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I am also thankful to Károly Böröczky, who was there for me throughout my whole

academic life at CEU.

Moreover, I am grateful to my teachers and the department. They provided a truly

friendly and flexible environment all along.

I am thankful and grateful to my fellow mentors and teachers, especially Lajos Pósa and
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Abstract

We aim to study the winding number of certain random curves and the linking number

of pairs of random curves. Our motivation comes from a work of Liu, Dehmamy, and

Barabási [2], where the authors study the “tangledness” of graph embeddings. In order to

test their hypothesis, they need to generate random embeddings of a given graph into R3

with many “self-linkings”. Once the image of each vertex is fixed, they replace each edge

with a polygonal path (broken line) whose intermediate points are IID points chosen from a

uniform distribution. Then they measure the tangledness of the embedding by considering

the linking numbers of pairs of disjoint cycles of the graph. They make several empirical

observations for these random embeddings.

Our original goal was to study the distribution of the linking number of two random

polygonal paths. Computer simulations suggested that, after proper normalization, it

might converge to a normal distribution (as the number of IID intermediate points go to

infinity). We started our investigations with a less complicated problem of similar flavor:

the winding nuber of a random (closed) polygonal path on the plane. After expressing the

winding number as the sum of a martingale difference sequence, we could rigorously prove

that its distribution converges to a Gaussian by applying a Central Limit Theorem (CLT)

for martingales. Then we turned to the linking number hoping to be able to prove a CLT

for its distribution using similar tools. Now we believe that the limiting distribution is not

quite normal. We do not have a rigorous proof at this point but our observations suggest

that we may see an uncountable mixture of centered Gaussians in the limit.

Outline of the thesis

In Section 1 we formalize the winding number problem in a probabilistic language before

proving a Central Limit Theorem for the problem using martingales in Section 2. Section

3 contains an inequality for anti-symmetric kernels that arose during the study of the

previous sections. Then we investigate the role of the center point by analyzing the special

case of the uniform distribution on the unit circle (Section 4). We present a possible

generalization of the CLT result, along with an application, in Section 5. Finally, Section

6 is concerned with the linking number.
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1 The winding number problem

As a warm-up, let us start with the following simple setup. We take independent uniform

random points from the unit circle: 𝑍0, 𝑍1, . . . , 𝑍𝑁−1. Then we consider the closed polygo-

nal path 𝑍0𝑍1 . . . 𝑍𝑁−1𝑍0. It is easy to determine the winding number of a polygonal path:

we simply need to add up the “signed angle increments” between neighboring points (𝑍𝑖

and 𝑍𝑖+1), viewed from the origin 𝑂 for now, and divide this sum by 2𝜋:(︀
∠𝑍0𝑂𝑍1 + ∠𝑍1𝑂𝑍2 + · · · + ∠𝑍𝑁−2𝑂𝑍𝑁−1 + ∠𝑍𝑁−1𝑂𝑍0

)︀⧸︀
2𝜋,

where each signed angle ∠𝑍𝑖𝑂𝑍𝑖+1 is meant to be in (−𝜋, 𝜋]. See Figure 1 for an example.

If we omit one of the summands, say, ∠𝑍𝑁−1𝑂𝑍0, then the remaining terms clearly form

an IID sequence, chosen from the uniform distribution on the interval (−𝜋, 𝜋). So the

Central Limit Theorem (CLT) tells us that the sum (and hence the winding number in

question) normalized by
√
𝑁 converges in distribution to a Gaussian.

Figure 1: A closed polygonal path of seven intermediate points on the unit circle. The sum

of signed angle increments around the origin 𝑂 is +2𝜋, and hence the winding number is

+1. Blue/red arrows represent positive/negative angle increments.

The general setting

Now we consider the same problem but replace the uniform distribution of the unit circle

with a probability measure 𝜈 on R2 and generate our IID sequence 𝑍𝑖 from this distri-

bution. Then the consecutive signed angles ∠𝑍𝑖−1𝑂𝑍𝑖 and ∠𝑍𝑖𝑂𝑍𝑖+1 are not necessarily
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independent any more, and hence we cannot use classical CLT results that are only appli-

cable to independent summands. Note that this issue already comes up if we work with

the uniform distribution of the unit circle but use a center point different from the origin

(but still inside the unit circle). (The question for general 𝜈 is meaningful for any proba-

bility measure as long as it holds with probability 1 that the segments 𝑍𝑖−1𝑍𝑖 do not pass

through the center point 𝐶. We will always assume this. It suffices to have 𝜈(𝐿) = 0 for

any line 𝐿 passing through 𝐶.)

Let us fix some notations. Our center point is denoted by 𝐶. By arg𝐶(𝑍) we denote the

argument of a point 𝑍 ∈ R2 w.r.t. the center 𝐶 which is simply the signed angle between

the positive 𝑥-axis and the ray 𝐶𝑍 so that arg𝐶(𝑍) ∈ (−𝜋, 𝜋]. When the center coincides

with the origin (𝐶 = 𝑂), we may omit the subscript and simply write arg(𝑍) for arg𝑂(𝑍).

Note that arg(𝑍) is the argument of the corresponding complex number.

Given two arguments we need to consider their difference “modulo 2𝜋”. To be more

precise, we define the function mod2𝜋 : R → (−𝜋, 𝜋] as follows. Let mod2𝜋(𝜃) = 𝜃 − 2𝑘𝜋,

where 𝑘 is the unique integer such that 𝜃 − 2𝑘𝜋 ∈ (−𝜋, 𝜋]. Then the argument difference,

viewed from 𝐶, is

Δ𝐶(𝑍1, 𝑍2) ..= mod2𝜋(arg𝐶(𝑍2) − arg𝐶(𝑍1)).

Again, we may omit the subscript when our center point is the origin. Note that Δ𝐶 is

essentially anti-symmetric: Δ𝐶(𝑍2, 𝑍1) = −Δ𝐶(𝑍1, 𝑍2) unless the segment 𝑍1𝑍2 contains

𝐶 when both values are equal to 𝜋 (but this will happen only with probability 0 under our

conditions).

Now we can write the sum under consideration as follows (working with 𝐶 = 𝑂 for the

moment):
𝑁−2∑︁
𝑖=0

Δ(𝑍𝑖, 𝑍𝑖+1). (1)

If we divide this sum by 2𝜋 and round it to the closest integer, then we get the winding

number of the closed polygonal path 𝑍0𝑍1 . . . 𝑍𝑁−1𝑍0. (The rounding actually corrects the

absence of the term Δ(𝑍𝑁−1, 𝑍0).)

We will prove that CLT holds for the winding number in this general setting as well.

Theorem 1.1. Let 𝜈 be a Borel probability measure on R2 with the property that each line

through the origin has zero measure. Take a random polygonal path with 𝑁 independent

intermediate points of distribution 𝜈. Its winding number around the origin, divided by
√
𝑁 , converges in distribution to a Gaussian 𝑁(0, 𝜎2). The variance 𝜎2 is zero if and only

if 𝜈 is supported on an open half-plane not containing the origin.
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The summands corresponding to odd indices 𝑖 are clearly independent. It follows

that the standard CLT can be applied to this subsum. The same applies to the subsum

corresponding to even indices 𝑖 so we have normality for both subsums. There can be

(a lot of) dependency between these two subsums, however, so the normality of the total

sum does not follow directly from this observation. To prove Theorem 1.1 we need to

use a dependent CLT result of some sort. As we will see in the next section, there is a

well-developed theory of such results.

2 Central Limit Theorems

We have seen that the study of the winding number of a random polygonal path with IID

intermediate points is equivalent to the study of a sum of the form (1) for an explicitly

defined function Δ expressing the signed angle difference. At this point, it makes sense to

move to greater generality and consider arbitrary functions in place of this specific Δ. In

fact, we will work in a more abstract setting.

Theorem 2.1. Given a probability measure space (Ω,𝒜, 𝜈) and a bounded measurable

function 𝑓 : Ω × Ω → R, let us take an IID sequence (𝑍𝑖)𝑖≥0 with distribution 𝜈. Then the

normalized sum (︃
𝑁−1∑︁
𝑖=0

𝑓(𝑍𝑖, 𝑍𝑖+1) −𝑁𝜇𝑓,𝜈

)︃⧸︂√
𝑁

converges in distribution to 𝑁(0, 𝜎2
𝑓,𝜈) as 𝑁 → ∞, where

𝜇𝑓,𝜈 = E𝜔1,𝜔2𝑓(𝜔1, 𝜔2) =

∫︁
𝑓 d𝜈2

and

𝜎2
𝑓,𝜈 =E𝜔1,𝜔2𝑓

2(𝜔1, 𝜔2) + 2E𝜔

(︀
E𝜔1𝑓(𝜔1, 𝜔)E𝜔2𝑓(𝜔, 𝜔2)

)︀
=∫︁

𝑓 2 d𝜈2 + 2

∫︁
𝑓(*, 𝜔)𝑓(𝜔, *) d𝜈(𝜔).

Here the * notation means that the corresponding variable should be “integrated out” (w.r.t.

𝜈) resulting in a function of one less variable.

In this formulation, we may consider functions of more than two variables. For an

integer 𝑘 ≥ 2 let 𝑓 : Ω𝑘 → R be a bounded measurable function with zero expectation

w.r.t. 𝜈𝑘. Similarly, CLT holds for the normalized sum

𝑁−1∑︁
𝑖=0

𝑓(𝑍𝑖, 𝑍𝑖+1, . . . , 𝑍𝑖+𝑘−1)
⧸︀√

𝑁.

See Section 5 for details.
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Remark 2.2. As remarked for the case of winding number (that is, when 𝑓 = Δ), classical

CLT can be applied for the “odd-index subsum” and for the “even-index subsum”. These

subsums can be far from independent, though. For example, let ℎ : Ω → R be an arbitrary

non-constant measurable function. If 𝑓(𝑥, 𝑦) = ℎ(𝑥)+ℎ(𝑦), then the correlation of the two

subsums converges to 1, while the correlation goes to −1 for 𝑓(𝑥, 𝑦) = ℎ(𝑥) − ℎ(𝑦).

To prove Theorem 2.1 we need to turn our sum into a martingale. Next we explain

how we can do this. After subtracting a constant from 𝑓 , we may assume that 𝑓 has zero

expectation: 𝜇𝑓,𝜈 = 0.

Note that in the case when 𝑓 = Δ, this condition already holds, since we can deduct

the equality E𝜔1,𝜔2Δ(𝜔1, 𝜔2) = E𝜔1,𝜔2Δ(𝜔2, 𝜔1) from the independence, and we also have

E𝜔1,𝜔2Δ(𝜔1, 𝜔2) = −E𝜔1,𝜔2Δ(𝜔2, 𝜔1) due to the anti-symmetric property of Δ.

