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Abstract 

The long-standing Syrian Civil War which began as an uprising in 2011 has brought severe 

economic and social and environmental impacts in the country. One of the key environmental 

areas that require attention is the state of its limited water resources, particularly water quality 

which remains understudied due to lack of access to in situ data. This study addressed this research 

gap by utilizing remote sensing technology in the assessment of water quality (in terms of algal 

growth) of one of the most important waterbodies in the country – Lake Qattinah. Application of 

chlorophyll-a retrieval models revealed spatiotemporal patterns of algae characterized by relatively 

low algal concentrations in all seasons from 2013 to 2015, general increase and appearance of 

extremely high concentrations in certain areas of the lake beginning in 2016 , and decline from 

2017 to 2020. These decreases and increases which imply degradation and improvement of water 

quality, respectively, were found to be driven by the changes in the magnitude of surrounding 

human activities influenced by the war.  

 

The findings from this study can help in making better informed decisions on the management of 

Qattinah Lake. Moreover, as it provides quantitative and qualitative data on the algal dynamics in 

in an entire water body over a long period of time, it may serve as a framework for further research 

related both water quality and armed conflict. In practical terms, the methodological approach of 

this study can be adapted for the assessment of other remote and inaccessible inland lakes and 

reservoirs.  

 

 

Keywords: remote sensing, water quality, algae growth, chlorophyll-a, armed conflict 
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INTRODUCTION 

Freshwater resources such as rivers, lakes and reservoirs provide a wide range of benefits and 

services vital to life. These include provision of water for consumption, energy production and 

natural hazard regulation among many others. However, these water bodies have been subjected 

to intense anthropogenic pressures like overextraction and pollution. Such pressures can threaten 

human and animal health, reduce the productivity and diversity of the ecosystems, and bring 

damage to agriculture, industries, aquaculture and other human activities relying on the water body. 

Lakes and reservoirs undergo a highly accelerated process of eutrophication driven by 

anthropogenic activities that discharge excessive nutrients to the water bodies, thereby causing 

degradation of water quality. Population growth, food production (agriculture, animal operations 

and aquaculture), and energy production and consumption are among the main driving forces of 

the phenomenon (Glibert et al., 2005).  

 

One of the symptoms of degrading water quality is the proliferation of algae in the surface of the 

water bodies. Suspended algae or phytoplankton, photosynthesizing organisms whose growth and 

productivity depends on the supply of nutrients, are important source of organic matter that 

support the food chain in freshwater ecosystems. However, its excessive amount in freshwater 

bodies leads to water quality deterioration. On the global scale, there has been demonstrated strong 

correlations between phosphorus nutrient input and phytoplankton production in freshwaters, and 

between total nitrogen input and phytoplankton in estuaries and marine waters (Anderson et al., 

2002).  Other relevant factors that drive algal blooms are algal species presence/abundance, water 

exchange, weather conditions, and presence of grazers (zooplanktons that feed on phytoplankton). 

Deteriorated water quality due to algal blooms is characterized by foul odors and tastes, 
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deoxygenation of bottom waters, toxicity, fish kills and alterations in food web (Anderson et al., 

2002; Brooks et al., 2016). 

 

Measurement of chlorophyll-a concentration is a widely used alternative in measuring algal 

biomass in water bodies. Conventional measurement of algal concentration in waters involve 

rigorous data collection wherein samples of water are taken and measured in the laboratory. While 

it provides accurate measurement, it is expensive, time-consuming, and labor intensive. It becomes 

more challenging for remote and inaccessible areas including those subjected to an armed conflict. 

In this case, remote sensing technology offers a wide spatial and temporal range of data that can 

be used to assess water quality in areas where in situ data collection is not feasible and/or safe.  

 

This study presents the case of the freshwater lake in Syria – Qattinah Lake. The country, located 

in the Middle East has been struggling with a long-standing civil war which started as an uprising 

against the government in 2011. Years of intense fighting has claimed thousands of lives and has 

caused massive destruction of infrastructures and affected provision of basic services, forcing 

majority of the population to leave their homes and seek refuge either in other parts of Syria or in 

neighboring countries such as Lebanon and Turkey. Other than these direct impacts, war also 

brings about environmental damages – a form of damage that receives less attention but can 

potentially bring major harm on the economy, public health, and peace itself (Gaafar, n.d.). This 

study focuses on one environmental aspect which is the water quality of one of the major water 

resources in the country – Qattinah Lake. It aims to see the spatial and temporal patterns of water 

quality degradation in the lake with focus on estimating algal concentration before and during the 

war. In addition, it aims to relate these patterns with the development of war by looking at the 

impact of the armed conflict on the polluting human activities that surround the lake.  
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Significance of the study 

Determination of appropriate management strategies and policies to apply on lakes and reservoirs 

require data on water quality parameters ideally acquired over a wide range of time and 

encompassing the entire lake. For the case of Syria, collection of field measurements and access to 

historical data is challenging due to accessibility and safety issues brought about by the ongoing 

war. The water resources in the country is scarce and have been subject to the negative impacts of 

human activities. One of the main issues is quality degradation which has been a known 

phenomenon prior to the war. Situated in the most productive region of the country, Qattinah 

Lake has been one of the main sources of water for important activities in the country such as 

agriculture and industries. This lake has been known to be highly polluted (Fanack Water, n.d.). 

However, there have been no studies assessing its water quality since the war began. This is 

understandable due to the inaccessibility of the area, thus limiting the collection of data in the lake.  

Remote sensing technology can offer a wide range of multi-temporal data that can aid the lack of 

access to in situ data. The use of this technology can fill the knowledge gap and provide an 

understanding on how the war has influenced this water resource.  

 

This study will utilize remote sensing technology as a tool to fill the knowledge gap on the more 

recent impacts of the conflict on the quality of a particular lake. Understanding the spatial and 

temporal patterns of algae will provide important insights towards proper management of the lake 

especially now that the country is undergoing some rehabilitation efforts. This study will solely be 

based on freely available satellite data and completely independent of in situ data. With this, the 

methods and findings that will be developed in this study can be applied to other lakes or reservoirs 

that are currently inaccessible or those that lack historical and present data. This study will also 

present a perspective on the indirect impact of war in a water quality in the form of its influences 

to the pollution sources around the lake.  
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Research Aims and Research Questions 

This study aims to assess the water quality of Qattinah Lake prior to and during the war by utilizing 

remote sensing technology to estimate algal concentrations. It also seeks to find the war-related 

anthropogenic driving forces that influence the water quality patterns. With these, the following 

research questions (RQ) will be addressed: 

 

RQ1) What are the spatial and temporal patterns in the water quality of Qattinah Lake before and 

during the Syrian Civil War, particularly from 2010 – 2020? 

 

RQ2) How do these changes in water quality (in terms of algal concentrations) relate to the conflict 

situation?  

 

The following specific questions will contribute towards answering this RQ1: 

-Which satellite data is most suitable to apply to the study area considering the lake’s size, 

timeframe of analysis? 

-What well-established chlorophyll-a retrieval algorithms can be applied to the study area? 

 

The following specific question will lead to answering RQ2:   

-What are the main sources of pollution in the lake which are linked to the proliferation of 

phytoplankton or the increase in chlorophyll-a concentrations? 

Outline of the thesis 

Chapter 1 provides an overview of water quality degradation as an alarming issue among freshwater 

resources, focusing on the proliferation of algae and how it can be measured. This chapter also 

presents the challenges in measurement of algal biomass especially in inaccessible and dangerous 

areas like Syria and provides an overview of how remote sensing technology can be a powerful 
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tool in assessing water quality in inland lakes and reservoirs. It also presents the significance of this 

study, the aims and the research questions of this study. 

 

Chapter 2 provides sufficient information on the background of the study area and the war in the 

country and establishes the importance of the water resource and the Orontes basin to the country. 

It then presents the development of the Syrian Civil War and its implications on the said resources. 

The second part discusses related theoretical concepts that are the basic blocks of this study. It 

also gives an overview of the current knowledge with regards to the use of remote sensing in 

analyzing water quality, particularly algal biomass.  

 

Chapter 3 presents the methods employed to gain answers to the research questions and to achieve 

the research aims. It presents the selected satellite data appropriate based on factors such as public 

accessibility, data availability, capability to analyze small to medium sized lakes, and some technical 

specifications such as spectral configuration and revisit days. It also presents the selected 

chlorophyll-a retrieval models that is used in the analysis. Above all, this chapter discusses the 

actual processes employed to assess the water quality in Qattinah Lake. 

 

Chapter 4 presents the results of the analysis done in Chapter 3. It reveals the spatial and temporal 

variations of algae in the lake prior to and during the war. It is structured into three main parts 

such as spatial and temporal patterns of chlorophyll-a 1) prior to the war based on MERIS and 

Landsat 5 data 2) from 2013 to 2016 as derived from Landsat 8 data, and 3) from 2017 to 2020 as 

derived from Sentinel 2 data. It presents all the estimated chlorophyll-a concentrations and 

organizes them according to season to reveal variability.  
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Chapter 5 discusses the generated results from Chapter 4 and finds connection between the 

obtained patterns and the events related to the war. It looks at how the human activities around 

the lake have been influenced by the war and relates them to the proliferation of algae in the study 

area. It also discusses certain aspects of the study including the limitations of the data and the 

analysis in general, and their implications to the generated findings.  

 

Chapter 6 summarizes the entire thesis study and draws conclusions based on the findings of the 

analysis and review of literature.  
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REVIEW OF RELATED LITERATURE 

Background of the study area 

The Syrian Civil War 

The Syrian Civil war is one of the biggest and most brutal conflict in the Arab world (Qaddour, 

n.d.). Mohammed et al. (2019) tagged it as one of the most complicated in the recent history due 

to several factors involved such as ethnical and religious diversity, the complexity of the political 

and social structure., and multilateral foreign and regional factors. There were several participants 

in the conflict namely the Syrian government, Syrian Kurds, Islamic rebels, the Islamic State 

terrorist group, and rebel groups backed by Western interests. It was also joined by other countries 

including Iraq, Saudi Arabia, Iran, Russia, Turkey, Qatar and the US. 

 

The war began as a peaceful uprising in the city of Deraa located in the southern Syria, close to 

the border with Lebanon, as protesters demanded the government to end corruption and the 

abuses among security forces (Ford, 2019) and to free political prisoners, and call for a variety of 

reforms (BBC News, 2019; The Syria Institute, n.d.). The government responded with violence, 

thereby arresting, and shooting protesters which then triggered violent unrest that quickly spread 

over other areas in the country (DLIFLC, 2019; Ford, 2019; Kılıç, 2018; The Syria Institute, n.d.). 

Military defectors started organizing an armed group to defend and later to overthrow the Assad 

government (The Syria Institute, n.d.) and in 2012, the events turned into a full-blown civil war. 

While it was triggered by the government violence in Deraa uprising, other driving forces leading 

to the war were suggested by various researchers. (Gaafar, n.d.) stipulated that poor environmental 

conditions have been a primary driving force to the conflict. These conditions include 

mismanagement of natural resources and waste, inadequacy of government’s response to mining 

pollution, and the severity of drought in 2006 to 2010 which incurred damages to the agricultural 
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sector, increased unemployment, amplified food insecurity and lead to mass migration from the 

eastern parts of Syria to major urban centers such as Damascus, Aleppo and Deraa (Mohammed 

et al., 2020). He also added that the combined increase in population growth rate and water scarcity 

imposed a higher risk to political instability. Ford (2019) suggested that discontent to the 

government’s response to the drought as well as the possible contagion effect of the Arab Spring 

revolts in nearby countries of Tunisia and Egypt could have also contributed. Other group of 

scholars claim that the economic and social governmental policies prior to the war are the main 

roots (Mohammed et al., 2020).  

 

The Syrian Civil War involves fights in different regions of the country but this study focuses on 

the war mostly between government and the opposition forces in the western area where Orontes 

Basin – a key area where most resources are located (e.g., water resource, agricultural areas, 

industrial areas). It has gone through several stages of power control since the beginning in 2011. 

In 2013 to 2015, the Syrian government supported by Iran and to a lesser extent by Russia, was 

losing the war of attrition against the armed opposition forces. In 2014, the government forces 

and the opposition groups each controlled around 40% while about half of the remaining 20% 

were combat zones, mainly located in Damascus suburbs, Aleppo City, Deraa district (Ford, 2019; 

Kılıç, 2018).  By the end of Spring 2015, President Assad acknowledged publicly that his army has 

started to retreat. However, the situation reversed with the increased intervention of Russia which 

deployed aircraft and provided military support for the government. This stabilized the fighting 

followed by a supposed peace talk in 2016 which was then stalled by the Syrian government who 

believed that more areas could be secured in the battlefield with the Russian and Iranian help, than 

in peaceful discussions. Consequently, the opposition was weakened as the US whose priorities 

shifted from supporting the opposition and pressuring the Syrian government to negotiate towards 

fighting ISIS in the eastern Syria (Ford, 2019). In 2017, an agreement signed by Iran, Russia and 
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Turkey led to the implementation of de-escalation zones in the country. These areas included 

opposition-controlled areas in the provinces of Deraa and Quneitra, pockets around Damascus 

and Homs, the entire Idlib province and western parts of Aleppo province (Figure 1). Part of the 

agreement was the unhindered humanitarian access in such areas, restoration of basic services, 

cessation of hostilities between rebel groups and pro-government forces (Aljazeera, 2017; Internal 

Displacement Monitoring Centre, 2017). While the government agreed to abide by the agreement, 

it stated that it will continue fighting in areas where “terrorism” exists, parlance most armed rebel 

groups opposing the government (Aljazeera, 2017). The government attacked and recaptured three 

of four de-escalation zones, one after another between 2016 and 2018 (Ford, 2019). By 2018, the 

government regained control over most areas in the country and as of March 2020, only the area 

in the north western part of the country, Idlib, remained under the opposition control (Figure 2).  

