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INTRODUCTION

The central topic of this thesis is the local weak convergence of sparse graphs, also known as
Benjamini-Schramm convergence. The general problem is the following. Assume that we have a
large sparse graph G and we would like to estimate the value of some graph parameter 7(G) by
the following local sampling procedure. Fix an integer r, this will be our radius of sight. Pick a
uniform random point of G that we call the root, then look at its r-neighborhood, and repeat
this experiment several times. Based on this data, how well can we guess the value 7(G)? What
are the parameters 7(G) that can be estimated this way?

By picking the root of the graph uniformly at random, we turn it to a random rooted graph, that
is, a probability measure on the space of rooted graphs. Local weak convergence means weak
convergence of these measures. The above testability question translates to the following: what

graph parameters are continuous with respect to local weak convergence?

Random graphs provide us natural examples of Benjamini-Schramm convergent graph sequences.
Random d-reqular graphs with a growing number of vertices will converge to a d-regular tree.
Erdés-Rényi graphs on n vertices and edge probabilities ;- — as n goes to infinity — will converge
to a Galton-Watson tree with Poisson offspring distribution. This gives rise to the following
particular case of the questions above. What properties of random graphs are already determined
by their local structure? Which graph parameters have the property that a sequence of random
d-regular graphs can not be distinguished from any other given (essentially) large girth d-regular
sequence using that parameter? For example the normalized size of the maximum independent
set can be used to distinguish random d-regular graphs from bipartite large girth d-regular
graphs, as it was proved by Bollobas [14]. Another special case of this question is given in the

next section.
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1 Mod p rank of the Laplacian matrices of random d-regular

graphs

Given a graph G, let A(G) be its adjacency matriz, and let L(G) be its Laplace matriz. Given
an integral matrix M and a prime p, we denote by dimker, M the dimension of the kernel of
the matrix M when it is considered as a matrix over the p element field. Let Hs, be a random
d-regular graph on 2n vertices.! In Chapter 2, we prove that with probability 1, we have

lim dim ker, A(Hap,) — 0 and lim dim ker, L(Hay,)

n—o00 2n n—00 2n

=0.

In fact, we know much more. It turns out that we can control the limiting distribution of
dim ker,, L(Ha,).

Theorem 1.1. For any k > 0, and an odd prime p, we have

oo
lim P(dimker, L(Hap) = k + 1) = e I - ) [ -
n o0
i=k+1 =1

We have a similar formula for p = 2.

One can also give formulas for the limiting distribution of dimker, A(Hay,), but it is a bit more
complicated, because we need a case splitting depending on whether d is divisible by p or not.

Actually, we prove even more, as we will determine the limiting distribution of the p-Sylow
subgroup of the sandpile group of H,,, which is defined as the cokernel of the reduced Laplacian.
The limiting distribution is given by a modified version of the Cohen-Lenstra heuristics [18|.
This limiting distribution is universal in the sense that it does not depend on the choice of d.

The original Cohen-Lenstra distribution is a distribution on the set of finite abelian p-groups
where the probability of a group P is proportional to |Aut(P)|~!. It was introduced by Cohen
and Lenstra [20] in a conjecture on the distribution of class groups of quadratic number fields.
Although this conjecture is still open, several other random groups are known to follow the Cohen-
Lenstra distribution. For example, the cokernel of a Haar-uniform square matrix over the p-adic
integers has this limiting distribution [27]. In fact this is true even in a more general setting. It
is enough to assume that the entries of the matrices are independent and they are not degenerate
in a certain sense. This was proved by Wood [60]. Her paper also contains similar results for
non-square matrices. Clancy et al [19, 18] introduced a modified version of the Cohen-Lenstra
distribution to describe the limiting distribution of the cokernel of a Haar-uniform symmetric
matrix over the p-adic integers . Later, Wood [58] proved that the sandpile group dense Erdés-
Rényi graphs also follows this modified Cohen-Lenstra distribution. Somewhat surprisingly, we

have the same limiting distribution even for random d-regular graphs as we will show.

These results also have the following corollary which settles an open question of Frieze [28] and
Vu [57].

'To be more specific, we use the following model: we take the union of d independent uniform random perfect
matchings.

10
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CHAPTER 1

Theorem 1.2.
lim P(A(Hay,) is invertible over R) = 1.

n—oo

Note that Theorem 1.2 was independently proved by Huang [34, 33|.

If we consider an arbitrary large girth d-regular sequence (G,) instead of random
d-regular graphs, then dimker, A(Hay) is less understood. In particular, the following ques-
tion is still open.

Question 1.3. Let (G,) be a large girth d-reqular sequence. Is it true that

dim ker, A(Gy,)
im =07
n—oo  |V(Gh)

Note that if we ask the same question over R, then we have an affirmative answer. In fact,
over R, the normalized dimension of the kernel of the adjacency matrix is a Benjamini-Schramm
continuous graph parameter [1]. The proof uses spectral methods which are not available over
finite fields.

Chapter 2 is based on the paper [48].

2 Limiting entropy of determinantal processes

Given a finite connected graph G, let 7(G) be the number of spanning trees of G. The (nor-

malized) tree entropy of G is defined as h(G) = %. McKay [45] proved that if (Gy,) is a

sequence of random d-regular graphs, then

) B ( d— 1)d—1
i 1(Gn) = log g @1
Lyons proved that this is true for any essentially large girth d-regular graph sequence. In fact,
he proved the much stronger statement that that A(G) is Benjamini-Schramm continuous graph
parameter [41].

The uniform measure on the spanning trees of a finite connected graph is one of the most
important examples of discrete determinantal measures. With any orthogonal projection matrix
P, we can associate a probability measure 7, on the subsets of its columns in a certain way that
we do not specify now. We call np the determinatal measure corresponding to P.

In Chapter 3, we extend Lyons’s tree entropy theorem to general determinantal measures as
follows. Let P;, P»,... be a sequence of orthogonal projection matrices. Assume that rows and
columns of P, are both indexed with the finite set V,,. Let G,, be a bounded degree graph on
the vertex set V,,.

11



CEU eTD Collection

INTRODUCTION

Theorem 2.1. Assume that the sequence of pairs (Gn, Pp) is Benjamini-Schramm convergent
and tight. Then

H
lim (np,)

exists. Here H(np,) is the Shannon entropy of the measure np, .

Here the convergence of the pairs (G, P,) is defined along the lines of the convergence of graphs.
Tightness is a technical condition that makes sure that large entries of P, correspond to pairs of
vertices that are close to each other in the graph G,,.

It is not difficult to see that this indeed implies Lyons’s tree entropy theorem.

Note that finite approximations of determinantal processes were also considered by Lyons and
Thom [43]|. Their aim was to find an invariant coupling of certain determinatal processes.

As a byproduct of Theorem 2.1, we also show that the sofic entropy of an invariant determinantal
measure does not depend on the chosen sofic approximation. Sofic entropy was first defined by
Bowen [16], and it is an invariant for probability measure preserving actions of sofic groups. A
group is sofic if it has a Cayley-graph which the Benjamini-Schramm limit of a sequence of finite
graphs. The sofic entropy is defined with the help of this finite approximating sequence. In
general, it is not known whether the sofic entropy depends on the chosen sofic approximation or
not. We prove that for a determinantal measure it does not depend on the chosen approximation.

Another application concerns matchings of trees. If we take a finite tree, and consider the vertices
that are not covered by a uniform random maximum size matching, then this random subset
of the vertices is determinantal. With some additional work, one can combine this observation
with Theorem 2.1 to obtain the following theorem.

Theorem 2.2. Given a finite graph G, let mm(G) be the number of mazimum size matchings of

G. Let G1,Go, ... be a Benjamini-Schramm convergent sequence of finite trees with mazximum
degree at most D. Then
. logmm(G,,)
lim —————=
n—oo  |V(Gp)|

exists.

Note that without the assumption that the graphs G; are trees, the limit in Theorem 2.2 might not
exist, even if the sequence converges to an amenable graph like Z2?. We can see this by comparing
the results of [37, 56, 23]. However, if we restrict our attention to vertex transitive bipartite
graphs, the limit above exists for convergent graph sequences, as it was proved by Csikvari [22].
Csikvari’s proof based on spectral methods and the notion of the matching measure. In fact,
spectral methods allows us to prove that several matching related parameters are Benjamini-
Schramm continuous [2], for example: the proportion of vertices that are left uncovered by a
maximum size matching of GG, the normalized logarithm of the total number of matchings, etc.

Chapter 3 is based on the papers [46, 47].

12
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THE DISTRIBUTION OF SANDPILE
GROUPS OF RANDOM REGULAR GRAPHS

We study the distribution of the sandpile group of random d-regular graphs. For the directed
model, we prove that it follows the Cohen-Lenstra heuristics, that is, the limiting probability that
the p-Sylow subgroup of the sandpile group is a given p-group P, is proportional to | Aut(P)|~!.
For finitely many primes, these events get independent in the limit. Similar results hold for
undirected random regular graphs, where for odd primes the limiting distributions are the ones

given by Clancy, Leake and Payne.

This answers an open question of Frieze and Vu whether the adjacency matrix of a random
regular graph is invertible with high probability. Note that for directed graphs this was recently
proved by Huang. It also gives an alternate proof of a theorem of Backhausz and Szegedy.

1 Introduction

We start by defining our random graph models. Let d > 3. The graph of a permutation =
consists of the directed edges im(i). The random directed graph D, is defined by taking the
union of the graphs of d independent uniform random permutations of {1,2,...,n}. Thus, the
adjacency matrix A, of D,, is just obtained as A, = P, + P, + ... + P;, where P, P, ..., Py are
independent uniform random n X n permutation matrices.

For the undirected model, assume that n is even. The random d-reqular graph H, is obtained
by taking the union of d independent uniform random perfect matchings. The adjacency matrix
of H,, is denoted by C,,.

The reduced Laplacian A, of D, is obtained from A, — dI by deleting its last row and last
column. The subgroup of Z"~! generated by the rows of A,, is denoted by RowSpace(A,,). The
group I',, = Z"~! / RowSpace(A,,) is called the sandpile group of D,,. If D,, is strongly connected
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(which happens with high probability as n — oo), then I',, is a finite abelian group of order
| det A,,|. Note that from the Matrix-Tree Theorem, |det A,| is the number of spanning trees in
D,, oriented towards the vertex n. For general directed graphs the sandpile group may depend on
the choice of deleted row and column, but not in our case, because D,, is Eulerian. The sandpile
group of H, is defined the same way. Assuming that H,, is connected, the order of the sandpile
group is equal to the number of spanning trees in H,.

Our main results are the following.

Theorem 1.1. Let p1,po,...,ps be distinct primes. Let I'), be the sandpile group of D,. Let
Iy be the p;-Sylow subgroup of I'y,. Fori=1,2,...,s, let G; be a finite abelian p;-group. Then

lim P (@rm ~ @G ) H | Aut(Gy)| 7! 1‘[1(1 -] (1.1)
ol

=1

Theorem 1.2. Let I',, be the sandpile group of Hy. Again let I'y,; be the p;-Sylow subgroup of
Iy, and fori=1,2,...,s, let G; be a finite abelian p;-group. Assuming that d is odd, we have

lim P (@ Tni~ P GZ-)
nree =1 =1
B ﬁ {¢ : G; x Gj — C* symmetric, bilinear, perfect }| 4 H _2] 1

Gl Aut(G)] (12)

=1

Assume that d is even and p1 = 2. Then the 2-Sylow subgroup of T',, has odd rank'. Furthermore,
if we assume that G1 has odd rank, then

e (é 0= €D Gz-) =
=1 =1

s

: G; x Gy — C* symmetric, bilinear, perfect }| 14 _2 1
2Rank(G1) |{¢) ) J—
H |Gil| Aut(Gy)| H

=1

The distribution appearing in (1.1) is the one that appears in the Cohen-Lenstra heuristics. It
was introduced by Cohen and Lenstra [20] in a conjecture on the distribution of class groups
of quadratic number fields. The distribution appearing in (1.2) is a modified version of the
distribution from the Cohen-Lenstra heuristics that was introduced by Clancy et al [19, 18].2

A recent breakthrough paper of Wood [58| shows that the sandpile group of dense Erdgs-Rényi
random graphs satisfies the latter heuristic. That is, Theorem 1.2 says that in terms of the
sandpile group, random 3-regular graphs exhibit the same level of randomness as dense Erdgs-
Rényi graphs. The conceptual explanation is that the random matrices coming from both models
mix the space extremely well, as we will see in Theorem 1.6 for our model.

IThe rank of a group is the minimum number of generators.
2See the paragraph after Equation (1.3) for the definition of perfect parings.

14
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We can gain information about the sandpile group by counting the surjective homomorphisms
from it to a fixed finite abelian group V. For a random abelian group I' and a fixed finite
abelian group V', we call the expectation E|Sur(I", V')| the surjective V-moment of I". Our next
theorems determine the limits of the surjective moments of the sandpile groups for our random
graph models. The convergence of these moments then implies Theorem 1.1 and Theorem 1.2,
using the work of Wood [58|.

Theorem 1.3. Let I, be the sandpile group of D,. For any finite abelian group V, we have

lim E|Sur(l',, V)| =1.
n—oo

Recall that the exterior power A2V is defined to be the quotient of V ® V by the subgroup
generated by elements of the form v ® v.

Theorem 1.4. Let 'y, be the sandpile group of H,. Let V be a finite abelian group. If d is odd,
then

lim E|Sur(T,, V)| =| A% V],

n—0o0

if d is even, then
lim B[ Sur(I'n, V)| = gRankz (V)| A2 /|

where Ranky (V') is the rank of the 2-Sylow subgroup of V.

These theorems are proved by using the fact that, when they are acting on V", the adja-
cency matrices A, and C), both exhibit strong mixing properties, described as follows: For
q¢=1(q1,q2,...,9n) € V", the minimal coset in V' containing ¢1, ¢o, ..., ¢, is denoted by MinC,,.
Note that MinCy is the coset g, + Vo where Vj is the subgroup of V' generated by q1 — qn, g2 —
Gn,-- -+ qn—1 — qn. The sum of the components of ¢ is denoted by s(q) = >_i" | ¢;, and we define

R(g,d) = {r € (d-MinC,)" | s(r) =ds(q)}3

It is straightforward to check that A,q € R(q,d). Let U,q4 be a uniform random element of
R(q,d). Given two random variables X and Y taking values of the finite set R, we define
doo(X,Y) = max,er |[P(X = r) — P(Y = r)|. We prove that the distribution of A,q is close to
that of Uy, 4 in the following sense.

Theorem 1.5. For d > 3, we have

lim Y doo(Ang, Uga) = 0.
qevn

We have a similar theorem for C),. For q,w € V", we define

n
<gRuw >:Z%’®wi-
i=1

3By definition d - MinC, = {g1 + g2 + - -+ + gal91, g2, - - - , ga € MinC,}.

15
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Furthermore, let Iy = I5(V') be the subgroup of V ® V' generated by the set {a®b+b®al a,b €
V'}. Let Ranky (V') be the rank of the 2-Sylow of V', and let I = I(V') be the subgroup of V@V
generated by all elements of the form a ® a for a € V. Note that I is a subgroup of I of index
oRank2(V) " Gince the random matrix C,, is symmetric and the diagonal entries are all equal to 0,
for any ¢ € V™, we have < ¢ ® Cpq >€ I5. Let us define R%(q,d) as

R%(g,d) = {r € (d-MinC,)" | s(r)=ds(q) and < q®r >€ Iy}

It is clear from what is written above that C,q € R%(¢,d). Similarly as before, let Usd be a
uniform random element of R°(q,d). Then, we have

Theorem 1.6. For d > 3, we have

1}5{}02‘1 Cnq, Ugy) = 0.
qevn

Note that the limits in Theorems 1.3, 1.4, 1.5 and 1.6 are uniform in d. See Section 6 for further
discussion. However, until Section 6, we never claim any uniformity over the choice of V' and d.

Recently, Huang [34]| considered a slightly different random d-regular directed graph model on n
vertices, the configuration model introduced by Bollobas [13]. Let F), be the adjacency matrix
of this random graph. Huang proves that for a prime p such that ged(p,d) = 1, we have

E{0#z € F)| Fox=0}[=1+0(1),

as n goes to infinity, where F), is considered as a matrix over [F,. Then he combines this with
Markov’s inequality to obtain that

1+0(1)‘

P(F), is singular in F),) < l
p —_—

Consequently, as a random matrix in R,
P(F, is singular in R) = o(1).
This solves an open problem of Frieze [28] and Vu [57] for random regular bipartite graphs.

Using Theorem 1.6, we can answer this question in its original form.

Theorem 1.7. For the adjacency matriz Cy, of H,, we have

P(C,, is singular in R) = o(1).

Indeed, from Theorem 1.6 with the choice of V' = F,, it is straightforward to prove that for an
odd prime p such that ged(p,d) = 1, we have

16
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EH0#z € F)| Cpx=0}=1+o0(1).
Therefore, the statement follows as above.
There are contiguity results [35, 49] which allow us to pass from one random d-regular graph
model to another. In particular, Theorem 1.7 also true for uniform random d-regular graphs with
even number of vertices. See also the work of Nguyen and Wood [50]. After the first version of

this paper appeared online, Huang [33] also extended his results to the undirected configuration
model, giving credit to this paper.

Theorem 1.2 describes the local behavior of the sandpile group I', of H,,. Now we try to gain
some global information on these groups. The next statement gives the asymptotic order of I';,.
This was first proved by McKay [45], but it also follows from the more general theorem of Lyons
[41]. Let us choose Hy, Hy, ... independently. The torsion part of I', is denoted by tors(T,).

Theorem 1.8 (McKay, Lyons). With probability 1, we have*

 vd—1
lim log | tors(I',,)| (d—-1) .
n—00 n [d(d _ 2)](1/2—1

Theorem 1.4 leads to the following statement on the rank of I';,.

Theorem 1.9. With probability 1, we have

lim Rank(T',)

n—00 n

=0.

Observe that Rank(tors(I'y,)) = maxy is a prime Ranky(tors(I'y)), where Rank,(tors(I',)) is the
rank of the p-Sylow subgroup of tors(I',). Thus, this theorem suggests that many primes should
contribute to reach the growth described in Theorem 1.8, but we do not have a definite result in
this direction.

A conjecture of Abért and Szegedy states that if G1,Go, ... is a Benjamini-Schramm convergent
sequence of finite graphs, then for any prime p the limit
co-rank, G,
oo [V (G

exists, here co-rank, G,, = dim ker Adj(G,,), where Adj(G),) is the adjacency matrix of Gy, con-
sidered as a matrix over the finite field IF,. One of the most common examples of a Benjamini-
Scramm convergent sequence is the sequence of random d-regular graphs H,. This means that
if we choose H,, independently, then with probability 1, the sequence converges. Following along
the lines of the proof of Theorem 1.9, one can prove that

Maxp is a prime CO-rank, (M)

=0

lim
n—00 n

41f H,, is connected, which happens with high probability, then tors(I',) = I'n. The only reason for using
tors(I',) is to handle disconnected graphs too.

17
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with probability 1, which settles this special case of the conjecture, and we even get a uniform
convergence in p. Note that this has been proved by Backhausz and Szegedy [7]| using a different
method.

Theorem 1.1 follows from Theorem 1.3 using the results of Wood [58] on the moment problem.
The general question is the following. Given a random finite abelian p-group X, is it true that the
surjective V-moments of X uniquely determine the distribution of X7 Note that we can restrict
our attention to the surjective V-moments, where V' is a p-group, because any other moment is
0. Furthermore, is it true that if X, Xo,... is a sequence of random abelian p-groups such that
the surjective V-moments of X,, converge to those of X, then the distribution of X, converge
weakly to the distribution of X? Ellenberg, Venkatesh and Westerland [24] proved that the
answer is affirmative for both questions in the special case when each surjective moment of X is
1. In this case X has the distribution from the Cohen-Lenstra heuristic. Later, it was proved by
Wood [58] that the answer is yes for both questions if the moments do not grow too fast, namely,
if E|Sur(X,V)| < |A? V| for any finite abelian p-group V. The proof generalizes the ideas of
Heath-Brown [30]. In [58] this is stated only in the special case, when the limiting surjective
V-moments of X are exactly | A2 V|, but in a later paper of Wood [60] it is stated in its full
generality above. In fact, Wood proved this theorem in a slightly more general setting. Instead
of abelian p-groups, one can consider groups which are direct sums of finite abelian p;-groups
for a fixed finite set of primes. See Section 5 for details. Note that for even d, the moments of
the sandpile groups of H,, are larger than the bounds above. But using the extra information
that the 2-Sylow subgroups have odd rank in this case, we can modify the arguments of Wood
to obtain the convergence of probabilities. See Section 8.

Now we discuss the Cohen-Lenstra heuristic in terms of random matrices over the p-adic integers.
Let Z, be the ring of p-adic integers. Given an n x m matrix M over Z,, we define
RowSpace(M) = {zM|x € Zy}. The cokernel of M is defined as cok(M) = Z;'/ RowSpace(M ).
Freidman and Washington [27] proved that if M, is an n x n random matrix over Z,, with
respect to the Haar-measure, then cok(M,,) asymptotically follows the distribution from the
Cohen-Lenstra heuristic, that is, for any finite abelian p-group G, we have

oo
lim P(cok(M,) ~ G) = [ Aut(G)| " [[1 -p7).
n—oo

j=1
In fact this is true even in a more general setting. It is enough to assume that the entries of M,
are independent and they are not degenerate in a certain sense. This was proved by Wood [60].
Her paper also contains similar results for non-square matrices.

Bhargava, Kane, Lenstra, Poonen and Rains [11] proved that the cokernels of Haar-uniform
skew-symmetric random matrices over Z, are asymptotically distributed according to Delaunay’s
heuristics. The following somewhat analogous result was obtained by Clancy, Leake, Kaplan,
Payne and Wood [18]. Let M,, be a Haar-uniform symmetric random matrix over Z,. Then, for

18
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any finite abelian p-group G, we have

{¢ : G x G — C* symmetric, bilinear, perfect}| T4 P21
lim P(cok ~ G I
i, Pleok(Mn) = G) = Gl Aut(G)] H

(1.3)

This is exactly the distribution appearing in Theorem 1.2. Note that this is not the original for-
mula given in [18], but it can be easily deduced from it, see [58|. Here, a map ¢ : G x G — C* is
called a symmetric, bilinear, perfect pairing if (i) ¢(x,y) = oy, x),
(ii) ¢(z,y + 2) = é(z,y)d(x, 2), and (iii) for ¢,(y) = &(x,y), we have ¢, = 1 if and only if
x = 0. We can give a more explicit formula for the limiting probability above by using the
following fact from [58]. If G = @, Z/pNZ with A\; > Ay > -+ and p is the transpose of the
partition A, then

A L“z “H—lJ

{¢ : G x G — C* symmetric, bilinear, perfect}\ 3, Bl H H p=2)1
|G| Aut(G))

(1.4)

Now we give a brief summary of results on distribution of sandpile groups. We already defined
the Laplacian and the sandpile group of a d-regular graph, now we give the general definitions.
We start by directed graphs. Let D be a strongly connected directed graph on the n element
vertex set V. The Laplacian A of D is an n x n matrix, where the rows and the columns are
both indexed by V', and for ¢,j € V', we have

(i, ) for i # j,
Az’j =
d(i,i) — dows(i) for i = j.

Here d(i,7) is the multiplicity of the directed edge ij, dout(7) is the out-degree of i, that is,
dout (i) = >y d(i, j). For s € V, the reduced Laplacian A, is obtained from A by deleting the
row and column corresponding to s. The group I's = Z"~! / RowSpace(A;) is called the sandpile
group at vertex s. The order of Iy is the number of spanning trees in D oriented towards s. Let us
define

= {z € Z"Y; ,z; = 0}. Note that every row of A is in Z{. Thus the following defi-
nition makes sense. The group I' = Z{} / RowSpace(A) is called the total sandpile group. If D is
Eulerian, then all of these definitions of sandpile groups coincide, so it is justified to speak about
the sandpile group of D. In fact, the converse of the above statement about Eulerian graphs is

also true, see Farrel and Levine [25].

For an undirected graph G, let D be the directed graph obtained from G by replacing each edge
{i,j} of G by the directed edges ij and ji. Then D is Eulerian. The sandpile group of G is
defined as the sandpile group of D. See [36, 39, 51, 32] for more information on sandpile groups.

We already mentioned the result of Wood [58] on Erdgs-Rényi random graphs. Here we give
more details. For 0 < p <1, the Erdés-Rényi random graph G(n, ¢) is a graph on the vertex set
{1,2,...,n}, such that for each pair of vertices, there is an edge connecting them with probability
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o independently. Let p1,ps,...,ps be distinct primes. Fix 0 < o < 1. Let I';, be the sandpile
group of G(n, ). Let I';,; be the p;-Sylow subgroup of I';,, and for i = 1,2,...,s, let G; be a
finite abelian p;-group. Then

S S
e (Dr.=Ba)
=1 =1

_ ﬁ {¢ : Gi x Gy — C* symmetric, bilinear, perfect}| 14 H _2] 1
|Gl Aut(Gi)|

See Equation (1.4) for an even more explicit formula.

Koplewitz [38] proved the analogous result for directed graphs. For 0 < p < 1, the random
directed graph D(n, o) is a graph on the vertex set {1,2,...,n}, such that for each ordered
pair of vertices, there is a directed edge connecting them with probability ¢ independently. Let
P1,D2,- -, Ps be distinet primes. Fix 0 < o < 1. Let T',, be the total sandpile group of D(n, g).
Let I',, ; be the p;-Sylow subgroup of I'y,, and for ¢ = 1,2,.. ., s, let G; be a finite abelian p;-group.

Then ,
. 2,01 —p;7)
i (= o) < TG e

Note that, unlike what we would expect knowing the undirected case, this distribution is not
the same as the one given in Theorem 1.1 for the random directed d-regular graph D,,. A quick
explanation is that D,, is Eulerian, while D(n, ) is not. Indeed, the total sandpile group is
defined as Z§ ~ 7"~ factored out by n relations, so for a general directed graph, we expect that
it behaves like the cokernel of a random n x (n — 1) matrix. However, for an Eulerian graph
these n relations are linearly dependent, because their sum is zero, so we expect that the total
sandpile group behaves like the cokernel of a random (n — 1) x (n — 1) matrix. The results above

indeed support these intuitions.

The structure of the chapter

Section 2 contains the basic definitions that we need, including the notion of typical vectors.
In Section 3, we investigate the distribution of A,q, where ¢ is a typical vector. The re-
sults in this section allow us to handle the contribution of the typical vectors to the sum
> qevn oo (A%d)q, Uq.a) in Theorem 1.5, but we still need to control the contribution of the non-
typical vectors. This is done in Section 4. The connection between the mixing property of the
adjacency matrix and the sandpile group is explained in Section 5. In Section 6, we prove that
several results hold uniformly in d. Most of the chapter deals with the directed random graph
model, the necessary modifications for the undirected model are given in Section 7 and Section 8.
In Section 9, we prove Theorem 1.9. At many points of the chapter we need to estimate the
probabilities of certain non-typical events, the proofs of these lemmas are collected in Section 10.
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2 Preliminaries

In most of the chapter we will consider the directed model, and then later give the modifications
of the arguments that are needed to be done for the undirected model.

Consider a vector ¢ = (q1,42,...,qn) € V™. For a permutation 7 of the set {1,2,...,n}, the
vector ¢ = (qw(l), Ir(2)s - - - ; Gr(n)) is called a permutation of . We write g1 ~ g2 if ¢1 and g2 are
permutations of each other. The relation ~ is an equivalence relation, the equivalence class of ¢,
i.e., the set of permutations of ¢ is denoted by S(g). A random permutation of ¢ is defined as the
random variable g, where 7 is chosen uniformly from the set of all permutations, or equivalently,
as a uniform random element of S(q).

Note that for ¢ € V", the equivalence class S(q) can be described by |V| non-negative integers
summing up to n. Namely, for ¢ € V, we define

mq(c) =i | g =cil,

so my can be considered as a vector in RV.

