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Chapter 1

Introduction

1.1 Preliminary words

1.1.0.1. Let (X,0) a complex analytic normal surface singularity with link M. We
consider a good resolution ¢ : X — X of the singular point o. Let F := ¢ (o)
be the exceptional divisor with irreducible components { F, } ¢y, I the corresponding
intersection form and I' the dual resolution graph associated with ¢. It is well known
that I' is connected and [ is negative definite. Moreover, the link M is a rational
homology sphere (H;(M,Q) = 0) if and only if the graph is a tree and the genus of
E,is 0 for all v € V.

The map ¢ identifies X and M , hence I' can be viewed as a plumbing graph, and
M as the associated S'-plumbed oriented 3-manifold, which is the boundary of the
oriented plumbed 4-manifold obtained by plumbing disc-bundles. This second space
can smoothly identified with X.

In the theory of normal surface singularities in the last decade one of the ma-
jor issues was to compare the analytic invariants with the topological ones. The
topological invariants are computable just from the resolution graph I' of the given

singularity, or equivalently, from the link of the singularity (as invariants of oriented
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graph 3-manifolds).

The research aimed to provide topological formulae for several discrete analytic
invariants, or at least topological candidates. Obviously, when we fix the topological
type and vary the analytic structure most of these analytic invariants also can change.
In particular, we have a hope to find purely topological formulae only in the case of
special analytical families.

In [NNO2], Némethi and Nicolaescu formulated the ‘Seiberg-Witten invariant con-
jecture’, which relates the analytic invariants (e.g. geometric genus) of (X, 0) to the
Seiberg-Witten invariants of the link, whenever the link is a rational homology sphere
and the analytic type is Q—Gorenstein. Though counterexamples were found among
superisolated hypersiurface singularities, the validity of the conjecture was verified
for a large class of singularities: e.g. for normal surface singularities which admit a
good C*-action ([NNO04]) and suspension singularities of type g(z,y,z) = f(z,y) + 2"
where f is an irreducible plane curve singularity ([NNO3]). Furthermore, it remains
true for splice quotient singularities [BN10, N12] and (some version of it) for Newton
nondegenerate hypersurface singularities [NS16].

This conjecture connects singularity theory with low dimensional topology, since
the Seiberg-Witten invariant is the normalized Euler-characteristic of the Seiberg-
Witten monopole Floer homology of Kronheimer-Mrowka, or equivalently, of the
Heegaard-Floer homology of Ozsvath-Szabé (or, of the lattice cohomology). On the
other hand one has to fix always some special restrictions on the analytic type for
the Seiberg witten invariant conjecture, because it clearly fails for many elliptic sin-
gularities with generic analytic type. Also the results above aims to calculate the
cohomologies of line bundles with a fixed Chern class, and fixed class in the Picard
group (for example the geometric genus is the h' of the trivial line bundle of X ).

There is an another topological candidate, which is the normalized Euler char-

acteristic of the path lattice cohomology, see e.g. [NS16, NO17|, denoted also by
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MIN.,,. This is an upper bound for the geometric genus for every analytic structure.
Moreover, for some special families of singularities even the equality holds, e.g. for
superisolated or Newton nondegenerate hypersurface singularities [NS16].

However, again, there are resolution graphs, for which M 1N, is not the geometric
genus of any singularity corresponding to it, in particular, the upper bound is not

sharp in general for any topological type [NO17].

1.1.0.2. One of our main motivations in this thesis is to investigate opposite type of
problems: the determination of the geometric genus of a generic analytic type (generic
with respect to a fixed topological type), or the determination of the cohomology of
a line bundle on X, which is generic in the Picard group Pic()z ) with a fixed Chern
class.

In the first case the answer clearly must depends just on the resolution graph,
and, indeed, we succeed to prove a combinatorial formula for it.

Also, we will compute the cohomology of other ‘natural’ or ‘special’ line bundles of
X whenever the analytical type is generic. Though in this case it is not a priori clear
that the answer should be totally topological, we succeed again to provide topological
formulae.

In it worth to mention that while the minimal possible geometric genus for a fixed
topological type is determined in this work (it is realized by the geometric genus of
generic singularities), the determination of the maximal possible geometric genus is
still an open problem.

The main massage of these results is that while the geometric genus can change
when we vary the analytic structure, there are combinatorial candidates for this value,
and equality happens for special families of analytic types. However, if we take
all possible analytic structures into consideration, then the possible values of the

geometric genus p, (X, 0) form an interval of integers.

1.1.0.3. The main machinery behind these results is the newly created theory of Abel
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maps, constructed for resolutions of normal surface singularities. They constitute
certain analogy with the Brill-Noether theory of smooth projective curves.

Compared the theory of Abel maps of surface singularities with the classical Brill-
Noether theory, though at many points the techniques and even the questions are
rather different, there are several points, where we use the same ideas.

In the classical case one has a genus g complex algebraic curve ', and want to
investigate the k' stratification of the line bundles Pic?(C), where d is an arbitrary
nonnegative integer. One of the main tools is to look at the Abel map f : Sym?(C) —
Pic?(C), which for unordered points D = (pi,...,pq) (which might even coincide)
associates the line bundle of the divisor ). p;.

There is a lot of analytic information coded in this map, for example for any
effective divisor D € Sym?(C) one has h*(C, f(D)) = g — dim(im(Tp f)).

In the cases of normal surface singularities instead of the number d we should fix
a Chern class for line bundles on X, which should be an element I € L :== H*(X,Z).

The next step is to find the analogue of the source space Sym?(C') and the analogue
of the target space of the Abel map Pic?(C).

Since Sym?(C') paramterises the degree d effective Cartier divisors on C, it would
be reasonable to look at the space of effective Cartier divisors on X. However, it turns
out that this space is infinite dimensional, so we have to ‘cut it off’ somehow to a
finite dimensional space. In order to this, we consider a (large) cycle Z supported on
the exceptional divisor and we look at the space ECal/(Z ) of effective Cartier divisors
on Z with Chern class ['.

In fact, for any effective non-zero Z and Chern class I’ the space ECa” (Z) is already
constructed in the literature. In fact, we can regard Z as a projective algebraic scheme,
in which situation ECa’(Z) was constructed by Grothendieck [Gro62], see also the
article of Kleiman [K113] and the book of Mumford for curves on algebraic surfaces

[Mu66]. In particular, ECa’(Z) is a quasiprojective variety. Though the existence
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of the space ECaZI(Z ) in this way is already established, we will provide several key
properties valid in our particular situation. For example, a bit counterintuitively, even
though the cycle Z has a nonreduced structure and singular points at the intersection
of exceptional divisors, the space ECal/(Z ) will always be smooth.

The aim of the thesis is to investigate the Abel map ECa’(Z) — Pic’(Z) with

special attention concerning key questions on normal surface singularities.

1.2 Summary of the main results

In this brief summary we wish to provide the major ideas and some of the major
results of the thesis without technical details. The presentation will automatically

provide the structure of the thesis as well.

1.2.1 Abel maps

The study of the Abel map of projective irreducible smooth curves was a crucial
tool in the classical algebraic geometry and it remained so in the modern theory as
well. Though in this work we will not use/apply very much this classical theory, in
this introduction (and some places later) we will discuss some comparisons between
the curve case and the theory of the present thesis established for normal surface
singularities, mostly to emphasize the major conceptual differences and additional
difficulties in the later case. (For the Abel map of curves one can consult [ACGHS85]
and the references therein.)

We wish to emphasize from the start that we are not generalizing the Abel con-
struction from the curve case to the — smooth or singular — (quasi)projective sur-
faces: our goal is to develop its analogue valid in the context of a resolution of a
complex normal surface singularity germ. This means that if (X, 0) is such a singu-

larity with a fixed good resolution X=X , then for any effective cycle Z supported
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on the reduced exceptional curve E and for any (possible) Chern class I € H2(X,Z)
we construct the space ECal/(Z ) of effective Cartier divisors D supported on Z, whose
associated line bundles Oz(D) have first Chern class I’. Furthermore, we consider the
space Pic! (Z) ¢ H'(O%) of isomorphism classes of holomorphic line bundles with
Chern class I’ and the Abel map ¢ (Z) : ECa (Z) — Pic' (Z), D — O4(D). In this
way, our Abel map is associated with non-reduced projective curves supported by
the exceptional set of a good resolution of a normal surface singularity.

In particular, the combinatorial background is the combinatorics of the dual res-
olution graph I' (or the intersection from (, ) of the irreducible exceptional curves),
that is, equivalently, the 3—dimensional link of the singularity. In fact, in order to run
properly the theory, we will even assume that the link of the singularity is a rational
homology sphere. This happens exactly when the resolution graph I' represents a
tree of rational curves. In this way, in all the discussions regarding the analytic types
and properties we move the difficulties from the moduli space of each irreducible ex-
ceptional curve FE, (which is trivial in this case) to the analytic properties of their
infinitesimal tubular neighbourhoods and their gluings (analytic plumbing).

The Abel map ¢ behaves rather differently than the (projective) Abel map of re-
duced smooth curves, it shares more the properties of non—proper affine maps rather
than the projective ones. This will also be clear from the next preliminary presenta-
tion of its source and target.

In fact, the space ECal/(Z ) is already constructed in the literature. Note that by
a theorem of Artin [A69, 3.8], there exists an affine algebraic variety Y and a point
y € Y such that (Y,y) and (X, o) have isomorphic formal completions. Then, accord-
ing to Hironaka [Hi65], (Y,y) and (X, 0) are analytically isomorphic. In particular,
we can regard Z as a projective algebraic scheme, in which situation ECal/(Z ) was
constructed by Grothendieck [Gro62], see also the article of Kleiman [KI13] and the

book of Mumford for curves on algebraic surfaces [Mu66]. In particular, ECa’ (Z) is
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a quasiprojective variety. Though the existence of the space ECall(Z ) in this way is
established, we will provide several key properties valid in our particular situation,
including the local charts.

In Theorem 3.1.1.11 we prove the following.

Theorem 1. If —I' belongs to the Lipman cone then the following facts hold.

(1) ECal'(Z) is a smooth complex irreducible variety of dimension (I', Z).

(2) The natural restriction r : ECal (Z) — ECa! (E) is a locally trivial fiber bundle
with fiber isomorphic to an affine space. Moreover, the homotopy type of ECal/(Z) 18

independent of the choice of Z and it depends only on the topology of (X, o0).

The affine fibers of r : ECa(Z) — ECa’(E) can be considered as certain jet
spaces in the local infinitesimal neighbourhoods of the local equations of the effective
Cartier divisors. In fact, even ECal/(E) usually turns out to be non—projective too.

Note also that the base space Picll(Z ) is also noncompact, it is an affine space of
dimension h'(Oyz). (Here the assumption that the link is a rational homology sphere
plays a role; otherwise Pic' (Z) ~ HY(O,)/H'(X,Z) would have a complex torus
component as well). This affine structure will be exploited deeply in the body of the
paper.

We also mention that the Abel map itself is algebraic, and in fact its expression in
local charts can be done explicitly via Laufer duality (integrating forms along divisors
in X).

Since the Abel map is not proper, its image usually is not closed, and it can be a
rather complicated constructible set (it can be singular as well).

In order to show the presence of possible anomalies we list several examples based
on the theory of elliptic and splice quotient singularities (certain familiarity with them
might help essentially the reading).

We also show that all the fibers of ¢ are smooth (irreducible, quasiprojective),

however, their dimensions might jump. The dimension of ¢~ '(£) (£ € Pic'(2)) is
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R(Z, L) — h°(Oz) = (I, Z) + W' (Z,L) — h'(Oz). Any fiber appears as quotient by
the algebraic free proper action of H(0%), which, as algebraic variety, has dimension
h°(Oz). (This also shows a major difference with the curve cases, where the space of
effective divisors associated with a bundle has the form H°(L£)\ {0}, and the action is
the projectivization action of C*. In particular, the fibers are projective spaces.) The
above relation makes the connection with another major problem/task of the theory,
namely determination of possible values of h*(Z, L).

This ‘h'’-problem can be formulated even independently of the Abel map, let us
fix a topological type (say, the resolution graph I'), and we consider an arbitrary
analytic type of singularity and its resolution supported by I'. Then for fixed Chern
class I and cycle Z we can also consider all the possible line bundles £ € Picl'(Z ).

The challenge is to determine all the possible values of h'(Z, L), and under-
stand/organize them in a conceptual way. This can be split in two major steps:
in the first case one varies all the analytic structures (both of (X, 0) and of the line
bundles), in the second case one fixes an analytic structure (X,0) (and one of its
resolutions X ) and one moves L € Picl'(Z ). E.g., in this second case, one can ask
for the stratification UpWy . of Pic! (Z) ~ H'(Oz) by Wy = {£ : hYL) = k}.
(These are the analogues of the Brill-Noether strata. For the Brill-Noether theory
see [ACGHS5, F110].) Or, one can search for the possible values k& when Wy ;. # 0.

In the body of the thesis we will provided several bounds and partial results (with
sharp lower bounds provided by generic structures).

Though the older previous results in normal surface singularities focus mostly on
particular analytic structures (rational, elliptic, weighted homogeneous, splice quo-
tient, etc), and to special line bundles (e.g. of type Og(l)), we wish to treat the
general case as well, e.g. the case of generic analytic structure or the generic line
bundles.

Part of the results are reduced to the case of Abel maps which are dominant. This
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case is completely characterized in Theorem 3.2.1.1:

Theorem II. Fiz —I' from the Lipman cone, Z > E, and consider ¢ - ECal/(Z) —
Pic’ (Z).

(1) " is dominant if and only if x(—1') < x(=I' +1) for all0 <1 < Z, 1 € L.
In particular, the fact that ¢ is dominant is independent of the analytic structure
supported by T' and it can be characterized topologically (and explicitly).

(2) If &' is dominant then h*(Z, L) = 0 for generic L € Pic' (Z).

For fixed and large Z (in which case Pic” (Z) = Pic" (X)) we introduce Sh.m as the
set of those Chern classes I’ for which ¢ is dominant, and we list several properties of
it. It is a semigroup of the topological Lipman semigroup/cone &', and it has several
properties of the analytic semigroups. The study of dominant maps emphasizes again
the importance of the study of generic line bundles.

We will list several cohomological properties for the generic line bundle L, of
Pic” (e.g. we determine its h' topologically, and we show that this value is a sharp
lower bound for any h'(L£)). Similarly, the generic line bundle of the image of the
Abel map ¢ is also studied (its h' is the codimension of im(c) and it is also the
sharp lower bound for any h'(£) with £ € im(c")). Upper bounds for h'(Z, L) are

also established. E.g. Theorem 3.3.2.2 and Proposition 3.3.5.1 imply:

Theorem III. Fiz Z > 0.
(1) Fixz an arbitrary l' € L'. Then for any L € Picl/(Z) one has

RN Z, L) > x(=I)— min x(=I'+1).

0<I<Z,leL

Furthermore, if L is generic in Picl/(Z ) then the inequality transforms into an equality.
In particular, h*(Z, L) is topological and explicitly computable from L, whenever

L is generic.
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(II) For any £ € im(¢") C Pic" (Z) one has
hW(Z, L) > hHOy) — dim(im(c")) = codim(im(c")).

Furthermore, equality holds whenever L is generic in the image of c.

The Abel map is compatible with additive structure of the divisors and multi-
plicative structure of the line bundles. The point is that if we consider a sufficiently
high multiple of a Chern class (that is, we replace " with nl’ where n > 0), then
the image of ¢ becomes an affine subspace for each n, and the associated vector
subspaces (indexed by n) stabilize, and this stabilized vector subspace depends only
on the ‘dual-base-support’ of I’ (see Theorem 3.4.1.9).

This collection of stabilized linear subspaces (as a linear subspace arrangement)
and their dimensions become the source of important new analytic invariants. E.g.,
the dimensions serve as correction terms in our new analytic surgery formulae (see e.g.
Theorem 3.4.1.9). If the analytic structure of (X,0) is ‘nice’ (e.g. splice quotient),
then these correction invariants can be connected with known analytic invariants
computable from the Poincaré series of the divisorial filtrations, and in such cases the
‘classical’ surgery formulae can be recovered or improved.

Similarly as in the case of classical theory of curves we develop the ‘duality picture’
between divisors and differential forms. This not only describes the Abel map and
its tangent map, but it gives a computational tool in concrete examples as well.

When a concrete basis of HO(X \ E, Q})/HO()?,Q%() (dual to H'(Og)) can be
explicitly determined, the Abel map also becomes more transparent, and several of the
above listed problems have precise (sometimes even combinatorial) solutions. This is

exemplified in the case of superisolated hypersurface singularities.

10
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1.2.2 Generic analytic structures

The goal of this section is to provide topological formulae for several discrete analytic
invariants whenever the analytic structure is generic (with respect to a fixed topolog-
ical type). Regarding this problem very little is known in the present literature. The
type of formulae of the topological characterizations and the proofs in the present
work are based on the theory of Abel maps.

In order to formulate the invariants and the topological characterizations we need
some notation. Let X — X be a good resolution with irreducible exceptional curves
{E,}vey, with resolution graph I', negative definite intersection lattice L = HQ()Z' 1),
dual lattice L' = Hz()aZ) ~ HQ(X, 8)?,2), and discriminant group H = L'/L. We
assume that the link M of (X, 0) is a rational homology sphere, that is, ' is a tree
of rational E,’s. In such a case H = Hy(M,Z) is finite. Usually Z will denote an
effective cycle supported on the exceptional curve E. For any Chern class one defines
the ‘natural line bundle’ O (I') € Pic" (X), and its restrictions Oz (I'), cf. 2.1.4.

In the sequel we fix a topological type, that is, a resolution graph. The topological
invariants are read from I', or equivalently, from L. The most elementary one is the
‘Riemann—Roch’ expression x : L' — Q given by x(I') := —(I',l' — Zk)/2, where
Z € L' is the anticanonical cycle defined combinatorially by the adjunction formulae.

The list of analytic invariants, associated with a generic analytic type (with re-
spect to the fixed graph), which are described in the present work topologically are
the following: h'(Oyz), h'(Oz(l')) (with certain restriction on the Chern class I'), —
this last one applied for Z > 0 provides h'(Ox) and h'(Ox(!')) too —, the coho-
mological cycle of natural line bundles, the multivariable Hilbert and Poincaré series
associated with the divisorial filtration, the analytic semigroup, the maximal ideal
cycle. See [CDGZ04, CDGZ08, Li69, N99b, N0O8, N12, 008, Re97] for the definitions
and relationships between them, some definitions will be recalled.

Surprisingly, in all the topological characterization we need to use merely y, how-

11
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ever, it is really remarkable the level of complexity and subtlety of the combinatorial
expressions/invariants carried by this ‘simple’ quadratic function. Definitely, this can
happen due to the fact that we work over the lattices L and L', and the position of
the lattice points with respect to the level sets of x play the key role. It is a real chal-
lenge now to interpret these expressions in terms of lattice cohomology [NO8b, N11]

or other topological 3—manifold invariants.

Theorem IV. Fiz a resolution graph and assume that the analytic type of X is
generic. Then the following identities hold:
(a) For any effective cycle Z € L~g

h'(Oz) =1— min {x()}.

0<i<Z,JleL

(b) If ' =5 oy I, By € L' satisfies I;, < 0 for any E, in the support of Z then

W(Z, 0z(l')) = x(-1) — omin (=0 + D}

(For a characterization valid for more general Chern classes ' see section 4.4.)

(c) If pys(X,0) = h (X, Og) is the geometric genus of (X, 0) then

_ . 1 if (X, 0) is not rational,
py(X,0) =1 — min {x())} = —min{x())} +
€L>o leL
0 else.

(d) More generally, for anyl' € L'

~ 1 if I € Lsy and (X, 0) is not rational,
(X, O (l') = x(=1)=min {x(=I'+1)}+
= 0 else.

(¢) Let H(t) = Y ., h(I)t" be the multivariable equivariant Hilbert series associated

12
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with the divisorial filtration. Writel' as rp,+1y for somely € L and ry, € L' the unique
representative of h = [l'| in the semi-open cube of L'. Then b(ry) = 0 for Iy = 0.
Furthermore, for ly >0 and h # 0

N __ : ! . .
H(t") = i {x(+ )} = min {x(ra + )}
Forh=0andl'=10,>0

1 if (X, 0) is not rational,

h(lo) = min {x(lo + 1)} — min {x(})} +
IEL>g €L~

- - 0 else.

(f) Write the multivariable equivariant Poincaré series P(t) = —H(t)-[],c,(1—t,1)
as Y pes DUV It is supported in the Lipman (antinef) cone, in particular in L.
Then p(0) =1 and for I’ > 0 one has

p(1) = > (=) min x(I' + 1+ Ey).

leL
Icy =20

(g) Consider the analytic semigroup S,,, == {l' € L' : Ox(l') has no fixed components }.
Then
S, =1l : x(I') < x(I' +1) for anyl € Lo} U{0}.

(h) Assume that T' is a non-rational graph and set M = {Z € Lsy : x(Z) =

mingey, X(l) } .

Then the unique minimal element of M s the cohomological cycle, while the

unique maximal element of M is the mazimal ideal cycle of X.

The results of the previous section show, that for any analytic singularity and
resolution with fixed resolution graph, and for any £ € Picl/(Z ), one has h'(Z, L) >

X(=1") — ming<j<z e, x(—' + 1), and equality holds for a generic line bundle Ly, €

13
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Pic’ (Z).

In particular, for any analytic type, the cohomology numbers of Ly, € Picl/(Z )
can be expressed combinatorially. Now, the expectation and our guiding principle is
the following: for a generic analytic structure the natural line bundle Oz(l’) should
have the same h' as the generic line bundle L., € Pic"(Z) (associated with any

analytic structure). This is the next key technical statement.

Theorem V. Assume that X is generic. Under some (necessary) negativity restric-
tion on the Chern class ' (see Theorem 4.3.1.1 and Remark 4.4.1.1(b)) the following

facts hold.

(I) The following facts are equivalent:
(a) Oz(1") € im(c), where O4(I') is the natural line bundle with Chern class I';
(b) Lyen € im(c!), where Lgen s a generic line bundle in Pici(Z) (that is, ¢ is
dominant);
(c) O4(I') € im(d), and for any D € (&)"HOL(l")) the tangent map Tpc
TDECaZ(Z) — Toz(l/)Pici(Z) is surjective.
(I) W'(Z,0z(l)) = h'(Z, Lyen) for i = 0,1 and for a generic line bundle Ly, €
Pic(2).

The proof is long and technical (the ‘hard’ part is (a)=(c)) and it uses the explicit
description of tangent map of ¢’ in terms of Laufer duality (integration of forms along

divisors).

By this result, if X has generic analytic structure, then the cohomology of natural
line bundles can be expressed by the very same topological formula as L, with the

same Chern class. Then all the formulae of Theorem IV above follow directly.

In the next paragraph we say a few words about ‘generic analytic type’.
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1.2.3 Discussion regarding the ‘generic analytic type’

Let us comment first what kind of difficulties appear in the definition and study of
‘generic’ analytic type. The point is that for a fixed topological type the moduli
space of all analytic structures supported by that fixed topological type, is not yet
described in the literature; hence, we cannot define our generic structure as a generic
point of such a space. Laufer in [La73b] characterized those topological types which
support only one analytic type, but about the general cases very little is known.
Usually, generic structures — when they appeared — were introduced by certain
ad-hoc definitions, or only in particular situations. In a slightly different direction
a remarkable progress was made by Laufer (see e.g. [La73]) when he defined local
complete deformations of (resolution of) singularities. This parameter space will be
the major tool in our working definition as well.

However, even if one defines a certain ‘genericity’ notion by eliminating a discrim-
inant from a parameter space (consisting of the pathological objects from the point
of view of the discussion), the next hard major task is to exploit from the genericity
some key geometric/numerical/cohomological properties. E.g., in the present work
this is done via Theorem V.

Laufer in [La77] proved that a generic elliptic singularity has geometric genus
pg = 1, but except this almost no other example is known.

Wagreich already in 1970 in [Wa70] defined topologically the ‘arithmetical genus’
po of a normal surface singularity and for any non-rational germ (that is, when
pg # 0) he proved that p, < p, (see [Wa70, p. 425]). Though in some (easy) cases
was known that they agree, analyzing the existing proofs of the inequality (see e.g.
the very short proof in [NO17]), one might think that this inequality for germs with
complicated topological types probably is extremely week. However, the point is that
in the present note we prove that (contrary to the first naive judgement) the generic

analytic structure realizes exactly this p,. For the other invariants (listed in Theorem
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IV) even the corresponding candidates were not on the table.

In fact, even in this thesis we make the selection of a package of analytic invariants
(organized around the cohomology of natural line bundles), for which we present
the corresponding ‘package of topological expressions’, and we will treat, say, the
Hilbert—Samuel function/multiplicity /embedded-dimension package in a forthcoming
manuscript (with rather different type of combinatorial answers).

Usually when we have a parameter space for a family of geometric objects, the
‘generic object” might depend essentially on the fact that what kind of geometrical
problem we wish to solve, or, what kind of anomalies we wish to avoid. Accordingly,
we determine a discriminant space of the non—wished objects, and generic means
its complement. In the present work all the discrete analytic invariants we treat
are basically guided by the cohomology groups of the natural line bundles (for their
definition see [NO7], [O04] or 2.1.4 here, they associate in a canonical way a line
bundle to any given Chern class). Hence, the discriminant spaces (sitting in the base
space of complete deformation spaces of Laufer [La73]) are defined as the ‘jump loci’
of the cohomology groups of the natural line bundles. We recall the needed results of
Laufer regarding complete deformations of some X , and we build on this our working
definition of general analytic type.

Note that the natural line bundles are well-defined only if the link is a rational
homology sphere. Furthermore, this assumption appeared in the case of Abel maps

as well. Hence, we impose this topological restriction all along.

1.2.4 Dimensions of images of Abel maps

Fix a complex normal surface singularity (X, o) and let X be one of its good reso-
lutions. We assume that the link of (X, 0) is a rational homology sphere. Let’s fix
an effective cycle Z > E and Chern class I’ € —8’ and let’s look at the Abel map

&'(Z) : ECa" (Z2) — Pic’ (Z).
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The image of the Abel map consists of line bundles without fixed components.

The main goal of this section is the computation of dim im(c*(Z)) and the de-
duction of several new consequences. We consider these as necessary steps towards a
long-term final goal: the development of the Brill-Noether theory of normal surface
singularities.

Though the dimension (I’, Z) (and the homotopy type) of the connected complex
manifold ECa! (Z) is topological (i.e. it depends only on the link, or on the lattice
L), the dimension h'(Oy) of the target affine space Pic’(Z) depends essentially on
the analytic structure: if we fix the topological type (and Z), the cohomology group
H'Y(Oy) usually depends on the chosen analytic structure supported by the fixed
topological type. The same is true for both dim im(¢!'(Z)) and codimim(c’(Z)):
though (surprisingly) there is a topological characterisation of those cases when
&(Z)) is dominant, oppositely, the cases e.g. when ¢'(Z)) is a point or it is a
hypersurface have no such topological characterisations. In particular, both integers
dim im(c"(Z)) and codimim(c"(Z)) are subtle analytical invariants. In fact, it turns
out that codimim(c"(Z)) equals h'(Z, L7 ), where L7 is a generic line bundle from
im(c'(2)).

Maybe it is worth to emphasize that in the case of the Abel map associated
with a smooth projective curve the dimension of the image is immediate (for this
classical case consult e.g. [ACGHS85, F110]). This (and almost any other comparison)
shows the huge technical differences between the classical smooth curve cases and our
situation (which, basically, is the Brill-Noether theory of a non-reduced exceptional
curve supported by the exceptional set of a surface singularity resolution).

In the body of the thesis we present two inductive algorithm for the computation
of dz(I') := dim im(c"(Z)). The induction follows a sequential blow up procedure

starting from the resolution X. Write =/ = Y a,E* € &'\ {0} (hence each

veY

ay € Z>p). Then, for every v € V with a, > 0 we fix a, generic points on E,, say
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Doky, 1 < ky < a,. Starting from each p, , we consider a sequence of blowing ups:
first we blow up p,x, and we create the exceptional curve F,;, 1, then we blow up
a generic point of F,j, 1 and we create F,, 2, and we do this, say, s,x, times (an
exact bound is given in 5.2.1). We proceed in this way with all points p,j,, hence
we get > a, chains of modifications. Hence, a set of integers s = {s, 1, fvev, 1<k, <a.
provides a modification 7y : )A(:S 5 X. In )?S we find the exceptional curves U,cy E, U

Un,k, Ut<t<s, 4, Fokoi- At each level s we set Zg := n3(Z) and I :== >, , F;

v,ky v,kmsv,kv

(in L'(Xy), where F,;,0 = E,). We also write d := dimim(c’s(Z,)). Note that
do = dz(l'), and it turns out that ds = 0 whenever the entries of s are large enough.
(Sometimes we abridge the pair (v, k,) by (v, k).)

In order to run an induction, for any s and (v, k) let s¥* denote that tuple which
is obtained from s by increasing s, by one. The inductive algorithm compares dg
with all possible dgv,x.

Using the fact (cf. the proof of Theorem 5.6.1.1) that ECa’s# (Zs.) is birational

with a codimension one subspace of ECalé(ZS), with some work we obtain
dS - dsv,k G {0, 1} (1241)

A very subtle part of the theory is to identify all those pairs (s,s"*), where the
gaps/jumps occur (that is, when the difference in (1.2.4.1) is 0 or 1). The identification
of such places carries a deep analytic content (and even if in some cases it can be
characterised topologically — e.g., in the case of a generic analytic structure —, it

might be guided by rather complicated combinatorial patterns).

Example 1.2.4.2. To create a good intuition for such a phenomenon, let us recall the
classical case of Weierstrass points. Let C' be a smooth projective complex curve of
genus ¢ and let us fix a point p € C. For any s € Zs consider {(s) := h°(C, Oc(sp)).
Then ¢(0) = 1 and (29 — 1+ k) = g+ k for k > 0. Moreover, {(s) —{(s—1) € {0,1}

18



CEU eTD Collection

for any s > 0. Those s values when this difference is 0 are called the gaps, there
are g of them. For a generic point the gaps are {1,2,..., g}, otherwise p is called a
Weierstrass point. For Weierstrass points the set of gaps might depend on the choice
of p and on the analytic structure of C'. The characterization of all possible gap—sets

is still unsettled.

In order to characterize completely our gaps/jump places, we will use test func-
tions. For such a test function, say 75, we will require the following properties. Firstly,
it is a function s — 75 € Z>(, such that ds < 75 for any s.

Usually, 75 is defined by a weaker geometric construction, which approximates/bounds
im(c’'(Z)), and which hopefully is easier to compute. Secondly, ¢ satisfies the follow-

ing remarkable testing property formulated by the next pattern theorem.

Pattern Theorem. The sequence of integers ds are determined inductively as
follows:

(1) ds — dgor € {0,1} (cf. (1.2.4.1)),

(2) if for some fized s the numbers {dgu.r } 1 are not the same, then ds = max, j{ dgv.r }.
In the case when all the numbers {dgu.x}, i are the same, then if this common value
dgvr equals g, then ds = 74 = dgv.r; otherwise dg = dgvr + 1.

More precisely, we wish to determine from the collection {dgo.x }, the term ds (as
a decreasing induction). Using (1) this is ambiguous only if all this numbers are the
same, say d. In this case ds can be d or d + 1. Well, if the inequality (T) ds < 75 is
not obstructed by the choice of ds = d + 1, then this value is taken. Otherwise it is
d. That is, ds is as large as it can be, modulo (1) and (7).

If the Pattern Theorem from above holds, then it turns out (see e.g. Corollary

5.2.1.8) that ds = mins<z{[s —s[+ 75} for any s. (Here [s| =_ ; sy ,.) In particular,

dz(l') =do = %1<in{|s| + Ts}. (1.2.4.3)
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Such type of formulas already appeared in the computation of dz(I") for weighted
homogeneous singularities (and specific I') in [NN18], case which lead us to the present
general case. (The type of formula, and also the conceptual approach behind, can
also be compared e.g. with Pflueger’s formula regarding the dimension of the Brill-
Noether varieties of a generic smooth projective curve C with fixed gonality, cf. [P16,
JR17].) Nevertheless, the approach of the testing function (and the corresponding

min—type close formulae) is the novelty of the results in the section.

1.2.5 The testing functions for dg

Obviously, the above theorem is valuable only if 7 is essentially different than dg and
also if it is computable from other different geometrical behaviours. It is also clear
that not any upper bound ds < 75 satisfies the testing property (2): this is satisfied
only for bounds 7(s) with very structural relationship, symbiosis with the original ds.
Hence it is not easy to find testing functions, they must ‘testify’ about some deep
geometric property: even the existence of computable testing function(s) is really
remarkable.

Our first test function is defined as follows. Consider again Z > FE, ' € =&’
associated with a resolution X, as above. Then, besides the Abel map c"(Z) one can
consider its ‘multiples’ {¢"(Z)}n>1. It turns out that n +— dimim(c™ (Z)) is a non-
decreasing sequence, im(c™'(Z)) is an affine subspace for n > 1, whose dimension
ez(l') is independent of n > 0, and essentially it depends only on the E*—support of [’
(ie,on I CV, where —=I' =3%" _, a,L; with all {a,},e; nonzero). From construction
dz(I') < ez(l'), however they usually are not the same.

Now, at any step of the tower X, one can consider this invariant e 7 (IL), an integer
denoted by es.

Theorem 5.2.1.6 (the ‘first algorithm’) guarantees that es is a testing function for

ds.
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The invariants {es}s are still hard to compute (cf. 5.3.1). However, the first
algorithm is a necessary intermediate step for the second algorithm, valid for another
testing function.

The advantage of the second testing function is that it is defined at the level of
X only. Tt is based on Laufer’s perfect pairing H'(Oz) ® Gz — C, where Gz denoted
the space of classes of forms H(X, Q}(Z))/HO()?, 0%).

Gz has a natural divisorial filtration {G,}o<i<z, where G, is generated by forms
with pole < [. Its dimension (via Laufer duality) is h'(O;). (For more see [NN18§]
and 3.5.1 here.) Next, for any s define the cycle I € L of X by

ls := min { Z min {s,x, } Eu, Z} € L.

1<k, <a
vey

Set also gs := dim G;_ as well. It turns out (see 5.3.1) that ds < es < h'(Oz) — gs.
Usually, the equality eg = h'(Oz) — g5 rarely happens, however, it happens whenever
the testing property requires it! Theorem 5.3.1.2 (the ‘second algorithm’) says that
h*(Oz) — gs is a testing function for ds indeed.

The cases of superisolated singularities is exemplified.

The second algorithm has several consequences. E.g., a ‘numerical’ one, cf.

(5.3.1.6):

dz(I') = minZ{ (I'; Z))+h (O4)—h (O4) }, or, codimim(c (Z)) = maXZ{ W (O4)—(I', Z1) }.

0<Z: < 0<Z: <

The cycles Z; for which the above minimum is realized have several additional geo-
metric properties (cf. Lemma 5.3.1.13 and 5.3.2). In particular, such a Z; imposes

the following conceptual consequence:

Structure Theorem for the image of the Abel map. Fix a resolution )?, a
cycle Z > E and a Chern class I € —S' as above. Then there exists an effective cycle

Zy < Z, such that: (i) the map ECa'(Z) — H'(Zy) is birational onto its image,

21



CEU eTD Collection

and (ii) the generic fibres of the restriction of v, r™ :im(c"(Z)) — im(c"(Z1)), have
dimension h*(Oz) — h'(Oz,). In particular, for any such Zy, the space im(c" (Z))
s birationally equivalent with an affine fibration over ECaZI(Zl) with affine fibers of

dimension h'(Oz) — h'(Og,).

1.2.6 The case of generic analytic structure

In section 5.3.3 we prove that if X has a generic analytic structure (in the sense of
[La73, NN18]), and Z > E and I' € —&’ then both dim im(c" (%)) and codimim(c" (Z))

are topological and we have:

codimim(¢' (2)) = ogr%?}gcz{ — (U Zy) = x(Z1) + x(Ez)) }- (1.2.6.1)

The maximum at the right hand side is realized e.g. for the cohomology cycle of
Lim e im(d'(Z)) C Pic! (Z). Furthermore,

gen

W(Z,L) > max { —(I',Z1) = x(Z1) + x(E\z)) }

T 0<Z1<Z

for any £ € im(c"(Z)) and equality holds for generic Lin e im(c"(2)).

The identity (1.2.6.1), valid for a generic analytic structure of X , extends to an
optimal inequality valid for any analytic structure.
Theorem VI. Consider an arbitrary normal surface singularity (X, o), its resolution
X, Z>FE andl' € =8'. Then codimim(c’ (Z)) = hX(Z, L™ ) satisfies

gen

codimim(c'(2)) > max_{ — (', Z1) — x(Z1) + x(Ejz)) }. (1.2.6.2)

T 0<Z1<Z

In particular, for any L € im(¢"'(Z)) one also has

W(Z. L) >h'(Z,L™) = codimim(c (Z)) > max { =, 2) = x(Z1) + Xx(Ez)) }.

gen T 0<z:1<Z
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The right hand side of (1.2.6.2) is a sharp topological lower bound for codim im(c (Z)).

The inequality (1.2.6.2) can also be interpreted as the semi-continuity statement

codim im (¢ (Z))(arbitrary analytic structure) >

codim im (¢ (Z))(generic analytic structure).

1.2.7 Generalization.

Sections 5.5 and 5.6 target generalizations of the previous parts, valid for {h'(Z, £)} ;cin (7))
to the shifted case, valid for {h'(Z, Lo ® L)} scimer (2), Where Ly € Pico(Z) is a fixed
bundle without fixed components. In order to run a parallel theory based on Abel
maps, we have to create the new Abel map i (Z) : ECa (Z) — Pic%O(Z), where
Pic%O(Z ) is an affine space associated with the vector space Picy (Z) ~ H'(Z, Lo).
(Pick ,(Z) appears also as an affine quotient of the classical Pic’ (Z) as well.) Section
5.5 contains the definitions and the needed exact sequences. Section 5.6 contains the

extension of the two algorithms to this situation.

1.2.8 Gorenstein singularities

Let us fix a numerically Gorenstein resolution graph I'. Recall, that this means that
Zg € L.

From [PPP11] we know, that if I" is numerically Gorenstein, then there is a Goren-
stein surface singularity with resolution X and resolution graph I". The Gorenstein
property means that there exists a differential form w € H(X, Q}(Z k)), such that
w has a pole on the exceptional divisor of order Zx but it does not vanish anywhere
in X \ E. The construction in [PPP11] is given by a very special analytic plumbing.

In this thesis we describe a gluing construction, which for every numerically Goren-

stein resolution graph I' gives a Gorenstein singularity with resolution graph I', and
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furthermore, every Gorenstein singularity with resolution graph I' can be given by

this construction.
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Chapter 2

Preliminaries

In the sequel #A denotes the cardinality of the finite set A.

2.1 Basic notations

In this section we review some basic facts about topological and analytical invariants

of surface singularities, and we introduce the needed notations as well.

2.1.1 The resolution

Let (X, 0) be the germ of a complex analytic normal surface singularity, and let us
fix a good resolution ¢ : X — X of (X,0). We denote the exceptional curve ¢=(0)
by E, and let UyepE, be its irreducible components. Set also £ := )" _; E, for any
subset I C V. The support of a cycle [ = > n,E, is defined as |I| = U,,, 2 F,. For

more details see [La71, NO7, N12, N99b, L13].

2.1.2 Topological invariants

Let I' be the dual resolution graph associated with ¢; it is a connected graph. Then

M := dX can be identified with the link of (X, 0), it is also the oriented plumbed 3-
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manifold associated with I'. It is known that (X, 0) locally is homeomorphic with the
real cone over M, and M contains the same information as I'. We will assume that M
15 a rational homology sphere, or, equivalently, I' is a tree and all genus decorations of
I' are zero. We use the same notation V for the set of vertices, and 9, for the valency
of a vertex v.

The lattice L := Hy(X,Z) is endowed with the natural intersection form (),
which is negative definite. L is freely generated by the classes of 2-spheres {E, },ep.
The dual lattice L' := H2(X,Z) is generated by the (anti)dual classes { E*},cy defined
by (Ef, Ey) = —0u (where 6§, stays for the Kronecker symbol). The intersection
form embeds L into L'. Then Hy(M,Z) ~ L'/L, and it is abridged by H. Usually
one identifies L’ with those rational cycles I’ € L ® Q for which (I',L) € Z, or,
L' = Homy(L,Z).

There is a natural (partial) ordering of L’ and L: we write [{ > [} if I} — I} =
>, ol with all 7, > 0. Weset Lyg={l€ L : [ >0} and L.y = L>o \ {0}.

Each class h € H = L'/L has a unique representative 7, = > r,FE, € L in the
semi-open cube (i.e. each r, € QN [0, 1)), such that its class [ry] is h.

All the E,—coordinates of any E are strictly positive. We define the Lipman cone
as 8" :={l'e L' : (I',E,) <0 forall v}. As a monoid it is generated over Zxq by
{E5}o-

The multivariable topological Poincaré series is the Taylor expansion Z(t) =

Sy 2()t" at the origin of the rational function

Z(t) = [ -5y, (2.1.2.1)

veY

where t" := [] th for any I = > ey b Ey € L. By definition, Z(t) is supported

veY veY v

on &', hence Z(t) € Z[[S']]. It has a natural decomposition Z(t) = >, Zn(t),

where Zy,(t) = 341, z(I')t". (Though the exponents of t' might be rational, that
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is, Z(t) € Z[[ti/d, . ,t‘%'d]], where d = det(I"), the right hand side of (2.1.2.1) still

will be called ‘rational function’, and >, z(I')t" a ‘series’.)

2.1.3 Analytic invariants

In this manuscript we focus mainly on the structure of the Picard group and the
holomorphic line bundles on X. The group Pic(X) := H'(X, O%) of isomorphism

classes of holomorphic line bundles on X appears in the exact sequence
0 — Pic®(X) — Pic(X) -2 L' — 0, (2.1.3.1)

where ¢, denotes the first Chern class. Here Pic®(X) = H'(X ,Ox) ~ CPs, where
Dy is the geometric genus of (X,0). (X, o) is called rational if p,(X,0) = 0. Artin
in [A62, A66] characterized rationality topologically via the graphs; such graphs are
called ‘rational’. By this criterion, I' is rational if and only if x(I) > 1 for any
effective non—zero cycle | € L-g. Here x(I) = —(I,1 — Zk)/2, where Zx € L’ is the
(anti)canonical cycle identified by adjunction formulae (—Zx + E,, E,) + 2 = 0 for

all v.

2.1.4 Natural line bundles

Let us start again with a good resolution ¢ : (X, E) — (X,0) of a normal surface
singularity with rational homology sphere link, and consider the cohomology exact

sequence associated with the exponential exact sequence of sheaves
0 — Pic(X) —= Pic(X) % H*(X,Z) — 0. (2.1.4.1)

Here ¢1(£) € H*(X,Z) = L is the first Chern class of £. Then, see e.g. [004, N07],

there exists a unique homomorphism (split) s : L' — Pic(X) of ¢; such that ¢;0s = id
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and s restricted to L is [ — Ox(l). The line bundles s(I') are called natural line
bundles of X, and are denoted by Ox(l"). For several definitions of them see [NOT].
E.g., £ is natural if and only if one of its power has the form O(l) for some integral
cycle I € L supported on E. Here we recall another construction from [004, NO7],
which will be extended later to the deformations space of singularities.

Fix some I’ € L’ and let n be the order of its class in L//L. Then nl’ is an integral
cycle; its reinterpretation as a divisor supported on E will be denoted by div(nl’).
We claim that there exists a divisor D = D(I’) in X such that one has a linear
equivalence nD ~ div(nl’) and ¢;(O% (D)) = I'. Furthermore, D(I') is unique up to
linear equivalence, hence I’ — O5(D(l')) is the wished split of (2.1.4.1). Indeed, since
c1 is onto, there exists a divisor Dy such that ¢;(Og(D1)) = I'. Hence Og(nDy —
div(nl')) has the form €(£) for some £ € Pic®(X) = H (X, O5) = CPs. Define D,
such that Og(Ds) = 1L in H* (X,0 %)- Then Dy — Dy works. The uniqueness follows
from the fact that Pic®(X) is torsion free.