 

Figure 1: Control Territories and four de-escalation zones established in 2017 (Adapted from (Internal Displacement 

Monitoring Centre, 2017) 
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 Although the war has not ended yet, rehabilitation and reconstruction efforts has been happening 

in several areas of the country. However, such efforts have remained highly politicized and 

unequal.  According to Daher (2019), the government directs more effort in districts whose 

inhabitants historically favored the regime and not in the most damaged areas formerly under 

opposition control. The programs have been designed to expel the poorer, more antagonistic 

populations from key areas in many cities and to create real estate opportunities where the regime 

and its network of supportive business leaders can gain benefit from. The government made it 

difficult the displaced population to return to their homes. In 2018, a law empowering 

establishment of redevelopment zones was passed, empowering the government to confiscate 

residents’ property without due process or adequate compensation. In Darayya and Qaboun, 

civilian residents who seek to return to their homes were restricted of access by the government, 

unlawfully demolishing private homes without notice,  alternative housing or compensation 

Figure 2: Syrian control in December 2020 ( liveuamap.com, n.d) 

Control of Terrain in Syria: December 2020 
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(Human Rights Watch, 2018). This pattern has happened in many areas in the country including 

some parts of Homs and Eastern Aleppo (Daher, 2019; The Syria Institute, n.d.). 

 

The foreign support on reconstruction and rehabilitation varies among different countries. For 

instance, the European Union and the United States declined to fund reconstruction in 

government-held areas without a political transition. Several European countries including France 

and Switzerland have seek to support rehabilitation and stabilization efforts in areas reclaimed by 

the government. Most western donors have continued to provide humanitarian aid in areas 

controlled by opposition forces and Syrian Democratic Forces (Human Rights Watch, 2018).  

 

These rehabilitation and reconstruction initiatives have a long way to go, given all the direct and 

indirect economic, social and environmental impacts brought about by the war. Ten years of 

continuous conflict has caused demise in the country’s economy, killed thousands of lives, has left 

majority of its population displaced both internally and externally, and has brought about major 

damages to the surroundings. Specifically, the war led to the death of 384 000 to 593 000 people 

as of December 2020, caused the forced displacement of majority of its population – 6.5 million 

internally and another 2 million seeking refuge in neighboring countries mainly Lebanon and 

Turkey; and led to the decline of the country’s economy incurring 428 billion USD worth of 

economic loss from 2011 to 2018 (Gaafar, n.d.; Mohammed et al., 2020) . Gaafar (n.d.) emphasized 

that in addition to the said direct impacts of the war, there are significant environmental aftermaths 

that gain less attention despite the major potential long-term negative impacts on public health, 

the economy and the peace itself. These impacts include damages to oil refineries leading to soil 

contamination, pollution and subsequent reliance to makeshift oil refineries causing higher 

pollution and the mismanagement of waste and water among many others. Walker (2021) 

emphasized the devastating aftermath of weaponization of water as reservoirs and wastewater 
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treatment plants are targeted, diverted or hoarded by both the opposing parties to gain military 

advantage. This has contributed to the lack of access to safe water among over 90% of the 

population, having a direct link to public health and prevention of communicable diseases and has 

an impact to agriculture and food security (Walker, 2021; Zwijnenburg, 2019). Gaafar (n.d) and 

Zwijnenburg (2019) suggested that these environmental consequences to be the center of any post-

conflict rehabilitation and reconstruction efforts. 

 

Water resources, being a highly valuable resource especially in a water-scarce region including Syria 

requires substantial attention following the consequences of the conflict. As important as water 

quantity, water quality requires to be assessed so proper measures can be applied to prevent the 

irreversible impacts. In the next section, an overview of one of the important regions in Syria - the 

Orontes Basin - is presented to have a wide understanding of the water situation particularly in the 

western region of the country. The section will then focus on a specific water body within the 

basin, Lake Qattinah which will be the area of interest for this study. This section will be a baseline 

in understanding the changes brought about by the war.  

 

The Orontes Basin 

Located in the western Mediterranean coast, the Asi-Orontes River Basin (Figure 3) is a 

transboundary basin with a total area of approximately 24 669 km2 shared by Syria (69%), Turkey 

(23%) and Lebanon (8%). The Asi-Orontes river, flows from Lebanon, passes through Syria and 

goes all the way to Turkey and released in the Mediterranean Sea. It is the only river in the region 

that flows in a northern direction  (FAO, 2009; UN-ESCWA and BGR, 2013).  

The climate condition of the basin is characterized by rainy winters with snow on the higher 

altitudes and rain elsewhere, and by hot and dry summers. The precipitation intensity is highest 

along the Mediterranean coast and it decreases going to the west (Figure 3). The hottest months 
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range from June to September, also the time when the area barely receives precipitation. The 

highest amount of rainfall pours during the coldest months from November to February (Figure 

4). As compared to the other parts of the country, the climate in the basin is most favorable, 

making it a region of key importance  (UN-ESCWA and BGR, 2013).   

 

Figure 3: Spatial pattern of precipitation in Syria (Own creation) 

 

C
E

U
eT

D
C

ol
le

ct
io

n



14 

 

 

Figure 4: Average monthly precipitation and temperature in parts of Orontes Basin a) Aleppo b) Damascus (IAMAT, n.d.) 

The Orontes Basin plays an important role in both agriculture and industry of the country. It 

covers a quarter of the agricultural production and one third of the industrial production. It houses 

several industrial activities (e.g., oil refineries, sugar factory, fertilizer factory) being among the first 

industrialized regions in Syria. The basin also covers a total irrigated agricultural area of around 

250 000 hectares in 2004 – 2008. Orontes River supplies water to two main agricultural areas in 

the country, in the region between Homs and Hama and in the Ghab, a former swampy valley 

reclaimed for irrigated agriculture (UN-ESCWA and BGR, 2013). Prior to the war, Orontes River 

Basin used to supply domestic water needs of Syrian cities Homs and Hama, delivering 16.52% of 

the cities’ domestic water supply. It also tended to 40% of the industrial water needs, mainly from 

industries in Western Syria (Conker & Hussein, 2020). 

 

The Orontes Basin has been subjected to serious issues of water pollution (Hollander, 2015; UN-

ESCWA and BGR, 2013). According to UN-ESCWA and BGR (2013), the headwaters of the 

basin is clear but the middle and lower ranges of the river are heavily polluted from human 

activities while FAO (2009) and Haj Asaad & Jaubert (2014) specifically pointed out that the 

surface and groundwater are polluted by industrial and municipal wastes in areas near huge 

settlements In the period of 1995-2000, waterborne disease like typhoid and hepatitis were seen to 

increase tenfold, while diarrhea more than doubled in comparison to period of 1991 to 1995 (FAO, 
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2009). FAO (2009) suggested that this problem is exacerbated by scarcity of water resources, lack 

of infrastructure to treat wastewater, a general lake of awareness regarding pollution and failure to 

adopt regulations that protect the environment and public health.  

 

The Study Area – Qattinah Lake 

Qattinah Lake is a shallow lake formed after the creation of a dam along Orontes River in 1938 

(Hassan et al., 2010) which finished in 1976 (FAO, 2009). Orontes River originates from Lebanon, 

passing through Syria all the way to Turkey until it reaches the Mediterranean Sea. The dam, along 

with Rastan dam and Mhardeh dam, was created to increase the irrigation capacity in Syria. The 

said reservoirs have a total capacity of 741 million cubic meters and controls about 12 600 km2 of 

the basin upstream of Mhardeh (UN-ESCWA and BGR, 2013).  

 

Located towards the southern portion of Orontes Basin and 15 km from the city of Homs, 

Qattinah Lake caters to some of the water needs in the agricultural region between Homs and 

Hama. It provides water to irrigate around 23 000 hectares of agricultural land while another 20 

000 hectares in the said region is supplied by groundwater wells (UN-ESCWA and BGR, 2013). 

The lake has an average area of 57 km2 and a maximum depth of 10 meters in winter and 7 meters 

in summer. Orontes river flows through the lake in the southwestern portion and flows out in the 

northeastern part. The area in the west and northwestern part is mainly basaltic, with large blocks 

that are spread on the land primarily used as pasture (Hassan et al., 2010). The northern portion is 

also dominated by rainfed fruit bearing trees with some vegetables. The western side is a marshland 

that grows during the rainy months while the eastern side hosts a fertilizer factory and a relatively 

larger village. The southern part is dominated by irrigated agricultural lands mainly wheat and 

vegetables (Haj Asaad & Jaubert, 2014). The lake is also surrounded by several villages. The 

immediate vicinity of Lake Qattinah is shown in (Figure 5 and Figure 6).  
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Figure 5: Human activities surrounding Lake Qattinah (Own creation) 
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Figure 6: Land use around Lake Qattinah in 2010 (Adapted from (Haj Asaad & Jaubert, 2014) 

The water quality of the lake had been poor even prior to the armed conflict, receiving excessive 

amounts of nutrients (primarily phosphorus and nitrogen) (Hassan et al., 2010; Manssour & Al-

Mufti, 2010; UN-ESCWA and BGR, 2013). In a study conducted by Hassan et al., (2010), low 

macrophyte species richness was found in the lake and it was mainly restricted to a few tolerant 

species (i.e. M. spicatum, P. pectinatus and P. lucens ) which reflected the highly eutrophic 

conditions. This is based on the account that high nutrient loadings can lead to the shift from 

macrophyte-dominated clear waters to phytoplankton-rich turbid waters. Manssour & Al-Mufti 

(2010), who measured various water quality parameters in the lake also concluded that Lake 

Qattinah is a highly polluted water body with seasonal variations of total nitrogen, total 

phosphorus and oxygen parameters such as DO, COD and BOD which are all connected to the 

algal bloom that begins in April.   
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Several studies pointed to the phosphate factory in the eastern banks of the lake as one of the main 

polluters providing the highest nutrient input (Hassan et al., 2010; Manssour & Al-Mufti, 2010; 

Othman & Al-Masri, 2007). Hassan et al. (2010) also found out that Orontes river is the main 

source of nitrogen whereas the fertilizer factory is the main source of phosphorus. Manssour and 

Al-Mufti (2010) saw evidences of very clear algal blooms in the hot spots such as the location near 

the said factory as well as the agricultural and sewage drainages. They also found seasonal variations 

of total phosphorus peaking in September, mainly affected by the variations of discharges from 

the factory and the water level of the lake. Consequently, they found the highest value of total 

nitrogen in the algal season. According to Haj Asaad & Jaubert (2014) and Othman and Al-Masri 

(2007), there had been governmental control on the discharges of the industrial activities in the 

lake wherein routine monitoring and reporting of water quality was conducted ; however, it was 

not enough to mitigate the deterioration of the water quality.  

 

In this study, the water quality of the lake will be assessed within different stages of the conflict. 

The specific area of study will be useful to understand how the dynamics of the war specifically 

affected pollution drivers around the lake. The next section of this study will discuss important 

concepts on water quality particularly in relation to phytoplankton. It will also tackle remote 

sensing as the tool that is useful for assessing an inaccessible area like Syria.  

Theoretical Concepts 

To have a grasp on how remote sensing is used to estimate water quality in inland lakes, 

understanding of some basic concepts in necessary. The following theoretical concepts will be the 

basic building blocks in this study.  
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Eutrophication 

Eutrophication is the term used to describe the biological effects of an increase in the 

concentration of plant nutrients in aquatic environments - mainly phosphorus and nitrogen but 

sometimes include others such as silicon, potassium, calcium, iron and manganese (Harper, 1992). 

(Khan & Ansari, 2005) defined eutrophication as the sum of the effects of excessive growth in 

phytoplankton leading to imbalanced primary and secondary productivity and a faster rate of 

succession from existing to higher seral stage as caused by nutrient enrichment through runoffs 

that carry down overused fertilizers from agroecosystems and/or discharged human waste from 

settlements. Eutrophication  is a very slow, natural processes which can be greatly accelerated by 

human activities increasing the rate of nutrient input in a water body (Frumin & Gildeeva, 2014; 

Khan & Ansari, 2005). The faster nutrient enrichment in water bodies due to anthropogenic 

activities was referred to by and Glibert et al. (2005) and Smith & Schindler (2009) as cultural 

eutrophication noting that it is one of the primary problems faced by most surface waters globally. 

Glibert et. al (2005) stated that population growth, food production (agriculture, animal operations 

and aquaculture), and energy production and consumption are among the main driving forces of 

the phenomenon.  

 

Eutrophication has many undesirable side effects including but not limited to major economic 

costs and transnational implications (Smith & Schindler, 2009), habitat change and geographical 

and temporal expansion of some harmful algal bloom (HAB) species (Glibert et al., 2005), impact 

of animal and human health (Frumin & Gildeeva, 2014). Smith & Schindler (2009) enumerated 

some specific effects of eutrophication such as increase phytoplankton biomass and macrophyte 

vegetation, increased incidence of fish kills, reduction of species diversity, decreases in water 

transparency, foul taste and odor of water also causing drinking water treatment problems, and 
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decreased perceived aesthetic value of the water body. Several studies have emphasized that the 

deterioration of water quality is due to eutrophication (Smith & Schindler, 2009).  

 

As an effort towards a more convenient way to assess lakes, various classification schemes in 

relation to eutrophication, also referred to as the trophic state, have been developed. The term 

trophic state was originally proposed by Naumann (1919), based on lake production and was 

quantified through an estimation of algal biomass due to their impacts on a lake’s biological 

structure. HE Naumann (1919) suggested a regional approach to trophic state because of 

interregional variation in lake production. In 1969, Vollenweider used nutrient concentration as a 

static parameter for lake classification (Nojavan A. et al., 2019).  (R. E. Carlson, 1977) created an 

index to determine a lake’s trophic state classifying lakes into oligotrophic, mesotrophic and 

eutrophic. Carlson’s index is explained below: 

Table 1: Parameter value ranges of the water trophic classification system according to Carlson 

Class Total Phosphorus 

(ug/L) 

Chlorophyll-a 

(ug/L) 

Transparence 

(SDD) (m) 

Oligotrophic <12 < 2.6 >4 

Mesotrophic 12- 24 2.6 – 7.2 2 - 4 

Eutrophic >24 >7.2 <2 

 

Trophic state index (TSI) is then calculated from each of the three parameters using the equations: 

   TSI (SD) = 60 – 14.41*ln(SD) 

   TSI (TP) = 14.42 * ln(TP) + 4.15 

   TSI (CHLA) = 9.81 * ln(CHLA) + 30.6 

Where SD is secchi disk depth in meters, TP is total phosphorus concentration in ug/L, CHLA is 

chlorophyll-a concentration in ug/L and ln is the natural logarithm.  
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The Carlson trophic state index (CTSI) which integrates the three parameters is calculated by 

averaging the 3 TSIs. 