Fix % <a<fB<y< % We keep these choices fixed throughout the whole chapter. All the
(explicit or implicit) constants are allowed to depend on the choice of «, § and . However, since
we view «, § and +y as fixed, we will never emphasize this.

Note that if we choose a uniform random element ¢ of V", then the expectation of mg(c) is %

for any ¢ € V. This makes the following definition quite natural.

< n®. Here 1 is the all 1

HOO

Definition 2.1. A vector ¢ € V" is called a-typical if qu — ﬁﬂ

vector and ||.||oo is the maximum norm.

Similarly, we can can define -typical vectors. Note that, since o > %, a uniform element of V"
will be a-typical with probability 1 — o(1).

We write A%d) in place of A, to emphasize the value of d.

One of the key steps towards Theorem 1.5 is the following theorem.

Theorem 2.2. For any fized finite abelian group V and d > 3, we have

lim |V|* sup doo(Aﬁfl)q, Uga) = 0.

n—o0 qeV"™  a—typical

This will be an easy consequence of the following theorem.

Theorem 2.3. For any fixed finite abelian group V' and h > 2, we have

lim sup P(AMg =)Vt = 1| =0.
n=O0 eV a—typical
reR(q,h) B—typical

21



CEU eTD Collection

THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

In the proofs we often need to consider h-tuples @) = (q(l),q@), .. .,q(h)) where each ¢ is a
permutation of a fixed ¢ € V™. Such h-tuples will be called (g, h)-tuples. Let Q, ) be the set
of (g, h)-tuples. A random (g, h)-tuple is a tuple Q = (g, 3, ..., "), where gV, g, ..., g™
are independent random permutations of q.

Whenever we use the symbols @ and @, they stand for a (g, h)-tuple, and a random (g, h)-tuple
respectively, even if this is not mentioned explicitly. The value of ¢ should be clear from the

context.
Sometimes, it will be convenient to view a (q,h)-tuple @ as a vector Q = (Q1,Q2,...,Qn)
in (Vh)n, where Q; = (qgl),qz@), e ,qi(h)). The vector my was used to extract the important

information from a vector ¢ € V", we do the same for (g, h)-tuples, that is, for t € V" we define

mq(t) ={i | Qi=t}].

For a subset S of V", the sum >, gmq(t) is denoted by mg(S). Instead of S, we usu-
ally just write the property that defines the subset S. For example, mg(m = c¢) stands for
mo({r €V 1 =¢}).

Definition 2.4. A (g, h)-tuple Q or my itself will be called v-typical if

n
——1 <n”.
HmQ L Hoo "

The sum X(Q) of a (g, h)-tuple @ is defined as ¥(Q) = Z?:l g,

Note that for a random (g, h)-tuple Q, the distribution of 3(Q) is the same as that of Aq(zh)q.

Later in the chapter, we will give asymptotic formulas that will be true uniformly in the following

sense.

Definition 2.5. Let X;,Xs,... and Y7,Ys,... be two sequences of finite sets,
P, C Xy, xY,, f:U2 X, = Rand g:U>2,Y, = R.

The term f(z,,) ~ g(yn) uniformly for (x,,y,) € P, means that

9(yn)

—1‘20.

lim  sup
o (:Bn:yn)epn

The statement of Theorem 2.3 then can be reformulated as

1

P(Z(Q) =r)~ W

uniformly for any a-typical ¢ € V™ and S-typical r € R(q, h).
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3 Behavior of typical vectors

In this section and the next section, we keep V' and h fixed. All the (explicit or implicit) constants
are allowed to depend on V and h. Moreover, whenever we claim the convergence of any quantity,
it is meant that the convergence is only true for fixed V and h. We never claim any uniformity
over the choice of V' and h. Note that we deal with the question of uniformity in d in Section 6

separately.

We assume that h > 2 throughout this section.

3.1 The proof of Theorem 2.3

We express the event ¥(Q) = 7 as the disjoint union of smaller events, which can be handled

more easily. Let

Mg, r) ={mq | Q€ Qun%(Q)=r}"

Then the event ¥(Q) = r can be written as the disjoint union of the events (L(Q) = r) A (mg =
m) where m runs through M(q,r), so

PE@) =r)= Y P(E(Q) =r)A(mg=m)).

meM(q,r)

Observe that M(q,r) consists of the non-negative integral points of a certain affine subspace
A(gq,r) of RY". This affine subspace A(q,r) is determined by linear equations expressing that
whenever ¥(Q) = r for a (g, h)-tuple Q = (¢, ¢?,...,¢™), we have mga) = myq for every
i=1,2,...,h and myy g) = m,, as the following lemma shows.

For t = (t1,t2,...,t,) € VP, we define tx, as ty, = Z?zl t;.

Lemma 3.1. Consider q,r € V™. If m € M(q,r), then m is a non-negative integral vector

satisfying the following linear equations:

m(r; = ¢) = mg(c) Vie{l,2,...,h},ceV, (3.1)
m(rs = ¢) = my(c) VeeV. (3.2)

Now assume that m is a nonnegative integral vector satisfying the equations above, then

SHere we omitted from the notation the dependence on h, later we will do this several times without mentioning
it.
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my(C)! n: h
P((S(Q) =) A (mg = m)) = W / () (33)

_ ey m(rs = ¢)! < n! )h
Htevh m(t)! HceV mq(c)! '

In particular, P((3(Q) = r) A (mg = m)) > 0 so m € M(q,r). Thus, M(q,r) is the set of
non-negative integral points of the affine subspace A(q,r) given by the linear equations above.

Proof. We only give the proof of Equation (3.3), since all the other statements of the lemma are
straightforward to prove. For c € V', let

I.={ie{1,2,....,n} m =c},

and let W, = {t € VPt = ¢}. Let Q = (Q1,Q2,...,Qn) € (Vh)n. Assume that m is a
nonnegative integral vector satisfying Equation (3.1) and Equation (3.2) above. Observe that
Q € Qg n, mg =m and X(Q) = r if and only if for every c € V, the sets

({Z € {1727""71’} | QZ :t})tEWC
give us a partition of I., such that for every ¢ € W, the size of the corresponding part is m(t).

Note that for any ¢ € V', we have

|1c|! _ my(c)!
[Liew, m@®)!  Tliew, m(?)!

such partitions of I..

Clearly, the total number (g, h)-tuples is

(1)

Putting everything together the statement follows. O

The left hand sides of Equation (3.1) and Equation (3.2) in Lemma 3.1 do not depend on g or
7, therefore the affine subspaces A(q,r) are all parallel for any choice of ¢ and r. Hence, for
every q,r1,72 € V™, there is a translation that moves A(q,71) to A(g,r2). There are many such

translations, and we will use the one given in the next lemma.
Lemma 3.2. For any ri,m2 € V", we define the vector v = vy, r, € RV" by

My (tz) — My (tE)
U(t) - H/'|h—1
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for every t € V. Then, for any q € V", we have

A(Q7 Tl) + v?"1,7”2 = A(Qv TQ)-

Proof. 1t is enough to prove that A(q,71) + vy, r, C A(g,72) or equivalently if m satisfies Equa-
tion (3.1) and Equation (3.2) in Lemma 3.1 above for r = r, then m’ = m + v, ,, satisfies
Equation (3.1) and Equation (3.2) for » = ro. Observe that for any i = 1,2,... h and ¢,s € V,

we have
{te V! ti=cty=s}=|VI""2

(Here we need to use that h > 2.) So we have

Sty =Y mt)+ Y vy (t)

tevh tevh tevh
ti=c ti=c ti=c

_ h _ _ My, (S) — Mypy (5)

=mg(c)+ Y _[{teV"| ti=cty=s} o

seV |V|
1
@ g (S mate) - S0
seV seV

:mwmu;m—m=mmx

that is, Equation (3.1) is satisfied. Furthermore, for any ¢ € V', we have

Yomt)= D m) + D vrn(t)

tevh tevh tevh
ty=c ts=c ts=c
h—1 My (¢) — M, ()
= mpy () VI G = (),
that is, Equation (3.2) is satisfied. O]

Whenever A(q,r) contains integral points, the integral points of A(q,r) are placed densely, in
the sense that there is a D, depending only on h and V', such that for any point x € A(q,r),
there is an integral point y € A(q,r) with ||z — y||cc < D. Actually, this is a general fact as the

following lemma shows.

Lemma 3.3. Let A be an affine subspace of RF which is given by a set of equations with rational
coefficients. Assume that A contains an integral point p. Then there is a D such that for any
point x € A, there is an integral point y € A with ||x — y||cc < D. For parallel subspaces, we can
choose the same D.

Proof. Observe that we can write A as A = p+ Ay, where Ag is a linear subspace generated by
a set of rational vectors {ay,ag,...,ar}. Multiplying these vectors with an appropriate scalar,
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we may assume that they are all integral vectors. Let

¢
D=3 Jaill.
i=1

Note that x —p € Ap, sox —p = Zle a;a; for some constants a;. Then

l
y=p+) laa
i=1
is an integral vector such that ||z — y||.o < D. O

For ¢ € V, let w, € RY" be such that we(t) = 1 if ty = ¢ and w.(t) = 0 otherwise. For
i =1,2,...,hand c € V, let u;, € RV" be such that u;c(t) = 1if t; = ¢ and u;e(t) = 0

otherwise.

Lemma 3.4. If r € R(q, h), then A(q,r) contains an integral point.

Proof. We need to show that the system of linear equations given by Equation (3.1) and Equation
(3.2) admits an integral solution. Using the integral analogue of Farkas’ lemma [54, Corollary
4.1a.], we obtain that there exists an integral solution if and only if for every choice of rational

numbers
0<~(i,e)<1(i=1,2,...,h, c€V)and 0<4d(c) <1 (ce€ V) such that

h
Z Z (%, ¢)uic + Z d(c)w, is an integral vector (3.4)

i=1 ceV ceV

the number Z?:l Y oeev Y@, e)mg(c) + > .y 0(c)my(c) is an integer. We project the rational
numbers (i, ¢) and §(c) to the group S' = Q/Z. From now on we work in the group S*. The
condition given in (3.4) translates as follows. For every t € V*,

h
D (i) +6(ts) =0 (3.5)
i=1
in the group S'. We define 7(i,¢) = (i,¢) — 7(i,0) and §'(c) = 6(c) + Z?:l v(4,0). Clearly
v (i,0) = 0. Moreover, from Equation (3.5) with ¢ = 0, we get that
4’(0) = 0. Equation (3.5) can be rewritten as

h

> Y t) + (k) = 0.

i=1
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For every i and ¢, if t € V" is such that ¢; = ¢ and t; = 0 for i # j, then we obtain that
v (i,¢) = —=d'(c). Therefore, Equation (3.5) can be once again rewritten as

h h
Z 8 () =08 (tg) =0 <Z ti> ,
=1 =1

which means that ¢ is a group homomorphism between V' and Q/Z. Thus, we get that

h
YD i mgle) + Y d(eym(c)

i=1 ceV ceV
b h
= Z Z (7' (i, ¢) +7(4,0)) )+ Z (5/ Z (i70)> my(c)
i=1ceV ceV i=1
h
= Z —&'(e)my(c) + Z &' (c)my(c)
i=1ceV ceV
= —h Z (5, mq + Z 5/ m'r‘
ceV ceV
= —hy 8(a) + Y 8 (ri) =8 (~h-s(q) + () = §'(0) = 0
i=1 i=1

using that r € R(q, h). That is, Z?:l Y ocev Y, e)mg(c) + 3 ey 6(c)my(c) is indeed an integer.
Ul

Suppose that 71,72 € R(q,h). Let v = v, ,,. Then there is an integral point m; in A(q,1).
Since my +v € A(q,r3), there is an integral point mgy in A(q, r2) such that ||m;+v—malje < D.
Set O = Uy, r, = Mo —myq, then ||0 —v| < D and the map m — m+ 0 gives a bijection between
the integral points of A(q,71) and the integral points of A(q,r2).

For each a-typical ¢ € V™, fix an arbitrary S-typical ro = ro(q) € R(g, h), that is, let o be any
S-typical rg € V™ such that s(rg) = h - s(g). Set

M*(q,r9) = {m € M(q,ro) ‘ Hm - nh]lH < ZnV}.
V" o
For any other B-typical r € R(q, h), we define
M (q,r) ={m+brr | me M (qro)} C M(qr).
Observe that for large enough n, if both rg and r are S-typical, then

|0rg.7lloc < D+ <n.

nB
|V|h 1
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Thus, using that the map m — m + 0y, is a bijection between the integral points of A(q,ro)
and the integral points of A(q,r), we obtain that if n is large enough, then for every a-typical
q € V™ and S-typical r € R(q, h), we have

{mEM(q,r) ‘ Hm—th]lHoo <m} c M*(q,r). (3.6)

Here the set on the left is just the set of the -typical elements of M(q, ).

The crucial point of our argument is the next lemma.

Lemma 3.5. For an a-typical ¢ € V™, a B-typical r € R(q,h), ro = 19(q) and m € M*(q,19),
we have that

P((2(Q) = ro) A (mg =m)) ~P((Z(Q) =7) A (mg = m + Ur,r))
uniformly in the sense of Definition 2.5.

Remark 3.6. For clarity, we write out the definition of the uniform convergence above. That is,
Lemma 3.5 is equivalent with the statement that for any fixed V' and h, we have

-1 =0.

o P((2(@) = rola)) A (mg = m))

"TIO0 geV™  a-typical P((E(Q) =7) A (mQ =m+ QA}ro(q),T))
meM*(q,ro(q))
reR(q,h) B-typical

To prove Lemma 3.5, we need a few lemmas.

The following approximation will be useful for Lemma 3.8.
Lemma 3.7. Fiz K(n) such that K(n) = o (n%> Then for |k| < K(n), we have
n\”" k2
(n+k)! ~V2mn (—) exp | klogn + o
e n

uniformly. In other words, we have

V2mn (%)n exp (k: logn + %)
lim sup ' — 1| =0.
=00 |k <K (n) (n+k)!

Proof. Using Taylor’s theorem with the Lagrange form of the remainder [53, Theorem 5.15] for
the function f(x) = zlogz, we get that

L
© 6c?

| 1 f®() 4
)| -|[£

(n+k)log(n + k) — <nlogn+ (logn + 1)k + o
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for some ¢ € (n,n + k). This implies that

k2
lim sup |(n+k)log(n+k)— <nlogn + (logn+ 1)k + > ‘ =0.
=0 k<K (n) 2n

It is also clear that

k
n 4+ o1

B

uniformly for |k| < K(n).
Recall that Stirling’s formula [53, (8.22)] states that

n! ~ v2mnexp(nlogn —n).

If we put everything together, then we get that

(n+ k) ~+21(n+k)exp ((n+k)log(n+ k) — (n+k))
2
~ V27n exp <(nlogn+ (logn + 1)k + ;) —(n+ k))

= V2mn (Z)nexp (k:logn—l— k2>

2n
uniformly for |k| < K(n). O
Note that in the lemma above, we do not need to assume that n is an integer, as long as n + k
is an integer.
In the next lemma, we use the notation a(n) = v2wn(%)".

Lemma 3.8. For q,r € V™ and m € M(q,r) such that Hm — #]1” < 3n7, we have
_ 1 n n
P((E(Q) = 1) A (mg =m)) ~ flg)exp { 5B |m — W]l,m - W]l

uniformly, where ( ( ))\v|
n! e
Ha) = (Hcev mq(c)!) (

o(w)"

and B :RV" x RV" = R is a bilinear form defined as

Bla,y)=[VI>_ | d_a®) | | Dow®) | —IVI" D a(t)y().

ceV \ tevh tevh tevh
tyn=c tn=c

Note that f(q) does not depend on r and m.
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Proof. Recall that v < %, so for any t € V" Lemma 3.7 can be applied to expand m(t)! at the

point |V\ =2-. Thus, we obtain the approximation
h n 2
(t)l n (t) n 1 n + ’V| (m(t) B W)
m)! ~a| —+ ] -ex m(t) — 0
viE) P VIE) e T 2n
Similarly, for every ¢ € V, by expanding m(7s; = ¢)! at the point > v we obtain the approximation
2
VI (S (m) - )
m(rs =c¢)l~a <n) -exXp Z m(t) — o log =y fa=c
Vi g 14 V] 2n
teV
tyy=c
Substituting these approximations in Equation (3.3), we obtain the statement. O

We made all the necessary preparations to prove Lemma 3.5.

Proof. (Lemma 3.5) It is easy to check that w. is in the radical of the bilinear form B, that
is, B(.,w.) = B(w,,.) = 0. (w. was defined before Lemma 3.4.) Since vy, € Span,cywe,
we get that Uror 1S also in the radical. Observe that if n is large enough, then |0y, ,|lcc <
D+ ‘V h r <n7,so both m and m + 0y, , satisfies the conditions of Lemma 3.8. It is also clear
that B(z,y) = O([|z[lco[|ylloc). Thus,

1 N n . n
%B <m+v7"0,7" - |V‘h]17m+v7“0u7" - |V‘h]l>

n
|V‘h ]l,m + (UTOJ“ - UTO,T) + Urg,r — ’V|hﬂ>

1 n n
= % <B (m — W]l,m - W’h’]l> + 2B ( |V‘hH,UTO’ vTo,T)

+B (@ro,r — Upg,ry Urg,r — ’UTO’T))>

=B (m + (@TO:T - UTO,T) + Vro,r

1 n
_ v ¥ 2
=5, <B(m | |h1l, | |h 1)+0M4Dn” +D )>

1 n
—B ——1 ——1 71y,
~ ( ww””wvw)*om )

Then, the statement follows from Lemma 3.8. O
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From Lemma 3.5, it follows immediately that for an a-typical ¢ and S-typical ri,79 € R(q, h),

we have

Y. B(E@=r)Amg=m)~ Y P(E(Q)=r2)A(mg=m))

meM*(q,r1) meM*(q,r2)

uniformly, or equivalently

uniformly.
The content of the next lemma can be summarized as "only the typical events matter".

Lemma 3.9. We have

(i) A uniformly chosen element of V™ is B-typical with probability 1 — o(1).
(i) There is a Cy such that for any a-typical g € V™, we have

P(Q is not vy — typical) < Cyexp(—n?1~1/CY).

In particular, for an a-typical ¢ € V™, we have P(Q is v — typical) ~ 1 uniformly in the
sense of Definition 2.5.

i) ere is a Cy such that for any a-typical q € we have
(i1i) There is a C h that f y a-typical g € V", h

P(3(Q) is not B — typical) < Cyexp(—n?P~1/Cy).

In particular, for an a-typical ¢ € V™, we have P(X(Q) is B — typical) ~ 1 uniformly in the
sense of Definition 2.5.

(iv) The following holds

lim sup P ((2(Q) =7) A (Q is not v — typical)) |[V["~1 = 0.
N=00 eV a—typical
reR(q,h) B—typical

Proof. Part (i) can be proved using standard concentration results. We omit the details. To
prove the other statements of Lemma 3.9, we need the following result.

Lemma 3.10. Fiz K(n) such that n® = o(K(n)). There is a C such that for any a-typical
q € V" and a random (g, h)-tuple Q, we have

(o o2 ) on (),
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Proof. Observe that for any a-typical ¢ € V™ and t € V", we have

h

mg(ti)
nH n |V\h

i=1

= 0(n®) = o(K(n)),

where the hidden constant does not depend on ¢ or t. Thus, for an a-typical ¢ € V™ and a
(g, h)-tuple @Q, if we have

> K(n)

n
t -
'mQ( ) v
for some t € V", then

" my(ti)
|mQ(t) -n]] =2 = (1= 0(1) K (n).
=1

The lemma follows from Lemma 10.2 and the union bound. O

With the choice of K(n) = n” Lemma 3.10 implies part (ii).

To prove part (iii), choose K (n) = |V|~»~Dnf and observe the following. For (g, h)-tuple Q, if
we have

< K(n),

’ [e.o]

n
e - 7
then ¥(Q) is S-typical.

To prove part (iv), we need the following lemma.

Lemma 3.11. There is a C3 > 0 such that for every B-typical r € V™, if we consider the number
of permutations of r, i. e., the cardinality of the set S(r) = {r' is a permutation of r}, then we
have

S| = [V|"exp (~Cyn®'1).
Proof. This can be proved using Lemma 3.7. Ul

Part (iv) follows from the next lemma.
Lemma 3.12. We will use the constants C1 and C3 provided by Lemma 3.11 and part (ii). For
every a-typical ¢ € V™, B-typical r € V™ and a random (q, h)-tuple Q, we have

Chexp (—nQV—l/C’l + Cg’l’LQﬁ_l)
v '

P(X(Q) =7 and Q is not y-typical) <

Here the numerator C1 exp (—n27_1/01 + anw_l) on the right hand side goes to 0 as n goes
to infinity.

Proof. For every r' € S(r), consider the event that X(Q) = ¢ and @ is not
~-typical. These events are disjoint, and by symmetry, they have the same probability. Moreover,
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they are all contained by the event that @) is not ~-typical. Thus,

P(Q is not ~-typical)
1S(r)

P(X(Q) = r and Q is not y-typical) <

The statement then follows from part (ii) and Lemma 3.11. O
This concludes the proof of Lemma 3.9. O

Fix an a-typical ¢ € V™.  For every [-typical r € R(q,h), consider the events
(2(Q) = ) A (mg € M*(q,7)). These events are pairwise disjoint. Moreover, from (3.6)
above, we see that their union contains the event (X(Q) is 5 — typical) A (Q is v — typical) for
large enough n. So for large enough n, we have

P((2(Q) is 8 — typical) A (Q is v — typical))
=< > P((5(Q) =7) A(mg € M*(q,7))) < 1. (3.8)

reR(q,h) [—typical

From part (ii) and (iii) of Lemma 3.9, we get that

P((2(Q) is 8 — typical) A (Q is v — typical)) ~ 1
uniformly for all a-typical ¢ € V™. Thus

> P((2(Q) =7) A (mg € M*(g,7))) ~ 1

reR(q,h) PB—typical
uniformly for every a-typical ¢ € V". Combining this with Equation (3.7), we obtain that
P((2(Q) =7) A (mg € M (q,7))) ~
[{r € R(q,h)| s f-typical}| ™" ~ [R(g, h)| ! = [V|7"7V

uniformly for all a-typical ¢ € V™ and f-typical r € R(q,h). Here in the second line, we used
part (i) of Lemma 3.9. Finally, using part (iv) of Lemma 3.9 and (3.6), we get Theorem 2.3.

3.2 The proof of Theorem 2.2

We start by a simple lemma.

Lemma 3.13. For q,r € V", and h > 2, we have P(A%h)q =) <|S(q)| .

Proof. Let ¢’ be a uniform random permutation of ¢ independent from Aﬁh‘l). Observe that
A,({L)q has the same distribution as Aﬁf‘l)q + ¢'. The statement of the lemma follows from the
facts that

P(AY g+ =r| r— Al Vg~ q) =15
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and

PAJ Ng+q =r| r—AP Vgt q) =0.

n

Now we prove Theorem 2.2 from Theorem 2.3.

Proof. Let q € V™ be a-typical, and let r € R(q,d). Let ¢’ be a uniform random permutation of

q independent from Agldfl). Observe that A,(zd)q has the same distribution as Agldfl)q +¢. Now,

we have
P(Aq =r) = EP(A{ Vg =r —¢),

n

where the expectation is over the random choice of ¢'.

Observe that

° P(A,(ld_l)q =r—¢) ~ V|~ uniformly, if r — ¢ is -typical.

e 0< P(A%d_l)q =r—¢q) <|S(q)|™! otherwise.
Indeed, the first statement follows from Theorem 2.3 and the fact that r — ¢’ € R(q,d —1). The
second statement follows from Lemma 3.13.

Moreover, combining Lemma 10.1 with the union bound, we get the following statement. There
is a ¢ > 0 such that
P(r — ¢ is not 3 — typical) < exp(—cen??71).

From the law of total probability, we have

P(AD g =) =P(AY Vg =r —¢|r — ¢ is B — typical)P(r — ¢’ is 3 — typical)

n

+P(A Vg = — ¢|r — ¢ is not 8 — typical)P(r — ¢ is not 8 — typical).
Inserting the inequalities above into this, we obtain that

exp(—cn?81)

(+oW)IVI=" D (A —exp(—en® 1) < B(Afg = 1) < (+oW)IVI" D+ —=rs

Since there is ¢ such that |S(q)| > |V|" exp(—c/n?*~1) for every a-typical ¢ € V", we get that
exp(—cn??~1)/|S(q)| = o(]V|™™). The theorem follows.
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4 Only the typical vectors matter

The aim of this section to prove Theorem 1.5. Let Cos(V') be the set of all cosets in V. Given a
function f(n), and a subset W of V, a vector ¢ € V" will be called (W, f(n))-typical if for every
c € W, we have ‘mq(c) - “‘W" <n®and ) gy mg(c) < f(n). In the previous section, we used

the term a-typical for (V,0)-typical vectors.

We start by a simple corollary of Theorem 2.2.

Lemma 4.1. We have

Tim ) doo(Ang, Uy.a) = 0.

WeCos(V) q is
(W,0)—typical

Proof. If W is a subgroup of V, then from Theorem 2.2, we know that do.(Anq, Ugq) is o |[W|™")
uniformly for all (W, 0)-typical ¢q. On the other hand, the number of (W, 0)-typical vectors is at
most |W|". Thus,

lim > doo(Ang, Uyq) = 0.

n—00
q is (W,0)—typical

Consider a coset W € Cos(V') such that W is not a subgroup of V. Let t € W, then Wy = W —¢
is a subgroup of V. For ¢ = (q1,42,---,qn) € W™, we define ¢ = (¢1 —t,q2 — t,...,q, —t). Note
that ¢ — ¢ is a bijection between W™ and W', and it is also a bijection between (W, 0)-typical
and (W, 0)-typical vectors. Using this, it is easy to see that doo(Ang, Uga) = doo(And’, Uy a),
which implies that

Im oy deo(Ang Uga) = lim Y deo(And Uga) =0,
q is (W,0)—typical q' is (Wp,0)—typical
using the already established case. Since Cos(V) is finite, the statement follows. [l

For ¢ € V", choose r, such that

nd — - ]P) An == .
P(Ang = 1q) = max P(Ang = 1)
For W € Cos(V), we define I(W") = {ge W" | MinC, = W}.

Note that V" = Uy ccosv) I (W"), where this is a disjoint union.
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Then

lim sup Z doo(Anq, Ugq)

n—o0 qevn

= lim sup Z Z doo(Anq, Uy ,q)

"7 WeCos(V) ge (W)

= lim sup Z Z doo(Ang, Ug,a)

oo WeCos(V) qis
(W,0)—typical

+ lim sup Z Z doo(Ang, Uq,d)-

" WeCos(V) qeI(W™) is
not (W,0)—typical

Using Lemma 4.1, we have

lim sup Z Z doo(Anq,Ugq) = 0.

" WeCos(V)  qis
(W,0)—typical

For g € I(W™), we have
doo(Anq, Uga) < WD 4 P(A,q = 1)
from the triangle inequality. Moreover,
{g € I(W™) | qis not (W,0) — typical}| = of|W|")
from standard concentration results.

Inserting these into Equation (4.1), we obtain that

lim sup Z doo(Ang, Ug )

n—o0 qevn

< lim sup Z Z (’W’ n=1) +P(Anq:""q))

"7 WeCos(V) qeI(W™) is
not (W,0)—typical

=limsup Y [{g€I(W") | qisnot (W,0) — typical}||W|~*~"

n—oo

WeCos(V)
+ lim su P(A,g=r
T S S

WeCos(V) qeI(W™) is
not (W,0)—typical

= lim sup Z Z P(Ang =1q).

WeCos(V) gel(W™) is
not (W,0)—typical
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Thus, in order to prove Theorem 1.5, it is enough to prove that

lim sup Z Z P(Anq =1q) = 0.

