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1
Introduction

The central topic of this thesis is the local weak convergence of sparse graphs, also known as
Benjamini-Schramm convergence. The general problem is the following. Assume that we have a
large sparse graph G and we would like to estimate the value of some graph parameter τ(G) by
the following local sampling procedure. Fix an integer r, this will be our radius of sight. Pick a
uniform random point of G that we call the root, then look at its r-neighborhood, and repeat
this experiment several times. Based on this data, how well can we guess the value τ(G)? What
are the parameters τ(G) that can be estimated this way?

By picking the root of the graph uniformly at random, we turn it to a random rooted graph, that
is, a probability measure on the space of rooted graphs. Local weak convergence means weak
convergence of these measures. The above testability question translates to the following: what
graph parameters are continuous with respect to local weak convergence?

Random graphs provide us natural examples of Benjamini-Schramm convergent graph sequences.
Random d-regular graphs with a growing number of vertices will converge to a d-regular tree.
Erdős-Rényi graphs on n vertices and edge probabilities c

n – as n goes to infinity – will converge
to a Galton-Watson tree with Poisson offspring distribution. This gives rise to the following
particular case of the questions above. What properties of random graphs are already determined
by their local structure? Which graph parameters have the property that a sequence of random
d-regular graphs can not be distinguished from any other given (essentially) large girth d-regular
sequence using that parameter? For example the normalized size of the maximum independent
set can be used to distinguish random d-regular graphs from bipartite large girth d-regular
graphs, as it was proved by Bollobás [14]. Another special case of this question is given in the
next section.
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INTRODUCTION

1 Mod p rank of the Laplacian matrices of random d-regular
graphs

Given a graph G, let A(G) be its adjacency matrix, and let L(G) be its Laplace matrix. Given
an integral matrix M and a prime p, we denote by dim kerpM the dimension of the kernel of
the matrix M when it is considered as a matrix over the p element field. Let H2n be a random
d-regular graph on 2n vertices.1 In Chapter 2, we prove that with probability 1, we have

lim
n→∞

dim kerpA(H2n)

2n
= 0 and lim

n→∞

dim kerp L(H2n)

2n
= 0.

In fact, we know much more. It turns out that we can control the limiting distribution of
dim kerp L(H2n).

Theorem 1.1. For any k ≥ 0, and an odd prime p, we have

lim
n→∞

P(dim kerp L(H2n) = k + 1) = p−
k(k+1)

2

∞∏
i=k+1

(1− p−i)
∞∏
i=1

(1− p−2i)−1.

We have a similar formula for p = 2.

One can also give formulas for the limiting distribution of dim kerpA(H2n), but it is a bit more
complicated, because we need a case splitting depending on whether d is divisible by p or not.

Actually, we prove even more, as we will determine the limiting distribution of the p-Sylow
subgroup of the sandpile group of Hn, which is defined as the cokernel of the reduced Laplacian.
The limiting distribution is given by a modified version of the Cohen-Lenstra heuristics [18].
This limiting distribution is universal in the sense that it does not depend on the choice of d.

The original Cohen-Lenstra distribution is a distribution on the set of finite abelian p-groups
where the probability of a group P is proportional to |Aut(P )|−1. It was introduced by Cohen
and Lenstra [20] in a conjecture on the distribution of class groups of quadratic number fields.
Although this conjecture is still open, several other random groups are known to follow the Cohen-
Lenstra distribution. For example, the cokernel of a Haar-uniform square matrix over the p-adic
integers has this limiting distribution [27]. In fact this is true even in a more general setting. It
is enough to assume that the entries of the matrices are independent and they are not degenerate
in a certain sense. This was proved by Wood [60]. Her paper also contains similar results for
non-square matrices. Clancy et al [19, 18] introduced a modified version of the Cohen-Lenstra
distribution to describe the limiting distribution of the cokernel of a Haar-uniform symmetric
matrix over the p-adic integers . Later, Wood [58] proved that the sandpile group dense Erdős-
Rényi graphs also follows this modified Cohen-Lenstra distribution. Somewhat surprisingly, we
have the same limiting distribution even for random d-regular graphs as we will show.

These results also have the following corollary which settles an open question of Frieze [28] and
Vu [57].

1To be more specific, we use the following model: we take the union of d independent uniform random perfect
matchings.

10
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CHAPTER 1

Theorem 1.2.
lim
n→∞

P(A(H2n) is invertible over R) = 1.

Note that Theorem 1.2 was independently proved by Huang [34, 33].

If we consider an arbitrary large girth d-regular sequence (Gn) instead of random
d-regular graphs, then dim kerpA(H2n) is less understood. In particular, the following ques-
tion is still open.

Question 1.3. Let (Gn) be a large girth d-regular sequence. Is it true that

lim
n→∞

dim kerpA(Gn)

|V (Gn)|
= 0?

Note that if we ask the same question over R, then we have an affirmative answer. In fact,
over R, the normalized dimension of the kernel of the adjacency matrix is a Benjamini-Schramm
continuous graph parameter [1]. The proof uses spectral methods which are not available over
finite fields.

Chapter 2 is based on the paper [48].

2 Limiting entropy of determinantal processes

Given a finite connected graph G, let τ(G) be the number of spanning trees of G. The (nor-
malized) tree entropy of G is defined as h(G) = log τ(G)

|V (G)| . McKay [45] proved that if (Gn) is a
sequence of random d-regular graphs, then

lim
n→∞

h(Gn) = log
(d− 1)d−1

(d2 − 2d)(d/2)−1
.

Lyons proved that this is true for any essentially large girth d-regular graph sequence. In fact,
he proved the much stronger statement that that h(G) is Benjamini-Schramm continuous graph
parameter [41].

The uniform measure on the spanning trees of a finite connected graph is one of the most
important examples of discrete determinantal measures. With any orthogonal projection matrix
P , we can associate a probability measure ηp on the subsets of its columns in a certain way that
we do not specify now. We call ηP the determinatal measure corresponding to P .

In Chapter 3, we extend Lyons’s tree entropy theorem to general determinantal measures as
follows. Let P1, P2, . . . be a sequence of orthogonal projection matrices. Assume that rows and
columns of Pn are both indexed with the finite set Vn. Let Gn be a bounded degree graph on
the vertex set Vn.

11
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INTRODUCTION

Theorem 2.1. Assume that the sequence of pairs (Gn, Pn) is Benjamini-Schramm convergent
and tight. Then

lim
n→∞

H(ηPn)

|Vn|

exists. Here H(ηPn) is the Shannon entropy of the measure ηPn.

Here the convergence of the pairs (Gn, Pn) is defined along the lines of the convergence of graphs.
Tightness is a technical condition that makes sure that large entries of Pn correspond to pairs of
vertices that are close to each other in the graph Gn.

It is not difficult to see that this indeed implies Lyons’s tree entropy theorem.

Note that finite approximations of determinantal processes were also considered by Lyons and
Thom [43]. Their aim was to find an invariant coupling of certain determinatal processes.

As a byproduct of Theorem 2.1, we also show that the sofic entropy of an invariant determinantal
measure does not depend on the chosen sofic approximation. Sofic entropy was first defined by
Bowen [16], and it is an invariant for probability measure preserving actions of sofic groups. A
group is sofic if it has a Cayley-graph which the Benjamini-Schramm limit of a sequence of finite
graphs. The sofic entropy is defined with the help of this finite approximating sequence. In
general, it is not known whether the sofic entropy depends on the chosen sofic approximation or
not. We prove that for a determinantal measure it does not depend on the chosen approximation.

Another application concerns matchings of trees. If we take a finite tree, and consider the vertices
that are not covered by a uniform random maximum size matching, then this random subset
of the vertices is determinantal. With some additional work, one can combine this observation
with Theorem 2.1 to obtain the following theorem.

Theorem 2.2. Given a finite graph G, let mm(G) be the number of maximum size matchings of
G. Let G1, G2, . . . be a Benjamini-Schramm convergent sequence of finite trees with maximum
degree at most D. Then

lim
n→∞

log mm(Gn)

|V (Gn)|
exists.

Note that without the assumption that the graphsGi are trees, the limit in Theorem 2.2 might not
exist, even if the sequence converges to an amenable graph like Z2. We can see this by comparing
the results of [37, 56, 23]. However, if we restrict our attention to vertex transitive bipartite
graphs, the limit above exists for convergent graph sequences, as it was proved by Csikvári [22].
Csikvári’s proof based on spectral methods and the notion of the matching measure. In fact,
spectral methods allows us to prove that several matching related parameters are Benjamini-
Schramm continuous [2], for example: the proportion of vertices that are left uncovered by a
maximum size matching of G, the normalized logarithm of the total number of matchings, etc.

Chapter 3 is based on the papers [46, 47].

12
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2
The distribution of sandpile

groups of random regular graphs

We study the distribution of the sandpile group of random d-regular graphs. For the directed
model, we prove that it follows the Cohen-Lenstra heuristics, that is, the limiting probability that
the p-Sylow subgroup of the sandpile group is a given p-group P , is proportional to |Aut(P )|−1.
For finitely many primes, these events get independent in the limit. Similar results hold for
undirected random regular graphs, where for odd primes the limiting distributions are the ones
given by Clancy, Leake and Payne.

This answers an open question of Frieze and Vu whether the adjacency matrix of a random
regular graph is invertible with high probability. Note that for directed graphs this was recently
proved by Huang. It also gives an alternate proof of a theorem of Backhausz and Szegedy.

1 Introduction

We start by defining our random graph models. Let d ≥ 3. The graph of a permutation π

consists of the directed edges iπ(i). The random directed graph Dn is defined by taking the
union of the graphs of d independent uniform random permutations of {1, 2, . . . , n}. Thus, the
adjacency matrix An of Dn is just obtained as An = P1 + P2 + ...+ Pd, where P1, P2, . . . , Pd are
independent uniform random n× n permutation matrices.

For the undirected model, assume that n is even. The random d-regular graph Hn is obtained
by taking the union of d independent uniform random perfect matchings. The adjacency matrix
of Hn is denoted by Cn.

The reduced Laplacian ∆n of Dn is obtained from An − dI by deleting its last row and last
column. The subgroup of Zn−1 generated by the rows of ∆n is denoted by RowSpace(∆n). The
group Γn = Zn−1/RowSpace(∆n) is called the sandpile group of Dn. If Dn is strongly connected
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

(which happens with high probability as n → ∞), then Γn is a finite abelian group of order
| det ∆n|. Note that from the Matrix-Tree Theorem, |det ∆n| is the number of spanning trees in
Dn oriented towards the vertex n. For general directed graphs the sandpile group may depend on
the choice of deleted row and column, but not in our case, because Dn is Eulerian. The sandpile
group of Hn is defined the same way. Assuming that Hn is connected, the order of the sandpile
group is equal to the number of spanning trees in Hn.

Our main results are the following.

Theorem 1.1. Let p1, p2, . . . , ps be distinct primes. Let Γn be the sandpile group of Dn. Let
Γn,i be the pi-Sylow subgroup of Γn. For i = 1, 2, . . . , s, let Gi be a finite abelian pi-group. Then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)
=

s∏
i=1

|Aut(Gi)|−1
∞∏
j=1

(1− p−ji )

 . (1.1)

Theorem 1.2. Let Γn be the sandpile group of Hn. Again let Γn,i be the pi-Sylow subgroup of
Γn, and for i = 1, 2, . . . , s, let Gi be a finite abelian pi-group. Assuming that d is odd, we have

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)

=
s∏
i=1

 |{φ : Gi ×Gi → C∗ symmetric,bilinear, perfect}|
|Gi||Aut(Gi)|

∞∏
j=0

(1− p−2j−1
i )

 . (1.2)

Assume that d is even and p1 = 2. Then the 2-Sylow subgroup of Γn has odd rank1. Furthermore,
if we assume that G1 has odd rank, then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)
=

2Rank(G1)
s∏
i=1

 |{φ : Gi ×Gi → C∗ symmetric, bilinear,perfect}|
|Gi||Aut(Gi)|

∞∏
j=0

(1− p−2j−1
i )

 .

The distribution appearing in (1.1) is the one that appears in the Cohen-Lenstra heuristics. It
was introduced by Cohen and Lenstra [20] in a conjecture on the distribution of class groups
of quadratic number fields. The distribution appearing in (1.2) is a modified version of the
distribution from the Cohen-Lenstra heuristics that was introduced by Clancy et al [19, 18].2

A recent breakthrough paper of Wood [58] shows that the sandpile group of dense Erdős-Rényi
random graphs satisfies the latter heuristic. That is, Theorem 1.2 says that in terms of the
sandpile group, random 3-regular graphs exhibit the same level of randomness as dense Erdős-
Rényi graphs. The conceptual explanation is that the random matrices coming from both models
mix the space extremely well, as we will see in Theorem 1.6 for our model.

1The rank of a group is the minimum number of generators.
2See the paragraph after Equation (1.3) for the definition of perfect parings.
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CHAPTER 2

We can gain information about the sandpile group by counting the surjective homomorphisms
from it to a fixed finite abelian group V . For a random abelian group Γ and a fixed finite
abelian group V , we call the expectation E| Sur(Γ, V )| the surjective V -moment of Γ. Our next
theorems determine the limits of the surjective moments of the sandpile groups for our random
graph models. The convergence of these moments then implies Theorem 1.1 and Theorem 1.2,
using the work of Wood [58].

Theorem 1.3. Let Γn be the sandpile group of Dn. For any finite abelian group V , we have

lim
n→∞

E| Sur(Γn, V )| = 1.

Recall that the exterior power ∧2V is defined to be the quotient of V ⊗ V by the subgroup
generated by elements of the form v ⊗ v.

Theorem 1.4. Let Γn be the sandpile group of Hn. Let V be a finite abelian group. If d is odd,
then

lim
n→∞

E|Sur(Γn, V )| = | ∧2 V |,

if d is even, then
lim
n→∞

E|Sur(Γn, V )| = 2Rank2(V )| ∧2 V |,

where Rank2(V ) is the rank of the 2-Sylow subgroup of V .

These theorems are proved by using the fact that, when they are acting on V n, the adja-
cency matrices An and Cn both exhibit strong mixing properties, described as follows: For
q = (q1, q2, . . . , qn) ∈ V n, the minimal coset in V containing q1, q2, . . . , qn is denoted by MinCq.
Note that MinCq is the coset qn + V0 where V0 is the subgroup of V generated by q1 − qn, q2 −
qn, . . . , qn−1 − qn. The sum of the components of q is denoted by s(q) =

∑n
i=1 qi, and we define

R(q, d) = {r ∈ (d ·MinCq)
n | s(r) = ds(q)}.3

It is straightforward to check that Anq ∈ R(q, d). Let Uq,d be a uniform random element of
R(q, d). Given two random variables X and Y taking values of the finite set R, we define
d∞(X,Y ) = maxr∈R |P(X = r) − P(Y = r)|. We prove that the distribution of Anq is close to
that of Uq,d in the following sense.

Theorem 1.5. For d ≥ 3, we have

lim
n→∞

∑
q∈V n

d∞(Anq, Uq,d) = 0.

We have a similar theorem for Cn. For q, w ∈ V n, we define

< q ⊗ w >=
n∑
i=1

qi ⊗ wi.

3By definition d ·MinCq = {g1 + g2 + · · ·+ gd|g1, g2, . . . , gd ∈ MinCq}.

15
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Furthermore, let I2 = I2(V ) be the subgroup of V ⊗V generated by the set {a⊗b+b⊗a| a, b ∈
V }. Let Rank2(V ) be the rank of the 2-Sylow of V , and let I = I(V ) be the subgroup of V ⊗ V
generated by all elements of the form a⊗ a for a ∈ V . Note that I2 is a subgroup of I of index
2Rank2(V ). Since the random matrix Cn is symmetric and the diagonal entries are all equal to 0,
for any q ∈ V n, we have < q ⊗ Cnq >∈ I2. Let us define RS(q, d) as

RS(q, d) = {r ∈ (d ·MinCq)
n | s(r) = ds(q) and < q ⊗ r >∈ I2}.

It is clear from what is written above that Cnq ∈ RS(q, d). Similarly as before, let USq,d be a
uniform random element of RS(q, d). Then, we have

Theorem 1.6. For d ≥ 3, we have

lim
n→∞

∑
q∈V n

d∞(Cnq, U
S
q,d) = 0.

Note that the limits in Theorems 1.3, 1.4, 1.5 and 1.6 are uniform in d. See Section 6 for further
discussion. However, until Section 6, we never claim any uniformity over the choice of V and d.

Recently, Huang [34] considered a slightly different random d-regular directed graph model on n
vertices, the configuration model introduced by Bollobás [13]. Let Fn be the adjacency matrix
of this random graph. Huang proves that for a prime p such that gcd(p, d) = 1, we have

E|{0 6= x ∈ Fnp | Fnx = 0}| = 1 + o(1),

as n goes to infinity, where Fn is considered as a matrix over Fp. Then he combines this with
Markov’s inequality to obtain that

P(Fn is singular in Fp) ≤
1 + o(1)

p− 1
.

Consequently, as a random matrix in R,

P(Fn is singular in R) = o(1).

This solves an open problem of Frieze [28] and Vu [57] for random regular bipartite graphs.

Using Theorem 1.6, we can answer this question in its original form.

Theorem 1.7. For the adjacency matrix Cn of Hn, we have

P(Cn is singular in R) = o(1).

Indeed, from Theorem 1.6 with the choice of V = Fp, it is straightforward to prove that for an
odd prime p such that gcd(p, d) = 1, we have

16
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CHAPTER 2

E|{0 6= x ∈ Fnp | Cnx = 0}| = 1 + o(1).

Therefore, the statement follows as above.

There are contiguity results [35, 49] which allow us to pass from one random d-regular graph
model to another. In particular, Theorem 1.7 also true for uniform random d-regular graphs with
even number of vertices. See also the work of Nguyen and Wood [50]. After the first version of
this paper appeared online, Huang [33] also extended his results to the undirected configuration
model, giving credit to this paper.