The 𝑘-th element of our filtration will be the 𝜎-algebra ℱ𝑘 = 𝜎(𝑍0, 𝑍1, . . . , 𝑍𝑘) generated

by the the first 𝑘 + 1 elements of our IID sequence. This means that a random variable is

ℱ𝑘-measurable if and only if it is a measurable function of (𝑍𝑖)𝑖≤𝑘. Therefore

𝑊𝑘
..=

𝑘−1∑︁
𝑖=0

𝑓(𝑍𝑖, 𝑍𝑖+1)

is ℱ𝑘-measurable. (We say that the stochastic process (𝑊𝑘)𝑘≥1 is adapted to the filtration

(ℱ𝑘)𝑘≥1.) However, (𝑊𝑘)𝑘≥1 is not necessarily a martingale. For that, we would need

E(𝑊𝑘+1 | ℱ𝑘) = 𝑊𝑘 to hold for each 𝑘. For our filtration, given a random variable 𝑋 (which

is a measurable function of all (𝑍𝑖)𝑖≥0) we can get the conditional expectation E(𝑋 | ℱ𝑘)

by taking expectation of 𝑋 in (𝑍𝑖)𝑖>𝑘. Consequently, 𝑊𝑘 is a martingale adapted to ℱ𝑘 if

and only if E𝑍𝑘+1
𝑓(𝑍𝑘, 𝑍𝑘+1) = 0, that is,

𝑓(𝑥, *) ..= E𝑌∼𝜈𝑓(𝑥, 𝑌 ) = 0 for 𝜈-almost all 𝑥.

In other words, 𝑓(𝑥, ·) must be centered for almost all 𝑥. However, we only know that

𝑓(𝑥, 𝑦) has zero expectation as a two-variable function. We can easily fix this by setting

𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)−𝑓(𝑥, *). Then ̃︁𝑊𝑘
..=
∑︀𝑘−1

𝑖=0 𝑓(𝑍𝑖, 𝑍𝑖+1) is clearly a martingale. However,

this sum is quite different from the original one that we want to study. We can fix this by

considering the following function instead:

𝑔(𝑥, 𝑦) ..= 𝑓(𝑥, 𝑦) − 𝑓(𝑥, *) + 𝑓(𝑦, *).

Then

𝑋𝑘
..=

𝑘−1∑︁
𝑖=0

𝑔(𝑍𝑖, 𝑍𝑖+1)
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is still a martingale and is very close to the original sum 𝑊𝑘 due to a telescopic sum that

makes most of the extra terms cancel out. Indeed,

𝑔(𝑥, *) = E𝑌∼𝜈

(︀
𝑓(𝑥, 𝑌 ) − 𝑓(𝑥, *) + 𝑓(𝑌, *)

)︀
= 𝑓(𝑥, *) − 𝑓(𝑥, *) + 0 = 0

implies the martingale property, and

𝑋𝑘 = 𝑊𝑘 − 𝑓(𝑍0, *) + 𝑓(𝑍𝑘, *),

where the two extra terms will vanish in the limit because we will always normalize 𝑋𝑘

and 𝑊𝑘 by
√
𝑘.

As we mentioned, there are generalizations of the classical CLT results for martin-

gales and near-martingales. This theory was developed in the 1970s primarily by Brown,

Dvoretzky, McLeish, K lopotowski, Hall, Rebolledo, and Helland. There are many different

(but very similar) sets of conditions under which CLT holds. Luckily, there is an excel-

lent survey paper by Helland [1] that carefully explains how these results and conditions

are related to each other. In our setting, we need to check two conditions to be able to

conclude that 𝑋𝑘/
√
𝑘 (and hence 𝑊𝑘/

√
𝑘) converges in distribution to a Gaussian. At

this point it is convenient to consider the corresponding martingale difference sequence

𝑌𝑘
..= 𝑋𝑘 −𝑋𝑘−1 = 𝑔(𝑍𝑘−1, 𝑍𝑘) for which we have E(𝑌𝑘 | ℱ𝑘−1) = 0. The following CLT re-

sult was proved by McLeish [3]. Also see [1, Theorem 2.5, conditions (b)] and [4, Theorem

2]. (Their setting, concerning martingale difference arrays, is more general.)

Theorem (McLeish, 1974 [3]). Let (𝑌𝑘)𝑘≥1 be a martingale difference sequence adapted to

a filtration (ℱ𝑘)𝑘≥1, and let 𝑎𝑘 → ∞ be a normalizing sequence. Suppose that, as 𝑘 → ∞,

we have

• max𝑖≤𝑘 𝑌𝑖

⧸︀
𝑎𝑘 → 0 in probability;

•
∑︀

𝑖≤𝑘 𝑌
2
𝑖

⧸︀
𝑎2𝑘 converges to 𝜎2 in probability for some real number 𝜎 ≥ 0.

Then
∑︀

𝑖≤𝑘 𝑌𝑖

⧸︀
𝑎𝑘 converges in distribution to the Gaussian 𝑁(0, 𝜎2) as 𝑘 → ∞.

We will apply the above theorem with the normalizing sequence 𝑎𝑘 =
√
𝑘. In our

setting, the first condition is a trivial consequence of the fact that 𝑓 (and hence 𝑔) is

bounded. The second condition will follow using the weak law of large numbers.

Proof of Theorem 2.1. The only thing left to be done is verifying the second condition of

McLeish’s theorem.
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For an arbitrary 𝑘, we have

E𝑌 2
𝑘 =E𝜔1,𝜔2𝑔

2(𝜔1, 𝜔2)

=E𝜔1,𝜔2(𝑓(𝜔1, 𝜔2) − 𝑓(𝜔1, *) + 𝑓(𝜔2, *))2

=E𝜈2𝑓
2 + E𝜔1𝑓(𝜔1, *)2 + E𝜔2𝑓(𝜔2, *)2 − 2E𝜔1,𝜔2(𝑓(𝜔1, 𝜔2)𝑓(𝜔1, *))

+ 2E𝜔1,𝜔2(𝑓(𝜔1, 𝜔2)𝑓(𝜔2, *)) − 2E𝜔1,𝜔2(𝑓(𝜔1, *)𝑓(𝜔2, *))

=E𝜈2𝑓
2 + 2E𝜔1𝑓(𝜔1, *)2 − 2E𝜔1𝑓(𝜔1, *)2 + 2E𝜔2(𝑓(*, 𝜔2)𝑓(𝜔2, *)) − 2(E𝜈𝑓)2

=E𝜈2𝑓
2 + 2E𝜔

(︀
E𝜔1𝑓(𝜔1, 𝜔)E𝜔2𝑓(𝜔, 𝜔2)

)︀
=𝜎2

𝑓,𝜈

Since 𝑎𝑘 =
√
𝑘, we have

∑︁
𝑖≤𝑘

𝑌 2
𝑖

⧸︀
𝑎2𝑘 =

⌈𝑘/2⌉
𝑘

⌈𝑘/2⌉∑︁
𝑖=1

𝑌 2
2𝑖−1

⧸︀
⌈𝑘/2⌉ +

⌊𝑘/2⌋
𝑘

⌊𝑘/2⌋∑︁
𝑖=1

𝑌 2
2𝑖

⧸︀
⌊𝑘/2⌋

(︀
𝑌 2
2𝑖−1

)︀⌈𝑘/2⌉
𝑖=1

is an IID sequence with mean 𝜎2
𝑓,𝜈 . It follows from the weak law of large

numbers that
∑︀⌈𝑘/2⌉

𝑖=1 𝑌 2
2𝑖−1

⧸︀
⌈𝑘/2⌉ converges to 𝜎2

𝑓,𝜈 in probability. Since ⌈𝑘/2⌉
𝑘

→ 1
2

as

𝑘 → ∞, we have

⌈𝑘/2⌉
𝑘

⌈𝑘/2⌉∑︁
𝑖=1

𝑌 2
2𝑖−1

⧸︀
⌈𝑘/2⌉ 𝑝→

𝜎2
𝑓,𝜈

2

The same applies for the even indices, therefore

∑︁
𝑖≤𝑘

𝑌 2
𝑖

⧸︀
𝑘

𝑝→
𝜎2
𝑓,𝜈

2
+

𝜎2
𝑓,𝜈

2
= 𝜎2

𝑓,𝜈

Proof of Theorem 1.1. Take 𝑓 = Δ and use Theorem 2.1. The occurrence of zero variance

is covered in the following section.

3 Cauchy–Schwarz for anti-symmetric kernels

While studying the variance of the limiting normal distribution for the winding number

described above, we stumbled upon the following inequality that we find interesting in its

own right. It is certainly known in some form but we did not find it stated in the literature.

Let 𝑓(𝑥, 𝑦) be a kernel, that is, a two-variable function over some probability measure

space. For a fixed 𝑥, one could apply the Cauchy–Schwarz inequality for 𝑓(𝑥, ·) and the
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constant 1 function to get the following (using our * notation from Theorem 2.1):

𝑓(𝑥, *) ≤

√︃∫︁
𝑓 2(𝑥, 𝑦) d𝑦.

Squaring this and integrating w.r.t. 𝑥 gives∫︁
𝑓(𝑥, *)2 d𝑥 ≤

∫︁∫︁
𝑓 2(𝑥, 𝑦) d𝑥 d𝑦. (2)

Our inequality is essentially a strengthening of (2) for anti-symmetric kernels 𝑓(𝑥, 𝑦) =

−𝑓(𝑦, 𝑥): we will show that (2) remains to be true even if we divide the right-hand side

by 2.

3.1 General version

Proposition 3.1. Given a probability measure space (Ω,𝒜, 𝜈) and a measurable function

𝑓 : Ω×Ω → R with finite square integral, i.e. 𝑓 ∈ 𝐿2(𝜈2), we have the following inequality:

E𝜈2𝑓
2 − E𝜔∼𝜈𝑓(𝜔, *)2 − E𝜔∼𝜈𝑓(*, 𝜔)2 +

(︀
E𝜈2𝑓

)︀2 ≥ 0.

If 𝑓 is anti-symmetric, i.e. 𝑓(𝑥, 𝑦) = −𝑓(𝑦, 𝑥), then the inequality simplifies to the follow-

ing:

E𝜔∼𝜈𝑓(𝜔, *)2 ≤ 1

2
E𝜈2𝑓

2. (3)

As noted before, a simple Cauchy–Schwarz inequality would give (3) without the factor

1/2. In other words, by assuming that 𝑓 is anti-symmetric, we get a bound twice as good

as the standard one.

