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Abstract
In this thesis, we prove that the distance is not concentrated for the 2-dimensional integer lattice
{o, 1, ..., n}2, the two dimensional integer torus Z × Z/(nZ × nZ) and the Uniform Spanning Tree
(UST) of the complete graph Kn. On the other hand, we prove that the distance is concentrated for
the Hypercube {0, 1}n, the Euclidean space Rn with the n-dimensional standard Gaussian measure,
the unit sphere Sn−1 ⊆ Rn with the normalized Lebesgue measure and the ball of radius R of a
non-elementary Hyperbolic group. To our knowledge, this last example has not been discussed
in the literature and it is the main novel part of this work. By plotting the Kernel Density
Estimations (KDE) in Python, we confirm that the distance is not concentrated for the UST of the
complete graph Kn; and we only visualize that the distance is not concentrated for the UST of both
the 2-dimensional integer lattice {0, 1, ..., n}2 and the 5-dimensional integer lattice {0, 1, ..., n}5.
We present an application of the concentration of distance phenomenon for a transitive metric
probability space.
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1. Introduction
The concentration of measure phenomenon is a notion introduced by Vitali Milman in 1970 in his
work in asymptotic geometry of Banach spaces, following the earlier works of Paul Lévy. It has
many applications in various areas such as geometry, discrete mathematics and complexity theory,
functional analysis and especially probability theory. It is often the behaviour of a function that
depends on a large number of variables.

In Probability Theory, the theory of Large Deviations formalizes the concentration of measure
phenomenon, and one of its probabilistic description is given by the strong law of large numbers
(SLLN). For example, given a sequence of independent identically distributed random variables
X1, ..., Xn, ... ∼ Unif{−1, 1} and consider the function:

fn(X1, ..., Xn) := X1 + ...+Xn

n
(n ∈ N),

then the SLLN says that:
fn −→ EX1 = 0 a.s,

meaning that when n is “large”, the function fn is highly concentrated around EX1 = 0. By using
the Moment Generating Function method, this particular example of the concentration phenomenon
can be quantified by the following concentration inequality:

P(|fn| ≥ t) ≤ 2e−
nt2

2 .

Here, our function fn is the arithmetic mean of the variables X1, X2, ... and Xn, but the point is
that the phenomenon also holds for much more general functions.

The main task in this thesis is to investigate the concentration of the distance between two inde-
pendent random points or the distance between a chosen ‘root’ and a random point for the follow-
ing metric probability spaces: the Euclidean space Rn endowed with the n-dimensional standard
Gaussian measure, the unit sphere Sn−1 ⊆ Rn endowed with the normalized Lebesgue measure,
the 2-dimensional integer lattice {o, 1, ..., n}2, the Hypercube {0, 1}n, the two dimensional integer
torus Z× Z/(nZ× nZ), the Uniform Spanning Tree (UST) of the complete graph Kn and the ball
of radius R of a non-elementary Hyperbolic group. All those graphs are equipped with the graph
distance and the normalized counting measure, and we conduct the study on a fixed Cayley graph
for the Hyperbolic group.

In Chapter 2, we study the classical case of the Euclidean space (Rn, ||.||, γn)n, where γn :=
N (0n, In) is the multivariate standard normal distribution. By combining this classical case with
Haar’s Theorem, see Lubotzky (2010), we prove the concentration phenomenon on the unit sphere
Sn−1 ⊆ Rn endowed with the Euclidean distance and the normalized Lebesgue measure.

Chapter 3 is concerned with discrete structures: we prove that in contrast with the case of the
Hypercube {0, 1}n, there is no distance concentration on the square lattice {0, ..., n}2 as well as in
the integer torus Z2/(nZ)2.

We prove that the distance between two randomly chosen vertices x and y of the Uniform Spanning
Tree T of Kn is not concentrated. We explain in detail the Wilson’s algorithm approach for the
limiting distribution of the quantity dT (x,y)√

n
mentioned in Peres and Revelle (2004).
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Page 2

We prove the concentration of distance on transitive expanders in two different methods: the first
proof follows from the spectral characterisation of expanders and the second one is derived from
the combinatorial definition. Although this result should not be surprising to experts, we had
thought it would have been written up for the first time in this thesis. Then Gergley Ódor drew
our attention to this recent paper Roughgarden et al. (2019) of George Barmpalias, Neng Huang,
Andrew Lewis-Pye, Angsheng Li, Xuechen Li, Ycheng Pan and Tim Roughgarden, which aims to
characterise Finite Expected Degree (FED) idemetric networks and expanders are among discussed
topic.

We close Chapter 3 by proving the main novel part of this work, which is the distance concentration
on balls BR of radius R in a non-elementary Hyperbolic group Γ. We first prove some elementary
results about the balls and spheres of a d-regular tree in Theorem 3.4.3 and Theorem 3.4.4. After
that, we prove Theorem 3.4.8 which says that:

d(X,Y )
2R

P−→ 1,

where X,Y ∼ Unif(BR) are independent, by combining the Hyperbolicity with the fact that non-
elementary Hyperbolic groups have exponential growth. We close Chapter 3 with some further
discussions and some open questions.

In Chapter 4, we visualize with Python the Rayleigh limit of the Uniform Spanning Tree of Kn.
We also plot the Kernel Density Estimations (KDE) of the distance for the Uniform Spanning
Trees of (Z/nZ)5 and (Z/nZ)2 for n ∈ {3, 7, 5} and n ∈ {20, 30, 50} respectively. Those other
visualizations are motivated by Kenyon (2000b), Kenyon (2000a) and Lawler et al. (2011). Inspired
from Roughgarden et al. (2019), we explain and visualize by simulating S10(T3) how one can
optimize space when saving a data structure that encodes the distance between all pairs of points
ofXn for a large n, where (Xn, dn, µn) is a transitive metric measurable space satisfying the distance
concentration property.
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2. Spherical measure and standard Gaussian
distribution
In this chapter, we recall some properties of the n-dimensional Gaussian distribution on the Eu-
clidean space Rn and we prove the corresponding concentration inequality. The concentration
phenomenon on the unit sphere Sn−1 ⊆ Rn then follows by using Haar’s Theorem on the unicity
of a rotational invariant measure on the unit sphere.

2.1 Concentration of Gaussian measure

In this section, we state some properties of standard Gaussian random variables and introduce the
notion of concentration of measure&distance phenomenon by considering the case of the metric
measurable space (Rn, ||.||, γn), where ||.|| is the usual Euclidean norm.

For n > 1, let γn denotes the n-dimensional standard Gaussian measure N (0n, In), where 0n is the
zero-vector of Rn and In the n × n identity matrix. Let X1, ..., Xn, ... ∼ N (0, 1) be independent
identically distributed (iid) real random variables. Then X := (X1, ..., Xn) ∼ γn and by the strong
law of large numbers, we have:

||X||√
n

= 1 + o(1) a.s,

meaning that when n is large, the Euclidean space (Rn, ||.||) endowed with γn “looks like” the n-
dimensional sphere of radius

√
n. In order to quantify this property, we need the following lemma.

Lemma 2.1.1. For t < 1
2 , we have

mX2
1
(t) := E

(
etX2

1
)

= 1√
1− 2t

.

Consequently,
κX2

1
(t) := ln

(
E
(
etX2

1
))

= −1
2 ln (1− 2t).

Proof. Since t < 1
2 , then 1− 2t > 0. So we have:

E(etX2
1 ) =

∫ +∞

−∞

1√
2π

etx2e−
x2
2 dx =

∫ +∞

−∞

1√
2π

ex2(t− 1
2 )dx

=
∫ +∞

−∞

1√
2π

e−
(x
√

1−2t)2
2 dx = 1√

1− 2t

∫ ∞
−∞

e−
u2
2

√
2π
du

= 1√
1− 2t

.

Given a real valued random variable χ, the function t 7−→ mχ(t) := E
(
etχ
)
(when it exists) is called

the moment generating function of χ.

The following theorem quantifies how much does the norm of an n-dimensional Gaussian vector
deviate from

√
n.
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Section 2.1. Concentration of Gaussian measure Page 4

Theorem 2.1.2. Let X ∼ γn be an n-dimensional standard Gaussian vector of Rn. Then for
0 < ε < 1, we have:

γn(
∣∣||X|| − √n∣∣ ≥ ε√n) ≤ 2e−

nε2
2 .

Therefore
||X||√
n

P−→ 1.

Proof. We have:

γn
(∣∣||X|| − √n∣∣ ≥ ε√n) ≤ γn

(
||X|| ≥

√
n(1 + ε)

)
+ γn

(
||X|| ≤

√
n(1− ε)

)
≤ γn

(
||X||2 ≥ n(1 + ε)2

)
+ γn

(
||X||2 ≤ n(1− ε)2

)
,

since 0 < ε < 1, so that 1− ε > 0. Hence:

γn
(∣∣||X|| − √n∣∣ ≥ ε√n) ≤ P

(
X2

1 + ...+X2
n ≥ n(1 + ε)2

)
+ P

(
X2

1 + ...+X2
n ≤ n(1− ε)2

)
,

where X1, ..., Xn ∼ N (0, 1) are iid. We are going to give an upper bound of the two terms of the
quantity in the right hand side of the inequality above by using the moment generating function.

- For the first term: let t ∈ (0, 1
2). We have by Markov’s inequality:

P
(
X2

1 + ...+X2
n ≥ n(1 + ε)2

)
≤ P

(
tX2

1 + ...+ tX2
n ≥ tn(1 + ε)2

)
≤ P

(
etX2

1 +...+tX2
n ≥ etn(1+ε)2)

≤
E
(
etX2

1 +...+tX2
n

)
etn(1+ε)2 =

E
(
etX2

1 ...etX2
n

)
etn(1+ε)2

=

E
(
etX2

1
)

et(1+ε)2

n =
(
mX2

1
(t)

et(1+ε)2

)n

since X1, ..., X1 are iid. It follows from Lemma 2.1.1 that:

P
(
X2

1 + ...+X2
n ≥ n(1 + ε)2

)
≤ e

n

(
κ
X2

1
(t)−t(1+ε)2

)
= en(−

1
2 ln (1−2t)−t(1+ε)2)

By derivation with respect to t, the quantity −1
2 ln (1− 2t)− t(1 + ε)2 reaches its minima value at

t0 = 1
2

(
1− 1

(1+ε)2

)
∈ (0, 1

2). By taking this particular value of t, we have

−1
2 ln (1− 2t0)− t0(1 + ε)2 = ln (1 + ε)− ε− ε2

2 .