"7 WeCos(V) q€I(W™) is
not (W,0)—typical

We establish this in three steps, namely, we prove that

lim sup Z P(A,q =14) =0, (4.2)

n—reo qeV™ is not

(W,n>)—typical for any WeCos(V)

lim sup Z Z P(Anq =rq) =0, (4.3)
nree WeCos(V) q is (W,n®)—typical,
but not (W,C log n)—typical

lim sup Z Z P(Anq =rq) =0, (4.4)
oo WeCos(V)  qis (W,Clogn)—typical,
but not (W,0)—typical

where C is a constant to be chosen later.

Equations (4.2), (4.3) and (4.4) are proved in Subsections 4.1, 4.3 and 4.4 respectively.

4.1 Proof of Equation (4.2)

The following terminology will be useful for us. With every (g, d—1)-tuple Q@ = (Q1,Q2, ..., Q)
we associate the random variables Z € V and X© = (X?,XQQ, .. ,Xfﬁl) € V41 such that
Z = ry(i) and X9 = @y, where i is a uniform random element of the set {1,2,...,n}. Each

X].Q has the same distribution as ¢; where i is chosen uniformly from {1,2...,n}. The random

variable Xg € V is defined as Xg = Zf;ll X ZQ These two sets of (q,d — 1)-tuples are equal:

Q| rf-2@~a)=1{Q | Z-xZ=x7}.
Here = means that the two random variables have the same distribution. Thus,
n

P (rq _ Al q) — Py (Z ~x9< X?) ,

where the subscript in the notation Py indicates that the probability is over the random choice
of Q.

We call the random variables Z, X1, ..., X4_1 € V e-independent, if for every z,x1,...,xq-1 € V,

we have

P(Z = 2, X1 = #1,..,Xg-1 = @g-1) = P(Z = 2)P(Xy = 21) - P(Xg1 = 24-1)| < e
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Fix % <1 < a. The next lemma follows from Lemma 10.2 and the union bound.

Lemma 4.2. For any q € V", we have

_ _ _ 9 2n—1
Ps(Z, XIQ,XQC'),...,XC%1 are not n 1 -independent) < ]V|d2(d — 1)exp (—(;1)2> . O

The crucial step in the proof of Equation (4.2) is the following lemma, which is proved in the

next subsection.

Lemma 4.3. Let d > 3. There is C and gy > 0 (which may depend on d and V'), such that the
following holds. Assume that Z, X1, Xo, ..., Xq_1 are e-independent V -valued random variables,
for some 0 < e < gy. Let Xy = X1+ Xo+ -+ 4+ Xq_1. Assume that X1, Xo,..., Xq-1 and
Z — Xx, have the same distribution w. Then there is a coset W in V' such that doo (7, my) < Ce.

Here myy is the uniform distribution on W. For two distribution 7 and g on the same finite set
R, their distance doo (7, 1) is defined as

doc (1, 1) = moae |(r) = (7).

Combining the last lemma with Lemma 4.2, we get the following lemma.

Lemma 4.4. Assume that n is large enough. Let g € V™. If

_ 5 5 2n2n—1
then q is (W,n%)-typical for some coset W in V. In other words, if q is mnot
(W, n%)-typical for any coset W, then

) ~ ~ 2n2n—1
P (ra = AU~ q) =B (7 X3 £ 57) < W2t ew (~ g )

Proof. Combining our assumptions on ¢ with Lemma 4.2, we have
Pg <Z, XlQ,XQQ, .. '7X¢?—1 are n"~-independent and Z — Xg < Xlé) > 0.

So there exist n7!-independent random variables Z, X1, Xo, ..., Xq_1, such that X1, Xo, ..., X4_1
and 7 — Xy, =7 — Zf:_ll X; all have the same distribution as g; where 4 is chosen uniformly from
{1,2,...,n}. Let us call this distribution 7. For large enough n, we have n"~! < g¢, so Lemma
4.3 can be applied to give us that there is a coset W in V such that duo (7, mp) < Cn~1. Since
n® > C|V|n", this implies that g is (W, n®)-typical. O

Now we made all the necessary preparations to prove Equation (4.2).

Due to symmetry if ¢; ~ g2, then ]P’(A%d)ql =rq) = P(A%d)QQ = 74). Let ¢ be a uniform

)

random permutation of ¢ independent from Agdil )
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We have
STPADY = ry) = S(a)B(ADq = r,)
q ~q

— [S(q)[B(AY Vg + ¢ = r,)
= 15(a)l Y P(AY Vg =7y — )P4 = ¢)
q ~q

= Z P(Agzdil)q =rg—q)=Pry - A%dil)q ~q).

q'~q

Let T,, C V™ be such that it contains exactly one element of each equivalence class. Then,

assuming that n is large enough, we have

> P(Aq = ry)
qeV™ is not
(W,n®)—typical for any WeCos(V)
= > P(ry — A" Vg ~ q)
q€Ty, is not

(W,n®)—typical for any WeCos(V)

on2n—1

In the last step, we used Lemma 4.4. Equation (4.2) follows from the fact that |T,,| = o (n|V|+1) =
0 <exp <7%3i7521 ))
4.2 The proof of Lemma 4.3

Although we will not use the following lemma directly, we include it and its proof, because it

contains many ideas, that will occur later, in a much clearer form.

Lemma 4.5. Let Z, X1, Xo, ..., Xq_1 be independent V -valued random wvariables. Let Xy =
X1+ Xo+ -+ Xg_1. Assume that X1, Xo,...,Xq—1 and Z — Xx. have the same distribution

w. Then m =y for some coset W in V.

Proof. We use discrete Fourier transform, that is, for o € V= Hom(V,C*), we define

and
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The assumptions of the lemma imply that
A~ A7 N d—1 ~
o) (7(0) = (o)

for every o € V. In particular |fi(0)|- |7 ()| = |#(0)| for every o € V. Since |fi(0)|, |#(0)| < 1,
this is only possible if |#(o)| € {0,1} for every g € V. Let us define V; = {p € V| |7(0)| = 1}.
Note that V; always contains the trivial character. Then for every ¢ € Vi, the character p is
constant on the support of 7. Or in other words, the support of 7 is contained in W, = o (7 (o)),
which is a coset of ker 9. Therefore, the support of 7 is contained in the coset W = Noetn W,.
Now we prove that #(p) = 7w (o) for every o € V, which implies that 7 = . This is clear
for o € Vl, so assume that o & Vl, that is, () = 0. This implies that ¢ is not constant on W.
So there are wy,wy € W such that p(wi) # o(wz). For w = w; — wy, we have p(w) # 1 and
W =w+ W. Thus

. 1 1
mw(0) = U%:V o(0) = 7 U;V o(w +v) (4.5)
- Wlmg(w) S o(v) = o(w)rw (o).
veW
Since p(w) # 1, this means that 7y (9) = 0. O

Now we turn to the proof of Lemma 4.3.

Proof. Using the notations of the proof of Lemma 4.5, the conditions of the lemma imply that

o) - ito) ()" | < vt

for every o € V. Using the fact that |fi(o)| < 1, we obtain

> |7 (o)l — |ale)] - 17(2)|"™" = Ji(e) — 17 ()"

(o) o) (7))

which gives us |7 (0)| — |#(0)|*! < |V|% for every p € V.

Consider the [0,1] — [0,1] function 2 + x — 2971 this function only vanishes at 0 and 1.
Moreover, the derivative of this function does not vanish at 0 and 1. This implies that there is
an g1 > 0 and a C7 > 0 such that for every 0 < & < &1 the following holds. For z € [0, 1], if we
have x — 2971 < |V|%, then either x < C1e or z > 1 — Cje. In the rest of the proof, we assume

that & < 1. Then for every o € V, we have either |7(g)| < Cie or |#(g)| > 1 — Ce.

Let Vi = {0 € V|1 — Cie < |#(0)|}. Take any ¢ € V;. Set
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Choose &y = £o(0) in the range R(o) of the character p, such that Re 2§y = max¢cp(,) Re z§. An
elementary geometric argument gives that for §y # £ € R(p), we have Rez¢ < 1 — 4, where
60 =1-—cos ﬁ > 0. Clearly Re z&y < 1. Then we have

[#(0)| = 2/t(0) = Rezft(0) = Y (o " (§)Rezt <1— (1 —7(0 " (&))) 0.

§€R(0)

Thus, |#(0)] > 1 — Cie implies that for the coset W, = o 1(&), we have

m(W,) >1— C107te. So the coset W = Nyevy We satisfies (W) > 1 — C16~HV]e.

Consider a o € Vi. Let & = &(o) be like above. Note that o(v) = & for any v € W,. In
particular, we have 7y (0) = &. Thus,

[iw () = #(e)l = &0 — [ 7(Wp)bo— D w(v)e(v)

veV\W,

=|1—7(W)o— Y. w(v)o(v)

veV\W,

<1-m(W)+ Y w(v) =2(1—n(W,)) <215 'e.
veV\W,

Now take ¢ € V\V;. We know that |7 ()| < Cie. We claim that p is not constant on W. To
show this, assume that ¢ is constant on W, then

17 (0)| > 7(W) —n(VA\W) > 1 —2C16 HV]e > Cie

provided that € is small enough, which gives us a contradiction. Using that o is not constant on
W, Equation (4.5) gives us 7y (o) = 0. Thus,

[7(0) — 7w ()| = |7 (0)| < Che.

A

This gives us that |7(0) — #w(0)] < 2016 'e for any o € V. Since the map
m +— 7@ is an invertible linear map, there is a constant L = Ly such that
doo (™, mw) < Lmax y [7(0) — Aw (o)|- This gives the statement. O

4.3 Proof of Equation (4.3)

We start by the following lemma.

Lemma 4.6. There is a C such that if W € Cos(V) and g € V" is (W,n®)-typical, but not
(W, C'log n)-typical, then for a random (q,d — 1)-tuple Q, we have

P(ry = 2(Q) ~ q) < n~ (V¥
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Proof. Let E =} oy mg(c). Since g is (W,n®)-typical, we have E < n®. Assume that r =
S0 ¢, where ¢) ~ . Note that

{jl g dwycul {il ¢() ¢ Wl

so Y. cgdW my(c) < dE. In particular, this is true for 74, that is,

Let
Ho={j | rq(j) & dW}.

Fori=1,2,...,d—1, we define the random subset H; of {1,2,...,n} using the random (¢q,d — 1)-
tuple Q = (g1, g®, ..., g% V) as

Hi={j | d9()¢wW},

and let the random subset H* C {1,2,...,n} be defined as

H* ={j |rq(j) —E(Q)(j) € W}.
Then 0 < |H0| < dFE and |H1| = ‘HQ’ =..= ‘Hd_1| = F. Let

B={j | jiscontained in exactly one of the sets Hy, Hi, Ha, ..., Hg_1}.

Then B C H*, therefore we have

P(ry —3(Q) ~ q) <P(|H"| = E) <P(|B| < E).

We will need the following inequality

d—1
B> |Hi|l-2 > |HinH;|>(d-1)E-2 > |HnNH,]
=0 0<i<yj<d—-1 0<i<yj<d—-1

The proof of this is straightforward, or see |26, Chapter IV, 5.(c)|. Thus, if |B| < E, then

2 Y |HinHj|>(d-2)E.

0<i<j<d—1
So |H; N Hj| > % for some i < j. Therefore,
(d-2)E
P(rg —2(Q) ~q) <P(|B| < E) < Z P <|H1 N Hj| > d(d—)l) . (4.6)

0<i<j<d—1
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Lemma 4.7. There is a constant C  such that, for all a,b and E satisfying
Clogn < E < n® and a,b < dE, if A and B are two random subset of {1,2,...,n} of size

a and b respectively chosen independently and uniformly, then

(o G2 < ()

Proof. We may assume that n is large enough, because we can always increase C' to handle the

small values of n. Let 6 = d((d d__21)). For large enough n, we have %b < gE . Using Lemma 10.1, we

obtain that

(d—2)E

IP><|AmB| > dd—1)

>:P(!AﬂB[25E)

SP(‘AHB—
n

FE 52Clogn
< < _
_2exp< 2d>_2exp< 5d )
s2c d
— 9~ =(V[+1)
2N~ 2d <n /<2>

for large enough C. O

Combining this lemma with Inequality (4.6), we get the statement of Lemma 4.6. O

Then Equation (4.3) follows, because

lim sup Z Z P(AD g = rq)
nree WeCos(V) q is (W,n®)—typical,
but not (W,C logn)—typical
= limsu P(ry — A4Dg ~
mow 3 S B Af g

WeCos(V) q€Ty is (W,n®)—typical,
but not (W,C log n)—typical

< limsup | Cos(V)] - \Tn\n_(“/'“) = 0.

n—o0

4.4 Proof of Equation (4.4)

Since there are only finitely many cosets in V, it is enough to prove that for any coset W €
Cos(V'), we have
lim Y [S(q)|[P(Z(Q) = rq) =0,

n—oo ™
qEDW

where
Dy ={qeT, | qis (W,Clogn)— typical, but not (W,0)-typical},

and @ is a random (gq, d)-tuple. (Recall that S(q) is the set of permutations of ¢.)
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Given a ¢ € V", a (g, d)-tuple Q or mq itself will be called W-decent if for any u € W, we have

1+ my(Q) (UE)

< log?n,
1+mo(w) — 8

and it will be called W-half-decent if (1 + myxg)(us))/(1 + mg(u)) < log*n. Or even more
generally, a non-negative integral vector m indexed by V¢ will be called W-half-decent if for

every u € W<, we have
1 + m(TZ = u;;)

< log*
1+ m(u) =08,

where n =, ya m(2).

Lemma 4.8. For any coset W € Cos(V'), we have

lim sup Z 1S(q)|P(2(Q) = r4) = limsup Z 1S(q)|P(2(Q) =y and Q is W — decent).

Proof. Tt is enough to show that if n is large enough, then
1S(q)[P(2(Q) = r4 and Q is not W — decent) < n~(VI+1)
for every q € Dyj,. Indeed, once we establish this, it follows that

lim sup S(q)|P(2(Q) = ry and Q is not W — decent) < limsup |T}, n~(VIHD = 0,
q

which gives the statement.

Just for this proof (g, h)-tuples and random (g, h)-tuples will be denoted by Q" and Q", be-
cause it will be important to emphasize the value of h. Given any (¢,d — 1)-tuple Q%1 =
(¢, ¢@, ..., ¢4 ) such that T — 2(Q4 1) ~ ¢ the tuple (¢, ¢@, ..., q(d_l),rq —%(Q4h)
will be a (g,d)-tuple and it is denoted by Ext(Q?1). It is also clear that S(Ext(Q? 1)) = r,
and for any (g, d)-tuple Q? such that $(Q?) = r, there is a unique (g,d—1)-tuple Q4! such that
rg — 2(Q4Y) ~ g and Q% = Ext(Q?71). Also note that P(Q?~! = Q41) = |S(q)|P(Q? = Q%).

Therefore, for any q € Dy, we have
15(¢q)|P(2(Q%) = ry and Q is not W — decent)
=P(r, — 2(Q%!) ~ ¢ and Ext(Q*™!) is not W — decent).
The event on the right-hand side is contained in the even that

there are t € W9 ! and ¢ € dW, such that

L +my,(c)
1+ [{i] rq(i) =cand Q4-1(i) = t}|
This event has probability at most n~(VI+1) for every (W, C'log n)-typical vector g € V", if n is
large enough. Indeed, for a ¢ € dW such that m, (c) < log? n, Inequality (4.7) can not be true.

> log? n. (4.7)
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On the other hand, if m, (c) > log? n, then with high probability

1{i| 74(i) = cand Q41(i) = ¢} > = > ;

for any t € W21, as it follows from Lemma 10.2. O

As before, we define

M(g,r) ={mq | Q€ Q4 X(Q)=r}.

Let
Mg, r) = {m € M(q,r)] mis W — decent}.

From the previous lemma, we need to prove that

Tm Y Y S@IP(R(Q) = 1) A (mg =m)) =0.

q€Dy,  meMi(q,rg)

Let
M={mqg | Qisa (gq,d)-tuple for some n >0 and ¢ € V"}.

The set M is the set of non-negative integral points of the linear subspace of RV consisting of
the vectors m satisfying the following linear equations:

forevery ce Vandi=1,2,...,d.

In other words, M consists of the integral points of a rational polyhedral cone. From |54,
Theorem 16.4], we know that this cone is generated by an integral Hilbert basis, i. e., we have

the following lemma.

Lemma 4.9. There are finitely many vectors mi,ma,...,my € M, such that

M ={cimy +coma+---+comy | c1,c2,...,c0 are non-negative integers}. O

We may assume that the indices in the lemma above are chosen such that there is an h such that
the supports of my,ma, ..., my are contained in W¢, and the supports of mj, 11, mp4a, ..., mg are
not contained in W¢.

Definition 4.10. Given a vector m € M, write m as m = Zle c;m;, where cq,co,...,cp are
non-negative integers, and let A(m) = Efzh 41 cim;. (If the decomposition of m is not unique
just pick and fix a decomposition.)

With the notation ||[m||yyc = m(r € W?), we have |m||yyc = |A(m)||we and |[|[m—A(m)||ye =
0.
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For any non-negative integral vector m € ]Rvd, we define

d—1

E(m) = [[eev m(rs = ¢) <H HCEV T’ =o)! ) i . (4.8)

[Tievam(t

Lemma 4.11. For every q,r € V"™ and m € M(q,r), we have

my(c n! -1
SWIF(E(Q) = r) A g = m) = R0 /() — ),

[Tieve m(®)! cev My

Proof. The first equality is a consequence of Lemma 3.1. To prove the second equality, note that
since m € M(q,r), for any ¢ € V and ¢ € {1,2,...,d}, we have m,(c) = m(r; = ¢). By taking
factorials, we get that mg(c)! = m(n; = ¢)!. Multlplylng all these equations, we get that

d d
H H m(r; =)l = (H mq(c)!> ,

i=1ceV ceV

that is,

ceV

(f[ I] i = c)!) v (H mq@)!)d_l.

Of course there are many other equivalent ways to express the quantity
1S(9)|P((2(Q) = 7) A (mg = m)) and each of them suggests a way to extend the formula
to all non-negative integral vectors, but the formula given in Equation (4.8) will be useful for us
later.

Lemma 4.12. Consider a non-negative integral W -half-decent vector mgy € ]Rvd, such that
[mollye = O(logn), where n =3 ,cy.am(t). Foru e Ve, let x, € RV be such that x,(u) = 1
and xu(t) = 0 for every t #u € V<.

o Ifuc W9, then E(mg+ xu)/E(mo) = O(log*n);
o Ifug W4, then E(mg+ xu)/E(mo) = O(n~(@=2/d]og? ).
Proof. Let

1—|—m0(T,; :ui)
n+1

B 1+ mo(TE = UE)
1+ mo(u)

and fi=

Note that

B(mo + xu)/E(mo) = g (Hﬁ) .
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If w € W% then since mq is W-half-decent, we have ¢ < log*n, and clearly fi < 1, so the

statement follows.

If u g W we consider the following two cases:

1. If uy & dW, then

g <14+ mg(rs =ux) <1+ ||mollwe = O(logn),

and there is an 7 such that u; € W. This imply that f; = O (lofln). So

E(mo + xu)/E(mo) = O <logn (loin) d;l) =0 (n_d%? log® n) :

2. If us, € W9, then there are at least two indices 7 such that u; € W, for such an index i, we
have f; = O <1°g”) clearly g = O(n), so

n )

2(d—1)

E(mo + xu)/E(mo) =0 [ n (lngLn> ’ =0 (n_% log? n) .

The next lemma follows easily from the previous one.

Lemma 4.13. There is a D, such that for any i € {h+ 1,h+2,...,¢} and any non-negative
integral W -half-decent vector mg € RV, such that |lmollye = O(logn), we have

E(mo 4+ mi)/E(mg) = O <(n—(d—2)/d log? n) ”mi”wC) ' -

Lemma 4.14. Assume that n is large enough. Let ¢ € V™ be (W,Clogn)-typical,
and let m € Mﬁ(q,rq). If mo is an integral wvector indexzed by V@ such that
(m — A(m))(t) < mo(t) < m(t) for every t € V4, then m is W-half-decent.

Proof. Let L = max}_, ., [[millos. Note that m(t) — m/(t) < L||m|lyc < LClogn for every
te Vi Let ng =Y ,cya mo(t). Then

nog>n—L-|V|%||mlyc >n— LIV|¢Clogn.
If n is large enough, then LC'log®n < %log4 ng. We need to prove that

1 +m0(7'2 = UE)

< log* no,
1+ mo(u) — &M
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for every u € we. If 1+ mo(Ty = uy) < log4 no, then it is clear. Thus, assume that we have
1+ mo(rs = ux) > log*ng. Then,

1+ m(rs = uy)
(14 m(u))log®n
(1 +mo(u) + LClogn) log®n

1 +mO(TZ = u;;)

IN A CIA

1
< (14 mo(u))log?n + 3 log* ng
1
< (14 mo(u))log?n + 3 (1 4+ mp(rs = uy)).
Therefore, if n is large enough, then we have

1 +m0(7’2 = uz)

< 2log2n < log* ng.
1+ molu) =08 =780

The following estimate will be crucial later.

Lemma 4.15. There is a K such that for any (W, Clogn)-typical ¢ € V™ and m € Mﬁ(q,rq),
we have

>HA<m>ch B — A(m).

E(m) < (Kn*(d*m/d log? n

Proof. We may assume that n is large enough, because we can increase K to handle the small
values of n. Then the statement follows from repeated application of Lemma 4.13. Observe that
m — A(m) and all other mg we need to apply that lemma is W-half-decent by Lemma 4.14. [

Now we made all the necessary preparations to prove Equation (4.4). With our new notations,

lim > Y Em=o0

qur‘iV mEMﬁ((LTq)

we have to prove that

We prove it by induction on |V|. The statement is clear if W = V, because in that case D}V is
empty. So we may assume that |[W| < |V].

Lemma 4.16. There is a finite B = By such that for every n, we have that

Y IS@PAYg=r,) < B.

qgeWwnrNTy,

Proof. First consider the case when the coset W is a subgroup. Then from the induction hy-

pothesis, we can use Theorem 1.5 to get that that

Z P(A%d)q =rq) = Z P(Ug,a = 1q) +0(1).

qewn qewn
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Recall that for Wy € Cos(W), we defined I(Wy}) as
IWg)={qe Wy | MinC, = Wy}.

Now, we have

Z IP)(Uq,d =Tq) = Z Z IP)(Uq,al =rq)

qeWm Wo€eCos(W) qel(W()
= Y WY W< ST [l
Wo€eCos(W) Wo€eCos(W)

Thus,

Y 1S@IPAP =1 = Y P(APg=r,)

qeWrNTy, qgeWwn
= > PUga=ry) +o(1)< > [Wol+o(D).
qgeWn Wo€Cos(W)

This proves the lemma when W is a subgroup of V. If the coset W is not a subgroup, then we
need to use the bijection given in the proof of Lemma 4.1. O

We need a few notations, let
Mg = Ugepw{A(m) | me Mgy}
For ma € M2 let

A, (ma) = Ugepy {m € M¥(q.rq) | A(m) =ma}.

Using Lemma 4.15, we obtain that

2. ), Em= ) 2. Em)s<

qeDY meMi(q,rq) maeEME meAfll(mA)
lmall
S (0@ 0g” ) TS Bm—ma). (49)
maEME meA; (ma)

Fix a vector ma € M. Set n/ =n — Y, .ama(t). Let X be the set of ¢ € DY, such that

ME(g,r4) N Ay (ma) is non-empty.

For each ¢ € X, there is a unique ¢’ € W' N T, such that for every ¢ € V, we have my(c) =
mgy(c) —ma(m = ¢), and a unique w, € W™ N T, such that for every ¢ € V, we have My, (€) =

my,(c) —ma(ts = c).
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Note that for any m € M*(q,r,) N A1 (ma), we have m — ma € M(q',w,). Moreover,
E(m —ma) = [S(¢)IP((2(Q) = wg) A (mg =m —ma)),
where @ is a random (¢, d) -tuple. The map m — m — ma is injective, so it follows that
> E(m —ma) < |S(&)[P(A)q = w).
mEME(q,7q)NAG " (ma)

Also note that that the map ¢ — ¢ is injective. Therefore,

Z E(m —ma) = Z Z E(m —ma)

mEAﬁl(mA) qeX mE./\/lﬁ(q,rq)ﬁAﬁl(mA)

<N 1S PAY g = w,)
qgeX

S IS()PAY g =ry) < B.

¢ EWn'NT,,

IN

Thus, continuing Inequality (4.9), we have

S Y Bmsn Y (Ea o) "

qeDY meMt(q,rq) maeME

There is an F such that |[MZ%| < nf. We choose a constant G such that for a large enough
n, we have (Kn~(@=2/d]og?! n)||mAHWC < n~F*FD whenever ||mallyc > G. Let H be the
cardinality of the set
l
{m | m= Z CiMj,  Chil,Chi2,--.,Ce NON-negative integers, ||m|we < G}.
i=h+1
Note that H < G*~". Finally observe that |[mal|yc > 1 for all ma € M5. So for large enough

n

B Z (Kn (d— 2)/d1 )HmA”Wc
maEMA

=B > (Kn—(d—m/dlogpn)”mA”wc

maeME
lmallyc>G

bB Y (Knr2/ggD ) e

mAGM,%
lmallyc<G

< Bnf'n~F+Y) 4 BHEn™(@2/d16gP n = o(1).
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Thus, we have proved Equation (4.4).

5 The connection between the mixing property of the adjacency

matrix and the sandpile group

The random (n — 1) x (n — 1) matrix A}, is obtained from A,, by deleting its last row and last
column. For ¢ € V™71, the subgroup generated by q1, g2, . . ., gn_1 is denoted by Ggy. Let Uy be a
uniform random element of Gg_l. The next corollary of Theorem 1.5 states that the distribution
of Al q is close to that of U,.

Corollary 5.1. We have

. / o
nl;rgo Z dso(Arq,Uy) = 0.
gevn—l1

Proof. For ¢ € V™! and r € G?q@—l7 we define ¢ = (q1,¢2,-..,qn-1,0) € V" and
f:(T17r27"'7rn—17d'8(Q)_S(T))GGZIL.

Note that s(7) = d - s(q) = d - s(g) and MinCyq = Gy, so 7 € R(q,d). Moreover, A},q = r if and
only if A,q = 7, so P(Al,q = r) = P(4,q = 7). From these observations, it follows easily that
dso(ALq,Uq) = doo(Anq, Uz q). The rest of the proof follows from Theorem 1.5. O

Recall that the reduced Laplacian A,, of D,, was defined as A,, = A/, —dI. The next well-known
proposition connects Hom(I',,, V') and Sur(T',,, V') with the kernel of A,, when A,, acts on V"~ 1.
Proposition 5.2. For any finite abelian group V, we have

|Hom(T,,, V)| = {g € V"' | Ang =0}
and

|Sur(Ty, V)| = {ge V™! | Ag=0, G,=V}|

Proof. There is an obvious bijection between Hom(I',,, V') and
{¢ € Hom(Z"~', V)] RowSpace(A,) C ker ¢}.

Moreover, any ¢ € Hom(Z"!,V) is uniquely determined by the vector

q = (p(e1),p(e2),...,0(en1)) € V"1 where e,ea,...,e,_1 is the standard generating set
of Z"~!. Furthermore, RowSpace(A,) C ker ¢ if and only if A,q = 0, so the first statement
follows. The second one can be proved similarly. O
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Combining Proposition 2.1 with with Corollary 5.1, we obtain

lim E|Sur(T',,V)| = lim P(Ang=0) = lim P(AlLq = dq)
gevn! gevnr—1
Gg=V Go=V
= lim P(U, =
Jin, > Bl = da)
gevn!
Gg=V

= lim [{ge V"' Go=V}-[V|"" V=1

This proves Theorem 1.3.
To obtain Theorem 1.1 from this theorem, we need to use the results of Wood on the moment
problem.

Theorem 5.3. (Wood [60, Theorem 3.1] or [58, Theorem 8.3]) Let X, and Y, be sequences
of random finitely generated abelian groups. Let a be a positive integer and A be the set of
(isomorphism classes of ) abelian groups with exponent dividing a. Suppose that for every G € A,
we have a number Mg < | A2 G| such that

lim E|Sur(X,,G)| = Mg,
n—oo

and

1i_>m E|Sur(Y,,G)| = Mg.

