic
and stochastic. The past century has witnessed the rapid emergence and development of
a substantial theory of epidemics. Kermack and McKendrick [8] derived the celebrated
threshold theorem in 1927, which is one of the key results in epidemiology. The pattern
of malaria in West Africa is holoendemic and stable as defined by Macdonald in 1957 [9]
which implies that the transmission of the disease is throughout the year and the inten-
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sity of the disease is almost uniform. He considered the latency period in mosquito and
later extended Ross’s work which is known as the Ross-Macdonald model. Ross-Macdonald
models are best defined by a consensus set of assumptions. The mathematical model is just
one part of a theory for the dynamics and control of mosquito-transmitted pathogens that
also includes epidemiological and entomological concepts and metrics for measuring trans-
mission. The Ross-Macdonald theory has since played a central role in the development of
research on mosquito-borne pathogen transmission and the development of strategies for
mosquito-borne disease prevention.

Later, Anderson and May considered the latency period in humans [10]. They included age
structure in the simple Ross model by considering the density of infected humans as the
function of age and time. Separate immune classes have been introduced in some models
[11, 12, 13, 14, 15, 16, 17, 18] whereas some others such as Filipe et al. [19] have used
complex immunity functions in their models. Aron and May [20] proposed an age-specific
immunity model with a new compartment Immune in humans. In another study, Chitins
[16] included constant immigration of susceptible human population.

Modern application of molecular typing methods has shown that there exists diversity
among hosts and parasites in responding to infection. Models developed in these studies
are called Resistance-Strain models. The model proposed by Koella and Antia [21], divides
the infected population into two compartments, infected by drug-sensitive strain and drug-
resistant strain of the parasite, and further divides the first class into two classes-treated
and untreated. They concluded that the resistance does not spread if the fraction of
infected individuals treated is less than a threshold value; if drug treatment exceeds this
threshold, the resistance will eventually become fixed in the population. The impact of
climate change on human health has attracted considerable attention in recent years. Its
effects on malaria have been of particular interest because of its disease burden and its
transmission sensitivity to environmental conditions. Malaria is considered as one of the
major vector-borne diseases that is most sensitive to changing environmental conditions. A
large volume of work as well as report on the modelling of malaria transmission, its control
and the environmental impact on the disease dynamics has been carried out [22, 23, 24, 59,
26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. In [34],
a compartmental model with a system of coupled ordinary differential equations describing
the transmission of Plasmodium falciparum malaria between humans and mosquitoes with
nonlinear forces of infection in form of saturated incidence rates has been considered. The
incidence rate is an important factor in the transmission dynamics of the disease. The
incidence of malaria infection is referred to as the number of newly infected individuals
(humans or mosquitoes) yielding in unit time [49].

In this dissertation, we revisited the model developed in [34]. The model presented consists
of four compartments in humans (host) and three compartments in mosquitoes (vector),
with the inclusion of nonlinear forces of infection in the form of saturated incidence rates
in both the host and vector populations. The disease-induced death rates for humans and
mosquitoes are also incorporated into the model. The governing system of ODEs is solved
by using the operator splitting method [50, 51] and we term the solution as ’Split Solution’.

6

C
E

U
eT

D
C

ol
le

ct
io

n



We have used two types of splitting scheme,v.i.z, the sequential splitting and Strang-
Marchuk splitting to get the split solution [52, 53, 54, 55, 56, 57]. We have also solved the
system of ODEs by numerical methods like the RK4 method and the explicit Euler method
to get a numerical solution (reference solution) of the system considered. Following [2, 58],
we have calculated the errors (both local and global) and are represented graphically in
the dissertation. We have also derived the order of the methods both analytically and
numerically. A thorough sensitivity analysis has been carried out in order to find out the
momentous parameters involved in the system.

2 Mathematical Model and Background Material

2.1 Equilibrium and Stability Criteria

2.1.1 Equilibrium Point

The points at which the differential equation of the system equal to zero are referred to
as equilibrium points or steady state solution. Let x∗ ∈ IR is an equilibrium point of the
differential equation dx

dt
= f(x). Then f(x∗) = 0 ∀x ∈ IRn

2.1.2 Routh-Hurwitz Stability Criteria

In dynamical system, Routh-Hurwitz stability criteria is a mathematical test that is a
necessary and sufficient condition for the stability of the equilibrium point of the system
that examine the location of the roots of the characteristic polynomial of the system.

Let P (λ) be the polynomial of the form P (λ) = λn+b1λ
n−1+b2λ

n−2+...+bn−1λ+bn, where
bi; (i = 1, 2, ..., n) are real constant coefficients. Using the coefficient bi of the polynomial,
we get the sequence of n principal submatrices as follows:

H1 = [b1],

H2 =

[
b1 1
b3 b2

]
, H3 =

b1 1 0
b3 b2 b1

b5 b4 b3

 , ..., Hn =


b1 1 0 0 · · · 0
b3 b2 b1 1 · · · 0
b5 b4 b3 b2 · · · 0
...

...
. . .

...
0 0 0 0 · · · 0

 , where bj = 0 for

j > n.
The roots of P (λ) = 0 will be negative or have negative real part if and only if the deter-
minants of the principal submatrices Hi, ∀i = 1(1)n (also called principal determinants)
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are positive. Therefore,
det(Hj) > 0, j = 1(1)n.

For polynominals of degree n=2,3,4 and 5, the explicit Routh-Hurwitz stability conditions
are summarised in Table 1 [59].

n Stability conditions
n=2 b1 > 0 and b2 > 0
n=3 b1 > 0 and b3 > 0 and b1b2 > b3

n=4 b1 > 0, b3 > 0 and b4 > 0 and b1b2b3 > b2
3 + b2

1b4

n=5 bi > 0, i = 1, 2, ..., 5, b1b2b3 > b2
3 + b2

1b4

and (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)2 + b1b
2
5

Table 1: Explicit Routh-Hurwitz stability conditions for n=2,3,4 and 5.

2.2 Basic Reproduction Number

In epidemiological models, one of the most important factors that govern the disease
dynamics is the basic reproduction number which is usually denoted by R0. The basic
reproduction number of an infection can be thought of as the expected number of cases
directly generated by one case in a population where all individuals are susceptible to
infection. This quantity determines whether the infection will spread exponentially, die
out or remain constant.

We use the next generation matrix technique as described in [60, 61]. To apply this method
the whole population is divided into n compartments in which m(< n) compartments are
infected. Let xi, i = 1, 2, 3, ...,m be the number of individuals in ith infected compartment
at time t. Now the epidemiological model can be described as

dxi
dt

= Fi(x)− Vi(x), (2.1)

where Vi(x) = Vi
−(x)− Vi+(x).

In the above equation, Fi(x) reprsents the rate of appearance of new infected people in the
ith compartment, Vi

+(x) represents the rate of transfer of individuals into compartment i,
and Vi

−(x) represents the rate of transfer of individuals out of the compartment i. The
above model can also be written as

dx

dt
= F (x)− V (x), (2.2)

where F (x) = (F1(x), F2(x), ..., Fm(x))T and V (x) = (V1(x), V2(x), ..., Vm(x). Here F and
V are m ×m matrices. On differentiating F and V at the disease-free equilibrium point
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gives

f =
∂Fi
∂xj

, v =
∂Vi
∂xj

. (2.3)

Now, the matrix fv−1 is known as the next generation matrix. The spectral radius of fv−1

is the basic reproduction number (R0).

