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Abstract

Causal Trees leverage the supervised machine learning algorithm decision trees to estimate

heterogeneous treatment effects across data-driven groups in a randomized treatment assign-

ment setting. In my thesis, I modify the Causal Tree estimator by introducing a parameter θ

that lets the user control allocation of data into training and estimation subsamples. The es-

timator implements “honest” sample splitting by default, which divides the sample into two

equal parts: training and estimation subsamples. The new input parameter θ lets the user select

the portion of data to be allocated to the estimation subsample. I test the performance of the

estimator under various data allocations through Monte-Carlo simulations. My results sug-

gest that in large samples θ ∈ [0.3, 0.7] can be an appropriate parameter value that minimizes

the MSE of estimation. On the other hand, in small samples and in data sets with noise the

recommended parameter range is θ ∈ [0.5, 0.7] with optimal value of θ = 0.6 .
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1 Introduction

A new drug developed by an R&D firm may have an adverse effect on women of childbearing

age only. A digital marketing company may find that customers of a certain age have a significantly

high conversion rate for their advertisements (Wager and Athey, 2018). In cases like above, where

an average treatment effect of an intervention or a policy is not informative enough we may be

interested in estimating the heterogeneous treatment effect. HTE is observed when exposure to the

same treatment results in varying effects in terms of the sign, magnitude, or both on individuals

based on their characteristics. Estimation methods of HTE are gaining more and more interest not

only in the economic and clinical research but in the corporate world too, where companies aim to

make use of the availability of the data to make critical business decisions (Powers et. al., 2018).

However, researchers cannot exclusively rely on their expertise when finding relevant groups

for heterogeneity of treatment effects, especially if the data is high dimensional. On one hand,

the dimension of the data itself results in too many potential candidate groups and makes it nearly

impossible to analyze without data-driven estimation tools. On the other hand, the process of

searching for such groups invalidates the statistical inference. We want to avoid cases where the

policymaker or developer mines through the data to find sub-groups where the effect is maximized

and overstates the average treatment effect by testing on those specific sub-groups only (Cook et.

al., 2004).

To address this problem, economists have utilized tree-based supervised machine learning al-

gorithms such as Bayesian Additive Regression Trees (Green and Kern, 2012), Minimum Impurity

Decision Assignment Trees (Laber and Zhao, 2015), Decision Lists (Lakkaraju and Rudin, 2017)

and Random Forests (Foster et. al, 2011). One of the most notable solutions to the problem has

been provided by Athey and Imbens (2016), where they have modified the random forest algo-

rithm to construct trees that estimate treatment effect across data-driven groups in randomized

experiments or observational studies where the unconfoundedness assumption is satisfied.
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The central principle of the algorithm, which makes it possible to maximize the heterogeneity

of treatment effect across groups without overfitting the model is the “honest” data splitting ap-

proach. With “honest” splitting, the data is divided into two mutually exclusive subsamples: train-

ing subsample STr with NTr observations and estimation subsample SEst with NEst observations.

The training subsample is used to fit the model and find groups across which the heterogeneity is

maximized. However, the estimation subsample is used when estimating the treatment effect. By

having two independent samples, we can avoid over-fitting and reduce bias (Athey and Imbens,

2016). However, the cost of this approach is that the sample size is effectively cut in half, as the

original algorithm in R by Athey and Imbens1 and following adaptations to python2 allocate an

equal number of observations to the two subsamples by default (NTr = NEst) when constructing

the tree.

One can easily imagine logistical and financial constraints researchers and companies may

face that can result in a limited sample size. It is costly to run large-scale experiments. Given

the limitations of data availability once we move from theory to application, cutting the sample

size in half can be critical and lead to inaccurate estimation. However, having equal-sized training

and estimation subsamples is not a requirement. Therefore, knowing where to allocate more data

when met with constraints can help us improve the performance of the algorithm, especially when

working with treatment effects where the ground truth cannot be observed.

While many recent works have modified the original Causal Tree algorithm, they focused on the

tree fitting part and the training sample only by adding a penalty term to the minimization problem

(Lechner, 2018) or by introducing a threshold to the individual level treatments (Tran and Zheleva,

2019). Causal Trees have been used in the applied literature as well: to estimate the effect of

summer jobs on long-term employment (Davis and Heller, 2017), financing on investment (Gulen

et. al., 2020), and E-Commerce Cart Targeting (ECT) on shopping patterns (Luo et. al. 2019).