   CTSI = [TSI(SD) + TSI(Chla) + TSI(TP)]/3 

The lake classification based on this index is presented in Table 2: TSI ranges of tropic state 

classification of lakes according to Carlson : 

Table 2: TSI ranges of tropic state classification of lakes according to Carlson 

CTSI Trophic State 

CTSI < 40 Oligotrophic 

40 <= CTSI <= 50 Mesotrophic 

CTSI > 50 Eutrophic 

 

Another well-established classification scheme is that of OECD in 1981 wherein lakes are 

quantitatively classified as oligotrophic, mesotrophic, eutrophic and hypertrophic based on 

concentrations of N and P, chlorophyll a and Secchi disk (Table 3: Parameter value ranges of the 

water trophic classification system according to OECD) (Bougarne & Abbou, 2019; Cheng & Li, 

2006)  
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Table 3: Parameter value ranges of the water trophic classification system according to OECD 

 

In this study, trophic status of the lake from 2010 to 2020 will be assessed based solely on 

chlorophyll-a concentration following these two classification schemes.  

Phytoplankton and chlorophyll a 

Chlorophyll is a green molecule in plant cells that carries out the bulk of energy fixation in the 

process of photosynthesis. In water studies, it is used as an estimator of algal biomass in lakes and 

streams. Chlorophyll is a family of related molecules namely chlorophyll a, b, c and d. Chlorophyll 

d is found only in marine red algae while chlorophylls b and c are common in freshwater. The 

relative concentrations within the cell of chlorophylls vary with the species of algae. Chlorophyll a 

is dominant in all the eukaryotic algae and the prokaryotic blue-green algae (cyanobacteria) (R. 

Carlson & Simpson, n.d.). 

 

Chlorophyll  provides a fairly accurate measure of algal weight and volume and it acts as an 

empirical link between nutrient concentration and a number of biological phenomena in lakes and 

reservoirs (R. E. Carlson, 1977; R. Carlson & Simpson, n.d.). According to (Dillon & Rigler, 2011), 

it has been used for many years as a key variable in defining levels of external loading of 

phosphorus for eutrophication. (R. E. Carlson, 1977) suggested that it should be given priority as 
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a trophic state indicator because it is free from interference of non-algal particles such as bacteria 

or detritus.  

Optical remote sensing and the electromagnetic radiation spectrum 

Remote sensing has many definitions but one of the current definitions that encompasses the 

concepts related to this study is as defined by  (Campbell & Wynne, 2011) as the practice of 

deriving information about the Earth’s land and water surfaces  using images acquired from an 

overhead perspective, using electromagnetic ration in one or more regions of the electromagnetic 

spectrum, reflected of emitted from the earth’s surface. (Navalgund et al., 2007) defined it as the 

technology of acquiring information about the earth’s surface and atmosphere using sensors 

onboard airborne (aircraft, balloons) or space-borne (satellites, space shuttles) platforms. These 

sensors detect and record reflected or emitted energy, producing massive data of the earth. 

(Navalgund et al., 2007) added that remote sensing can be also classified into two namely optical 

and microwave. Optical remote sensing uses sensors that detect solar radiation in the visible, near, 

middle and thermal-infrared wavelength, reflected or scattered or emitted from the earth, which 

then forms images resembling photographs taken from space.  

Optical water constituents and Case II waters 

In the remote sensing field, water quality is generally measured through optically active water 

constituents like suspended particulate matters (SPM), colored dissolved organic matter (CDOM) 

and chlorophyll-a which can all be captured by the optical sensors. Chlorophyll-a, the green 

pigment present in photosynthetic plants and organisms including algae or phytoplankton, is used 

as an indicator of phytoplankton biomass in inland waters. Analyzing chlorophyll-a via remote 

sensing employs methods or algorithms which differ between two water body types – Case I and 

Case II. The definition that is commonly used today refers to Case I waters as those whose inherent 

optical properties (IOPs) are primarily determined by phytoplankton and related CDOM and 

detritus degradation products. These typically includes most open ocean waters. On the other 
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hand, Case II waters refer to those that do not fall under the first type. These waters have optical 

properties that are significantly influenced by other constituents such as CDOM, mineral particles, 

or microbubbles whose concentrations do not covary with that of phytoplankton. (Matsushita et 

al., 2012; Mobley et al., 2004). This differentiation has been relevant in modelling purposes, with 

many bio-optical models developed to predict inherent optical properties such as absorption, 

scattering and backscattering coefficients (Mobley et al., 2004) which are used in different water 

studies. 

Reflectance spectra / spectral signature 

Features on earth reflect, absorb, or transmit energy and the amount of this energy varies for every 

wavelength. The plot of all the variations of this energy as a function of wavelength is called the 

spectral signature. This signature is unique for every feature, allowing researchers to use this 

information to identify various earth features (NASA, n.d.-b; Navalgund et al., 2007). In water 

quality analysis in Case II waters, algorithms for chlorophyll-a estimation are based on reflectance 

spectra of waters with algae and/or other water constituents. Figure 7 shows the spectral signature 

of some selected land features while Figure 8 shows that of clear waters against algae-laden waters 

with the latter characterized by a reflectance peak in the green region of the spectrum, a second 

peak in the near-infrared (NIR) region and a maximum absorption (minimum reflectance) in the 

red region. This serves as the basis of most established chlorophyll-a retrieval algorithms or 

models.  
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Figure 7: Spectral signature of various land covers (NASA, n.d.-b) 

 

Figure 8: Spectral signature - clear vs algae-rich waters 

Application of remote sensing in water quality assessment 

Overview  

In situ methods of data collection and analysis has been the conventional way of measurement for 

many environmental applications. The process of estimating chlorophyll-a from field data basically 

includes extraction of planktonic cells and measurement of chlorophyll-a pigment in the laboratory 

(Aminot & Rey, 2002). While this method provides specific and accurate measurement of 

chlorophyll-a from water samples, it also poses certain challenges. As an example, most 

conventional data are still related to point locations or to transects, which are commonly 
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interpolated to obtain results. In situ methods in this case becomes more satisfactory when 

numerous points are observed or measured, to achieve an acceptable level of accuracy. This 

method involves high costs, time and labor, especially for monitoring programs involving wide 

temporal and spatial scale. In situ measurements are also challenging for areas that are hardly 

accessible (Barrett & Curtis, 1999).   

 

Remote sensing is a growing technology that has been seen to address some challenges of in situ 

methods (Barrett & Curtis, 1999; Navalgund et al., 2007). It provides a vast amount of information 

in specific to large geographic areas with wide temporal coverage. Trends in satellite imageries have 

shown improving spatial resolution and more frequent image capture, thus making remote sensing 

increasingly useful for temporal and spatial assessment of water bodies (Allan et al., 2011; 

Hadjimitsis et al., 2010). 

 

Remote sensing has been widely applied in assessing water quality of inland lakes and reservoirs in 

many regions of the world. (Dörnhöfer & Oppelt, 2016) reviewed research trends of the 

application of remote sensing in water quality assessment and saw an increasing pattern brought 

about by the improved spatial resolution of several satellite sensors which allowed analysis of small 

to medium sized lakes which used to be challenging due to poor resolution of water quality specific 

sensors such as MERIS and MODIS. Allan et al. (2011) used Landsat 7 to estimate chlorophyll-a 

concentrations in various lakes in New Zealand and saw levels of variations that are comparable 

to traditional ground-based monitoring. (Peppa et al., 2020) used Sentinel-2 data and revealed 

spatial variations of algae in Pamvotis Lake, a eutrophic lake in Greece. (Andrzej Urbanski et al., 

2016) created a tool to support regional lake quality assessment of 2800 lakes in Poland using 

Landsat 8. Several other remote sensing studies have been conducted throughout the years (e.g., 
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Ansper & Alikas, 2018; Bramich et al., 2021; Cazzaniga et al., 2019; Deutsch et al., 2018; Mishra & 

Mishra, 2012; Ouma et al., 2020).  

 

In Syria, most of the remote sensing studies found are related to impacts of the war on other 

aspects (land use and land cover changes (Mohamed et al., 2020), mapping of destruction in urban 

area (Lubin & Saleem, 2019; Marx, 2016) and water quantity (Avisse et al., 2017). It appears that 

there are currently no published studies analyzing the impacts of the war on the water quality of 

inland lakes in Syria. This presents a huge opportunity to utilize the vast information that satellite 

data can provide to fill this current research gap.  

Remote sensing of algal concentration in Case II inland waters 

Remote sensing of algal concentration in water bodies typically involves mapping of chlorophyll-

a using water-leaving reflectances stored in satellite data. This approach generally involves 

utilization of models developed based on the combination of reflectances measured at different 

wavelengths in such a way that the model has maximum sensitivity to the changes in the 

concentration of chlorophyll-a and minimum sensitivity to the changes in concentrations of other 

constituents present in the water (A Gitelson et al., 2009).  

 

Historically, remote sensing has been more popular in estimating chlorophyll-a concentrations in 

Case I waters with models are generally based the visible spectrum specifically on the  absorption 

peak (minimum reflectance) in the blue region near 440 nm and the reflectance peak in the green 

region around 550 nm (A Gitelson et al., 2009). These models are generally not suitable for Case 

II waters which are dominated by at least three optically active constituents (i.e chlorophyll-a, TSM, 

CDOM) making it generally more complex (Matthews, 2011; Mobley et al., 2004). The use of 

reflectances in the visible region of the spectrum alone is found to less appropriate in turbid 

productive waters and many studies have suggested the use of the red and NIR regions in 
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developing models for these complex waters (Ansper & Alikas, 2018; Gurlin et al., 2011; Moses et 

al., 2009; Yacobi et al., 2011).  

Remote sensing algorithms for chlorophyll-a estimation in Case II waters 

The reflectance pattern of chlorophyll-a is the key in understanding the algorithms used to estimate 

its concentrations in inland lakes or Case II waters.  (A Gitelson et al., 2009) summarized three 

main features of chlorophyll-a to which many models are based. First, chlorophyll-a has strong 

absorption in the red region specifically around 670 nm, forming a trough in the reflectance 

spectrum. However, this feature is not driven by chlorophyll-a alone but has contributions from 

total suspended solids, making the reflectance near 670 nm alone not a reliable estimator of 

chlorophyll -a concentration. Second, chlorophyll-a has a peak near 685 nm called the solar-

induced chlorophyll -a fluorescence. The peak near this wavelength increases with increased 

chlorophyll-a concentration. However, this is found to be only reliable for estimation of low 

chlorophyll-a concentrations – not more than 10 – 15 mg/m3 as higher concentrations lead to 

reduced available light, limits fluorescence efficiencies and affects the measurement. The third 

feature of chlorophyll-a reflectance is a peak in the NIR region near 700 nm. Its magnitude and 

position depend on chlorophyll-a concentration but is also influenced by other constituents.  

 

Most of established chlorophyll-a models are based on this feature as it allows fairly accurate 

estimation in water bodies with wide ranges of chlorophyll-a concentrations. Some examples are 

the two-band NIR-red ratio (2BDA) which takes the ratio of the NIR reflectance peak near 700nm 

to the red maximum absorption near 670nm (Gurlin et al., 2011; Matthews, 2011) chapter 18; the 

three-band NIR-red ratio (3BDA) with involves a third reflectance near 750nm in addition to the 

those used in two-band NIR-red ratio (Dall’Olmo et al., 2003); the Normalized Difference 

Chlorophyll-a Index (NDCI) which involves reflectance near 709 nm and 665 nm (Mishra & 

Mishra, 2012). 
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In this study, 2BDA and 3BDA were selected as such are well-established models which have been 

successfully applied in several studies of inland lakes with wide ranges of algal concentrations and 

under various climatic and environmental conditions and using MERIS, Landsat 8 OLI, and 

Sentinel 2 (i.e. Bramich et al., 2021; Deutsch et al., 2018; Gilerson et al., 2010; Gurlin et al., 2011; 

Johansen et al., 2018; Masocha et al., 2018; Moses et al., 2009; Sòria-Perpinyà et al., 2021; Watanabe 

et al., 2015; Yacobi et al., 2011) which are the satellite data used in this study.  

Conclusions 

The findings from the review of related studies has contributed towards the achievement of the 

research aims of this study. The first section has provided relevant background of the study area 

and the ongoing war in Syria. It has helped in identifying the surrounding human activities that 

historically caused degradation of the lake’s water quality. It also provided some insights on the 

known past and current conditions of the lake helping the author to select methods that are 

appropriate (i.e. selection of chlorophyll-a models suitable for Case II and highly polluted water 

body).  Looking at the key events of the conflict situation became useful in selecting suitable data 

for the analysis, interpreting the results and finding linkages between the war and the lake’s water 

quality.  

 

The second section has integrated relevant theoretical concepts and explored how remote sensing 

is utilized in assessing water quality. Its major contribution in the study is the proper selection of 

methods to determine algal concentrations in the specific lake. 
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MATERIALS AND METHODS 

Selecting the satellite data suited for the study period 

This study investigates periods before and during the Syrian Civil War and covers years 2010 to 

2020 excluding 2012 due to lack of satellite data. No single satellite dataset covers the entire period 

so data from multiple satellite sensors were used. Suitable satellite data were identified, mainly 

based on availability and accessibility, prioritizing those with good spectral and spatial resolution 

necessary for chlorophyll-a assessment of a medium-sized lake. The timeframe is therefore divided 

into three based on the availability of each of the satellite data used (Table 4: War periods and 

corresponding satellite data used).  

Table 4: War periods and corresponding satellite data used 

Time Period – War Satellite Sensors and Data 

Availability 

Properties 

Pre- war (2010 – 2011)  MERIS (May 2002 -April 

2012)  

 

 

 

Landsat 5 (March 1984 – May 

2012)  

MERIS: high spectral 

resolution, low spatial 

resolution 

 

Landsat 5: high spatial 

resolution,  spectral 

configuration inferior than 

that of MERIS 

War(2012 to  2016) Landsat 8 (April 2013 to 

present) 

Landsat 8; high spatial 

resolution; spectral 

configuration inferior than 

that of MERIS 

War (2017 to 2020) Sentinel 2 (2017 to present) 

 

Sentinel 2; high spatial 

resolution; spectral 

configuration inferior than 

MERIS but spectral bands are 

positioned close to 

chlorophyll-a estimation 

important wavelengths; 
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Medium Resolution Imaging Spectrometer (MERIS).  

MERIS sensor is attached to the Envisat-1 satellite owned by the European Space Agency (ESA). 

