Optimal long-term investment in illiquid markets when prices have negative memory

Lóránt Nagy

Supervisor: Miklós Rásonyi

A thesis submitted in fulfilment of the requirements for the degree of Practical Mathematics Specialization Program

Central European University

Declaration of Authorship

I, Lornat Nagy, declare that this thesis entitled, Optimal long-term investment in illiquid markets when prices have negative memory and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in

candidature for a research degree at this University. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help.

Abstract

In a discrete-time financial market model with instantaneous price impact, we find an asymptotically optimal strategy for an investor maximizing her expected wealth. The asset price is assumed to follow a process with negative memory. We determine how the optimal growth rate depends on the impact parameter and on the covariance decay rate of the price.

Contents

1	Introduction	2
2	Market model	2
3	Asymptotically optimal investment	3
4	Proofs 4.1 General bounds for variance and covariance 4.2 Key estimates	4 4 5

MSC (2010): 91G10, 91G80.

Keywords: processes with negative memory; price impact; optimal investment; fractional Brownian motion.

1 Introduction

Fractional Brownian motions (FBMs) with various Hurst parameters $H \in (0, 1)$ have been enticing researchers of financial mathematics for a long time, since the appearance of [4]. In idealistic models of trading, however, FBMs do not provide admissible models since they generate arbitrage opportunities (for $H \neq 1/2$), see [5]. In the presence of market frictions arbitrage disappears and FBMs become interesting candidates for describing prices.

In markets with instantaneous price impact the first analysis of long-term investment has been carried out in [2]: the optimal growth rate of expected portfolio wealth has been found and an asymptotically optimal strategy has been exhibited. The robustness of such results was the next natural question: is the particular structure of FBMs needed for these conclusions? In [2] a larger class of Gaussian processes could also be treated where future increments are positively correlated to the past and the covariance structure is similar to that of FBMs with H > 1/2. The question of extending the case of FBMs with H < 1/2 remained open.

The current paper provides such an extension, more involved than in the positively correlated case. For simplicity, we stay in a discrete-time setting. We derive the same conclusions as [2] did in the case of FBMs with H < 1/2 but for a larger class of Gaussian processes.

2 Market model

Let (Ω, \mathscr{F}, P) be a probability space equipped with a filtration $\mathscr{F}_t, t \in \mathbb{Z}$. Let E[X] denote the expectation of a real-valued random variable X (when exists). Consider a financial market where the price of a risky asset follows a process S_t , $t \in \mathbb{N}$, adapted to $\mathscr{F}_t, t \in \mathbb{N}$.

We will present a model where trading takes place with a temporary, nonlinear price impact, along the lines of [3] but in discrete time. For some $T \in \mathbb{N}$ the class of *feasible strategies* up to terminal time T is defined as

$$\mathscr{S}(T) := \left\{ \phi = (\phi_t)_{t=0}^T : \phi \text{ is an } \mathbb{R}\text{-valued, adapted process} \right\}.$$
(1)

As we will see, ϕ_t represents the *change* in the investor's position in the given asset. Let $z = (z^0, z^1) \in \mathbb{R}^2$ be a deterministic initial endowment where z^0 is in cash and and z^1 is in the risky asset.

For a feasible strategy $\phi \in \mathscr{S}(T)$, at any time $t \ge 0$, the number of shares in the risky asset is equal to

$$\Phi_t := z^1 + \sum_{u=0}^t \phi_u \,. \tag{2}$$

We will shortly derive a similar formula for the cash position of the investor.

In classical, frictionless models of trading, cash at time T + 1 equals

$$\sum_{u=1}^{T+1} \Phi_{u-1}(S_u - S_{u-1}).$$
(3)

Algebraic manipulation of (3) yields

$$\sum_{u=1}^{T+1} \Phi_{u-1}(S_u - S_{u-1}) = -\sum_{u=0}^{T} \phi_u S_u + S_{T+1} \sum_{u=0}^{T} \phi_u.$$

We assume that price impact is a superlinear power function of the "trading speed" ϕ so we augment the above with a term that implements the effect of friction:

$$-\sum_{u=0}^{T} \phi_{u} S_{u} + S_{T+1} \sum_{u=0}^{T} \phi_{u} - \sum_{u=0}^{t} \lambda |\phi_{u}|^{\alpha}$$

where we assume $\alpha > 1$ and $\lambda > 0$. We wish to utilize only those portfolios where the risky asset is liquidated by the end of the trading period so we define

$$\mathscr{G}(T) := \mathscr{S}(T) \cap \left\{ \phi : \Phi_T = \sum_{u=0}^T \phi_u = 0 \right\}.$$

We finally get that, for $\phi \in \mathcal{G}(T)$, the position in the riskless asset at time T + 1 is given by

$$X_T(\phi) := z^0 - \sum_{u=0}^T \phi_u S_u - \sum_{u=0}^T \lambda |\phi_u|^{\alpha}.$$
 (4)

For simplicity, we also assume $z^0 = z^1 = 0$ from now on, i.e. portfolios start from nothing.