Then for every H € A, the limits

lim P(X,, ® Z/aZ ~ H) and le P(Y,®Z/aZ ~ H)

n—oo

exist, and they are equal.

This has the following consequence.

Theorem 5.4. Let p1,po,...,ps be distinct primes. Let X, and Y, be sequences of random
finitely generated abelian groups. Assume that for any finite abelian group G, we have a number
Mg < | A% G| such that

lim E|Sur(X,,G)| = Mg,

n—oo

and
lim E|Sur(Y,,G)| = Mg.
n—00

Let X, ; (resp. Yy;) be the p;-Sylow subgroup of X, (resp. Yy). Fori=1,2,...,s, let G; be a
finite abelian p;-group. Then the limits

S S S S
nh_}rgoIP’ (@ Xni~ @ Gi> and nh_{rgolF’ (@ Yo~ @ Gi>
i=1 =1 =1 =1
exist, and they are equal.
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Proof. Let ag be the exponent of the group @; ; Gi. Let a = ag - [[;_;pi;. Observe that
D; | Xn; ~ B;_, G if and only if X,, ® Z/aZ ~ @;_, G;. Thus, the previous theorem gives
the statement. O

The next theorem gives two special cases which are of particular interest for us.

Theorem 5.5. Let p1,ps,...,ps be distinct primes. Let Iy, be sequence of random finitely gen-
erated abelian groups. Let I'y, ; be the p;-Sylow subgroup of I'y,.

1. Assume that for any finite abelian group V, we have

lim E|Sur(T'y,V)| =1.

n—oo
Fori=1,2,...,s, let G; be a finite abelian p;-group. Then
S

lim P <é Ly é@) =1 |1 Aut(G) ﬁ(l -p7)
i=1 i=1 Jj=1

i=1
2. Assume that for any finite abelian group V', we have
lim E|Sur(T,, V)| =|A?V]|.
n—oo
Fori=1,2,...,s, let G; be a finite abelian p;-group. Then

i e (r.=e) -
=1 =1

s

H {¢ : G; x G; — C* symmetric, bilinear, perfect}| ﬁ(l Y
Gl Aut(G)| =

i=1

Proof. The first part follows from the previous theorem and [60, Lemma 3.2] with the choice of
u = 0. Or alternatively, we can use the results of [24, Section 8|. The second part follows from
the previous theorem and [18, Theorem 2 and Theorem 11]. See also the proof of Corollary 9.2
in [58]. O

Combining the first statement of the previous theorem with Theorem 1.3, we obtain Theorem
1.1. The proofs of the corresponding statements about the sandpile group of H,, are postponed
to Section 7 and 8.
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6 A version of Theorem 1.5 with uniform convergence

We sate our results for the directed random graph model, but the arguments can be repeated

for the undirected model as well. We write A%d) in place of A,, to emphasize the dependence on

d. We start by a simple lemma.

Lemma 6.1. For a fited n and g € V™, we have

doo (Agzd)Qv Uq,d) <dwo (A(d_l)q, qudfl).

n

Proof. Take any r € R(q,d). Observe that for ¢’ ~ ¢, we have r — ¢’ € R(q,d — 1). Let ¢’ be a
uniform random element of S(q) independent from Aﬁld‘”, then

IP(ADg = ) — P(U,q = 7)| = [ER(AY Vg = r — ¢') — |R(q, d)| "]
<EP(AY Vg=r—q)—|R(g,d— 1)
S doo(A%dil)qa Uq,d*1)~

Note that here the expectations are over the random choice of ¢’. Since this is true for any
r € R(q,d), the statement follows. dJ

Using this we can deduce the following uniform version of Theorem 1.5.

Corollary 6.2. We have
lim su E doo (A ,U =0. O
n dzlgqe . OO( n q q,d)

This also implies a uniform version of Corollary 5.1. Therefore, the limits in Theorem 1.3 are
uniform in d. Consequently, Theorem 1.1 remains true if we allow d to vary with n.

7 Sum of matching matrices: Modifications of the proofs

A fixed point free permutation of order 2 is called a matching permutation. The permutation
matrix of a matching permutation is called matching matrix. Then C), = My + My + - -- + My,
where My, Mo, ..., My are independent uniform random n x n matching matrices.

Consider a vector ¢ = (q1,q2, ..., qn) € V™. For a matching permutation 7 of the set {1,2,...,n}
the vector ¢, = (q,r(l), qr(2)s -+ » q,r(n)) is called a matching permutation of ¢. A random matching
permutation of ¢ is defined as the random variable ¢, where 7 is chosen uniformly from the set
of all matching permutations.

A (g, 1, h)-tuple is a 14 h-tuple Q = (¢(9, ¢, ... ¢), where ¢(© = g and ¢M,¢®, ... ¢™ are
matching permutations of ¢. A random (g, 1, h)-tuple is a tuple Q = (cj(o), g, ... (j(h)), where

h)

79 = g and gV, g?, ..., g™ are independent random matching permutations of ¢. Similarly
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as before, a (g, 1,h)-tuple can be viewed as a vector @ = (Q1,Qa,...,Q,) in (V") For
t € VIt we define

mq(t) ={i | Qi=t}].

In this section the components of a vector t € V" are indexed from 0 to h,
that is, t = (to,t1,...,t,). For t € V1" we define ts, = S°I | t;. The sum %(Q) of a (g, 1, h)-
tuple @ is defined as 3(Q) = Z?Zl ¢, Note that the sums above do not include ¢y and ¢(?.

We define
M3 (q,7) = {mg| Qs a (g,1,h)-tuple such that X(Q) = r}.

A (q,1, h)-tuple @ is y-typical if HmQ — |V|+M1Hoo <n’.
For two vectors ¢g,7 € V™ and a,b € V', we define

mgr(a,b) = |{i| ¢ =aand r; =0b}|.

The vector r is called (g, §)-typical if

]IH <nP.

qu,r -
oo

With these notations, we have the following analogue of Theorem 2.3.

Theorem 7.1. For any fixed finite abelian group V and h > 2, we have

oRanks (V) A2V
P(Cflh)q = 7")/ ( |V|”|1 | -1 =0.

lim sup
n—00 qeV"™  a—typical
reR5(g,h)  (¢,8)—typical

Proof. The proof is analogous with the proof of Theorem 2.3. We need to replace the notion of
(g, h)-tuple with the notion of (g, 1, h)-tuple, the notion of S-typical vector with the notion of
(g, B)-typical vector. Moreover, some of the statements should be slightly changed. Now we list
the modified statements.

We start by determining the size of R%(q, h).
Lemma 7.2. Let ¢ € V" such that MinCy =V, then

s — 14
[R%(q,h)| = oRankx (V)| A2 V|

Proof. We define the homomorphism ¢ : V" — (V ® V) x V by setting

p(r) =(<q@r>,5(r))
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for every » € V". We claim that it is surjective. First, take any a,b € V. The condition
MinC, = V implies that ¢1 — ¢n,q2 — qn,-..,qn—1 — @ generate V. In particular, there are

integers ¢y, ¢, ..., C,_1 such that a = Z?:_f ci(q1 — qn). Let us define
n—1
r = (Clb, cob, ..., ch1b, — Z Cib) evn
=1
Then

n—1 n—1 n—1
<qer>=) Gi®ch+a® (—qu) = <Zci(Qi_Qn)> @b=a@b,

i=1 i=1 i=1
and s(r) = 0, that is, p(r) = (a®b,0). Thus, V@ V x {0} is contained in the range of ¢.

Now take any (z,v) € (V ® V) x V. Clearly, we can pick an r; € V" such that s(r;) = v.
Then from the previous paragraph, there is an r9 such that ¢(rq) = (z— < ¢ ® r; >,0). Then
©(r1 +72) = (2,v). This proves that ¢ is indeed surjective. Since R%(q,h) = ¢~ ' (Iz x {h-s(q)}),

we have

L]
RS = ’ vin

- |V|n—1
- 2Rank2(v)| A2 V"

O

Lemma 7.3 (The analogue of Lemma 3.1). Consider q,r € V". Let m € M®(q,7). Then m is

a nonnegative integral vector with the following properties.

m(1o =a and 7, = b) =m(19 = b and 7, = a) Vie{l,2,...,h}, a,bevV, (7.1)

m(1o = a and 7>, = b) = my,(a,b) Va,be V. (7.2)
Moreover,
m(to = ¢ and 7; = ¢) is even Vie{l,2,...,h}, ceV. (7.3)

Now assume that m is a nonnegative integral vector satisfying the conditions above. Then

X

_ n! —h [lopev m(0 = a, 75 = b)!
P(3(Q) =1 and mg = m) = (2n/2(n/2)!) : ﬁtevih m(t)E!

h
m(r; = a, 7 = a)!
=a,7; = b)! . (74
<Hv grtr=an=a/2(m(r; = 4,7 —a>/2>!> [ vmmo=am=ot)|. 4

a#beV
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In particular, P((3(Q) = r) A (mg = m)) > 0 som € M5(q,7). Let AS(q,r) be the affine
subspace given by the linear equations (7.1) and (7.2) above. Then M?®(q,r) is the set of non-
negative integral points of the affine subspace A°(q,r) satisfying the parity constraints in (7.3)
above.

Proof. We only give the proof of Equation (7.4), since all the other statements of the lemma are
straightforward to prove. The number of (g, 1, h)-tuples @ such that ¥(Q) = r and mg =m is

Ha,bev m(1o = a, 7> = b)!
MocyrramiD)]

Fix any (¢,1,h)-tuple Q = (¢, ¢, ..., ¢™) such that £(Q) = r and mg = m. Now, we
calculate the probability that P(Q = Q) for a random (g, 1, h)-tuple Q. Fori € {1,2,...,h} and
a,b eV, we define

Lay={j€{1,2,....n} | q](.i) — a and qj(ﬂ) — b}

First, for ¢ = 1,2,...,h, we determine the number of matching permutations 7 such that
¢» = ¢@. In other words, we are interested in the number of perfect matchings M on the
set {1,2,...,n} such that

1. For every a € V, the restriction of M to the set I; ,, is a perfect matching.
2. For every unordered pair {a,b} C V, where a # b, the restriction of M gives a perfect
matching between the disjoint set I; 5, and I; 4, 4.
Since |1 g,a| = m(1; = a, 70 = a), we have

m(1; = a,790 = a)!
am(ri=an0=a)/2(m(7; = a, 70 = a)/2)!

perfect matchings on the set I; ¢ 4.
For every unordered pair {a,b} C V, where a # b, let
Nifab) = m(r; =a,70 =b) =m(r; = b, 70 = a)

be the common size of I; 4 and I; 3 ,. Then there are

ni,{a,b}! = \/m(TZ =a,7) = b)' . \/m(TZ =a, g = b)'

perfect matchings between I; 5 and I;p .. We choose to express n; (451! as above, because this

way we get a symmetric expression.
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Since the total number perfect matchings is Wﬁz/z)" we obtain that for a uniform random

matching matrix M, we have

, n! -t
r(ota =) = (Gt )

m(r; = a, 70 = a)! —
8 <H am(ri=am0=a)/2(m(7; = a, 7 = a)/2)!> II Vmim=am=0b)

acV a#beV

From this, Equation (7.4) follows easily. O

Lemma 7.4 (The analogue of Lemma 3.2). For any q,r1,m2 € V", we define the vector v =
y1t+h
Vgrirs € R by

t _ mq9r2 (to’tz) B mq,’l‘l (t07t2)
U( ) - H/'|h,—1

for every t € VIt Then we have

As(qa Tl) + Vqri,r9 = AS(Q7 TQ). ]

Lemma 7.5 (The analogue of Lemma 3.4). Assume that n is large enough. For an a-typical
vector ¢ € V™ and r € R(q, h), the affine subspace A®(q,r) contains an integral vector satisfying
the parity constraints in (7.3) of Lemma 7.3.

To prove Lemma 7.5 we need a few lemmas. The group V has a decomposition V = @le < >
such that o1]oa| - - - |og, where o; is order of v;.

Lemma 7.6. Let ¢ € V™ be such that mg(v;) > 0 for every 1 < i < . Let r € V" such that
< q®r >€ Iy. Then there is a symmetric matriz A over Z such that r = Aq and all the diagonal
entries of A are even.

Proof. We express qr as qp = Zle qr(i)v;, and similarly we express 7 as
T = Zle ri(i)vi, where qi(i),r7,(i) € Z. The condition that < ¢ ® r >€ Iy is equivalent
to the following. For 1 < i < j < ¢, we have

n

qu(i)rk(j) = qu(j)rk(i) (mod o0;) (7.5)
k=1

k=1
and whenever o; is even, we have

n

Z qr(1)rK(7) is even. (7.6)

k=1
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Due to symmetries and the fact that mg(v;) > 0 for every 1 < ¢ < ¢, we may assume that ¢; = v;
for 1 <i < ¢. We define the symmetric matrix A = (a;j) by

ri(J) for { <i<mand1<j<{,

r;(2) for1<i<fland ! <j<n,
aij =40 for{ <i<mnand ¢ <j<mn,

ri(f) +ri(0) = Xopy ar(G)re(i) for 1 <i<j <Y,

7i(3) +7i(i) = Dy ae(@)ri(j) for 1 <j<i <L

From Equation (7.5) we obtain that for 1 < j < i < ¢, we have
n
a;j = r;i(j) +r;(i) — Z qx(j)re(?) (mod oj).
k=1

In particular, a;jq; = ai;v; = (1i(3) +1;(0)v; — >y @(4)rk(i)v; for every 1 <4, < /.

Let w = Aq. We need to prove that w; = r; for every 1 < i < n. It is easy to see for ¢ > £. Now
assume that ¢ < ¢. Then

{ n 0 n
w; = Z Za”q](h)vh = Z a;pvp + Z ri(2)q;(h)vn
h=1 j=1 h=1 j=t+1
l n n
= rilh) +ra(i) =D ae(mrk(i) + D ri)gi(h) | v
h=1 k=1 j=t+1
l ¢ ¢
= (Tz(h) + T‘h(i) — qu(h)Tk(Z)> Vp = Zn(h)vh =T
h=1 k=1 h=1

Now we modify A slightly to achieve that all the diagonal entries are even. If i > ¢, then
a;; = 0 which is even. If 1 <4 < ¢ and o; is even, then a; = 2r;(i) — >_p_; qr(i)rx (), which is
even using the condition (7.6) above. If 1 < i < ¢, 0; is odd and a;; is odd, we replace a;; by
az + 0;, this way we can achieve that a;; is even, without changing Aq. To see this, observe that

0;q; = 0;V; = 0. O

For g,w € V™ and c € V, we define

Zgw(C) = Z w;.

1<i<n
qi=c

Note that < ¢ @ w >= 3 ¢ ® 2q.u(c)-

Lemma 7.7. Let ¢ € V" such that my(c) > 10|V |? for every c € V, and let z € VV'. Then there
is an matching permutation w of q such that z4., = z, if and only if

3" 2(e) = s(q) (7.7)
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and

Zc@z(c) € Ip. (7.8)

ceV

Proof. 1t is clear that the conditions are indeed necessary, so we only need to prove the other
direction. Since mgy(c) > 0 for all ¢ € V, we can find a wy such that zg.,, = 2. (Of course wy
is not necessarily a matching permutation of ¢.) Condition (7.8) gives us that < ¢ ® wg >€ Is.
Using Lemma 7.6, it follows that there is a symmetric matrix A = (a;;), such that Ag = wy and
all the diagonal entries of A are even. For a,b € V we define

mo(a, b) = Z Ajj-
1<i,j<n
gi=a, q;=b
Since A is symmetric and the diagonal entries are even, we have mg(a, b) = mg(b,a) and m(a, a)
is even for every a,b € V.

Let m = mg. Replace m(a,b) by m(a,b) — 2¢|V|, where ¢ is an integer chosen such that 0 <
m(a,b) — €2|V] < 2|V|. Now for every 0 # a € V, we do the following procedure. We find the
unique integer £ such that for

A =mg(a) =Y m(a,b) — £2|V],

beV

we have 0 < A < 2|V|. Now increase m(a,a) by £2|V|. (Note that ¢ is non-negative because
of the condition m,(a) > 10|V|2.) Increase both m(a,0) and m(0,a) by A. Finally, let Ay =
mg(0) — > ey m(0,b), and increase m(0,0) by Ag. (Once again Ag is non-negative because of
the condition mg(a) > 10|V|?.)

This way we achieved that for every a € V, we have », ., m(a,b) = mgy(a). It is clear that
m(a,b) is a non-negative integer and m(a,b) = m(b,a) for every a,b € V. Moreover, m(a,a) is
even for 0 # a € V. It is also true for a = 0, but this requires some explanation. Indeed, m(0,0)
can be expressed as

m(0,0) = Z m(a,b) — 2 Z m(a,b) — Z m(a,a)

a,beV {a,b} 0#acV
aFbeV
=n-—2 Z m(a,b) — Z m(a,a).
{a,b} 0#acV
a#beV

Here in the last row, every term is even, so m(0,0) is even too. From these observations, it
follows that there is an matching permutation w of ¢ such that my,, = m. We will prove that
2gw = %. Consider an 0 # a € V. Observe that m(a,b) = mg(a,b) modulo |V| for b # 0. Thus,

60



CEU eTD Collection

CHAPTER 2

Zgw(a) = Z w; = qu,w(a, b)b = Z mo(a,b)b = Z Z a;jb

1<i<n beV beVv beV  1<i,j<n
gi=a gi=a, q;=b
n
=> > agg; = > > aiigg= Y, woli) = Zgu,(a) = 2(a).
beV  1<i,j<n 1<i<n j=1 1<i<n
gi=a, q;j=b gi=a gi=a

Finally
2qw(0) = Z Zgw(a) — Z zgw(a) = Z‘Iz‘ - Z 2g,w(@)
acV 0#acV =1 0#acV
=s(g)— Y a)=) za)— D z(a)==20),
0#acV acV 0#acV
using condition (7.7). O

The proof of Lemma 3.4 also gives us the following statement.

Lemma 7.8. Let qi,q2,...,qn € V™ and r € V™. Assume that > | s(gi) = s(r). Then there is
an integral vector m indexed by V' such that®

m(7; = b) = mg,(b)
for everyi=1,2,...,h and b€V, and
m(rs = b) = m,(b)

or every b e V. O
J (1

Now we are ready to prove Lemma 7.5.

Proof. Fix an a-typical ¢, and r € R%(q, h). Let W be the set of 2 € V'V satisfying the conditions
(7.7) and (7.8) of Lemma 7.7. Observe that W is a coset of V. Moreover, r € R%(q, h) implies
that z,, € hW. Thus, we can find z1,29,...,2, € W such that z,, = Z?Zl zi. If n is large
enough, then for an a-typical ¢, we have my(c) > 10|V|2. By using Lemma 7.7, for each
i € {1,2,...,h} we can find a matching permutation w; of ¢ such that z,,, = z;. For a € V,
let wi € V™a(@) he the vector obtained from w; by projecting to the coordinates in the set
{i| ¢ = a}. Similarly, r* is obtained from r by projecting to the same set of coordinates.
Observe that 2?21 s(wf) = Z?:l zi(a) = zgr(a) = s(r*). Thus, from Lemma 7.8, we obtain an
integral vector m® indexed by V" such that

m(7i = b) = Mg (b) = mg,w;(a,0)

6Unlike in the rest of this section, here the components of a t € V" are indexed from 1 to h.
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for every i =1,2,...,hand b € V, and
m? (s = b) = mya(b) = mg,(a,b)
for every b e V.

Then the vector m defined by

m((to, 14,... ,th)) = mto((tl, R ,th))
gives us an integral point in A°(q,r) satisfying the parity constraints in (7.3) of Lemma 7.3. [

Lemma 7.9 (The analogue of Lemma 3.5). For an a-typical ¢ € V", a
(q, B)-typical r € RS(q, h), ro = ro(q) and m € M*(q,ro), we have that

P((2(Q) = r0) A (mg = m)) ~ P((X(Q) =7) A (mg = m + bgry.r))

uniformly.

Proof. For any a-typical ¢ € V™, (q, B)-typical r € R%(q, h) and m € M"*(q,r), we have

1 1 1
PX(Q) = randmg = m) ~ f(q)exp<2nB<m—|V|h+11l,m—|V‘h+l]l>>

uniformly, where f(q) is some function of ¢ and the bilinear form B(z,y) is defined as

Bla.y) = V[ S a(t)y( VTZ S a0 = a, 7 = b)y(ro = a,73 = )

teVith i=1 a,beV
+ V]2 Z (10 = a,7s = b)y(10 = a,7s = b).
a,beV
The statement follows from the fact that v ., , is in the radical of B. O

Lemma 7.10 (The analogue of Lemma 3.9 part (iv)). The following holds

lim sup P ((2(Q) =r) A (Q is not v — typical)) [V|* =0
n—0o0 qeV™  a—typical
reR5(q,h)  (¢,8)—typical

Proof. Take any a-typical ¢ € V™ and (q, 8)-typical r € R®(q, h). We define
S(g,r)={r" e V" mg =mg,}.

From symmetry, it follows that P ((£(Q) =r’) A (Q is not v — typical)) is the same for every
r" € S(q,r). Thus,

P(Q is not ~y — typical)
15(g, )]

P ((3(Q) =) A (Q is not y — typical)) <
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Since there is ¢ > 0 such that |S(g,7)| > |V"|exp(—cn?’~1), the statement follows as in the
proof of Lemma 3.12. OJ

This concludes the proof of Theorem 7.1.

The analogue of Theorem 2.2 is the following.

Theorem 7.11. For any fized finite abelian group V and d > 3, we have

lim |V|™ sup oo (C\Pq, USy) = 0.

n—oo qeV"™  a—typical

This theorem follows immediately from Theorem 7.1 once we prove the following analogue of
Lemma 3.13.

Lemma 7.12. Let ¢ € V" be a-typical, r € V", h > 2 and Q is a random (q, h)-tuple. Then
there is a polynomial g and a constant C (not depending on q and r), such that

P(5(Q) = r) < g(n)|V| ™" exp(Cn?* ™).

This will be proved after Lemma 7.15, because the proofs of these two lemmas share some ideas.

Once we have Theorem 7.11, we only need to control the non-typical vectors to obtain Theo-
rem 1.6. This can be done almost the same way as in Section 4. Here we list the necessary

modifications.

In the next few lemmas, our main tool will be the notion of Shannon entropy. Given a random
variable X taking values in a finite set R, its Shannon entropy H(X) is defined as

H(X)=Y -P(X =r)logP(X =7).
reR

In the rest of this discussion, we always assume that random variables have finite range, and all
the random variables are defined on the same probability space. If X1, Xo,..., X is a sequence
random variables, then their joint Shannon entropy H (X7, Xo, ..., X) is defined as the Shannon
entropy H(X) of the (vector valued) random variable X = (X1, Xo,..., X)). See [21] for more

information on Shannon entropy.

A few basic properties of Shannon entropy are given in the next lemma.

Lemma 7.13. Let X,Y, Z be three random variables. Then
H(X,Y) < H(X) + H(Y), (7.9)

and
H(X,Z)+H(Y,Z)>H(Z)+ HX,Y, Z). (7.10)
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Let X, Y be two random variables such that'Y is a function of X. Then

H(X,Y) = H(X).
Proof. Note that the quantity H(X,Z) + H(Y,Z) — H(Z) — H(X,Y, Z) is usually denoted by
I(X;Y|Z) and it is called conditional mutual information. It is well known that I(X;Y|Z) > 0.
See 21, (2.92)]. This proves Inequality (7.10). We can obtain Inequality (7.9) as a special case

of Inequality (7.10), if we we choose Z to be constant. The last statement is straightforward
from the definitions. O

Later we will need the following lemma.

Lemma 7.14. Ford > 1, let Yy, Y1,...,Yy be d+ 1 random variables. Then

d
H(Yo,Y1,...,Ya) <Y H(Yo,Y:) — (d = 1)H(Yp).
i=1

Proof. The statement can be proved by induction. Indeed, from Inequality (7.10), we have

H(Y'O,Yl,,Yd)‘i‘H(Yv(]) SH(Y'O7Y17"'7Yd71)+H(Y07Yd)~

Therefore,
H(}/(]ayia"'ayd) < H(}/Ovylv'-"yd—l) +H(%7Yd) _H(Yb>
d
<Y H(Yp,Y:) — (d— 1) H(Yp),
i=1
where in the last step we used the induction hypothesis. O

In Section 4, we used the fact that \S(q)HP’(A%d)q =r)=P(r - AT Vg ~ q). This equality is
replaced by the following lemma.

Lemma 7.15. Let q,r € V" and
m e M5(q,r) ={mg| Q is a (g, 1,d)-tuple and 2(Q) = 7}.

We define
E(m) = |5(q)|P(mg = m and £(Q) =),

where Q is random (q, 1, d)-tuple.

Moreover, let p(m) be the probability of the event that for a random (q,1,d — 1)-tuple Q =
(@, qD, ..., g% Y), we have that r — X(Q) is a matching permutation of q and the (q,1,d)-
tuple Q' = (70, qM), ..., 3%V r — 2(Q)) satisfies mgq = m. Then there is a polynomial f(n)
(not depending on q,r or m) such that

E(m) < f(n)p(m)77.
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Furthermore, there is a polynomial g(n) such that
1
S(9)[P(Cq=r) < g(n)P(r — C Vg ~ q)TT.

Proof. Let X = (Xo, X1, Xa,...,Xq) € V¥ be a random variable, such that P(X = t) = #

for every t € V'+4. We define Xy, = >>% | X;. Then

d
E(m) = c¢1(m) exp (n (H(Xg) +H(X)- H(X,Xy) — ;ZH(XO,XH)) ,
=1
and i
p(m) = ca(m) exp <n (H(X) — H(Xo, X5) — %ZH(XO, X))) :
=1

where Tln) < c1(m), ca(m) < b(n) for some polynomial b(n).

Since Xy = Xy —Zf;ll X; and Xy = Z;‘i:1 X, applying the last statement of Lemma 7.13 twice,
we get that

H(X)=(Xo,X1,...,Xq) = H X0, X1,..., X4, X5) (7.11)
= H(Xo, X1,...,X4-1,Xn).

Combining this with Lemma 7.14, we get that

H(X) H XOv"‘aXd*hXZ)
—1
< H(X(),XZ) + H(XO,XE) — (d — 1)H(X0>

1

IS

]

Or more generally, for every i = 1,2,...,d, we have

H(X) < Y H(Xo,X;) + H(Xo, X5) — (d — 1)H(Xo).
1<j<d
J#i

Summing up these inequalities for ¢ = 1,2,...,d — 1, we get that

(d—1)H(X)
d—1
< (d—2)Y  H(Xo,Xi)+ (d—1)H (X0, Xq) + (d — 1)H(Xo, Xz) — (d — 1)*H(Xo). (7.12)
i=1
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Note that Xg, Xi,..., Xy all have the same distribution, so H(Xy) = H(X1) = --- = H(Xy).
Combining this with Equation (7.11) and Inequality (7.9), we have

H(X) = H(X0, .y Xa_1, X5) (7.13)
i1
< H(Xo, Xs) + Y H(X;) = H(Xo, Xz) + (d — 1)H(Xo).
=1

Therefore,

d

H(Xo) + H(X) — H(Xo, X5) — % > H(Xo, X;)
-1

d—1
= H(Xo) + H(X) — H(Xo, Xx) — Z(C;—D;H(XO’Xi)
d—2 &4
( ZH(XO’Xi) + H(XOaXd)>

d—1
< H(Xo) + H(X) — H(Xo, X3) — 2(d1_1)ZH(XO>Xi)
=1

_ % (H(X)+ (d—1)H(Xp) — H(Xg, Xx))

d—1
- <H(X) — H(Xo, Xz) — % ZH(XO,X¢)>
i=1

23 h(x) — (X, X)) — 122

H(Xo)

d—1
1 1
1=
where at the first inequality, we used Inequality (7.12), and at the second inequality, we used
Inequality (7.13). This gives the first statement. To get the second one, observe that

S(@P(CPg=r)= > Em=< > F(n)p(m)@T

meM?S(q,r) meMS(q,r)

< M@ R - O~ g

Now we prove Lemma 7.12.