Before we give a concise proof of the inequality in Proposition 3.1, let us briefly sketch

how we “discovered” it. As in the proposition, let 𝑓 : Ω×Ω → R be a measurable function

for some probability measure space (Ω,𝒜, 𝜈). Take independent random variables 𝑋, 𝑌, 𝑍,

each with distribution 𝜈, and consider the variance of the sum 𝑓(𝑋, 𝑌 )+𝑓(𝑌, 𝑍)+𝑓(𝑍,𝑋)

which must be non-negative:

0 ≤ var
(︀
𝑓(𝑋, 𝑌 ) + 𝑓(𝑌, 𝑍) + 𝑓(𝑍,𝑋)

)︀
= 3 var

(︀
𝑓(𝑋, 𝑌 )

)︀
+ 6 cov

(︀
𝑓(𝑋, 𝑌 ), 𝑓(𝑌, 𝑍)

)︀
.

When the expectation is zero (E𝜈2𝑓 = 0), this leads to the following inequality:

E𝜈2𝑓
2 + 2E𝜔∼𝜈(𝑓(*, 𝜔)𝑓(𝜔, *)) ≥ 0.

For anti-symmetric 𝑓 we get the second inequality (3) in the proposition.
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Proof of Proposition 3.1. Let 𝑋, 𝑌 ∼ 𝜈. Then

0 ≤ var(𝑓(𝑋, 𝑌 ) − 𝑓(𝑋, *) − 𝑓(*, 𝑌 )) = E𝜈2(𝑓(𝑋, 𝑌 ) − 𝑓(𝑋, *) − 𝑓(*, 𝑌 ))2 − (E𝜈2𝑓)2

=E𝜈2𝑓
2 + E𝜈𝑓(𝑋, *)2 + E𝜈𝑓(*, 𝑌 )2 − 2E𝜈2(𝑓(𝑋, 𝑌 )𝑓(𝑋, *)) − 2E𝜈2(𝑓(𝑋, 𝑌 )𝑓(*, 𝑌 ))

+ 2E𝜈2(𝑓(𝑋, *)𝑓(*, 𝑌 )) − (E𝜈2𝑓)2

=E𝜈2𝑓
2 + E𝜈𝑓(𝑋, *)2 + E𝜈𝑓(*, 𝑌 )2 − 2E𝜈𝑓(𝑋, *)2 − 2E𝜈𝑓(*, 𝑌 )2

+ 2(E𝜈2𝑓)2 − (E𝜈2𝑓)2

=E𝜈2𝑓
2 − E𝜈𝑓(𝑋, *)2 − E𝜈𝑓(*, 𝑌 )2 + 2(E𝜈2𝑓)2 − (E𝜈2𝑓)2

=E𝜈2𝑓
2 − E𝜈𝑓(𝑋, *)2 − E𝜈𝑓(*, 𝑌 )2 + (E𝜈2𝑓)2

Next we show that equality occurs if and only if 𝑓(𝑥, 𝑦) = ℎ(𝑥)+𝑙(𝑦) almost everywhere

for some functions ℎ, 𝑙 ∈ 𝐿2(𝜈).

If we have equality then 𝑓(𝑋, 𝑌 )−𝑓(𝑋, *)−𝑓(*, 𝑌 ) is a constant 𝜈2 almost everywhere.

This constant must be the expected value, thus 𝑓(𝑋, 𝑌 )− 𝑓(𝑋, *)− 𝑓(*, 𝑌 ) = −E𝜈2𝑓 a.e.

Let ℎ(𝑥) = 𝑓(𝑥, *) and 𝑙(𝑦) = 𝑓(*, 𝑦) − E𝜈2𝑓 . Then we have 𝑓(𝑥, 𝑦) = ℎ(𝑥) + 𝑙(𝑦).

Now if we assume that 𝑓(𝑥, 𝑦) = ℎ(𝑥) + 𝑙(𝑦) for some ℎ and 𝑙. Then we have

E𝜈2𝑓
2 = E𝜈2(ℎ(𝑥) + 𝑙(𝑦))2 = E𝜈ℎ

2 + 2E𝜈ℎE𝜈𝑙 + E𝜈𝑙
2

E𝜈𝑓(𝑥, *)2 = E𝜈(ℎ + E𝜈𝑙)
2 = E𝜈ℎ

2 + 2E𝜈ℎE𝜈𝑙 + (E𝜈𝑙)
2

Similarly,

E𝜈𝑓(*, 𝑦)2 = (E𝜈ℎ)2 + 2E𝜈ℎE𝜈𝑙 + E𝜈𝑙
2

(E𝜈2𝑓)2 = (E𝜈ℎ + E𝜈𝑙)
2 = (E𝜈ℎ)2 + 2E𝜈ℎE𝜈𝑙 + (E𝜈𝑙)

2

From these we can finally deduct that

E𝜈2𝑓
2 − E𝜔∼𝜈𝑓(𝜔, *)2 − E𝜔∼𝜈𝑓(*, 𝜔)2 +

(︀
E𝜈2𝑓

)︀2
= 0

Note that if 𝑓 is anti-symmetric then ℎ(𝑥) + 𝑙(𝑦) = 𝑓(𝑥, 𝑦) = −𝑓(𝑦, 𝑥) = −ℎ(𝑦) − 𝑙(𝑥),

hence ℎ(𝑥) + 𝑙(𝑥) = −ℎ(𝑦) − 𝑙(𝑦) almost everywhere. Therefore ℎ(𝑥) + 𝑙(𝑥) = 0 almost

surely, and we conclude that 𝑓(𝑥, 𝑦) = ℎ(𝑥) − ℎ(𝑦).

Corollary 3.2. The variance is zero in Theorem 1.1 if and only if 𝜈 is supported on an

open half-plane not containing the origin.
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Proof. From the above discussion we get that the variance is zero if and only if Δ(𝑥, 𝑦) =

ℎ(𝑥) − ℎ(𝑦) holds 𝜈2 almost everywhere for some ℎ ∈ 𝐿2(𝜈). Then, since −𝜋 < Δ ≤ 𝜋,

we have ess sup𝜈2 Δ = ess sup𝜈 ℎ− ess inf𝜈 ℎ ≤ 𝜋. Hence the image of ℎ is contained in an

interval of length 𝜋. Choose 𝑦0 such that 𝜈({𝑥|Δ(𝑥, 𝑦0) ̸= ℎ(𝑥) − ℎ(𝑦0)}) = 0. Then as 𝑥

varies, the image of Δ(𝑥, 𝑦0) also lands in an interval of length 𝜋, so 𝜈 is indeed supported

on a half-plane.

3.2 Matrix version

It is worth mentioning the special case when 𝜈 is the uniform measure on an 𝑛-element

discrete set Ω, in which case we get an inequality for 𝑛 × 𝑛 matrices. Proving this would

actually make a good maths competition problem for high-school students.

Corollary 3.3. For arbitrary real numbers (𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑛 we have

∑︁
𝑖,𝑗

𝑎2𝑖,𝑗 −
1

𝑛

∑︁
𝑖

(︃∑︁
𝑗

𝑎𝑖,𝑗

)︃2

− 1

𝑛

∑︁
𝑗

(︃∑︁
𝑖

𝑎𝑖,𝑗

)︃2

+
1

𝑛2

(︃∑︁
𝑖,𝑗

𝑎𝑖,𝑗

)︃2

≥ 0.

If 𝑎𝑖,𝑗 = −𝑎𝑗,𝑖 holds for all 𝑖, 𝑗, then we get

1

𝑛

∑︁
𝑖

(︃∑︁
𝑗

𝑎𝑖,𝑗

)︃2

≤ 1

2

∑︁
𝑖,𝑗

𝑎2𝑖,𝑗.

Proof. By multiplying both sides by 𝑛2, we get

𝑛2
∑︁
𝑖,𝑗

𝑎2𝑖,𝑗 − 𝑛
∑︁
𝑖

(︃∑︁
𝑗

𝑎𝑖,𝑗

)︃2

− 𝑛
∑︁
𝑗

(︃∑︁
𝑖

𝑎𝑖,𝑗

)︃2

+

(︃∑︁
𝑖,𝑗

𝑎𝑖,𝑗

)︃2

=

(𝑛− 1)2
∑︁
𝑖,𝑗

𝑎2𝑖,𝑗 − 𝑛
∑︁
𝑖

∑︁
𝑗 ̸=𝑘

𝑎𝑖,𝑗𝑎𝑖,𝑘 − 𝑛
∑︁
𝑗

∑︁
𝑖 ̸=𝑘

𝑎𝑖,𝑗𝑎𝑘,𝑗 +
∑︁

(𝑖,𝑗)̸=(𝑝,𝑟)

𝑎𝑖,𝑗𝑎𝑝,𝑟 =

(𝑛− 1)2
∑︁
𝑖,𝑗

𝑎2𝑖,𝑗 − (𝑛− 1)
∑︁
𝑖

∑︁
𝑗 ̸=𝑘

𝑎𝑖,𝑗𝑎𝑖,𝑘 − (𝑛− 1)
∑︁
𝑗

∑︁
𝑖 ̸=𝑘

𝑎𝑖,𝑗𝑎𝑘,𝑗 +
∑︁

𝑖 ̸=𝑝,𝑗 ̸=𝑟

𝑎𝑖,𝑗𝑎𝑝,𝑟 =

∑︁
𝑖<𝑝,𝑗<𝑟

(𝑎𝑖,𝑗 + 𝑎𝑝,𝑟 − 𝑎𝑖,𝑟 − 𝑎𝑝,𝑗)
2 ≥ 0

We have equality if and only if 𝑎𝑖,𝑗 + 𝑎𝑝,𝑟 = 𝑎𝑖,𝑟 + 𝑎𝑝,𝑗 for all 𝑖, 𝑗, 𝑝 and 𝑟. We will prove

that this is equivalent to saying, there exists (𝑏𝑖)
𝑛
𝑖=1 and (𝑐𝑗)

𝑛
𝑗=1 sequences such that ∀𝑖, 𝑗,

we have 𝑎𝑖,𝑗 = 𝑏𝑖 + 𝑐𝑗.