To investigate the potential of realizing monetary profits, we focus on a riskneutral objective: a linear utility function. Let $x_- := \max\{-x, 0\}$ for $x \in \mathbb{R}$. Define, for $T \in \mathbb{N}$,

$$\mathscr{A}(T) := \left\{ \phi \in \mathscr{G}(T) : E[(X_T(\phi))_{-}] < \infty \right\},\$$

the class of strategies starting from a zero initial position in both assets and ending at time T + 1 in a cash only position with expected value greater than $-\infty$. The value of the problem we will consider is thus

$$u(T) := \sup_{\phi \in \mathscr{A}(T)} E[X_T(\phi)].$$

The investors's objective is to find ϕ which, at least asymptotically as $T \to \infty$, achieves the same growth rate as u(T).

3 Asymptotically optimal investment

First we introduce assumptions on the price process and its dependence structure. **Assumption 3.1.** Let Z_t , $t \in \mathbb{Z}$ be an adapted, real-valued, zero-mean stationary Gaussian process which will represent price increments. Let $r(t) := \operatorname{cov}(Z_0, Z_t)$, $t \in \mathbb{Z}$ denote its covariance function. We assume that there exists $T_0 > 0$ and $J_1, J_2 < 0$ such that for all $t \ge T_0$,

$$J_1 t^{2H-2} \le r(t) \le J_2 t^{2H-2} \tag{5}$$

is satisfied for some parameter $H \in (0, \frac{1}{2})$. Furthermore,

$$\sum_{t\in\mathbb{Z}}r(t)=0.$$
(6)

Let us introduce the adapted price process defined by $S_0 = 0$ and $S_t = S_{t-1} + Z_t$, $t \ge 1$.

Remark 3.2. Properties (5) and (6) express that Z is a *process with negative memory*, see Definition 1.1.1 on page 1 of [1]. When $Z_t, t \in \mathbb{Z}$ are the increments of a FBM with Hurst parameter H < 1/2, then (5) is satisfied. This is the motivation for choosing H for parametrization (and not 2H - 2).

The next theorem is our main result: it provides the explicit form of an (asymptotically) optimal strategy and determines its expected asymptotic growth rate.

Theorem 3.3. Let Assumption 3.1 be in force. If λ is small enough then

(i) maximal expected profits satisfy

$$\limsup_{T \to \infty} \frac{u(T)}{T^{H\left(1 + \frac{1}{a-1}\right) + 1}} < \infty; \tag{7}$$

(ii) the strategy

$$\phi_t(T,\alpha) := \begin{cases} -\operatorname{sgn}(S_t) |S_t|^{\frac{1}{\alpha-1}}, & 0 \le t < T/2, \\ -\frac{1}{T/2} \sum_{s=0}^{T/2} \phi_s, & T/2 \le t \le T \end{cases}$$
(8)

satisfies

$$\liminf_{T \to \infty} \frac{E X_T(\phi(T, \alpha))}{T^{H(1 + \frac{1}{\alpha - 1}) + 1}} > 0.$$
(9)

where T runs through multiples of 6 everywhere.

4 Proofs

4.1 General bounds for variance and covariance

First we make some useful preliminary observations. Using stationarity of the increments of the process S, we have

$$\operatorname{var}(S_{t}) = \operatorname{cov}(S_{t}, S_{t}) = \operatorname{cov}(\sum_{j=1}^{t} S_{j} - S_{j-1}, \sum_{i=1}^{t} S_{i} - S_{i-1})$$

$$= t \cdot \operatorname{var}(S_{1} - S_{0}) + 2 \sum_{i=2}^{t} \sum_{j=1}^{i-1} \operatorname{cov}(S_{j} - S_{j-1}, S_{i} - S_{i-1})$$

$$= t \cdot \operatorname{var}(S_{1} - S_{0}) + 2 \sum_{i=2}^{t} \sum_{j=1}^{i-1} \operatorname{cov}(S_{1} - S_{0}, S_{i-j+1} - S_{i-j})$$

$$= t \cdot r(0) + 2 \sum_{i=2}^{t} \sum_{j=1}^{i-1} r(i-j).$$
(10)