1https://github.com/susanathey/causalTree
2EconML package by Microsof Research: (https://github.com/microsoft/EconML/tree/master/econml/dml); cfor-

est package by Tim Mensinger: (https://github.com/timmens/causal-forest)
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However, these works do not modify the original algorithm. To my best knowledge, the simple

problem of data allocation stays unexplored at the moment.

My thesis contributes to the current literature by evaluating the performance of the Causal Tree

algorithm under various allocations of data to training and estimation subsamples. I modify it by

introducing a new parameter θ that allows the user to select the size of the estimation subsample

SEst. Then, I search for the value of θ that minimizes the mean squared error (MSE) of estimated

conditional average treatment effects and the total MSE by running Monte-Carlo simulations with

different size and noise levels of data. In addition, I report the bias and variance of the estimator

for each value of θ on the parameter grid. By testing the estimator on simulated data where the

true treatment effects are known, I will be able to make recommendations on data allocation when

implementing the Causal Tree algorithm on various sample sizes in applied work.

The parameter θ ∈ (0, 1) represents the share of observations allocated to the estimation sub-

sample from the total sample. When the user gives it as input to the modified Causal Tree, the size

of the training sample is automatically selected as 1− θ and all observations not used in estimation

are used in training. It is expected that the default Causal Tree split which is equivalent to my case

with θ = 0.5 will be a satisfactory choice in cases where the sample size is large and when there

is little noise in the data. This is mainly because I expect large samples to allow for flexibility in

the parameter choice of θ without deteriorating the accuracy of the estimation. However, when the

sample size is small and/or when the data is noisy, allocation of data to the two subsamples may be

critical in minimizing the MSE and maximizing the accuracy of estimation. This can be achieved

by optimally selecting the parameter θ, the task which I will be investigating in my thesis.

The results of my Monte-Carlo simulations suggest that in large samples with little noise, a

range of θ ∈ [0.3, 0.7] is acceptable and minimizes the MSE of ATE and the Total MSE. In other

words, allocating from 30 % to 70 % of the whole sample to the estimation subsample gives

us acceptably accurate estimation of HTE. However, in small and noisy samples the minimum

MSE is achieved when θ ∈ [0.5, 0.7] suggesting that more observations should be allocated to
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the estimation subsample. This is because bias is proportional to the value of θ, while variance is

inversely proportional. However, the honest splitting method itself diminishes the bias significantly

leaving variance as the main contributor to the MSE. As a result, the allocation that minimizes the

MSE in small and noisy samples is found when θ ≥ 0.5.

The rest of the thesis is organized as follows: Chapter 2 describes the Causal Tree model

setup and “Honest” split method. Chapter 3 illustrates the estimation process which consist of data

generation process, definition of the reported statistics and Monte-Carlo simulation design. Results

and robustness checks are presented in Chapter 4. Chapter 5 concludes, discusses limitations and

possible extensions of the analysis. Figures which were omitted from the results are found in the

Appendix. Python scripts of the modified Causal Tree algorithm and the Monte-Carlo simulation

design can be found in my github repository3.

3https://github.com/nominmar
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2 Causal Tree Setup

Following the setup of the model proposed by Athey and Imbens (2016), I have N independent

and identically distributed observations indexed as i = 1, 2, ..., N . Each observation is randomly

assigned a binary treatment Di ∈ {0, 1} and I assume existence of a pair of Rubin’s potential

outcomes for each observation:

Yi(Di) =


Yi(0) if Di = 0

Yi(1) if Di = 1

(1)

Given an (N×K) matrix of covariates and under the assumption of unconfoundedness4, which re-

quires independence of the treatment assignment and potential outcomes conditional on covariates,

the conditional average treatment effect is defined as:

τ(x) = µ1(x)− µ0(x) (2)

where:

µ1(x) = E[Yi(1)|Xi = x]

µ0(x) = E[Yi(0)|Xi = x]

Causal tree will partition the covariate space (X) until we reach a set of terminal nodes (leaves).

Within each leaf, the predicted outcome and the estimated treatment effect τ̂i(Π, Xi, l) is constant

for all observations. For example: given some sample where y: wage, x1: gender, x2: age, and

D: employment training program, we may find 3 leaves: l1: men under 45 years, l2: men over 45

years, and l3: women. The partitions (Π) in this case are: Πx1 = {{x1 = male}, {x1 = female}}

and Πx2 = {{x2 ≥ 45}, {x2 < 45}}. Then, the estimated conditional average treatment effects

are the difference in mean wages between treated and untreated within each of these leaves.