Theorem 1.2 describes the local behavior of the sandpile group Γn of Hn. Now we try to gain
some global information on these groups. The next statement gives the asymptotic order of Γn.
This was first proved by McKay [45], but it also follows from the more general theorem of Lyons
[41]. Let us choose H2, H4, . . . independently. The torsion part of Γn is denoted by tors(Γn).

Theorem 1.8 (McKay, Lyons). With probability 1, we have4

lim
n→∞

log | tors(Γn)|
n

= log
(d− 1)d−1

[d(d− 2)]d/2−1
.

Theorem 1.4 leads to the following statement on the rank of Γn.

Theorem 1.9. With probability 1, we have

lim
n→∞

Rank(Γn)

n
= 0.

Observe that Rank(tors(Γn)) = maxp is a prime Rankp(tors(Γn)), where Rankp(tors(Γn)) is the
rank of the p-Sylow subgroup of tors(Γn). Thus, this theorem suggests that many primes should
contribute to reach the growth described in Theorem 1.8, but we do not have a definite result in
this direction.

A conjecture of Abért and Szegedy states that if G1, G2, . . . is a Benjamini-Schramm convergent
sequence of finite graphs, then for any prime p the limit

lim
n→∞

co-rankpGn
|V (Gn)|

exists, here co-rankpGn = dim kerAdj(Gn), where Adj(Gn) is the adjacency matrix of Gn con-
sidered as a matrix over the finite field Fp. One of the most common examples of a Benjamini-
Scramm convergent sequence is the sequence of random d-regular graphs Hn. This means that
if we choose Hn independently, then with probability 1, the sequence converges. Following along
the lines of the proof of Theorem 1.9, one can prove that

lim
n→∞

maxp is a prime co-rankp(Hn)

n
= 0

4If Hn is connected, which happens with high probability, then tors(Γn) = Γn. The only reason for using
tors(Γn) is to handle disconnected graphs too.
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

with probability 1, which settles this special case of the conjecture, and we even get a uniform
convergence in p. Note that this has been proved by Backhausz and Szegedy [7] using a different
method.

Theorem 1.1 follows from Theorem 1.3 using the results of Wood [58] on the moment problem.
The general question is the following. Given a random finite abelian p-group X, is it true that the
surjective V -moments of X uniquely determine the distribution of X? Note that we can restrict
our attention to the surjective V -moments, where V is a p-group, because any other moment is
0. Furthermore, is it true that if X1, X2, . . . is a sequence of random abelian p-groups such that
the surjective V -moments of Xn converge to those of X, then the distribution of Xn converge
weakly to the distribution of X? Ellenberg, Venkatesh and Westerland [24] proved that the
answer is affirmative for both questions in the special case when each surjective moment of X is
1. In this case X has the distribution from the Cohen-Lenstra heuristic. Later, it was proved by
Wood [58] that the answer is yes for both questions if the moments do not grow too fast, namely,
if E|Sur(X,V )| ≤ | ∧2 V | for any finite abelian p-group V . The proof generalizes the ideas of
Heath-Brown [30]. In [58] this is stated only in the special case, when the limiting surjective
V -moments of X are exactly | ∧2 V |, but in a later paper of Wood [60] it is stated in its full
generality above. In fact, Wood proved this theorem in a slightly more general setting. Instead
of abelian p-groups, one can consider groups which are direct sums of finite abelian pi-groups
for a fixed finite set of primes. See Section 5 for details. Note that for even d, the moments of
the sandpile groups of Hn are larger than the bounds above. But using the extra information
that the 2-Sylow subgroups have odd rank in this case, we can modify the arguments of Wood
to obtain the convergence of probabilities. See Section 8.

Now we discuss the Cohen-Lenstra heuristic in terms of random matrices over the p-adic integers.
Let Zp be the ring of p-adic integers. Given an n × m matrix M over Zp, we define
RowSpace(M) = {xM |x ∈ Znp}. The cokernel of M is defined as cok(M) = Zmp /RowSpace(M).
Freidman and Washington [27] proved that if Mn is an n × n random matrix over Zp, with
respect to the Haar-measure, then cok(Mn) asymptotically follows the distribution from the
Cohen-Lenstra heuristic, that is, for any finite abelian p-group G, we have

lim
n→∞

P(cok(Mn) ' G) = |Aut(G)|−1
∞∏
j=1

(1− p−j).

In fact this is true even in a more general setting. It is enough to assume that the entries of Mn

are independent and they are not degenerate in a certain sense. This was proved by Wood [60].
Her paper also contains similar results for non-square matrices.

Bhargava, Kane, Lenstra, Poonen and Rains [11] proved that the cokernels of Haar-uniform
skew-symmetric random matrices over Zp are asymptotically distributed according to Delaunay’s
heuristics. The following somewhat analogous result was obtained by Clancy, Leake, Kaplan,
Payne and Wood [18]. Let Mn be a Haar-uniform symmetric random matrix over Zp. Then, for
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CHAPTER 2

any finite abelian p-group G, we have

lim
n→∞

P(cok(Mn) ' G) =
|{φ : G×G→ C∗ symmetric,bilinear, perfect}|

|G||Aut(G)|

∞∏
j=0

(1 − p−2j−1).

(1.3)

This is exactly the distribution appearing in Theorem 1.2. Note that this is not the original for-
mula given in [18], but it can be easily deduced from it, see [58]. Here, a map φ : G×G→ C∗ is
called a symmetric, bilinear, perfect pairing if (i) φ(x, y) = φ(y, x),
(ii) φ(x, y + z) = φ(x, y)φ(x, z), and (iii) for φx(y) = φ(x, y), we have φx ≡ 1 if and only if
x = 0. We can give a more explicit formula for the limiting probability above by using the
following fact from [58]. If G =

⊕
i Z/pλiZ with λ1 ≥ λ2 ≥ · · · and µ is the transpose of the

partition λ, then

|{φ : G×G→ C∗ symmetric, bilinear,perfect}|
|G||Aut(G)|

= p−
∑
i
µi(µi+1)

2

λ1∏
i=1

bµi−µi+1
2

c∏
j=1

(1− p−2j)−1. (1.4)

Now we give a brief summary of results on distribution of sandpile groups. We already defined
the Laplacian and the sandpile group of a d-regular graph, now we give the general definitions.
We start by directed graphs. Let D be a strongly connected directed graph on the n element
vertex set V . The Laplacian ∆ of D is an n × n matrix, where the rows and the columns are
both indexed by V , and for i, j ∈ V , we have

∆ij =

{
d(i, j) for i 6= j,

d(i, i)− dout(i) for i = j.

Here d(i, j) is the multiplicity of the directed edge ij, dout(i) is the out-degree of i, that is,
dout(i) =

∑
j∈V d(i, j). For s ∈ V , the reduced Laplacian ∆s is obtained from ∆ by deleting the

row and column corresponding to s. The group Γs = Zn−1/RowSpace(∆s) is called the sandpile
group at vertex s. The order of Γs is the number of spanning trees in D oriented towards s. Let us
define
Zn0 = {x ∈ Zn|

∑n
i=1 xi = 0}. Note that every row of ∆ is in Zn0 . Thus the following defi-

nition makes sense. The group Γ = Zn0/RowSpace(∆) is called the total sandpile group. If D is
Eulerian, then all of these definitions of sandpile groups coincide, so it is justified to speak about
the sandpile group of D. In fact, the converse of the above statement about Eulerian graphs is
also true, see Farrel and Levine [25].

For an undirected graph G, let D be the directed graph obtained from G by replacing each edge
{i, j} of G by the directed edges ij and ji. Then D is Eulerian. The sandpile group of G is
defined as the sandpile group of D. See [36, 39, 51, 32] for more information on sandpile groups.

We already mentioned the result of Wood [58] on Erdős-Rényi random graphs. Here we give
more details. For 0 ≤ % ≤ 1, the Erdős-Rényi random graph G(n, %) is a graph on the vertex set
{1, 2, . . . , n}, such that for each pair of vertices, there is an edge connecting them with probability
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

% independently. Let p1, p2, . . . , ps be distinct primes. Fix 0 < % < 1. Let Γn be the sandpile
group of G(n, %). Let Γn,i be the pi-Sylow subgroup of Γn, and for i = 1, 2, . . . , s, let Gi be a
finite abelian pi-group. Then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)

=
s∏
i=1

 |{φ : Gi ×Gi → C∗ symmetric, bilinear,perfect}|
|Gi||Aut(Gi)|

∞∏
j=0

(1− p−2j−1
i )

 .

See Equation (1.4) for an even more explicit formula.

Koplewitz [38] proved the analogous result for directed graphs. For 0 ≤ % ≤ 1, the random
directed graph D(n, %) is a graph on the vertex set {1, 2, . . . , n}, such that for each ordered
pair of vertices, there is a directed edge connecting them with probability % independently. Let
p1, p2, . . . , ps be distinct primes. Fix 0 < % < 1. Let Γn be the total sandpile group of D(n, %).
Let Γn,i be the pi-Sylow subgroup of Γn, and for i = 1, 2, . . . , s, let Gi be a finite abelian pi-group.
Then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)
=

s∏
i=1

∏∞
j=2(1− p−ji )

|G||Aut(G)|
.

Note that, unlike what we would expect knowing the undirected case, this distribution is not
the same as the one given in Theorem 1.1 for the random directed d-regular graph Dn. A quick
explanation is that Dn is Eulerian, while D(n, %) is not. Indeed, the total sandpile group is
defined as Zn0 ' Zn−1 factored out by n relations, so for a general directed graph, we expect that
it behaves like the cokernel of a random n × (n − 1) matrix. However, for an Eulerian graph
these n relations are linearly dependent, because their sum is zero, so we expect that the total
sandpile group behaves like the cokernel of a random (n−1)× (n−1) matrix. The results above
indeed support these intuitions.

The structure of the chapter

Section 2 contains the basic definitions that we need, including the notion of typical vectors.
In Section 3, we investigate the distribution of Anq, where q is a typical vector. The re-
sults in this section allow us to handle the contribution of the typical vectors to the sum∑

q∈V n d∞(A
(d)
n q, Uq,d) in Theorem 1.5, but we still need to control the contribution of the non-

typical vectors. This is done in Section 4. The connection between the mixing property of the
adjacency matrix and the sandpile group is explained in Section 5. In Section 6, we prove that
several results hold uniformly in d. Most of the chapter deals with the directed random graph
model, the necessary modifications for the undirected model are given in Section 7 and Section 8.
In Section 9, we prove Theorem 1.9. At many points of the chapter we need to estimate the
probabilities of certain non-typical events, the proofs of these lemmas are collected in Section 10.
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CHAPTER 2

2 Preliminaries

In most of the chapter we will consider the directed model, and then later give the modifications
of the arguments that are needed to be done for the undirected model.

Consider a vector q = (q1, q2, ..., qn) ∈ V n. For a permutation π of the set {1, 2, . . . , n}, the
vector qπ = (qπ(1), qπ(2), . . . , qπ(n)) is called a permutation of q. We write q1 ∼ q2 if q1 and q2 are
permutations of each other. The relation ∼ is an equivalence relation, the equivalence class of q,
i.e., the set of permutations of q is denoted by S(q). A random permutation of q is defined as the
random variable qπ, where π is chosen uniformly from the set of all permutations, or equivalently,
as a uniform random element of S(q).

Note that for q ∈ V n, the equivalence class S(q) can be described by |V | non-negative integers
summing up to n. Namely, for c ∈ V , we define

mq(c) = |{i | qi = c}|,

so mq can be considered as a vector in RV .

Fix 1
2 < α < β < γ < 2

3 . We keep these choices fixed throughout the whole chapter. All the
(explicit or implicit) constants are allowed to depend on the choice of α, β and γ. However, since
we view α, β and γ as fixed, we will never emphasize this.

Note that if we choose a uniform random element q of V n, then the expectation of mq(c) is n
|V |

for any c ∈ V . This makes the following definition quite natural.

Definition 2.1. A vector q ∈ V n is called α-typical if
∥∥∥mq − n

|V |1
∥∥∥
∞
< nα. Here 1 is the all 1

vector and ‖.‖∞ is the maximum norm.

Similarly, we can can define β-typical vectors. Note that, since α > 1
2 , a uniform element of V n

will be α-typical with probability 1− o(1).

We write A(d)
n in place of An to emphasize the value of d.

One of the key steps towards Theorem 1.5 is the following theorem.

Theorem 2.2. For any fixed finite abelian group V and d ≥ 3, we have

lim
n→∞

|V |n sup
q∈V n α−typical

d∞(A(d)
n q, Uq,d) = 0.

This will be an easy consequence of the following theorem.

Theorem 2.3. For any fixed finite abelian group V and h ≥ 2, we have

lim
n→∞

sup
q∈V n α−typical

r∈R(q,h) β−typical

∣∣∣P(A(h)
n q = r)|V |n−1 − 1

∣∣∣ = 0.
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

In the proofs we often need to consider h-tuples Q = (q(1), q(2), . . . , q(h)) where each q(i) is a
permutation of a fixed q ∈ V n. Such h-tuples will be called (q, h)-tuples. Let Qq,h be the set
of (q, h)-tuples. A random (q, h)-tuple is a tuple Q̄ = (q̄(1), q̄(2), . . . , q̄(h)), where q̄(1), q̄(2), ..., q̄(h)

are independent random permutations of q.

Whenever we use the symbols Q and Q̄, they stand for a (q, h)-tuple, and a random (q, h)-tuple
respectively, even if this is not mentioned explicitly. The value of q should be clear from the
context.

Sometimes, it will be convenient to view a (q, h)-tuple Q as a vector Q = (Q1, Q2, . . . , Qn)

in
(
V h
)n, where Qi = (q

(1)
i , q

(2)
i , . . . , q

(h)
i ). The vector mq was used to extract the important

information from a vector q ∈ V n, we do the same for (q, h)-tuples, that is, for t ∈ V h, we define

mQ(t) = |{i | Qi = t}|.

For a subset S of V h, the sum
∑

t∈SmQ(t) is denoted by mQ(S). Instead of S, we usu-
ally just write the property that defines the subset S. For example, mQ(τ1 = c) stands for
mQ({τ ∈ V h| τ1 = c}).

Definition 2.4. A (q, h)-tuple Q or mQ itself will be called γ-typical if∥∥∥∥mQ −
n

|V |h
1

∥∥∥∥
∞
< nγ .

The sum Σ(Q) of a (q, h)-tuple Q is defined as Σ(Q) =
∑h

i=1 q
(i).

Note that for a random (q, h)-tuple Q̄, the distribution of Σ(Q̄) is the same as that of A(h)
n q.

Later in the chapter, we will give asymptotic formulas that will be true uniformly in the following
sense.

Definition 2.5. Let X1, X2, ... and Y1, Y2, ... be two sequences of finite sets,
Pn ⊂ Xn × Yn, f : ∪∞n=1Xn → R and g : ∪∞n=1Yn → R.

The term f(xn) ∼ g(yn) uniformly for (xn, yn) ∈ Pn means that

lim
n→∞

sup
(xn,yn)∈Pn

∣∣∣∣f(xn)

g(yn)
− 1

∣∣∣∣ = 0.

The statement of Theorem 2.3 then can be reformulated as

P(Σ(Q̄) = r) ∼ 1

|V |n−1

uniformly for any α-typical q ∈ V n and β-typical r ∈ R(q, h).
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CHAPTER 2

3 Behavior of typical vectors

In this section and the next section, we keep V and h fixed. All the (explicit or implicit) constants
are allowed to depend on V and h. Moreover, whenever we claim the convergence of any quantity,
it is meant that the convergence is only true for fixed V and h. We never claim any uniformity
over the choice of V and h. Note that we deal with the question of uniformity in d in Section 6
separately.

We assume that h ≥ 2 throughout this section.

3.1 The proof of Theorem 2.3

We express the event Σ(Q̄) = r as the disjoint union of smaller events, which can be handled
more easily. Let

M(q, r) = {mQ | Q ∈ Qq,h,Σ(Q) = r}.5

Then the event Σ(Q̄) = r can be written as the disjoint union of the events (Σ(Q̄) = r)∧ (mQ̄ =

m) where m runs throughM(q, r), so

P(Σ(Q̄) = r) =
∑

m∈M(q,r)

P((Σ(Q̄) = r) ∧ (mQ̄ = m)).

Observe that M(q, r) consists of the non-negative integral points of a certain affine subspace
A(q, r) of RV h . This affine subspace A(q, r) is determined by linear equations expressing that
whenever Σ(Q) = r for a (q, h)-tuple Q = (q(1), q(2), . . . , q(h)), we have mq(i) = mq for every
i = 1, 2, . . . , h and mΣ(Q) = mr, as the following lemma shows.

For t = (t1, t2, . . . , th) ∈ V h, we define tΣ as tΣ =
∑h

i=1 ti.

Lemma 3.1. Consider q, r ∈ V n. If m ∈ M(q, r), then m is a non-negative integral vector
satisfying the following linear equations:

m(τi = c) = mq(c) ∀i ∈ {1, 2, . . . , h}, c ∈ V, (3.1)

m(τΣ = c) = mr(c) ∀c ∈ V. (3.2)

Now assume that m is a nonnegative integral vector satisfying the equations above, then
5Here we omitted from the notation the dependence on h, later we will do this several times without mentioning

it.
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

P((Σ(Q̄) = r) ∧ (mQ̄ = m)) =

∏
c∈V mr(c)!∏
t∈V hm(t)!

/(
n!∏

c∈V mq(c)!

)h
(3.3)

=

∏
c∈V m(τΣ = c)!∏

t∈V hm(t)!

/(
n!∏

c∈V mq(c)!

)h
.

In particular, P((Σ(Q̄) = r) ∧ (mQ̄ = m)) > 0 so m ∈ M(q, r). Thus, M(q, r) is the set of
non-negative integral points of the affine subspace A(q, r) given by the linear equations above.