Furthermore, for s > t we similarly have

$$\operatorname{cov}(S_s - S_t, S_t) = \sum_{i=t+1}^s \sum_{j=1}^t r(i-j).$$
(11)

Observe also that we can write

$$r(0) = -2\sum_{j=1}^{\infty} r(j).$$
 (12)

Turning to the variances, we first obtain a convenient expression for them. Using (9) and (11), we have

$$\operatorname{var}(S_t) = -2t \sum_{j=1}^{t-1} r(j) - 2t \sum_{j=t}^{\infty} r(j) + 2 \sum_{i=2}^{t} \sum_{j=1}^{i-1} r(j),$$

and algebraic manipulation of the summation operation $\left(-2t\sum_{j=1}^{t-1}+2\sum_{i=2}^{t}\sum_{j=1}^{i-1}\right)$ yields

$$\begin{split} &-2t\sum_{j=1}^{t-1}+2\sum_{i=2}^{t}\sum_{j=1}^{i-1}\\ &=-2t\left(\sum_{j=1}^{T_0-1}+\sum_{j=T_0}^{t-1}\right)+2\left(\sum_{i=2}^{T_0-1}+\sum_{i=T_0}^{t}\right)\sum_{j=1}^{i-1}\\ &=-2t\sum_{j=1}^{T_0-1}-2t\sum_{j=T_0}^{t-1}+2\sum_{i=2}^{T_0-1}\sum_{j=1}^{i-1}+2\sum_{i=T_0}^{t}\sum_{j=1}^{i-1}\\ &=-2t\sum_{j=1}^{T_0-1}-2t\sum_{j=T_0}^{t-1}+2\sum_{i=2}^{T_0-1}\sum_{j=1}^{i-1}+2\sum_{j=1}^{T_0-1}+2\sum_{i=T_0+1}^{t}\sum_{j=1}^{t-1}+\sum_{j=T_0}^{t}\right)\\ &=-2t\sum_{j=1}^{T_0-1}-2t\sum_{j=T_0}^{t-1}+2\sum_{i=2}^{T_0-1}\sum_{j=1}^{i-1}+2\sum_{j=1}^{T_0-1}+2\sum_{i=T_0+1}^{t}\sum_{j=1}^{T_0-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{t-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{t-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{t}+2\sum_{i=T_0+1}^{t}\sum_$$

where the last line is only a reordering of terms. Setting $C_1 = \sum_{j=1}^{T_0-1} r(j)$, $C_2 = \sum_{i=2}^{T_0-1} \sum_{j=1}^{i-1} r(j)$ and $C_3 = 2(C_2 - (T_0 - 1)C_1)$, the above calculation gives

$$\operatorname{var}(S_t) = -2tC_1 + 2C_2 + 2C_1 + 2(t - T_0)C_1 + \left(-2t\sum_{j=t}^{\infty} -2t\sum_{j=T_0}^{t-1} + 2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}\right)r(j)$$
$$= C_3 + \left(-2t\sum_{j=t}^{\infty} -2t\sum_{j=T_0}^{t-1} + 2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}\right)r(j)$$
(13)

Now we are ready to present three lemmas, providing a lower and an upper bound for the variance and an upper bound for the covariance.

Lemma 4.1. There exist $T_1 \in \mathbb{N}$ and $B_1 > 0$ such that for all $t \ge T_1$ we have

$$\operatorname{var}(S_t) \ge B_1 t^{2H}$$
.

Proof. Using properties induced by the choice of T_0 in Assumption 3.1 first note that

$$\begin{pmatrix} -2t \sum_{j=T_0}^{t-1} +2 \sum_{i=T_0+1}^{t} \sum_{j=T_0}^{i-1} r(j) \\ \ge \left(-2t \sum_{j=T_0}^{t-1} +2(t-T_0) \sum_{j=T_0}^{t-1} r(j) \\ = -T_0 \sum_{j=T_0}^{t-1} r(j) \ge 0. \end{cases}$$

Also notice that

$$-2t\sum_{j=t}^{\infty} r(j) \ge -2J_2t\sum_{j=t}^{\infty} j^{2H-2} \ge -2J_2t\int_t^{\infty} u^{2H-2}du$$
$$= -2J_2t\frac{1}{2H-1}\left(-t^{2H-1}\right) = \frac{2J_2}{2H-1}t^{2H}.$$