4This assumption is satisfied without conditioning on X if treatment is randomly assigned in an experimental
setting and in my case where data is simulated.
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2.1 The Honest Split:

With honest splitting, the Causal Tree algorithm performs the following steps:

1. Divide the sample into 2 mutually exclusive subsamples STr withNTr observations and SEst

with NEst observations

2. Use STr to train a decision tree which predicts outcome Ŷi given the vector of covariates, X.

3. Use fitted tree to estimate treatment effects on SEst subsample. Each observation in estima-

tion subsample is passed through the tree and assigned to a leaf (terminal node) following the

set of rules defined in part 2. In each leaf, calculate the conditional average treatment effect:

τ̂ = µ̂1(x)− µ̂0(x) by finding difference in means of the treated and untreated observations.

Training subsample is used to build the tree by finding rules for partitioning the covariate

space. However, the estimation subsample is used when estimating the treatment effect. Athey and

Imbens (2016) define the criterion that is maximized by the algorithm as:

−EMSEτ (Π) = EXi
[τ 2(Xi; Π)]− ESEst,Xi

[V (τ̂)2(Xi, SEst,Π)]

which can be estimated using:

−ÊMSEτ (STr, N
Est,Π) =

1

NTr

∑
i∈STr

τ̂ 2(Xi, STr,Π)

−
( 1

NTr
+

1

NEst

)
·
∑
l∈Π

(S2
STr,D=1

(l)

p
+
S2
STr,D=0

(l)

1− p

)

The first part of the equation is the variance of estimated treatment effect across leaves. Second

part of the equation is the uncertainty about these estimates expressed as the variance of these

estimators. This estimator rewards the heterogeneity across leaves due to the first part and penalizes

variance of the estimators via second part.
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By introducing the parameter θ into algorithm, I do not make modifications to the −EMSEτ

criteria. The parameter only affects the number of observations: NTr and NEst.
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3 Estimation Design

There are a total of 3 types of samples: estimation and training subsamples are used when fitting

and estimating the model. I indicate them as SEst and STr. Each have NEst and NTr number of

observations respectively. They are generated through one data generation process (DGP) and a

total ofNTr+NEst observations are given as input to the algorithm. Causal Tree will allocate them

into two sub-samples according to the parameter value of θ. In addition, there is a test sample STe

with 5000 observations, which is generated independently outside the Monte-Carlo simulations

following the same DGP. Test sample is used to evaluate the performance of the algorithm. The

statistics mentioned in Section 3.2 are calculated on the test sample.

3.1 Data Generation Process

I have designed three data generation processes with 2, 4 and 8 distinct conditional average

treatment effects respectively. In all designs the treatment is assigned randomly with a probability

P=0.5:

for D = {0,1}


Pr(Di = 1) = 0.5

Pr(Di = 0) = 0.5

(3)

For all 3 designs, the potential outcome follows the structure

Yi = D · γ(Xi) + η(Xi) + εi (4)

where γ(x) is the part of the model accounting for treatment effect and η(x) for mean effect. The

heterogeneity of the treatment is independent of the covariates which enter the function η(x), but

the outcome depends on them. Xi ∼ N (0, 1) is a (N ×K) vector of covariates independent of εi.

For each of the designs below I consider cases with variance of error term V ar(ε) = [0.01, 1.0, 2.5]

to account for noise in the data and total number of observations NTr +NEst = [500, 300, 100] to
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account for various data sizes. This gives me 27 variations of the data to test the model on.

The following indicator function maps the sign of the relevant covariate to the treatment effect:

I(x) :=


1 if x ≥ 0

0 if x < 0

(5)

In the first design, the treatment effect depends on x1 only. In the second design, the treatment

effect depends on x1, x2 and their interaction. In the third design, the treatment effect depends on

x1, x2 and x3.