The following warning is appropriate. Note that if X, is a connected small con-
venient neighbourhood of the union of some of the exceptional divisors (hence X,
also stays as the resolution of the singularity obtained by contraction of that union of
exceptional curves) then one can repeat the definition of natural line bundles at the
level of X 1 as well. However, the restriction to X 1 of a natural line bundle of X (even
of type Ox(l) with [ integral cycle supported on FE) usually is not natural on X
Oz, # Oz, (R(I')) (where R : H%(X,7) — H*(X,,Z) is the natural restriction),
though their Chern classes coincide.

In the sequel we will deal with the family of ‘restricted natural line bundles’
obtained by restrictions of O (l'). Even if we need to descend to a ‘lower level’ X,
with smaller exceptional curve, or to any cycle Z with support included in E (but
not necessarily F) our ‘restricted natural line bundles’ will be associated with Chern

classes I € I/ = I/(X) via the restrictions Pic(X) — Pic(X;) or Pic(X) — Pic(Z)
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of bundles of type O%(l') € Pic(X). This basically means that we fix a tower of
singularities {Xl})?lc)?’ or {Oz}zice, determined by the ‘top level’ )?, and all the
restricted natural line bundles, even at intermediate levels, are restrictions from the
top level.

We use the notations Oz (I') := Ox(l')| 5, and Oz(I') := Ox(I')| 7z respectively.

2.1.4.2. One of our main interest is to understand the stratification {£ € Pic(X) :
h'(L) = k}rez., of Pic(X). In the literature about h*(L) — for arbitrary £ — very
little is known. However, about the natural line bundles (of some special analytic
structures (X, 0)) recently several results were proved, see e.g. [CDGZ04, CDGZ08S,

NO8, N11, N12|. Since some of these facts are used in several examples and play key

role in the general presentation we review them in the next subsection.

2.1.4.3. The analytic multivariable Poincaré series is defined as follows [N12],

see also [CDGZ04, CDGZ08|. For every £ € Pic(X) (respectively, for Z > E and
L € Pic(Z)) one defines

0r
pr = Z (=)L dim I{(X’ﬁ) and
v HY(X, L(—E)))
. HY(Z, L)
= D+ g ’ .
Pz ;( ) 1m HO(Z _ EI, £(—E1)>

For Z > 0 and £ € Pic(X) one has py = pzr,. If (ci(£), E,) < 0 for some v € V,
then HY(X,L(—FEj,)) — H°(X,L(—E;)) is an isomorphism for any I # v (and

similar isomorphism holds for any Z > FE), hence
pc = pze =0 whenever ¢ (L) ¢ —-S'. (2.1.4.4)

At the level of X one defines a multivariable series as Pe(t) == peps po-it’. Tt also
has an H-decomposition ), Prp, Prp = Z[z/]:h pﬂ(,l/)tl', according to the classes

[I'] € H of the exponents of t'. By (2.1.4.4) it is supported on ¢;(£) + S’. We write
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P(t) := Po_(t) = >y pog(-nt"
The first cohomology of the natural line bundles and the series P(t) are linked by

the following identity proved in [N12]: for any [ € L one has

WX, O(=m = 1) == > po(-rm-i-a) T Pe(Xap, 0)n + x(1) — (I,1).  (2.1.4.5)
acL, a0
2.1.4.6. Recently there is an intense activity in the comparison of the analytic in-
variant P(t) and the topological Z(t) (their coincidence imply e.g. the so-called
Seiberg—Witten Invariant Conjecture [N11, N12]). For the equality of P(t) and Z(t)
for certain families singularities (rational, weighted homogeneous, splice quotient) see
e.g. [CDGZ04, CDGZ08, N08, N12] and the references therein.

We emphasize that in the previous results in the literature the main goal mostly
was to characterize for special (‘nice’) analytic structures the sheaf-theoretical in-
variants h'(L) topologically, and those methods were applicable only for natural line
bundles £. In the present note our goal is to treat h'(L) for any line bundle and for

any analytic structure.

2.1.5 Minimal cycle, maximal cycle

In the body of the article we will present several examples. In them we will use the
following standard notations. We will write Z,,;, € L for the minimal (or fundamen-
tal) cycle of Artin, which is the minimal non—zero cycle of 8’ N L [A62, AG6]. Yau’s
maximal ideal cycle Z,,.. € L is the divisorial part of the pullback of the maximal
ideal mx, C Ox,, i.e. ¢*my, - O = Ozx(—Zmaz) - Z, where T is an ideal sheaf
with O—dimensional support [Y80]. In general Z,.;, < Znae- Zmin can be found
by Laufer’s algorithm [La72]. This algorithm also shows that h%(Oz . ) = 1, hence

h' Oz, . ) =1— x(Znin) is topological.
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2.2 Laufer’s results

2.2.1 Local deformation spaces

In this subsection we review some results of Laufer regarding deformations of the
analytic structure on a resolution space of a normal surface singularity with fixed
resolution graph (and deformations of non-reduced analytic spaces supported on ex-
ceptional curves) [La73].

First, let us fix a normal surface singularity (X,0) and a good resolution ¢ :
(X,E) — (X,0) with reduced exceptional curve E = ¢~*(0), whose irreducible de-
composition is Uyep E, and dual graph I'. Let Z, be the ideal sheaf of F, C X. Then
for arbitrary positive integers {r,},cy one defines two objects, an analytic one and
a topological (combinatorial) one. At analytic level, one sets the ideal sheaf Z(r) :=
[1,Z;" and the non-reduces space Z(r) with structure sheaf Oz, := O /Z(r) sup-
ported on E.

The topological object is a graph decorated with multiplicities, denoted by I'(r).
As a non—decorated graph I'(r) coincides with the graph I" without decorations. Ad-
ditionally each vertex v has a ‘multiplicity decoration’ r,, and we put also the self—
intersection decoration E? whenever r, > 1. (Hence, the vertex v does not inherit
the self-intersection decoration of v if r, = 1). Note that the abstract 1-dimensional
analytic space Z(r) determines by its reduced structure the shape of the dual graph
I, and by its non—reduced structure all the multiplicities {r,},ey, and additionally,
all the self-intersection numbers E? for those v’s when 7, > 1 (see [La73, Lemma
3.1]).

We say that the space Z(r) has topological type I'(r).

Clearly, the analytic structure of (X,o0), hence of X too, determines each 1—

dimensional non-reduced space Z(r). The converse is also true in the following sense.

Theorem 2.2.1.1. [La71, Th. 6.20],[La73, Prop. 3.8] (a) Consider an abstract
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1-dimensional space Z(r), whose topological type I'(r) can be completed to a negative
definite graph T (or, lattice L). Then there exists a 2-dimensional manifold X in
which Z(r) can be embedded with support E such that the intersection matriz inherited
from the embedding E C X is the negative definite lattice L. In particular (since by
Grauert theorem [GR62] the exceptional locus E in X can be contracted to a normal
singularity), any such Z(r) is always associated with a normal surface singularity (as
above).

(b) Suppose that we have two singularities (X, 0) and (X', 0) with good resolutions
as above with the same resolution graph I'. Depending solely on T', the integers {r,},
may be chosen so large that if Oz ~ Oz, then E C X and E' C X' have
biholomorphically equivalent neighbourhoods via a map taking E to E'. (For a concrete

estimate how large r should be see Theorem 6.20 in [La71].)

In particular, in the deformation theory of X it is enough to consider the defor-
mations of non—reduced spaces of type Z(r).

Fix a non-reduced 1-dimensional space Z = Z(r) with topological type I'(r).
Following Laufer and for technical reasons (partly motivated by further applications
in the forthcoming continuations of the series of manuscripts) we also choose a closed
subspace Y of Z (whose support can be smaller, it can be even empty). More precisely,
(Z,Y) locally is isomorphic with (C{z,y}/(x%"), C{z,y}/(xy?)), where a > ¢ > 0,

b>d>0,a>0. The ideal of Y in O is denoted by Zy.

Definition 2.2.1.2. [La73, Def. 2.1] A deformation of Z, fixing Y, consists of the
following data:

(i) There exists an analytic space Z and a proper map A : Z — @, where @) is a
manifold containing a distinguished point 0.

(ii) Over a point g € @ the fiber Z, is the subspace of Z determined by the ideal
sheaf A*(m,) (where m, is the maximal ideal of ¢). Z is isomorphic with Zj, usually

they are identified.
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(iii) A is a trivial deformation of Y (that is, there is a closed subspace Y C Z and
the restriction of A to ) is a trivial deformation of Y').

(iv) A is locally trivial in a way which extends the trivial deformation A|y. This
means that for ant ¢ € @ and z € Z there exist a neighborhood W of z in Z,
a neighborhood V' of z in Z,, a neighborhood U of ¢ in (), and an isomorphism
¢ W — V x U such that Al = pryo¢ (compatibly with the trivialization of Y from

(iii)), where pry is the second projection; for more see [loc.cit.].

One verifies that under deformations (with connected base space) the topological

type of the fibers Z,, namely I'(r), stays constant (see [La73, Lemma 3.1}).

Definition 2.2.1.3. [La73, Def. 2.4] A deformation A\ : Z — @ of Z, fixing Y,
is complete at 0 if, given any deformation 7 : P — R of Z fixing Y, there is a
neighbourhood R of 0 in R and a holomorphic map f : R' — @ such that 7 restricted
to 771(R’) is the deformation f*\. Furthermore, X is complete if it is complete at

each point q € Q.
Laufer proved the following results.

Theorem 2.2.1.4. [La73, Theorems 2.1, 2.3, 3.4, 3.6] Let 07y = Homz (2, Iy)
be the sheaf of germs of vector fields on Z, which vanish on'Y , and let A : Z — Q) be
a deformation of Z, fixing Y.

(a) If the Kodaira—Spencer map po : ToQ — HY(Z,07y) is surjective then X is
complete at 0.

(b) If po is surjective then p, is surjective for all q sufficiently near to 0.

(c) There exists a deformation \ with py bijective. In such a case in a neighbour-
hood U of 0 the deformation is essentially unique, and the fiber above q is isomorphic

to Z for only at most countably many q in U.

2.2.1.5. Functoriality. Let Z’ be a closed subspace of Z such that Z;,, C Zy C

Oz. Then there is a natural reduction of pairs (Oz, Oy) — (Oz,Oy). Hence, any
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deformation A : Z — @ of Z fixing Y reduces to a deformation \ : Z' — Q of 7’
fixing Y. Furthermore, if A is complete then X is automatically complete as well

(since HY(Z,0y) — H(Z',0 y) is onto).
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Chapter 3

Effective Cartier divisors and Abel

maps

In this chapter we define and investigate the main properties of the space of effective
Cartier divisors and Abel maps on normal surface singularities with some examples,

like the case of superisolated singulaities.

3.1 Effective Cartier divisors

3.1.1 Basic definitions

For any Z € L+ let ECa(Z) be the (moduli) space of analytic effective Cartier divisors
on Z. Their supports are zero—dimensional in . Taking the class of a Cartier divisor
provides the Abel map ¢ : ECa(Z) — Pic(Z). Let ECa’(Z) be the set of effective
Cartier divisors with Chern class I’ € L'(|Z|), that is, ECa'(Z) = ¢ '(Pic' (2)).
Sometimes we denote the restriction of ¢ by ¢ : ECa’ (Z) — Pic' (2), I € L'(|Z]).
It is also convenient to use the simplified notation ECal(Z) := ECa®!)(Z) and
Pic" (Z) := Pic®¥)(Z) for any I' € L' (where R : L' — L'(|Z|) is the restriction as

above).
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For any Zy > Z; > 0 (and " € L') one has the commutative diagram

ECal (Zy) — Picl'(Z,)
I I
ECa’(Z1) — Pic"(Zy) (3.1.1.1)

Regarding the existence of ECa(Z) and the Abel map we note the following.
First, by a theorem of Artin [A69, 3.8|, there exists an affine algebraic variety Y
and a point y € Y such that (Y,y) and (X, 0) have isomorphic formal completions.
Then, according to Hironaka [Hi65], (Y,y) and (X,0) are analytically isomorphic.
In particular, we can regard Z as a projective algebraic scheme. In this algebraic
context, ECal/(Z ) — as an algebraic variety — together with the algebraic Abel map
was constructed by Grothendieck [Gro62], see e.g. the article of Kleiman [K113] with
several comments and citations and the book of Mumford for curves on algebraic

surfaces [Mu66]. (Recall that Pic(Z) ~ C"'(©2) is an affine space.) In particular,
c: ECa(Z) — Pic(Z) is algebraic.

(For concrete charts of ECa (Z) see e.g. the proof of theorem 3.1.1.11 and for the
Abel map in concrete charts see section 3.5.) Though these spaces are identified by
the general theory, in the body of this note we verify directly several properties of
them in order to illuminate the peculiarities of the present situation, e.g. we discuss
the smoothness and the dimension of ECal/(Z ) and the structure of the fibers of the
Abel map: the related numerical invariants will be crucial in the further discussions.
Doing this we develop several special properties of the Abel map in the language of
invariants of normal surface singularities; these connections will be exploited deeply.

We write ECa(X) for the set of effective Cartier divisors on X .

3.1.1.2. Let us fix Z € L, Z > 0. As usual, we say that £ € Pic/(Z) has no fixed
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components if

H(Z,L)wg = H(Z, L)\ |J H(Z - E, L(-E,)) (3.1.1.3)
E,C|Z|
is non—empty. Here the inclusion of H*(Z — E,, L(—E,)) into H°(Z, L) is given by the
long cohomological exact sequence associated with 0 — L(—FE,) — L — L|g, — 0,
and it represents the subspace of sections, whose fixed components contain FE,,.
Note that H°(Z, L) is a module over the algebra H°(Oy), hence one has a natural

action of H°(O%) on H°(Z, L)yeg. For the next lemma see e.g. [K105, §3].

Lemma 3.1.1.4. £ € Pic"(Z) is in the image of ¢ : ECa' (Z) — Pic"(Z) if and
only if H(Z,L)reg # 0. In this case, ¢ (L) = HY(Z, L)reg/H(O%).

In the next discussion we assume Z > E basically imposed by the easement of
the presentation; everything can be adopted for any Z > 0, see e.g. 3.2.1.4 or 3.3.1.

Note that H(Z, L)yeg # 0 = H°(L|p,) #0Vv = (IE,) >0Vv = '€ -8
Conversely, if I' = =Y m,E; € —=S§" (for certain m, € Zs,), and I’ # 0, then one
can construct for each E, cuts (local complex discs considered as reduced divisors)
in X intersecting F, in a generic point and having with it intersection multiplicity
m,. Since I" # 0 their collection is nonempty, and it provides elements in ECa ()? )
and ECal/(Z ) respectively (the second one by restriction). However, this collection
is empty whenever I’ = 0, hence this special case needs slightly more attention. By
definition we declare that ECa’(Z) is a space consisting of a point (what we can
call the ‘empty divisor’), ECa’(Z) = {0}, and * : ECa"(Z) — Pic’(Z) is defined as

AP(0) = Oy. Since for I’ = 0 any section from H°(Z, L),e, trivializes £, one has:

HYZ L) 20 & L=0z & Lecim() (I'=0). (3.1.1.5)
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Therefore, the above discussions combined provide

ECa"(Z2)#0 < I'ec -8 (3.1.1.6)

The action of H°(O%) can be analysed quite explicitly. Note that from the exact

sequence

one gets that H°(0}) = r;'(C*) = H*(O)\H*(Oz_g(—E)). In particular, H°(O%),

as algebraic variety, has the dimension of the vector space H°(Qyz), PH(O%) =
HY(O%)/C* as algebraic variety is isomorphic with H(Oz_p(—FE)), and H*(Z, L) e/ H*(O%) =
PH(Z, L) e /PH’(O%). (Here, again, PH’(Z, L),eq by definition denotes H%(Z, L)eq/C*.)

Lemma 3.1.1.8. Assume that H*(Z,L)eg # 0. Then

(a) the action of H*(O%) on H°(Z, L).eg is algebraic, free and proper;

(b) PHY(Z, L)1eg over PHY(Z, L) 1o /PH(O3) is a principal affine bundle.
Hence, the fiber ¢=1(L), £ € im(c"), is an irreducible quasiprojective smooth variety

of dimension

RUZ, L) — h°(Oz) = (I, Z) + Y (Z, L) — h' (Oy). (3.1.1.9)

Proof. For s € H°(Z, L) the multiplication by s, Oz —%s L, is injective, hence
induces injections H°(Oz) — H°(L) and H°(O%) —= H°(L)eq. Hence the action
is free. Next we prove that the action of PH?(O%) on PH(Z, L),eq is proper.

Introduce hermitian metrics in both H°(Oz) and H°(Z, £). Write H® := H*(Oz_g(—F))
in H°(Oz) and choose h* with H°(O4) = H° @ C(ht). Set also B := N,H°(Z —
E,,L(—E,)) C H°Z, L) and let B+ be its unitary complement in H°(Z, £). Note
that H°(Z, L)\ B is also stable with respect to the action of H°(O%) = B® C(h*)\

B & 0. Since H(Z, L)eq is open in H(Z, L) \ B, it is enough to show that H°(O%)
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acts properly on H°(Z, £) \ B. Fix K compact in H°(Z, L) \ B and let K’ be its lift
to the unit sphere of H°(Z, £). We need to show that if h = h° + h*+ € H° @ C(ht)
and |h°| — oo, and k € K’, then the components (hk); + (hk), € B 1 Bt of hk
satisfy |(hk)1|/|(hk)s| — oco. For this note the following facts.

First, H° - H*(Z, L) C B, hence (h%k)y = 0. Next, since K’ is compact, |(hk)]
and |(htk)s| are bounded from above. Finally, since h%k # 0, for any h° in the
unit sphere, the set {|h%|}; is bounded from below by a positive number. Hence,

whenever |h°| — oo one also has

(Bl 1(hk)a] = | () + 1) - % )/ R)e] = o .

(a) implies (b) (since PH?(O%) ~ H° is an affine space) and the equality in (3.1.1.9)

follows from Riemann—Roch formula. O

Example 3.1.1.10. Assume that (X, 0) is rational, and I’ € —S’. Then Pic" (Z) = 0,
hence if ¢;(£) =’ then £ = O(I'). Furthermore, L is basepoint free [Li69, Th. 12.1].
Thus ECa(Z) = H(Z, L)weg/ H*(O%) and since the action of HO(O%) is free (cf.
3.1.1.8), ECa’(Z) is smooth. Since h'(Z, L) = h'(Oz) = 0 (cf. [Li69, N99b]), the
dimension of ECa’(Z) is (I', Z) (use (3.1.1.9)). Furthermore, its topological Euler
characteristic is Xyop(ECa" (2)) = Xtop(PH(Z, L)1e5), which is the coefficient z(—1')
of the multivariable series Z(t) by [CDGZ08, N08, N12].

These facts generalize as follows.

Theorem 3.1.1.11. Ifl' € =&’ then the following facts hold.

(1) ECal'(Z) is a smooth complex (irreducible) variety of dimension (I, Z).

(2) The topological Euler characteristic of ECal (Z) is z(=1'). In fact, the natural
restriction r : ECa’ (Z) — ECal (E) is a locally trivial fiber bundle with fiber isomor-
phic to an affine space. Hence, the homotopy type of ECal/(Z) is independent of the

choice of Z and it depends only on the topology of (X, 0).
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(8) r: ECa"(Z2) — ECa’(Z1) is surjective for any Zy > Z,.

Proof. As we already said in the first paragraphs of 3.1.1, ECal (Z) is an algebraic
variety, cf. [Gro62, K113]. We need to construct in the neighbourhood of each Cartier
divisor a smooth chart.

First assume that Z = E. Then ECa’ (E) is independent of the self-intersections
E2?, hence (keeping the analytic type of E, but) modifying the self-intersections
into very negative integers, we can assume that the singularity is rational. In this
modified case, ECa' (E) = P(HY(E,O(I'))wg), sce Example 3.1.1.10. Note that
HO(E,O(l'))seq is also independent of the self-intersection numbers, hence, in any
case, ECa’ (F) = P(H(E,O(I'))sg)- In particular, ECal (E) is smooth, irreducible
and with the required dimension and Euler characteristic, cf. Example 3.1.1.10.

Let us provide some local charts of ECal'(E). Fix D € ECa!(E) with support
{pi}i CE.

If p, € E, is a smooth point of F, then there exists a local neighbourhood U;
of p; in X with local coordinates (z,y) such that {z = 0} = ENU; and D in U;
is represented by the local Cartier equation {y™} for some m € Z-y. Then a local
neighbourhood U;(E) of the divisor {y™} in ECa~"#*(E) is given by local Cartier
divisors {y"+ f(y) }, where f € O(ENU;) is a small perturbation of the zero function,
modulo the multiplicative action of O*(ENU;). Multiplying y™ by 1+axy* we get that
perturbation of type y™+> k>0 apy**™ constitute the orbit of y™ (or, differently said,
Zkzo apy®t™ is the tangent space of the orbit). Therefore, the smooth transversal
slice to this orbit (a;)o<icm — {y™ + >, aiy'} (la;| < 1) provides a smooth chart
U;(F) of dimension m = (—mE}, E). Here, —mE? is the local contribution in the
Chern class [

Similarly, if p; = E, N E,, then there exists a neighbourhood U; of p; in X with
local coordinates (z,y) such that {x = 0} = U; N E, and {y = 0} = U; N E,, and

D in Uj; is represented by {z" 4+ y™} for certain n,m € Z-q. [Indeed, any Cartier
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divisor in Cl[z,y]]/(zy) ~ Og,, can be represented by a local equation in U; of this
type.] Then, a local neighbourhood U;(E) of 2 + ™ in ECa~™F~"Fu(E) is given by
{2" +y" +ag+ Yoy @i’ + 37,5, biy'} modulo the action of O*(ENU;). The orbit of
this action at " +y™ is {&" +y" + Y, a:x' + Y, biy' +A(x" +y™)}, it is smooth.
A possible smooth slice of it is {a" +y™ +ao+ >y a;x' + > 10, by }/{an + by = 0},
which is of dimension (—mE* — nE¥ E) (the local contribution into (I, E)).

Products of type U(D) = [[,Ui(E) constitute a local neighbourhood of D in
ECal (E).

Consider now an arbitrary Z > E and the restriction r : ECa’ (Z) — ECal (E).

We show that ECal’ (Z) can be covered by open sets of type r Y ILU(E)) =117 (U(E)),

where 7; is either the restriction ECa™™¢(Z) — ECa ™ (E) or ECa™ ™% "%i(7) —
ECa ™Ev"Eu(E) and each r; ' (U;(F)) is a product of U;(E) and an affine space.
Indeed, assume first that p; is a smooth point of E as above, p; € E,, and let
N > 1 be the multiplicity of Z along E,. Then in U; the local equation of Z is zV
and let us fix a Cartier divisor in 7~ (U;(E)) whose restriction is y™, represented by
[ =y™+zg(z,y) for some g € O(U;)/(z¥ 1), modulo O*(U;)/(xN). Multiplication
f(1+ ayfzVY) = f + ay™ TNt shows that f + y™2V1O(U;) (mod (zV)) is
in the orbit. Using this fact, and multiplication by 1 + a;4’z"¥~2 one shows that
[+ ym2V20(U;) (mod (2V)) is also in the orbit. By induction, we get that the
orbit is f + y™O(U;) (mod (2V)), and it is smooth. A transversal smooth cut (slice)

can be parametrized by the chart {y™ + > a;jz'y’}, which has dimension

i<N,j<m
(—mE},Z) =mN. For i > 0 the variables a;; can be chosen as affine coordinates.
More conceptually, in this case, multiplication of f by 1+ h gives f 4+ fh (mod
(zV)), hence the orbit is identified with f + ideal(f, "), which has a smooth section
whose dimension is the codimension of ideal(f, ), that is, the intersection multi-

plicity (f,z"),, = mN.

Similar chart can be found in the case of p; = F, N E, as well. Let us use the
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previous notations, let us fix a divisor f = 2" +y™+xyg(x, y) whose restriction to E is
" +y™, and assume that in Z the multiplicities of {z = 0} and {y = 0} are N and M.
Then the orbit is identified with f + ideal(f, 2Ny ), which has a smooth transversal
cut whose dimension is the intersection multiplicity (f,2Ny™),, = mN + nM. The
mN +nM coordinates of the cut cannot be chosen canonically. We invite the reader
to check that these coordinates can be chosen in such a way that first we choose the
m + n (local) coordinates of the reduces part (as above in the case Z = E) then we
can complete them with m(N — 1) + n(M — 1) affine coordinates.

Taking product we obtain charts of type [ [, U(Z) := r Y[, Ui(E)) = (I, Ui(E))x
CcW.Z2-E)

(3) follows from the description of the above charts. O

3.1.2 The tangent map of c. The smoothness of ¢ !(L).

Assume that £ € Pic’ (Z) has no fixed components. Fix any D € ¢ (L) ¢ ECa’ (Z),
and let s € H°(Z, L) be the section whose divisor is D. Then multiplication by s

gives an exact sequence of sheaves
0= 0z 2L 0Op—0. (3.1.2.1)

Division by s identifies £ by Oz(D), hence the above exact sequence can be identified
with the exact sequence 0 — Oz — Oz(D) — Op(D) — 0 (this is a generalization
of the so-called Mittag—Lefler sequence, defined for effective divisors on curves).

We emphasize that Op is finitely supported. The dimension of H°(Op) is (I, Z).

Proposition 3.1.2.2. The coboundary homomorphism 6% : H(Op) — HY(Oyz) of
the cohomological long exacts sequence of (3.1.2.1) can be identified with the tangent

map

Tp(") : Tp(ECA" (Z)) — T (Pic" (2))
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of & at D. Moreover, the Zariski tangent space Tp(c™' (L)) of c™*(L) at D is identified
with its kernel, hence (by the cohomological long exact sequence) by H*(Z, L)/ H°(Oy).
This shows that dim Tp(c™*(L)) = dimc (L) at any D € ¢ (L) (c¢f. (5.1.1.9)),
hence ¢ Y (L) is smoothly embedded into ECal (Z), and ¢ ' (L), as a subscheme of
ECa’ (Z), can be identified with H*(Z, L)/ H*(O).

This fact reformulated shows that 6}, induced on Np(c™(L)) := Tp(ECd" (2))/Tp(c7 (L)),

the normal space of ¢~ (L) C ECd" at D, is injective.
Proof. See [Mu66, p. 164], or [K105, Remark 5.18], or [K113, §5]. ]

Corollary 3.1.2.3. If dim(ECa'(Z)) = 1 and ¢’ is not constant then im(c") is

smooth.

3.1.3 The special fibers of ¢

Though all the fibers of ¢ are smooth, still we wish to distinguish certain fibers of

¢ with pathological behaviour. There are several types we can consider.

Definition 3.1.3.1. (a) D € ECa’(Z) is called a critical divisor (point) if rank(Tpc) <
rank(Tp,,,c), where Dy, € ECa (Z) is a generic divisor. If (¢')~'(£) contains a crit-
ical divisor (point) then L is a called a critical bundle (value).

(b) We say that £ € im(c") is T-typical (‘tangent-map-typical’) if the linear sub-
space im(Tp(¢")) C T Pic" (Z) is independent of the choice of D € ¢ *(£). Otherwise

L is T—atypical.

The prototype of a map with a T-atypical value is the blowing up c¢: B — C? at
the origin 0 € C?: then 0 is a T-atypical value. For such an example realized by a

concrete ¢ see 3.1.4.3.

Lemma 3.1.3.2. For fizred I’ and L € im(c") consider the following properties:

(i) £ is a T-atypical value of ¢,
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(ii) L is a singular point of the closure im(c') of the image of ¢ (where im(c) is
taken with the reduced structure),

(i4) dim((c")~Y (L)) is strictly larger the the dimension of the generic fiber of ¢,

() L is critical bundle,

(v) any D € ("')L) is a critical divisor.

Then (iii) < (i) < (v), (i) = (i) and (i) = (iii).

Proof. The equivalences (iii) < (iv) < (v) follow from Proposition 3.1.2.2. For (i)
= (iii) first notice that ¢*(£) is smooth and irreducible, hence it is enough to verify
the statement locally at a generic point of ¢'(£). On the other hand, if (i) is not
true, that is, if (locally) rank(7pc) = rank(Tp,,, c), then ¢ in that neighbourhood is a
fibration, hence (locally) the normal bundle of ¢~!(£) is a pullback of a vector space
V', hence (using also Proposition 3.1.2.2) im(7p(c)) is constant V.

(#i) = (iii). Assume that (7i7) is not true, hence, as in the previous case, rank(7pc) =
rank(Tp,.,c) for any D € ¢ '(L£), and ¢ in that neighbourhood is a fibration. im(c)
is the image of the quotient space obtained from the total space by collapsing each
fibers into a point. But for any D € ¢(L£) the space Np(c¢~!(L)) is mapped by Tpc
injectively onto im(7pc), and this image is independent of the choice of D (by the
proof (i) = (ii1)). This shows that, in fact, im(c) is immersed at £. Since the fiber

¢ (L) is connected, im(c) is in fact embedded. Hence, im(c) is smooth at L. O

3.1.4 Examples

Next we exemplify some typical anomalies of the map c.

Example 3.1.4.1. Fix a topological type of singularities (e.g. a resolution graph)
and consider different analytic structures realizing it. Then not only the dimension
of the target of ¢ : ECa’ (Z) — Pic!' (Z) (that is, h'(O)) but also the dimension of

the image of ¢/’ might depend on the analytic structure of (X,0). Indeed, let
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us fix the following graph (picture from the left):
-2 -1 =7 =2 3 6 1 1 4 8 2 1

—3I b 9 I 3 I

Then (X, 0) is a numerically Gorenstein elliptic singularity with 1 < p, < 2; for
details regarding elliptic singularities see [N99, N99b]. Set —I' := Z,,,;;, (the minimal
cycle, which equals E¥, the cycle shown in the middle diagram), and Z = Zx (the
last diagram), hence (Z,I') = 1. Then ECa’(Z) = C, and Pic' (Z) = CPs. Write
L = Oz, (—Zmin)-

If p, = 2 (hence (X, 0) is Gorenstein) then £ has no fixed components [N99, 5.4],
and h'(Z, L) =1 [N99, 2.20(d)]. Hence £ € im(c) and dim ¢ (£) = 0 (use (3.1.1.9)).
Therefore, dimim(c) = 1.

On the other hand, if p, = 1, then Z,,0; > Znin, see e.g. [N99, 2.20(f)]. Hence
L has fixed components and £ ¢ im(c). Since the fibers of ¢ are connected (cf.
3.1.1.8), ¢ : C — C (with £ ¢ im(c)) cannot be quasi-finite, hence ¢ is constant and
dimim(c) = 0. (This last statement can be deduced from Theorem 3.2.1.1 too, or

from 3.4.3 (i) < (v), where we characterize completely the cases dim(im(c')) = 0.)

Example 3.1.4.2. The image of ¢ usually is not closed. We construct such an
example in two steps. First, assume that (X, 0) is a singularity with topological type

given by the graph I'; from the left
-3 -1 -13 -1 -3 -3 -1 =13 -1 -3

Iy E, Ty
-2 —2 —2 e—2 o2

Furthermore, assume that the minimal cycle Z,,;, equals the maximal ideal cycle
Zmaz- In particular, O(—Z,,;,) has no fixed components. For a detailed study of this
singularity (and any analytic type with the above graph) see [NO17]. Set —lI' = Z =
Zin = E*, and L := Oz(—Z). Since (E?, E¥) = —1 (hence dim ECa’ (Z) = 1), and
the Z(t) coefficient z(E*) = 0 (hence y(ECa!(Z)) = 0), one has ECa’(Z) = C*.

In fact, ECall(Z ) is the space of divisors corresponding to the points of E!Y .=
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E, \ Sing(F) ~ C*. Using (3.1.1.9) and [NO17, §4] (which shows h'(L£) = 1) one
obtains that dim ¢~'(£) = 0. Furthermore, Pic' (Z) = C? (cf. 2.1.5), hence we get an
injection ¢ : C* < C2. For any ¢ € E'* = C* we write £, := ¢’ (q) € Pic' (Z).

In fact, im(cl') can be determined explicitly. Let Iy and I'. be the subgraphs
consisting of the left /right cusp together with v. They determine minimally elliptic
singularities with p, = 1, and the corresponding restrictions provide the two coor-
dinates in Picl,(Z). Applying [Ha77, 6.11.4] for these two coordinates we get that
im(c") in some affine coordinates (21, z;) has the form 22z = 1.

Furthermore, this situation can be used to analyze another singularity (X', o),
whose im(¢’) equals im(c)\ {1 point}. Fix an arbitrary point p € EJ, and glue to the
resolution of (X, 0) (associated with I'y) another irreducible (—2)—exceptional curve
E, transversally to F, at p. In this way we create the resolution of a new singularity
(X', 0) with exceptional curve E' = {E}}, U{E,} (with natural notations). The new
graph is on the right hand side above.

In the new situation we take —I' = E/* and 7' := Z/

min

= E'. Then ECa' (2')
can be identified with (E!)™ = E' \ {p} = C*\ {p}, and ¢ : C*\ {p} — C?
with the restriction of ¢ to C*\ {p}. (More precisely, for ¢ € C*\ {p} one has
d(q)|lz = L, ® Oz(p).) Since c is injective, the image of ¢ cannot be closed. Via

similar construction we can eliminate from the image of ¢ any point.

Example 3.1.4.3. The map c usually is not a locally trivial fibration over its image,
in fact, the fibers of ¢ usually are not even equidimensional.

Consider the graph I'y from Example 3.1.4.2. It can be realized also by a complete
intersection (splice quotient) singularity with p, = 3, cf. [NW90, NO17]. Set —I' =
22 in = 2E) and Z = Z,,,. Then ECal/(Z ) is the double symmetric product of £},
namely C* x C*/Zy ~ C* x C. On the other hand, Pic (Z) = C2. (For numerical
cohomological invariants see again [NO17].) It turns out that ¢ is dominant (use e.g.

Theorem 3.2.1.1(3)), hence c¢ is birational, with all fibers connected. Since Z,4, =
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2Zmin, L = Oz(=2Z,,in) has no fixed components, hence £ € im(c). Furthermore,
' (L) =1 (see e.g. [NO17, (5.4)]), hence dim ¢~ (L) = 1 by (3.1.1.9) (since h'(Oz) =
2 and (I',Z) = 2). This can be seen in the following way as well. By Riemann—
Roch h°(L) = 2 and H°(Oz)* = C*, hence by 3.1.1.8 ¢7!(£) is 1-dimensional. In
particular, the fibers of ¢ are not equidimensional. (Furthermore, one can show that
im(c) is homeomorphic to (C*)? U {(0,0)}, where (0,0) corresponds to £. The map
¢ has the following description. Take the blow up b : BC? — C? of C? at the origin.
Let L, and L, be the strict transforms of {z = 0} and {y = 0}. Then ECa’(Z) can

be identified with BC? \ (L, U L,) and ¢ with the restriction of b to this space.)

Example 3.1.4.4. Even if all the fibers have the same dimension (and by
Theorem 3.1.2.2 they are smooth) the topology of some fibers might jump.

Take for example the graph
-2 -1 -8 -2

Ey By
-3

It supports a non—numerically Gorenstein elliptic singularity. Recall that if C'
denotes the elliptic cycle (here it is supported on the union of all irreducible ex-
ceptional curves except Fs), and (C, Zn) < 0, then the length of the elliptic se-
quence is one, cf. [Y79, Y80]. Hence, for any analytic realization, p, = 1. Take
' = Z = Zpin = Ef + E5. A computation shows that ECa’ (Z) = C2?\ {0}. Then
¢ : C?*\ {0} — C can be identified with the restriction to C?\ {0} of the linear
projection C?> — C. Hence the generic fiber is C while there is a special fiber ~ C*.
By this correspondence Picl,(Z ) = C is identified by E; \ Epnege. The generic fibers
correspond to the divisors {p, ¢}, where p € E{” ~ C*, and ¢ € E;* ~ C; they are
sent by ¢ to p € Ef% C Fy \ Epoge ~ Pic’(Z). Since ¢ can be any point on E5%,
the fibers are C. On the other hand, any divisor given by a smooth cut at £ N Es,
transversal to both E; and Fy, (parametrized by the slope C*) is sent by ¢ to E; N Es,

whose fiber is exactly this parameter space C*.
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3.1.5 The topology of the fibers of ¢ and the Poincaré series

Let us analyse again the fibers of ¢ : ECal(Z) — Pic!(Z), Z > E. Assume
that £ € im(c). Then {H, := H(Z — E,, L(—E,))}vey is a proper linear subspace
arrangement in H° := H°(Z L). For any subset ) # I C V write H; := NyerH,,
and introduce also Hy := H°. Note that the topological Euler characteristic satisfies

Xtop(PHy) = dim Hj, hence by the inclusion—exclusion principle one obtains

Xtop(P(HO \ UyH,)) =Y (=) dim H; = "(—1)"H codim(H,; € H°). (3.1.5.1)
Icv I

In particular the analytic invariant pz . (cf. 2.1.4.3) equals the topological Euler

characteristic of the corresponding linear subspace arrangement complement, pz , =

Xtop(P(HY(Z, L)1eg)). Using Lemmas 3.1.1.4 and 3.1.1.8 this reads as

Pzr = Xtop(c_1 (ﬁ))

This fact links the coefficients of the topological series Z(t) and the numerical analyt-
ical invariants pz .: the Euler characteristic of the total space ECa’ is z(=1"), while

the Euler characteristic of each fiber ¢™!(£) (£ € im(c)) is pz.c.

Example 3.1.5.2. Assume that (X, o) is rational. Then Pic’ (Z) is a point: if ¢;(£) =
I' then £ = O(I'). Hence ECa! is the unique fiber ¢ *(O(l')). Therefore, z(—1') =
pzowy (I' € =8"), or Z(t) = Pz o(t). This generalizes the similar identity proved in
[CDGZ04, CDGZ08, N08, N12] valid for Z > 0 (or, for X).

This identity Z(t) = Po_(t) is valid for a more general family of singularities,
namely for splice quotient singularities [N12, NO8]. (This family was introduced by
Neumann and Wahl in [NW05b, NWO05]). This identity reinterpreted in our present

language says that for any —!’ € &’ and Z > 0 the Euler characteristic of the total
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space ECal'(Z) and the Euler characteristic of the very special fiber ¢~ 1(O(1l')) (over

the unique natural line bundle) coincide.

Conjecture 3.1.5.3. For a splice quotient singularity and —1' € S’ the fiber ¢~ (O(1"))

is a topological deformation retract of ECal (Z).

A detailed study of the Abel map in the case of splice quotient singularities will
appear in one of the parts of the present series of articles.

In the present work we wish to focus (instead/besides of the ‘Pp = Z identity’) on
the more complex package of invariants provided by (all the fibers of) c. In particular,

we analyse other, less specific fibers as well, e.g. the generic fibers over im(c).

3.2 When is ¢/ dominant?

3.2.1 Characterization result, the semigroup S),

In order to determine properties of line bundles £ € Pic(Z) with given Chern class

we need first to understand the situations when ¢ is dominant.

Theorem 3.2.1.1. Fiz ' € —S', Z > E as above, and consider ¢ : ECa’ (Z) —
Pic! (Z).

(1) ¢ is dominant if and only if H(Z, L)eq # 0 for generic L € Pic! (Z).

(2) If & is dominant then h'(Z,L) = 0 for generic L € Picl/(Z).

(8) " is dominant if and only if x(—1') < x(=I' +1) for all0 <1 < Z, 1 € L.
In particular, the fact that ¢ is dominant is independent of the analytic structure

supported by I' and it can be characterized topologically (and explicitly).

Proof. For (1) use Lemma 3.1.1.4. For (2) note that for ¢ dominant the dimension
of ECal'(Z) is the sum of the dimensions of the generic fiber and of the base (which
equals h'(Oy)). Hence, by (3.1.1.9) and 3.1.1.11(1), h°(Z,£) = dim ¢ (L) +1°(Z) =
(1, 2) = (Z) + h(2) = (I, Z) + x(2) = x(Z, L).
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(3) First note that for any cycle l € L, 0 <1 < Z, and any £ € Pic' (Z), one has
X(=) > x(=I'+1) & x(Z.L) <x(Z -1, L(-1)), (3.2.1.2)

where, by convention, x(Z — [, £(—1)) is zero whenever | = Z.

Assume that ¢ is dominant and the equivalent conditions from (3.2.1.2) are satis-
fied for some [, where 0 < | < Z. Take a generic £ € Pic' (Z). Hence H(Z, £),eg # 0
(cf. part (1)) and x(Z,L£) = h%(Z,L) by part (2). Hence h°(Z,L) = x(Z,L) <
X(Z—1,L(=1)) < h°(Z—1,L(—1)). Therefore, by the cohomological exact sequence of
0 — L(=1)|z_1 — L, we necessarily have equality H*(Z —1,£(—1)) = H°(Z, L). Then
for any FE, in the support of [ we also have equality H°(Z — E,, L(—E,)) = H*(Z, L),
hence H°(Z, L)yeg = 0, which leads to a contradiction.

Assume that x(=1') < x(=I'+1) for any 0 < [ < Z. This, for [ = Z, implies
X(Z, L) > 0, hence necessarily h°(Z,£) > 0 for any £ € Pic' (Z). If for a generic
L one has H%(Z,L),es = 0, then there exists FE, such that HY(Z, L) = H(Z —
E,, L(-E,)). It H'(Z — E,, L(—E,))1eg = 0 again, then we continue the procedure.
In this way we obtain a cycle 0 < | < Z such that H(Z — I, £L(-1)) = H*(Z, L) and
H(Z —1,L(—1))reg # 0. Note that for £ generic £(—1)|;_; € Pic" ~'(Z — 1) is generic
as well. Hence ¢/~ is dominant and by (1)-(2) h'(Z — 1, £L(—1)) = 0. Therefore,
X(Z, L) <h(Z, L) =h"(Z —1,L(-1)) = x(Z —1,L(—1)), which by (3.2.1.2) reads as

xX(=1U") > x(=1I'"+ 1), a contradiction. O

Example 3.2.1.3. The statement of Theorem 3.2.1.1(3) is non-trivial even for I’ = 0.
In this case, since ECa’ is a point, ¢’ is dominant if and only if Pic’(Z) is a point, that
is, h!'(Oz) = 0. Hence part (3) reads as the following topological characterization of
the vanishing of h!'(Oz): For any normal surface singularity and any cycle Z > 0,
h'(Oz) = 0 if and only if x(I) > 0 for any 0 < [ < Z. (This is a generalization of the

rationality criterion of Artin [A62, A66], which corresponds to Z > 0.)
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Remark 3.2.1.4. Above, we assumed that Z > FE. This is not really necessary:
if the support |Z| of Z is smaller then one can restrict all the objects to |Z], and
the above statements (and also the next Theorem 3.3.2.2) remain valid. (Along the
restriction, X will be replaced by a small convenient neighbourhood of Ug, |z E,,

and L by Z(Euv)E,c|z).)

3.2.1.5. The semigroup of dominant Chern classes (Z > 0). Theorem

3.2.1.1(3) motivates the introduction of the following combinatorial set

Shom = 11" | x(=U') < x(=U'+1) for all | € L}

By definition, —I' € &, if and only if ¢! is dominant for Z > 0.
Sometimes it is more convenient to use the next equivalent form (note the sign

modification):

Siom = U | x(1) > (I',1) for all I € Lo} (3.2.1.6)

Lemma 3.2.1.7. S, has the following properties:

(i) S, C S

(i) 0 € S, iff L is rational. More generally, for I CV and n, > 0 for allv € I,
if Y per sy € S, then the components of Uy E, are rational. Hence, in general,
S'\ Sl is infinite.

(i4) 8" NV (Zk /2 + Sp) C Slgpm, where Sp:={l' € L@ Q : (I', E,) <0 for all v}.

(iv) 8., is a semigroup (not necessarily with identity element).