Since 1 + ε ≤ eε, we have
ln (1 + ε) ≤ ε,

i.e
ln (1 + ε)− ε ≤ 0,

so that
ln (1 + ε)− ε− ε2

2 ≤ −
ε2

2 .
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Section 2.1. Concentration of Gaussian measure Page 5

Therefore

P
(
X2

1 + ...+X2
n ≥ n(1 + ε)2

)
≤ e

n

(
ln (1+ε)−ε− ε

2
2

)
≤ e−

nε2
2 .

- For the second part: consider t ≤ 0. Then

P
(
X2

1 + ...+X2
n ≤ n(1− ε)2

)
≤ P

(
tX2

1 + ...+ tX2
n ≥ tn(1− ε)2

)
.

By using the same techniques as in the first part, we have

P
(
X2

1 + ...+X2
n ≤ n(1− ε)2

)
≤
(
mX2

1
(t)

et(1−ε)2

)n
= e

n

(
κ
X2

1
(t)−t(1−ε)2

)

= en(−
1
2 ln (1−2t)−t(1−ε)2).

Again by derivation with respect to t, quantity −1
2 ln (1− 2t) − t(1 − ε)2 reaches it minima value

at t1 = 1
2

(
1− 1

(1−ε)2

)
(t1 < 0 because we assumed that 0 < ε ≤ 1, then 1

(1−ε)2 ≥ 1), and by taking
this particular value of t, we have:

−1
2 ln (1− 2t1)− t1(1− ε)2 = ln (1− ε) + ε− ε2

2 .

Since 0 ≤ 1− ε ≤ e−ε, we have
ln (1− ε) ≤ −ε,

i.e
ln (1− ε) + ε ≤ 0,

so that
ln (1− ε) + ε− ε2

2 ≤ −
ε2

2 .

Therefore

P
(
X2

1 + ...+X2
n ≤ n(1− ε)2

)
≤ e

n

(
ln (1−ε)+ε− ε

2
2

)
≤ e−

nε2
2 .

Therefore,
γn(
∣∣||X|| − √n∣∣ ≥ ε√n) ≤ e−

nε2
2 + e−

nε2
2 = 2e−

nε2
2

and the theorem is proved.

Theorem 2.1.2 describes the concentration of n-dimensional standard Gaussian measure around the
sphere of radius

√
n of Rn. Figure 2.1 illustrates the case where ε = 1

n
1
3

: in this case, we have

γn(
∣∣||X|| − √n∣∣ > √n/n1/3 = n1/6) ≤ 2e−

n1/3
2 −→ 0

as n goes to the infinity.
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Section 2.1. Concentration of Gaussian measure Page 6

√
n− n

1
6

√
n+ n

1
6

√
n

On

Figure 2.1: Most of the measure is contained between the two red spheres.

Now, let us investigate the concentration of the Euclidean distance in the metric measurable space
(Rn, ||.||, γn). Let X1, Y1, X2, Y2..., Xk, Yk... ∼ N (0, 1) be iid real random variables. For n ∈ N,
consider the n-coordinates standard Gaussian vectors X := (X1, ..., Xn), Y := (Y1, ..., Yn) ∈ Rn.
We are interested in de distance d(X,Y ) := ||X − Y ||.

Lemma 2.1.3. If X1, Y1 ∼ N (0, 1) are independent, then X1 − Y1 ∼ N (0, 2). Consequently, we
have:

X − Y√
2
∼ γn.

Proof. Since X1 − Y1 = X1 + (−Y1), X1 and Y1 are independent and −Y1 ∼ N (0, 1), then the
distribution of X1 − Y1 is the convolution of the distribution of X1 and Y1. That is:

X1 − Y1 ∼ N (0, 1) ∗ N (0, 1) = N (0, 2.)

The following theorem describes the concentration of distance phenomenon in the space (R, ||.||, γn).

Theorem 2.1.4. Let X,Y ∼ γn be independent and let ε > 0. Then:

P
(
|d(X,Y )−

√
2n| ≥ ε

√
n
)
≤ 2e−

nε2
4 .

Therefore
d(X,Y )√

2n
P−→ 1.

Proof. By Lemma 2.1.3, we have X−Y√
2 ∼ γn. Since d(X,Y ) = ||X − Y ||, then:

P
(
|d(X,Y )−

√
2n| ≥ ε

√
n
)

= P
(
|d(X,Y )√

2
−
√
n| ≥ ε√

2
√
n

)
= γn

(∣∣||χ|| − √n∣∣ ≥ ε√
2
√
n

)
,

where χ ∼ γn. The result follows by Theorem 2.1.2.
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Section 2.2. Concentration of spherical measure Page 7

2.2 Concentration of spherical measure

In this section, we are going to explain how the concentration of the Gaussian measure in section
2.1 implies the concentration of measure in the metric measurable space

(
Sn−1, ||.||, σn

)
, where

Sn−1 ⊆ Rn is the n-dimensional unit sphere and σn the normalised Lebesgue measure.

Consider the radial projection

r : X ∈ (Rn, ||.||, γn) 7−→ X

||X||
∈
(
Sn−1, ||.||, σn

)
.

Since the probability density fγn(x) = 1√
2π e−

||x||2
2 of γn at a point x ∈ Rn depends only on the

norm of x, then γn is invariant under rotation, and so is its measure image by r. Since σn is the
only rotational invariant probability measure on Sn−1, then it turns out that σn is the measure
image of γn by the radial projection r.

Now, let x ∼ σn be an uniformly chosen random point in the sphere Sn−1 and let en denotes the unit
vector (1, ..., 0) ∈ Sn−1. We are going to study the concentration of measure&distance phenomenon
on Sn−1 by considering the angle α := ∠(en, x) ∈ [0, π]. Let us first recall the following property of
real standard normal random variable.

Lemma 2.2.1. Let X ∼ N (0, 1) and let a > 0. Then

P (X ≥ a) ≤ e−
a2
2 .

Proof. The result is due to the fact that the moment generating function of X is defined for t ∈ R
by mX(t) := E

(
etX

)
= e

t2
2 . By applying Markov’s inequality:

P (X ≥ a) = P (tX ≥ ta) = P
(
etX ≥ eta

)
≤ EetX

eta = e
t2
2

eta = e
t2
2 −ta,

where t > 0. By choosing the particular value t = a where the quantity t2

2 − ta is minimal, we have
the result.

Theorem 2.2.2. Let x ∼ σn be a random point in the n-dimensional unit sphere Sn−1 and let
ε > 0. Then we have:

σn (| cosα| ≥ ε) ≤ 4e−n
ε2
2 ,

where α is the angle ∠(en, x) (Fig. 2.2).
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Section 2.2. Concentration of spherical measure Page 8

0
ε

−ε

1 en

x −cosα

on

Figure 2.2: σn is concentrated around the equator.

Proof. By using the relation between σn and γn, we have:

σn (cosα ≥ ε) = γn

(
cos

(
∠(en,

X

||X||
)
)
≥ ε

)
,

where X = (X1, ..., Xn) with X1, ..., Xn ∼ N (0, 1) iid. Since both en and X
||X|| are unit vectors, we

have
cos

(
∠(en,

X

||X||
)
)

=< en,
X

||X||
>= X1
||X||

,

where < ., . > denotes the usual scalar product of Rn.

Therefore:

σn (cosα ≥ ε) = γn

(
X1
||X||

≥ ε
)

= γn (X1 ≥ ε||X||)

= γn
(
X1 ≥ ε||X||, ||X|| −

√
n ≥ ε

√
n
)

+ γn
(
X1 ≥ ε||X||, ||X|| −

√
n < ε

√
n
)

≤ γn
(
||X|| −

√
n ≥ ε

√
n
)

+ P
(
X1 ≥ ε(1 + ε)

√
n
)

≤ e−n
ε2
2 + e−

nε2(1+ε)2
2 ≤ e−n

ε2
2 + e−n

ε2
2 = 2e−n

ε2
2

by Lemma 2.2.1 and Theorem 2.1.2, and the result follows by symmetry.

The concentration described in Theorem can be interpreted in different ways. Recall first that the
group of rotation acts transitively on the unit sphere and the probability measure σn is invariant
under rotation. Then if we pick two independent points x, y ∼ σn on the sphere, then there exist
a rotation r such that r(y) = e1. Since

d(x, y) = d(r(x), r(y)) = d(e1, r(x))

and Theorem says that d(e1, r(x)) is concentrated around
√

2, then d(x, y) is also concentrated
around

√
2. Equivalently, since rotations preserve the scalar product, then Theorem means that
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Section 2.2. Concentration of spherical measure Page 9

the scalar product
< x, y >=< r(x), r(y) >=< e1, r(x) >

is also concentrated around 0, i.e. two independent uniformly randomly chosen points on the unit
sphere are “almost” orthogonal.
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3. Discrete examples
I this chapter, we are going to study the concentration of measure and distance on a particular
family of finite and connected graphs (or random graphs) (Gn)n, endowed with the graph distance
and the uniform probability measure on the vertices.

3.1 Integer lattices and torus

Let us first give an example where the distance does not have concentration property. For a positive
integer n, let G = {0, 1, ..., n}2 ⊆ (Z2, ||.||1) be a square lattice of size (n + 1)2, endowed with the
Ll1- distance. Let X = (x1, x2) be a uniformly chosen vertex of G, i.e. x1, x2 ∼ Unif{0, 1, 2, ..., n}
are independent. The l1-distance between o = (0, 0) and X, which is exactly their graph distance,
is given by:

d(o,X) = x1 + x2.

Since x1 and x2 are independent, then the distribution of d(o,X) is given by the convolution

Unif{0, 1, 2, ..., n} ?Unif{0, 1, 2, ..., n},

i.e, for k = 0, 1, ..., 2n :

P (d(o,X) = k) =


k+1

(n+1)2 if k ≤ n,
2n−k+1
(n+1)2 if k ≥ n.

The aim of this example is to point out why d(o,X) does not have the concentration property.
The idea is that given a convergent sequence of positive number (un)n (the limit can be ∞), the
quotient d(o,X)

un
cannot be close to 1 with high probability whatever the asymptotic behaviour of

un is. This can be formalised in the following theorem.

Theorem 3.1.1. Let (un)n be a convergent sequence of positive numbers (the limit can be ∞) and
let ε ∈ (0, 1) be fixed. Then there exists a constant c = c(ε) ∈ (o, 1) such that:

lim
n−→∞

P
(
|d(o,X)

un
− 1| > ε

)
≥ c.

Proof. The two events [d(o,X) > (1 + ε)un] and [d(o,X) < (1− ε)un] are disjoint for all n, then:

P
(
|d(o,X)

un
− 1| > ε

)
= P

(d(o,X)
un

− 1 > ε or d(o,X)
un

− 1 < −ε
)

= P [d(o,X) > (1 + ε)un or d(o,X) < (1− ε)un]
= P[d(o,X) > (1 + ε)un] + P[d(o,X) < (1− ε)un].