Using these and (??)

$$\operatorname{var}(S_t) \ge C_3 + \frac{2J_2}{2H - 1}t^{2H}.$$

The threshold T_1 and the constant B_1 can be explicitly calculated in terms of the constants present in the above expression. This completes the proof. \Box

Lemma 4.2. There exist $T_2 \in \mathbb{N}$ and $B_2 > 0$ such that for all $t \ge T_2$ we have

$$\operatorname{var}(S_t) \le B_2 t^{2H}.$$

Proof. First note that algebraic manipulation of the operation $\left(-2t\sum_{j=T_0}^{t-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}\right)$

yields

$$\begin{split} &-2t\sum_{j=T_0}^{t-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}=-2(t-T_0+T_0)\sum_{j=T_0}^{t-1}+2\sum_{i=T_0}^{t}\sum_{j=T_0}^{i}\\ &=-2\sum_{i=T_0}^{t-1}\sum_{j=T_0}^{t-1}+2\sum_{i=T_0}^{t-1}\sum_{j=T_0}^{i}-2T_0\sum_{j=T_0}^{t-1}=-2\sum_{i=T_0}^{t-1}\left(\sum_{j=T_0}^{t-1}-\sum_{j=T_0}^{i}\right)-2T_0\sum_{j=T_0}^{t-1}\\ &=-2\sum_{i=T_0}^{t-1}\sum_{j=i+1}^{t-1}-2T_0\sum_{j=T_0}^{t-1}. \end{split}$$

By Assumption 3.1, this implies

$$\begin{split} & \left(-2t\sum_{j=T_0}^{t-1}+2\sum_{i=T_0+1}^{t}\sum_{j=T_0}^{i-1}\right)r(j) \leq -2J_1\left(\sum_{i=T_0}^{t-1}\sum_{j=i+1}^{t-1}j^{2H-2}+T_0\sum_{j=T_0}^{t-1}j^{2H-2}\right) \\ & \leq -2J_1\left(\sum_{i=T_0}^{t-1}\int_i^{t-1}u^{2H-2}du+T_0\int_{T_0-1}^{t-1}u^{2H-2}du\right) \\ & = -\frac{2J_1}{2H-1}\left(\sum_{i=T_0}^{t-1}\left((t-1)^{2H-1}-i^{2H-1}\right)+T_0\left((t-1)^{2H-1}-(T_0-1)^{2H-1}\right)\right) \\ & = -\frac{2J_1}{2H-1}\left(t(t-1)^{2H-1}-\sum_{i=T_0}^{t-1}i^{2H-1}-T_0(T_0-1)^{2H-1}\right) \\ & \leq \frac{2J_1}{2H-1}\sum_{i=T_0}^{t-1}i^{2H-1}+\frac{2J_1}{2H-1}T_0(T_0-1)^{2H-1} \\ & \leq \frac{2J_1}{2H(2H-1)}((t-1)^{2H}-(T_0-1)^{2H})+\frac{2J_1}{2H-1}T_0(T_0-1)^{2H-1} \\ & \leq \frac{2J_1}{2H(2H-1)}t^{2H}+\frac{2J_1}{2H-1}T_0(T_0-1)^{2H-1}. \end{split}$$

To proceed observe that, using the asymptotics in Assumption 3.1, for t > 2 we have

$$\begin{split} -2t\sum_{j=t}^{\infty} r(j) &\leq -2J_1 t \sum_{j=t}^{\infty} j^{2H-2} \leq -2J_1 t \int_{t-1}^{\infty} u^{2H-2} du \\ &= \frac{2J_1 t}{2H-1} (t-1)^{2H-1} \leq \frac{2J_1 t}{2H-1} (t-t/2)^{2H-1} \\ &= \frac{2^{2-2H} J_1}{2H-1} t^{2H}. \end{split}$$

These results yield for $t > \max(2, T_0)$, using again (??), that

$$\operatorname{var}(S_t) \le C_3 + \left(\frac{2J_1}{2H(2H-1)} + \frac{2^{2-2H}J_1}{2H-1}\right)t^{2H} + \frac{2J_1}{2H-1}T_0(T_0-1)^{2H-1}$$
(14)

The threshold T_2 and the constant B_2 could again be explicitly given. The proof is complete.

We proceed with the lemma controlling the covariance $\operatorname{cov}(S_s - S_t, S_t)$.

