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Abstract 
 

This thesis focuses on Poincaré’s philosophy of mathematics. Specifically, his 

theory of intuition as a foundation for mathematics and his ideas on actual infini-

ty. My main goal is to present an analysis of Poincaré’s philosophy as a whole, 

and connect his ideas within a Poincaréan framework. In this thesis, I deal with 

how he argues for mathematical intuition, and why he thinks that mathematics is 

synthetic a priori. In the second chapter, I present his views on transfinite cardi-

nals, and show the underlying reasons of his rejection of actual infinity. In the 

third chapter, I interpret Poincaré’s philosophy and show some possible reasons 

why he is dissatisfied with set theory and Cantor’s transfinite paradise. At the 

end, I look at Cantor’s argument for the uncountability of real numbers within a 

Poincaréan framework.   
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Introduction 

 

Poincaré is known for his rejection of the logicist program. Logicists like 

Zermelo, Cantor, Russell, Peano etc. claim that all true mathematical statements 

can be proven via logic alone, without depending on any “extra-logical” elements. 

In Foundations of Arithmetic and Basic Laws of Arithmetic I (1884), Frege posed 

five laws and claimed that one can derive all laws of arithmetic from these five 

logical axioms. However, his Basic Law 5 failed because it leads to Russell’s Par-

adox. Following Frege, Zermelo and Russell defended the axiom of infinity which 

guarantees the existence of at least one infinite set, i.e. the set of natural numbers. 

The problem, however, is that the axiom of infinity cannot be proved via other ax-

ioms of ZFC Set Theory, and is therefore independent from the system. Such at-

tempts were not as successful in reducing arithmetic to logic without any extra-

logical elements involved. Poincaré was against the logicist tradition and thought 

that we need an extra-logical element. He argues that this extra-logical element is 

a form of intuition which cannot be found within the system and that mathematics 

is synthetic because of that reason. He claims in Science and Hypothesis that: 

No doubt we may refer back to axioms which are at the source of all these 

reasonings. If it is felt that they cannot be reduced to the principle of contradic-

tion, if we decline to see in them any more than experimental facts which have 

no part or lot in mathematical necessity, there is still one resource left to us: we 

may class them among à priori synthetic views. (Poincaré, 1905, p. 2).  

We may class them among a priori synthetic views because mathematical induc-

tion, or proof by recurrence, is at stake for every mathematical truth and the facul-
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ty of intuition provides us the ability of theoretically going ad infinitum which is 

necessary for proof by recurrence. It is also well-known that Poincaré was critical 

of the axioms of set-theory (Gray,1991), but more importantly for the purpose of 

this topic, of actual infinity. He states that: 

Now, as far as the second transfinite cardinal Aleph One, is concerned, I am not 

entirely convinced that it exists. One reaches it by considering the totality of or-

dinal numbers of the power Aleph Null; it is clear that this totality must be of a 

higher power. But the question arises whether it is self-contained, and therefore 

of whether we may speak of its power without contradiction. There is not in any 

case an actual infinite. (Poincaré, 1910).  

His rejection of the actual infinity is mainly due to his theory of predicative and 

non-predicative definitions, and his argument that classifications concerning the 

elements of infinite collections must be predicative.  

 The overall aim of this project is to explain Poincaré’s theory of intuition, 

his theory of predicativity and connect it with his rejection of actual infinity and 

his doubts on infinities bigger than Aleph Null. I wish to show what Poincaré 

means by intuition, how his views on such topics can be connected with his argu-

ments about arithmetic intuition, and how can his views on such topics be con-

nected with some other problems in mathematics, like paradoxes and antinomies. 

My primary sources for this project are his books Science and Hypothesis and The 

Value of Science, and his collections of articles The Logic of Infinity and Mathe-

matics and Logic. In addition to Poincaré’s own works, I use secondary literature 

to help me interpret Poincaré from different perspectives.  

 In Chapter One, I will explain what he means by intuition, show why he 

thinks that intuition is constitutive for arithmetic and explain its relation to math-
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ematical induction. I also wish to show why Poincaré might think that mathemati-

cal induction is foundational for mathematics and why it cannot be reduced to 

“logical” elements and why we need it in the foundations. I will also show the 

ideas behind his argument that mathematics is synthetic a priori. In Chapter Two, 

I will present the theory of predicativity and show why he thinks that actual infini-

ty does not exist. I will do so by explaining the difference between predicative and 

non-predicative definitions. I will also show the different presumptions between 

what Poincaré calls Cantorians and pragmatists, explain  Cantor’s diagonal argu-

ment and present Poincaré’s argument on why the law of correspondence should 

also be predicative. In Chapter Three, I will connect Poincaré’s ideas on intuition 

with his rejection of a completed infinity that is not formed via continuous succes-

sion. I will also consider whether Poincaré’s views on intuition and infinity can il-

luminate some problems in contemporary philosophy of mathematics by illumi-

nating some misconceptions. In this chapter, I also attempt to explain the reasons 

of Poincaré’s dissatisfaction with axiomatic set theory, and the connection be-

tween that and the antinomies one faces in the study of infinity. At the end, I will 

reconsider Cantor’s argument of the uncountability of the set of real numbers, and 

interpret it from a Poincaréan perspective. 
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 Chapter 1: Poincaréan Intuition  

 

My aim in this chapter is twofold. First, I wish to explain what Poincaré means by 

intuition when he claims that it is essential for mathematics. Second, I wish to 

show why he thinks that mathematics is synthetic a priori. These two claims are 

among the most critical parts of Poincaré’s philosophy of mathematics. By ex-

plaining why he thinks so, I will pave the way for the rest of my project, i.e. to 

show why infinities bigger than the cardinality of natural numbers are not and 

cannot be constructed via intuition. I will also discuss Poincaré’s circularity ar-

guments on mathematical induction, and present my views on why he thinks that 

induction and intuition is essential for any part of mathematics. 