3 Formulation of the Problem

A compartmental epidemiological model to study the propagation of malaria between two
interacting population–human (host) and mosquito (vector), is investigated in the present
dissertation. We assume the total human population Nh(t) at any instant of time t which is
compartmentalised into four classes, namely, the susceptible (Sh(t)), the exposed (Eh(t)),
the infected (Ih(t)) and the recovered (Rh(t)). Hence, we may write

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t). (3.4)

Likewise, the total mosquito population Nm(t) at time t is classified into three subclasses,
e.g., the susceptible (Sm(t)), the exposed (Em(t)) and the infected (Im(t)). It may be
reasonable to assume that there is no recovered class of mosquitoes due to their short
lifespan. Therefore, we have

Nm(t) = Sm(t) + Em(t) + Im(t). (3.5)

When an infectious female anopheles bites a susceptible human, the parasite (in the form
of sporozoites) is injected into the blood and the susceptible human moves to the infected
class. However, the exposed humans having the parasite in asexual stages are not capable
of transmitting the disease. Eventually, the parasite travels to the liver for cell division and
they (in the form of merozoites) enters the bloodstream, and then the human moves to the
infectious class. After an expiry of some certain time, the infectious humans recover and
move to the recovered class. The recovered humans have some immunity to the disease,
but they still harbour low levels of parasite in their blood and later loses the immunity
to become susceptible again. Every class of human population is decreased by natural
death or through emigration, though infected class has a disease induced death rate as an
addition.

In a similar fashion, the susceptible mosquito grows through a certain birth rate. The
parasite (in the form of gametocytes) enters into the mosquito population with some prob-
ability βm, when a susceptible mosquito bites an infectious human. Then, the mosquito
moves from the susceptible to the exposed class. Depending upon the temperature and
humidity, the parasite develops into sporozoites and enters into the mosquito’s salivary
glands, and as a result, it moves to the infectious class. Mosquitoes leave the population
through natural as well as disease-induced death rates.

The model is formulated based on the following assumptions:
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1+νmIh(t)
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µhSh

µhEh

µhIh

δhIh
µmSm
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δmIm

µhRh
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h (t)I

m
(t)

1+
ν
h I
m

(t)

Figure 1: Flow chart for the transmission of malaria disease. The small dashed arrows
indicate the natural and the disease-induced death rate in each compartment of human
and mosquito. The long dashed arrows indicate the interaction of mosquito with human.
The bold arrows indicate the rate of flow among mosquito and human populations classes.
The small bold arrows show recruitment of human and mosquito population
.

• The population of both humans and mosquitoes in every compartment are positive
and so are all the parameters involved.

• All newborns are susceptible to infection.

• The recovered humans do not develop permanent immunity.

• The propagation of malaria does start when the female mosquito bites the human
host.

• Individuals move from one class to another as the disease evolves.

• Both humans and mosquitoes have natural death rate and disease-induced death
rate.
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Based on the above assumptions, the propagation of the disease in the human and mosquito
population may be represented by a system of seven ODEs whose mathematical forms are
as follows:

dSh
dt

= Λh −
bβhSh(t)Im(t)

1 + νhIm(t)
− µhSh(t) + ωRh(t), (3.6a)

dEh
dt

=
bβhSh(t)Im(t)

1 + νhIm(t)
− (αh + µh)Eh(t), (3.6b)

dIh
dt

= αhEh(t)− (r + µh + δh)Ih(t), (3.6c)

dRh

dt
= rIh(t)− (µh + ω)Rh(t), (3.6d)

dSm
dt

= Λm −
bβmSm(t)Ih(t)

1 + νmIh(t)
− µmSm(t), (3.6e)

dEm
dt

=
bβmSm(t)Ih(t)

1 + νmIh(t)
− (αm + µm)Em(t), (3.6f)

dIm
dt

= αmEm(t)− (µm + δm)Im(t), (3.6g)

together with the initial conditions
Y0 = {S0h, E0h, I0h, R0h, S0m, E0m, I0m} where the description of the state variables and the
parameters involved are appended in Tables 2 & 3 respectively.

Sh(t) Number of the host humans susceptible to malaria infection at time t
Eh(t) Number of the host humans exposed to malaria infection at time t
Ih(t) Number of the infectious host humans at time t
Rh(t) Number of the recovered host humans at time t
Sm(t) Number of the susceptible mosquitoes at time t
Em(t) Number of the exposed mosquitoes at time t
Im(t) Number of the infected mosquitoes at time t

Table 2: Description of state variables involved.
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Λh Recruitment term of the susceptible humans
Λm Recruitment term of the susceptible mosquitoes
b Biting rate of the mosquito
βh Probability that a bite by an infectious mosquito results in transmission of disease to human
βm Probability that a bite results in transmission of parasite to a susceptible mosquito
µh Per capita death rate of human
µm Per capita death rate of mosquito
δh Disease-induced death rate of human
δm Disease-induced death rate of mosquito
αh Per capita rate of progression for humans from the exposed state to the infectious state
αm Per capita rate of progression for mosquitoes from the exposed state to the infectious state
r Per capita recovery rate for humans from the infectious state to the recovered state
ω Per capita rate of loss of immunity
νh Proportion of antibody produced by human in response to the incidence of infection

caused by mosquito
νm Proportion of antibody produced by mosquito in response to the incidence of infection

caused by mosquito

Table 3: Description of the parameters involved in the model equations (3.6).

4 Boundedness and Positivity of the Solutions

In this section, we provide some results which conclude the epidemiological and mathe-
matical well-posedness of the model in a feasible region D given by,
D = Dh ×Dm ⊂ IR4

+ × IR3
+ where

Dh =

{
(Sh, Eh, Ih, Rh) ∈ IR4

+ : Nh ≤
Λh

µh

}
,

Dm =

{
(Sm, Em, Im) ∈ IR3

+ : Nm ≤
Λm

µm

}
.

We will carry out the following proofs by using ideas in [34, 36, 37].

Theorem 1. There exists a domain D in which the solution set {Sh, Eh, Ih, Rh, Sm, Em, Im}
with non-negative initial conditions in D is bounded above.

Proof. We have the given solution set with positive initial conditions. The total population
sizes of host (human) and vector (mosquito) are respectively given by

V1 (Sh, Eh, Ih, Rh) = Sh + Eh + Ih +Rh, V2 (Sm, Em, Im) = Sm + Em + Im.

The total dynamics of the human population is obtained by adding the first four equations
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of the model (3.6a-3.6d) and is given by

dV1

dt
=

dSh
dt

+
dEh
dt

+
dIh
dt

+
dRh

dt

= Λh − µh (Sh + Eh + Ih +Rh)− δhIh

≤ Λh − µh (Sh + Eh + Ih +Rh)

= Λh − µhV1. (4.7)

Likewise, the total dynamics of the mosquito population is obtained by adding the last
three equations of the model (3.6e-3.6g) and we have

dV2

dt
=

dSm
dt

+
dEm
dt

+
dIm
dt

≤ Λm − µmV2. (4.8)

For biological considerations, we study the behavior of the system (3.6) in the closed set

Ψ =

{
(Sh, Eh, Ih, Rh, Sm, Em, Im) ∈ IR7

+ | 0 ≤ Sh + Eh + Ih +Rh ≤
Λh

µh
,

0 ≤ Sm + Em + Im ≤
Λm

µm

}
. (4.9)

From (4.7), we have
dV1

dt
≤ Λh − µh (Sh + Eh + Ih +Rh) ,

then by comparison theorem presented in [38], there exists t1 > 0, such that

Sh + Eh + Ih +Rh ≤
Λh

µh
= Nh for t > t1.