Lemma 4.3. There exist $T_3 \in \mathbb{N}$ and $D_1, D_2 > 0$ such that

$$\operatorname{cov}(S_s - S_t, S_t) \le D_1 \text{ for all } s > t > T_3.$$

For a fixed v > 1, define

$$U(v) := J_2 (2H)^{-1} (2H - 1)^{-1} \left(1 - \left(v^{2H} - (v - 1)^{2H} \right) \right).$$

Then

$$\operatorname{cov}(S_s - S_t, S_t) \le D_2 - U(v)t^{2H} < 0 \text{ holds for all } s > t > T_3 \text{ satisfying } \frac{s}{t} > v.$$

There exists K > 1 and $T_4 \in \mathbb{N}$ such that

$$cov(S_s - S_t, S_t) \le 0$$
 for all $s > t > T_4$ satisfying $s - t > K$

Proof. Let us set

$$C_4 = \sum_{j=-T_0+1}^{0} \sum_{i=1}^{1+T_0} r(i-j), \quad C_5 = J_2 \sum_{j=-T_0+1}^{0} \sum_{i=1}^{1+T_0} (i-j)^{2H-2},$$

and define $C_6 = C_4 - C_5$. Note that, for each $t \in \mathbb{N}$, $C_4 = \sum_{j=t-T_0+1}^{t} \sum_{i=t+1}^{t+1+T_0} r(i-j)$, and $C_5 = J_2 \sum_{j=t-T_0+1}^{t} \sum_{i=t+1}^{t+1+T_0} (i-j)^{2H-2}$. For $t > T_0$, we have

$$\begin{aligned} \operatorname{cov}(S_{s} - S_{t}, S_{t}) &= \sum_{j=1}^{t} \sum_{i=t+1}^{s} r(i-j) \\ &\leq C_{6} + J_{2} \sum_{j=1}^{t} \sum_{i=t+1}^{s} (i-j)^{2H-2} \leq C_{6} + J_{2} \sum_{j=1}^{t} \int_{t+1-j}^{s+1-j} u^{2H-2} du \\ &\leq C_{6} + \frac{J_{2}}{2H-1} \sum_{j=1}^{t} \left((s+1-j)^{2H-1} - (t+1-j)^{2H-1} \right) \\ &= C_{6} + \frac{J_{2}}{2H-1} \sum_{j=1}^{t} (s+1-j)^{2H-1} - \frac{J_{2}}{2H-1} \sum_{j=1}^{t} (t+1-j)^{2H-1} \\ &\leq C_{6} + \frac{J_{2}}{2H-1} \int_{s-t}^{s} u^{2H-1} du - \frac{J_{2}}{2H-1} \int_{1}^{t+1} u^{2H-1} du \\ &= C_{6} + \frac{J_{2}}{2H(2H-1)} \left(s^{2H} - (s-t)^{2H} \right) - \frac{J_{2}}{2H(2H-1)} \left((t+1)^{2H} - 1 \right) \\ &= C_{6} + \frac{J_{2}}{2H(2H-1)} \left(s^{2H} - (s-t)^{2H} - \left((t+1)^{2H} - 1 \right) \right) . \end{aligned}$$

Since $k \ge t+1$ the expression $C_7 (s^{2H} - (s-t)^{2H} - ((t+1)^{2H} - 1))$ is non-positive, which yields

$$\operatorname{cov}(S_s - S_t, S_t) \le C_6$$

proving the first statement of the lemma. Now, for all v > 1 the property $\frac{s}{t} > v$ - together with the previous constraint of $t > T_0$ - further implies

$$\begin{aligned} \operatorname{cov}(S_s - S_t, S_t) &\leq C_6 + C_7 \left(s^{2H} - (s-t)^{2H} - \left((t+1)^{2H} - 1 \right) \right) \\ &\leq C_6 + C_7 \left((v^{2H} - (v-1)^{2H} - 1)t^{2H} + 1 \right) \\ &= C_6 + C_7 + C_7 (v^{2H} - (v-1)^{2H} - 1)t^{2H}. \end{aligned} \tag{16}$$

Obviously, for large enough t the bound becomes strictly negative, proving the second statement. Now, assuming $s - t \ge K > 1$ beside $t > T_0$ we have

$$\begin{aligned} \operatorname{cov}(S_s - S_t, S_t) &\leq C_6 + C_7 \left((t+K)^{2H} - K^{2H} - \left((t+1)^{2H} - 1 \right) \right) \\ &= C_6 - C_7 \left(K^{2H} - 1 \right) + C_7 \left((t+K)^{2H} - (t+1)^{2H} \right) \\ &\leq C_6 - C_7 \left(K^{2H} - 1 \right) + C_7 2 H K t^{2H-1}. \end{aligned}$$

$$(17)$$

This shows that K can be chosen so large that $C_6 - C_7(K^{2H} - 1) < 0$ and then, since 2H - 1 < 0, a threshold T_4 - depending on K - for the variable t can be specified so that

$$C_6 - C_7 \left(K^{2H} - 1 \right) + C_7 2HKt^{2H-1} \le 0$$

whenever t exceeds the threshold, proving the third statement, completing the proof of the lemma.