-If un >> n:

since d(o,X) ∈ {0, 1, ..., 2n}, then for large value of n we have P[d(o,X) > (1 + ε)un] = 0 and
P[d(o,X) < (1− ε)un] = 1.

10
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Section 3.1. Integer lattices and torus Page 11

-If un << n:

in this case, notice that for any possible value of k, we always have:

P[d(o,X) = k] ≤ 1
n+ 1 .

Then:

P[d(o,X) > (1 + ε)un] = 1− P[d(o,X) ≤ (1 + ε)un]

= 1− b(1 + ε)unc
n+ 1 −−−−−−→

n −→∞
1,

where b(1 + ε)unc denotes the floor of (1 + ε)un.

-If un ∼ n:

for large values of n, we have (1 − ε)un ≤ n ≤ (1 + ε)un ≤ 2n. By using the formula of the
distribution of d(o,X), we have:

P[d(o,X) > (1 + ε)un] =
2n∑

k=d(1+ε)une

2n− k + 1
(n+ 1)2

= 1
(n+ 1)2 [1 + 2 + ...+ (2n− d(1 + ε)une+ 1)]

∼ 1
(n+ 1)2

(2n− d(1 + ε)une)2

2

−−−−−−→
n −→∞

(1− ε)2

2 ,

where d(1 + ε)une denotes the Ceil of (1 + ε)un; and

P[d(o,X) < (1− ε)un] =
b(1−ε)unc∑

k=0

k + 1
(n+ 1)2

∼ 1
(n+ 1)2

(b(1− ε)unc)2

2

−−−−−−→
n −→∞

(1− ε)2

2 .

Hence, we can take c = (1− ε)2 and the theorem is proved.

We can apply the non concentration phenomenon of the square lattice {0, 1, ..., n}2 to the case of
the integer torus Z2/(nZ)2, which is obtained by glueing the two opposite sides of the square lattice
{0, 1, ..., n}2 (Fig 3.1). In this glueing, the elements o = (0, 0), (n, 0), (0, n) and (n, n) of the lattice
give one point Ō on the torus.
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Section 3.2. Uniform spanning tree Page 12

I

Figure 3.1: We obtain the integer torus by glueing the two pair sides of the same colour.

By symmetry, the distance between Ō and a uniformly chosen point in the integer torus is completely
determined by the distance between o and a point X ∈ I (see Fig 3.1) of the lattice. Since the part
I contains a positive fraction of the lattice and I does not have any concentration property, then
the distance on the integer torus also does not have any concentration property.

In contrast with the 2-dimensional integer torus and lattice, let us consider the unit cube {0, 1}n,
i.e. we let the dimension n goes to the infinity. Let X ∼ Unif({0, 1}n), then the L1 norm of X
which is exactly the L1 distance between X and the n-dimensional zero vector O = (0, ..., 0) is
B(n, 1

2)-distributed. We then have the following theorem.

Theorem 3.1.2. Let X ∼ Unif({0, 1}n) and let ε > 0. Then there exists α(ε) > 0 such that

P
(∣∣∣∣2d(X,O)

n
− 1

∣∣∣∣ > ε

)
≤ 2e−α(ε)n,

where d denotes the L1 distance.

Proof. Notice that E
(
B(n, n2 )

)
= 1

2 and the moment generating function of B(n, 1
2) is defined for t

in a neighbourhood of 0 by

m(t) =
(

et + 1
2

)n
.

The result follows by using the same argument as in the proof of Theorem 2.1.2.

3.2 Uniform spanning tree

Let n be a positive integer and let Tn denotes the set of spanning trees of the complete graph Kn.
The aim of this section is to explore the concentration of distance phenomenon on an uniformly
chosen random tree of Tn. The main result of this section is the Rayleigh limit in Theorem 3.2.5,
which is mentioned in Peres and Revelle (2004).

Let u ∈ V (Kn) and let S be a subset of V (Kn). A Loop Erased Random Walk LERW(u, S) from
u to S is a trajectory obtained by the following process: start a simple symmetric random walk at
u, remove each loops by order of appearance and stop the walk when it hits an element of S. In
particular, LERW(u, S) is a sub-graph of Kn which is a path without loop. For a simple symmetric
random walk X0, X1, ..., Xn, ... on Kn, we denote Pu the transition probability of the walk starting
at u, and we adopt the following notation for the hitting times:

τu := inf{i : Xi = u}
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Section 3.2. Uniform spanning tree Page 13

and
τS := inf{i : Xi ∈ S}.

Now, consider the random spanning tree T of Kn obtained in the following process:

(i) give any order x1, x2, ..., xn on the vertices of Kn and define the graph with one vertex T1 =
({x1}, ∅);

(ii) for any positive integer i > 1, define the tree Ti whose edges consist on those of Ti−1 and
LERW(xi, V (Ti−1)).

Since we have only finitely many vertices, then the above process will end up with a random element
T ∈ Tn.

The process described above is called Wilson’s algorithm and we have the following theorem, which
is also true for any finite connected graph G.

Theorem 3.2.1. (Wilson’s algorithm). Let T be a random spanning tree of Kn obtained by Wilson’s
algorithm. Then:

T ∼ Unif(Tn).

Proof. See Lyons and Peres (2017).

Theorem 3.2.1 allows us to compute the distribution of the tree distance dT (u, v) between between
two fixed vertices u and v of Kn where T ∼ Unif(Tn): for any positive integer k, the quantity

P[dT (u, v) = k] := #{T ∈ Tn : dT (u, v) = k}
#Tn

is exactly the same as the probability that LERW(u, {v}) has k edges. Let us first prove the
following lemma:

Lemma 3.2.2. Let u, v be two vertices of Kn (u 6= v) and let T ∼ Unif(Tn). Then

P[dT (u, v) = 1] = 2
n
.

Proof. We need to compute the probability that {u, v} is the only edge of the loop erased random
walk from u to v. This means that a simple symmetric random walk starting at u hits v in the first
step, or it hits another vertex z 6= v but returns back to u before hitting v.

u

z

v

Figure 3.2: The walk stop after hitting v from u.

The probability of such event is given by the following recursion:

P[dT (u, v) = 1] = Pu(v) + (1− Pu(v)) Pz[τu < τv] P[dT (u, v) = 1].

By symmetry, we have Pu(v) = 1
n−1 and Pz[τu < τv] = 1

2 . Hence:
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P[dT (u, v) = 1] = 1
n− 1 + n− 2

2(n− 1)P[dT (u, v) = 1],

and the result follows by solving in Pz[τu < τv].

In Lemma 3.2.2, we fix u 6= v so that the event [dT (u, v) > 0] is trivial. The quantity in Lemma
3.2.2 is then same as the quantity

P[dT (u, v) = 1 | dT (u, v) > 0].

We have a more general result in the following Lemma.

Lemma 3.2.3. For i = 2, 3, ..., n− 1, we have:

P[dT (u, v) = i | dT (u, v) > i− 1] = i+ 1
n

,

where T ∼ Unif(Tn).

Proof. Let x1 = u, x2, ..., xi be the first i − th vertices of LERW (u, {v}). Then our condition
[dt(u, v) > i− 1] means that our random walk will never hit {x1, ..., xi−1} again, i.e

τv < τ{x1,...,xi−1}.

In this case, the event [dT (u, v) = i] means that either the walk hits v by its first step from xi or
it hits another vertex y /∈ {x1, ..., xi−1, v} and returns back to xi before hitting v and so on.

u = x1 x2
. . .

xi−1 xi

y

v

Figure 3.3: The red edges will not be removed before the walk hits v from xi.

We then have the following recursion:

P[dT (u, v) = i | dT (u, v) > i− 1] = Pxi [v | τv < τ{x1,...,xi−1}] +
(
1− Pxi [v | τv < τ{x1,...,xi−1}]

)
∗

Py[τxi < τv | τv < τ{x1,...,xi−1}] ∗ P[dT (u, v) = i | dT (u, v) > i− 1].

Since the event that “v is reached by the first step from xi” is a subset of the event τv < τ{x1,...,xi−1},
we have by symmetry:

Pxi [v | τv < τ{x1,...,xi−1}] = Pxi(v)
Pxi [τv < τ{x1,...,xi−1}]

=
1

n−1
(i−1)!
i!

= i

n− 1 .
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On the other hand, we have:

Py[τxi < τv | τv < τ{x1,...,xi−1}] =
Py[τxi < τv < τ{x1,...,xi−1}]

Py[τv < τ{x1,...,xi−1}]

=
(i−1)!
(i+1)!
(i−1)!
i!

= 1
i+ 1 .

Therefore:

P[dT (u, v) = i | dT (u, v) > i− 1] = i

n− 1 + n− 1− i
n− 1

1
i+ 1 P[dT (u, v) = i | dT (u, v) > i− 1],

and the result follows by solving on P[dT (u, v) = i | dT (u, v) > i− 1].

Lemma 3.2.2 and 3.2.3 allows us to compute the the distribution of dT (u, v), where u, v are fixed
vertices and T ∼ uni(Tn).

Theorem 3.2.4. Let u, v be two vertices of Kn and let T ∼ unif(Tn). Then for k = 1, 2, ..., n− 1:

P[dT (u, v) = k] = k + 1
n

k−1∏
i=1

(
1− i+ 1

n

)
.

Proof. We have

P[dT (u, v) = k] = P [dT (u, v) = k | dT (u, v) > k − 1]
k−1∏
i=1

P[dT (u, v) > i | dT (u, v) > i− 1]

= P [dT (u, v) = k | dT (u, v) > k − 1]
k−1∏
i=1

(1− P[dT (u, v) = i | dT (u, v) > i− 1]) ,

and the result follows by using the results of Lemma 3.2.2 and Lemma 3.2.3.

Let us now use the formula in Theorem 3.2.4 to compute the limit in distribution of dT (u,v)√
n

as n

goes to the infinity. Consider the function defined for t ∈ R by f(t) = te−
t2
2 It≥0. We have∫

R
f(t)dt =

[
1− e−

t2
2

]t=∞
t=0

= 1.

Hence f is the density with respect to the Lebesgue measure of a probability measure on R. This
probability measure with density f is called the Rayleigh distribution.