MERIS data consists of 15 bands across spectral range 390nm to 1040nm. It has a global coverage 

and acquires data every 3 days making it suitable for monitoring purposes in any region in the 

world (LAADS, n.d.). The primary goal of MERIS mission is the measurement of sea color in 

oceans and in coastal areas, which can be basis in measuring chlorophyl pigment concentration, 

suspended sediment concentration and atmospheric aerosol loads over water (ESA, 2006). MERIS 

has also been utilized in several water quality studies in lakes (Gilerson et al., 2010; Gower et al., 

2008; Gurlin et al., 2011). The central bands are positioned in wavelengths that are identified 

important in chlorophyll-a analysis. The MERIS bands against important chlorophyll-a 

wavelengths is presented in the Figure 9. Table Table 5: Spectral bands of MERIS data shows the 

specifications of each of the MERIS bands.  

Table 5: Spectral bands of MERIS data 

Band 

Number 
Central wavelength (nm) Bandwidth (nm) 

1 412.5 10 

2 442.5 10 

3 490 10 

4 510 10 

5 560 10 

6 620 10 

7 665 10 

8 681.25 7.5 

9 708.75 10 

10 753.75 7.5 

11 760.625 3.75 

12 778.75 15 

13 865 20 

14 865 10 

15 900 10 

Source: (ESA, 2006) 
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Figure 9: MERIS 2 bands against reflectance pattern of chlorophyll-a ; Adapted from (ESA, 2006; Han, 1997; SEOS, n.d.)  

One drawback of using MERIS is its low spatial resolution – 300m. Given that the study area is a 

medium-sized lake with an area of around 60 square kilometers, the coarse images from MERIS 

limits the analysis of the area. To aid this, Landsat 5 which has a 30-meter spatial resolution (10 

times higher than that of MERIS) but inferior spectral resolution, was used to conduct visual 

inspection of the area to look for obvious spatial and temporal patterns.  

 

MERIS Level 2 data was downloaded from ESA website and processed using SNAP and 

ArcGISPro. Due to long download time for each satellite data (5-8 hours per satellite image), only 

one day image for selected months were analyzed. Clear images with no cloud cover were selected 

and downloaded ( Table 6). 
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Table 6: MERIS data assessed prior to the war (2010) 

Date Filename 

June 12, 2010 EN1_MDSI_MER_FRS_2P_20100612T074412_20100612T081238_0433

04_0164_20180124T063555_0100 

July 14, 2010 EN1_MDSI_MER_FRS_2P_20100714T074749_20100714T075605_0437

62_0121_20180126T080104_0100 

August 15, 2010 EN1_MDSI_MER_FRS_2P_20100815T074203_20100815T074724_0442

20_0078_20180128T122031_0100 

September 16, 

2010 

EN1_MDSI_MER_FRS_2P_20100916T073535_20100916T074136_0446

78_0035_20180202T161938_0100 

October 17, 2010 EN1_MDSI_MER_FRS_2P_20101017T075931_20101017T081007_0451

22_0479_20171225T131119_0100 

 

Landsat 5 Thematic Mapper (TM)  

Landsat 5 Thematic Mapper was attached to the Landsat 5 satellite, developed by NASA and 

launched on March 1984. Landsat 5 became operational for 29 years until I decommissioned on 

June 2013. The satellite captured data of global coverage every 16 days. Landsat 5 TM data consists 

of 7 bands across spectral range 450nm to 2350 nm (USGS, n.d.). Its specifications are shown in 

Table 7.  
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Table 7: Band specifications of Landsat 5 

 

Source: (USGS, n.d.) 

 

Landsat 8 Operational Land Imager (OLI).  

The second to fifth year of the war (2013 to 2016) was assessed using Landsat 8 OLI. For this 

time period, Landsat 8 OLI and Landsat 7 ETM+ are both available. The former was selected 

over the latter which has had a sensor deficiency since 2003 producing images with black line gaps.  

Landsat 8 was developed under the collaboration of NASA and USGS. It was launched on 

February 11, 2013 to acquire data on landmass. The satellite carries two sensors – the Operational 

Land Imager (OLI) sensor and the Thermal Infrared Sensor (TIRS). It collects data at spatial 

resolution of 30m in the visible, NIR and SWIR; 100 m  in the thermal region (Table 8)  (NASA, 

n.d.-a; USGS, 2013).  The positions of its bands (until 900nm) against clear and algae-laden waters 

spectral pattern is presented in Figure 10. Its spectral bands do not all coincide with the important 

wavelengths in chlorophyll-a estimation. Despite this, many studies have employed this data 

(Deutsch et al., 2018; Masocha et al., 2018; Watanabe et al., 2015), concluding that it can be used 

for the said purpose. 

Band 

number 
Band name 

Wavelength 

(μm) 

Resolution 

(m) 

1 Visible Blue 0.45 - 0.52 30 

2 Visible Green 0.52 - 0.60 30 

3 Visible Red 0.63 - 0.69 30 

4 NIR 0.76 - 0.90 30 

5 SWIR 1 1.55 - 1.75 30 

6 Thermal 10.40 - 12.50 120 

7 SWIR 2 2.08 - 2.35 30 
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Table 8: Spectral bands of Landsat 8 (NASA, n.d.-a) 

Band 

number 
Band name Wavelength (μm) Resolution (m) 

1 Coastal 0.43 - 0.45 30 

2 Blue 0.45 - 0.51 30 

3 Green 0.53 - 0.59 30 

4 Red 0.63 - 0.67 30 

5 NIR 0.85 - 0.88 30 

6 SWIR 1 1.57 - 1.65 30 

7 SWIR 2 2.11 - 2.29 30 

8 Pan 0.50 - 0.68 15 

9 Cirrus 1.36 - 1.38 30 

10 TIRS 1 10.60 - 11.19 100 

11 TIRS 2 11.50 - 12.51 100 

 

Figure 10: Landsat 8 OLI bands against chl-a reflectance spectra; Adapted from (Han, 1997; NASA, n.d.-a; SEOS, n.d.) 
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For the more recent period of the war (2017 – 2020), Sentinel 2 and Landsat 8 data are both 

available but the former was selected for the analysis for its spectral positioning to which most 

chlorophyll-a indices selected in this study are more applicable. This data is available from 2016 

onwards, but the processed level 2 data to be used in the analysis is only available in the Data Cube 

platform from 2017.  

 

Sentinel 2  

The Copernicus Sentinel 2 was launched by the European Space Agency on June 23, 2015 with 

the main aim to monitor variability in land conditions. The mission consists of two satellites 

(Sentinel 2A and Sentinel 2B) flying in the same orbit but phased at 180 degrees, and together 

provides data every 5 days. Each of the satellites are equipped with a sensor called Multi-Spectral 

Instrument (MSI) which has 13 bands with spatial resolution ranging from 10 to 60 m and a 

spectral coverage in the visible, near infrared region (NIR), and short wave infrared region (SWIR). 

 

Sentinel 2A and Sentinel 2B were launched separately with latter on March 7, 2017. In this study, 

only Sentinel 2A data was used as it is the only available Sentinel 2 data in Data cube Water Quality 

Script during the time of analysis. Independent from its twin satellite, it captures data every 10 days 

(EOS, 2017; ESA, n.d.-a). The spectral ranges and spatial resolution of Sentinel 2A bands are 

presented in Table 9. The positions of its bands (until 900nm) against clear and algae-laden waters 

spectral pattern is presented in Figure 11. It is seen that there are bands positioned in important 

peaks and troughs of the chlorophyll-rich waters. 
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Table 9: Spectral bands of Sentinel 2A; (EOS, 2017) 

Band 

number 
Band name 

Central wavelength 

(nm) 

Bandwidth 

(nm) 

Resolution 

(m) 

1 Coastal aerosol 443.9 20 60 

2 Blue 496.6 65 10 

3 Green 560 35 10 

4 Red 664.5 30 10 

5 Vegetation Red Edge 703.9 15 20 

6 Vegetation Red Edge 740.2 15 20 

7 Vegetation Red Edge 782.5 20 20 

8 NIR 835.1 115 10 

8b Narrow NIR 864.8 20 20 

9 Water vapour 945 20 60 

10 SWIR – Cirrus 1373.5 30 60 

11 SWIR 1613.7 90 20 

12 SWIR 2202.4 180 20 
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Figure 11: Sentinel 2 bands against chlorophyll-a reflectance spectra; Adapted from (EOS, 2017; Han, 1997; SEOS, n.d.) 

Analysis Software and platforms  

In manipulating the datasets, the following software and platform were used: 

Sentinel’s Application Program (SNAP).  

SNAP is an open source common architecture for ESA Toolboxes ideal for the exploitation of 

Earth Observation data. SNAP is a free and open toolbox for processing data products from 

numerous satellite missions including Copernicus Sentinel-1, Sentinel-2 and Sentinel-3. It also 

allows processing of large amounts of satellite data owned by other organizations (e.g. Landsat, 

MODIS and RapidEye) (ESA, n.d.-b; Sharma, 2021).  

 

SNAP was used in the preprocessing and visual analysis of MERIS data.  
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ArcGis Pro  

ArcGis Pro is a powerful single desktop GIS application that supports data visualization; advanced 

analysis; and authoritative data maintenance in 2D, 3D, and 4D (ESRI, n.d.). Although 

chlorophyll-a assessment can also be done in SNAP, it was preferred to use ArcGis Pro for 

convenience purposes. Data cleaning and mapping was also employed using this software.  

Google Earth Engine. Earth Engine is a platform for scientific analysis and visualization of geospatial 

datasets. It is used for several purposes such as academic, non-profit, business and government 

uses. The platform hosts satellite imagery and stores it in a data archive made available to the 

public. This archive includes historical earth images going back more than forty years. The data 

are made available for global-scale data mining. Google Earth Engine also provides tools to enable 

the analysis of large datasets (Google, n.d.). 

 

Google Earth Engine 

Google Earth Engine is a convenient tool in analyzing satellite data as it removes the need to 

download and preprocess data, and allows on-the-fly analysis. These data and processes are 

generally huge, time consuming, and has high computing requirements. Visual analysis of Landsat 

5 and Landsat 8 images was done in this platform (Google, n.d.).  

iMMAP MENA Analysis Ready Data Cube (ARDC) - UN SDG Indicator 6.3.2 

iMMAP MENA ARDC is a platform that allows big data queries and rapid time-series analysis of 

large satellite data archives including Sentinel 2, Landsat 5, Landsat 7 and Landsat 8. It was 

developed by iMMAP - an international not-for-profit organization providing  information 

management services to humanitarian and development organizations. This research study was 

conducted in partnership with iMMAP which granted access to this analysis platform. iMMAP 

MENA ARDC allows on-the-fly analysis, thus eliminating processes such as data download and 

complex data preparation as well as the need for analysis tools and software and hardware 
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resources (iMMAP, n.d.). Part of the platform is the UN SDG Indicator 6.3.2, a Python script 

developed for monitoring water quality. In this study, the script was slightly modified by adding 

the chlorophyll-a indices and equations selected from literature. Landsat 8 and Sentinel 2 were 

analyzed using this platform.  

Selection of indices for Chlorophyll-a Estimation 

Chlorophyll-a index is an indicator of chlorophyll-a and not the concentration itself. Indices or 

algorithms are developed based on the chlorophyll-a reflectance pattern across the spectral 

wavelengths. When applied to satellite data, it takes as inputs reflectance values from 

corresponding satellite bands. To retrieve chlorophyll-a concentration estimates, values calculated 

from these indices is calibrated and validated with chlorophyll-a measurements taken in the field. 

Field data is represented by point locations of collected water samples which are analyzed in the 

laboratory. Statistical analysis is applied to the field data and the satellite-derived indices to establish 

a relationship or a model (in the form of an equation) which is then applied to the entirety of the 

lake throughout a given period.  

 

In this study, three indices for chlorophyll-a retrieval were selected based on the following factors 

1) well-established algorithms that has been successfully implemented in several studies on Case 

II waters with a wide range of chlorophyll-a concentration 2) utilizes the red-NIR region and not 

only the visual spectral region 3) applicability to the publicly available satellite sensors with respect 

to their spectral band positioning.  

 

As there is no available and accessible in situ data of chlorophyll-a in Lake Qattinah, development 

of a model specific to the study area was not possible. To aid this, chlorophyll-a retrieval equations 

calibrated and validated in previous studies were used as alternative. In selecting such equations, 

additional factors listed below were considered: 
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1) utilization in a turbid productive lake with wide ranges of chlorophyll-a concentration. It was 

ensured that the algorithm and the equations were applied to water bodies similar to Lake Qattinah 

in terms of trophic status. As the study area is known to be eutrophic, studies covering eutrophic 

inland lakes, were selected. It was also ensured usage on a wide range of chlorophyll-a providing 

flexibility of the algorithms and the relationship to in situ data.  

2) the scale to which they were used, calibrated and validated against a wide geographic coverage 

and seasonal variability on the study. Only those used in multiple lakes in different regions of the 

world, with varying climatic and environmental conditions, yet successful were selected. In cases 

when the model applied on a particular satellite data is not calibrated or validated in wide 

geographic range, studies on inland lakes of similar pollution status, climatic conditions were 

selected. 

 

Two algorithms were used in this study and each is described in the next subsections. 

Two band NIR-red algorithm (2BDA)  

This algorithm is based on two chlorophyll-a reflectance properties. First is the reflectance peak 

in the NIR region near 700nm and second is the strong absorption in the red region around 670nm 

(Matthews, 2011). Compared to traditional blue-green ratio, it is less sensitive to absorption by 

CDOM and scattering by mineral particles, thus making it suitable for turbid productive waters 

like lakes, which are dominated by such water components (A Gitelson et al., 2009; Matthews, 

2011). Chlorophyll-a concentration is highly correlated with the magnitude of reflectance around 

670nm. However, the latter is not only driven by chlorophyll-a but is also influenced by the 

concentration of other water constituents such as total suspended solids.  In the NIR region, the 

absorption by all particles and dissolved constituents is null (A Gitelson et al., 2009). The NIR-red 

ratio combines the two properties by taking the ratio of the reflectance near 700nm to the 
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reflectance near 670nm. The height and the position of the peak is highly correlated with 

chlorophyll concentration, with the peak shifting towards greater wavelengths and the magnitude 

increasing with increasing chlorophyll concentration (Matthews, 2011) for lakes with chlorophyll-

a range greater than 3-5mg/m3 (Moses et al., 2009). Moses et al. (2009)  added that in this 

chlorophyll-a concentration range, the minimum in reflectance resulting from the phytoplankton 

absorption peak around 675nm also becomes more pronounced as chlorophyll-a increases. 