DGP 1:

Yi = −1.5D + 3D · I{x1≥0} +
∑5

k=2 xk + ei

Treatment effect: γ(x) = −1.5 + 3 · I{x1≥0}

Mean effect: η(x) =
∑5

k=2 xk

Average Treatment Effects Conditional on x1
x1 ≥ 0 x1 < 0

τ 1.5 -1.5

DGP 2:

Yi = −2D + 3D · I{x1≥0} +D · I{x2≥0} +D · I{x1≥0 & x2≥0} +
∑5

k=3 xk + ei

Treatment effect: γ(x) = −2 + 3 · I{x1≥0} + I{x2≥0} + I{x1≥0 & x2≥0}

Mean effect: η(x) =
∑5

k=3 xk

Average Treatment Effects Conditional on x1, x2
x1 ≥ 0 x1 < 0

x2 ≥ 0 3 -1
x2 < 0 1 -2
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DGP 3:

Yi = −5D + 6D · I{x1≥0} + 2.5D · I{x2≥0} + 1.5D · I{x3≥0} +
∑5

k=4 xk + ei

Treatment effect: γ(x) = −5 + 6 · I{x1≥0} + 2.5 · I{x2≥0} + 1.5 · I{x3≥0}

Mean effect: η(x) =
∑5

k=4 xk

Average Treatment Effects Conditional on x1, x2, x3
x3 ≥ 0 x3 < 0

x1 ≥ 0 x1 < 0 x1 ≥ 0 x1 < 0
x2 ≥ 0 5 -1 3.5 -2.5
x2 < 0 2.5 -3.5 1 -5

3.2 Reported Statistics

Samples generated by the data generation processes above will be used in Monte-Carlo simu-

lation described in the next chapter and the following statistics will be reported for each case.

MSE, Bias and Variance of Conditional Average Treatment Effects (CATE):

MSE of the estimated conditional average treatment effects is calculated by finding the squared

difference between the estimated and true conditional average treatment effects and averaging it

across all Monte-Carlo iterations:

M̂SECATE =
1

R

R∑
r=1

(ĈATEr(X)− CATETrue)2 (6)

Here, R is the total number of Monte-Carlo iterations. Number of M̂SECATE to be reported

depends on the data generation process and true average treatment effects. For example, I will

have two estimated MSEs for the two true conditional average treatment effects when using DGP
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1. In the first case ĈATEr(X) is the average treatment effect of observations in test sample where

x1 ≥ 0 during the r-th iteration of MC simulation. In the second case, it is the ATE of observations

where x1 < 0.

Table 1: Number of estimated CATES for each DGP
DGP1: 2
DGP2: 4
DGP3: 8

Mean Sqaured Error estimates are decomposed into bias and variance terms:

M̂SECATE = B̂IAS
2

CATE + V̂ ARCATE

B̂IASCATE =
1

R

R∑
r=1

(ĈATEr(X)− CATETrue) (7)

V̂ ARCATE =
1

R

R∑
r=1

(ĈATEr(X)− ĈATE)2 (8)

Total MSE, Toal Bias and Total Variance of Individual Treatment Effects:

In addition to the conditional average treatment effect statistics, I report the Total MSE, Bias

and Variance. The algorithm estimates the treatment effect for each observation. Upon the end of

Monte-Carlo simulations, I will have an array of size (NTe×R) of estimated treatment effects. τ̂ir

indicates the estimated treatment effect of i-th observation in test sample during the r-th iteration

of the Monte-Carlo simulation.

• Total Bias:

For each observation in the test sample i ∈ Ste, I average the estimated treatment effect

τ̂r(Xi) across all Monte-Carlo simulations r = 1, .., R. It gives me a (NTe × 1) vector,

where each element is the estimated Monte-Carlo average of treatment effect corresponding
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to an observation in the test sample. Then I subtract the true treatment effect τ(Xi) for each

observation, take square and average it across the test sample. This will be the total squared

bias:

B̂IAS
2

T =
1

NTe

∑
i∈STe

(τ̂(Xi)− τi(Xi))
2 (9)

where:

τ̂(Xi) =

∑R
r=1 τ̂ir
R

∀ i ∈ STe

• Total Variance:

For each observation in the test sample i ∈ Ste, I find the sample variance across Monte-

Carlo simulations. It gives me a (NTe × 1) vector, where each element is the variance of

Monte-Carlo estimated treatment effects corresponding to an observation in the test sample.

Then I find the average across test sample.