4.2 Key estimates

Define

$$p(s,t) := \frac{\operatorname{cov}(S_s, S_t)}{\operatorname{var}(S_t)} = \frac{\operatorname{cov}(S_s - S_t, S_t)}{\operatorname{var}(S_t)} + 1, \ s \in \mathbb{N}, \ t \in \mathbb{N} \setminus \{0\}.$$

Lemma 4.4. There exist $\overline{T} \in \mathbb{N}$ and constants R > 0, K > 1, $\eta \in (1/2, 1)$ and $\varepsilon > 0$ such that

- (i) $\rho(s,t) < 1+R$, for all t < s;
- (*ii*) $\rho(s,t) \leq 1$, whenever $\overline{T} < t < s$ and s t > K;
- (iii) For all $T \in \mathbb{N}$, $\rho(s,t) \le 1 \varepsilon$, whenever $\overline{T} < t < \frac{T}{2} < \eta T < s$. Furthermore, one can also guarantee $T/2 + K < \eta T$ in this case.

Proof of Lemma 4.3. Let B_2 , $U(\cdot)$, T_1 , T_2 , T_3 , T_4 , D_1 , D_2 and K be as in Lemma 4.2 and Lemma **??**. Choose $T' > \max\{T_1, T_2, T_3\}$ so large that $\frac{D_2}{B_2}(T')^{-2H} - \frac{U(4/3)}{B_2} < 0$ and set $\eta := 2/3$. Lemma 4.2 and Lemma **??** now show that whenever T' < t < T/2 and $s \in (\eta T, T)$, we have

$$\frac{\operatorname{cov}(S_s - S_t, S_t)}{\operatorname{var}(S_t)} \le \frac{D_2}{B_2} t^{-2H} - \frac{U(4/3)}{B_2} \le \frac{D_2}{B_2} (T')^{-2H} - \frac{U(4/3)}{B_2},$$
(18)

which yields $\rho(s,t) \leq 1-\varepsilon$, where $\varepsilon = -\frac{D_2}{B_2}(T')^{-2H} + \frac{U(4/3)}{B_2}$. Lemma **??** shows that $t > T_4$, ensures that s-t > K implies $\rho(s,t) \leq 1$. Finally, set $\overline{T} = \max\{T', T_4, 3K\}$. It is clear – using (**??**) in the proof of Lemma **??** – that for fixed t, the function $(s,t) \mapsto \rho(s,t)$ is bounded. So let $D'_1 = \max_{0 < t < \overline{T}} \sup_{s \ge 0} \rho(s,t)$ and define $R = \max\{D_1, D'_1\} - 1$ It remains to guarantee $T/2 + K < \eta T$ but this follows since $\overline{T} < t < T/2$ implies T > 6K. The quantities η , \overline{T} , R, K and ε constructed above fulfill all the requirements.

Proof of Theorem 3.3. First we determine the maximal expected growth rate of portfolios. Let us define

$$Q(T) = \sum_{t=0}^{T} E|S_t|^{\frac{\alpha}{\alpha-1}}.$$

Let $G(x) := \lambda |x|^{\alpha}$, $x \in \mathbb{R}$ and denote its Fenchel-Legendre conjugate

$$G^*(y) := \sup_{x \in \mathbb{R}} (xy - G(x)) = \frac{\alpha - 1}{\alpha} \alpha^{\frac{1}{1 - \alpha}} \lambda^{\frac{1}{1 - \alpha}} |y|^{\frac{\alpha}{\alpha - 1}}, \qquad y \in \mathbb{R}.$$
 (19)