 

 

1.1.  Defining Poincaréan Intuition 

Poincaré discusses the role of intuition in the foundation of mathematics in many 

of his writings. However, Poincaré’s notion of mathematical intuition is funda-

mentally different from what is now called the “intuitionist program”, and that is 

why he is sometimes called a pre-intuitionist or a semi-intuitionist. My aim in this 

chapter is to make clear what he means by intuition and to show intuition’s role 

for him in the foundation of mathematics, since what he means by the term is not 

so obvious. Explaining what he means by “intuition” is necessary for my project, 

since I argue that it sets the ground for other parts of his philosophy of mathemat-

ics, including his rejection of actual infinity.  
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 What is common to almost all of Poincaré’s writings on philosophy of 

mathematics is his criticism of the logicist program, which claims that the arith-

metic is reducible to logic and that number-theoretic truths are actually logical 

truths. His main claim is that intuition is crucial for mathematics, and some even 

interpret his claims in a stronger way— i.e. even if it had been successful in re-

ducing arithmetic to logic, this would not show that mathematics does not require 

intuition (Folina, 1992). While talking about intuition and its role both in Science 

and Hypothesis and Science and Its Value, he does not make it clear what he 

means by the term. I wish to make it clearer. 

 According to Poincaré, we have several intuitions that we use in different 

sciences. He enumerates the types of intuition as: 

…first, the appeal to the senses and the imagination; next, generalization by in-

duction, copied, so to speak, from the procedures of the experimental sciences; 

finally, we have the intuition of pure number, … which is able to create the real 

mathematical reasoning. (Poincaré, 1902, p. 20).  

He argues that while the first two, appeal to the senses and the induction used in 

natural sciences, cannot give us certainty, intuition of pure number gives us the 

certainty that we have in mathematics. Intuition of pure number, as he calls it, is 

vague and its name might be misleading, since it is not about how we intuit the 

numbers, but more about the notion of continuity and repetition. For that, it is 

sometimes called “the intuition of indefinite iteration” (Folina, 1992). Intuition of 

pure number, or intuition of indefinite iteration, is closely connected for him with 

proof by recurrence (Poincaré, 1902) and mathematical induction. He gives a 

number of examples in the beginning of Science and Hypothesis of cases in which 

we use proof by recurrence. Then he gives a general definition as:  
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The process is proof by recurrence. We first show that a theorem is true for n = 1; 

we then show that if it is true for n–1 it is true for n, and we conclude that it is 

true for all integers. (Poincaré, 1905, p. 11).  

Proof by induction in mathematics is considered to be valid just like other proofs 

where every step should be justified. What is done, basically, is to show that the 

formula is true for the base case, e.g. n=0 or n=1, and assuming that the formula 

holds for an arbitrary number n=k, it holds for n=k+1. When this is done, the for-

mula is said to be true for every natural number. Poincaré argues that: 

If we look carefully, we find this mode of reasoning at every step, either under 

the simple form which we have just given to it, or under a more or less modified 

form. It is therefore mathematical reasoning par excellence, and we must exam-

ine it closer. (Poincaré, 1905, p. 12).  

Although the certainty of mathematical induction, or proof by recurrence as he 

calls it, is not to be debated, and it is actually the foundation of rigor in mathemat-

ics (Poincaré, 1902), this reasoning deserves more investigation. What is im-

portant here is that we are demonstrating the formula to be true for an arbitrary 

number n. It is not the case that we are trying every number separately to verify if 

the formula holds for them. What we are demonstrating is that if the formula is 

true for an arbitrary number, then it is also true for its successor. It is an arbitrary 

number because “n” stands for any number in the set, not a particular one. This set 

consists of numbers. This arbitrary number “n” can be substituted for any element 

in our set, and then we conceive that the formula holds for every number in the 

set. Because we imagine a number n and its successor n+1, and prove that the the-

orem stays true for the succession of these arbitrary numbers, we can say that the 

theorem or the formula holds for an infinite set, that is, the natural numbers. That 

is why Poincaré states that: 
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To prove even the smallest theorem he [the mathematician] must use reasoning 

by recurrence, for that is the only instrument which enables us to pass from the 

finite to the infinite…it [reasoning by recurrence] contains, condensed, so to 

speak, in a single formula, an infinite number of syllogisms (Poincaré, 1902, p.  

14).  

It is this passing from finite to the infinite and that our ability conceive an infinite 

number of syllogisms in a single formula that gives mathematical induction its ri-

gor and certainty.  

 For Poincaré, intuition of pure number is closely connected to proof by re-

currence and mathematical induction. Having explained the importance of the rea-

soning by recurrence, we can look at why Poincaré considers this as an intuition. 

There are several interpretations of what intuition means for Poincaré. One, for 

example, is Goldfarb’s interpretation. He claims that intuition is a psychological 

term. He argues that “If a mathematical proposition is convincing, that is, it seems 

self-evident to us, and the purported logical proofs of it are insufficient, then, 

tautologously, intuition in Poincare's sense is what is at work.” (Goldfarb, 1988). 

It is well-known that Poincaré “seeks to defend intuition as an alternative founda-

tion to logic for mathematics” (MacDougall, 2010, p. 139). Poincaré argues that 

we need proof by recurrence or mathematical induction at every step in the foun-

dations of mathematics, and claims that these can be conceived via intuition alone. 

The reason why he argues this is that logic alone cannot justify or give us mathe-

matical induction. Since he argues that there is an extra-logical element in math-

ematics which he calls intuition, he is against logicism, which claims that all 

mathematical truths are in fact truths of logic.  
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1.2. Why Is Mathematics Synthetic A Priori? 
 

Although Poincaré is not considered as an intuitionist about mathematics, he is of-

ten referred as a pre-intuitionist or a semi-intuitionist. Poincaré was strictly 

against logicism. He claimed that the axioms which are at the heart of mathemati-

cal reasoning cannot be reduced to truths of logic, because they cannot be reduced 

to the principle of contradiction. He claimed that if mathematical views cannot be 

reduced to the principle of contradiction or to the truths of logic, “there is still one 

resource left to us: we may class them among a priori synthetic views.” (Poincaré, 

1902, p. 2). Borrowing the terminology from Kant, Poincaré, along with him, 

claimed that mathematics is synthetic a priori. Although they both claim this, their 

reasons for that are quite different from each other. For Kant, space and time are a 

priori forms of intuition. Regarding the principle of mathematical induction, 

Folina explains/claims that: 

For Kant this principle would be synthetic because in considering an element to-

gether with its successor, we must employ our intuitions concerning succession. 

And these intuitions are not "analytic" because our intuitions concerning succes-

sion are not present in the concepts of number… but are only present in virtue of 

the a priori temporal form via which we understand the concepts. (Folina, 1992, 

p. 50). 

