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Abstract

The economy can be considered a complex system, in which phenom-
ena such as prosperity and crisis are the results of feedback-based inter-
actions of many heterogeneous components. One of the most important
factors in the emergence of economic outcomes is very often an under-
lying spreading process among these constituent parts, which facilitates
the propagation of information, sentiments, risks, resources or losses. To
be able to analyse these mechanisms in a formalized way, we need to use
a wide range of modeling techniques. Among these, network science is
one of the most promising approach, which can equip economists with the
necessary tools to build models capable of capturing the intricacies of com-
plex systems. This thesis contributes to these endeavours in a threefold
way: (i) by providing insights into the hidden structure and the unique
traits of micro-level firm network data; (ii) by proposing a model of shock
spreading in firm-level production networks; (iii) and lastly, by offering a
novel way of modeling feedback channels between the financial sector and
the real economy in the context of interacting economic networks.

In order to be able to investigate firm networks, I obtained access to
sensitive datasets about the ownership links and the supplier connections
among Hungarian firms. This way, it has become possible to construct the
multi-layer representation of the Hungarian firm network, which enabled
us to gain insight into its previously unobserved structure. Network anal-
ysis provided suitable techniques to explore several topological traits on
micro-, meso-, and macro-scale as well, which can be conducive to conta-
gious mechanisms via supplier links. Furthermore, it was also possible to
assess the significance of economic entities regarding the extent to which
they can influence and control the economy via their ownership relations.

These pieces of information also enabled the simulation of shock prop-
agation in the production network. The granularity of the data made
it possible to rectify several shortcomings of industry-level supply chain
analyses. The proposed model features heterogeneous production func-
tions at the firm-level, differentiation in the importance of input types
and replaceability of defaulting suppliers. With these advancements, the
model is capable of quantifying short-term damages after supply chain
disruptions, assessing the systemic risk of individual firms, and testing
countermeasures, which has relevance for policy making.

Lastly, I propose a computational model of contagious mechanisms in
the banking system complemented with feedback channels towards the
real economy. The framework incorporates the interactions between the
network of banks and the network of firms which systems are linked to-
gether via loan-contracts. The model has been embedded into the liquidity
stress test of the Central Bank of Hungary, and the results proved the im-
portance of the real economy feedback channel, without which systemic
risks could potentially be severely underestimated. To illustrate the ver-
satility of this modeling framework, two further applications have been
elaborated. The model can be used to identify systemically important
financial institutions (SIFIs), furthermore, it is also suitable to assess the
financial stability impact of shocks originated in the real economy.
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Zawadowski for his insightful comments and suggestions.

I would like to offer my special thanks to my co-authors: Christian Diem,
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1 Introduction

The 2008 economic crisis shed light on a distinctive feature of the financial
intermediary system: banks and other financial institutions are constituents of
a multi-layer network, in which their interactions and feedbacks create non-linear
processes. Since the recognition of this complexity1 as an intrinsic and influential
characteristic which requires special attention has become widely accepted, a
vast amount of research (e.g. Gai and Kapadia (2010), Haldane and May (2011),
Caballero and Simsek (2013), Elliott et al. (2014), Acemoglu et al. (2015), etc.)
was conducted on network-based contagious mechanisms in the financial system.
Beside the success of this research direction, a more general paradigm shift has
also been ignited (Farmer & Foley, 2009), and the role of networks started
to increase in other areas in economic research as well. Some of the most
notable examples are game theory (e.g. Jackson and Zenou (2015), Galeotti et
al. (2010)), trading in networks (e.g. Kranton and Minehart (2001), Choi et
al. (2017)), labor market (e.g. Calvo-Armengol and Jackson (2004), Beaman
(2012)), peer effects (e.g. Ballester et al. (2006), A. Banerjee et al. (2013)), but
maybe the most rapidly growing area is nowadays the analysis of production
networks (e..g. Acemoglu et al. (2012), Oberfield (2012)). In my research I
attempted to further enrich the literature of network-based economic analysis
by contributing to two topics which are currently in the center of attention
in economics: (i) shock propagation in supplier networks and (ii) interactions
between the real economy and the financial sector.

Regarding the first topic, the current COVID-19 crisis drew increased in-
terest to shock propagation among firms as the instability of international and
national supply chains has made their vulnerability obvious. The epidemic situ-
ation highlighted the strong dependence of firms on their suppliers and the fact
that the non-availability of inputs inevitably leads to halts in productions, which
can spread to other suppliers and customers. Similarly, the default of customers
puts firms at risk of losing revenues and thus reducing their own demand for in-
puts. Inherently, the amplification of the initial economic shock in the supplier
network can lead to cascading failures of firms along supply chains, which means
that far more firms can be affected indirectly than one would expect without
network effects. Although network analysis seems to be a suitable tool to tackle
this phenomenon, there is a severe hindrance researchers often face in this re-
search topic, namely, that in most countries these networks are not observable,
and only coarse-grained, industry-level connections can be seen. To overcome
this challenge, I obtained access to extremely rarely available supplier transac-
tion information among almost all Hungarian firms, on which it was possible to
superimpose their ownership links as well. As both the supplier and the owner-

1In this sense a complex system is not merely a synonym for a complicated, large, sophis-
ticated structure. Complexity is a scientific theory which asserts that some systems display
emergent phenomena that are completely inexplicable by any conventional analysis of the
systems’ constituent parts. The source of complexity is usually assumed to be the non-linear,
feedback-based interaction of many heterogeneous components (Thurner et al., 2018).
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ship layers are considered to be among the most influential shock-transmitting
media, this data is ideal to gain insight into previously unobserved topologi-
cal drivers of spreading processes. These pieces of information also enabled the
building of a model of shock spreading on firm-level production networks, which
makes it possible to rectify several shortcomings of industry-level models.

The second aspect of this thesis’s contribution is concerned with embedding
the above described firm network into a model which exhibits the interconnect-
edness of the financial sector and the real economy. Most of the network-based
economic models focus only on one isolated economic system, and there is only
very limited attention on the interactions between different spheres of the econ-
omy. Most importantly, the connections between the real economy and the
financial sector – which topic is of central importance in mainstream economics
at least since 2008 – is only discussed in very few network-based analyses, e.g.
Gatti et al. (2010), Riccetti et al. (2013), Vitali et al. (2016), Silva et al. (2018),
Gurgone et al. (2018) and Popoyan et al. (2020). A further problem is that
most of these models have only a small number of simulated agents and they
do not use empirically observed networks. This means that they are suitable
to demonstrate and analyze a given mechanism of interest, but their validity is
very limited in the case of actual policy analysis or in simulating realistic shock
scenarios. To contribute to the development of the field from this point of view,
I propose a novel way of modeling feedback channels between the financial sec-
tor and the real economy by using a computational microsimulation framework.
This model incorporates the interactions between the actual network of banks in
Hungary (exhibiting contagion mechanisms among them) and the almost com-
plete network of firms (transmitting shocks to each other along the supply chain)
which systems are linked together via actually observed loan-contracts. Addi-
tionally, the last part of the thesis offers policy relevant illustrations of how the
feedback mechanisms in these coupled networks could amplify the losses in the
economy way beyond the shortfalls expected when we consider the subsystems
in isolation.

In the following two subsections I provide a more detailed description of the
background of these research directions, while the last part of the introduction
will give an overview about the structure of the dissertation.

1.1 Supplier networks

In the past decade we experienced a vast surge in interest towards modeling
and analyzing interdependencies among companies. The structure of these net-
works is a key element in understanding the governing forces behind any kind
of spreading phenomena among firms. The first part of this dissertation of-
fers a general, descriptive exploration of the topological structure of multi-layer
firm networks using Hungarian data. Although the topology of the underlying
graph might play a different role for the various types of shocks, this work is
relevant for a wide range of applications, such as productivity spillovers (Liu et
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al. (2000), Gorg and Strobl (2001)), spreading of financial shocks (Demir et al.
(2018), Costello (2020)), or upstream and downstream supply chain disruptions
(Barrot and Sauvagnat (2016), Carvalho et al. (2016)).

1.1.1 Recent advancements in supplier network analysis

Examining the system of interfirm connections has been present in the economic
literature at least since Leontief’s seminal work on the structure of the American
economy (Leontief, 1951). The roots of the recent increased enthusiasm in using
more fine-grained, firm-level disaggregation are twofold: (i) developments in
data availability and (ii) new conceptual innovations.

As a part of the universal pattern of increased accessibility to micro-level
data, in some countries it became possible to obtain comprehensive datasets
about firm-level connections. Previously, researchers who wanted to consider
firm connections in their analyses could use either a sample of the given network
or a higher aggregation level (e.g. industry or country). Both approaches turned
out to suffer from serious limitations. When measured on a sample, even the
most elementary characteristics of networks (e.g. the density or the average
degree) require non-trivial corrections, which can be very different depending
on the sampling method (Granovetter, 1976), while more sophisticated analyses
on samples are hindered severely by potential distortions (Frank, 1971). The
other option is to use a completely observed, but aggregated system, however,
this approach has other caveats. One seemingly obvious drawback is that during
the process of aggregation we lose information not only about the heterogeneity
of the actors, but also about their connections among each other. However,
it was not evident at all for a long time in economics (at least from the point
of view of macroeconomics) whether disregarding the observation of firm-level
events and characteristics is relevant or not.

As this debate flared up and gained a lot of attention recently, it has led to
the second, more theoretical branch of factors giving popularity to granular firm
network analysis in economics. An important milestone in the development of
this field was the rejection of the traditional argument of Lucas Jr (1977) about
the diversification of shocks in the economy. The former consensus was that
firm-level idiosyncratic events do not have any influence on the macroeconomic
scale as they cancel each other out based on the law of large numbers. However,
Gabaix (2011) and Acemoglu et al. (2012) showed that due to the heterogeneity
of the firms and the topology of their connections, stress events of the largest
companies cannot be offset by smaller firms even if the shocks are uncorrelated2.

A second reasoning supporting the irrelevance of network effects was pro-

2They showed that the distribution of company size (and also the direct and indirect de-
mand towards a given company’s products) could be described well using power-low distribu-
tion, in which there is a relatively high probability of extremely large observations. Depending
on the exponent of the distribution, the assumptions of the law of large numbers could be
violated.
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posed by Hulten (1978). This argument claimed that the Domar weights (sales
as a share of GDP) of firms (or industries) are sufficient statistics to assess the
aggregate total factor productivity (TFP) impact of micro-level TFP shocks.
Although this statement seems to be intuitively questionable3, it has been serv-
ing as a justification for a long time to ignore granular connections in the pro-
duction network. In the past decade, however, new results questioned this
argument. Most notably, Baqaee and Farhi (2019) pointed out that even the
Domar weights themselves can be influenced by the TFP shocks, hence, second-
order effects should also be taken into account in the shock propagation process.
Furthermore, Baqaee and Farhi (2020) proved that even if one considers only
first-order impacts, the network structure can have an important role if there
are frictions in the economy.

In parallel to these theoretical developments, the empirical literature on sup-
ply chain contagion gained popularity as well. In these papers researchers try
to measure the extent of spreading of some exogenous event (e.g. natural catas-
trophes or policy shocks) on the supplier network. For example Bimpikis et al.
(2018) and Bimpikis et al. (2019) have showed, that disruptions in the supplier
network can result in suboptimal network formation which can amplify systemic
risks. Baqaee (2018) showed in a general equilibrium model that shock prop-
agation can be further amplified by the interconnectedness between industries.
Luo (2019) establishes linkages between firms using both the production net-
work and financial links due to delays in input payments, and shows that this
multiplex network leads to the propagation of financial shocks in both upstream
and downstream directions. Carvalho et al. (2016) provided further support for
this mechanism using empirical data about the Great East Japan Earthquake.
Barrot and Sauvagnat (2016) also uses natural disasters for the identification of
firm-level shocks, and they found that suppliers can trigger considerable output
losses for their customers. Further examples of supply chain disruption analyses
are Demir et al. (2018) and Boehm et al. (2019), but Carvalho and Tahbaz-Salehi
(2018) and Bernard and Moxnes (2018) offer reviews of the broader literature
on production networks.

These results about the unexpected directions and rate of shock spreading
proved that the interconnectedness of different economic actors is a vastly in-
fluential aspect of many processes of the economy. However, this observation
cannot be simply interpreted as more connections mean higher potential for
any kind of spreading phenomena. E.g the seminal work of Elliott et al. (2014)
showed, that the contagion potential in a financial system depends on the net-
work structure in a non-monotonic way: Diversification (having more economic
partners) increases the size of the connected component in the network initially,
but after a while this process actually leads to more diversified, more resilient
systems. Similar logic can be observed in the case of dual source strategies in
supply chain management, which means that firms often establish more than

3Consider TFP shocks to a large retail company and to electricity production. Both can
have similar sales share in the GDP, but one would correctly expect that a shock to the
electricity company would result in much more severe system-wide economic damage.
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one link for a given input to decrease their sensitivity to disruptions in the
supply chain.

1.1.2 Firm-level network data analysis

The developments described so far triggered a new wave for economic network
analysis as network theory offered a novel way of thinking about the structure of
the economy by representing it as a complex system. By now the network-based
approach has become part of the mainstream in several areas. Nevertheless, the
first step before one could integrate these - now sometimes almost fully observ-
able - networks into economic models should be the thorough exploration of the
data. Most importantly we have to examine the topological structure in high
resolution, which is the distinguishing feature compared to the previous aggre-
gate observations. However, one can find mainly theoretical works aiming to
describe these systems (e.g. Benhabib et al. (2010), Dutta and Jackson (2003),
Goyal (2012), Jackson (2010)), and just a very limited number of empirical
papers.

In one of these works, Watanabe et al. (2015) offers a detailed analysis of
trade connections of 400,000 Japanese firms. Although it is still about a sample
of firms in the country, they were the first to analyze a supplier network of
this extent. Dhyne et al. (2015) describes the production network of Belgium
from the point of view of its integration into the world trade network. This
work was one of the first in a series of papers about the Belgian production net-
work (Kikkawa et al. (2019), Magerman et al. (2016), Tintelnot et al. (2018)).
Additionally, Demir et al. (2018) used the Turkish, while Kumar et al. (2020)
considered the Indian supplier network in their work, however, all of these re-
search projects focused on economic questions with a higher abstraction level
and not on the network itself.

Another branch of empirical research considers ownership relations among
companies, which is also a recently often examined layer of firm networks. These
papers usually use the Orbis database4 to analyze the global ownership network
of companies: Using the same or highly overlapping data sources Glattfelder
(2013) offered a methodology to extract the backbone of the global ownership
network, Vitali et al. (2011) showed that there is a very high concentration in
this network with a group of core companies, Vitali and Battiston (2011) ex-
amined the ownership structures’ embedding in the geographical space, Vitali
and Battiston (2014) explored the community structure of the global owner-
ship network, Heemskerk and Takes (2016) described the multipolar nature of
the global political economy, and Garcia-Bernardo et al. (2017) tried to iden-
tify offshore financial centers. Some other layers of corporate connections were
studied as well, however, often only on smaller samples of firms. Zajac and
Westphal (1996), Battiston et al. (2003) and G. F. Davis et al. (2003) looked

4Orbis is a company database provided by Bureau van Dijk (which is a Moody’s Analytics
business information publisher).
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at the network of interlocking board members and decision makers. Innovation
dynamics have also been considered on networks of R&D partnerships e.g. by
Tomasello et al. (2017), while there are numerous studies focusing on stock price
correlation-based network of listed companies (e.g. Tumminello et al. (2010)).

Most of the papers until now dealt with only a single layer of corporate
networks. A very recent exception is de Jeude et al. (2019) whose study features
four layers: ownership links and board member overlaps among a very large
sample of firms; furthermore R&D collaborations and stock correlation between
listed companies. In this research I would like to contribute to this direction
of the literature by attempting to unfold the non-trivial characteristics of the
multi-layered network of firms using Hungarian data. At the Central Bank of
Hungary, I was able to create a uniquely rich dataset by having access to supplier
transaction information among firms, on which it was possible to superimpose
their ownership links as well in the period between 2014-2017. The supplier
information is coming from firms’ VAT reports collected by the National Tax
and Customs Administration of Hungary. In this data one can observe trade
links among Hungarian firms where the tax content of the transactions between
two firms exceeds EUR 3000 in the given year. Considering the ownership data
I have used the OPTEN5 dataset of more than 400 000 Hungarian firms. To
further enrich the scope of our analysis, other micro-level datasets of the Central
Bank of Hungary has been merged to the network data. These made it possible
to use the detailed characteristics of firms (coming from their balance sheets
and profit and loss statements) as additional attributes of the nodes.

Both the supplier and the ownership layers are among the most significant
shock-transmitting media; thus, this dataset is ideal to explore the topological
origins of the above described spreading phenomena. As these data are usually
not collected for research purposes, and economists are often unfamiliar with
the specific and unique characteristics of network data, this work has an addi-
tional contribution by describing the significant amount of preprocessing which
is necessary in order to use these pieces of information in line with the economic
expectations and interpretations. This way, the methodological approach of the
analysis consists of elements coming not only from economics, but also from the
network science literature (M. Newman (2018), Barabási et al. (2016)), which
can provide us with suitable tools to explore the underlying structure of the
firm network on micro-, meso- and macro-scales as well.

As a first step in the analysis, it was necessary to consider the ownership
structure of the Hungarian economy in order to distinguish transactions within
and between ownership groups. As this system is much sparser than the supplier
layer, and it consists of many small components, it is not possible to analyze it
on the level of a giant component. However, one can still measure its most im-
portant characteristics and gain insight into the typical motifs in the ownership
structure of firms.

5OPTEN is a Hungarian firm-level data provider company.
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Furthermore, the ownership data enables the exploration of the network of
economic actors from another angle as it conveys invaluable information about
the direct and indirect influence of the observed entities. Based on a measure of
control proposed in Chapter 2, one can also analyze the distribution of control in
the economy. Based on this analysis, more than 40% of the control is associated
with the top 100 owners in the Hungarian economy. This investigation was
also carried out at more aggregated levels revealing the role of different groups
formed along numerous dimensions, such as the nationality, the legal category
or the HQ location of the owners.

Regarding the supplier layer, the analysis of this system identified several
topological patterns of the production network which can be responsible for
facilitating contagious processes: (i) despite the low density of the network
we can identify a giant component which encompasses more than 94% of the
nodes. (ii) The average shortest path length among the firms in this component
is around five6, which indicates small-worldness in the network. (iii) The long-
tailed degree distribution ensures the presence of hubs, that can be key actors
in spreading shocks. (iv) Contagions can be further promoted by micro-level
motifs: there is an unexpectedly high probability of reciprocal dyads and closed
triangles, which can amplify shocks via local feedback loops.

One could gain further valuable insights about the system by exploring its
meso-level configuration. This type of examination identified a well-defined and
occasionally overlapping community structure, which reflects closely the pro-
duction chains of different segments in the Hungarian economy. This grouping
allows us to assess firms’ capacity to connect communities, which measure can
be used as a proxy for shock transmitting ability between the otherwise sepa-
rated chains of production. The results showed that firms in the transportation
and infrastructure sectors, and firms with high productivity and high export
rate have the most important role in connecting different blocks of the econ-
omy. In addition to these topological traits, the network also demonstrated
strong homophily7 based on several firm attributes, most notably in the case
of productivity, profitability and geographical location. However, these traits
are much weaker in terms of separating the network than the supply chains
identified by the community detection procedure.

1.1.3 Modeling shock spreading in firm-level supplier networks

The current advent of granular firm-level data can uncover the supply chains of
entire nations. This allows researchers for the first time to study the propaga-
tion of economic shocks on the level of firms, instead of on the sector level as
usually done in input–output analyses. One of the first attempts into this di-
rection was done by Magerman et al. (2016), who study micro-level shocks and

6Here we did not consider the directions of the links as shocks can spread in both directions
depending on the process.

7The tendency of the formation of links between similar nodes.
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their effects on aggregate fluctuations. They found that 90% of the volatility
is driven by the largest 100 firms in the Belgium supply chain network. Inoue
and Todo (2019b) uses a more recent version of the Japanese supply chain with
1.1 million nodes and 5 million buyer–supplier relationships and introduce a
weighting scheme based on sector-level input–output tables and firm revenue
data. They adapt the model of Hallegatte (2008) and introduce heterogeneous
inventory levels and a different rationing mechanism for supply shortages. Inoue
and Todo (2019b) finds that shocks decreasing the production of only 10,000
nodes to 50% of the original level propagate through the network and amplify
the initial shock by a factor of 16 after 30 days and a factor of 100 after 200
days. Furthermore, they find considerably larger shocks on the firm-level supply
chain network compared to the input–output table shocks on sector level. Inoue
and Todo (2019a) used the same method on the 2011 earthquake in Japan as
an initial economic shock and showed that their model predicts indirect shocks
in a magnitude consistent with the actual empirically measured shocks in value
added. Fujiwara et al. (2016) applies the DebtRank algorithm onto the supply
chain network and finds a nonlinear relationship between firm size and systemic
losses measured by DebtRank, i.e. that large firms cause disproportionately
large cascades.

Models for real economy shock propagation have also been used to analyse
the current COVID-19 crisis. Inoue and Todo (2020) apply their model to simu-
late the effect of a lock-down of the Tokyo metropolitan area due to COVID-19.
They find that for a 30 day lock-down the indirect shock on the other provinces
is twice the size of the initial shock. Pichler et al. (2020), Pichler and Farmer
(2021) and Pichler et al. (2021) study the effect of different sector lock-downs in
the UK economy with a sector-level input–output model in spirit of Hallegatte
(2008) and Inoue and Todo (2020). They managed to predict the GDP de-
creases of Q2 2020 more accurately than traditional GDP forecasting models,
which underlines the importance of taking real economy shock propagation into
account.

Overall the literature finds ample evidence that economic shocks spread in
supply chain networks; indirect shocks outweigh the initial direct shocks severely
in size; and that sector-level estimates of second round effects highly underesti-
mate indirect shocks in comparison to firm-level supply chain networks. Chapter
4 of this dissertation presents a supply chain contagion model in this spirit. I
contribute to the literature by introducing several novel features which grant
a higher level of plausibility in the quantification of short term damages after
shocks in the supplier network. The most important characteristic is that the
propagation of exogenous initial economic shocks are based on the Hungarian
firm level production network first described by Borsos et al. (2020). With the
described data sources each firm can be prescribed with a production function
that specifies the amount of outputs a firm can produce with its suppliers’ in-
puts. This way, the model can quantify the systemic risk of firms by simulating
the effects of distinct upstream and downstream spreading mechanisms on the
production network in response to the firm’s failure. The network dynamics
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are based on an edge update scheme where a loss of inputs of a firm causes a
reduction of its own production and in turn causes a loss of inputs for other
firms.

This methodology addresses three usual shortcomings of sector level analy-
ses. First, the analysis of the data showed that even within fine grained industry
classifications (NACE 4) firms tend to have very heterogeneous inputs. This can
lead to inaccurate results when using them for assessing shock propagation in
production networks. Second, this is especially true if the crisis scenario does
not affect all firms within a sector to the same extent (for example in the cur-
rent COVID-19 crisis). The proposed model takes this into account and yields
different cascades for shocks which would appear to be the same at industry
level, but are distributed differently among firms within an industry. Third, in
contrast with sector level models, each firm in the data has a specific production
function based on its input vector and industry classification. The model uses a
combination of linear and Leontief production functions, and the varying crit-
icality and replaceability of inputs has also been taken into account. Overall,
these features improve the accuracy of analysing how shocks spread in produc-
tion networks, and consequently foster a more plausible estimation of the effects
of crisis scenarios.

In the first application of this model we showed how large the systemic risk is
that single firms pose to the entirety of the firm-level production network. The
simulations show that only less than 100 firms have the potential to destroy
more than five percent of the national production network, and hence, pose
a considerable threat to the overall economy. However, even the default of a
single one of these companies can affect 21% of the production in the system.
(Using different production functions it was also possible to estimate bounds
to the damage.) This indicates, that the knowledge of the systemic riskiness of
single firms is crucial for understanding and preventing potentially large failure
cascades in these networks.

1.2 Interactions between the real economy and the finan-
cial sector

The unexpected cascading spillovers in the global economy after the 2008 crisis
fostered the emergence of network-based simulations as a popular modeling
framework in financial economics (Elliott et al. (2014), Acemoglu et al. (2015)),
but this recognition so far resulted mainly in numerous analyses about contagion
channels only within the financial system. However, besides the complexity of
this sector there is also another, more conventional line of reasoning which
justifies the special role of the financial intermediation industry: it is connected
to all other industries, which puts banks in a special position again from the
point of view of shock propagation in the economy. This consideration (among
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others8) led in the first place to the regulatory frameworks, which have been
much stricter than one can experience in almost any other industry even before
the crisis.

There are only a few papers in the literature pursuing the synthesis of these
two regulatory considerations about banks (e.g. Gatti et al. (2010), Riccetti et
al. (2013), Vitali et al. (2016), Gurgone et al. (2018) and Popoyan et al. (2020)),
and these models usually use a small number of artificial agents to analyze a
given mechanism in interest. Although there are also numerous papers using
empirical networks both about the financial systems and about supply chains,
the topic of interconnected empirical economic networks (although it was even
listed as an objectives of the FuturICT project (Farmer et al., 2012)) remained
so far largely unexplored. Results obtained in theoretical models suggest that
the interconnected nature of networks causes qualitatively different behavior and
alters the robustness of a complex system compared to the mere aggregation of
its subsystems (Buldyrev et al. (2010), Leicht and D’Souza (2009)). Similarly,
the feedback mechanisms between economic networks could amplify the losses
beyond the shortfalls expected when we consider the interacting systems in
isolation. Consequently, one can assume that to accurately assess financial
systemic risks we need to consider the feedback channels between the interacting
economic networks as well.