 

The two band NIR-red ratio is not limited to wavelengths at 700nm and 670nm. Some studies 

employed some slight modifications of this index.  Gitelson (1993) and Gitelson et al. (1993) used 

the ratio of the reflectance in 705 nm and 670 nm.  Gons (1999) used the ratio of reflectances at 

704 and 672, the absorption coefficients of water at these wavelengths and backscattering 

coefficient at 776nm in estimating chlorophyll concentration with a range from 3 to 185mg/m3. 

Other studies found strong correlation of chlorophyll concentration and the ratio with red 

wavelength near 675 and NIR region ranging from 700nm to 725nm (Dall’Olmo & Gitelson, 2005; 

Oki & Yasuoka, 2002; Zimba & Gitelson, 2006).  

 

In using the two band NIR-red algorithm, it is important to note the assumptions in its 

development. 2BDA assumes that some optical parameters such as the phytoplankton absorption 

coefficient and chlorophyll-a fluorescence quantum to remain constant. In reality, these 

parameters widely vary depending on the physiological state and structure of the phytoplankton 

community (Gitelson et al., 2009); hence, such assumption poses a level of uncertainty that must 

be taken into consideration. Nevertheless, this algorithm has provided good results in well-mixed, 

high biomass waters, has been widely used in chlorophyll-a concentration estimation (Matthews, 

2011) and tested on several water environments (Gholizadeh et al., 2016). This algorithm has been 

successfully applied and validated in different satellite data including but not limited to MERIS 
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(Gilerson et al., 2010; Gurlin et al., 2011; Yacobi et al., 2011), Sentinel2 (Bramich et al., 2021; 

Johansen et al., 2018; Sòria-Perpinyà et al., 2021) and  Landsat 8 (Deutsch et al., 2018; Masocha et 

al., 2018; Watanabe et al., 2015).  

 

Generally, the model is expressed as follows: 

2BDA = R(λ1)/R(λ2) 

where R(λ1) and R(λ2) refer to the reflectance peak in the NIR region near 700nm and the 

minimum reflectance in the red region near 670nm, respectively.  

 

When applied to MERIS, Sentinel 2 and Landsat 8 bands, the equations are as follows: 

2BDAMERIS =  R708.75nm/R665nm =  RB9/RB7 

2BDAL8 = R850-880nm/R630-670nm = RB5/RB4 

2BDAS2 = R703.9nm/R664.5nm = RB5/RB4 

 

Three band NIR-red algorithm (3BDA) 

The advanced version of the red-NIR algorithm is the three band NIR-red algorithm proposed by 

(Dall’Olmo & Gitelson, 2005). By including three bands, this index enables better separation of 

the absorption by chlorophyll-a from the absorption and scattering contributed by other water 

constituents.  

 

Three band algorithm uses three optimal wavelengths selected in a way that contributions due to 

absorption by constituents other than chlorophyll-a and backscattering by particles are kept to 

negligible minimum, and the model output is maximally sensitive to chlorophyll-a concentration 

(A Gitelson et al., 2009). 
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The general formula is as follows:  

   

                                              3BDA =  

 

where R(λ1) is the reflectance in the wavelength (red region near 670nm) where chlorophyll-a 

absorption is maximal but may be affected by absorption by other pigments and scattering by all 

particulates; R(λ2) is the reflectance in the wavelength where there is minimal absorption by 

chlorophyll-a and the absorption by other constituents is about the same as in λ1 (NIR near 710 

nm). Thus, R(λ1) accounts for the absorption by chlorophyll-a and other constituents, R(λ2) 

accounts for absorption by other constituents other than chlorophyll-a (nonalgal particles and 

CDOM), and the difference accounts for the absorption by chlorophyll-a only. R(λ3) is the 

reflectance in the wavelength beyond λ1 in the NIR region which is minimally affected by 

absorption by all particles and dissolved constituents such as chlorophyll-a, CDOM and non-algal 

particles and represents the scattering by particles (near 750nm). 3BDA is therefore an algorithm 

that enables negligibility of contributions due to absorption by water constituents other than 

chlorophyll-a and backscattering by particles. This model is maximally sensitive to chlorophyll-a 

concentration (A Gitelson et al., 2009; Matthews, 2011; Moses et al., 2009).  

 

In various studies, the three wavelengths (λ1, λ2 and λ3) slightly vary. (Dall’Olmo & Gitelson, 

2005) identified that the optimal wavelengths for chlorophyll-a concentration ranging from 2 to 

180mg/m3 are as follows: 1 = 670nm, 2 = 710nm and 3 = 740nm. According to Gitelson, Schalles 

and Lhadik (2007), optimal wavelengths can be wider: 1 = 660 – 670nm, 2 = 700 to 720nm, 3 = 

730=760nm (All in Chapter 18). These studies provided accurate chlorophyll-a concentration 

estimates. (Dall’Olmo & Gitelson, 2005) reported that 3BDA success in predicting accurate 

C
E

U
eT

D
C

ol
le

ct
io

n



45 

 

estimate of chlorophyll-a in turbid productive water bodies with a wide range of optical complexity. 

(Moses et al., 2009) validated the algorithm using MERIS data in the Azov Sea, and reported that 

the algorithm retrieved chlorophyll-a concentration successfully for a range of 18.37 to 

47.86mg/m3. 

 

When using the three band algorithm, it is important to note the main assumptions 1)that 

backscattering coefficient is considered spectrally uniform across wavelengths (lambda 1 to 3) and 

that it can be sufficiently estimated from the wavelengths in the NIR.; 2) the absorption by 

suspended solids and CDOM beyond 730nm is approximately equal to that at the red region (665-

675nm) and the difference between them is negligible 3) the total chlorophyll-a, CDOM and TSS 

absorption beyond 730nm is nearly zero  (Dall’Olmo & Gitelson, 2005; Mishra & Mishra, 2012). 

3BDA has been successfully applied and validated using various satellite data including but not 

limited to MERIS (Gilerson et al., 2010; Gurlin et al., 2011; Moses et al., 2009) and Sentinel 2 

(Ansper & Alikas, 2018; Buma & Lee, 2020; Grendaitė et al., 2018; Johansen et al., 2018).  

When applied to MERIS data, the formula is: 

 

3BDAMERIS =  [(RB7)
-1  – (RB9)

-1 ] x (RB10) 

 

For Sentinel 2, 

3BDAS2 =  [(RB4)
-1  – (RB5)

-1 ] x (RB6) 

 

Chlorophyll-a retrieval equations from literature 

In developing empirical algorithms for chlorophyll-a retrieval, the steps include 1) calculating the 

chlorophyll-a index from satellite data band reflectance (i.e., 2BDA equation is calculated from 

corresponding MERIS or Sentinel 2 input bands; the data is preferably concurrent with the 
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collection dates of field data) 2) field or in situ data is gathered then divided into two sets – one is 

a training or calibration set and the other is a validation set 3)regression is applied to get the 

relationship between the calculated index from 1 and training data set in order to formulate a 

chlorophyll-a retrieval equation. Corresponding R2 is noted, and generally, 0.50 and higher values 

of R2 is considered highly correlated in literature. 4) the formulated retrieval equation for 

chlorophyll-a estimation is then again compared with the second set of field data for validation. 

High R2 values indicate that the model accurately estimates chlorophyll-a.  

 

In order for a model to be robust, it is important that the in situ data gathered is huge enough to 

represent different parts of the water body. It is also necessary that seasonal variability is 

considered in field data gathering to ensure stronger representation of the lake’s status in various 

conditions. In this study, no in situ data is available and accessible so development of an empirical 

model specific to Lake Qattinah is not possible. As an alternative, chlorophyll-a retrieval models 

from literature selected based on factors given in the previous section, were directly applied to the 

study area. Four different 2BDA equations and  four different 3BDA equations were selected. 

3BDA index was not used in Landsat images due to lack of necessary band. The equations are 

presented in Table 10. 

 

Table 10: List of chlorophyll-a retrieval equations retrived from previous studies 

Index Equation Equation: 

chla =  

Source Direct application of 

equations 

    MERIS Landsat 

8 

Sentinel 

2 
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2BDA chl_2bda_eqn1 25.28x2+ 

14.85x - 15.18 

(Gurlin et al., 

2011) 

Yes Yes Yes 

2BDA chl_2bda_eqn2 41.127x- 

23.484 

(Yacobi et al., 

2011) 

Yes Yes Yes 

2BDA chl_2bda_eqn3 61.324x - 

37.94 

(Moses et al., 

2009) 

Yes Yes Yes 

2BDA chl_2bda_eqn4 (35.75x- 

19.30)1.124 

(Gilerson et al., 

2010) 

Yes Yes Yes 

3BDA chl_3bda_eqn1 315.5x2 + 

215.95x + 

25.66 

(Gurlin et al., 

2011) 

Yes No Yes 

3BDA chl_3bda_eqn2 80.167X + 

17.105 

(Yacobi et al., 

2011) 

Yes No Yes 

3BDA chl_3bda_eqn3 232.329X + 

23.174 

(Moses et al., 

2009) 

Yes No Yes 

3BDA chl_3bda_eqn4 (35.75X - 

19.30)1.124 

(Gilerson et al., 

2010) 

Yes No Yes 

Where x is the corresponding index value; e is a mathematical constant equal to approximately 

equal to 2.7182818.  

 

Chl_2bda_eqn1 and chl_3bda_eqn1. These models developed by (Gurlin et al., 2011) were 

calibrated and validated using spectral bands of MERIS and field data collected in Fremont Lakes 

in Nebraska USA. Field data were collected from 89 stions in summer and autumn of 2008 and at 

63 stations in spring and summer 2009. Fremont Lakes consist of 20 sandpit lakes whose 

chlorophyll-a concentrations range from 2.3 to 200.8 mg/m3 in the study years. These lakes have 
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a highly variable bio-physical and bio-optical conditions which are typical for many inland and 

coastal waters, making these lakes ideal for algorithm development for remote estimation of 

chlorophyll-a concentrations in turbid productive waters. The models were calibrated using dataset 

collected in summer and fall 2008, resulting to R2 of 0.95 for both 2BDA and 3BDA indices. The 

validation of the model was done using the 2009 field data and MERIS reflectance resulted to 

3BDA model with an MAE of 2.5mg/m3 for chl range of 0 to 100mg/m3 and MAE of 1.9mg/m3 

for chlorophyll-a range of 0-25mg/m3. 2BDA estimated chl with an MAE of 2.3mg/m3 for 

chlorophyll-a range of 0-100mg/m3 and 1.2mg/m3 for chl range of 0-25mg/m3.  

 

This model was also tested by Yacobi et al (2011) who studied the performances of two and 3 

band models in Lake Kinneret, Lebanon. Chl a was accurately estimated using a model that is only 

silightly different from the models.  

 

Chl_2bda_eqn2 and chl_3bda_eqn2. These models were calibrated and validated using in situ 

acquired from four campaigns on Lake Kinneret, Israel in May and June 2009. This in situ data 

covers a total of 56 samples. Lake Kinneret is a meso-eutrophic, Case 2 water body. This model 

was compared to a model calibrated using in situ data from Fremont Lakes in Nebraska (as in 

equation 1), and the results were highly similar.  In other words, the model for chlorophyll retrieval, 

calibrated using field data from Fremont lakes was applied to Lake Kinneret. It produced almost 

similar chlorophyll-a estimates from the model calibrated using local in situ data collected from 

lake Kinneret. These findings suggested that the MERIS models 2BDA and 3BDA can be applied 

universally in other regions.  

Chl_2bda_eqn3 and chl_3bda_eqn3. These models were calibrated and validated using 

MERIS satellite reflectances and in situ data collected in Tanganrog Bay and Azov Sea in April, 

July, September and Oct 2008 and March 2009. 2008 data collected from 18 stations were used to 
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calibrate the relationship between chlorophyll-a concentrations and the values from the indices. 

Data collected in 2009 were used to validate the chlorophyll-a retrieval models. The calibration of 

the model resulted to an R2 of 0.95 and 0.97 for both 3BDA and 2BDA respectively. The RMSE 

is 5.02mg/m3 and 3.65mg/m3 for 3BDA and 2BDA respectively.  

 

The 2 BDA and 3BDA chlorophyll-a retrieval models were compared to the model derived from 

in situ data collected in 2008 from several lakes in Nebraska (as in Chl_2bda_eqn1 and 

chl_3bda_eqn1). It was found out that there is only a slight difference in the 2 models.  

 

Chl_2bda_eqn4 and chl_3bda_eqn4. These advanced models were developed by Gilerson et al 

(2010) who combined simulated datasets of reflectance spectra and inherent optical properties, 

with in situ data from Fremont Lakes. The simulated data includes about 2000 reflectance spectra 

simulated using Hydrolight for a wide range of typical conditions of inland and coastal waters. 

MERIS data was the satellite bands used in the study. It considered differences in values of 

absorption by various water constituents such as algae, non-algal particles, CDOM and absorption 

by water. The advanced algorithms were validated using the 2009 in situ data of Fremont Lakes. 

3BDA an 2BDA advanced accurately estimated chlorophyll-a in chlorophyll-a ranges of 0-

25mg/m3 and 0-100mg/m3. There was a very close relationship between the field data with both 

2BDA and 3BDA models, with R2 above 0.95 for both.  

 

Most of these equations was calibrated in Fremont Lakes and tested on other regions of the world. 

Results of the comparison showed chlorophyll-a estimates close to in situ data collected from each 

of the study areas. While most of the equations were developed using MERIS bands, they were 

also applied to Sentinel 2 bands for a reason that the latter also have bands positioned in necessary 

wavelengths (near 700 and 670). These sentinel bands, however, have broader band widths than 
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MERIS, which could possibly cause some differences in values. As for Landsat 8, other 

chlorophyll-a equations had to be included for because it lacks bands near 700nm, a typical 

challenge in estimating chlorophyll-a from the satellite data L8.  

 

Assessment of algal concentration of the lake prior to the war 

Visual inspection and spectral inspection of the lake  

The first step in analyzing the water quality of the lake prior to the war was looking at the temporal 

and spatial patterns of algae. A simple visual analysis was employed on Landsat 5 data using Google 

Earth Engine. Landsat 5 TM imageries were loaded in Google Earth Engine for each of the 

months of 2010 and 2011. The image taken during the clearest date was selected per month. Some 

months, mostly in winter and spring, were not represented due to thick cloud coverage obstructive 

view of the lake. Each of the available images were visually analyzed by applying false color 

composite  (FCC)  provides information on algal growth in a lake. FCC uses the NIR, green and 

blue spectral bands to channels RGB respectively. In this band combination, vegetation and algae 

appear red because of high reflectance in the NIR spectrum. FCC shows lighter color in areas not 

covered by floating/emergent vegetation. This method was employed to make use of the high 

spatial resolution of Landsat 5 allowing the capture of spatial variations of algae in the lake, 

especially those areas highly impacted by point source pollution sources.  