Folina interprets Kant as he is emphasizing the role of intuition in our idea of suc-

cession while he is discussing the mathematical induction. It is known that in Sci-

ence and Hypothesis, Poincaré adopts a more or less Kantian view about arithme-

tic; however, while sharing some similarities with the Kantian notion of intuition 

in general, Poincaré’s reasons for claiming that mathematics is synthetic a priori 

are not due to the reasons that Kant adopts in Folina’s interpretation. For 

Poincaré, mathematics is synthetic because in its foundation lies the principle of 
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mathematical induction. And the principle of mathematical induction is synthetic 

because it is knowable only through our a priori arithmetic intuition. We know 

that a formula is true, when it holds for “0” and for S(n), or the successor of n, as-

suming that it holds for an arbitrary number n. Our ability to pass from finite to 

infinite, or consider n and S(n) as instantiations of the same concept, is a power of 

the mind. Regarding the principle of mathematical induction, Poincaré claims 

that: 

This rule, inaccessible to analytical proof and to experiment, is the exact type of 

the a priori synthetic intuition (Poincaré, 1905). 

 The claim that “mathematical induction is inaccessible to analytic proof and 

to experiment” needs further discussion, since Poincaré’s argument that mathe-

matics is synthetic lies partially on this statement. He argues: 

We may readily pass from one enunciation to another, and thus give ourselves the 

illusion of having proved that reasoning by recurrence is legitimate. But we shall 

always be brought to a full stop—we shall always come to an indemonstrable ax-

iom, which will at bottom be but the proposition we had to prove translated into 

another language. We cannot therefore escape the conclusion that the rule of rea-

soning by recurrence is irreducible to the principle of contradiction. Nor can the 

rule come to us from experiment. Experiment may teach us that the rule is true 

for the first ten or the first hundred numbers, for instance; it will not bring us to 

the indefinite series of numbers, but only to a more or less long, but always lim-

ited, portion of the series. (Poincaré, 1905, p. 15) 

Intuition is the bridge that connects symbols and empirical world, and it is what 

makes mathematical truths meaningful. Although not only about mathematics, the 

below quotation shows the importance of the connection with the empirical reality 

for him: 
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The eternal contemplation of its own navel is not the sole object of the science. It 

touches nature, and one day or other it will come into contact with it. Then it will 

be necessary to shake off purely verbal definitions and no longer to content our-

selves with words. (Poincaré, 1905, p. 24) 

Just like his argument on why science should not aim for solely coherent verbal 

definitions, mathematical statements should be meaningful too. This part is im-

portant in showing the ideas behind his rejection of a completed reality. Mathe-

matics is meaningful and connected to the external world because it is synthetic; 

mathematical statements have certainty because they are a priori. If intuition is 

what constitutes the bridge between pure mathematics, or symbols and the empiri-

cal world, a mathematics that is not constituted via intuition would lack that con-

nection. 

 

 

1.3 Poincaré and Mathematical Induction 
 

 

As is known by now, Poincaré argues that mathematics is synthetic a priori, be-

cause it involves a form of a priori intuition. This is what he calls arithmetic or 

mathematical intuition, and is closely connected with mathematical induction or 

proof by recurrence. Poincaré’s main arguments for intuition are mainly circulari-

ty arguments against the logicist who claims that mathematics can be reconstruct-

ed without any “extra-logical” elements. These circularity arguments are not ex-

plicitly listed by Poincaré; however, we can find their traces in his writings. Peo-

ple claim that there are more than one circularity arguments in Poincaré’s attack 

against logicism (Folina, 2006), I will interpret Poincaré’s claims in light of mod-

ern number theory and set theory. According to Folina: 
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Circularity arguments make two fundamental claims: 

1. In order to derive some non-trivial portion of mathematical theory, some math-

ematics must always be presupposed.  

2. What is presupposed is not entirely arbitrary. At least some presupposed is in-

tuitive, which means that it is built into the nature of the human (finite thinking) 

mind. (Folina, 2006, p.275). 

 Poincaré claims that: 

The principle of complete induction, they say, is not an assumption properly so 

called or a synthetic judgement a priori; it is simply the definition of whole num-

ber (Poincaré, 1905).  

He claims that the logicist uses mathematical induction to define the number it-

self. What he means by that, as far as I understand it, is the mathematician needs 

to use mathematical induction to have the numbers, or even define the numbers. 

We can look at two ways of doing that. First is the famous Von Neumann method 

of constructing natural numbers in set theory.
1
 Von Neumann ordinals basically 

goes like this: 

 

Take 0 = { } as the empty set. 

Define S(a) = a ∪ {a} for every set a, where S(a) is the Successor of a, and S 

is the Successor Function. 

                                                
1
 Zermelo’s method is similar to this in many ways considering my objective. Therefore, I will not mention about that. 
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Each natural number will be the set of all natural numbers less than it. The sets 

looks like this: 

 

 

0 = { }, 

1 = 0 ∪ {0} = {0}, 

2 = 1 ∪ {1} = {0, 1}, 

3 = 2 ∪ {2} = {0, 1, 2}, 

S(n) = n ∪ {n} = {0, 1, ..., n} etc. 

 

This way we can construct natural numbers in set theory. The problem, however, 

lies in its inductive nature. The mathematician needs to go ad infinitum to con-

struct the natural numbers. However, the ability to go on, or the indefinite itera-

tion would not be something that is inherent to the system for him. Therefore, if 

we accept that mathematical induction is intuitive, we also have to accept that we 

need intuition even to define numbers. Poincaré’s emphasis on repetition, succes-

sion and induction can also be found in modern number theory, specifically in 

Peano axioms, by the repeated application of successor function. These axioms 

are one of the most accepted postulates in number theory, simply for their con-

sistency in constructing natural numbers. In Peano’s construction of natural num-

bers, the first axiom states that “1 is a natural number” and his postulate about the 

successor function states that “For every natural number n, S(n) is a natural num-

ber” (Peano, 1889). These two postulates show that natural numbers are closed 
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under the successor function, i.e. the function always produces a natural number. 

When we put “1”, for example, to the successor function S(x), the result would be 

“2”, and it goes on this way. By repeating this process, we end up having the set 

of natural numbers. What I have said about Von Neumann method also applies to 

Peano axioms when we want to define the numbers this way.  