V̂ ART =
1

NTe

∑
i∈STe

V̂ (τ)i(Xi) (10)

where:

V̂ (τ)i(Xi) =

∑R
r=1(τ̂ir − τ̂ i)2

R
∀ i ∈ STe

• Total MSE is found by summing the total squared bias and total variance:

M̂SET = B̂IAS
2

T + V̂ ART (11)

The statistics above will be calculated for each value of θ on the parameter grid. The goal is to (1)

find the value of θ that minimizes the MSE of estimated CATEs and Total MSE and (2) understand

how the bias and variance behave as I change the value of θ.
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3.3 Monte-Carlo Simulation Design

New training STr and estimation SEst subsamples are generated in each Monte-Carlo iteration.

The test sample STe of size 5000 is generated outside the Monte-Carlo function once and is used

for each iteration. The parameter of my interest θ is indicated as est size in the script and takes

values between 0.2 and 0.8 with a step size of 0.1. Flowchart 1 summarizes the python script for

the simulation design, which is applied to all 3 data generation processes. Input parameters that

are required to start the script are described in Table 2.

Table 2: Input Parameters
Name of the
parameter

Name in the
script Values Description

NTr +NEst n 500, 300, 100 number of observations in NTr +NEst sample
NTe n test 5000 number of observations in test sample

θ est size 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 share of n devoted to the estimation subsample

R reps 500 Monte-Carlo repetitions
V ar(e) var e 0.01, 1.0, 2.5 variance of error term in DGP

Monte-Carlo function (single iteration):

1. DGP() function takes the sample size parameter [n] and variance parameter [var e] as inputs

and generates a new sample with NTr +NEst observations.

2. CTL fit() function takes the generated sample and uses the input parameter [est size] to

allocate it between training and estimation subsamples and fit the tree.

3. CTL predict() function predicts the treatment effect (TE) for each observation in test sample

NTe and returns an array of predicted treatment effects τ̂ with size (NTe × 1).

Two CTL functions are adapted from relevant parts of the Causal Tree Learn package by Tran and

Zheleva (2019), which is a Python adaptation of the Causal Tree algorithm by Athey and Imbens
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Flowchart 1: Monte-Carlo simulations and modified Causal Tree functions.
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(2016) in R. Causal Tree Learn package is published with an MIT license which allows for free

modification and publication.5 I have modified the codes and added the parameter θ as user input.

The reason for using their version is due to my preference of python over R. All other functions,

as well as the Monte-Carlo simulation script is written by myself from scratch and are saved in my

github repository.6

Monte-Carlo iterations:

Total number of MC iterations, R = 500 is given as input parameter [reps]. After 500 itera-

tions, I will have collected an array τ̂ of size (NTe×R) containing all predicted treatment effects.

Using the them, I calculate the statistics described in equations (6-11) of Section 3.2. I run 500

Monte-Carlo iterations and calculate the statistics above for each value in the parameter grid of θ.

Then, I plot each statistic against the parameter grid in the results section. The plots and results are

described in the next section.

5https://github.com/edgeslab/CTL/blob/master/LICENSE
6https://github.com/nominmar
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4 Results

This section consists of 3 parts. In the first part, I report the conditional average treatment effect

statistics. In the second section, I report the Total MSE, Total Bias, and Total Variance. Finally,

the third section discusses the robustness check process.

Figures in subsections 4.1 and 4.2 are organized as follows: parameter grid of θ is plotted on

x-axis. These are the values that were given as input to the modified Causal Tree. On y-axis:

Column 1 plots the bias, Column 2 plots the variance, and Column 3 plots MSE statistics. Row 1

presents DGP cases where V ar(e) = 0.01, Row 2 presents cases where V ar(e) = 1.0 and Row 3:

V ar(e) = 2.5. Each panel contains three cases: NTr + NEst = 500, 300 and 100 (distinguished

by line styles). I only present the plots of DGP 1 in detail, as more complicated designs do not

provide any additional contribution to the main results. Detailed plots for DGP 2 and DGP 3 can

be found in the appendix section.

4.1 MSE, Bias and Variance of Conditional Average Treatment Effects (CATE)

Figure 1 presents the estimation results for DGP 1 which has two true conditional average

treatment effects: τ1 = 1.5 and τ2 = −1.5. For the sake of brevity, I am presenting the averages of

the two estimated conditional average treatment effect statistics. Detailed plots of each CATE can

be found in the appendix section.