Proof. Clearly we may assume that h = 2. The size of M®(g,r) is polynomial in n, so it is
enough to prove that for a fixed m € M5(q,r), we have a good upper bound on P(X(Q) =
r and mg = m). To show this, let X = (Xo, X1, Xs) € V12 be a random variable, such that
P(X =t) = ") for every ¢t € V1+2, and let Xy, = X1 + Xo. Then P(X(Q) = r and mg = m)

n
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can be upper bounded by some polynomial multiple of

N———

exp <n <H(X) — H(Xo, Xz) — % (H(Xo, X1) + H(XO,XQ))>

= exp (n( — H(Xo) — 5 ((H(Xo, X2) + H(Xo, Xs) ~ H(X) ~ H(Xy)
+ (H(Xo, Xo) + H(Xo, Xs) ~ H(X) ~ H(X0)))))

< exp(—nH(Xo)) < |V| " exp(Cn2L),
using the fact that for i € {1,2}, we have

H(Xo, Xz) + H(Xo, Xg) > H(Xo) + H(Xo, XZ', XE) = H(Xo) + H(X),

which is a combination of Inequality (7.10) and the last statement of Lemma 7.13. O
For any non-negative integral vector m indexed by V'*+¢ and for i € {1,2,...,d}, we define
m(VHd)! Ha,beV m(TO =a, Ty = b)'
Eo(m) = — o | ’
[eey m(r0 = ¢)! [Licyrra m(?)!
and

m(Vi+d)l -
Ei(m) = <2m(vl+d)/2(m(vl+d)/2)!>

m(r; =a, 70 = a)! ——
X (H Qm(Ti:a,Toza)/Z(m(Ti =a,79 = CL)/Q)') H \/m(TO =a,T; = b)

aeV a#beV

Finally, let
d

E(m) = Eo(m) [ | Ei(m).

=1

Here we need to define (¢+ 3)! for an integer ¢. The simple definition (¢+ 3)! = £1v// +1 is good
enough for our purposes.

Recall that for ¢,7 € V™ and m € M®(q,r), we already defined E(m) as
E(m) = |S(q)|P(mg = m and £(Q) =),
where @ is a random (g, 1, d)-tuple.

Using Equation (7.4), it is straightforward to verify that for a special m like above, the two

definitions coincide.
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Given a ¢ € V", a (g,1, d)-tuple Q or mg itself will be called W-decent if for any u € Witd we

have
14+ mg(mo = uo, s = ux)

1+mg (u)

< log®n.

A non-negative integral vector m indexed by V!*? will be called W-half-decent if for every
u e Wt we have
1+ m(7o = up, s = ux)

< log*
1+ m(u) =08

and for every ¢ € W, we have
n
‘m(ro =c)— Wi < 2n%,
where n =), cy10a m(t).

Lemma 7.16 (The analogue of Lemma 4.8). For any coset W € Cos(V'), we have

lim sup Z 1S(¢)|P(2(Q) = r4) = limsup Z 1S(¢)|P(2(Q) = 14 and Q is W — decent).

Proof. As in the proof of Lemma 4.8, it is enough to show that
1S(q)[P(2(Q) = r4 and Q is not W — decent) < n~ (V1)
for every (W, C'log n)-typical vector ¢ € V™ if n is large enough.

Consider a (W, C'logn)-typical vector ¢ € V™, and let

Mp = {mg| Q@ is anot W-decent (g, 1,d)-tuple, such that 3(Q) = r,} C ./\/lS(q,rq).

Recall that for m € M%(q,r,), we defined p(m) as the probability of the event that for a random
(q,1,d — 1)-tuple Q = (g, ..., 3% V), we have that rq — 3(Q) is a matching permutation
of ¢ and the (g, 1, d)-tuple Q' = (7@, g™, ..., g4V, rq — 3(Q)) satisfies mgr = m.

Note that for m € M pg the event above is contained in the event that

there is a t € W t@=1Y and ¢ € dW such that
1+ |{i] 74(i) = cand ¢ = to}|

2
1+ ‘{7/‘ Tq(’i) = c and Q(l) _ t}’ > log“n.
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Let p'(q) be the probability of the latter event. As we just observed, p(m) < p'(q) for all
m € Mp. Using Lemma 7.15 and Lemma 10.3, we obtain

1S(q)|P(2(Q) = ry and Q is not W — decent) = Z E(m)
neMp

< 3 fm)p(m)T

neMp
< IMp|f()p (@) 7T < n~ (VD

for large enough n. O

Let
M = {mg | Qisa(q,1,d)-tuple for some n >0 and g € V"}.

Lemma 7.17 (The analogue of Lemma 4.9). There are finitely many vectors my, ma,...,my €
MS? | such that

MS = {C1m1 +como+---+cpmy | c1,c2,...,c0 are non-negative mtegers}.
Proof. We define
R = {(m7g) | m e va+d7 g e R{LZ-..,CI}XV} )

Consider the linear subspace R’ of R consisting of pairs (m,g) satisfying the following liner
equations:
m(1o =a and 7, = b) = m(179p = b and 7, = a)

for all a,b € V and i € {1,2,...,d}, moreover,
m(1o = c and 7, = ¢) = 2¢(i, ¢)
forallce V and i€ {1,2,...,d}.

Let My be the set of non-negative integral points of R’. Observe that My consists of the integral
points of a rational polyhedral cone. From [54, Theorem 16.4], we know that this cone is generated
by an integral Hilbert basis, i. e., there are finitely many vectors (m1, g1), (ma2, g2), ..., (Mg, g¢) €
My, such that

Mo ={c1-(m1,q1)+ - +ce-(mg,g0)] c1,c2,...,co are non-negative integers}.

Then the vectors mq, ma, ..., my € M have the required properties.

Note we only introduced the extra component g to enforce the parity constraints in (7.3). O

As before, we may assume that the indices in the lemma above are chosen such that there is
an h such that the supports of mi,ma,...,m; are contained in W'*¢ and the supports of

Mpt1, Mht2, ---, Mg are not contained in witd,
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Lemma 7.18 (The analogue of Lemma 4.12). Consider a non-negative integral W -half-decent
vector mg € RV such that Imollwe = m(t & W) = O(logn), where n = 3,100 m(t).
Foru e V1t let x, € RV be such that Yu(u) =1 and xu(t) =0 for every t #u € V1+d,

o Ifuc W' then E(mg + xu)/E(mg) = O (log4 n);
O, d ln
o Ifuo & W, then E(mo+ xu)/Elmo) = O (521 );

o Ifug € W and u & Wi, then E(mg + xu)/E(mo) = O (log®n) .

Proof. Let
. 1+ mo(To = Ug, Ty, = UE)
1 +m0(u) ’
1
h = nt , and
m(1y = ug) + 1

fi= \/1 + mo(T0 = uo, Ti = ;)
L n+1 ’

Lemma 7.19. .

E(mo + xu)/E(mq) = O(g - h- [ £)-

=1

Proof. 1t is straightforward to check that Eo(mo + xu)/Eo(mo) = g - h. Let
i€{1,2,...,d}. First assume that u; # ug, then
Vi)

Ei(mo + xu)/Ei(mo) = - /mo(Ti = ui, 70 = ug) + 1.

n+l (%)'

Recall that for any integer ¢ we defined (¢ + ) as ((+ 3)! = 01/ + 1. Thus, if n is even, then

i
2 /
(3)!
and if n is odd, then
%) In —I— 1
g |

Therefore, E;(mo + xu)/Ei(mo) = O(f;). In the case u; = ug = ¢, we have

VI () men=em=g+1 (PO
|

n+l (é) V2 (mol=e=atl)

Eo(mo + Xu)/Eo(mo) =

70



CEU eTD Collection

CHAPTER 2

A similar argument as above gives that E;(mo + xu)/Ei(mo) = O(f;) also holds in this case.
The statement follows from the fact that

d

E(mo + xu)/E(mo) = [ [ Ei(mo + xu)/Ei(mo).
1=0

O

If uw € W', then since mg is W-half-decent, we have g < log*n, h = O(1) and clearly f; < 1,
thus the statement follows.

If ug ¢ W, then g = O(logn), h = O(n), f; = O(k\’/gg), and the statement follows.

If up € W and u € W%, then we consider two cases:

1. If uy € dW, then g = O(n), h = O(1), moreover there are at least two indices ¢ such that

u; & W. For such an i, we have f; = O(I(\J%L), otherwise we have f; < 1, from these the

statement follows.

2. If uxy, & dW, then g = O(logn), h = O(1) and f; <1 for every i. The statement follows.

The previous lemma has the following consequence.

Lemma 7.20 (The analogue of Lemma 4.13). There are D,6 > 0, such that for any i €
{h+1,h+2,...,¢} and any non-negative integral W -half-decent vector mgy € ]RVHd, such that
lmollyye = O(logn), we have

E(mo +m;)/E(mo) = O <<n5 log? n)”millwc> .

Proof. Take any i € {h + 1,h + 2,...,}.  Since m; is not supported on W+,
we have a uw ¢ WY such that my(u) > 1. If wy ¢ W, then
mi(1o € W) > m;(19 = ug) > 1. If ug € W, then there is a j such that u; ¢ W, thus

mi(To Q W) 2 mi(T() = u]‘,Tj = UO) = mi(T[) = UO,Tj = uj) Z mz(u) Z 1.

In both cases, we obtained that m;(mo ¢ W) > 1. Note that for d > 3, we have d/2 — 1 > 0.
From the previous statements and Lemma 7.20, it follows that for a large enough D and a small

enough § > 0, we have

E(mo +m;)/E(mg) = O ((1ogD n)Imillwe nf(d/fzfl)) _0 <<n5 log? n) llmillwc> ‘
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With these modifications above, we proved Theorem 1.6.

As an easy consequence of Theorem 1.6 we obtain following analogue of Corollary 5.1. The
random (n —1) x (n— 1) matrix CJ, is obtained from C,, by deleting its last row and last column.
Recall ¢ € V™! the subgroup generated by qi,q,...,¢n—1 is denoted by Gg. Let U(f be a

uniform random element of the set
{w e GZ‘1| <q@w >€ I},

Corollary 7.21. We have
. ! Sy
lim > duo(Chg,UY) = 0. O
qevn—l

Note that for ¢ € V"~ ! such that G, = V, if r € V" ! and < ¢®r >€ I then ]P’(Uf =r)=
N 2 A . erefore, eorem 1.4 can be proved using the following observation.
V|~(n—lgRanke (V)| A2V/| Therefore, Th l.4canb d using the following ob i

Lemma 7.22. If d is even, then < q ® dq >€ Iy for every ¢ € V™" L. If d is odd, then
< q®dq >€ Iy if and only if s(q) is an element of the subgroup V' = {2v|v € V'}. The subgroup
V' has index 28a0k2(V) i O

For odd d, Theorem 1.2 follows from Theorem 1.4 and Theorem 5.5 part (2).

8 The 2-Sylow subgroup in the case of even d

Assume that d is even. Let A, be the reduced Laplacian of H,, and I'), be the corresponding
sandpile group. Theorem 1.4 provides us the limit of the surjective V-moments of I';,. However,
these moments grow too fast, so Theorem 5.3 can not be applied to get the existence of a limit
distribution. We can overcome this difficulty by using that I';, has a special property given in
the next lemma.

Lemma 8.1. The group ',y ® Z/27 has odd rank.
Given any integral matrix M, let M be its mod 2 reduction. That is, M is a matrix over the 2
element field, where an entry is 1 if and only if the corresponding entry of M is odd.
Proposition 8.2. Let M be a integral m x m matrixz. Then

Rank(cok(M) ® Z/27Z) = dimker M = m — Rank(M).
Proof. 1t is straightforward to verify the statement if M is diagonal. If M is not diagonal, then
M can be written as M = ADB, where D is diagonal, and A, B € GL,,,(Z). This is the so-called

Smith normal form. The statement follows from the fact that dimker M = dimker ADB =
dimker A- D - B = dimker D, and cok M = cok ADB = cok D. OJ
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Proof. (Lemma 8.1) Observe that A, is a symmetric matrix, where all the diagonal entries are
0. Such a matrix alway has even rank. See for example [44, Theorem 3|. Recall that A,, is
an (n — 1) x (n — 1) matrix, where n is even. Thus, the statement follows from the previous

proposition. O

In the first part of this section, we prove a modified version of Theorem 5.3, which allows us to
make use of the fact that I';, ® Z/27Z has odd rank. For most of the proof we can follow the
original argument of Wood [58] almost word by word with only small modifications. A few proofs
are omitted, since they are almost identical to the proofs of Wood [58]. The interested reader
can find them in the Appendix of the paper [48].

We start by giving a few definitions. A partition A of length m is a sequence Ay > Ao > -+ >
Am > 1 of positive integers. It will be a convenient notation to also define \; = 0 for ¢ > m. The
transpose partition A’ of A is defined by setting )\;- to be the number of A; that are at least j.
Thus, the length of X' is A\;. Recall that any finite abelian p-group G is isomorphic to

m
Dz/rz
=1

for some partition A\ of length m. We call A the type of the group G. In fact, this provides
a bijection between the set of isomorphism classes of finite abelian p-groups and the set of
partitions.

Lemma 8.3.

1. Given a positive integer m, and b € Z™ such that by is odd, by > by > --- > b,,, we have

an entire analytic function in the m variables z1, ..., zm
_ d d
Hpop(z)= ) Ady,..dm 21 "
di,....dm >0
da++dm <b1

and a constant E such that
Ay ,....dp < po—bidi—di(di+1)

Further, if f is a partition of length < m such that f > b (in the lexicographic ordering), fi
is odd, then Hy,op(21, 2002 ofit-+fm)y = . If f = b, then
H, - b(2f172f1+f27 L 72}”1-i-"--~-fm) £ 0.

2. Given a positive integer m, a prime p > 2,7 and b € Z™ with by > by > --- > by,, we have

an entire analytic function in the m variables zq1, ..., zm
d d
Hppp(2)= ) Adyodn 1 2
di,...,dm >0

"In fact, this statement is also true for p = 2, but we will not use this.
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and a constant E such that

_ _dy(d1+1)
ady...d,, < Ep~1d 2.

Further, if f is a partition of length < m and f > b (in the lexicographic ordering), then
Hyppp(p, pl 2 plitotdm) = 00 If f = b, then Hy,pp(pht,pl 12, phttidmy o
0.

Proof. See the Appendix of [48] for the proof. O

In the original proof of Wood [58], the prime 2 was not handled separately. That is, the functions
given in part (2) of Lemma 8.3 were used for all primes. Let us restrict our attention to random
groups G where G ® Z/2Z has odd rank. Then, for the prime 2, we can use the functions given
in part (1) of Lemma 8.3 instead of the ones given in part (2), and still proceed with the proof,
as we show in the next lemmas. Note that part (1) provides better bounds for the coefficients.

This allows us to handle faster growing moments.

Theorem 8.4. Let 2 = pq,...,ps be distinct primes. Let mq,...,mgs > 1 be integers.

Let M be the set of partitions A at most m; parts. Let M = szl M;. Forp € M, we write W for
its jth entry, which is a partition consisting of non-negative integers ,ug with u{ > ug > ...uﬁnj.
Let

My={peM | ulisodd}.

Suppose we have non-negative reals x,,y,, for each tuple of partitions p € My. Further suppose
that we have non-negative reals C) for each A € M such that

Jxd—
A (A -1)

s
Cy < 2)\% H ijiji 2 ,
j=1

where F' > 0 is an absolute constant. Suppose that for all A € M,

> f[pjz” Ml > f[iji G eN (8.1)

peMo  j=1 weEMoy  j=1

Then for all p € My, we have that x, = y,.

Proof. See the Appendix of [48] for the proof. O]
Lemma 8.5. There is a constant F', such that for any finite abelian p-group G of type A\, we
have
N\ —1)
S e s

G1 subgroup of G
Moreover, if G finite abelian 2-group G of type A\, we have
S gRaka(G)] A2 G| < PUNHE
Gy subgroup of G
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Proof. The first statement is the same as [58, Lemma 7.5].2> The second statement follows
from first by using the elementary fact that for any subgroup G; of G, we have Ranks(G1) <
Ranks(G) = M. O

Lemma 8.6. ([58, Lemma 7.1]) Let G,, and G be two finite abelian p-groups of type p and A.
Then
| Hom (G, Gy)| = pi ki,

Theorem 8.7. Let X,, be a sequence of random wvariables taking values in finitely generated
abelian groups. Let a be an even positive integer and A be the set of (isomorphism classes of)
abelian groups with exponent dividing a. Assume that Rank(X,, ® Z/2Z) is odd with probability
1 for every n. Suppose that for every G € A, we have

lim E|Sur(X,,G)| = 2Rk A2 q),
n—o0
Then for every H € A, the limit lim,,_,oo P(X,, ® Z/aZ ~ H) exists, and for all G € A, we have

> lim P(X, ® Z/aZ ~ H)|Sur(H, G)| = 282 A2 G|,
n—oo
HeA

Suppose Y, is a sequence of random variables taking values in finitely generated abelian groups
such that Rank(Y,, ® Z/27) is odd with probability 1 for every n, and for every G € A, we have

lim E|Sur(Y,, Q)| = 2Rank2(@)] A2 g,
n—oo
Then, we have that for every every H € A

li_)rn P(X,®Z/aZ ~ H) = li_)m P(Y, ®Z/aZ ~ H).
Proof. See the Appendix of [48] for the proof. O

In the rest of the section we find a sequence of random groups, such that they have same limiting
surjective moments as the sequence of sandpile groups of H,. The nice algebraic properties
of these groups allow us to give an explicit formula for their limiting distribution. Then the
previous theorem can be used to conclude that the sandpile group of H, has the same limiting
distribution.

We start by showing that Lemma 7.6 is true under slightly weaker conditions.

Lemma 8.8. Assume that n > 2|V|. Let ¢ € V" be such that Gy = V. Let r € V" such that
< q®r >€ Iy. Then there is a symmetric matriz A over Z such that r = Aq and all the diagonal
entries of A are even.

Proof. We start by the following lemma. As in Lemma 7.6, let V = @le < v >.

8In the latest arxiv version of this paper this is Lemma 7.4
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Lemma 8.9. There is an invertible integral matriz B, such that B™' is integral, and ¢’ = Bq
satisfies that mg (v;) > 0 for every 1 < i < L.

Proof. Using the condition n > 2|V| and G, = V, we can choose n — ¢ components of ¢ such
that they generate V. Due to symmetry we may assume that gey1,qeio, ..., qn generates V. Let
us define ¢’ = (vi,v2, ..., 00, qe+1,Qe12, - - -, qn). We define the integral matrix B = (b;;) by

for1 <i=j<n,
for 1 <j<i<n,
for ¢ <1< j<n,
forl <i<j<U/{.

o O o

We still have not defined b;; for 1 < i < /¢ and ¢ < j < n. Since 41, qr+2; - - -, qn generates V
we can choose these entries such that Bqg = ¢/. Since B is an upper triangular integral matrix
such that each diagonal entry is 1, it is invertible and the inverse is an integral matrix. O

Let B the matrix provided by the lemma above. Set ¢ = Bg and r’ = (B_l)T r. Observe that
<qd ®1r >=<Bq® (B_I)TT >=< B_qu Rr>=<qr >€ I.

Applying Lemma 7.6, we obtain a symmetric integral matrix A" with even diagonal entries such
that ' = A’¢’. Consider A = BTA’B. Then A is a a symmetric integral matrix with even
diagonal entries. Moreover,

Aq=BTA'Bg=BTA¢ =BT =BT (B ) r=r

O

Lemma 8.10. Let V be a finite abelian 2-group. Assume that 2F is divisible by the exponent of
V. Let A,, be uniformly chosen from the set of symmetric matrices in M, (Z/2FZ), such that all
the diagonal entries are even. Then we have

lim El{g € V"] Gq=V, Anq=0}= gRanka(V)| A2 /7

Proof. Take any ¢ € V" such that G, = V. Let N,, be the set of symmetric matrices with even
diagonal entries in M, (Z/2*7Z). The distribution of A,q is the uniform distribution on the image
of the N,, — V™ homomorphism C' +— Cq. From Lemma 8.8 one can see that if n is large enough
then this image is {r € V"| < ¢ ® r >€ I}, which has size |V|" (2Rank2(v)| N2 V|)_1. It is clear
that 0 is always contained in the image, thus P(A,q = 0) = |[V|~"2Rak2(V)| A2 /|, Thus

lim E|{g€ V"] Gy=V. Awq=0}=
2Rank2(V)’ A2 V‘

g =2 eI YL

lim Bl{g e V"| G,=V}
Ul
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Let Zs be the ring of 2-adic integers. Recall the fact that Zs is the inverse limit of Z/2*Z. Thus

combining the lemma above with the analogue of Proposition 2.1, we get the following.

Lemma 8.11. Let Symmg(n) be the set of n x n symmetric matrices over Zs, such that all
diagonal entries are even. Let Q, be a Haar-uniform element of Symmg(n). For any finite

abelian 2-group V, we have

li_>m E| Sur(cok(Qy), V)| = 28k (V)| A2 V|,

Moreover, if Q,, € M,(Z/2Z) is obtained by reducing each entry of Q, modulo 2, then Q,, is
a symmetric matriz with 0 as its diagonal entries. Consequently, Rank(cok(Q,)) = n modulo

2. O

The next lemma gives an explicit formula for the limiting distribution of cok(@Q,,). The author
is grateful to Melanie Wood who proved this result for him.

Lemma 8.12. (Wood [59]) For any finite abelian 2-group G of odd rank, we have

Jim  P(cok(Qn) ~ G) =

n is odd

2Rank

@) {¢ : G x G — C* symmetric, bilinear, perfect }| ﬁ(l _ 921y
Gl Aut(G)] 1 |

Proof. Assume that G = @le(Z/QeiZ)"i where e; > ey > -+ > e, > 0.

We consider Z5 as a Zy module. Let L, (G) be the set of submodules M of Z§ such that Z3 /M
is isomorphic to G.

P(cok(Qn) ~ G) = P(RowSpace(Qr) € L,(G)) = Z P(RowSpace(Qr) = M).
MeLy(G)

Let u, be the Haar probability measure on Symmg(n). Fix M € L,(G). We are interested in
the probability

P(RowSpace(Qr) = M) = p,({S € Symmg(n)| RowSpace(S) = M}).
Fix any (not necessary symmetric) n x n matrix N over Z, such that RowSpace(/N) = M.
Observe that
{S € Symmg(n)| RowSpace(S) = M} = {CN| CN € Symmg(n),C € GL,(Z2)}.

Since Zj is a principal ideal domain N has a Smith normal form, that is, we can find A, B ¢
GL,(Z2) such that D = ANDB is a diagonal matrix. Since each nonzero element of Zs can
written as 2%, where d is a nonnegative integer, u is a unit in Z,, we may assume each entry of
D is of the form 2¢ for some d. But since Z3/ RowSpace(D) ~ Z% / RowSpace(N) ~ G, we know

77



CEU eTD Collection

THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

exactly what is D. Let ngy; =n — Zle n;, and eg+1 = 0. From now on it will be convenient
to view n X n matrices as (k+ 1) x (k+ 1) block matrices, where the block at the position (i, )

k1 where all the off-diagonal blocks are

is an n; x n; matrix. Then D is a block matrix (Dj;); 71—,

zero and D;; = 2%1.

Observe that map S — BTSB is an automorphism of the abelian group Symmg(n). Thus, it
pushes forward p, to py,, which gives us

un({CN| CN € Symmy(n),C € GL,(Z2)})
= un({BY"CNB| BTCNB € Symmg(n),C € GL,(Z3)})
= un({BTCAT'ANB| BTCA'ANB € Symmg(n),C € GL,(Z3)})
= u,({BTCA™'D| BTCA™'D € Symmg(n),C € GL,(Z2)})
= pun({FD| FD € Symmg(n), F' € GLn(Z2)}).

We consider F' = (Flj)fj:ll as (k+ 1) x (k4 1) block matrix as it was described above. Then
FD e Symm(n) if and only if for every i < j, we have

Fyj=24"%F] (8.2)

and the diagonal entries of Fj11 k41 are even. Assuming that F' has these properties, when does
F belong to GL,,(Z3)? Observe that F € GL,(Zz) if and only if the mod 2 reduction F of F is
invertible, but Equation (8.2) tells us F is a block lower triangular matrix, so F' € GL,(Z2) if
and only if F;; € GLy,(Z2) for each i.

From this it follows that {F'D| FD € Symmy(n),F € GL,(Z3)} consists of all block matrices
H € Symmg(n), such that

1. For 1 <4,5 <k + 1 all entries of the block H;; is divisible by gmax(eie;)

2. For 1 <1¢ < k+ 1 the mod 2 reduction of the matrix 27 H;; is an invertible symmetric
matrix over Fo. Moreover, if ¢ = k + 1, then all its diagonal entries are zero.

Let p,, be the probability that a uniform random symmetric m X m matrix over F9 is invertible,
and let p/, be the probability that a uniform random symmetric m xm matrix over [y is invertible

and all its diagonal entries are zero.

P(RowSpace(Q,) = M) = u,({FD| FD € Symmg(n), F € GL,(Z2)})

k ) )
= 2np;zk+1 Hpmgei(ni(n*Z;':l nj)Jr(nZ;rl)).
i=1
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In particular, this does not depend on the choice of M € L,,(G). Thus, we obtain that

P(COk(Qn) ~ G) — | ‘annm_l Hmeez n;(n— nj)+(n1'2+1))‘

Now let @), be a Haar-uniform n x n symmetric matrix over Zy. A very similar calculation as

above gives that

k
ARLZAN TL 'L+1
P(cok(Q) = G) = |Lu(Q) P,y [ [ pas 26 (0= ma)+(757),
=1

Therefore,
P(cok(Qn) ~ G) _ anélkﬂ — nHlP%kH (8.3)
P(COk(Ql ) = G) pnkJrl pnkJrl
2nk+1p/
2Rank(G) Mk+1 2Rank(G)

The last equality follows from the results of MacWilliams [44]. Note that here we needed to
use that n and Rank(G) are both odd, therefore ny; is even. As we already mentioned in the
Introduction in line (1.3) by the result of [18|, we have

{¢: G x G — C* symmetric, bilinear, perfect}| T3 ~2j-1
lim P(cok o~ = j—
Combining this with line (8.3) above, we get the statement. O

Now we can prove the remaining part of Theorem 1.2

Proof. (Theorem 1.2 for even d)
Let pfi be the exponent of G;.

Let Q1 be a Haar-uniform element of the the set of (2n — 1) x (2n — 1) symmetric matrices
over Zs, where all the diagonal entries are even. For ¢ > 1, let @, ; be a Haar-uniform element
of the the set of (2n — 1) x (2n — 1) symmetric matrices over Zp,. All the choices are made
independently. Let Q,; € Mo, 1(Z/pll+1Z) be the mod pk i1 reduction of Qni-

Let « = TJ[i_ 1pl’+1 Let X, be the sandpile group I's, of Ho,. Let
Y, = @;_; cok(Qn,i). Let V be a finite abelian group with exponent dividing a. Then, from

Theorem 1.4, we have
lim E|Sur(X,,V)| = 2Rk A2y,
m—ro0

Let V; be the p;-Sylow subgroup of V. From Lemma 8.10, we have

lim E| Sur(cok(Qn 1), V1)| = 2Ranke (V1) A2 1.

n—oo
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For ¢ > 1, from [18, Theorem 11|, we have

lim E|Sur(cok(Qn1), V1) = | A2 V.

n—o0

It is also clear that .

| Sur(Y,,, V)| = [ ] | Sur(cok(Qn), Vi)l

=1

Thus, from the independence of (), ;, we get that
nh_)ngO E|Sur(Y,, V)| = 1:[1n11_>H()10 E| Sur(cok(Qn.i), Vi)|

S
— 2Rank2(V1) H ’ /\2 ‘/Z‘ — 2Rank2(V)‘ /\2 V’
=1

From Lemma 8.12 and [18, Theorem 2|, we have

lim P(Y, ®Z/aZN@G = hm H]P’cok Qn,i) ~G;) =

n—00
=1

s

oRank(Gh) H [{¢ : G; x G; — C* symmetric, bilinear, perfect }| 1 H P2y
|Gil[ Aut(Gi)|

i=1

Note that @;_, I'n; ~ @;_, G if and only if X,,®Z/aZ ~ P;_, G;. Note that both Ranks(X,®
Z/2Z) and Ranko (Y, ® Z/27Z) are odd. Therefore, Theorem 8.7 can be applied to finish the
proof. O

9 The sublinear growth of rank

In this section we prove Theorem 1.9. Let I'), be the sandpile group of H,. We start by a simple
lemma. Recall that Ranky,(tors(I',)) is the rank of the p-Sylow subgroup of tors(I';,).