1.2.1 Shock propagation in the banking system with real economy
feedback

The fifth chapter of the thesis demonstrates some of the consequences of the
above mentioned intricacies on the financial stability of an economy by propos-
ing a microsimulation based framework which is suitable to capture contagious
mechanisms in an interconnected system of economic networks. More specifi-
cally, the model focuses on the interactions between the network of banks (ex-
hibiting contagious mechanisms among them) and the network of firms (trans-
mitting shocks to each other along the supply chain) which systems are linked
together primarily via loan-contracts. This high resolution representation of the
economy grants higher validity of the simulation results, which makes this tool
potentially suitable for versatile policy purposes. According to my knowledge,
this is the first model which integrates all the above mentioned mechanisms by
using microsimulation jointly on empirical firm network data and the banking
system.

This modeling framework consists of four blocks: (i) contagions in the bank-
ing sector, (ii) modeling credit supply shocks for firms, (iii) assessing the am-
plification of these shocks in the production network and (iv) estimating banks’
losses on their corporate loan portfolios. The first block is basically a banking

8There are other characteristics of the financial sector which can justify its unique reg-
ulation as it operates in a highly leveraged way compared to other sectors and information
asymmetries are present on multiple levels.

20

C
E

U
eT

D
C

ol
le

ct
io

n



system contagion model with channels for interbank losses, liquidity hoarding
and fire sales effects, however, it also incorporates several balance sheet ad-
justment mechanisms to take into account the realistic behavior of banks in
a stress scenario. This feature makes it possible to expand the propagation
of distress towards the real sectors by acknowledging the procyclicality of the
banking sector. Furthermore, additionally to the capital adequacy ratio (CAR)
default condition, the liquidity coverage ratio (LCR) is also included to account
for defaults due to liquidity insufficiency. The other three blocks of the model
are treated together in a spatial econometric model which gives estimates for
the probability of default on corporate loan contracts. To carry out this estima-
tion I borrowed tools from another stream of economic literature, which deals
with shock propagation along the supply chain in production networks. As this
research project does not aim to build a general economic model, only those
channels between the banking system and the real economy has been elabo-
rated, which seem to be the most influential from the point of view of financial
stability9.

1.2.2 Related literature on modeling interacting economic networks

The proposed model is most closely related to papers which connect the bank-
ing system and firms using loan contracts but do not consider the production
network. One of the first attempts at this was done by Lux (2016), which study
considered shock propagation via firms with multiple bank connections (sim-
ilarly to the concept of contagion through overlapping portfolios). If a bank
defaulted, the resulting credit crunch could force firms dependant on the banks’
loan into bankruptcy. These firms then caused losses to their other bank connec-
tions. In their simulations they found that the joint exposures to counterparty
risk in corporate lending is actually more important in the contagious spread
of defaults than the interbank lending channel. A model in similar spirit was
done by Silva et al. (2018), but in this case the simulations were run using
empirical data as well. This paper extended a variant of the DebtRank model
(Bardoscia et al., 2015) to incorporate lending connections between banks and
firms to create additional channels of shock propagation (but without including
links among in the firm network). They showed that without taking the links
between the financial and the real sectors into consideration one can severely
underestimate systemic risks. Recent developments in the European Central
Bank also include real economy feedbacks within their stress testing framework
(Budnik et al., 2019). In their work, they used a DSGE model to investigate
how deleveraging the banking system affects the real economy, which effect feeds
back into the aggregated macroeconomic variables. Additionally, they also con-
sider cross-sectoral spillovers due to losses on claims of distressed banks, and
then due to the equity holdings between sectors in the real economy (Dees &
Henry, 2017). However, the DSGE approach entails some disadvantages: it

9Broer et al. (2010) offers a comprehensive summary of several other potential interactions.

21

C
E

U
eT

D
C

ol
le

ct
io

n



produces only macro-level outcomes without revealing the heterogeneity of the
economic actors and the role of the distinct components in the contagion along
production chains. In a further related project Gross and Siklos (2020) con-
sider spillovers of financial shocks in the real economy without articulating a
feedback component. They are using network-based econometric tools to esti-
mate the transmission of bank and sovereign risks to the non-financial corporate
sector based on CDS spreads. Furthermore, some papers depict connections be-
tween the financial and the real sector in the form of indirect interconnectedness
among banks via exposures to common asset holdings (Caccioli et al. (2014),
Duarte and Eisenbach (2018), Cont and Schaanning (2019), Roncoroni et al.
(2019)).

Additionally, there are also theoretical models of interconnected networks,
which can give relevant insights into the behaviour of interacting economic sys-
tems. Buldyrev et al. (2010) found that a broader degree distribution can am-
plify the vulnerability of coupled systems to random failures, which is opposite to
how a single network behaves. Furthermore, Leicht and D’Souza (2009) showed
that the percolation threshold in an isolated subnetwork can be significantly
lower when edges to other networks are also present. Although these results
were obtained in theoretical models with a very high abstraction level, they
suggest that accounting for the interconnected nature of economic networks can
be crucial in systemic risk assessment.

Papers focusing solely on financial networks are also relevant to my work.
The banking system block of the proposed model is most similar in its spirit to
Georgescu (2015), Idier and Piquard (2017), Covi et al. (2019) and Coen et al.
(2019), however, there is a vast amount of related papers concerning interbank
contagions. E.g. Rogers and Veraart (2013) and Dietrich and Hauck (2020)
focused on shock propagation in interbank networks, Gai and Kapadia (2010)
and Gai et al. (2011) dealt with contagion through funding risk, and Bargigli
et al. (2015), Caccioli et al. (2015), Poledna et al. (2015) and Montagna and
Kok (2016) conducted research on contagion on multi-layer networks of banks.
Upper (2011) and Jackson and Pernoud (2020) offer exhaustive summaries about
further potential contagion channels. There are several other influential papers,
which served as a starting point for these research projects: Furfine (2003) of-
fered one of the first algorithmic solutions to the contagion mechanisms on a
bank network, Eisenberg and Noe (2001)10 managed to deal with the simul-
taneity problem of accounting for defaults and losses in a network, Battiston
et al. (2012) offered a widely-used centrality measure to identify systemically
important institutions and Barucca et al. (2016) improved on handling ex-ante
valuation of claims among constituents of financial networks.

In order to create the model’s microsimulation environment, several detailed
datasets at the National Bank of Hungary and at the National Tax and Customs

10Csóka and Herings (2018) shows a decentralized approach for the clearing in Eisenberg
and Noe (2001), generalized to the discrete setup, while Csóka and Herings (2020) offers an
axiomatization for the clearing process.
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Administration have been used. Most notably balance sheet data of the Hungar-
ian banks and firms, bilateral exposures at the interbank market, information
about the investment portfolios of banks, details of loan contracts between banks
and firms, and transaction level data about the supply chain connections among
firms11. This kind of data availability is not typical in the literature. Links be-
tween economic entities are very often confidential information and they are
rarely accessible for academic institutions. There are only very few countries
where fine-grained production network data is available, and the situation is not
much better in the case of financial networks. There is a vast literature deal-
ing with the reconstruction of the topological structure of financial institutions
using only aggregate observations. An often used procedure for reconstruction
is the Maximum Entropy (ME) approach (Upper and Worms (2004), Elsinger
et al. (2013)). Distributing each bank’s total interbank lending as evenly as
possible also means that ME results in an unrealistic, almost complete network.
Drehmann and Tarashev (2013) enhanced ME by adding random perturbations
to the maximum entropy output matrix to generate results with higher con-
centration mimicking more closely the sparse structure of empirical networks.
Another variant of ME is the Minimum Density (MD) approach developed by
Anand et al. (2015), which method creates an interbank lending network using
as few links as possible by imposing a cost on link formation. Mastrandrea et
al. (2014) take the degrees of the nodes into account as well during the ME
allocation. An alternative technique was applied by Baral and Fique (2012),
whose paper used copulas to construct the interbank lending network. ME was
also applied to recover input-output matrices by Golan et al. (1994), however,
reconstruction or more generally even the use of granular entity-level linkages
is much less prevalent in the case of firms than in the banking system. The
accessibility of all the above listed data sources makes it possible to avoid the
drawbacks of these methods and gain a more plausible picture of these networks.

1.2.3 Policy applications

As a first application, the model has been embedded into the Hungarian Central
Bank’s liquidity stress test (which is calibrated to the 2008 crisis). The results
of the simulation indicate that in the Hungarian banking system the magnitude
of feedback-based losses on the non-performing loan portfolio coming from the
firm network is similar or in some cases even more severe than the losses caused
by the usual firesales and interbank contagion channels. Additionally, the in-
troduction of real economy feedbacks changed fundamentally the distribution of
the losses among banks. The new contagion channels also made the interaction
between solvency and liquidity problems more emphasized: some banks became
unable to comply with the solvency criterion even in the case when only liquid-
ity shocks were present in the stress scenario. By using firm-level granularity, it
is also possible to assess some of the real economy consequences as well. In this

11Due to the sensitivity of these datasets, we could merge them together using anonymized
identifiers.

23

C
E

U
eT

D
C

ol
le

ct
io

n



particular application 0.5% of the firms in the model became non-performing
on their loans.

A further important application of the model is to use it as a tool for identi-
fying systemically important institutions (SIFIs). To construct a SIFI measure
I embedded the model into a modified version of the Shapley value concept.
This indicator can be decomposed into three elements: i) system-wide losses
caused by the default of a given bank, ii) losses suffered by the given bank due
to external shocks, and iii) the part of other banks’ losses which were caused
by the shock amplifier effect of the given bank. The importance of these three
factors can greatly vary among banks. In some cases the systemic importance is
rooted mainly in the vulnerability of a bank, while others can be resilient from
this perspective, but their default can represent more serious systemic risk. The
third factor is usually less pronounced, which indicates that the complexity of
the Hungarian banking system might not be as high as that of some larger
countries. However, in some cases the ability to amplify shocks can also have
significant influence on the systemic importance of Hungarian banks.

The modeling framework makes it also possible to simulate the effects of
shocks originated not necessarily in the banking system, but also those coming
from the real economy. By assuming that firms in a given industry become
non-performing on their loans, one could assess the significance of different
economic sectors for financial stability. Following this logic, the preliminary
assessment of the economic impacts of the COVID-19 pandemic was used to
illustrate how shocks originated in the real economy can be analysed using this
model. Although the necessary statistics are not yet available to make confident
assumptions about some crucial parameters, the current results can still indicate
a plausible range for the expected consequences.

1.3 Thesis outline

The remainder of the thesis is structured as follows.

• Chapter 2 starts with the topological analysis of the ownership network
of Hungarian firms. The next step after this is the description of three
corrections to the raw ownership information which are necessary to the
proper assessment of economic entities from the point of view of their
influence and control in the economy via ownership relations. The final
section of this chapter describes these influence and control measures at a
more aggregated level based on the different attributes of the owners.

• Chapter 3 is concerned with the supplier network layer of Hungarian firms.
After a detailed topological description, an analysis of the connection be-
tween the supplier links and firm characteristics is discussed. This is fol-
lowed by the explanation of the methodology and the results of the com-
munity structure analysis of the network. The last phase of the analysis
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describes the identification of the bridge firms which connect the otherwise
separated communities.

• Chapter 4 introduces a model of shock propagation based on the previ-
ously analyzed firm-level networks. The chapter gives detailed justification
for firm-level input-output analysis and then a formal description of the
proposed model. The last part of this chapter presents and discusses the
results of different simulations and policy applications.

• Chapter 5 describes a model of shock propagation in the banking system
with real economy feedback. Firstly, an intuitive description and justifica-
tion of the model is provided. This is followed by the detailed formulation
of the simulation steps. There will be special emphasis dedicated to the
calibration of the key parameters of the model. Lastly, the results of the
implemented applications are discussed.

• Chapter 6 summarizes and discusses the key results and contributions of
Chapter 2-5, proposes directions for future research, and concludes the
thesis.
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2 The ownership network of Hungarian firms

In order to be able to investigate firm networks, we obtained access to sensitive
datasets about the ownership links and the supplier connections of Hungarian
firms. Using these sources we built the multi-layer representation of the Hungar-
ian firm network which enabled us to gain insight into its previously unobserved
structure. In the case of the ownership layer we used the OPTEN ownership
database containing more than 400 000 Hungarian firms for the period between
2015-2019. We could also merge this data with other micro-level datasets in
order to use additional characteristics of the companies. (Further description of
the quality and the cleaning of the OPTEN data can be found in Appendix A.)

This chapter is based on the paper titled Unfolding the hidden structure of
the Hungarian multi-layer firm network (forthcoming) by Andras Borsos and
Martin Stancsics.

2.1 Network terminology and definitions

To accomplish a formal analysis of the ownership network we have to introduce
some basic concepts to represent a network in a mathematically interpretable
way:

• In graph theory, the number of links connected to a given node (i) is
called the degree (ki). If the links have directions, we distinguish between
the indegree (kini ) and the outdegree (kouti ), showing the number of links
coming in and going out in the case of a particular node.

• The links can also have weights which correspond to the ownership share
in our data. In the case of a weighted network, we can calculate the
strength (si) of a node instead of its degree by summing up the weights of
the links associated with the given node.

• If we want to refer to the whole network, the simplest – although com-
putationally often very inefficient – way is to represent it as an adjacency
matrix (A or in the case of weighted networks W ), where Ai,j (or Wi,j)
corresponds to the ownership share of actor i in actor j. The size of this
matrix is (m+ n)× (m+ n) where m and n are the number of firms and
the number of individuals in the network respectively.

• The density of a (sub)graph is defined as the ratio of the number of edges
to the number of possible edges in the network12.

• A (connected) component is a subgraph of the network where at least
one path exists between every pair of nodes. We can distinguish between

12This definition is valid in the case of simple graphs, where there are no self-links or
multi-edges between the nodes.
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strong and weak forms of connectedness. The former requires that only
directed paths can be considered, while the latter ignores the direction of
the links.

• The local clustering coefficient shows the probability that two neighbors
of a node are connected to each other forming closed triads.

• The average shortest path length shows the average number of steps it
takes to get from one member of the network to another. It is calculated
by finding the shortest path between all pairs of nodes, and taking the
average over them.

2.2 Topological analysis of the ownership network

Although we analyzed the data for every year which we could observe, the
topological structure showed very similar results for all the observed periods;
therefore, we present here only the description of the year 2017, which is the
last year for which we have access to every datasets we are using during the
analysis. (The basic description of the network in other years can be found in
Appendix A.)

The network consists of more than 1 million nodes (firms and individuals as
well) and almost the same number of edges (ownership relation between nodes),
which implies that the average indegree (or outdegree) is somewhat less than
one (Table 1). The first important observation is that the network is not con-
nected, i.e. it consists of many (259 138) components (using the weak form of
connectedness), among which even the largest one contains only around 11% of
the nodes, while all the others have maximum a few 100 members (Figure 1).
One can also consider strongly connected components, but they would capture
only partial information about ownership structures. For instance, if two in-
dividuals are owners of a firm, we would observe only one of them within one
component (as there is no directed path between the two owners). This way,
the largest strongly connected component contains only 19 nodes.

Table 1: Basic description of the ownership network

Total network Largest component

Number of nodes 1 029 487 115 218

Number of edges 963 744 253 840

Density 9e-7 1.9e-5

Average degree 1.86 4.4

Shortest path lengths (avg.) - 13.78

Shortest path lengths (st.dev.) - 5.91

Local clustering (avg.) - 0.18

Local clustering (st.dev.) - 0.2
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Figure 1: Size distribution of the 10 largest components (based on 2017 data)

Figure 2: Degree distribution of the 2017 ownership network’s giant component

Due to the low edge density of the network the size of the giant component

28

C
E

U
eT

D
C

ol
le

ct
io

n



remains rather limited as it encompasses only 11% of the nodes.13 This largest
component with an average degree of 4.4 is not as sparse as the network in
general, and it also features some interesting characteristics:

• Its degree distribution is fat-tailed indicating the presence of actors with
outstanding influence (Figure 2).

• The average shortest path length is 13.78. This value might seem low,
however, it is not as low as it is typical in the case of many observed
small-world networks. One additional reason for this high number can
be the fact that a large portion of nodes represent individuals, which are
restricted to have outgoing links only.

• We also calculated the local clustering coefficient, which is more than 0.18.
It is a way higher probability than having a link between two randomly
chosen nodes. This result reveals an important structural pattern in the
network which is worth examining in more details by calculating motif
statistics.

As it can be seen on Figure 3, there are 16 types of motifs consisting of
three nodes (J. A. Davis & Leinhardt, 1967). In the case of a sparse network,
the vast majority of the cases fall into the first, disconnected category, however,
the distribution of the remaining motifs is very uneven. Although motif c)
depicts only dyadic connections, it is interesting to observe that there are many
reciprocal ownership relationships in the network. However, this number is
actually less than the corresponding statistics of a directed configuration model
which was generated using the empirical in- and outdegree sequences of this
network. (The statistics for this null model are shown in parenthesis.) A possible
explanation for this might be that in the ownership network these dyads can be
formed only between firms (as individuals cannot be owned). Based on motifs
d) and e) it occurs more often that a firm has more than one owner than having
more than one firm in an actor’s ownership, which implies difference in the
indegree and outdegree distributions. While there are only 2896 observations of
the simplest chain structure shown by motif f), we could find many ownership
connections intertwined in more convoluted ways, e.g. following the patterns of
motifs i), l) and m). Furthermore, it is surprising to notice the high number of
instances in the case of motif p) which illustrates a fully connected triad with
all the possible links among the nodes.

13In network theory the term giant component can sometimes be defined in a rigorous
way, however, very often it is a rather loosely used concept. Here we simply mean the largest
component which includes a significant portion of the nodes.
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Figure 3: Motif statistics of the 2017 ownership network’s giant component. (The numbers
in parenthesis show the corresponding statistics for a directed configuration model generated
using the empirical degree sequences.)

2.3 Measuring influence and control of owners

Our data makes it possible to assess the significance of economic entities from
the point of view of the extent to which they can influence and control the
economy via their ownership relations. In order to able to properly analyze this
aspect of the ownership structure, we had to define measures for the manifes-
tation of the economic actors’ power. Although our methods sometimes differ
from the analysis made by Glattfelder (2013), we often follow the approach and
terminology of that paper in this section.

In order to carry out this analysis we have to apply a few corrections to the
raw ownership information. Firstly, it is not obvious at all, how much actual
power is entailed to a given ownership share. Secondly, we want to consider not
only direct, but also indirect ownership links to gain accurate assessment about
the influence of a given actor in the economy. Thirdly, we also need to take into
account some measure of the sizes of owned firms. In the following subsections
we describe our approach to deal with these points.
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2.3.1 Distribution of ownership shares

To assess the influencing ability entailed to the observed ownership in our data
we have to consider at least two potential distortions. The first one considers
the assumption that ownership shares correspond to voting share. Although
there are several common practices in corporate governance to deviate from the
one-share-one-vote principle, it is credible to assume (for instance based on de
Silanes et al. (1999)) that in the vast majority of cases we can use ownership as
a proxy for influence manifested in the voting rights. The second bias, however,
may require more effort to correct for. Owners or shareholders of a company can
be considering not necessarily just as individuals but rather as rivaling voting
blocks. In this mindset it is obviously incorrect to assume perfect proportion-
ality between ownership and effective influence. The most common example to
illustrate the difference between the two is the following distribution of owner-
ship shares: 49% – 49% and 2%. In this case all three owners have practically
the same influence as any two of them can form a block to gain majority.

One can find numerous similar examples, but it is far from being obvious how
to create a correction which covers as many of these situations as possible, but it
is still tractable computationally. Several so called power indices were proposed
regarding this problem (see e.g.Leech (2002)), but there is no consensus in the
literature on best practices. Because of its simplicity and efficacy we decided to
apply the method proposed in Glattfelder (2013). The underlying idea of this
measure is that the actual influence of an owner depends not only on its own
ownership share, but also on the distribution of ownership shares of the other
owners. The more dispersed the ownership structure is, the higher the influence
of the given owner is. To calculate this concentration-corrected measure of
influence, Glattfelder (2013) is using a version of the Herfindahl-index in the
following way:

Hi,j :=
W 2
i,j∑

l∈P in
j

W 2
l,j

(1)

where Hi,j is the corrected ownership share of owner i in firm j, Wi,j is the
original ownership share and P inj is the set of indices of neighbors (owners)
connected to j by incoming links. This measure can take values in the interval
(0, 1]. If Hi,j is close to one, it means that firm i has almost exclusive influence
on firm j. Based on this measure we can calculate the direct influence of any
owner by summing up all of its influence scores:

hi :=
∑

j∈P out
i

Hi,j (2)

where P outi is the set of indices of neighbors connected to i by outgoing links.
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2.3.2 Direct and indirect ownership

An obvious shortcoming of Equation 2 is that it only considers direct ownership
links. To account for indirect connections Brioschi et al. (1989) proposed a
method called the integrated model. The main component of their approach can
be written in the form of a recursive computation:

H̃i,j := Hi,j +
∑

n∈P out
i

Hi,nH̃n,j (3)

where H̃ denotes integrated influence. The interpretation of this formula is that
the actual influence of owner A on a firm B consists of two elements: the direct
influence of owner A on firm B and the integrated influence on firm B by other
firms owned by owner A. This expression can be written in matrix form as well:

H̃ = H +HH̃ (4)

which gives the following solution:

H̃ = (I −H)
−1
H. (5)

Although Brioschi et al. (1989) showed that the mathematical requirements
to conduct this calculation are always satisfied in an ownership network, there
still can be computational constraints if the matrix representing the ownership
network is large. In our case the inversion of the (I−H) matrix was prohibitive,
therefore, we calculated its Neumann-series approximation:

(I −H)
−1

= I +H +H2 +H3 + . . . (6)

This method is intuitively interpretable since the kth power of an adjacency
matrix gives us the number of walks with length k between two nodes. If we
add up all the powers, we will cover all the indirect links in the network in the
end. Due to the large memory requirement of storing large matrices, we could
compute the approximation only up to the 6th power. This happened because
although the original matrix is very sparse, it is not necessarily true for its
inverse, or even for the higher powers of it. However, as the average length of
the shortest paths is relatively short in any component of the network, six steps
can cover the vast majority of the relevant ownership links. Consequently, the
elements of the resulting matrix (H̃) can be interpreted as the total influence
of owner A on firm B.
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Figure 4: Additional indirect influence by the number of steps in the ownership network.
(H# refers to a given power of the original influence matrix. The ”# of influenced firms” is
equal to the sum of the elements of a given matrix.)

Another limitation of this calculation is that we cannot observe global ul-
timate beneficiary owners (UBOs) as we only see such ownership relations, for
which at least one of the endpoints of the links is a Hungarian firm. As own-
ership ties between foreign entities would be necessary to trace the exact paths
of more convoluted offshore activities, we cannot take these into account in the
investigation of the owners’ indirect influence over the Hungarian economy.

Despite the relatively small role of higher order indirect influence indicated
by Figure 4, Figure 5 shows that the total degree and the total influence are
only loosely associated. There are several observations where the total influence
can be high even with small degree values, while high degree is not a guarantee
for high influence.

33

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 5: Total influence and total degree of firms and individuals in the ownership network.

2.3.3 Weighting of influence

Our measures so far did not consider any information regarding the significance
of the owned firms. By adding a non-topological node attribute to correct for
this could enhance the precision of the assessment of owners’ influence consid-
erably. We decided to use the simple approach to multiply the matrix of total
influences (H̃) by the vector of some approximation of firms’ economic signifi-
cance. While recognizing the depth of the methodologies in corporate valuation,
the amount of firms in this exercise grants justification for opting for the simplest
possible option to evaluate firms. Some of the obvious candidates as proxies for
firms’ weight could be e.g. capitalization (for listed companies), or total asset
value (for smaller firms). The resulting total controlled value measure could be
formulated like this:

c̃i :=
∑

j∈P out
i

H̃i,jvj (7)

where vi denotes the i’s firm value.

However, the OPTEN data does not contain any variable which we could
use as a proxy of firms’ significance, therefore we had to join another firm-level
dataset coming from the Hungarian Tax Authority containing the balance sheets
and profit and loss statements of firms. Unfortunately, the overlap between these
datasets is not perfect, i.e. we cannot match the required firm characteristics
to almost 22% of the firms in the ownership network.

A more serious caveat of this approach is the multiplication of firms’ weight
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when one conducts the aforementioned computation. The problem arises due
to the fact that the weight of a given firm contains the proportional part of the
weight of the companies owned by this firm as well. (A more detailed illustration
of this problem can be found in Appendix B.)

To solve this issue, we wanted to find a node attribute, which is indepen-
dent from the ownership structure, but conveys some information about firms’
importance in the economy. A suitable candidate to meet these requirements
can be the value added of firms (denoted by rvaj for firm j.), which can be di-
rectly applied as a replacement for the previously mentioned proxies. With this
solution we only have to make a slight modification on Equation 7 by replacing
total assets with the real value added of firms:

c̃i :=
∑

j∈P out
i

H̃i,jrvaj (8)

Although this measure is clearly not an ideal proxy for firms’ value, it gives
more accurate results if one wants to compare the control of different economic
actors than the naive approach of using traditional firm size variables.