Theorem 3.2.5. Let u, v be two vertices of Kn and let T ∼ unif(Tn). Then the random variable
dT (u,v)√

n
converges in distribution to the Rayleigh distribution when n goes to the infinity.
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Proof. Fix t ≥ 0. Since dT (u, v) ∈ {1, 2, ..., n−1}, then dT (u,v)√
n
∈ { 1√

n
, 2√

n
, ..., n−1√

n
} and P

(
dT (u,v)√

n
= k√

n

)
=

P[dT (u, v) = k] for k = 1, 2, ..., n− 1. So we have:

P(dT (u, v)√
n
≤ t) =

∑
k√
n
≤t

k + 1
n

k−1∏
i=1

(
1− i+ 1

n

)

=
∑
k√
n
≤t

k + 1
n

exp
(
k−1∑
i=1

ln
(

1− i+ 1
n

))

=
∑
k√
n
≤t

k

n
exp

(
k−1∑
i=1

ln
(

1− i+ 1
n

))
+
∑
k√
n
≤t

1
n

exp
(
k−1∑
i=1

ln
(

1− i+ 1
n

))
.

If k√
n
≤ t, then i+1

n ≤
k
n ≤

t√
n
for i = 1, ..., k − 1. Since t is fixed, then i+1

n converges to zero when
n goes to the infinity. Hence, ln(1− i+1

n ) = − i+1
n + (i+ 1)o( 1

n) for i = 1, ..., k − 1, and we have:

k−1∑
i=1

ln
(

1− i+ 1
n

)
= −

k−1∑
i=1

i+ 1
n

+
k−1∑
i=1

o( i+ 1
n

)

= −(k − 1)(k + 2)
2n + o

((k − 1)(k + 2)
2n

)
= − k

2

2n −
k

2n + 1
n

+ o( k
2

2n)

= − k
2

2n + o(1),

because k√
n
< t implies k2

2n ≤
t2

2 and k
2n ≤

t√
n
(t is fixed).

Therefore,

lim
n−→∞

P(dT (u, v)√
n
≤ t) = lim

n−→∞

∑
k√
n
≤t

k

n
e−

k2
2n + lim

n−→∞

∑
k√
n
≤t

1
n

e−
k2
2n

= lim
n−→∞

∑
k√
n
≤t

1√
n

(
k√
n

)
e−

1
2 ( k√

n
)2

+ lim
n−→∞

∑
t√
n
≤t

1√
n

e
− 1

2

(
k√
n

)2

√
n

.

Let us compute separately the two terms in the right.

• We have
lim

n−→∞

∑
k√
n
≤t

1√
n

(
k√
n

)
e−

1
2 ( k√

n
)2

=
∫ t

0
xe−

x2
2 dx.

Indeed, the sum ∑
k√
n
≤t

1√
n

(
k√
n

)
e−

1
2 ( k√

n
)2
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Section 3.2. Uniform spanning tree Page 17

is exactly the Darboux sum of the function xe−
x2
2 with respect to the partition

[o, t] = [0, 1√
n

[∪[ 1√
n
,

2√
n

[∪... ∪ [k(t)√
n
, t]

of the interval [0, t], and the length of a part of this partition is at most 1/
√
n.

• Likewise, we have

lim
n−→∞

∑
t√
n
≤t

1√
n

e
− 1

2

(
k√
n

)2

=
∫ t

0
e−

x2
2 dx,

by considering the same partition as before and the sum

∑
t√
n
≤t

1√
n

e
− 1

2

(
k√
n

)2

is exactly the Darboux sum of the function e−x2/2.

Hence,

lim
n−→∞

∑
t√
n
≤t

1√
n

e
− 1

2

(
k√
n

)2

√
n

= 0.

Therefore,
lim

n−→∞
P(dT (u, v)√

n
≤ t) =

∫ t

0
xe−

x2
2 dx =

∫ t

−∞
xe−

x2
2 Ix>0dx,

and the integral in the right hand side is exactly the cumulative distribution function of the Rayleigh
distribution.

The result of Theorem 3.2.5 is also true in the case where (u, v) ∼ unif(V (Kn)2) and Tunif(Tn).
In this case, we have:

P
(
dT (u, v)√

n
≤ t
)

= P
(
dT (u, v)√

n
≤ t | u 6= v

)
P[u 6= v] + P

(
dT (u, v)√

n
≤ t | u = v

)
P[u = v]

= P
(
dT (u, v)√

n
≤ t | u 6= v

)
n2 − n
n2 + P

(
dT (u, v)√

n
≤ t | u = v

) 1
n

∼ P
(
dT (u, v)√

n
≤ t | u 6= v

)
,

and we obtain the same limit as in Theorem 3.2.5. Hence, we can conclude this section with the
following corollary:

Corollary 3.2.6. Let (u, v) ∼ unif(V (Kn)2) and let T ∼ unif(Tn). Then the quantity

dT (u, v)√
n

converges in distribution to the Rayleigh distribution.
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Section 3.3. Concentration and expander graphs Page 18

3.3 Concentration and expander graphs

Expander graphs are graphs with high connectivity property in the sense that in order to make
the graphs disconnected, one needs to cut a “large” number of edges. In geometric point of view,
expander graphs are considered as graphs satisfying a “good” isoperimetric inequality, meaning
that the order of the “surface” of any ball is at least the same as the order of its “volume”. In this
section, we are going to show that the distance in such kind of graphs has a concentration property.
An explicit construction of a family of expander graphs is given in Lubotzky (2010).

Let us first start by giving a formal definition what expander graphs and some of their spectral
characterisations.

Definition 3.3.1. Fix d ∈ N and c > 0. A graph G (V (G), E(G)) of size n = |V (G)| is called an
(n, d, c)-expander if the following are satisfied:

(i) deg(v) ≤ d for all v ∈ V (G),

(ii) |∂out
v A| ≥ c|A| for any A ⊆ V (G) such that |A| ≤ n

2 . Or equivalently,

|{v ∈ V (G) : d(v,A) ≤ 1}| ≥ (1 + c)|A|

for A ⊆ V (G) such that |A| ≤ n
2 .

The constant c is called the Cheeger constant of G. If in addition G is transitive, we say that G is
a transitive expander.

Now, let us describe how the second largest eigenvalue (or the spectral gap) of a connected graph
makes it a good expander. Let G = (V (G), E(G)) be a connected graph with n vertices, and
assume that deg(x) ≤ d for all x ∈ V (G) for some fixed d. Let P denotes the transition probability
of a simple symmetric random walk on G i.e.

Px,y =
I{(x,y)∈E(G)}

deg(x) .

The probability measure π defined for x ∈ V (G) by π(x) = deg(x)
2|E(G)| is the stationary distribution of

P .

Since
π(x)Px,y =

I{(x,y)∈E(G)}
2|E(G)| = π(y)Py,x

for x, y ∈ E(G), then π is also reversible.

Let λ2(G) denote the second largest (in absolute value) eigenvalue of P , and define the spectral
gap:

λ(G) := 1− λ2(G)

Given a real valued function f on V (G), the Dirichlet energy of f is defined by:

E(f) := 1
2

∑
x,y∈V (G)

(f(x)− f(y))2 π(x)Px,y.
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Recall the variational version of the spectral gap λ(G), see Levin and Peres (2017):

λ(G) = inf
Eπf=0

{ E(f)
Varπf

: Varπf 6= 0
}
,

where Eπf and V arπf denotes respectively the expectation and the variance of f with respect to
the probability measure π.

Now we have enough material to prove the following proposition.

Proposition 3.3.2. Let G be as above and let A ⊆ V (G) such that 0 6= |A| ≤ n
2 . Then

λ(G)
4d2 |A| ≤ |∂

out
V A|,

where ∂out
V A denotes the outer vertex boundary of A.

In another words, Proposition 3.3.2 says that graphs with large spectral gap are good expanders.

Proof. Let a = |A| and let E(A,Ac) denotes the set of edges between A and Ac. Consider the
function

f := n

a
IA −

n

n− a
IAc

defined on V (G).

- By reversibility of the probability distribution π, we have:

E(f) =
∑

e∈E(A,Ac)

(
n

a
+ n

n− a

)2 1
2|E(G)|

=
(
n

a
+ n

n− a

)2 |E(A,Ac)|
2|E(G)|

≤
(
n

a
+ n

n− a

)2
d
|∂out
V A|

2|E(G)|

- By definition, we have
Eπf = n

a
π(A)− n

n− a
π(Ac).

- On the other hand, we have f2 = n2

a2 IA + n2

(n−a)2 IAc ; then:

Eπf2 = n2

a2 π(A) + n2

(n− a)2π(Ac).

Since π(Ac) = 1− π(A), we have:

Varπ(f) = Eπf2 − (Eπf)2

= n2

a2 π(A)π(Ac) + n2

(n− a)2π(Ac)π(A) + 2 n2

a(n− a)π(A)π(Ac)

=
(
n

a
+ n

n− a

)2
π(A)π(Ac)

=
(
n

a
+ n

n− a

)2 ∑
v∈A deg(v)
2|E(G)|

∑
v∈AC deg(v)
2|E(G)|

≥
(
n

a
+ n

n− a

)2 a(n− a)
4|E(G)|2 ,
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since G is connected.

Therefore, by the variational version of the spectral gap:

λ(G) ≤ d 2|E(G)|
a(n− a) |∂

out
V A|

≤ 4d2

a
|∂out
V A| = 4d2 |∂out

V A|
|A|

,

since deg(v) ≤ d for v ∈ V (G) and a = |A| ≤ n
2

By definition, any finite and connected graph is an expander graph in a trivial way. Surprisingly, the
existence of a family of expanders with the same d and c has been proved and explicit construction
has been done.

Definition 3.3.3. (Family of expanders) Let d, c > 0. A family of connected and finite graphs
(Gn)n is called and family of (|Gn|, d, c) expanders if:

• lim
n−→∞

|V (Gn)| =∞,

• deg(x) ≤ d for all n and for all x ∈ V (Gn),

• for all n and for any A ⊆ V (Gn) such that |A| ≤ |Gn|2 , we have

|∂out
v A| ≥ c|A|;

or equivalently,
|{v ∈ V (G) : d(v,A) ≤ 1}| ≥ (1 + c)|A|

for A ⊆ V (Gn) such that |A| ≤ |Gn|2 .

By Proposition 3.3.2, the last point can be replaced by:

λ(Gn) > c

for all n.

In the rest of this section, we are going to prove concentration phenomenon on a family of expanders
of the same d and c; let us first reset some notations. Given a graph G = G (V (G), E(G)) and
A ⊆ V (G), let

∂out
v A := {v ∈ AC : d(v,A) = 1}

denotes the outer vertex boundary of A. For v ∈ V (G) and r ≥ 0, let

Br(v) := {x ∈ V (G) : d(x, v) ≤ r}

denotes the ball of radius r centred at v.