Lemma 9.1. There is a constant cq such that |tors(I'y)| < ¢lj. Consequently, for any prime p,

we have
nlogcy

logp

Rank, (tors(I',)) <

Proof. Let vy, vo, ..., v = n be a subset of the vertices of H,,, such that each connected component
of H, contains exactly one of them. (With high probability ¥ = 1.) Let Ay be the matrix
obtained from the Laplacian by deleting the rows and columns corresponding to the vertices
v1,02,...,0k. Observe that tors(I',,) = |det Ag|. Each row of Ay has Euclidean norm at most
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cqa = V2d?. Thus, tors(T',,) = |det Ag| < ¢ ¥ < ¢ from Hadamard’s inequality [12]. The proof
of the second statement is stralghtforward from this. O
The lemma above will be used for large primes, for small primes we will use the next lemma.

Lemma 9.2. For every prime p, there is a constant Cp, such that for any n and € > 0, we have

P(Rank(I'y, ® Z/pZ) > en) < Cpp™ "

Proof. Tt is an easy consequence of Corollary 7.21 and Proposition 2.1 that

lim E|Hom(T,, ® Z/pZ,Z/pZ)|

n—o0

exists. This implies that there is a constant C}, such that
E|Hom(T', ® Z/pZ, Z/pZ)| < Cp
for any n. Note that |I',, ® Z/pZ| = |Hom(I',, ® Z/pZ,Z/pZ)|. Thus, from Markov’s inequality

P(Rank(T',, ® Z/pZ) > en) = P(|I',, ® Z/pZ| > p"*) < p="E|T',, ® Z/pZ)|
=p "E[Hom(I', ® Z/pZ, Z/pZ)| < Cpp™™"

O

Now we are ready to prove Theorem 1.9. Take any ¢ > 0. Set K = exp(e 'logcy). Let
{p1,p2,...,ps} be the set of primes that are at most K. Using Lemma 9.2, we get that

P(Rank(I';, ® Z/p;Z) > en for some i € {1,2,...,s}) < ZC D

Since Y 7, 7, Cp,p; <" is convergent, the Borel-Cantelli lemma gives us the following. With
probability 1 there is an N such that for every n > N and

i =1,2,...,s, we have Rank(T';, ® Z/p;,Z) < en. By the choice of K and Lemma 9.1, for a
prime p > K, we have Rank,(tors(I',)) < en. Write I, as T';, = Z/ x tors(T',). Then for n > N,

we have

Rank(T',) = f+ max Rank,(tors(T',))

p is a prime
< Rank(I';, ® Z/2Z) + max Ranky(tors(I'y)) < en+en.

p is a prime

Tending to 0 with €, we get the statement.
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10 Bounding the probabilities of non-typical events

At several points of the chapter we need to bound the probability of that something is not-typical.
These estimates are all based on the following lemma.

Lemma 10.1. Given 0 < a,b < n, let A and B be a uniform independent random subset of
{1,2,...,n} such that |A| = a and |B| =b. Then for any k > 0, we have

2 2
]P’(‘]AQB] — ab' > k) < 2exp <—2k> < 2exp (—%) .
n a n

Proof. Note that AN B has the same distribution as Zf-”:l X;, where X1, X5..., X, is a random
sample drawn without replacement from an n element multiset, where 1 has multiplicity b and
0 has multiplicity n — b. Then the statement follows from [8, Proposition 1.2]. O

Applying this iteratively we get the following lemma.

Lemma 10.2. Given 0 < ai,a9,...,aq < n, let Ay, Ao, ..., Ag be uniform independent random
subsets of {1,2,...,n} such that |A;| = a; fori=1,2,...,d. Then we have
ai

'
cata- oo (- 2).

Proof. The proof is by induction. For d = 2, it is true as Lemma 10.1 shows. Now we prove for

d
AN N A —n 2
n

=1

2 (d- Wf) < 2(d ~ 1)exp (_%2)

d. By induction

IP< 2(d—2)k> < 2(d — 2) exp (-2]“2>

Using Lemma 10.1 for A1 N ... A;z_1 and Ay and the fact that |[A; N ... A43_1| < a1, we have

2
> k> < 2exp (—%) .
al

Thus, with probability at least 1 —2(d — 1) exp (—%), we have that

d—1
’Alﬂ...Ad,ﬂ —TLH&
n

=1

|A1 n---N Ad,1|ad
n

P<‘|A1ﬂ...Ad’—

‘Al NN Ag_1]ag
n

<k

‘|Alﬂ...Ad|—

and for

d—1
a:
A=|A1N...A;1|— -
| 1 dl’ ngn7
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the inequality |A| < (d — 2)k holds. Therefore,

d
i AiN---NAG 1| — A
|A1ﬂ...ﬂAd|_nH% Z‘IAlﬁ'--ﬂAd|—ad(‘ 1 . d—1] )‘
i=1
AN NA; A
S’\A1ﬁmﬁAd|—ad’ 1ﬂnﬂ d1+ad7|1’
<k+(d—2)k < (d—1)k. 0

Next we give the analogue of Lemma 10.1 for uniform random perfect matchings.

Lemma 10.3. Assume that n 1is even. Let A and B be two fized subsets of
{1,2,...,n}, let |A| = a and |B| = b. Let M be uniform random perfect matching on the
set {1,2,...,n}. Let X be the number of elements in A that are paired with an element in B in
the matching M. Then for any k > 0, we have

2 2
IF’( ab 24/~c> < 6exp (—Qk> < 6exp <—2k) .
n a n

Proof. Observe that the uniform random matching M can be generated as follows. First we
partition the set {1,2,...,n} into two disjoint subsets H; and Hs of size § uniformly at random.
Then we consider a uniform random perfect matching between H; and Hy. For i € {1,2}, let
a; = |AN H;|, and let b; = |B N H;|. Let X; be the number of element in AN H; that are paired
with an element in B. From Lemma 10.1, we have

2 2
P <‘a1 — g‘ > k:) < 2exp <—k) ,
2 a
2
P <‘X1 _Zaba) k) < 2exp (_%) ,
n ay

2 2k?
P (‘Xg — a201 > k‘> < 2exp <k) .
n az

It follows from the union bound that with probability at least 1 — 6 exp ( 2k ) we have that

2a1b 2a9b
‘a1—§ <k, ’X _ 2]k and ‘XQ— @ k.
On this event
b b
=] -2) (-
SXI_Lb? x,-
n n
2 2 2
S Xl— a1b2 albg_@ X2_a2b1 a2b1_a7b1
n n 2n n n
2b
<o Py - 94 22y -8 < ik
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Applying this iteratively, we can get a lemma similar to Lemma 10.2.
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We extend Lyons’s tree entropy theorem to general determinantal measures. As a byproduct
we show that the sofic entropy of an invariant determinantal measure does not depend on the
chosen sofic approximation.

1 Introduction

Let P = (pi;) be an orthogonal projection matrix, where rows and columns are both indexed
with a finite set V. Then there is a unique probability measure np on the subsets of V' such that
for every F' C V we have

np({B’F C BC V}) = det(pij)i,jeF-

The measure 7p is called the determinantal measure corresponding to P [42]. Let BY be a
random subset of V with distribution np. In this chapter we investigate the asymptotic behavior
of the Shannon-entropy of BY defined as

H(B")=>" —P(B” = A)logP(B" = A).
ACV

Let Py, P,, ... be a sequence of orthogonal projection matrices. Assume that rows and columns of
P, are both indexed with the finite set V,,. Let GG,, be a graph on the vertex set V,,. Throughout
the chapter we assume that the degrees of graphs are at most D for some fixed finite D.
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Our main theorem is the following.

Theorem. Assume that the sequence of pairs (Gy, P,) is Benjamini-Schramm convergent and
tight. Then
H(B»
tim 1)
n—oo ’Vn‘

exists.

Note that this theorem will be restated in a slightly more general and precise form as Theorem
2.5 in the next section. We will also give a formula for the limit.

We define Benjamini-Schramm convergence of (G, P,) along the lines of [10] and [4] via the
following local sampling procedure. Fix any positive integer r, this will be our radius of sight. For
a vertex o € V,, let B,(Gp,0) be the r-neighborhood of o in the graph G,,, and let M, ,, be the
submatrix of P, determined by rows and columns with indeces in B,(G,0). Then the outcome
of the local sampling at o is the pair (B, (G, 0), My ). Of course, we are only interested in the
outcome up to rooted isomorphism. Now if we pick o as a uniform random element of V,,, we
get a probability measure fi,, , on the set of isomorphism classes of pairs (H, M), where H is a
rooted r-neighborhood and M is a matrix where rows and columns are indexed with the vertices
of H. We say that the sequence (G, P,) converges if for any fixed r the measures j, , converge
weakly as n tends to infinity. See the next section for more details including the description of
the limit object.

To define the notion of tightness, we introduce a measure v, on NU {oo} for each pair (G, Py,)
as follows. Given k € NU {oco} we set

vn({k}) = |Vn’71 Z ]Pn(u,U)P,
u,vEVn,
dn(u,v)=k

where d,, is the graph metric on V,, = V(G,,). Then the sequence (G, P,) is tight if the family
of measures v, is tight, that is, for each € > 0 we have a finite R such that

vn {R+1,R+2,...} U{o0}) <e

for all n. Tightness makes sure that the local sampling procedure from the previous paragraph
detects most of the significant matrix entries for large enough r.

Note that a related convergence notion of operators was introduced by Lyons and Thom [43].
We expect that their notion is slightly stronger, but were unable to clarify this.

The idea of the proof of the main theorem is the following. Consider a uniform random ordering
of V;,. Then using the chain rule for conditional entropy we can write H(B"") as the sum of
|V5.| conditional entropies. We show that in the limit we can control these conditional entropies.
This method in the context of local convergence first appeared in [15].
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Now we describe a special case of our theorem. Consider a finite connected graph G, and
consider the uniform measure on the set of spanning trees of G. This measure turns out to
be a determinantal measure, the corresponding projection matrix Py (G) is called the transfer-
current matrix [17]. Since this is a uniform measure, the Shannon-entropy is simply log7(G),
where 7(G) is the number of spanning trees in G. A theorem of Lyons [41] states that if Gy, is a
Benjamini-Schramm convergent sequence of finite connected graphs then

i 108 7(Gn)
oo |V(Gn)

exists. This theorem now follows from our results, because it is easy to see that the sequence
(L(Gr), Px(Gp)) is convergent and tight in our sense, where L(G,,) is the line graph of G,,. See
Section 7. Note that we need to take the line graph of GG, because the uniform spanning tree
measure is defined on the edges of G,, rather than the vertices of GG,,. We also obtain a formula
for the limit which is different from Lyons’s original formula. However, in practice it seems easier
to evaluate Lyons’s original formula.

Another application comes from ergodic theory. Let I' be a finitely generated countable group,
and let T be an invariant positive contraction on £2(I"). Here a linear operator is called a positive
contraction if it is positive semidefinite and has operator norm at most 1. Invariance means that

for any v, 91,92 € I' we have

(Tg1,92) = (T(v'91),7 " g2)-

Note that here we identify elements of I' with their characteristic vectors. Then the determinantal
measure g corresponding to T’ gives us an invariant measure on {0,1}'. Note that there is a
natural graph structure on I'. Namely, we can fix a finite generating set S, and consider the
corresponding Cayley-graph Cay(T",.S). When I" belongs to the class of sofic groups, one can
define the so-called sofic entropy of this invariant measure [3]. This is done by first considering
an approximation of Cay(T",.S) by a sequence of finite graphs G,,, and then investigating how we
can model p7 on these finite graphs. In general it is not known whether sofic entropy depends on
the chosen approximating sequence G, or not, apart from certain trivial examples. However, in
our special case, our results allow us to give a formula for the sofic entropy, which only depends
on the measure g, but not on the finite approximations. This shows that in this case the sofic
entropy does not depend on the chosen sofic approximation.

Observe that in our main theorem the graphs G, do not play any role in the definition of the
random subsets B or the Shannon entropy H(B'™), they are only there to help us define our
convergence notion. This suggests that there might be a notion of convergence of orthogonal
projection matrices without any additional graph structure such that the normalized Shannon
entropy of B is continuous.

Structure of the chapter. In Section 2 we explain the basic definitions and state our results.
In Section 3 we investigate what happens if we condition a Benjamini-Schramm convergence
sequence of determinantal measures in a Benjamini-Schramm convergent way. In Sections 4,
5 and 6 we prove the theorems stated in Section 2. In Section 7 we explain the connections
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of our results and Lyons’s tree entropy theorem. The proof of a technical lemma about the

measurability of the polar decomposition is given in the Appendix.

2 Definitions and statements of the results

2.1 The space of rooted graphs and sofic groups

Fix a degree bound D. A rooted graph is a pair (G, 0) where G is a (possibly infinite) connected
graph with degrees at most D, o € V(G) is a distinguished vertex of G called the root. Given two
rooted graphs (G, 01) and (Ga, 02) their distance is defined to be the infimum over all € > 0 such
that for r = [e7!| there is a root preserving graph isomorphism from B,(G1,01) to B.(Ga,02).
Let G be the set of isomorphism classes of rooted graphs. With the above defined distance G is a
compact metric space. Therefore, the set of probability measures P(G) endowed with the weak™
topology is also compact. A sequence of random rooted graphs (G,,0,) Benjamini-Schramm
converges to the random rooted graph (G, o), if their distributions converge in P(G). Given any
finite graph G, we can turn it into a random rooted graph U(G) = (G,,0) by considering a
uniform random vertex o of G and its connected component G,. A sequence of finite graphs
G, Benjamini-Schramm converges to the random rooted graph (G, o) if the sequence U(Gy,)
Benjamini-Schramm converges to (G, o).

Let S be a finite set, an S-labeled Schreier graph is a graph where each edge is oriented and
labeled with an element from S, moreover for every vertex v of the graph and every s € S there
is exactly one edge labeled with s entering v and there is exactly one edge labeled with s leaving
v. For example, if ' is a group with generating set S, then its Cayley-graph Cay(T",S) is an
S-labeled Schreier-graph. The notion of Benjamini-Schramm convergence can be extended to the
class of S-labeled Schreier-graphs with the modification that graph isomorphisms are required
to respect the orientation and labeling of the edges. Let I' be a finitely generated group. Fix a
finite generating set S, and consider the Cayley-graph Gr = Cay(I', S). Let er be the identity
of I'. We say that I' is sofic if there is a sequence of finite S-labeled Schreier-graphs G, such

that G, Benjamini-Schramm converges to (G, er).

2.2 The space of rooted graph-operators

Fix a degree bound D, and let K be a non-empty finite set.

A rooted graph-operator (RGO) is a triple (G, 0,T), where (G,o0) is a rooted graph and 7T is a
bounded operator on 2(V(G) x K). In this chapter we will use real Hilbert spaces, but the
results can be generalized to the complex case as well. Note that to prove our main theorem it
suffices to only consider the case |K| = 1. The usefulness of allowing |K| > 1 will be only clear

in Section 5, where we extend our results to positive contractions.

Given two RGOs (G1,01,T1) and (G2, 02, T3) their distance d((G1,01,T1), (G2, 02,T2)) is defined
as the infimum over all € > 0 such that for » = |¢~!| there is a root preserving graph isomorphism
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Y from B,.(G1,01) to B,(Ga,02) with the property that

(Ti(v, k), (V' K)) — (Ta(p(v), k), ("), k)] <& (2.1)

for every v,v’" € V(B,(G1,01)) and k, k" € K. Here we identified elements of V(G;) x K with
their characteristic vectors in £2(V(G;) x K).

Two RGOs (G1, 01,T1) and (G2, 02, T3) are called isomorphic if their distance is 0, or equivalently
if there is a root preserving graph isomorphism ¢ from (G1,01) to (Gg, 02) such that

(T1(v, k), (v', ) = (T2(¥(v), k), (¥ (v"), K))

for every v,v" € V(G1) and k, k' € K. Let RGO be the set of isomorphism classes of RGOs. For
any 0 < B < oo, we define

RGO(B) = {(G,0,T) € RGO| |T| < B}.

One can prove that RGO(B) is a compact metric space with the above defined distance d. Let
P(RGO(B)) be the set of probability measures on RGO(B) endowed with the weak™ topology,
this is again a compact space. Often it will be more convenient to consider an element P(RGO)

as a random RGO.

A RGO (G,o0,T) is called a rooted graph-positive-contraction (RGPC) if T is a self-adjoint positive
operator with norm at most 1. Then the set RGPC of isomorphism classes of RGPCs is a compact
metric space. Therefore, P(RGPC) with the weak™ topology is compact.

We need a slight generalization of the notion of RGO. An h-decorated RGO is a tuple
(G, 0, T, AN A@) A(h)), where G, 0 and T are like above, AV, A®@) A" are subsets of

V(G) x K. Given two h-decorated RGOs G1,01,T1,A(1),A(2),...,A(h) and
1 1 1
(GQ,OQ,TQ,Agl),Agz),...,Agh)) their distance is defined as the infimum over all ¢ > 0 such

that for r = |71 there is a root preserving graph isomorphism 1 from B,.(G1,01) to B,(G2, 02)
satisfying the property given in (2.1), and for i = 1,2,..., h we have

AV N (BA(Gr,01) x K)) = AY 01 (By(Ga, 02) x K),

where (v, k) = (¥ (v), k).

Two h-decorated RGOs (G, 01,11, Agl), e ,Agh)) and (Gg, 09, T3, Agl), e ,Aéh)) are called iso-
morphic if their distance is 0. Let RGO}, be the set of isomorphism classes of h-decorated RGOs.
We also define RGO, (B) and RGPCj, the same way as their non-decorated versions were de-
fined. With the above defined distance they are compact metric spaces. Similarly as before,
P(RGOL(B)) and P(RGPCy,), endowed with the weak* topology, are compact spaces. When-
ever the value of h is clear from the context, we omit it and simply use the term "decorated

RGO".
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A finite graph-positive-contraction is a pair (G,T), where G is finite graph with degrees at most
D, and T is a positive contraction on £2(V(G) x K). It can be turned into a random RGPC

U(Gv T) = (Goa 0, To)
by choosing o as a uniform random vertex of G.

Note that all the definitions above depend on the choice of the finite set K. In most of the
chapter we can keep K as fixed. Whenever we need to emphasize the specific choice of K, we
will refer to K as the support set of RGOs. Unless stated otherwise the support set is always
assumed to be K. Let L C K and let (G,0,T) be a RGO with support set K. Let P, be the
orthogonal projection from ¢2(V(G) x K) to (2(V(G) x L) C £*(V(G) x K). We define the
operator restr,(T) on (2(V(G) x L) as resty(T) = P.T le2(v(@yxr)- So (G,o,restr(T)) is an
RGO with support set L.

Sometimes we need to consider more than one operator on a rooted graph. A double RGO will
mean a tuple (G, o0,T1,T») where (G,0) is a rooted graph and T3, T are bounded operators on
2(V(G) x K). We omit the details how the set of isomorphism classes of double RGOs can be
turned into a metric space. It is also clear what we mean by a decorated double RGO, or a triple
RGO, or a double RGPC.

2.3 Determinantal processes

Let E be a countable set, and T be a positive contraction of ¢2(E). Then there is a random
subset BT of E with the property that for each finite subset F of E we have

P[F C BY] = det((Tz,y))zyer,

where we identify an element x € E with its characteristic vector in ¢2(E). The distribution
of BT is uniquely determined by these constraints, and it is called the determinantal measure
corresponding to T' [42].

Using the definition of the random subset B, we can define a map 7 : RGPC — P(RGPCy)
by 7(G,0,T) = (G,0,T,BT). This induces a map 7. : P(RGPC) — P(P(RGPC;)). Taking
expectation we get the map Er, : P(RGPC) — P(RGPC;). So given a random RGPC (G,0,T)
the meaning of (G,o0,T, BT) is ambiguous. Unless stated otherwise (G, 0,7, BT) will mean a
random decorated RGPC, i.e., its distribution is an element of P(RGPCy).

Proposition 2.1. The maps 7,7« and E7, are continuous.

2.4 Trace and spectral measure

Given a random RGO (G, o0,T) we define

Tr(G,0,T) =E > (T(0,k), (0, k)).
keK
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We extend the definition to the decorated case in the obvious way.

Given a random RGPC (G, 0, T) its spectral measure is the unique measure p1 = pi(q 0,1y on [0, 1]
with the property that, for any integer n > 0 we have

1
Tr(G,0,T") = / x"dp.
0
Note that u([0,1]) = |K|. Also if T is a projection with probability 1, then we have
w="Tr(G,o0,T)01 + (| K| — Tr(G,0,T))do.

If (G,T) is a finite graph-positive-contraction, then the spectral measure of U(G,T) can be

obtained as
1 [V(G)x K|

Ve & ™

where A1, Ag, ..., Ay (@)« K| are the eigenvalues of T" with multiplicity.

2.5 An equivalent characterization of tightness

We already defined the notion of tightness in the Introduction. Here we repeat the definition
in a slightly more general setting. For a finite graph-positive-contraction (G,T) we define the
measure () on NU {oo} by setting

V(G,T)({t}) = |V(G)‘_1 Z |<T(U1, kl), (UZ, k‘g))’Q,
(v1,k1),(v2,k2)EV(G)X K
dc;(’u1,1)2):t

for all t € NU {oco}. A sequence (Gy,T),) of finite graph-positive-contractions is tight if the
family of measures v(q,, 1, is tight, that is, for each € > 0 we have a finite R such that

Vnt) {R+1LR+2,...}U{oo}) <e

for all n. The next lemma gives an equivalent characterization of tightness.

Lemma 2.2. Let (G, P,) be a Benjamini-Schramm convergent sequence of finite graph-positive-
contractions with limit (G,0,T). Assume that Py, Py, ... are orthogonal projections. Then the
following are equivalent

i) The sequence (G, P,) is tight.

i) The limit T is an orthogonal projection with probability 1 and v(q, p,)({o00}) = 0 for every
n.

Proof. )= ii): Recall the following well-known result.
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Proposition 2.3. Let E be a countable set, and let T be a positive contraction on (2(E). Then
for all e € E we have (T?e,e) < (Te,e). Moreover, if for all e € E we have (T?e,e) = (Te,e),
then T is an orthogonal projection.

Let (Hp,0n,Ty,) = U(Gy, P,,). Then
V(Gn:Pn)(N U{oo}) = |V(Gn)|_1 Te(P,Pn) = |V(Gn)|_1 Tr(P,) = Tr(Hy, 0p, Tn)-
Combining this with the definition of tightness we get that for any € > 0 we have an R such that

B > (T (0n, k), (v, K)) |2 > Tr(H,, 00, T) — € (2.2)

k€K (v,k")eBRr(Hn,on) XK
for every n.
Using the convergence of (H,,on,T,) we get that

lim Tr(H,,on,,T,) = Tr(G,o0,T),

n—oo
and

ImEY Y [(Tlon k). K)P=EY. Y [Tk K)P

k€K (v,k')EBR(Hn,on)xK k€K (v,k')EBR(G,0)x K

Combining these with inequality (2.2) we get that

WGoT)=EY Y [(T(ok), (0. k)

kEK (v,k')EV (G)x K

>EY > (T(0, k), (v, k)]? > Tr(G,0,T) —e.

kEK (v,k')e€BR(G,0)x K

Tending to 0 with € we get that
Tr(G,0,T%) > Tr(G,0,T).

Combining this with the first statement of Proposition 2.3 we get that with probability 1 we have
(T?%(0,k), (0,k)) = (T(0,k), (0,k)) for every k € K. But then it follows from the unimodularity
of (G,0,T) that with probability 1 we have (T?(v, k), (v,k)) = (T'(v, k), (v, k)) for any (v, k) €
V(G) x K. See |4, Lemma 2.3 (Everything Shows at the Root)| and Section 3. Then Proposition
2.3 gives us that T is a projection with probability 1. From the definition of tightness it is clear
that v, ({oc0}) = 0 for every n.

ii)= i): Pick any ¢ > 0. From the monotone convergence theorem and the fact that 7" is a
projection with probability 1, we have
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Tr(G,0,T) = Te(G,0,T%) =E ) > (T(0, k), (v, k"))

keEK (v,k")eV(G)xK

= lim E) > (T (0, k), (v, )%

R—o00
keEK (v,k")€EBR(G,0)x K

Thus, if we choose a large enough Ry, then we have

(G,0T)~EY 3 (T (o0, k), (vk)>\2<§.

kEK (v,k')€BR, (G,0)xK

Then from the convergence of (H,,, 0,,T,) we get that there is an N such that if n > N we have

YGap)({Ro+1, Ry +2,... } U {oc}) =
TI'(Hn,On, Tn) —E Z Z |<Tn(0na k,)’ (U, k/)>|2

k€K (v,k")EBRy(Hn,on)x K

Using the condition that v(g, p,)({c0}) = 0 for all n and the definition of v(g, p,) We get
that the support of the measure v(¢, p,) is contained in {0,1,...,|V(Gy)|}. Thus, the choice
R = max(Ry, |V (G1)],|V(G2)|,-..,|V(Gn)]) is good for e. O

2.6 Sofic entropy

Let C be a finite set and let I" be a finitely generated group. Let f be a random coloring of
[' with C, that is a random element of CT. (The measurable structure of CT' comes from the
product topology on C'.) Given a coloring f € C! and v € T' we define the coloring f, by
f+(g) = f(y'g) for all g € T'. This notation extends to random colorings in the obvious way.
A random coloring f is invariant if for every v € I' the distribution of f, is the same as the
distribution of f.

Now assume that I' is a finitely generated sofic group, and f is an invariant random coloring of
I'. Let S be a finite generating set, and let G1, G, ... be a sequence of S-labeled Schreier-graphs
Benjamini-Schramm converging to the Cayley-graph Gr = Cay(I', S). Now we define the so
called sofic entropy of f. There are many slightly different versions of this notion [16, 5], we
will follow Abért and Weiss [3]. Let G be a finite S-labeled Schreier graph and g be a random
coloring of V(G). Given € > 0 and a positive integer r, we say that g is an (e, ) approximation
of f on the graph G, if there are at least (1 — )|V (G)| vertices v € V(G), such that B,(G,v)
is isomorphic to B,(Gr,er), moreover dry(f | B.(Gr,er),g | B-(G,v)) < €, where dry is the
total variational distance, and it is meant that we identify B,(Gr,er) and B,(G,v). Let us
define
H(g)

V(G|

H(G,e,r) = sup{ ’ g is an (e,7) approximation of f on G} .
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Here H(g) is the Shannon-entropy of g. Let H(e,r) be the supremum of H(G,e,r), over all
finite S-labeled Schreier graphs G. We define two versions of sofic entropy. The first one

h(f) = inflimsup H (G, &, 7).
&7 n—oo
Note that this might depend on the chosen sofic approximation. Another option is to define sofic

entropy as
B'(f) = inf H(e,r).

e,r

Observe that h'(f) > h(f). It is open whether h'(f) = h(f) for any sofic approximation apart
from trivial counterexamples. We can also express these quantities as

h(f) = inf limsup H(Gy,, ¢, |e1]) and B'(f) = ilng(&, le71)).

€ n—oo

The quantities h(f) and h/(f) are isomorphism invariants in the abstract ergodic theoretic sense.