Based on this measure, we could calculate the empirical cumulative distribu-
tion of the total control of owners, which can be seen in Figure 6. It is important
to note, that neither the total influence nor the total control of a given firm in-
clude itself. The interpretation of this plot is then the following: the top right
corner of the diagram represents 100% of the owners controlling 100% of the
economy’s value added, and the first data point in the lower left-hand corner
denotes the most important owner. The red lines indicate that the top 10 own-
ers control more than 17%, and the top 100 owners control more than 40% of
the economy (measured by the real value added of firms).14

14In this calculation we did not assume any strategic cooperation between owners to control
firms, and we did not take into account the fact, that having 50% + ε ownership share can
often be sufficient to fully control a company.
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Figure 6: Cumulative distribution of owners’ total control in 2017

2.4 Influence and control based on the owners’ attributes

Besides the ownership links, the OPTEN data contains some attributes of the
owners as well. Most importantly, we can see whether the owner is a firm or
an individual as well as the country level location of its headquarter. We calcu-
lated the direct and total influence and control measures aggregated along the
dimensions of Hungarian/foreign and firm/individual owners. As it is shown in
Figure 7, there is only a small gap between the direct and total versions, how-
ever, the difference is way more pronounced between the influence and control
results. As the average value added of companies owned by foreign owners and
by firms is much higher, their significance is heavily underestimated in the case
of the unweighted influence measures. Moreover, Table 2 reveals that foreign
firms have the biggest role among these categories by controlling around 37%
of the value added in the Hungarian economy. Hungarian firms and individuals
have almost the same amount of total control (31%), while foreign individuals
have much smaller significance by exercising less then 1% control.
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Figure 7: Total/direct control/influence of owners

Table 2: Total control (in 1000 billion HUF) based on the owners’ attributes

Hungarian owners Foreign owners Sum

Firms 8.88 (31%) 10.58 (37%) 19.47 (68%)

Individuals 8.91 (31%) 0.26 (1%) 9.17 (32%)

Sum 17.79 (62%) 10.85 (38%) 28.65 (100%)

We can make similar analysis on a more disaggregated level concerning the
significance of foreign countries in the Hungarian economy (Figure 8)15. As
holdings and special purpose firms designed for tax optimization might dis-
tort the results especially in the case of the control measures, direct and total
influence might be a better indicator for foreign countries’ importance in the
Hungarian economy. For example The Netherlands is generally not as impor-
tant economic partner for Hungary as Germany or Austria, but there are several
large companies which control their Hungarian subsidiaries through holding en-
tities with headquarters in The Netherlands. As the organizational structure
of these transnational companies can change frequently based on their strategic
decisions, we can observe significant changes in the control measures of coun-
tries, while their influence remains relatively stable over the examined years (as
it can be seen if one compares Figure 8 and Figure 9).

15If a firm operating in Hungary is a foreign-owned firm and it owns other firms, then
foreign influence/control includes not only these owned firms but also the foreign-owned firm
itself.
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Figure 8: Total/direct control/influence of countries in 2017. (The ”# of influenced firms”
is equal to the sum of the total influence of owners belonging to a given country.)

Figure 9: Total/direct control/influence of countries in 2016. (The ”# of influenced firms”
is equal to the sum of the total influence of owners belonging to a given country.)

If we focus only on the owners belonging to the Hungarian firm category,
we can examine more disaggregated levels by adding further attributes from our
additional firm dataset. Figure 10 and 11 shows our measures of significance
of owner firms aggregated based on their head quarters’ location at the level of
counties (NUTS 3) and regions (NUTS 2) of Hungary. Although these diagrams
are calculated based on partial data without considering the role of individuals
and foreign entities, the results are in line with intuition that the more devel-
oped areas such as the capital and the counties with major towns play a more
important role in the ownership network. (E.g. Fejer county is a traditional hub
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for large Hungarian industrial companies, such as Videoton, Dunaferr, Kofem.)

Figure 10: Total/direct control/influence of regions in 2017. (The ”# of influenced firms”
is equal to the sum of the total influence of owners belonging to a given region.)

Figure 11: Total/direct control/influence of counties in 2017. (The ”# of influenced firms”
is equal to the sum of the total influence of owners belonging to a given county.)

We can also use firm size categories as an alternative aggregation dimension
(Table 3). Although micro-enterprises have the largest role based on every
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measure, it can be misleading to rely on only one type of metrics as influence
greatly underestimates the significance of large companies.

Table 3: Total/direct control/influence based on size of the owner firm

Firm size
category

Total control
(billion HUF)

Direct control
(billion HUF)

Total
influence

Direct
influence

Micro 2 090 1 418 16 690 12 279

Small 398 325 3 214 2 691

Medium 286 226 1 448 1 236

Large 1 052 956 719 545

We carried out this analysis also based on the NACE industry categories of
the Hungarian owner firms (Figure 12). We can see the dominance of the finance
and insurance industries in the control measures, however, the construction and
the professional, scientific and technical activities16 industries are even more
influential based on their influence.

Figure 12: Total/direct control/influence of the top 15 industries in 2017. (The ”# of
influenced firms” is equal to the sum of the total influence of owners belonging to a given
industry.)

16The ”Prof., sci., tech. activities” category refers to professional, scientific and technical
activities, which contains legal, auditing, consulting services as well as scientific and technical
(e.g. architectural) services.
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3 The supplier network of Hungarian firms

We obtained access to firm-level supplier connection data containing trade links
among Hungarian firms where the tax content of the transactions between two
firms exceeds EUR 3000 in the given year (Figure 13). This data is available be-
tween 2014-2017, and it is coming from Hungarian firms’ VAT reports collected
by the National Tax and Customs Administration of Hungary.

Figure 13: Supplier connections among Hungarian firms in 2017

This chapter is based on the paper titled Unfolding the hidden structure of
the Hungarian multi-layer firm network (forthcoming) by Andras Borsos and
Martin Stancsics.

3.1 Preparation of the supplier network data

Similarly to the ownership data, the most intuitive way to handle this network is
to think about it as an adjacency matrix (A or in the case of weighted networks
W ), where each cell corresponds to the purchased value of the firm in the row
dimension from the firm in the column dimension (Ai,j or Wi,j). That is, an
outward link starting from a given node denotes that it buys from the firm
toward which the arrow points.

It is important to emphasize that this data is directly not comparable to the
typical industry-level, symmetric input-output tables due to some fundamen-
tal conceptual differences. The firm level data contains information only about
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trade relationships above the regulatory threshold, and only for those products
and services which are subject to the VAT. (Albeit it also ignores the reverse
VAT situations.) However, the data includes transactions between firms which
are not necessarily residents in Hungary if the fulfillment of the transaction hap-
pened in Hungary. In the I/O table of the Hungarian Central Statistical Office
(HCSO) these trades often belong to the foreign trade category (although in
some cases they would not be part of the I/O table statistics at all). Moreover,
we cannot see in the granular data any further information about the prod-
ucts and services, thus, it is impossible to know if a purchase happened for
investment reasons, which would be handled differently in the I/O table than
a purchase due trade purposes. A further problem can arise when the invoice
comes from a trader firm, in which cases the source of the product is unknown.
If it was imported, then it will be categorized as foreign trade in the HCSO
I/O tables. There are some differences between the industry classifications as
well, and also in the calculation of the prices. The HCSO I/O table uses basic
prices, which are different from the market price as they do not include margins,
transportation costs and the net position of the taxes and allowances. Due to
all these factors, the industry-level aggregation of our granular data results in
a completely different table than the I/O matrix produced by the HCSO.

The links of the network change significantly from one year to another be-
cause there are a lot of one-off, incidental transactions. More than 50% of the
links disappear between the observed periods, and new links emerge in a similar
extent. As these relationships are not particularly relevant from the point of
view of spreading processes and they increase the noise in our measurements, we
filtered the network to contain only long-term supplier connections. We consider
a link long-term connection (i) if there were at least two transactions between
the parties, and (ii) if there is at least one quarter time difference between the
first and the last transaction between the two firms (Figure 14). Even with
these mild requirements, only 54% of the links are long-term, however, these
cover 93% of the aggregate trade volume in the network.
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Figure 14: Temporal stability of the supplier connections

Another source of distortion we have to deal with is that there is no general
rule for VAT reporting in the case of firms belonging to the same ownership-
based group. Sometimes they file their VAT reports collectively, but as it is
only optional, there are many firms belonging to a group which report individ-
ually. To handle this difficulty we can utilize the ownership layer of the firm
connections by applying the following procedure17:

1. In the case of every ownership link when the total influence exceeds 50%,
we combined the link’s endpoints into a group.

2. If some firms in the supplier network belonged to the same group, we
replaced them by a new node representing the group.

3. We added the links of the original firms to the new ”group” node.

4. We eliminated the resulting self-loops (within-group links) (Figure 15 ).

17Although we did not consider ownership links with influence weights under the 50%
threshold, and we cannot see global ultimate beneficiary owners, we could still cover probably
the vast majority of the ordinary intertwinings among firms.
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Figure 15: During the correction of the supplier network we combined together firms be-
longing to the same ownership group, and we eliminated the links within the groups.

Further details about the features, quality and cleaning of the data can be
found in Appendix C.

3.2 Topological analysis of the supplier network

Similarly to the section about the ownership network, we present only the results
of one year (2017) as it is sufficiently representative for the whole examined
period. (The basic description of the network in other years can be found in
Appendix C.)

As this network consists of Hungarian firms only, the number of nodes is
much lower than in the case of the ownership network which contained individ-
uals and foreign actors as well. However, the density of this network layer is
higher (even after filtering for long-term connections and correcting for owner-
ship groups), which contributes to the emergence of a giant component covering
around 94% of the nodes. In this case we decided to focus only on this com-
ponent as it represents credibly the whole network while all the other isolated
parts are negligible in size.

The resulting network consists of 89 778 nodes and 235 913 links. The aver-
age total degree in this giant component is around 5.2 (which implies that the
average in/out-degree is the half of this value, 2.6), which can be interpreted as
the average number of long-term supplier and buyer relationships for firms (Ta-
ble 4). This result is difficult to compare to any other datasets in the literature,
as other papers usually consider all the transactions (with different thresholds
and without filtering for long-term links) among (often only a sample of larger)
firms.
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Table 4: Basic description of the 2017 supplier network’s giant component

Number of nodes 89 778

Number of edges 235 913

Density 2.93e-5

Average in-/outdegree 2.63

Shortest path lengths (avg.) 4.92

Shortest path lengths (st.dev.) 1.1

Local clustering (avg.) 0.078

Reciprocity 0.11

Regarding the degree distribution of the graph we can see slightly different
figures depending on whether we consider the total, in-, or outdegree of the
nodes. For all the three measures the distributions have fat tails, however, we
do not encounter as many extreme values in the case of the number of suppliers
of firms (outdegree) as in the case of the number of buyers (indegree) (Figure
16). Despite of this disparity, we could ascertain that there are firms in the
network which can be considered hubs. These agents can play a special role in
any spreading process for which the production network is a relevant medium,
thus, the identification of these firms and the assessment of their importance
can be vastly important.

Figure 16: Degree distribution of the supplier network in 2017

We can also see that the average shortest path length is below 5 with a
standard error as low as 1.1, which implies that shocks can be transmitted
easily between firms via hubs in the network. Furthermore, Table 4 also shows
measures of local feedback loops: there is an unexpectedly high probability of
reciprocal dyads (11%) 18 and closed triplets (7.8%), which can further amplify
shocks and promote contagions.

18In the case os reciprocity we cannot filter for repurchases, which can somewhat inflate
this measure.
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Figure 17: Motif statistics of the 2017 supplier network’s giant component. (The numbers
in parenthesis show the corresponding statistics for a directed configuration model generated
using the empirical degree sequences.)

As it can be seen on Figure 17, we assessed the frequency of the different
triadic motifs also in the supplier network. In line with the observed difference
in the distribution of in- and outdegrees, we can see based on motifs d) and
e) that there are much more instances of firms having multiple buyers than
having multiple suppliers. (Although the numbers are close in both cases to
the null model’s.) While in the sample there are only a few observations of the
simplest triadic loop formation shown by motif j), there are several appearances
of loops hidden in the more convoluted motifs, such as n), o) and p). These
more complicated motifs are often observed e.g. among wholesale trader firms
and manufacturers operating on the upstream part of supply chains. (E.g.
two wholesale trader of chemical materials are trading with each other to both
directions, and both of them are connected to a chemical material producer.)
Based on this, the network is far from being acyclic which observation can be in
juxtaposition with the results of McNerney (2009), in which paper the authors
examined input-output economic systems, and found that economies tend to be
acyclic at the scale of triadic patterns on industry level.

3.3 Supplier connections based on firm characteristics

By connecting this data to the locations, balance sheets and profit and loss
statements of firms we could carry out analysis not only based on topological
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information but also using several node and link attributes.19 We examined
several firm characteristics, but we present here only those cases where we found
meaningful patterns.

We examined the supplier relationship between firms based on their (labor)
productivity. We assigned each firm into groups formed based on productivity
deciles, and then we collapsed the network to this aggregation level. This way,
the resulting 10 by 10 matrix shows the flows in the supplier network among
firms grouped based on they labor productivity. However, although the number
of firms will be the same in every group, the size of the firms, and consequently
the number (and weight) of their supplier connections can be different. To
control for this effect, we could compare the observed flows to a null model
which gives us the expected flow between any two groups if the links were formed
randomly in the network. To perform this calculation we divided the observed
flows by the product of the outdegree of the group in the row dimension and
the indegree of the group in the column dimension (or in the case of weighted
networks we can use the strengths)20:

W̃p,q =
Wp,q

Soutp Sinq
(9)

where Wp,q denotes the original and W̃p,q denotes the normalized flow between
productivity groups p and q. Soutp is the sum of the strengths of outgoing links

for group p and Sinq is the sum of the strengths of incoming links for group q.

Figure 18 shows some homophily based on productivity. The cells near
the lower-left corner, but at some level also near the upper-right corner are
darker, indicating stronger linkages between firms with similar productivity lev-
els. These observations can have several connections to the existing literature,
however, in this paper we do not try to identify the factors leading to this
pattern or assess the potential consequences of this network structure.

19As some of these characteristics of the firms are not trivial to consolidate based on their
ownership background, in this section we considered the firms as they were present in the data
originally.

20This normalization is in the spirit of the configuration model which generates uncorrelated
random networks with a given degree sequence.
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Figure 18: Flows in the supplier network between firms belonging to different productivity-
based deciles in 2017. Labor productivity increases from group 1 to 10. Darker coloring
indicates stronger trade connection.

Trade connections between groups with very different productivity are also
very polarized: Productive firms sell much more to the less productive firms
than the other way around. We quantified this polarization between the groups
using the following formula which is based on Iino and Iyetomi (2012):

Pp,q =
Wp,q −Wq,p

Wp,q +Wq,p
(10)

where Pp,q denotes the polarization ratio.

This formulation of the polarization shows the typical direction of trade
between groups in the row and in the column dimensions. The polarization
matrix is antisymmetric, i.e. Pp,q = −Pq,p. If the relationship between groups p
and q is only one-directional, Pp,q will be ±1 (the sign depends on the direction),
while if the flow is the same to both directions, Pp,q = 0. On Figure 19 we can
see that the more productive a group is the larger its dominance is in the trade
relationships with less productive groups.
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Figure 19: Polarization among firms in different labor productivity deciles in 2017. Labor
productivity increases from group 1 to 10. Red color means that typically the group in the
row dimension supplied to the group in the column dimension, while blue indicates the inverse
situation. Darker coloring indicates stronger polarization.

On Figure 20, we can see a weaker but similar pattern if we use return of
assets (ROA) instead of labor productivity (as it can be expected due to the
high correlation between productivity and profitability measures).
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Figure 20: Flows and polarization in the supplier network between firms belonging to dif-
ferent ROA-based deciles in 2017

We can calculate similar measures to assess geographical clustering as well
(Figure 21). The diagonal elements of the matrix are clearly darker than the
off-diagonals, which shows that trade connection within regions are stronger
than between regions, indicating the presence of location-based preferences in
link formation.

Figure 21: Flows and polarization in the supplier network between firms in different regions
in 2017

As in this case it would be also informative to see the absolute magnitude of
the trade connections (i.e. without comparing them to a null model) to assess
the dominance of different regions, we can simply consider the number of links
between the different regions as well. According to Figure 22 the dominance of
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Budapest is apparent: Firms in the capital have way more connection than in
any other region, and they have a lot of trade links to all the other regions as
well. Furthermore, firms in Budapest typically supplied more to firms in other
regions than the other way around.

Figure 22: Trade connections in the supplier network between firms in different regions in
2017. Darker coloring indicates stronger trade connection.

3.4 Exploring the modular structure of the supplier net-
work

An often observed characteristics of real-world social and economic networks
is that they have a mesoscopic structure which can be best described by the
concept of communities. A network is regarded to have a community structure
if its nodes can be grouped into internally densely connected sets (which poten-
tially overlap), i.e. members of a community are relatively densely connected
within their group, but there are only sparser connections between the groups
(Yang et al., 2010) (Figure 23). Identifying community structures can be very
revealing about a complex system, as the observation of the grouping of the
actors based on this dimension is only possible through the examination of the
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whole network on granular level.

Figure 23: Schematic picture of the community structure of a small network

In the case of our production network, community detection can result in the
identification of blocks within the economy, in which the coherence is provided
by the intricate supplier relations among the constituent firms. As local shocks
usually propagate more unimpededly within the surrounding community than
between the separated communities, this segmentation of the network can help
us tremendously in the more detailed understanding of spreading processes on
the supplier network.

There are many algorithms (coming from different disciplines e.g. computer
science, biology, mathematics, physics and sociology) which have been devel-
oped for identifying communities. (An excellent review of community detection
algorithms can be found in Javed et al. (2018).) In our analysis we opted to
use a widely-used technique called the ”Louvain-method” which is based on the
modularity of the network (M. E. Newman, 2006). As these methodologies are
not common in economics, we describe the applied algorithms in more details
in Appendix D.

3.4.1 Describing the modular structure of the Hungarian supplier
network

Our procedure detected 249 communities, however, the ten largest already con-
tain almost 80% of the firms, so we concentrate only on these in the more
detailed analysis. The groups formed based on the community detection results
are much more separated than in the case of any of the former grouping vari-
ables. Figure 24 shows that the diagonal of the matrix is clearly outstanding
compared to the other cells indicating that connections within communities are
much stronger than connections between communities.
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Figure 24: Strength of connection between communities in the supplier network in 2017 (The
figure on the left is based on the number of links between communities, while the figure on
the right shows the connections compared to the randomly expected number of links between
the groups.)

Similarly to the results of Fujiwara and Aoyama (2010), the most intuitive
variable we can use to interpret the communities is their sectoral composition.
The largest communities all can be interpreted as a production chain of certain
product categories within the economy. E.g. the first group on Figure 25 consists
of firms belonging mainly to the food industry, food wholesale and food retail
sectors. The second group contains firms from the machine and electronics
industry; metal and plastic manufacturers; electricity, gas and steam suppliers.
All the other groups can be similarly well interpreted as blocks containing chains
of production of a well defined product category.
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Figure 25: Industrial composition based on the size (total assets) of the firms belonging to the
top 5 communities in 2017 (The pictograms indicate the main profile of a given community.
E.g. the first group on Figure 25 consists of firms belonging mainly to the food industry,
food wholesale and food retail sectors. The second group contains firms from the machine
and electronics industry; metal and plastic manufacturers; electricity, gas and steam suppliers.
All the other groups can be similarly well interpreted as blocks containing chains of production
of a well defined product category.)

If we examine the polarization on Figure 26, we can see clear patterns only
for two out of the ten largest groups. In the case of Group B (which corresponds
to the machine and electronics production chain) we can see that they buy a
lot of intermediate inputs from other blocks, but they do not supply to them in
similar extent. In the case of Group J (which corresponds mainly to logistics,
insurance and motor vehicle retail) the polarization is exactly the opposite: this
block supplies to all the other segments of the economy way more than it buys
from them as inputs. A natural explanation contributing to these result can be
the unobserved export and import activities of firms in these segments of the
economy.
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Figure 26: Polarization among firms in different communities in 2017. Red color means
that typically the group in the row dimension supplied to the group in the column dimension,
while blue indicates the inverse situation. Darker coloring indicates stronger polarization.

3.4.2 Bridges between communities of the Hungarian supplier net-
work

Although we saw that the communities are highly separated, from the point of
view of shock propagation it is still crucial to examine how these large blocks
of the economy are connected to each other. Firms having supplier partners
belonging to other communities create bridges between distant parts of the
network, and therefore, propagate the spreading of contagious processes in the
whole system.

The simplest measure to capture firms’ shock transmitting ability is to con-
sider the number of links of a node which are pointing to other communities. As
it is shown on Figure 27, although the degree of a node is correlated with the
number of links pointing to other communities, there is still a large variation
which is not explained just by the degree. To further investigate the firm char-
acteristics associated with our dependant variable, we used a simple regression
analysis. We found that firms in the chemicals and drug industry, furthermore in
the transportation and infrastructure sectors, and firms with high value added
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and high export sales rate have particularly many outside connections (Table
5).

Figure 27: The number of links within the firms’ communities and the number of connections
pointing to other communities (The visualization shows only 10% of the nodes.)

We considered another approach as well to assess firms’ intercommunity
shock spreading ability. Firms having many connection with only a few com-
munities can be less important from the point of view of connecting the different
blocks of the economy than those firms which have connections to many commu-
nities. Our community detection methodology was so far incapable to identify
overlaps between the communities. However, using a different representation of
our network based on Evans and Lambiotte (2010) and Ahn et al. (2010) we are
able to take into account this feature as well. This would make it possible to
see if a firm is part of multiple communities which would be an indication for
its increased ability to transmit shocks.

As a first step to obtain this measure, we have to transform our graph into
a so called line graph. Nodes of the line graph are the links of the original
graph, and two nodes (links) are connected if they had a shared endpoint(in the
original graph where they were links) (Figure 28).
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Figure 28: Creating Line graph from a traditional graph. Nodes of the line graph are the
links of the original graph, and two nodes (links) are connected if they had a shared endpoint
(in the original graph where they were links).

Using our standard community detection method on the line graph we can
assign the links of the original graph into communities. As links of a node in the
original graph can belong to more than one communities now, we can count for
every node how many communities its links belong to. We can use this number
of group memberships of a firm to measure its potential to transmit shocks.

By putting this measure into the same specification as before, we got some-
what different results compared to the first regression (Table 5). Based on the
overlapping community approach, the firms which are typically associated with
multiple groups often belong to sectors which provide non-essential products
and services which are not directly related to the production activity of their
buyers (e.g. insurance, catering, administration, etc.). This way, they pose
only limited threat to the proper functioning of the production processes (at
least in the short run). This result suggests that these firms are not necessarily
very influential in spreading shocks, which finding might suggest a more opti-
mistic interpretation about the resilience of the economy: Although the different
blocks of the firm network are accessible to each other, but the firms which are
truly influential from the point of view of shock propagation are usually only
connected to a few communities.
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Table 5: Regression results (Among the NACE categories only industries with positive,
significant coefficients are listed.)

Dependent variable:

# of outside links # of memberships

(1) (2)

degree 0.028∗∗∗ 0.032∗∗∗

(0.0005) (0.001)
log(balance sheet total) 0.225∗∗∗ 0.229∗∗∗

(0.008) (0.017)
log(value added) 0.091∗∗∗ 0.049∗∗∗

(0.008) (0.017)
exporter 0.046∗∗∗ 0.026

(0.013) (0.027)
government owned 0.099 −0.381

(0.166) (0.276)
foreign owned −0.161∗∗∗ 0.006

(0.019) (0.033)
Wood, paper, printing industry 0.353∗∗∗ 0.111

(0.080) (0.089)
Finance, Insurance −0.036 0.747∗∗∗

(0.152) (0.168)
Manufacture of wearing apparel −0.049∗∗∗ 0.598∗∗∗

(0.142) (0.157)
Accommodation −0.054 0.409∗∗∗

(0.090) (0.100)
Transporting and storage 0.179∗∗∗ −0.110

(0.061) (0.068)
Chemicals and drug industry 0.992∗∗∗ −0.813∗∗∗

(0.160) (0.177)
Electricity, gas, steam supply 1.303∗∗∗ 0.131

(0.173) (0.191)
Water supply; sewerage 1.145∗∗∗ −0.411∗∗∗

(0.121) (0.133)
Constant 0.152 −0.865∗∗

(0.333) (0.369)

Observations 57,407 57,407
Region FE X X
Industry FE X X
SME classification FE X X
R2 0.710 0.892
Adjusted R2 0.710 0.892
Residual Std. Error (df = 57356) 2.463 2.724
F Statistic (df = 50; 57356) 2,807.892∗∗∗ 9,457.715∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Since there are many firms without any connections outside of its community,
we also considered the possibility that the excess zeros in the distribution are
generated separately from the data generating process of the count values. As
our dependent variables are heavily dispersed, we used a zero-inflated negative
binomial regression to explore this alternative approach. Table 6 shows the
results for the count model. When we consider the model with the number of
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links pointing to other communities as the dependent variable we can see that
the firm size and the export activity are the most influential factors, however,
if we use the number of group memberships, also firms operating in wholesale
industries seem to have a higher level of embeddedness in other communities.

Regarding the process governing the presence of the excess zeros, in the case
of the number of outside links the degree and the export activity of firms are
negatively associated with the probability of excess zeros, while operating in
the food, agriculture, household goods retail and household goods wholesale
industries have positive coefficients. In the case of the number of community
memberships, the firm size and the variables indicating the geographic region
of firms seem to have larger influence on predicting excess zeros. (Table 7)

Table 6: Count model coefficients (negbin with log link). Among the NACE categories only
industries with positive, significant coefficients are listed.