Proof. We only give the proof of Equation (3.3), since all the other statements of the lemma are
straightforward to prove. For c ∈ V , let

Ic = {i ∈ {1, 2, . . . , n}| ri = c},

and let Wc = {t ∈ V h|tΣ = c}. Let Q = (Q1, Q2, . . . , Qn) ∈
(
V h
)n. Assume that m is a

nonnegative integral vector satisfying Equation (3.1) and Equation (3.2) above. Observe that
Q ∈ Qq,h, mQ = m and Σ(Q) = r if and only if for every c ∈ V , the sets

({i ∈ {1, 2, . . . , n} | Qi = t})t∈Wc

give us a partition of Ic, such that for every t ∈Wc, the size of the corresponding part is m(t).

Note that for any c ∈ V , we have

|Ic|!∏
t∈Wc

m(t)!
=

mr(c)!∏
t∈Wc

m(t)!

such partitions of Ic.

Clearly, the total number (q, h)-tuples is(
n!∏

c∈V mq(c)!

)h
.

Putting everything together the statement follows.

The left hand sides of Equation (3.1) and Equation (3.2) in Lemma 3.1 do not depend on q or
r, therefore the affine subspaces A(q, r) are all parallel for any choice of q and r. Hence, for
every q, r1, r2 ∈ V n, there is a translation that moves A(q, r1) to A(q, r2). There are many such
translations, and we will use the one given in the next lemma.

Lemma 3.2. For any r1, r2 ∈ V n, we define the vector v = vr1,r2 ∈ RV h by

v(t) =
mr2(tΣ)−mr1(tΣ)

|V |h−1
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CHAPTER 2

for every t ∈ V h. Then, for any q ∈ V h, we have

A(q, r1) + vr1,r2 = A(q, r2).

Proof. It is enough to prove that A(q, r1) + vr1,r2 ⊂ A(q, r2) or equivalently if m satisfies Equa-
tion (3.1) and Equation (3.2) in Lemma 3.1 above for r = r1, then m′ = m + vr1,r2 satisfies
Equation (3.1) and Equation (3.2) for r = r2. Observe that for any i = 1, 2, . . . , h and c, s ∈ V ,
we have

|{t ∈ V h| ti = c, tΣ = s}| = |V |h−2.

(Here we need to use that h ≥ 2.) So we have∑
t∈V h
ti=c

m′(t) =
∑
t∈V h
ti=c

m(t) +
∑
t∈V h
ti=c

vr1,r2(t)

= mq(c) +
∑
s∈V
|{t ∈ V h| ti = c, tΣ = s}|mr2(s)−mr1(s)

|V |h−1

= mq(c) +
1

|V |

(∑
s∈V

mr2(s)−
∑
s∈V

mr1(s)

)

= mq(c) +
1

|V |
(n− n) = mq(c),

that is, Equation (3.1) is satisfied. Furthermore, for any c ∈ V , we have∑
t∈V h
tΣ=c

m′(t) =
∑
t∈V h
tΣ=c

m(t) +
∑
t∈V h
tΣ=c

vr1,r2(t)

= mr1(c) + |V |h−1mr2(c)−mr1(c)

|V |h−1
= mr2(c),

that is, Equation (3.2) is satisfied.

Whenever A(q, r) contains integral points, the integral points of A(q, r) are placed densely, in
the sense that there is a D, depending only on h and V , such that for any point x ∈ A(q, r),
there is an integral point y ∈ A(q, r) with ‖x− y‖∞ < D. Actually, this is a general fact as the
following lemma shows.

Lemma 3.3. Let A be an affine subspace of Rk which is given by a set of equations with rational
coefficients. Assume that A contains an integral point p. Then there is a D such that for any
point x ∈ A, there is an integral point y ∈ A with ‖x− y‖∞ < D. For parallel subspaces, we can
choose the same D.

Proof. Observe that we can write A as A = p+A0, where A0 is a linear subspace generated by
a set of rational vectors {a1, a2, . . . , a`}. Multiplying these vectors with an appropriate scalar,
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

we may assume that they are all integral vectors. Let

D =
∑̀
i=1

‖ai‖∞.

Note that x− p ∈ A0, so x− p =
∑`

i=1 αiai for some constants αi. Then

y = p+
∑̀
i=1

bαicai

is an integral vector such that ‖x− y‖∞ < D.

For c ∈ V , let wc ∈ RV h be such that wc(t) = 1 if tΣ = c and wc(t) = 0 otherwise. For
i = 1, 2, . . . , h and c ∈ V , let ui,c ∈ RV h be such that ui,c(t) = 1 if ti = c and ui,c(t) = 0

otherwise.

Lemma 3.4. If r ∈ R(q, h), then A(q, r) contains an integral point.

Proof. We need to show that the system of linear equations given by Equation (3.1) and Equation
(3.2) admits an integral solution. Using the integral analogue of Farkas’ lemma [54, Corollary
4.1a.], we obtain that there exists an integral solution if and only if for every choice of rational
numbers
0 ≤ γ(i, c) < 1 (i = 1, 2, . . . , h, c ∈ V ) and 0 ≤ δ(c) < 1 (c ∈ V ) such that

h∑
i=1

∑
c∈V

γ(i, c)ui,c +
∑
c∈V

δ(c)wc is an integral vector (3.4)

the number
∑h

i=1

∑
c∈V γ(i, c)mq(c) +

∑
c∈V δ(c)mr(c) is an integer. We project the rational

numbers γ(i, c) and δ(c) to the group S1 = Q/Z. From now on we work in the group S1. The
condition given in (3.4) translates as follows. For every t ∈ V h,

h∑
i=1

γ(i, ti) + δ(tΣ) = 0 (3.5)

in the group S1. We define γ′(i, c) = γ(i, c) − γ(i, 0) and δ′(c) = δ(c) +
∑h

i=1 γ(i, 0). Clearly
γ′(i, 0) = 0. Moreover, from Equation (3.5) with t = 0, we get that
δ′(0) = 0. Equation (3.5) can be rewritten as

h∑
i=1

γ′(i, ti) + δ′(tΣ) = 0.
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For every i and c, if t ∈ V h is such that ti = c and tj = 0 for i 6= j, then we obtain that
γ′(i, c) = −δ′(c). Therefore, Equation (3.5) can be once again rewritten as

h∑
i=1

δ′(ti) = δ′(tΣ) = δ′

(
h∑
i=1

ti

)
,

which means that δ′ is a group homomorphism between V and Q/Z. Thus, we get that

h∑
i=1

∑
c∈V

γ(i, c)mq(c) +
∑
c∈V

δ(c)mr(c)

=

h∑
i=1

∑
c∈V

(
γ′(i, c) + γ(i, 0)

)
mq(c) +

∑
c∈V

(
δ′(c)−

h∑
i=1

γ(i, 0)

)
mr(c)

=
h∑
i=1

∑
c∈V
−δ′(c)mq(c) +

∑
c∈V

δ′(c)mr(c)

= −h
∑
c∈V

δ′(c)mq(c) +
∑
c∈V

δ′(c)mr(c)

= −h
n∑
i=1

δ′(qi) +
n∑
i=1

δ′(ri) = δ′ (−h · s(q) + s(r)) = δ′(0) = 0

using that r ∈ R(q, h). That is,
∑h

i=1

∑
c∈V γ(i, c)mq(c) +

∑
c∈V δ(c)mr(c) is indeed an integer.

Suppose that r1, r2 ∈ R(q, h). Let v = vr1,r2 . Then there is an integral point m1 in A(q, r1).
Since m1 +v ∈ A(q, r2), there is an integral point m2 in A(q, r2) such that ‖m1 +v−m2‖∞ < D.
Set v̂ = v̂r1,r2 = m2−m1, then ‖v̂−v‖∞ < D and the map m 7→ m+ v̂ gives a bijection between
the integral points of A(q, r1) and the integral points of A(q, r2).

For each α-typical q ∈ V n, fix an arbitrary β-typical r0 = r0(q) ∈ R(q, h), that is, let r0 be any
β-typical r0 ∈ V n such that s(r0) = h · s(q). Set

M∗(q, r0) =

{
m ∈M(q, r0)

∣∣∣ ∥∥∥∥m− n

|V |h
1

∥∥∥∥
∞
< 2nγ

}
.

For any other β-typical r ∈ R(q, h), we define

M∗(q, r) = {m+ v̂r0,r | m ∈M∗(q, r0)} ⊂ M(q, r).

Observe that for large enough n, if both r0 and r are β-typical, then

‖v̂r0,r‖∞ < D +
2nβ

|V |h−1
< nγ .
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Thus, using that the map m 7→ m + v̂r0,r is a bijection between the integral points of A(q, r0)

and the integral points of A(q, r), we obtain that if n is large enough, then for every α-typical
q ∈ V n and β-typical r ∈ R(q, h), we have

{
m ∈M(q, r)

∣∣∣ ∥∥∥∥m− n

|V |h
1

∥∥∥∥
∞
< nγ

}
⊂M∗(q, r). (3.6)

Here the set on the left is just the set of the γ-typical elements ofM(q, r).

The crucial point of our argument is the next lemma.

Lemma 3.5. For an α-typical q ∈ V n, a β-typical r ∈ R(q, h), r0 = r0(q) and m ∈ M∗(q, r0),
we have that

P((Σ(Q̄) = r0) ∧ (mQ̄ = m)) ∼ P((Σ(Q̄) = r) ∧ (mQ̄ = m+ v̂r0,r))

uniformly in the sense of Definition 2.5.

Remark 3.6. For clarity, we write out the definition of the uniform convergence above. That is,
Lemma 3.5 is equivalent with the statement that for any fixed V and h, we have

lim
n→∞

sup
q∈V n α-typical
m∈M∗(q,r0(q))

r∈R(q,h) β-typical

∣∣∣∣∣ P((Σ(Q̄) = r0(q)) ∧ (mQ̄ = m))

P((Σ(Q̄) = r) ∧ (mQ̄ = m+ v̂r0(q),r))
− 1

∣∣∣∣∣ = 0.

To prove Lemma 3.5, we need a few lemmas.

The following approximation will be useful for Lemma 3.8.

Lemma 3.7. Fix K(n) such that K(n) = o
(
n

2
3

)
. Then for |k| < K(n), we have

(n+ k)! ∼
√

2πn
(n
e

)n
exp

(
k log n+

k2

2n

)
uniformly. In other words, we have

lim
n→∞

sup
|k|<K(n)

∣∣∣∣∣∣
√

2πn
(
n
e

)n
exp

(
k log n+ k2

2n

)
(n+ k)!

− 1

∣∣∣∣∣∣ = 0.

Proof. Using Taylor’s theorem with the Lagrange form of the remainder [53, Theorem 5.15] for
the function f(x) = x log x, we get that∣∣∣∣(n+ k) log(n+ k)−

(
n log n+ (log n+ 1)k +

k2

2n

)∣∣∣∣ =

∣∣∣∣∣f (3)(c)

6
k3

∣∣∣∣∣ =
|k|3

6c2
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for some c ∈ (n, n+ k). This implies that

lim
n→∞

sup
|k|<K(n)

∣∣∣∣(n+ k) log(n+ k)−
(
n log n+ (log n+ 1)k +

k2

2n

)∣∣∣∣ = 0.

It is also clear that √
n+ k√
n
∼ 1

uniformly for |k| ≤ K(n).

Recall that Stirling’s formula [53, (8.22)] states that

n! ∼
√

2πn exp(n log n− n).

If we put everything together, then we get that

(n+ k)! ∼
√

2π(n+ k) exp ((n+ k) log(n+ k)− (n+ k))

∼
√

2πn exp

((
n log n+ (log n+ 1)k +

k2

2n

)
− (n+ k)

)
=
√

2πn
(n
e

)n
exp

(
k log n+

k2

2n

)
uniformly for |k| ≤ K(n).

Note that in the lemma above, we do not need to assume that n is an integer, as long as n+ k

is an integer.

In the next lemma, we use the notation a(n) =
√

2πn(ne )n.

Lemma 3.8. For q, r ∈ V n and m ∈M(q, r) such that
∥∥∥m− n

|V |h1
∥∥∥
∞
< 3nγ, we have

P((Σ(Q̄) = r) ∧ (mQ̄ = m)) ∼ f(q) exp

(
1

2n
B

(
m− n

|V |h
1,m− n

|V |h
1

))
uniformly, where

f(q) =

(
n!∏

c∈V mq(c)!

)−h (
a
(
n
|V |

))|V |
(
a
(

n
|V |h

))|V |h ,
and B : RV h × RV h → R is a bilinear form defined as

B(x, y) = |V |
∑
c∈V

∑
t∈V h
tΣ=c

x(t)


∑
t∈V h
tΣ=c

y(t)

− |V |h ∑
t∈V h

x(t)y(t).

Note that f(q) does not depend on r and m.
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Proof. Recall that γ < 2
3 , so for any t ∈ V h, Lemma 3.7 can be applied to expand m(t)! at the

point n
|V |h . Thus, we obtain the approximation

m(t)! ∼ a
(

n

|V |h

)
· exp

(m(t)− n

|V |h

)
log

n

|V |h
+
|V |h

(
m(t)− n

|V |h

)2

2n

 .

Similarly, for every c ∈ V , by expandingm(τΣ = c)! at the point n
|V | , we obtain the approximation

m(τΣ = c)! ∼ a
(
n

|V |

)
·exp


∑
t∈V h
tΣ=c

m(t)− n

|V |

 log
n

|V |
+

|V |
(∑

t∈V h
tΣ=c

(
m(t)− n

|V |h

))2

2n

 .

Substituting these approximations in Equation (3.3), we obtain the statement.

We made all the necessary preparations to prove Lemma 3.5.

Proof. (Lemma 3.5) It is easy to check that wc is in the radical of the bilinear form B, that
is, B(., wc) = B(wc, .) = 0. (wc was defined before Lemma 3.4.) Since vr0,r ∈ Spanc∈V wc,
we get that vr0,r is also in the radical. Observe that if n is large enough, then ‖v̂r0,r‖∞ <

D + 2nβ

|V |h−1 < nγ , so both m and m+ v̂r0,r satisfies the conditions of Lemma 3.8. It is also clear
that B(x, y) = O(‖x‖∞‖y‖∞). Thus,

1

2n
B

(
m+ v̂r0,r −

n

|V |h
1,m+ v̂r0,r −

n

|V |h
1

)
=

1

2n
B

(
m+ (v̂r0,r − vr0,r) + vr0,r −

n

|V |h
1,m+ (v̂r0,r − vr0,r) + vr0,r −

n

|V |h
1

)
=

1

2n

(
B

(
m− n

|V |h
1,m− n

|V |h
1

)
+ 2B

(
m− n

|V |h
1, v̂r0,r − vr0,r

)

+B (v̂r0,r − vr0,r, v̂r0,r − vr0,r))

)

=
1

2n

(
B(m− n

|V |h
1,m− n

|V |h
1) +O(4Dnγ +D2)

)
=

1

2n
B

(
m− n

|V |h
1,m− n

|V |h
1

)
+O(nγ−1).

Then, the statement follows from Lemma 3.8.
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From Lemma 3.5, it follows immediately that for an α-typical q and β-typical r1, r2 ∈ R(q, h),
we have ∑

m∈M∗(q,r1)

P((Σ(Q̄) = r1) ∧ (mQ̄ = m)) ∼
∑

m∈M∗(q,r2)

P((Σ(Q̄) = r2) ∧ (mQ̄ = m))

uniformly, or equivalently

P((Σ(Q̄) = r1) ∧ (mQ̄ ∈M∗(q, r1))) ∼ P((Σ(Q̄) = r2) ∧ (mQ̄ ∈M∗(q, r2))) (3.7)

uniformly.

The content of the next lemma can be summarized as "only the typical events matter".

Lemma 3.9. We have

(i) A uniformly chosen element of V n is β-typical with probability 1− o(1).

(ii) There is a C1 such that for any α-typical q ∈ V n, we have

P(Q̄ is not γ − typical) ≤ C1 exp(−n2γ−1/C1).

In particular, for an α-typical q ∈ V n, we have P(Q̄ is γ − typical) ∼ 1 uniformly in the
sense of Definition 2.5.

(iii) There is a C2 such that for any α-typical q ∈ V n, we have

P(Σ(Q̄) is not β − typical) ≤ C2 exp(−n2β−1/C2).

In particular, for an α-typical q ∈ V n, we have P(Σ(Q̄) is β− typical) ∼ 1 uniformly in the
sense of Definition 2.5.

(iv) The following holds

lim
n→∞

sup
q∈V n α−typical

r∈R(q,h) β−typical

P
(
(Σ(Q̄) = r) ∧ (Q̄ is not γ − typical)

)
|V |n−1 = 0.

Proof. Part (i) can be proved using standard concentration results. We omit the details. To
prove the other statements of Lemma 3.9, we need the following result.

Lemma 3.10. Fix K(n) such that nα = o(K(n)). There is a C such that for any α-typical
q ∈ V n and a random (q, h)-tuple Q̄, we have

P
(∥∥∥∥mQ̄ −

n

|V |h
1

∥∥∥∥
∞
≥ K(n)

)
≤ C exp

(
−K(n)2

Cn

)
.
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Proof. Observe that for any α-typical q ∈ V n and t ∈ V h, we have∣∣∣∣∣n
h∏
i=1

mq(ti)

n
− n

|V |h

∣∣∣∣∣ = O(nα) = o(K(n)),

where the hidden constant does not depend on q or t. Thus, for an α-typical q ∈ V n and a
(q, h)-tuple Q, if we have ∣∣∣∣mQ(t)− n

|V |h

∣∣∣∣ ≥ K(n)

for some t ∈ V h, then ∣∣∣∣∣mQ(t)− n
h∏
i=1

mq(ti)

n

∣∣∣∣∣ ≥ (1− o(1))K(n).