 

While Landsat 5 data can provide clearer spatial variations, MERIS data is limited to its coarse 

images. However, its spectral configuration is superior than that of Landsat 5 in terms of algae or 

chlorophyll-a assessment. It was used to compliment the visual results of Landsat 5, providing 

information on other areas of the lake where algae are not obvious.  

The processes employed are as follows: 
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Data preparation. MERIS data is not included in the Data Cube platform nor in Google Earth 

Engine, so manual data processing was employed. The data was processed using SNAP and 

ArcgisPro, instead of an on-the-fly analysis. Downloading a single satellite data took 6 to 8 hours. 

For this reason, only one day data were analyzed for selected months (Table ). While this cannot 

capture the changes throughout time of algal growth, this is only a supporting process to quantify 

chlorophyll concentration in the lake prior to the war, which in the first place is already known to 

be highly eutrophic. The chlorophyll estimates were computed using this data to gain insights on 

the potential range of chlorophyll values in the lake, calculated from the models.  

 

The processes employed are elaborated below:  

 

Data preparation.  The first part of the analysis was to prepare the data. The subset of the MERIS 

bands were first  generated to cover only the study area and the bands necessary for the analysis -  

“rho_w”. The purpose of this is to reduce the data size and increase the speed of processing. The 

next step was reprojecting the subset into “Geographic Lat Long WGS 84” so it can be overlayed 

and analyzed along with other data (satellite basemap, Lake Qattinah shapefile) in the ArcgisPro.  

 

Spectral Visualization. Following 

the data preparation was a simple 

visualization and spectral pattern 

inspection, both possible in SNAP 

software. False color composite was 

also applied to MERIS bands 13, 5, 

1 to easily see the bounds of the lake 

and the areas around it; however, Figure 12: Distribution of sample points in the lake; own creation 
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unlike Landsat 5 and Landsat 8, it was not useful in looking at the spatial distribution of algae due 

to its coarse spatial resolution. MERIS data being specifically used for water quality studies 

provides important information that Landsat 5, Landsat 8 and Sentinel 2 does not fully capture 

due to spectral band positioning differences. To take advantage of such information at least for 

the years prior to the war, the spectral signature of some selected sample points in the lake were 

inspected, taking into consideration the typical reflectance pattern of chlorophyll-a rich waters. 

The 12 sample points (Figure 12) were randomly located in different areas of the lake, to be able 

to capture the status of the lake not seen in the visual inspection done using Landsat 5.  

 

The spectral signature of each of the selected images are presented in graphs.   

 

Estimation of chlorophyll-a concentration using 2BDA and 3BDA models applied on 

MERIS 

Only 2 images (one for August and one for September) were analyzed. These months were 

prioritized as algae generally proliferates during the hottest and driest months, which is also 

supported by the results from Landsat 5 inspection. Other images for months of June, July, and 

October were also initially processed but later removed from the analysis due to several erroneous 

pixels in the images resulting from atmospheric correction.  

 

Although the analysis can be done in SNAP, QGIS was chosen convenience purposes. Raster 

Calculator was used to calculate the indices. In total, 6 results were generated from 3 indices for 

Aug and September 2010 Table 11. From each of the indices, 4 different equations for chlorophyll-

a concentration estimation were used. In total, 20 outputs are generated from the MERIS data: 2 

indices for August, 2 indices for September, 8 chlorophyll-a concentration estimates for August, 
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and another 8 for September. To finalize the chlorophyll-a estimates, the average of the 4 equations 

for each of the two indices were calculated.  

 

The general process flow is elaborated in Figure 13 :  

 

 

Figure 13: Process flow for estimating chlorophyll-a concentrations from MERIS; own creation 
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Table 11: Generated data from MERIS analysis (indices and chlorophyll-a estimates) 

August 2010 September 2010 

Index 1: 2BDA Chl a est from 

Equation 1 

Index 1: 2BDA Chl a est from 

Equation 1 

 Chl a est from 

Equation 2 

 Chl a est from 

Equation 2 

 Chl a est from 

Equation 3 

 Chl a est from 

Equation 3 

Index 2: 3BDA Chl a est from 

Equation 1 

Index 2: 3BDA Chl a est from 

Equation 1 

 Chl a est from 

Equation 2 

 Chl a est from 

Equation 2 

 Chl a est from 

Equation 3 

 Chl a est from 

Equation 3 

 Chl a est from 

Equation 4 

 Chl a est from 

Equation 4 

 

To summarize the results into a single chlorophyll-a estimate for each of the indeces, the average 

of the estimates from the four equations were taken. The results from equations using 2BDA were 

close to one another. Similarly, the estimates from the 3BDA-based equations were also not highly 

variable. However, an inter-index comparison showed huge difference in chlorophyll-a 

concentrations with 3BDA models acquiring higher values than 2BDA models. For this reason, 

the averages were taken separately based on the index used.   

 

Assessment of algal concentration of the lake during the war 

Landsat 8 and Sentinel 2 were analyzed using DataCube.  which  allows processing of huge data 

without the need to download them. Rather, the analysis is done online and only the desired results 

are exported to the computer. With the help of this program, a more encompassing analysis 

became possible. The platform allows several user inputs such as the satellite sensor (Landsat 5 to 

8 and Sentinel 2), date range and study area bounds. The satellite data in the Data Cube are already 
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atmospherically corrected; hence, representing only water reflectances and excluding the 

atmospheric contribution. 

  

For this part of the study, seasonal analysis was conducted for years 2013 to 2020; DataCube was 

run for each of the seasons for all the years, generating different chlorophyll indices and 

chlorophyll estimates from all the above mentioned algorithms and equations. 

 

Figure 14 provides an overview of the processes undertaken when running the code for a specific 

period.  
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Figure 14: Workflow for the multitemporal assessment of chlorophyll-a concentrations from Landsat 8 and Sentinel 2; own creation 
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For instance, to get the water quality status of the lake for summer 2018 from Sentinel 2, the 

following inputs are fed to the script: 

 

Date = 2018 – 06 – 01 to 2018 – 08 – 31 

Satellite = S2 

latitude = (34.600, 34.671) 

longitude = (36.500, 36.620) 

Figure 15: Sample image composite and water extent generated from DataCube 
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When the code is run, it returns all the Sentinel 2A satellite images within the date range of the 

specified study area, with cloud cover already masked, if any. It then 

generates the maximum water extent from the multiple satellite 

images. Next, it calculates the chlorophyll indices as the chlorophyll-a 

estimates derived from the indices masked using the generated water 

extent. Then, it gets the average values of each of pixels from June 6, 

2018 to August 31, 2018, producing 12 different raster data for 

summer of 2018, 2 of which are the indices, 4 chlorophyll estimates 

from 3BDA index and another 4 from 2BDA, 1 natural color 

composite image, and 1 water extent file (Figure 15 and Figure 16) . 

This dataset is for one season of a year. Ideally, for 8 years (2013 – 

2020), the total number of generated files from Datacube is 384. 

However, due to cloud cover mainly during winter and spring, some seasons were not represented. 

 

 All the mentioned generated data are downloaded and further manipulated in ArcgisPro as such 

processes are currently outside the current scope of Datacube.  

 

Similar to MERIS data in the previous section, the chlorophyll-a estimates from the equations 

using 2BDA index are closely related and same is true for 3BDA equation estimates. However, 

comparing across different indices, 3BDA chlorophyll-a values are generally higher than those 

from 2BDA-based equations and getting their overall mean was not seen to be the best option. 

To present the values of chlorophyll from different equations, they are averaged per index using 

Raster Calculator as described by the formula below: 

 

Avg chla2BDA= (chl2bda_eqn1 + chl2bda_eqn2 + chl2bda_eqn3 + chl2bda_eqn4)/4 

Figure 16: Generated raster 

outputs from running DataCube 
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Avg chla3BDA = (chl3bda_eqn1 + chl3bda_eqn2 + chl3bda_eqn3 +chl3bda_eqn4)/4 

 

Consequently, the resulting raster averages were cropped out using the water boundary. This 

boundary was based on the water extent generated from Datacube (e.g., Figure 15) modified by 

cropping out areas that are obviously flooded. Shallow areas can include reflectance contributions 

of the bottom surface of the lake, leading to erroneous water leaving reflectance values. To simplify 

this process, summer and autumn water levels (which are generally lowest in any given year) were 

used as the basis for delineating the water boundary.  

 

The processes from Datacube to ArcgisPro is repeated for the other seasons from 2013 to 2020.  

 

Comparison of the performances of Landsat 8 and Sentinel-2.  

The data used in the second and third time period came from two different satellites – Landsat 8 

and Sentinel 2, respectively – which have differences in some configurations  including band width 

and positioning. With this, it is expected that the results from the two data sources are different. 

To understand up to what extent this might affect the results of the study, chlorophyll-a estimates 

were compared for a period that is both captured by the satellites -2017 onwards. For simplification 

and convenience purposes, only autumn season from 2017 to 2020 were compared, considering 

that algae is generally highest and most variable across the lake at this time of the year.  
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RESULTS 

Chlorophyll-a concentrations and patterns before the war  

Spatial and temporal patterns from Landsat 5. 

The results of the visual inspection using Landsat 5 as shown in Figure 17, provides initial insights 

on the spatial and temporal pattern of algae proliferation in the lake. No clear images were taken 

for the months of January, May and September but the results remain representative of different 

seasons of the year. The lake appears blue and clear from  February to April when there is 

significantly abundant rainfall and low temperature in the area. As the months get drier and hotter 

starting June, floating or emergent vegetation and/or algae began to show especially on the eastern 

portion of the lake. It became more apparent in October, then decreased in November until it can 

be barely seen in December, with the increased rainfall and decreased temperature.  

 

Figure 17: Landsat 5 FCC emphasizing prominent spatial feature of algae in 2010 
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The same pattern is seen in 2011 when clear images were acquired for 6 months (Figure 18). Bluish 

water is seen in the first quarter of the year (January and April), and floating vegetation and/or 

algae become prominent on the eastern side from July to October. There are no clear images for 

the months of November and December, but it is expected that the eastern side of the lake would 

clear up as in 2010.  

 

Figure 18: Landsat 5 FCC emphasizing prominent spatial feature of algae in 2011 

 

Spectral patterns and chlorophyll-a concentration estimates from MERIS 

Simple visual inspection via FCC is not well-appropriate to  MERIS data due to its lower spatial 

resolution limiting its capability to capture spatial differences. As seen in figure below, it is more 

difficult to deduce whether the spatial pattern seen from Landsat 5 is consistent with that of 

MERIS as the image is coarse. Nevertheless, MERIS provides data with more pronounced spectral 

information. Figure 19 shows the reflectance pattern at different days of 15 random sample points 

located in different areas of the lake. The spectral signature of each of these points exhibit similar 

patterns are similar to that of algae-rich waters as represented by chlorophyll-a. For the months of 

June and July, there are some sample points with negative reflectance. This is due to some error 
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from the atmospheric correction to generate only water leaving reflectance. This data is not 

included in the analysis.  

 

The spectral signature approach applied on MERIS data provides findings not seen in the simple 

FCC visual inspection done with Landsat 5. Results suggest that algae are present not only on the 

eastern side but also on all tested areas of the lake. 

 

Figure 19: Reflectance pattern of MERIS data in different areas of the lake; ; own creation
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While the results generated further provides evidence that the lake was already polluted before the 

war, it lacks information on the spatial and temporal trend generated from MERIS data, that would 

support the findings from Landsat. Moreover, it also lacks information as to the estimates of 

chlorophyll-a concentration in the lake. For this process, only August and September were 

analyzed due to the negative reflectance in other months that removed most pixels of the images. 

The results of the chlorophyll-a index retrieval in August is shown in Figure 20. High index values 

entail high chlorophyll-a concentration. The pattern obtained from the three different indices is 

similar, with high values on the northern as well as the eastern and western edges of the lake, and 

relatively low values on the southern portion. It is important to note that the lowest (darkest blue) 

and highest (yellow) valued pixels on the edges of the lake are probably affected by the land 

adjacency error and/or bottom surface noise and therefore must be out of consideration.  

 

 

Figure 20: Sample of generated 2BDA and 3BDA indices (August 15, 2010) 

 

Figure 21 and Figure 22 show the chlorophyll-a estimates of Lake Qattinah in August 15 and 

September 16, 2010 derived from 2BDA and 3BDA models. Both models resulted to high 

C
E

U
eT

D
C

ol
le

ct
io

n



64 

 

chlorophyll-a concentrations in the lake with the earlier date having higher values. The estimated 

average chlorophyll-a concentration (mg/m3) from 2BDA retrieval equations ranges from 41.3 to 

216.4 mg/m3 with a mean of 69 mg/m3 for August 15 and a range of 36.1 to 129.9 mg/m3 with 

a mean of 51.6 mg/m3 for September 17. 3BDA model had higher estimates than the 2BDA 

model. The estimated values range from 72.2 mg.m3 to 124.8 mg/m3, with a mean of 98.3 mg/m3 

on August 15 and 44 – 98.3 mg/m3 with m mean of 57.9 mg/m3 in September 16 (Figure 21). 

Following both Carlson index and the OECD criteria for classification of lakes, Lake Qattinah is 

a eutrophic water body. On the other hand, 2BDA appears to be more sensitive to land adjacency 

error and/or bottom surface noise as reflected by the extremely high values of pixels in the edges 

of the lake. Despite the differences in the estimates, both models exhibit almost similar spatial and 

temporal patterns. The northern part of the lake has higher chlorophyll-a concentration than the 

south. Both models resulted to higher concentration in August 15 than September 16.  

 

Figure 21: Boxplots presenting statistical values (mean, percentiles, outliers and extremes) of chl-a concentrations in 2010 
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Figure 22: Map of chlorophyll-a concentration estimates derived from 2BDA and 3BDA 

The spatial and temporal pattern of chlorophyll-a concentration during the 

war (2013 – 2016) 

This section presents the results from analyzing chlorophyll-a concentration of the lake using 

Landsat 8 data from 2013 to 2016. The war began in 2012 but the data presented in this section 

covers years 2013 to 2016 due to lack of available satellite data in the said.  