If 𝑎𝑖,𝑗 + 𝑎𝑝,𝑟 = 𝑎𝑖,𝑟 + 𝑎𝑝,𝑗, then 𝑎1,1 + 𝑎𝑝,𝑟 = 𝑎1,𝑟 + 𝑎𝑝,1. Hence if we define 𝑏𝑝 = 𝑎𝑝,1 and

𝑐𝑟 = 𝑎1,𝑟 − 𝑎1,1, then we get 𝑎𝑝,𝑟 = 𝑏𝑝 + 𝑐𝑟.
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Now if 𝑎𝑖,𝑗 = 𝑏𝑖 + 𝑐𝑗, for all 𝑖, 𝑗, for some sequences (𝑏𝑖)
𝑛
𝑖=1 and (𝑐𝑗)

𝑛
𝑗=1, then

𝑎𝑖,𝑗 + 𝑎𝑝,𝑟 = (𝑏𝑖 + 𝑐𝑗) + (𝑏𝑝 + 𝑐𝑟)

= (𝑏𝑖 + 𝑐𝑟) + (𝑏𝑝 + 𝑐𝑗)

= 𝑎𝑖,𝑟 + 𝑎𝑝,𝑗

4 Winding number for different center points

When studying the winding number of random polygonal paths, it is natural to look at

the role of the center point. What can we say about the variance of the limiting Gaussian

as the center point varies? In this section we will study this question in detail for the case

when 𝜈 is the uniform distribution on the unit circle.

If our center point 𝐶 is outside or on the circle, then the winding number is 0 with

probability 1. So the variance is 0. If 𝐶 = 0 (that is, it coincides with the center of the

circle), then the angle increments are independent and uniformly distributed on (−𝜋, 𝜋) as

we noted in Section 1. The variance is therefore var(𝑈(−𝜋, 𝜋)) = 𝜋2

3
.

Next we will try to compute the variance around an arbitrary center point 𝐶 inside the

circle. Namely, we want the value of E𝜔1,𝜔2Δ
2
𝐶(𝜔1, 𝜔2) + 2E𝜔

(︀
E𝜔1Δ𝐶(𝜔1, 𝜔)E𝜔2Δ𝐶(𝜔, 𝜔2)

)︀
.

Since Δ𝐶 is anti-symmetric, the variance is E𝜔1,𝜔2Δ
2
𝐶(𝜔1, 𝜔2) − 2E𝜔2

(︀
E𝜔1Δ𝐶(𝜔1, 𝜔2)

)︀2
.

Because of rotational symmetry, the variance depends only on the distance 𝑟 of 𝐶 and

𝑂. So we assume that 𝐶 = (𝑟, 0) for some real number 0 ≤ 𝑟 < 1. From Section 1 we know

that

Δ𝐶(𝜔1, 𝜔2) = mod2𝜋(arg𝐶(𝜔2) − arg𝐶(𝜔1)).

There is a measure-preserving bijection between the unit circle (with the uniform distri-

bution) and the interval (−𝜋, 𝜋] with the Lebesgue measure normalized by 2𝜋. Therefore,

in what follows we will identify the unit circle with (−𝜋, 𝜋], that is, we will think of 𝜔 both

as a signed angle and as the corresponding point on the circle. Thus, the integral of any

function w.r.t. 𝜈(𝜔) is equal to its Lebesque integral from −𝜋 to 𝜋, divided by 2𝜋.

We will use the following change of variables to move between angles w.r.t. 𝑂 and

angles w.r.t. 𝐶. Let 𝑥 = arg𝐶(𝜔), and hence 𝜔 = arg−1
𝐶 (𝑥). Then, setting ℎ(𝑥) =

arg−1
𝐶 (𝑥)

2𝜋
,

we need to multiply with the density function 𝑔(𝑥) ..= ℎ′(𝑥) whenever we wish to integrate

something as a function of 𝑥 w.r.t. 𝜈(𝜔). Note that
∫︀ 𝑏

𝑎
𝑔(𝑥) d𝑥 = ℎ

⃒⃒𝑏
𝑎
. In particalur,∫︀ 𝜋

0
𝑔(𝑥) d𝑥 = 1

2
.

Lemma 4.1. 𝑎𝑟𝑔−1
𝐶 (𝑥) = 𝑥− arcsin(𝑟 sin(𝑥))
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Proof. Let 𝑃 = (1, 0) and 𝑋 be an arbitrary point on the unit circle. Furthermore let

𝛼 = ∠𝐶𝑂𝑋 and 𝛽 = ∠𝑃𝐶𝑋. We work with signed angles, ie. −𝜋 < 𝛼, 𝛽 ≤ 𝜋. Now let

us calculate 𝛼 as a function of 𝛽. First suppose that 0 < 𝛼 < 𝜋. Since ∠𝑃𝐶𝑋 = 𝛽, we

have ∠𝑋𝐶𝑂 = 𝜋 − 𝛽 and then ∠𝑂𝑋𝐶 = 𝛽 − 𝛼. Using the law of sines on 𝑂𝑋𝐶△ we get
sin(𝛽−𝛼)

𝑟
= sin(𝜋−𝛽)

1
= sin 𝛽, and hence sin(𝛽 − 𝛼) = 𝑟 sin(𝛽).

Note that ∠𝐶𝑃𝑋 = 𝜋−𝛼
2

, so 𝛽 < 𝜋 − 𝜋−𝛼
2

= 𝜋+𝛼
2

. Thus 𝛽 − 𝛼 < 𝜋−𝛼
2

< 𝜋
2
.

This shows we can use the arcsin function without any problem on sin(𝛽−𝛼) = 𝑟 sin(𝛽)

to get what we needed.

Finally let us recognise that 𝛽 − arcsin(𝑟 sin 𝛽) is an odd function so it works when 𝛽

is negative as well.

Let us define

𝑓(𝑥, 𝑦) ..= Δ𝐶(arg−1
𝐶 (𝑥), arg−1

𝐶 (𝑦)) = mod2𝜋(𝑦 − 𝑥).

Now our task is equivalent to calculating E𝑥,𝑦𝑓
2(𝑥, 𝑦) − 2E𝑦

(︀
E𝑥𝑓(𝑥, 𝑦)

)︀2
. We always

assume that 0 ≤ 𝑦 ≤ 𝜋, and we just multiply the results by two. Note that in this case we

have

𝑓(𝑥, 𝑦) =

{︃
𝑦 − 𝑥 for 𝑦 − 𝜋 ≤ 𝑥 ≤ 𝜋

𝑦 − 𝑥− 2𝜋 for −𝜋 ≤ 𝑥 < 𝑦 − 𝜋

Define
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• 𝑎 = 4
∫︀ 𝜋

0
𝑥2𝑔(𝑥) d𝑥

• 𝑏 = −16𝜋
∫︀ 𝜋

0
𝑥𝑔(𝑥)

(︀
1
2

+ ℎ(𝑥− 𝜋)
)︀

d𝑥

• 𝑐 = 8𝜋2
∫︀ 𝜋

0
𝑔(𝑥)

(︀
1
2

+ ℎ(𝑥− 𝜋)
)︀

d𝑥

Lemma 4.2. E𝑥,𝑦𝑓
2(𝑥, 𝑦) = 𝑎 + 𝑏 + 𝑐

Proof. By above

E𝑓 2 = 2

∫︁ 𝜋

0

∫︁ 𝜋

𝑦−𝜋

(𝑦 − 𝑥)2𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦 + 2

∫︁ 𝜋

0

∫︁ 𝑦−𝜋

−𝜋

(𝑦 − 𝑥− 2𝜋)2𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

= 2

∫︁ 𝜋

0

∫︁ 𝜋

0

(𝑦 − 𝑥)2𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦 + 2

∫︁ 𝜋

0

∫︁ 𝜋−𝑦

0

(𝑦 + 𝑥)2𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

+ 2

∫︁ 𝜋

0

∫︁ 𝜋

𝜋−𝑦

(𝑦 + 𝑥− 2𝜋)2𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

= 4

∫︁ 𝜋

0

∫︁ 𝜋

0

(𝑦2 + 𝑥2)𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦 − 8𝜋

∫︁ 𝜋

0

∫︁ 𝜋

𝜋−𝑦

𝑦𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

− 8𝜋

∫︁ 𝜋

0

∫︁ 𝜋

𝜋−𝑦

𝑥𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦 + 8𝜋2

∫︁ 𝜋

0

∫︁ 𝜋

𝜋−𝑦

𝑔(𝑥)𝑔(𝑦) d𝑥 d𝑦

= 8

∫︁ 𝜋

0

𝑦2𝑔(𝑦) d𝑦

∫︁ 𝜋

0

𝑔(𝑥) d𝑥− 8𝜋

∫︁ 𝜋

0

𝑦𝑔(𝑦)

∫︁ 𝜋

𝜋−𝑦

𝑔(𝑥) d𝑥 d𝑦

− 8𝜋

∫︁ 𝜋

0

∫︁ 𝜋

𝜋−𝑥

𝑥𝑔(𝑥)𝑔(𝑦) d𝑦 d𝑥 + 8𝜋2

∫︁ 𝜋

0

𝑔(𝑦)

∫︁ 𝜋

𝜋−𝑦

𝑔(𝑥) d𝑥 d𝑦

= 4

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥− 8𝜋

∫︁ 𝜋

0

𝑦𝑔(𝑦)

(︂
1

2
+ ℎ(𝑦 − 𝜋)

)︂
d𝑦

− 8𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥)

(︂
1

2
+ ℎ(𝑥− 𝜋)

)︂
d𝑥 + 8𝜋2

∫︁ 𝜋

0

𝑔(𝑦)

(︂
1

2
+ ℎ(𝑦 − 𝜋)

)︂
d𝑦

= 𝑎 + 𝑏 + 𝑐

Lemma 4.3.

2E𝑦

(︀
E𝑥𝑓(𝑥, 𝑦)

)︀2
= 𝑑 ..= 4

∫︁ 𝜋

0

𝑔(𝑥)

(︂
2𝜋

(︂
1

2
ℎ(𝑥− 𝜋)

)︂
− 𝑥

)︂2

d𝑥

.
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Proof.

2E𝑦

(︀
E𝑥𝑓(𝑥, 𝑦)

)︀2
= 4

∫︁ 𝜋

0

𝑔(𝑦)

(︂∫︁ 𝜋

𝑦−𝜋

(𝑦 − 𝑥)𝑔(𝑥) d𝑥 +

∫︁ 𝑦−𝜋

−𝜋

(𝑦 − 𝑥− 2𝜋)𝑔(𝑥) d𝑥

)︂2

d𝑦

= 4

∫︁ 𝜋

0

𝑔(𝑦)

(︂
𝑦

∫︁ 𝜋

−𝜋

𝑔(𝑥) d𝑥 +

∫︁ 𝜋

𝜋−𝑦

2𝜋𝑔(𝑥) d𝑥

)︂2

d𝑦

= 4

∫︁ 𝜋

0

𝑔(𝑦)

(︂
𝑦 − 2𝜋

(︂
1

2
+ ℎ(𝑦 − 𝜋)

)︂)︂2

d𝑦

= 𝑑

Now we are able to calculate the variance of the winding number of uniformly dis-

tributed polygonal path around any 𝐶 inside the unit circle. It is simply 𝑎 + 𝑏 + 𝑐 − 𝑑.