 Another circularity argument in Poincaré’s works, according to Folina 

(2006) is that a consistency proof is required for the induction without using the 

induction. Folina interprets Poincaré’s claims as this: 

If the new principles are disguised definitions of the new logical constants, then a 

consistency proof is required; but since the proof will need to presuppose the induc-

tion is true, any derivation of induction from the logical principles is circular. (ibid.) 

To my interpretation, what she means by this is that the induction cannot be 

proved without using a form of inductive method. If we want to eliminate induc-

tion as an “extra-logical” element, we have to prove induction from the logical el-

ements that we have, and these should not include induction. So what one is sup-

posed to do is make a consistency proof for induction without using induction. 

However, it is not possible. One has to assume that induction is true to derive in-

duction from logical principles. Therefore, proving induction would be circular.  

 In the next chapter I will explain why Poincaré rejects actual infinity and in-

finities bigger than Aleph Zero. I will do so by summarizing his theory of predica-

tive and non-predicative definitions, and show the reasons why he rejects actual 

infinity. In connection to this, in the third chapter, I will argue that Cantorian in-

finities which have a bigger cardinality than natural numbers cannot be formed via 

arithmetic intuition. These two parts of his work, i.e. predicative defini-

tions/classifications and intuition, are usually seen as distinct parts within 
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Poincaré’s philosophy of mathematics. I argue that they are not, and that his ideas 

on intuition should lead him to reject actual infinity as well.  
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Chapter 2: Poincaré and Transfinite Cardinals 

 

Poincaré starts his famous essay “The Logic of Infinity” by asking two important 

questions: 

1.  Do the ordinary rules of logic apply without change when we consider col-

lections comprising an infinite number of objects? 

2.  Do the contradictions that mathematicians who specialize in the study of in-

finity encounter arise from the fact that the rules of logic have been incorrect-

ly applied, or from the fact that these rules cease to be valid outside of their 

proper domain, i.e. the collections formed only of a finite number of objects? 

(Poincaré, 1909, p. 45) 

After posing these questions, he argues “that the classification which is adopted 

be immutable” (ibid.) for the rules of logic to be valid. He claims that the antino-

mies arise from the violation of this condition, because mathematicians depend on 

a classification which is not immutable. Although these classifications look as if 

they are immutable, and people may claim that they are immutable, he claims that 

the classification which was relied on should be immutable in fact. In order to 

show why an infinite collection would not check for his immutability condition, 

he makes a distinction between predicative definitions/classifications and non-

predicative ones.  
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2.1. Predicative & Non-Predicative Classifications 

 

To show the distinction between predicative and non-predicative classifications 

Poincaré puts a case in front of us. He prompts us to ask a question: 

What is the smallest integer which cannot be defined by a sentence with fewer 

than one hundred French words? And furthermore does this number exist? 

(Poincaré, 1909, p. 46) 

There are two possible answers to this question according to him. Here are the an-

swers: 

2. Yes, it exists. For with one hundred words we can constitute a finite number 

of sentences. Among these sentences, there will be ones with no meaning or 

that do not define an integer. But among the ones that they do, each sentence 

should be capable of defining at most one single integer. And the number of 

integers capable of being defined this way is limited. And among these inte-

gers, there would be one which is smaller than the others (because of the well-

ordering). By this reasoning we can find the smallest integer if we list all the 

sentences that define an integer. 

3. No, it does not exist. Because it implies a contradiction. If the number exists, 

it can be defined by a sentence with fewer than one hundred words, that sen-

tence being “the smallest integer which cannot be defined by a sentence with 

fewer than one hundred words”. With this definition, it can be defined by a 

sentence with fewer than one hundred words. Hence, a contradiction.  

According to Poincaré, this reasoning rests on a classification: Integers which can 

be defined with one hundred French words, and integers that cannot be defined so. 
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He argues that this way we claim that the classification is immutable. But it is not 

the case. He argues that: 

The classification can be conclusive only after we have reviewed all the sentenc-

es with fewer than one hundred words, when we have rejected those which have 

no meaning, and when we have definitively fixed the meaning of those which 

possess a meaning (Poincaré, 1909, p. 46).  

The problem is, however, there will be some sentences which can have meaning 

only after we fix the classification. In sum, he says: 

The classification of the numbers can be fixed only after the selection of the sen-

tences is completed, and this selection can be completed only after the classifica-

tion is determined, so that neither the classification nor the selection can ever be 

terminated. (ibid.).  

Such difficulties are even more apparent when we consider infinite collections. 

And this reasoning lies under Poincaré’s rejection of the actual infinity. He argues 

in the same paragraph: 

There is no actual infinity, and when we speak of an infinite collection, we un-

derstand a collection to which we can add new elements unceasingly…For the 

classification could not properly be completed except when the list was ended; 

every time that new elements are added to the collection, this collection is modi-

fied; it is therefore possible to modify the relation of this collection with the ele-

ments already classified; and since it is in accordance with this relation that these 

elements have been arranged in this or that drawer, it can happen that, once this 

relation is modified, these elements will no longer be in the correct drawer and 

that it will be necessary to shift them. As long as there are new elements to be in-

troduced, it is to be feared that the work may have to be begun all over again; for 
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it will never happen that there will not be new elements to be introduced; the 

classification can therefore never be fixed. (Poincaré, 1909, p. 47) 

By this reasoning Poincaré draws a distinction concerning the classification appli-

cable to the elements of infinite collections: i.e. predicative and non-predicative 

classifications. Where the elements of a set ordered with predicative classification 

cannot be disordered when the new elements are introduced, this is not the case 

for non-predicative classifications: the items that non-predicative definitions pick 

out necessitate constant modification when new elements are introduced 

(Poincaré, 1909, p. 47).  