Bias-variance trade-off: panels on bias and variance columns indicate that as we move along

the x-axis and change the parameter θ, we face a trade-off between bias and variance. The trade-off

is milder in large samples and in cases with less noise. The slopes of solid lines in panels (1),(2),(4)

and (5) are not steep. This also translates into MSE being uniformly low for most values of θ as

we can see in panels (3) and (5) for the cases with NTr+Est = 500.
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Figure 1: CATE bias, variance and MSE for DGP 1

Small samples: However, in small samples (ex. NTr+Est = 100) the trade-off only occurs on

the right half of the x-axis. In cases where variance of error term is high, we can observe it even

when NTr+Est = 300 as well. Both bias and variance decrease until θ = 0.5. Once I increase the

share of estimation sample above 0.5, the trade-off kicks in. As a result, the minimum MSE is

found when NTr ≤ NEst.

Optimal split: Panels in the third column suggest that in small or noisy samples indicated by

dotted lines, MSE is minimized and optimal data allocation is found when NTr ≤ NEst (when

θ ≥ 0.5). This observation is consistent across all DGP processes, and is one of the main findings.

On the other hand, in large samples and especially when V ar(e) ≤ 1.0, any non-extreme data

allocation returns a satisfactory MSE. This can be seen by eyeballing the solid lines in panels (3)

17

C
E

U
eT

D
C

ol
le

ct
io

n



and (6). Tables 3-5 below discuss these points in detail.

The first row of Table 3 shows the minimum value of MSE of CATE achieved in each of the 9

cases. Rows 2-4 indicate value of θ where MSE, variance and bias were minimized. Row 5 presents

the standard deviation estimated MSEs. Standard deviations are calculated from 7 estimated MSEs

each corresponding to a value of θ on parameter grid. Low standard deviation corresponds to a

flatter line in plots, which further indicates flexibility in choosing the parameter. High standard

deviations will indicate that we cannot diverge from the optimal θ without reducing the accuracy

of the estimation. Row 6 presents the standard deviation of MSE estimates only for θ ∈ [0.3, 0.7]

to remove the outliers.

Table 3: Summary of results (Design 1 with 2 ATEs)
NTr+Est 500 300 100
V ar(e) 0.01 1.00 2.50 0.01 1.00 2.50 0.01 1.00 2.50

Minimum MSE of ATE 0.113 0.170 0.618 0.230 0.380 1.237 1.180 1.503 2.380
θ where MSE is minimzed 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.8

θ where variance is minimzed 0.6 0.5 0.6 0.5 0.6 0.8 0.8 0.8 0.8
θ where bias is minimzed 0.3 0.4 0.4 0.4 0.4 0.3 0.5 0.3 0.3

SD of MSE (θ ∈ [0.2 : 0.8]) 0.059 0.087 0.268 0.139 0.203 0.354 0.473 0.446 0.773
SD of MSE (θ ∈ [0.3 : 0.7]) 0.018 0.033 0.125 0.059 0.097 0.117 0.230 0.247 0.472

In larger samples (n = 500, n = 300) the MSE is minimized at θ = 0.5 indicating that original

NTr = NEst works the best. However, we can also see that the standard deviation estimations are

very low and any data allocation in range θ ∈ [0.3 : 0.7] will not deteriorate the accuracy of the

prediction significantly. In small samples (NTr+Est = 100) the MSE is minimized at θ = 0.6 if

variance of error term is low and at θ = 0.8 if it is high. In addition, the standard deviation is much

higher, indicating that we cannot diverge from the optimal parameter without reducing estimation

accuracy. The results are in line with plots in Figure 1.

Finally, the honest splitting method itself effectively combats bias because training and estima-

tion are performed on 2 different subsamples. Therefore, contribution of variance to the MSE is
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always higher than the contribution of bias. As a result, in small samples the MSE is minimized in

the region where variance is minimized (to the right from θ = 0.5).

Table 4: Summary of results (Design 2 with 4 ATEs)
NTr+Est 500 300 100
V ar(e) 0.01 1.00 2.50 0.01 1.00 2.50 0.01 1.00 2.50

Minimum MSE of ATE 0.514 0.572 0.978 0.675 0.817 1.622 1.916 2.595 4.759
θ where MSE is minimzed 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6

θ where variance is minimzed 0.7 0.6 0.6 0.6 0.6 0.7 0.6 0.8 0.8
θ where bias is minimzed 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.3