From (4.8), we also have

dV2

dt
≤ Λm − µm (Sm + Em + Im) ,

by using comparison theorem once again, for t2 > t1, one should have

Sm + Em + Im ≤
Λm

µm
= Nm for t > t2.

Let N = max (Nh, Nm) , then (Sh, Eh, Ih, Rh, Sm, Em, Im) ≤ N . Hence, the solutions of the
system (3.6) are bounded above.
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Theorem 2. The solutions (Sh, Eh, Ih, Rh, Sm, Em, Im) of the model (3.6) remain non-
negative for all t > 0 provided that the initial conditions are non-negative in the feasible
domain D.

Proof. If possible, let ∃ t∗ such that Sh(t
∗) > 0 and S ′h(t

∗) ≤ 0 and Sh, Eh, Ih, Rh, Sm, Em, Im >
0 for 0 < t < t∗, then we get from (3.6a)

dSh(t
∗)

dt
= Λh −

bβhSh(t
∗)Im(t∗)

1 + νhIm(t∗)
− µhSh(t∗) + ωRh(t

∗)

= Λh − ωRh(t
∗)

> 0, (4.10)

which is a contradiction. Hence Sh(t) > 0.
Assume that, ∃ t∗ = sup {t > 0 : Sh, ..., Im > 0}, then we get from (3.6b)

d
(
Ehe

(αh+µh)t
)

dt
=
bβhSh(t)Im(t)

1 + νhIm(t)
e(αh+µh)t. (4.11)

Integrating from 0 to t∗, we get

Eh(t
∗)e(αh+µh)t∗ − Eh(0) =

∫ t∗

0

bβhSh(θ)Im(θ)

1 + νhIm(θ)
e(αh+µh)θdθ.

Therefore,

Eh(t
∗) = Eh(0)e−(αh+µh)t∗ + e−(αh+µh)t∗

∫ t∗

0

bβhSh(θ)Im(θ)

1 + νhIm(θ)
e(αh+µh)θdθ

> 0. (4.12)

Hence, Eh(t) > 0.

For Ih(t), suppose for t∗ > 0, Ih(t
∗) = 0 and I ′h(t

∗) > 0 where 0 < t < t∗. Then we get
from (3.6c)

d
(
Ihe

(r+µh+δh)t
)

dt
= αhEh(t)e

(r+µh+δh)t. (4.13)

Integrating from 0 to t∗, we get

Ih(t
∗) = Ih(0)e−(r+µh+δh)t∗ + e−(r+µh+δh)t∗

∫ t∗

0

αhEh(θ)e
(r+µh+δh)θdθ

> 0, (4.14)

which is a contradiction. Hence Ih(t) > 0.
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Similarly, for Rh(t), we assume ∃ t∗ > 0 such that Rh(t
∗) = 0 and R′h(t

∗) > 0 where
0 < t < t∗. Therefore, from (3.6d)

Rh(t
∗) = Rh(0)e−(µh+ω)t∗ + e−(µh+ω)t∗

∫ t∗

0

rIh(θ)dθ

> 0, (4.15)

which is again a contradiction. Hence Rh(t) > 0.

Further, we assume that Sm(t∗) is non-increasing and other variables are positive with
Sm(t) > 0 for 0 ≤ t < t∗. Now we get from (3.6e),

dSm(t∗)

dt
= Λm −

bβmSm(t∗)Im(t∗)

1 + νmIh(t∗)
− µmSm(t∗)

> 0, (4.16)

which is a contradiction. Hence @ t∗ for which Sm(t∗) = 0.
Similarly, for Em(t), we get from (3.6f)

d
(
Eme

(αm+µm)t
)

dt
=
bβmSm(t)Ih(t)

1 + νmIh(t)
e(αm+µm)t. (4.17)

Integrating from 0 to t∗ for some t∗ > 0 where 0 ≤ t < t∗ such that Em(t∗) = 0, we get

Em(t∗) = Em(0)e−(αm+µm)t∗ + e−(αm+µm)t∗
∫ t∗

0

bβmSm(θ)Ih(θ)

1 + νmIh(θ)
e(αm+µm)θdθ

> 0, (4.18)

which shows that Em(t) > 0.
Finally, for Im(t), it is easy to see from (3.6g) that

dIm(t)

dt
≥ −µmIm(t). (4.19)

Therefore,

Im(t) ≥ Im(0)e−µmt ≥ 0. (4.20)

This completes the proof.

It is to be concluded from Theorems 1 and 2 that for all Y0 ∈ D, the solution set Y (t) ∈ D
for all t > 0, i.e., the domain D is invariant and the solution set is bounded.
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5 Existence and Stability of Equilibrium Points

5.1 Existence of Equilibria

In our model, we have two types of equilibrium points, namely, the disease-free and the
endemic. The disease free equilibrium points are the steady state solutions where there is
no infected individual in the population.

Therefore, for the disease-free equilibrium point, E0, in our model, E∗h = 0, I∗h = 0, R∗h =
0, E∗m = 0, I∗m = 0. Solving the equations (3.6a, 3.6e), we get

S∗h =
Λh

µh
and S∗m =

Λm

µm
.

So, the disease-free equilibrium point is E0 =
(

Λh
µh
, 0, 0, 0, Λm

µm
, 0, 0

)
.

Endemic equilibrium point is a positive steady state solution where the disease persists in
the population. Let Ee = (S∗∗h , E

∗∗
h , I

∗∗
h , R

∗∗
h , S

∗∗
m , E

∗∗
m , I

∗∗
m ) be the non-trivial equilibrium

point of the model. If we set all the differential equations (3.6) to zero we get

Λh − bβhSh(t)Im(t)
1+νhIm(t)

− µhSh(t) + ωRh(t) = 0,
bβhSh(t)Im(t)

1+νhIm(t)
− (αh + µh)Eh(t) = 0,

αhEh(t)− (r + µh + δh)Ih(t) = 0,

rIh(t)− (µh + ω)Rh(t) = 0,

Λm − bβmSm(t)Ih(t)
1+νmIh(t)

− µmSm(t) = 0,
bβmSm(t)Ih(t)

1+νmIh(t)
− (αm + µm)Em(t) = 0,

αmEm(t)− (µm + δm)Im(t) = 0.