The lemma follows from Lemma 10.2 and the union bound.

With the choice of K(n) = nγ Lemma 3.10 implies part (ii).

To prove part (iii), choose K(n) = |V |−(h−1)nβ , and observe the following. For (q, h)-tuple Q, if
we have ∥∥∥∥mQ −

n

|V |h
1

∥∥∥∥
∞
< K(n),

then Σ(Q) is β-typical.

To prove part (iv), we need the following lemma.

Lemma 3.11. There is a C3 > 0 such that for every β-typical r ∈ V n, if we consider the number
of permutations of r, i. e., the cardinality of the set S(r) = {r′ is a permutation of r}, then we
have

|S(r)| ≥ |V |n exp
(
−C3n

2β−1
)
.

Proof. This can be proved using Lemma 3.7.

Part (iv) follows from the next lemma.

Lemma 3.12. We will use the constants C1 and C3 provided by Lemma 3.11 and part (ii). For
every α-typical q ∈ V n, β-typical r ∈ V n and a random (q, h)-tuple Q̄, we have

P(Σ(Q̄) = r and Q̄ is not γ-typical) <
C1 exp

(
−n2γ−1/C1 + C3n

2β−1
)

|V |n
.

Here the numerator C1 exp
(
−n2γ−1/C1 + C3n

2β−1
)
on the right hand side goes to 0 as n goes

to infinity.

Proof. For every r′ ∈ S(r), consider the event that Σ(Q̄) = r′ and Q̄ is not
γ-typical. These events are disjoint, and by symmetry, they have the same probability. Moreover,
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they are all contained by the event that Q is not γ-typical. Thus,

P(Σ(Q̄) = r and Q̄ is not γ-typical) ≤ P(Q̄ is not γ-typical)
|S(r)|

.

The statement then follows from part (ii) and Lemma 3.11.

This concludes the proof of Lemma 3.9.

Fix an α-typical q ∈ V n. For every β-typical r ∈ R(q, h), consider the events
(Σ(Q̄) = r) ∧ (mQ̄ ∈ M∗(q, r)). These events are pairwise disjoint. Moreover, from (3.6)
above, we see that their union contains the event (Σ(Q̄) is β − typical) ∧ (Q̄ is γ − typical) for
large enough n. So for large enough n, we have

P((Σ(Q̄) is β − typical) ∧ (Q̄ is γ − typical))

≤
∑

r∈R(q,h) β−typical

P((Σ(Q̄) = r) ∧ (mQ̄ ∈M∗(q, r))) ≤ 1. (3.8)

From part (ii) and (iii) of Lemma 3.9, we get that

P((Σ(Q̄) is β − typical) ∧ (Q̄ is γ − typical)) ∼ 1

uniformly for all α-typical q ∈ V n. Thus∑
r∈R(q,h) β−typical

P((Σ(Q̄) = r) ∧ (mQ̄ ∈M∗(q, r))) ∼ 1

uniformly for every α-typical q ∈ V n. Combining this with Equation (3.7), we obtain that

P((Σ(Q̄) = r) ∧ (mQ̄ ∈M∗(q, r))) ∼

|{r ∈ R(q, h)| r is β-typical}|−1 ∼ |R(q, h)|−1 = |V |−(n−1)

uniformly for all α-typical q ∈ V n and β-typical r ∈ R(q, h). Here in the second line, we used
part (i) of Lemma 3.9. Finally, using part (iv) of Lemma 3.9 and (3.6), we get Theorem 2.3.

3.2 The proof of Theorem 2.2

We start by a simple lemma.

Lemma 3.13. For q, r ∈ V n, and h ≥ 2, we have P(A
(h)
n q = r) ≤ |S(q)|−1.

Proof. Let q′ be a uniform random permutation of q independent from A
(h−1)
n . Observe that

A
(h)
n q has the same distribution as A(h−1)

n q + q′. The statement of the lemma follows from the
facts that

P(A(h−1)
n q + q′ = r| r −A(h−1)

n q ∼ q) = |S(q)|−1
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and
P(A(h−1)

n q + q′ = r| r −A(h−1)
n q 6∼ q) = 0.

Now we prove Theorem 2.2 from Theorem 2.3.

Proof. Let q ∈ V n be α-typical, and let r ∈ R(q, d). Let q′ be a uniform random permutation of
q independent from A

(d−1)
n . Observe that A(d)

n q has the same distribution as A(d−1)
n q + q′. Now,

we have
P(A(d)

n q = r) = EP(A(d−1)
n q = r − q′),

where the expectation is over the random choice of q′.

Observe that

• P(A
(d−1)
n q = r − q′) ∼ |V |−(n−1) uniformly, if r − q′ is β-typical.

• 0 ≤ P(A
(d−1)
n q = r − q′) ≤ |S(q)|−1 otherwise.

Indeed, the first statement follows from Theorem 2.3 and the fact that r− q′ ∈ R(q, d− 1). The
second statement follows from Lemma 3.13.

Moreover, combining Lemma 10.1 with the union bound, we get the following statement. There
is a c > 0 such that

P(r − q′ is not β − typical) ≤ exp(−cn2β−1).

From the law of total probability, we have

P(A(d)
n q = r) = P(A(d−1)

n q = r − q′|r − q′ is β − typical)P(r − q′ is β − typical)

+ P(A(d−1)
n q = r − q′|r − q′ is not β − typical)P(r − q′ is not β − typical).

Inserting the inequalities above into this, we obtain that

(1+o(1))|V |−(n−1)(1−exp(−cn2β−1)) ≤ P(A(d)
n q = r) ≤ (1+o(1))|V |−(n−1)+

exp(−cn2β−1)

|S(q)|
.

Since there is c′ such that |S(q)| ≥ |V |n exp(−c′n2α−1) for every α-typical q ∈ V n, we get that
exp(−cn2β−1)/|S(q)| = o(|V |−n). The theorem follows.
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4 Only the typical vectors matter

The aim of this section to prove Theorem 1.5. Let Cos(V ) be the set of all cosets in V . Given a
function f(n), and a subset W of V , a vector q ∈ V n will be called (W, f(n))-typical if for every
c ∈ W , we have

∣∣∣mq(c)− n
|W |

∣∣∣ < nα and
∑

c 6∈W mq(c) ≤ f(n). In the previous section, we used
the term α-typical for (V, 0)-typical vectors.

We start by a simple corollary of Theorem 2.2.

Lemma 4.1. We have

lim
n→∞

∑
W∈Cos(V )

∑
q is

(W,0)−typical

d∞(Anq, Uq,d) = 0.

Proof. IfW is a subgroup of V , then from Theorem 2.2, we know that d∞(Anq, Uq,d) is o(|W |−n)

uniformly for all (W, 0)-typical q. On the other hand, the number of (W, 0)-typical vectors is at
most |W |n. Thus,

lim
n→∞

∑
q is (W,0)−typical

d∞(Anq, Uq,d) = 0.

Consider a coset W ∈ Cos(V ) such that W is not a subgroup of V . Let t ∈W , then W0 = W − t
is a subgroup of V . For q = (q1, q2, . . . , qn) ∈Wn, we define q′ = (q1− t, q2− t, . . . , qn− t). Note
that q 7→ q′ is a bijection between Wn and Wn

0 , and it is also a bijection between (W, 0)-typical
and (W0, 0)-typical vectors. Using this, it is easy to see that d∞(Anq, Uq,d) = d∞(Anq

′, Uq′,d),
which implies that

lim
n→∞

∑
q is (W,0)−typical

d∞(Anq, Uq,d) = lim
n→∞

∑
q′ is (W0,0)−typical

d∞(Anq
′, Uq′,d) = 0,

using the already established case. Since Cos(V ) is finite, the statement follows.

For q ∈ V n, choose rq such that

P(Anq = rq) = max
r∈V n

P(Anq = r).

For W ∈ Cos(V ), we define I(Wn) = {q ∈Wn | MinCq = W}.

Note that V n = ∪W∈Cos(V )I(Wn), where this is a disjoint union.
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Then

lim sup
n→∞

∑
q∈V n

d∞(Anq, Uq,d)

= lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn)

d∞(Anq, Uq,d)

= lim sup
n→∞

∑
W∈Cos(V )

∑
q is

(W,0)−typical

d∞(Anq, Uq,d)

+ lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn) is

not (W,0)−typical

d∞(Anq, Uq,d). (4.1)

Using Lemma 4.1, we have

lim sup
n→∞

∑
W∈Cos(V )

∑
q is

(W,0)−typical

d∞(Anq, Uq,d) = 0.

For q ∈ I(Wn), we have

d∞(Anq, Uq,d) ≤ |W |−(n−1) + P(Anq = rq)

from the triangle inequality. Moreover,

|{q ∈ I(Wn) | q is not (W, 0)− typical}| = o(|W |n)

from standard concentration results.

Inserting these into Equation (4.1), we obtain that

lim sup
n→∞

∑
q∈V n

d∞(Anq, Uq,d)

≤ lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn) is

not (W,0)−typical

(
|W |−(n−1) + P(Anq = rq)

)

= lim sup
n→∞

∑
W∈Cos(V )

|{q ∈ I(Wn) | q is not (W, 0)− typical}||W |−(n−1)

+ lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn) is

not (W,0)−typical

P(Anq = rq)

= lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn) is

not (W,0)−typical

P(Anq = rq).
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Thus, in order to prove Theorem 1.5, it is enough to prove that

lim sup
n→∞

∑
W∈Cos(V )

∑
q∈I(Wn) is

not (W,0)−typical

P(Anq = rq) = 0.

We establish this in three steps, namely, we prove that

lim sup
n→∞

∑
q∈V n is not

(W,nα)−typical for any W∈Cos(V )

P(Anq = rq) = 0, (4.2)

lim sup
n→∞

∑
W∈Cos(V )

∑
q is (W,nα)−typical,

but not (W,C logn)−typical

P(Anq = rq) = 0, (4.3)

lim sup
n→∞

∑
W∈Cos(V )

∑
q is (W,C logn)−typical,
but not (W,0)−typical

P(Anq = rq) = 0, (4.4)

where C is a constant to be chosen later.

Equations (4.2), (4.3) and (4.4) are proved in Subsections 4.1, 4.3 and 4.4 respectively.

4.1 Proof of Equation (4.2)

The following terminology will be useful for us. With every (q, d−1)-tuple Q = (Q1, Q2, . . . , Qn)

we associate the random variables Z ∈ V and XQ = (XQ
1 , X

Q
2 , . . . , X

Q
d−1) ∈ V d−1, such that

Z = rq(i) and XQ = Qi, where i is a uniform random element of the set {1, 2, . . . , n}. Each
XQ
j has the same distribution as qi where i is chosen uniformly from {1, 2 . . . , n}. The random

variable XQ
Σ ∈ V is defined as XQ

Σ =
∑d−1

i=1 X
Q
i . These two sets of (q, d− 1)-tuples are equal:

{Q | rq − Σ(Q) ∼ q} = {Q | Z −XQ
Σ

d
= XQ

1 }.

Here d
= means that the two random variables have the same distribution. Thus,

P
(
rq −A(d−1)

n q ∼ q
)

= PQ̄
(
Z −XQ̄

Σ
d
= XQ̄

1

)
,

where the subscript in the notation PQ̄ indicates that the probability is over the random choice
of Q̄.

We call the random variables Z,X1, ..., Xd−1 ∈ V ε-independent, if for every z, x1, ..., xd−1 ∈ V ,
we have

|P(Z = z,X1 = x1, ..., Xd−1 = xd−1) − P(Z = z)P(X1 = x1) · · ·P(Xd−1 = xd−1)| < ε.

37

C
E

U
eT

D
C

ol
le

ct
io

n



THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Fix 1
2 < η < α. The next lemma follows from Lemma 10.2 and the union bound.

Lemma 4.2. For any q ∈ V n, we have

PQ̄(Z,XQ̄
1 , X

Q̄
2 , . . . , X

Q̄
d−1 are not nη−1-independent) ≤ |V |d2(d − 1) exp

(
− 2n2η−1

(d− 1)2

)
.

The crucial step in the proof of Equation (4.2) is the following lemma, which is proved in the
next subsection.

Lemma 4.3. Let d ≥ 3. There is C and ε0 > 0 (which may depend on d and V ), such that the
following holds. Assume that Z,X1, X2, ..., Xd−1 are ε-independent V -valued random variables,
for some 0 < ε < ε0. Let XΣ = X1 + X2 + · · · + Xd−1. Assume that X1, X2, . . . , Xd−1 and
Z −XΣ have the same distribution π. Then there is a coset W in V such that d∞(π, πW ) < Cε.

Here πW is the uniform distribution on W . For two distribution π and µ on the same finite set
R, their distance d∞(π, µ) is defined as

d∞(π, µ) = max
r∈R
|π(r)− µ(r)|.

Combining the last lemma with Lemma 4.2, we get the following lemma.

Lemma 4.4. Assume that n is large enough. Let q ∈ V n. If

P
(
rq −A(d−1)

n q ∼ q
)

= PQ̄
(
Z −XQ̄

Σ
d
= XQ̄

1

)
> |V |d2(d− 1) exp

(
− 2n2η−1

(d− 1)2

)
,

then q is (W,nα)-typical for some coset W in V . In other words, if q is not
(W,nα)-typical for any coset W , then

P
(
rq −A(d−1)

n q ∼ q
)

= PQ̄
(
Z −XQ̄

Σ
d
= XQ̄

1

)
≤ |V |d2(d− 1) exp

(
− 2n2η−1

(d− 1)2

)
.

Proof. Combining our assumptions on q with Lemma 4.2, we have

PQ̄
(
Z,XQ̄

1 , X
Q̄
2 , . . . , X

Q̄
d−1 are nη−1-independent and Z −XQ̄

Σ
d
= XQ̄

1

)
> 0.

So there exist nη−1-independent random variables Z,X1, X2, . . . , Xd−1, such thatX1, X2, . . . , Xd−1

and Z−XΣ = Z−
∑d−1

i=1 Xi all have the same distribution as qi where i is chosen uniformly from
{1, 2, ..., n}. Let us call this distribution π. For large enough n, we have nη−1 < ε0, so Lemma
4.3 can be applied to give us that there is a coset W in V such that d∞(π, πW ) < Cnη−1. Since
nα > C|V |nη, this implies that q is (W,nα)-typical.

Now we made all the necessary preparations to prove Equation (4.2).

Due to symmetry if q1 ∼ q2, then P(A
(d)
n q1 = rq1) = P(A

(d)
n q2 = rq2). Let q(d) be a uniform

random permutation of q independent from A
(d−1)
n .
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We have ∑
q′∼q

P(A(d)
n q′ = rq′) = |S(q)|P(A(d)

n q = rq)

= |S(q)|P(A(d−1)
n q + q(d) = rq)

= |S(q)|
∑
q′∼q

P(A(d−1)
n q = rq − q′)P(q(d) = q′)

=
∑
q′∼q

P(A(d−1)
n q = rq − q′) = P(rq −A(d−1)

n q ∼ q).

Let Tn ⊂ V n be such that it contains exactly one element of each equivalence class. Then,
assuming that n is large enough, we have

∑
q∈V n is not

(W,nα)−typical for any W∈Cos(V )

P(A(d)
n q = rq)

=
∑

q∈Tn is not
(W,nα)−typical for any W∈Cos(V )

P(rq −A(d−1)
n q ∼ q)

≤ |Tn||V |d2(d− 1) exp

(
− 2n2η−1

(d− 1)2

)
.

In the last step, we used Lemma 4.4. Equation (4.2) follows from the fact that |Tn| = o
(
n|V |+1

)
=

o
(

exp
(

2n2η−1

(d−1)2

))
.

4.2 The proof of Lemma 4.3

Although we will not use the following lemma directly, we include it and its proof, because it
contains many ideas, that will occur later, in a much clearer form.

Lemma 4.5. Let Z,X1, X2, ..., Xd−1 be independent V -valued random variables. Let XΣ =

X1 + X2 + · · · + Xd−1. Assume that X1, X2, . . . , Xd−1 and Z −XΣ have the same distribution
π. Then π = πW for some coset W in V .

Proof. We use discrete Fourier transform, that is, for % ∈ V̂ = Hom(V,C∗), we define

π̂(%) =
∑
v∈V

π(v)%(v)

and
µ̂(%) =

∑
v∈V

P(Z = v)%(v).
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

The assumptions of the lemma imply that

µ̂(%)
(
π̂(%)

)d−1
= π̂(%)

for every % ∈ V̂ . In particular |µ̂(%)| · |π̂(%)|d−1 = |π̂(%)| for every % ∈ V̂ . Since |µ̂(%)|, |π̂(%)| ≤ 1,
this is only possible if |π̂(%)| ∈ {0, 1} for every % ∈ V̂ . Let us define V̂1 = {% ∈ V̂ | |π̂(%)| = 1}.
Note that V̂1 always contains the trivial character. Then for every % ∈ V̂1, the character % is
constant on the support of π. Or in other words, the support of π is contained inW% = %−1(π̂(%)),
which is a coset of ker %. Therefore, the support of π is contained in the coset W = ∩%∈V̂1

W%.
Now we prove that π̂(%) = π̂W (%) for every % ∈ V̂ , which implies that π = πW . This is clear
for % ∈ V̂1, so assume that % 6∈ V̂1, that is, π̂(%) = 0. This implies that % is not constant on W .
So there are w1, w2 ∈ W such that %(w1) 6= %(w2). For w = w1 − w2, we have %(w) 6= 1 and
W = w +W . Thus

π̂W (%) =
1

|W |
∑
v∈W

%(v) =
1

|W |
∑
v∈W

%(w + v) (4.5)

=
1

|W |
%(w)

∑
v∈W

%(v) = %(w)π̂W (%).

Since %(w) 6= 1, this means that π̂W (%) = 0.

Now we turn to the proof of Lemma 4.3.