Dependent variable:

# of outside links # of memberships

(1) (2)

degree 0.028∗∗∗ 0.032∗∗∗

(0.0005) (0.001)
log(balance sheet total) 0.225∗∗∗ 0.229∗∗∗

(0.008) (0.017)
log(value added) 0.091∗∗∗ 0.049∗∗∗

(0.008) (0.017)
exporter 0.046∗∗∗ 0.026

(0.013) (0.027)
government owned 0.099 −0.381

(0.166) (0.276)
foreign owned −0.161∗∗∗ 0.006

(0.019) (0.033)
Other wholesale −0.127∗∗∗ 0.259∗∗∗

(0.031) (0.068)
Food industry wholesale −0.358∗∗∗ 0.376∗∗∗

(0.040) (0.077)
Agricultural wholesale −0.417∗∗∗ 0.523∗∗∗

(0.061) (0.105)
Constant −3.122∗∗∗ −2.874∗∗∗

(0.184) (0.338)

Observations 57,407 57,407
Region FE X X
Industry FE X X
SME classification FE X X
Log Likelihood -58,968.150 -28,877.760

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Zero-inflated model coefficients (binomial with logit link). Among the NACE
categories only industries with positive, significant coefficients are listed.

Dependent variable:

# of outside links # of memberships

(1) (2)

degree −2.611∗∗∗ −0.545∗∗∗

(0.022) (0.012)
log(balance sheet total) 0.001 −0.213∗∗∗

(0.033) (0.037)
log(value added) 0.121∗∗ 0.063

(0.039) (0.039)
exporter −0.354∗∗∗ −0.053

(0.072) (0.065)
government owned 1.519 0.407

(1.140) (0.940)
foreign owned 0.062 0.216∗

(0.133) (0.105)
Southern Great Plain 0.018 0.092

(0.098) (0.099)
Southern Transdanubia 0.076 0.325∗

(0.127) (0.129)
Northern Great Plain 0.067 0.403∗∗∗

(0.100) (0.104)
Northern Hungary 0.104 0.271∗

(0.122) (0.128)
Central Transdanubia 0.053 0.415∗∗∗

(0.105) (0.109)
Central Hungary −0.190∗ 0.131

(0.087) (0.088)
Western Transdanubia 0.075 0.512∗∗∗

(0.106) (0.112)
Food industry retail 1.338∗∗∗ −0.207

(0.314) (0.423)
Food industry wholesale 0.709∗∗ −0.239

(0.240) (0.191)
Construction, real estate −0.505∗∗ −0.009

(0.129) (0.144)
Agriculture 0.682∗∗∗ 0.308.

(0.195) (0.186)
Household goods retail 0.724∗∗∗ −0.015

(0.200) (0.219)
Household goods wholesale 0.583∗∗ 0.67

(0.225) (0.208)
Manufacture of metal, plastic 0.441∗∗ −0.188

(0.166) (0.162)
Constant 1.551 4.832∗∗∗

(1.156) (0.995)

Observations 57,407 57,407
Industry FE X X
SME classification FE X X
Log Likelihood -58,968.150 -28,877.760

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

60

C
E

U
eT

D
C

ol
le

ct
io

n



4 Measuring Systemic Risk in the Hungarian
Firm-Level Production Network

The data described in the previous chapters enabled us to build a microsimu-
lation model of shock propagation to quantify short-term damages after supply
chain disruptions in the production network. Using this model, we show that
industry level analysis is not sufficient from the point of view of shock propaga-
tion. Our granular approach makes it possible to consider the heterogeneity in
the production processes of firms by allowing us to introduce differentiation in
their production functions and in the importance of different input types. As an
application, we quantify the systemic risk of firms by simulating how much of
the production network is affected through distinct upstream and downstream
spreading mechanisms. Due to our high-resolution approach we can also explore
the most influential companies in more detail. Finally, we will demonstrate that
the different allocations of an industry-level shock among the firms in the given
sector can lead to a very wide potential damage range in the system, which
would remain hidden if one did not consider granular data.

This chapter is based on the paper titled Systemic Risk and Shock Propaga-
tion in Firm Level Production Networks (in preparation) by Chsristian Diem,
Andras Borsos, Tobias Reisch, Janos Kertesz and Stefan Thurner.

4.1 Advantages of firm-level analysis

In this section I provide justification why using firm-level data for analyzing pro-
duction networks is more beneficial than the traditional industry-based input-
output literature.

Firstly, the traditional argument of Lucas Jr (1977) claimed that firm-level
idiosyncratic shocks cancel each other out on the aggregate level based on the
law of large numbers, hence, it is also satisfactory to only consider factors which
have influence on entire industries. However, results obtained in the last decade
(e.g. Gabaix (2011) and Acemoglu et al. (2012)) showed, that distributions
of several relevant firm characteristics follows power-low functional forms, i.e.
there is a relatively high probability of extremely large observations, which can
(depending on the exponent of the distribution) violate the assumptions of the
law of large numbers. This implies that only more fine-grained data is suitable
to assess properly the consequences of shocks

Secondly, our analysis of the data showed that even within fine grained in-
dustry classifications firms tend to have very heterogeneous inputs. This can
lead to inaccurate results when using them for assessing shock propagation in
production networks. Figure 29 shows an illustration for this using the example
of NACE sector C25 ”Manufacture of fabricated metal products except ma-
chinery and equipment“. This category contains 178 firms, resulting in 15753
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possible pairwise combinations. We calculated the Jaccard similarity for every
pair based on the NACE4 industry classification of their suppliers, and created
a histogram based on these similarity values. We found a Jaccard overlap of
0 for 69.1% of all pairs, meaning that if we compare two arbitrary firms from
C25, mostly they don’t have any input in common.

Figure 29: Pairwise similarity of production functions in NACE sector C25 Manufacture of
fabricated metal products except machinery and equipment. (Sector ’C25 - Manufacture of
fabricated metal products, machinery and equipment’ contains 178 firms, resulting in 15753
possible pairwise combinations. We calculated the Jaccard similarity for every pair based on
the NACE4 industry classification of their suppliers, and created a histogram based on these
similarity values. We found a Jaccard overlap of 0 for 69.1% of all pairs, meaning that if we
compare two arbitrary firms from C25, mostly they don’t have any input in common.)

Thirdly, heterogeneity is especially important if the crisis scenario does not
affect all firms within a sector to the same extent, which is usually the case
in reality. There are indefinitely many possibilities to translate a sector level
shock to the firm level for the given sector. (For instance a 10% shock in an
industry can mean a 10% shock to all firms, but also a 100% shock to 10%
of the firms in the industry.) Our firm-level simulation takes this into account
and yields different cascades for shocks which would appear to be the same at
industry level, but are distributed differently among firms within an industry.
This makes it possible to apply more clear-cut shocks, which gives immense
versatility in applications. (E.g. it is possible to investigate even a single firms
default.)

Fourthly, heterogeneity matters also in the production processes of firms as
the functional form of the production function controls how shocks propagate
between firms in two ways: (i) It determines the new output level when inputs
are not available (downstream spreading), (ii) and the new level of required
inputs if the demand for the output drops (upstream spreading). The main
considerations regarding firm specific production functions is discussed in the
next section.
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4.2 Features of firm specific production functions

4.2.1 Substitutability of inputs

The standard textbook examples of production functions are the linear-, Cobb-
Douglas- and Leontief functions. The three production functions for the case of
two inputs x1, x2 converted into output x3 are represented respectively as

x3 = α1x1 + α2x2, x3 = Axα1
1 xα2

2 , x3 = min[α1x1, α2x2], (11)

where αi are the technical coefficients determining by which rates the con-
version takes place, and A denotes total factor productivity21.

The main effect of choosing the production function is the degree to which
firms can substitute between different types of inputs to reach the same level
of output. However, substitution of inputs has a different interpretation in
the short term and in the long term. Regarding long run perspectives, it usu-
ally refers to the substitution between different factors of production (typically
between labor and capital, but sometimes also between inputs from different
sectors). This has the interpretation of fundamentally changing the way how
things are produced. E.g. a table can be made by using mostly manual labor
but also by machines, however switching between these two ways of production
takes significant time and investment. Similarly, a table can be made out of
wood or out of steel while having roughly the same functionality, but different
machines are required to switch from one to the other. In the short term how-
ever, having one type of machine only, it is not possible to substitute wood with
metal, or manual labor with machines. Thus, in the short run, a more relevant
question is how much goods and services a firm can still produce if one of its
suppliers is not able to deliver the usually provided inputs. In this model, we
focus only on this shorter time horizon where the mode of production cannot
be changed drastically.

In the case of the linear production function, the loss of a particular input
does not play a drastic role since it is assumed that the inputs do not depend
on each other. Although the output level will drop, but only relative to the
amount of the input. The Leontief type production function represents the
other extreme, as in this case all inputs are required in exact proportions to
produce the output. It encodes a parts list for a product, and if one of the
inputs on the list is not available, the product cannot be ”assembled“. Thus,
the default (non-availability) of a supplier can have the drastic consequence of
halting the production of the affected products (or services) completely. The
Cobb-Douglas production function can be more flexible. In this case, losing 50%

21Note that all three production functions are special cases of the more general constant
elasticity of substitution (CES) production function (McFadden (1963)).
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of one input does not translate directly to a loss of 50% in output, but depends
on the exponent of the input in the production function.

In economic models with high levels of aggregation and with long term focus
the common practice is to use Cobb-Douglas production functions which can
capture substitution between the factors of production, typically labour and
capital. However, this aspect becomes less and less suitable with a short term
scope and at finer resolutions of the production network, where substitution
among production factors is very limited. In contrast with sector level models,
each firm in our data can be assigned a specific production function based
on the given firm’s input vector and industry classification. More specifically,
we are using a combination of linear and Leontief production functions. The
Leontief function is appropriate for firms with physical production processes
since it is based on the idea of parts lists and recipes according to which modern
production management works. However, the linear production function is more
realistic for sectors like distribution (whole sale, retail) and services, where the
loss of a single input cannot influence the whole production, instead, the output
is directly proportional to the respective input. Fortunately, the NACE industry
classification naturally distinguishes between production-based industries and
service industries: NACE2 codes up to 45 are related to physical production
processes, whereas the codes from 45 to 99 are related to wholesale, retail and
different types of services.

4.2.2 Criticality of inputs

Another influential aspect of production processes is the varying criticality of
inputs, i.e. which inputs (suppliers) are actually relevant for production in
the short term. It is unrealistic to assume that a firm – even with Leontief
production function – needs all of the different inputs so crucially such that it
has to shut down production if they are not available in the short term22. The
non-availability of services (like marketing, accounting, etc.) does not cause
physical production problems, but might still have an adverse effect on output.
However, without iron ore the production of steel seems to be rather impossible.
Thus, a model for supply chain shock propagation should also consider how
crucial inputs are for the short term functioning of the firm.

In our model, we assume that some sectors produce crucial inputs for other
sectors, whereas other sectors produce services whose non-availability does not
lead to immediate production problems. A similar approach is taken by (Pichler
et al., 2020) which paper uses an industry analyst survey to assess which inputs
are crucial for 55 industries of the world input output database. However,
the approach of dealing with each industry separately becomes increasingly
costly when the granularity of sectors is increasing to NACE2 (88 categories)

22For example consider a steel producer requiring services from the hotel industry. It is
strong to assume that production is shut down if the respective hotel closes. However, it might
still have an impact on the firms production if the service is not available.
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or NACE4 (615 categories), let alone to assess it on the firm level. Even on the
industry level it requires 377,610 (=615*614) potential links between industries
to be assessed quantitatively. Instead, we resort to a straightforward remedy and
categorize each NACE4 level sector as either crucial input (sectors producing
physical output), or not crucial input (typically services). We alter the Leontief
production function into having two types of inputs, crucial ones and non crucial
ones. We treat the crucial inputs as before, but the non-crucial ones are treated
as having the same effect as in the linear production function.

From the point of view of contagion along the supply chain, it is also im-
portant to differentiate between investment goods like new machines and pre-
products. As long as a new machine (investment good) is not an immediate
replacement for a broken one (which cannot be repaired) the non-availability
of this good causes a missed increase in productivity or capacity, but not a
direct disruption in production23. On a more abstract level, this is reflected
conceptually in production functions where the means of production (capital)
are responsible for how efficiently the inputs are transformed into outputs. We
address this issue by keeping only those supplier-customer links which occur
frequently, and thus, are unlikely to be investment goods. (See the definition
for long-term connections in Chapter 3.1.)

4.3 Replaceability of suppliers

As discussed in Section 4.2.1., on shorter time horizons the mode of production
can only be changed in relatively subtle ways, e.g. by using a given input of
a different supplier. Hence, the last major issue for shock propagation which
needs to be addressed before formalizing our model is the problem of replacing
a supplier by another who can deliver a sufficiently similar input.

Modeling in a detailed way how different companies can be replaced with
each other (as suppliers) would require detailed knowledge of inventory levels,
production capacities of suppliers, and detailed product information (e.g. if two
suppliers in the same industry can even produce the same good).24 There are
only a few strategies in the firm-level supply chain contagion literature to tackle
this challenge, but generally all attempts suffer from data availability shortcom-
ings. Inoue and Todo (2019b) does consider replaceability only between existing
suppliers. Wu (2016) uses a different strategy and creates a measure of replace-
ability based on the weight of a given supplier in its costumers’ production-
related cost. This measure assumes that if a supplier is an important part of
a firm’s production, then it is harder to find a substitute for it. Another of-
ten used solution is to distinguish between standardized goods (goods with a
clear reference price listed in trade publications) and differentiated goods (goods

23Investment products can still matter for upstream contagion. As a possible extension of
the model, two separate matrices could be used for downstream and upstream contagions.

24Furthermore, a consistent modeling of supplier replacement would include a dynamic
rewiring of the network, which is extremely difficult to model in a realistic way.
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with multidimensional characteristics) based on Rauch (1999). Although this
distinction can be used as a categorical variable in econometric estimations e.g.
(Giannetti et al. (2011)), it is not informative about the extent of replaceability
even for standardized products. Barrot and Sauvagnat (2016) uses two other
proxies as well to measure the specificity of suppliers: the level of R&D expen-
ditures and the number of patents held by a firm. Unfortunately these pieces
of information are only relevant for a tiny fraction of companies, and not at all
applicable for the whole network of Hungarian firms.

In our model we propose a different strategy, which employs a straightfor-
ward, data driven way to construct a short-term supplier replaceability index
based on intra-industry market shares. The basic intuition is that a supplier
having a small market share within its industry should be on average relatively
easy to replace by a small increase of the production of its competitors to cover
the additional demand for their products. However, a supplier producing a con-
siderable share of the goods in a given industry is more difficult to replace, as
it is unlikely that its competitors can increase their production immediately to
cover the additional demand25.

Additionally, the alternative suppliers in the given industry might also have
experienced shocks during the contagion processes in the model, consequently, to
make this approach more realistic, we took into account also the deteriorations
in their production capacity. Nevertheless, it is important to distinguish at
this point between two different sources which could cause drawbacks in the
production level of these potential alternative suppliers. On the one hand, one
should account for downstream shocks, i.e. shocks coming from the suppliers,
which is a truly limiting disruption in their production. On the other hand, one
should disregard the upstream shocks experienced by them, because demand
shocks coming from costumers are not actual restraints on their production (at
least from the point of view of replacing their competitors). This is an important
distinction, because this way the alternative suppliers can be compensated for
their previously experienced demand side shocks, furthermore, we can also take
into account that in the case of a system-wide crisis it might not be possible to
find alternative suppliers.

4.4 Description of the model

Based on the available data we formulate a newly proposed shock propagation
model for firm level production networks.

We consider n companies with company i having production function fi
and a weighted supplier-buyer network W ∈ Rn×n+ , where Wij denotes the
value of goods i supplies to j. Furthermore, we have a product category vector

25The available data does not make it possible to identify crucial suppliers which might
have small market share in their industry, but they provide unique inputs. This can happen
for example because of a special technology or a tailor-made product.
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p ∈ {1, . . . ,m}, where pi = k indicates that company i is producing products
of type k. Since actual product information is not available, we have to use the
NACE four-digit industry classification of company i instead. Consequently, we
also have to assume that all the links Wij , starting from company i correspond
to the product type pi. The vector y ∈ Rn+, with yi indicates the value of
products of type pi, firm i is producing. The element Πik of the input matrix
Π ∈ Rn×m+ indicates the value of input of type k firm i uses for production. The
production equation for company i is then

yi = fi(Πi1,Πi2, . . . ,Πim) (12)

From the matrix W and the vector p we can reconstruct the input vector Πi.

of company i. The ith column of W contains the supplier vector of company i,
i.e. W.i, indicating the amount other companies sold to i. For each input k we
sum over all suppliers j belonging to this category, i.e.,

Πik =

n∑
j=1

Wjiδk,pj , (13)

where δij = 1 is the Kronecker Delta. We substitute this expression into Equa-
tion 12, and receive the network dependent production equation

yi = fi

( n∑
j=1

Wjiδ1,pj ,

n∑
j=1

Wjiδ2,pj , . . . ,

n∑
j=1

Wjiδm,pj

)
(14)

The second equation that we assume to hold is the output supply equation:

yi =

n∑
l=1

Wil (15)

From Equation (14) it is obvious that a loss of a supplier has an implication on
output yi. This loss in output spreads further downstream to the buyers of firm
i. Similarly, if Equation (15) holds, the loss of a customer will translate into
decreased demand of yi and will spread further upstream to the suppliers of i.

The actual specification of fi is probably the most important determinant
for downstream shock propagation, since it determines how strong the effects
on output are if a supplier cannot deliver. Additionally, we need to specify a
rationing mechanism for supplying buyers with a reduced amount of output. We
choose to simply impose a proportional rationing mechanism, i.e. each company
gets the same fraction of its original demand. In financial contagion modeling
this is a common assumption (see, for example, Eisenberg and Noe (2001)).
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In contrast to downstream contagion, upstream contagion can be modelled
independently of the production function. For this we have to assume that (i)
the one product per company assumption holds, (ii) input proportions stay the
same for different levels of output, (iii) and that a reduction in the output affects
all inputs proportionally to their original levels26. Similarly to the downstream
contagion, we assume a rationing mechanism with the same logic: if there is
more than one supplier for a product, we assume proportionality based on their
initial importance.

To define a contagion process on a network, firstly we describe the initial
state, and then we formulate the dynamics taking place on this system.

We assume that the initial state corresponds to t = 0 and that the initial
shock occurs at t = 1. We at time t = T observe a new intermediary stable
state 27 of the system, when the effects of the initial shock are incorporated into
the production levels of all firms.

To do this, we first introduce the state variable corresponding to the produc-
tion level of a company relative to its initial production level before the shock.
Let yi(0) be the initial amount of products pi produced by company i and yi(t)
is the amount company i produces at time t after adjustments to the initial
shock. Then we define the state variable as

hi(t) =
yi(t)

yi(0)
(16)

Given that the initial shock is negative, and assuming that in the short term
firms cannot increase their production level, hi(t) ∈ [0, 1] with initial value
hi(0) = 1. Thus, the value hi(t) quantifies the fraction of the production level
at time t compared to the original level at time t = 0 before a shock occurred.
We initialize the shock at time t = 1 by setting hi(1) = ψi where ψi ∈ [0, 1]
represents the severity of the initial shock faced by company i. ψi is interpreted
as the percentage of the original production yi(0) that is lost due to this shock.
This abstract specification of the shock is flexible enough to represent the mere
failure of a single company, but also a system wide event. The shock experienced
at time t = 1 unfolds according the dynamics we specify with a recursive update
for hi(t).

The production level of a company hi(t) embedded into the production net-
work W can be affected in two different ways. First, hi(t) can drop due to a
downstream shock, which is transmitted from suppliers to buyers. Second, hi(t)
can drop due to an upstream shock, which is transmitted from customers to
suppliers. Downstream and upstream shocks both affect the level of produc-

26For a physical production process these assumptions seem justified, but for the creation
of services the situation is less clear.

27This stable state is in fact just a hypothetical intermediary state before the system
recovers again. In that sense it is a worst case scenario if no mitigating action is taken by any
of the involved agents.
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tion, hi(t), but spread differently from i onward to other neighboring nodes.
Thus, we introduce two state variables, both closely related to h. The variable
hdi (t) keeps track of the production level firm i can maintain after considering
all downstream shocks it faces up to t. The variable hui (t) keeps track of the
production level firm i can maintain after considering all upstream shocks it
faces up to t. (The separate treatment of the up- and downstream effects has
its limitations. These are discussed in Section 4.6.)

In the following subsections we describe the details of these contagion pro-
cess. Firstly, we will describe the applied production functions. Then we derive
the update rules for hdi (t), modeling the spreading of downstream shocks (with
mixed production functions to account for firms having different types of pro-
ductions). Thirdly, we will introduce for each company a class of non-crucial
production inputs, then we propose an extension to take into account the re-
placeability of suppliers. Finally, we will describe the update rules for hui (t),
representing the spreading of upstream shocks (independent of the production
function).

4.4.1 Formalization of the production functions

In our application, we consider two types of production functions fi: the Leon-
tief production function for physical production companies and the Linear pro-
duction function for services and wholesale / retail industries. We assign each
company one of the two production functions based on their sector affiliations
as discussed in Section 4.2.1.

We define the Leontief production function for company i as

yi = min(
1

αi1

n∑
j=1

Wjiδ1,pj ,
1

αi2

n∑
j=1

Wjiδ2,pj , . . . ,
1

αim

n∑
j=1

Wjiδm,pj ) (17)

We set the corresponding parameters αk for company i to

αik =

∑n
j=1Wjiδpj ,k∑n

l=1Wil
(18)

Note that with this definition, effectively every company has a different produc-
tion function.

Equation 18 corresponds to the definition of technical coefficients in the
input-output literature. The value 1/αik specifies the amount of product group
k that is required by company i to produce one unit of product group pi. αik
is simply the weight of inputs from industry i relative to output the company
produces. Since W represents monetary flows between companies, a firm needs
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to spend αik monetary units on inputs of type k to produce one monetary unit
of pi. (Note that for a source node αi. would be 0, and for sink nodes it would
be infinity.)

We define the linear production function as

yi =
1

αi

n∑
j=1

Wji , (19)

with

αi =

∑n
j=1Wji∑n
l=1Wil

(20)

It can be seen immediately that this formulation implies that Equation 19 is a
special case of Equation 17 when there is only one product type considered.

4.4.2 Downstream shock propagation

The output which company i, with production function according to Equation
(17) can produce at t + 1 depends on the available inputs at time t and the
level of the exogenous shock ψi. The available amount of input k at time t
depends on the current production level of the suppliers hj(t) = yj(t)/yj(0) and
is
∑n
j=1Wjiδk,pjh

d
j (t). Thus, we have the following recursion for the output:

yi(t+ 1) = min
( 1

αi1

n∑
j=1

Wjiδ1,pjh
d
j (t), . . . ,

1

αim

n∑
j=1

Wjiδm,pjh
d
j (t), ψiyi(0)

)
(21)

To formulate the recursion relation in terms of hdi (t) we divide both sides by
the level of initial output yi(0).

hdi (t+ 1) = min
( 1

αi1

1

yi(0)

n∑
j=1

Wjiδ1,pjh
d
j (t),

. . . ,
1

αim

1

yi(0)

n∑
j=1

Wjiδm,pjh
d
j (t), ψi

) (22)

For practical reasons, we apply the respective production function on the up-
dated relative input availability matrix Π̄(t), which shows the percentage of
input k still available to firm i at time t28. For firms with Leontief production

28The detailed justification for this, as well as the exact derivation of the formulas can be
found in the Supplementary Materials of Diem et al. (in press).
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function the recursion becomes:

hdi (t+ 1) = min
(

Π̄i1(t), Π̄i2(t) . . . , Π̄im(t), ψi

)
, (23)

where

Π̄ik(t) = 1−
n∑
j=1

Λdjiδk,pj (1− hdj (t)) (24)

with Λdji showing the weight of supplier j within a product category among firm
i’s suppliers:

Λdji =

{
Wji∑

l=1Wliδpl,pj
if Wij > 0 ,

0 else
(25)

For firms with linear production function the recursion is:

hdi (t+ 1) = min
( n∑
k=1

Π̄ik(t)
Πik(0)∑n
k=1 Πik(0)

, ψi

)
(26)

4.4.3 Extensions of the algorithm

Now, we can extend this basic recursion for downstream contagion to account
for the fact that not all inputs are equally crucial for a company with Leontief
production function, and that some suppliers can be replaced by others.

Firstly, we introduce the following changes in Eq (23). We define a new set
O1 containing the indices of all industries k, which are not crucial for firms with
Leontief production function, and a set O2 containing the ones which are crucial.
The crucial inputs will be handled as before, but we treat the non-crucial ones
as having the same effect as in the linear production function. This way, we can
write the update equation as

hdi (t+ 1) = min
(

min
k∈O2

(
Π̄ik(t)

)
,
∑
k∈O1

Π̄ik(t)
Πik(0)∑n
k=1 Πik(0)

, ψi

)
(27)

Finally, to take into consideration the replaceability of the suppliers, we
modify Equation 24 by adding a new term to the formula, σi(t) representing
the market share of a supplier within its industry (NACE4) with the corrections
described in Section 4.3.:
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Π̄ik(t) = 1−
n∑
j=1

σj(t)Λ
d
jiδk,pj (1− hdj (t)) (28)

where

σi(t) =
yi(0)∑n

j=1 yj(t)h
d
j (t)δpj ,pi

(29)

The interpretation of the replaceability of suppliers in the model can be
illustrated by the following example. Let us assume that a supplier with a
10% market share in its industry (after considering also its competitors’ state)
is responsible for 50% of the input required by one of its partners in a given
product category. If the production level of this supplier drops to 80%, then
the production of its partner will decrease (based on Equation 28 by 10% ×
50% × (1 − 80%) = 1%. If we disregarded the possibility of replacing this
supplier, the corresponding decrease in the firm’s output would be 10%. This
way, we enable in the model to replace missing supplies by taking into account
the market conditions in a twofold way. On the one hand, σj(t) reflects the fact
that the given input in this example can be bought from the remaining 90%
of the market. On the other hand, we also acknowledge that this replacement
might not be possible entirely (or it entails some costs), which we can also proxy
by the market share of the firm in consideration29.