(v) S, is an S'-module, that is, if I} € S}, b €S thenli +1, €S,

(vi) Sh,,,. is min-stable, like S', that is, if 1},15 € S}, then m := min{l},l}} €
Slom-
Proof. For (i) use (3.1.1.6) or (3.2.1.6). (di) follow from Artin’s criterion. (éi7) is
clear. For (iv) — (v) use (3.2.1.6): if x(I) > ({{,1) and 0 > (I5,1) (cf. (7)), then

x(1) > (I} +15,1). Next we prove (vi).
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We wish to show that x (1) > (m, ) forany ! > 0. Set z; = I/—m (i = 1,2). Assume
first that [ > x1, and write [ = x1+42. Then from the assumptions x(z1) > (m+z2, 1)
(equality only if 21 = 0) and x(z) > (m+ 21, 2) (equality only if z = 0). These added
provide x(1) > (m,l) + (z1,22) > (m,1).

Next assume that [ # 1, and choose u; > 0 minimal, supported by the support
of xy, such that [ + u; > xy. Then the hypothesis applied for I = m + z; gives
XU+ wuy —x1) > (m+ 21,0 +uy — 21) (equality only if [ + u; — x; = 0) and applied
for I}, = m + x5 gives x(x1 — uy) > (m + 22,21 — up) (equality only if x; —u; = 0).

These added gives x (1) — (m, 1) > (u1,l + uy — x1) + (22,21 — uq) > 0. ]

Corollary 3.2.1.8. (i) For any —l' € L' there exists a unique minimal liom € L>g
with =" + lgom € S

(1) laom can be found by the following algorithm (see the analogy with [La72]). We
construct a computation sequence {z;}'_, (where zi41 = z;+ E,q) for some v(i) € V)
as follows. Fiz a generic line bundle £ € Pic" (X). Start with zy = 0. Assume that z;
is already constructed and consider L(—z;). If HY(L(—z;)) has no fized components
then stop and z; is the last term z,. If H*(L(—z;)) has a fized component, choose one
of them, say E,u, and write ziy = z; + E,4) and repeat the algorithm. Then this

procedure stops after finitely many steps and z; = lgom -

Proof. (i) Set D := (=I'+L>o)NS,

dom*

Then D # ) by 3.2.1.7(i7) and it has a unique
minimal element by 3.2.1.7(vi).

(71) We show inductively that z; < l4,,, and the construction stops exactly when
2i = lgom- Note that zp = 0 < lgom. If 2; = lgom then =" + 2, € S),,,,, hence by
Theorem 3.2.1.1(1) H°(L(—2z;)) has no fixed components, hence we have to stop.

If, by induction z; < lgom, We have to show that the algorithm does not stop
and 241 < lgom as well. Indeed, if —I' + 2; < —I' 4+ lgop, then =" + 2, &€ S, by
the minimality of /4, hence by Theorem 3.2.1.1 H°(L(—z;)) has fixed components.

Hence the procedure continues. Note also that the generic section of H?(L(—l40m)) has
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no fixed components, hence the fixed components of H°(L(—2;)) should be supported

on lgom — 2. Hence z; + Eyiy < laom. O

Remark 3.2.1.9. Though S/, is defined above combinatorially/topologically, it
shares (see e.g. (iv) and (vi)) several properties of an analytic semigroup associated
with an analytic structure supported on I'. This ‘coincidence’ will be clarified com-
pletely in the forthcoming part [NN18], where we prove that the analytic semigroup

associated with the generic analytic structure is exactly S, U{0}.

3.3 Cohomology of line bundles and dimim(c")

3.3.1 Line bundles with ¢ (£) & —S'.

Recall that by (3.1.1.6) ECal (Z) # 0 iff ' € —S’. Hence any result based on the Abel
map uses I’ € —8&’. E.g., in this section we establish a sharp lower bound for h!(Z, £)
whenever ¢;(£) =l € —§’. Before we provide that statement we wish to emphasise
that this extends automatically to the case of all bundles £, even if ¢; (L) ¢ —S'.
Indeed, it is known that for any x € L’ there exist s(x) =  + 1 € L' with the
following properties: (a) s(z) € §’, (b) I € L>o, (¢) s(x) is minimal with properties
(a)-(b). Furthermore, the cycle [ can be determined explicitly using a generalized
Laufer sequence [NO7, Prop. 4.3.3]. One constructs a computation sequence {z;}!_,
20 = 0, zig1 = 2+ E,() for some v(i) € V inductively as follows. If z42; € S’ then one
stops, and automatically ¢ = t and z; = [. If there exists E, with (z+ z;, E,) > 0 then
choose E,;) as such an £, and one defines z;1; = 2; + E,(;). Along the computation
sequence i — Y(z+z;) is decreasing. Furthermore, if Z > [, then the sequence applied

for z = —I' = —¢; (L), we get that h°(Z — z;, L(—z;)) is constant, and

W(Z,L) = hMNZ — 1,L(~1)) — x(L];) and e (L(=1) € -8 (3.3.1.1)
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Here, clearly, x(L];) = (I', 1) +x(1) = x(=U"+1)—x(=1"). If | £ Z, then one constructs
a computation sequence inductively as follows: if —I' + z; € §'(|Z — z;|) (the Lipman
cone associated with the support |Z — z|) then one stops, otherwise there exists
Ey;) (identified as above) supported on Z — z;, which provides z;41 = 2; + E,;). In
particular, for any £ € Pic(Z), there exists [ € L such that —c,(L£(—-1)) € S'(|Z—1]),
and (3.3.1.1) holds.

Summarized, the computation of any h'(Z, L), up to the topology of the graph,

can be reduced to the case —c;(£) € &’ (maybe supported on a smaller set).

3.3.2 Semicontinuity.

/" is not proper, the semicontinuity

We emphasise another specific fact as well: since ¢
of the dimension of the fiber (with respect to the points of the target) does not follow

automatically from the general theory. Nevertheless, we have the following result.

Lemma 3.3.2.1. h%(Z, L) and h*(Z,L) are semicontinuous with respect to L €
Pic"(Z). In particular, via (3.1.1.9), dim ¢~ (L) is also semicontinuous with respect
to £ € Pic (2).

Proof. Consider a covering by small balls {U,}, of X. Since L]y, is trivial for any
o and £, HY(Z, L) = ker(d; : @ H*(Oz|u,) = ®azsH(Oz|v.nu,)), where the L£-
dependence is codified in §,. But the corank of the linear map (hence, consequently
h%(Z, L) too) is semicontinuous. The semicontinuity of h'(Z, L) follows by Riemann—

Roch. 0

We prove the following sharp semicontinuity inequality.

Theorem 3.3.2.2. (1) Fiz an arbitrary I' € L'. Then for any £ € Pic" (Z) one has

W (Z, L) > x(=1') — ming<j<z1er, X(=U + 1), or, equivalently

hO(Z, E) Z maXop<i<z, ieL X(Z — l, ﬁ(—l)) = maxoglngeL{ X(Z - l) + (Z - l, U — l) }
(3.3.2.3)
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Furthermore, if L is generic in Picl,(Z) then in both inequalities we have equality.
In particular, h*(Z, L) is topological and explicitly computable from L, whenever
L is generic.
(2) Assume that I € —S' and ¢ is not dominant. Then the inequalities in

(3.3.2.3) are strict for any £ € im(c").

Proof. (1) The two inequalities (and the corresponding equalities) are equivalent by
Riemann—Roch. We will prove the statement for h°. For any [ and £ (by a cohomo-

logical exact sequence) one has
RY(Z, L) > h(Z — 1, L(=1) > x(Z — 1, L(-1)), (3.3.2.4)

hence the inequality follows. We need to show the opposite inequality for £ generic.
Clearly, if h%(Z,L£) = 0, then the opposite inequality follows (take e.g. [ = Z).
Hence, assume h°(Z, L) # 0. Then, as in the proof of Theorem 3.2.1.1, there exists
0 <1< Z such that h°(Z,L) = h°(Z — 1, L(—1)) and H*(Z — 1, L(—1))req # 0. In this
case I' — 1 € =&’ by (3.1.1.6) and (by Theorem 3.2.1.1) h'(Z — I, L(—1)) = 0 as well.
Hence h°(Z, L) = x(Z — 1, L(—1)) < maxo<j<z X(Z — [, L(-1)).

(2) Assume that h°(Z, L) = maxo<<z x(Z — I, £(—1)). If the max at the right
hand side can be realized by a certain [y > 0 then using (3.3.2.4) for |y we get that
ho(Z, L) = h°(Z —1ly, L(—1p)), hence L has fixed components, that is, £ € im(c"). On
the other hand, if the max is realized only by I = 0, then ¢ is dominant by Theorem
3.2.1.1(3). O

Since HY(X, L) = lim,_ z H'(Z, L), cf. [Ha77, Th. 11.1], we obtain the following.

Corollary 3.3.2.5. For l' € L' and any L € Pic" (X) one has h*(X, L) > x(=I') —
miner., X(=I'+1). Equality holds whenever L is generic in Pic" (X). Furthermore,
if I' € =8’ and ' is not dominant, then h*(X,L) > x(=l') — miner., X(=I' +1)

whenever £ € im(c").
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Example 3.3.2.6. Assume that I’ = 0 and h'(Oz) # 0. Then ° is not dominant,

hence h'(Z, L) > — ming<;<z x(I) for any £, and h'(Oz) > 1 — ming<;<7 x(1).
Moreover, for generic £ € Pic’(Z) one has h'(Z,£) = —ming<;<z x(I). This for

Z > 0 and I elliptic reads as h! ()? , L) = 0; this fact for minimally elliptic I" was

proved by Laufer in [La77], and for arbitrary elliptic case in [N99].

Example 3.3.2.7. Consider the situation of Corollary 3.3.2.5. For certain topo-
logical types one can find for any I’ explicitly a cycle l,;, € L>o which realizes
miner., X(—I'+1) = X(=I'+1min). Indeed, consider the construction x — r+1 = s(x)
described in 3.3.1. Since y is decreasing along the sequence, (x) x(s(z)) < x(z). Next,
assume e.g. that the lattice has the property that x(I) > 0 for all [ € L, (hence the
graph is either rational or elliptic). Then for any s € §" one has (x*) x(s) < x(s+1)
for all [ € L.

We claim that for rational and elliptic singularities minier_, x(—1'+1) = x(s(=1")).

Indeed, by (%) one has x(=I' + lnin) > x(s(=!" 4 lnin)), and by the universal
property of the operator s one also has s(—I"+ 1) > s(—1'), hence by (sx) x(s(—I'+
Imin)) = X (s(=1)).

In particular, for rational and elliptic germs h'(X, £) = y(=1I') — x(s(—=1')) when-
ever L is generic.

See also Corollary 3.3.4.2, where we prove for any (X, o) the existence of a unique

minimal cycle with the property of .

3.3.3 The subset Van'

In parallel to S/, (see 3.2.1.5), Corollary 3.3.2.5 indicates another subset of L’:
Van' :={=l" | x(=I') < x(=U"+1) for all | € Lx¢}. (3.3.3.1)

This indexes those cycles —I' for which h'(X, L) = 0 for generic £ € Pic" (X).
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For arbitrary line bundles £ € Picl/()? ) the existent vanishing theorems formulate
sufficient (but usually not necessary) criterions. E.g., hl()? ,L) = 0 for any (X, o0)
whenever —I" € Zx + &' (this is the so-called Grauert-Riemenschneider vanishing)
[GrRie70, La72, RaT72], or, for rational (X,0) whenever —!' € & (Lipman’s Crite-
rion) [Li69]. Even so, Corollary 3.3.2.5 provides a necessary and sufficient vanishing
condition for generic line bundles, which, surprisingly, is independent of the analytic
structure of (X, 0). Van' lists precisely the corresponding Chern classes.

For rational singularities (since h*(X, £) depends only on ¢;(£), cf. [N07, 4.3.3]),
hY(X,L) = 0 for any line bundle with fixed ¢;(£) exactly when —¢,(£) € Van'.
This is not valid for more general singularities: —I’ € Van’ does not guarantee the
vanishing h*(X, £) = 0 for non-generic (hence for arbitrary) bundles. E.g., in the
elliptic case, 0 € Van/, however h!(X, Oz) =p, > 0.

Though most of the statements of the next lemma will not be needed in this first
part of the series of articles, for completeness and further references we list some
properties of Van' (which can be compared e.g. with those from Lemma 3.2.1.7).
Note that a semigroup module structure of type (iv) usually is not studied/observed

in vanishing theorems.

Lemma 3.3.3.2. Van' satisfies the following properties:

(i) Van' C {lI'|(I',E,) < 1 for allv}; in general Van' ¢ S (e.g. for rational
singularities each E, € Van'), furthermore S),,, C Van',

(i) 0 € Van' iff L is rational or elliptic,

(iii) Van' is not necessarily a semigroup (2E, & Van' if |V| > 1, ¢f. (1)),

(iv) Van' is closed to the S'-action,

(v) Van' is min—stable,

(vi) Van' \ 8" might have infinitely many elements (e.g. if E, € Van' then E, +
S’ C Van' too),

(vii) Van' is not necessarily in the first quadrant, however Van' N L is in the
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first quadrant for a minimal resolution (hence for L generic and with ¢i(L) € L, the

vanishing h*(X, L) implies c,(£) < 0).

Proof. For (i) take | = E, in (3.3.3.1), and check h!(O(—E,)) = 0 for rational germs.
For (iv) — (v) repeat the arguments from the proof of 3.2.1.7. For (vii) note that if
the graph consists of a (—1) (resp. (—2)) vertex then —F (resp. —FE/2) is in Van'.
On the other hand, if —I' = x; — x, where 21,29 € L>o have no common E, in their
supports, then y(—1I") < x(={" + x3) implies x(—x2) < 0. But, in a minimal graph
if x(—z) < 0 and z > 0 then x = 0. Indeed, take E, C |z| such that (E,,x) < 0.
Then x(—z+ E,) < x(—z) < 0. If we continue the procedure, in the last step we get

X(—E,) <0 for some w, a fact which can happen only if F,, is a (—1)—curve. O

Remark 3.3.3.3. In Theorem 3.3.2.2 (see also Corollary 3.3.2.5 too) the set of
‘generic’ line bundles £ € Pic' (Z) which satisfy (3.3.2.3) with equality is not ex-
plicit. There exists an open Zariski set for which (3.3.2.3) holds with equality, but
this usually is not the complement of im(cl/). In other words, the complement of
im(c!") might have a non-trivial stratification according to the values of h'(Z, £), and
the Zariski open strata corresponds to the ‘generic’ bundles of Theorem 3.3.2.2.
Indeed, take the graph I'y from Example 3.1.4.2, and consider the splice quo-
tient analytic structure on it (for details see e.g. [NOI17]). In particular, p, = 3.
Set Z > 0 (e.g. Z = Zg), and L := Oz(—Zpin). Since h'(Oz . ) = 2 and
hH (X, O(=Zmin)) = 1, one also has h'(Z, £) = 1. Note also that the maximal ideal cy-
cle Zmaz 18 2Zmin, hence £ & im(c=?min). On the other hand, min x = x(Znim) = —1,
hence h'(Z, Lyen) = 0 for generic bundles L, € PiC_Z"”'"(Z ). Hence, the comple-

ment of im(c~%min) has a non—trivial h'-stratification.

3.3.4 The cohomology cycle of line bundles

If (X, o) is a singularity with p, > 0, then its cohomology cycle (associated with a fixed

resolution ¢) is the unique minimal cycle Z.,, € Lsg such that p, = h'(Zeon, O%).
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We extend this definition as follows.

Proposition 3.3.4.1. (a) Fiz a line bundle £ € Pic(X) with h'(X,L£) > 0. The
set Ly = {l € Loy : h'(l,£) = k' (X, L)} has a unique minimal element, denoted
by Zeon(L), called the cohomological cycle of L (and of ¢). It has the property that
W (1, L) < hNX, L) for any | # Zen(L) (1> 0).

(b) Fiz Z > 0 and L € Pic(Z) with h*(Z,L£) > 0. The set Ly, :={l € L, 0 <
1< Z : h'(l,L) = hY(Z, L)} has a unique minimal element, denoted by Zeon(Z, L),
called the cohomological cycle of (Z,L). It has the property that h*(l,L) < h*(Z, L)
forany l 2 Z.on(Z, L) (0 <1< Z).

Proof. The proof of [Re97, 4.8], valid for O, can be adopted to this situation as

well. 0
If h'(X, L) = 0, then by convention Z.,(£) = 0.

Corollary 3.3.4.2. (a) For anyl' € L' consider the set
Ly = {lmm S LZO | X(—l/ + lmm) = lIGnLin X(-l/ + l)}
>0

Then Ly has a unique minimal element Z.o,(I'), which coincides with the cohomolog-
ical cycle of any generic £ € Pic” (5()

(b) For any Z >0 and l' € L' consider the set

=l <l . < —r Y = i _! .
Ly ={lmin € L, 0 <lpin < Z, | X(='+ lyin) OS@{IZGLX( I'+1)}

Then Lz has a unique minimal element Z.on(Z,1'), which coincides with the coho-
mological cycle of any generic £ € Pic* (Z).

Proof. Combine Theorem 3.3.2.2 and Proposition 3.3.4.1. O
Corollary 3.3.4.3. 1. Elements of type —U' + Z.on(I') (I' € L) belong to Van'.
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2. If =U' < =" then =U' + Zoon(I') < =" 4+ Z.on(l") as well. Furthermore, if
' <" <=V + Zop(U') then =U' + Zoop(I') = =1" 4+ Zon(I").

Example 3.3.4.4. Assume that L is numerically Gorenstein (that is, Zx € L). Then

by [KN17, Lemma 6] (and x(I) = x(Zx — 1)) one gets Z.,n(I' =0) < Zk /2.

3.3.5 The dimension of im(c)

For an arbitrary element £ of the image im(c : ECa/(Z) — Pic'(Z)) one has
dimim(c) + dim¢ (L) > dimECa’(Z) = (I, Z), with equality whenever £ is a
generic element of the image im(c). This combined with Lemma 3.1.1.8(b) gives the

following.

Proposition 3.3.5.1. For any £ € im(¢") C Pic! (Z) one has

’

h(Z, L) > hH(Oy) — dim(im(c")) = codim(im(c")). (3.3.5.2)

In (3.8.5.2) equality holds whenever L is generic in the image of ¢ (that is, generic
with the property H*(Z,L)weg # 0). This fact and Theorem 3.3.2.2 applied for the

generic element of im(c) imply

codim(im(c)) > x (=) — min x(=I' +1). (3.3.5.3)

0<i<Z

Furthermore, if ¢ is not dominant then the inequality in (3.3.5.3) is strict.

In general, the codimension of im(c¢) cannot be characterized topologically. Indeed,
take e.g. I’ = 0, then im(c) is a point with codimension h'(Oyz). Moreover, by

Example 3.1.4.1, the dimension of im(c) is not topological either.
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3.3.6 Upper bounds for h!(Z, L).

Theorem 3.3.2.2 and Corollary 3.3.2.5 provide sharp lower bounds for h'(Z, £) and

ht ()N( ,L). A possible upper bound is given by the next proposition.

Proposition 3.3.6.1. Fiz Z > 0 and an arbitrary £ € Pic(Z) withl' = ¢;(L) € =§'.
(a) If R%(Z, L) = 0 then h*(Z, L) < —x(Z) < h'(Oy).
(b) If H*(Z, L)reg # O then W' (Z, L) < h'(Oy).
(c) In general, if h°(Z, L) # 0 then

W(2,£) < max {h'(Oz-)+x(=1)=x(='+1) } < B (Oz)+x(=1) - min x(=I'"+1).

(3.3.6.2)

In particular, by (3.5.2.3) and (3.3.6.2), h'(Z, L) takes values in an interval of
length (at most) h'(Oyz).

Note that h'(Oz) < maxoc<z{ h'(Oz)) + x(—1") — x(—=I' + 1) } (take [ = 0).
Hence (b) gives a better bound than (¢) whenever H(Z, £)e # 0. (Examples with
h'(Z,L) £ h'(Oy) exist even for I' = 0, see e.g. Example 8.2.4 in part 1T [NN18§],
when we will treat the generic analytic structures).

Furthermore, (c¢) for I’ = 0 reads as h'(Z,£) < maxo<<z{ h'(Oz_) — x() },
which for Z = Zj € L transforms into h'(Zg, £) < maxo<i<z, { h'(O;) — x(1) } (use

X(Zx —1) = x(1)).

Proof. (a) h(Z, L) = =X(Z, L) = =X(Z) = (Z,I) < =x(Z) = =h®(Oz) + ' (Oz).
(b) Multiplication by a generic s € H°(Z, L) gives an exact sequence of sheaves
0— Oz - L — F — 0, where F is Stein. Hence H'(Oyz) — H*(Z, L) is onto and
W (Z,L) < h'(Oy).
(c) If [ is the fixed divisor of £ supported on E, then from the exact sequence
0 — L(=D|z — L = L|; = 0 we get B'(L) = RN (Z — 1, L(-1)) — x(L];), and
L(—1)|z_; has no fixed components. Hence h'(Z — [, L(—1)) < W' (Oz_) by (b). O
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Remark 3.3.6.3. The inequality h'(Z,£) < h'(Oy), valid for the case when L
has no fixed components, has the following geometric interpretation, cf. (3.1.1.9):
h(Oz) — B (Z, L) = codim(¢ (L) C ECal") > 0. The inequality for £ = O(—I),
[ € L+, was already proved in [OWY14, Th. 3.1].

3.3.7 The h'-stratification of Pic’ (Z).

Fix Z >0, € =& and k € Z with

_/_ : _/ 1 _/_ : _/
x(=1) OI%lllSHZX( U'+10) < k <h(Oz)+x(=1) 0r_<nll§nzx( U'+1).

Definition 3.3.7.1. For any I’ and k as above we set
Wy :={L ePic'(2) : WNZ,L) = k}. (3.3.7.2)
From the semicontinuity lemma 3.3.2.1 we automatically have for the closure Wy .
Wy C {LePic"(Z) : W (Z,L) > k}. (3.3.7.3)

These sets constitute the analogs of the Brill-Noether strata defined for projective
curves by the Brill-Noether theory, see [ACGHS85, F110] and the references therein.

Lemmas 3.3.5.1 and 3.1.3.2 have the following consequences.

Corollary 3.3.7.4. Fiz ' € —S'. Then im(c") C W codimim(ety- Furthermore, the

.y . ll . .
set of critical bundles of ¢ are included in Wy o qim im(et/)+1-

Example 3.3.7.5. If the fibers of ¢’ over im(c") are not equidimensional, then im(c")
consists of more strata of type Wy ;. (see e.g. Example 3.1.4.3). But, even if the fibers
over im(c") are equidimensional, hence im(c") consists of only one stratum, it can

happen that ¢ is not a (topological) locally trivial fibration over im(c"), see e.g.
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Example 3.1.4.4. In particular, ¢’ over a strata W, usually is not a (topological)

locally trivial fibration.

3.4 ‘Multiplicative’ structures. The ‘stable’ im(c").

3.4.1 Monoid structure of divisors

In this section we will exploit the additional natural additive structure s“%2(Z%) :
ECa't(Z)xECal2(Z) — ECalt*2(2) (14,1}, € —S') provided by the sum of the divisors.

(Sometimes we will abridge s'1'2(Z) as s.)
Lemma 3.4.1.1. sv2(2) is dominant and quasi-finite.

Proof. An effective divisor decomposes in finitely many ways, hence the quasi—finiteness
follows. Since the dimensions of the source and the target are equal, cf. Theorem

3.1.1.11, s is dominant. O

In general, s is not surjective. E.g., in Example 3.1.4.4, the elements of ¢™'(E; N
FEy) = C* are not in the image of s&1"¥2 (7).

There is a parallel multiplication Pic"(Z) x Pic'2(Z) — Pich*2(Z), (L1, L) —
L1® Ls. Clearly, it o slile = ¢t @ ¢ in Pici ™. In the next discussions we replace

¢ by the composition
d L ECa(2) < Pid (2) Y25 Picd(2),

where the second map is the multiplication by the natural line bundle Oz(—1’). Since
Ozl + 1) = Oz(I)) ® Ozx(l,) we also have @1t o s'vl2 = ¢4 @ &2 in Pic®. After
identification of Pic” with (the additive) H'(Oy), this reads as ¢17%2 o stz = ¢ + &2
in H'(Oz). The advantage of this new map is that it collects all the images of the

effective Cartier divisors in a single vector space H'(Oyz). Lemma 3.4.1.1 and the
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construction imply

im(&) +im(c2) C im(@12) C im (&) + im(&2). (3.4.1.2)

Definition 3.4.1.3. For any I’ € =&’ let Az(I") (if there is no confusion, A(l')) be
the smallest dimensional affine subspace of H'(Qz) which contains im(¢"). Let V(1)

be the parallel vector subspace of H'(Oy), the translation of Az(I') to the origin.

Remark 3.4.1.4. From this definition follows that dim V(I") is greater than or equal
to the dimension of the Zariski tangent space at any £ € W; in particular,
dim Vz(I')) > dimim(¢"'(Z)). Hence, by (3.3.5.2) one also has dim V(') > h'(Oy) —
h'(Z, L) for any L € im(c"(Z)).

Example 3.4.1.5. In general, im(c") ¢ Az(I'); take e.g. the first case of Example
3.1.4.2, when dimim(c") = 1 and Az(I') = C2. (The fact that Az(I') = C? can be
deduced in the following way as well. ¢ is dominant for n > 1, hence Az(nl') = C2.

But Vz(I') = Vz(nl'), see e.g. the next Lemma.)

Using (3.4.1.2) one obtains the following properties of the spaces {Az(I')}r of
HI(OZ)Z

Lemma 3.4.1.6.

(a) Az(ly +15) = Az(l) + Az(ly) == {a1 + a2 : a; € Az(ll}; in particular,
Vz (1)) C Vz(ly) whenever I} <1y and Vz(nl') = Vz(I') for any n > 1.

(b) Forany —U' =", a,E} € S let the E*—support of I be I(l') == {v : a, # 0}.
Then Vz(I') depends only on I(l').

E.g., if I(I') =V, then ™ is dominant for any n>> 1 (use Theorem 3.2.1.1(3).)
Hence, Vz(I') = Vz(nl') = H'(Oy).

Proof. (b) Vz(I') C Vz(I' + nEY) C Vz(I) + Vz(nE:) C Vz(I') + Vz(E?) C Vz(I') for
ve ). O
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Definition 3.4.1.7. (a) 3.4.1.6(b) motivates to use the notation Vz(I) for V(')
whenever [ = I(I').

Hence Lemma 3.4.1.6(a) reads as Vz(I[y U Iy) = Vz(I1) + Vz(12).

(b) If Zy > Z;, then the restriction (cf. 3.1.1) satisfies r(Vy, (I')) = Vg, (I'), hence
dim V, (I') > dim Vz, (I') and the pair Vz(I') C H'(Oy) stabilizes as Z increases.
Set (Vg(I') € HY(Og)) for lim (Vz(I') € HY(Oyz)) and (Vg(I) C HY(Og)) =
lim, (Vz(I) C H'(Oz)).

Remark 3.4.1.8. The multiplicative structure — that is, the general properties what
must be satisfied by @ for a certain n > 1 — imposes strong hidden properties for
the original map & : ECa’ (Z) — Pic®(Z) = H'(Oy) as well. Let us exemplify this
via the following case. Assume e.g. that Z > F and ECal/(Z ) is 1-dimensional. Then
ECa’(Z) can be identified with some E’® := E,\ Uy E,. Therefore, the symmetric
product ECal' (2)*"/&,, (where &, is the permutation group of n letters) embeds as
a Zariski open set into ECa”l/(Z). Hence, by Lemma 3.1.1.8, the generic fibers of the
restriction of @ (ECa" (Z2)*"/&, — H'(Oy), [Dy, -+, Dy] — 3,7 (D;)) must be
irreducible. This fact imposes serious restrictions for the original map ¢ as well.
E.g.,C — C2% t — (t,t*) cannot be birational equivalent with a certain ¢, Indeed,
its ‘double’, C*? /&Sy — C?, (t,5) > (t + s,t* + s*), rewritten in terms of elementary
symmetric functions reads as C* — C2, (01, 09) + (01,07 — 40907 + 203), which has

non—irreducible generic fibers.

By the next theorem, V(I') = H'(Oy) if and only if ¢ is dominant for n >> 1;
and in 3.4.3 we will characterize those cases when Vz(I') = 0. But besides these two
limit situations the construction provides a rather complex linear subspace arrange-

ment {Vz(I')}r, which, in general, contains deep analytic information about (X, o).

Theorem 3.4.1.9. Fixl' € —S§" and Z > 0 as above. Then for n > 1 the following
facts hold.
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(a) The image of ¢ is the affine subspace Az (nl') of H'(Oyz) (a translated of
Agz(1N).
(b) All the (non—empty) fibers of @ have the same dimension.

In particular, for any L € Pic"l,(Z) without fized components (and n > 1) one

has
h'(Z, L) = h'(Oz) — dim Vz(I') = codim(Vz(I') € H'(Oz)). (3.4.1.10)

(c) Let I C 'V be the E*—support of I'. Decompose Z as Z|; + Z|; according to
the supports I and V'\ I. Then for all £ € Pic"' (Z) without fived components (and

n>1)h(Z L) depends only on the E*—support I of I':
W' (Z, L) = h'(Og,,,)- (3.4.1.11)
Hence, by (3.4.1.10),
dim V(1) = h'(Oz) — h'(Ogy,,,,)- (3.4.1.12)

In particular, if ()?/EV\I,OV\[) denotes the multi—germ (the disjoint union of sin-
gularities) obtained by contracting the connected components of Fyn; in )?, then for

Z > 0 we obtain
dim V(1) = py(X, 0) — pg(X /By 1, 001).- (3.4.1.13)

Therefore, Vz(I) = H'(Oyz) = CPs'X0) if and only if T\ I is a disjoint union of
rational graphs.
(d) With the notations of (c), Vz(I) = ker(H'(Oz) — H'(Ogy,,,))-

(e) Any L € Pic"' (Z) without fized components is generated by global sections.
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Remark 3.4.1.14. (a) In (3.4.1.10) kY (Z, L) > —x(Z, L) (since h°(Z, L) > 0), which
gives a topological lower bound for codim(V(l') C HY(Oy)).

(b) (3.4.1.13) generalizes the ‘p,—additivity formula’ of Okuma [O08], which was
proved for splice quotient singularities, for details see 3.7.2. Note that the present
formula is valid for any singularity.

(c) Part (a) of Theorem 3.4.1.9 is equivalent (by a similar argument as the proof of
Lemma 3.4.1.6(b)) by the following statement: (a') If —I' =" _, a,E} with a, > 0
(but no other relations between them), then the image of ¢ is an affine subspace, a
translated of Vz([).

(d) Parts (b)-(c) of Theorem 3.4.1.9 imply that im(c™’) (for n > 1) is closed and

consists of only one h'-strata: im(c"') = Wt 11(0 ) —dim Vi (1) -

Proof of Theorem 3.4.1.9. (a) Write A(l') as a + V(I') for some a € A(I"). Then by
(3.4.1.2) im(c) € na + V(I'). We have to show that for n > 0 we have equality
im(c") = na + V(I').

We choose smooth points 1, . . .,z in im(¢") such that the tangent spaces T},,im(¢" ),
translated to the origin, generate V' (I’). Then taking Zariski neighborhoods U; of x;
in im(¢"), we notice that > ,(—x; + U;) contains a Zariski open set of V(I'). But
Sz + U;) € Y (=2 +im(d)) € =3, 2 +im(¢H) € V(I'), hence — >, z; +
im(2*") contains a Zariski open subset of V'(I'). On the other hand, if U is a Zariski
2

open set of a vector space V, then U + U = V. This shows that im( is an affine

space associated with V(I').

(b) If we replace I’ by some multiple if it, by part (a) we can assume that ¢ :
ECa'(Z) — H'(Oyz) has image A(l'). Consider the following diagram (for some
m € Z~o which will be determined later):

(ECa" (2))™ - ECa™(2)
o'l b emt
(A))™ = A(ml)
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Fix any x € A(ml’'). Since @ and ¥ are surjective, the fiber (¢"')~!(z) intersects
im(s) at some point p. Since the source and target spaces of s are smooth of the
same dimension, by Open Mapping Theorem (see e.g. [GR70, p. 107]) there exists an
(analytic) open neighbourhood U of p (hence intersecting the fiber) contained in im(s).
Hence, using also the quasi-finiteness of s, dim(¢™)~'(z) = dim(¢™ o s)~!(z) =
dim(X o @)~ (z). Thus, if x = (z1,...,,,) are the coordinates in (A(I") )™, then
we have to analyse the set (©¢) " {x: >, ; = 2} for any fixed z.

In A(l") there is a Zariski open subset U, with the following two properties:

(i) for any y € U, the fiber (¢"')~!(y) has the minimal possible dimension, namely
dim ECal (Z) — dim A(l') = (I, Z) — d(I);

(ii) if F := A(l') \ U is its complement, then dim(&@)~'(F) < dimECa’(Z) =
v, 7).

We stratify H, = {x : > ,z; = x} with the sets Fj, := {x € H, : #{i : x; €
F} =k}, where 0 < k <m. Set also EF, := (&)~ (Fp).

Then Fy is a non—empty open set of H, of dimension (m—1)d(l’), hence dim EF, =
(m—1)d(l")+m((l',Z) —d(l')) = (ml', Z) — d(I"). Next we estimate the dimensions
of the other strata as well.

First, we consider the case 1 < k < m. Then F is covered by several components
according to the position of I = {iy,...,i;} indexing those z; which belong to F.
Fix suxh a component Fj, and write (& Ei/)_l(}"k,f) = EFi;. We consider the
projection pry : Frr — i F, x = (x;y,...,2; ), and the lifted one Epr; : EF, —
M7(@)~'(F). Note that Epr; is an injection and its target has dimension < k((I', Z) —
1). Furthermore, the fibers of Epr; have dimension (m—k—1)d(I")+(m—k)((I', Z) —
d(l") = (m—=k)(I', Z)—d(l'). Hence, dim EFy; < (m—k)(I', Z)—d(I")+k((I', Z)—1) =
(ml', Z) —d(l') — k.

The case k = m is slightly different. Using the injection JF,, — M, (&)~ (F) we

get ‘only’ dim EF,,, < m((l', Z) — 1). Therefore, if m > d(I') then we get dim EF,, <
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dim EF,. Hence, finally, dim(¢')~(z) = dim EFy = dim ECa™ (Z) — dim A(ml’).

For (3.4.1.10) use part (b) and Lemma 3.3.5.1.

(¢c) For any n > 1 and £ € im(c") (3.4.1.10) gives h'(Z,L£) = h'(Oyz) —
dz("). By Grauert-Riemenschneider vanishing theorem h*(Z|;, L(—=Z|w;)) = 0,
hence h'(Z,L) = h*(Z|wr1, £). If L is associated with certain effective divisor
D € ECa™(Z) (as the image of ¢"), then L|z,,, is associated with the restric-
tion of this divisor to Z|y\;. But this restriction has an empty support, hence L| Zln
is the trivial bundle over Z|y\;.

(d) Since the restriction of any element of ECa™ (Z) to Z|y\s is the empty divisor,
the image of the composition ECa™ (Z) — ECa’(Z|y\1) — Pic®(Z|y\) is the trivial
bundle (that is, the zero element of Pic”(Zy\7)). Therefore, im(c™’) C ker(H*(Oz) —
H'(Og),,,,)). Since they have the same dimension (cf. 3.4.1.12) they must agree.

(e) Let n be so large that im(¢™') = Ay(nl’) is an affine subspace. We claim
that any £ € im(¢®"") = Az (2nl’) is generated by global sections. Indeed, fix such a
bundle and one of its sections s € H°(Z, £) whose divisor is an element of ECa*"' (Z),
whose support with reduced structure is p := {p1,...,px} C E. Let ECagl/(Z) be
the subspace of ECa”l/(Z ) consisting of divisors supported in the complement of p.
This is a Zariski open set of ECa™ (Z), hence c(ECaZl/(Z )) contains a Zariski open
set U in Az(nl"). Then U + U = Az(2nl"), hence £ admits a section whose divisor

has support off p. n

3.4.2 Cohomological reinterpretations of V().

Fix £ € im(c™) (n > 1), D € (¢")"Y(L), and s € H°(Z, L) without fixed compo-
nents. Then, as in the situation of 3.1.2 one has the cohomological long exact sequence
HYZ.L£) 25 0p -2 HY(Oz) — HYZ,L) = 0 from (3.1.2.1). Then by Theo-
rem 3.4.1.9, im(c"') = A(nl'). Therefore, im(Tpc™') C T A(nl’). But, by Lemma
3.1.1.8, dimimTpc = dim ECa™ (Z) — dimim(c¢™) (L) = h'(O4) — hN(Z,L) =
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dim T A(nl') = dim V,(I'). Hence, im(Tpc™) = Vy(I'). As im(Tpc™) = imd (cf.
Prop. 3.1.2.2) for Vz(I') we get two other cohomological reinterpretations. Either it
is the Artin algebra Op/im(R.), as a vector space, identified as the image of Op into
HY(Oy), or it is also the kernel of H(xs): H'(Oz) — HY(Z, L).

In other words, for n > 1, the image of Op — H'(Oy) is independent of the
choice of D, while the kernel of H'(xs) : H'(Oz) — H'Y(Z, L) is independent of
the choice of s. Furthermore, they are equal, and in fact this subspace of H'(Oy)
depends only on the E*—support I of ', and it equals Vyz(I).

There is a parallel analogous discussion for X (instead of Z) as well (in that case

the reduced structure of D is Stein, hence h'(Op) = 0 again).

3.4.3 Example. Characterization of the cases dimim(c) =0

Fix I € =&’ with E*-support I C V and Z > 0 as above. Using (3.1.1.9) and
(3.4.1.12) one proves that the following facts are equivalent (for an additional equiv-
alent property see also Example 3.6.1.4):

(i) im(c") is a point (or, Vz(I') = 0);

(ii) there exists £ € Pic'(Z) without fixed components such that h'(Z, L) =
h(Z);

(iii) any £ € Pic"(Z) without fixed components satisfies h'(Z, £) = h'(Z);

(iv) all line bundles £ € Pic'(Z) without fixed components are isomorphic to
each other;

(v) B (Oz) = h'(Og,,,)-

Let us define S, as {-I" € &’ : im(c") is a point} C &', this is the set of Chern
classes satisfying the above equivalent conditions. Using (3.4.1.2) we obtain that S,

is a semigroup.
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Part (v) via Proposition 3.3.4.1 reads as follows:
S;/ot = ZZ()(E: ’ Ev §Z ’ZCO}L(Z7 OZ)’ > (3431)

Note that (in contrast with Sj,,,) S,; is not topological. Indeed, take e.g. the graph
from Example 3.1.4.1, =" := Z,,;, = E} (where v is the (—2)-vertex adjacent with the
(—=7) vertex), and set Z = Zg. Then, if p,(X,0) = 2 (that is, (X, 0) is Gorenstein)
then Zeon(Z,0z) = Z, and §); = {0}. If py(X,0) = 1, then Z.(Z,0z) is the
minimally elliptic cycle, and S, = Z(E}).

In [OWY14, OWY15a, OWY15b] a cycle [ € S'N L is called py—cycle if Ox(—1) €
Pic(X) has no fixed components, and hl()?,O;((—l)) = pg. Note that this in our
language means that —I € S, for Z > 0. Our results generalizes several statements
of [loc.cit.] for arbitrary bundles £ without fixed components (replacing O5(—!)) and
arbitrary dimim(c!").

This particular case and several similar classical results valid for bundles of type
O(!") motivate to investigate the position of the natural line bundles with respect to
im(c") (i.e., whether O(1') has fixed components or no). This is the subject of section

3.7.

3.5 The Abel map via differential forms

3.5.1 Review of Laufer Duality [La72], [La77, p. 1281]

Following Laufer, we identify the dual space H! ()Z' ,O%)* with the space of global
holomorphic 2-forms on X \ E up to the subspace of those forms which can be extended

holomorphically over X.

For this, use first Serre duality H'(X,05)* ~ HY(X, 0%). Then, in the exact
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sequence
0/ v O2 0/v O2 0/ v 2 1/v O2 1/v O2
0— H(X,0%) = H'(X,Q%) = H'(X\ E,Q%) = H.(X,Q%) = H (X,Q%)

HY(X, 0%) = H*(X,0%)* = 0 by dimension argument, while H'(X, 0%) = 0 by the

Grauert—Riemenschneider vanishing. Hence,
H'(X,0%)" ~ HI(X,0%) ~ H(X \ E,Q%)/H°(X,0%). (3.5.1.1)

The second isomorphism can be realized as follows. Fix a small tubular neighbour-
hood N C X of E such that its closure is compact in X. Take any w € H(X\E, Q%),
and extend the restriction w| g, y to a C*°(2,0)-form & on X. Then 8 is a compactly
supported C>(2,1)~form, 995 = 0, hence 0@ determines a class in HY(X, Q2). If @
is a holomorphic extension then & = 0. Next, let A be a C*>°(0,1) form in X. Then

the duality H'(X,03) ® H(X,02) — C is the perfect pairing

(N, [02]) = /~ M B,

X

Assume that the class [\] € H!(X, O5) is realized by a Cech cocyle \ij € O(U;NUj),
where {U;}; is an open cover of E, U; N U; N Uy, = (), and each connected component
of the intersections U; NUj is either a coordinate bidisc B = {|u| < 2, |v| < 2¢} with
coordinates (u,v), such that £ N B C {uv = 0}, or a punctured coordinate bidisc
B = {¢/2 < |v| < 2¢, |u| < 2¢} with coordinates (u,v), such that EN B = {u = 0}.
Then ) is obtained as follows: one finds C'*° functions A; on U; such that A\; —A; = \;;

on U; N Uj, and one sets A as O\, on U;. Then, by Stokes theorem

WLoa) =3 [ e (3512)

B Y lul=e |v|=€
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By Stokes theorem, if w has no pole along E in B, then the B—contribution in the

above sum is zero.

3.5.1.3. Above H(X \ E, Q%) can be replaced by HO(X, 0%(2)) for alarge cycle Z
(e.g. for Z > | Zk|). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves
0= Q% — Q%(Z) = 0z(Z + Kg) — 0 and from the vanishing 2'(Q%) = 0 and

Serre duality one has
HO(Q%(Z))/H°(9%) = H*(Oz(Z + K)) ~ H'(Oz)". (3.5.1.4)
Since H(Oy) ~ H(Ox) for Z > | Zk |, the natural inclusion
H(Q%(2))/H(Q%) — H(X \ B,0Q%)/H°(Q%) (3.5.1.5)

is an isomorphism.

3.5.1.6. The above duality, via the isomorphism exp : Hl()?,O;() — ¢;'(0) C
HY(X, 0%) = Pic(X), can be transported as follows. Consider the following situ-
ation. We fix a smooth point p on FE, a local bidisc B 3 p with local coordinates
(u,v) such that BNE = {u = 0}. We assume that a certain form w € H(X, 0%(2))
has local equation w = ZieZ,jZO a; ju'v!du A dv in B.

In the same time, we fix a divisor Don X , whose local equation in B is v", n > 1.
Let D, be another divisor, which is the same as D in the complement of B and in
B its local equation is (v + tu®~!)", where 0 > 1 and t € C (with |[t| < 1 whenever
o=1).

Next we will provide three type of formulae.

The first one is the composition of several maps. Note that the pairing (-, [0©])

(abridged as (-,w)) produces a map Hl()?, O5) — C. Then we identify Hl()?, O%)

with Pico()? ) by the exponential map. Then we consider the composition ¢ +— D; —
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D — Ox(D, — D) = exp ' Og(D; — D) — (exp ' Og(D; — D),w). The first
formula makes this composition explicit. This restricted to any cycle Z > 0 can be
reinterpreted as w—coordinate of the Abel map restricted to the path ¢t — D, := lN)t| 7
(and shifted by the image of D := D|z).

The second formula determines the tangent application of the above composition
(in this way it determines the w—coordinate of the tangent application of the Abel
map restricted to Dy).

In the third formula we replace the path D; by a complete neighborhood of D in
ECa(2).

Note that if we consider — instead of a single form w — a complete set of rep-
resentatives of a basis of HO(X, Q%(Z))/HO()?, 0%), then we get by the above three
constructions the restriction of the Abel map to the path Dy, the tangent map of this
restriction, and in the third case the ‘complete’ Abel map defined in some neighbour-

hood of D.