 Imagine that you are classifying integers into two: those that are greater 

than 10 and those that are less than 10. Adding new elements to the collection will 

not require modification in the classification. The first classification might be 

concerning the first 100 integers, and you might add 101 to the collection and this 

adding does not change where the first 100 integers stand in relation to our classi-

fication. This classification, according to Poincaré, is predicative. Whereas a clas-

sification of points in space might be different: 

Let us imagine that we want to classify the points in space and that we differen-

tiate between those which can be defined in a finite number of words and those 

which cannot. Among the possible sentences there will be some which will refer 

to the entire collection, that is, to space or else to some portions of space. When 

we introduce new points in space, these sentences will change in meaning, they 

will no longer define the same point: or they will lose all meaning; or else they 

will acquire a new meaning although they did not have any previously. And then 

points which were not definable will become capable of being defined, others 

which were definable will cease to be definable.  (Poincaré, 1909, p. 47). 
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This type of classification, according to Poincaré, is non-predicative. Because by 

the introduction of new integers or new points, the classification will change. But 

according to Poincaré, it is not enough that the classification is not changed for it 

to be predicative. He says, “from a certain point of view, we should not say that a 

classification is predicative in an absolute manner, but that it is predicative in rela-

tion to a method of definition.”  (Poincaré, 1909, p. 49). He means that by the 

method of definition, whether a classification is predicative or not might change. 

We know that he thinks a classification should be immutable, and elements of 

non-predicative definitions necessitate constant modification to be in accord with 

the method of classification. However, I believe Poincaré argues here that, alt-

hough a classification might seem as predicative, it does not mean that it is pre-

dicative in an absolute manner. Rather, he means that the type of classification is 

relative to the method of definition. Overall, what he argues is that one should 

avoid non-predicative classifications and definitions, for the elements classified 

that way require constant modification. He also argues that impredicative defini-

tions are viciously circular. I will discuss Poincaré’s vicious circularity arguments 

in the next chapter related to his criticisms of axiomatic set theory. 

 

2.2. Cantor’s Diagonal Argument and the Law of Correspondence 
 
 

Cantor uses his infamous diagonal method to show that the cardinality of real 

numbers is bigger than the cardinality of natural numbers, or integers. This applies 

not only to integers and real numbers, but to any set and its power set. I will begin 

by explaining Cantor’s diagonal proof, and then explain Poincaré’s argument that 

the law of correspondence that Cantor uses is not predicative.  
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 Cantor’s diagonal argument shows us that the integers and real numbers 

cannot be put to one-to-one correspondence. To have the same cardinality, two 

sets should be put to one-to-one correspondence, i.e. a bijection. Cantor shows 

that the integers and the real numbers cannot be put into one-to-one correspond-

ence. When we map the integers with the real numbers, for each integer that is in 

one-to-one correspondence with real numbers, there will still be infinite number 

of elements left in the set of real numbers. From this, Cantor concludes that the in-

finity of real numbers is different than the infinity of integers. These two sets, i.e. 

real numbers and integers, have different cardinalities, and the cardinality of real 

numbers is bigger than the cardinality of integers. Both of these sets are consid-

ered infinite sets, and with this argument Cantor shows that there are different in-

finities with different cardinalities. The cardinality of integers, and natural num-

bers are called “Aleph-zero”, and the cardinality of real numbers is called “the 

continuum”. Poincaré discusses the law of correspondence that Cantor uses in the 

form of “one-to-one” correspondence. I explain this correspondence below. 

 In the second chapter of “The Logic of Infinity”, Poincaré argues that the 

law of correspondence that Cantor uses to show that real numbers and integers 

have different cardinalities should be predicative as well. He argues that the law 

of correspondence between the points in space (continuum, real numbers, or 

whatever you might say) and the integers is not predicative. Suppose that you are 

comparing the set of integers to the points in space capable of being defined by a 

finite number of words. We establish a correspondence between them in this way: 

I shall list all possible sentences. I shall arrange them according to the number of 

words in them, placing in alphabetical order those which have the same number 

of words. I shall erase all those which have no meaning or which do not define 

any point, or which define a point already defined by one of the preceding sen-
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tences. To each point I shall have correspond the sentence which defines it, and 

the number which represents the position of this sentence in the revised list. 

(Poincaré, 1909, p. 50). 

When you introduce new points to the set, i.e. the points in space, where the 

points correspond with the sentences that define some sentences which had no 

meaning before may acquire a meaning, and you would have to replace them in 

the list with the ones you erased them at first. This way, the sequence number of 

the other sentences will change. The correspondence will entirely change. It 

means that our law of correspondence in this case would not be predicative. Fol-

lowing his belief that the method of classification that we adopt should be pre-

dicative, Poincaré argues that it is necessary to modify the definition of cardinal 

numbers that are proposed by Cantor. He argues that we must specify the law of 

correspondence that we use to define cardinal numbers in a way that it would be 

predicative. (Poincaré, 1909, p. 50). 

 

2.3. Presumptions of Cantorians & Pragmatists
2
  

 

 

Poincaré considers two opposite tendencies when discussing on infinity. He 

claims that for some people infinity is derived from the finite. For these people in-

finity consists of possible finite things. In other words, the finite precedes the infi-

nite. For the other mathematicians, infinity precedes the finite, the finite is “ob-

tained by cutting out a small piece from infinity” (Poincaré, 1905b). He names the 

first group pragmatists, and the second group of people Cantorians. Poincaré 

gives this bit of an imaginary dialogue between the pragmatist and the Cantorian 

                                                
2
 These terms, Cantorians and pragmatists are used by Poincaré himself in “Mathematics and Logic”. 
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to show their attitudes towards Zermelo’s transformation of space into a well-

ordered set: 

Let us take Zermelo’s theorem according to which space is capable of being 

transformed into a well-ordered set. The Cantorians will be charmed by the ri-

gor, real or apparent, of the proof. The pragmatists will answer: 

— You say that you can transform the space into a well-ordered set. Well! 

Transform it! 

— It would take too long. 

— Then at least show us that someone with enough time and patience could ex-

ecute the transformation. 

— No, we cannot, because the number of operations to be performed is infinite; 

it is even greater than aleph zero.  (Poincaré, 1905b) 

We get a hint at Poincaré’s thoughts about Zermelo’s argument that space is ca-

pable of being transformed into a well-ordered set. He, adopting the point of view 

of the pragmatist, implies that the Cantorian does not have a sufficient way of 

demonstrating the so called transformation. Cantorians give us the argument that 

with an infinite number of operations, the space can be transformed into a well-

ordered set, and they say that the infinity mentioned here is bigger than the infini-

ty of integers, or aleph-zero. The main reason for Cantorians to adopt this point of 

view is, according to Poincaré, that it is imaginable, or one can comprehend this. 