4.4.4 Upstream shock propagation

Now we turn to the formulation of upstream contagion. As explained above,
hui (t) keeps track of the production level firm i can maintain after considering all
demand reductions it faces from its customers up to t. We formulate a recursion
for hui (t) based on Eq (15). The level of production of company i in response
to demand reductions from its customers is

yi(t+ 1) = min
( n∑
j=1

Wijh
u
j (t), ψiyi(0)

)
(30)

From this we can formulate the recursion relation in terms of hui (t+ 1):

29In the replaceability factor we do not model the new links which are formed as substitutes
for missing inputs. This also means that we do not assume that replacing Hungarian suppliers
can only happen with other Hungarian suppliers. This way we allow firms to find replacement
even from abroad. The only restriction is that the replacement potential is proportional to
the market share of the distressed supplier, and this calculation is based on the observable
Hungarian market share.
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hui (t+ 1) = min
(

1−
n∑
j=1

Λuji(1− huj (t)), ψi

)
(31)

with Λuji showing the weight of supplier j within a product category among firm
i’s suppliers:

Λuji =

{
Wij∑n
l=1Wil

if Wij > 0

0 else
(32)

The update equations are iterated until the algorithm converges at time

T := min
t
{t ∈ N|max

(
hd(t)− hd(t+ 1), hu(t)− hu(t+ 1)

)
≤ ε}+ 1 , (33)

where ε = 10−2 is chosen as convergence threshold. Thus, we assume that the
propagation stops when all shocks are smaller than ε, and the corresponding
time point of convergence is T .

The final production level after convergence for each company is defined to
be hj(T ) = min(hdj (T ), huj (T )), i.e. the minimum of the demand and the supply
constrained production capacity of the company.

However, before generating the results, it is necessary to make one last cor-
rection. We know that the available data in the matrix W does not cover every
transaction due to the reporting threshold and the missing outbound transac-
tions. Thus, the out-strength does not match exactly the revenue of a company
and the in-degree does potentially not represent the total amount of material
costs. This leads to an overestimation of the importance of the observed links,
Wij . To correct for this, the matrices used for the shock propagation Λd and
Λu can be adjusted with the available income statement data. In the case of
upstream contagion where the elements of Λu are row standardized, the revenue

can be used instead: Λuij = Λuij
sout
i

revenuei
, where revenuei is the revenue of com-

pany i in the respective time period. For the downstream direction, we can do

the same procedure with material costs: Λdij = Λdij
sini
costi

.

4.5 Results

To derive a measure for the severity of the initial shock, the production level
hj(T ) needs to be weighted by a factor vj determining the importance of the
company. The weight vector v can be chosen according to different aspects of
interest. Obvious choices are the number of employees, the value added, or the
revenue of the company. The in- or out-strength can also be interesting choices
from a network perspective.
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The production network loss for a given initial exogenous production con-
straint vector ψ is calculated as the weighted loss of production:

cψ =

n∑
j=1

vj(hj(1)− hj(T )) (34)

In order to measure the systemic risk a single company i imposes on the
rest of the system, we conduct the following analysis. We set ψi = 0 for firm i
and ψj = 1∀j 6= i for all other firms j. Thus, we look at the hypothetical loss
of production the rest of the system faces if firm i were to be taken out of the
system. Then, we can call this the systemic production risk index ci:

ci =

n∑
j=1

vj(hj(1)− hj(T )) (35)

By calculating this for all the firms in the network, we can compose the systemic
risk profile of the Hungarian production network for the year 2017. Figure 30
shows this by putting the individual firm’s systemic risk measure in decreasing
order. We present here the results generated by eight different versions of our
model. This way one can compare the effect of applying firm specific linear
and Leontief production functions with differentiation between crucial and non-
crucial inputs (’Mixing 2)’ to alternative cases where we disable the crucial
- non-crucial distinction (’Mixing 1’), or we use uniformly linear or Leontief
production functions for each firm. Furthermore, these four types can also be
examined with and without the supplier replaceability feature.

These plots underpin the intuitions that the general assumption of Leontief
production functions result in implausible collapses in the economy. On the
other hand, using only the linear functional form can most likely give only a
lower bound estimation. The two mixed versions of the production functions in
the network gave rather similar outcomes, which indicates a limited importance
for our input criticality assumption. However, the mitigating effect coming
from the replaceability of suppliers is much more significant. Depending on
the assumed production functions this factor can alleviate the cascades to a
considerable extent.
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(a) (b)

Figure 30: Systemic risk profile of the Hungarian firms in the cases of four different pro-
duction function assumptions. Panel (a) shows the results when allowing for ’replaceability
of suppliers’, while panel (b) shows the results when this feature is disabled.

Our simulations show that only less than 100 firms have the potential to
destroy more than five percent of the Hungarian national production network,
and hence, pose a threat to the overall economy. In the case of the default of
even only one of these companies, up to 21% of all production can be affected,
however, the vast majority of the firms have only very limited impact on the
production network. As Figure 31 demonstrates, these results are robust to
different weighting strategies as well. (We performed the same simulations also
for the year 2016, and the results proved to be very similar to the 2017 numbers.)
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(a) (b)

(c) (d)

Figure 31: Systemic risk profile of the Hungarian firms with different weights. Panel (a)
shows the results with out-strength (i.e. sales based on the network data) as weights, panel
(b) shows the results with the revenue of firms, panel (c) was created using the number of
employees, while panel (d) uses the value added of firms as weights.

Due to our high-resolution approach, we could further analyse the results to
explore the most influential companies in more detail. We found that the list
of the top 100 most systemically important firms contains not only intuitively
expected large companies, but also quite a few SMEs. After examining the
subgraph of the top 100 companied, one can observe many links where the
difference between the sizes (based on firms’ revenue) of the connected nodes is
extremely high. (Figure 32) This indicates that the smaller firms on the top list
are probably crucial suppliers to the largest Hungarian companies, consequently
their default can have similar system-wide implications than that of the largest
firms. (The same pattern can be observed in the 2016 network as well.) This
demonstrates that the knowledge of the systemic riskiness of single firms is
crucial for understanding and preventing potentially large failure cascades in
these networks.
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(a) (b)

Figure 32: Connections between the top 100 systemically most important Hungarian firms.
Panel (a) shows the visualization of the subgraph of the most systemically important compa-
nies. Darker coloring of the nodes means higher revenues, the size of the nodes corresponds to
their strength, and the thickness of the links reflects the value of the trade connection between
the nodes in the given year. Panel (b) shows the histogram of the differences between the
revenues of the connected firm pairs.

We could also use our pipeline to illustrate the implications of the potential
heterogeneity in the distribution of shocks among firms in a given sector. To
demonstrate this, we selected a single industry for which we simulated a 20%
shock the following way. We generated 1000 different realizations of this 20%
shock by distributing the shock across companies in this sector differently in
each scenario. We aggregated the losses in each of the 1000 realizations to
NACE 2 industry-level to highlight how different the consequences are in the
distinct parts of the economy depending on the allocation of a shock which would
seem to be identical in a sectoral level analysis. Figure 33 shows the results of
this exercise in the case of shocking the ’Crop and animal production, hunting
and related service activities’ sector (which corresponds to the 1st NACE 2
category).

The x axis shows the NACE2 categories which are affected by the shock
propagation process, while the y axis shows the empirical shock distribution for
the 1000 shock scenarios. To offer an even more detailed view, we separated the
downstream (Panel ‘a’) and the upstream effects (Panel ‘c’). (Panel ‘b’ shows
the downstream effects under the assumption of linear production function for
all firms.) The blue ‘+’ symbols highlight the scenario in which all the firms
in the initially shocked sector are affected uniformly (i.e. each company in the
sector is hit by a 20% shock).

The heterogeneity can be illustrated for example with the upstream affected-
ness of ’Veterinary activities’, which corresponds to the 75th NACE 2 category.
When the initial shock hits more animal production firms, the veterinary sector
is strongly affected. However, if rather firms dealing with growing plants are
affected, the shock to this sector becomes way weaker.
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(a)

(b)

(c)

Figure 33: Distribution of industry-level (NACE2) losses in the case of 1000 different firm-
level allocation of a 20% shock to the ’Crop and animal production, hunting and related
service activities’ sector. Panel (a) shows the results for downstream shock propagation with
mixed production functions and differentiation between crucial and non-crucial inputs. Panel
(b) shows the results for downstream shock propagation only with linear production function
assumed to all firms. Panel (c) shows the results for upstream shock propagation.
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4.6 Limitations and potential extensions

Although one of the key feature of our model is its extensive data orientation,
there are still room for improvement in this direction as well. In Section 3, I
have already described the limitations of the supplier network data, but there
is also another area in which we lack an important piece of information. Since
we cannot see product-level transactions, we could only use the industries of
firms to label their products. This simplification diffuses the shock propagation
effects by spreading contagion to a wider set of firms and decreases impacts
on single firms. (For example, if a trader company is facing with a demand
shock, we do not know which goods are affected, so we will reduce all the inputs
proportionally, which blurs the channels of upstream contagion.) Additionally,
if we observed product-level transactions, the replacement of inputs could also
become more realistic. However, even if this information was available, we
would need to create a mapping between specific inputs to the different outputs
produced, i.e. a product recipe for each product. This is probably the next
frontier for data driven (contagion) modeling of firm-level production networks,
which we do not consider to be obtainable in the short run.

Another aspect in which our work suffers from limitations is the application
of a relatively simple, proportional rationing algorithm. Although this solution
helps keeping the model tractable, it also entails some compromises. For in-
stance, if a firm buys less from an input, and it has more than one suppliers
in that category, they all suffer a reduction of demand. In reality companies
sometimes manage suppliers by introducing some kind of pecking order, e.g. by
acknowledging that less vulnerable suppliers could bear more demand reduc-
tion. A further problem, that the independent updating of hd and hu can lead
to the companies being unnecessarily constrained. A firm with two suppliers
could request from one supplier more than it can deliver, and from the other
less then it could deliver. Similarly, a firm with two buyers could send to the
first less than it requests and to the other more than it requests. One possible
remedy could be if we made the rationing mechanism not only proportional to
the initial shock, but to the current level of upstream and downstream con-
straints as well. However, this dynamic adjustment would be computationally
too expensive for our available infrastructure, and can also lead to the potential
loss of monotonicity of hd and hu, hence, convergence would not be guaranteed
anymore.

This leads to another area which offers a way to improve the plausibility of
the model, namely, the elaboration of the interactions between the upstream
and downstream shock propagation channels. Currently, when firms replace
their suppliers (as a response to a downstream shock), we do not model the
formation of new links, thus, we ignore the improvement in the new supplier’s hu.
Furthermore, in reality not only suppliers, but also buyers might be replaceable.
If a costumer decreases its demand toward a supplier (negative upstream shock),
the supplier might be able to sell more to another costumer (positive downstream
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shock). To include these mechanisms in an accurate way, we would need to also
take into account inventory levels, and unused production capacities.

With these improvements we could also utilize buffers to soften shocks by
allowing the continuation of production even if crucial supplies become unavail-
able. Furthermore, if one can estimate the time period for which a firm can
keep up its production without the supply sources, it would also offer a way
to introduce time in the modeling framework. Currently our model produces
theoretical fixed points on an infinite time horizon, which are still useful for
many applications, but they correspond to unrealistically severe outcomes. By
adding buffers to the model, we could also give more plausible estimates about
the extent of the cascades for sensible time intervals.

However, inventories can shield companies only against downstream shocks
but not against upstream shock propagation. In the case of reduced demand,
financial buffers can be more relevant to keep the firm operational while it gen-
erates reduced sales revenue. By modeling the liquidity and solvency positions
of firms, several new applications would become attainable. Production network
cascades are not confined to the real economy itself, but have financial implica-
tions for firms’ and thus, banks’ balance sheets as well. Failures or reductions
in production lead to lost revenues in tandem with lost profits and cash-flows
(Barrot and Sauvagnat (2016)). Consequently, firms’ ability to repay their debt
will deteriorate, and the demand for bank loans to bridge liquidity gaps will
increase. Even if the affected firms initially survive the financial effects of a
production shock, large losses weaken firms equity cushions, thereby also the
long term probability of default can increase. Furthermore, firms could end up
in a state where they are able to cover their running costs, but cannot repay the
liquidity bridge loans received during the crisis. This so called ’zombification’ of
firms (see, for example, Caballero et al. (2008) and Blattner et al. (2019)) can
further inflate the impact on financial institutions and on the overall economy.

Fortunately, since we have access to detailed balance sheet and profit and
loss statements, we have the opportunity to explore several of the potential
further research directions described in this section. However, in this thesis
these extensions are not yet available, hence, in the next section I will present
a less mechanistic, econometric approach to connect the production network to
the financial sector.
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5 Shock propagation in the banking system with
real economy feedbacks

As we experienced also during the escalation of the crisis after 2008, shock events
either in the financial sector or in the real economy can be easily transmitted to
the other. Since in most countries banks are the main sources of firms’ financing,
if the banking system is hit by a shock, it can lead to financial problems for
firms dependent on bank loans30 due to the lower lending activity. In turn, if
the real economy is declining, banks can suffer losses e.g. on non-performing
loans. Crucially, these shocks can even be augmented not only in the banking
system, but also in the production network of firms. Hence, the environment
in which the underlying processes beyond the observed emergent phenomena in
the financial system are taking place is not limited to the financial sector, but
it interferes heavily with the realm of the real economy.

In this chapter we are taking a step towards simulating a banking system
contagion model with real economy interlacement utilizing the actual observed
system of the interacting network of all the firms and banks in Hungary. In
the applications of this model we attempt to demonstrate that the feedback
mechanisms in these coupled networks could amplify the losses in the economy
beyond the shortfalls expected when we consider the subsystems in isolation.
As a test for this, we embed the model into a liquidity stress testing framework
of the Central Bank of Hungary. We believe, that this high resolution represen-
tation of the economy grants high validity of the simulation results, and makes
the model especially suitable for policy analysis. To illustrate the versatility of
our agent-based modeling framework, we present two further applications for
different policy purposes: (i) We elaborate a way to use the model for SIFI
identification, (ii) and we show an example of assessing the impact of shocks
originated in the real economy.

This chapter is based on the paper titled Shock Propagation in the Banking
System with Real Economy Feedback (forthcoming) by Andras Borsos and Bence
Mero.

5.1 Description of the model

In this section we provide intuitive description and justification for our work,
while Section 4 will show the exact formulation of our simulations.

Our model can be divided into four theoretical blocks (Figure 34):

• In the first block, we model the adjustments and contagions in the banking
system after an exogenous shock.

30Most importantly SMEs are vulnerable to these shocks as they cannot raise capital or
issue bonds so easily as listed companies.
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• As an adjustment mechanism of banks, a credit supply shock hits the real
economy, which increases firms’ probability of default (PD) on their loans.

• The amplification of the shock in the production network further increases
firms’ PD.

• As a feedback from the firm network, banks suffer losses on their corporate
loan portfolios.

Figure 34: Our framework consists of four modeling blocks: (i) contagions in the banking
sector, (ii) shock propagation from banks to firms, (iii) assessing the amplification of these
shocks in firms’ production network and (iv) feedback from firms to the banking system.

As the last three blocks are all parts of the process describing how credit
supply shocks translate into an increased probability for firms becoming nonper-
forming on their loans, these can be handled together during the implementation
as one modeling unit describing the real economy feedback. Before we describe
the detailed formulation of the simulation steps, we introduce the four blocks
separately.

5.1.1 Banking system31

Our model of the banking system contains two channels of contagion and sev-
eral mechanisms that capture banks’ adjustment. One source of contagion is
happening through the interbank lending market: If a bank suffers a loss of a
magnitude that results in its failure, and thus it becomes unable to repay the
loans it borrowed in the interbank market, it causes losses to its partners. The
second channel stems from the form of bank adjustment when a bank attempts
to improve its position by selling assets whose price may change as a result of
these transactions, and thus other banks also suffer losses because of the price
change. (This mechanism is hereinafter referred to as fire sales.) According to

31The description of the banking system block is an edited version of Box
10 from the 2016 May Financial Stability Report of the Hungarian Central
Bank. (https://www.mnb.hu/en/publications/reports/financial-stability-report/financial-
stability-report-may-2016)
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the logic of the model, contagion and adjustment mechanisms follow one another
cyclically until the fixed point of the system is reached32. (Figure 35)

Figure 35: Schematic structure of the banking block. Regular arrows indicate adjustment
options, while dashed arrows shows occurrences of losses.

During running the model, first we examine whether the given bank meets
the levels of the liquidity (Liquidity Coverage Ratio - LCR) and solvency (Cap-
ital Adequacy Ratio - CAR) indicators required by the regulatory authority. If
not, to meet the regulatory requirements, banks have to adjust their balance
sheets. Our assumptions regarding the adjustment options are built on empirical
findings in the European banking system: Brinkhoff et al. (2018) shows the re-
sults of the European Systemic Risk Board’s macroprudential surveys that aim
to assess banks’ behaviour in macroeconomic stress scenarios. They have found
that lowering credit risk exposures is the largest component of the expected
reduction in their risk-weighted assets. Additionally, Behn et al. (2019) also
showed that banks in danger of breaching regulatory requirements often choose
socially detrimental adjustment strategies, most of all by reducing lending ac-
tivity. The assumption that banks would even use balance sheet transformation
which entail fire sales contagion to raise liquidity in a stress situation is sup-
ported by e.g. Allen and Carletti (2008), Adrian and Shin (2010) and Diamond
and Rajan (2011). However, adjustment steps can differ between countries due
to country- and bank-specific dissimilarities. As we could implement our model
on Hungarian data, we fine-tuned the assumptions to the Hungarian experi-
ences during the 2008 crisis. Furthermore, the exact adjustment opportunities
can vary depending on the application as well. The assumed behaviors of banks

32Eisenberg and Noe (2001) showed that a unique fixed point exists in the system, however,
they only considered the interbank contagion channel without fire sales.
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in the model reflect these evidences and principles.

In order to improve the liquidity situation, banks in the model attempt to
increase their liquid assets by liquidating those assets that cannot be taken into
account in the LCR calculation or can only be taken into account with a high
discount. This adjustment may take place in three stages. In the first step
banks carry out operations that are feasible in a stress situation as well, do not
cause a decline in reputation, do not entail large losses, and do not generate
further contagion in the banking sector. Adjustment possibilities like this may
include the drawing of nostro accounts (accounts that a bank holds in a foreign
currency in another bank) and the non-renewal of just maturing deposits at
the central bank. If no further adjustment is necessary, a given bank’s reaction
is evenly distributed across the above listed instruments. If carrying out the
first level is not sufficient, the bank makes adjustments which do not meet the
above listed considerations. In the second stage banks make the parts of the
household and corporate loan portfolios which are just maturing on a cash flow
basis expire. We assumed that banks make 100 per cent of the household loans
maturing within 90 days and 50 per cent of the corporate loans maturing within
90 days expire (however, this time window can vary based on the assumed initial
shock and the application of the model). The difference between the retail and
corporate portfolio is explained by the fact that reputation loss can be more
severe in the case of corporate clients. Finally, if necessary, even those assets
are liquidated (corporate bonds and mortgage bonds) whose selling may result
in a fire sales effect as other banks whose balance sheet also contains the given
security also suffer losses through the price change. The extent of the price
change depends on the type, the overall amount and the liquidated amount of
the given asset.

Improving the solvency position takes place along similar logic, with the
difference that in order to improve a bank’s position, asset restructuring is
possible on the basis of the risk weights (which are taken into account during the
calculation of the risk-weighted asset value), instead of the LCR discount rates.
Accordingly, in this case the bank transforms the assets with high risk weight
into assets with risk-free rating (e.g. into cash when making assets mature).
According to our model specification, in the case of a solvency problem banks
have somewhat fewer options to adjust as some assets in the first stage have
practically zero risk weight, so their liquidation would not improve the CAR.

If even all these adjustments are insufficient to meet the requirements (LCR
and CAR), the given bank goes bankrupt, and its interbank loans become non-
performing. We account simultaneously for the losses stemming from the in-
terbank exposures and the fire sales type price losses. In the case of a default
event, we differentiate in the LGD parameter based on the extent the given
bank violated the requirements. After accounting for all the banks, if no change
has taken place in the assets compared to the previous iteration, the process
stops. Otherwise, if further loss occurred because of the contagion, some banks
may have gone below the regulatory limit again, and the process restarts.
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5.1.2 Shock transmission from the banking system to the real econ-
omy

In the model of bank-firm network relationships the main mechanisms to transfer
shocks from banks towards firms is the decline in credit availability from the
supply side. Ivashina and Scharfstein (2010) offers an underpinning for this
mechanism by showing that firms had difficulties during the recent financial
crisis in renewing their credit lines. An important factor which can modulate
this kind of vulnerability is the number of connections a given firm has to
the banking sector. The ability for a bank to privately observe information
and maintain a close relationship with its customer enables these firms to have
increased access to capital with more complex and non-standard credit needs
(Von Thadden, 1995). Based on this, it can be beneficial if a firm has more
than one long-term, embedded connections with financial institutions.

This embeddedness is also useful during crisis times when firms often pre-
fer to solve their financial problems privately in a credit relationship, rather
than damaging their reputation on the financial markets. Jiangli et al. (2008)
showed that banks are able to smoothen out shocks to firms by rescheduling
payments or by the renegotiation of the terms of the credit contract. However,
this effect seems to be much weaker during systemic crisis situations. In this
case, banks do not necessarily accommodate firms with new lending, rather they
often refuse future lending. Puri et al. (2011) suggests that banks can smooth
out idiosyncratic shocks but they amplify systemic shocks. They also showed
that banks affected by a shock reject substantially more loan applications than
non-affected banks.

In Hungary, the economy experienced a massive drop in lending after the
2008 crisis. Although Figure 36 and 37 do not distinguish supply and demand
side factors, however, the extent of the disruption in the trends can still be
considered as an obvious sign of credit retrenchment.
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Figure 36: Growth rate of outstanding corporate and SME loans and indicators of the real
economy. Source: Central Bank of Hungary.

Figure 37: Household (housing and consumer) loan transactions and its annual growth rate.
Source: Central Bank of Hungary.
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5.1.3 Shock amplification in the production network

Credit supply shocks can have an impact via the supplier network even on firms
which were not affected directly. In this block of the model our objective is to
assess also the indirect effect of shocks coming from the banking system. Our
approach to deal with this challenge is different from the mechanical modeling
style we applied for the banking system. As firms are extremely heterogeneous
and their operation is much less regulated than that of banks, it would be
extremely burdensome to work out the details of their behaviour. Instead, we
used a spatial econometric approach to estimate the increase in the probability
of default of firms on their loans after a credit supply shock hits some part of
the production network they are indirectly connected to33.

This solution is connected to the literature of supply chain contagions, which
gained momentum after supplier information about firms became more and
more often accessible. These studies supplied ample evidence that production
networks are not resilient even to firm-level idiosyncratic shocks as firms are
not capable to react flexibly enough34. Moreover, shocks can even be amplified
through supplier links. E.g. according to the results of Barrot and Sauvagnat
(2016), the reduction of sales by $1 at the supplier level causes a decrease of
$2.4 in sales at the customer level.

Furthermore, this stream of the economic literature distinguishes between
upstream and downstream shock propagations:

• If a firm experiences a credit supply shock, its production might fall on
account of the financial distress, so the shock will affect intermediate in-
put suppliers as well. In addition, suppliers might not be able to collect
money from defaulting partners. This means that the shock travels to the
upstream direction on the supply chain.

• Regarding the other direction, if a supplier defaults after a credit supply
shock, the intermediate inputs it produced might not be easy to replace
for its costumers, hence, the shock spreads to the downstream direction.

Interestingly, shocks can reverse directions along the network, which means
that in effect they can also spread horizontally. A popular example for this is the
case of car manufacturing industry in the United States. In the fall of 2008, the
president of Ford Motor requested government support for General Motors and
Chrysler, but not for Ford. He wanted government support for his company’s
rivals because the failures of GM and Chrysler were predicted to result in the
failure of many of the suppliers of Ford Motor. Namely, a shock to General
Motors can trigger upstream shock propagation in the car-parts industry, which
becomes a negative supply shock (downstream propagation) to Ford. One can

33The details of this estimation are discussed in Section 5.
34See for example Carvalho et al. (2016), Demir et al. (2018), Boehm et al. (2019).
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imagine other scenarios for horizontal shock propagation as well. For instance,
if a supplier is hit by a shock, its competitors can gain market share if the input
is not too specific.

5.1.4 Shock transmission from the real economy to the banking sys-
tem

The parameters estimated for the direct and indirect impact of credit supply
shocks on firms’ PD can be applied directly to simulate firm defaults. If a firm
becomes nonperforming, banks with loan exposures towards the firm will suffer
losses on their corporate loan portfolio35. To handle the stochastic nature of this
procedure we calculated with the expected value of 1000 realizations of credit
losses.

The problem of nonperforming loan portfolios became one of the most press-
ing issues in several European countries. Rampant NPL portfolios are not only
problematic for banks, but it cuts back lending activity even further creating
a negative feedback loop in the economy (Accornero et al., 2017). Figure 38
shows the devastating situation in Hungary following the 2008 crisis.

Figure 38: Ratio of non-performing corporate loans in the credit institution sector. Source:
Central Bank of Hungary.