3.5.2 The Abel map restricted to D;

The first two cases start with the explicit computation of (exp™ O X(ﬁt — D), w), as
follows. D, — D is the divisor D’ = div((v + tu®"*) /v)", supported in B = {|ul, |v] <
¢}. We can fix € such that the support of D’ is in {|v] < €/2}, and set B* =
{e/2 < |v] < €, |u| < €}. Using the trivialization of O(D') in X \ {|v| < ¢/2} and
the realization (9(15’ ) on B, we get that (9(15’ ) can be represented by the cocycle
g = ((v+tue=t) /v)" € O*(B*). Therefore, log((v + tu°~t)/v)" = nlog(1 + tu’~! /v)

is a cocycle in B* representing its lifting into H 1()? ,O%). This paired with w gives:

uo—l

((Dy,w)) = (exp™! Oi(ﬁt_ﬁ)a“’) :n/I y log(1+t ” ) Z a; ju'v? dundv.
ul=e, |v]=e i€2,j>0

(3.5.2.1)
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Tfwy, .. . ,w,, are representatives of a basis for H(X, Q}(Z))/HO()?, 0%), and Z >0,
then
Dy~ ({(Dy,w1)), ... (D, wp,))) (3.5.2.2)

is the restriction of the Abel map to Et (associated with Z, and shifted by the image
of D).

At the level of tangent application on has the formula for (75 pyw) oTDE)(%Dt lt=0):

o—1
[n/ log(1 + tuv ) Z a; ju'v’ du A dv] =A-a_,o (A€C).
t=0 lul=¢, |v]=¢

i€Z,5>0

d

dt

(3.5.2.3)
If w has no pole along the divisor {u = 0} then (exp~! O;((ﬁt — D), w) =0 for any

path lNDt.

Definition 3.5.2.4. Consider the above situation in the bidisc B: BNE = {u = 0},
D has local equation v (ie. n = 1), and w = > iczy>0 @i ju'v’du A dv. Then we
introduce the Leray residue of w/du along {v = 0} as the 1-form (with possible
poles at D N E) defined by (w/dv)|,—o = >, aiou‘du. We denote it by Resp(w).

Note that the right hand side of (3.5.2.3) tests exactly the pole part of the Leray

residue Resp(w).

3.5.3 The Abel map

Assume as above that in the ball B the divisor D is given by v = 0 (i.e. n = 1), and its
‘perturbation’ D(c) is given by v = ¢o + c1u + cau® + - - - with |¢o| < €. Furthermore,
assume that the form w in B has the form (f(v)/u‘"')du A dv, where f € O(B) and
¢ > 0. (Note that the Laurent expansion in variable u of any differential form is a
sum of such terms.)

Our aim is the computation of ({(D(c),w)).

If {p;}>1 (vesp. {hi}i>1 ) denote the power sum (resp. complete) symmetric
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polynomials (functions) then (cf. [Mac95, p. 23])
pru+ pau?/2 + pau’ /3 + - - =log(1 + hyu + hou® + - -+ ). (3.5.3.1)

Furthermore, by [Mac95, p. 28], for n > 1,

by 10 ... 0
(=1)""pn = 2@ h.l 1 - 0 (3.5.3.2)
nhy hpo1 hpo ... I
We rewrite (3.5.3.1) as log(A) + piu + pau?/2 + - -+ = log(A + hyAu + hogAu® + - - +)

and we make the substitution A = (v — ¢) /v, A = —c1 /v, heA = —co /v, ete., and

we obtain
2 .« e
log (1 — 2F +UC2“ T S leg (1— %) o (Q)u+ G+, (3.5.3.3)
where for n > 1
a1 0 ... 0
v—cg
Pogaale) —1| 2 A -1 ... 0
on(c) = N . 3.5.3.4
N | (35.3.4)
NCn Cn—1 Cn—2 C1
v—CQ v—cCo v—cCo T v—cg
Note that d,, ; are certain universal polynomials in variables ¢y, . .., ¢,. Then ((D(c),w))

equals

0 i—
/ log (1—CO+'31“+"'> 1) gy =3 2ld) d L) (3535)
lu|=¢, |v|=€ i

v gl — (i —1)! dvi!
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3.5.4 Reduction to an arbitrary Z > 0.

Consider the above perfect pairing H'(X,0%) @ HO(X \ E,Q%)/H(Q%) — C
given via integration of class representatives. In H 1()~( ,O%) let A be the image
of the H'(X,0%(—Z2)), hence H'(X,05)/A = H'(Oz). On the other hand, in
H(X \ E, Q%)/HO(Q}) consider the subspace B := HO(Q}(Z))/HO(Q?() of dimen-
sion h'(Oyz) (cf. (3.5.1.4). Since (A, B) = 0, the pairing factorizes to a perfect pairing
HY(Oz) ® HY(Q%(2))/H°(Q%) — C. It can be described by the very same integral
form of the corresponding class representatives.

Moreover, if D, is an 1-parameter family of divisors as in 3.5.1.6, representing an
element in H'(Oy) (via the surjection H*(O%) — H'(Oz)), and w is a representative
of a class [w] € H*(Q%(Z))/H’(Q%), then the expression of the pairing H'(Oz) ®
HO(Q%(2))/H°(Q%) — C, (exp™! O4(D, — D), [w]), can be represented by the very
same formula (3.5.2.1) (as in the case Z > 0). Furthermore, all other formulae of
subsections 3.5.2 and 3.5.3 also have their extended versions. E.g., (3.5.2.3) gives
Tepy(w) © Tpd (Z))(4£ Dyli—o), and (3.5.3.5) is the [w]-coordinate of the Abel map
ECa (Z) — HY(Oy).

3.6 The ‘stable’ arrangement {V3(I)};-y and dif-

ferential forms

3.6.1 The arrangement {{;(I)}; of forms and its duality with

{(Vz(I)}1
Definition 3.6.1.1. Let Q;(I) (or, (1)) be the subspace of HO(X\E, Q})/HO()?, Q?Z)
generated by differential forms w € H O(JN( \ F, Q}), which have no poles along

E; \ Uvngv.
As in Theorem 3.4.1.9(c), let (X/ Ey\1,0v\1) denote the multi-germ obtained by
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contracting the connected components of Ey\; in X. Let X(V\ I) be a small neigh-

bourhood of Ey\; in X , which is the inverse image by ¢ of a small Stein neighbourhood

of ()A(:/EV\[, Ov\]).

Proposition 3.6.1.2. (a) dimQ(I) = pg()N(/EV\I,ov\I).

(b) Set Q) := HO(X(V\ )\ By, Q% o) HOX WD), Q% ). Then linear
map p: Q) — Q0), induced by restriction, is an isomorphism.
(¢c) Fiz I CV as above and set J C V with JN 1 = (. Let Q(J) be the subspace

of QD) generated by forms from H(X(V\ )\ By, Q% without pole along Ej.

(V\I))
Then the restriction of p to Q(J)NQI) induces an isomorphism Q(J)NQ(I) — Q(J).
In particular, for any I, the subspace arrangement {Q(J)} nr—p of the multi-

germ ()?/EV\I, oy\1) and resolution )?(V \ 1) can be recovered from the arrangement

{QM) s via {1 NQT) oni=o-

Proof. (a)Fix Z =37 oy noEy withalln, > 0. By (3.5.1.4) dim Q(/) = dim HO(Q%(2))/H (%
h'(Oz), which equals p, (X/ Eyn1, 00\ 1) by formal function theorem.
(b) If [w] € ker(p), then w has no pole along F; (since [w] € Q(I)), and has no
pole along Fy\; either (since plw] = 0). Hence [w] = 0, and p is injective. Since by
(a) the dimension of the source and the target is the same, p is an isomorphism.
(c) By (b), for any @ € Q(J) there exists w € Q(I) with p(w) = @. Note that w is
necessarily in (I N J), hence Q(J) NQ(I) — Q(J) is onto. O

The next result shows that the linear subspace arrangement {V (1)} of H* (X,0 )
(cf. 3.4.1.7) is dual to the linear subspace arrangement {Q (1)} of Q¢ (0) = HO(X\
2 0y O2
E.Q%)/HY (X, Q%).

Theorem 3.6.1.3. Via duality (3.5.1.1) one has Vg(I1)* = Qx(1).

Proof. We fix a cycle Z > 0 for which Vz(I) = V5(I). Choose lI' = — " _; a,E}; such

that each a, is so large that im(c") is an affine space, cf. Theorem 3.4.1.9. Then, any
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element £ of V(I) has the form Oz(D; — D,), with both Dy, D, € ECa(Z). Lift
{D;}iz12 to effective divisors {D]}i—1 2 in X. Since they do not intersect Ey\ g, the
class [\] of Oz (D} —Dy}) in Pic” (X) can be represented by a Cech cocycles {\i;}, which
in a neighbourhood of Ey\; are all zero. Therefore, if w is a form which has no pole
along Ey, ([A],[w]) = 0 by (3.5.1.2). That is, (Vg(I),Q(I)) =0, or Vg(I) C Q(I)*.
Since by (3.4.1.12) and Proposition 3.6.1.2(a) one has dim Vg (/) = p, —dim Q(1), we
get Ve(I) = Q(I)*. O

Example 3.6.1.4. (Continuation of Example 3.4.3) Fix I' € —&’ with E*-support

I CV asin 3.4.3, and choose Z > 0. Then

im(c") is a point < Vg(I) =0 & Qz(I) = Qz(0).

3.6.2 Convexity property of Q({v})’s

Clearly, the subspace arrangement has the properties (f)) ~ CP¢, and Q(I U J) =
Q(I)NQ(J). In this subsection we establish an interesting additional structure prop-
erty of the arrangement. It is the analytical analogue of topological convexity property
[LNN14, Prop. 4.4.1].

For simplicity write €2, := Q({v}) for v € V, and define

0 if I =10
Sver S i T #£0.

(1) :=

Proposition 3.6.2.1. For any I C V let I'; be the smallest connected subtree of T’

whose set of vertices I contains 1. Then T1(J) = II(I) for any I C J C 1.

Proof. By induction, it is enough to consider the case J = I U {u}, such that u is
on the geodesic path connecting v, w with v,w € I. Moreover, it is enough to show

that Q, C Q, + Q,. Write the connected components of I' \ u as U;_,I'x, and set
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I, :=V(I'). Assume that w € I,.

Choose an arbitrary w € €, and consider its restriction w|g,, in QD) =
HOY(OX(X () \ Ey,))/H(Q2(X (I))). By Proposition 3.6.1.2(b) Q(V \ I,) — Q(0)
is bijective, hence there exists w, € Q(V \ Io) such that w,[g ) = w|g,. But

Q, > QV\ Ip), hence w, € Q,. On the other hand, (w — wy)|g,) = 0, hence

Wy =W — Wy € Q. Thus w = w, + w, € 2, + Q. O

Example 3.6.2.2. Consider the weighted homogeneous isolated hypersurface singu-
larity (X,0) = {z* + y* + 2° = 0} C (C3,0). One verifies that p, = 4 (use either
[Pi77]). We consider the minimal good resolution, whose graphs is

-5 -1 =5

Z5 —

If w is the Gorenstein form, then w, zw, Tw and yw generate HO(X\E, 0%)/HO(Q%).
The pole orders along the central curve Ey are 7, 3, 2, 2. Let v; (1 <7 < 4) be the
end—vertices. Then for fixed i, V \ {v;} represents a minimally elliptic singularity.
Hence 2, ~ C by (3.4.1.12) and Theorem 3.6.1.3. If &; are the roots of £* +1 = 0,
then (z + &y)w generates €2,,, hence Z?:l Q,, ~ C?* = (zw, yw).

In particular, the linear subspace arrangement {{2,}, in CP¢ = C* is not generic
at all. Furthermore, €2,, = 0 hence 3.6.2.1 can also be exemplified on this concrete

example.

3.6.3 Reduction to an arbitrary Z > 0.

The duality from Theorem 3.6.1.3, valid for X (or, for any Z > 0) can be gen-
eralized for any Z > FE as follows. For the definition of Vz(I) see Definitions
3.4.1.3 and 3.4.1.7. In parallel, define Qz(I) as the subspace H%(Q%(Zw\1))/H"(Q%)
in H°(Q%(Z))/H°(Q%). By (3.5.1.4) dim H*(Q%(2))/H°(Q%) = h'(Oz), while

dim Qz(I) = h'(Og,,,,). But, by pairing (similarly as in the proof of Theorem 3.6.1.3)
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Vz(I) C Qz(I)*. Furthermore, by (3.4.1.12), dim V(1) = dimQz(/)*. Hence

Vz(I) = Qz(I)". (3.6.3.1)

3.7 The ‘stable’ dimensions {dim(V%([))}; and nat-

ural line bundles

3.7.1 Natural line bundles and the image of the Abel map

Recall that the saturation in S’ of a submonoid M C &' is the submonoid M := {I' €
S : In>1 with nl’ € M}.

Let us fix some cycle Z > E. Recall that ECa_l/(Z) # () if and only if I’ € §’. For
' € &' regarding the mutual position of the natural line bundle Oz (—!") with respect
to the image of ¢/ : ECa™"(Z) — Pic™"'(Z) we can consider three cases.

(a) Oz(=1") € im(c™"), or, equivalently, 0 € im(¢~"). The set of cycles I’ satisfying
this property is denoted by S/, .. Clearly 0 € S/, and by the first paragraphs of 3.4.1
it is a sub-monoids of &’. (In the literature, this monoid — defined for bundles over
Z > 0, or over X —, is called the analytic monoid of (X, o), in contrast with the
topological monoid S’, since it indexes the restrictions to £ of the divisors of different
holomorhic sections of the natural line bundles of X , or divisors of fuctions of the
universal abelian covering of (X, 0), cf. [N99b].)

(b) Oz(—nl') € im(c™™"), or 0 € im(¢™™"), for n > 1. The cycles I’ satisfying this
property are indexed by %

() l'eS'\S] .

Example 3.7.1.1. In general, S, ¢ S/ . E.g. in Example 3.1.4.3, Oz(—Zpnin) &
im(c), however Oz(—2Zy,) € im(c). Furthermore, in general, S; ¢ &’ either.

Indeed, take e.g. a situation when im(c™") is a point different than Oz(—1'). Then
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Oz(—nl") € im(c™™') for n > 1, hence nl’ ¢ S, for n > 1. In such cases '\ S is

even infinite. For a concrete example see the last case of 3.1.4.1.

Lemma 3.7.1.2. Let Z > E be an arbitrary cycle as above.
(a) Fizl' € =8’ as above, and assume that n > 1 satisfies the next assumptions:
(i) im(c™) = A(nl') (automatically satisfied if n is sufficiently large, cf. Theorem
3.4.1.9),
(i3) 0 € im(c™").
Then 0 € A(l') and im(¢™) = A(I') for any m > n.
(b)S! =& if and only if S'\ S, is finite.

Proof. (a) Since 0 € A(nl’), by Theorem 3.4.1.9(a) necessarily A(kl') = A(l") =V (I')
for any k > 1. Fix £ € im(¢®'). Then, £ € A(kl') and by (3.4.1.2) and Lemma
3.4.1.6, A(I') = A(l') + £ C im(@) +im(¢*) C im(@R) ¢ A((n + k)I') = A(l').

Part (b) follows from (a). O

In the remaining part of this subsection we will work with line bundles defined

over Z > 0.

Definition 3.7.1.3. (a) Following Neumann and Wahl [NW10], we say that (X, o)
and its resolution ¢ satisfy the End Curve Condition (ECC) if EX € S, for any end
vertez v € V (i.e. for 6, = 1).

(b) We say that (X, 0) and its resolution ¢ satisfies the Weak End Curve Condition

(WECC) if E* € S/ for any end vertex v € V.

If we restrict ourselves to singularities with rational homology sphere links, by
End Curve Theorem [NW10] (see also [O10]) singularities which satisfy ECC are
exactly the splice quotient singularities of Neumann and Wahl [NW05]. The WECC
terminology is new in the literature, however its necessity and importance appeared in

many private discussions of the second author with T. Okuma in the last decade. The
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main question regarding singularities satisfying WECC is how can one generalize the
results valid for splice quotient singularities to this larger family. The present article
shows that e.g. the p,—additivity formula of Okuma extends. Indeed, the general
additivity formula (3.4.1.12) provides an additivity with correction term dim V(7).
Furthermore, as we will see in the next discussions, the correction term dim V(I) has
different reinterpretations in terms of certain Hilbert polynomials or Poincaré series

(similarly as in the splice quotient case) whenever WECC is satisfied.

Proposition 3.7.1.4. (a) (Convexity property of S/ ) Fizu,v € V, u # v. If
LB B e % then for any vertex w on the geodesic path in the graph connecting u
and v one has E* € S}, too.

(b) (X,0) satisfies WECC' if and only if S, = S'.

Proof. Fix integers n,, n,, n, sufficiently large such that (i) n,E?, n,E¥, n,E} be-
long to L, (ii) the E,—multiplicities of these three cycles are equal, and (iii) n,E;}
and n,E} belong to S/,.. Set | := n,E} —n,E’, and let the connected components
of I'\ w be U;I';. We distinguish I';;, which contains u. Then [ is supported on U;T’;.
Since (I, E,) = 0 for any z € V(U;z, 1), [|I'; = 0 for all ¢ # ip. Since (I,E,) <0
for any z € V(I'y,), and (I, E,) < 0, all the entries of [|I';, are strict positive. We
have similar property for n,E} —n, E} too. Hence min{n, E} n,E*} = n, E}. Since,
by assumption there exist functions f, and f,, which can be regarded as sections of
O(—n, E}) and O(—n, E}) without fixed components, the generic linear combination
af, + bf, is a section of O(—n,, E}) without fixed components. For (b) use part (a)

and the fact that I' is a tree. O]

3.7.2 Different reinterpretations of dim(V;(I')) when I’ € 8.

In the sequel we apply the results of the previous section (e.g. Theorem 3.4.1.9) for

natural line bundles. This will also include the ‘classical’ cases £ = O5(—1), where [
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is an effective integral cycle. In order to do this we will need additional assumptions
of type £ € im(c™).

We fix the following setup. We consider line bundles over X , or over Z > (0. We
write Vi (I') for the stabilized V(') with Z > 0. We fix I’ € &’ from S, this means
that there exists n > 1 such that O(—nl") admits sections without fixed components.

Let 0 € Z~o be the order of [I'] in L'/L. We also write ol' = [ € L. Note that

V(') = Vg(ol'), cf. Lemma 3.4.1.6.

3.7.3 dim(Vz(l')) as a coefficient of a Hilbert polynomial

Consider the situation of subsection 3.7.2. For n > 1 from the exact sequence of

sheaves 0 = Oz (—nl) = O — Oy — 0, we get
dim H°(0)/H"(O(—nl)) = x(nl) — B (O(=nl)) + py(X, 0),
which combined with Theorem 3.4.1.9 gives
dim H°(0)/H(O(—nl)) = x(nl) + dim V(1). (3.7.3.1)

This already shows that V({) is the free term of the Hilbert polynomial associated
with n — dim H°(O)/H°(O(—nl)). This fact can be reorganized even more. Note
that by Theorem 3.4.1.9(d) O(—nl) is generated by global sections for all n > ng for
some ng. Therefore, if we denote the ideal HO(X, O(—ngl)) C Ox,, by J, then the
integral closure of its powers satisfy 77 = H(X,O(—mnyl)) [Li69]. In particular,
dim(Ox /T ™) = x(mnel) + dim Vg(1).

Recall that there exist integral coefficients €;(J) (where i = 1,2,3) such that
dim(Oxo/T™) = e(T) (") — & (T)(]) +e2(J) for m > 1. Here, the polynomial
from the right hand side is called the normal Hilbert polynomial of J. One verifies

that €5(J) is independent of the choice of ng. Then, the two identities combined
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provide dim Vg(l) =€ (J).

If in our general identities from Theorem 3.4.1.9 we insert €;(J) for dim Vg(l),
then we recover e.g. the results from [OWY15a, §3]; or the additivity statement from
[O08, Cor. 4.5].

3.7.4 dim(V%(l)) in terms of the multivariable series P,_(t).

Assume again that I € S/

m?

and let I be the E}—support of ', that is, I' = > _, a, E;
with a, € Z-o. Then with the notations of 3.7.2, for n sufficiently large O(—nol’)
has no fixed components and h'(X,O(—nl)) = pg — dim V(7). This combined with

(2.1.4.5) gives that for cycles of type nl (n > 1)

Z Porpy = x(nl) + dim Vg (I); (3.7.4.1)
leL, I#nl
that is, the counting function nl — 35} 7+, Po(—p of the coefficients of Py,—o(t) is
(for n > 1) the multivariable quadratic polynomial y(nl) + dim V(1) in nl, whose
free term is exactly dim Vg ([).

The above counting function can be simplified even more: we will reduce the
variables of Fy to the variables indexed by I. For this we define the projection
(along the E—coordinates) w7 : R(E,),ey — R({E,)vez, denoted also as = — x|z, by
Y ovey Wby = > cr LBy

For further motivations and topological analogues of the next statements see also

[LNN14] (where Z(t) plays the role of P(t)).

Lemma 3.7.4.2. Assume that ' =Y _;a,E} with a, > 0, and I" € S too. Then

"> 1 if and only if I"|; > U'|;.

Proof. We prove the < part. Write I” — " as « + y, where x (resp y) is supported on

Ep (vesp. on Ey\;). By assumption, > 0. For any u € V'\ I one has 0 > (I", E,) =
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(', E,) + (z, Ey) + (y, Ey). But (I, E,) =0 and (z, E,) > 0. Hence (y, E,) < 0 for

any u in the support of y. Since (, ) is negative definite, y > 0. O

According to the 7 projection, we also define the series Py (t;) (for any h € H),
iIl variables {tv}vej by P[’h(t]) = Ph(t)|t1,:1,v¢1'
Note that the series Pro(tr) has the form 3, . sp) p1(l)t. By Lemma 3.7.4.2

one has

Z Po-iy = Z pi(lr).

leL, [#nl lremr(L), lrZnl|r
Therefore, for n > 1, one also has that the counting function of the coefficients of

the reduced series Pr provides the same expression

> pilly) = x(nl) + dim Vg (1). (3.7.4.3)
lremp(L), liZnll;
(Note that if the E*—support of nl is I, then nl|; determines uniquely nl.)
E.g., if I = {v} (under the assumption E} € S/ ), Pro = > om0 Po(m)ty has only

one variable, and >, -, py(m) = x(nl) + dim Vg(I) for n > 1.

Theorem 3.7.4.4. Assume that (X, 0) is a splice quotient singularity associated with
the graph T' (or, equivalently, ¢ : XX satisfies the ECC, cf. Definition 3.7.1.3).

Then for any I the dimension dim V(1) is topological, computable from I.

Proof. For splice quotient singularities P(t) equals the topological series Z(t), cf.
[N12]. Hence, in (3.7.4.1) the left hand side can be replaced by the corresponding

sum of the coefficients of Z(t). O

Remark 3.7.4.5. Let us denote the Seiberg-Witten invariant of the link M (T'),
associate with the canonical spin®—structure of M (I") with sto.,,, (M (I")), and the cor-
responding normalized Seiberg-Witten invariant by §10.q, (M (I')) := s10.0n (M (T)) +

(Z% + [V(I)|)/8, see e.g. [LNN14]. Recall also that in the splice quotient case
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P(t) = Z(t) (cf. [N12]). Therefore, if we replace in (3.7.4.3) P(t) by Z(t), in the
terminology of [LNN14] (3.7.4.3) reads as follows: dim Vg (/) is the periodic con-
stant of the /-reduction Z o(t;) of Zy(t), and by Theorem 3.1.1 of [LNN14] it equals

510 g (M (T')) + 80 (M (T \ T)).

3.7.5 The equivariant version of 3.7.4.

Note that the identity (1) h'(X,O(—nl')) = p, — dim V(1) holds uniformly for
any n > 1, though [nl'] € H might have different H-classes. Such stability usually
cannot be proved via cohomology exact sequence of type 0 — L(—1) — L — L|; — 0,
l € L+ (since in this situation ¢; (£(—1))—c1 (L) € L), or by eigenspace decomposition
of some sheaf associated with the universal abelian cover (X, 0). Maybe one should
emphasize that in the above identity (f) the contribution p, comes from the dimension
of Pic”", which is independent of the class [I'] € H, and not from the py(Xa, 0)p for
h = 0.

Now, if we apply (2.1.4.5) for (1) for different classes we obtain the following fact.
Let us fix, as above [ € % with E*-support I, and let us fix also some k € Zx,
h := [kl'] € H, and write kl' = rj, + [, for some [, € L. Let o be the order of [I'] in H

as above. Then from (2.1.4.5) one has

Y (O(=rp—I—nol') = — Z PO(—rp—tp—not’) FPg(Xap, 0)n+x (L+nol") = (l+nol’, ry).
a€Ll,a?0

or, for any k£ and any n > 1,

Z PO(—rp—lx—nol’) = X(lk + nOl,) - (lk + nOl,v Th) + pg(XalN O)h —pgt dim V)N((I)
a€Ll,a?0

Hence dim V(1) connects the asymptotic behaviour of different h—components of

P(t) of the form h = [kl'], k € Z.
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3.8 The ‘non-stable’ dimim(c) and differential forms.

3.8.1 Stabilization of the image

The first theorem of this section is a generalization of that statement of section 3.6,
which says that for Z > E the dual of the vector subspace Vz(nl') C H'(Oyz), the
‘stable image affine subspace’ im(¢"') = Az (nl’) (n > 1) shifted to the origin, agrees
with the subspace of forms Qz([), where I is the E*—support of I’ (see Theorem
3.6.1.3 and subsection 3.6.3). Vz(nl’) can also be interpreted (up to a shift) as the
tangent space at any £ € Az(nl") of Az(nl"). Hence, £ + Vz(nl’) is the intersection
of all the kernels of linear maps T yw, where w € Qz(I) (that is, for all w without
pole along those E,’s which support the divisors from ECa"l/(Z )). For the explicit
description of the duality see 3.5.1.

The new setup is the following. Consider a divisor D € ECa! (Z), which is a union
of (I', E) disjoint divisors {D;};, each of them Oz-reduction of divisors {D;}; from
ECa’ (X) intersecting E transversally. Set D = U;D; and £ := &' (D) € HY(Z, 0y).
Set also Z =) m,kE,.

We introduce a subsheaf Q% (Z)"#*5 of Q% (Z) consisting of those forms w which
have the property that the residue Resp_ (w) has no poles along D, for all i. This means
that the restrictions of Q}(Z yresRess and Q%(Z ) on the complement of the support of
D coincide, however along D is satisfies the following requirement. If p = E'N D; =
E, N D; has local coordinates (u,v) with {u =0} = E and D; with local equation v,
then a local section of Q% (Z) near p has the form w = D i, 20 a; juv!du A dv.
Then the residue Resp (w) is (w/dv)|y=0 = >, aigu'du, hence the pole-vanishing
reads as a;o = 0 for all ¢ < 0. Note that Q}(Z — 13) and the sheaf of regular forms

2 2 regRes 5
Q% are subsheaves of Q% (Z)"#"*p.

Theorem 3.8.1.1. In the above situation one has the following facts.

(a) The sheaves Q%(Z)regReSﬁ/Q} and Oz(K s + Z — D) are isomorphic.
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(b) HO()A(:,Q%(Z)regReSB)/HO()?,Q}) ~ HYZ,L)*. (The left hand side can be
regarded as a subspace of HO()?,Q}(Z))/HO()?, 0%) ~ HY(Z,02)*.)
(¢) The image Tpe' (TpECa! (Z)) of the tangent map Tpd at D of & : ECal'(Z) —

HY(Z,04) = HY(X, O) is the intersection of kernels of linear maps Tew - TeHY (X, O5) —

C, where w € HY(X, Q}(Z)regResﬁ).

Proof. (a) Consider the following diagram:

0 — Q4(-D) — Q%(Z-D) — Oz(Kg+Z-D) — 0

Jo & b

0 — 02— QL(Z)Ren oy Q2(Z)Ren /02 o ()

Above a and [ are the natural inclusions. We claim that their cokernels are
isomorphic. Indeed, with the notation M;; = u'v’du A dv one has coker(a) =
{2 5020 @i M} {22 51,50 @5 Mi; } and coker(53) = {ijo,iZ—mvi ai,i M ;| aicoo =
0}/{> 51,z @i,jMi;} Hence v is an isomorphism.

(b) Since H'(X, Q%) = 0, by part (a) we have HO(X, Q% (Z)™#R=5) /HO(X, Q%) =
HY(Oz(K% + Z — D)). But, this last one equals H'(Z, Oz(D))* by Serre duality.

(c) We prove the statement in the case (I', E) = 1, the general case follows simi-
larly. Hence, set ' = —E? for some vertex v € V, that is, D is a transversal cut at
the point p of the exceptional divisor F,. Consider local coordinates (u,v) around
p as above. Recall that the local equation of D is v. Let {ﬁt}tec,|t|<<1 be a path in
ECa" at D whose local equation is v + tu°~! for some o > 1.

Consider also an arbitrary form w € HO(X, 0% (7)) (with local equation as above).
Then (the class of) w is in the dual space of the image Tpe" (TpECa’ (Z)) if and only
if (Trw)(Tpc (6)) = 0 for all tangent vectors §, the tangent vectors of paths of type
Dy at D. But Trw(Tpc (8)) = X a_op (A # 0) by 3.5.2.3. Therefore, the dual space
of forms is exactly the class of forms from H(X, Q%(Z JresResp ),

In fact, one also sees that the dimensions of these two spaces im(7pc) and Ny, Trw
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agree. Indeed, dimim(Tpe) = ht(Oz) —h'(Z, L) by (3.1.1.9). But, dim N, Trw is the
same by (b). O

Corollary 3.8.1.2. Assume that {wy, ... ,ws} form a basis of HO(X, Q}(Z))/HO(X:, 0%).

Then

HO(X, 02 (Z) ) | H(X, 0%) =

{(ay,...,a) € C": Resp (D_,0awa) has no pole along D; for all i}.

Hence, by Theorem 3.8.1.1, the dimension of the right hand side is h'(Z, L), and
the number of independent relations between (ay, ..., ay), h'(Oz) — h'(Z, L), is the
dimension of imTpc (TpECa (2)).

In particular, dim(im(c"(2))) is the number of independent relations for {D;};

generic.

3.8.1.3. The above theorem can be applied rather directly in several situations, when
: 1 x _ g0y 02 0( Y ()2 :

we can provide a bases for H'(Z,0z)" = H(X,Q%(2))/H"(X,Q%), and verify

directly for certain (or for all) divisors D the above pole—vanishing property. In the

next subsections we provide such applications.

3.8.2 The Gorenstein case.

Assume that (X, 0) is Gorenstein, fix a resolution X — X as above, and let wy €
HO(X, 0% (Zk)) be the pullback of the Gorenstein form, well defined up to a non-
zero constant. Its pole is Zk, the (anti)canonical cycle. Since Q% = Ox(—Zk),
H°(X, Q% (Zk))/H*(X, Q%) is isomorphic with HO(X, Og)/H"(X, Og(—Z)), hence
if we fix a basis of HO(X,0¢)/H(X,0(—Zk)) consisting of classes of functions
{fi,-- . fo,} C HO(X, O5) with divisors divg f, 2 Zi then in HY(X, Q}(Z))/HO()N(, %)

the classes of forms { fiwo, ..., fp,wo} form a basis.
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Therefore, for any fixed I C V,
Q) ={(ar,...,ap,) € CP :mp, (> a0fa) > mp,(Zk) for any v € I, (3.8.2.1)

where mpg, () denotes the coefficient of a cycle along F,,.

By Theorem 3.4.1.9 dim Q(I) = h'(X, £) for any £ with ¢,(£) = nl’ with n > 1
and where I := {E*-support of I'}. Furthermore, the number of independent re-
lations between (a1, ..., ap,), py, — dimQ(I), is the dimension of the stable im(c"")
(n>1).

According to Theorem 3.8.1.1, these facts have the following generalizations. Set
D= Uiﬁi be a divisor as in 3.8.1: each 152 is a transversal cut intersecting E. ;). Let

i : (C,0) — (D;, D; N Ey@)), t = 7i(t), be a parametrization (local diffeomorphism).
Set L= 0%(D) and ¢;(£) =1

Theorem 3.8.2.2. With the above notations one has

HO()Z,Q%(Z)regReSﬁ)/Ho()z,Q%) = {(a1,...,ap,) € C" ordy(3_ a0 fa0vi) > mp,, (ZK) for alli

Similarly as in Corollary 3.8.1.2, the dimension of the right hand side s hl()N(,ﬁ),
and the number of independent relations between (ay, ..., a,,), pg — h* ()?, L), is the
dimension of imTpc (TpECa! (Z)) (Z > 0), and dim(im(c")) is the number of inde-

pendent relations for {D;}; generic.

We will apply this theorem in section 3.9 for superisolated (hypersurface, hence

Gorenstein) germs.
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3.9 Superisolated singularities

3.9.1 The setup.

We will exemplify the Gorenstein case on a special family of isolated hypersurface
singularities. The family of superisolated singularities creates a bridge between the
theory of projective plane curves and the theory of surface singularities. This bridge
will be present in the next discussions as well. For details and results regarding such
germs see e.g. [Lu87, LNMO05].

Assume that (X, 0) is a hypersurface superisolated singularity. This means that
(X, 0) is a hypersurface singularity { F(x, z2, 3) = 0}, where the homogeneous terms
Fy+ Fyiq + -+ of F satisfy the following properties: {F; = 0} is reduced and it
defines in CP? an irreducible rational cuspidal curve C'; furthermore, the intersection
{F;11 = 0}NSing{ F; = 0} in CP? is empty. The restrictions regarding F; implies that
the link of (X, 0) is a rational homology sphere (this fact motivates partly the presence
of these restrictions). With Fy fixed, all the possible choices for {F}};~q define an
equisingular family of singularities with fixed topology and fixed p, = d(d—1)(d—2)/6.
For simplicity, here we will take for Fj,; the (d + 1)""—power of some linear function

and F; = 0 for ¢« > d + 1. Moreover, by linear change of variables, we can assume

Fy1 = —x3™. (Note that in our treatment the analytic type of the singularity
plays a crucial role, hence, by the choice Fy, = —z4™ we restrict ourselves to a

special analytic family. We do this since in this case the presentation of the next
subsections are more transparent. However, it would be interesting to analyse the
stability /non-stability of the Abel map in the whole equisingular family when we vary
F,i>d+1.)

If we blow up the origin of C? then the strict transform X’ of X is already smooth
(this property is responsible for the name ‘superisolated’) — hence a minimal reso-

lution of X —, the exceptional curve C’ C X' is irreducible and it can be identified
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with C' [Lu87]. Hence, resolving the plane curve singularities of C’ we get a minimal
good resolution of X; for the precise resolution graph see e.g. [Lu87, LNMO05]. In the
minimal (or the minimal good) resolution the exceptional curve corresponding to C”’
will be denoted by FEj.

In the chart z; = uw, xo = vw, xr3 = w of the blow up the total transform has
equation w?(w — Fy(u,v,1)) = 0, X' = {w = Fy(u,v,1)}, C' = {w = Fy(u,v,1) = 0}.

We wish to discuss the Abel map associated with several choices of I’ and Z.

3.9.2 The case lI'=—-kE; (k> 1), Z = Zk (and generic divisor

on ECa' (2)).

In this case a generic point D of ECa! (Z) consists of k transversal cuts of Fy at
generic points. In order to determine dim im(¢"), which equals dim imTp& (TpECa' (2)),
we will apply Theorem 3.8.2.2. Hence, we need to analyse the restriction of forms
on the components of the divisor D. Note that Theorem 3.8.2.2 automatically
provides h'(Zy,O(D)) too. Furthermore, by Grauert—Riemenschneider vanishing
h (X, 0(D — Zg)) = 0, one also has h'(Zg, O(D)) = h'(X,0(D)).

Since the first blow up already creates the exceptional divisor C' = Ej, all the
computation can be done in this minimal resolution ¢ : X’ — X, and we can even
assume that D is in the chart considered above. First, we find {f,}%%, such that
{fiwo, - -+, fp,wo} induces a basis in HY(X, Q%(Z))/HO()?, 0%). Notice that the pull-
back of any monomial x™ = x7"' x5 25" has vanishing order deg(x™) = . m; = |m|
along FEy. Moreover, the multiplicity of Zx along C” is d — 2. Since the number
of monomials of degree strict less than d — 2 is p, = d(d — 1)(d — 2)/6, the set
{x™ : deg(x™) < d — 3} serve as a basis for H'(X,0)/H*(X,04(—Zk)).

Next, we consider parametrizations of each component {D;}*_ (the liftings of the

divisors {D;};), t — vi(t) = (ui(t),vi(t),w;(t)) € X'. In fact, we can start with a
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parametrization t — (u;(t),v;(t)) of a transversal cut of {Fy(u,v,1) = 0} C C? at
some smooth point. Then we lift it to X’ by setting w;(t) := f(u;(t),v;(t),1). The
tranversality implies that w;(¢) has the form cit + cot? + - -+ with ¢; # 0, hence after
a reparametrization with ¢ := w;(t), we can assume that w;(t) = t.

We denote the point (u;(0),v;(0)) € {Fy(u,v,1) = 0} C C? by p;. We abridge

(u, v)™(p;) := u;(0)™v;(0)™2. Then, the restriction of a monomial x™ to D; is
u(t)mlv<t>m2t|m\ — tlm\ ((U,U)m(pi) + Hm<t))7

where Hy,(t) denotes the ‘higher order terms’” with Hy,(0) = 0. Hence, by Theorem

3.8.2.2,

1d_(§)_|)m—i|_ has no pole for all z}.

h'(Zy,O(D)) = dim {(am)m c CPs - Z&m.(u,v

Expanding the sum into its Laurent series in ¢, and separating the coefficients of
{t=d+2ti Yo<j<d—3, we get for each D; a linear system with d — 2 equations for the
variable (am)m. We need to determine the rank of the corresponding matrix. This
matrix has a natural block decomposition, a block is indexed by 7 and the set m with
fixed |m|. We prefer to order the rows by ¢=4+2 ¢=d3 =1

E.g., for fixed D;, the first row has its first entry 1 (corresponding to the block
t~4*2 and |m| = 0) and all other entries zero. The second row has some entry in the
first place, the second block corresponding to %% and |m| = 1) has three entries,
namely u(p;),v(p;), 1 (which are the evaluations of the degree < 1 (u,v)-monomials
at p;), and the blocks corresponding to |m| > 1 are zero. More generally, above the
diagonal all the blocks are zero, the diagonal block indexed by t~9+2*J and |m| = j
contains the evaluation of the (u,v)-monomials of degree < j at p;.

E.g., it K =1, then the matrix has d — 2 rows and p, columns, and each diagonal

block contains one entry 1, hence its rank of the linear system is d — 2. In particular,
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dimim(c %) = d — 2.

For k£ > 2, we have to put together all the linear equations corresponding to all
D;. A block indexed by t~%*2*J and |m| = j’ will have k rows. Again, all the blocks
above the diagonal are zero. On the other hand, the rank of the diagonal block
indexed by ¢~**J and |m| = j is as large as possible, it is min{k, (/}?)}. Indeed, its
rows consists of the evaluation of (u,v)-monomials of degree < j at points p;: since
the points p; are generic they impose independent conditions on the corresponding
(homogeneous) linear system (in variable (1, xs,x3)) of degree j. Hence, the rank of

the matrix is Z?;g min{k, (j;Q)}

Theorem 3.9.2.1. For any k > 1 the dimension of im(c=**0) is Z?;g min{k, ("3?)}.

d—1 —kEg )

The first value of k when ¢ %0 is dominant is k = ( ) ) im(c has codimension
1 for k = (d;) —1.

Accordingly, for a generic £ € im(c™*50), h(Zg, L) = p, — dim(im(c7*0)).

3.9.3 The case ' = —kE} (k> 1), Z = Zk (and special divisor

on ECal(2)).

In the previous subsection we considered generic points P := {py,...,px} on C,
in particular, for all j (0 < j < d — 3) they imposed independent conditions on the
linear system Op2(j) (or, on the (u,v)-monomials of degree < j). However, taking
special points they might fail to impose independent conditions on some Opz(j). The
discussion will show that im(c") has several (rather complicated) h'-stratification,
(some of them) imposed by special divisors.

Here we will indicate such possibilities; nevertheless, for simplicity we will restrict
ourselves only to certain cases when only one block degenerates and the rang of the

total linear system is determined again by the diagonal blocks. Even under this
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restriction we find the situation extremely rich, since it accumulates the classical
plane curve geometry. However, the reader is invited to work out cases when the
global rank depends on certain entries from the sub—diagonal blocks as well, covering
even more sophisticated h'-strata.

Recall that in the diagonal block of (t74t2%J |m| = j) we test if P impose inde-
pendent conditions on Opz(j) or not. In the sequel we will assume that there exits
exactly one 7, say jo, when P fails to impose independent conditions. Clearly j, > 0.
Furthermore, we will also assume that (j°;’ 1) < k< (jf’; 3). This means that in all
the diagonal blocks with 7 < j, the number k of rows is greater than or equal to
the number (ng) of columns, hence the j—blocks has rank (jgz). Symmetrically, in
all the j-diagonal blocks with 7 > j, the number k£ or rows is < than the number
(j ;2) of columns, hence the rank is k. Therefore, if the jp—block is degenerated with
rank min{k, (j(’; 2)} — A for some A > 0, then independently of the sub—diagonal en-

Jj+2

5 )} — A. In particular,

tries, the rank of the matrix of the system is Zj;g min{k, (
h'(Zg,O(D)) increases by A compared with the generic situation of 3.9.2.

Let us list some cases when such a degeneration can occur. Take e.g. jo = 1 and
k =3 and {pi, p2, p3} are collinear. For j, = 2 we give two possibilities: either k = 4
and the four points are collinear, or £ = 6 and the six points are contained in a conic.

We recall here two classical theorems of plane curve geometry, which can be used to
produce similar examples; for more see the article [EGH96] and the citations therein.

(a) [EGH96, Prop. 1] For jo > 1 and k < 2jy + 2 the points P fail to impose
independent conditions on Opz(jo) if and only if either jo + 2 points of P are collinear
or k= 2jy+ 2 and P is contained in a conic.

(b) [EGH96, Th. Cayley-Bacharach4] Assume that P consists of k = e - f poinst

which are the intersection points of two curves of degree e and f. Then if a plane

curve of degree jo = e + f — 3 contains all but one point of P then it contains all of

P.
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Chapter 4

Invariants of generic normal

surface singularities

In this chapter we wish to define what we mean by a generic analytic structure
corresponding to a fixed resolution graph 7 relying mostly on the results of Laufer
about local deformation spaces of normal surface singularities.

Next we compute some analytic invariants of this generic analytic structure, like

it’s geometric genus and analytic PoincarAS series.

4.1 Generic analytic structures on normal surface

singularities

4.1.1 The setup

We fix a topological type of a normal surface singularity. This means that we fix
either the C'*° oriented diffeomorphism type of the link, or, equivalently, one of the
dual graphs of a good resolution (all of them are equivalent up to blowing up/down
rational (—1)-vertices). We assume that the link is a rational homology sphere, that

is, the graph is a tree of rational vertices.
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Any such topological type might support several analytic structures. The moduli
space of the possible analytic structures is not described yet in the literature, hence
we cannot rely on it. In particular, the ‘generic analytic structure’, as a ‘generic’
point of this moduli space, in this way is not well-defined. However, in order to
run/prove the concrete properties regarding generic analytic structures, instead of
such theoretical definition it would be even much better to consider a definition based
on a list of stability properties under certain concrete deformations (whose validity
could be expected for the ‘generic’ analytic structure in the presence of a classification
space). Hence, for us in this note, a generic analytic structure will be a structure,
which will satisfy such stability properties. In order to define them it is convenient
to fix a resolution graph I' and treat deformation of analytic structures supported on
resolution spaces having dual graph I'.

The type of stability we wish to have is the following. The topological type (or,
the graph I') determines a lower bound for the possible values of the geometric genus
(which usually depends on the analytic type). Let MIN(I') be the unique optimal
bound, that is, MIN(I') < p,(X,0) for any singularity (X, o) which admits I' as a
resolution graph, and MIN(I") = p,(X, 0) for some (X, 0). Then one of the require-
ments for the ‘generic analytic structure’ (Xgep, 0) is that py(Xgen, 0) = MIN(I'). (In
the body of the paper MIN(T") will be determined explicitly.) However, we will need
several similar stability requirements involving other line bundles as well (besides the

trivial one, which provides p,). For their definition we need a preparation.