(5.21)

Solving the above equations (5.21), we get

S∗∗h =
{(αm + µm) (µm + δm) bβm + νhRm}ΛhI

∗∗
h + Λh

µhR2
0

,

E∗∗h =
(r + δh + µh) I

∗∗
h

αh
,

R∗∗h =
rI∗∗h
µh + ω

,

S∗∗m =
Λm

bβmI∗∗h
1+νmI∗∗h

+ µm
,

E∗∗m =
bβmS

∗∗
m I
∗∗
h

(1 + νmI∗∗h ) (αm + µm)
,

I∗∗m =
RmI

∗∗
h

1 + {(αm + µm) (µm + δm) bβm + νm} I∗∗h ,
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where I∗∗h is a positive solution of an equation given by

C1 (I∗∗h )2 + C2I
∗∗
h + C3 = 0, (5.22)

with 
C1 = Λhφ× (µh + ω) (bβhKm + µhφ− ωrµhR2

0φ) ,

C2 = Λh (µh + ω) (bβhKm + 2µhφ− µhR2
0φ)− ωrµhR2

0φ,

C3 = Λhµh (µh + ω) (1−R2
0) ,

(5.23)

where Km = bαmβmΛm
µm(αm+µm)(δm+µm)

and φ = (αm + µm) (µm + δm) bβm + νm + νhKm.

It is clear that for C1 > 0, C2 > 0 and R0 < 1, we get C3 > 0 and eventually, the model
has no positive solution. On the contrary, for R0 > 1, we have C3 < 0 implying that the
endemic equilibrium point exists.

5.2 Basic Reproduction Number

We use the next generation matrix as described in Sec. 2. The only disease states are Ih
and Im. Let x = (Eh, Ih, Em, Im, Sh, Rh, Sm)T, then the model can be written as

dx

dt
= F (x)− V (x), (5.24)

where the disease states F and the transfer state V are given by

F (x) =



bβhShIm
1+νhIm

0
bβmSmIh
1+νmIh

0
0
0
0


, V (x) =



(αh + µh)Eh
(r + δh + µh) Ih − αhEh

(αm + µm)Em
(µm + δm) Im − αmEm
µhδh − Λh − ωRh

(µh + ω)Rh − rIh
µmδm − Λm


.

The partial derivatives of F and V at the disease-free equilibrium point E0 are as follows:

f =


0 0 0 bβhΛh

µh

0 0 0 0

0 bβmΛm
µm

0 0

0 0 0 0

 , v =


αh + µh 0 0 0
−αh r + µh + δh 0 0

0 0 αm + µm 0
0 0 −αm δm + µm

 so that

v−1 =


0 0 bαmβhΛh

µh(δm+µm)(αm+µm)
bβhΛh

µh(δm+µm)

0 0 0 0
bαmβmΛm

µm(r+δh+µh)
bβmΛm

µm(r+δh+µh)
0 0

0 0 0 0


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Now fv−1 =


0 0 bαmβhΛh

µh(δm+µm)(αm+µm)
bβhΛh

µh(δm+µm)

0 0 0 0
bαmβmΛm

µm(r+δh+µh)(αh+µh)
bβmΛm

µm(r+δh+µh)
0 0

0 0 0 0


The matrix fv−1 is called the next generation matrix. Now to find the reproduction
number R0, we find the largest eigenvalue of fv−1. Taking the spectral radius (dominant
eigenvalue) of the matrix fv−1, we can calculate the eigenvalues to determine the basic
reproduction number R0 by setting det(fv−1 − λI) = 0. For the model considered, we have
the basic reproduction number R0 as

R0 =

√
b2αhβhΛhαmβmΛm

µhµm (αh + µh) (αm + µm) (r + δh + µh) (δm + µm)
. (5.25)

In (5.25), the factor αh
αh+µh

is the probability that a human will survive the exposed state to
become infectious, while the factor αm

αm+µm
is the probability that a mosquito will survive

the exposed state to become infectious. The average duration of the infectious period of
human is 1

r+δh+µh
and that of mosquito is 1

δm+µm
. Let the basic reproduction number R0

be written as
R0 =

√
KhKm

where Kh = bαhβhΛh
µh(αh+µh)(r+δh+µh)

. Here, Kh describes the number of humans that one infec-
tious mosquito infects over its expected infection period in a completely susceptible human
population, while Km, the number of mosquitoes that one infectious human infects over its
expected infection period in a completely susceptible mosquitoe population. From (5.25),
we can make inferences that the higher value of b can result into epidemic and, for the
smaller values of b, the disease dies out.

5.3 Stability of the Disease-free Equilibrium Point

We analyze the stability of the disease-free equilibrium point with the help of the basic
reproduction number obtained from the previous section.

Theorem 3. The disease-free equilibrium point E0 is asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. The stability of the disease-free equilibrium point E0 is determined from the signs
of the eigenvalues of the Jacobian matrix of the system. The Jacobian matrix at E0 is
given by
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J(E0) =

−µh 0 0 0 0 0 −bβhΛh
µh

0 − (αh + µh) 0 0 0 0 bβhΛh
µh

0 αh − (r + δh + µh) 0 0 0 0
0 0 r − (µh + ω) 0 0 0

0 0 −bβmΛm
µm

0 −µm 0 0

0 0 bβmΛm
µm

0 0 − (αm + µm) 0

0 0 0 0 0 αm − (δm + µm)


We need to show that the eigenvalues of J(E0) are negative. The first and fifth contains
the only diagonal terms giving two negative eigenvalues −µh and − µm. The other five
eigenvalues can be obtained by eliminating first and fifth rows and columns of J(E0). Thus,
we get, J1(E0) =
− (αh + µh) 0 0 0 bβhΛh

µh

αh − (r + δh + µh) 0 0 0
0 r − (µh + ω) 0 0

0 bβmΛm
µm

0 − (αm + µm) 0

0 0 0 αm − (δm + µm)


The third column of the matrix J1(E0) gives a negative eigenvalue − (µh + ω) . Rest of
the eigenvalues are obtained from the matrix J2(E0) by eliminating third row and column.
Thus, J2(E0) =
− (αh + µh) 0 0 bβhΛh

µh

αh − (r + δh + µh) 0 0

0 bβmΛm
µm

− (αm + µm) 0

0 0 αm − (δm + µm)


The eigenvalues of J2(E0) are obtained from the characteristics equations of J2(E0), that
is, from

(λ+ αh + µh) (λ+ r + δh + µh) (λ+ αm + µm) (λ+ δm + µm)

− b2αhβhΛhαmβmΛm
µhµm

= 0. (5.26)

The roots of (5.26) are the eigenvalues of J2(E0). Let C4 = αh +µh, C5 = r+ δh +µh, C6 =
αm + µm, C7 = µm + δm, then the characteristics equation becomes

A4λ
4 + A3λ

3 + A2λ
2 + A1λ+ A0 = 0, (5.27)

where

A4 = 1

A3 = C4 + C5 + C6 + C7

A2 = (C4 + C5)(C6 + C7) + C4C5 + C6C7
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A1 = (C4 + C5)C6C7 + (C6 + C7)C4C5

A0 = C4C5C6C7 −
b2αhβhΛhαmβmΛm

µhµm
.

From the expression of R0, we get,

A0 = C4C5C6C7

(
1−R2

0

)
.