He states that “The pragmatists adopt the point of view of extension, and the 

Cantorians the point of view of comprehension” (Poincaré, 1905b, p. 67). This is 

where the presuppositions of Cantorians and pragmatists come into play. Poincaré 

argues that from the point of view of the comprehension, we begin by accepting 

the notion that there are pre-existing objects. These objects exist before the act of 
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the mathematician, and we recognize these objects by labelling them and “arrange 

them in drawers” (Poincaré, 1905b). The drawers he mentions are the sets. Since 

the Cantorian thinks that mathematical objects exist before the act of the mathe-

matician, the objects between 0 and 1, or the objects spanned within real numbers 

are infinite. This infinity is the second type of infinity, or the continuum, accord-

ing to Cantor and his followers. However, pragmatists do not begin with the pre-

sumption of the independent reality of mathematical objects. If we adopt the point 

of view of extension, according to Poincaré, “a collection is formed by the succes-

sive addition of new members; we can construct new objects by combining old 

objects, then with these new objects construct newer ones, and if the collection is 

infinite, it is because there is no reason for stopping” (Poincaré, 1905b). 

 Poincaré argues that for the pragmatist there can only be objects which can 

be defined in a finite number of words, he says that “the possible definitions, 

which can be expressed in sentences, can always be numbered with ordinary 

numbers from one to infinity” (Poincaré, 1905b). This reasoning allows you to ac-

cept only one type of infinity, i.e. aleph-zero. The reason why is that it is only a 

potential infinity, that goes up by successive addition. You number the sentences 

that are made up of finite number of words, and this numeration goes from one to 

infinity. There would be a one-to-one correspondence between this and natural 

numbers. Hence, only aleph-zero. Then in the same paragraph he asks, “Why then 

do we say that the power of the continuum is not the power of the integers?”. 

Since there are no objects in the continuum that cannot be defined by a finite 

number of words, according to pragmatist, the power of the continuum will be 

same with the power of the integers. Hence, no actual infinity in the Cantorian 

sense for the pragmatist.  
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 Another reason why the pragmatist denies the existence of objects which 

could not be defined in a finite number of words, according to Poincaré, is that 

they believe objects exist when they are conceived by the mind. As opposed to the 

Cantorian who accepts that mathematical objects pre-exist the mathematical activ-

ity, we can say that the pragmatist position is closer to the anti-realist about math-

ematical objects. Poincaré argues that pragmatists “believe that an object exists 

only when it is conceived by the mind and that an object could not be conceived 

by the mind independently of a being capable of thinking.” (Poincaré, 1905b, p. 

72). This mind capable of thinking is nothing other than the rational person, or 

something that resembles it, and it is a finite being. Since this is the case, for the 

pragmatist, “infinity can have no other meaning than the possibility of creating as 

many finite objects as we wish.”  (Poincaré, 1905b).  
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Chapter 3: Poincaré’s Philosophy of Mathematics 

 

In the final chapter, I would like to present my arguments on Poincaré’s philoso-

phy of mathematics, and to show that the two seemingly distinct branches of his 

philosophy is not distinct at all. Rather, I argue that Poincaré’s views on intuition 

and his arguments on how intuition is foundational and necessary for mathematics 

should lead him to deny the actual infinity, the existence of the continuum, Aleph-

One or bigger transfinite cardinals. Then, I will evaluate the potential reasons why 

Poincaré was dissatisfied with axiomatic set theory, and show the relation of the 

paradoxes with impredicative definitions. Lastly, I will elaborate on Cantor’s ar-

gument that the  real numbers are uncountable. I will do so in a Poincaréan 

framework.  

 

3.1 Intuition and Actual Infinity 
 
 

We have seen Poincaré’s argument on the foundations of mathematics. Recall that 

according to Poincaré we need mathematical induction at every step in the math-

ematics, because it is foundational. He claims that mathematics itself does not 

provide us a basis for mathematical induction. Rather, the ability to continue is a 

power of the mind, so it can be conceived via what he calls “intuition” alone. In 

Science and Hypothesis, he claims that: 

“We may readily pass from one enunciation to another, and thus give ourselves 

the illusion of having proved that reasoning by recurrence is legitimate. But we 

shall always be brought to a full stop—we shall always come to an indemonstra-

ble axiom, which will at bottom be but the proposition we had to prove translated 

into another language. We cannot therefore escape the conclusion that the rule of 
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reasoning by recurrence is irreducible to the principle of contradiction. Nor can 

the rule come to us from experiment. Experiment may teach us that the rule is 

true for the first ten or the first hundred numbers, for instance; it will not bring us 

to the indefinite series of numbers, but only to a more or less long, but always 

limited, portion of the series.” (Poincaré, 1905, p. 15)  

He argues that we always come to a full stop, an indemonstrable axiom etc. when 

we try to prove reasoning by recurrence with the tools of logic. He argues that we 

need intuition for mathematics. This point brings us to the point of discussion that 

I want to have. His later arguments in his article “The Logic of Infinity” do not 

deal with his departing points about intuition. One might say that his aim is differ-

ent in “The Logic of Infinity”, since his main point in the article is the difference 

between predicative and non-predicative definitions. By introducing this distinc-

tion, he also brings up a new light to a paradox discussed by Russell, which is 

“the smallest integer which cannot be defined with fewer than one hundred 

words”. He talks about how the elements ordered by non-predicative classifica-

tions need constant modification, and they always can be disordered. Then, he ar-

gues against non-predicative classifications. In the article, his famous passage 

about the actual infinity is this: 

There is no actual infinity, and when we speak of an infinite collection, we un-

derstand a collection to which we can add new elements unceasingly…For the 

classification could not properly be completed except when the list was ended; 

every time that new elements are added to the collection, this collection is modi-

fied; it is therefore possible to modify the relation of this collection with the ele-

ments already classified; and since it is in accordance with this relation that these 

elements have been arranged in this or that drawer, it can happen that, once this 

relation is modified, these elements will no longer be in the correct drawer and 

that it will be necessary to shift them. As long as there are new elements to be in-
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troduced, it is to be feared that the work may have to be begun all over again; for 

it will never happen that there will not be new elements to be introduced; the 

classification can therefore never be fixed. (Poincaré, 1909, p. 47) 

He clearly rejects actual infinity, on the grounds that every time new elements are 

added, the set is disordered, and it needs to be modified. Because elements or-

dered by non-predicative classifications necessitate constant modification; after 

the modification, an element might be “in the wrong drawer” and it might be nec-

essary to shift the elements. He argues, the classification might never be fixed. So 

far we don’t see any reasoning about his theory of intuition in his denial of actual 

infinity. However, the connection becomes more clear in his other late article 

“Mathematics and Logic”. While discussing different approaches to infinity, he 

hints us that he is closer to the pragmatist, as discussed in 2.3. He argues one way 

to look at infinity, the pragmatist’s way, is this: 

a collection is formed by the successive addition of new members; we can con-

struct new objects by combining old objects, then with these new objects con-

struct newer ones, and if the collection is infinite, it is because there is no reason 

for stopping (Poincaré, 1905b). 