4.1.2 The ‘O—generic analytic structure’

We wish to define when is the analytic structure of a fiber Z, (¢ € @) of a deformation
‘generic’. We proceed in two steps. The ‘O-genericity’ is the first one (corresponding
to the Chern class I" = 0), which will be defined in this subsection.

It is rather advantageous to set a definition, which is compatible with respect
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to all the restrictions Oz — Oz. In order to do this, let us fix the coefficients
7 = {7y }» so large that for them Theorem 2.2.1.1 is valid. In this way basically we fix
a resolution (X, E) and some large infinitesimal neighbourhood Z(7) associated with
it. Moreover, let us also fix a complete deformation A(7) : Z(7) — @ whose fibers
have the topological type of I'(7). Next, we consider all the other coefficient sets
r = {ry}, such that 0 <r, <7, for all v, not all r, = 0. Such a choice, by restriction

as in 2.2.1.5, automatically provides a deformation A(r) : Z(r) — Q. Then set

A0,r):=={q € Q : W' (Z(r)q, Oz),) is not constant in a neighbourhood of ¢ for some i}.

(4.1.2.1)
Then A(0,r) is a closed (reduced) proper subspace of @, see [Ri74, Ri76] (one can
use also an argument similar to Lemma 4.1.4.1 written for I’ = 0). Define A°(7) :=

U<, A(0,7). Then A°(7) is also closed and A°(7) # Q.
Definition 4.1.2.2. We say that the fiber Z(7), of A\(7) : Z(7) — @ is 0-generic if
g € Q\AF).

Next, we wish to generalize this definition for all Chern classes I’ € L', or, for all

‘natural line bundles’, as generalizations of the trivial bundle corresponding to I’ = 0.

4.1.3 The universal family of natural line bundles

Next, we wish to extend the definition of the line bundles O~(I") to the total space
of a deformation (at least locally, over small balls in the complement of A%(7)).

We fix some Z = Z(7) with all 7, > 0, supported on E, such that Theorem 2.2.1.1
is valid (similarly as in 4.1.2). Fix also some Y C Z, and a complete deformation
A Z(F) = Q of (Z,Y) as in Definition 2.2.1.2 such that all the fibers have the
same fixed topological type I'(7). We consider the discriminant A°(7) C @, and
we fix some gy € Q \ A%7), and a small ball U, ¢ € U C Q \ A°(F). Above U

the topologically trivial family of irreducible exceptional curves form the irreducible
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divisors {&,},, such that &, above any point ¢ € U is the corresponding irreducible
exceptional curve £, , of )?q. With the notations of the previous paragraph, if nl’
has the form ) n,E, write divy(nl') := ) n,&, for the corresponding divisor in
A"Y(U). Since U is contractible, one has H*(A\™(U),Z) = L' and H'(A\~Y(U),Z) = 0,

hence the exponential exact sequence on A™}(U) gives
0 — Pic’(A™'(U)) — Pic(AH(U)) == L' = H*(A ' (U), Oy-1(ry). - (4.1.3.1)

Lemma 4.1.3.2. H*(A"'(U), Ox-11)) = 0 and the first Chern class morphism ¢, in

(4.1.8.1) is onto.

Proof. We use the Leray spectral sequence. Recall, see e.g. EGA TI1.2 §7, or [Os], that
if ¢ = h'(Z(7)q, Oz(),) is constant over some open set U (and all 7) then R'A(7),. Oz
is locally free over U and R'A(7).Oza) ®o, Clq) = H'(Z(7)q, Oz(),) is an isomor-
phism for g € U.

Hence, since R'A\,O\-1yy is locally free, H (U, R*7'A\,O5-1(yy)) = 0 for i > 0. On
the other hand, R*X,.Ox-1(yy = 0 since R2A.Ox-11) Ro, Clq) = H*(Z(7)q, Oz(),) 18

an isomorphism and H?(Z(7)y, Oz),) = 0 by dimension argument. O

Then, if in the above construction of the split of ¢; in (2.1.4.1) we replace X by

A~HU) and div(nl") by divy(nl’), we get the following statement.

Lemma 4.1.3.3. For anyl' € L' there exists a divisor Dy(I') in \™*(U) such that one
has a linear equivalence nDy(I') ~ divy(nl') in A™HU) and c1(Ox-1py(DA(l')) = 1.
Furthermore, Dx(I") is unique up to linear equivalence, hence I — Ox-1y(DA(I')) is a
split of (4.1.3.1) which extends the natural split L > % my,E, — Ox-10n (>, mu&y)
over L. Since Pic®(A"Y(U)) = HYAYU),Ox-1)) is torsion free, there exists a

unique split over L' with this extension property.

Let us summarize what we obtained: For any gy € Q\ A°(r), and small ball U with

g € U C Q\ A7), we have defined for each I € L’ a line bundle Oy-1(1)(Dx(')) in
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Pic(A™1(U)), such that its restriction to each fiber Z(7), is the line bundle Oz, (I').

Let us denote it by Ox-1((l').

4.1.4 The semicontinuity of ¢ — h'(Z,, Oz (I'))

We fix a complete deformation A : Z(7) — @, and we consider the set of multiplicities
r, < 7, not all zero, as in 4.1.2. Then, for each r, we have a restricted deformation

A(r): Z(r) — Q of Z(r) as in 4.1.3.

Lemma 4.1.4.1. For any restricted natural line bundle the map q — h'(Z(r)q, Oz, ()

is semicontinuous over Q \ A°(F), fori=0,1.

(Note that if each 7, > 1 then the intersection form on I'(r) is well-defined. In
particular, the semicontinuities of h® and h! are equivalent, since h® —h' = (Z(r),l')+

x(Z(r)) by Riemann-Roch.)

Proof. We fix a small ball U in Q \ A°(7) as in subsection 4.1.3, and we run ¢ € U.
Let us denote (as above) the exceptional curves in the fiber A(r)~(q) by {Ey4}v,

hence the cycle Z(r), is >, roEy 4. Then one has the short exact sequence of sheaves
0— Oz(r)q X 0);1((])([/) — @vorva,q X 0)\71((])([/) — @(U,W)C{x,y}/(xr'“yrw) — 0,

where the sum in the last term runs over the edges (v, w) of I'(r). This gives the

Mayer—Vietoris exact sequence
4 Tv o, Tw
0— HO(Z(T)q, O)\*l(U)(l/)lZ(r)q) — @UHO(TUEMQ, OA*(U)(ZINWEU,Q) —> @(mw)C{ZE, y}/(d] vy ) — .

Next, we analyse the vector space H'(r,Ey 4, Orx-1)(I')|r,5,,) for any v. Let us fix
an arbitrary qo € U. Note that a singularity with a resolution consisting only one
rational irreducible divisor is taut, see [La73b], hence the analytic family {Z(7),},

restricted to {r,E,,}, over a small neighbourhood U’ C U of ¢y can be trivialized.
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Furthermore, Pic’(r,E,,) = 0, hence the line bundle Oy-1y(!)], 5, is uniquely
determined topologically by " and r. Hence, Ox-1(')|+,£,, also can be trivialised
over a small U’. In particular, by these trivializations, H%(r,E, ¢, Ox-101(!')|ruE..,)
can be replaced by the fixed H%(r,E, 4, Ox-1w)(I')|r,E, 4, ) and the g—dependence is

codified in the restriction morphism §. Hence, there exists a morphism

d(q) P
Do HO(Tva,qoa O/\*I(U)(l,”ruEv,qo) =5 @(v,w)C{CE, yH/ (a™y™) (4.1.4.2)

whose kernel is H(Z(r)q, Oz, (l')). Since the rank of §(¢) is semicontinuous, the

statement follows for h°. But k' (Z(r)q, Oz, (') = dim coker(6(g))+h* (ryEy g, Ox-10) ()

and the second term in this last sum is also topological and constant (by the same

argument as above), hence semicontinuity for h! follows as well. O

4.1.5 The ‘generic analytic structure’

Now we are ready to give the definition of the ‘generic structure’. Let us fix a
complete deformation \(7) : Z(7) — @ as in 4.1.2 (with 7, large) whose fibers have
the topological type of I'(7). Similarly as there, we consider all the other coefficient
sets r := {r, }, such that r, <7, for all v, not all zero, and the induced deformations

A(r) : Z(r) — Q. Then for any I’ € L’ consider

MIN(.7) = _min {A(Z(r),. Oz, (1)) (4.15.1)

and

A(l',7) == closure of {g € Q \ A’F) : h'(Z(r)q, Oz, (")) > MIN(I',r)}. (4.1.5.2)

Then A(I',r) is a closed (reduced) proper subspace of @ (for this use e.g. an argument

as in the proof of Lemma 4.1.4.1, or [Ri74, Ri76]). Then set the countable union of
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closed proper subspaces A(7) := (Uper Uy, <z, A(l',7)) UA(F). Clearly, A(7) & Q.

Definition 4.1.5.3. (a) For a fixed I'(7) and for any complete deformation A(7) :
Z(7) = Q (with all 7, > 0) we say that the fiber Z(7), of A\(7) : Z(7) — @ is generic
if ¢ € Q\ A(7).

(b) Consider a singularity (X, 0) and one of its resolutions X with dual graph I".
We say that the analytic type on X is generic if there exists 7 > 0, and a complete
deformation \(7) : Z(F) — @ with fibers of topological type I'(7), and ¢ € @ \ A(7)

such that (7)™ (q) = Ogly 75,

Remark 4.1.5.4. (a) Fix any 1-dimensional space Z with fixed topology I'(7) with
all 7, > 0. Then in any complete deformation A of Z there exists a generic structure
arbitrary close to Z.

(b) Though the above construction does not automatically imply that @ \ A(7)
is open, for any ¢y € @ \ A(7) and for any finite set F'L' C L’ there exists a small
neighbourhood U of ¢y such that h'(Ozg,, Oz, (")) = MIN(I',r) for any r (as
above), I' € FIL', and g € U.

(c) Fix a complete deformation A : Z(7) — @ of some (Z,Y) with some fixed
7y > 0 as above. Then, by Theorem 2.2.1.1(b) for any ¢ € @ the fiber Z(7),
determines uniquely a holomorphic neighborhood )?q of E. (Some {7,}, very large
works uniformly for all fibers, since a convenient {7,}, can be chosen topologically.)
Furthermore, hl()?q, O, ) can be recovered from A as Y (Z(7)q, Oz,) by the formal
function theorem. This is the geometric genus of the singularity (X, o) obtained by
contracting £ in this )?q. Since A(0,7) = {q € Q : py(Xy,0) = MIN(I')} is part of
the discriminant A(7) (and it is closed), for any ‘generic’ ¢ € @ \ A(7) there is a ball
qge U c @\ A(0,7) such that A simultaneously blows down to a flat family X — U.

This follows from [Ri74, Ri76, Wa76] by the constancy of I' and p,.
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4.1.6 Extension of sections.

Consider a complete deformation A(7) : Z(7) — @ as above, and let Z(7), be a
generic fiber as in Definition 4.1.5.3. Let U be a small neighbourhood of ¢ such that
U cC Q\A%7). For any I’ € L' fixed consider the universal family of line bundles
Ox-1y(Da(I")) constructed in subsection 4.1.3. Fix also some r := {r,}, (0 <, <7,
for all v, not all 7, = 0, as above). Assume that O (I') = Ox-11)(DA(I"))| 20,

admits a global section s € H*(Z(r)q, Oz, (")) without fixed components.

Lemma 4.1.6.1. After decreasing U if it necessary, the following facts hold:

(a) the section s has an extension s € HO(X(r)"'(U), Oxpy-10)(Da(l")) with s, =

(b) sy (¢ €U, ¢ # q) has no fized components either.

Proof. (a) Since Z(7), is generic, ¢ does not sit in the union of the discriminant
spaces considered in 4.1.5. In that subsection we considered all the discriminants
associated with all the Chern classes and the ‘r—tower’, hence, in particular, we had
countably many discriminant obstructions. By assumption, ¢ is not contained in any
of these. In this proof we have to concentrate on the Chern class [’ and the tower level
Z(r), hence only one discriminant. In particular, ¢ € @ has a small neighbourhood
which does not intersect it. Therefore, decreasing the representative of (Q,q) we
get the stability of the corresponding h'-cohomology sheaves. Furthermore, \ is
proper, Oxy-1wy(Da(l') is coherent, and ¢’ + h'(Z(r)y, Oz, (') is constant.
Hence by EGA II1.2 §7 (or, see e.g. [Os]), R°A(Oxpy-1 1) (Da(l'))) is locally free and
RON(Oxy—1)(DA(I'))) ®0,,.,, Clg) = H(Z(r)q, Oz, (I')) is an isomorphism. [
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4.2 A special 1-parameter deformation.

4.2.1 The construction of the deformation

Next, we describe a special 1-parameter deformation of a fixed resolution of a normal
surface singularity (X, o), what will play a crucial role in the proof of the main
Theorem 4.3.1.1.

We choose any good resolution ¢ : (X, E) — (X, 0), and write U, E, = E = ¢~ (0)
as above. Since each F, is rational, a small tubular neighborhood of F, in X can be
identified with the disc-bundle associated with the total space T'(e,) of Op1(e,), where
e, = E%. (We will abridge e := ¢,.) Recall that T'(e) is obtained by gluing C,, x C,,
with C,, x C,, via identification C;,, x C,, ~ Ci x Cy,, us = uy', v = voug ©, where
C, is the affine line with coordinate w, and C! = C,, \ {0}.

Next, fix any curve E,, of ¢~'(0) and also a generic point P, € E,. There exists
an identification of the tubular neighbourhood of E,, via T'(e) such that u; = v, =0
is P,. By blowing up P, € X we get a second resolution 1) : X = X ; the strict
transforms of {E,}’s will be denoted by E!, and the new exceptional (—1) curve by
Epew. If we contract B U E,., we get a cyclic quotient singularity, which is taut,
hence the tubular neighbourhood of E! U E,., can be identified with the tubular
neighbourhood of the union of the zero sections in T'(e—1)UT(—1). Here we represent
T(e — 1) as the gluing of C,; x C, with Cyy x Cyy by u} = ug ', v} = vjuy ™
Similarly, T(—1) as Cs x C, with C; x C, by § = 7!, v = afB. Then T'(e — 1)
and T'(—1) are glued along C,; x C,; ~ Cg x C, by v} = «a, v; = 3 providing a
neighborhood of E! U E,,, in X'. Then the neighbourhood X' of Uy Bl U By, will be
modified by the following 1-parameter family of spaces: the neighbourhood of U, E!
will stay unmodified, however T'(—1), the neighbourhood of E,.,, will be glued along
Cyy x Cyy ~Cy x Cy by tf +t = a, v) = 8, where t € (C,0) is a small holomorphic

parameter. The smooth complex surface obtained in this way will be denoted by )?{ ,
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and the ‘moved’ (—1)—curve in )?2{ by Epewt. If we blow down E,.,; we obtain the
surface )~(t.

By construction, the family of spaces {)N(t’}te((c,o) form a smooth 3-fold X”, together
with a flat map X : (X', X’) = (C,0), a C* trivial fibration, such that N'~(t) = X,
Similarly, the family {)?t}te(@70) form a smooth 3—fold X , together with a flat map
A (X, X) = (C,0), a C™ trivial fibration, such that A~1(t) = X,.

Remark 4.2.1.1. Such a deformation A : (X, X) — (C,0), reduced to some I'(7), say
with 7 > 0, is always the pullback of a complete deformation of O¢|Z (7). Hence, if X
is generic, then the base point gy corresponding to the fiber O%|Z(7) is in @ \ A(7).
Since for such ¢y there is a ball ¢ € U C @ \ A(0,7) such that A simultaneously
blows down to a flat family X — U (cf. 4.1.5.4(c)), the deformation A : (X, X) —
(C,0) also blows down to a deformation X — (C,0) of (X,0). In fact, A is a weak
simultaneous resolution of the (topological constant) deformation X — (C,0), cf.
[La83, KSB88]. The point is that along the deformation A automatically we will
have the h'-stabilities for any other finitely many restricted natural line bundles as
well, cf. Remark 4.1.5.4(b) (that is, for the very same X and its deformation A, the
finitely many Chern classes — whose h'-stability we wish — can be chosen arbitrarily,

depending on the geometrical situation we treat).

4.3 The cohomology of restricted natural line bun-

dles

4.3.1 The setup

We fix a normal surface singularity (X,o0) and one of its good resolutions X with
exceptional divisor £ and dual graph I'. For any integral effective cycle Z = Z(r)

whose support |Z] is included in E (not necessarily the same as E) write V(|Z]) for the
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set of vertices {v: E, C |Z]} and S§'(|Z]) C L'(]Z]) for the Lipman cone associated
with the induced lattice L(|Z|). As above, for any I’ € L' we denote the restriction
of the natural line bundle O (I') to Z by Oz(I'). Denote also by [ the cohomological
restriction R(I') of I' € L' to L'(|Z]). Recall also that for any —I € &'(|Z|) one has

the Abel map ¢ : ECa[(Z) — Pici(Z).

Theorem 4.3.1.1. Assume that X is generic in the sense of Definition 4.1.5.3. Fix

also some Z = Z(r) as above. Choosel' = _,l'E, € L' such that I, < 0 for any

veEVY v

v € V(|Z]). Then the following facts hold.

(I) Assume additionally that —1 € S'(|Z]) \ {0}. Then the following facts are equiv-
alent:

(a) O4(') € im(c)), that is, H(Z,Oz(I'))req # 0;

(b) ¢ is dominant, or equivalently, for a generic line bundle Lgen € PicZ(Z) one
has Lyen € im(cZ) (that is, H*(Z, Lyen)reg # 0).

(c) Oz(I') € im(d), and for any D € (&)"HOL(l')) the tangent map Tpc
TDECaZ(Z) — T@Z(l/)PiCi(Z) is surjective.

(I1) W'(Z,04(I')) = h'(Z, Lyen) for a generic line bundle Lye, € Pic[(Z) and i =0,1.
(For a remark regarding the assumptions of the theorem see 4.4.1.1(c).)

Remark 4.3.1.2. The theorem shows that if we fix I'(r) then the restrictions of
natural line bundles of generic singularities cohomologically behave similarly as the
generic line bundles. This is the main guiding principle of the present article. This
principle, in general, can be formulated as follows. Fix some invariant associated with
line bundles of resolutions with fixed graph and fixed Chern class. Then one expects
that the invariant evaluated on the restricted natural line bundle in the context of
the generic singularity agrees with the value of the invariant evaluated on the generic

bundle with the same topological data (associated with an arbitrary fixed analytic
type).
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Note that by [NN18, Theorem 5.3.1] the cohomology of the generic line bundles

depends only on the combinatorics of I" (for the formula see e.g. the introduction or

(4.4.1.2)).

4.3.1.3. Starting the proof of Theorem 4.3.1.1. We use double induction over
the cardinality of the subset V(|Z|) C V and ) 7.

If V(| Z|)| = 1 then Pic’(Z) = 0 and all line bundles with the same Chern class are
isomorphic, hence all the statements are trivially true for any Z and any /. Hence let
us fix some virtual support |Z| and assume that all the statements are valid for any
cycle with support smaller than |Z| and for any I’ with the corresponding restrictions.

Next, we run induction over Zyevu 7)) To- Assume that r, < 1 for all v. Then
Pic’(Z) = 0 again and both (I) and (II) hold. Hence, we assume that (I) and (II)
hold for all cycles with » 7, < N (and any !’ with the required restrictions) and we
consider some Z = Z(r) with > r, = N.

4.3.1.4. The first part of the proof of Theorem 4.3.1.1(I). First we verify the
‘easy’ implications.
(¢) = (b) Since ECaZ(Z) is smooth (cf. [NN18, Th. 3.1.10]), by local submersion

theorem, if Tpc is surjective then the germ ¢ : (ECaZ(Z),D) — (PicZ(Z),OZ(l’))

[

is surjective too. Since ¢’ is an algebraic morphism and its image contains a small

analytic ball of top dimension, ¢! is dominant.

(b) = (a) Since HY(Z,Len)reqg # 0, one has h%(Z, Lyen) # 0, hence by the semi-
continuity of £ +— h%(Z, L) (cf. [NN18, Lemma 5.2.1]) h%(Z,Oz(I')) # 0 too.
Next, assume that h°(Z,Oz(l'));e; = 0, that is, there exists v € V(]Z|) such that
hY(Z,0z(l")) = B%(Z — E,,Oz(I')(-E,)). Note that Oz(l')(—E,)|z_g, is also a
restricted natural line bundle, it is Oz g, (I' — E,). Furthermore, from I, < 0
for v € V(|Z|) we obtain (I' — E,), < 0 too. Therefore, by the inductive step
(part II) h%(Z — E,,Oz(I' — E,)) = h%(Z — E,, Lyen(—E,)) and by the assumption
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h(Z — Ey, Loen(—Ey)) < hY(Z, Lyen). Thus h(Z,0z(I')) < h%(Z, Lyen), a fact, which
contradicts the semicontinuity of £ — h%(Z, L).
The proof of (a) = (¢) in (I) is much harder and longer, and it is the core of the

present theorem.

4.3.2 The proof of (a) = (c) in short

The detailed proof is presented in 4.3.3; in this subsection we summarize the main
steps in order to help the reading of the complete proof, though in this way inevitably
some repetitions will occur. (Since the idea of the proof — based on the construction of
the 1-parameter family — is quite fruitful, it will be used several times in forthcoming
manuscripts as well, hence in the future work we will refer to these paragraphs as the
basic prototype.)

First we identify Pic/(Z) with Pic%(Z) by £ — £ ® Oz(—1'), and Pic’(Z) with
HY(Z,0y), and we replace ¢/(Z) with & (Z) : ECal(Z) — H'(Oy). Therefore, we
wish to show that for any D € (¢")7'(0) the tangent map Tpc" : TDECaZ(Z) —
ToH'(Oy) is surjective.

Assume that this is not happening. Then there exists a linear functional ¢ €
HY(Oz)*, ¢ # 0, such that |, 2y = 0. This lifts to a nonzero functional ¢ of
H'(O%), which necessarily has the form ¢ = (-, [@]) for some @ € HY(X \ E, 0%),
which necessarily must have a pole along some E,. Using [NN18] one shows that
in fact we can choose E,, C |Z|. Next, we modify X by a sequence of blow ups.
First we blow up X at generic point of F,, creating the new exceptional divisor Fi,
then we blow up a generic point of F}| creating Fs, etc. The sequence of n such blow
ups will be denoted by b, : X’n - X , which has exceptional divisors U} ;F;. We
define ¢, by the composition H'(Oy: (7)) — H'(Oz) — C (where the first arrow is
an isomorphism by Leray spectral sequence); and similarly we set ¢, associated with

some Z > 0 (instead of Z). Note that &, 0 &% (b%(Z)) corresponds to an integration
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of the 2-form b (@) paired with divisors supported on F,,. Since the pole order along
F,, of b} (w) decreases by one after each blow up, after some steps n it will have no pole
along F,, hence g, o ¢ (b5(Z)) : ECa ™ (b (Z)) — H'(Op:(2)) — C is constant.
Let k be the smallest integer such that this map is constant. Then b} (w) has a pole
of order one along Fj_;.

Next, let U C )?k be a small tubular neighbourhood of the exceptional curve
Ey == EU (UZ!F). Let I'y be the dual graph of Ey. One considers the ho-
mological projection 7y @ L(I') — L(I'y) and the cohomological restriction Ry :
L'(T') — L'(I'y) (dual to the natural homological injection of cycles). Then first
one identifies the germs in the corresponding spaces of effective Cartier divisors

(ECal(2), D) ~ (ECa%D(b%(Z)), D) ~ (ECa®v D) (7,,(b5(Z))), D), then one shows

that (ECal(Z), D) “= HY(Oy) —= C factorizes through (ECaft ®i®) (m (52 (2))), D)

U
Hl((’)ﬂU(bz(Z))) Sk C This, and the choice of ¢ show that
(1) o o Tp(® ") (zy (bp(2))) = 0.

Now we continue with the key construction of the proof. Using the exceptional
divisors Fj_; and Fj we construct the 1-parameter family of deformation {)?k,t}t of
)?k (by mowing the intersection point of Fj,; along Fj_;), as in section 4.2. In this
deformation one considers the universal family of natural line bundles. Since in the
central fiber D is the divisor of a section of the corresponding natural line bundle,
and along the deformation the cohomology groups of the bundles are stable (here
we use the genericity), by Lemma 4.1.6.1 this extends to a family of sections. In
this way we construct a path in ECaRU(bZ(Z))(WU(bZ(Z))) at D, t — ~(t) (or, {D}
with Dy = D). By the choice of ¢ and (}) and the chain rule, ¢ o ¢ o v must have

zero derivative at ¢ = 0. This is valid even for any common multiple of the divisors

{D;};. On the other hand, this derivative can be computed differently by Laufer
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integration. Indeed, by taking a convenient multiple, the corresponding powers of
the members of the family of natural line bundles restricted on U have the form
Oy :(2) (X, NULE, + €30 F; + (Fy;) with ¢ # 0. Here (Fy;, N Fy_, is moving
divisor along F}_;. It paired with the differential form of pole one by Laufer pairing
has a non-trivial linear part, cf. (3.5.2.2). Hence its derivative at t = 0 is nonzero, a

fact which contradicts the previous statement.

4.3.3 The detailed proof of (a) = (c)

Fix any I* € L’ and write [ € L/(|Z]) for its restriction. Then there is a canonical
identification of Pic/(Z) with Pic’(Z) by £ — £ ® Oz(—I*). Also, Pic’(Z) identifies
with H'(Z, Oz) by the inverse of the exponential map such that O is identified with
0. In particular, ¢/(Z) : ECal(Z) — Pic'(Z) can be identified with its composition
with the above two maps, namely with ¢ (Z) : ECaZ(Z) — H'(Oyz). In the sequel [*
will stay either for I’ or for different cycles of type E* with F, € |Z|. In this latter
case, the restriction of E € L' is EX(|Z|), where this second dual is considered in
L'(|Z]). We use sometimes the same notation E for both of them, from the context
will be clear which one is considered.

Therefore, the wished statement (a) = (c¢) transforms into the following: If D €
(¢")71(0) then the tangent map Tpc" TDECaZ(Z) — ToH'(Oy) is surjective (under
the assumptions of part (I)).

Assume that this is not the case for some D. Then there exists a linear functional
¢ € H'(Oz)*, ¢ # 0, such that |,z = 0. During the proof we fix such a
D € (@)70) and s.

First, we concentrate on g.

Lemma 4.3.3.1. For any ¢ € HY(Oz)*, s # 0, there exists E,, C |Z| such that

so ¢ Pu:ECaPv(Z) — C is not constant.
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Proof. Let Z = 3", 7,E, be a large cycle with all 7, > 0 (v € V) so that hH(O3) =
h'(O%). Define < by the composition H'(0z) -2+ H'(O,) — C. Since p is onto,
¢ # 0 too. Recall that any functional on H'(Og) has the form ¢ = (-, [@]), cf.
(3.5.1.2), for some & € H(X \ E, 0%). Since ¢’ # 0 the form necessarily must have
a pole along some E,,. By combination of Theorems 6.1.9(d) and 8.1.3 of [NN1§]
we know that the kernel of p is dual with the subspace of forms which have no pole
along |Z|. Therefore, @ must have a pole along some E,, C |Z|. Since ECa™*(Z) is
the space of effective Cartier divisors of X (up to the equation of Z), which intersect
(transversally) only E,,, again by local nature of the integration formula, oc Fw (Z E
ECa " (Z) — C is nonconstant, cf. (3.5.2.2). But ¢ o & Z4(Z) composed with
R :ECa " (Z) — ECa~%4(Z) is exactly this map <o ¢ v (Z). Since R is surjective

(cf. [NN18, Theorem 3.1.10]), s o ¢~5w(Z) is nonconstant too. O

4.3.3.2. Let Z, ¢ and E,, C |Z] be as in Lemma 4.3.3.1, and @ as in its proof,
¢ = (-,[®]). We wish to modify the resolution X (and the space Z) dictated by
a certain property of w. For this we blow up X at generic point of F, creat-
ing the new exceptional divisor F}, then we blow up a generic point of F) creat-
ing the new exceptional divisor F5, etc. The sequence of n such blow ups will be
denoted by b, : )?n — X , which has exceptional divisors U} ;F;. Note also that

HY(Oy: (7)) = H'(Oy) is an isomorphism (use Leray spectral sequence). We define

s, by the composition H'(Oyx (7)) — H'(Oz) — C.

Lemma 4.3.3.3. For n sufficiently large the next morphism is constant:
oo M (bi(2)) : ECa " (b(Z)) — H'(Ops(2)) — C. (4.3.3.4)

Proof. Consider Z and the notations of the proof of Lemma 4.3.3.1, and the compo-

sition &, o ¢ (b%(Z)), similar to (4.3.3.4), but with Z instead of Z. This for any n
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gives the diagram

*
n

ECa™ (b5 (2)) == HY0,.3) = C
Lhn 4 > (4.3.3.5)
Hl(ob;(z)) — C

n

ECa (b5 (2)) “=

Note that ¢, o ¢~ (b%(Z)) corresponds to an integration of the 2—form b* (@) paired
with a divisor supported on F,. Since the pole order along F,, of b} (w) decreases
by one after each blow up, after some steps n it will have no pole along F;,, hence

Gpoc In (b;';(Z)) =¢,0c¢ ' (b:(Z)) o R, is constant. Since R, is surjective (see e.g.

[INN18, Theorem 3.1.10]), the statement follows. O

4.3.3.6. In the sequel, let & > 1 be the smallest integer such that ¢, o ¢k (b5(Z))
is constant. Consider again Z as in the proof of Lemmas 4.3.3.1 and 4.3.3.3. The
functionals ¢x_1, ¢k, sxk—1 and ¢ (as in 4.3.3.2 and (4.3.3.5)) form the following com-

mutative diagram:

S

H1<Obl’;(§)) — Hl(ob;;_l('z”)) = C (4.3.3.7)
¢ . ¢ b=
H1<Obz(z)) — H1<Ob};,1(z)) — C
\‘—-—_—_M-’/
Sk

By the choice of k and by the diagrams (4.3.3.5)~(4.3.3.7) Gy 0 ¢ T51(b3(Z)) is
nonconstant, while & o &% (b7 (Z)) is constant. Therefore, b (%) has a pole of order
one along Fj,_;. In particular, the maps ECa™ -1 (b5 (V)) — H' (O (vy) — C (where
V is either Z or Z) depend only on the reduced structure of b;(V) along Fj_;, and

they all can be identified with the map represented by Laufer’s integration pairing.

4.3.3.8. In Lemma 4.3.3.3 and in the discussion from 4.3.3.6 one can replace in
ECaf%-1 and in ECa %% the cycles Fy | and F} by any multiple of them: NF} |

and N F} respectively, for any N € Z~(. Indeed, the space of divisors has a natural
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‘additive’ structure, namely a dominant map s'%2(V) : ECa1(V) x ECa2(V) —
ECa1*2(V) which satisfies @1t o s/ = &1 4% Therefore, if forn = k—1orn =k
the image im(¢™"") belongs to an affine subspace A of H*(Ops (7)), then im(c~ V)
belongs to NA := A+ -+ A too. In particular, ¢,_; o¢ V¥ -1(b(Z)) is nonconstant,
while ¢oc V% (b3 (7)) is constant. (Compare also with the (~dependence in (3.5.2.1).)
Furthermore, the discussion from 4.3.3.6 can be repeated for any N, the composed
maps depend only on the reduced structure of b;(Z), hence Z can be replaced by
any large Z , in which case the composition can be computed by Laufer’s integration
duality formula.

This shows that one has a factorization (where V' = Zor 7 , and Gy = G or ¢

respectively)

*
~—NF;,_4

ECa M (bp(V) ©— H'(Oywy) ~5 C
¥ (4.3.3.9)
ECa M1 (B,

Though in (4.3.3.9) this factorization through ECa~"*%-1(F}_,) exists (and it is
nonconstant), a factorization through ECa™N-1(F,_}) — H'(Op,_,) definitely does
not exists (because, e.g., H'(Op,_,) = 0). On the other hand, a factorization through
a non-trivial quotient of H'(Oy:(v)) = H'(Oy) do exists, a fact which will be crucial

later. This is what we explain next.

4.3.3.10. In the space of resolution X, let U C X}, be a small tubular neighbourhood
of the exceptional curve Ey := E U (USZ!F)). Let I'y be the dual graph of Ey.
(Note that contracting Ey in U provides a singularity with different topological type
than I'; one of its dual graphs is I'y.) One can restrict sheaves/bundles from X, to
U. At cycle level one has the homological projection 7y (Y, n,E, + Zle m;F;) =
S, 1By + ¥ 'miF;. One also has the cohomological restriction Ry : L'(I') —

L'(T'y) (dual to the natural homological injection of cycles); e.g. the restriction
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Ry (Fy_) of Fy_, is the antidual rational cycle F} | (I'y) associated with Fj_; in the
lattice of I'y. Then, for both V = Zor Z , one has the natural injection (which,
for V.= Z and Z fit in a commutative diagram): ECa VF-1(b2(V)) is a Zariski
open set in ECa~ Vo) (7, (b5 (V))). Indeed, both of them depend only on the
multiplicity mg_;1 of Fi—q in b5(V) and 7y (bi(V')) (which are equal), the second set
contains divisors up to the equation of my_1 Fj_; supported on Fj_; \ Fy_o with total
multiplicity N, while in the first set consists of those divisors of the second set whose
support does not contain Fj_1 N F.

On the other hand, the natural epimorphism py : H' (O 1)) = H' (O (v))

usually is not a monomorphism. However, one has the following fact.

Lemma 4.3.3.11. v : H'(Oy(vy) — C factors through py : H Oy vy) = H' (O r (v)))-

Proof. First, we concentrate on the map ¢ % : ECa s (b;(V)) — H'(Oy:(v)). Let
A be the smallest affine subspace of H'(Oy:(v)) which contains im(¢~"%), and let
Ag be the parallel linear subspace of the same dimension. As above, we denote the
sum A+ --- 4+ A (m times) by mA, clearly all of these affine subspaces have the
same dimension, and are parallel to each other. Next, consider also the ‘multiples’
¢ ECaT ™k (b (V) — H'(Oyyvy) (cf. [NNI18, §6], or see 4.3.3.8). Therefore,
im(¢™f) C mA, and in fact, by [NN18, Theorem 6.1.9], for m > 0, they agree.
Furthermore, by the same theorem, Ay = ker(py).

By the choice of k, v, restricted on the image of ¢ ¥ is constant, which means

that ¢y |A is constant, or Ay C ker(sy). Hence ker(py) C ker(syy), and gak with

g‘[/]k o py = Gy exists. O

This lemma has the following geometric interpretation. If ¢y, = (-, [bjw]) (at the
level of V or X}), then svk = (- [b5@|u]) at the level of U. The form b;@|y again has

order one along Fj,_; and all the local integration formulas along Fy are the same.
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4.3.3.12. Next, we concentrate on the divisor D € ECai(Z ) and on the line bundle
Oz(l') = Oz(D). As the center of blow up of b is generic on E,,, we can assume that
it is not in the support of D. This guarantees that the divisor D lifts canonically into
any of the spaces ECabZ(i)(b;;(Z)) (still denoted by D), and the germs (ECaZ(Z), D)
and (ECabz([)(bZ(Z )), D) are canonically isomorphic.

Furthermore, this germ is preserved under the restriction to U (see also the argu-
ment from 4.3.3.10), hence all these facts together with the existence of factorization

from Lemma 4.3.3.11 can be inserted in the following commutative diagram:

I

(EC4(2),D) 5 HY(O0;) = C
~ by, 1o =
y - § (4.3.3.13)
(ECa"V(b(2)),D) — HYOwz) - C
~ Pz| =

* 7/
ZRubL ()

B U
(ECa™ i) (5:(2))), D) © 5% H\Omp(zy) — C

This diagram shows that ¢, o Tp (%) (b:(Z))) = 0 and also
¥ o Tp (& O (my (b2 (2))) = 0. (4.3.3.14)

4.3.3.15. On b;(Z) now we have the pullback line bundle b} (Oz(l')) = b3 (Oz(D)) =
Oy (2)(D)-
Lemma 4.3.3.16. b;(Ox(I')) = O, (bi(l), that is, the pullback of the natural line

bundle O¢(l') is the natural line bundle associated with the Chern class by (l'). There-

fore, b;(Oz(l)) = Ox, (br(I')

b (2)) (which will be denoted by Oy () (bi(I)))-

Proof. A bundle is natural if one of its power has the form O(l) for some integral
cycle [. In this case the Chern classes of the two bundles agree. Furthermore, if nl’

is integral for certain n € Z-, then bj (O (I')*") = O (bj(nl")), hence b (O (")) is

Xy,

natural with Chern class b} (I'). O

After all these preparations, we start with the key construction of the proof.
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We will construct a path in ECafv®i®) (7, (b%(2))) at D, t — ~(t) (or, {D;}; with
Dy = D) with the following properties. Firstly, by the choice of ¢ and (4.3.3.14)
¢ o ¢ o~y must have zero derivative at ¢ = 0. On the other hand, we will compute by
integration explicitly ¢ oco~v and we will show that its linear part is nontrivial, hence
its derivative at t = 0 is nonzero, a fact which leads to a contradiction.

The local path of divisors will be constructed via a deformation, based on section

4.2.

4.3.3.17. A special deformation of the analytic structure of Oy, .

Let (Xp, E U UF_| F}) be the resolution as in 4.3.3.2, with the choice of k as in
4.3.3.6. Here we concentrate on the exceptional components Fj,_; and F},, where F}, is
obtained by blowing up a generic point P. (If £ = 1 then Fy_; = FE,,.) Then for the
pair (Fy_1, Fi) we apply the construction of section 4.2, that is, we move Fj and its
intersection point with Fj_; locally along Fj_;. In this way we obtain a 1-parameter
family of deformations of the resolution Xy, denoted by Ay : (X, X)) — (C,0), with
fibers X gt In X 1+ the exceptional curve has components £ UUf;llFiUF it 1f we blow
down the F-type curves in X, k: We get a resolution X,, they form a family (2? X ).
If we contract all the exceptional curves we get a family of singularities {(X;,0)}.
Since the analytic structure we started with is generic, the geometric genus h'(O );k}t)
stays constant and the deformation blows down to a deformation (X, X) — (C,0)
with fibers X; (cf. 4.2). We denote the contraction é?k X by the same symbol by.

We assume that the base space of A is so small that the universal map (C,0) — @
to the base space of a complete deformation omits the discriminant A(7); this fact is
guaranteed by the choice of the generic structure of the singularity.

Therefore, for the very same [’ € L' (which provides the bundle Oz(l")) we can con-
sider the universal line bundles constructed in Lemma 4.1.3.3, namely Oy (b;(I')) €
Pic(X;,) and Oz € Pic(X). By similar argument as in Lemma 4.3.3.16 we have

bi(Oz(l") = Og (bp(I')). The restriction to the fibers of the deformations are the
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natural line bundles of the fibers.

Corresponding to the irreducible exceptional curves {E,}, and {F;}¥_, in )?k we
have the irreducible exceptional surfaces {&,}, and {F}£_, in X,. (Here (F,); = F,
for n < k but (Fi); = Fry.) If Z =, 1y B, then b (Z) = 3 70 Fy + 70 Sor_ | Fy. Let
we set b (Z) = Y cp o€ + Tw S Fi. Then we restrict Oz (bp(I')) to bi(Z) and
we get Oy (z) (b (I')) € Pic(bj(2)).

Let A : b;(2) — (C,0) be the projection of the deformation. The central fiber is
O (2)(x(I')). In particular, over ¢ = 0 the bundle Oy (7)(b;(I')) has a global section
s whose divisor is D (by the definition of D from 4.3.3 and identification (4.3.3.13)).

Then Lemma 4.1.6.1 implies the following fact.

Lemma 4.3.3.18. There exists an extension s € HO(bj(Z), Oy (z)(b5(I")) of s €
HY(b5(Z), Oy (2)(bi(I'))) such that s = s. Furthermore, s, has no fived component

either.

Let D, be the restriction of the divisor of s to the fiber over ¢.

Since the support of D = Dy is disjoint with the center of by, the same is true
for each D, (for |[t| < 1). Hence, in this way we get a path germ ~ with v(¢) €
O (2),(Dt) = Oy ,(2)(Dr) = Oy (2)(bj4(I')), where by, is the contraction/blow up
T Ko

Note also that in the cycles bj (Z) the curve Fj; (with its stable multiplicity) is
‘moving’ along the deformation, the other components with their multiplicities are
stable, and the divisors D, are supported by this stable part (but they might move).
More precisely, by the construction from 4.3.3.17 we obtain that 7y (b;(2);) is t-
independent, and it equals 7y (b5(Z)). (It is worth to mention that 7y (b(Z)) is not
the same as b}_,(Z), they differ even topologically at Euler number level.)

Then, by the choice of ¢ and D and the chain rule (compare also with (4.3.3.13)
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and (4.3.3.14):

d o * d ~ x (71 y
2| o @ b (D) (1) = - | (o 0@ D (mp (,(2))) (4(1)
~] * (71 % d")/ o 71 N dﬁy
:TD(gg o cRu (b ))(WU(bk(Z)))(% t:O) — gg o TD(CRU(bk(l ))(WU(bk(Z)))(E tzo) —0

(4.3.3.19)

The same is valid if we replace the family D; by any of its multiple N - D;.

4.3.3.20. Let us summarize what we have. On each b;,(Z) we can consider the
restricted natural line bundle Oy ,(z)(b;,,(I')). Then, if we take its restriction to U,
namely Oy ,(7) (07 ,(I'))|v € Pic(my(bj(Z))) and we shift it back with the natural line
bundle Or, 4 (2))(Ru(b;(I'))) ™ we get a path in Pic(my(b;(2))) = H'(Oryp(2));
whose differential at ¢ = 0 is in the kernel of ¢V.

Now, let us compute these objects directly, in fact, for a certain N—multiple of
the corresponding bundles. Let N be an integer so that NI' = Y NI E, is an
integral cycle and write ¢ := NI/,. Then, Nbi(I') = S, NI.E, + (3% | F;. Fur-
thermore, (O ,(2) (b, (' )Y, being natural with integral Chern class, should equal
Obz,t(Z)(Zu NI E, + EZ; F,,) and its restriction to U is OWU(bZ(Z))(ZU NUE, +
035 Fi+LFy,). By the same reason, Ox, s (2)) (Ru (b5(1)) ™ i Oy (20 (32, NI, Eot
(°F | F,). Hence, the N-multiple of the path is Oryvi(2))(U(Pr — P)), where P, =
Fr:NFy_1, P = F, N F,_; as above. By assumption on I/, we have ¢ # 0.

That is, Or, b1 (2))((P: — £P) is a path in H'(Oq, 4 (2))) and (4.3.3.19) reads as

d
2| (& (Ony 2 (P = £P)) = 0. (4.3.3.21)

Next we compute the left hand side of (4.3.3.21) in a different way.
By Lemma 4.3.3.11 (and comment after it) ¢ = (-, [b;@|r), and the form b;@|y
has a pole of order one along Fj_;. Moreover, P is a generic point of Fj,_; and in a

local neighborhood B of P in local coordinates (u,v) one has Fj_1 N B = {u = 0},
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P, = {v+1t=0}. Hence (3.5.2.2) with o = 1 reads as
gkU((’)wU(b:(Z))(ﬁPt — (P)) = tlc + {higher order terms} (c € C"), (4.3.3.22)

whose derivative at ¢ = 0 is non—zero. This contradicts (4.3.3.21).

4.3.4 The proof of part (II)

Note that the equalities for ¢+ = 0 and ¢ = 1 are equivalent by Riemann—Roch. We

will prove (II) in three steps.

4.3.4.1. The proof of part (II), case 1. Assume that I/ < 0 for any v € V(|Z])
and —1 € §'(|1Z)) \ {0}.

Then part (I) — already proved — can be applied.