From Routh-Hurwitz criterion, we know that all roots of (5.27) have negative real parts
iff the coefficients Ai as well as det(Hi) are positive ∀i = 0, 1, 2, 3, 4; Hi being the Hurwitz
matrices. We can easily see that A1 > 0, A2 > 0, A3 > 0, A4 > 0 since all Ci’s are positive.
Furthermore, A0 > 0 if R0 < 1. Also the determinants of Hurwitz matrices are positive for

(5.27), since
∣∣H1

∣∣ = A3 > 0,
∣∣H2

∣∣ =

∣∣∣∣∣∣∣∣
A3 A4

A1 A2

∣∣∣∣∣∣∣∣ > 0,
∣∣H3

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

A3 A4 0

A1 A2 A3

0 A0 A1

∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

∣∣H4

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A3 A4 0 0

A1 A2 A3 A4

0 A0 A1 A2

0 0 0 A0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

Therefore all the eigenvalues of the Jacobian matrix J(E0) have negative real parts when
R0 < 1 and the disease-free equilibrium point E0 is locally asymptotically stable.

However, when R0 > 1, we get A0 < 0 and by Descartes’ Rule of Sign, there is one
eigenvalue with positive real part and hence E0 is unstable.

6 Operator Splitting Method

Complex physical processes are frequently modelled by systems of linear or nonlinear dif-
ferential equations. Due to the complexity, these equations can not be solved analytically,
in general. In order to get solution of the system, we have to choose a proper numerical
method so that the error of the numerical solution is minimum. Operator splitting is a
numerical method based on ‘Divide-and-Conquer’ strategy. The main idea behind this
method is to separate the original equations into a number of parts. At first, we transform
the system of differential equations into a matrix differential equation, then we split the
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operator appeared in the matrix differential equation into a number of sub-operators of
simpler structure. Mathematically, we may write the scheme as

∂u

∂t
= AX + E,

where A =
S∑
i=1

Ai. It may be noted that the decomposition of A is not unique. We now

treat them individually using specialised numerical algorithms of computing the solution.
The subproblems are connected by the initial conditions. The numerical methods used to
solve the subproblems can also cause a certain amount of error. If the numerical method
is not chosen properly, this can lead to order reduction and loss of accuracy. Moreover,
the numerical step sizes chosen for the method play an important role too. There exist a
plethora of literatures describing the operator splitting schemes by taking S=2, however,
there do exist some limited results for bigger S. The novelty of this dissertation is the
consideration of bigger S together with the non-homogeneity of the model equations.

6.1 Sequential and Strang-Marchuk Splitting

To simplify the understanding, the splitting procedures are described here only for a system
of ODEs. Also two types of splitting method are discussed here which are applied to the
original model of malaria for simulation purpose.
Let A : IRN → IRN is a bounded linear operator (i.e., it can be represented as a matrix
A ∈ IRN×N) which can be considered as a sum of three bounded linear operators. Consider
the non-homogeneous matrix differential equation of the form

du(t)

dt
= Au(t) + E(t) = (A1 + A2 + A3)u(t) + E(t), u(0) = u0, t ∈ (0, τ ], (6.28)

where u : (0, T ]→ IRN is the state variables, u0 ∈ IRN is a given element and A,A1, A2, A3

are operators of type IRN → IRN and E ∈ IRN×1. We assume that the equation (6.28) has
a unique solution. Let us divide the time interval [0, T ] into m ∈ N equal subintervals
with length τ so that τ = T

m
. Here, τ is called the splitting time step.

6.1.1 Sequential Splitting

The sequential splitting method is described by the following subproblems:{
du

(k)
1

dt
= A1u

(k)
1 (t) + E(k), t ∈ [(k − 1)τ, kτ ]

u
(k)
1 ((k − 1)τ) = uspl [(k − 1)τ ]

(6.29)

{
du

(k)
2

dt
= A2u

(k)
2 (t), t ∈ [(k − 1)τ, kτ ]

u
(k)
2 ((k − 1)τ) = u

(k)
1 (kτ)

(6.30)
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{
du

(k)
3

dt
= A3u

(k)
3 (t), t ∈ [(k − 1)τ, kτ ]

u
(k)
3 ((k − 1)τ) = u

(k)
2 (kτ).

(6.31)

Then the split solution of (6.28) defined at the mesh-points kτ , (k = 1, . . . ,m) is given by

uspl(kτ) = u
(k)
3 (kτ), (6.32)

where uspl(0) = u0. The above systems (6.29-6.31) are solved by a suitable numerical
method to get the numerical split solution yspl(kτ).

6.1.2 Strang-Marchuk Splitting

Another splitting technique is the Strang-Marchuk Splitting, defined by the following al-
gorithm to get the splitting solution of (6.28):{

du
(k)
1

dt
= A1u

(k)
1 (t) + E

(k)
1 , t ∈

[
(k − 1)τ, (k − 1

2
)τ
]

u
(k)
1 ((k − 1)τ) = uspl ((k − 1)τ)

(6.33)

{
du

(k)
2

dt
= A2u

(k)
2 (t) + E2, t ∈

[
(k − 1)τ, (k − 1

2
)τ
]

u
(k)
2 ((k − 1)τ) = u

(k)
1

(
(k − 1

2
)τ
) (6.34)

{
du

(k)
3

dt
= A3u

(k)
3 (t) + E3, t ∈ [(k − 1)τ, kτ ]

u
(k)
3 ((k − 1)τ) = u

(k)
2

(
(k − 1

2
)τ
) (6.35)

{
du

(k)
4

dt
= A2u

(k)
2 (t) = E2, t ∈

[
(k − 1

2
)τ, kτ

]
u

(k)
4

(
(k − 1

2
)τ)
)

= u
(k)
3 (kτ).

(6.36)

{
du

(k)
5

dt
= A1u

(k)
1 (t) + E1, t ∈

[
(k − 1

2
)τ, kτ

]
u

(k)
5

(
(k − 1

2
)τ)
)

= u
(k)
4 (kτ),

(6.37)

where E = E1 +E2 +E3. Therefore, the split solution of (6.28) defined at the mesh-points
kτ , (k = 1, . . . ,m) is given by

uspl(kτ) = u
(k)
4 (kτ), (6.38)

where uspl(0) = u0. The above systems (6.33-6.36) are solved by a suitable numerical
method to get the numerical split solution yspl(kτ).

(6.39)
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6.2 Error and Order Analysis of the Splitting Methods

Since, the exact (analytical) solution of the system of equations describing the transmission
of malaria is not known, a direct comparison with the numerical solution can never be
made, however, the numerical solution of the original system of ODEs (unsplit) by RK4
method can be treated as the “Reference Solution or Numerical Solution” for the matrix
differential solution. Two types of splitting scheme have been used here, namely, sequential
splitting and Strang-Marchuk splitting. In a bid to validate our numerical solution, we
compare this solution of the system of ODEs with that of obtained from the explicit Euler
method. Let

• y(k)
spl denotes the numerical split solution of the matrix differential equation at t = kτ ;
τ is the splitting time step and k = 1, ...,m.

• y(kn)
num denotes the numerical solution (reference solution) of the system of equations

at t = kτ. where the numerical time-step (h) is given by h = τ
n
.

Using the above notation, the practical error (Eprac(kτ)) at t = kτ is defined as Eprac(kτ) :=

‖yknnum − y
(k)
spl‖, where k = 1, 2, ...m. Now, the errors Eprac(τ) and Eprac(mτ)(= Eprac(T ))

are termed as the ’local practical error’ and ’global practical error’ respectively. In the
sequel, E(τ) denotes the local practical error Eprac(τ), wherever it appears.