Infinity, according to the pragmatist, and according to Poincaré is closely con-

nected with successive addition. By adding new members you construct a new ob-

ject from the older ones. This might be the text-book definition of a potential in-

finity where infinity is not completed, and where it increases by successive addi-

tion. Now recall that Poincaréan intuition was about continuity and iteration. Intu-

ition provides us the power to go on without stopping and this power does not be-

long to the system [logic] itself. From these remarks, we can see that the infinity 

constructed by successive addition is the one where the intuition is at stake. The 

infinity of natural numbers, or Aleph-Zero is constructed like this, whereas we 
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come to the actual infinity by cutting out small pieces from an already existing ob-

ject. We lose the continuity and iteration when we come to actual infinity. We 

might even say that from a Poincaréan point of view, actual infinity has no con-

nection to intuition whatsoever. 

  

3.2. Paradoxes and Set Theory 

It is well known that Poincaré was critical about set theory, particularly modern 

set theory. He criticized logicists because he saw their attempt as unsuccessful, 

however, his main target in set theory was Zermelo’s axiomatic set theory. It is to 

be debated whether he actually stated the famous words ascribed to him, the 

words where he brutally criticizes set theory, “Later generations will regard 

Mengenlehre (set theory) as a disease from which one has recovered”. Some 

(Gray, 1991) argue that he did not say that, but in each case Poincaré was heavily 

dissatisfied with the axiomatization of set theory. Considering aforementioned 

views of Poincaré, it is more than normal for him to criticize ZFC set theory, 

where the existence of at least one infinite set is guaranteed with axiom of infinity. 

The problem is, however, not that ZFC guarantees the first infinite set, i.e. natural 

numbers, power set axiom guarantees that a set’s power set has a bigger cardinali-

ty than the set itself. It is proven with, again, Cantor’s diagonal argument. If the 

existence of the first infinite set is given with axiom of infinity, then with the 

power set axiom, we should say that the P(N) [the power set of N] has a bigger 

cardinality than N. Given Poincaré’s criticism of Cantor’s diagonal argument and 

the impredicativity of the law of correspondence, it is more than usual for him to 

be critical of set theory. Another point is the axiom of choice, where the well-

ordering of any set is guaranteed with an axiom. If such is the case, then one can 
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say that the points in space [continuum, actual infinity] can be well-ordered, 

which is problematic given Poincaré’s views on the subject. It is problematic be-

cause the elements of a completed infinity, the set of real numbers etc., require 

constant modification even when the classification is fixed. If such is the case, it is 

going to be a problem to well-order the elements of such a collection. Recall that, 

Poincaré means a “collection which we can add new elements unceasingly” when 

he is discussing about infinity. If those elements are already there, it is not possi-

ble to well-order them without specifying what these elements are. The next issue 

I want to discuss is the paradoxes. 

 Paradoxes of the set theory were seen as inevitable by some, and as a sign 

that set theory was problematic by the other, including Poincaré. His answer to the 

paradoxes like Russell’s was to exclude non-predicative definitions [definitions 

involving only a finite number of words] in his own terms. He barred the paradox 

that “the smallest integer which cannot be defined with fewer than one hundred 

words” this way (Gray, 1991). Poincaré attempted at solving that paradox by ex-

cluding non-predicative definitions, however, the kind of paradoxes that I would 

like to mention here are of a more specific nature. I would like to talk about the 

paradoxes including transfinite cardinals. Paradoxes like Burali-Forti, Zermelo-

König and Richard’s are maybe the ones where the inadequacy becomes most ob-

vious. Poincaré mentions those antinomies and deals with them in his 1906 lec-

tures (Ewald, 1996). 

I don’t have enough space to explain those paradoxes in a detailed way; however, 

these paradoxes, especially Richard’s lead people to accept predicativism. This, in 

my opinion, is another reason why Poincaré was critical of set theory. Considering 

his insistence on excluding non-predicative definitions and allowing for only pre-
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dicative ones, set theory should be a field where immutability of mathematics dis-

appears since impredicative definitions are common in modern set theory. 

 One of Poincaré’s most famous objections against impredicative definitions 

is that they are viciously circular. The circularity, in my opinion, comes from the 

fact that while we are trying to define an object with an impredicative definition, 

we already presuppose its existence. Poincaré was not alone at this project. Rus-

sell (1908) also argues against impredicative definitions and presents the Vicious 

Circle Principle: 

Whatever involves all of a collection must not be one of the collection. 

If, provided a certain collection has a total, it would have members only definable in 

terms of that total, then the said collection has no total. (Russell, 1908, p.225). 

Paradoxes, according to Poincaré and Russell were the results of vicious circulari-

ty, caused by impredicative definitions. In some of them the circularity is more 

obvious, like Liar’s Paradox, but in most of them it is more implicit. I believe that 

the paradoxes, or antinomies, consisting of transfinite numbers generally fall into 

the latter category. Most of them actually consist impredicative definitions and 

classifications implicitly. One should keep that in mind whenever they face an an-

tinomy consisting of transfinite numbers, and impredicative definitions.  

 

3.3. Cantor’s Argument Revisited 
 

 

We should recall Cantor’s argument that the set of real numbers is uncountable to 

interpret it in a Poincaréan framework. For the purposes, I will reconstruct Can-

tor’s proof: 
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First, take that N=1, 2, 3,… and X is a set of all real numbers between (0,1) 

Cantor’s theorem (1890) tells us that X is uncountable. To prove that he uses 

reductio ad absurdum with his famous diagonal method that I mentioned before.  