First assume that the equivalent assumptions (a)-(b)-(c) of (1) are satisfied. Then
by [NN18, Th. 4.1.1] h'(Z, Lyen) = 0. Hence we have to show that h*(Z, Oz(I")) =0
too. Choose an element s € H*(Z, Oz(l')),e, with divisor D and consider the exact
sequence of sheaves 0 — Oz =% O4(I') — Op(D) — 0 (where the second morphism
is multiplication by s).

Then one has the cohomology exact sequence

H(Z,04(I')) = Op(D) — H'(Oz) — H'(Z,04(I')) — 0.
Then 0 can be identified with TD(ci) (see [NN18, Prop. 3.2.2], or [Mu66, p. 164],
(K105, Remark 5.18], [KI113, §5]). Since Tp(c') is onto by (D(c), K'(Z,04(l") =0
follows.
Next, assume that the equivalent assumptions of (I) are not satisfied. That
is, HZ,02(I'))reg = H’Z,Lyen)reyg = 0. These facts read as h’(Z,0z(l')) =
max,{h*(Z—FE,, Oz(I'—FE,))} and h°(Z, L yen) = max,{h°(Z—E,, Lyen(—E,))}. But,
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by induction (applied for part (II) similarly as in the proof of case (b) = (c¢) in 4.3.1.4,
see also 4.3.1.3) max,{h*(Z — E,,Oz(' — E,))} = max,{h°(Z — E,, Lyen(—E,))},
hence h%(Z,0z(')) = h°(Z, Lyen) follows too.

4.3.4.2. The proof of part (II), case 2. Assume that I/, < 0 for any v € V(|Z])
and [ = 0. (If this happens then necessarily |Z| < E. Recall also that O(I) is the
restriction of the natural line bundle O¢(I') to Z.)

If h'(Oz) =0 then Ly, = Oz('), hence the statement follows. If h®(Oz(I')) =0
then by the semicontinuity of £ — h°(Z, L) (cf. [NN18, Lemma 5.2.1]) h%(Lye,) = 0
too.

In the sequel we assume that h'(Oz) # 0 and h°(Oz(l')) # 0.

Assume that HY(Z,Oz(l'))reg # 0, that is, Oz(I') has a section without fixed
components. But, then by Chern class computation, this section has no zeros, hence
Oz(l') = Oy, see also (3.1.1.5).

We claim that this identity Oz(I') = Oz cannot happen for generic (X, o).

The argument runs similarly as the proof of (a) = (¢) in (I).

Since h'(Oz) # 0 we can choose a nonzero functional w € H'(O)* for which
we can repeat the arguments from 4.3.3. In particular, there exists E, C |Z]| which
satisfies Lemma 4.3.3.1, we can consider the sequence of blow ups as in 4.3.3.2, and we
can choose k as in 4.3.3.6. Finally we consider the deformation of singularities as in
4.3.3.17. In this way we get a family of restricted line bundles Oy (z)(b,(I)), so that
for t = 0 the corresponding bundle is the trivial one. We wish to show that for generic
t the corresponding term cannot be the trivial bundle. Indeed, as in (4.3.3.22) we get
that ¢ — Oy (2)(b5,(I') v € Pic(my(b;(Z))) is not constant. This implies that the
path ¢ — b ,(Oz(l")) = Oy ,(2)(b;,(I')) cannot give for all ¢ the trivial bundle either
since otherwise its restriction to my (b5 (Z)) would be constant (since the restriction of
the structures sheaf is the t-independent constant structure sheave). In particular,

for generic t we have Oz, (I') # Oy,.
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However, we can prove that in this situation necessarily h'(Og,(I')) < h*(Oyg,) for
generic t (though the Chern classes agree), hence t = 0 is a jumping discriminant
point of I — h*(Og,(I')), a fact which contradict the genericity.

Indeed, since Oy, (I') # Oy, for generic t (and H'(Oy,) is constant nonzero),
Oz (') must have fix components (use ¢;1(Og, (I')) = 0 and (3.1.1.5)). Let E, € |Z|
be a fix component. Then H°(Z;, Ogz) — H°(E,,Oz) = C is surjective, while
H(Z;,04,(l")) — H(E,,Oz(l')) = C is zero. Since their kernels have the same
hY by the inductive step, h'(Ogz (I')) < h°(Ogz), hence the inequality follows by

Riemann—Roch. This proves the claim.

After this discussion we can assume that h'(Oz) # 0, R°(Oz(l')) # 0, but

HYZ,Oz(I')reg = 0. By (3.1.1.5) Lyen, # O (since Pic’(Oy) # 0), hence H*(Z, Lyep)reg =

() too. Then we proceed as in the last paragraph of 4.3.4.1, induction shows that
(Z,04(I') = k% Z, Lyen)-

4.3.4.3. The proof of part (II), case 3. Finally, assume that I, < 0 for all v €
V(|Z|), and —I ¢ S'(|Z|). Then there exists E, in the support of Z such that (I, E,) =
(I, E,) < 0. Hence for any £ € Pici(Z) the exact sequence 0 — L(—FE,)|z—g, — L —
L|g, — 0 and vanishing H°(L|g,) = 0 give h°(Z — E,,L(—E,)) = h°(Z,L). By
this step we replaced the Chern class [ by | — E,. After finitely many such steps we
necessarily get a new Chern class in the corresponding Lipman cone (see e.g. [NO7,

Prop. 4.3.3]). Hence, in this way we reduced this third case to the first two cases.

4.4 Applications. Analytic invariants

4.4.1 The start

In this section we will fix a resolution graph I' (hence, the lattice L associated with

it as well), and we treat singularities (X, 0), together with their resolution X whose
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dual graph is I'. The goal is to list some consequences of Theorem 4.3.1.1: hence
we will assume that X is generic, and we will provide combinatorial expressions for
several analytic invariants in terms of L. We will use the notations from the setup of
4.3.1.

The first group of results provides topological formulae for the cohomology of

certain natural line bundles over an arbitrary Z > 0.

Remark 4.4.1.1. (a) By [NN18, Theorem 5.3.1] for any I’ € L’ and L, generic in
Pici)(2)
RN Z, Lyen) = x(=I') = min  {x(=I'+1)}. (4.4.1.2)

0<I<Z,IleL

I'E, € L' satisfies I/, < 0 for any v € V(]Z|) and X is

In particular, if ' = 3, ., 1,

generic then Theorem 4.3.1.1 gives the following topological characterization for the
cohomology of Oz(l')

WY Z,04(1) = x(=I') = min {x(=I'+1)}. (4.4.1.3)

0<I<Z,lcL

This will be extended in Theorem 4.4.1.5 for a larger family of I’~values.

(b) Note that the identity h'(Z, Oz(l')) = h*(Z, Lyen) (hence (4.4.1.3) too) is not
valid for any [’ (that is, without some negativity condition regarding the coefficients
of ). Indeed, assume e.g. that |Z| = E and all the coefficients of Z are very
large, and I’ = 0. Then using the quadratic form of y one has ming<;<zer, {x(1)} =
minger, {x({)}, hence h'(Z, Lyen) = —minger_, {x(I)} by (4.4.1.2). But h'(Z,O0z) =
1 — miner., {x(1)} whenever (X, o) is not rational, see Corollary 4.4.2.4.

(c) Recall that if —I" € 8"\ {0} then all the coefficients I/, of I" are strict negative.
However, if the support of | 7] is strict smaller than E, then —R(l") € §'(|Z])\{0} does
not necessarily imply that I < 0 for v € V(|Z]). (Take e.g. Z = E, a (—2)—curve,
choose E, an adjacent vertex with it and set I’ = E,+3E,. Then —R(l') € S'(F,)\{0}

however I/ = 1.)
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4.4.1.4. The setup for generalization. We construct the following ‘Laufer type
computation sequence’ (see e.g. [La72] or [NO7, Prop. 4.3.3]). We start with a class
I' € I/ and an effective cycle Z with |Z| C E. Let [ € L'(]Z]) be the restriction of I
as in Theorem 4.3.1.1.

Assume that —/ ¢ §'(|Z|). Then there exists E, C |Z| so that (I, E,) < 0.
Then, for both line bundles £ = L, and £ = Oz(l') of PicZ(Z ) one can consider
the exact sequence 0 — L(—E,)|z_g, — £ — L|g, — 0, hence h°(L(—E,)|z-g,) =
h%(L). Hence whenever h’(Oz(I' — Ey)|z-g,) = h®(Lyen(—Ew)|z-E,) one also has
RO(O2()) = KL yen).

Let us construct the following sequence of pairs (1}, Z)}_,. By definition, (I, Zy) =
(I', Z) the objects we started with. If — = —R(I') & S'(|Z]), then define (I}, Z) :=
(I' = E,, Z — E,,) for some E,, C |Z| with (E,,l') < 0. If =I; := —R(l) & S'(|Z])
we repeat the procedure, otherwise we stop. After finitely many steps necessarily
—I, .= —R(l}) € 8'(|Z)]) (here Z, = 0 is also possible). (The choice of the sequence
is not unique, however by similar argument as in [La72] or [NO7, Prop. 4.3.3]) one
can show that the last term (I}, Z;) of the sequence is independent of all the choices:
it is the unique (I — D, Z — D) with D minimal such that Z > D >0, D € L, and

—(I'=D)e S (|Z—-DJ).)

Theorem 4.4.1.5. Assume that X is generic with fixed dual graph I', and we choose
an effective cycle Z and I' € L'. Assume that the last term (I}, Z;) of the Laufer
type computation sequence {(Iy, Zx)}i—o has the following property: if l; = > 1 By,
then I, , <0 for any v € V(|Z;|). Then h'(Z,0z(I")) = h'(Z, Lgen) for a generic line
bundle Lge, € Pic(Z) (i =0,1), i.e. (4.4.1.3) holds.

Proof. Use Theorem 4.3.1.1(II) and the discussion from 4.4.1.4. O

Example 4.4.1.6. Let X be generic, Z an effective cycle and " € L’. Assume that

I <0forallv e V(|Z]) and for any connected component Z,,, of Z there exists v € V
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adjacent with Z,,, with I/’ < 0. (The adjacent condition is |Z..,| N E, # 0.) Then
the conditions from Theorem 4.4.1.5 are satisfied, hence h'(Z, Oz(l")) = h'(Z, Lyen)
and (4.4.1.3) holds.

Indeed, first note that if for some vertex with I = 0 one has (', £,) > 0 then
I, = 0 for all adjacent vertices u of v. Hence, (I',E,) > 0 for all vertices v with
I!'= 0 contradicts the assumption. That is, there exists v € V(|Z]) so that ! = 0 and
(I, E,) <0.

Then we construct the computation sequence as follows. At the first part of the
computation sequence, at step (I, Z;) we choose E,x so that E,g) C |Zg|, the
E\ywy—coeflicient of [}, is zero, and (Eyw),[;,) < 0. After finitely many such steps we
arrive to the situation when along the support of Z;. all the coefficients of [}, will be

strict negative. Then we can continue the algorithm arbitrarily.

Corollary 4.4.1.7. [f)? is generic with dual graph T' and |Z| is connected then

RY(Oz)=1— min {x(D}=1- min {x()}. (4.4.1.8)

0<I<ZJEL |Z|<I<Z|eL

Proof. For D = |Z] or D = E, for any E, C |Z| one has

0 — H(Z—D,04(—D)) — H*(O) > HY(Op) — H'(Z—D,04(~D)) % H'(Oz) — 0.

(4.4.1.9)
Since 4 is onto ¢ is an isomorphism. But for h*(Z — D, Oz(—D)) Example 4.4.1.6 and

(4.4.1.3) hold. m

4.4.2 The cohomology of natural line bundles over X.

Next we apply the results of the previous subsection for a cycle Z with all its coef-
ficients very large. Recall that by Artin’s Criterion p, = 0 (that is, (X, 0) is ratio-

nal) if and only if mine,. {x(l)} = 1 [A62, A66]. Furthermore, for any singularity
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minger. {x(1)} = miner{x(1)}, see e.g. [NO7, Prop. 4.3.3].

Corollary 4.4.2.1.

1 if (X, 0) is not rational,
pg(X,0) =1— min{x())} = —min{x()} + (4.4.2.2)

I€L>0 leL
0 else.

Proof. For the first identity use (4.4.1.8), for the second one use Artin’s Criterion for

rationality. O

Remark 4.4.2.3. (a) For any non-rational analytic structure (X, o) one has p, (X, 0) >
1 — mine {x(1)} [Wa70, NO17]. The above corollary shows that this topological
bound in fact is optimal.

(b) If (X, o) is elliptic then minjer_,{x({)} = 0. Hence, if the analytic structure

is generic then p, = 1 — minjey_ {x(!)} = 1. This was proved by Laufer in [La77].

Corollary 4.4.2.4. Assume that X is generic with dual graph T'. Choose any I € L'
and consider Ox(l'), the natural line bundle on X. Then

(X, 05(1)) = x(=1') - leLiilO IX(=U'+ D)} +€l), (4.4.2.5)

where

/ 1 if e L, I'>0, and (X,0) is not rational,
e(l') =

0 else.

Proof. For any effective cycle Z (with |Z| = E) and I' € L' let us write A(Z,l') :=
W (Z,04(") — x(=1') +ming<i< z1e {x(=I' +1)}. In order to compute h*(X, Ox(1")
let us fix some Z with all its coefficients very large. Then, if we start with the pair
(I',Z), the Laufer sequence from 4.4.1.4 ends with some (}, Z;) with Z, > E (still
with large coefficients), and —I; € S&’. We claim that A(Z, ;) is constant along

the computation sequence. Indeed, from the cohomological exact sequence used in

126



CEU eTD Collection

4.41.4 (for k = 0) B (Z,0(")) = K (Z — E,,O( — E,)) — 1 — (Ey,"). Then, we
compare ming<;<z x(—!' + 1) and miny<;<z_g, x(—!' + E, + [). Since for any z > 0
with E,, & |z| we have x(=I'+ E, + ) < x(—l' + z), these two minima agree. Hence
the claim follows.

Now, for the pair (I}, Z;), with —I; € §’, we distinguish two cases. The case [; =0
occurs exactly when I’ € L (because [ is the largest element of (—S")N(I'— Lxg), cf.
[NO7, Prop. 4.3.3]). In this case A(Z;,[;) can be computed from (4.4.2.2). Or, [} # 0.
In this case all the coefficients of I; are strict negative (use e.g. Remark 4.4.1.1(c)),

and A(Z,1;) =0 by (4.4.1.3). O

Example 4.4.2.6. For any h € H define kj, :== K + 2r, and

Xin (2) i= = (@, + kn) /2 = x(x) = (2,70) = x(@ + 1) = x(72).

It is known (use e.g. the algorithm from [NO7, Prop. 4.3.3]) that for any h € H

one has minez_, x(rn + 1) = miner, x(ry +1). Therefore, for h # 0 one has

(R O (=) = X(rn) — i x(r +1) = —min{xe, (0} = — min (e, ()
O (442.7)

Remark 4.4.2.8. (a) Let (X, 0) be the universal abelian covering of (X, o).
Then
Py(Xap, 0) = > W (X, Ox(—rn)),

heH

see e.g. [NO7]. Hence py(Xap,0) is topologically (and explicitly) computable by
(4.4.2.2) and (4.4.2.7).

(b) For a conjectural identity which connects mingey, x (75 + ) with the Heegaard

Floer d-invariant associated with the link of the singularity and the spin®—structure

attached to the characteristic element k;, see [NO8b, §5.2].
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4.4.3 The cohomological cycle of X

For any non-rational germ and fixed resolution the set {Z € Lyo : h'(Oz) =
pg(X,0)} has a unique minimal element Z.y, called the cohomological cycle. It
also satisfies the next property: h'(Oz) < p, for any Z # Z.on, Z > 0 (see e.g. [Re97,
4.8]).

In parallel, let us mention the following topological statement. For any fixed non—
rational resolution graph, M := {Z € L-¢ : x(Z) = mine x(I)} has a unique mini-
mal and a unique maximal element. Indeed, if l1,ls € M, then for m := min{l;, l5}
and M := max{ly, >} one has x(M)+x(m) = x(l1) +x(l2) = (li—m, lo—m) < 2min x,
hence x(m) = x(M) = min x. Hence, M € M always, and m € M whenever m # 0.
However, if m = 0 then the germ is elliptic and M admits a minimal element, namely

the minimally elliptic cycle [La77, N99, N99b].

Corollary 4.4.3.1. Assume that X is generic with a non—rational dual graph T". Then
the cohomological cycle Zeop := min{Z € Lso : h'(Oz) = py(X,0)}, is min{Z €

L-o : x(Z) = minger x(1)}.

4.4.4 The cohomological cycle of a line bundle

For any £ € Pic(X) with h1(X, £) > 0 the set Ly := {l € Lsg : h(l,£) = h}(X, L)}
has a unique minimal element, denoted by Z.,(L), called the cohomological cycle of
L (and of ¢). Similarly, for any Z > 0 and £ € Pic(Z) with h'(Z,L£) > 0 the set
Lzr:={le L, 0<1<Z:h'Y(,L) =h'(Z L)} has a unique minimal element,
denoted by Z..n(Z, L), called the cohomological cycle of (Z, L). (For detail see e.g.
INN18, 5.5].)

Corollary 4.4.4.1. Assume that X is generic.
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(a) Fiz any I € I with h' (X, 0%(I')) # 0. Then the set

Ll/ = {lmzn < Lzo ’ X(—l/ + lmm> = llellin X(—ll + l)}

Lo

has a unique minimal element Zeon(l'), which coincides with the cohomological cycle

Of Og(l/).
(b) For any Z >0 and I' € L' with h'(Z,05(l')) # 0 the set

=l <l . < —r Y = i _! .
Ly = Almin € L, 0 <lpin < Z, | x(—='+ lyin) OS@{IZGLX( I'+1)}

has a unique minimal element Zeon,(Z,1"), which coincides with the cohomological cycle
of Ox(I')lz.

Remark 4.4.4.2. [NNI18, 5.5] For any analytic structure (X, o) supported on the
fixed topological type and for any resolution ¢, fix I’ such that for the generic line
bundle L., € Picl/()z ) one has hl()~( , Lgen) # 0. Then the cohomology cycle of Ly,
is Zeon(l') (independently of the analytic structure). Similarly, if h'(Z, Lyen) # 0
for the generic Ly, € Pic'(Z) then the cohomological cycle of the pair (Z, Lge,) is
Zeon(Z,1").

4.4.5 The Hilbert series

Fix X generic and let H(t) be the multivariable (equivariant) Hilbert series associated
with the divisorial filtration of the local algebra of the universal abelian covering of
(X, 0) associated with divisors supported on all irreducible exceptional divisors of X ;
for details see e.g. [CDGZ04, CDGZ08, N12]. Write H(t) = Y, b(I')t". (Here
if ! =Y, I'E, then t! =[], tﬁ,;) It is known that for any !’ there exists a unique
s(I') € & such that s(I') —I' € Lso, and s(I') is minimal with these properties.

Furthermore, for any I’ € L’ one has h(I') = h(s(I')). Hence it is enough to determine
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b(I) for the (closed) first quadrant (because ' C LY;).
Write I as 1, + lp for some Iy € Lsg (and h = [I']). Recall that h(I) is the
dimension of H°(Ox(—r4))/H*(Ox(—ly—r4)), see e.g. [N12, (2.3.3)]. Therefore, for

lo =0 we get h(ry) = 0.

Proposition 4.4.5.1. Assume that ' = r, + lo with lo > 0. Then for h # 0
N . / . . — . . .
H(t") = min {x(U+0)} = min {x(rn+0)} = min {x, (lo+1)} = min {xx, (1)} (4.4.5.2)
For h=0 (i.e. whenr, =0 andl' =1y >0)

' . 1 if (X, 0) is not rational,
b(lo) = min {x(lo +1)} — min {x (1)} + (4.4.5.3)
ZGLEO IGLEO

0 else.

Proof. Use the exact sequence 0 — O(—ry, — ly) — O(—ry) = O (—rp) — 0 and

Corollary 4.4.2.4. |

Remark 4.4.5.4. Proposition 4.4.5.1 via (4.4.2.7) and Corollary 4.4.2.1 can be writ-

ten h—uniformly:

(rn+1o) = min {xp, (lo + 1)} + W(X,04(=r)) (VheH, lye Ls).

4.4.6 The Poincaré series

Let P(t) be the multivariable equivariant Poincaré series associated with (X, 0) and
its fixed resolution, cf. [CDGZ04, CDGZ08, N12]. It is defined as P(t) = —H(t) -
[T,ev(1—t,1). It is known that it is supported on S’. Proposition 4.4.5.1 implies the

following.

Corollary 4.4.6.1. Write P(t) = >, p(I')t". Then p(0) =1 and for I' > 0 one
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has

p(l') =D (=1 min x (I +1 + Ey).

leL
cy =0

4.4.7 The analytic semigroup

The analytic semigroup is defined as
S ={l' - HO(X,05(I))peg # 0} = {I' : H(I') < h(I' + E,) for any v € V}.

Corollary 4.4.7.1. If (X, 0) is generic then S.,, = {l' : x(I') < x(I'+1) for any | € L-o}U
{0} and KN (X,04(I')) =0 for any I' € =8, \ {0}.

Proof. Use Corollary 4.4.2.4 and Proposition 4.4.5.1. O

Remark 4.4.7.2. (a) This formula emphasizes once more the parallelism between
generic line bundles (associated with an arbitrary analytic structure) and the natural
line bundles associated with a generic analytic structure, cf. 4.3.1.2 and 4.4.4.2. To
explain this in the present situation, consider first an arbitrary analytic structure,
a resolution with fixed graph T', and an effective cycle |Z| as usual. By [NN18, §4]
the fact that the Abel map ¢ : ECa'(Z) — Pic"(Z) is dominant is independent
of the analytic structure, and it has a purely combinatorial description: x(—0') <
X(=U'"+1) forany l € L, 0 <1 < Z}. Assume that Z > 0 and I’ # 0. Then a generic
line bundle L, € Pic"(Z) is in im(c") if and only if —I' € S}, == {~1' : x(=I') <
X(=I"+1) for any | € L-o}. On the other hand, by Corollary 4.4.7.1, in the context
of a generic analytic type, this happens exactly when the natural line Oz(l’) is in the
image of im(c") (that is, Oz(I') behaves as a generic line bundle). In particular, for
generic X, 8, =& U{0}.

(b) In [NN18, §4] several combinatorial properties of S} . are listed.

(c) Corollary 4.4.7.1 can be compared with the definition of &' = {lI' : x(I') <

x(I' + E,) for any v € V}.
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4.4.7.3. S, = S., N L is the semigroup of divisors (restricted to E) of functions
?*O(x,0). Let Zpq, be the maximal ideal cycle (of S. S--T. Yau [Y80]), that is,
the divisorial part of ¢*(m(x ) (here m(x ) is the maximal ideal of O(x ). It is the

unique smallest nonzero element of S,,,.

Corollary 4.4.7.4. Assume that X is generic with non—rational graph I'. Then M =

{Z € Lsy : x(Z) = minier x(1)} has a unique mazimal element and Zq, = max M.

Proof. For the first part see the second paragraph of 4.4.3. max M € S,,, by the right
hand side of 4.4.7.1, but min S,,, cannot be smaller than max M by the very same

identity. O]

Remark 4.4.7.5. Recall that the fundamental (or minimal, or Artin) cycle Z,,;, :=
min{S’ N Lo} has the property h°(Oz, . ) =1, hence h'(Oz, . ) =1 — X(Zmin) (see
e.g. [N99Db]). For X generic and (X, 0) non-rational any cycle Z € M (in particular
Zymaz 100) has this property. Indeed, h'(Oz) =1 — mingj<z x(1) = 1 — x(Z), hence
h°(Oz) =1 too.

Corollary 4.4.7.6. For (X,0) generic one has Zyar > Zeon- If additionally (X, 0)

s numerically Gorenstein then Zeop + Zmaz = 2k -

4.4.8 The Oy ,-multiplication on H'(X,Oy)

Assume that p;, > 0. On H 1()? ,O%) the O(x,—module multiplication transforms
on the dual vector space H'(X, Oz) = HO(X \ E,Q})/HO()?,Q%) into the multi-
plication of forms by functions. The filtration on H 1(5{' , O%) induced by the powers
of the maximal ideal agrees with the filtration associated by the nilpotent opera-
tor determined by multiplication by a generic element of m(x ). For details see e.g.
[To86].

The poles of forms are bounded by Z.,. Indeed, by the exact sequence 0 —

0 = Q*(Zeon) = Ogz,,,(Zeoh + K5z) — 0 and from the vanishing h'(2?) = 0 (and
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from Serre duality) we have dim H(Q*(Z.op))/H () = h%(Og,,,(Zeon + K5)) =

h (Oy...) = p,. Hence the subspace HO(Q%(Z.o))/H(Q%) € HY(X \ E,Q2)/H(0?)

coh

has codimension zero, hence the spaces agree.

Corollary 4.4.8.1. ]f)? is generic then mx ) -Hl()z, Oz) = 0. In particular, the
O(x,0)~module multiplication factorizes to the C = Ox o)/ M(x,0)—vector space struc-

ture.

Proof. Since Zyaz > Zeon, cf. 4.4.7.6, mx o) H*(V*(Zeon)) C HY(Q*(— Zimaz+Zeon)) C
H°(Q?).

4.4.9 Generic Q—Gorenstein singularities

Recall that a singularity (X, 0) is Gorenstein if the anticanonical cycle Z is integral,
and Q% = O3(K3) equals Og(—Zk). Hence in this case O (K 5) is natural. Recall,
that more generally, a line bunlde £ is natural if and only if one of its powers has
the form O(1) for some [ € L, or equivalently, if and only if its restriction L] 7\ €
Pic(X \ E) = CI(X, 0) has finite order (that is, it is Q-Cartier). In particular, (X, o)
is Q-Gorenstein if and only if O%(K ) is a natural line bundle, which automatically

should agree with O (—Zk).

Proposition 4.4.9.1. If a Q-Gorenstein singularity (X, o) admits a resolution X

with generic analytic structure, then (X, 0) is either rational of minimally elliptic.

Proof. Step 1. Let us fix a resolution X of a normal surface singularity (X, 0). We
claim that if (X,0) is neither rational nor minimally elliptic then there exists an
effective cycle Z > 0, |Z| C E, with Z ? Zg and with h'(Oz) > 0.

Assume first that X = )N(mm is a minimal resolution. Then Zx > 0 (by adjunction
formulae, see also [La87]). By vanishing ' (O5(—[Zk])) = 0 we get that h' (O, ) =
pg. Since (X, 0) is not rational, necessarily |Zx| > 0. Hence, if |Zx| < Zk then

Z = | Zk| works.
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Assume that |Zx| = Zk. Then Zx € L and Zix > 0 (since p, > 0) hence
necessarily Zx > E (see [La87]). For any v € V consider the exacts sequence 0 —
Op,(—Zx+E,) = Oz, = Oz, _p, — 0. If A (Oz,_g,) > 0 for some v then we take
Z = Zx — E,. Otherwise, h'(Oz,. _g,) = 0 for every v. Since h'(Op, (—Zx+E,)) =1
we get that p, = 1 and Zx = Z.,. Then the geometric genus of the singularities
obtained by contracting any E \ E, is rational, hence (X, 0) is minimally elliptic (for
details see [La77]| or [Re97]).

Finally, let X be arbitrary and let 7 : X = )N(mm be the corresponding modifica-
tion of the minimal one. Let 0 < Z < Zk be the cycle obtained previously for )?mm
Then 7*(Z) works in X.

Step2. Fix the generic resolution X. Assume that (X, o) is neither rational nor
minimally elliptic. Chose a cycle Z as in Step 1. Using 0 — Q% — Q%(Z) —
Oz(Z + Kg) — 0, we get that h'(Q%(2)) = h'(Oz(Z + Kx)) = h°(Oz). Since
(X, 0) is Q-Gorenstein, Q%(Z) = O3(Z — Zk), hence h' (0% (Z — Zk)) = h°(Oz) =
X(Z) + h'(Oy). Now we apply (4.4.2.5) and (4.4.1.8), and we get

X(Zx = Z) —minix(Zx — Z + D)} =x(2) +1 = min {x(D)}.

Since x(D) = x(Zx — D) this transforms into — min;<z{x({)} = 1 — ming;<z{x(1)}.
Next we claim that minj<z{x(l)} = minp<<z{x(l)}. Indeed, if [ = [, — [_ with
l4,1- > 0 and with different supports, then there exists £, € |I_| such that (E,,[_) <
0; then by a computation x(I+F,) < x (/). Hence inductively x(l) < x(1). Therefore,

~ min {x()} = 1 - min {x(1)}.

0<I<Z 0<I<Z

This means that ming<;<z{x(l)} cannot be realized by an element [ > 0, hence
0 = x(0) < mingj<z{x(l)}. But this implies h'(Oz) = 0 (see [NN18, Example

4.1.3]), a contradiction. O
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Remark 4.4.9.2. Proposition 4.4.9.1 generalizes the following result of Laufer [La77,
Th. 4.3] (with a different proof): if the generic analytic structure of a numerically
Gorenstein topological type is Gorenstein then the topological type is either Klein or
minimally elliptic. (Recall that the Klein — or ADE — singularities are exactly the

Gorenstein rational singularities.)
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Chapter 5

Dimensions of images of Abel maps

In this chapter we want to investigate the images of the Abel maps ¢ (Z) : ECa’ (Z) —
Pic" (7). Since the space of effective Cartier divisors is an irreducible algebraic variety,
the clousure of the image of the Abel map is an irreducible affine subvariety of Pic" (2),
which is also a Brill-Noether strata.

In this chapter we want to investigate the dimension of these images, so the
numbers dim(im(¢!'(Z))), we calculate them explicitely from cohomology numbers of
the base singularity X and we give combinatorial formulas for them in the case of
generic singularities.

Let us first briefly summarise from the previous chapters the main definitions and

statements what we will need in this chapter.

5.1 Prelinimaries

5.1.1 Review of some needed statements

5.1.1.1. The modified Abel map. Multiplication by Oz(—I’) gives an isomorphism
of the affine spaces Pic! (Z) — Pic?(Z). Furthermore, we identify (via the exponential

exact sequence) Pic’(Z) with the vector space H(Z,Oy).
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It is convenient to replace the Abel map ¢ with the composition

& ECA (2) -5 Pid (2) %29 Pidd(2) =5 HY(O).
The advantage of this new set of maps is that all the images sit in the same vector
space H'(Oy).

Consider the natural additive structure s'2(Z) : ECal1(Z)xECa’2(Z) — ECali*2(Z)
(1,15 € =8') provided by the sum of the divisors. One verifies (see e.g. [NN18,
Lemma 6.1.1]) that s''2(Z) is dominant and quasi-finite. There is a parallel mul-
tiplication Pic'(Z) x Pic'2(Z) — Pich*2(Z), (£1,L;) — L1 ® Ly, which satisfies
it o shls = i @ in Pic*’2. This, in the modified case, using Oz (I} + 1) =
Oz(1) ® Oz(1y), reads as 1t o sle = ¢ + &2 in HY(Oy).

Let’s recall, that for any I’ € =S’ Az (l') is the smallest dimensional affine subspace
of H'(Oy) which contains im(¢") and V(1) is the parallel vector subspace of H'(Oy),
the translation of Az(l") to the origin..

For any I C V, I # 0, let (X;,0;) be the multigerm X/, _,p, at its singular
points, obtained by contracting the connected components of U,c;F, in X. IfI=0
then by convention (X7, 0;) is a smooth germ.

We had the following theorem before:

Theorem 5.1.1.2. Assume that Z > E.

(a) For any —l' =), a,E; € 8" let the E*-support of ' be I(l') :={v : a, # 0}.
Then Vz(I') depends only on I(I"). (This motivates to write Vz(I') as Vz(I) where
I=1().)

(b) Vz(I U L) = Vz(I1) + Vz(I2) and Az(ly +15) = Az (1) + Az(13).

(¢) dim Vy(I) = h'(Oz) = h'(Oz,,,)-

(d) If L7, is a generic bundle of im(c") then h'(Z, Lo

(e) For n>> 1 one has im(c") = Az(nl'), and h*(Z, L) = h*(Oy) — dim V4 (I) =

) = h'(Oyz) —dim(im(cl/)).

137



CEU eTD Collection

h'(Ogy,.,) for any L € im(c™).

5.1.1.3. The linear subspace arrangement {V;(I)}; C H'(Oz) and differ-
ential forms. The arrangement {Vz(/)}; transforms into a linear subspace ar-
rangement of H°(Q%(7))/H°(Q%) via the (Laufer) non-degenerate pairing H'(Oz)®
HO(Q%(Z))/H°(Q%) — Cas follows. Let Q(I) be the subspace H°(Q%(Z|wr))/H®(Q%)
in H°(Q%(Z))/H°(Q%), that is, the subspace generated by those forms which have
no poles along generic points of any E,, v € I. Via Laufer duality we have V;(I) =

Qz(D)t ={z: (x,Q2(I)) =0} for Z > E.

5.1.1.4. Furthermore, for any I’ € —S’\ {0} consider a divisor D € ECa’ (Z), which
is a union of (I, F) disjoint divisors {D;};, each of them Oz-reduction of reduced
divisors {D;}; of X intersecting E transversally. Set D = U;D; and £ := & (D) €
HY(Oyz). Write also Z =Y, ., o Ey.

We introduced a subsheaf Q}(Z yreeiess of Q}(Z) consisting of those forms w
which have the property that the residue Resp, (w) has no poles along ﬁl for all
i. This means that the restrictions of Q% (Z yreeRess and Q%(Z) on the complement
of the support of D coincide, however along D one has the following local picture.
Introduce near p = EN D; = B, N D; local coordinates (u,v) such that {u = 0} = E
and D; has local equation v. Then a local section of Q%(Z ) in this system has the
form w = Zkz—mi,jzo agjuFv’du A dv. Then, by definition, the residue Resp (w)
is (w/dv)|y=o = >, axou”du, hence the pole-vanishing reads as ayo = 0 for all
k < 0. Note that Q%(Z — D) and the sheaf of regular forms Q% are subsheaves of
Q}(ZyegResﬁ_

Set Qz(D) = HO()?,Q}(Z)regReSB)/HO()?,Q%). This can be regarded as a sub-
space of H'(0)" = H(X,Q%(Z))/H (X, Q%).

Theorem 5.1.1.5. In the above situation one has the following facts.

2 regRes ~ 2 ~ _ ] )
7 .
(a) The sheaves Q1%(Z) b [Q% and Oz(Kx + Z — D) are isomorphic
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(b) HY(Z,L)* ~ Qz(D).
(¢) The image (Tpe)(TpECa! (Z)) of the tangent map at D of ¢ : ECa’ (Z) —
HY(Oy) is the intersection of kernels of linear maps Tpw : T HY(Oz) — C, where

we HO(X, Q% (Z)e ).

If I is the E*—support of I’ (that is, D intersects E exactly along U,eE,), then
Qz(I) C Qz(D) C H(Oyz)*.

Dually, via Theorem 5.1.1.5(¢) (and up to a linear translation of im(7pc))
(Tpe)(TpECa’ (Z)) = Qz(D)*: € Qu(I)* = Vz(I) € HY(Oy). (5.1.1.6)

Let us fix a point p € F and a local coordinate system (u,v) around p such that
E = {u =0}, cf. 5.1.1.4. Fix also some w € H(X, 0% (Z)) which has pole of order
o > 0 at the exceptional divisor in F containing p. We say that (the divisor of) w
has no support point at p if it can be represented locally as (¢(u,v)/u®)du A dv with

¢ holomorphic and ¢(0,0) # 0. The other points are the support points denoted by
supp(w).

Lemma 5.1.1.7. Fizw € H(X, 0% (Z)) such that there exists a point p € E,, a local
divisor Dy in X with the following properties: (a) 151 s part of certain D= D + 152,
such that DyNE = DiNE, = p & DyUsupp(w), and (b) D is a lift of D € ECa" (Z),
and the class of w in HO()?,Q}(Z))/HO()?,Q}) restricted on imTpc (Z) is zero.

Then w has no pole along E,,.

Proof. Assume that w has a pole of order 0o > 0 along F,. Fix some local coordinated
(u,v) at p := Dy N B, such that w locally is du A dv/u® and D is {g(u,v) = 0}. A
deformation g,(u,v) of g produces a tangent vector in TpECa' (Z) and the action of

w on it is given by (for details see [NN18, 7.2])

d

gt(u,v)  duAdv
1 . . 5.1.1.8
di =0 /u e o418
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Hence if we realize a deformation g; for which the expression from (5.1.1.8) is non—
zero, we get a contradiction. Note that ¢ necessarily has the form cv* + Y onsk CaV"
uh(u,v) = cv®+h' for some k > 1, ¢, € C and ¢ € C*. Then set g; = c(v—tu°~H)E+h.
Then the t—coefficient of the integrant is £4Adv . (1 — 2 4 (2. hence (5.1.1.8)
is non-zero. O
Definition 5.1.1.9. Additionally to the linear subspace arrangement {Qz(I)}; C
HY(Q%(2))/H(Q%) ~ H'(Oz)" we consider a more subtle object, a filtration in-
dexed by | € L, 0 < | < Z as well, called the multivariable divisorial filtration of
forms. Indeed, for any such [ we define G; := H°(Q%(1))/H°(Q%) C H(Q%(2))/H° (%),
equivalent to H'(O))* — H'(O)*, dual to the natural epimorphisms H'(Oz) —»
H'Y(O)). In particular, G, ~ H'(O;)*. G is generated by forms with pole < [. In
particular, Gy = 0, G~ is the total vector space, G;, C G, whenever [y < [, and
G, NG, = Gmin{iy lo}-
Note that if [ = ngl ro L, and all r, > 0 then Guing,z) = Qz(1).

5.2 The first algorithm for the computation of dim Im(c’ (Z))

5.2.1 Preparation and the statement

We fix 7 > F and I’ € -8’ as above.

Definition 5.2.1.1. For any I’ € -8’ with E*-support I () C I C V) we set
the following notations: ez(l') = ez(I) = dimVz(I') = dimVz(I) and dz(I') :=
dim im(c" (Z)).

From definitions and Propositions 5.1.1.2 and 5.1.1.6:

dz(I') < ez(l)

€Z<I) == hl(OZ> - ]’Ll(Oz|V\I) = hl(OZ) - dlmgz(f)

(5.2.1.2)
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Usually dz(I") # ez(l'). Next statement provides a criterion for the validity of the

equality.

Lemma 5.2.1.3. Let I' € —S" with E*—support I and Z > E. Assume that L is
a reqular value of @ in im(¢") such that for any w € HO()?,Q%(Z)) there exists a
section s € H(L),ey such that div(s) Nsupp(w) = 0. (This is guaranteed e.g. if the

bundle £ has no base points.) Then Ty(imd" ) = Az(l'), hence dz(I') = ez(I).

Proof. Since L is a regular value, £ is a smooth point of im(¢") and T im(¢") =
im(Tpc") for any D € (&")71(L). We have to prove that Tim(¢") = A,(I'); we prove
the dual identity in the space of forms, namely, (T,im(c" )+ = Qz(I) (see (5.1.1.6)).
Assume the contrary, that is, (T:im(¢"))* # Qz(I). Since Qz(I) C (Tpim())*
(the duality integral on Qz(I) x Tzim(¢") is zero, cf. 5.1.1.6 we get, that there is a
form w € (Tpim (&)t \ Qz(I).
Next choose D € (&')1(L) such that its lift D satisfies D N supp(w) = . But

w € (Tim(@))*t = (im(Tpe"))* and w & Qz(I) contradict Lemma 5.1.1.7. O

In this section we provide an algorithm, valid for any analytic structure, which
determines dz(l’) in terms of a finite collection of invariants of type ez(l'), associated

with a finite sequence of resolutions obtained via certain extra blowing ups from X.

5.2.1.4. Preparation Fix some resolution X of (X,0) and —I' = Y owey Gl €
S\ {0} (hence each a, € Z>p). In the next construction we will consider a finite
sequence of blowing ups starting from X. In order to find a bound for the number
of blowing ups recall that for any representative w in H(X \ E, 0%)/H 0(X, 0%) the
order of pole of w along some E, is less than or equal to the E,—multiplicity m, of
max{0, | Zx |} (see 3.5.1 here). Then, for every v € V with a, > 0 we fix a, generic
points on E,, say p,x,, 1 < k, < a,. Starting from each p, ,, we consider a sequence

of blowing ups of length m,: first we blow up p,x, and we create the exceptional

curve F, . 1, then we blow up a generic point of F, j, 1 and we create F, j, 2, and we
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do this all together m, times. We proceed in this way with all points p, x,, hence we
get >, a, chains of modifications. If a,m, = 0 we do no modification along E,. A set
of integers s = {8y, fvev, 1<ky<a, With 0 < s, < m, provides an intermediate step
of the tower: in the (v,k,) tower we do exactly s, , blowing ups; s,x, = 0 means
that we do not blow up p,, at all. (In the sequel, in order to avoid aggregation of
indices, we simplify k, into k.) Let us denote this modification by 7 : )Z'S 5 X. In
)?S we find the exceptional curves U,eypE, U Uy Ur<ics, , Fort; we index the set of
vertices as Vs 1= V U U,k Ui<i<s, , {Woke}- At each level s we set the next objects:
Zs = 1y(2), Is == Upp{wops, }» —ls == D,k E ks (in L, where F, ;o = E,),
ds := dimimc*(Z) and es := ez, (I) (both considered in Xj).

By similar argument as in (5.2.1.2) one has again ds < eg for any s.

From definitions, for s = 0 one has Iy = |I'|, eg = ez(I') and do = dz(I').

There is a natural partial ordering on the set of s—tuples. Some of the above
invariants are constant with respect to s, some of them are only monotonous. E.g.,

by Leray spectral sequence one has h'(Oy,) = h'(Oyz) for all s. One the other hand,

if s; <'sy then e5, = h'(Oz,, ) — dimQy, (I,) > h'(Og,,) — dimQz, (Is,) = e,
(5.2.1.5)
because 7, (Is,) C Qz,, (Is,). In fact, for any w, the pole-order along Fy s, 41 of
its pullback is one less than the pole-order of w along F, s, ,. Hence, for s = m
(that is, when s, = m, for all v and k, hence all the possible pole-orders along
I, automatically vanish) one has Qz_(I) = HO(Xm, Q%m(Zm))/HO(Q}m). Hence
em = 0. In particular, necessarily d,, = 0 too.
More generally, for any s and (v, k) let s** denote that tuple which is obtained
from s by increasing s, ; by one. By the above discussion if no form has pole along
F, s then Qz (Is) = Qz.,4 (Igo.r), hence eg = egor. Furthermore, by Laufer duality

under such condition dg = dgv,x as well.
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Therefore, we can redefine es and ds for tuples s = {s, s}, x even for arbitrary
Suk > 0 €5 = emings,m} and ds = dmings,m} (and these values agree with the ones
which might be obtained by the first original construction applied for larger chains
of blow ups).

The next theorem relates the invariants {ds}s and {es}s.

Theorem 5.2.1.6. (First algorithm) With the above notations the following facts
hold.

(1) ds — dgor € {0, 1}.

(2) If for some fized s the numbers {dgv.x }o 1 are not the same, then ds = max, x{ dgo. }.
In the case when all the numbers {dgx},x are the same, then if this common value

dgvr equals eg, then dg = eg = dgo.r; otherwise dg = dgvr + 1.

The proof of Theorem 5.2.1.6 together with the proof of Theorem 5.3.1.2 (the
‘Second algorithm’) from the next section will be given in a more general context in

section 5.6.

5.2.1.7. Theorem 5.2.1.6 is suitable to run a decreasing induction over the entries of
s in order to determine {ds}s from {es}s. In fact we can obtain even a closed-form

expression.

Corollary 5.2.1.8. With the notations of Theorem 5.2.1.6 one has ds = ming<g<m{[s—

s| +es} for any 0 <s <m. (Here |s| =), , Suk,-) In particular,
dZ(l,) = do = OISI;iSI]m{|S| + es}.

(By the end of 5.2.1 one also has ming<zg<m{[s — s| + ez} = ming<z{|s — s| + ez} and

mitg<sem{[s| + ¢} = ming<o{s| + es}.)