Let us now prove the concentration of distance on transitive expander graphs in two different
methods.

- Concentration resulting from the variational version of the spectral gap

C
E

U
eT

D
C

ol
le

ct
io

n



Section 3.3. Concentration and expander graphs Page 21

Let G be a transitive (n, d, c)-expander and fix o ∈ V (G). Then the stationary distribution π is
exactly the uniform distribution and each vertex has degree d. Consider the function:

f : x ∈ V (G) 7−→ d(o, x),

that sends x to the graph distance between x and o. We have the following lemma:

Lemma 3.3.4. Let E(f) denotes the expected value of f with respect to the distribution π =
Unif(V (G)). Then:

1
E(f) = o(1)

Proof. We have:

E(f) =
∑
k≥0

P(f ≥ k)

=
∑
k

 ∑
f(x)≥k

P(x)

 =
∑
k

 ∑
f(x)≥k

1
n

 =
∑
k≥0

n− |Bo(k)|
n

≥
∑
k≥0

n− d(d− 1)k−1

n
,

since each vertices have degree d so we have |Bo(k)| ≤ d(d − 1)k for the cardinality of the ball of
radius k centered at o.

Since our expanders have bounded degree, then f cannot be bounded. Hence there exists a sequence
(cn)n of positive integers such that 1 << cn << ln(n) and

E(f) =
∑
k≥0

P(f ≥ k) ≥
cn∑
k=0

P(f ≥ k).

Therefore,

E(f) ≥
cn∑
k=0

n− d(d− 1)k−1

n
= cn + 1−

cn∑
k=0

d(d− 1)k−1

n

= cn + 1− d

n

cn∑
k=0

(d− 1)k−1

= cn + 1− (d− 1)cn − 1
n

−→∞ when n −→∞

because 1 << cn << ln(n). The result then follows by taking the inverse.

The following proposition describes the concentration of distance phenomenon resulting from the
variational version of the spectral gap for a family of expanders.

Proposition 3.3.5. The quantity f
E(f) converges in probability to 1 as n goes to the infinity.
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Proof. By triangular inequality and by definition of P and π, we have:

E(f) = 1
2

∑
x,y∈V (G)

[d(o, x)− d(o, y)]2π(x)Px,y

≤ 1
2

∑
x,y∈V (G)

d(x, y)2π(x)Px,y

= 1
2

∑
(x,y)∈E(G)

π(x)Px,y = 1
2

∑
(x,y)∈E(G)

1
dn

= 1
2

1
dn

2|E(G)| = 1
2
dn

dn
= 1

2

Hence, by using f − Ef in the variational version of the spectral gap λ(G) :

Varf ≤ 1
2λ(G) .

Therefore, for a fixed ε > 0, Chebyshev’s inequality and Lemma 3.3.4 give:

P
(
| f
Ef
− 1| ≥ ε

)
= P (|f − Ef | ≥ εEf)

≤ Varf
ε2[Ef ]2 ≤

1
2λ(G)ε2[Ef ]2 = o(1)

and the proposition is proved.

-Concentration resulting from the combinatorial definition of expanders

Let G be a transitive (n, d, c)-expander and fix o ∈ V (G). Since we have finite number of vertices,
there exists r0 ≥ 0 such that |Br0(o)| ≤ n

2 and |B(r0+1)(o)| > n
2 . Our goal is to show that d(0, x) is

concentrated around this r0.

Lemma 3.3.6. Let i ≥ 1. Then:

BC
(r0+i−1)(0) = BC

(r0+i)(0)
⋃

∂out
v BC

(r0+i)(0)

Proof. We have:

x ∈ BC
(r0+i−1)(0) ⇐⇒ d(0, x) > r0 + i− 1 ⇐⇒ d(0, x) ≥ r0 + i

⇐⇒ d(o, x) = r0 + i or d(0, x) > r0 + i.

The result follows by definition: d(0, x) > r0 + i means that x ∈ BC
(r0+i)(0), and d(o, x) = r0 + i

means that x belongs to the inner vertex-boundary of ∈ B(r0+i)(0) which is exactly the outer
vertex-boundary of ∈ BC

(r0+i)(0).

The following corollary follows directly from the definition of expander and Lemma 3.3.6.

Corollary 3.3.7. Let G be an (n, d, c)- expander and let 0 ≤ k < r0. Then:

(i) |B(r0−k)(0)| ≤ n
2(1+c)k ,
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(ii) |BC
(r0+k)(0)| ≤ n

2(1+c)k−1 .

Proof. (i) For i ≥ 0, we have:

{v ∈ V (G) : d (v,Bi−1(0)) ≤ 1} = Bi(0).

Then, by definition of expander graph and by definition of r0 :
n

2 ≥ |Br0(0)| ≥ (1 + c)|B(r0−1)(0)|

≥ (1 + c)2|B(r0−2)(0)| ≥ ... ≥ (1 + c)i|B(r0−i)(0)| ≥ ...
≥ (1 + c)k|B(r0−k)(0)|.

Therefore:
|B(r0−k)(0)| ≤ n

2(1 + c)k .

(ii) For i = 1, 2, ..., k, we have by Lemma 3.3.6:{
v : d

(
v,BC

(r0+i)(0)
)
≤ 1

}
= BC

(r0+i−1)(0).

Then, by definition of expander and by definition of r0 :
n

2 ≥ |B
C
(r0+1)(0)| ≥ (1 + c)|BC

(r0+2)(0)| ≥ ... ≥ (1 + c)j−1|BC
(r0+j)(0)|

≥ ...
≥ (1 + c)k−1|BC

(r0+k)(0)|.

So ve have:
|BC

(r0+k)(0)| ≤ n

2(1 + c)k−1 .

Now we are ready to quantify the concentration of distance phenomenon for transitive expander
graphs: given tow uniformly randomly chosen vertices u, v ∈ V (G), there exists an element g ∈
Aut(G) such that g(u) = 0. Hence, instead of taking two uniformly random vertices, we only take
one and set the other to 0.

Theorem 3.3.8. Let G be a transitive (n, d, c)-expander graph and fix 0 ∈ V (G). Let r0 ≥ 0 such
that |Br0(o)| ≤ n

2 and |B(r0+1)(o)| > n
2 and let v be an uniformly chosen random vertices of G.

Then for any k > 0:
P (|d(0, v)− r0| > k) ≤ (1 + c)e−k ln (1+c).

As a result, the quantity d(0,v)
r0

converges to 1 in probability as n −→∞.

Proof. We have that:

{v : |d(0, v)− r0| > k} = {v : d(0, v) > r0 + k}
⋃
{v : d(0, v) < r0 − k}

⊆ BC
(r0+k)(0)

⋃
B(r0−k)(0).
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Hence, by Corollary 3.3.7:

P (|d(0, v)− r0| > k) ≤
|BC

(r0+k)(0)|+ |B(r0−k)(0)|
n

≤ 1
(1 + c)k−1 = (1 + c)e−n ln (1+c).

We did not compute the exact value of ro, but we only know its existence. We can have more
information about r0 by using the proof of the first part of Corollary 3.3.7:

|Br0(0)| ≥ (1 + c)r0 ;

hence we must have (1 + c)r0 ≤ n
2 , i.e. r0 ≤

ln n
2

ln (1+c) .

3.4 Concentration on Gromov Hyperbolic groups and graphs

In this section, we fix a Hyperbolic group Γ and one of its undirected Cayley graph G. Then there
exists a constant δ > 0 such that G, endowed with the graph metric, is δ-Hyperbolic.

We are going to study the concentration of distance phenomenon on the sequence of spheres [SR(I)]R
and on the sequence of balls [BR(I)]R of G, where I is the neutral element of Γ.

Let us start by recalling some useful notions on Gromov Hyperbolic metric spaces and Gromov
Hyperbolic groups, all of them can be found in Druţu and Kapovich (2018).

Definition 3.4.1. Let (X,d) be a geodesic metric space and let δ > 0 be fixed. We say that a
geodesic triangle T of X is δ-slim if for any ordering (S1, S2, S3) of its sides and for any x ∈ S1, we
have:

d(x, S2 ∪ S3) ≤ δ.

S1 S2

S3

x

Figure 3.4: x ∈ S1 is within distance less than δ from S2 ∪ S3

We say that (X, d) is a Hyperbolic metric space if there exists δ > 0 such that any geodesic triangle
T on X is δ-slim; the metric space (X, d) is then called δ-Hyperbolic.
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Now, let Γ be a finitely generated group; then we can have a Cayley graph of G with respect to a
generating set S of G. So we also have the following definition for Γ.

Definition 3.4.2. We say that Γ is Hyperbolic if the Cayley graph of Γ with respect to a generating
set S of Γ is a Hyperbolic metric space with the graph distance.

If in addition Γ is a finite extension of Z, then we say that Γ is an elementary Hyperbolic group.

Note that a Cayley graph of Γ depends on a generating set S, however it is proven that Hyperbolicity
is a geometric property of the group, i.e Γ is Hyperbolic if and only if any Cayley graph of Γ is a
Hyperbolic metric space.

Balls and spheres in the d-regular tree Td

An example of 0-Hyperbolic metric space is given by an infinite d-regular tree Td where d is a
positive integer.

Figure 3.5: Ball B3(T3) of radius 3 of T3

Fix a node 0 of Td and given a positive integer n, then we can compute directly the distribution of
the distance d(0, X) by counting, where X is uniformly chosen in the ball of radius n centered at
0. We have the following data:

k #{X ∈ Bn(Td) : n− d(0, X) = k}
0 d(d− 1)n−1

1 d(d− 1)n−2

... ...
i d(d− 1)n−(i+1)

... ...
n− 2 d(d-1)
n− 1 d
n 1

Total 1 + d (d−1)n−1
d−2

For i ∈ {0, 1, ..., n}, we have:

P(n− d(0, X) = i) = d(d− 1)n−(i+1)

1 + d (d−1)n−1
d−2

−→ d− 2
(d− 1)i+1

when n goes to the infinity.
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Since
∑
i≥0

d−2
(d−1)i+1 = 1, we have a limit in distribution for the random variable n − d(0, X).

Furthermore, we have the following concentration inequality:

Theorem 3.4.3. For k ∈ N, we have:

P(n− ρ(0, X) ≥ k) ≤ 2de−(k+1).

Hence, we also have the limit in probability:

d(o,X)
n

P−→ 1.