Proof. Using the notations of the proof of Lemma 4.5, the conditions of the lemma imply that∣∣∣∣π̂(%)− µ̂(%)
(
π̂(%)

)d−1
∣∣∣∣ ≤ |V |dε

for every % ∈ V̂ . Using the fact that |µ̂(%)| ≤ 1, we obtain

∣∣∣∣π̂(%)− µ̂(%)
(
π̂(%)

)d−1
∣∣∣∣ ≥ |π̂(%)| − |µ̂(%)| · |π̂(%)|d−1 ≥ |π̂(%)| − |π̂(%)|d−1 ,

which gives us |π̂(%)| − |π̂(%)|d−1 ≤ |V |dε for every % ∈ V̂ .

Consider the [0, 1] → [0, 1] function x 7→ x − xd−1, this function only vanishes at 0 and 1.
Moreover, the derivative of this function does not vanish at 0 and 1. This implies that there is
an ε1 > 0 and a C1 > 0 such that for every 0 < ε < ε1 the following holds. For x ∈ [0, 1], if we
have x− xd−1 ≤ |V |dε, then either x < C1ε or x > 1− C1ε. In the rest of the proof, we assume
that ε < ε1. Then for every % ∈ V̂ , we have either |π̂(%)| < C1ε or |π̂(%)| > 1− C1ε.

Let V̂1 = {% ∈ V̂ |1− C1ε < |π̂(%)|}. Take any % ∈ V̂1. Set

z =
π̂(%)

|π̂(%)|
.
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Choose ξ0 = ξ0(%) in the range R(%) of the character ρ, such that Re zξ0 = maxξ∈R(%) Re zξ. An
elementary geometric argument gives that for ξ0 6= ξ ∈ R(%), we have Re zξ ≤ 1 − δ, where
δ = 1− cos π

|V | > 0. Clearly Re zξ0 ≤ 1. Then we have

|π̂(%)| = zπ̂(%) = Re zπ̂(%) =
∑

ξ∈R(%)

π(%−1(ξ)) Re zξ ≤ 1−
(
1− π(%−1(ξ0))

)
δ.

Thus, |π̂(%)| > 1 − C1ε implies that for the coset W% = %−1(ξ0), we have
π(W%) > 1− C1δ

−1ε. So the coset W = ∩%∈V̂1
W% satisfies π(W ) > 1− C1δ

−1|V |ε.

Consider a % ∈ V̂1. Let ξ0 = ξ0(%) be like above. Note that %(v) = ξ0 for any v ∈ W%. In
particular, we have π̂W (%) = ξ0. Thus,

|π̂W (%)− π̂(%)| =

∣∣∣∣∣∣ξ0 −

π(W%)ξ0 −
∑

v∈V \W%

π(v)%(v)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1− π(W%))ξ0 −
∑

v∈V \W%

π(v)%(v)

∣∣∣∣∣∣
≤ 1− π(W%) +

∑
v∈V \W%

π(v) = 2(1− π(W%)) ≤ 2C1δ
−1ε.

Now take % ∈ V̂ \V̂1. We know that |π̂(%)| < C1ε. We claim that % is not constant on W . To
show this, assume that % is constant on W , then

|π̂(%)| ≥ π(W )− π(V \W ) ≥ 1− 2C1δ
−1|V |ε > C1ε

provided that ε is small enough, which gives us a contradiction. Using that % is not constant on
W , Equation (4.5) gives us π̂W (%) = 0. Thus,

|π̂(%)− π̂W (%)| = |π̂(%)| ≤ C1ε.

This gives us that |π̂(%) − π̂W (%)| ≤ 2C1δ
−1ε for any % ∈ V̂ . Since the map

π 7→ π̂ is an invertible linear map, there is a constant L = LV such that
d∞(π, πW ) ≤ Lmax%∈V̂ |π̂(%)− π̂W (%)|. This gives the statement.

4.3 Proof of Equation (4.3)

We start by the following lemma.

Lemma 4.6. There is a C such that if W ∈ Cos(V ) and q ∈ V n is (W,nα)-typical, but not
(W,C log n)-typical, then for a random (q, d− 1)-tuple Q̄, we have

P(rq − Σ(Q̄) ∼ q) ≤ n−(|V |+1).
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Proof. Let E =
∑

c6∈W mq(c). Since q is (W,nα)-typical, we have E ≤ nα. Assume that r =∑d
i=1 q

(i), where q(i) ∼ q. Note that

{j| rj 6∈ dW} ⊂ ∪di=1{j| q(i)(j) 6∈W},

so
∑

c 6∈dW mr(c) ≤ dE. In particular, this is true for rq, that is,∑
c 6∈dW

mrq(c) ≤ dE.

Let
H0 = {j | rq(j) 6∈ dW}.

For i = 1, 2, ..., d− 1, we define the random subset Hi of {1, 2, ..., n} using the random (q, d− 1)-
tuple Q̄ = (q̄(1), q̄(2), . . . , q̄(d−1)) as

Hi = {j | q̄(i)(j) 6∈W},

and let the random subset H∗ ⊂ {1, 2, . . . , n} be defined as

H∗ = {j |rq(j)− Σ(Q̄)(j) 6∈W}.

Then 0 ≤ |H0| ≤ dE and |H1| = |H2| = ... = |Hd−1| = E. Let

B = {j | j is contained in exactly one of the sets H0, H1, H2, ...,Hd−1}.

Then B ⊂ H∗, therefore we have

P(rq − Σ(Q̄) ∼ q) ≤ P(|H∗| = E) ≤ P(|B| ≤ E).

We will need the following inequality

|B| ≥
d−1∑
i=0

|Hi| − 2
∑

0≤i<j≤d−1

|Hi ∩Hj | ≥ (d− 1)E − 2
∑

0≤i<j≤d−1

|Hi ∩Hj |.

The proof of this is straightforward, or see [26, Chapter IV, 5.(c)]. Thus, if |B| ≤ E, then

2
∑

0≤i<j≤d−1

|Hi ∩Hj | ≥ (d− 2)E.

So |Hi ∩Hj | ≥ (d−2)E
d(d−1) for some i < j. Therefore,

P(rq − Σ(Q) ∼ q) ≤ P(|B| ≤ E) ≤
∑

0≤i<j≤d−1

P
(
|Hi ∩Hj | ≥

(d− 2)E

d(d− 1)

)
. (4.6)
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Lemma 4.7. There is a constant C such that, for all a, b and E satisfying
C log n < E < nα and a, b ≤ dE, if A and B are two random subset of {1, 2, ..., n} of size
a and b respectively chosen independently and uniformly, then

P
(
|A ∩B| ≥ (d− 2)E

d(d− 1)

)
< n−(|V |+1)

/(d
2

)
.

Proof. We may assume that n is large enough, because we can always increase C to handle the
small values of n. Let δ = (d−2)

d(d−1) . For large enough n, we have ab
n ≤

δ
2E. Using Lemma 10.1, we

obtain that

P
(
|A ∩B| ≥ (d− 2)E

d(d− 1)

)
= P (|A ∩B| ≥ δE)

≤ P
(∣∣∣∣|A ∩B| − ab

n

∣∣∣∣ ≥ δ

2
E

)
≤ 2 exp

(
−δ

2E2

2a

)
≤ 2 exp

(
−δ

2E

2d

)
≤ 2 exp

(
−δ

2C log n

2d

)
= 2n−

δ2C
2d < n−(|V |+1)

/(d
2

)
for large enough C.

Combining this lemma with Inequality (4.6), we get the statement of Lemma 4.6.

Then Equation (4.3) follows, because

lim sup
n→∞

∑
W∈Cos(V )

∑
q is (W,nα)−typical,

but not (W,C logn)−typical

P(A(d)
n q = rq)

= lim sup
n→∞

∑
W∈Cos(V )

∑
q∈Tn is (W,nα)−typical,

but not (W,C logn)−typical

P(rq −A(d−1)
n q ∼ q)

≤ lim sup
n→∞

|Cos(V )| · |Tn|n−(|V |+1) = 0.

4.4 Proof of Equation (4.4)

Since there are only finitely many cosets in V , it is enough to prove that for any coset W ∈
Cos(V ), we have

lim
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq) = 0,

where
Dn
W = {q ∈ Tn | q is (W,C log n)− typical, but not (W, 0)-typical},

and Q̄ is a random (q, d)-tuple. (Recall that S(q) is the set of permutations of q.)
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Given a q ∈ V n, a (q, d)-tuple Q or mQ itself will be called W -decent if for any u ∈W d, we have

1 +mΣ(Q)(uΣ)

1 +mQ(u)
≤ log2 n,

and it will be called W -half-decent if (1 + mΣ(Q)(uΣ))/(1 + mQ(u)) ≤ log4 n. Or even more
generally, a non-negative integral vector m indexed by V d will be called W -half-decent if for
every u ∈W d, we have

1 +m(τΣ = uΣ)

1 +m(u)
≤ log4 n,

where n =
∑

t∈V dm(t).

Lemma 4.8. For any coset W ∈ Cos(V ), we have

lim sup
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq) = lim sup
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq and Q̄ is W − decent).

Proof. It is enough to show that if n is large enough, then

|S(q)|P(Σ(Q̄) = rq and Q̄ is not W − decent) ≤ n−(|V |+1)

for every q ∈ Dn
W . Indeed, once we establish this, it follows that

lim sup
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq and Q̄ is not W − decent) ≤ lim sup
n→∞

|Tn|n−(|V |+1) = 0,

which gives the statement.

Just for this proof (q, h)-tuples and random (q, h)-tuples will be denoted by Qh and Q̄h, be-
cause it will be important to emphasize the value of h. Given any (q, d − 1)-tuple Qd−1 =

(q(1), q(2), . . . , q(d−1)) such that rq − Σ(Qd−1) ∼ q the tuple (q(1), q(2), . . . , q(d−1), rq − Σ(Qd−1))

will be a (q, d)-tuple and it is denoted by Ext(Qd−1). It is also clear that Σ(Ext(Qd−1)) = rq,
and for any (q, d)-tuple Qd such that Σ(Qd) = rq there is a unique (q, d−1)-tuple Qd−1 such that
rq − Σ(Qd−1) ∼ q and Qd = Ext(Qd−1). Also note that P(Q̄d−1 = Qd−1) = |S(q)|P(Q̄d = Qd).

Therefore, for any q ∈ Dn
W , we have

|S(q)|P(Σ(Q̄d) = rq and Q̄ is not W − decent)

= P(rq − Σ(Q̄d−1) ∼ q and Ext(Q̄d−1) is not W − decent).

The event on the right-hand side is contained in the even that

there are t ∈W d−1 and c ∈ dW , such that

1 +mrq(c)

1 + |{i| rq(i) = c and Q̄d−1(i) = t}|
> log2 n. (4.7)

This event has probability at most n−(|V |+1) for every (W,C log n)-typical vector q ∈ V n, if n is
large enough. Indeed, for a c ∈ dW such that mrq(c) < log2 n, Inequality (4.7) can not be true.
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On the other hand, if mrq(c) ≥ log2 n, then with high probability

|{i| rq(i) = c and Q̄d−1(i) = t}| > 1

2

mrq(c)

|W |d−1
>

1 +mrq(c)

log2 n

for any t ∈W d−1, as it follows from Lemma 10.2.

As before, we define
M(q, r) = {mQ | Q ∈ Qq,d,Σ(Q) = r}.

Let
M](q, r) = {m ∈M(q, r)| m is W − decent}.

From the previous lemma, we need to prove that

lim
n→∞

∑
q∈DnW

∑
m∈M](q,rq)

|S(q)|P((Σ(Q̄) = rq) ∧ (mQ̄ = m)) = 0.

Let
M = {mQ | Q is a (q, d)-tuple for some n ≥ 0 and q ∈ V n}.

The setM is the set of non-negative integral points of the linear subspace of RV d consisting of
the vectors m satisfying the following linear equations:

m(τi = c) = m(τ1 = c)

for every c ∈ V and i = 1, 2, . . . , d.

In other words, M consists of the integral points of a rational polyhedral cone. From [54,
Theorem 16.4], we know that this cone is generated by an integral Hilbert basis, i. e., we have
the following lemma.

Lemma 4.9. There are finitely many vectors m1,m2, ...,m` ∈M, such that

M = {c1m1 + c2m2 + · · ·+ c`m` | c1, c2, . . . , c` are non-negative integers}.

We may assume that the indices in the lemma above are chosen such that there is an h such that
the supports of m1,m2, . . . ,mh are contained in W d, and the supports of mh+1,mh+2, ...,m` are
not contained in W d.

Definition 4.10. Given a vector m ∈ M, write m as m =
∑`

i=1 cimi, where c1, c2, ..., c` are
non-negative integers, and let ∆(m) =

∑`
i=h+1 cimi. (If the decomposition of m is not unique

just pick and fix a decomposition.)

With the notation ‖m‖WC = m(τ 6∈W d), we have ‖m‖WC = ‖∆(m)‖WC and ‖m−∆(m)‖WC =

0.
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

For any non-negative integral vector m ∈ RV d , we define

E(m) =

∏
c∈V m(τΣ = c)!∏

t∈V dm(t)!

(
d∏
i=1

∏
c∈V m(τi = c)!

m(V d)!

) d−1
d

. (4.8)

Lemma 4.11. For every q, r ∈ V n and m ∈M(q, r), we have

|S(q)|P((Σ(Q̄) = r) ∧ (mQ̄ = m)) =

∏
c∈V mr(c)!∏
t∈V dm(t)!

/( n!∏
c∈V mq(c)!

)d−1

= E(m).

Proof. The first equality is a consequence of Lemma 3.1. To prove the second equality, note that
since m ∈ M(q, r), for any c ∈ V and i ∈ {1, 2, . . . , d}, we have mq(c) = m(τi = c). By taking
factorials, we get that mq(c)! = m(τi = c)!. Multiplying all these equations, we get that

d∏
i=1

∏
c∈V

m(τi = c)! =

(∏
c∈V

mq(c)!

)d
,

that is, (
d∏
i=1

∏
c∈V

m(τi = c)!

) d−1
d

=

(∏
c∈V

mq(c)!

)d−1

.

Of course there are many other equivalent ways to express the quantity
|S(q)|P((Σ(Q̄) = r) ∧ (mQ̄ = m)) and each of them suggests a way to extend the formula
to all non-negative integral vectors, but the formula given in Equation (4.8) will be useful for us
later.

Lemma 4.12. Consider a non-negative integral W -half-decent vector m0 ∈ RV d, such that
‖m0‖WC = O(log n), where n =

∑
t∈V dm(t). For u ∈ V d, let χu ∈ RV d be such that χu(u) = 1

and χu(t) = 0 for every t 6= u ∈ V d.

• If u ∈W d, then E(m0 + χu)/E(m0) = O(log4 n);

• If u 6∈W d, then E(m0 + χu)/E(m0) = O(n−(d−2)/d log2 n).

Proof. Let

g =
1 +m0(τΣ = uΣ)

1 +m0(u)
and fi =

1 +m0(τi = ui)

n+ 1
.

Note that

E(m0 + χu)/E(m0) = g ·

(
d∏
i=1

fi

) d−1
d

.
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If u ∈ W d, then since m0 is W -half-decent, we have g ≤ log4 n, and clearly fi ≤ 1, so the
statement follows.

If u 6∈W d, we consider the following two cases:

1. If uΣ 6∈ dW , then

g ≤ 1 +m0(τΣ = uΣ) ≤ 1 + ‖m0‖W c = O(log n),

and there is an i such that ui 6∈W . This imply that fi = O
(

logn
n

)
. So

E(m0 + χu)/E(m0) = O

(
log n

(
log n

n

) d−1
d

)
= O

(
n−

d−2
d log2 n

)
.

2. If uΣ ∈W d, then there are at least two indices i such that ui 6∈W , for such an index i, we
have fi = O

(
logn
n

)
, clearly g = O(n), so

E(m0 + χu)/E(m0) = O

n( log n

n

) 2(d−1)
d

 = O
(
n−

d−2
d log2 n

)
.

The next lemma follows easily from the previous one.

Lemma 4.13. There is a D, such that for any i ∈ {h + 1, h + 2, . . . , `} and any non-negative
integral W -half-decent vector m0 ∈ RV d , such that ‖m0‖WC = O(log n), we have

E(m0 +mi)/E(m0) = O

((
n−(d−2)/d logD n

)‖mi‖WC
)
.

Lemma 4.14. Assume that n is large enough. Let q ∈ V n be (W,C log n)-typical,
and let m ∈ M](q, rq). If m0 is an integral vector indexed by V d such that
(m−∆(m))(t) ≤ m0(t) ≤ m(t) for every t ∈ V d, then m is W -half-decent.

Proof. Let L = max`i=h+1 ‖mi‖∞. Note that m(t) − m′(t) ≤ L‖m‖WC ≤ LC log n for every
t ∈ V d. Let n0 =

∑
t∈V dm0(t). Then

n0 ≥ n− L · |V |d · ‖m‖WC ≥ n− L|V |dC log n.

If n is large enough, then LC log3 n ≤ 1
2 log4 n0. We need to prove that

1 +m0(τΣ = uΣ)

1 +m0(u)
≤ log4 n0,
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

for every u ∈ W d. If 1 + m0(τΣ = uΣ) ≤ log4 n0, then it is clear. Thus, assume that we have
1 +m0(τΣ = uΣ) > log4 n0. Then,

1 +m0(τΣ = uΣ) ≤ 1 +m(τΣ = uΣ)

≤ (1 +m(u)) log2 n

≤ (1 +m0(u) + LC log n) log2 n

≤ (1 +m0(u)) log2 n+
1

2
log4 n0

≤ (1 +m0(u)) log2 n+
1

2
(1 +m0(τΣ = uΣ)) .

Therefore, if n is large enough, then we have

1 +m0(τΣ = uΣ)

1 +m0(u)
≤ 2 log2 n ≤ log4 n0.