35During most of the simulations we used either 50% or 100% as LGD parameters, which
simplification conceals the vast difficulties of estimating LGD parameters specific to several
relevant bank and firm characteristics.
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5.1.5 The time scale of the model

The processes described in this section so far must be synchronized in the time
scale of the model. First of all, it is important to emphasize that even if the
blocks of the simulation follow each other iteratively, this is often merely the
practical representation of processes simultaneously reinforcing each other. Fur-
thermore, the time scale of the simulations is highly dependant on the assumed
initial shock and the application. As it is shown by the Figures above, the effect
of the shock in 2008 was rather drastic and immediate both in the case of the
plummeting lending activity and the soaring delinquency ratio, and we also ex-
perienced that the situation worsened for several quarters at an almost constant
rate. However, if we apply the model within the framework of a liquidity stress
test, then the relevant time scale might be only 30 or 90 days.

To address this concern, we can adjust the model by tuning two types of
parameters to match the time scale of the modeled phenomena. Firstly, the
window in which banks can make their loan portfolio expire should be set to
the time period applicable for the given run. Secondly, the parameters gov-
erning the probabilities of firms becoming non-performing on their loans can
also be adjusted to manage the mismatch between the data frequency in the
estimation and the application’s time scale. It might arise as an additional con-
cern, that we consider the shock propagation based on estimates coming from
yearly data, which masks the differences between short-term and medium-term
dynamics. On the one hand, one would assume that the production function
is more similar to the Leontief function in the short run, but the opportuni-
ties for substitution become later gradually more and more relevant. On the
other hand, firms’ liquidity buffer can attenuate the propagation of shocks for a
while. Unfortunately, we cannot measure which one of these impacts dominates
in different time windows, so we opted for not making corrections to any direc-
tion based on these considerations, so we transform the yearly estimates simply
proportionally to the time frame of the application.

Of course, similarly to any other model, the reliability of the results can
be lower and lower as the time window increases and less and less elements
of the economy can be assumed to remain constant. As this is only a partial
model, it is not suited to incorporate long-term changes in the economy. For
instance, during the years following the 2008 crisis the situation of the banks
was heavily influenced by several factors including capital injections, extra taxes,
restructuring of some banks by the state, introduction of new regulations, etc.
This way, regarding the dynamics of contagions within the banking system, we
can only make plausible assumptions for relatively short time periods.

5.1.6 Data requirements of the microsimulation

To implement this microsimulation model on real data we obtained access to
several detailed datasets at the Hungarian Central Bank and at the Hungarian
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Tax Authority. While detailed information about banks and bilateral exposures
at the interbank market are part of the standard data reporting towards central
banks in most countries, we could also access

• the central credit information database (KHR) containing all loan con-
tracts between banks and firms,

• firms’ balance sheet and profit and loss statements from corporate tax
reports, and

• transaction level data about the supply chain connections among firms
from VAT reports.

Although most of these datasets have been already preprocessed and have rela-
tively high quality, the construction of the supplier network required several cor-
rections. VAT reporting in Hungary contains information also about the trade
partners of firms, where the tax content of all the trade transactions between
two companies exceeds e 3000 in the given year. This information is available
between 2014-201736, which made it possible to reconstruct the Hungarian pro-
duction network with relatively high precision. By adding the location and
financial reports of firms to the data we could utilize not only topological char-
acteristics but also several node attributes. The most important shortcomings
of this data are the missing observations stemming from mainly two sources: (i)
international trade and (ii) connections below the value threshold. As a result of
these, around 50% of the procurements is present in the observed system. The
supplier network changes notably from one year to another, which is mainly
due to the lot of one-off, incidental transactions. As these links are important
from the point of view of shock propagation, we applied a filtering to keep only
long-term supplier connections37. In 2017, only slightly more than half of the
links are long-term, however, these cover around 93% of all the traded value.

A further distortion we had to handle is that firms belonging to the same
ownership group sometimes report collectively, but very often it happens indi-
vidually. To correct for this, we obtained access also to OPTEN’s ownership
connection database. Although we did not see global ultimate beneficiary own-
ers, only local connections, we could still cover most of the relevant connections
among firms. We also considered indirect ownership links by a calculation anal-
ogous to the Leontief inverse38. After all these corrections, our final network
consists of yearly 80-100 thousand nodes and 200-250 thousand links.

36Although the quality is very poor for 2014.
37We classified a connection as long-term if there were at least two transaction between the

firms, and if there is at least one quarter time difference between the first and the last trade
occasion between them.

38More specifically, we computed the Neumann-series approximation (up to the fourth
order) of this version of the Leontief inverse.
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5.2 Details of the simulation

The banking system block and the real economy feedback part (which consists
of the last three theoretical blocks) iteratively follow each other during the
simulation. If any of the banks makes some adjustment in its lending activity
(which exceeds a very low tolerance parameter in the model) the real economy
feedback is triggered. If this feedback results in additional losses for the banking
system (which exceeds the tolerance parameter), than the banking system’s
contagion mechanisms become active again. Within a “banking system block”
there is a similar inner loop: If significant losses occur at any of the banks, its
adjustment and/or its default can cause losses to the other banks as well, which
can lead to further adjustments. Although the simulation runs in a sequential
manner, this is often merely the technical representation of simultaneous events.
When we denote the order of events (or states of variables) with the notation
t, we refer to the iterative rounds of the simulation and not actual time. The
logic of the simulation can be summarized by the following pseudocode:

Algorithm 1 The structure of the simulation

1: while additional feedback losses ≥ ε do
2:

3: Banking block:
4: while additional losses ≥ ε do
5: for banks do
6: if (CARbank < CARregulation) then
7: Solvency adjustments

8: end
9: if (LCRbank < LCRregulation) then

10: Liquidity adjustments

11: end
12: end
13: Calculating additional losses after bankruptcies

14: end
15:

16: Feedback block:
17: for firms do
18: Calculating firm PDs after credit supply shock
19: Simulating (1000 times) firms’ defaults on their loans

20: end
21: for banks do
22: Calculating additional feedback losses for banks

23: end
24: end

In the following subsections we will give detailed formulation of the simula-
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tion steps.

5.2.1 Banking system contagions

In the model we consider the nine largest Hungarian banks, which cover around
85% of the market39. At the Central Bank of Hungary we can observe banks’
exact measures regarding their liquid assets, expected cash inflows and outflows,
furthermore the equity instruments which are relevant for the CAR calculation
and the risk-weighted assets.

Another crucial piece of information in the banking block is the representa-
tion of the interbank market. As the transactions here are usually very short-
term, mostly overnight, a snapshot would not reflect a representative state of
the market. Instead, we constructed the network by taking the average daily
exposures in a month for each bank, which we then distributed in the proportion
of the monthly average exposures towards the banks’ partners.

Additionally, we consider further asset classes which are relevant for banks’
adjustment processes. These are (1) short-term (within three month) claims
towards the central bank, (2) nostro accounts, (3) government bonds, (4) cor-
porate loans, (5) household loans, (6) corporate securities and (7) mortgage
bonds. Each asset class has some parameters which govern their role during the
adjustment decisions of banks (Table 8)40:

• LCR haircut indicates that to what extent a given asset should be dis-
counted during the calculation of liquid assets for LCR.

• Risk weight is the discount parameter to determine the risk-weighted as-
sets of a bank.

• The rank parameter determines the order in which assets are used by
banks to adjust their balance sheet to be able to meet the regulatory
requirements. Rank is determined following the principles laid out in the
previous section, and it can be considered as an externally given solution of
banks’ optimization problem. Assets can have the same rank parameter,
in which situation the required adjustment is evenly distributed between
those assets.

• Minimum Price denotes the lowest relative price in the scenario where all
the banks in the model liquidate completely the given asset category. As
there are other holders of those assets on the market, the banking system
can have only limited impact on the price.

39The inclusion of smaller institutions, which often have in some aspect special operations
would only add complications to the model without any significant benefit.

40The risk weights and the LCR haircuts are regulated in a very detailed way, which we
did not follow in the model with the same level of precision.
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Risk
weight

Rank
(solvency)

LCR
haircut

Rank
(Liquidity)

Minimum
Price

Central bank
claims

0 0 10% 1 100%

Nostro
account

0 0 10% 1 100%

Government
bonds

20% 1 50% 1 90%

Household
loans

50% 2 100% 2 100%

Corporate
loans

50% 2 100% 2 100%

Corporate
securities

50% 3 100% 3 50%

Mortgage
bonds

50% 3 100% 3 50%

Table 8: Adjustment parameters of the relevant asset classes.

Solvency adjustments of banks

During modeling the solvency related behavior of the banks, firstly we have
to test whether a bank meets the regulatory CAR requirement in every iteration.
For a given bank i this test is given by Equation 36.

(Ei,t0 − Li,t)
RWAi,t0 +

∑
j

[rwj × pt,j × (Ai,j,t −Ai,j,t0)︸ ︷︷ ︸
Change in the RWA due

to asset liquation

+ rwj × (pt,j − p0,j)×Ai,j,t︸ ︷︷ ︸
Change in the RWA due

to price change

]

< CARreg

(36)

where Ei,t0 is bank i’s original equity, Li,t is the cumulative loss occurred up
until round t for bank i, RWAi,t0 is the original risk-weighted asset of bank i, rw
denotes the vector of risk weights associated with all the asset classes considered
in the model, pt is the vector of relative prices for all the asset classes41 (the
original price, p0 is one in every case), and Ai,t shows the assets of bank i. The
change of the risk-weighed assets can be decomposed into the change due to asset
liquidation (∆RWA(A)) and the change caused by price changes (∆RWA(p)).
CARreg is the regulatory requirement of the capital adequacy ratio.

From this we can also calculate how much equity bank i lacks to comply with
the regulation:

41Accounting standards vary among countries and asset classes, but for the sake of simplic-
ity, we generally follow the principles of mark-to-market evaluation in the model. Although
the implications of this approach are often debated, it reflects realistically the fair value of
the assets during crisis periods.
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Missing Equityi,t = [RWAi,t0 + ∆RWA(A) + ∆RWA(p)]× CARreg
−(Ei,t0 − Li,t)

(37)

We also have to assess how much assets are available for selling which could
help to improve the solvency situation. In the case of solvency, banks first
consider only one asset, sovereign bonds, with a rank parameter equal to 1
(Stage 1). Maturing household and corporate loans have a rank parameter
equal to 2 (Stage 2), and corporate securities and mortgage bonds belong to
Stage 3. The amount of available assets which can be used to improve solvency
(Assets for AdjustmentS) in a stage is simply the sum of a given banks’ assets
in that category:

Assets for AdjustmentS,i,t =
∑

j∈Stager

Aij,t (38)

where Stager is the set of assets with rank r.

Then the actual solvency adjustment (AdjustmentS,i,t) is the minimum of the
available adjustment opportunities and the necessary adjustment to reach the
requirement. Even if a bank cannot meet the required CAR, it will try to
approach it as much as possible.

AdjustmentS,i,t = min
(
Assets for AdjustmentS,i,t;

Missing Equityi,t
(rwr)× CARreg

)
(39)

where rwr is the risk weight of assets with rank r.

If the required adjustment cannot be covered by Stage 1 assets, also Stage 2
and finally Stage 3 assets are needed. Adjustment within a given stage happens
by selling the same percentage of each asset in that stage.

Liquidity adjustments of banks

During the testing of banks for their compliance with the CAR we accounted
for the changes in the numerator and the denominator due to the adjustments
in previous rounds. As the LCR has a more complicated formula (Equation 40)
with more interactions with previous adjustments, we will present separately
the alterations of LCR’s components.

LCR =
High Quality Liquid Assets (HQLA)

Outflows−min(Inflows; 0.75×Outflows)
(40)

Bank i’s HQLA is computed as the sum of the amount of liquid assets at
the current price plus the amount which was sold earlier possibly at a different
price (both corrected by the vector of haircut parameters):
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HQLAi,t = HQLAi,t−1 +
∑

j∈ALCR

(Aij,t−1 −Aij,t)× (pj,t)× (1− hLCR,j)︸ ︷︷ ︸
Change in the HQLA due

to asset liquidation

+
∑

j∈ALCR

(pj,t − pj,t−1)×Aij,t−1 × (1− hLCR,j)︸ ︷︷ ︸
Change in the HQLA due

to price change

(41)

where ALCR is the set of assets which can be used for liquidity adjustment and
hLCR,j is the LCR haircut parameter for asset j.

As opposed to the solvency examination, here we are calculating the differ-
ence between time t and t− 1 instead of t0. The reason for this is that now the
time of the adjustment matters because prices can change during the simula-
tion, and using different prices also means different change in the HQLA. The
amount of cash received during liquidation has an important role for LCR (as
it is part of the HQLA), but it was not relevant for the RWA as losses in the
solvency block appeared in the numerator of the CAR.

Importantly, adjustments of banks aiming to improve their liquidity by in-
creasing HQLAs can interfere with the denominator of the LCR as well. The
usage of some of the adjustment options (short term central bank deposits and
nostro accounts) influences the expected cash inflows as well, and this effect
might distort the expression in the denominator. Additionally, losses on the
interbank market also contribute to the reduction of the expected inflows:

∆Inflowsi = ∆Nostroi + ∆CBclaimsi − Linterbank,i,t−1 (42)

where ∆ refers to the change between t and t − 1, while Linterbank,i,t−1 is the
losses suffered by bank i in the previous round of the simulation.

The denominator of the LCR (LCRdenom) can be constructed now using the
following expression:

LCRdenom = Outflows−min[max(Inflows+∆Inflows; 0); 0.75×Outflows]
(43)

After updating all the components of the LCR, we can also calculate the addi-
tional HQLA need if a bank is below the regulatory limit:

Missing HQLAi,t = LCRdenom,i,t × LCRreg −HQLAi,t (44)
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To get the required adjustment in a given stage we have to correct the
Missing HQLA with the LCR haircut parameters and with the current weighted
average prices.

Required adjustmentrL,i,t =
Missing HQLAi,t∑

j∈Ar
LCR

hrLCR,j × pj,t ×
Aj,t∑
Aj,t

(45)

where ArLCR is the set of assets which can be used for liquidity adjustment in
stage r and hrLCR is the vector of LCR haircut parameters for assets with rank
r.

Similarly to the solvency part, we have to assess how much assets are avail-
able for selling to improve the liquidity situation. In a given adjustment stage
r it follows the same logic as Equation 38.

Assets for AdjustmentL,i,t =
∑

j∈Stager

Aij,t (46)

Finally, the actual liquidity adjustment (AdjustmentL) is the minimum of
the available adjustment opportunities and the necessary adjustment to reach
the requirement. Similarly to the CAR, even if a bank cannot meet the required
LCR, it will try to approach it as much as possible.

AdjustmentL,i,t = min
(
AssetsForAdjustmentL,i,t;Required adjustmentL,i,t

)
(47)

If the required adjustment can be covered by Stage 1 assets, only these will
be utilized by selling the same percentage of each of them. If also Stage 2 or
3 assets are needed, the necessary adjustment will be distributed in the same
proportional manner.

Clearing of the losses in the banking system

After managing the solvency and liquidity situation of all the banks, we
evaluate the state of the system. We consider a bank bankrupt, if even after
all the adjustment opportunities it is unable to meet the regulatory criteria.
However, we somewhat differentiate in the consequences of a default event based
on the extent the given bank violated the requirements. In the case of the LCR,
the loss given default (LGD) parameter was determined as 0% when the LCR
is between 50-100%, and 100% for a requirement breach where the LCR goes
below 50%. For the capital adequacy ratio a similar threshold is used at the 4%
level of the CAR. A bank’s LGD (lgdk) is determined in every round based on
their LCR and CAR levels:

lgdi,t = max(lgdSi,t; lgd
L
i,t) (48)
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where lgdSi,t is the LGD level which would be imposed based on the CAR of

bank i, and lgdLi,t is the LGD which would come from the LCR of bank i at
round t.

Based on these parameters we update the interbank exposures following
Equation 49.

WB
t = WB

t−1 × St (49)

where WB is the weighted adjacency matrix representing the exposures among
K banks on the interbank lending market. A cell wBi,j denotes the amount that
bank i lends to bank j.

WB =

w
B
11 wB12 . . .
...

. . .

wBK1 wBKK


S is a diagonal matrix containing the surviving ratio of the interbank exposures
based on the LGDs of each bank:

S =

1− lgd1
. . .

1− lgdK


The losses on the interbank exposures (Lossib) can be represented as the

difference between the initial and the final state of the interbank matrix:

Lossib = WB
t −WB

0 (50)

Finally, we are calculating the losses due to the change of the asset prices.
The formula describing the functional form of price development is based on
Georgescu (2015):

pj,t = exp
(
αj

K∑
i=1

si,j,t

)
(51)

where pj,t is the price of asset j at round t, si,j,t is the sold amount of asset j
until round t by bank i, and α controls the price elasticity. α is chosen such
that when all of asset j in the system are sold, the price drops to the price level
determined by the minimum price parameter of the given asset:

αj = ln(MinimumPricej)/

K∑
i=1

Ai,j (52)
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The losses due to fire sales (Lossfs) can be calculated then as the difference
in banks’ asset values due to the price changes:

Lossfs = (p0 − pt)×A0 (53)

After accounting for all the banks, if the amount of the assets compared to
the previous iteration changed more then the tolerance parameter ε, or some
banks have gone below the regulatory requirements, the banking block part of
the algorithm restarts. Otherwise, the banking block stops.

5.2.2 Real economy feedback

Real economy feedback is triggered if any of the banks used corporate credit
retrenchment during the adjustment process (similarly to Silva et al. (2018)).
Firstly, we calculate the extent of the reduction of these loans in the case of all
banks:

∆Loanscorp,i =
(Loanscorp,i,t0 − Loanscorp,i,t)

Loanscorp,i,t0
(54)

where Loanscorp,i,t is the size of the corporate loan portfolio (which is maturing
within 30 days) of bank i at round t.

As establishing new bank connections is costly (see e.g. Kim et al. (2003)),
and during a crisis the credit crunch can be general, bank i’s credit retrenchment
(∆Loanscorp,i) can be interpreted as a direct credit supply shock for firm j (css0j )

who needs (re)financing from the given bank. 42

After determining the credit supply shock experienced by firms directly, we
assess the spillover effects happening via the supplier network. The simplest
– although from a computational perspective sometimes inefficient – way to
represent the firm network is using an adjacency matrix (AF or in the case
of weighted networks WF ). In this matrix, WF

m,n corresponds to the traded
amount supplied by firm m to firm n.

To account for shock propagation to the upstream direction, we first nor-
malize the weighted adjacency matrix by the output (revenue+activated own

42If a firm is connected to more than one banks, then the credit supply shock the firm
faces will be some function of the shocks coming from the banks the firm has connections
with. The choice of this functional form is not trivial: using the weighted mean (where the
weights are coming from the lending history between the firm and the banks) would imply
that firms would have demand towards their bank connections in the same proportion as in
their pre-crisis credit mix. However, firms might try to switch between the existing bank
connections during a crisis, so taking the minimum of the shocks coming from the existing
bank connections seems to be a more realistic assumption.
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performance)43 of firms in the row dimension:

W̃F
us = Γ×WF (55)

where W̃F
us is the row-normalized matrix representing the supplier network, and

Γ is a diagonal matrix containing the reciprocal of the output of each firm.

By multiplying this row-normalized matrix with the vector of credit supply
shocks experienced by each firm, we will have a vector representing the weighted
sum of the credit supply shocks of the buyers (at one step distance in the
network) of each firm css1us:

css1us = W̃F
us × css0 (56)

where css0 is the vector of direct credit supply shocks experienced by the firms.

To calculate higher order spillovers we can also determine weighted sum of
the credit supply shocks of the buyers of the buyers (so at two steps distance
downstream in the network) of each firm css2us:

css2us = W̃F
us × css1us (57)

We could go even further in the network, however, during the estimation
of the coefficients for firms’ PDs we have found only shocks coming at most
from two steps distance have significant effect. However, we can consider shock
propagation from two steps distance to the downstream direction as well. To
calculate these terms we have to make only a slight modification. We have to
normalize the weighted adjacency matrix by the output of firms in the column
dimension, which can be done by multiplying with the same diagonal matrix,
but this time using the transpose of WF :

W̃F
ds = Γ× (WF )T (58)

The calculation of the weighted sum of the shocks coming from the suppliers
at distance one and two happens the same way as in the upstream case:

css1ds = W̃F
ds × css

0 (59)

css2ds = W̃F
ds × css

1
ds (60)

43One could use the rowsums of the weighted adjacency matrix for normalization as well,
however, using the output instead makes the interpretation of the results more intuitive.
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As we mentioned in the previous section, shocks can reverse directions along
the network, which means that they can also spread “horizontally”. If we con-
sider only two steps distance again, we have to deal with two types of horizontal
shock propagation: (i) In one situation the shock can come from the suppliers
of my buyers, (ii) while in the second case it can come from the buyers of my
suppliers. We can account for these shocks similarly to the previous calcula-
tions. As in the first case the shock goes first downstream and then upstream,
it will be denoted by cssds→us, while the second case is the opposite: cssus→ds.
The calculation of each of them is shown by Equations 61 and 62 respectively.

cssds→us = W̃F
us × css1ds (61)

cssus→ds = W̃F
ds × css

1
us (62)

As a next step, we translate the direct and indirect shocks hitting a firm into
additional probabilities that a given firm becomes non-performing on its loans.
This step is described by Equation 63.

∆PDj = css0j × βcss0 + css1us,j × βcss1us
+ css2us,j × βcss2us

+ css1ds,j × βcss1ds+

css2ds,j × βcss2ds + cssds→us,j × βcssds→us
+ cssus→ds,j × βcssus→ds

(63)

where ∆PDj is the increase in a firm’s probability of becoming non-performing
on its loans as a result of the direct and indirect consequences of the credit
supply shocks44. The β parameters are coefficients showing the effects of one
unit increase in the credit supply shock variables. (The estimation of these
coefficients will be described in the next section.)

To complete the feedback mechanism, we simulate the default of the firms
based on their ∆PD and we calculate the losses for each bank on their loans
belonging to the defaulted firms. As it is a stochastic procedure, we create 1000
realizations and use the average of them as the actual losses suffered by the
banks45. Equation 64 shows the losses suffered by bank i on its corporate loan
portfolio in one realization round (Lossfb,i,t).

Lossfb,i,t =

D∑
v=1

OPv→i × lgdf (64)

where D is the number of firms becoming non-performing in the given realiza-
tion, OP is the outstanding principal amount of the loan contract between bank

44We concentrate now on the additional PD of banks’ clients, as their base PD is accounted
for during the normal operation of banks.

45We preferred to calculate here the average instead of the median, because the average
reflects more the consequences of tail events which we did not want to ignore in the model.
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i and firm v and lgdf is the loss given default parameter for corporate loans.

After accounting for all the banks, if the loan losses of any of the banks
exceeds the tolerance parameter ε, the banking block part of the algorithm is
triggered again. Otherwise, the simulation ends.

5.3 Estimation of the feedback parameters

The parameters controlling how credit supply shocks influence firms’ probability
of becoming non-performing would be difficult to determine reliably by expert
judgment or based on the experiences of past crises, hence, we attempted to
estimate them independently of the model. However, this task has two main
challenges: Firstly, the identification of credit supply shocks is far from being
trivial, and secondly, we want to estimate not only the direct effects, but also
the spillovers via the production network. In the next two subsections we will
describe our approaches to deal with these difficulties.

5.3.1 Identification of credit supply shocks

Shocks can influence banks’ credit supply and firms’ credit demand simultane-
ously, thus, the observed change in lending amount cannot be considered the
change of supply only. There are two typical strategies to handle this well-
known endogeneity problem. When it is possible, researchers can use natural
or quasi-natural experiments, such as an unexpected policy change, a nuclear
accident or a natural disaster for identification. (See e.g. Khwaja and Mian
(2008), A. V. Banerjee and Duflo (2014), Chodorow-Reich (2014) and Dörr et
al. (2018).) The main advantage here is the strongly credible exogeneity of the
shocks. However, it is often not possible to find or quantify such exogenous
shocks, in which cases one can use only more indirect identification strategies.
An indirect approach which gained popularity recently was developed by Amiti
and Weinstein (2018). Their method uses matched firm-bank loan data, where
the identification is based on the observation of firms with multiple bank con-
nections in different time periods. Although this approach has weaker internal
and external validity, it does not require to find a suitable instrument. Fur-
thermore, by imposing adding-up constrains this procedure has the additional
advantage to ensure consistency with the aggregate lending dynamics. This, or
similar solutions were applied by e.g. Chava and Purnanandam (2011), Schnabl
(2012), Jiménez et al. (2012), Dwenger et al. (2015), Amador and Nagengast
(2016) and Degryse et al. (2017).

As the time window in which we observe both the Hungarian firm network
and the loan contract data is relatively short, we had only very limited oppor-
tunities to find a suitable exogenous shock which we can use for identification.
This period (2015-2017) was without major turbulences in the Hungarian bank-
ing sector, however, there were some policy measures which we attempted to
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exploit to identify the supply side of the corporate credit market.

The Hungarian Central Bank launched a program in 2015 called Market-
based Lending Scheme (MLS) to stimulate economic growth by supporting
banks’ lending activity46. Within the framework of the MLS, the central bank
offered two instruments: The first incentive was that the banks could hedge their
lending-related interest rate risk by an interest rate swap (LIRS) offered by the
central bank to incentivize banks to grant longer-term, fixed-rate SME loans.
Additionally to the LIRS, a preferential deposit facility was also introduced to
support banks’ liquidity management.

However, there was a condition for banks if they wanted to participate in
the MLS: By having recourse to the LIRS instrument, banks had to make an
implicit commitment to increase their net lending to small and medium-sized
enterprises by an amount equalling one fourth of the allocated LIRS. During
the programme, the central bank concluded LIRS transactions amounting to
a total e 2.2 billion with 17 credit institutions, which means the undertaking
of an SME loan expansion of nearly e 550 million by the banks participating
in the programme (Figure 39). As this means an ex ante dedication to future
lending, it can be interpreted as a proxy for banks’ credit supply. Banks made
such commitments for 2016 and 2017 as well, which makes it possible to use
this as a credit supply shock indicator in our estimation47.