Proof. By Theorem 5.2.1.6(1) for any s > s one has ds — ds < [s—s|, and by (5.2.1.2)

ds < ez. These two imply ds < [s — s| + ez, hence ds < ming<z<m{[s — s| + es}.
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Next we show that ds in fact equals [s — s| + ez for some S. The wished s is the
last term of the sequence {s;}_, constructed as follows. Set sy := s. Then, assume
that s; is already constructed, and that there exists (v, k) such that ds, = ds,yv.x + 1.
Then set s;,; := (s;)"" (for one of the choices of such possible (v, k)). This inductive
construction will stop after finitely many steps (since each ds > 0). But if ds, = dg,yv.

for all (v, k), then by 5.2.1.6(2) ds, = es,. Hence es, = ds, = ds — |s; — s|. O

5.3 The second algorithm for the computation of

dim Im(c"(2))

5.3.1 Preparation and the algorithm

The algorithm from the previous section determines the dimensions of the Abel maps
dz(I') in terms of a finite collection of invariants of type ez(l’) associated with a fi-
nite sequence of resolutions obtained via certain extra blowing ups from X. Though,
in principle, ez (') is much simpler than dz(I’) (it is the ‘stabilizer’ of dz(I")), the
algorithm is still slightly cumbersome, it is more theoretical, it is not easy to apply
in concrete examples: one needs to know all the integers {es}s, that is, cf. Proposi-

tion 5.1.1.2; all the integers {h'(Oy, }s associated with the tower of blowing ups.

lvs\1s
(However, it is a necessary intermediate step in the proof of the new algorithm).

The new algorithm is considerably simpler, e.g. it can be formulated in terms of
the resolution X (see also the comments below). It provides dz(I') in terms of the
filtration {G;}; of 2—forms.

As a starting point, consider the construction from 5.2.1. For any s define the
cycle ls € L of X by

ls := min { Z min {s,x, } Eu, Z} € L.

1<k, <a
vey
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Set Gs := Gy, and g5 := dim G as well. Note that (via pullback) there is an inclusion

Gs C Qg (Is). Indeed, if the pole order of certain w along E, is < s,j, then its

pullback along F, , has no pole. Hence g5 < dimQz_(Is) = h'(Oz) — es too (cf.

Su,ky

(5.2.1.2)). In particular,
ds < es < hH(Oy) — gs. (5.3.1.1)

However, in principle it can happen that for a certain w with even higher pole than
ls its pullback is in Q7 (Is). E.g., if w in some local coordinates (u,v) of an open set
U is vdu A dv/u® (and U N E = {u = 0}) then its pullback via blowing up (once)
at u = v = 0 has pole order o — 2. This phenomenon can happen even if we blow
up a generic point: imagine a family of forms w; with ‘moving divisor’, parametrized
by t given by (v — t)du A dv/u®. Then, even if we blow up F at a generic point
u=uv—tg =0, in the family {w;}; there is a form w;, whose pole along FE, is o while
its pullback has pole o — 2. Hence the equality of subspaces Gs C Q_(Is), or of the
equality es = h*(Oz) — gs in principle is subtle and it is hard to test.

Note also that the invariant h'(Oz) — gs conceptually (and technically) is much
simpler than es. E.g., it depends only on v — ming, <4, {Syx, }, and it can be described
via a cycle of X (namely [5) instead of the geometry of the tower )Z'S. Nevertheless, via
the next theorem, it still contains sufficient information to determine dg, in particular
dz(l'). In order to emphasize the parallelism between the two algorithms we formulate
them in a completely symmetric way (in particular, the first parts are completely

identical).

Theorem 5.3.1.2. (Second algorithm) With the above notations the following
facts hold.
(.Z) dS - ds'u,k E {0, ]_}

(2) If for some fized s the numbers {dgv.x }o 1 are not the same, then ds = max, x{ dgo. }.

In the case when all the numbers {dgu.x}, i are the same, then if this common value
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dgvr equals W (Oz) — gs, then ds = h'(Oy) — gs = dgvr; otherwise ds = dgor + 1.
For the proof see section 5.6.

Corollary 5.3.1.3. With the notations of 5.53.1 and of Theorem 5.3.1.2, forl' € =S’
and Z > E one has

dz(I) = min{ [s| + h'(Oz) — g5 }. (5.3.1.4)

The proof runs similarly as the proof of Corollary 5.2.1.8.

The formula (5.3.1.4) can be rewritten in a different flavour.

Corollary 5.3.1.5. Forl' € =S’ and Z > E one has

dz(l') = minZ{ (', Z) + h'(Oz) — h* (Oz) . (5.3.1.6)

0<z:<

Proof. From 5.1.1.9 g = dimGs = h'(O,,) and also |s| > > a,(ls), = (I',1s), and
0 < ls < Z, hence ming{ |s|+h'(Oz)—gs } > ming<z,<z{ (I, Z1)+h'(Oz)—h'(Oz) }.
The opposite inequality is also true since any such Z; can be represented as a certain

Is with |s| = (', 15). O

Example 5.3.1.7. (1) (¢(Z) constant) For any 0 < Z; < Z one has (I', Z;) > 0
and h'(Oz) > h'(Og), hence dz(I') = 0 happens exactly when there exists Z;
with (I'; Z1) + h*(Oz) — h'(Ogz,) = 0, or, (I',Z;) = 0 and h'(Oz) = h'(Ogz). This
means that Z; < Z|y\;, where I is the E*—support of ', a fact which (together with
W (Oz) = h'(Og,)) implies h'(Oz) = h'(Og,,,) too. Hence, dz(I') = 0 if and only if
h'(Oz) = h'(Og,,)- This is exactly the statement of [NN18, 6.3(v)].

(2) ¢(Z) is dominant if and only if d,(I') = h'(Oy), hence, via (5.3.1.6), if and
only if W(Ogz,) < (I, Z;) for any 0 < Z; < Z. This can be seen in a different way as
follows. First, if ¢'(Z) is dominant, then, for any 0 < Z; < Z, ¢'(Z,) is dominant too,

hence (I, Zy) = dim(ECal (Z,)) > dim(H'(Oy,)). Conversely, if (I', Z;) > h'(Oy,)
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and Z; > 0 then (I', Z;) — h'(Ogz,) > —h°%(Oy,), that is, x(—1I') < x(=I' + Z;), hence
& (Z) is dominant.

(3) By (5.3.1.6) im(c"' (Z)) is a hypersurface if and only if ming<z,<z{(I', Z;) —
h'(Ogz,)} = —1. Since h°(Oz) > 1, this implies that x(—{") = ming<;<z x (=" +1).

The converse statement is not true: take e.g. a Gorenstein elliptic singularity
with length of elliptic sequence m+ 1. (For elliptic singularities consult [N99, NN19a,
NNtop]. For more on the Abel map of elliptic singularities see [NN19a].) Set Z >
0 and —I' = Zum, the fundamental (minimal) cycle. Then im(c"(Z)) = 1 and
h'(Z) = p, = m + 1. However, X(Znin) = ming<i<z X(Zmin + 1) = 0. Therefore, if
m = 1 then im(c") is a hypersurface, but for m > 2 it is not. It is instructive to
consider with the same topological data (elliptic numerically Gorenstein singularity
with m > 1, Z > 0, —=l' = Z,,,) the generic analytic structure. Then p, = 1
(cf. [La77, NN18]) but im(c"(Z)) is a point (this follows from part (1) too). Hence
im(c!'(Z)) is a hypersurface for any m > 1. In particular, the property that im(c' (Z))

is a hypersurface is not a topological property.

Example 5.3.1.8. (Superisolated singularities) Assume that (X,0) is a hy-
persurface superisolated singularity whose link is a rational homology sphere. More
precisely, (X,0) = {F(x1,x2,23) = 0}, where the homogeneous terms F; of F' are
as follows: {F; = 0} defines an irreducible rational cuspidal curve in CP? and
{F;,1 = 0} NSing{F; = 0} is empty in CP2. (For details see [Lug7, LNM05, NN18].)
Consider the minimal good resolution and let Ej, be the irreducible exceptional
curve corresponding to C' (the exceptional curve of the first blow up of the max-
imal ideal). Assume that I = —kE} for some £k > 1 and Z > Zg. For any
m = (my, Mg, m3) € Z%O write |m| = ). m,;. Then by the discussion from [NNI8,
11.2] one has the following facts: p, = d(d — 1)(d — 2)/6 = #{m : |m| < d — 3}, this
is exactly the cardinality of the set of forms of type x™w, where w is the Gorenstein

form. The pole order of w along Fjy is d — 2, and the vanishing order of x™ along Fj
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is [m|. {x™w}m constitute a basis in H°(Q%(Z))/H"(Q%). Hence, for 0 <s < d—2
one has g, = dim G, = #{m : d — 2 — s < |m| < d — 3} and h}(Oz) — g, = (%°).
In particular,

dz(—kE;) = min {ks-+ (dgs)}.

0<s<d—-2

In [NN18, 11.2] dz(—kE{) was computed in a different way as Z;l;g min{k, (];2)}

The identification of the two numerical answers is left to the reader. (Use Z;:o (j ;2)

("5))

Remark 5.3.1.9. (1) In Theorems 5.2.1.6 and 5.3.1.2 (and Corollaries 5.2.1.8 and
5.3.1.3 as well) the functions s — eg and s — h'(Oz) — gs serve as ‘test—functions”: “if
this common value dg..»x equals the test value, then dg = dgv.r, otherwise dg = dgv,x +17.
Via this fact in mind, the second algorithm is rather surprising: the test function for
each fixed v depends only on s — ming<y, <4, Sv.k, = (ls)y, hence does not depend on
the number of integers {s, k, }o<k,<a,, OF, O a,. However, the final output, namely
ds (and the right hand side of (5.3.1.4) and the algorithm itself) do depend on I’. We
encourage the reader to work out the algorithm for an example when a, > 2 (say, for
= =2E%).

(2) Notice that the formulas ming(|s|+h'(Z) —gs) and ming(|s|+es) can be defined
without any restriction on the numbers g5 and eg, however in our case these numbers
are restricted. For example we have mingss, (|s| — |s1]| + 2 (Z) — gs) — minsZST,k(|s >
sUF + h'(Z) — gs) € {0,1} for all v, k,s;. Or, gs < |s| for all s if and only if
X(—=U") < x(=U'+1) for all Z > 1> 0 (cf. Example 5.3.1.7(2)).

(3) (Bounds for codimim ¢’ (Z)) In some expression the codimension of im(c"' (7))
appears more naturally. E.g., we have the following two general statements from
[INN18, Prop. 5.6.1] (under the conditions of Corollary 5.3.1.5):

(a) h'(Z,L£) > codimim(c" (Z)) for any £ € im(¢"(Z)). Equality holds whenever

L is generic in im(c"' (2)).

148



CEU eTD Collection

(b) codimim ' (Z) > x(—I') — ming<;<z x(—I' + 1), and this inequality is strict
whenever ¢ (Z) is not dominant. (This can be compared with the discussion from
Example 5.3.1.7(3).)

Note that Corollary 5.3.1.5 reads as:

codimim(c"(Z)) = max {hY(Oz) — (I, Z1)}. (5.3.1.10)

0<Z1<Z

5.3.1.11. Before we state the next theorem let us emphasise the obvious fact that for
any 0 < Z; < Z the natural restriction (linear projection) r : H'(Oz) — H'(Og,)
is surjective, hence for any irreducible constructible subset C; C H'(Opg,) one has
dimr~1(C}) — dim C; = h'(Oz) — W (Ogz,).

However, though the restriction of 7 to im(c"(Z)) — im(¢!'(Z,)) is dominant, in

general dimim(¢’'(Z)) can be smaller than dim ! (im(c’'(Z;))).

5.3.1.12. It is instructive to see that certain extremal geometric phenomenons (in-

dexed by effective cycles) are realized by the very same set of cycles.

Lemma 5.3.1.13. The following three sets of cycles coincide (for fired Z > E and
I'e =&' as above):

(1) the set of cycles Zy with 0 < Zy < Z realizing the minimality in (5.5.1.6), that
is: dz(I') = (I'; Z1) + h*(Ogz) — h'(Og,).

(II) the set of cycles Zy with 0 < Zy < Z such that (i) the map ECal (Z) —
H(Z,) is birational onto its image, and (ii) the generic fibres of the restriction of r,
i im(d (Z)) = im(¢(Z1)), have dimension h'(Oz) —h*(Oyz,). (That is, the fibers
of '™ have mazimal possible dimension.)

(III) the set of cycles Zy with 0 < Zy < Z such that for the generic element
L e im(c(Z)) and arbitrary section s € H(Zy, L7 )reg with divisor D (i) in

the (analogue of the Mittag-Lefler sequence associated with the exact sequence 0 —
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Oy = LM — Op =0, ¢f [NNI1S, 3.2]),

gen

) = CA0 25 HY(Oy) = hY(Zy, LI

gen

0— H°(Oy,) =5 HY(Z,, L™

gen

) —0

§ is injective, and (i1) h*(Z, L) = hY(Zy, L™ ).

gen gen

Proof. For (I)=(II) use the following. First recall that dim ECal(Z") = (I, Z') for
any effective cycle Z’. Next, from (5.3.1.6), there exists an effective cycle Z; < Z,
such that dimim(c"(2)) = (I', Z)) + h*(Oz) — h'(Ogz,). But dim(im("(Z;))) <
dim ECa’ (Z,) = (I', Z) and dim(im(¢ (2))) — dim(im(¢" (Z1))) < h'(Oz) — h1(Oy,).
Hence, necessarily we have equalities in both these inequalities. (I)<=(II) is similar.
For (II)(i)<(I1I)(i) use the fact that d is the tangent application Thimc (Z;) at

D, cf. [NN18, 3.2], and for (IT)(ii)«<(III)(ii) use Remark 5.3.1.9(3)(a). O

5.3.2 Structure theorem for the Abel map

The geometric interpretation from Lemma 5.3.1.13(I1) has the following consequence.

Theorem 5.3.2.1. (Structure theorem) Fiz a resolution X, a cycle Z > E and
a Chern class I' € =S’ as above.

(a) There exists an effective cycle Zy < Z, such that: (i) the map ECal(Z) —
HY(Z,) is birational onto its image, and (ii) the generic fibres of the restriction of
r, 7™ im(d(2)) — im(d'(Z))), have dimension h'(Oz) — h'(Oy,). (Cf Lemma
5.9.1.13(10).)

(b) In particular, for any such Zi, the space im(c"(Z)) is birationally equiva-
lent with an affine fibration with affine fibers of dimension h*(Oz) — h'(Og,) over
ECal (Z,).

(c) The set of effective cycles Zy with property as in (a) has a unique minimal

and a unique mazximal element denoted by Cpin(Z,1") and Cir(Z,1"). Furthermore,
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Crnin(Z,1') coincides with the cohomology cycle of the pair (Z, L™ ) (the unique min-

gen
imal element of the set {0 < Zy < Z = WNZ,L%) = h'(Zy,L)7)) for the generic

£m cim(c'(2)).

gen

Proof. (a) Use Lemma 5.3.1.13.

(¢) Assume that two cycles Z; and Z; satisfy (a). We claim that Z’ := max{Z;, Zs}
satisfies too.

First, for any cycle Z” with Z; < Z" < Z, if Z; satisfies (a)(ii) then Z”
satisfies too. This applies for Z’ too. To prove (a)(i) for Z', let us denote by
ECa! (Z")y C ECal (Z") the set of divisors whose support is disjoint from the singular
points of E. If I' = 3" a,E* then ECa’ (Z)y = [, ECa™®*(Z),. Using this fact one
shows that the product ECa’ (Z') — ECa!'(Z;) x ECal'(Z,) of the two restrictions
ECa’(Z') — ECa(Z;) (j = 1,2) is birational onto its image (Biolm). This com-
posed with the product of the maps ECa (Z,) — H'(Z,) and ECal (Z,) — H'(Z,)
(both Biolm) guarantees that ECa’ (Z') — H'(Z;) x H'(Z,) is Biolm too. This map
writes as the composition ECa' (Z2') — H'(Z') — H'(Z,) x H'(Z,), hence the first
term ECa’(Z') — H'(Z') should be Biolm. Hence the claim and the existence of
Crnaz(Z,1') follows.

In order to prove the existence of Cyi(Z,1'), first we claim that the set of cycles

Z" which satisfy (a)(ii) has a unique minimal element Z%. . This fact via Remark

5.3.1.9(3)(a) is equivalent with the existence of the (unique) cohomological cycle for

the pair (Z, £ ). This was proved in [NN18, 5.5], see also [Re97, 4.8]. Next, we

gen

claim that the map ECal (Z%, ) — H(Z?"

n ) is Biolm as well. From the existence

of the cycle Cpaz(+,1') (already proved above), applied for Z%.  there exists a cycle

min?

Crmaz(Zpin: V) < 2,

min’

which satisfies (a). In particular, (a)(ii) is valid for the pair
Crmaz(Zypin: ') < Z,

min*

By the definition of Z%

min

the condition (a)(ii) is valid for the

pair Z%, < Z too. Hence, (a)(ii) is valid for the pair Cy,..(Z%,  I') < Z as well.
Therefore, by the definition of Z%, necessarily Cpo (252, 1) = Z%.  hence Z2,.
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satisfies (a). O

5.3.3 Example. The case of generic analytic structure

Let us fix the topological type of a good resolution of a normal surface singularity,
and we assume that the analytic type on X is generic (in the sense of chapter 5., see
[La73] as well). Recall that in such a situation, if Z' = " n, E, is a non—zero effective
cycle, whose support |Z'| = U,,,0F, is connected, then by [NN18, Corollary 6.1.7]
one has

h'(Oz)=1—  min {x(D)}.

|Z'|<1<Z’, leL

Corollary 5.3.3.1. Assume that X has a generic analytic type, Z > E an integral

cycle and I' € =S'. For any 0 < Z; < Z write E)z, for ZEule' E,. Then

dz(I'Y =1— min {x()}+ minZ{(l',Zl)—i— min _ {x()} —x(Ejz)) }. (5.3.3.2)

E<I<Z 0<2: < E\z,|SI<Z)

In particular, dz(I') = dim(imc” (Z)) is topological.
Let us concentrate again on the codimension h'(Oz) — dz(I') of im(d'(Z)) C
Pic!'(Z) instead of the dimension. Then, (5.3.3.2) reads as

codimim(c!'(Z)) = max {=,Z)— min_ {x(D}+x(Ez)}. (5.3.3.3)

0<2,<Z E\z,1<I<Z)

This is a rather complicated combinatorial expression in terms of the intersection

lattice L. The next lemma aims to simplify it.

Proposition 5.3.3.4. Consider the assumptions of Corollary 5.5.53.1. Let Z; be mini-
mal such that the mazimum in (5.5.5.5) is realized for it. Then ming,, <<z {x()} =
x(Z1). In particular,

codimim(¢' (2)) = ogné?)g{z{ — (U Zy) = x(Z1) + x(Ejz)) }- (5.3.3.5)
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The mazimum at the right hand side is realized e.qg. for the cohomology cycle of

L£im cim(d'(Z)) c Pic" (Z). Furthermore,

gen

W'(Z.L) > max { —(I',Z1) — x(Z1) + x(E\z)) } (5.3.3.6)

T 0<Z1<Z

for any £ € im(c'(Z)) and equality holds for generic L7, € im(c"(Z)).

gen

Proof. Assume that the minimum ming, <<z {x(1)} = x(Z1) is realized by some
li. Then (I', Z1) > (I',lh) (since I € =8'), ming, <<z {x())} = ming, <<, {x()}
and X (E|z,) = X(Ey,)) hence —(I', Z1) — ming, <<z {X(D} + x(E|z,|) < =", 1) —
ming, <<, {X(0)} + X(Ep,)). Since the maximality in (5.3.3.3) is realized by Z,
which is minimal with this property, necessarily Z; = [;. Next,

max {—(',Z1)— min {x()}+x(Eiz)} > max {—(',Z1)—x(Z1)+x(Ez)}-

0<Z,<Z Bz, |<I<Z 0<Z,<Z

But the maximum at the left hand side is realized by a term from the right.

For the last statement use again Remark 5.3.1.9(3)(a). O

5.3.4 Application for an arbitrary structure

The identity (5.3.3.5), valid for a generic analytic structure of X, extends to an

optimal inequality valid for any analytic structure.

Theorem 5.3.4.1. Consider an arbitrary normal surface singularity (X, o), its res-

olution X, Z > E and I' € —S'. Then codimim(c’ (Z)) = h*(Z, L™

gen

) (cf. Remark
5.3.1.9(3)(a)) satisfies

codimim(c’' (Z)) > max { =, Z) = x(Z1) + Xx(Eiz)) }- (5.3.4.2)

T 0<Z1<Z
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In particular, for any £ € im(c"(Z)) one also has (everything computed in X )

W(Z,L) > W(Z,£0,) = codimim(e'(2)) > max_{ ~ (1, Z) — X(Z0) + x(Eiz) b
(5.3.4.3)

Note that the right hand side of (5.3.4.2) is a sharp topological lower bound
for codimim(c’(Z)). The inequality (5.3.4.2) can also be interpreted as the semi-

continuity statement
codim im (¢ (Z))(arbitrary analytic structure) > codim im(c" (Z))(generic analytic structure).

Proof. Consider the identity (5.3.1.10) applied for an arbitrary X and for the generic
X , denoted by X gen- Then, by semi-continuity of h'(Og, ) with respect to the analytic
structure as parameter space (see e.g. [NNI18, 3.6]), for any fixed effective cycle
Z, >0, h}(Oy,) computed in X is greater than or equal to h!(Oy,) computed in )?gen.
Therefore, by (5.3.1.10) one has codim im (¢ (Z))(in X) > codimim(c¢’(Z))(in )?gen).
Then for )N(gen apply (5.3.3.5). O

Remark 5.3.4.4. Certain upper bounds for {h!(Z, L)} repict (z)» valid for any an-
alytic structure, were established in [NN18, Prop. 5.7.1] (see alo Remark 5.3.5.3).
However, an optimal upper bound is not known (see [NO17] for a particular case).
Large h'-values are realized by special strata, whose existence and study is extremely

hard.

5.3.5 The cohomology of £ (1)

gen

Assume that Z > E, I' € =8' and let LI be a generic element of im(c"(Z)). If the
analytic structure of (X, 0) is generic, then by Proposition 5.3.3.4 h'(Z, L) = tz(I'),
where tz(I') is the topological expression from the right hand side of (5.3.3.5).

Our goal is to give a topological lower bound for h'(Z, L), where L := E;?n(l) =
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Lo, ®0(l) € Pic!*(Z) whenever | € L-o. In this way we will control the generic
clement of the ‘new’ strata O(1) ® (im(c"'(Z2))) of Pic" */(Z), unreachable directly by
the previous result. Our hidden goal is to construct in this way line bundles with
‘high’ h!.

For simplicity we will assume that all the coefficients of Z are sufficiently large

(even compared with [, hence the coefficients of Z —1[ are large as well). The monomor-

|z = L7 (1) gives h°(Z —1,L07) < h°(Z, L7 (1)), hence

phism of sheaves £ gen gen

gen

WU (Z — 1, )+ x(Z — 1, L) < hY(Z, L™ (1) + x(Z, £ (1)).

gen gen gen gen

By a computation regarding x this transforms into

W(Z, Lo, (1) = WH(Z =1, Lg5,) + x (=1 = 1) = x(=1).

gen gen

If X is generic and Z, Z — 1> 0 then h'(Z — 1, L™ ) = t,_,(I') = t5(I'), hence

r'(Z, L;’:n( ) > tz(I') — x(=1') + x(=U' = 1). (5.3.5.1)

E.g., with the choice | = =’ € &' N L+, we get that £ I') € Pic’(Z) and

gen(

W Z, L0 (=) > tz(I) — x(=1'). (5.3.5.2)

Remark 5.3.5.3. By [NN18, Prop. 5.7.1] for Z > 0, £ € Pic(Z) with ¢;(£) € =&’
one has h'(Z, L) < p, whenever either H*(Z, L) = 0 or £ € im(¢’(Z)). For other
line bundles a weaker bound is established (see [loc. cit.]), which does not guarantee
h'(L) < p,. However, it is not so easy to find singularities and bundles with h'(L) >
py in order to show that such cases indeed might appear. In the next 5.3.5.4 we

provide such an example (with a recipe to find many others as well) based partly on
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(5.3.5.2).

Example 5.3.5.4. Assume that we can construct a nonrational resolution graph
which satisfies the following (combinatorial) properties, valid for certain Z > 0 and
l'e-8nNL:

(@) tz(I") 2 x(=1') = minx(=I'+1) + 2, and
= (5.3.5.5)

(b) —1' <maxM, where M :={l € L. : x(I) = min x}.

Now, if we consider the generic analytic structure supported on this topological type,
then min;>qg x (=" + 1) © miny = 1 — p, (for the second identity use [NN18, Cor.
5.2.1)), hence tz(I") — x (=) %) —1+py+2=p, + 1. This combined with (5.3.5.2)
gives h'(Z, L7, (=1')) > py.

Next we show that (5.3.5.5) can be realized. Consider two copies I'; and I'y of the

following graph
-3 -1 —-13 -1 -3

I—Q I—2

The wished graph I' consists of I'y, I'y and a new vertex v, which has two adjacent
edges connecting v to the (—13)-vertices of I'y and I'y. Let the decoration of v be
—b, where b, > 0. One verifies that the minimal cycle is Z,,,;, = (b, — 2)E, whose
E,—multiplicity is 1. We set —I' :== Z,,;,. Since max M € S,, C ' N L (cf. [NNI18,
5.7]) we get that —I' = Z,,;, < max M. One verifies that x(Zim) = —3 (e.g. by
Laufer’s criterion), and also that min y = —5 (realized e.g. for 27,,;, — E,). Therefore
x(=0") —mingo x(—=' +1) + 2 = =3 + 5+ 2 = 4. On the other hand, the expression
(under max) in (5.3.3.5) for Z1 = Zin(I'y) + Zmin(I'2) supported on I'\ v is 4, hence
tz(l') > 4.
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5.4 Geometrical aspects behind Theorem 5.3.4.1

5.4.1 Reinterpretation of ¢(l’)

Let us discuss with more details the geometry behind the inequality (5.3.4.2). Along
the discussion we will provide a second independent proof of it and we also provide
several examples, which show its sharpness/weakness in several situations. Similar
construction (with similar philosophy) will appear in forthcoming manuscripts on the
subject as well. The construction of the present section shows also in a conceptual
way how one can produce different sharp lower bounds for sheaf cohomologies (for
another case see e.g. subsection 5.5.2).

We provide the new proof in several steps. First, we define a topological lower
bound for codimim(¢!'(Z)), which (a priori) will have a more elaborated form then
the right hand side tz(I') of (5.3.4.2). Then via several steps we will simplify it and

we show that in fact it is exactly tz(I).

Definition 5.4.1.1. For any Z > 0 with |Z| connected we define D(Z,1') as 0 if

¢"(Z) is dominant and 1 otherwise. Furthermore, set

no._ AN . o /
T(Z,1') = x(=1) Oglrggj@x( U'+1)+D(Z]1). (5.4.1.2)

By [NN18, Theorem 5.3.1] for any singularity (X, o), any resolution X, any Z > 0

and I' € L', and for L., generic in Pic' (Z) one has

RNZ, Lyen) = x(=1') = min  x(=I'+1). (5.4.1.3)

0<I<Z,leL

By [NN18, Prop. 5.6.1], see also 5.3.1.9(3), for any Z > FE and for any I’ € —&', if

L™ is a generic element of im(c''(Z)), then h'(Z, L™ ) = codimim(c"(Z)) satisfies

gen gen
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(the semicontinuity)

W Z. L) > (=)= min  x(=U'+D)+D(Z,1') = h'(Z, Len) +D(Z, 1) = T(Z,1').

gen 0<I<Z,l€eL

(5.4.1.4)
Remark 5.4.1.5. Assume that Z > 0 is a nonzero cycle with connected support
|Z], but with Z 2 E. Then the statements from (5.4.1.4) remain valid for such Z
once we replace I’ by its restriction R(l'), where R : L' — L'(|Z|) is the natural
cohomological operator dual to the natural homological inclusion L(|Z]) < L. (For
this apply the statement for the singularity supported on |Z].) On the other hand, for
L € L(1Z]) one has x(~R(1)) ~x(~R()+1) = —x(1)—~(R(), Dz = —x(O)~(U1) =
X(=U") = x(=U"+1). Hence, in fact, (5.4.1.4) remains valid in its original form for any

such Z > 0 with |Z| connected.

Example 5.4.1.6. The difference h'(Z, £

o) — h'(Z, Lgen) can be arbitrary large.

Indeed, let us start with a singularity with an arbitrary analytic structure, we fix a
resolution X with dual graph I', and we distinguish a vertex, say v, associated with
the irreducible divisor Ey. Let k (k > 0) be the number of connected components
of I\ v, and we assume that each of them is non-rational. Furthermore, we choose
Z > 0, hence h'(Oz) = p,. Let )?h;\vo be a small neighbourhood of Uy, E,, let
{X,;}¥_| be its connected components, and set p,; = h'(Oy,) for the geometric genus
of the singularities obtained from )?l by collapsing its exceptional curves. Write also
'\ vo = U;I';. We also assume that —I' = nE§ with n > 0.

Since n is large, im(¢"(Z)) = Az(l'), hence dz(I') = ez(l') = py — >, Py, cf.
[NN18, Th. 6.1.9] or Theorem 5.1.1.2 here. Hence, cf. (5.4.1.4), codim(imé" (7)) =
W (Oz) —dz(I') = B (Z, L) =3, py.i (in particular, ¢ is not dominant).

Next we compute h'(Z, Lye,) = x(nEg) — mingso x(nE; + 1). Write [ as loEy +1,
where [ is supported on Upstwy Ev. Then x(nES) — x(nES +1) = —x() — nly. If

lo = 0 then —x(I) = —x(I), and its maximal value is M := > .(—min x(I';)). On the
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other hand, if Iy > 0 then for n > —M — miny one has —x(I) — lon < M. Hence
W Z, Len) = x(nEG) — mingso x(nEG 4+ 1) = >, (— min x(I)).
Now, py; > 1—min x(I';) (cf. [Wa70] or [NN18]), hence h'(Z, L)) —h' (Z, Lyen) >

5.4.1.7. We wish to estimate h'(Z, £i™ ). Note that the estimate given by (5.4.1.4),

gen

that is, h'(Z, Li7) > T(Z,1'), sometimes is week, see the previous example. However,
surprisingly, if we replace Z by a smaller cycle Z’ < Z, then we might get a better
bound. More precisely, first note that if £ is a generic element of im(c"(Z)), and

gen

0 < Z' < Z, then its restriction 7(£%,) (via r : Pic’ (Z) — Picf)(Z)) is a generic
element of im(c"(Z’)). If Z’ has more connected components, Z' = Y, Z! (where
each |Zj| is connected and |Zj| N |Z]| = () for i # j), then for each Z] we can apply

(5.4.1.4). Therefore, we get
h'(Z, Lge) = W2 r (L)) Zhl r(cim)) =Y T(ZL ). (54.18)
Define

AN / AN T 1o
UET) = g, DTELY) = (;m 1= min, X(~I+1)+ D(ZL.D)) ).
(5.4.1.9)

(Here there is no need to restrict ', cf. Remark 5.4.1.5.) Hence (5.4.1.8) reads as

WNZ, L) > H(Z,1). (5.4.1.10)

gen

In this estimate the point is the following: though 7, (x (") —ming<;, <z x(=I'+1;) =
X(—=1") —ming<;<z x(—1'+1) is definitely not larger than x(—1") —ming<;<z x(—'+1),
the number of components of Z’ might be large, and the sum of the ‘non-dominant’
contribution terms ). D(Z/,l') might increase the right hand side of (5.4.1.10) —

compared with T'(Z,1') — drastically.
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Example 5.4.1.11. (Continuation of Examle 5.4.1.6) The last computation of
Example 5.4.1.6 shows that the maximum of x(nE{) — min;>o x(nEg + 1) is obtained
for [y = 0 and T(Z,I') = 1+ > ,(—min x(I';)). Hence, taking Z' = 3. Z/, each Z]
supported on I'; and large, we get that the restriction of I’ is zero and ) . T'(Z,l') =
>o.(1—minx(Iy)) =T(Z,I') + k — 1.

Summarized (also from Example 5.4.1.6), for any analytic type one has > . p,; =
W(Z, L) > t(Z,1') > 3, T(Z, 1) = >,(1 — min x(I';)). However, if X is generic
then p,; = 1—min x(I';) (cf. [NN18]), hence, all the inequalities transform into equal-
ities. Hence, for generic analytic structure h'(Z, £7) = t(Z,1'), that is, (5.4.1.10)
provides the optimal sharp topological lower bound.

Note also that both ¢(Z,1') and (1 — min x(I';)) are topological, hence if they
agree for X generic, then they are in fact equal. Since p,; —1+min x(I';) for arbitrary

analytic type can be considerably large, for arbitrary analytic types the inequality

(5.4.1.10) can be rather week.

5.4.1.12. Our goal is to simplify the expression (5.4.1.9) of ¢(Z,").

First we analyse the set of cycles Z’ for which the maximum in the right hand side
of (5.4.1.9) can be realized. E.g., if ¢*(Z) is dominant, then any 0 < Z’ < Z realizes
the maximum 0 (with all /; = 0). (Indeed, use the fact that D(Zy,1") > D(Zy,l’) for
Zy > 7y and |Z;| connected.)

In the next Lemmas 5.4.1.13 and 5.4.1.16 we will assume that ¢'(Z) is not domi-

nant.

Lemma 5.4.1.13. (a) Assume that Z' is a minimal cycle (or a cycle with minimal
number of connected components) among those cycles which realize the mazimum in
the right hand side of (5.4.1.9). Then D(Z!,l') =1 for all i.

(b) If D(Z},l') = 1 then the minimal value ming<;,<z X(—I" + ;) can be realized
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Proof. (a) Otherwise, ¢!’ (Z!) is dominant, so we have X(=1l")—ming<;, <z X (='+1;) = 0
(realized for [; = 0). Hence T'(Z!,l') = 0, that is, the right hand side of (5.4.1.9) is
realized by Z'— Z! too, contradicting the minimality of Z’. (b) If the wished minimum
is realized by [; = 0, and only by [; = 0, then cl'(ZZ() is dominant, contradicting

D(Z.I) = 1. O

Example 5.4.1.14. Though in Example 5.4.1.6 we have shown that h'(Z, L) =
t(Z,1") can be much larger than T'(Z,!") (that is, the maximizing Z’ usually should
be necessarily strict smaller than Z), in some cases Z' = Z still works. Indeed, we

claim that

if the E*—support I of I’ is included in the set of end vertices of I, then ¢(Z,1') = T'(Z,l').

Let Z' be a cycle for minimal number n of connected components {Z/}? ; for which
the right hand side of (5.4.1.9) is realized. We claim that n = 1. Indeed, by Lemma
5.4.1.13, each D(Z],1I') = 1. Let [; be a cycle which realizes x(—!") —ming<;<z x(—I'+
[). By Lemma 5.4.1.13 we can assume [; # 0.

If n > 1 then let Z; and Z; be two adjacent component, which means, that there is
a vertex u € |Z1] and v € |Z}| and a (minimal) path u; = w, us, -+ ,u; = v, such that
U, -+ ,ug_q ¢ |Z'| and uy and ugyq are neighbours in the resolution graph. Moreover,
define a new cycle by 77 ..., = Z1+ 25+ ocpey 1 Bup and Z) 0y = Z1 0+ 3cicn Zi-
Similarly, let us have a minimal path between |l;| and |l5|: vertices wy,--- ,w;, such
that wy € |l1] and w; € |la], we, -+ ,w;—1 & |l1| U|ls| and wg, wi,1 are neighbours in
the resolution graph. Then define Iy pew = 1 +la + > ycjj1 Euw,- The point is that

the vertices ws, -+ ,w;_; are not end vertices, in particular (I',> 5,1 Euw,) = 0.

Note also that D(Z;

1 news ') = 1. Then a computation gives that

X(—) = X (1 + Linew) + D(Z} oy 1) > T(Z0, 1) + T(Za, 1), (5.4.1.15)
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or, T(Zy pew,l') > T(Z1,I') + T(Zy,1'), contradicting the minimality of Z’. Hence
necessarily n = 1.

On the other hand, if Z’ is connected, then T'(Z’,1") < T(Z,1’), hence the maximal
value in the right hand side of (5.4.1.10) is realized for Z as well (and maybe by several
other smaller cycles too; here we minimalized #|Z’| by increasing Z’).

The present example together with Examples 5.4.1.6 and 5.4.1.11 show that the
structure of possible cycles Z’ for which the maximality in (5.4.1.9) realizes can be

rather subtle.

Lemma 5.4.1.16. Assume that Z' is a minimal cycle among those cycles, which
realizes the mazximum in the right hand side of (5.4.1.9). Then the following facts
hold:

(a) ming<y, <z x(=1U' +1;) is realized by l; = Z].

(b) ming<;,<z x(1) is realized by l; = Z;.

(c) H(Z' 1) =t(Z,1) =32, (= (Z. 1) = x(Z) +1).

Proof. (a) For each Z! let [; be minimal non-zero cycle (cf. Lemma 5.4.1.13) such that
M; = X(—l/)—minoglgzlf X(—=U'+1) isrealized by I;. Let [; = Ugl; . be its decomposition
into cycles with |[; x| connected and disjoint. Since M; = —x(I;) — (I',l;) > 0, there
exists k such that x(=0') — x(=U' + lLix) = —x(lix) — (I',l;x) > 0, hence the Abel
map ¢ (I;;) must be non-dominant. Thus (using also D(Z/,I') = 1 from Lemma

5.4.1.13(a))

> T(iw ) = X(=1) = x(=U' + L) + 1 =T(Z],1). (5.4.1.17)
k

In particular, by the minimality of Z], Z! = I,.

(b) By part (a) x(Z]) + (Z!,I') < x(l;) + (I;,') for any 0 < [; < Z!. But, since
I'e =8 (Z,lI') > (I;,I'), hence x(Z!) < x(;) for any 0 < I; < Z!. Part (c) follows
from (5.4.1.9) and (a). O
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Recall that in 5.3.5 we defined t4(I') := maxo<z<z { — (', Z")—x(Z")+x(E\z) }.
Corollary 5.4.1.18. t(Z,lI') = t5(I").

Proof. 1f ¢(Z) is dominant then both sides are zero. Otherwise, by Lemma 5.4.1.16(c)
(with its notations) t(Z,1') = >, (= (Z/,I') = x(Z})+1) < tz(I'). On the other hand,
let us fix some Z' = U;Z! for which the maximum in tz(!’) is realized. Then we can
assume that each ¢’ (Z!) is not dominant. Then —(Z/, ') — x(Z!) +1 = x(=1') —
X(=U'+ Z)) +1 < x(=l') = ming<y,<z (=" + ;) + D(Z],1'). Hence tz(I') < t(Z,l')

too. O

Remark 5.4.1.19. The second proof of Theorem 5.3.4.1 follows from (5.4.1.10) and

Corolary 5.4.1.18.

5.5 The Ly—projected Abel map

In this section we introduce a new object, a modification of the Picard group Pic(Z),

which will play a key role in the cohomology computation of the shifted line bundles

of type {Ly ® ‘C}Leim(cl/(z))'

5.5.1 The Ly—projected Picard group

Let (X, 0) be a normal surface singularity. For simplicity we assume (as always in this
thesis) that the link is a rational homology sphere. Let X be one of its good resolutions
and Z > E an effective cycle. Fix also Ly € Pic(Z) such that H(Z, Lo)eq # 0.
Choose sy € H(Z, Lo)reg arbitrarily, and write div(sq) = Dy € ECa'(Z), where
ly = c1(Ly) € —S'. Motivated by the exponential exact sequence of sheaves 0 —
Ly N Oz — O3 — 0, we define Lj := coker(Zy N Oy % L), where the second

morphism is the multiplication by (restrictions of) sg. Then we have the following
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commutative diagram of sheaves:

0 0
\J \
0 — Zy, 5 05 — 05 — 0
— 1 s0 s
0 — Zz — Ly — L — 0
) l
Op, = Op,
\J !
0 0

where s§ is induced by sg. At cohomological level we get the (identical/renamed)

diagrams
H%(Op,) = H°(Op,) H%(Op,) = H°(Op,)
U 10 U 10
0— HY(Oz) — HYW WOy 3 L' -0 0— Pic(Z) — Pic(Z2) 3 L' —0
s }s b= I s° }s =
0— HYLo) — HWLy) = L' =0 0— Pic) (Z) — Picg(2) = L' —0
+ \ 5 \
0 0 0 0

where we use the notation Picg,(Z) := H'(Z,L}) — and call it the Lo-projected
Picard group —, and (its linearization) Pic} (Z) :== H'(Z, L,). Note that the classical
first Chern class map ¢, factorizes to a well-defined map ¢; : Picg,(Z) — L'. Set also
Pic%O(Z) .= ¢7}(I') for any I' € L; it is an affine space isomorphic to Pic (Z)/im(é)
associated with the vector space Pic} (Z) = H'(Z, Lo) = H'(Oz) /im(8°).

The corresponding vector spaces appear in the following exact sequences as well.
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Let us take another line bundle £ € Picl/(Z ) without fixed components, s € H*(Z, L),,
and D := div(s). Then one can take the exact sequences 0 — Oy = L — Op — 0
and 0 — Loy > Lo ® L — Op — 0. They induce (at cohomology, or ‘tangent’ vector

space level) the following commutative diagram

HO(ODO) = HO(ODU)
160 !
H(Op) 5 HY O, > H(L) =0

-l

HO(OD) N Hl(ﬁo) — Hl(ﬁ()@ﬁ) — 0
\J !
0 0

This is related with the Abel map ¢’ (Z) : ECal (Z) — Pic (Z) as follows. Recall from
[NN18, 3.2.2] that the tangent linear map T ¢’ (Z) : Tp ECa’ (Z) — T, Pic! (Z) can
be identified with 07 : H*(Op) — H'(Oy). Therefore, if L = L} is a generic element
of im(c"(Z)) then codimim(c(Z)) = dim H*(Oz)/im(6%) = h'(Z,L). Similarly,

consider the composition

!

! A Cl ’ SO !
& (2): BCa' (2) 8 Pid(2) =5 Pich (2).

We call it the Lo—projection of the Abel map cl'(Z ). Using the previous paragraph we
obtain that the tangent linear map T ¢, (Z) : Tp ECa'(Z) — T, PicléD (Z) can be
identified with 69 = s% 002 : H*(Op) — H'(Ly). Therefore, if £ is a generic element

of im(cl, (Z)) (or, it is the image by sz, of a generic element Lo of im(c"(Z))) then

codimim(cl (Z)) = dim H'(Lo)/im(82) = h'(Z, Lo ® L). (5.5.1.1)

165



CEU eTD Collection

This fact fully motivates the next point of view: if one wishes to study h'(Z, Lo ® L)
with £, fixed and £ € Pic’(Z) then — as a tool — the right Abel map is the

Lo-projected ¢ (Z).

5.5.2 The cohomology h'(Z, Ly ® L).

Using the exact sequence H°(Op) — H(Oz) > HY(Z, L) — 0 and h°(Op) = (I', Z)
we obtain the inequality h'(Z, L) > h'(Oz) — (I, Z). Usually it is not sharp, since
4% might not be injective. However, as in the prototype construction from section
5.4 (and even in its preceding sections), if we consider any Z; < Z then we also have
RN Z, L) > hY(Z, L) > h(Ogz) — (I, Z)), hence h'(Z, L) > maxz <z{h'(Oz) —
(I',Z1)}, and, remarkably, this for the generic L7 € im(c"(Z)) is an equality (cf.
(5.3.1.10)).

Similarly, using the exact sequence H°(Op) — HY(Z,Lo) > HY(Z,Lo @ L) — 0
we obtain h'(Z,Ly @ L) > h'(Z,Ly) — (I';Z). Again, this usually is not sharp.
However, by the same procedure,

RN Z, Lo® L) > maXZ{hl(Zl, Lo)— (I, Zy)}. (5.5.2.1)

0<Z1<

In the next section (cf. Corollary 5.6.2.4) we will prove that this is again an equality
for the generic £ = £ € im(ck (Z)). (The above inequality (5.5.2.1) can be

gen

compared with (5.3.5.1) as well.)