By definition of G^* , for all $\phi \in \mathscr{G}(T)$,

$$X_T(\phi) \le \sum_{t=0}^T G^*(-S_t) = C \sum_{t=0}^T |S_t|^{\alpha/(\alpha-1)}$$

for some C > 0 and hence

$$EX_T(\phi) \le CQ(T) < \infty. \tag{20}$$

Note that this bound is independent of ϕ . Using Lemma 4.2 it holds that

$$Q(T) = C_{\frac{\alpha}{\alpha-1}} \sum_{t=0}^{T} \operatorname{var}(S_{t})^{\frac{\alpha}{2(\alpha-1)}}$$

$$\leq C_{\frac{\alpha}{\alpha-1}} \sum_{t=0}^{T_{2}-1} \operatorname{var}(S_{t})^{\frac{\alpha}{2(\alpha-1)}} + C_{\frac{\alpha}{\alpha-1}} B_{2} \sum_{t=T_{2}}^{T} t^{\frac{H\alpha}{(\alpha-1)}}$$

$$\leq C_{\frac{\alpha}{\alpha-1}, T_{2}} + C_{\alpha, H, B_{2}} T^{H(1+\frac{1}{\alpha-1})+1}.$$
(21)

Thus the maximal expected profit grows as $T^{H(1+\frac{1}{\alpha-1})+1}$ with the power of the horizon, this proves (??). With the strategy defined in (7), the dynamics takes the form

$$\begin{split} X_T(\phi) &= \sum_{t=0}^{T/2} |S_t|^{\frac{\alpha}{\alpha-1}} \\ &- \sum_{t=0}^{T/2} \lambda |S_t|^{\frac{\alpha}{\alpha-1}} \\ &- \frac{1}{T/2} \sum_{s=T/2+1}^T S_s \sum_{t=0}^{T/2} \operatorname{sgn}(S_t) |S_t|^{\frac{1}{\alpha-1}} \\ &- \frac{1}{T/2} \sum_{s=T/2+1}^T \lambda \left| \sum_{t=0}^{T/2} \operatorname{sgn}(S_t) |S_t|^{\frac{1}{\alpha-1}} \right|^{\alpha}. \end{split}$$

In the above expression let us denote the four terms by $I_1(T)$, $I_2(T)$, $I_3(T)$, $I_4(T)$, respectively, so that

$$X_T(\phi) = I_1(T) - I_2(T) - I_3(T) - I_4(T).$$

The upper bound constructed in $(\ref{eq:integral})$ for Q(T) right away gives us an upper estimate for $EI_1(T)$ as $EI_1(T) = Q(T/2)$. Using Lemma 4.1, we likewise present a lower estimate as

$$Q(T/2) = E[I_1] = C_{\frac{\alpha}{\alpha-1}} \sum_{t=0}^{T/2} \operatorname{var}(S_t)^{\frac{\alpha}{2(\alpha-1)}}$$

$$\geq C_{\frac{\alpha}{\alpha-1}} \sum_{t=0}^{T_1-1} \operatorname{var}(S_t)^{\frac{\alpha}{2(\alpha-1)}} + C_{\frac{\alpha}{\alpha-1}} B_1 \sum_{t=T_1}^{T/2} t^{\frac{H\alpha}{\alpha-1}}$$

$$\geq C_{\frac{\alpha}{\alpha-1}, H, B_1, T_1} + C_{\frac{\alpha}{\alpha-1}, H, B_1} T^{H(1+\frac{1}{\alpha-1})+1},$$
(22)

To treat the terms $I_2(T)$ and $I_4(T)$, note that with $\alpha > 1$ the function $x \mapsto |x|^{\alpha}$ is convex, thus applying Jensen's inequality

$$|EI_4(T)| \le E|I_2(T)| = \lambda E\left[\sum_{t=0}^{T/2} |S_t|^{\frac{\alpha}{\alpha-1}}\right] = \lambda \sum_{t=0}^{T/2} E|S_t|^{\frac{\alpha}{\alpha-1}} = \lambda E[I_1(T)] = \lambda Q(T/2).$$
(23)

Controlling term $I_3(T)$ is done via exploiting a specific property of Gaussian processes, namely that S_s for s > t can be decomposed as $S_s = \rho(s,t)S_t + W_{s,t}$, where $W_{s,t}$ is independent of S_t and zero mean. With this, observe that

$$EI_{3}(T) = \frac{1}{T/2} \sum_{s=T/2+1}^{T} \sum_{t=0}^{T/2} E[\rho(s,t)S_{t}\operatorname{sgn}(S_{t})|S_{t}|^{\frac{1}{\alpha-1}}]$$

$$= \frac{1}{T/2} \sum_{s=T/2+1}^{T} \sum_{t=0}^{T/2} E[\rho(s,t)|S_{t}|^{\frac{\alpha}{\alpha-1}}].$$
(24)