Working around this sum, one may deduct a shorter form of the variance, namely

(2𝜋)2
∫︁ 𝜋

0

𝑔(𝑥)

(︂(︀
1 + 2ℎ(𝑥− 𝜋)

)︀
−
(︀
1 + 2ℎ(𝑥− 𝜋)

)︀2)︂
d𝑥

Unfortunately, we could not find the primitive function for this last integral, and hence

we do not have an explicit formula for the variance. However, this one-variable definite

integral is now simple enough so that it can be computed numerically quickly and with

great precision for any given value of 𝑟. We plotted the integral as a function of 𝑟 using

Code 1 in the Appendix, see Figure 2 for the result. (Note that to get the variance of the

normalized winding number, we need to omit the factor (2𝜋)2 from the above integral, and

this is how we plotted the result.)
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Figure 2: Variance of the normalized winding number around 𝐶 = (𝑟, 0)

4.1 An identity

While studying the variance of the winding number around center points inside the unit

circle, we accidentally came across an identity between our integrals.

Proposition 4.4. 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝜋2

3
.

Note that 𝜋2
⧸︀

3 is the variance around the origin.

Proof. First, let us recognise that

1

2
+ ℎ(𝑥− 𝜋) =

1

2
+

𝑥− 𝜋 − arcsin(𝑥− 𝜋)

2𝜋

=
𝑥 + arcsin(𝑥)

2𝜋

=
𝑥

𝜋
− ℎ(𝑥)
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Figure 3: Two integrals (a+b+c and d) as functions of 𝑟 (green curves). The sum is

constant 𝜋2/3 (red). The difference gives the variance in question (blue).

Hence

𝑎 = 4

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥

𝑏 = −16𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥)

(︂
1

2
+ ℎ(𝑥− 𝜋)

)︂
d𝑥

= −16𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥)
(︁𝑥
𝜋
− ℎ(𝑥)

)︁
d𝑥

= −16

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥 + 16𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥)ℎ(𝑥) d𝑥

𝑐 = 8𝜋2

∫︁ 𝜋

0

𝑔(𝑥)

(︂
1

2
+ ℎ(𝑥− 𝜋)

)︂
d𝑥

= 8𝜋2

∫︁ 𝜋

0

𝑔(𝑥)
(︁𝑥
𝜋
− ℎ(𝑥)

)︁
d𝑥

= 8𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥) d𝑥− 8𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ(𝑥) d𝑥

𝑑 = 4

∫︁ 𝜋

0

𝑔(𝑥)

(︂
2𝜋

(︂
1

2
+ ℎ(𝑥− 𝜋)

)︂
− 𝑥

)︂2

d

= 4

∫︁ 𝜋

0

𝑔(𝑥)
(︁

2𝜋
(︁𝑥
𝜋
− ℎ(𝑥)

)︁
− 𝑥
)︁2

d

= 4

∫︁ 𝜋

0

𝑔(𝑥)(𝑥− 2𝜋ℎ(𝑥))2

= 4

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥− 16𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥)ℎ(𝑥) d𝑥 + 16𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ2(𝑥) d𝑥
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Therefore

𝑎 + 𝑏 + 𝑐 + 𝑑 = − 8

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥 + 8𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥) d𝑥− 8𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ(𝑥) d𝑥

+ 16𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ2(𝑥) d𝑥

(4)

Now using integration by parts and chain rule, we have:

−8

∫︁ 𝜋

0

𝑥2𝑔(𝑥) d𝑥 = −8𝑥2ℎ(𝑥)
⃒⃒𝜋
0

+ 16

∫︁ 𝜋

0

𝑥ℎ(𝑥) d𝑥

= −4𝜋2 +
8

𝜋

∫︁ 𝜋

0

𝑥2 d𝑥− 8

𝜋

∫︁ 𝜋

0

𝑥 arcsin(𝑟 sin(𝑥)) d𝑥

= −4

3
𝜋2 − 8

𝜋

∫︁ 𝜋

0

𝑥 arcsin(𝑟 sin(𝑥)) d𝑥

8𝜋

∫︁ 𝜋

0

𝑥𝑔(𝑥) d𝑥 = 8𝜋𝑥ℎ(𝑥)
⃒⃒𝜋
0
− 8𝜋

∫︁ 𝜋

0

ℎ(𝑥) d𝑥

= 4𝜋2 − 4

∫︁ 𝜋

0

𝑥 d𝑥 + 4

∫︁ 𝜋

0

arcsin(𝑟 sin(𝑥)) d𝑥

= 2𝜋2 + 4

∫︁ 𝜋

0

arcsin(𝑟 sin(𝑥)) d𝑥

−8𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ(𝑥) d𝑥 = −4𝜋2ℎ2
⃒⃒𝜋
0

= −𝜋2

16𝜋2

∫︁ 𝜋

0

𝑔(𝑥)ℎ2(𝑥) d𝑥 = 16𝜋2ℎ
3

3

⃒⃒𝜋
0

=
2

3
𝜋2

Substituting these into (4), we get

𝑎 + 𝑏 + 𝑐 + 𝑑 =
𝜋2

3
− 8

𝜋

∫︁ 𝜋

0

𝑥 arcsin(𝑟 sin(𝑥)) d𝑥 + 4

∫︁ 𝜋

0

arcsin(𝑟 sin(𝑥)) d𝑥

Hence we need to prove that∫︁ 𝜋

0

𝑥 arcsin(𝑟 sin(𝑥)) d𝑥 =
𝜋

2

∫︁ 𝜋

0

arcsin(𝑟 sin(𝑥)) d𝑥

We will prove this in a more general form.

Lemma 4.5. Let 𝑝 : [𝑎, 𝑏] ↦→ R be integrable such that 𝑝(𝑎 + 𝑥) = 𝑝(𝑏− 𝑥) ∀𝑥 ∈ [0, 𝑏− 𝑎].

Then ∫︁ 𝑏

𝑎

𝑥𝑝(𝑥) d𝑥 =
(𝑏 + 𝑎)

2

∫︁ 𝑏

𝑎

𝑝(𝑥) d𝑥
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Proof. Let 𝑠(𝑦) =
∫︀ 𝑦

𝑎
𝑝(𝑥) d𝑥 for 𝑦 ∈ [𝑎, 𝑏].

Then by symmetry we have 𝑠(𝑥) + 𝑠(𝑏− 𝑥 + 𝑎) =
∫︀ 𝑏

𝑎
𝑝(𝑥) d𝑥. By integration by parts∫︁ 𝑏

𝑎

𝑥𝑝(𝑥) d𝑥 = 𝑥𝑠(𝑥)|𝑏𝑎 −
∫︁ 𝑏

𝑎

𝑠(𝑥) d𝑥

= 𝑏

∫︁ 𝑏

𝑎

𝑝(𝑥) d𝑥−
∫︁ 𝑏+𝑎

2

𝑎

𝑠(𝑥) + 𝑠(𝑏− 𝑥 + 𝑎) d𝑥

= 𝑏

∫︁ 𝑏

𝑎

𝑝(𝑥) d𝑥− 𝑏− 𝑎

2

∫︁ 𝑏

𝑎

𝑝(𝑥) d𝑥

=
𝑏 + 𝑎

2

∫︁ 𝑏

𝑎

𝑝(𝑥) d𝑥

5 CLT for functions of 𝑘 consecutive variables

In this section we show how Theorem 2.1 generalizes to functions of more than two vari-

ables. The proof method is the same, only straightforward modifications are required that

we will briefly sketch.

Theorem 5.1. Given a probability measure space (Ω,𝒜, 𝜈) and a bounded measurable

function 𝑓 : Ω𝑘 → R, let us take an IID sequence (𝑍𝑖)𝑖≥0 with distribution 𝜈. Then the

normalized sum (︃
𝑁−1∑︁
𝑖=0

𝑓(𝑍𝑖, 𝑍𝑖+1, . . . , 𝑍𝑖+𝑘−1) −𝑁𝜇𝑓,𝜈

)︃⧸︂√
𝑁

converges in distribution to 𝑁(0, 𝜎2
𝑓,𝜈) as 𝑁 → ∞, where

𝜇𝑓,𝜈 = E𝜈𝑘𝑓 =

∫︁
𝑓 d𝜈𝑘

and

𝜎2
𝑓,𝜈 = var

(︃
𝑓(𝑋1, . . . , 𝑋𝑘) +

𝑘−1∑︁
𝑖=1

(𝑓(𝑋𝑖+1, . . . , 𝑋𝑘, *, . . . , *) − 𝑓(𝑋𝑖, . . . , 𝑋𝑘−1, *, . . . , *))

)︃
.

(Here 𝑋1, . . . , 𝑋𝑘 denotes an IID sequence with distribution 𝜈).

Proof. Once again, by subtracting a constant from 𝑓 , we may assume that 𝑓 has a zero

expectation. Now let

𝑔(𝑥1, . . . , 𝑥𝑘) =

(︃
𝑓(𝑥1, . . . , 𝑥𝑘) +

𝑘−1∑︁
𝑖=1

(𝑓(𝑥𝑖+1, . . . , 𝑥𝑘, *, . . . , *) − 𝑓(𝑥𝑖, . . . , 𝑥𝑘−1, *, . . . , *))

)︃
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and

𝑋𝑁
..=

𝑁−1∑︁
𝑖=0

𝑔(𝑍𝑖, . . . , 𝑍𝑖+𝑘−1)

.

Then (𝑋𝑖)𝑖≥0 is a martingale adapted to the filtration ℱ𝑖 = 𝜎 (𝑍0, . . . , 𝑍𝑘+𝑖−2).

Note that due to the telescoping sum, the normalized 𝑋𝑖 converges to the the same

distribution as the normalized sum of 𝑓 .

Considering the martingale difference sequence 𝑌𝑖
..= 𝑋𝑖+1 − 𝑋𝑖, and using McLeish’s

theorem (see Section 2 for more detail), we end up getting just what we wanted to prove.

5.1 Turning number

Next we present an application of Theorem 5.1 where the number of variables (of 𝑓) is

greater than 2. The turning number of a closed directed curve is the number of full (signed)

turns that we take when we walk it through.

When this closed curve is a polygonal path 𝑍0𝑍1 . . . 𝑍𝑁−1𝑍0, then the turning number

is simply the sum of signed angles between
−−−−→
𝑍𝑖−1𝑍𝑖 and

−−−−→
𝑍𝑖𝑍𝑖+1, divided by 2𝜋. (The indices

are meant in modulo 𝑁 , i.e. 𝑍𝑁 = 𝑍0 and 𝑍𝑁+1 = 𝑍1.) So let 𝑓(𝑋, 𝑌, 𝑍) be the signed

angle enclosed by
−−→
𝑋𝑌 and

−→
𝑌 𝑍. Then the turning number of a polygonal path is

𝑡(𝑍0𝑍1 . . . 𝑍𝑁−1𝑍0) =

∑︀𝑁−3
𝑖=0 𝑓(𝑍𝑖, 𝑍𝑖+1, 𝑍𝑖+2)

2𝜋
+ 𝑂(1).