Proof. We have:

P(n− d(0, X) ≥ k) =
n∑
i=k

d(d− 1)n−(i+1)

1 + d (d−1)n−1
d−2

≤
n∑
i=k

d(d− 1)n−(i+1)

d (d−1)n−1
d−2

= (d− 2)
n∑
i=1

(d− 1)n−(i+1)

(d− 1)n − 1

= (d− 2) (d− 1)n

(d− 1)n − 1

n∑
i=k

1
(d− 1)i+1 ≤ 2(d− 2)

 1
(d− 1)k+1

1− 1
(d−1)n−(k+1)

1− 1
d−1


≤ 2(d− 2) 1

1− 1
d−1

1
(d− 1)k+1 = 2(d− 1) 1

(d− 1)k+1

= 2(d− 1)e−(k+1) ln(d−1) ≤ 2de−(k+1)

Likewise, let us fix a node v0 in the sphere of radius n Sn(Td), endowed with the induced graph
metric and the uniform probability measure. Let X be an uniformly chosen random point on
Sn(Td). We have d(v0, X) ∈ {2k : k = 0, ..., n} and like in the case of Bn(Td), the following data
describes the distribution of 2n− d(v0, X) :

k #{X ∈ Sn(Td) : 2n− d(v0, X) = k}
0 (d− 1)n
2 (d− 2)(d− 1)n−2

... ...
2k (d− 2)(d− 1)n−(k+1)

... ...
2(n− 2) (d− 2)(d− 1)
2(n− 1) (d− 2)

2n 1
Total d(d− 1)n−1

Theorem 3.4.4. Let X be a uniformly randomly chosen vertex of Sn(Td). Then:

P (2n− d(v0, X) ≥ 2k) ≤ e−(k−1) ln (d−1),

where v0 ∈ Sn(Td) is fixed. Hence
d(v0, X)

2n
P−→ 1.
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Proof. For i = 1, ..., n− 1, we have P (2n− d(0, X) = 2i) = d−2
d(d−1)i . Hence, for k > 0, we have:

P (2n− d(v0, X) ≥ 2k) =
n∑
i=k

d− 2
d(d− 1)i

= d− 2
d(d− 1)k

n−k∑
i=0

1
(d− 1)i ≤

d− 2
d(d− 1)k

∞∑
i=0

1
(d− 1)i

= 1
(d− 1)k−1 = e−(k−1) ln (d−1).

Non-elementary Hyperbolic groups and Transitive Hyperbolic graphs

Let us now come back to the general notion of Hyperbolicity. The point here is that balls or spheres
on Non-elementary Hyperbolic (we consider the metric on a fixed Cayley graph) groups have some
common properties with those of d-regular trees: both the sphere and the ball have exponential
growth. Furthermore, both Non-elementary Hyperbolic groups and Transitive Hyperbolic graphs
are non-amenable.

As specified in the beginning of this section, we have a Non-elementary Hyperbolic group Γ and
we fix an undirected Cayley graph G of Γ which is δ-Hyperbolic. Since, G is a Cayley graph, then
G is also transitive.

We denote by I the identity element of Γ. For X,Y ∈ Γ = V (G) and for R > 0, we use the following
notations:

- [X,Y ]: a geodesic joining X and Y ,

- BR(X): ball of radius R centered at X; we only write BR if X = I. Note that we always
have |BR| ≤ |Bk| |BR−k| for 0 ≤ k ≤ R for non-elementary Hyperbolic groups and for hyperbolic
transitive graphs with exponential growth.

- SR(X): sphere of radius R centered at X; and again we omit X if X = I,

- f(x) << g(x) (or equivalently f(x) = o(g(x)) means lim
x−→∞

f(x)
g(x) = 0,

- Let X,Y ∈ BR. A point u = uXY ∈ BR is called a δ-almost-common-point of X and Y if there
exist two geodesics [I,X] and [I, Y ] such that

B δ
2
(u) ∩ [I,X] 6= ∅ and B δ

2
(u) ∩ [I, Y ] 6= ∅.

We denote by sXY the maximum of all s ∈ [0, R] such that the sphere Ss contains a δ-almost-
common-point of X and Y (Figure 3.6).

We are going to prove that the distance between two uniformly chosen random points X,Y ∈ BR
(or SR) satisfies

d(X,Y )
2R

P−→ 1.

Let us first prove the following Lemma.
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Lemma 3.4.5. Let 0 < c < 1 be a constant and let R > 0. Then

R∑
k=cR

|Bk||BR−k|2 << |BR|2. .

Proof. The idea of the proof here is to give an upper bound for |Bk||BR−k| where k ∈ [cR,R]. Given
R, we can always find r = rR ∈ [cR,R] such that

|Bk||BR−k| ≤ |Br||BR−r|

for all k ∈ [cR,R].

Due to the growth rate, we have: |BR| ≤ |Bk| |BR−k| for cR ≤ k ≤ R. Hence, Fekete’s sub additive
Lemma implies that:

lim
R−→∞

ln |BR|
R

= InfR
( ln |BR|

R

)
= µ > 0.

Hence there exists a sequence of positive numbers (εR)R converging to 0 such that ln |BR|
R = µ+ εR

for all R; i.e:
|BR| = eR[µ+εR]

for all R.

Since since εR ≥ 0, we have:

|Bk| |BR−k| = ek[µ+εk] e(R−k)[µ+εR−k]

= eRµ ekεk+(R−k)εR−k

≤ |BR| exp[kεk + (R− k)εR−k −RεR]

By taking r = r(R) ∈ [cR,R] such that:

max{kεk + (R− k)εR−k −RεR : k ∈ [cR,R]} = rεr + (R− r)εR−r −RεR,

we have:
R∑

k=cR
|Bk||BR−k|2 ≤ |BR| exp [rεr + (R− r)εR−r −RεR]

R∑
k=cR

|BR−k|

≤ α exp [rεr + (R− r)εR−r −RεR] |BR(1−c)| |BR|

where the constant α is from the fact that G has exponential growth.

Claim: lim
R−→∞

exp[rεr+(R−r)εR−r−RεR] |BR−cR|
|BR| = 0.

Indeed, since (εi)i converges to 0 and since r ≤ R, we have

rεr + (R− r)εR−r −RεR = o(R)

and
|BR−cR| = exp[(R− cR)µ+ o(R)].
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Hence:

exp [rεr + (R− r)εR−r −RεR] |BR−cR|
|BR|

= 1
exp[Rµ− (R − cR)µ− o(R)]

= 1
exp[Rµ(c− o(1))] −→ 0

when R goes to the infinity since c > 0.

Therefore we have
∑R
k=cR |Bk||BR−k|2 << |BR|2 and the Lemma is proved.

We have the following proposition for δ-almost-common-points.

Proposition 3.4.6. Let R be positive integer and let 0 < c < 1 be a constant. Then with the
above notations, we have:

#{(X,Y ) ∈ BR × BR : sXY > cR} << |BR|2.

Proof. Assume that (X,Y ) has a δ-almost-common-points u with k = d(I, u) ≥ cR. Then there
are at most |Bk| possibilities for such u. By definition of u, there exists uX , uY ∈ B δ

2
(u) such that

uX ∈ [I,X] and uY ∈ [I, Y ] (Figure 3.6).

u

I

YX

uX uY

B δ
2
(u)

Figure 3.6: d(I, u) = sXY

By the triangular inequality, we have:

d(I, uX) ≥ d(I, u)− d(u, uX) ≥ k − δ

2 ,

and
d(I, uY ) ≥ d(I, u)− d(u, uY ) ≥ k − δ

2 ,

because d(u, uX) ≤ δ
2 and d(u, uY ) ≤ δ

2 .
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Since uX ∈ [I,X] and uY ∈ [I, Y ] we have:

d(uX , X) = d(I,X)− d(I, uX) ≤ R− k + δ

2

and
d(uY , Y ) = d(I, Y )− d(I, uY ) ≤ R− k + δ

2 .

By transitivity, we have the following possibilities given u:

(i) there are at most |B δ
2
(u)| = |B δ

2
| possibilities for both uX and vX ,

(ii) there are at most |BR−k+ δ
2
(uX)| = |BR−k+ δ

2
(uY )| = |BR−k+ δ

2
| possibilities for both X and Y .

In sum, we have the following bound:

#{(X,Y ) ∈ BR × BR : sXY > cR} ≤ |B δ
2
|2

R∑
k=cR

|Bk||BR−k+ δ
2
|2

By Lemma 3.4.5, we have:

|B δ
2
|2

R∑
k=cR

|Bk||BR−k+ δ
2
|2 << |BR+ δ

2
|2.

Since δ is a constant, we have the result due to the fact that G has exponential growth.

We have the following corollary:

Corollary 3.4.7. Let X,Y be uniformly chosen random points of BR and let 0 < c < 1. Then
with high probability, there exist two geodesics [I,X], [I, Y ] and a point v ∈ [I,X] located within
distance cR from I such that d(v, [I, Y ]) > δ.

Proof. By Proposition 3.4.6, if r is the highest possible distance between I of a δ-almost-common-
point of any geodesics [I,X] and [I, Y ], then we have r ≤ cR with high probability. Then, with high
probability, a point v ∈ [I,X] within distance cR from I has distance more than δ from [I, Y ].

The following Theorem combines δ-Hyperbolicity, Proposition 3.4.6 and Corollary 3.4.7.

Theorem 3.4.8. Let X,Y be uniformly chosen random points of BR and let 0 < c < 1.Then:

lim
R−→∞

P[2R− 2cR− 2δ ≤ d(X,Y ) ≤ 2R] −→ 1,

i.e.
lim

R−→∞
P
[
1− d(X,Y )

2R ≤ c+ 2δ
2R

]
−→ 1.
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Proof. With high probability, we have [I,X], [I, Y ] and v ∈ [I,X] defined as in Corollary 3.4.7.
By Hyperbolicity, there exist a node u = uδ ∈ [X,Y ] such that d(v, u) ≤ δ ([X,Y ] is any geodesic).
By triangular inequality, we have:

d(X,u) ≥ d(X, I)− d(I, u)
≥ d(X, I)− d(I, v)− d(v, u)
≥ R− cR− δ;

likewise, we have:

d(Y, u) ≥ d(Y, I)− d(I, u)
≥ d(Y, I)− d(I, v)− d(v, u)
≥ R− cR− δ,

where C is a constant. Since u ∈ [X,Y ], then

d(X,Y ) = d(Y, u) + d(X,u) ≥ 2R− 2cR− 2δ

with high probability.

Since G has exponential growth, we can find a constant C such that |BR ≤ C|SR| for some all R,
then the last result in Theorem 3.4.8 is also true for SR.

3.5 Final remark and open questions

We proved that the balls (or spheres) of non elementary Hyperbolic groups have distance concen-
tration property by using the the ‘Hyperbolicity’ and the ‘exponential growth’. One can now asks
how is it in the gap between Hyperbolicity and non-Hyperbolicity or the gap between exponential
growth and sub-exponential growth. We then can ask the following open questions:

• Are there transitive graphs of exponential growth, but non-hyperbolic, where the distance in
the balls or spheres is still concentrated?