The following estimate will be crucial later.

Lemma 4.15. There is a K such that for any (W,C log n)-typical q ∈ V n and m ∈ M](q, rq),
we have

E(m) ≤
(
Kn−(d−2)/d logD n

)‖∆(m)‖
WC

E(m−∆(m)).

Proof. We may assume that n is large enough, because we can increase K to handle the small
values of n. Then the statement follows from repeated application of Lemma 4.13. Observe that
m−∆(m) and all other m0 we need to apply that lemma is W -half-decent by Lemma 4.14.

Now we made all the necessary preparations to prove Equation (4.4). With our new notations,
we have to prove that

lim
n→∞

∑
q∈DWn

∑
m∈M](q,rq)

E(m) = 0.

We prove it by induction on |V |. The statement is clear if W = V , because in that case DW
n is

empty. So we may assume that |W | < |V |.

Lemma 4.16. There is a finite B = BW such that for every n, we have that∑
q∈Wn∩Tn

|S(q)|P(A(d)
n q = rq) < B.

Proof. First consider the case when the coset W is a subgroup. Then from the induction hy-
pothesis, we can use Theorem 1.5 to get that that

∑
q∈Wn

P(A(d)
n q = rq) =

∑
q∈Wn

P(Uq,d = rq) + o(1).
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Recall that for W0 ∈ Cos(W ), we defined I(Wn
0 ) as

I(Wn
0 ) = {q ∈Wn

0 | MinCq = W0}.

Now, we have∑
q∈Wn

P(Uq,d = rq) =
∑

W0∈Cos(W )

∑
q∈I(Wn

0 )

P(Uq,d = rq)

=
∑

W0∈Cos(W )

|I(Wn
0 )| · |W0|−(n−1) ≤

∑
W0∈Cos(W )

|W0|.

Thus, ∑
q∈Wn∩Tn

|S(q)|P(A(d)
n q = rq) =

∑
q∈Wn

P(A(d)
n q = rq)

=
∑
q∈Wn

P(Uq,d = rq) + o(1) ≤
∑

W0∈Cos(W )

|W0|+ o(1).

This proves the lemma when W is a subgroup of V . If the coset W is not a subgroup, then we
need to use the bijection given in the proof of Lemma 4.1.

We need a few notations, let

M∆
n = ∪q∈DWn {∆(m) | m ∈M](q, rq)}.

For m∆ ∈M∆
n let

∆−1
n (m∆) = ∪q∈DWn {m ∈M

](q, rq) | ∆(m) = m∆}.

Using Lemma 4.15, we obtain that∑
q∈DWn

∑
m∈M](q,rq)

E(m) =
∑

m∆∈M∆
n

∑
m∈∆−1

n (m∆)

E(m) ≤

∑
m∆∈M∆

n

(
Kn−(d−2)/d logD n

)‖m∆‖WC ∑
m∈∆−1

n (m∆)

E(m−m∆). (4.9)

Fix a vector m∆ ∈ M∆
n . Set n′ = n −

∑
t∈V dm∆(t). Let X be the set of q ∈ DW

n , such that
M](q, rq) ∩∆−1

n (m∆) is non-empty.

For each q ∈ X, there is a unique q′ ∈ Wn′ ∩ Tn′ such that for every c ∈ V , we have mq′(c) =

mq(c)−m∆(τ1 = c), and a unique wq ∈Wn′ ∩ Tn′ such that for every c ∈ V , we have mwq(c) =

mrq(c)−m∆(τΣ = c).
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THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Note that for any m ∈M](q, rq) ∩∆−1
n (m∆), we have m−m∆ ∈M(q′, wq). Moreover,

E(m−m∆) = |S(q′)|P((Σ(Q̄) = wq) ∧ (mQ̄ = m−m∆)),

where Q̄ is a random (q′, d) -tuple. The map m 7→ m−m∆ is injective, so it follows that∑
m∈M](q,rq)∩∆−1

n (m∆)

E(m−m∆) ≤ |S(q′)|P(A
(d)
n′ q
′ = wq).

Also note that that the map q 7→ q′ is injective. Therefore,

∑
m∈∆−1

n (m∆)

E(m−m∆) =
∑
q∈X

∑
m∈M](q,rq)∩∆−1

n (m∆)

E(m−m∆)

≤
∑
q∈X
|S(q′)|P(A

(d)
n′ q
′ = wq)

≤
∑

q′∈Wn′∩Tn′

|S(q′)|P(A
(d)
n′ q
′ = rq′) < B.

Thus, continuing Inequality (4.9), we have

∑
q∈DWn

∑
m∈M](q,rq)

E(m) ≤ B
∑

m∆∈M∆
n

(
Kn−(d−2)/d logD n

)‖m∆‖WC

.

There is an F such that |M∆
n | ≤ nF . We choose a constant G such that for a large enough

n, we have
(
Kn−(d−2)/d logd−1 n

)‖m∆‖WC
< n−(F+1), whenever ‖m∆‖WC ≥ G. Let H be the

cardinality of the set

{m | m =
∑̀
i=h+1

cimi, ch+1, ch+2, . . . , c` non-negative integers, ‖m‖W c < G}.

Note that H ≤ G`−h. Finally observe that ‖m∆‖WC ≥ 1 for all m∆ ∈M∆
n . So for large enough

n

B
∑

m∆∈M∆
n

(
Kn−(d−2)/d logD n

)‖m∆‖WC

= B
∑

m∆∈M∆
n

‖m∆‖WC≥G

(
Kn−(d−2)/d logD n

)‖m∆‖WC

+B
∑

m∆∈M∆
n

‖m∆‖WC<G

(
Kn−(d−2)/d logD n

)‖m∆‖WC

≤ BnFn−(F+1) +BHKn−(d−2)/d logD n = o(1).
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Thus, we have proved Equation (4.4).

5 The connection between the mixing property of the adjacency
matrix and the sandpile group

The random (n − 1) × (n − 1) matrix A′n is obtained from An by deleting its last row and last
column. For q ∈ V n−1, the subgroup generated by q1, q2, . . . , qn−1 is denoted by Gq. Let Uq be a
uniform random element of Gn−1

q . The next corollary of Theorem 1.5 states that the distribution
of A′nq is close to that of Uq.

Corollary 5.1. We have
lim
n→∞

∑
q∈V n−1

d∞(A′nq, Uq) = 0.

Proof. For q ∈ V n−1 and r ∈ Gn−1
q , we define q̄ = (q1, q2, . . . , qn−1, 0) ∈ V n and

r̄ = (r1, r2, . . . , rn−1, d · s(q)− s(r)) ∈ Gnq .

Note that s(r̄) = d · s(q) = d · s(q̄) and MinCq̄ = Gq, so r̄ ∈ R(q̄, d). Moreover, A′nq = r if and
only if Anq̄ = r̄, so P(A′nq = r) = P(Anq̄ = r̄). From these observations, it follows easily that
d∞(A′nq, Uq) = d∞(Anq̄, Uq̄,d). The rest of the proof follows from Theorem 1.5.

Recall that the reduced Laplacian ∆n of Dn was defined as ∆n = A′n−dI. The next well-known
proposition connects Hom(Γn, V ) and Sur(Γn, V ) with the kernel of ∆n when ∆n acts on V n−1.

Proposition 5.2. For any finite abelian group V , we have

|Hom(Γn, V )| = |{q ∈ V n−1 | ∆nq = 0}|

and
| Sur(Γn, V )| = |{q ∈ V n−1 | ∆nq = 0, Gq = V }|.

Proof. There is an obvious bijection between Hom(Γn, V ) and

{ϕ ∈ Hom(Zn−1, V )| RowSpace(∆n) ⊂ kerϕ}.

Moreover, any ϕ ∈ Hom(Zn−1, V ) is uniquely determined by the vector
q = (ϕ(e1), ϕ(e2), . . . , ϕ(en−1)) ∈ V n−1, where e1, e2, . . . , en−1 is the standard generating set
of Zn−1. Furthermore, RowSpace(∆n) ⊂ kerϕ if and only if ∆nq = 0, so the first statement
follows. The second one can be proved similarly.
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Combining Proposition 2.1 with with Corollary 5.1, we obtain

lim
n→∞

E| Sur(Γn, V )| = lim
n→∞

∑
q∈V n−1

Gq=V

P(∆nq = 0) = lim
n→∞

∑
q∈V n−1

Gq=V

P(A′nq = dq)

= lim
n→∞

∑
q∈V n−1

Gq=V

P(Uq = dq)

= lim
n→∞

|{q ∈ V n−1| Gq = V }| · |V |−(n−1) = 1.

This proves Theorem 1.3.

To obtain Theorem 1.1 from this theorem, we need to use the results of Wood on the moment
problem.

Theorem 5.3. (Wood [60, Theorem 3.1] or [58, Theorem 8.3]) Let Xn and Yn be sequences
of random finitely generated abelian groups. Let a be a positive integer and A be the set of
(isomorphism classes of) abelian groups with exponent dividing a. Suppose that for every G ∈ A,
we have a number MG ≤ | ∧2 G| such that

lim
n→∞

E| Sur(Xn, G)| = MG,

and
lim
n→∞

E| Sur(Yn, G)| = MG.

Then for every H ∈ A, the limits

lim
n→∞

P(Xn ⊗ Z/aZ ' H) and lim
n→∞

P(Yn ⊗ Z/aZ ' H)

exist, and they are equal.

This has the following consequence.

Theorem 5.4. Let p1, p2, . . . , ps be distinct primes. Let Xn and Yn be sequences of random
finitely generated abelian groups. Assume that for any finite abelian group G, we have a number
MG ≤ | ∧2 G| such that

lim
n→∞

E| Sur(Xn, G)| = MG,

and
lim
n→∞

E| Sur(Yn, G)| = MG.

Let Xn,i (resp. Yn,i) be the pi-Sylow subgroup of Xn (resp. Yn). For i = 1, 2, . . . , s, let Gi be a
finite abelian pi-group. Then the limits

lim
n→∞

P

(
s⊕
i=1

Xn,i '
s⊕
i=1

Gi

)
and lim

n→∞
P

(
s⊕
i=1

Yn,i '
s⊕
i=1

Gi

)

exist, and they are equal.
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Proof. Let a0 be the exponent of the group
⊕s

i=1Gi. Let a = a0 ·
∏s
i=1 pi. Observe that⊕s

i=1Xn,i '
⊕s

i=1Gi if and only if Xn ⊗ Z/aZ '
⊕s

i=1Gi. Thus, the previous theorem gives
the statement.

The next theorem gives two special cases which are of particular interest for us.

Theorem 5.5. Let p1, p2, . . . , ps be distinct primes. Let Γn be sequence of random finitely gen-
erated abelian groups. Let Γn,i be the pi-Sylow subgroup of Γn.

1. Assume that for any finite abelian group V , we have

lim
n→∞

E|Sur(Γn, V )| = 1.

For i = 1, 2, . . . , s, let Gi be a finite abelian pi-group. Then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)
=

s∏
i=1

|Aut(Gi)|−1
∞∏
j=1

(1− p−ji )

 .

2. Assume that for any finite abelian group V , we have

lim
n→∞

E|Sur(Γn, V )| = | ∧2 V |.

For i = 1, 2, . . . , s, let Gi be a finite abelian pi-group. Then

lim
n→∞

P

(
s⊕
i=1

Γn,i '
s⊕
i=1

Gi

)
=

s∏
i=1

 |{φ : Gi ×Gi → C∗ symmetric, bilinear,perfect}|
|Gi||Aut(Gi)|

∞∏
j=0

(1− p−2j−1
i )

 .

Proof. The first part follows from the previous theorem and [60, Lemma 3.2] with the choice of
u = 0. Or alternatively, we can use the results of [24, Section 8]. The second part follows from
the previous theorem and [18, Theorem 2 and Theorem 11]. See also the proof of Corollary 9.2
in [58].

Combining the first statement of the previous theorem with Theorem 1.3, we obtain Theorem
1.1. The proofs of the corresponding statements about the sandpile group of Hn are postponed
to Section 7 and 8.
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6 A version of Theorem 1.5 with uniform convergence

We sate our results for the directed random graph model, but the arguments can be repeated
for the undirected model as well. We write A(d)

n in place of An to emphasize the dependence on
d. We start by a simple lemma.

Lemma 6.1. For a fixed n and q ∈ V n, we have

d∞(A(d)
n q, Uq,d) ≤ d∞(A(d−1)

n q, Uq,d−1).

Proof. Take any r ∈ R(q, d). Observe that for q′ ∼ q, we have r − q′ ∈ R(q, d − 1). Let q′ be a
uniform random element of S(q) independent from A

(d−1)
n , then

|P(A(d)
n q = r)− P(Uq,d = r)| = |EP(A(d−1)

n q = r − q′)− |R(q, d)|−1|

≤ E|P(A(d−1)
n q = r − q′)− |R(q, d− 1)|−1|

≤ d∞(A(d−1)
n q, Uq,d−1).

Note that here the expectations are over the random choice of q′. Since this is true for any
r ∈ R(q, d), the statement follows.

Using this we can deduce the following uniform version of Theorem 1.5.

Corollary 6.2. We have
lim
n→∞

sup
d≥3

∑
q∈V n

d∞(A(d)
n q, Uq,d) = 0.

This also implies a uniform version of Corollary 5.1. Therefore, the limits in Theorem 1.3 are
uniform in d. Consequently, Theorem 1.1 remains true if we allow d to vary with n.

7 Sum of matching matrices: Modifications of the proofs

A fixed point free permutation of order 2 is called a matching permutation. The permutation
matrix of a matching permutation is called matching matrix. Then Cn = M1 +M2 + · · ·+Md,
where M1,M2, . . . ,Md are independent uniform random n× n matching matrices.

Consider a vector q = (q1, q2, ..., qn) ∈ V n. For a matching permutation π of the set {1, 2, . . . , n}
the vector qπ = (qπ(1), qπ(2), . . . , qπ(n)) is called a matching permutation of q. A random matching
permutation of q is defined as the random variable qπ, where π is chosen uniformly from the set
of all matching permutations.

A (q, 1, h)-tuple is a 1+h-tuple Q = (q(0), q(1), . . . , q(h)), where q(0) = q and q(1), q(2), . . . , q(h) are
matching permutations of q. A random (q, 1, h)-tuple is a tuple Q̄ = (q̄(0), q̄(1), . . . q̄(h)), where
q̄(0) = q and q̄(1), q̄(2), . . . , q̄(h) are independent random matching permutations of q. Similarly
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as before, a (q, 1, h)-tuple can be viewed as a vector Q = (Q1, Q2, . . . , Qn) in (V 1+h)n. For
t ∈ V 1+h, we define

mQ(t) = |{i | Qi = t}|.

In this section the components of a vector t ∈ V 1+h are indexed from 0 to h,
that is, t = (t0, t1, . . . , th). For t ∈ V 1+h, we define tΣ =

∑n
i=1 ti. The sum Σ(Q) of a (q, 1, h)-

tuple Q is defined as Σ(Q) =
∑h

i=1 q
(i). Note that the sums above do not include t0 and q(0).

We define
MS(q, r) = {mQ| Q is a (q, 1, h)-tuple such that Σ(Q) = r}.

A (q, 1, h)-tuple Q is γ-typical if
∥∥∥mQ − n

|V |1+h1

∥∥∥
∞
< nγ .

For two vectors q, r ∈ V n and a, b ∈ V , we define

mq,r(a, b) = |{i| qi = a and ri = b}|.

The vector r is called (q, β)-typical if∥∥∥∥mq,r −
n

|V |2
1

∥∥∥∥
∞
< nβ.

With these notations, we have the following analogue of Theorem 2.3.

Theorem 7.1. For any fixed finite abelian group V and h ≥ 2, we have

lim
n→∞

sup
q∈V n α−typical

r∈RS(q,h) (q,β)−typical

∣∣∣∣∣P(C(h)
n q = r)

/(2Rank2(V )| ∧2 V |
|V |n−1

)
− 1

∣∣∣∣∣ = 0.

Proof. The proof is analogous with the proof of Theorem 2.3. We need to replace the notion of
(q, h)-tuple with the notion of (q, 1, h)-tuple, the notion of β-typical vector with the notion of
(q, β)-typical vector. Moreover, some of the statements should be slightly changed. Now we list
the modified statements.

We start by determining the size of RS(q, h).

Lemma 7.2. Let q ∈ V n such that MinCq = V , then

|RS(q, h)| = |V |n−1

2Rank2(V )| ∧2 V |
.

Proof. We define the homomorphism ϕ : V n → (V ⊗ V )× V by setting

ϕ(r) = (< q ⊗ r >, s(r))
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for every r ∈ V n. We claim that it is surjective. First, take any a, b ∈ V . The condition
MinCq = V implies that q1 − qn, q2 − qn, . . . , qn−1 − qn generate V . In particular, there are
integers c1, c2, . . . , cn−1 such that a =

∑n−1
i=1 ci(q1 − qn). Let us define

r = (c1b, c2b, . . . , cn−1b,−
n−1∑
i=1

cib) ∈ V n

.

Then

< q ⊗ r >=

n−1∑
i=1

qi ⊗ cib+ qn ⊗

(
−
n−1∑
i=1

cib

)
=

(
n−1∑
i=1

ci(qi − qn)

)
⊗ b = a⊗ b,

and s(r) = 0, that is, ϕ(r) = (a⊗ b, 0). Thus, V ⊗ V × {0} is contained in the range of ϕ.

Now take any (x, v) ∈ (V ⊗ V ) × V . Clearly, we can pick an r1 ∈ V n such that s(r1) = v.
Then from the previous paragraph, there is an r2 such that ϕ(r2) = (x− < q ⊗ r1 >, 0). Then
ϕ(r1 +r2) = (x, v). This proves that ϕ is indeed surjective. Since RS(q, h) = ϕ−1(I2×{h ·s(q)}),
we have

|RS(q, h)| = |I2|
|(V ⊗ V )| · |V |

|V |n =
|V |n−1

2Rank2(V )| ∧2 V |
.