46The description of the MLS is based on Box 5 in the 2016 May Financial
Stability Report of the Hungarian Central Bank, where further details can also be
found. (https://www.mnb.hu/en/publications/reports/financial-stability-report/financial-
stability-report-may-2016)

47Although the MLS program created a positive loan supply shock, we are assuming that
a negative shock would have similar effect to the opposite direction.
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Figure 39: Banks’ commitments and fulfillments in the MLS program. Source: Central
Bank of Hungary.

A potential concern might arise due to the possibility that the variation
in the commitment decisions of banks could be influenced to some extent by
their anticipation of credit demand towards them. While this effect cannot be
completely dismissed, it probably plays only a negligible role in the variation
of the commitments. Although there are a few banks among the largest nine
banks in Hungary (which were included in our model) which have some special-
ization (e.g. some banks are stronger in the household segment, others in the
corporate market), however, even in their cases it is unlikely to experience very
different demand from their SME clients as banks’ specialization is not based
on such firm characteristics (e.g. their industry) which could justify relevant
differences in credit demand dynamics. Furthermore, the examined period can
be considered free from serious economic turbulences in Hungary, thus, even
if there were dissimilarities in banks’ expectations concerning demand factors,
these are more likely to be the result of the uncertainty of these kind of fore-
casts. However, as robustness check to the MLS shocks, we also performed the
indirect method of Amiti and Weinstein (2018) following the implementation
of Amador and Nagengast (2016). Further details of this methodology are de-
scribed in Appendix E, where we also compare the outcomes of the regressions
which are using different credit supply shock variables.
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5.3.2 Estimation of direct and indirect effects

To represent the network-based interactions among firms, we turned to estima-
tion techniques coming from the spatial econometrics literature. This branch
traditionally deals with spatially structured data, however, the same methods
can be applied to capture more abstract interaction structures, such as the pro-
duction network of firms. (For a detailed review of the field see e.g. Elhorst
(2014).) Spatial estimation models usually display the dependence among the
observations using the so-called spatial weight matrix (W ), which makes it pos-
sible to represent units affecting each other mutually. In our case the spatial
weight matrix is analogous to the normalized supplier exposure matrices.

Three basic types of spatial interaction models can be distinguished: (i) the
spatial autoregreesive (SAR) model, (ii) the spatial error model (SEM) and (iii)
the exogenous interaction (SLX) model. As the mechanisms modeled by each of
these techniques can be present simultaneously, more complicated models were
also developed to combine the different spatial interactions. Equation 65 shows
a general formulation containing all of these potential spatial terms in matrix
form:

Y = ρWY +Xβ +WXζ + u (65)

where Y is the dependent variable (e.g. the default of a firm’s loans), W is
the supplier exposure matrix, X is the matrix of explanatory variables (most
importantly for us the credit supply shock) and

u = λW + ε

where
ε ∼ i.i.d.

The term ρWY represents the SAR part for which the interpretation would
be that a given firms’ probability of becoming non-performing depends on its
buyers’ or suppliers’48 probability of becoming non-performing on their loans.
The λW is the SEM term referring to shocks which would jointly affect firms
that are connected to each other in the supplier network. Finally, WXζ is the
SLX term implying that firms’ probability of becoming non-performing depends
on its partners’ independent variables, most importantly on their credit supply
shock. As this last term is exactly what we are interested in for the model, we
formulated a panel logit SLX specification without including the other types of
spatial interactions (Figure 40). This way we assumed that (i) in the examined
period there were no significant correlated shocks affecting firms based on their
supplier connections, and (ii) the credit supply shocks did not spread through
any other unobserved channels.

48It depends on whether we are using W , or WT .
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Figure 40: The different terms of the SLX model framework capture all the mechanisms
which are relevant for the model. Xβ refers to the direct effect of credit supply shocks,
while WXζ captures the spreading of the shock on the production network. (The term ρWY
represents the SAR part for which the interpretation would be that a given firms’ probability
of becoming non-performing depends on its buyers’ or suppliers’ probability of becoming non-
performing on their loans. The λW is the SEM term referring to shocks which would jointly
affect firms that are connected to each other in the supplier network. As we are only interested
in WXζ in this application, we formulated a panel logit SLX specification without including
the other types of spatial interactions.)

This relatively simple framework makes it possible to flexibly include further
time and spatial lags, and even more than one spatial weight matrices. As Wi,j

is defined as firm i sells to firm j, than the matrix W kX would represent shock
spreading to the upstream direction from distance k, while (WT )kX would mean
shock propagation to the downstream direction from distance k. By including
these matrices up to k = 4 in the estimation49, we can have separate coefficients
for different spatial lags for upstream, downstream and horizontal contagion as
well.

To avoid any concerns about the potential endogeneity of the supplier ex-
posure matrices, we are exploiting the time dimension of the data by using the
one-year lagged versions of them. As we are considering only long-term supplier
connections, the usage of the lagged versions does not cause significant infor-
mation loss, but it can assure that the endogenous nature of link formation will
not interfere with the spreading process.

A further difficulty which needs to be addressed is the handling of firms
without loans. Ignoring them completely during the estimation would also mean
their removal from the supplier network. However, even if a firm does not have
any bank connection, and cannot experience credit supply shocks directly, it
still can have a role in propagating shocks which were originated elsewhere in
the production network. In order to preserve these pieces of information, we
delete these firm only after calculating all the higher order matrices. This way
we can retain all the indirect pathes between firms even if we disregard firms
without loans during the estimation.

49As the average shortest path length of the production network is 4.9 with a standard
error as low as 1.1, investigating four steps in both upstream and downstream directions is
sufficient to cover the vast majority of potential shock propagation.
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After taking into account all the considerations above, we arrive at our final
specification, which gives estimates for all the parameters in Equation 66:

NPt = β0 + βcssCSSt +

4∑
k=1

[
βcsskus

(W̃F
us,t−1)kCSSt + βcsskds(W̃F

ds,t−1)kCSSt
]
+

βcssds→us
CSSds→us,t + βcssus→ds

CSSus→ds,t +Xtβcontrols + εt
(66)

whereNPt is a dummy variable indicating whether a firm became non-performing
(defined as more than 90 days delinquency) in the given year. In the estima-
tion we included as controls firms’ revenue, ROA, liquidity buffer, size category,
the export share of their revenue and a dummy variable indicating state owned
companies. Furthermore, we added fixed effects for firms’ industry, regional
location and for the year.

According to the results (Table 9), the impact of credit supply shocks can
be significant even two steps away in the supplier network. Although in the
case of upstream propagation, p-values are a bit higher at distance two from
the source of the shocks, we included even this level of spreading in the model
as they are not that far away from the significance levels of the downstream
case. However, in the case of distance three and four there is no indication of
any effect of the credit supply shocks. Regarding the horizontal channels, our
results indicate significant spreading only when the shock is firstly transmitted
towards a supplier and then to another buyer of that supplier, but not for the
reverse situation, so in the end we excluded the cssds→us channel by setting its
parameter to zero in the model.
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Table 9: Regression Results

Dependent variable:

Probability of default on loans

Logit (1) Logit (2) Logit (3) Logit (4) Logit (5) Logit (6)

css0 −0.030∗∗ −0.028∗∗ −0.029∗∗ −0.028∗∗ −0.028∗∗ −0.028∗∗

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)

css1us −0.070∗∗∗ −0.055∗∗ −0.058∗∗ −0.057∗∗ −0.060∗∗

(0.022) (0.023) (0.024) (0.024) (0.025)

css1ds −0.121∗∗∗ −0.068∗ −0.073∗ −0.065∗ −0.035
(0.033) (0.038) (0.039) (0.039) (0.042)

css2us −0.079 −0.105 −0.111 −0.110
(0.057) (0.068) (0.070) (0.072)

css2ds −0.245∗∗ −0.307∗∗ −0.352∗∗ −0.306∗∗

(0.105) (0.143) (0.145) (0.147)

css3us 0.099 0.113 0.098
(0.143) (0.193) (0.193)

css3ds 0.219 −0.153 −0.164
(0.336) (0.426) (0.431)

css4us −0.058 −0.037
(0.469) (0.469)

css4ds 1.088 1.137
(0.737) (0.739)

cssds→us 0.030
(0.052)

cssus→ds −0.104∗

(0.055)

Constant −5.124∗∗∗ −5.119∗∗∗ −5.125∗∗∗ −5.126∗∗∗ −5.128∗∗∗ −5.117∗∗∗

(0.405) (0.407) (0.408) (0.408) (0.408) (0.409)

Year dummies X X X X X X
Industry dummies X X X X X X
Location dummies X X X X X X
Controls X X X X X X

Observations 91,528 91,528 91,528 91,528 91,528 91,528
Log Likelihood -7,863.209 -7,847.722 -7,843.375 -7,842.913 -7,841.987 -7,839.985
Akaike Inf. Crit. 15,796.420 15,769.440 15,764.750 15,767.830 15,769.980 15,769.970

Note: Robust standard errors are clustered by banks. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Since the coefficients of our estimation are odds ratios which cannot be used
directly as parameters in the model, we had to calculate the marginal effects
to obtain interpretable results. After this step, we arrive at the final feedback
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parameters (Table 10):

css0 css1us css1ds css2us css2us cssus→ds cssds→us

0.0008 0.0013 0.0007 0.0010 0.0051 0.0900 0.0000

Table 10: Average marginal effects of the estimated feedback parameters.

As a robustness check, we performed the same estimation using the indirect
credit supply shock variable as well. Although in this case we had significant re-
sults only for the one-step downstream shock spreading with the indirect shocks,
and the marginal effects were somewhat different as well, the overall impact of
the credit supply shocks were similar to that of the main specification. We show
this in Appendix E using one of the applications as an illustration.

A further important consideration could be that the parameter values in
Table 10 were estimated using data on yearly frequencies, however, some appli-
cations of the model might require a shorter time scale for the simulation. In
these situations we adjusted the parameters proportionally; e.g. if we consid-
ered only a three months time window (for instance in a liquidity stress test),
we divided the parameters by four to handle the mismatch with the estimation.

5.4 Applications

Since the primary objective of this model is to offer a versatile tool for var-
ious policy analyses, we present here three potential applications: (i) Firstly,
we embedded the model into a liquidity stress testing framework, (ii) then we
elaborated a way to use it for SIFI identification, and lastly (iii), we show an
example of assessing the impact of shocks originated in the real economy. (Addi-
tionally, we offer a brief comparison of our model with the DebtRank algorithm
in Appendix F.)

5.4.1 Embedding the model into a liquidity stress test

As one of the first applications, we embedded the model to the liquidity stress
testing framework of the Hungarian Central Bank. This liquidity stress test has
been featuring contagion channels in the banking system since 2016, however,
we could add now a unified shock propagation modeling block with feedback
mechanisms from the real economy. During the implementation we used the
standard stress scenario of the liquidity stress test (presented in the central
banks’ biannual Financial Stability Reports), which is a complex exogenous
shock calibrated to the 2008 crisis (Table 11).
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Assets Liabilities

Item Degree
Currencies

affected
Item Degree

Currencies
affected

Exchange rate
shock on
derivatives

15
per cent

FX
Withdrawals
in household
deposits

10
per cent

HUF/FX

Interest rate shock
on interest rate
sensitive items

300
basis
points

HUF
Withdrawals
in corporate
deposits

15
per cent

HUF/FX

Calls in household
lines of credit

20
per cent

HUF/FX
Withdrawals
in debt from
owners

30
per cent

HUF/FX

Calls in corporate
lines of credit

30
per cent

HUF/FX

Table 11: Components of the liquidity stress scenario of the Hungarian central bank.

When we ran the stress test simulation using only a limited version of the
framework which did not contain any contagion mechanisms, only one out of
the nine largest banks was unable to comply with the LCR during the stress
scenario. If we enabled for contagion channels in the banking block only, two
out of the nine largest banks have become unable to comply with LCR even with
using adjustment opportunities. In this case, an additional e 258 million fire
sales loss and e 5 million interbank loss occurred in the banking system. After
enabling the real economy feedback channels as well, 0.5% of the firms in the
model went bankrupt causing e 184 million loss for banks on defaulting loans.
Furthermore, losses due to fire sales further increased by e 41 million, and a
third bank went below the regulatory requirement, but this time it happened
due to solvency insufficiency. Although it is still the fire sales channel which
is responsible for the largest chunk of banks’ losses in the simulation, the real
economy feedback contributes by almost the same extent. We also noticed that
the loss-based ranking of the banks has changed as well after we enabled the
feedback mechanisms. (Figure 41)
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Figure 41: Results for the nine largest banks in Hungary (based on 2017 data).

From the point of view of systemic risks and financial stability, it is clear
that ignoring the feedback mechanisms can lead to the severe underestimation
of risks and potential losses in this shock scenario. Furthermore, while the
interlacing between the liquidity and the solvency problems was largely hidden
in the reduced stress testing frameworks, the real economy feedbacks made this
aspect also more pronounced. Additionally, by including the feedback channels
we can gain some insight into the impacts of a banking sector liquidity shock
on the non-financial firms as well. (Although we do not claim that the model is
capable of giving a full picture about all the consequences of the stress scenario
on the real economy.)

5.4.2 SIFI identification based on Shapley value

The problem of identifying systemically important financial institutions (SIFIs)
has been dealt with by numerous papers, among which we relied in this exercise
on those using the concept of Shapley value (Tarashev et al. (2011), Bluhm et
al. (2014), Aldasoro et al. (2017)). Shapley value is a concept originated in game
theory, and it was developed to allocate the outputs generated in cooperative
games among agents (Shapley, 1953).

The typical technique how the Shapley value is applied for SIFI identifica-
tion is to calculate the difference between the system-wide losses occurring after
a shock event with and without the participation of a given bank in the simula-
tion of the banking system. We calculated this difference for the idiosyncratic
default of each bank, however, Shapley value in its original form would require
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to repeat this calculation for all the possible subsystems of the banking system
(f(NSUB)−f(NSUB− i)). The actual Shapley value would be then the average
of the additional losses that a bank generates by participating in any subsystem
of the bank network:

Shapleyi =
1

n

n∑
ns=1

1

c(ns)

∑
NSUB⊃i

[
f(NSUB)− f(NSUB − i)

]
(67)

where Shapleyi is the Shapley value of bank i, NSUB ⊃ i denotes all the subsys-
tems that contains bank i, ns means the number of banks in a given subsystem

and c(ns) = (n−1)!
(n−ns)!

(ns−1)! is the number of subsystems containing bank i and

are comprised of ns banks.

Due to computational constraints, we did not perform the calculations for all
the subsystems, only for the whole bank network50. This way, our Shapley-based
measure for bank i is the average difference between the aggregate system-wide
losses (caused by the idiosyncratic default of each bank occurring one by one)
with and without the presence of the bank in interest51:

SIFIi =

N∑
m,n
m 6=n

Sm,n −
N−1∑
p,q
p 6=q

S−ip,q (68)

where S is an N × N matrix, in which N denotes the number of banks, and
Sm,n is the losses suffered by bank n after the exogenous default of bank m.
S−i is an (N − 1)× (N − 1) matrix which contains the losses occurring without
the participation of bank i in the system. The main diagonals of these matrices
are ignored in this application.

In order to gain more detailed insight in the sources of systemic risk for each
bank, we present our SIFI measure decomposed into three factors:

• System-wide losses due to a given bank’s default:

DamagingPotentiali =

N∑
n6=i

Si,n (69)

50Castro et al. (2017) proposed a polynomial method using stratified random sampling
with optimum allocation to estimate the Shapley value, however, for our purposes it is more
advantageous to simply ignore the subsystems since we are more interested in the importance
of institutions when the whole system is present.

51When a bank is deleted from the system, all the links attached to it will be removed
as well. To avoid interference with the simulation of the model, we assumed that the banks
which borrowed from the removed institution can replace their interbank funding with other
financing sources offering the same conditions, while the assets of the removed bank are
reallocated to agents outside of the model.
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• A given bank’s losses due to other banks’ defaults:

V ulnerabilityi =

N∑
m6=i

Sm,i (70)

• Other banks’ extra losses due to the amplification of the impact of other
banks’ defaults by bank i:

Amplificationi =

N∑
m6=i

N∑
n 6=i

Sm,n −
N−1∑
p=1

N−1∑
q=1

S−ip,q (71)

The importance of these factors can vary across the examined banks. (Figure
42) There are banks, whose systemic importance comes from their vulnerability
to shocks. Other banks might be resilient from this aspect, but their default can
cause severe damage in the banking system. The amplification component has
notable role only in the case of one examined bank, which indicates that either
the complexity of the Hungarian bank network was not high enough (in 2017) to
make it possible for a bank to cause severe damage only by transmitting losses,
or at least the assumed idiosyncratic shocks were too weak to trigger cascading
failures.

Figure 42: Decomposed SIFI index of the nine largest banks (2017). (Although the units
of this SIFI index are expressed in Hungarian Forint, they would be difficult to interpret as
amounts of money since they are the sums of the differences between aggregate losses in the
case of multiple scenarios.)
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5.4.3 Impact assessment of real economy shocks

Our model contains elaborated details only for the banking system, but not
about any other sector of the economy. However, in a limited form it might still
be possible to examine the effects of shocks coming from the real economy if we
keep in mind that in this framework, shocks have to be translated into the change
in firms’ probability of becoming non-performing. This way we can capture only
the credit loss and the supply chain contagion aspects of real economy shocks,
which is far from being a complete assessment. With this caution in mind, we
attempted to assess the consequences of shocks originated in certain industries
on the banking system. A recent example of an unexpected stress event can
be the COVID-19 pandemic, which had very severe impact on some industries
whose firms could transmit the shock to other industries, and to the banks as
well.

As a first step in this analysis we identified the most vulnerable industries
to this shock using four-digit NACE categories. Most of the affected sectors in
Hungary belong to the manufacturing, wholesale and retail trade, transporting,
storage, accommodation, food service activities, real estate activities, adminis-
trative and support service activities, arts, entertainment, recreation and other
services activities. (A detailed table about the affected sectors can be found in
Appendix G.) We assumed that these directly affected firms have 100% suscep-
tibility for being hit by the shock, which means the maximum exposure to the
shock.

After the identification of the most involved sectors, we calculated the in-
direct exposures (up to four steps) to these industries in each firm’s revenue.
(E.g. if 20% of firm A’s revenue comes from buyers belonging to the directly
affected sectors, then firm A’s exposure will be 20%. If there is another buyer
of this firm, which is responsible for another 20% revenue and it has 50% expo-
sure, then the vulnerability of firm A will be 20% + 10% = 30%.) During this
procedure we did not include the directly affected firms as they have reached
already the maximum level of involvement with the crisis52. To acknowledge
some heterogeneity among firms, we corrected their exposure with firms’ poten-
tial liquidity buffers53. We calculated these buffers in the proportion of their
revenue as well, so we could simply subtract it from the exposure measure.

As we estimated only the parameters governing shock spreading and feedback
in the case of credit supply shocks (which would not be applicable here), we had
to make some assumptions about the connection between this shock and firms’
probability of becoming non-performing. If the final value of the exposure was
100%, or a firm operates directly in some of the affected sectors, we increased

52It also means that directly affected firms cannot amplify shocks further. E.g. if a firm has
a buyer belonging to one of the directly hit industries, and this buyer is responsible for 10%
of the firm’s revenue, then there cannot be second, or higher order contagions through the
same buyer, as the whole 10% exposure has been already taken into account as vulnerability.

53We calculated basically the quick liquidity ratio with a slight modification: We took the
difference between the numerator and the denominator from the original formula.
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the probability of becoming non-performing by ∆PD percentage points. If the
vulnerability was below 100%, we decreased the ∆PD parameter proportionally.
These PD values could be directly fed into the model as inputs to simulate the
effects of this shock. As we do not know the exact value of ∆PD, we ran the
simulation ten times increasing it by five percentage points each time.

Figure 43 shows the number of lost jobs due to the defaulting firms, and the
losses of the banking sector in the case of different values of the ∆PD parameter.
Figure 44 illustrates the losses separately for the nine largest Hungarian banks54.
If one considers the direct scenario, the banking system could suffer a loss of
more than e 1.1 billion, which is equivalent to almost 13% of the equity in the
banking system.

Figure 43: The number of lost jobs and the losses of the banking sector in the case of
different values of the ∆PD parameter.

54Since our data are about 2017, the results should also be interpreted as if the shock had
happened in 2017.
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Figure 44: Losses of the nine largest Hungarian banks in the case of different values of the
∆PD parameter.

Other shocks coming from the real-economy could be included in a similar
fashion, however, for the sake of reliable interpretation of the results, it is neces-
sary to thoroughly explore the connection between firms’ exposure to the shock
and their probability of becoming non-performing on their loans. Although we
do not have yet the necessary statistics to calibrate all the parameters in the
case of the COVID-19 crisis, the results can still indicate a plausible range for
the expected consequences.
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6 Discussion and conclusion

There is an increasing interest in several areas of economics towards the inclusion
of networks not only in theoretical models but also in empirical analyses. This
thesis contributes to these endeavours in a threefold way: (i) it provides insights
into the basic structure and the unique traits of micro-level firm network data;
(ii) secondly, it introduces a model of shock spreading in firm-level production
networks, which makes it possible to rectify several shortcomings of industry-
level supply chain analyses; (iii) and lastly, it offers a novel way of modeling
feedback channels between the financial sector and the real economy in the
context of interacting economic networks.

In order to make it possible to investigate firm networks, I obtained access
to sensitive datasets about the ownership links and the supplier connections of
Hungarian firms. Using these sources it has become possible to build the multi-
layer representation of the Hungarian firm network which enabled us to gain
insight into its previously unobserved structure. Although this data is almost
unmatched in the literature, it is very important to acknowledge that it still
has limitations regarding its completeness; furthermore, that it requires careful
preparations which is highly dependant on the application.

In the case of ownership networks, three issues needed to be addressed to
avoid serious biases: the distribution of ownership shares, the computation of
indirect links and the weighting based on the size of the firms. The resulting
ownership system proved to be very sparse and disconnected, however, it still re-
vealed some topological characteristics and the typical motifs at the micro-level.
It was also possible to assess the significance of economic entities regarding the
extent to which they can influence and control the economy via their ownership
relations. The same investigation has been conducted also at more aggregated
levels revealing the role of different groups formed based on several characteris-
tics, such as the nationality, the legal category or the HQ location of the owners.

In the case of the supplier layer, the network has been collapsed to the level
of ownership groups, where it became possible to accurately define long-term
connections. The analysis of this system identified several topological charac-
teristics, which can be responsible for facilitating contagious processes. This
network has high enough density to allow the emergence of a giant component,
within which one can reach any firm with only a few steps. This is due to the
presence of hub nodes having very high degree and bridge nodes which connect
the otherwise isolated blocks of the economy. These blocks were identified by
community detection methods and they were shown to represent the different
production chains of certain product categories within the economy. In addi-
tion to these topological traits, the network also demonstrated strong homophily
based on several firm attributes.

These pieces of information enabled the building of a microsimulation model
of shock propagation to quantify short-term damages after supply chain disrup-
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tions in the production network. It turned out that from the point of view of
shock propagation, I-O tables offer an unreliable grouping due to the fact that
the core input structure of firms is very heterogeneous within even fine grained
(NACE 4 level) industry classes. The granular approach proposed in this the-
sis makes it possible to consider this heterogeneity in the production processes
of firms by allowing to differentiate in their production functions and in the
importance of different input types.

The first application of this model quantified the systemic risk of firms by
simulating the effects of distinct upstream and downstream spreading mecha-
nisms on the production network. These simulations showed that only less than
100 firms have the potential to destroy more than five percent of the Hungar-
ian national production network, and hence, pose a significant threat to the
overall economy. In the case of the default of even only one of these compa-
nies, up to 21% of all production can be affected, however, the vast majority of
the firms have only very limited impact on the production network. Addition-
ally, the analysis offered a lower bound of firm-level systemic risk by assuming
only linear production functions, and upper bounds by assuming only Leontief
production functions. Due to the high-resolution approach the most influential
companies could be explored in more detail. The list of the top 100 most system-
ically important firms contains not only intuitively expected large companies,
but also quite a few SMEs. This means that the default of relatively small, but
crucial suppliers can have similar system-wide implications just as in the case of
the largest companies. Hence, the knowledge of the systemic riskiness of single
firms has a pivotal role in understanding and preventing potentially large failure
cascades in these networks. Finally, it was shown that the different allocations
of an industry-level shock among firms in a given sector can lead to a wide distri-
bution of cascade sizes. This heterogeneity remains hidden if one cannot see the
fine-grained structure of the supplier network. This way, the proposed model is
suitable to evaluate more accurately defined shocks, and to assess the potential
damage range of an industry-level shock considering different affectedness for
individual firms.