• Are there transitive graphs of exponential growth, but non-hyperbolic, where the distance in
the balls or spheres is non-concentrated?

• Is it true that there is always no concentration for the spheres or balls on transitive graphs
of sub-exponential growth?

For example, the Descartes product Tk×Z and the Diestel-Leader graph DL(2, 2) (Lyons and Peres
(2017)) are transitive graphs of exponential growth but they are not Hyperbolic.
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4. Visualizations and Application
In Chapter 3, we investigated the concentration of distance on several examples of graphs. In
this chapter, we visualize the Rayleigh limit in Theorem 3.2.5 with python, and we try to explore
similar phenomena for UST of other graphs via visualization. We end this chapter by presenting
an example of application of the concentration of distance.

From Figure 4.3 and 4.4, we can conclude that the distance in the UST of (Z/nZ)2 and (Z/nZ)5

are not concentrated. Then a question can be asked here whether it is true that the distance is
always non-concentrated in the UST of any transitive graph?

4.1 Visualization in Python

From the previous chapter, we showed the Rayleigh limit for the distance in the UST of the complete
graph Kn. We are going to visualize this result in this chapter and we try to explore similar
phenomena on other networks. We generate the corresponding data and plot the approximated
Probability Density Function in Python.

By Wilson’s algorithm, the output of the processes (i) and (ii) below have the same distribution
given a connected Graph G:

(i) take two random elements u, v ∈ V (G) uniformly at a random, take a UST T of G and take
the distance dT (u, v).

(ii) take two random u, v ∈ V (G) uniformly at a random, run a Loop Erased Random Walk from
u to v and we then have a random path LERW(u, v), then take the length of LERW(u, v).

The Python code below load all the usual packages of this chapter. The Python function LERW(G, u, v)
is an implementation of the process (ii) discussed above.
" " " @author : Mahefa " " "
# u s e f u l l package
import networkx as nx
import numpy as np
import matp lo t l i b . pyplot as p l t
import pandas as pd
import random

def LERW(G, u , v ) :
#s t a r t a LERW at u and s top when h i t t i n g v
path = [ u ]

# we cont inue updat ing the path u n t i l v becomes i t s l a s t e lement
while v != path [ len ( path )−1] :

# take a random neighbour o f the l a s t e lement o f the path
x = random . cho i c e ( l i s t ( nx . Graph . ne ighbors (G, path [ len ( path ) −1 ] ) ) )

32

C
E

U
eT

D
C

ol
le

ct
io

n



Section 4.1. Visualization in Python Page 33

#i f the neighbour above i s a l r eady in the path ( i . e . a loop i s ob ta ined ) ,
#then reduce the path up to t ha t node
i f x in path :

path = path [ 0 : path . index (x)+1]

# i f the random neighbour i s not ye t in the path , then append i t
else :

path = path + [ x ]

return ( len ( path )−1) # path i s a sequence o f nodes

-Uniform Spanning Tree of the complete graph Kn

For the complete graph Kn, let us consider the cases n = 50, n = 100 and n = 1000. The following
code generates 400 independent trials of Length[LERW(G,u,v)]√

n
, where LERW is the function in the

code above. The output of the plot is shown in figure 4.1.

x= np . l i n s p a c e (0 ,5 , 400 ) # number o f data to genera te
# we do the v i s u a l i s a t i o n f o r n= 50 , 100 and 1000
K_50 = nx . complete_graph (50)
K_100 = nx . complete_graph (100)
K_1000 = nx . complete_graph (1000)
# take 400 independent t r i a l s f o r each graph
# take two random nodes and save the l e n g t h o f a LERW between them

#n=50
data_50 = np . array ( [LERW(K_50, random . cho i c e ( l i s t (K_50 . node ( ) ) ) ,
random . cho i c e ( l i s t (K_50 . node ( ) ) ) ) for i in range ( 4 0 0 ) ] ) / np . s q r t (50)

#n=100
data_100 = np . array ( [LERW(K_100 , random . cho i c e ( l i s t (K_100 . node ( ) ) ) ,
random . cho i c e ( l i s t (K_100 . node ( ) ) ) ) for i in range ( 4 0 0 ) ] ) / np . s q r t (100)

#n=1000
data_1000 = np . array ( [LERW(K_1000 , random . cho i c e ( l i s t (K_1000 . node ( ) ) ) ,
random . cho i c e ( l i s t (K_1000 . node ( ) ) ) ) for i in range ( 4 0 0 ) ] ) / np . s q r t (1000)

#Plot wi th the Ray le igh P r o b a b i l i t y Densi ty Function
f i g , axes = p l t . subp lo t s ( nco l s =2, nrows=1, f i g s i z e = (20 , 5 ) )#cons t ruc t s u b p l o t s
ax1 , ax2= axes . r av e l ( ) # name of each s u bp l o t

#histogram
ax1 . h i s t ( data_50 , b ins=50, c o l o r=’ orange ’ , l a b e l = r ’$K_{50}$ ’ )
ax1 . h i s t ( data_100 , b ins=50, c o l o r=’ green ’ , l a b e l = r ’$K_{100}$ ’ )
ax1 . h i s t ( data_1000 , b ins=50, c o l o r=’ red ’ , l a b e l = r ’$K_{1000}$ ’ )
ax1 . s e t_x labe l ( r ’ $\ f r a c {LERW}{\ sq r t {n}}$ ’ )
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ax1 . s e t_ t i t l e ( ’ Histogram ’ )
ax1 . l egend ( )

#est imated den s i t y vs Ray le igh d en s i t y
ax2 . p l o t (x , x∗np . exp(−x ∗∗2/2) , l a b e l = ’ Rayle igh ␣PDF’ )
pd . S e r i e s ( data_50 ) . p l o t . kde ( l a b e l = r ’$K_{50}$ ’ )
pd . S e r i e s ( data_100 ) . p l o t . kde ( l a b e l = r ’$K_{100}$ ’ )
pd . S e r i e s ( data_1000 ) . p l o t . kde ( l a b e l = r ’$K_{1000}$ ’ )
ax2 . s e t_x labe l ( r ’ $\ f r a c {LERW}{\ sq r t {n}}$ ’ )
ax2 . set_xlim ( [ 0 , 6 ] )
ax2 . l egend ( )
p l t . show ( )

Figure 4.1: Histogram and approximated density

Figure 4.1 suggests that the approximated densities converge to the Rayleigh density. This result
is proved in Theorem 3.2.5 of Chapter 3 and it is mentioned in Peres and Revelle (2004).

-Uniform Spanning Tree of the square lattice G = (Z/nZ)2 with n = 20, 30, 50

Note that all we do in this section is just visualisations and and there are no mathematical proofs:
we just take conclusions from the observed data.

Let us first proceed as in the UST of Kn, where we divide the length of an LERW by the square
root of the size of our graph, here |(Z/nZ)2| ∼ n2. The following code generates 400 independent
trials of Length[LERW(G,u,v)]√

n2 .

#Generate Data
data_20 = np . array ( [LERW(G_20, random . cho i c e ( l i s t (G_20 . node ( ) ) ) ,

random . cho i c e ( l i s t (G_20 . node ( ) ) ) ) for i in range ( 4 00 ) ] ) / 20

data_30 = np . array ( [LERW(G_30, random . cho i c e ( l i s t (G_30 . node ( ) ) ) ,
random . cho i c e ( l i s t (G_30 . node ( ) ) ) ) for i in range ( 4 00 ) ] ) / 30

data_50 = np . array ( [LERW(G_50, random . cho i c e ( l i s t (G_50 . node ( ) ) ) ,
random . cho i c e ( l i s t (G_50 . node ( ) ) ) ) for i in range ( 4 00 ) ] ) / 50

#Plot es t imated den s i t y
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f i g , axes = p l t . subp lo t s ( nco l s =2, nrows=1, f i g s i z e = (20 , 5 ) ) # cons t ruc t s u b p l o t s
ax1 , ax2= axes . r av e l ( ) # name of each s u bp l o t

#histogram
ax1 . h i s t ( data_20 , b ins =100 , l a b e l = r ’ $d=2,␣n=20$ ’ )
ax1 . h i s t ( data_30 , b ins =100 , c o l o r=’ orange ’ , l a b e l=r ’ $d=2,n=30$ ’ )
ax1 . h i s t ( data_50 , b ins =100 , c o l o r=’ green ’ , l a b e l=r ’ $d=2,n=50$ ’ )
ax1 . s e t_x labe l ( r ’ $\ f r a c {LERW}{\ sq r t {n^2}}$ ’ )
ax1 . s e t_ t i t l e ( ’ Histogram ’ )
ax1 . l egend ( )

#est imated den s i t y
pd . S e r i e s ( data_20 ) . p l o t . kde ( l a b e l = r ’ $d=2,␣n=20$ ’ )
pd . S e r i e s ( data_30 ) . p l o t . kde ( l a b e l = r ’ $d=2,n=30$ ’ )
pd . S e r i e s ( data_50 ) . p l o t . kde ( l a b e l = r ’ $d=2,n=50$ ’ )
ax2 . l egend ( )
ax2 . set_xlim ( [ 0 , 4 . 5 ] )
ax2 . s e t_x labe l ( r ’ $\ f r a c {LERW}{\ sq r t {n^2}}$ ’ )
p l t . show ( )

Figure 4.2: Histogram and approximated density

The result in Figure 4.2 suggests that there is no limiting curve for the densities of Length[LERW(G,u,v)]√
n2

and maybe this is because we did not chose the right denominator.