Now let 𝜈 be a measure on R2 and (𝑍𝑖)𝑖≥0 be an IID sequence with distribution 𝜈.

Then by Theorem 5.1,
∑︀𝑁−3

𝑖=0 𝑓(𝑍𝑖, 𝑍𝑖+1, 𝑍𝑖+2)
⧸︀√

𝑁 converges in distribution to Gaussian

with variance ∫︀
𝑓2 d𝜈3⏞  ⏟  ∫︁

𝑓(𝜔1, 𝜔2, 𝜔3)𝑓(𝜔1, 𝜔2, 𝜔3) d𝜈(𝜔1) d𝜈(𝜔2) d𝜈(𝜔3) +

2

∫︁
𝑓(*, 𝜔1, 𝜔2)𝑓(𝜔1, 𝜔2, *) d𝜈(𝜔1) d𝜈(𝜔2)+

2

∫︁
𝑓(*, *, 𝜔1)𝑓(𝜔1, *, *) d𝜈(𝜔1).

6 Linking number

Let us now turn to our original goal of studying the linking number of two closed polygonal

paths. Given a red polygonal path and a blue one, both with a fixed orientation, their

linking number can be intuitively defined as the number of times the red curve winds

around the blue curve. There is a precise topological definition. For our purposes, it will
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suffice to know how one can compute the linking number from the so-called linking diagram

(see Figure 4). Project the polygonal paths to a plane which is in “general position” with

respect to the two curves. Then look at the crossings (i.e. points that both projected

curves go through). Four types of crossings can be distinguished based on the following

two properties.

• Which curve (red or blue) “goes over” the other at the crossing?

• What is the sign (+ or −) of the crossing? It is determined by the unit vectors

representing the “direction” of the projected curves at the crossing. The sign of the

crossing is + (or +1) if we need to rotate the top directional vector (corresponding

to the “overcrossing” curve) by some positive angle 0 < 𝛼 < 𝜋 to get the bottom

directional vector (corresponding to the “undercrossing” curve). If the angle of the

rotation is negative (−𝜋 < 𝛼 < 0), then the sign of the crossing is defined to be −
(or −1).

So each crossing can be labelled by +, −, +, or −.

Lemma 6.1. The sum of the red signs is always equal to the sum of the blue signs, and

we define the linking number as this sum.

Proof. It is enough to prove that for any two closed curves, we have #{+,−} = #{−,+}.

Note that these numbers correspond to the numbers of crossings when we need to rotate

the red vector by some positive and negative angle respectively to get the blue one.

Let 𝛾𝑏 : [0, 1] ↦→ R2 be the blue curve. Then let 𝑟 = inf{𝑙
⃒⃒
∃𝑠 < 𝑙, 𝛾𝑏(𝑙) = 𝛾𝑏(𝑠)}. Define

𝛾1
𝑏 , 𝛾

(1)
𝑏 : [0, 1] ↦→ R2 as 𝛾1

𝑏 (𝑥) = 𝛾𝑏(𝑠+ (𝑟− 𝑠)𝑥), and 𝛾
(1)
𝑏 = 𝛾𝑏∖𝛾1

𝑏 . Then repeat these steps

with 𝛾
(1)
𝑏 to get 𝛾2

𝑏 , 𝛾
(2)
𝑏 . Then repeat with 𝛾

(2)
𝑏 , and so on.

Let 𝑛 = inf{𝑘
⃒⃒
|𝛾(𝑘)

𝑏 | = 0}. Then
⋃︀𝑛

𝑖=1 𝛾
𝑖
𝑏 = 𝛾𝑏, and for all 𝑖, 𝛾𝑖

𝑏 is a non-intersecting

closed curve. Thus for all 𝑖, the red curve intersects 𝛾𝑖
𝑏 an even number of times. On top of

that, in half of the cases the red vector points “inward” of the curve, and it points “outward”

in the other half cases. This means that for all 𝑖, when we consider the intersections on 𝛾𝑖
𝑏,

it contributes the same number for #{+,−} and #{−,+}, hence they are equal.
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Figure 4: Linking diagram for two closed polygonal paths in R3, each with seven interme-

diate points: we take the 2D projection, then at each crossing we determine which curve is

on top (indicated by the color of the intersection point), and assign a sign to the crossing

based on the relative position of the overcrossing curve to the undercrossing curve. The

sum of red signs and the sum of blue signs will always be the same, giving the linking

number (−3 in this case).

6.1 Variance of the linking number

Now we can formulate our problem in a purely probabilistic language. For the sake of

simplicity, assume that the red and the blue polygonal paths have the same number of IID

intermediate points (𝑁) and from the same distribution (𝜈) on R3. The red path will be

denoted by 𝑍r
0𝑍

r
1 . . . 𝑍

r
𝑁−1𝑍

r
0, while 𝑍b

0𝑍
b
1 . . . 𝑍

b
𝑁−1𝑍

b
0 is the blue path. Indices are always

meant modulo 𝑁 : e.g. 𝑍r
𝑁 = 𝑍r

0 or 𝑍b
𝑁+1 = 𝑍b

1 . Given a “red index” 0 ≤ 𝑖 < 𝑁 and a

“blue index” 0 ≤ 𝑗 < 𝑁 , we define the random variable 𝑋𝑖,𝑗 to be +1/−1 if the red vector

𝑍r
𝑖𝑍

r
𝑖+1 “overcrosses” the blue vector 𝑍b

𝑗 𝑍
b
𝑗+1 with a (red) +/− sign, otherwise 𝑋𝑖,𝑗 is 0. In

other words, we only consider the red signs in our linking diagram. This way we get the
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linking number as an 𝑁2-element sum:
∑︀

𝑖,𝑗 𝑋𝑖,𝑗, where

𝑋𝑖,𝑗 = 𝑓
(︀
𝑍r

𝑖 , 𝑍
r
𝑖+1, 𝑍

b
𝑗 , 𝑍

b
𝑗+1

)︀
for some fixed {−1, 0, 1}-valued measurable function 𝑓 . Note that 𝑓 has the property that

𝑓(𝑥0, 𝑥1, 𝑦0, 𝑦1) = −𝑓(𝑥1, 𝑥0, 𝑦0, 𝑦1) and 𝑓(𝑥0, 𝑥1, 𝑦0, 𝑦1) = −𝑓(𝑥0, 𝑥1, 𝑦1, 𝑦0),

that is, 𝑓 changes sign if we exchange the first two or the last two variables (“flipping”

either the red vector, or the blue vector).

For the variance of the sum: we need to find the covariance of 𝑋𝑖,𝑗 and 𝑋𝑖′,𝑗′ . If

𝑖′ ̸= 𝑖− 1, 𝑖, 𝑖 + 1 and 𝑗′ ̸= 𝑗 − 1, 𝑗, 𝑗 + 1, then they are independent and hence cov = 0. If

𝑖′ ̸= 𝑖− 1, 𝑖, 𝑖 + 1, then one of the red vectors can be “flipped” and we would still have the

same joint distribution for the endpoints but covariance gets multiplied with −1. Therefore

the covariance must be 0. Similarly for the case 𝑗′ ̸= 𝑗 − 1, 𝑗, 𝑗 + 1.

The remaining cases are:

• 𝑖 = 𝑖′ and 𝑗 = 𝑗′. Then we get 𝑎 ..= cov(𝑋𝑖,𝑗, 𝑋𝑖,𝑗) = E(𝑋2
0,0). When we consider the

variance of
∑︀

𝑖,𝑗 𝑋𝑖,𝑗 then 𝑎 appears for all 𝑖, 𝑗 once, hence altogether 𝑁2 times.

• |𝑖 − 𝑖′| + |𝑗 − 𝑗′| = 1, then we have 𝑏 ..= cov(𝑋𝑖,𝑗, 𝑋𝑖′,𝑗′) = E(𝑋0,0𝑋0,1). This one

occurs 4𝑁2 times.

• |𝑖 − 𝑖′| = |𝑗 − 𝑗′| = 1. In this case 𝑐 ..= cov(𝑋𝑖,𝑗, 𝑋𝑖′,𝑗′) = E(𝑋0,0𝑋1,1), and this

happens in 4𝑁2 cases.

In conclusion, the variance of the linking number (expressed in terms of 𝑎, 𝑏, 𝑐) is

(𝑎 + 4𝑏 + 4𝑐)𝑁2.

In what follows we will try to test our hypothesis (that the distribution of the linking

number is close to a Gaussian with the above variance) by generating a random sample of

linking numbers using a computer.

6.2 Simulations in the unit cube

We consider the following simple setup with the goal of generating random linking numbers.

Let 𝜈 be the uniform measure of the unit cube [0, 1]3. When creating a linking diagram,

we will always project onto the 𝑥𝑦 plane (i.e. first two coordinates).