Definition 1:
The local error E(τ) has an order of p if

p := sup{q ∈ N : lim
τ→0

E(τ)

τ q+1
= c < +∞}. (6.40)

Therefore, E(τ) = O(τ p+1), or, alternatively, we can say that E(τ) = C × O(τ p+1) for
sufficiantly small values of τ , c being a constant. When the sub-operators are non-stiff,
then the global error E(T ) can be written as

E(T ) = mO(τ p+1) =
T

τ
O(τ p+1) = O(τ p).

Hence, it may be concluded that the local error dictates the order of the global error.

We will now calculate the numerical order of the local (practical) error. It can be deter-
mined in two ways.

First Method:
Let us now introduce a notation

Hq(τ) :=
E(τ)

τ q+1
,

where q ∈ IR. Now we will apply Definition 1 to calculate

lim
τ→0

Hq(τ), (6.41)
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for different fixed values of q. The numerical order of Eprac(τ) is determined as the supre-
mum of those values of q for which the limit in (6.41) is finite and let it be denoted by
Qnum.

Second Method:
From Definition 1, we can write

E(τ)

τ q+1
≈ c < +∞, (6.42)

where τ is small enough. Taking the logarithm of both sides in (6.42), we have

logE(τ) ≈ (q + 1) log τ + log c. (6.43)

Here, the slope q+ 1 of the line corresponds to the numerical order of the local (practical)
error, that is, the required order is q.

Splitting of operator:
The system of ODEs (3.6) representing the dynamics of the transmission of malaria disease
can the written in the matrix differential form as

Y ′ = AY + E = (S + V +D)Y + E, (6.44)

where A = S + V + D,S, V and D, are 7 × 7 matrices and E is a 7 × 1 matrix. Here,
Y and Y ′ are the column vectors of seven dependent variables and their first derivatives
respectively. The matrices S, V,D and E consisting of interacting terms, interclass move-
ment of host and vector, death rates and birth rates respectively may be defined as

S =



− bβhIm
1+νhIm

0 0 0 0 0 0

0 0 0 0 0 0 bβhSh
1+νhIm

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 − bβmIh
1+νmIh

0 0

0 0 bβmIm
1+νmIh

0 0 0 0

0 0 0 0 0 0 0


, V =



0 0 0 ω 0 0 0
0 −αh 0 0 0 0 0
0 αh −r 0 0 0 0
0 0 r −ω 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −αm 0
0 0 0 0 0 αm 0


,

D =



−µh 0 0 0 0 0 0
0 −µh 0 0 0 0 0
0 0 −(µh + δh) 0 0 0 0
0 0 0 −µh 0 0 0
0 0 0 0 −µm 0 0
0 0 0 0 0 −µm 0
0 0 0 0 0 0 −(µm + δm)


, E =



Λh

0
0
0

Λm

0
0


.

It may be noted that E is a constant matrix (independent of time t).
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6.2.1 Order of Sequential Splitting Method

For one splitting time step τ , we write the solution of (6.44) as

Yexact = eτAY0 + E

∫ τ

0

e(τ−s)A ds, (6.45)

where the initial values of seven state variables are given by Y0 = {S0h, E0h, I0h, R0h, S0m, E0m, I0m}.

We now split the given problem (6.44) into the following subproblems by making use of
(6.29-6.31): {

Y ′1 = SY1 + E; t ∈ [0, τ ]

Y1(0) = Y0

(6.46)

{
Y ′2 = V Y2; t ∈ [0, τ ]

Y2(0) = Y1(τ)
(6.47)

{
Y ′3 = DY3; t ∈ [0, τ ]

Y3(0) = Y2(τ).
(6.48)

Therefore, the solution of the split subproblems (6.46-6.48) is given by

Yseq = eτDeτV eτSY0 + EeτDeτV
∫ τ

0

e(τ−s)Sds (6.49)

The splitting error Eseq(Y ; τ) defined as the difference between Yexact and Yseq is given by

Eseq(Y ; τ) = Yexact − Yseq (6.50)

We now calculate the difference of the terms (see 6.45,6.49) by using Taylor-series expansion
as (in all terms in the Taylor-series for eXeY , X always comes before Y .)

eτA − eτDeτV eτS =

(
1 + τA+

τ 2A2

2

)
−
(

1 + τD +
τ 2D2

2

)(
1 + τV +

τ 2V 2

2

)
×(

1 + τS +
τ 2S2

2

)
+O(τ 3)

=
τ 2

2

[
A2 −

(
S2 + V 2 +D2 + 2SV + 2V D + 2DS

)]
+O(τ 3)

=
τ 2

2
{[S,D] + [D, V ] + [V, S]}+O(τ 3), (6.51)
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Figure 2: Flow chart for the sequential splitting technique.

where [, ] denotes the commutator. Again, we calculate the difference of the terms (see
6.45,6.49) as∫ τ

0

e(τ−s)A ds− eτDeτV
∫ τ

0

e(τ−s)Sds =

∫ τ

0

e(τ−s)A ds−
∫ τ

0

eτDeτV e(τ−s)Sds

= −τ
2

2
(D + V ) +O(τ 3). (6.52)

Using (6.51,6.52), we have the local error of the sequential splitting method method from
(6.50) as

Eseq(Y ; τ) =
τ 2

2

[
Y0{[S,D] + [D, V ] + [V, S]} − E (D + V )

]
+O(τ 3), (6.53)

Hence, the sequential splitting scheme (6.46-6.48) applied to the non-homogeneous system
of ODEs (6.44) has second order local error, i.e., the scheme has first order accuracy.

6.2.2 Order of Strang-Marchuk Splitting Method

Following [58], we have split the non-homogeneour operator E in the form E = E1+E2+E3.
Now, for one splitting time step τ , we split the given problem (6.44) into the following
subproblems: {

Y ′1 = SY1 + E1; t ∈
[
0, τ

2

]
Y1(0) = Y0

(6.54)
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{
Y ′2 = V Y2 + E2; t ∈ [0, τ

2
]

Y2(0) = Y1( τ
2
)

(6.55)

{
Y ′3 = DY3 + E3; t ∈ [0, τ ]

Y3(0) = Y2( τ
2
)

(6.56)

{
Y ′4 = V Y4 + E2; t ∈ [ τ

2
, τ ]

Y4(0) = Y3(τ)
(6.57)

{
Y ′5 = SY5 + E1; t ∈ [ τ

2
, τ ]

Y5(0) = Y4(τ)
(6.58)

Therefore, the solution of the split subproblems (6.54-6.58) is given by

 

Figure 3: Flow chart for the Strang-Marchuk splitting technique.