5.5.3 Compatibility with Laufer duality and differential forms

Consider the perfect pairing (, ) : H'(Oz) ® HO(Q%(Z))/HO(Qiz) — C from 3.5.1.3,
see alo [NN18]. Once we fix Dy = div(sg) of certain sg € H(Z, Lg)reg, We can
define Qz(Dy) := (im(d2,))" C HO(Q%(Z))/H(Q%). It is generated by forms which

vanish on the image of the tangent map Tp, ¢0(Z), identified with 62 , cf. 5.1.1.4 and
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(5.1.1.6). The pairing (, ) induces a perfect pairing (, ), : H (Z, Lo) ®Qz(Dy) — C,

see also Theorem 5.1.1.5.

5.5.4 The G-filtration of Qz(Dy) = H'(Ly)*

Consider the situation and notations of Definition 5.1.1.9; in particular, G, = H°(Q%(1))/H"(Q%)

for any 0 < I < Z. In the presence of Ly = Oz(Dy) as above, we have the sub-

space Qz(Do) = (imd°)+ € HO(Q%(2))/H*(Q%), and the induced perfect pairing

(Vo : HY(Z, Lo) ® Qz(Dy) — C. Similarly, for any 0 < [ < Z, we have the ana-

logues data (Do) = (im(6°):))" € H(Q%(1))/H"(Q%), and the induced perfect

pairing (, )z, @ H'(1, Lo) ® Q(Dy) — C. One has the following inclusions inside
0(()2 0(()2

HY(Q%(2))/H (%)

Ql(Do) — Qz(Do)

\ \
G — HQ%(2))/H°(Q%)

and, in fact, QI(D()) = Qz(Do)ﬂgl. Hence {QI(D())}[ = {Qz(Do)ﬂgl}l filters Qz(Do)
Moreover, by (, )z,|,, one has dim Qz (Do) NG, = dim (D) = h*(1, Ly).

5.5.5 Dimensions/Notations

The dimension of im(c}, (Z)) is denoted by dg, ().

If Ay(I') is the smallest affine space which contains im(c*'(Z)) in Pic" (Z), then
sco(Az(l')) is the smallest affine space which contains im(ck, (Z)). We denote it by
Ag, z(I') and its dimension by e, z(I'). From definitions dg, z(I') < ez, z(l').

In the next section we provide two algorithms for the computation of dg, ('),

the analogues of the algorithms from Theorems 5.2.1.6 and 5.3.1.2.
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5.6 Ly—projected versions of the algorithms

5.6.1 The setup

Let us fix (X, 0), a good resolution )ﬁ(/, Z > FEandl' € —8'. We also fix a line bundle
Ly as in section 5.5, whose notations we will adopt. In order to estimate dg, z(I')
we proceed as in sections 5.2 and 5.3. In particular, we perform the modificatiosn
Tg : )?S — X , and we adopt the notations of 5.2.1 as well. By the generic choice of
the centers of blow ups we can assume that they differ from the support of Dy. Notice
that we have a natural identification between H'(Oz) and H*(Oz,), and also between
H'(0%) and H'(03,). Furthermore, we denote the divisor 75 '(Dp) on X, still by
Dy (basically unmodified), and the line bundle Oz (Dy) still by £y. Then we have
the identification of H°(Z, Op) with H°(Zs, Op), and also H'(Z, Ly) ~ H'(Zs, Ly)
and H'(Z, L%) ~ H'(Zs, L}) (hence identifications of the corresponding commutative
diagrams from 5.5.1 as well). The subspace Qz,(Dy) in H'(Oz,)* = H(Oz)* is also
‘stable’ of dimension h'(Z, Ly).

Write dg, s and eg, s the corresponding dimensions associated with )Afs defined as

in 5.5.5. Then dgys < egys. If s =0 then dgy o =dg, z(I') and ez 0 = egyz(I).

Theorem 5.6.1.1. (1) dg,s — dp, sor € {0,1}. Moreover, dgys = dp, sor if and only
if for a generic point L € im(c%o(Zs)) the set of divisors in (C%O(ZS))_1<Z) do not
have a base point on Fy s, , -

(2) If for some fized s the numbers {d,, ok} are not the same, then dgys =
maxy, ;{ de, e} In the case when all the numbers {dz, sor o are the same, then
if this common value dp, v equals epys, then dpys = erys = dp, gvk; otherwise

d£07s = dL‘»O,Sv’k + ]_

Proof. (1) Assume first that either s,; > 1 or a, = 1. Then divisors from ECa's(Zy)
intersect F s, , by multiplicity one, hence the intersection (supporting) point gives

a map q : ECal;(ZS) — Fykgs,,» which is dominant. Moreover, ECal;U’k(st,k) is
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birational with a generic fiber of ¢ (the fiber over the point which was blown up),
hence the first statement follows. Note also that dg,s = d, s+ if and only if the
generic fiber of the Lo—projected Abel map c%o is not included in a ¢—fiber. This
implies the second part of (1).

If s, = 0 and a, > 1 then write I’ := [, — £} and consider the ‘addition map’
s : ECa (Z,) x ECal~(Z;) — ECal*(Z), which is dominant and quasifinite (cf.
[NN18, Lemma 6.1.1]). Let ¢ : ECa®(Z;) — E, be given by the supporting point
as before. Then if ¢~*(gen) is a generic fiber of ¢ (above the point which was blown
up), then the restriction of s to ¢~'(gen) x ECa'~(Zs) with target ECals (Zgor) 18
dominant and quasifinite. Hence the arguments can be repeated.

(2) First notice that if the numbers {d., so.x } are not the same then from (1) we
have dg, s < min,; dg, gor +1 < maxy, p dp, gor < drys, hence dpy s = max, j, dp so.k.

Next, assume that the numbers {d, sv.x } are the same, say d.

If dr,s = d then part (1) reads as follows: dg,s = dp, sv.x for all v and k if and
only if for a generic £ € im(c%o(ZS)) the set of divisors in (C%O(ZS))’l(Z) do not have
a base point on any of the curves {F, s, , }vk-

Let us choose a generic element £ € im(c%O(Zs)), which is in particular a regular
value of C%O<Zs) and the generic divisors in ECa’*(Zs) mapped to £ are in fact generic
divisors of ECals(Z;) itself.

Next, take an element in Qz_(Dy) (for details see 5.5.3) represented by a form w,
such that the class of w vanish on Tgim(c%o(Zs)).

Then choose a generic D from ECalé(Zs), which is mapped to £ and which has
no common points with the support of w (we can even assume additionally that
it is transversal and reduced). Then we apply the previous statements for £ :=
2 (Z:)(D).

In particular, the class of w vanish on im(TDc%O(ZS)) so w cannot have pole along

any of the curves {F, ks, , }ok, that is, it belongs to Qz (Is), ¢f. Theorem 5.1.1.5 and
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Lemma 5.1.1.7. Hence dg, s = er, s, ¢f. Lemma 5.2.1.3, and also d = e, s too.
On the other hand if d = e, s, then from dg, gor < dpys < er,s We get d = dp s.

Hence d, s = d if and only if d = ez, s. Otherwise dg, s should be d+1 by (1). O

5.6.2 Notations for the second algorithm

Consider the setup of 5.3.1 and combine it with the one from 5.6.1, where £, enters

in the picture. Accordingly, we have the following subspaces (inclusions):

02 (Do) NG = QDo) NQz (1) Qz,(Dy) = H'(Z.Ly)
+ + +
G, ) HA%(Z)/HY%) = H(Ozy

The codimension of the inclusion 7 is es and the dimension of Gg is g5 providing
the inequality es < h'(Oz) — gs. Similarly, the codimension of j is er,s and the
dimension of Q7 (Dy) NG, will be denoted by g, s providing the inequality ez, s <
hY(Z, Lo) — gr,s- Hence

deos < ecys < DH(Z,Lo) = gros: (5.6.2.1)

It is conveninent to lift the s-independent subspace Qz, (Do) = Qz(Do) of H*(Q%(Z))/H®(Q%)

as Q5 (Do) := 7 1(Qz(Dy)) by the projection 7 : HO(Q}(Z)) N HO(Q}(Z))/HO(Q}»

Theorem 5.6.2.2. (1) dg,s —dp, s € {0,1}.

(2) If for some fized s the numbers {dz, svi}or are not the same, then dg,s =
maxy, ;{ de, ok} In the case when all the numbers {dg, sox }o e are the same, then if
this common value dp, o equals W' (Z, Lo) — gy s, then deys = h(Z, Lo) — gros =

dpysvk; otherwise de, s = dpy oo + 1.

Proof. Part (1) was already proved in Theorem 5.6.1.1. Regarding part (2), if the

numbers {d, co.» } are not the same then we argue again as in the proof of Theorem
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5.6.1.1.

Next, assume that the numbers {d;, ¢.x} are the same, say d. Via (5.6.2.1) and
the first algorithm Theorem 5.6.1.1 we need to show that if d = e, s then necessarily
d=h"Z,Lo) — gr,,s as well. However, if d = ey, ¢ then we have ez, s = d, gor for all
(v, k), hence by (5.6.2.1) we get ey s = d = dp, svi < €pguk. But ey s > ep) sur by
the combination of the argument from (5.2.1.5) and the diagram from 5.6.2. Hence,
dey sk = erys for all k& and v implies ey qvx = e, s for all v and k.

In particular, it is enough to verify the (stronger statement):
if ep, o = €g,s for all v and k then ey = h'(Z, L) — gz, as well.  (5.6.2.3)

Assume that (5.6.2.3) is not true, that is, ez, s = €z, for allv and &, but ez, s <
hY(Z, Lo)—gr,s- The last inequality via the diagram from 5.6.2 says that the inclusion
Qz.(Do)NG, C Nz, (Do)NQz, (Is) is strict. This means, that there is a differential form
w € Qg(Dy), with class [w] in HO(Q%(Z))/H(Q%) ¢ H(X \ E,Q%)/H*(X,0%),
such that w does not have a pole along the exceptional divisor Fy g, ,, however
[w] ¢ Gs. In particular, there exists a vertex v € ||, such that the pole order of w
along E, is larger than (ls),. Notice that this also means (ls), = minj<;<q, Su; < Zy.

Let 1 < i < a, be an integer such that s,; = (Is), (abridged in the sequel by t)
and we denote the order of vanishing of w on an arbitrary exceptional divisor E, by
b., where u is an arbitrary vertex along the blowing up procedure. Next we focus
on the string between v and w,;s,, and we denote them by vo = v,...,v; = Wy s, ,-
Set r := min{0 < s <t : b, +t—s > 0}. Since for s =t one has b,, > 0 (since
w has no pole along FMZ-,SM) r is well-defined. On the other hand we have r > 1.
Indeed, b,, +t < 0, since pole order of w along E, is higher than (l5), = t. Note that
by, , +t—r+1<0andb, +t—r>0imply b, — b, , >2(}).

Let X’ be that resolution obtained from X , as an intermediate step of the tower
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between X and )?S, when in the (v,7) sequence of blow ups we do not proceed
all s,; of them, but we create only the divisors {F,;x}r<r—1. Let V' be its ver-
tex set and {E, },eyr its exceptional divisors. On X' consider the line bundle £ :=
Q},(— Y wey bulsy). Since F,;, was created by blowing up a generic point p of
E

w1 = Fuiv._,, the existence of w guarantees the existence of a section s € HO()?', L),

which does not vanish along F,, | and it has multiplicity m := b, —b,,_, — 1 at the

generic point p € E, .. By (f) m > 1. By construction, w (or s) belongs also to the
subvectorspace Q (D) after certain identifications.

Now by the technical Lemma 5.6.3.1 (valid for general line bundles, and separated
in section 5.6.3) for any 0 < k < m and a generic point p € E,, _, there exists a section
s’ € H°(X', L), which does not vanish along the exceptional divisor £, ,, and the
divisor of s’ has multiplicity k at p. We apply for k = —(b,,_, +t—r+1) — 1. (Note
that 0 < k& < m.) The section s’ gives a differential form ' € Q¢ (Dy), such that if

we blow up E,, , in the generic point p and we denote the new exceptional divisor

1

by E, then w’ has wanishing order —(t —r + 1) on E . This means, that if

rnew’ VUr new
we blow up it in generic points ¢ — r + 1 times, then w’ has a pole on E,, .., but has
no pole on E,,, ... This means that e, ¢v.i # er,s, which is a contradiction. ]

The analogues of Corollaries 5.3.1.3 and 5.3.1.5 (with similar proofs) are:

Corollary 5.6.2.4. For anyl' € —=S8', Z > E and Lo with H*(Z,Lo)req # 0 one has

dry.z(I') = minf |s| + h(Z, Lo) = gros } = min {(I',Z1) +h'(Z, Lo) = h'(Z1, Lo)}-

0<2: <

This combined with (5.5.1.1) gives for a generic L, € im(c' (Z)):

gen

h’l(Z7 EO ® L"_ngenn) = OSH%?}SCZ{ hl(Zla ‘CO) - (l/, Zl)}

Example 5.6.2.5. This is a continuation of Example 5.3.1.8 (based on [NN18, §11]),
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whose notations and statements we will use. Assume that Z > 0 and I’ = —kE;
as in 5.3.1.8. Additionally we take a generic line bundle £y with ¢;(L£y) = I, =
—koE§, ko > 0, (hence IN)O consists of kg generic irreducible cuts of Ey). Recall that
HO(Q%(Z))/H°(Q%) admits a basis consisting of elements of type x™w, where w is
the Gorenstein form and 0 < |m| < d — 3. Each ‘block’ {{m| = j} (0 < j < d — 3)
(which can be identified with H°(P?, O(j))) contributes with (’}?) monomials. The
ko generic divisors impose min{ky, (];2)} independent conditions (see [NN18, 11.2]
for the explication), hence the block {|m| = j} (0 < j < d — 3) contributes into
dim Qz(Dg) = h'(Lo) with (*}?) —min{ko, (*}?)} = max{0, (’3*) —ko}. In particular,
hY(Lo) = Yo0—ymax{0, ("3%) — ko} and A (Lo) — gros = Y1y~ max{0, (7}%) — ko}
(0 < s <d—2). Therefore,

d—3—s

deoz(~kEg) = min  {ks+ ; max {0, (732) — ko }.

However, if Lo = Oz(Dy) is not generic, then the points Dy might fail to impose
independent conditions on the corresponding linear systems, and the determination
of the dimension of Qz(Dy) can be harder. See [NN18, 11.3] for discussion, examples
and connection with the Cayley—Bacharach type theorems (cf. [EGH96]). Those
discussions with combined with the present section produces further examples for

dr,.z (") whenever Dy is special (and (X, 0) is superisolated).

5.6.3 A technical lemma

The next lemma is used in the body of the article, however, it might have also an

independent general interest.

Lemma 5.6.3.1. Let X be an arbitrary resolution of a normal surface singularity

(X,0). Let us fix an arbitrary line bundle L € Pic(X) with ¢i(L) =1 € =5, an

wrreducible exceptional curve E,, and an integer m > 0.
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Assume that there exists a sub-vectorspace V C HO()?, L) with the following prop-
erty: for a generic point p € E, there exists a section s € V such that s does not
vanish along E, and the multiplicity of the divisor of s at p € E, is m. Then for any
number 0 < k < m and a generic point p € E, there exists a section s € V' such that

s does not vanish along E, and the multiplicity of the divisor of s at p € E, is k.

Proof. By induction we need to prove the statement only for £k = m — 1.

First we fix a very large integer N > m, and consider the restriction r : H 0()2 L) —
H°(NE,, £). Then r induces a map from H°(X, L)reg = H(X,L)\ H(X,L(—E,))
to HY(NE,, L), := H°(NE,, L)\ H((N — 1)E,, L(—E,)). Denote its restriction
HYX,L)reg NV — HYNEy, L)yeg N 7(V) by 7. Consider also the natural map
div : HY(NE,, L)rey — ECaZ,(NEU), and the composition map divory = g :
HY(X L)reg NV — ECa'(NE,), which sends a section to its divisor restricted to
the cycle NE,.

Next, for any p € E? := E, \ Uy, Ey set D,,,, C ECal/(NEU), the set of divisors
with multiplicity m at p. (Since N > m this notion is well-defined). Set also
Dy, = Up,Dyy, .

By the assumption, the image of g intersects D,,, for any generic p. Since D,, is
constructible subvariety of ECa’ (NE,), ¢~ (Dy,) is a nonempty constructible subset
of HO()?,E)reg N V. Define an analytic curve hg : (—¢,€) — ¢ 1(D,,) such that its
image is not a subset of some ¢~'(D,,,). Let us denote the zeros of the section
ho(0) along E° by {p1,...,p.}. Then there exists a small neighborhood U of one
of the points p; and a restriction of hy to some smaller (—¢',¢'), such that for any
t € (—¢€,€) the restriction of ho(t) to U has a unique zero, say p(t), and its multiplicity
is m. Furthermore, ¢t — p(t), (—€,¢) — U N E? is not constant, hence taking
further restrictions to some interval we can assume that ¢ — p(t) is locally invertible.
Reparametrising hg by the inverse of this map, we obtain an analytic map U N E° —

g Y (D,,), t — h(t) such that the restriction of the section h(t) to some local chart U
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has only one zero, namely ¢, and the multiplicity of the section at t is m. In some
local coordinates (x,y) of U (with U N E, = {y = 0}) the equation of A(t) has the

form (modulo y)

ht)= > (& —t)y'ca(t), (5.6.3.2)

§>0,i>0
where by the multiplicity condition ¢;; = 0, if j+4 < m and, there is a pair (j, ), such
that j +4 =m and ¢;;(t) # 0. Moreover, by the non-vanishing condition y fh(t), or
¢jo(t) # 0 for some j.

We claim that there is a generic choice of t1, ..., t, (for some large r) of t—values,
and a convenient choice of the coefficients {ay}]_; such that s := Y_, oyh(t;) satisfies
the requirements. Indeed, first we consider the Taylor expansion of A(t) in variables

x,y) at a point (z,vy) = (¢,0) with ¢ generic (and modulo y" as usual):
(z,y) (z,y) = ( g y

Y (@ —q+q—tYyclt ZZ ()(q—t) Eeiilt).

Jye 7t k=0
The fact that s at (¢,0) has multiplicity > m — 1 transforms into a linear system

T

S (5 0o i)

=1 >k

for any (k,i) with k,4 > 0 and k 4+ ¢ < m — 2. This linear system LS(r,m — 2)
with unknowns {;}]_; has matrix M(r,m — 2) of size r x m(m — 1)/2. If r >
m(m — 1)/2 then the system has a nontrivial solution. We need to show that for a
generic choice of the solutions {ay}; the section s has multiplicity m — 1 at ¢. Assume
that this is not the case. Then the generic solution of the system LS(r,m — 2) is
automatically solution of LS(r,m — 1) too (the last one defined similarly). This
means that rankM (r,m — 2) = rankM (r,m — 1) (t) for generic {¢;};.

The matrix M (r,m — 1) has m additional rows corresponding to the indexes (k1)

with k,2 > 0 and k+7 = m —1. Let us fix one of them, corresponding to the following
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choice.

Now let d be the minimal number, such that there exists 7,7 such that « <m — 1,
Jj+i=d and ¢;;(t) is not identically 0. Since by assumption (by non-vanishing of
h(t) along E,) there exists certain j > m with ¢; # 0, such a d exists. Fix iy such
that ig <m —1, jo +1i9 = d and ¢, ;,(t) # 0.

Then, from the additional rows of M(r,m — 1) we chose the one indexed by
(m — 1 — g, o).

Consider the minor of M (r,m — 1) of size m(m — 1)/2 + 1, whose last row is the
row corresponding to (m — 1 —1g, ), and the other rows belong to M (r,m —2), while
the last column corresponds to the generic t, = t. Then its determinant should be

zero by (). Expanded it by the last column gives

Z (m _Jll _ i0> (q—t)’ ="+ Hioes 0 (1) = Z Br.i(q)- Z (é) (q—t)"Fc;i(t)

j>m—1—ig k,i>0k+i<m—2 >k

for some holomorphic functions Sk ;(¢q). But such an identity cannot exist. Indeed,
since ¢;, i, Z 0, but ¢;;, = 0 for any j < jo, the vanishing order of ¢—¢ at the left hand
side is exactly d — m + 1, while on the right hand side — since 7 > d — i (otherwise
¢j; =0)and k < m —2— 7 implies j —k > d —m + 2 — we get vanishing order
>d—m+ 2.

Finally we need to show that this generic s does not vanish along F,. This follows
from a similar argument as above, or one can proceed as follows. For any generic ¢
consider a section s which has multiplicity m — 1 at (¢,0). If it vanishes along FE,

then s + h(g) does not vanish along E, and it has multiplicity m — 1 at (g, 0). O

Remark 5.6.3.3. We claim that under the assumptions of Lemma 5.6.3.1 the follow-
ing property also holds: For any finite set ' C E, there exists a section s € V' such
that s does not vanish along E,, div(s) N F = 0, and at each each p € div(s) N E,

the intersection 1s transversal. Indeed, we can use first Lemma 5.6.3.1 for £ = 1 and
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then show that a generic combination of ‘moving’ sections of multiplicity one works.
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Chapter 6

Gorenstein singularities

Let us have a numerically Gorenstein resolution graph I'. From [PPP11] we know,
that if [' is numerically Gorenstein, then there is a Gorenstein surface singularity with
resolution X , whose dual is graph T.

However, the construction in [PPP11] is a very special analytic plumbing.

In this chapter we wish to describe a gluing construction, which for every numer-
ically Gorenstein resolution graph I' provides a Gorenstein singularity (X, o) with
resolution has dual graph I'. Furthermore, every Gorenstein singularity with resolu-

tion graph I' can be given by this construction.

6.1 Existence of Gorenstein singularities supported

on numerically Gorenstein resolution graphs

6.1.1 Preliminaries
In this chapter, for any resolution X , we denote by K = K the canonical divisor of
X, that is, 0% = Og(K).

We fix a numerically Gorenstein resolution graph I'. This means that Zx €

L. From [PPP11] we know, that there exists a Gorenstein surface singularity with

178



CEU eTD Collection

resolution X and dual graph I'. This means that there exists a differential form
w € H(Q%(Zk)) = H(Oz(K + Zk)), such that w has a pole on the exceptional

divisor of order Zx and it does not vanish anywhere in X \ E.

Lemma 6.1.1.1. If we have a resolution, for which E < Zx € L, then the above
Gorenstein property is equivalent with any of the following facts:
(i) W (Zy,0z,) > W (Zx — By, Oz, _g,) for everyu € V.
(ii) there exists a verter u € V such that h'(Zyx, Oz, ) > W (Zx — Ey, Oz, _g,)-
HO(O4(K+2Zk))
HY(0O%(K))

HY(O 4 (K+Zx—Eu
HO(O%(K))

Proof. (i) The classes of differential forms in , which have a pole of

order Zy are exactly the ones, which are not in D for every vertex

, . . HY(OH(K+Z
u € V. On the other hand, by Laufer’s duality, dim <W) =W (Zk,0z,)

. HY (O (K+Zg—Ey,
and dim ( e ”) = h'(Z — Bu,Opp_p).

g . o HOOG(K+ZK—E,)) _ HYOg(K+Z
(11) Notice that if ;0(0;((;)) = HOE(O;((K);{

HY(O % (K+Zk—E)) HY(O g (K+ZK))
H)S(O)?(;)) = HOfOX(K)T , because ¢! (O (K+Zk—E,)) = —E,, so the Laufer

) for some vertex u € V), then

sequence which starts at E, goes through E as well.

HY(O3(K+Zk—E)) _ H°(Og(K+Zg)) HO(O4(K+Zk—E,)) _ HYOg(K+Zk))
However HO(0 < (K)) = THO(OL(K))  means, that HO(O (K)) = TH(0L(K))
for every vertex v € V. O]

6.1.1.2. Although [PPP11] guarantees the existence of a Gorenstein analytic struc-
ture, the construction was given by a very special analytic plumbing.

In this section we wish to describe a construction for every numerically Gorenstein
resolution graph I', which gives a Gorenstein singularity with resolution graph I'; and
furthermore every Gorenstein singularity with resolution graph I' can be given by this
construction.

Although, very little is known about the moduli space of the possible Gorenstein
analytic structures of a singularity corresponding to the numerically Gorenstein reso-
lution graph I'; or even about the possible analytic structures, the minimal value of the
geometric genus of Gorenstein structures should correspond to a ‘generic Gorenstein

structure’.
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If we consider all the possible analytic structures for the resolution graph I,
then an appropriate definition of generic analytic structure was given in [NN18] (see
Chapter 4 here), and it was showed that the minimal possible geometric genus is
1 — ming<er, x(1), which is the geometric genus of this generic analytic structure.

In this section we describe a way to construct generically a Gorenstein analytic
structure, and we hope, that the p, of this singularity is the least possible among
all Gorenstein analytic singularities supported on I', and that we can compute them
explicitly in a combinatorial way from the resolution graph I' in the future.

First we prove a few lemmas, which will be useful in the following:

Lemma 6.1.1.3. Let us have a numerically Gorenstein resolution graph I', such that
Zx > F and let us have a vertex set I C V which consists of end vertices of the graph
and V \ I # 0 and we have (Zk), =1 for every vertex v € I.

Let us have a singularity X with resolution graph I', and we denote a small tubular
neighbourhood of Uyey\ 1 E,, by )?r (with dial graph T',.), and the restriction of the cycle
Zx to L(T,) by (Zk),-

Then the singularity X is Gorenstein if and only if the line bundle O z,), (K+Zx)

is trivial on the cycle (Zy),.

Proof. Assume first that X is Gorenstein. This happens if and only if h'(Ogz,) >
h'(Oz,._g,) for every vertex u € V.

Notice, that h'(Oz,) = h°(Oz,. (K + Zx)) and h'(Oz, _5,) = h*(Oz, g, (K +
Zi — E,)), which means, that if the singularity is Gorenstein, then h°(Ogz, (K +
Zrk)) > h%(Ogz, g, (K + Zx — E,)) for every vertex u € V, which means, that
HY(Oz, (K + Zk))reg # 0.

On the other hand we know, that ¢'(Oz,. (K + Zk)) = 0, so the line bundle
Oz (K + Zg) is trivial hence its restriction, the line bundle Oz, (K + Zk), is

trivial as well.
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Next assume that Oz, (K + Zk) is trivial, and let us fix a vertex u € V'\ I such
that (Zk), > 1. Then we have h®(Oz,), (K + Zk)) > h°(O(z,),—p. (K + Zx — Ey)).

With the notation E; = ZUG ; B, consider the following exact sequence:
0— HY Oz, _p(—E)) = H(Oy,) — H(Op) » H (O, _g(—FE)) = H(Ogz,) — 0.

We know, that the map H°(Oy, ) — H°(Og) is surjective, hence we get that h' (O, _p(—FE)) =
h*(Oz,). On the other hand, the Laufer sequence starting from E; goes through E,
therefore h'(Oz,. _g,(—E;)) = W(Oz,._p(—F)) + x(Er) — x(E£). This means that
W Oz, (—Er)) = BN (Ozp—p(—F)) + |Er] = 1 = W (Ogz,) + |Ef| — 1, where |E}]
denotes the number of connected components of Ej.

By duality h°(Oz,), (K + Zk)) = h'(Oz,) + |Ef| — 1.

Similarly we have the following exact sequence:

0— HO(OZK,EH,E(—E)) — HO(OZK,EH) — HO(OE)

— H1<OZK—EH—E<_E>) — H1<OZK—EH> — 0.

We know, that the map H°(Oyz, _g,) — H°(Og) is surjective, hence h' (Oz, g, p(—F)) =
h*(Oz,_g,). On the other hand the Laufer sequence starting from FE; to the Lip-
man cone goes through F, therefore h'(Oyz,. g, g, (—FEr)) = h'(Oz, g, p(—F)) +
X(Er) — x(E), which means, that h'(Ogz, g, g, (—=E7)) = b (Oz, 5, 5(—E)) +
|Er| — 1.

This means that h°(O(z,),—g, (K + Zx — E,)) = B (Oz,—g,) + | Erf| — 1.

But we know that h°(Oz,), (K + Zk)) > h°(O(z,),—p. (K + Zx — E,)), which
yields, that h'(Oz,) > h'(Oy,_E,). In particular, by Lemma 6.1.1.1 X is Gorenstein,

which proves the claim of the lemma completely. O

6.1.1.4. In the main construction the next fact will be used several times. It follows

from Theorem 3.4.1.9.
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Lemma 6.1.1.5. Let I be the dual graph of a resolution X and fix X; (neighbourhood
of Uyer By ) associated with some I C V. Assume that the E*—support of a line bundle

L € Pic(X) is in V\I (i.e. if (c1 L, E,) # 0 thenv € I). Then for N > 0 the bundle

LN is in the image of NN (Z) (Z > 0) if and only if L|g, is trivial.

6.1.2 The construction

In the following we will describe our main construction, which provides for a minimal
numerically Gorenstein resolution graph I' a Gorenstein analytic structure.

In the following we can assume that the resolution graph I is not rational, because
in the rational case the resolution graph is numerically Gorenstein if and only if it is
an ADE graph, and in that case any analytic type is Gorenstein.

Hence, we start with a nonrational minimal numerically Gorenstein resolution

graph I'. Then automatically Zx > E. Write Zx = > _\ t, - E,, where 0 < t, € Z,

VeV
and set [ := {v € V|t, > 1}. Furthermore, choose a very large integer N.

Whenever v € [ we blow it up N times, then we get N new vertices, then we
blow up each new vertex N times, then we get N? new vertices, and we repeat this
procedure ¢, — 1 times. We denote the new resolution graph by I', with vertex set V.
For a vertex v € I, 1 <17 <t, —1 we denote by L,; C I', the subset of new vertices
constructed during the ¢-th iteration step of the blowing up procedure applied at the
vertex v. Set also L, o = {v}.

Then |L, ;| = N" and (Zg), = Y wey o By + Zvel,lgigtv—l,ueLv,i(tv — i) Fy.

For a vertex u € L,; we denote by A, € Ujt1<j<t,—1Ly,; C Vs the set of vertices

obtained by the blowing up procedure via blowing up (infinitesimally close) the vertex

u some times. We have [A,| = >0, ., | N

Lemma 6.1.2.1. (1) Fiz a vertex u € L,; (wherev € [ and 0 <i<t,—1) and a
subgraph T C Ty, such that V(I') N A, = 0 and v € V(I).

Assume that X' is a resolution of an arbitrary (analytic) singularity corresponding
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to the resolution graph I''. Then the pole of any differential form from HO(OZ}( (Z1 +
K")) on the exceptional divisor E, is of order at most 1.

(2) The subgraph Ty C Ty, supported on the vertex set V is rational.

Proof. Part (1) follows from the following facts (under the assumption Zx > 0)

(a) If X is a resolution with graph I' then the pole-cycle of any form is < | Z|.

(b) If I'" C I is a full subgraph, then Zx(I'") < Zg(T')|r.

(c) If " is a graph, and u € V, and I, . is obtained from I' by replacing the Euler
decoration E? of I by some e < 0, then the E,—coefficient of Z(T,.) is < 2.

(a) follows from the generalized Grauert-Riemenschneider vanishing and Laufer’s
duality H*(O3(K + | Zk]))/H*(O3(K)) = H'(Oz)*. For (b) use (Zx(I"),E,) >
(Zk(D)|r, E,) for any v € V(IV). Finally, for (c) decompose I'\ u into disjoint full
subgraphs Uy, and let v, € V(I'y) be adjacent to u in I'. Set E} (I'x) be the dual
in Ty, and write E* := ", E» (I'y) and Z := ), Zx (') too.

Then we claim that Zk([',.) has the form Z(z) := Z 4+ xz(E* + E,) for certain
x € Q. Indeed, (Z(z), E,) = (Z, E,) for any v # u. Hence x is uniquely determined
from (Z(z), E,) = e+ 2, that is, (Z, E,) + (E*, E,) + xe = e+ 2. Here (Z, E,) and
(E*, E,) are e-independent. By a limit argument the coefficient = is < 2 if e < 0.

(2) In this case any pole of differential form is at most one, hence the cohomological

cycle is < E. In particular, p, < h'(Of) = 0. O

6.1.2.2. Now we can describe the construction of a Gorenstein analytic type from
the resolution graph I.

Denote by I'y the full subgraph of vertices (strict transforms) V' (as in Lemma
6.1.2.1), and let )?0 be the corresponding resolution. By Lemma 6.1.2.1 it is rational,
let is fix an arbitrary analytic structure on )~(0.

In the following we glue the tubular neighborhoods of the other exceptional divi-

sors B, u € Vy \ V, in T := max,e;{t, — 1} steps.
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In the i—th step (1 < ¢ < T) we contract from the resolution space X;_, the
new space X;. For 0 < i < T the space X, is associated with the full subgraph
I'; with vertices V(I';) := V U Uyer,1<j<min{to—1,}Lv,j- The resolution space X, is
obtained from X;_; by gluing the tubular neighborhoods of the divisors F,, with
w e AV, = V(I) \ V(I'is1) = Uper,i<t,—1Lv,; In a special way.

For any 1 <i < T set the line bundle £; = Og (= Zk(I'y)|r, — K3) € Picct () (X)),

(Here Zk (')

r, denotes the homomological restriction: projection in E—coordinates
to the lattice of T';.) Note that I'y = T, Xp = X, and Lp = Oz, (—=Zk(Iy) — Kp).

Also, for 1 <4 < T'let I} be the full subgraph with vertices Uyer 1<j<minft, —1,i} Lv,j—1
and )Af{ the corresponding resolution space. Since I'; C I'; one also has )Z'Z’ c X,

By induction we wish to prove that the following condition: for any 1 < i < T
the restricted line bundle ;] % is a trivial. Note that the E*-support of c1(L;) is
contained in Ch; 1= Uyer, i<ty—2Lyi. (Le., if (Zx(Ty)|r, + Kb, By) # 0 with w € V(I)
then w € Ch;; Ch; are those vertices from V(I';), which have adjacent vertices from
V([,) \ V(I';).) In particular, the Chern class of the restriction £;| % s automatically
trivial; here we impose the analytic triviality of the bundle.

Note that for i = 1 the graphs I'} is a subgraph of the rational Iy hence L;| % is
trivial.

Next, assume that ¢ > 2 and £;,_; € Piccl(ﬁ“l)()@,l) has the property that its
restriction £; 1| %, is trivial. Then we wish to glue the tubular neighborhoods of

{Ew}ay, in such a way that the property will be true at level i as well.

i, — Kb) € PiC(Xi), and Ef = Of(i<_ZK(Fb)‘AV¢) €

Write £ = Ox (—Zk(Ty)
Pic()?i). Then, clearly, £; = £} ® L. Since E, N E, = () whenever u € AV; and
w € I',_; we get that 'C?|)~(L1 is trivial. Note also that Eﬂgh = Ei_1|)}£71, which is
trivial by the inductive step. In particular, L] g, =L | %, = L] %o, s trivial.

Hence we need to concentrate only on the extension of this triviality on the whole )N(Z’ .

Note that L,; C AV; := V(I')\V(T';_1) if and only if L, ;1 C AV :=V(I)\V(T_,).
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Correspondingly, when we glue the F,,’s from AV; we glue them along curves indexed
by the vertices from AV/, and by convenient gluing we wish to guarantee the triviality
of the bundle along the extra support A)V).

Consider again the bundle G; := Eﬂ)}z{ € Pic(X!). Since G; = L’ifl’)?;a it is
independent on the gluing of the tubular neighbourhoods of {E, },eay,. Moreover,
c1(G;) is E*—supported on AV, and gi’)?{,l is trivial. Therefore, by Lemma 6.1.1.5,
GM is in the image of the Abel map cM(9)(Z;) (Z; € L(T}), Z; > 0).

On the other hand, Lf];q = (’))};(—ZK(Fb)MVi) depends essentially on the gluing
of the curves {Ey}weay,. Furthermore, c; (L] 5(1{) = —1(G;). Since by construction
N is very large, the image of the corresponding Abel map is stabilized, it is an affine
space of dimension hl((’);q) — hl(o)?;,l)‘ Since the differential forms in X! have pole
order at most one, and the coefficients of Zx(I'y)|ay, all along AV; are non-zero,
the Abel map depends only on the intersection points of the effective divisors along
{Ew }uweay,. Hence, by moving the intersection points of the curves { £y }uweay, with
{Ew }weay (and due to the choice N > 0) the bundle (£f|§£)M can be any point
of the ¢Me1(%)  In particular we can arrange that (£f|)~q)M ® (L’ﬂ)@)M is trivial. In
particular, £,| % is trivial, what we wish to realize.

Therefore, at the end of the induction, we get that Lr| %1 is trivial. But X/ = )?r

in the notation of Lemma 6.1.1.3, hence by that Lemma X, is Gorenstein. Then X

is Gorenstein too.

6.1.2.3. In the following we wish to show that every Gorenstein singularity X sup-
ported on the resolution graph I' can be given by this construction.

Indeed, consider the line bundle £ = Oz (—=Zk(I'y) — Kp). If X (hence X, t0o)
is Gorenstein then it is trivial, cf. Lemma 6.1.1.3. Hence, its restriction to any )?1 is
trivial too.

Next, write £ = Og (=Zk([y)|r, — Kp) and L = Oz (=Zk(I)|r,\r;). Then

L =L ® L". Moreover, by support argument as above, £”|¢, is trivial. Hence £’
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should be trivial too. But £'|z, = £;|5,, and the triviality of each £;|5, characterizes

our main construction.

This means exactly, that every Gorenstein singularity supported on the resolution

graph I' can be given by the construction described above.
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Chapter 7

Further results

In this chapter we summarise a couple of further results from [N19a] and [N19b],
where we do not prove most of the statements, we just wish to make a clear picture

about the results.

7.1 Relatively generic structures on normal sur-
face singularities

In this section we investigate a relative setup of generic structures on surface singu-
larities, where we fix a given analytic type or line bundle on a smaller subgraph or
more generally on a smaller cycle and we choose a relatively generic line bundle or
analytic type on the large cycle and wish to compute it’s invariants, like geometric
genus or h' of natural line bundles.

The formulas yielding the answers to this questions are quite intresting on their
own, however the real power of these results, that they give possibility for inductive
proofs of problems regarding generic surface singularities.

The two main theorems will be the analouges of our main theorems about generic

line bundles and invariants of generic normal surface singularities in the previous
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sections.

We consider a cycle Z > E on a resolution X , and a smaller cycle Z; < Z,
where we denote |Z;| = V; and the subgraph corresponding to it by 7;. We have the
restriction map r : Pic(Z) — Pic(Z;) and one has also the (cohomological) restriction
operator Ry : L'(T) — L} := L'(T1) (defined as Ry(E!(T)) = E!(T1) if v € V1, and
Ry(E}(T)) = 0 otherwise). For any £ € Pic(Z) and any I' € L'(T) it satisfies

1 (r(L)) = Ry (e1(L)). (7.1.0.1)

In particular, we have the following commutative diagram as well:

ECa () <5 Pid(2)
de 4

R

ECaf®) (7)) “— Picm (7))

By the ‘relative case’ we mean that instead of the ‘total’ Abel map ¢ (with
I'e =8 and Z > FE) we study its restriction above a fixed fiber of r. That is, we fix
some £ € Pic™@) (7)), and we study the restriction of ¢’ to (r o) "H(&) — r~1(£).

If we denote the subvariety (rod’)~'(&£) = (¢F" o)~ (£) C ECa’(Z) by ECal"*,
then in the relative setup ECa'"* plays the role of the space of effective Cartier divisors
ECa! (Z) and we have the relative Abel map ECal* — r~1(£).

In the nonrelative case one of the crucial facts we use is that the space ECal/(Z ) is
a nice smooth algebraic variety, although at this point we don’t know anything about
the space ECal"*.

To be able to control the behaviour of the space ECa"* we need some key prop-

erties of the map v, namely we have the following lemma:

Proposition 7.1.0.2. (a) t is a local submersion, that is, for any D € ECa' (Z) and
Dy :=t(D), the tangent map Tpt is surjective.

(b) v is dominant.
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(¢) any non-empty fiber of ¢ is smooth of dimension (I',Z) — (I',Z1) = (I, Z3),

and it is irreducible.

The main corrolary will be, that the space ECa"* is indeed a smooth irreducible

algebraic variety:

Corollary 7.1.0.3. Fizl' e -S§', Z > E, Z1 < Z and £ € PicR(ll)(Zl). Assume that
ECa"* is nonempty. Then it is smooth of dimension h'(Zy, £) —h'(Zy,Oz)+ (I, Z)

and 1t 1s irreducible.

We can ivestigate also in the relative case the dominance property of the relative
Abel map and it turns out, that again it depends just only on the analytic structre
of the subsingularity )?1 of X supported on |Z;|, and the cuts D, how we glue the
excpetional divisors E,, which have got a neighbour in |Z;|.

Fixl'le -8, Z>F, Zi;<Zand £ € Pich(ll)(Zl) as above.

Let’s say that the pair (', £) is relative dominant on the cycle Z if the closure of
r~ (L) NIm((2)) in r~ (L) is 7 1(L).

We prove the following theorem:

Theorem 7.1.0.4. One has the following facts:

(1) If (I, £) is relative dominant on the cycle Z, then ECa'"* is nonempty and
WY Z,L) = h'(Z, L) for any generic L € r~1(L).

(2) (', £) is relative dominant on the cycle Z, if and only if for all 0 < | < Z,

l € L one has
X(=U) = h' (2, £) < x(=U' +1) = K ((Z = D)1, (=R (1))

, where we denote (Z — 1)1 = min(Z — 1, Zy).

We will also state the analouge of our main theorem about cohomology numbers

of generic line bundles in the relative setup:
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Theorem 7.1.0.5. Fix ' €¢ =S', Z > E , Z, < Z and £ € Pich(l/)(Zl) as n
Theorem 7.1.0.4. Then for any £ € r~1(£) one has

h(Z, L) > x(—=1U') —ming<j<z 1er{ x(=' + 1) = h'((Z — 1)1, &(—R1(1))) }, or, equivalently,

h(Z, L) > maxoi<z,ier{ X(Z — 1, L(=1)) + W' ((Z — D1, £(=Ru(]))) }-
(7.1.0.6)

Furthermore, if L is generic in v~ (L) then in both inequalities we have equalities.

7.2 Holes in possible values of h! of line bundles
and geometric genus

In this section we summarise the results from [N19b] about the possible geometric
genuses correspinging to a fixed topological type T.

Let’s have a resolution graph 7 and a corresponding normal surface singularity
with resolution space X , furthermore let’s fix a Chern class I’ and an effective cycle
Z. Then our first main theorem states that the possible values of h'(Z, L), where

Le Picl/(Z ) form an interval of integers, more precisely we have:

Theorem 7.2.0.1. Let’s have an arbitrary resolution graph T and a corresponding
singularity )?, an effective cycle Z and an abitrary chern class I'. Let’s denote k =
MAX ;. pio () h*(Z, L) and let’s have an arbitrary integer x(—I')—ming<j<z x(—'+1) <

r < k, then there is a line bundle £ € Pic" (Z), such that h'(Z,L) = r.

Similarly let’s have a resolution graph 7 and let’s fix a Chern class I’ and an
effective cycle Z, such that if I' = > |, b,F,, then b, < 0 for every vertex v € |Z|.
The second main theorem we prove states that the possible values of h'(O~(l')) form
an interval of integers if we consider any possible surface singularity with resolution

graph T and Og(I’) is the natural line bundle, more precisely we have:

Theorem 7.2.0.2. Let T be an arbitrary resolution graph with vertex set )V and let
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Z be an effective cycle on it, let’s have furthermore a Chern class ' € L', such that
I'=73%cvanky. Let’'s writel' =" .\, b,E,, and assume, that b, <0 if v € |Z].

Let’s have a singularity X supported on T, and let’s look at the natural line bun-
dle restricted to the cycle Z, Oz(I'). Suppose, that k = h*(Oz(l')) > x(=l') —
ming<;<z x(—=U'+1), and let’s have an arbitrary number k > m > x(—=I')—ming<;<z x(—1'+
1), then there is another singularity X' supported on the resolution graph T, for which

one has m = h(Oz(l")).

As a corollary it yields that the possible values of the geometric genus p,(X) form

an interval of integers.
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