Remark. Sofic entropy can be defined in a more general setting. Namely, let ) be a locally finite
vertex transitive graph. Let o be any vertex of it. Assume that (@, 0) is a Benjamini-Schramm
limit of finite graphs. Let f be a random coloring of V(Q) with C' such that the distribution of
f is invariant under all automorphisms of ). We would like to define the sofic entropy of f the
same way as above. The only problematic point is that in the definition of (e, r)-approximation
we need to identify B,(G,v) with B,(Q,0). But B,(Q, 0) might have non-trivial automorphisms,
in which case there are more than one possible identifications and it is not clear which we should
choose. If all the automorphisms B, (Q, 0) can be extended to an automorphism of @), then we can
choose any identification, because they all give the same total variation distance. But if B,(Q, 0)
has other automorphisms then things get more complicated. However, one can overcome these
difficulties and get a sensible notion of sofic entropy [3|. Here we do not give the details, we just
mention that Theorem 2.6 stated in the next subsection can be extended to this more general
setting.

2.7 Our main theorems

Let E be a countable set, and T be a positive contraction on ¢2(E). Let ¢ be a [0, 1] labeling of
E. For e € E let I(e) be the indicator of the event that e € BT. For e € E we define

h(e,c,T) = H(I(e){I(f)|c(f) < cle)}).
Here, H is the conditional entropy, that is, with the notation
g(x) = —xlogz — (1 — x)log(l — z),

we have

H(I(e){I(f)le(f) < cle)}) = Eg(BI(e){I(f)le(f) < c(e)}])-
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Moreover, we define

h(e,T) = Eh(e,c,T),
where ¢ is an i.i.d. uniform [0, 1] labeling of E.

For a random RGPC (G, 0,T') we define

h(G,0,T)=E Y h((o,k),T).
keK

If L C K and (G, T) is a finite graph-positive-contraction we define hr(G,T) to be the Shannon
entropy of BT N (V(G) x L).

Theorem 2.4. Let (G, P,) be a sequence of finite graph-positive-contractions, such that
limy, 00 U(Gyp, Py) = (G, 0, P) for some random RGPC (G,o,P). Assume that Py, Ps,... are
orthogonal projections, and P is an orthogonal projection with probability 1. Let L C K. Then

hp(Gn, Py
lim 7L(G )

n—oo |V (Gy)| = h(G, 0, rest(P)).

Using Lemma 2.2 we immediately get the following theorem.

Theorem 2.5. Let (G, P,) be a tight sequence of finite graph-positive-contractions, such that
lim,, 00 U(Gyp, P) = (G, 0, P) for some random RGPC (G,o0,P). Assume that Py, Py, ... are
orthogonal projections. Let L C K. Then

ny Pn
lim 7hL(G )

niee V(G = h(G, o,restr(P)).

Let I be a finitely generated sofic group. A positive contraction T on ¢2(I'x K) is called invariant,
if for any v, 91,92 € I' and k1, k2 € K we have

(T(91,91), (92, k2)) = (T(v g1, k1), (v ' g2, k2)).

For an invariant positive contraction if we regard the random subset B” as a random coloring
with {0, 1}K , we see that BT is an invariant coloring. Thus we can speak about its sofic entropy.

As before let S be a finite generating set of T, let ep be the identity of I', and Gp = Cay(T, S)
be the Cayley-graph of T'.

Theorem 2.6. Let I' be a finitely generated sofic group. If T is an invariant positive contraction
on (2(T' x K) then we have
h(BT) = 1'(B") = h(Gr,er,T)

for any sofic approximation of T'.
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Note that we can easily generalize the definition of h to any invariant random coloring f. It is
known that even in this more general setting h is an upper bound on the sofic entropy. However,

h is not an isomorphism invariant in the ergodic theoretic sense. See [55].

The random ordering idea above was used by Borgs, Chayes, Kahn and Lovasz [15] to give the
growth of the partition function and entropy of certain Gibbs measures at high temperature on
Benjamini-Schramm convergent graph sequences. See also [6].

2.8 An example: Why tightness is necessary?

We consider two connected graphs H; and Hy. Let H; be the complete graph on 4 vertices,
and let Hy be the graph that is obtained from a star with 3 edges by doubling each edge. Both
have 4 vertices and 6 edges. Let T; be a uniform random spanning tree of H;, and let P; be
the corresponding 6 x 6 transfer-current matrix. It is straightforward to check that for any
e € E(H;) we have P(e € T;) = 3. Thus, in both P and P all the diagonal entries are equal
to 3. Now let G; be the empty graph on the vertex set E(H;). Then the pairs (G, P;) and
(Ga, P,) are indistinguishable by local sampling, that is, U(G1, P1) and U(Ga, P») have the same
distribution. On the other hand H; has 16 spanning trees, and Hy has only 8 spanning trees.
So |V(G1)|"YH(B™) # |V(G2)|" H(B*2). This shows that the condition of tightness can not
be omitted in Theorem 2.5. One could think that this only works, because the graphs G; and
G are not connected. But Theorem 2.5 still fails without the assumption of tightness, even if
we assume that all the graphs are connected. We sketch the main idea. Let ¢ € {1,2}. For
each n we consider a block diagonal matrix B; ,, where we have n diagonal blocks each of which
equal to P;. Then we take a connected graph G;, on Vi, (the set of columns of B;,) in such
a way that if two columns are in the same block, then they must be at least at distance d(n)
in the graph G;, for some d(n) tending to infinity. Moreover, we can choose G;, such that
the sequences (G1,) and (Ga,,) have the same Benjamini-Schramm limit (G, 0). Then both of
the sequences (G1y,B1,) and (G2, B2yn) have the same limit, namely, (G, o, %I) But their
asymptotic entropies are different.

3 Unimodularity and conditional determinantal processes

3.1 Unimodularity

We define bi-rooted graph-operators as tuples (G, o0,0',T), where G is a connected graph with
degree bound D, 0,0’ € V(G) and T is a bounded operator on ¢?(V(G) x K). Let biRGO be
the set of isomorphism classes of bi-rooted graph-operators. We omit the details how to endow
this space with a measurable structure. A random RGO (G, 0,T) is called unimodular, if for any

non-negative measurable function f : biRGO — R we have

E Z f(G,0,0,T)=E Z f(G,v,0,T).

veV(G) veV(Q)
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The next lemma gives some examples of unimodular random RGOs. The proof goes like the one
given in [10].
Lemma 3.1. If (G,T) is a finite graph-positive-contraction, then U(G,T) is unimodular. The

limit of unimodular random RGOs is unimodular.

Of course the notion of unimodularity can be extended to double/triple (decorated) RGOs. We
will use the following consequence of unimodularity.

Lemma 3.2. Let (G,0,T,S) be a unimodular random double RGO. Assume that there is a finite
B such that ||T||, ||S|| < B with probability 1. Then

Tr(G,0,TS) = Tr(G, 0, ST).
Proof. The proof is the same as in [4, Section 5]. O

It has the following consequences.

Lemma 3.3. In the following statements we always assume that P and P; are all orthogonal

projections with probability 1.
1. Let (G,o0, Py, Py,U) be a unimodular random triple RGO, such that with probability 1 we
have U [ ker P, =0 and U | Im Py is an isomorphism between Im Py and Im P,. Then

Tr(G, 0, P1) = Tr(G, 0, Pa).

2. Let (G,o0,P1, P, T) be a unimodular random triple RGO, such that with probability 1 we
have ImT P, = Im Py and T is injective on Im Py. Then

’I‘I‘(G>O> Pl) = ﬁ(Ga 0, P2)

3. (rank-nullity theorem) Let (G,o0, P, Py, P2, T) be a unimodular random quadruple RGO,
such that with probability 1 we have that Py is the orthogonal projection to ker(T | Im P)
and Py is the orthogonal projection to Im(T | Im P). Then

Tr(G, o0, P) = Tr(G, 0, P1) + Tr(G, 0, P,).

Proof. To prove part 1 observe that P, U*U = P; and UP,U* = P,. Note that all operators have
norm at most 1, so from Lemma 3.2

Tr(G, o0, P1) = Tr(G, 0, (PLU*)U) = Tr(G, 0, U(PU)) = Tr(G, 0, Ps).

To prove part 2 let TPy = UH be the unique polar decomposition of TPy, then (G, o, P, Py, UP)
satisfies the conditions in part 1, so the statement follows. The rather technical details why the

97



CEU eTD Collection

LIMITING ENTROPY OF DETERMINANTAL PROCESSES

polar decomposition is measurable are given in the Appendix. Note that once we established the
measurability of U, unimodularity follows from the uniqueness of the decomposition.

To prove part 3 let H = Im PN(ker T [ Im P)l. Let Py be the orthogonal projection to H, then
we have P = P} + Py. Therefore, Tr(G, 0, P) = Tr(G, 0, P1) + Tr(G, 0, Pyr). It is also clear that
ImTP =Im(T | H) and T is injective on H. Thus part 2 gives us Tr(G, 0, Py) = Tr(G, o0, P»).
Putting everything together we obtain that

Tr(G, o0, P) = Tr(G, 0, P1) + Tr(G, 0, Py) = Tr(G, 0, P1) + Tr(G, 0, P»).

3.2 Conditional determinantal processes

Let P be an orthogonal projection to a closed subspace H of ¢2(E). Given C C E, let [C]
be the closed subspace generated by e € C, and let [C]* be the orthogonal complement of it.
Note that [C]* = [E\C]. We define P/c as the orthogonal projection to the closed subspace
(H N [C]Y) + [0], and Pyc as the orthogonal projection to the closed subspace H N [C]+. We
also define P_.¢c =1 — (I — P)/c.

Proposition 3.4. We have P/c = Pxc + P, where Pic is the orthogonal projection to [C].
In other words P/ce = e for e € C and Pice = Pxce for e € E\C. Moreover, if C, is an
increasing sequence of subsets of E and C' = UC,,, then P, converges to P)c in the strong
operator topology. Furthermore, the sequence (Pxc,e,e€) is monotone decreasing.

Proof. The first statement is trivial. To prove the second statement, observe that Pyc, is a
sequence of orthogonal projections to a monotone decreasing sequence of closed subspaces with
intersection Im Py ¢, so Py, converge to Pyxc in the strong operator topology. It is also clear
that P, converge to P¢), so from P/c, = Pxc, + P, the statement follows. To prove the
third statement observe that (Pyc,e,e) = ||Pxc,el3. So the statement follows again from the
fact that Py, is a sequence of orthogonal projections to a monotone decreasing sequence of
closed subspaces. O

For C, D C E we define P/c_p = (P¢)-p, and we define P_p,c = (P-p);c. We only include
the next lemma here to make it easier to compare formulas in [42] with our formulas.

Lemma 3.5. Let P be an orthogonal projection to a closed subspace H. Then for any D C E

we have
ImP_p = H + [D]N [D]*.

Moreover, if C' and D are disjoint subsets of E, then

ImP)c_p = (HN[C]*) +[CuUDn[D]*

and
ImP_p,c = (H+ [D]N[CUD*")+[C].
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If C" and D are finite, then the above formulas are true even if we omit the closures.

Proof. We only prove the first statement. The other statements can be easily deduced from it.
Unpacking the definitions we need to prove that

(H*N[D]") +[D)* = H +[D]n D]

As a first step observe that H + [D] N [D]* (PD]L H). Indeed, if x € (Im Ppj. | H),
then x = limz,, where for all n we have z,, € [D]* and there is an y, € [D] such that
Tn +yn € H. But then 2, = (2, +yn) — yn € H + [D], which implies that 2 € H + [D]. Clearly
x € [D]*, so x € H + [D]N[D]*.

To prove the other containment let z € H +[D] N [D]*, then = limz, where
Ty, = Yn + 2n, With y, € H and z, € [D]. Since Ppj1 is continuous, we have

x = Ppjra = lim Ppys (yn + 20) = lim Py yn € Im(Pyppe [ H).
Now it is easy to see that we need to prove that
(H-N[D]*) +[D] = (Im Ppye | H)E
First let € (Im Py | H)*. Then for any h € H we have
0= (z, Ppjrh) = (Ppjrz, h),

which implies that Ppjox € H- N [D]Y. Thus, = Ppjix 4+ Ppjz € (H-N[D]*F) 4+ [D]. To
show the other containment let us consider z = y + z such that y € H+ N [D]*+ and 2z € [D].
Then for any h € H we have

<.I‘,P[D]Lh> = <P[D]L.T,h> = (y, h> = O7
because y € H+.

For the last statement, see the discussion in the paper [42| after the proof of Corollary 6.4. [

We have the following lemma. See [42, Equation (6.5)].

Lemma 3.6. Let C and D be disjoint finite subsets of FE  such that
P[BY N (CuUD) = C] > 0. Then Po_p = P_psc and conditioned on the event
BP N (CUD)=C, the distribution of BY is the same as that of BY/c-p.

The lemma above shows why the pairs (C, D) of finite disjoint sets with the property that
P[BP N(CUD) = C|] > 0 are interesting for us. The next proposition gives an equivalent
characterization of these pairs.

Proposition 3.7. Let C' and D be disjoint finite subsets of FE. Then we have
P[BY N (C'UD)=C]> 0 if and only if Im Pic; P = [C] and Im Pypy(I — P) = [D].
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This motivates the following definitions. A (not necessary finite) subset C' of E is called inde-
pendent (with respect to P) if Im PoyP = [C]. A subset D of E is called dually independent
(with respect to P) if Im Pjp)(I — P) = [D]. A pair (C, D) of subsets of E is called permitted
(with respect to P) if C' and D are disjoint, C' is independent and D is dually independent.

We will need the following theorem of Lyons [42, Theorem 7.2].

Theorem 3.8. The pair (BY, E\BT) is permitted with probability 1.

We will also need the following statements.
Proposition 3.9. If (C, D) is permitted, C' C C and D' C D, then (C’, D') is permitted.

Proposition 3.10. Assume (C, D) is a permitted pair. Then D is dually independent with
respect to P, or equivalently, D is independent with respect to I — Pc.

Proof. By the definition of a permitted pair Im Pp(I — P) = [D], so it is enough to show that
Im Ppj(I — P) C Im Pp)(I — P)¢). Take any r € Im Pipj(I — P), then there is x such that
r = Ppj(I—P)z. Let y = Py (I — P)x. We claim that y € Im(I — P)¢), or in other words, y is
orthogonal to any element w € Im P/c. We can write w as w = wo + w1, where wo € Im PN [C]+
and wy € [C]. We have

(y,wo) = <P[C]L(I — P)xz,wy) = (I — P)x,P[CHw@ = (I — P)z,wp) =0,

since wy € Im P. Moreover (y,w;) = 0, because y € [C]* and w; € [C]. Thus, (y,w) =0, so y
is indeed in the image of I — P/, then Py is in the image of Pip)(I — P¢). Using that C' and
D are diSjOiIlt P[D}y = P[D]P[C]l (I — P){I,‘ = P[D}(I — P)l' =T7T. O

Assume for a moment that F is finite, then |BY| = dimIm P with probability 1. If (C, D) is
a permitted pair, then the distribution of BY/¢-P is the same as that of BY conditioned on
the event that BY N (C U D) = C. So |BY/¢-P| = dimIm P with probability 1. In particular,
E|BP| = E|BY/¢-P|. The next lemma extends this statement to the more general unimodular
setting.

Lemma 3.11. Let (G,o,P,C,D) be a unimodular random decorated RGPC where P is an
orthogonal projection and the pair (C, D) is permitted with probability 1. Then

Tr(G, 0, P) = Tr(G, 0, Pjc_p) = Tr(G, 0, P_pc).

This can be obtained from combining Proposition 3.10 and the following lemma.

Lemma 3.12. Let (G, o0, P,C) be a unimodular random decorated RGPC where P is an orthog-
onal projection and C' is independent with probability 1. Then

Tr(G, 0, P) = Tr(G, 0, P)c).
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We also have the corresponding dual statement, that is, let (G, o0, P, D) be a unimodular random
decorated RGPC where P is an orthogonal projection and D is dually independent with probability
1. Then

Tr(G, 0, P) = Tr(G, 0, P_p).

Proof. We only need to prove the first statement, because the second one can be obtained by
applying the first statement to I — P.

Observe that ker(P [ ImP) = ImPxc from the definition of Pyxc, moreover,

Im(Py [ Im P) = [C], because C is independent. Applying the rank nullity theorem (Lemma
3.3.3) and then using the fact P/ = Pxc + Pj¢) from Proposition 3.4 we get that

Tr(G, 0, P) = Tr(G, 0, Pxc) + Tr(G, 0, Pcy) = Tr(G, 0, Pxc + Poy) = Tr(G, 0, Pc).

The next lemma gives an extension of Lemma 3.6.

Lemma 3.13. Let F C E, and assume that

(P/pPap—m\pre:e) = (P_p\pr/BPApe; €)

for all e € E with probability 1. Then for any finite A C E we have

P(A c BY|BY | F) =P(A c BY/sPor-rsr),

Proof. Let I, Fs,... be an increasing sequence of finite sets such that their union is F. The
crucial step in the proof is the following lemma.

Lemma 3.14. Let (C,D) be a permitted pair, such that C U D = F. Then (P/c_pe,e) <
(P_pjce,e) for alle € E. Now assume that (P)c_pe,e) = (P_p/ce,e) for all e € E. Let us
define P, = P/cnp,—pnrF,- Then BFYic-p s the weak limit of B,

Proof. Let A be a finite set such that, AN F = (), moreover let A be an upwardly closed subset
of 24 je. f X CY C Aand X € A, then Y € A. Using that determinantal measures have
negative associations (|42, Theorem 6.5]) we get the following inequality for m > n

P[BY" N A € Al = P[BY/cora-porn 0 A € Al > P[BY/enFm-rorn 0 A € A
Tending to infinity with m, we get that
P[B"" N A e Al > P[BY/c-rnrn N A € A. (3.1)
To justify this last statement, let U be the set of orthogonal projections R such that D N F, is

dually independent with respect to R. Combining Proposition 3.9 and Proposition 3.10, we obtain
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that P/cn, and P)c are all contained in U. For R € U, the probability P[Bf-pnfn N A € A] is
a continuous function of ((Re, f))c, teau(pnr,)- As we proved in Proposition 3.4, P/cnp,, tends
to P/c in the strong operator topology. Thus,

lim P[BY/onrm-porn 0 A € A] = P[BY/e-prrn 0 A € A

m—0o0

This gives us Inequality (3.1).
Tending to infinity with n we get that

liminf (B N A € A] > lim P[BY/c-rnmn A e Al =P[BY/e-pnAc A

n—oo n—oo

A similar argument gives that

limsupP[B"" N A € Al <P[BF-p/c N A e A

n—oo
Therefore,
P[BF-p/cn A€ Al > limsupP[B™ N A € A (3.2)
n—o0
> lirgianP[BP" NAec Al >PBYo-rnAcA.

These inequalities are in fact true without the assumption AN F = (). Indeed, let A C E finite
and A be an upwardly closed subset of 24. We define A’ = A\F and

A ={XcAIXUANC)e A}.
Note that A’ is upwardly closed subset of 24",

Then P[BY/o-P N A € Al = P[BY/e-p n A" € A']. Moreover, for any large enough n, we have
P[B"» N A€ Al = P[BM n A" € A']. Clearly A'NF = (), so we reduced the problem to the
already established case.

Choosing A = {e} and A = {{e}} in (3.2), we get that (P,c_pe,e) < (P_p,ce,e) for all e € E.
Inequality (3.2) tells us that BF-p/¢ stochastically dominates BY/¢-p. But if (Pic—pe,e) =
(P_p/ce,e) for all e € E, then the distribution of BY/c-p and BP-p/¢ must be the same. Then
inequality (3.2) gives the statement. O

Let A be any finite set. We define the martingale X,, by

X, =P[A c BP|BF | F,] = P[A Cc BY/BPnFu—rFa\BP],

Combining the previous lemma with our assumptions on B we get that with probability 1 we
have lim X,, = P[A C BP/BP”F*F\BP}. On the other hand we have

lim X,, = P[A c BY|B” | F].
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The statement follows.
O

Lemma 3.15. Let (G,o0,P, F) be a unimodular random decorated RGPC where P is an or-
thogonal projection with probability 1. Then with probability 1, we have that for any finite set
ACV(G)x K

P(A c BY|BY | F) =P(A c BY/sPor-r\sr),

Proof. From Lemma 3.14, we have that for all e € V(G) x K we have

(P/prap—m\pre,e) < (P_p\pr pPape; €).

From Lemma 3.11, we have Tr(G, 0, P/grap_p\pr) = Tr(G, 0, P_p\ gp/gPnp), which imply that
with probability 1 we have (P/grqp_p\gre,e) = (P_p\pr/prape, €) for any e € {0} x K, but
then it is true for any e from unimodularity. (See [4, Lemma 2.3 (Everything Shows at the
Root)].) Therefore, Lemma 3.13 can be applied to get the statement.

O

The lemma above establishes Conjecture 9.1 of [42] in the special unimodular case. Note that
this conjecture is false in general as it was pointed out to the author by Russel Lyons. Indeed,
it follows from the results of Heicklen and Lyons [31] that for the WUSF on certain trees,
conditioning on all edges but one does not (a.s.) give a measure corresponding to an orthogonal
projection, because the probability of the remaining edge to be present is in (0, 1) a.s.

3.3 Limit of conditional determinantal processes

Theorem 3.16. Let (G, 0p, Py, Cp, Dy) be a convergent sequence of unimodular random deco-
rated RGPCs with limit (G,o, P,C,D). Assume that P, and P are orthogonal projections and
(Cn, Dy) and (C, D) are all permitted with probability 1. Then (Gyn,on, (Pn)/c,—p,) converges
to (G,0,Pjc_p)-

This will follow from applying the next lemma twice, first for the sequence P,,, then for I —(FP,) /C
with D, in place of C},. At the second time we need to use Proposition 3.10 to show that the
conditions of the lemma are satisfied.

Lemma 3.17. Let (Gy,, 0p, Py, Cp, Dy,) be a convergent sequence of unimodular random decorated
RGPCs with limit (G,o0, P,C, D). Assume that P, and P are orthogonal projections and Cy, C
are all independent with probability 1. Then (G, on, (Pn)/c,,, Dn) converges (G, o, P/c, D).

Proof. The presence of D,, does not not add any extra difficulty to the problem, so for simplicity

of notation we will prove the following statement instead:
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Let (G, 0n, Py, Cy) be a convergent sequence of unimodular random decorated RGPCs with limit
(G,0,P,C). Assume that P, and P are orthogonal projections, C,, and C are all independent
with probability 1. Then (Gy,0n, (Pn)/c,) converges to (G, o, Pc).

We start by the following lemma.

Lemma 3.18. Let (Gp,0n, Py, Cy) be a convergent sequence of decorated RGPCs with limit
(G,0,P,C). Assume that P, and P are orthogonal projections, Cy, and C are all indepen-
dent, and there is an r such that C, C V(By(Gn,0r)) X K and C C V(B,(G,0)) x K. Then
(Gny0n, (Pn)xc,) converges to (G, o0, Pxc).

Proof. Let us choose an orthogonal projection II from a small neighborhood U of P. If this
neighborhood is small enough, then C' is independent with respect to II. For ¢ € C, we have

My e = e — égi’gﬂc. Indeed, clearly Ile — Egi’ggﬂc € ImII N [{c}]*, moreover with the
notation a = % for any w € ImII N [{c}]* we have

(w,e — (Ile — alle)) = (w, (I —)e) + (w, allc) = (ITw, ac) = (w, ac) = 0.

By induction we get that
IIxce =1le — Z aeelle.
ceC
Here a.. is a continuous function of ((Ilz,y)), yecuqe} in the neighborhood U. The statement
can be deduced using this. O

From compactness every subsequence of (Gy, 0n, P, (Pn)/c,,, Cn) has a convergent subsequence,
so it is enough to prove the following lemma.

Lemma 3.19. Let (G, 0p, Py, Cy) be a convergent sequence of unimodular random decorated
RGPCs with limit (G,o0, P,C). Assume that P, and P are orthogonal projections, C,, and C are
all independent with probability 1. If (Gn,0n, Py, (Prn)/c,,Cn) converges to (G,o, P,Q,C), then
(G,0,Q) has the same distribution as (G, 0, P)c).

Proof. Using Skorokhod’s representation theorem we can find a coupling of (G, 0, Pn, (Pn) /¢, Cn)
and (G, 0, P,Q,C) such that limy, o (Gn, 0n, P, (Pn) /¢, , Cn) = (G, 0, P,Q, C) with probability
1. By definition there is a random sequence r1, s, ... such that lim,,_, . 7, = co with probabil-
ity 1, and there is a root preserving graph isomorphism t,, from B, (G,o0) to By, (G, 0,) such
that ¥, (C N (B, (G,0) x K)) = C, N (By, (Gn,0n) x K), where ¥, (v, k) = (¢, (v), k) and with
probability 1 for each e, f € V(G) x K we have

nli_EI;o<Pn1Z}ne’ @Enf> = <P€’ f>’

and

lim ((P,) /¢, ¥ne, onf) = (Qe, f).

n—oo

Of course, ¥, e only makes sense if n is large enough.
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Let us define Cy,(r) = C, N (By(Gr,0p) X K) and C(r) = C N (B, (G,0) x K).

Lemma 3.18 gives us that for any r we have

lim <(Pn)x0n(r)wn(e)a¢n(f)> = <P><C(r)eaf>' (3'3)

n—o0

Note that Im Py ¢(,) is a decreasing sequence of subspaces with intersection Im Pxc. So Pyc(r)
converges to Pxc in the strong operator topology.

In particular, for any e, f € V(G) x K, we have

TIHEO<P><C(T)67 f> = <P><C'evf>7 (34)
and
lim ((Po) xc, (rn¥n(€), vn(f)) = (Pn)xctn(e), ¥n(f))- (3.5)

T—00

We need the following elementary fact.

Lemma 3.20. Let a(r,n) be non-negative real numbers, such that for any fired n, the sequence
a(r,n) is monotone decreasing in r. Let A, = lim,_ o a(r,n), assume that for any fixed r the
limit B, = lim,_,oc a(r,n) exists. Then lim,_oo A, < lim, o0 B, if these limits exist.

Note that if e = f then the limits in (3.4) and (3.5) are decreasing limits as we observed in
Proposition 3.4. So the previous lemma combined with equation (3.3) gives us that for any
e € V(G) x K we have

lim ((P,)xc,Yne, Yne) < (Pxce,e).

n—o0

Combining this with Proposition 3.4, we get that
(Qe,e) = lim ((P,) /¢, ¥ne, Yne) < (Pice,e). (3.6)
n—oo

On the other hand, from Lemma 3.12, we know that

E Y (Q(o,k), (0,k)) = Tr(G,0,Q) = lim Tx(Gn,0n, (Pn)c,)

keK
= le Tr(Gn, 0n, Pn) = Tr(G, 0, P) = Tr(G, 0, P)¢)
=K Z<P/C(07 k)a (07 k)>
keK

From this and inequality (3.6) we get that (Q(o,k),(0,k)) = (P/c(0,k),(0,k)) for all
k € K with probability 1, so from unimodularity ([4, Lemma 2.3 (Everything shows at the
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root)|) it follows that
(Qe, €> = nh_{gO«Pn)/CnQEnea &ne> = <P/C’€v €> (37)
for all e € V(G) x K with probability 1.

Now we prove that with probability 1 for every e, f € V(G) x K we have (Qe, f) = (Pce, f).
This is clear if e € C, because in that case P/ce = Qe = e. So assume that e ¢ C, then

[(Prce, [) = (Qe, f)| = [{Pxce, f) — (Qe, [)]|
< |[(Pxce, ) = (Pxce [l
+ [(Pxcyes ) = ((Pa) xCp(ry¥ne, ¥n f)]
+ (P )xcn yone, onf) = (Pn)xCotone, Ynf)]
+ [{(Pa)xcntne, ¥nf) — (Qe, f).