Assume that X is countable. Then there is an enumeration of all real numbers in 

X.  

Let  

x

1

,x

2

,x

3

,…  

be some arbitrary enumeration of all real numbers in X. Then, there is a bijection 

from the elements of X to all elements of N.  

Applying his diagonal method, Cantor constructs an anti-diagonal which differs 

from every enumeration in the first application. Consequently, the given enumer-

ation is not an enumeration of all real numbers from the set X.  

Therefore, we face a contradiction. 

Hence, the assumption “X is countable” is false.  

The proof looks good at the first instance. However, Zenkin argues that Cantor 

has a hidden necessary condition in his argument. I think he is right. He argues 

that the hidden necessary condition is the actuality of X. His corrected version of 

Cantor’s proof is: 

If X is actual, then it is uncountable. (Zenkin, 2005, p. 7) 
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It looks like we come to the point where we were discussing from the beginning. 

Whether a completed, actual infinity exists. To check for Cantor’s corrected 

proof, one has to show that X [actual infinity] exists, or is actual.  

 Poincaré argues that Cantorians fail to show the actuality of X. Then, Can-

tor’s argument turn into a conditional which is “valid only within the framework 

of the Cantor’s paradigm of the actualization of all infinite sets” (Zenkin, 2005, 

p.7). Cantor’s proof, then, does not prove anything in a Poincaréan framework. To 

accept the proof, we should accept the actualization of X first. If we look at the 

proof with Poincaré’s argument on actual infinity, how it is formed with a non-

predicative classification, and how the construction of actual infinity breaks the 

ties with intuition, it becomes more than hard for one to accept the validity of 

Cantor’s proof.  

 Poincaré argues that there are two ways to deal with infinity as I mentioned 

in 2.3. Where one group, Cantorians, see infinity as pre-existing and we come to 

smaller infinities by cutting out bits from the first one; the other group, pragma-

tists, believe that infinity is formed via successive addition and accept Aleph-Zero 

only. At this point, it almost becomes a matter of belief. You might accept Can-

tor’s proof, even though it requires you to believe in actual infinity beforehand; or 

you might deny actual infinity, like Poincaré, and disregard Cantor’s proof be-

cause it is a conditional. If you deny the existence of actual infinity [or X in the 

reconstructed proof], you do not have to accept that X is uncountable. The argu-

ment turns into two premises where there is not a conclusion: 

1. If X is actual, then X is uncountable 

2. X is not actual [from a Poincaréan perspective]. 
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Conclusion 

 

In the history of the philosophy of mathematics Poincaré is usually known with 

his rejection of logicism and his theory of predicativism. Being a great mathema-

tician and a physicist, he is less known about his writings in philosophy. What I 

wanted to do in this project was to show that Poincaré was also a great philoso-

pher. I mainly focused on his philosophy of mathematics and tried to present his 

arguments to the reader. While doing that I also tried to show my position and in-

terpret him authentically. In the concluding chapter, I want to give a brief sum-

mary of what I did in this project and also why I did that. 

 I hope it is clear by now why Poincaré was insisting on the idea that intui-

tion is foundational for mathematics. Intuition, for Poincaré, mainly is the power 

to go on, and to pass from the finite to the infinity. It is most obvious in the case 

of mathematical induction. We can conceive that a rule applies to an infinite set, 

because we can theoretically go ad infinitum and see that the formula is indeed 

true. Because induction  is not reducible to any other logical principle [e.g. princi-

ple of contradiction], and because induction is at stake at every part of mathemat-

ics, Poincaré classifies mathematics as a priori synthetic. I showed why he thinks 

that in the first chapter and presented why I take him to argue that induction is not 

reducible to any other principle.  

 The first part of my thesis was about Poincaré’s theory of intuition (or 

Poincaréan intuition). In the second part I explained Poincaré’s theory of 

predicativity and showed what he thinks about Cantor’s argument and about the 

people who argue for the existence of transfinite numbers bigger than Aleph-Zero. 

He argues that we should eliminate non-predicative definitions and classifications 

from our system, because our criteria should be immutable when grouping ele-
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ments of sets according to a criterion. He also argues that the law of correspond-

ence that Cantor uses in his diagonal proof is non-predicative. Because of all the-

se, Poincaré argues against the existence of actual infinity. In the final chapter, I 

looked at Poincaré’s philosophy of mathematics as a whole. I argued that although 

seen as different theories (intuition, and predicativity) Poincaré’s views on intui-

tion should lead him to deny the actual infinity. Successive addition, continuity, 

and induction are key elements in Poincaré’s philosophy, and cutting the ties with 

those would be cutting the ties with the intuition which should be at the core of 

mathematical reasoning. I also showed what Poincaré thinks about set theory and 

the inevitable paradoxes within set theory. I argued that Poincaré was dissatisfied 

with set theory because of the fact that it allows for non-predicative definitions, 

and those definitions are viciously circular. At the end I argued that, following 

Zenkin, Cantor’s argument has a hidden premise which presupposes the actuality 

of actual infinity. Within a Poincaréan framework, this presupposition is problem-

atic, and if you deny the actuality of actual infinity, you have every reason to be 

suspicious about Cantor’s proof of the sets with bigger cardinalities. 

 There are important points in Poincaré’s philosophy of mathematics. He ar-

gues that: 

In my view an object is only thinkable when it can be defined with a finite number of 

words. An object that is in this sense finitely definable, I shall for brevity call simply 

'definable'. Accordingly, an undefinable object is also unthinkable. (Poincaré, 1910, 

p. 1072) 

We should keep this in mind when doing mathematics. Poincaré has very strong 

reasons to argue that the objects should be definable with a finite number of 

words, and to eliminate the objects which cannot be definable that way. How do 

we define a completed, actual infinity? How do we define the objects, if they exist 
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beforehand, within the actual infinity? Following this remark, I would like to 

quote Poincaré again to emphasize this point: 

Now, as far as the second transfinite cardinal X, is concerned, I am not entirely con-

vinced that it exists. One reaches it by considering the totality of ordinal numbers of 

the power Aleph Null; it is clear that this totality must be of a higher power. But the 

question arises whether it is self-contained, and therefore of whether we may speak of 

its power without contradiction. There is not in any case an actual infinite.  
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