 

Figure 23, Figure 24 and Figure 26 show the trends of chlorophyll-a concentration for each season 

from 2013 to 2016, some of which are not represented due to lack of clear satellite data caused by 

cloud cover. In the available data, it can be observed that outliers mostly lie above the highest 

quartile. In cases of winter and spring, these data points represent the areas in the edges of the lake 

whose reflectance have contributions from the adjacent land (with corresponding error called land 
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adjacency error) and shallow areas with reflectance contribution from the bottom surface of the 

lake (also known as the bottom surface noise).  Winter (which only had clear data on 2016) 

estimates range from 12.3 to 27.2 mg/m3 with a mean of 14.7 mg/m3. In spring, a decreasing 

trend with mean values of 13.6 mg/m3, 12.8 mg/m3 and 11.7 mg/m3 is seen from 2014 to 2016. 

In summer, an increasing trend is observed from 2013 to 2016 with mean values of 14.5 , 15.4, 16 

and 19.7 mg/m3 whereas in autumn, an opposite trend is observed from 2013 to 2016 with mean 

values of 65.8, 65.9, 57.5 and 26.1 mg/m3. Unlike spring and winter, the outliers in summer and 

autumn represent not only the edges and shallow areas of the lake but also those with extremely 

high chlorophyll-a concentration mostly in the central and eastern parts. Looking at the overall 

trend from 2013 to 2016 (Figure 24), it appears that in 2013 and 2014, the lake had lower 

chlorophyll-a concentrations than in 2015 and 2016. In all years, the peak values are in summer 

and autumn. In 2015 and 2016 which have complete seasonal data, the most polluted season is 

autumn whereas spring is the least polluted. Overall, the highest level of pollution happened in 

2016 particularly autumn and summer.  

 

Figure 25 presents the spatial distribution of chlorophyll-a concentrations in the lake.  It appears 

that from 2013 to 2014, there is barely any prominent changes in the chlorophyll-a concentration 

of the lake across different seasons. It then becomes more polluted in summer and autumn of 

2015 and 2016, with extremely higher chlorophyll-a concentrations observed in the eastern side 

and some patches in the central areas of the lake. These areas look more pronounced in summer 

and autumn of 2016. Moreover, it can also be observed that the northern half of the lake have 

higher concentrations than the southern part in autumn 2016.  
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Figure 23: Temporal trend and chlorophyll-a distribution per season from 2013 to 2016 
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Figure 24: Temporal trend (continuous) and chlorophyll-a distribution from 2013 to 2016 

Figure 25: Map showing spatial variability of chlorophyll-a per season from 2013 to 2016 
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The spatial and temporal patterns of chlorophyll-a concentration during the 

war (2017 to 2020) 

This section presents the chlorophyll-a estimates of the lake from 2017 to 2020, using 2BDA and 

3BDA models.  

 

Figure 26 shows the temporal trends and distribution of chlorophyll-a concentration values for 

each season from 2017 to 2020 as generated from 2BDA model. Some seasons are not represented 

due to lack of clear satellite data caused by cloud cover. Similar to Landsat, the outliers represent 

areas affected by the land adjacency effect and the bottom surface noise, as well as some areas with 

extremely high and low chlorophyll-a values. In winter, mean chlorophyll-a concentration is higher 

and more variable in 2017 than in 2020 (68 mg/m3 to 27.6 mg/m3. In autumn, the mean value 

decreased from 61 mg/m3 in 2018 to 27.5 mg/m3 in 2019; in summer, a decreasing trend is 

observed from 2017 to 2019 (mean values of 60 mg/m3, 45 mg/m3, 33 mg/m3) followed by a 

slight increase in 2020 when mean is 36.5 mg/m3. In Autumn, there is barely any change in the 

mean chlorophyll-a from 65.8 mg/m3 in 2017 to 65.9 mg/m3 in 2018. It then decreases to 57.5 

mg/m3 in 2019 and to 26.1 mg/m3 in 2020. Generally, it can be observed that there is a decreasing 

trend in chlorophyll-a for almost all seasons from 2017 to 2020, suggesting improvement in water 

quality of the lake.   

 

The overall trend is presented in Figure 27.  It appears that the mean of chlorophyll-a 

concentration of the lake has decreased from winter 2017 to autumn 2020, with some seasonal 

fluctuations characterized by peaks during autumns of 2017 to 2019. The season with the lowest 

concentration could not be concluded due to incomplete data. It is also noteworthy that autumn 

have the widest range of values across the lake. 
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Figure 28 presents the spatial distribution of chlorophyll-a concentration in the lake.  Based on the 

seasons with available clear data, the entire lake have high concentrations of chlorophyll-a in all 

seasons from 2017 and 2018. In most seasons for these years, higher concentration runs in the 

central to northern portion of the lake, then decreases outwards. It is also observed that the central 

area has patches with higher values as clearly seen in summer 2018 to winter 2020. The most 

prominent changes are on the eastern side of the lake with extremely high algae beginning to be 

visible in summer and autumn then decreasing in magnitude from 2017 to 2020 suggesting 

improvement of water quality.  

 

 

Figure 26: Temporal trend and chlorophyll-a distribution per season from 2017 to 2020 as derived from 2BDA model 
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Figure 27: Temporal trend (continuous) and chlorophyll-a distribution from 2017 to 2020 as derived from 2BDA model 

 

Figure 28: Map showing spatial variability of chlorophyll-a per season from 2017 to 2020 
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Figure 29 and Figure 30 show the temporal pattern of chlorophyll-a estimates using 3BDA model 

while Figure 31 shows the spatial patterns in the lake. In comparison to the first model – 2BDA, 

the estimates of 3BDA are higher, but the temporal and spatial patterns are similar.  

 

In winter, mean chlorophyll-a concentration is higher in 2017 than in 2020 (96.3 mg/m3 to 30.3 

mg/m3). Additionally, 2017 has a wider range of values than 2020. In spring, the mean value 

decreased from 99.3 mg/m3 in 2018 to 31.1 mg/m3 in 2019. In summer, a decreasing trend is 

observed from 2017 to 2019 (mean values of 124.7 mg/m3, 87.9 mg/m3, 44.3 mg/m3) followed 

by a slight increase in 2020 to 50.6 mg/m3. In Autumn, the mean chlorophyll concentration 

increased from 95.2 mg/m3 in 2017 to 127.7 mg/m3 in 2018, then decreased to 85 mg/m3 in 

2019 and to 27.1 mg/m3 in 2020. Generally, it can be observed that there is a downward trend in 

chlorophyll-a for almost all seasons from 2017 to 2020. 

 

 

Figure 29: Temporal trend and chlorophyll-a distribution per season from 2017 to 2020 as derived from 3BDA model 

C
E

U
eT

D
C

ol
le

ct
io

n



73 

 

 

 

Figure 30: Temporal trend (continuous) and chlorophyll-a distribution from 2017 to 2020 as derived from 3BDA model 

 

Figure 31: Map showing spatial variability of chlorophyll-a per season from 2017 to 2020
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Comparison of Landsat 8 and Sentinel 2 Results 

Landsat 8 is challenging to use in chlorophyll-a estimation because it lacks a band in the wavelength 

near 700nm wherein the NIR reflectance peak is located. Sentinel 2, on the other hand, has a band 

near the peak in the wavelength 703.9 nm, making it relatively ideal in using 2BDA and 3BDA 

models. With the lack of available Sentinel 2 data in 2013 to 2016, Landsat 8 is used in the analysis 

of the said period. To establish whether Landsat 8 can provide some insights on the status of the 

lake, it was first compared with Sentinel 2 results using a common period (2017 to 2020) when 

both satellite data are available.  

 

Figure 32 and Figure 33 compare the retrieved chlorophyll from Landsat 8 (left) and Sentinel 2 

(right) from years autumn 2017 (top) to 2020 (down) using a common model – 2BDA. Landsat 8 

produced lower values than Sentinel 2, which is expected as chlorophyll-a reflectance declines 

beyond the NIR peak that Landsat 8 is not able to capture. Despite this, the results show that 

while it produces lower values, it is still able to capture the spatial pattern of the algae and it 

determines which areas have relatively higher algae. It mostly shows patterns similar to that of 

Sentinel 2. For instance, the high pollution in the eastern banks, the high concentration patches 

scattered in the central area of the lake, the relatively higher values in the central part (SW to NE 

direction) decreasing outwards. It also provided a similar temporal pattern to Sentinel 2 wherein 

the water quality improves from 2018 to 2020 during autumn. With these findings, it is therefore 

shown that Landsat 8 can provide insights on the water quality for years 2013 to 2016 – years that 

Sentinel 2 data is unavailable. The results run for such period will be governed by the important 

note that Landsat 8 possibly underestimates the chlorophyll values as compared to MERIS and 

Sentinel 2, and therefore, the actual values can possibly be higher than those computed. The best 

insight that can be obtained from this data are the spatial and temporal patterns.  
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Figure 32: Landsat 8 vs Sentinel 2 Results ( Autumn 2017 - 2020) 

 

 

Figure 33: Landsat 8 vs Sentinel 2 results (Autumn 2017 - 2020)  
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DISCUSSION 

Spatial and temporal patterns in relation to the Syrian Civil War 

The state of Lake Qattinah and the surrounding pollution sources  prior to the war (2010 

– 2011)  

The results of chlorophyll-a assessment from two different satellite data set the baseline of water 

quality of Qattinah Lake. Visual inspection of Landsat 5 images revealed the seasonal variability of 

algae and emphasized relatively higher pollution in the eastern side of the lake, near the fertilizer 

factory. The prominence of this pattern in summer and autumn aligns with the general condition 

of algal proliferation in higher temperatures (Manssour & Al-Mufti, 2010). Spectral patterns of 

MERIS in the sampling points and the high chlorophyll-a estimates from both chlorophyll-a 

retrieval modes revealed pollution in other areas indicating contributions of surrounding human 

activities such as agriculture and human settlement on top of the discharges from the factory.  

 

The results of the pre-war analysis agree with the findings from several previous studies indicating 

that the lake was highly polluted prior to the war (Hassan et al., 2010; Manssour & Al-Mufti, 2010; 

UN-ESCWA and BGR, 2013). The spatial and temporal patterns revealed by this study align with 

the findings from (Manssour & Al-Mufti, 2010) who measured several water quality parameters in 

Qattinah Lake and found 1) high eutrophication level all over the lake mainly owing to the 

discharges of a fertilizer factory, agriculture and sewage drainages, and 2) seasonal variation of 

nutrients particularly total phosphorus which was highest in April – the starting period of algal 

bloom in the lake.  

 

The estimated chlorophyll-a concentrations from two different models both represented a highly 

polluted lake but had high discrepancies. 3BDA estimates were significantly higher than those of 
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2BDA. This suggests that while the lake is highly polluted, the magnitude remains uncertain. 

Estimates from one model might be more accurate than the other, or both models may highly 

deviate from actual concentrations. On the positive side, the models showed consistent spatial 

pattern characterized by relatively higher estimates in the northern part of the lake as compared to 

the south. The possible reasons for this are either1) higher pollution discharges in the northern 

areas or 2) the bathymetry of the lake, possibly more shallow in the northern area which can be 

affected by the bottom surface noise. However, the relationship of bathymetry and chlorophyll-a 

is outside the scope of this study. 

 

These results leads to the main takeaway that although the actual estimates from any of the models 

should not be taken as absolute, the spatial pattern generated can provide relevant information on 

assessing the lake.  

 

The state of Lake Qattinah and the surrounding pollution sources during the Syrian Civil 

War (2013 – 2020) 

 

The spatial and temporal patterns of chlorophyll-a in 2013 to 2020 suggest that the war had an 

impact on the pollution level of the lake. The most prominent spatial patterns seen to be changing 

throughout different stages of the war are 1) the hotspots in the eastern part of the lake 2) the 

several small patches with high concentrations in the central and northern part of the lake from 

the southwest to northeast direction 3) the relatively higher concentrations in the same areas as in 

2, decreasing outwards. Hotspot 1 is mainly driven by the fertilizer factory and the settlements 

located in the eastern banks of the lake. Hotspot 2 could be macrophyte species that can co-exist 

with high levels of phytoplankton. This hypothesis is based on the study conducted Lake Qattinah 

by (Hassan et al., 2010) who found low macrophyte species richness mainly restricted to a few 
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species that can tolerate its highly eutrophic conditions. The third spatial pattern could be related 

to possibly higher pollution in the northern areas or may be caused by interventions from the 

bottom surface of the lake (as mentioned in the previous section).  

 

The relatively low and barely increasing algal concentrations in all parts of lake Qattinah and the 

absence of high concentration areas in the identified hotspots in all seasons from 2013 to 2015 

imply the decline in pollutants (with respect to the baseline). This is potentially caused by lower 

magnitudes of surrounding human activities such as the fertilizer factory, agricultural areas and 

human settlements as the country was torn in battles over power and control. The rapid increase 

from 2015 to 2016, the presence of high concentration in the hotspots, and the decline from 2017 

to 2020 might be related the regained control by the government over most areas in the country 

which to some extent brought back higher intensity of human activities but also possibly improved 

management efforts towards the lake. 

 

To have a better grasp on these water quality variations in the lake, the main pollution sources 

such as agricultural areas, human settlements and the fertilizer factory are investigated within the 

context of the ongoing war.  

 

Agricultural areas and human settlements. Agricultural production suffered a significant loss 

during the war (Enab Baladi, 2019; FAO, 2017). Figure 34 shows the decline in crop production 

in the surrounding areas of the lake from 2010 to 2013. It can be observed that the highest 

production drop occurred in areas that are mainly irrigated while mainly rainfed areas in the north 

of the lake were barely affected. According to (Jaafar et al., 2015), irrigated agricultural production 

decreased between 15 and 30% in the Syrian part of Orontes River Basin, with hotspots in Idleb, 

Homs, Hama, Daraa and Aleppo. (Haj Asaad & Jaubert, 2014) stated that water infrastructures 
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were purposely targeted by both government and the opposition forces to gain advantage through 

opponent’s reduced access to resources including agriculture and water. Some were destroyed 

during bombing, military passage or were looted.  

 

Population displacement was also one of the direct influences of the war. According to FAO 

(2017), the conflict also caused drop of population which drove the decline in production. 