First we explain how 𝑓(𝑟0, 𝑟1, 𝑏0, 𝑏1) can be determined for four given points 𝑟0, 𝑟1, 𝑏0, 𝑏1.
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Let 𝑟0 = (𝑟𝑥0 , 𝑟
𝑦
0 , 𝑟

𝑧
0), 𝑟1 = (𝑟𝑥1 , 𝑟

𝑦
1 , 𝑟

𝑧
1), 𝑏0 = (𝑏𝑥0 , 𝑏

𝑦
0, 𝑏

𝑧
0) and 𝑏1 = (𝑏𝑥1 , 𝑏

𝑦
1, 𝑏

𝑧
1). Project these

points onto the usual plane, and let the image be 𝑟′0, 𝑟
′
1, 𝑏

′
0 and 𝑏′1 respectively. Now we

would like to calculate the intersection of the lines 𝑟′0𝑟
′
1 and 𝑏′0𝑏

′
1. More precisely we are

looking for the numbers 𝑅, 𝐵 such that 𝑅(𝑟′0− 𝑟′1)+ 𝑟′1 = 𝐵(𝑏′0− 𝑏′1)+ 𝑏′1. Considering only

the first coordinates from this equation, we get 𝑅(𝑟𝑥0 − 𝑟𝑥1) + 𝑟𝑥1 = 𝐵(𝑏𝑥0 − 𝑏𝑥1) + 𝑏𝑥1 . Hence

𝑅 = 𝐵
(𝑏𝑥0 − 𝑏𝑥1)

(𝑟𝑥0 − 𝑟𝑥1)
+

(𝑏𝑥1 − 𝑟𝑥1)

(𝑟𝑥0 − 𝑟𝑥1)
(5)

For the second coordinates, we have 𝑅(𝑟𝑦0 − 𝑟𝑦1) + 𝑟𝑦1 = 𝐵(𝑏𝑦0 − 𝑏𝑦1) + 𝑏𝑦1. Substituting

(5) into this, we get(︂
𝐵

(𝑏𝑥0 − 𝑏𝑥1)

(𝑟𝑥0 − 𝑟𝑥1)
+

(𝑏𝑥1 − 𝑟𝑥1)

(𝑟𝑥0 − 𝑟𝑥1)

)︂
(𝑟𝑦0 − 𝑟𝑦1) = 𝐵(𝑏𝑦0 − 𝑏𝑦1) + (𝑏𝑦1 − 𝑟𝑦1)

Thus

𝐵 =
(𝑏𝑦1 − 𝑟𝑦1)(𝑟𝑥0 − 𝑟𝑥1) − (𝑏𝑥1 − 𝑟𝑥1)(𝑟𝑦0 − 𝑟𝑦1)

(𝑏𝑥0 − 𝑏𝑥1)(𝑟𝑦0 − 𝑟𝑦1) − (𝑏𝑦0 − 𝑏𝑦1)(𝑟
𝑥
0 − 𝑟𝑥1)

Similarly

𝑅 = − (𝑟𝑦1 − 𝑏𝑦1)(𝑏
𝑥
0 − 𝑏𝑥1) − (𝑟𝑥1 − 𝑏𝑥1)(𝑏𝑦0 − 𝑏𝑦1)

(𝑏𝑥0 − 𝑏𝑥1)(𝑟𝑦0 − 𝑟𝑦1) − (𝑏𝑦0 − 𝑏𝑦1)(𝑟
𝑥
0 − 𝑟𝑥1)

Using 𝑅 and 𝐵, we can easily check whether the line segments [𝑟′0, 𝑟
′
1], [𝑏′0, 𝑏

′
1] intersect

each other: they do if and only if 𝑅,𝐵 ∈ [0, 1].

When 𝑅,𝐵 ∈ [0, 1], then we need to check that at the intersection, we have the red

segment “on top”. We can calculate the heights of each segment from the intersection. For

the red one it is 𝑅𝑟𝑧0 + (1 −𝑅)𝑟𝑧1 and for the blue one it is 𝐵𝑏𝑧0 + (1 −𝐵)𝑏𝑧1.

If 𝑅 ̸∈ [0, 1] or 𝐵 ̸∈ [0, 1] or 𝑅𝑟𝑧0 +(1−𝑅)𝑟𝑧1 < 𝐵𝑏𝑧0 +(1−𝐵)𝑏𝑧1, then 𝑓(𝑟0, 𝑟1, 𝑏0, 𝑏1) = 0.

Otherwise, we have to check in which direction (positive or negative) we should rotate
−−→
𝑟′0𝑟

′
1 to get

−−→
𝑏′0𝑏

′
1. We can do this by considering the third coordinate of the cross product

−−→
𝑟′0𝑟

′
1 ×

−−→
𝑏′0𝑏

′
1. Thus we have

𝑓(𝑟0, 𝑟1, 𝑏0, 𝑏1) = sign((𝑟𝑥0 − 𝑟𝑥1)(𝑏𝑦0 − 𝑏𝑦1) − (𝑟𝑦0 − 𝑟𝑦1)(𝑏𝑥0 − 𝑏𝑥1))

Using this formula, we can run various computer simulations. We used Code 4 in the

appendix to get approximate values for 𝑎, 𝑏, 𝑐 in the unit cube setup:

𝑎 ≈ +0.1157

𝑏 ≈ −0.0366

𝑐 ≈ +0.0119
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For the variance we get

(𝑎 + 4𝑏 + 4𝑐)𝑁2 ≈ 0.0169𝑁2 = (0.13𝑁)2.

Figure 5: Histogram for a sample of random linking numbers, compared to normal distri-

bution

Next we compared the empirical distribution of a random sample for the linking number

to a normal distribution. We generated 20000 pairs of closed polygonal paths, each with

length 𝑁 = 500. Then we computed the linking number for each pair. The resulting

sample of 20000 numbers is compared to the normal distribution of variance (0.13𝑁)2 in

Figure 5. The code that we used is attached to the the appendix as Code 6.

6.3 True limit: a mixture of Gaussians?

It seems from Figure 5 that the linking number is very close to the normal distribution as

we had originally expected. After further investigation, however, we now think that the

limiting distribution is not quite normal. Instead, we expect it to be a mixture of Gaussians.

To explain why we think that let us look at a similar problem with less dependency.

Problem 6.2. Let 𝑔 : Ω × Ω → R be a function of two variables. Suppose that we have

two IID sequences 𝑍r
0, 𝑍

r
1, . . . and 𝑍b

0 , 𝑍
b
1 , . . . from the same distribution 𝜈 on Ω. For the
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random variables 𝑋𝑖,𝑗 = 𝑔(𝑍r
𝑖 , 𝑍

b
𝑗 ) we consider their sum

𝑆𝑁
..=
∑︁
𝑖,𝑗<𝑁

𝑋𝑖,𝑗 =
∑︁
𝑖,𝑗<𝑁

𝑔(𝑍r
𝑖 , 𝑍

b
𝑗 ).

What can we say about the distribution of 𝑆𝑁 in the limit as 𝑁 → ∞?

Remark 6.3. Depending on 𝑔 and 𝜈, the nature of Problem 6.2 can be very different.

For example, given independent 𝑍r, 𝑍r, 𝑍b, 𝑍b, each with distribution 𝜈, it makes a big

difference whether the covariances

cov
(︀
𝑔(𝑍r, 𝑍b), 𝑔(𝑍r, 𝑍b)

)︀
and cov

(︀
𝑔(𝑍r, 𝑍b), 𝑔(𝑍r, 𝑍b)

)︀
are zero or not. It is easy to see that these covariances are zero if and only if

𝑔(*, 𝑥) = 𝑔(𝑥, *) = 0 for almost all 𝑥,

in which case 𝑆𝑁 has variance of order 𝑁2 (and not 𝑁3 as in general), and hence we should

consider the normalized sum 𝑆𝑁

⧸︀
𝑁 .

Example 6.4. Let Ω = [0, 1]3 × [0, 1]3 and 𝑔((𝑥0, 𝑦0); (𝑥1, 𝑦1)) = 𝑓(𝑥0, 𝑦0, 𝑥1, 𝑦1) for the

function 𝑓 defined in Section 6.1 for the linking number problem. So for 𝑁 independent

red vectors and 𝑁 independent blue vectors, 𝑆𝑁 is simply the sum of the signs of red

overcrossings for all pairs of one red vector and one blue vector. (That is, the vectors

here are not from closed paths of length 𝑁 but each vector is chosen independently.) This

problem captures the essence of the original linking number problem without having to deal

with the dependencies between consecutive vectors. In this case the covariances mentioned

in the remark are zero so the proper normalization will be 𝑆𝑁

⧸︀
𝑁 .

Now we make a few general comments regarding Problem 6.2. First let us think of the

first sequence 𝑍r
0, 𝑍

r
1, . . . , 𝑍

r
𝑁−1 as a fixed deterministic sequence, and let 𝑍 be a random

variable with distribution 𝜈. Then

𝑌 =
∑︁
𝑖<𝑁

𝑔(𝑍r
𝑖 , 𝑍)

has some distribution 𝜅𝑁 = 𝜅(𝑍r
0, . . . , 𝑍

r
𝑁−1) depending on (𝑍r

𝑖 )𝑖<𝑁 . Now for any given 𝑗,

the sum

𝑌𝑗 =
∑︁
𝑖<𝑁

𝑋𝑖,𝑗

has the same distribution as 𝑌 (still thinking of 𝑍r
0, 𝑍

r
1, . . . , 𝑍

r
𝑁−1 as a fixed deterministic

sequence). So 𝑆𝑁 =
∑︀

𝑗<𝑁 𝑌𝑗 is actually the sum of 𝑁 independent copies of 𝑌 , that is,
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the sum of 𝑁 IID samples from 𝜅𝑁 = 𝜅(𝑍r
0, . . . , 𝑍

r
𝑁−1). If we think of the first sequence as

random, then we need to consider a random 𝜅𝑁 in the above discussion. Therefore we first

need to generate a probability distribution 𝜅𝑁 at random (by randomizing 𝑍r
0, . . . , 𝑍

r
𝑁−1),

then sampling 𝑁 independent copies from 𝜅𝑁 and add them up. Standard CLT “suggests”

that what we get is “close” to a normal distribution 𝑁(0, 𝜎2) where 𝜎 =
√
𝑁𝜎(𝜅𝑁). Note

that 𝜎(𝜅𝑁) is random a number here.

This approach would involve two steps. The first step is to understand the behavior

of 𝜎(𝜅𝑁). The second step is to prove that the limiting distribution of 𝑆𝑁

⧸︀
𝑁 is the

corresponding mixture of Gaussians. Note that we have to take the limit simultaneously

in the index of 𝜅𝑁 and in the number 𝑁 of independent samples of 𝜅𝑁 .

For the linking number, we still expect each 𝑌𝑗 to be close to a Gaussian but with a

nonzero covariance between consecutive ones which further complicates the matter. Nev-

ertheless, we think that 𝑆𝑁 will converge to a mixture of centered Gaussians. The mixture

distribution is quite close to the Gaussian distribution (with deterministic variance) that

we previously considered. So close, in fact, that we would need a gigantic sample of random

linking numbers to be able to distinguish between the two distributions, which explains

why simulations suggested that CLT might hold.
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7 Appendix: codes

We include the SageMath codes of our computations, simulations, and figures for the thesis.

Most of these codes can be run in a “Sagecell”: go to sagecell.sagemath.org and copy-

paste the code, then hit “Evaluate”. Some codes require longer running times and need to

be run on a sage environment installed on a computer. (When copy-pasting, some PDF

viewers may not include the spaces at the start of each line. So make sure to re-enter those

spaces in the Sagecell as these indentations are vital for Python (and hence Sage) codes.)