YSM = e
τ
2
Se

τ
2
V eτDe

τ
2
V e

τ
2
SY0 + E1e

τ
2
Se

τ
2
V eτDe

τ
2
V

∫ τ
2

0

e( τ
2
−s)Sds

+E2e
τ
2
Se

τ
2
V eτD

∫ τ
2

0

e( τ
2
−s)V ds+ E3e

τ
2
Se

τ
2
V

∫ τ

0

e(τ−s)Dds

+E2e
τ
2
S

∫ τ

τ
2

e(τ−s)V ds+ E1

∫ τ

τ
2

e(τ−s)Sds (6.59)
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We have from (6.45),

Yexact = eτAY0 + E

(
τ +

τ 2

2
A+

τ 3

6
A2

)
(6.60)

The splitting error ESM(Y ; τ) defined as the difference between Yexact and YSM is given by

ESM(Y ; τ) = Yexact − YSM . (6.61)

Now,

eτA − e
τ
2
Se

τ
2
V eτDe

τ
2
V e

τ
2
S =

[
1 + τA+

τ 2

2
A2 +

τ 3

6
A3
]

−
[
1 + τ(S + V +D) +

τ 2

2

(
S2 + V 2 +D2 + SV + V S + V D +DV + SD +DS

)
+
τ 3

24
(4S3 + 4V 3 + 4D3 + 3S2V + 6SV 2 + 3V 2D + 6V D2 + 3S2D + 6SD2

+3V S2 + 6V 2S + 3DV 2 + 6D2V + 3DS2 + 6D2S

+6{SV D + SDV + V DV + SV S + SDS + V DS +DV S})
]

+O(τ 4)

=
τ 3

24

[
S2V − 2SV 2 + V 2D − 2V D2 + S2D − 2SD2 + V S2 − 2V 2S +DV 2 − 2D2V

+DS2 − 2D2S − 2SV D − 2SDV − 2V DV − 2SV S − 2SDS − 2V DS − 2DV S + 4V SV

+4DSD + 4DSV + 4DVD + 4V SD
]

+O(τ 4) (6.62)

Simplifying terms with E1 in (6.59),

E1e
τ
2
Se

τ
2
V eτDe

τ
2
V

∫ τ
2

0

e( τ
2
−s)Sds+ E1

∫ τ

τ
2

e(τ−s)Sds

= E1

∫ τ
2

0

[
eS

τ
2 eV

τ
2 eDτeV

τ
2 eS( τ

2
−s) − eS(τ−s)

]
ds+ E1

∫ τ

0

eS(τ−s)ds

= E1

[τ 2

2
(V +D)− τ

3

8
(V +D)S+

τ 3

4
(S2 +V 2 +D2 +SV +SD+V D+DV +V S+DS)

]

+E1

[
τ +

τ 2

2
S +

τ 3

6
S2
]

+O(τ 4. (6.63)

Simplifying terms with E2 (6.59),

E2e
τ
2
Se

τ
2
V eτD

∫ τ
2

0

e( τ
2
−s)V ds+E2e

τ
2
S

∫ τ

τ
2

e(τ−s)V ds = E2

∫ τ
2

0

[
e
τ
2
Se

τ
2
V eτDe( τ

2
−s)V−e

τ
2
Se(τ−s)V ]ds

+E2

∫ τ

0

e
τ
2
Se(τ−s)V ds = E2

[τ 2

2
D − τ 3

8
DV +

τ 3

4

(
D2 + SV − V S + SD + V D +DV

) ]
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+E2

[
τ +

τ 2

2
(V + S) +

τ 3

2

(
V 2

3
+
SV

2
− V 2

)]
+O(τ 4). (6.64)

Simplifying the term with E3 (6.59),

E3

∫ τ

0

eS
τ
2 eV

τ
2 eD(τ−s)ds = E3

[
τ +

τ 2

2
(D + S + V ) +

τ 3

2
(
D2

3
+
S2

4
+
V 2

4

+
SV

2
+ SD + V D)

]
+O(τ 4). (6.65)

Using (6.63-6.65), we have from (6.59),

YSM = e
τ
2
Se

τ
2
V eτDe

τ
2
V e

τ
2
SY0 + Eτ + E

τ 2

2
A+

τ 3

2

[
E1

(
A2

2
+
V S

4
+
DS

4
+
S2

3

)

+E2

(
D2

2
− 2V 2

3
+ SV +

V S

2
+
SD

2
+
V D

2
− DV

2

)

+E3

(
S2

8
+
V 2

8
+
D2

6
+
SV

4
+
SD

2
+
V D

2

)]
+O(τ 4). (6.66)

From (6.60, 6.61, 6.62, 6.66), we have

ESM(Y ; τ) =
τ 3

24
Y0

[
S2V −2SV 2+V 2D−2V D2+S2D−2SD2+V S2−2V 2S+DV 2−2D2V

+DS2 − 2D2S − 2SV D − 2SDV − 2V DV − 2SV S − 2SDS − 2V DS − 2DV S

+4V SV + 4DSD + 4DSV + 4DVD + 4V SD
]

+
τ 3

2

[
E
A2

3
−

{
E1

(
A2

2
+
V S

4
+
DS

4
+
S2

3

)

+E2

(
D2

2
− 2V 2

3
+ SV +

V S

2
+
SD

2
+
V D

2
− DV

2

)

+E3

(
S2

8
+
V 2

8
+
D2

6
+
SV

4
+
SD

2
+
V D

2

)}]
+O(τ 4) (6.67)

Hence, the Strang-Marchuk splitting scheme (6.54-6.58) applied to the non-homogeneous
system of ODEs (6.44) has third order local error, i.e., the scheme is of second order
accuracy.

Figures 4 show as to how to determine the approximate value of the threshold q0. In Fig.
4a, the sequential splitting scheme is used together with the RK4 method, while in Fig.
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(a) (b)

Figure 4: a) Values of the term Hq(τ) defined in Sec. 6.2 (First Method) as a function of τ
applying the sequential splitting procedure with the RK4 method for different values of q.
b) Values of the term Hq(τ) defined in Sec. 6.2 (First Method) as a function of τ applying
Strang-Marchuk splitting procedure with the RK4 method for different values of q
.

Figure 5: Numerical order (q) in the case of the local practical error as function of s
for the sequential splitting scheme and the Strang-Marchuk splitting scheme ( Note that
for the sequential splitting scheme h = τ s and for the Starng-Marchuk splitting scheme
h = 1

r4
τ s, r being the order of the numerical method applied).

4b, the Strang-Marchuk splitting scheme is used with RK4 method. The numerical time
step h is taken as h = 10−6 in both cases. The values of q are chosen for the sequential
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splitting scheme around the order of the scheme, i.e., 1 and that for the Strang-Marchuk
scheme around 2. The last value of q for which the limit is still finite is considered to be
an approximate order of the corresponding splitting scheme.

Using the ”Second Method” in Sec. 6.2, we calculate the numerical error for different
splitting schemes as a function of s, and is depicted in Fig. 5. To reduce the effect of the
interaction error, the numerical time step has to be chosen small enough. Hence, for a
fixed splitting timestep (τ), we choose smaller h for the Strang-Marchuk splitting scheme
(close to the computer zero). However, to reduce computational cost, we can choose h as
appeared in [2], but in that case, a threshold of s will come into play to retain the numerical
order of Strang-Marchuk scheme, whose graphical representation is not presented here for
the sake of brevity.

7 Numerical Experiments and Discussion

For a quantitative insight, the plausible baseline values of the parameters involved in
the model are taken as [34] S0h = 100, E0h = 20, I0h = 10, R0h = 0, S0m = 1000, E0m =
20, I0m = 30, λh = 0.000215,Λm = 0.07, b = 0.12, βh = 0.1, βm = 0.09, µh = 0.0000548, µm =
1/15, δh = 0.001, δm = 0.01, αh = 1

17
, αm = 1

18
, r = 0.05, ω = 1

730
, vh = 1, vm = 0.5.