SD of MSE (θ ∈ [0.2 : 0.8]) 0.069 0.094 0.340 0.162 0.215 0.558 0.806 0.752 0.885
SD of MSE (θ ∈ [0.3 : 0.7]) 0.041 0.032 0.120 0.052 0.073 0.234 0.373 0.343 0.488
θ where MSE1 is minimzed 0.3 0.4 0.5 0.4 0.4 0.5 0.5 0.4 0.6
θ where MSE2 is minimzed 0.6 0.7 0.6 0.8 0.6 0.6 0.7 0.7 0.8
θ where BIAS1 is minimzed 0.2 0.2 0.2 0.2 0.2 0.4 0.5 0.4 0.3
θ where BIAS2 is minimzed 0.7 0.5 0.5 0.5 0.4 0.4 0.5 0.4 0.3

Table 4 presents the results of estimation on DGP 2, which has 4 true conditional average treatment

effects. Table 5 presentds results on DGP 3 with 8 conditional average treatment effects. Overall,

the minimum MSE decreases when I have more conditional average treatment effects which a

are close in magnitude (DGP 3) and interactions among covariates (DGP 2). However, we see

that θ which minimizes the MSE is still between 0.5 and 0.6 in most cases. I do not report the

NTr+Est = 100 case for DGP 3 in Table 5 because the sample size is too small to calculate 8

CATEs.

Table 5: Summary of results (Design 3 with 8 ATEs)
NTr+Est 500 300
V ar(e) 0.01 1.00 2.50 0.01 1.00 2.50

Minimum MSE of ATE 1.722 1.808 2.198 1.956 2.045 2.723
θ where MSE is minimzed 0.4 0.4 0.6 0.5 0.5 0.4

θ where variance is minimzed 0.6 0.6 0.6 0.6 0.6 0.5
θ where bias is minimzed 0.3 0.2 0.2 0.2 0.2 0.4

SD of MSE (θ ∈ [0.2 : 0.8]) 0.075 0.093 0.237 0.083 0.140 0.562
SD of MSE (θ ∈ [0.3 : 0.7]) 0.045 0.052 0.066 0.028 0.079 0.181
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4.2 Total MSE, Bias and Variance

Figure 2 presents the plots of Total MSE, bias and variance displayed in equations 9-11.

Figure 2: Total MSE, bias and variance for DGP 1

Visually, the results are similar with the conditional average treatment effect results presented

in Figure 1. In addition, the magnitude of Total MSE is in line with the CATE MSE in previous

subsection. I observe some bias-variance trade-off which is mitigated in large samples. In small

samples, I can find more trade-off and MSE is minimized in the region to the right of the θ = 0.5.

The monotonic fall in variance found in cases where the NTr+Est = 100 raises concerns about

the accuracy of the simulations. I suspect that it is due to the estimator finding only one ATE in a

small sample. When NTr+Est = 100 and θ = 0.8, we only have 20 observations in the training
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sample. The tree may have predicted the same τ̂i for all observations, which explains the small

variance and high bias. I will address this issue in detail in the robustness check chapter. The

results with n ≥ 300 and V ar(e) ≤ 1.0 do not suffer from this issue and are reliable. Table 6

provides further details.

Table 6: Summary of results (DGP 1 Total MSE)
NTr+Est 500 300 100
V ar(e) 0.01 1.00 2.50 0.01 1.00 2.50 0.01 1.00 2.50

Minimum Total MSE 0.269 0.380 0.920 0.483 0.644 1.556 1.485 2.114 3.858
θ where MSE is minimzed 0.6 0.5 0.6 0.6 0.6 0.5 0.7 0.7 0.7

θ where variance is minimzed 0.6 0.5 0.8 0.6 0.5 0.8 0.8 0.8 0.8
θ where bias is minimzed 0.3 0.3 0.4 0.3 0.4 0.3 0.4 0.4 0.6
SD of MSE (θ = [0.2:0.8]) 0.083 0.131 0.338 0.179 0.216 0.384 0.407 0.473 0.721
SD of MSE (θ = [0.3:0.7]) 0.029 0.045 0.173 0.060 0.120 0.166 0.233 0.257 0.469

MSE is minimized in the region between 0.5 and 0.6 when NTr+Est ≥ 300. When NTr+Est =

100, MSE is minimized at 0.7. To find out if some of the results are driven by fall in variance due

to the model finding only 1 ATE instead of 2, I will check the number of leaves of the fitted tree

in the next section. Overall, the trends found in tables 1-3 repeat here as well. We see that the

standard deviation of total MSE also increases as we move on to smaller and noisy samples.