Pick any ¢ > 0. If we choose a large enough 7, then [(Pxce, f) — (Pxc(e, f)] < € and
[(Pxc(re,e) — (Pxce,e)| < e from equation (3.4). Fix such an r. Then if n is large enough

[(Pxcyes ) = ((Pa) xCp(rynes ¥uf)| < & from equation (3.3), and also |((Pn)xc, ¥ne, ¥nf) —
(Qe, f)| < e, because of Proposition 3.4 and the fact that e ¢ C. Finally, observing that
(Pn)xcp(ry — (Pn)xc, is an orthogonal projection, we have

{(P)xCatryPnestnf) = ((Pa)ctbne, )
< (Pt ne = (Pa) el
= (e >ch J0ne = (Pa)xColne, tne)
< (P <oty nes tu€) = (Pciryes €)
+ [(Pxc(ryes €) — (Pxce, e)|

+ [{Pece.€) = ((Pa)xc, tne, tne

1
2

Now, for a large enough n we have |<(Pn)xcn(r)1zn€,?,fjn€> — (Pxc(me e)| < e from equation
(3.3) and [(Pxce,e) — ((Pn)xc,¥ne, Yne)| = [(Pce, e) — ((Pn) /¢, ¥ne; Pne)| < e from line (3.7).
Finally, [(Pyc(e, e) — (Pxce;e)| < e follows from the choice of r. Putting everything together,

[(Prce, ) — (Qe, )] < 3e + V3¢, so Lemma 3.19 follows. O
This completes the proof of Lemma 3.17 and Theorem 3.16. O

4 The proof of Theorem 2.4

First we observe that we may assume that |V(G,)| — oo. If not, then we can take a large
m = m(n) and replace G,, with m disjoint copies of G,, and P,, with the m fold direct sum of

copies of P,.
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Let (G, P) be a finite graph-positive-contraction, where P is an orthogonal projection. Let
m = |V(G) x L|. Fix an ordering ej,es,...,en of the element of V(G) x L.
Let E; = {e1,e2,...,¢;}. For e € V(G) x L let I(e) be the indicator of the event that e € BF.
Let g(z) = —zlogx — (1 — z)log(1 — x). Using the chain rule for the conditional entropy and

Lemma 3.6 we obtain that

hp(G,P)= H(I(e1),I(e2),...,I(em))

3

H(I(eir1)I(er), I(e2), - -, I(e:))

I
I

—_

3

P[B” N E; = Clg(Pleiy1 € BY|B" N E; = C])
CCE;

N
Il
=)

3

Eg(Ple;j+1 € BP/(EinBP)*(Ei\BP)])

33
S

Eg((P)(E,nBP)—(B\BP)Ei+1; €it1))-

[e=]

1=
Here expectation is over the random choice of BY.

Instead of a fixed ordering of V(G) x L we can choose a uniform random ordering. Taking

expectation we get that

m—1

hi(G,P) =Y Eg((P)gnpr)—(m\5r)eitt €it1));
i=0
where expectation is over the random choice of E; = {ey,ea,...,¢;} and BY. Note that g(0) =

g(1) =0, so

9P/ (g,nBP)—(E\BPYE: €)) =0
whenever e € E;. Also note that e;+1 is a uniform random element of (V(G) x L)\E;. From
these it follows that if e is a uniform random element of V(G) x L independent of E;, then

m
—— BBy mnsr)-masryee) = Eg((Pymnpr)-m\pricitt,ei+1)) < log2. (41)
Thus,
m—1 m
hi(G,P)=>" ———Bg({F)mnsr)-(m\BP)E €)).
1=0

Let (G,0,P) =U(G, P). Then

m—1
m 1
hp(G, P) = E — i7|L|E E 9P (minBP)—(E\BP)(0,0), (0,0))).
i=0 (el
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So

m—1

hr(G, P 1
M - Zzg TTL—Z'E%g(<P/(EiﬂBP)—(Ei\BP)(O’ £), (0,0))).

For ¢t € [0,1) we define

Hy(G,P)=EY  g((P)mnpr)—(5:\57) (0.0 (0,0))),
lel

where i = [tm], and F; is a uniform random i element subset of V(G) x L independent of BY

and o. For i =0,1,...,m — 1, we have
(i+1)/m m
Y o000 = [ (G, P)
Therefore
hL G P
/ — Ltm Hy(G, P)dt. (4.2)

Let my, = |V(Gy) x L|. Recall that we observed at the beginning of the proof that we may
assume that |V (G,)| = co. So we assume this.

Lemma 4.1. Let (G, P,) be the sequence given in the statement of the theorem. For any
t€10,1) we have

lim Hy(Gn, Pa) =E Y g({P)mnnr)— (20 57)(0,0), (0,0))),

n—oo
lel

where Ey is a Bernoulli(t) percolation of the set V(G) x L independent of BY. Consequently,

. Mnp
lim
N—00 My, — Ltan

Hy(Gy, Pn) = EZQ (P/(B.nBP)—(EA\BP)(0:0), (0,0))).

1=t
Proof. From Proposition 2.1 we have (G, 0, Py, Bf") — (G, 0, P, BY). It is straightforward to
show that (Gy,0n, Pn, E|tm,|) — (G,o0, P, E), here my, = [V(G) x L| and E|,, | is a uniform
|tm,] element subset of V(G) x L independent of Bf». Then it follows that
(Gn,on,Pn,ELtan,BP") — (G, o0, P, E;, BY). But then with the notations C,, = Eltm, N BPn,
C = E,NBY, Dy, = E|4,,,|\B™ and D = E,\B” we have (Gy, 0n, Py, Cp, D) = (G, 0, P,C, D).
It follows from Theorem 3.8 and Proposition 3.9, that (Cy,, D,,) and (C, D) are all permitted with
probability 1. It is also clear that (G, on, Py, Cy, Dy) are unimodular. Thus applying Theorem
3.16 we get that (G, on, (Pn)/c,—p,) converge to (G, 0, P/c_p). We define the continuous map
f:RGPC — R as f(G,0,P) = Y, 9({(P(0,£),(0,£))). Then from the definition of weak*
convergence we get that

lim Ef(Gn,on, (Pn)/c,-p,) =Ef(G,0,P/c_p)

n—oo

and this is exactly what we needed to prove. O
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From (4.1) we have ;-
Lemma 4.1 with the dominated convergence theorem we get that

Lm JH,g(G P) <log?2 for any n and ¢. So combining equation (4.2) and

hL(Gna Pn

. ) / mp
lim —Lmon) — " H,(Gn, Py 4.
oo |V (Gl s [t Hy(Gn, Do)t (43)
! . mp
= [t e (G P

/ 1 —tEZg (P)(mnBP)-(B,\BP)(0,£), (0,0)))dt
(eL

/ = ST El0,0) ¢ BB [9(Pysnsr)- g0 (010 (0, 0)) (0,0 & B di

LeL

/ ZE ((Py(g,npPy—(505P)(0,0), (0,0)))](0,0) & Et}

lel

Here we used the law of total expectation and the fact that
g((BY1EnEP)~(EAEP) (0,0), (0,£))) = 0 whenever (0,¢) € E;. Let ¢ be an iid. uniform [0,1]
labeling of V(G) x L. Observe that conditioned on the event (o0,¢) ¢ E; the distribution of E;
is the same as the distribution of {e € V(G) x Llc(e) < ¢(o,¢)} conditioned on c(o,¥) = t. Let
I(e) be the indicator of the event e € B™* P From Lemma 3.15 we get for £ € L

1
| B [sPuscnn) im0, (0,00 (0.0 ¢ ]

1
— / E [(E(I(0, O1{I(f)|f € E:})|(0,0) & Ey] dt

/ (0, OHI()le(f) < clo,0)}))]c(o, £) = t] dt
E [g(E(I(o, ){I(f)le(f) < c(o,0)}))] = Eh((0, ), rest,, P).

Combining this with equation (4.3) we get Theorem 2.4.

5 Extension of Theorem 2.4 to positive contractions

To state the extension of Theorem 2.4 we need another tightness notion. Let Ky D K be finite. A
random RGPC (G, 0g, Tp) with support set Ky is called an Ky-extension of the random RGPC
(G,0,T) with support set K, if (Go,0g,restx(Tp)) has the same distribution as (G,o0,T). We
say that the extension is tight if Ty is an orthogonal projection with probability 1. A finite
graph-positive-contraction (Gg,Tp) with support set Ky is called an Ky-extension of the finite
graph-positive-contraction (G,T") with support set K, if G = Go and restx Ty = T. We say that

the extension is tight, if Tj is an orthogonal projection.

Given a sequence of finite graph-positive-contractions (G, T},,) with support K and a random
RGPC (G, o0,T) with support set K, we say that lim U (G, T,) = (G,o0,T) p-tightly, if there is a

109



CEU eTD Collection

LIMITING ENTROPY OF DETERMINANTAL PROCESSES

finite Ky D K and there are tight Ky-extensions (G, P,) of (G, T,) and a tight Ky-extension
(G,0,P) of (G,0,T) such that imU(G,, P,)) = (G, o0, P).

With these definitions we have the following extension of Theorem 2.4.

Theorem 5.1. Let (Gy,T,) be a sequence of finite graph-positive-contractions such that
imU(G,,T,) = (G,0,T) p-tightly for some random RGPC (G,0,T). Then

h "y TTL
lim 7L(G )

A VG - G

Proof. By the definition of tight convergence, there is a finite Ky D K and there are tight
Ko-extensions (G, P,) of (Gpn,T,) and a tight Kp-extension (G,o, P) of (G,0,T) such that
ImU(Gy, P,) = (G,o,P). Note that the distribution of BT is the same as

B 0 (V(G) x K). So hp(Gn,Ty) = hp(Gn, Py). Similarly, hy(G,0,T) = hr(G,0,P). So

from Theorem 2.4

hm hL(GnaTn) — hm hL(GTLan)

n—00 ‘V(T” n—00 ’V(Gn)’ - hL(Ga o, P) = hL(G’ O7T)‘

O
We do not know whether the condition of p-tightness can be replaced with tightness in the
theorem above.

Later we will need the following proposition.

Proposition 5.2. Let K C Ky, such that |Ky| = 2|K|. Any finite graph-positive-contraction
(G, T) has a tight Ky-extension (G, P).

Proof. This is well known, see for example [42, Chapter 9]. We include the proof for the reader’s
convenience. Let ¢(x) = /x(1 —z) on the interval [0,1] and 0 otherwise. Using functional
calculus we can define ¢(T'), for every positive contraction. Then the block matrix

p_( T D)
)y I-T
gives the desired operator. O

The Ky-extension given in the previous lemma will be called the standard Ky-extension of (G, T).
The standard Kg-extension of a random RGPC is defined in the analogous way.
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6 Sofic entropy: The proof of Theorem 2.6

Note that for any graph G the set of random {0, 1}¥ colorings of V(G) can be identified with
the set of random subsets of V(G) x K. In this proof we use the random subset terminology.

As we mentioned in Subsection 2.7, the inequality h'(BT) < h(Gr, er,T) is well known, but we

give the proof for completeness.

Let G be a graph, and F be a random subset of V(G) x K. Let ¢ be a [0, 1] labeling of V(G) x K.
For e € V(G) x K let I(e) be the indicator of the event that e € F. For (v,k) € V(G) x K we
define

h((v,k),c, F) = H(I(v, k) {1, K")|c(v', k') < c(v, k)}).
We also define
h((v, k), F) = Eh((v, k), c, F),

where ¢ is an i.i.d. uniform [0, 1] labeling of V(G) x K.
Moreover, if r is an integer, then we define
he((v,k), ¢, F) = H(I(v, k) {I(v', k') |e(v', k') < c(v,k) and (v, k') € B.(G,v) x K})

and
he((v, k), F) = Eh.((v, k), ¢, F),

where ¢ is an i.i.d. uniform [0, 1] labeling of V(G) x K.

Comparing these definitions with the definitions given in Subsection 2.7, we see that if F = BT
for some positive contraction 7', then h((v, k), F) = h((v,k),T). Thus, it is justified the use the
same symbol in both cases.

If ¢ is a [0, 1]-labeling such that the labels are pairwise distinct and G is finite, the chain rule of

conditional entropy gives us

HF)= Y W(vk)cF).

(v,k)EV (G)x K

Taking expectation over ¢ we get that

HF)= Y «((vk),F)

(v,k)eV(G)xK

Or, alternatively,

HE) s
ViG] ~F 2R D

where o is a uniform random vertex of V(G).
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Combining this with the well known monotonicity properties of conditional entropies, for any

v g) =E> h((0,k),F)<E>  h((0,k),F

keK keK

integer r, we have

Note that h,((0, k), F) only depends on the distribution of F' N (B,(G,0) x K). Therefore, if F
is an (g, r) approximation, then we have

H(F) <EZh ((o, k), Zh er, k), )+77r(5)a

VeI & fexc

where 7, (¢) does not depend on G, and 7n,(¢) — 0 as ¢ — 0. In particular,
r) < Y hel(er, k), BY) +n:(e)
keK

tending to 0 with € we obtain that

1an (e,7) Z h.((er, k), BT).
keK

But we have

Tim. > he((er, k), BT) =Y h((er, k), BT

keK keK

Thus tending to infinity with r we get

Z h((er,k), B') = h(Gr,er,T).
keK
Now let G1,Go, ... be a sequence of finite S-labeled Schreier graphs Benjamini-Schramm con-

verging to (Gr,er). Let K C Ky, such that |Ky| = 2|K|. Let P be the standard Ky-extension
of T. Then it is clear that P is an invariant operator on ¢?(V (Gr) x Kj).

Lemma 6.1. There is a sequence of positive contractions R, on (*(V(G,) x Kg) such that
limy, 00 U(Gn, Rn) = (Gr, er, P). Moreover, the spectral measures i, = py(a,,r,) weakly con-
verge to j = (G ep,P) = |K|(d0 + 61).

Proof. One can easily define a metric d on P(RGPC) such that for any
sequence of positive contractions R, on (*(V(G,) x Kj), we have that
limy, oo &' (U(Gp, Ry), (Gr,er, P)) = 0 if and only if lim,,_, U(Gy, R,) = (Gr,er, P) and pu,
weakly converge to .

Thus if the required sequence does not exist, then there is an € > 0 and an infinite sequence
ni1 < ng < ... such that & (U(Gy,, Ry,), (Gr,er, P)) > ¢ for any ¢ and any positive contractions
R,, on (2(V(G,,) x Kp).

We will now use the results of Lyons and Thom [43]. In their paper they are using ultra-
limits. However, by passing to a subsequence we may replace ultralimits by actual limits.
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Thus [43, Proposition 4.4, Lemma 4.7 and Remark 4.3] provide us a subsequence (m;) of
(n;) and positive contractions Ry, on £*(V(G,,) x Kp), such that lim; oo U(Gp,;, Rin,) =
(Gr,er, P) and p,,, weakly converge to u. Indeed, [43, Proposition 4.4] gives us the conver-
gence lim; o0 U(Gm,;, Rm;) = (Gr,er, P) and [43, Proposition 4.7] is used to make sure R, is
indeed a positive contraction. Finally, the convergence of spectral measures follows from [43,
Remark 4.3].

Then lim;_oo &' (U(Gm;, Rim;), (Gr,er, P)) = 0, which contradicts to the choice of the subse-

quence (n;).
Finally, observe that
TI‘(GF, er, P) = TI“(GF, er, T) + TI‘(GF, er,I — T) = |K|,

so the spectral measure 4 is indeed equal to | K|(do + 01). O

Note that R, is not necessary an orthogonal projection. Now we modify R, slightly to get an
orthogonal projection. Let us define

w(a:):{x for0§w<%,

z—1 for%ﬁmgl

Note that w is not continuous, but w? is continuous. Let (vi)L‘;(lG")XKO‘ be an orthonormal basis
of £2(V(G,) x Ky) consisting of eigenvectors of R, such that R,v; = \jv;. Let w(R,) be the
unique operator, such that w(R,)v; = w(\)v; for i =1,2,...,|V(G,) x Kol

Then P, = R, — w(R,) will be the orthogonal projection to the span of {v;|A; > 3}. Moreover,

: 2 : 2
1m E Y w(Ra)o k)3 = lim E Y (w(Ra)*(0, ). (0, k) (6.1)
keKo keKo
1 1
= lim w2dun:/ w?dp

— [K|(w*(0) + w(1)) = 0

Here the expectation is over a uniform random vertex o of V(G),). This easily implies that
U(Gn, Ry,) and U(G,, P,) have the same limit, that is, lim U(G,,, P,,) = (Gr,er, P). (Note that
in the language of [43] the vanishing limit in (6.1) means that (R,) and (P,) represent the same
operator.) Now using Theorem 2.4 we get that

rest i (Pp)
lim H(B )

22 7 lim hg(Gy, P,
oo [V (Gn)] Jim o ( )

= l_z(Gp,ep,restK(P)) = E(GF,GF,T).
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Now for any € and r for large enough n we have that B estx(Pn) is an (¢,r)-approximation of BT

because lim,, o0 U(Gp,rest(P,)) = (Gr,er, T). So h(Gr,er,T) < h(BT) follows.

Putting everything together we get that h(Gr,er,T) < h(BT) < n'(BT) < h(Gr,er,T). So
Theorem 2.6 follows.

7 Tree entropy

Let G = (V, E) be a locally finite connected graph. Choose an orientation of each edge to obtain
the oriented graph G. The vertex-edge incidence matriz A = (aye) of G is a V x E matrix such
that

1 if e enters v,

aye = § —1 if e leaves v,

0 otherwise.

Let % = %(G) be the closed subspace of (2(E) generated by the rows of A, and let Py be
the orthogonal projection from ¢?(E) to %. If G is finite, then the determinantal measure
corresponding to Py is the uniform measure on the spanning trees of G [17]. Let 7(G) be the
number of spanning trees of G, then H(B*) = log7(G). If G is infinite, the corresponding
determinantal measure is the so-called wired uniform spanning forest(WUSF) [52, 29, 9, 40|.
Note that in both cases, the resulting measure does not depend on the chosen orientation of G.

Given a rooted graph (G, o) and a non-negative integer k, let pi(G, o) be the probability that a
simple random walk starting at o is back at o after k steps.

The following theorem was proved by Lyons [41].

Theorem 7.1. Let Gy, be a sequence of finite connected graphs, such that |V (Gy)| — oo and

their Benjamini-Schramm limit is a random rooted graph (G,o0). Then

. log7(G) =1
lim ——————= =E | logdeg(o) — —pr(G,0) | .
ntvoo |V(G) ( ©) ;k kl )>

Using our results we can give another expression for the limiting quantity. Let G be a connected
locally finite infinite graph, let § be the WUSF of G. For e € E(G) let I(e) be the indicator of
the event that e € §. Given a [0, 1] labeling ¢ of E(G) and an edge e € E(G) we define

WG, e, c) = H(I(e){I(f)le(f) < ele)}),

and
h(G,e) = Eh(G,e,c),

where the expectation is over the i.i.d. uniform random [0, 1] labeling of G. Now we state our
version of the tree entropy theorem.
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Theorem 7.2. Let G, be a sequence of finite connected graphs, such that |V(G,)| — oo and
their Benjamini-Schramm limit is a random rooted graph (G,o0). Then

. logT(G
nl;ngo VG E;hGe

where the summation is over the edges e incident to the root o.

Proof. Let (é, 0) be the random rooted oriented graph obtained from (G, o) by orienting each
edge independently and uniformly to one of the two possible directions. Let L(C_j) be the line
graph of G, that is the vertex set of L(G) is V(G) and two vertices of L(G) are connected if
the corresponding edges in G are adjacent. Let (G’,0') be obtained from ((_j, 0) by biasing by
the degree of the root. Let e be a uniform random edge incident to o’. Then (L(G),e, P*(@,))
will be a random RGPC, which we denote by (L, e, P). (Here the support set K of (L,e, P) is a
one element set.) Now there is an orientation én of G, such that the Benjamini-Schramm limit
of G, is (@, 0). This can be proved by choosing random orientations, and using concentration
results. We omit the details. Let (L, P,,) be the finite-graph-contraction (L(G,), P (@7l)). We

*
have the following lemma.

Lemma 7.3. We have lim,,_,oo U(Ly, P,) = (L, e, P).

Proof. This can be proved by slightly modifying the argument of the proof of
[4, Proposition 7.1]. O

The proof can be finished using Theorem 2.4. O

Both Lyons’s and our theorem can be extended to edge weighted graphs, but in this case they are
about two different quantities. However, these two quantities are closely related as we explain
now. Let G be a connected finite graph, and assume that each edge e has a positive weight w(e).
The weight of a spanning tree T is defined as w(T') = [[.cr w(T'). Let

Z(G,w) = > w(T)

T is a spanning tree

be the sum of the weights of the spanning trees of G. Let § be a random spanning tree of GG, such
that for any spanning tree T we have P(§ = T') = Z(G,w) *w(T). This is again a determinantal
process, the only difference compared to the uniform case is that for each edge e we need to
multiply the corresponding column of the vertex-edge incidence matrix by y/w(e). In fact, this
is the way we define the weighted version of the WUSF for infinite graphs. The Shannon entropy
H(F) of § is related to Z(G,w) by the identity

H(F) =log Z(G,w) — Elogw(g). (7.1)

Let (Gy,wy) be a Benjamini-Schramm convergent sequence of weighted connected graphs, such
that |V(G,)| — oo and their Benjamini-Schramm limit is a random rooted weighted graph
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(G,0,w). Assume that the weights are uniformly bounded away from zero and infinity, that is,
there are 0 < C7 < C9 < oo such that all the weight are from the interval [C, C3]. Then the

generalization of Lyons’s theorem states that
. log Z(Gn,wn) _ — 1
S AT N R D)

where 7(v) is total weight of the edges incident to v, and py ., (G, 0) is defined using the random
walk with transition probabilities p(z,y) = 7(z) 'w(xy) instead of the simple random walk. On

the other hand our theorem states that

A3 fEZhGew

n—00 |V

e~o

where h(G, e, w) is defined as above, but using the weighted version of the WUSF.
These two statements above together with equation (7.1) of course imply that

limy, 00 |[V(Gr)| " 'Elogw(g,) exists. However, there is a more direct proof. It is based on
the observation that

Elogw(§,) 1
VG VG g: P(e € §y)logw(e)
e€E(Gn)

1
ZQEEZP@ES@kgw@L
e~o
where the last expectation is over a uniform random o € V(G,,). Since we know that the limit of
Sn is §, where § is the WUSF of the random rooted weighted graph (G, o, w) (see |4, Proposition
7.1]) we get that

_ Elogw(Fn) 1
Using equation (7.1),  this provides us another formula for the limit

limy, o0 [V (Gp)| " log Z(Gy, wy). Namely,

. log Z(Gp,wy) .
nl;n;ov fIEZ (e € §)logw(e) + h(G, e, w)).

E~O

Question 7.4. We have seen that if (G, 0) is an infinite random rooted graph which is the limit
of finite connected graphs, then

<log deg(o Z % )) = %EZ h(G,e).

e~o

Is this true for any infinite unimodular random rooted graph?
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8 Matchings on trees

Given a finite graph G, let mm(G) be the number of maximum size matchings of G. In this
section, we explain how to use Theorem 2.4 to prove the following theorem.

Theorem 8.1. Let G1,Ga,... be a Benjamini-Schramm convergent sequence of finite trees with

mazimum degree at most D. Then

lim logmm(G,,)
n=oo  |[V(Gy)l

exists.

Note that without the assumption that the graphs G; are trees, the limit above might not exist,
even if the sequence converges to an amenable graph like Z2. Indeed, Figure 3.1 shows a graph
which is locally close to Z2 and it has a unique perfect matching. On the other hand one can see
that a 2n x 2n box in Z? has exponentially many perfect matchings. More results on the number
of perfect matchings in subgraphs of Z? can be found in [37, 56, 23]. See also [2], for an example
of a Benjamini-Schramm convergent sequence of bipartite d-regular graphs such that the limit
above does not exist. However, if we restrict our attention to vertex transitive bipartite graphs,
the limit above exists for convergent graph sequences, as it was proved by Csikvari [22].

Figure 3.1: A subgraph of Z2 with a unique perfect matching

We only give the outline of the proof, the interested reader should consult the paper [47] for
more details.

Given a matching M, let U(M) be the vertices uncovered by M. The first step in the proof of

Theorem 8.1 is the following simple observation.

Proposition 8.2. Let G be a finite tree. Then any matching M of G can be uniquely recon-
structed from U(M).
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Consider a finite tree G. Let M be a uniform random maximum size matching of GG. It follows
from Proposition 8.2 that logmm(G) = H(U(M)), where H denotes the Shannon entropy. Let
Pg be the orthogonal projection to the kernel of the adjacency operator of G. The next theorem
shows that U(M) is a determinantal process.

Theorem 8.3. Let G be a finite tree. Then U(M) is the determinantal process corresponding
to the orthogonal projection Pg.

Next we show that in the settings of Theorem 8.1, the finite graph positive contractions (G, Pg, )
converge to (G, 0, Pg), where (G, 0) in the Benajamini-Schramm limit of G,,. Thus, Theorem 2.4
can be applied to deduce Theorem 8.1.

9 Measurability of the polar decomposition

We need the following characterisation of the polar decomposition.

Lemma 9.1. Let T be a bounded operator, and let T = UP, be it polar decomposition. Then
pP= (T*T)%. Moreover, U = lim._,o4 T'(el + T*T)_% in the strong operator topology.:

Proof. The formula for P is well-known. To verify the formula for U, we need to prove three three
things. (1) The limit indeed exists. (2) |Uz|| = ||z|| for any = € (ker T") L and ker T" C ker U. (3)
T=UP.

To prove (1), fix an element z of the Hilbert-space, and consider 1,9 > 0, then
T (er] +T*T) 2z — T(eol + T*T) 2 ||
- <T ((sll YT 5 — (eo] + T*T)*%) @, T ((511 FTT) 3 — (ool + T*T)*%) x>
x

)#7)

1

- <((511 FTT) "3 — (o] + T*T)—%) T ((511 FT*T) "3 — (eo] + T*T)~

l7T*T||
= / preT (1),
0

2
where he, o, (t) =1t ((61 + t)_% — (e2+ t)_%) , and pp=7 5 (t) is the spectral measure correspond-
ing to T*T and x. Note that for any ¢t > 0, and €1,e9 > 0, we have

2
t t
hs1,a2(t) = (\/t-l-El _\/t+€2> <1

Also for any fixed ¢ > 0, we have limh,, ,(t) = 0, as (e1,e2) tends to 0. Thus, form the
dominated convergence theorem, we see that HT(Ell—l—T*T)_%x — T(agl—i—T*T)_%tz converges
to 0, as (e1,e2) tends to 0. Therefore, lim._o4 T'(eI + T*T)_%x indeed exists.

N|=

!Note that the spectrum of eI +T*T is contained in [, e+ ||T*T|], so (EI—FT*T)_% is well defined by functional
calculus.
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To prove (2) observe that
Nt L L 17|
|TEr+ T ) 5a| = (e + DTy AT T (er + T T) ) = / 9= (T 7,0(1)
0

where g.(t) = HLE Note that lim.g-(0) = 0 and lim._,qg-(¢) = 1 for any ¢ > 0. Moreover

lge(t)| < 1 for any ¢,e > 0. Thus, from the dominated convergence theorem, we have
* 2 %
lim HT el +T°T)"3 H = prera (0, |T°T]) -

Therefore, ||Uz|| = ||z|| for any x € (ker T)* = ker(T*T)* and ker T' C ker U.

To prove (3) observe that

HT<51+T* yH(TT): — 1 ) H

- <((51 FT*T) " 3(T*T)7 — 1) T <(sI +T*T) "3 (T°T)7 — I) z, :c>

- / Jo (Ot

where f.(t) = t(( )2 —1)2. Note that lim._o f-(¢) = 0 for any ¢, moreover, |f-(t)| < | T*T|| for
any t,e > 0. Thus the statement again follows from the dominated convergence theorem. O

Now it is clear that for any polynomial f, the map (G,0,T) — (G, o0, f(T)) is measurable. Thus,
by functional calculus, the map (G,0,T) — (eI +T*T)"2 is also measurable. Therefore, the
polar decomposition is also measurable.

-
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