The last chapter described a novel way to analyse the financial stability of
an economy in a microsimulation environment which is suitable to capture con-
tagious mechanisms in an interconnected system of economic networks. More
specifically, it considered the interactions between the network of banks (exhibit-
ing contagious mechanisms among them) and the network of firms (transmitting
shocks to each other along the supply chain) which systems are linked together
primarily via loan-contracts. As the previously described production network
model does not consider the financial situation of firms, it cannot accommo-
date shocks coming from the banking sector. To circumvent this problem, a
data-driven, econometric approach has been applied to determine (i) the ef-
fect of credit supply shocks on firms, (ii) the extent to which these shocks are
augmented in the production network, and (iii) the implications on firms’ prob-
ability of becoming non-performing on their loans.
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The results of this model confirmed that the feedback mechanisms between
the coupled financial and real economy networks can amplify the losses in the
economy beyond the shortfalls expected when considering the interacting sub-
systems in isolation. As a first test for this, the model has been embedded into
the liquidity stress testing framework of the Central Bank of Hungary, and the
results proved the importance of the real economy feedback channel, without
which systemic risks could potentially be severely underestimated. The inclu-
sion of this feature did not only doubled the system-wide losses, but it also made
the connection between liquidity and solvency problems more pronounced. To
illustrate the versatility of this modeling framework, two further applications
were presented for different policy purposes. Firstly, the model was used for
SIFI identification, which showed that the source of the systemic importance
of banks can greatly vary between the damaging potential of their default and
their vulnerability to shocks coming from other banks. Secondly, the example
of the COVID-19 pandemic was used to illustrate how the impact of shocks
originated in the real economy can be assessed by the model.

Given the wide range of potential further applications, a more elaborated
embedding of the financial system in the real economy would be certainly de-
sirable. The presented framework could be extended in several directions from
this point of view. Regarding the financial sector, at the moment only banks are
included but no other financial institutions (such as the insurance sector, invest-
ment funds or central clearing counterparties), which can contribute greatly to
the complexity of the economy. However, the current representation of the real
economy was even more simplified. A significant upgrade would be to model the
operation of firms more comprehensively. This would make it possible to reflect
on the now missing credit demand component, and one could also include shocks
coming from outside the financial sector more realistically. In an even more gen-
eral model it would also be possible to generate endogenous shocks. Nowadays
researchers usually impose an exogenous stress scenario calibrated to a crisis
event to see how the modelled mechanisms amplify the initial shock. However,
in reality, these mechanisms are also responsible for the shocks growing to the
initially observed extents.

In parallel with these opportunities one should also be aware of some pitfalls
during the elaboration of more and more details of the economy in a data-driven
simulation environment. This line of research would lead to the territory of
agent-based macroeconomic modeling, for which one of the greatest challenges
is to create detailed models, but preserve their tractability to avoid becoming
unfathomable “black boxes”. Furthermore, as it is apparent in this work, the
development of these models should go hand in hand with the advancement of
the empirical literature which produces vital information for the key parameters.
With sufficient awareness of these limitations, I believe that microsimulations
and computational models in economics are extremely useful and versatile tools,
which can be even further improved if the concepts of network science become
more embedded in the way we think about the economy.
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7 Appendix

7.1 Appendix A – Further description of the ownership
data

Depending on the year, we can observe around 800 000 ownership links among
almost 1 million actors covering the ownership structure of around 400 000 firms
(Table A.1).

Table A.1: Basic description of the ownership data

Year Number of firms Number of links

2015 367 857 774 944

2016 385 341 800 112

2017 405 823 824 293

2018 428 092 850 132

2019 454 540 884 059

The majority of the owners are individuals, while there are only yearly 51
000 – 66 000 links where the owner is a firm. According to Table A.2, the
ratio of firms is much higher in the case of foreign owners than in the case of
Hungarian owners (40% as opposed to 6%).

Table A.2: Number of links with foreign/HUN and individual/firm owners

Year Foreign individual Foreign firm HUN individual HUN firm

2015 18 908 13 815 704 626 37 595

2016 20 055 14 259 725 618 40 180

2017 21 224 14 686 745 363 43 020

2018 23 157 15 132 765 885 45 958

2019 26 691 16 413 791 120 49 835

As it is depicted on Figure A.1, the links of the network do not change
significantly from one year to another. Around 75% of the links are present in
all the five observed years.
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Figure A.1: Duration of links (in years) in the Hungarian firm ownership network

Furthermore, in the case of 35-40% of the links we can see even the extent
of the influence (expressed in percentages). However, sometimes (in 16 000-19
000 cases depending on the year) we found firms with ownership links where the
sum of the overall influences exceeded 100%. In these cases we corrected the
influence for each owner proportionally to make the sum equal to 100%. For
links where the influence information was missing, we used a simple imputation
method by dividing the missing amount of influence among the remaining own-
ers. (For example if we observed a link with 50% share, and we could also see
that there are two more owners associated with the same firm without influence
information, we simply divided the missing 50% between the two remaining
owners equally.)

Using firms’ anonymized tax numbers as keys, we could connect the owner-
ship data to another dataset coming from the Hungarian Tax Authority, which
contains several firms characteristics. Although the overall quality of the data is
quite good, it is far from being complete: we cannot see tax numbers in 25-30%
of the Hungarian owner firms, and the dataset is even more incomplete in the
case of listed companies, for which we rarely observe the ownership structure.

7.2 Appendix B – Weighting of firms’ influence

As it is depicted in Figure B.1.a), the total controlled value of firm A would be
the sum of the following elements:

120

C
E

U
eT

D
C

ol
le

ct
io

n



• 100% of firm B’s value via a direct link between A and B;

• 50% of firm C’s value via a direct link between A and C; and

• 50% of firm C’s value via the indirect link between A and C through B.

However, as B’s whole value is originated from its ownership over 50% of C,
the direct link between A and B and the indirect link between A and C through
B overlap. As a result, we inflate A’s total controlled value stemming from this
system of ownership ties.

Figure B.1: The calculation of indirect control in the ownership network

Direct ownership links are indicated by solid lines, while indirect links represented by
dashed lines. Bold font shows changes between a), b) and c).

Figure B.1.b) shows a possible correction by reducing firm B’s value by
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the part which comes from its ownership over firm C. This method might
seem simple, however, if we generalize it for the whole network, it becomes
very demanding to implement. We would have to examine every paths in the
network and correct all the members of these chains (except the endpoints). As
it is computationally infeasible, we turned to a simplification of the problem.
We wanted to find a node attribute, which is independent from the ownership
structure, but conveys some information about firms’ value. The best candidate
meeting these requirements is the value added of firms, which can be directly
applied as a replacement for the previous value proxies (as it is shown in Figure
B.1.c)).

7.3 Appendix C – Further description of the supplier data

We observed the supplier system between 2014-2017, however, the quality in the
first year was very poor probably due to the inexperience of both the author-
ities and the firms in the new reporting requirements. Because of this reason
we considered only the period between 2015-2017 in our analysis. The basic
description of the network properties of these years can be seen in Table C.1.

Table C.1: Description of the supplier network between 2015-2017

2015 2016 2017

Number of nodes 63 772 79 049 89 778

Number of edges 153 006 205 105 235 913

Density 3.76e-5 3.28e-5 2.93e-5

Average in-/outdegree 2.39 2.59 2.63

Shortest path lengths (avg.) 5.05 4.7 4.92

Shortest path lengths (st.dev.) 1.2 1.1 1.1

Local clustering (avg.) 0.071 0.077 0.078

Reciprocity 0.13 0.11 0.11

Although the general quality in these years is high, we still had to make a
few correction. We filtered for situations where the VAT rate calculated from
the supplier network data deviates from the official rate (which is 27% in the
examined period). We also corrected, if the tax amount and the purchase value
was mixed up. Furthermore, we checked the consistency between the sales
revenue of firms (coming from corporate tax declaration data) and the sum of
the purchases of a given firm’s products and services observed in the supplier
network.

Besides the EUR 3000 reporting threshold there is another limitation of
the analysis of the supplier network, which is coming from the lack of interna-
tional trade links in the data. To assess the overall significance of missing links,
we connected the supplier network to another dataset (also coming from the
Hungarian Tax Authority), which is collected as part of the tax declaration of
firms. Due to the sensitivity of these pieces of information, we had to use firms’
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anonymized tax numbers as keys to merge the different data sources (similarly
to the case of the ownership network). This data contains several characteristics
related to firms’ balance sheets and profit and loss statements, among which we
can observe their yearly material costs as well. Although the comparability of
these datasets is not perfect, it was possible to compare the sum of the reported
supply transactions for a given firm to its aggregate material costs. This exer-
cise revealed that around 50% of the material costs cannot be matched to the
supplier network (Figure C.1). In the case of the larger firms, the main reason
for this disparity is probably the unobserved import, while for smaller firms the
value threshold is more likely to be the dominant constrain.

While the lack of international trade data is an important limitation (es-
pecially because Hungary is a small, open economy vulnerable to cross-border
shock spreading), it should be noted that even by observing the direct import-
export links, one would still gain only a limited coverage of international expo-
sures. Shocks affecting Hungary can originate way further away in the interna-
tional trade network, hence, to be able to fully resolve this caveat one would
have to be able to observe the whole global supplier network.

Figure C.1: Ratio of the sum of supplier transactions and material costs of firms by company
sizes.

According to the regulation, the frequency of the reporting can be yearly,
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quarterly or monthly depending on the size of the firms and on the weights of
the firms’ supplier links. As it is shown on Figure C.2, the vast majority of the
firms report monthly, however, we used yearly aggregation even in these cases
for two reasons: (i) we need longer periods to define long-term relationships;
and (ii) the other datasets with which we want to connect this network are also
on yearly frequency.

Figure C.2: The frequency of firms’ reporting about their supplier relationships

A further interesting feature of this data reporting is that firms are required
to submit information not only about their partners whom they are buying
from, but also about their buyers. This made it possible to build the supplier
network from both directions, and examine their differences. If we construct
the network from connections where the subject firm reports its suppliers, we
have to face the problem, that there are suppliers not subject to the VAT, which
results in missing information. However, when one uses the connections where
the subject firm reports its buyers, another problem can emerge, namely that
firms are less motivated to report as these transactions entail VAT obligations
for them. As both approaches has different shortcomings, and even the reporting
periods are not guaranteed to match for the two sides of a given transaction,
the overlap is – as expected – far from being perfect. Although it is impossible
to precisely assess the extent of these biases, we decided to use the former
approach because irregularities connected to VAT declarations are certainly not
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randomly distributed, therefore, they can distort the results more seriously. This
issue offers another research direction connected to the detection of fraudulent
activities, however, this topic is outside of the scope of our analysis for now.

7.4 Appendix D – Description of the community detection
methodology

The task of detecting communities is closely related to the well-known clustering
problems. The reason why there are so many sophisticated network related
techniques in the literature is the concern of computational feasibility (coming
from the often enormous size and the complexity of the analyzed systems). In
almost every approaches of this challenge there are two pressing questions: (i)
how to measure how well the network is separated given a particular division,
and (ii) what algorithm to use to find the best grouping of the nodes55.

Our choice of the function describing the fitness of a given partition is a
widely-used measure called modularity (M. E. Newman, 2006). The intuition
behind this approach is that a good division of a network is not merely one in
which there are dense connections between nodes within modules and sparse
connections between nodes in different modules. A better formulation would be
to say that we are looking for a partition in which there are fewer than expected
links between communities and more than expected links within communities.
Corresponding to this idea, the modularity is the number of links present within
communities minus the expected number of links placed at random:56

Q =
1

2L

∑
i 6=j

(
Ai,j −

kikj
2L

)
δ(Ci, Cj) (D.1)

where Q denotes modularity, L is the number of links in the graph, and the
Kronecker delta indicates whether node i and j belong to the same community.

The higher the probability of a link is, the smaller its contribution to the
modularity score is. If the sum of the increments in the end is positive, that
indicates the possible presence of a community structure. Therefore, our goal
is to find the divisions of a network with the largest modularity score. Even in
our case with less than 100 thousand nodes, it would be obviously impossible to
go over all the possible partitions and calculate the modularity for all of them.
Blondel et al. (2008) proposed an agglomerative, multi-level modularity opti-
mization algorithm called the ”Louvain-method” which is based on a hierarchial
approach:

1. Initially, each node represents a community with a single member.

55It should be noted that in some cases a partition is not the best approach as there are
often overlapping communities.

56Random placement in this case means the randomization of the links with the preserva-
tion of the degree distribution.
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2. Every vertex is moved one-by-one to a community where the modularity
is increased in the largest extent by the reallocation of the given node.

3. In the second phase, each community is considered a new node on their
own, and the process goes back to Step 1.

4. The algorithm stops either when all the nodes are assigned in one all-
encompassing community, or when we cannot increase the modularity
anymore.

Although this type of modularity maximizations has some shortcomings, e.g.
it has a resolution limit and problems in detecting overlapping communities or
hierarchical structures (Javed et al., 2018), it is a widely accepted method which
can be relatively simply and reliably implemented even by using R’s Igraph
package. However, as the ”Louvain-method” is based on a stochastic algorithm,
it can give different results for different realizations. To overcome this problem
Tandon et al. (2019) proposed a method in which we aggregate the different
realizations using the fast consensus procedure:

1. Building the consensus graph based on existing links only to avoid too high
computational cost. (In the consensus graph two nodes are connected if
they belong to the same community.)

2. As two nodes do not necessarily belong to the same group in every re-
alization, we can use a threshold, below which we ignore the link. (For
instance, if we observe them together in less than 20% of the realizations.)

3. Adding triadic closure links (because nodes sharing neighbors belong to
the same community with higher probability).

4. Run our standard community detection algorithm on the consensus graph.

5. Iterate the procedure until we reach our tolerance level.

7.5 Appendix E – Indirect credit supply shock identifica-
tion

For the sake of tractability we start the description of this estimation by showing
a general modeling specification for the problem. If one assumes that the credit
demand of a multi-bank firm changes the same way towards all of its partner
banks, than the percentage difference between the changes in the amounts of
credits can be attributable to supply side factors (Figure E.1).
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Figure E.1: The amount of credits between firm A and bank B increases more than towards
bank A. If one assumes that the credit demand of the firm changes uniformly towards both
of its partner banks, then this difference can be attributed to supply side factors.

In this case, the lending Ψfbt between bank b and firm f at time t can be
decomposed into supply (βbt) and demand factors (αft):

Ψfbt −Ψfb,t−1

Ψfb,t−1
= αft + βbt + εfbt (E.1)

where we assume that the expected value of the error term is zero, E[εfbt] = 0.
αft captures all firm-specific characteristics and shocks which can affect its
borrowing, while βbt comprises all the bank-specific factors which can have an
impact on the credit supply of a given bank. Although Equation E.1 could
be directly estimated on our data coming from the credit registry, Amiti and
Weinstein (2018) highlighted that this formula ignores the aggregate equilibrium
on the lending market. That is, firms can only obtain new loans if a bank is
willing to provide that credit; and similarly, banks can increase their lending
activity only if there are firms soaking up the additional supply. They offer
an alternative formulation which corrects for this inefficiency and allows us to
consider newly formed loan contracts as well. According to this, the growth
in a given bank’s lending DB

bt can be expressed as the supply of the bank plus
the weighted sum of its client firms’ demand, where the weights are the share a
given firm had in the bank’s lending in the previous period:

DB
bt =

∑
f

(Ψfbt −Ψfb,t−1

Ψfb,t−1

)
× Ψfb,t−1∑

f Ψfb,t−1

= βbt +
∑
f

φfb,t−1 × αft +
∑
f

φfb,t−1 × εfbt
(E.2)

where

φfb,t−1 =
Ψfb,t−1∑
f Ψfb,t−1

(E.3)
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Analogously, the growth in a given firm’s borrowing DF
ft is the composition

of its own demand and the weighted sum of the supply of its partner banks:

DF
ft =

∑
b

(Ψfbt −Ψfb,t−1

Ψfb,t−1

)
× Ψfb,t−1∑

b Ψfb,t−1

= αft +
∑
b

θfb,t−1 × βbt +
∑
b

θfb,t−1 × εfbt
(E.4)

where

θfb,t−1 =
Ψfb,t−1∑
b Ψfb,t−1

(E.5)

As φfb,t−1 and θfb,t−1 are determined directly from the data, we can make
similar assumptions about the error terms as before: E

[∑
f φfb,t−1 × εfbt

]
= 0

and E
[∑

b θfb,t−1 × εfbt
]

= 0. With these moment conditions we arrive at a
system of linear equations with αft and βbt as unknowns:

DB
bt = βbt +

∑
f

φfb,t−1 × αft (E.6)

DF
ft = αft +

∑
b

θfb,t−1 × βbt (E.7)

Although this system consists of the same number of equations and un-
knowns (which is equal to the number of banks plus the number of firms) in
every year, the system is still under-determined as the sum of the shares in
lending are equal to one (

∑
f φfb,t−1 = 1 and

∑
b θfb,t−1 = 1). To be able to

find a unique solution, we have to impose an additional constraint, which can be
handled analogously to the dummy variable trap problem by choosing a refer-
ence category. To obtain economically interpretable results, we transformed αft
and βbt by subtracting their median respectively in every year. (This implies,
that banks’ credit supply shocks can only be compared to each other within the
given year. However, since we also include time fixed effects, this concern is
not problematic as the time-specific components are removed from the banks’
shocks.) The transformation gives us the following expression for the banks:

DB
t = (Āt + B̄t)ιB + Φt−1Nt + Φt−1Ãt + B̃t (E.8)

where DB
t is a vector containing the loan growth rates of banks at time t,

(Āt + B̄t) are the median firm and bank common shocks, which would affect
all firm-bank pairs the same way in year t. ιB is a vector of ones, Nt is the
vector of the average industry-level shock for all the firms, and Φt is the matrix
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of weights of all the loans of every borrowers:

Φt =

φ11,t . . . φF1,t

...
. . .

φ1B,t φFB,t


The first term in Equation E.8 represents common shocks, e.g. a change

in the key interest rates by the central bank, which would affect all lending
connections. The second term shows industry-level shocks to a given banks’
clients. It captures changes in a bank’s lending coming from its specialization
to some industries, which can make its lending activity differ from the general
trend. The third term can be interpreted as the change in the bank’s lending
due to idiosyncratic firm-level demand shock. Lastly, the fourth term represents
the credit supply shock of a bank which is independent from all the above listed
influences, so we can use it as a credit supply shock variable in our estimation of
feedback effects. Since this term was expressed as the deviation from the median
bank’s supply shock in year t, its interpretation is also relative to this median.
This way, the zero value of the credit supply shock does not mean unchanged
lending activity, but rather the median change in the system in a given year.
If a bank decreases its lending by 20%, but all the other banks’ lending drops
only by 15%, than the credit supply shock of the given bank will be 5%.

The described methodology of Amiti and Weinstein (2018) is based on firms
with multiple bank connections, regarding which we made a slight modification
following Degryse et al. (2017). As only a small portion of Hungarian firms have
multiple bank connections (Figure E.2), we wanted to enhance the external va-
lidity by including also firms with only one bank link. If the vast majority of
the firms were excluded from the estimation, βbt might not reflect the represen-
tative credit supply shocks of banks, but only those experienced by firms with
more bank connections. Since Hungarian firms show strong heterogeneity es-
pecially along the dichotomy of large, productive foreign-owned companies and
small, inefficient SMEs, representativeness might be essential in gaining correct
estimates.
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Figure E.2: Distribution of Hungarian firms based on the number of bank connections. Bank
connections are defined by credit contracts or financial leasing. (Based on 2017 data.)

The main idea of Degryse et al. (2017) is that firms with similar size, oper-
ating in the same region and in the same industry can have similar dynamics
in their credit demand as well. To exploit this information we replaced the
Time×Firm fixed effects with Location×Industry×Size×Time fixed effects
as control to demand-side factors in a given a year57.

The results of the parameter estimation using this indirect credit supply
shock variable are summarized below:

57The industry classifications are based on the two-digit NACE categories, location is
determined by the town of the headquarters of firms, while size categories are given by the
Hungarian XXXIV. SME regulation.
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Table E.1: Regression Results

Dependent variable:

Probability of default on loans

Logit (1) Logit (2) Logit (3) Logit (4) Logit (5) Logit (6)

css0 −0.047 −0.031 −0.032 −0.032 −0.033 −0.007
(0.121) (0.121) (0.121) (0.121) (0.121) (0.125)

css1us −0.957∗∗ −0.928∗∗ −0.910∗∗ −0.905∗∗ −0.846∗

(0.424) (0.427) (0.429) (0.429) (0.433)

css1ds −0.819 −0.892 −0.607 −0.596 −0.563
(0.706) (0.716) (0.740) (0.741) (0.747)

css2us −1.057 −1.088 −1.057 −0.966
(1.128) (1.145) (1.187) (1.187)

css2ds 1.697 2.424 2.192 2.340
(2.162) (2.139) (2.324) (2.320)

css3us 1.032 1.180 1.270
(2.993) (3.082) (3.052)

css3ds −8.499 −9.214 −9.415
(5.441) (5.945) (5.938)

css4us −2.380 −1.576
(10.274) (10.153)

css4ds 4.982 6.801
(15.479) (15.720)

cssds→us −1.244
(1.358)

cssus→ds −0.393
(1.297)

Constant −4.491∗∗∗ −4.487∗∗∗ −4.487∗∗∗ −4.485∗∗∗ −4.485∗∗∗ −4.485∗∗∗

(0.230) (0.230) (0.230) (0.230) (0.230) (0.230)

Year dummies X X X X X X
Industry dummies X X X X X X
Location dummies X X X X X X
Controls X X X X X X

Observations 156,110 156,110 156,110 156,110 156,110 156,110
Log Likelihood -16,639.930 -16,636.460 -16,635.750 -16,634.680 -16,634.620 -16,634.140
Akaike Inf. Crit. 33,351.870 33,348.930 33,351.500 33,353.360 33,357.250 33,360.270

Note: Robust standard errors are clustered by banks. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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css0 css1us css1ds css2us css2us cssus→ds cssds→us

0.0002 0.0190 0.0126 0.0216 0.0000 0.0090 0.0280

Table E.2: Marginal effects of the estimated feedback parameters.

To assess the sensitivity of our model to the differences between the feedback
parameters estimated using direct and indirect credit supply shocks, we used
the application in Section 6.1 as an illustration. After enabling the real economy
feedback channels in the model, 0.51% of the firms in the model went bankrupt
(as opposed to 0.53% in the main specification) causing e 175 million loss for
banks on defaulting loans (which is only slightly differ from the e 184 million
in the original results). Furthermore, losses due to fire sales further increased
by e 48 million (instead of e 41 million), and a third bank went below the
regulatory requirement the same way due to solvency insufficiency.

Based on these results, the main difference between the two specifications
seems to be that in the case of the indirect credit supply shock estimates the
role of the direct effect of the shocks is somewhat weaker, and the role of the
contagion among firms is stronger. However, the overall impact is basically
identical from the point of view of the losses in the banking system.

7.6 Appendix F – Comparison with the DebtRank algo-
rithm

One of the pioneering methods in the financial contagion literature was devel-
oped by Battiston et al. (2012). In their proposed model shocks can propagate
among banks through the interbank vulnerability matrix V :

Vi,j =
Ai,j
ei

(F.1)

where V is a N × N matrix, (where N is the number of banks), Ai,j denotes
the unsecured exposures of bank i towards bank j, and ei is the capital buffer
of bank i.

The DebtRank algorithm starts with initializing a N×1 vector b(0) contain-
ing the initial shocks to banks’ capital. If bi(0) = 1, then bank i lost all of its
capital, so the bank is in default. If 0 < bi(0) < 1, then the bank is distressed,
and finally if bi(0) = 0, then bank i is undistressed. Shocks propagate in the
banking network based on the following update rule:

bi(t) = min[1, bi(t− 1) +
∑
j∈Dt

Vi,jbj(t− 1)], (F.2)
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si(t) =


D, if bi(t) > 0 and si(t− 1) 6= I,

I, if si(t− 1) = D,

si(t− 1), otherwise.

(F.3)

in which si(t) ∈ {U,D, I} is a categorical variable showing whether a bank is
undistressed(U), distressed (D) or inactive (I). After convergence, the DebtRank
index DR is calculated by weighting the losses of banks by their economic value,
for which several proxies can be used. Now we simply use banks’ equity:

DR(b(0)) =
∑
i

(bi(t)− bi(0))ei, (F.4)

To compare this algorithm to the model proposed in Chapter 5, a straight-
forward strategy is to simulate the default of each of the 9 largest banks in
Hungary one by one, and compare the system-wide losses predicted by Deb-
tRank and also by our model. The result of this exercise is shown in Figure F.1.
It can be seen that there is a considerable difference in the outcome of basically
every bank default simulation. This dissimilarity can have many sources. Deb-
trank does not consider several of the contagion and adjustment channels which
are included in our model, but even higher order rounds of shock spreading are
ignored58.

Figure F.1: System-wide losses after the initial default of each of the 9 largest Hungarian
banks calculated (i) using DebtRank (ii) and our interacting network contagion model.

In the case of complex systems, even a slight variation of the initial conditions
can lead to strikingly different outcomes, so it is not surprising to see very

58This shortcoming was corrected by Bardoscia et al. (2015).
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different systemic impacts in this comparison. While now we do not compare
the results to any grand truth observation, it seems plausible to claim that the
extent to which a model captures the actual economic processes can matter
a great deal in accurately determining systemic risks in a complex financial
system.

134

C
E

U
eT

D
C

ol
le

ct
io

n



7.7 Appendix G – List of directly affected industries

Manufacturing 22xx, 25xx, 28xx, 29xx, 30xx

Wholesale and retail trade
4511, 4719, 4751, 4752, 4753, 4754, 4759,
4761, 4762, 4763, 4764, 4765, 4771, 4772,
4775, 4777, 4778, 4779, 4782, 4789, 4799

Transporting and storage 4930, 4932, 4939, 5010, 5030, 5110, 5223
Accommodation and food service activities 55xx, 56xx
Real estate activities 6810, 6820, 6831, 6832
Administrative and support service activities 7711, 7721, 7722, 7729, 7911, 7912, 7990
Arts, entertainment and recreation 9001, 9002, 9311, 9321

Other services activities
9511, 9512, 9521, 9522, 9523, 9524, 9525,
9529, 9601, 9602, 9604, 9609

Table G.1: List of directly affected industries.
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