Lemma 7.3 (The analogue of Lemma 3.1). Consider q, r ∈ V n. Let m ∈MS(q, r). Then m is
a nonnegative integral vector with the following properties.

m(τ0 = a and τi = b) = m(τ0 = b and τi = a) ∀i ∈ {1, 2, . . . , h}, a, b ∈ V, (7.1)

m(τ0 = a and τΣ = b) = mq,r(a, b) ∀a, b ∈ V. (7.2)

Moreover,

m(τ0 = c and τi = c) is even ∀i ∈ {1, 2, . . . , h}, c ∈ V. (7.3)

Now assume that m is a nonnegative integral vector satisfying the conditions above. Then

P(Σ(Q̄) = r and mQ̄ = m) =

(
n!

2n/2(n/2)!

)−h ∏
a,b∈V m(τ0 = a, τΣ = b)!∏

t∈V 1+hm(t)!
×

h∏
i=1

(∏
a∈V

m(τi = a, τ0 = a)!

2m(τi=a,τ0=a)/2(m(τi = a, τ0 = a)/2)!

) ∏
a6=b∈V

√
m(τ0 = a, τi = b)!

 . (7.4)
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In particular, P((Σ(Q̄) = r) ∧ (mQ̄ = m)) > 0 so m ∈ MS(q, r). Let AS(q, r) be the affine
subspace given by the linear equations (7.1) and (7.2) above. Then MS(q, r) is the set of non-
negative integral points of the affine subspace AS(q, r) satisfying the parity constraints in (7.3)
above.

Proof. We only give the proof of Equation (7.4), since all the other statements of the lemma are
straightforward to prove. The number of (q, 1, h)-tuples Q such that Σ(Q) = r and mQ = m is∏

a,b∈V m(τ0 = a, τΣ = b)!∏
t∈V 1+dm(t)!

.

Fix any (q, 1, h)-tuple Q = (q(0), q(1), . . . , q(h)) such that Σ(Q) = r and mQ = m. Now, we
calculate the probability that P(Q̄ = Q) for a random (q, 1, h)-tuple Q̄. For i ∈ {1, 2, . . . , h} and
a, b ∈ V , we define

Ii,a,b = {j ∈ {1, 2, . . . , n} | q
(i)
j = a and q(0)

j = b}.

First, for i = 1, 2, . . . , h, we determine the number of matching permutations π such that
qπ = q(i). In other words, we are interested in the number of perfect matchings M on the
set {1, 2, . . . , n} such that

1. For every a ∈ V , the restriction of M to the set Ii,a,a is a perfect matching.

2. For every unordered pair {a, b} ⊂ V , where a 6= b, the restriction of M gives a perfect
matching between the disjoint set Ii,a,b and Ii,b,a.

Since |Ii,a,a| = m(τi = a, τ0 = a), we have

m(τi = a, τ0 = a)!

2m(τi=a,τ0=a)/2(m(τi = a, τ0 = a)/2)!

perfect matchings on the set Ii,a,a.

For every unordered pair {a, b} ⊂ V , where a 6= b, let

ni,{a,b} = m(τi = a, τ0 = b) = m(τi = b, τ0 = a)

be the common size of Ii,a,b and Ii,b,a. Then there are

ni,{a,b}! =
√
m(τi = a, τ0 = b)! ·

√
m(τi = a, τ0 = b)!

perfect matchings between Ii,a,b and Ii,b,a. We choose to express ni,{a,b}! as above, because this
way we get a symmetric expression.
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Since the total number perfect matchings is n!
2n/2(n/2)!

, we obtain that for a uniform random
matching matrix M , we have

P(Mq = q(i)) =

(
n!

2n/2(n/2)!

)−1

×

(∏
a∈V

m(τi = a, τ0 = a)!

2m(τi=a,τ0=a)/2(m(τi = a, τ0 = a)/2)!

) ∏
a6=b∈V

√
m(τ0 = a, τi = b)!

 .

From this, Equation (7.4) follows easily.

Lemma 7.4 (The analogue of Lemma 3.2). For any q, r1, r2 ∈ V n, we define the vector v =

vq,r1,r2 ∈ RV 1+h by

v(t) =
mq,r2(t0, tΣ)−mq,r1(t0, tΣ)

|V |h−1

for every t ∈ V 1+h. Then we have

AS(q, r1) + vq,r1,r2 = AS(q, r2).

Lemma 7.5 (The analogue of Lemma 3.4). Assume that n is large enough. For an α-typical
vector q ∈ V n and r ∈ RS(q, h), the affine subspace AS(q, r) contains an integral vector satisfying
the parity constraints in (7.3) of Lemma 7.3.

To prove Lemma 7.5 we need a few lemmas. The group V has a decomposition V =
⊕`

i=1 < vi >

such that o1|o2| · · · |o`, where oi is order of vi.

Lemma 7.6. Let q ∈ V n be such that mq(vi) > 0 for every 1 ≤ i ≤ `. Let r ∈ V n such that
< q⊗r >∈ I2. Then there is a symmetric matrix A over Z such that r = Aq and all the diagonal
entries of A are even.

Proof. We express qk as qk =
∑`

i=1 qk(i)vi, and similarly we express rk as
rk =

∑`
i=1 rk(i)vi, where qk(i), rk(i) ∈ Z. The condition that < q ⊗ r >∈ I2 is equivalent

to the following. For 1 ≤ i ≤ j ≤ `, we have

n∑
k=1

qk(i)rk(j) ≡
n∑
k=1

qk(j)rk(i) (mod oi) (7.5)

and whenever oi is even, we have

n∑
k=1

qk(i)rk(i) is even. (7.6)
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Due to symmetries and the fact that mq(vi) > 0 for every 1 ≤ i ≤ `, we may assume that qi = vi
for 1 ≤ i ≤ `. We define the symmetric matrix A = (aij) by

aij =



ri(j) for ` < i ≤ n and 1 ≤ j ≤ `,
rj(i) for 1 ≤ i ≤ ` and ` < j ≤ n,
0 for ` < i ≤ n and ` < j ≤ n,
ri(j) + rj(i)−

∑n
k=1 qk(j)rk(i) for 1 ≤ i ≤ j ≤ `,

ri(j) + rj(i)−
∑n

k=1 qk(i)rk(j) for 1 ≤ j < i ≤ `.

From Equation (7.5) we obtain that for 1 ≤ j < i ≤ `, we have

aij ≡ ri(j) + rj(i)−
n∑
k=1

qk(j)rk(i) (mod oj).

In particular, aijqj = aijvj = (ri(j) + rj(i))vj −
∑n

k=1 qk(j)rk(i)vj for every 1 ≤ i, j ≤ `.

Let w = Aq. We need to prove that wi = ri for every 1 ≤ i ≤ n. It is easy to see for i > `. Now
assume that i ≤ `. Then

wi =
∑̀
h=1

n∑
j=1

aijqj(h)vh =
∑̀
h=1

aihvh +
n∑

j=`+1

rj(i)qj(h)vh


=
∑̀
h=1

ri(h) + rh(i)−
n∑
k=1

qk(h)rk(i) +

n∑
j=`+1

rj(i)qj(h)

 vh

=
∑̀
h=1

(
ri(h) + rh(i)−

∑̀
k=1

qk(h)rk(i)

)
vh =

∑̀
h=1

ri(h)vh = ri.

Now we modify A slightly to achieve that all the diagonal entries are even. If i > `, then
aii = 0 which is even. If 1 ≤ i ≤ ` and oi is even, then aii = 2ri(i) −

∑n
k=1 qk(i)rk(i), which is

even using the condition (7.6) above. If 1 ≤ i ≤ `, oi is odd and aii is odd, we replace aii by
aii + oi, this way we can achieve that aii is even, without changing Aq. To see this, observe that
oiqi = oivi = 0.

For q, w ∈ V n and c ∈ V , we define

zq,w(c) =
∑

1≤i≤n
qi=c

wi.

Note that < q ⊗ w >=
∑

c∈V c⊗ zq,w(c).

Lemma 7.7. Let q ∈ V n such that mq(c) > 10|V |2 for every c ∈ V , and let z ∈ V V . Then there
is an matching permutation w of q such that zq,w = z, if and only if∑

c∈V
z(c) = s(q) (7.7)

59

C
E

U
eT

D
C

ol
le

ct
io

n



THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

and ∑
c∈V

c⊗ z(c) ∈ I2. (7.8)

Proof. It is clear that the conditions are indeed necessary, so we only need to prove the other
direction. Since mq(c) > 0 for all c ∈ V , we can find a w0 such that zq,w0 = z. (Of course w0

is not necessarily a matching permutation of q.) Condition (7.8) gives us that < q ⊗ w0 >∈ I2.
Using Lemma 7.6, it follows that there is a symmetric matrix A = (aij), such that Aq = w0 and
all the diagonal entries of A are even. For a, b ∈ V we define

m0(a, b) =
∑

1≤i,j≤n
qi=a, qj=b

aij .

Since A is symmetric and the diagonal entries are even, we have m0(a, b) = m0(b, a) and m(a, a)

is even for every a, b ∈ V .

Let m = m0. Replace m(a, b) by m(a, b) − 2`|V |, where ` is an integer chosen such that 0 ≤
m(a, b) − `2|V | < 2|V |. Now for every 0 6= a ∈ V , we do the following procedure. We find the
unique integer ` such that for

∆ = mq(a)−
∑
b∈V

m(a, b)− `2|V |,

we have 0 ≤ ∆ < 2|V |. Now increase m(a, a) by `2|V |. (Note that ` is non-negative because
of the condition mq(a) > 10|V |2.) Increase both m(a, 0) and m(0, a) by ∆. Finally, let ∆0 =

mq(0) −
∑

b∈V m(0, b), and increase m(0, 0) by ∆0. (Once again ∆0 is non-negative because of
the condition mq(a) > 10|V |2.)

This way we achieved that for every a ∈ V , we have
∑

b∈V m(a, b) = mq(a). It is clear that
m(a, b) is a non-negative integer and m(a, b) = m(b, a) for every a, b ∈ V . Moreover, m(a, a) is
even for 0 6= a ∈ V . It is also true for a = 0, but this requires some explanation. Indeed, m(0, 0)

can be expressed as

m(0, 0) =
∑
a,b∈V

m(a, b)− 2
∑
{a,b}
a6=b∈V

m(a, b)−
∑

06=a∈V
m(a, a)

= n− 2
∑
{a,b}
a6=b∈V

m(a, b)−
∑

06=a∈V
m(a, a).

Here in the last row, every term is even, so m(0, 0) is even too. From these observations, it
follows that there is an matching permutation w of q such that mq,w = m. We will prove that
zq,w = z. Consider an 0 6= a ∈ V . Observe that m(a, b) ≡ m0(a, b) modulo |V | for b 6= 0. Thus,
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zq,w(a) =
∑

1≤i≤n
qi=a

wi =
∑
b∈V

mq,w(a, b)b =
∑
b∈V

m0(a, b)b =
∑
b∈V

∑
1≤i,j≤n

qi=a, qj=b

aijb

=
∑
b∈V

∑
1≤i,j≤n

qi=a, qj=b

aijqj =
∑

1≤i≤n
qi=a

n∑
j=1

aijqj =
∑

1≤i≤n
qi=a

w0(i) = zq,w0(a) = z(a).

Finally

zq,w(0) =
∑
a∈V

zq,w(a)−
∑

06=a∈V
zq,w(a) =

n∑
i=1

qi −
∑

06=a∈V
zq,w(a)

= s(q)−
∑

06=a∈V
z(a) =

∑
a∈V

z(a)−
∑

06=a∈V
z(a) = z(0),

using condition (7.7).

The proof of Lemma 3.4 also gives us the following statement.

Lemma 7.8. Let q1, q2, . . . , qh ∈ V n and r ∈ V n. Assume that
∑n

i=1 s(qi) = s(r). Then there is
an integral vector m indexed by V h such that6

m(τi = b) = mqi(b)

for every i = 1, 2, . . . , h and b ∈ V , and

m(τΣ = b) = mr(b)

for every b ∈ V .

Now we are ready to prove Lemma 7.5.

Proof. Fix an α-typical q, and r ∈ RS(q, h). LetW be the set of z ∈ V V satisfying the conditions
(7.7) and (7.8) of Lemma 7.7. Observe that W is a coset of V V . Moreover, r ∈ RS(q, h) implies
that zq,r ∈ hW . Thus, we can find z1, z2, . . . , zh ∈ W such that zq,r =

∑h
i=1 zi. If n is large

enough, then for an α-typical q, we have mq(c) > 10|V |2. By using Lemma 7.7, for each
i ∈ {1, 2, . . . , h} we can find a matching permutation wi of q such that zq,wi = zi. For a ∈ V ,
let wai ∈ V mq(a) be the vector obtained from wi by projecting to the coordinates in the set
{i| qi = a}. Similarly, ra is obtained from r by projecting to the same set of coordinates.
Observe that

∑h
i=1 s(w

a
i ) =

∑h
i=1 zi(a) = zq,r(a) = s(ra). Thus, from Lemma 7.8, we obtain an

integral vector ma indexed by V h such that

ma(τi = b) = mwai
(b) = mq,wi(a, b)

6Unlike in the rest of this section, here the components of a t ∈ V h are indexed from 1 to h.
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for every i = 1, 2, . . . , h and b ∈ V , and

ma(τΣ = b) = mra(b) = mq,r(a, b)

for every b ∈ V .

Then the vector m defined by

m((t0, 11, . . . , th)) = mt0((t1, . . . , th))

gives us an integral point in AS(q, r) satisfying the parity constraints in (7.3) of Lemma 7.3.

Lemma 7.9 (The analogue of Lemma 3.5). For an α-typical q ∈ V n, a
(q, β)-typical r ∈ RS(q, h), r0 = r0(q) and m ∈MS∗(q, r0), we have that

P((Σ(Q̄) = r0) ∧ (mQ̄ = m)) ∼ P((Σ(Q̄) = r) ∧ (mQ̄ = m+ v̂q,r0,r))

uniformly.

Proof. For any α-typical q ∈ V n, (q, β)-typical r ∈ RS(q, h) and m ∈MS∗(q, r), we have

P(Σ(Q) = r and mQ = m) ∼ f(q) exp

(
1

2n
B

(
m− 1

|V |h+1
1,m− 1

|V |h+1
1

))
uniformly, where f(q) is some function of q and the bilinear form B(x, y) is defined as

B(x, y) = −|V |1+h
∑

t∈V 1+h

x(t)y(t) +
|V |2

2

h∑
i=1

∑
a,b∈V

x(τ0 = a, τi = b)y(τ0 = a, τi = b)

+ |V |2
∑
a,b∈V

x(τ0 = a, τΣ = b)y(τ0 = a, τΣ = b).

The statement follows from the fact that vq,r0,r is in the radical of B.

Lemma 7.10 (The analogue of Lemma 3.9 part (iv)). The following holds

lim
n→∞

sup
q∈V n α−typical

r∈RS(q,h) (q,β)−typical

P
(
(Σ(Q̄) = r) ∧ (Q̄ is not γ − typical)

)
|V |n = 0.

Proof. Take any α-typical q ∈ V n and (q, β)-typical r ∈ RS(q, h). We define

S(q, r) = {r′ ∈ V n| mq,r′ = mq,r}.

From symmetry, it follows that P
(
(Σ(Q̄) = r′) ∧ (Q̄ is not γ − typical)

)
is the same for every

r′ ∈ S(q, r). Thus,

P
(
(Σ(Q̄) = r) ∧ (Q̄ is not γ − typical)

)
≤ P(Q̄ is not γ − typical)

|S(q, r)|
.
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Since there is c > 0 such that |S(q, r)| ≥ |V n| exp(−cn2β−1), the statement follows as in the
proof of Lemma 3.12.

This concludes the proof of Theorem 7.1.

The analogue of Theorem 2.2 is the following.

Theorem 7.11. For any fixed finite abelian group V and d ≥ 3, we have

lim
n→∞

|V |n sup
q∈V n α−typical

d∞(C(d)
n q, USq,d) = 0.

This theorem follows immediately from Theorem 7.1 once we prove the following analogue of
Lemma 3.13.

Lemma 7.12. Let q ∈ V n be α-typical, r ∈ V n, h ≥ 2 and Q is a random (q, h)-tuple. Then
there is a polynomial g and a constant C (not depending on q and r), such that

P(Σ(Q) = r) ≤ g(n)|V |−n exp(Cn2α−1).

This will be proved after Lemma 7.15, because the proofs of these two lemmas share some ideas.

Once we have Theorem 7.11, we only need to control the non-typical vectors to obtain Theo-
rem 1.6. This can be done almost the same way as in Section 4. Here we list the necessary
modifications.

In the next few lemmas, our main tool will be the notion of Shannon entropy. Given a random
variable X taking values in a finite set R, its Shannon entropy H(X) is defined as

H(X) =
∑
r∈R
−P(X = r) logP(X = r).

In the rest of this discussion, we always assume that random variables have finite range, and all
the random variables are defined on the same probability space. If X1, X2, . . . , Xk is a sequence
random variables, then their joint Shannon entropy H(X1, X2, . . . , Xk) is defined as the Shannon
entropy H(X) of the (vector valued) random variable X = (X1, X2, . . . , Xk). See [21] for more
information on Shannon entropy.

A few basic properties of Shannon entropy are given in the next lemma.

Lemma 7.13. Let X,Y, Z be three random variables. Then

H(X,Y ) ≤ H(X) +H(Y ), (7.9)

and
H(X,Z) +H(Y,Z) ≥ H(Z) +H(X,Y, Z). (7.10)
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Let X,Y be two random variables such that Y is a function of X. Then

H(X,Y ) = H(X).