Let the constants \overline{T} , R, K, $\eta = 2/3$ and ε be as in Lemma 4.3, and decompose the double sum in (??) as

$$\sum_{s=T/2+1}^{T} \sum_{t=0}^{T/2} = \sum_{s=T/2+1}^{T} \sum_{t=0}^{\bar{T}} + \sum_{s=T/2+1}^{T/2+K} \sum_{t=\bar{T}}^{T/2} + \sum_{s=T/2+K}^{\eta T} \sum_{t=\bar{T}}^{T/2} + \sum_{s=\eta T}^{T} \sum_{t=\bar{T}}^{T/2} \sum_$$

Note that applying the upper bound developed in Lemma 4.3 to the double sum in (??), the summand no longer depends on the running variable of the outer sum. Denoting $C_{\bar{T}} := \sum_{t=0}^{\bar{T}} E|S_t|^{\frac{\alpha}{\alpha-1}}$, this implies that

$$\begin{split} EI_{3}(T) &\leq \left(\sum_{t=0}^{T/2} + R\sum_{t=0}^{\bar{T}} + \frac{2RK}{T}\sum_{t=\bar{T}}^{T/2} - 2\varepsilon \left(1 - \frac{2}{3}\right)\sum_{t=\bar{T}}^{T/2}\right) E|S_{t}|^{\frac{\alpha}{\alpha-1}} \\ &= E[I_{1}(T)] + \left(R\sum_{t=0}^{\bar{T}} + \frac{2RK}{T}\sum_{t=\bar{T}}^{T/2} - \frac{2\varepsilon}{3}\sum_{t=\bar{T}}^{T/2}\right) E|S_{t}|^{\frac{\alpha}{\alpha-1}} \\ &= E[I_{1}(T)] + \left(R\sum_{t=0}^{\bar{T}} + \left(\frac{2\varepsilon}{3} - \frac{2RK}{T}\right)\sum_{t=0}^{\bar{T}-1} + \frac{2RK}{T}\sum_{t=0}^{T/2} - \frac{2\varepsilon}{3}\sum_{t=0}^{T/2}\right) E|S_{t}|^{\frac{\alpha}{\alpha-1}} \\ &= \left(1 - \frac{2\varepsilon}{3}\right) E[I_{1}(T)] + RC_{\bar{T}} + \left(\frac{2\varepsilon}{3} - \frac{2RK}{T}\right) C_{\bar{T}-1} + \frac{2RK}{T} E[I_{1}(T)], \end{split}$$

So we have

$$\begin{split} E[I_1(T)] - E[I_3(T)] &\geq \frac{2\varepsilon}{3} E[I_1(T)] - RC_{\bar{T}} - \left(\frac{2\varepsilon}{3} - \frac{2RK}{T}\right) C_{\bar{T}-1} - \frac{2RK}{T} E[I_1(T)] \\ &= \frac{2\varepsilon}{3} E[I_1(T)] - RC_{\bar{T}} - \frac{2\varepsilon}{3} C_{\bar{T}-1} + \frac{2RK}{T} C_{\bar{T}-1} - \frac{2RK}{T} E[I_1(T)] . \end{split}$$

The above, using (??), boils down to

$$X_{T}(\phi) \geq \frac{2\varepsilon}{3}Q(T/2) - RC_{\bar{T}} - \frac{2\varepsilon}{3}C_{\bar{T}-1} + \frac{2RK}{T}C_{\bar{T}-1} - \frac{2RK}{T}Q(T/2) - 2\lambda Q(T/2)$$

Using (??) and (??), with $\lambda < \varepsilon/3$, dividing through with $T^{H(1+\frac{1}{\alpha-1})+1}$ proves the statement in (8), and the proof of Theorem 3.3 is complete.

References

- [1] L. Giraitis, H. L. Koul and D. Surgailis. Large Sample Inference for Long Memory Processes. Imperial College Press, 2012.
- [2] P. Guasoni, Zs. Nika and M. Rásonyi. Trading fractional Brownian motion. SIAM J. Financial Mathematics, 10:769–789, 2019.
- [3] P. Guasoni and M. Rásonyi. Hedging, arbitrage and optimality under superlinear friction. *Annals of Applied Probability*, 25:2066–2095, 2015.
- [4] B. B. Mandelbrot. When can price be arbitraged efficiently? A limit to the validity of the random walk and martingale models. *The Review of Economics* and Statistics, 53:225-236, 1971.
- [5] L. C. G. Rogers. Arbitrage with fractional Brownian motion. *Mathematical Finance*, 7:95–105. 1997.