Instead of dividing with
√
n2, let us divide with the coefficient n

5
4 , see Kenyon (2000a), Kenyon

(2000b) and Lawler et al. (2011).

data_20 = np . array ( [LERW(G_20, random . cho i c e ( l i s t (G_20 . node ( ) ) ) ,
random . cho i c e ( l i s t (G_20 . node ( ) ) ) ) for i in range ( 400 ) ] ) /20∗∗ ( 5/4 )

data_30 = np . array ( [LERW(G_30, random . cho i c e ( l i s t (G_30 . node ( ) ) ) ,
random . cho i c e ( l i s t (G_30 . node ( ) ) ) ) for i in range ( 400 ) ] ) /30∗∗ ( 5/4 )

data_50 = np . array ( [LERW(G_50, random . cho i c e ( l i s t (G_50 . node ( ) ) ) ,
random . cho i c e ( l i s t (G_50 . node ( ) ) ) ) for i in range ( 400 ) ] ) /50∗∗ ( 5/4 )

C
E

U
eT

D
C

ol
le

ct
io

n



Section 4.1. Visualization in Python Page 36

#Plot
f i g , axes = p l t . subp lo t s ( nco l s =2, nrows=1, f i g s i z e = (20 , 5 ) ) # cons t ruc t s u b p l o t s
ax1 , ax2= axes . r av e l ( ) # name of each s u bp l o t

#histogram
ax1 . h i s t ( data_20 , b ins =100 , c o l o r=’ orange ’ , l a b e l=r ’ $d=2,␣n=20$ ’ )
ax1 . h i s t ( data_30 , b ins =100 , c o l o r=’ green ’ , l a b e l=r ’ $d=2,n=30$ ’ )
ax1 . h i s t ( data_50 , b ins =100 , c o l o r=’ red ’ , l a b e l=r ’ $d=2,n=50$ ’ )
ax1 . s e t_x labe l ( r ’ $\ f r a c {LERW}{n^{\ f r a c {5}{4}}}$ ’ )
ax1 . s e t_ t i t l e ( ’ Histogram ’ )
ax1 . l egend ( )
#approximated den s i t y
ax2 . p l o t (x , x∗np . exp(−x ∗∗2/2) , l a b e l = ’ Rayle igh ␣PDF’ )
pd . S e r i e s ( data_20 ) . p l o t . kde ( l a b e l = r ’ $d=2,␣n=20$ ’ )
pd . S e r i e s ( data_30 ) . p l o t . kde ( l a b e l = r ’ $d=2,n=30$ ’ )
pd . S e r i e s ( data_50 ) . p l o t . kde ( l a b e l = r ’ $d=2,n=50$ ’ )
ax2 . set_xlim ( [ 0 , 4 ] )
ax2 . s e t_x labe l ( r ’ $\ f r a c {LERW}{n^{\ f r a c {5}{4}}}$ ’ )
ax2 . l egend ( )
p l t . show ( )

Figure 4.3: Histogram and approximated density

The output in Figure 4.3 suggests that there is a limiting curve for the estimated density distribu-
tion, and the limit in distribution is not the Rayleigh.

-Uniform Spanning Tree of the square lattice G = (Z/nZ)5 with n = 3, 5, 7

Let us proceed exactly like in the UST of Kn. We have |(Z/nZ)5| = n5 and we are going to simulate
the estimated density of Length[LERW(G,u,v)]√

n5 for n = 3, 5 and 7 in the following code. The coefficient
√
n5 in the denominator is from Peres and Revelle (2004).

G_3 = nx . grid_graph (dim=[3 ,3 , 3 , 3 , 3 ] , p e r i o d i c = False ) # (Z/3Z)^5
G_5 = nx . grid_graph (dim=[5 ,5 , 5 , 5 , 5 ] , p e r i o d i c = False ) # (Z/5Z)^5
G_7 = nx . grid_graph (dim=[7 ,7 , 7 , 7 , 7 ] , p e r i o d i c = False ) # (Z/7Z)^5

# Data f o r UST of the d i s c r e t e to rus Z_n^d with d=5 and n=4 ,5 ,7
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data_3 = np . array ( [LERW(G_3, random . cho i c e ( l i s t (G_3. node ( ) ) ) ,
random . cho i c e ( l i s t (G_3. node ( ) ) ) ) for i in range ( 400 ) ] ) /3∗∗ ( 5/2 ) # n=3

data_5 = np . array ( [LERW(G_5, random . cho i c e ( l i s t (G_5. node ( ) ) ) ,
random . cho i c e ( l i s t (G_5. node ( ) ) ) ) for i in range ( 400 ) ] ) /5∗∗ ( 5/2 ) # n=5

data_7 = np . array ( [LERW(G_7, random . cho i c e ( l i s t (G_7. node ( ) ) ) ,
random . cho i c e ( l i s t (G_7. node ( ) ) ) ) for i in range ( 400 ) ] ) /7∗∗ ( 5/2 ) # n=7

x= np . l i n s p a c e (0 ,5 , 400 )
f i g , axes = p l t . subp lo t s ( nco l s =2, nrows=1, f i g s i z e = (20 , 5 ) )#cons t ruc t s u b p l o t s
ax1 , ax2= axes . r av e l ( ) # name of each s u bp l o t

#histogram
ax1 . h i s t ( data_2 , b ins =100 , c o l o r=’ orange ’ , l a b e l = r ’ $d=5,␣n=3$ ’ )
ax1 . h i s t ( data_3 , b ins =100 , c o l o r=’ green ’ , l a b e l=r ’ $d=5,n=5$ ’ )
ax1 . h i s t ( data_5 , b ins =100 , c o l o r=’ red ’ , l a b e l=r ’ $d=5,n=7$ ’ )
ax1 . s e t_x labe l ( r ’ $\ f r a c {LERW}{\ sq r t {n^5}}$ ’ )
ax1 . s e t_ t i t l e ( ’ Histogram ’ )
ax1 . l egend ( )

#Plot the corresponding approximated P r o b a b i l i t y Densi ty Function
ax2 . p l o t (x , x∗np . exp(−x ∗∗2/2) , l a b e l = ’ Rayle igh ␣PDF’ )
pd . S e r i e s ( data_3 ) . p l o t . kde ( l a b e l = r ’ $d=5 ,\; ␣n=3$ ’ )
pd . S e r i e s ( data_5 ) . p l o t . kde ( l a b e l = r ’ $d=5 ,\;n=5$ ’ )
pd . S e r i e s ( data_7 ) . p l o t . kde ( l a b e l = r ’ $d=5 ,\; ␣n=7$ ’ )
ax2 . s e t_x labe l ( r ’ $\ f r a c {LERW}{n^{5/2}}$ ’ )
ax2 . set_xlim ( [ 0 , 6 ] )
ax2 . l egend ( )
p l t . show ( )

Figure 4.4: The limiting curve should be around the Rayleigh density

The output in Figure 4.4 suggests that there is a limiting curve, and that limiting curve is around
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the Rayleigh density.

4.2 Single source distance vs all pairs distance in transitive metric
spaces

The idea in this section is from the second part of Roughgarden et al. (2019). We say that a metric
space X is transitive if the natural action of its automorphism group is transitive. An example
of transitive metric space is given by the sphere Sn(Td) endowed with the metric induced by the
graph structure of Bn(Td).

Now, consider the second result of Section 3.4: fix an element o ∈ Sn(Td) and let x, y ∈ Sn(Td) be
uniformly chosen. Since Sn(Td) is transitive, then there exists ρ ∈ Aut(Sn(Td)) such that ρ(x) = o.
Therefore, By Theorem 3.4.4, all the quantities

d(o, x)
2n ,

d(o, y)
2n and d(x, y)

2n = d(o, ρ(y))
2n

converge in probability to 1 as n goes to the infinity.

Hence, we also have the convergence:

d(o, x) + d(o, y)
d(x, y) =

d(o,x)
2n + d(o,x)

2n
d(x,y)

2n
−→ 2 in probability as n −→∞.

Hence, saving a data structure that encodes the family of all pairs distance [d(x, y)]x,y∈X can be
reduced in saving a data structure of a family of single source distance [d(o, y)]x∈X .

The following Python code computes some samples of the stretch for S10(T3) and plots the corre-
sponding histogram and the approximated distribution. The plot is shown in Figure 4.5

#crea t e the b a l l o f rad ius n (n=2) in a d−r e gu l a r t r e e (3<=d)
#by the func t i on bal l_d_r
def ball_d_r ( degree=3, rad iu s =2):

while degree > 2 :
T = nx . d i s j o in t_un ion (nx . balanced_tree ( degree −1, rad iu s ) ,
nx . balanced_tree ( degree −1, radius −1))

r oo t s = [ i for i in l i s t (T. nodes ( ) ) i f T. degree ( i )==degree −1]
T. add_edge ( r oo t s [ 0 ] , r oo t s [ 1 ] )
return (T)

# s i n g l e source d i s t ance and a l l p a i r s d i s t ance f o r the sphere
def d i s t anc e (T) :

#Shpere c on s i s t s on nodes o f degree 1
l e a f = [ i for i in T. nodes ( ) i f nx . degree (T, i )==1]

o = l e a f [ 0 ] # the sphere i s t r a n s i t i v e , hence we can f i x one node
u = np . random . cho i c e ( l e a f )
v = np . random . cho i c e ( l e a f ) # we need u!=v in order to see the s t r e c h
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d_0 = nx . shortest_path_length (T, o , u ) + nx . shortest_path_length (T, o , v )
d = nx . shortest_path_length (T, u , v )
return ( [ d_0 , d ] )

#genera te data f o r v i s u a l i z a t i o n : case d=3 and r=10
T = ball_d_r (3 ,10 )
Dist = [ d i s t anc e (T) for i in range ( 3∗2∗∗9 ) ]
D_O = np . array ( [ L [ 0 ] for L in Dist ] )
D = np . array ( [ L [ 1 ] for L in Dist ] )
s t r e t c h = [ ]# we avoid d i v i s i o n by 0
for i in range ( len (D) ) :

i f D[ i ]==0:
s t r e t c h . append (0)

else :
s t r e t c h . append (D_O[ i ] /D[ i ] )

f r e q = dict ( Counter ( s t r e ch ) )#frequence

# Plo t
f i g , axes = p l t . subp lo t s ( nco l s =2, nrows=1,

f i g s i z e = (15 , 5 ) ) # cons t ruc t s u b p l o t s
ax1 , ax2= axes . r av e l ( ) # name of each s u bp l o t

ax1 . s c a t t e r ( f r e q . keys ( ) , f r e q . va lue s ( ) ,
marker=’ o ’ , l a b e l = ’ Frequency␣ o f ␣ the ␣ s t r e t c h ’ )

ax1 . s e t_x labe l ( ’ s t r e t c h ’ )
ax1 . set_xlim ( [ 0 , 5 ] )
ax1 . s e t_y labe l ( ’ f r equency ’ )
ax1 . l egend ( )

pd . S e r i e s ( s t r e ch ) . p l o t . kde ( c o l o r = ’ black ’ ,
l a b e l = ’ Estimated␣ dens i ty ␣ o f ␣ the ␣ s t r e t c h ’ )

ax2 . axv l i n e (2 , c o l o r = ’ red ’ , l a b e l = ’ x=2 ’ )
ax2 . set_xlim ( [ 0 , 5 ] )
ax2 . s e t_x labe l ( ’ s t r e t c h ’ )
ax2 . l egend ( )

p l t . show ( )
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Figure 4.5: Frequency and approximated density of the stretch
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