7.1 Winding number

Code 1: Plotting the variance of the winding number (Figure 2)
def variance(r):

h_inv(x)=(x-arcsin(r*sin(x)))/(2*pi)

g=diff(h_inv(x),x)

return numerical_integral(g*( (1+2*h_inv(x-pi))-(1+2*h_inv(x-pi))^2 ),0,pi)[0]

fig=plot(lambda r: variance(r),(r,0,1))

fig.show(ticks=[1/4,1/24],tick_formatter=[1,1/12],axes_labels=["$r$","var"],fontsize=16,axes_labels_size=1)

Code 2: Plotting “parts” of the variance (Figure 3)
def variance_parts(r):

h_inv(x)=(x-arcsin(r*sin(x)))/(2*pi)

g=diff(h_inv(x),x)

# E f^2

a=4*numerical_integral(x^2*g,0,pi)[0]

b=-16*pi.n()*numerical_integral(x*g*(1/2+h_inv(x-pi)),0,pi)[0]

c=8*pi.n()^2*numerical_integral(g*(1/2+h_inv(x-pi)),0,pi)[0]

# 2*E_w f(w,*)^2

d=4*numerical_integral(g*(2*pi*(1/2+h_inv(x-pi))-x)^2,0,pi)[0]

return [a+b+c,d,a+b+c+d,a+b+c-d]

fig0=plot(lambda r: variance_parts(r)[0],(r,0,1),color=’green’)

fig1=plot(lambda r: variance_parts(r)[1],(r,0,1),color=’green’)

fig2=plot(lambda r: variance_parts(r)[2],(r,0,1),color=’red’)

fig3=plot(lambda r: variance_parts(r)[3],(r,0,1),color=’blue’)

show(fig0+fig1+fig2+fig3)
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7.2 Linking number

Code 3: Crossing probabilities
def crossing(Rsgmt,Bsgmt):

[[RstX,RstY,RstZ],[RendX,RendY,RendZ]]=Rsgmt

[[BstX,BstY,BstZ],[BendX,BendY,BendZ]]=Bsgmt

denom=(BendY-BstY)*(RendX-RstX)-(BendX-BstX)*(RendY-RstY)

Rw=-( (BendY-RendY)*BstX-BendX*(BstY-RendY)-(BendY-BstY)*RendX )/denom

Bw= ( (BendY-RstY)*RendX-BendX*(RendY-RstY)-(BendY-RendY)*RstX )/denom

if Rw<0 or Rw>1 or Bw<0 or Bw>1: return 0

if Rw*RstZ+(1-Rw)*RendZ > Bw*BstZ+(1-Bw)*BendZ: return 1

return -1

def random_point(): return [random(),random(),random()]

def random_segment(): return [random_point(),random_point()]

@interact

def _(reps=10^5):

count=[0,0,0]

for _ in range(reps): count[1+crossing(random_segment(),random_segment())] += 1

print([n(count[i]/reps,digits=6) for i in range(3)])

Code 4: Covariance for overlapping pairs
import numpy

def redcrossing_sign(Rsgmt,Bsgmt):

[[RstX,RstY,RstZ],[RendX,RendY,RendZ]]=Rsgmt

[[BstX,BstY,BstZ],[BendX,BendY,BendZ]]=Bsgmt

denom=(BendY-BstY)*(RendX-RstX)-(BendX-BstX)*(RendY-RstY)

Rw=-( (BendY-RendY)*BstX-BendX*(BstY-RendY)-(BendY-BstY)*RendX )/denom

Bw= ( (BendY-RstY)*RendX-BendX*(RendY-RstY)-(BendY-RendY)*RstX )/denom

if Rw<0 or Rw>1 or Bw<0 or Bw>1: return 0

if Rw*RstZ+(1-Rw)*RendZ > Bw*BstZ+(1-Bw)*BendZ: return sgn(denom)

return 0

def random_point(): return [random(),random(),random()]

def random_path(nr): return [random_point() for _ in range(nr)]

signs = numpy.full((3,3),0)

def sign_products():

Rpath=random_path(4)

Bpath=random_path(4)

#signs=numpy.array([[0,0,0],[0,0,0],[0,0,0]])

for Ri in range(3):

for Bi in range(3):

signs[Ri][Bi]=redcrossing_sign([Rpath[Ri],Rpath[Ri+1]],[Bpath[Bi],Bpath[Bi+1]])

return signs[1][1]*signs

reps=10^5;

total = numpy.full((3,3),0) #total=numpy.array([[0,0,0],[0,0,0],[0,0,0]])

for _ in range(reps): total+=sign_products()

print(total/reps)

vr=numpy.sum(total)/reps

print("sigma^2: " + str(vr))

print("sigma: " + str(sqrt(vr)))
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Code 5: Linking diagram (Figure 4)
def crossing_full_info(Rsgmt,Bsgmt):

[[RstX,RstY,RstZ],[RendX,RendY,RendZ]]=Rsgmt

[[BstX,BstY,BstZ],[BendX,BendY,BendZ]]=Bsgmt

denom=(BendY-BstY)*(RendX-RstX)-(BendX-BstX)*(RendY-RstY)

Rw=-( (BendY-RendY)*BstX-BendX*(BstY-RendY)-(BendY-BstY)*RendX )/denom

Bw= ( (BendY-RstY)*RendX-BendX*(RendY-RstY)-(BendY-RendY)*RstX )/denom

ptX=Rw*RstX+(1-Rw)*RendX

ptY=Rw*RstY+(1-Rw)*RendY

pos = -1;

if Rw<0 or Rw>1 or Bw<0 or Bw>1: pos=0

elif Rw*RstZ+(1-Rw)*RendZ > Bw*BstZ+(1-Bw)*BendZ: pos=1

return [pos,sgn(denom),ptX,ptY]

def int_point(info):

pt=(info[2],info[3])

lbl="$+$"
if (info[0]*info[1]==-1): lbl="$-$"
if (info[0]==1): return point(pt,color=’red’,pointsize=20,zorder=10)+text(lbl, pt, horizontal_alignment=

’left’, vertical_alignment=’bottom’,color=’red’,fontweight=’bold’,fontsize=16,zorder=20)

if (info[0]==-1): return point(pt,color=’blue’,pointsize=20,zorder=10)+text(lbl, pt,

horizontal_alignment=’left’, vertical_alignment=’bottom’,color=’blue’,fontweight=’bold’,fontsize=16,

zorder=20)

return pt.plot(point={’color’:’black’})

#red or blue labels may be removed if it is too "crowded"

def random_point(): return [random(),random(),random()]

def random_path(nr): return [random_point() for _ in range(nr)]

def random_closed_path(nr): path=random_path(nr); path.append(path[0]); return path

def proj2d(path): return [pt[:2] for pt in path]

def draw_linking_figure(Rn,Bn,min_lnk_nr=0):

Rpath=random_closed_path(Rn); Rpath2d=proj2d(Rpath)

Bpath=random_closed_path(Bn); Bpath2d=proj2d(Bpath)

#fig=line(Rpath2d,color=’red’)+line(Bpath2d,color=’blue’)

fig=Graphics()

for i in range(Rn):

fig+=arrow(Rpath2d[i],Rpath2d[i+1],color=’red’,width=1,arrowsize=2)

for i in range(Bn):

fig+=arrow(Bpath2d[i],Bpath2d[i+1],color=’blue’,width=1,arrowsize=2)

lnk_nr=0

for Ri in range(Rn):

for Bi in range(Bn):

info=crossing_full_info([Rpath[Ri],Rpath[Ri+1]],[Bpath[Bi],Bpath[Bi+1]])

if (info[0]!=0): fig+=int_point(info)

if (info[0]==1): lnk_nr+=info[1]

if abs(lnk_nr)>=min_lnk_nr:

print("Linking number: " + str(lnk_nr))

fig.show(figsize=[8,8],axes=False)

return True

return False

@interact

def _(nr_of_red_points=7,nr_of_blue_points=7,min_lnk_nr=[0..4],auto_update=False):

while not draw_linking_figure(nr_of_red_points,nr_of_blue_points,min_lnk_nr): 0
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Code 6: Comparing linking number sample to Gaussian (Figure 5)
#VERY LONG running time

def redcrossing_sign(Rsgmt,Bsgmt):

[[RstX,RstY,RstZ],[RendX,RendY,RendZ]]=Rsgmt

[[BstX,BstY,BstZ],[BendX,BendY,BendZ]]=Bsgmt

denom=(BendY-BstY)*(RendX-RstX)-(BendX-BstX)*(RendY-RstY)

Rw=-( (BendY-RendY)*BstX-BendX*(BstY-RendY)-(BendY-BstY)*RendX )/denom

Bw= ( (BendY-RstY)*RendX-BendX*(RendY-RstY)-(BendY-RendY)*RstX )/denom

if Rw<0 or Rw>1 or Bw<0 or Bw>1: return 0

if Rw*RstZ+(1-Rw)*RendZ > Bw*BstZ+(1-Bw)*BendZ: return sgn(denom)

return 0

def random_point(): return [random(),random(),random()]

def random_path(nr): return [random_point() for _ in range(nr)]

def random_closed_path(nr): path=random_path(nr); path.append(path[0]); return path

def random_linking_number(Rn,Bn):

Rpath=random_closed_path(Rn)

Bpath=random_closed_path(Bn)

link_nr=0

for Ri in range(Rn):

for Bi in range(Bn):

link_nr+=redcrossing_sign([Rpath[Ri],Rpath[Ri+1]],[Bpath[Bi],Bpath[Bi+1]])

return link_nr

def compare_to_gaussian(smpl,sigma,odd_len=9):

total_nr = len(smpl)

smpl_rounded=[odd_len*round(val/odd_len) for val in smpl]

hash = {}

for val in smpl_rounded:

if(val in hash): hash[val]+=1

else: hash[val] = 1

for val in hash.keys(): hash[val] /= (odd_len*total_nr)

fig1=list_plot(list(hash.items()),color=’red’)

fig2=RealDistribution(’gaussian’, sigma).plot(x,-5*sigma,5*sigma,color=’blue’)

show(fig1+fig2)

smpl=[random_linking_number(500,500) for _ in range(20000)]

compare_to_gaussian(smpl,0.13*500,19)
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network embeddings. In APS March Meeting Abstracts, volume 2019 of APS Meeting

Abstracts, page B56.010, January 2019.

[3] D. L. McLeish. Dependent central limit theorems and invariance principles. The Annals

of Probability, 2(4):620–628, 1974.

[4] Sunder Sethuraman. A martingale central limit theorem. PDF accessible on author’s

website: https://www.math.arizona.edu/ sethuram/notes/wi mart1.pdf.

30

C
E

U
eT

D
C

ol
le

ct
io

n


	Declaration
	Acknowledgments
	Abstract
	The winding number problem
	Central Limit Theorems
	Cauchy–Schwarz for anti-symmetric kernels
	General version
	Matrix version

	Winding number for different center points
	An identity

	CLT for functions of k consecutive variables
	Turning number

	Linking number
	Variance of the linking number
	Simulations in the unit cube
	True limit: a mixture of Gaussians?

	Appendix: codes
	Winding number
	Linking number