4.3 Robustness Checks

I can observe a sharp increase in bias after θ = 0.7 in the plots. However, to find the exact

value of θ after which the estimates are not reliable due to sample size, I plot the number of

estimated leaves averaged across all Monte-Carlo simulations in Figure 3. As we can see below,

when θ = 0.9, the model finds only one ATE on average. When θ = 0.8, the average number of

leaves is 1.4 when V ar(e) = 2.5 and 1.9 when V ar(e) = 2.5. Therefore, the monotonic fall of

variance is due to not having enough observations and results for θ ≥ 0.8 whenNTr+Est = 100 are

not reliable. However, this does not have effect on of θ < 0.8 and the results discussed in previous

sections.
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Figure 3: average number of estimated leaves for cases when NTr+Est = 100

5 Conclusion

Testing the estimation methods of HTE is proven to be tricky because we cannot observe the

true counterfactual. We can never know what would have been outcome for a person who has taken

the drug if he had never taken it. However, data driven methods and supervised machine learning

provide us with more and more tools to deal with HTE in high dimensional data. Causal Trees are

one of the prime examples of how a blend of machine learning and causal inference can create new

tools for HTE estimation.

This thesis evaluates the performance of the Causal Tree algorithm under various data allo-

cations by introducing a new parameter θ that controls for the size of the estimation subsample.

By designing Monte-Carlo experiments, I find the recommended values for θ in large and small

samples. Finding the optimal θ in simulated data creates a reference value which can be used when
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applying Causal Tree estimator to real data where the true treatment effects are not observed.

I design 3 data generation processes which create samples with distinct conditional average

treatment effects. Then, I use the modified Causal Tree algorithm and test the accuracy of the

estimator by running Monte-Carlo simulations. The accuracy of the estimator is measured by

reporting the (1) MSE of conditional average treatment effects and it’s bias-variance decomposition

as well as (2) Total MSE and it’s bias-variance decomposition. I search for the parameter value of

θ that minimizes the above statistics on a parameter grid θ ∈ [0.2, 0.8].

Results of the Monte-Carlo simulations suggest two main findings. First, when the sample

size is large and when the data is not noisy, setting the parameter θ = [0.3, 0.7] maxmimizes the

accuracy of the estimation. Second, when the sample size is small and when the data has lots

of noise, higher values of the parameter are preferred. Instead of the default 50/50 split where

NTr = NEst, parameter values in range θ = [0.5, 0.7] minimize the MSE statistics. This suggests

that in small samples, we should allocate more observations to the estimation subsample to improve

the accuracy of the estimator.

The reason for such findings is due to the “honest” splitting method which minimizes bias by

dividing the sample into two exclusive groups. We use different samples for training and estimation

of the model. Therefore, the main contributor to the MSE is variance. Since variance is inversely

proportional to the parameter θ as seen in result plots, higher values of θ result in better estimation.

However, bias is proportional to θ. This creates a bias-variance trade-off which is then minimized

at θ = 0.6 in small samples.

5.1 Limitations

While my results provide some diversity in sample size and noise of the data, they are still

limited and cannot be generalized to every data in applied work. I only consider 3 different types
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of conditional average treatment effects which are mapped by an indicator function. As a next

step, it is worth considering treatment effects generated as a continuous function of covariates. The

number of repetitions and the test sample size can be increased further when testing for different

data generation processes. However, in my case, I found no improvement in the variance of Monte-

Carlo simulations for higher values of repetitions and test sample size. Therefore, I have decided

to use R = 500 and NTe = 5000 which helped me save computing time. It is also worth noting

that by adding the parameter θ, we are still in the framework of sample splitting. Therefore, one

may be interested in testing other sampling methods such as bootstrapping or bagging to see if the

performance of the estimator can be further improved.
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7 Appendix:

Figure A1: Bias of conditional average treatment effect, DGP 1
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Figure A2: Variance of conditional average treatment effect, DGP 1
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Figure A3: MSE of conditional average treatment effect, DGP 1
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Figure A4: Bias of conditional average treatment effect, DGP 2
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Figure A5: Variance of conditional average treatment effect, DGP 2
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Figure A6: MSE of conditional average treatment effect, DGP 2
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Figure A7: Bias of conditional average treatment effect, DGP 3

Figure A8: Variance of conditional average treatment effect, DGP 3

Figure A9: MSE of conditional average treatment effect, DGP 3
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