It may be recalled that we have solved the system of ODEs by RK4 method to get the
‘Numerical Solution’ or the ‘Reference Solution’ of the unsplit problem (3.6). We have
used the explicit Euler method to solve again the unsplit problem (3.6) and calculated the
error associated with the methods in a bid to validate the ’Reference Solution’ obtained.
The Table 4 exhibiting the errors associated with the solutions for Euler-RK4 at h = 10−3

and Euler-RK4 at h = 106 for seven classes clearly justifies the validity of the ‘Reference
Solution’ in the present model.

Description L2 Norm (Euler-RK4) L2Norm (Euler-RK4)
h = 10−3 h = 10−6

Susceptible human (Sh) 4.4109E-6 4.4E-9
Exposed human (Eh) 3.7375E-6 3.7E-9
Infected human (Ih) 9.8879E-6 9.9E-9

Recovered human (Rh) 9.0295E-6 9.0E-9
Susceptible mosquitoes (Sm) 1.5806215E-3 1.5794E-6
Exposed mosquitoes (Em) 4.106788E-4 4.104E-7
Infected mosquitoes ((Im) 1.19275E-4 1.192E-7

Table 4: Comparison of errors in Euler and RK4 Methods in at t=1.0 for h = 10−3, 10−6.

Figure 6 depicts the global practical errors for several cases, v.i.z., i) τ is constant with
varying h (cf. Fig. 6a), and ii) both τ and h, at T=140 (cf. Fig. 6b). It is evident that
the global practical error decreases with decreasing numerical step length (h) when the
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splitting step length (τ) is fixed (cf. Fig. 6a). However, the error drastically decreases
when both the splitting time step (τ) and the numerical time step (h) do decrease (cf. Fig.
6b).

(a) (b)

Figure 6: a) Estimation of global practical error using the sequential splitting technique
a) for different h, τ = 0.1, T = 140, b) for different τ and h = τ

10
at T = 140.

.

Figure 7 shows the effects of the proportion of antibody (νh) when the reproduction number
(R0) is less than unity. Fig. 7a shows that the susceptible human population drops as
a result of infection by infectious mosquitoes (νh =0 ) and thereafter stabilizes when the
human develops an antibody against the parasite-causing malaria (νh = 0.5, 1.0). It may
be noted that an increase in the proportion of the antibody reduces the sharp decrease
in the susceptible human population. The magnitudes of the exposed human population
in Fig. 7b does decrease with an increased presence of antibody. Figs. 7(c-d) display
the time-dependent behavior of the infected and recovered human population for different
νh. Comparing all the Figs. 7(a-d), we may conclude that the decreased number of
infectious human population contributes much in the number of recovered human which
eventually influences the reduction in the sharp decrease experienced by the susceptible
human population.

Figure 8 exhibits the time-dependent behaviour of the susceptible, exposed and infected
mosquitoes for different values of the proportion of antibody (νm), produced against par-
asite, on mosquito populations. It is observed that the number of susceptible mosquito
decreases with time as there is no recovered class for mosquito population. However, in-
creasing the proportion of antibody (νm) inhibits the reduction in the number of susceptible
mosquito. Also, the number of the exposed and infectious mosquito population decreases
due to the increase in resistance to the malaria parasite.

The impact of antibody (νh) produced by the susceptible human in response to the presence
of the parasite on susceptible as well as exposed human population for R0 >1 is depicted
in Figures 9(a,b)respectively. It may be noted that the basic reproduction number R0

can be made greater than unity by increasing the mosquito’s biting rate (b). We notice
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(a) (b)

(c) (d)

Figure 7: The temporal behaviour for different proportion of antibody (νh) produced by
human when R0 < 1, a) susceptible human, b) exposed human, c) infected human, d)
recovered human.

that increasing the proportion of the antibody with the biting rate, has a lower effect in
reducing the burden of the endemic malaria infection when compared the case for R0 <
1. Figures 9(c,d) display the variations of the results for infected and recovered human
with varying νh. It is observed that when R0 > 1, there are meagre effects of νh on the
infected and susceptible human population as compared with the case for R0 < 1. The
above phenomena may be justified in the sense that the increased proportions of antibodies
together with the increasing biting rate (b) has a lower effect in reducing the burden of
malaria.
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(a) (b)

(c)

Figure 8: The temporal behaviour for different proportion of antibody (νm) produced
against parasite whenR0 < 1, a) susceptible mosquitoes, b) exposed mosquitoes, c) infected
mosquitoes.

8 Conclusion

We have formulated a temporal model to describe the dynamics of disease transmission of
malaria parasites in a well-mixed human and mosquito environment. We have investigated
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(a) (b)

(c) (d)

Figure 9: The temporal behaviour for different proportion of antibody (νh) produced by
human when R0 > 1, b=3, a) susceptible human, b) exposed human, c) infected human,
d) recovered human.

the dynamics of the system both analytically and numerically. More specifically, we have
solved the system of ODEs describing the temporal model by the RK4 method and we
term it as ’Reference Solution’. To validate the reference solution, we have again solved
the temporal model by the explicit Euler method and calculated the error associated with
it. We have converted the system of ODEs into a non-homogeneous matrix differential
equation, then we have split the operators involved in the matrix differential equation to
get various splitting scheme. We have used the sequential splitting scheme and the Strang-
Marchuk splitting scheme to get the numerical split solution. We have also calculated
the order and error for both the schemes. Results predicted show that the susceptible
human population drops as a result of infection by infectious mosquitoes and thereafter
stabilizes when the human develops an antibody against parasite-causing malaria. It may
be noted that an increase in the proportion of the antibody reduces the sharp decrease in
the susceptible human population. Moreover, the decreased number of infectious human
population contributes much in the number of recovered human which eventually influ-
ences the reduction in the sharp decrease experienced by susceptible human population.
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Furthermore, the number of the susceptible mosquito decreases with time as there is no
recovered class for mosquito population and increasing the proportion of antibody inhibits
the reduction in the number of susceptible mosquitoes.

9 Study Limitations and Scope of Future Work

Due to the huge complexity of epidemiological modelling, a lot of assumptions (simplifi-
cations) may be made while studying it mathematically and/ numerically. It is worthy to
mention that our model does not contain the age-structure and the environmental effects
(namely, the temperature and humidity). Our model also did not consider the spatial
impact on the transmission of malaria, even though, the spatio-temporal dynamics of dis-
ease transmission is a much-researched topic in the case of epidemiological modelling. We
intend to investigate the topics mentioned in this section as part of our future research.
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[2] P. Csomós and I. Faragó, Error analysis of the numerical solution of split differential
equations. Math. Comput. Model., 48(7-8), pp.1090–1106 (2008).

[3] S. Athithan and M. Ghosh, Mathematical Modelling of Malaria with Bed-net Effect
and Treatment. In Proceedings of National Conference on Pure and Applied Mathe-
matics (NCPAM’13), pp. 153-159 (2013).

[4] D. Bernoulli, Essai d’une nouvelle analyse de la mortalité causée par la petite vérole
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