Destruction of agricultural land with orchards or crops, shortages and/or increase in prices of 

agricultural inputs including seeds, fertilizers, fuel for irrigation pumps and electricity were 

prevalent during the war. These forced many rural farmers and herding families to migrate and 

seek other sources of income (FAO, 2017). Figure shows the decline in population around the 

vicinity of the lake. Some areas particularly agricultural areas upstream of the lake as well as some 

surrounding areas in the southern banks were wiped out of almost all the population. Some were 

displaced on the account of bombing and intense fighting, while others were forced to leave as 

selected districts were established as military zones to prevent the return of the population. One 

of the two main military zones is located in Qattinah district, south of the lake (Figure 35) while 

the other is in Al-Qusayr situated farther south near the borders with Lebanon (Haj Asaad & 

Jaubert, 2014).  
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Figure 34: Agricultural production decline around the lake from 2010 to 2013 

Adapted from: (Haj Asaad & Jaubert, 2014) 
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Figure 35: Percentage of displaced population in areas around the lake; Adapted from: (Haj Asaad & Jaubert, 2014) 

The findings from the abovementioned previous studies clearly show how the war affected the 

surrounding human activities that have been identified as the major sources of pollution in the 

lake. The decline in agricultural production upstream as well as in the areas next to the southern 

banks of the lake, coupled by the displacement of a high percentage of population could indicate 

less magnitude of human activities and therefore potentially less discharges of pollutants to the 

lake coming from these sources. This supports the relatively low mean chlorophyll-a concentration 

in all seasons from 2013 to 2015.  

 

Following the same arguments, it is possible that when the Assad government forces strengthened 

and positioned itself on the winning side after 2015, the activities surrounding the lake increased 

again. However, a simple inspection of vegetation around the lake in selected years revealed higher 

cultivated areas (green) on years before the war (2009 and 2010), a decline between 2010 and 2014, 
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followed by barely any changes until 2018. This suggests that the ups and lows of chlorophyll-a 

concentration in the lake might not be mainly driven by agriculture as reflected by the minimal 

changes in agricultural lands yet prominent changes in water quality after 2011. Moreover, the 

relative increase in cultivated areas in 2020 does not seem to align with the improvement of water 

quality in 2020 (Figure 36).  

 

 

Figure 36: Changes in agricultural areas before and during the war 

These findings suggest that while the agricultural areas have their fair share of nutrients being 

discharged to the lake, the most prominent increases and decreases in the algal concentration seen 

during the war might not be mainly driven by this activity.  

 

With regards to the human settlements in the vicinity, no information was found on the return of 

displaced population but considering that military zones were established to prevent the return of 
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population (Haj Asaad & Jaubert, 2014), it is possible that many villages remained as it was. 

Following these assessments, it is hypothesized that the fertilizer factory is potentially the main 

driver of the algal growth in lake Qattinah.  

 

Fertilizer factory. According to (Enab Baladi, 2019), the General Fertilizers Company is the 

largest chemical industrial complex in Syria and located on the banks of Lake Qattinah. It used to 

cater to the agricultural sector needs of different types of fertilizers such as fertilizers of Urea, 

Ammonium Nitrate and Phosphate. Such fertilizers used to be delivered to farmers at a subsidized 

price via Agricultural Bank. Prior to the war, GFC used to have around 3000 employees but in 

2011, employment decreased in half.  

 

GFC has three factories for fertilizer production. First is the Ammonia Urea Plant which stopped 

production in 2015 due to gas cuts resulting from the conflict and the lack of required production 

inputs including phosphate and electricity. In mid-2017, it resumed its operations at a production 

rate of 900 tons per day. In addition, it also contributed to the monthly production of 25000 tons 

of urea fertilizer, along with other products. Second is the ammonium nitrate fertilizer plant can 

produce 400 tons daily. This plant does not regularly run but is only operational when on demand 

for production due to the decline in workforce and expertise brought about by the conflict. Third 

is the phosphate fertilizer plant which resumed work in December 2019 and started production 

reaching 400 tons per day of phosphate fertilizer.  

 

These accounts on the factory operations align with the findings of this study. The decline in algal 

concentration in the eastern part of the lake after 2011 (in this case 2013) highly relates to the state 

of operations of GFC. The decrease in the workforce which began after 2011 influenced its 

production, and thus the pollutants it discharges to the lake. This supports the disappearance of 
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the extremely high algal biomass in the eastern part in summer and autumn of 2013 to 2015 when 

such are predominant. The return of high algal concentration in the same area in summer and 

autumn 2016 does not fully align with the suspension of the first plant’s operation in 2015. 

However, it is possible that it was driven by the second fertilizer plant which during the war 

remained operational upon demand. The return of operations of the first fertilizer factory in mid-

2017 partially aligns with the high concentrations in the lake especially in the hotspots, however, 

the resumption of activities in the third plant in 2019 seems to negate the improvement in water 

quality especially in 2020. It is hypothesized that that application of certain management strategies 

on the lake might have played a role in this improvement. The lack of more recent data specific to 

the fertilizer company and the rehabilitation efforts related to the lake makes it difficult to prove 

such assumption.  

Important considerations on data and the analysis 

 

This section discusses the limitations of the data, the conducted analysis, and interpretation of 

results. It also provides information on how such limiting factors were accounted for.  

Incomplete data. One of the challenges in using satellite imagery is cloud cover interfering with 

measurements and making the affected areas not feasible for water quality assessment. Prior to the 

assessment, these clouds were masked resulting to some images having incomplete coverage of 

the lake. When cloud cover is removed in a single image, the eliminated lake area is patched with 

image pixels of the same area taken from other days within the specified data range. This process 

makes it possible to have a clear image of the lake that is representative of an entire season. 

However, in seasons when cloud cover is intense for almost all days, no clear composite image is 

generated. For this reason, there are missing data particularly during winter and spring of some 

years. As a result, the study becomes limited to having a more holistic look at the seasonal patterns 

of algal growth in the lake. 
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Variability of algae over short periods of time. Algal growth is highly variable even in a short 

amount of time. With this, one day satellite images is typically not enough to capture the variability 

of the water quality indicator. Because of the issues on long download time of MERIS data, only 

one day images were analyzed to estimate chlorophyll-a concentration prior to the war. These 

images may not well represent the varying conditions of the lake over a long period of time. 

Complementing MERIS data with one image per month of Landsat 5 accounted for the monthly 

changes of algae in the lake, to some extent. However, the analysis could have been stronger if 

mean of several Landsat 5 images per month were used instead of picking a single day. This is 

resolved in the assessment of the lake during the war when seasonal data were obtained from 

several cloud-free day images.  

 

Multiple satellite data. This study covers 11 years.  Ideally, the inconsistencies of estimated 

values of chlorophyll-a would have been lessened if a single satellite data was all throughout the 

analysis. To be able to look at each of the years and the corresponding changes in water quality, a 

combination of multiple satellite data was used, keeping into consideration the differences in 

specifications such as spatial resolution, spectral resolution, and revisit days among others. MERIS 

which has superior spectral resolution most suitable for chlorophyll-a retrieval but low spatial 

resolution was combined with Landsat 5 whose spectral resolution is inferior but spatial resolution 

capable of visualizing variability across the lake, were used to establish a baseline prior to the war. 

This shows how the two different data sources were used together to address each of the data’s 

limitations and to have stronger results.  

 

The application of multiple models in different satellite data with varying specifications added an 

additional level of uncertainty to the results. It is a major constraint that there is no in situ data to 
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validate the estimates from the models. To make up for this, the estimated chlorophyll-a 

concentrations a particular satellite data was treated independent from that obtained from the 

others. No  comparison of algal biomass was done among period cuts, except for the case when 

two satellite data were both available for a certain timeframe – the case of 2017 to 2020.  

 

The lack of satellite data in 2012 did not hinder the assessment of the lake during the war. 2013 to 

2016 were well represented by the results of Landsat 8 and the same goes for 2017 to 2020. While 

there are multiple satellite data used in this study, not all are expected to produce results which are 

most probably closer to the absolute values. Most of the retrieval models applied in this study were 

developed and validated on MERIS data. Such models relied on wavelengths near 709 nm (peak 

in the NIR), 665nm (maximum absorption in the red region), and/or 753 nm. Sentinel 2 have 

bands located near these three spectral locations: 703.9 nm, 665 nm, and 7__ nm. Moreover, 

previous studies have used the same chlorophyll-a indices on Sentinel-2 and successfully retrieved 

chlorophyll-a concentrations close to in situ data. On the other hand, Landsat 8 lacks a band near 

the 709 nm peak, as well as the 753 nm wavelength. Instead of 709 nm, the band in 830 nm quite 

far beyond the NIR peak was used in the 2BDA model. This led to chlorophyll-a estimates that 

are lower than those calculated from Sentinel 2 using a common model. In spite of this spectral 

limitation, the applicability of the model to generate results that can still provide important insights 

on the lake was proven by comparing computed values from Landsat 8 and Sentinel 2 using a 

common model (2BDA) within a common timeframe in which both data are available (2017 – 

2020, represented by the season with the most variable algal biomass - autumn). This showed the 

lower estimates from Landsat 8 but it also revealed the data’s capability to capture similar spatial 

and temporal patterns as that of Sentinel 2, thus supporting the data and the model’s compatibility 

regardless of spectral limitations. In this context, the chlorophyll-a estimates from 2013 – 2016 

were hypothesized to be possibly an underestimation. In other words, if Sentinel-2 or MERIS 
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happened to be available in the said period and were used instead of Landsat 8, the chlorophyll-a 

estimates would most likely be higher but would also reveal similar (or more pronounced) spatial 

and spectral patterns.  

 

Lack of in situ data. While this study promotes remote sensing, the empirical approach is not 

entirely independent from in situ data. It calibrates and validates a model from data collected on 

the site. This poses a major setback due to unavailability and/ or inaccessibility of the data, but at 

the same time an opportunity to look at ways to make the most out of the freely available and rich 

satellite data to study water quality in remote and inaccessible areas where filed data collection is 

not possible. Selected algorithms and equations calibrated and validated in huge geographical scale, 

varied seasons, and areas with similar climatic conditions as the study area were assumed to be 

universal and tested on the lake. While many studies have tried doing this and found the non-

universality of many models, and the need for calibrating data to a specific location and time, this 

study still used such models with less focus on the absolute chlorophyll-a concentrations but more 

attention given to spatial and temporal patterns. This approach provided important takeaways in 

understanding the state of the lake amidst the war. The comparison of results from multiple 

chlorophyll-a indices and retrieval equations established the reliability of the trends and patterns 

which were consistent among indices. The comparison between 2 different satellite data where a 

common model was applied provided consistent spatiotemporal patterns in the lake and 

established the reliability of utilizing different satellite data in various war stages.  

 

While looking at all the concentration calculated from different indices applied on different satellite 

data all revealed chlorophyll-a concentration ranging from as low as 10 mg/m3 to as high as 

400mg/m3, these values reflect chlorophyll-a concentration of a eutrophic lake. In other words, 

all indices and models applied on various satellite data provided chlorophyll-a concentrations of a 
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highly polluted lake, but at varying levels. The best way to find out whether the chlorophyll-a 

estimates in this study represent the actual algal concentration in the lake is to collect in situ data 

when possible. Nevertheless, this study proves significant in revealing variations of algal 

concentration in different parts of the lake across different seasons and years.  

 

Small scale assessment specifically looking at pollution sources. The interpretations of the 

results are limited on the study area and its immediate vicinity and do not extend on other parts of 

Syria. The water quality was evaluated solely based on the impact of the immediate surroundings 

and thereby not considering other factors that might have effects on the water quality as well. It 

also does not include assessment of climatic changes throughout the conflicted years. Moreover, 

the smaller geographic coverage of this study has made it difficult to find information specific to 

the area (i.e. movement of population, rehabilitation and management strategies in the lake, more 

recent state of the fertilizer company).   
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CONCLUSIONS 

This study mainly aimed to analyze water quality of lake Qattinah by looking at the spatial and 

temporal patterns of algae before and during the war (2010 to 2020). It utilized multiple 

chlorophyll-a retrieval models applied on various satellite data to make up for the lack of in situ 

data. In addition, this study attempted to find possible causes of the changes in water quality by 

finding relevant information from published and grey literature with focus on the influences of the 

war on the human activities surrounding the lake.  

 

This study concluded that the lake had been highly polluted prior to the war and it is supported 

by the findings from previous studies. It also found out that the conflict situation had indirect 

impacts on water quality of the lake through its influences on the surrounding human activities. 

First, it revealed relatively lower level of water degradation in 2013 to 2015 which was linked to 

the potential decrease in nutrient discharges brought about by population displacement, 

agricultural decline and the disruption of operations by the nearby fertilizer factory. Second, the 

study saw a degradation of water quality with the resumption of polluting activities around the lake 

following the government’s regained strength and leverages in the war. The evidences of minimal 

changes in agricultural areas after 2012 led to a conclusion that agriculture has not been the main 

driver of the ups and downs in water quality. The limited knowledge on population movement 

made it difficult to assess the relative contributions of human settlements (i.e. runoffs, wastewater 

discharges). Some evidences pointed out that the fertilizer factory remained as the main driving 

factor of the apparent water quality changes. These include the disruption and continuation of 

operations during the war which aligned with spatial and temporal changes in algal concentration 

of the lake. However, increased operations of the factory since 2017 did not align with the 

decreasing trend in algal concentrations from 2017 to 2020. This led to a hypothesis that the recent 
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water quality improvement could be linked to certain management strategies and rehabilitation 

efforts which are possibly related to the fertilizer factory.   

 

This study has therefore successfully assessed water quality solely from satellite data and 

independent of in situ data and thus filled the current research gap on the state of Lake Qattinah 

during the war. The huge discrepancies in chlorophyll-a estimations from two different models 

showed potential inaccuracies of generated values and the need for in situ data collection to 

validate results. However, the consistency in the spatial and temporal patterns generated from the 

models supported the reliability of the methods performed and guided the interpretation of the 

results. The approach used in this study can be applied on other remote and inaccessible water 

bodies where no in situ data is available.  

 

Although the actual algal concentrations in the lake remains unknown, this study has provided 

significant insights which can assist in the formulation of rehabilitation programs and management 

strategies. Additional information on the surrounding human activities is necessary to confirm the 

author’s inferences on the factors driving the water quality changes. Integration of other relevant 

factors like changes in temperature, precipitation and other climatic conditions could significantly 

improve the interpretations in this study.  
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