Proof. Note that the quantity H(X,Z) + H(Y, Z) −H(Z) −H(X,Y, Z) is usually denoted by
I(X;Y |Z) and it is called conditional mutual information. It is well known that I(X;Y |Z) ≥ 0.
See [21, (2.92)]. This proves Inequality (7.10). We can obtain Inequality (7.9) as a special case
of Inequality (7.10), if we we choose Z to be constant. The last statement is straightforward
from the definitions.

Later we will need the following lemma.

Lemma 7.14. For d ≥ 1, let Y0, Y1, . . . , Yd be d+ 1 random variables. Then

H(Y0, Y1, . . . , Yd) ≤
d∑
i=1

H(Y0, Yi)− (d− 1)H(Y0).

Proof. The statement can be proved by induction. Indeed, from Inequality (7.10), we have

H(Y0, Y1, . . . , Yd) +H(Y0) ≤ H(Y0, Y1, . . . , Yd−1) +H(Y0, Yd).

Therefore,

H(Y0, Y1, . . . , Yd) ≤ H(Y0, Y1, . . . , Yd−1) +H(Y0, Yd)−H(Y0)

≤
d∑
i=1

H(Y0, Yi)− (d− 1)H(Y0),

where in the last step we used the induction hypothesis.

In Section 4, we used the fact that |S(q)|P(A
(d)
n q = r) = P(r − A(d−1)

n q ∼ q). This equality is
replaced by the following lemma.

Lemma 7.15. Let q, r ∈ V n and

m ∈MS(q, r) = {mQ| Q is a (q, 1, d)-tuple and Σ(Q) = r}.

We define
E(m) = |S(q)|P(mQ̄ = m and Σ(Q̄) = r),

where Q̄ is random (q, 1, d)-tuple.

Moreover, let p(m) be the probability of the event that for a random (q, 1, d − 1)-tuple Q̄ =

(q̄(0), q̄(1), . . . , q̄(d−1)), we have that r − Σ(Q̄) is a matching permutation of q and the (q, 1, d)-
tuple Q′ = (q̄(0), q̄(1), . . . , q̄(d−1), r − Σ(Q̄)) satisfies mQ′ = m. Then there is a polynomial f(n)

(not depending on q, r or m) such that

E(m) ≤ f(n)p(m)
1
d−1 .
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Furthermore, there is a polynomial g(n) such that

|S(q)|P(C(d)
n q = r) ≤ g(n)P(r − C(d−1)

n q ∼ q)
1
d−1 .

Proof. Let X = (X0, X1, X2, . . . , Xd) ∈ V 1+d be a random variable, such that P(X = t) = m(t)
n

for every t ∈ V 1+d. We define XΣ =
∑d

i=1Xi. Then

E(m) = c1(m) exp

(
n

(
H(X0) +H(X)−H(X,XΣ)− 1

2

d∑
i=1

H(X0, Xi)

))
,

and

p(m) = c2(m) exp

(
n

(
H(X)−H(X0, XΣ)− 1

2

d−1∑
i=1

H(X0, Xi)

))
,

where 1
b(n) ≤ c1(m), c2(m) ≤ b(n) for some polynomial b(n).

Since Xd = XΣ−
∑d−1

i=1 Xi and XΣ =
∑d

i=1Xi, applying the last statement of Lemma 7.13 twice,
we get that

H(X) = (X0, X1, . . . , Xd) = H(X0, X1, . . . , Xd, XΣ) (7.11)

= H(X0, X1, . . . , Xd−1, XΣ).

Combining this with Lemma 7.14, we get that

H(X) = H(X0, ..., Xd−1, XΣ)

≤
d−1∑
i=1

H(X0, Xi) +H(X0, XΣ)− (d− 1)H(X0).

Or more generally, for every i = 1, 2, . . . , d, we have

H(X) ≤
∑

1≤j≤d
j 6=i

H(X0, Xj) +H(X0, XΣ)− (d− 1)H(X0).

Summing up these inequalities for i = 1, 2, ..., d− 1, we get that

(d− 1)H(X)

≤ (d− 2)
d−1∑
i=1

H(X0, Xi) + (d− 1)H(X0, Xd) + (d− 1)H(X0, XΣ)− (d− 1)2H(X0). (7.12)
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Note that X0, X1, . . . , Xd all have the same distribution, so H(X0) = H(X1) = · · · = H(Xd).
Combining this with Equation (7.11) and Inequality (7.9), we have

H(X) = H(X0, ..., Xd−1, XΣ) (7.13)

≤ H(X0, XΣ) +
d−1∑
i=1

H(Xi) = H(X0, XΣ) + (d− 1)H(X0).

Therefore,

H(X0) +H(X)−H(X0, XΣ)− 1

2

d∑
i=1

H(X0, Xi)

= H(X0) +H(X)−H(X0, XΣ)− 1

2(d− 1)

d−1∑
i=1

H(X0, Xi)

− 1

2

(
d− 2

d− 1

d−1∑
i=1

H(X0, Xi) +H(X0, Xd)

)

≤ H(X0) +H(X)−H(X0, XΣ)− 1

2(d− 1)

d−1∑
i=1

H(X0, Xi)

− 1

2
(H(X) + (d− 1)H(X0)−H(X0, XΣ))

=
1

d− 1

(
H(X)−H(X0, XΣ)− 1

2

d−1∑
i=1

H(X0, Xi)

)

+
d− 3

2(d− 1)
(H(X)−H(X0, XΣ))− (d− 3)

2
H(X0)

≤ 1

d− 1

(
H(X)−H(X0, XΣ)− 1

2

d−1∑
i=1

H(X0, Xi)

)
,

where at the first inequality, we used Inequality (7.12), and at the second inequality, we used
Inequality (7.13). This gives the first statement. To get the second one, observe that

|S(q)|P(C(d)
n q = r) =

∑
m∈MS(q,r)

E(m) ≤
∑

m∈MS(q,r)

f(n)p(m)
1
d−1

≤ |MS(q, r)|f(n)P(r − C(d−1)
n q ∼ q)

1
p−1 .

Now we prove Lemma 7.12.

Proof. Clearly we may assume that h = 2. The size of MS(q, r) is polynomial in n, so it is
enough to prove that for a fixed m ∈ MS(q, r), we have a good upper bound on P(Σ(Q) =

r and mQ = m). To show this, let X = (X0, X1, X2) ∈ V 1+2 be a random variable, such that
P(X = t) = m(t)

n for every t ∈ V 1+2, and let XΣ = X1 + X2. Then P(Σ(Q) = r and mQ = m)
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can be upper bounded by some polynomial multiple of

exp

(
n

(
H(X)−H(X0, XΣ)− 1

2
(H(X0, X1) +H(X0, X2))

))
= exp

(
n
(
−H(X0)− 1

2
((H(X0, X1) +H(X0, XΣ)−H(X)−H(X0))

+ (H(X0, X2) +H(X0, XΣ)−H(X)−H(X0)))
))

≤ exp(−nH(X0)) ≤ |V |−n exp(Cn2α−1),

using the fact that for i ∈ {1, 2}, we have

H(X0, Xi) +H(X0, XΣ) ≥ H(X0) +H(X0, Xi, XΣ) = H(X0) +H(X),

which is a combination of Inequality (7.10) and the last statement of Lemma 7.13.

For any non-negative integral vector m indexed by V 1+d and for i ∈ {1, 2, . . . , d}, we define

E0(m) =
m(V 1+d)!∏

c∈V m(τ0 = c)!

∏
a,b∈V m(τ0 = a, τΣ = b)!∏

t∈V 1+dm(t)!
,

and

Ei(m) =

(
m(V 1+d)!

2m(V 1+d)/2(m(V 1+d)/2)!

)−1

×

(∏
a∈V

m(τi = a, τ0 = a)!

2m(τi=a,τ0=a)/2(m(τi = a, τ0 = a)/2)!

) ∏
a6=b∈V

√
m(τ0 = a, τi = b)!

 .

Finally, let

E(m) = E0(m)

d∏
i=1

Ei(m).

Here we need to define (`+ 1
2)! for an integer `. The simple definition (`+ 1

2)! = `!
√
`+ 1 is good

enough for our purposes.

Recall that for q, r ∈ V n and m ∈MS(q, r), we already defined E(m) as

E(m) = |S(q)|P(mQ̄ = m and Σ(Q̄) = r),

where Q̄ is a random (q, 1, d)-tuple.

Using Equation (7.4), it is straightforward to verify that for a special m like above, the two
definitions coincide.
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Given a q ∈ V n, a (q, 1, d)-tuple Q or mQ itself will be called W -decent if for any u ∈W 1+d we
have

1 +mQ(τ0 = u0, τΣ = uΣ)

1 +mQ(u)
≤ log2 n.

A non-negative integral vector m indexed by V 1+d will be called W -half-decent if for every
u ∈W 1+d, we have

1 +m(τ0 = u0, τΣ = uΣ)

1 +m(u)
≤ log4 n,

and for every c ∈W , we have ∣∣∣∣m(τ0 = c)− n

|W |

∣∣∣∣ < 2nα,

where n =
∑

t∈V 1+dm(t).

Lemma 7.16 (The analogue of Lemma 4.8). For any coset W ∈ Cos(V ), we have

lim sup
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq) = lim sup
n→∞

∑
q∈DnW

|S(q)|P(Σ(Q̄) = rq and Q̄ is W − decent).

Proof. As in the proof of Lemma 4.8, it is enough to show that

|S(q)|P(Σ(Q̄) = rq and Q̄ is not W − decent) < n−(|V |+1)

for every (W,C log n)-typical vector q ∈ V n if n is large enough.

Consider a (W,C log n)-typical vector q ∈ V n, and let

MB = {mQ| Q is a not W -decent (q, 1, d)-tuple, such that Σ(Q) = rq} ⊂ MS(q, rq).

Recall that for m ∈MS(q, rq), we defined p(m) as the probability of the event that for a random
(q, 1, d− 1)-tuple Q̄ = (q̄(0), q̄(1), . . . , q̄(d−1)), we have that rq −Σ(Q̄) is a matching permutation
of q and the (q, 1, d)-tuple Q′ = (q̄(0), q̄(1), . . . , q̄(d−1), rq − Σ(Q̄)) satisfies mQ′ = m.

Note that for m ∈MB the event above is contained in the event that

there is a t ∈W 1+(d−1) and c ∈ dW such that
1 + |{i| rq(i) = c and qi = t0}|

1 + |{i| rq(i) = c and Q̄(i) = t}|
> log2 n.
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Let p′(q) be the probability of the latter event. As we just observed, p(m) ≤ p′(q) for all
m ∈MB. Using Lemma 7.15 and Lemma 10.3, we obtain

|S(q)|P(Σ(Q̄) = rq and Q̄ is not W − decent) =
∑

n∈MB

E(m)

≤
∑

n∈MB

f(n)p(m)
1
d−1

≤ |MB|f(n)p′(q)
1
d−1 < n−(|V |+1)

for large enough n.

Let
MS = {mQ | Q is a (q, 1, d)-tuple for some n ≥ 0 and q ∈ V n}.

Lemma 7.17 (The analogue of Lemma 4.9). There are finitely many vectors m1,m2, ...,m` ∈
MS, such that

MS = {c1m1 + c2m2 + · · ·+ c`m` | c1, c2, . . . , c` are non-negative integers}.

Proof. We define
R =

{
(m, g) | m ∈ RV

1+d
, g ∈ R{1,2,...,d}×V

}
.

Consider the linear subspace R′ of R consisting of pairs (m, g) satisfying the following liner
equations:

m(τ0 = a and τi = b) = m(τ0 = b and τi = a)

for all a, b ∈ V and i ∈ {1, 2, . . . , d}, moreover,

m(τ0 = c and τi = c) = 2g(i, c)

for all c ∈ V and i ∈ {1, 2, . . . , d}.

LetM0 be the set of non-negative integral points of R′. Observe thatM0 consists of the integral
points of a rational polyhedral cone. From [54, Theorem 16.4], we know that this cone is generated
by an integral Hilbert basis, i. e., there are finitely many vectors (m1, g1), (m2, g2), ..., (m`, g`) ∈
M0, such that

M0 = {c1 · (m1, g1) + · · ·+ c` · (m`, g`)| c1, c2, . . . , c` are non-negative integers}.

Then the vectors m1,m2, . . . ,m` ∈MS have the required properties.

Note we only introduced the extra component g to enforce the parity constraints in (7.3).

As before, we may assume that the indices in the lemma above are chosen such that there is
an h such that the supports of m1,m2, . . . ,mh are contained in W 1+d, and the supports of
mh+1,mh+2, ...,m` are not contained in W 1+d.
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Lemma 7.18 (The analogue of Lemma 4.12). Consider a non-negative integral W -half-decent
vector m0 ∈ RV 1+d , such that ‖m0‖WC = m(t 6∈ W 1+d) = O(log n), where n =

∑
t∈V 1+dm(t).

For u ∈ V 1+d, let χu ∈ RV 1+d be such that χu(u) = 1 and χu(t) = 0 for every t 6= u ∈ V 1+d.

• If u ∈W 1+d, then E(m0 + χu)/E(m0) = O
(
log4 n

)
;

• If u0 6∈W , then E(m0 + χu)/E(m0) = O
(

logd+1 n
nd/2−1

)
;

• If u0 ∈W and u 6∈W 1+d, then E(m0 + χu)/E(m0) = O
(
log2 n

)
.

Proof. Let

g =
1 +m0(τ0 = u0, τΣ = uΣ)

1 +m0(u)
,

h =
n+ 1

m(τ0 = u0) + 1
, and

fi =

√
1 +m0(τ0 = u0, τi = ui)

n+ 1
.

Lemma 7.19.

E(m0 + χu)/E(m0) = O(g · h ·
d∏
i=1

fi).

Proof. It is straightforward to check that E0(m0 + χu)/E0(m0) = g · h. Let
i ∈ {1, 2, . . . , d}. First assume that ui 6= u0, then

Ei(m0 + χu)/Ei(m0) =

√
2

n+ 1
·
(
n+1

2

)
!(

n
2

)
!
·
√
m0(τi = ui, τ0 = u0) + 1.

Recall that for any integer ` we defined (`+ 1
2)! as (`+ 1

2)! = `!
√
`+ 1. Thus, if n is even, then(

n+1
2

)
!(

n
2

)
!

=

√
n

2
+ 1 = O(

√
n+ 1),

and if n is odd, then (
n+1

2

)
!(

n
2

)
!

=

√
n+ 1

2
= O(

√
n+ 1).

Therefore, Ei(m0 + χu)/Ei(m0) = O(fi). In the case ui = u0 = c, we have

E0(m0 + χu)/E0(m0) =

√
2

n+ 1
·
(
n+1

2

)
!(

n
2

)
!
· m0(τi = c, τ0 = c) + 1√

2
·

(
m0(τi=c,τ0=c)

2

)
!(

m0(τi=c,τ0=c)+1
2

)
!
.
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A similar argument as above gives that Ei(m0 + χu)/Ei(m0) = O(fi) also holds in this case.
The statement follows from the fact that

E(m0 + χu)/E(m0) =
d∏
i=0

Ei(m0 + χu)/Ei(m0).

If u ∈ W 1+d, then since m0 is W -half-decent, we have g ≤ log4 n, h = O(1) and clearly fi ≤ 1,
thus the statement follows.

If u0 6∈W , then g = O(log n), h = O(n), fi = O( logn√
n

), and the statement follows.

If u0 ∈W and u 6∈W 1+d, then we consider two cases:

1. If uΣ ∈ dW , then g = O(n), h = O(1), moreover there are at least two indices i such that
ui 6∈ W . For such an i, we have fi = O( logn√

n
), otherwise we have fi ≤ 1, from these the

statement follows.

2. If uΣ 6∈ dW , then g = O(log n), h = O(1) and fi ≤ 1 for every i. The statement follows.

The previous lemma has the following consequence.

Lemma 7.20 (The analogue of Lemma 4.13). There are D, δ > 0, such that for any i ∈
{h + 1, h + 2, . . . , `} and any non-negative integral W -half-decent vector m0 ∈ RV 1+d , such that
‖m0‖WC = O(log n), we have

E(m0 +mi)/E(m0) = O

((
n−δ logD n

)‖mi‖WC
)
.

Proof. Take any i ∈ {h + 1, h + 2, . . . , `}. Since mi is not supported on W 1+d,
we have a u 6∈ W 1+d such that mi(u) ≥ 1. If u0 6∈ W , then
mi(τ0 6∈W ) ≥ mi(τ0 = u0) ≥ 1. If u0 ∈W , then there is a j such that uj 6∈W , thus

mi(τ0 6∈W ) ≥ mi(τ0 = uj , τj = u0) = mi(τ0 = u0, τj = uj) ≥ mi(u) ≥ 1.

In both cases, we obtained that mi(τ0 6∈ W ) ≥ 1. Note that for d ≥ 3, we have d/2 − 1 > 0.
From the previous statements and Lemma 7.20, it follows that for a large enough D and a small
enough δ > 0, we have

E(m0 +mi)/E(m0) = O
((

logD n
)‖mi‖WC

n−(d/2−1)
)

= O

((
n−δ logD n

)‖mi‖WC
)
.
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With these modifications above, we proved Theorem 1.6.

As an easy consequence of Theorem 1.6 we obtain following analogue of Corollary 5.1. The
random (n−1)× (n−1) matrix C ′n is obtained from Cn by deleting its last row and last column.
Recall q ∈ V n−1 the subgroup generated by q1, q2, . . . , qn−1 is denoted by Gq. Let USq be a
uniform random element of the set

{w ∈ Gn−1
q | < q ⊗ w >∈ I2}.

Corollary 7.21. We have
lim
n→∞

∑
q∈V n−1

d∞(C ′nq, U
S
q ) = 0.

Note that for q ∈ V n−1 such that Gq = V , if r ∈ V n−1 and < q ⊗ r >∈ I2 then P(USq = r) =

|V |−(n−1)2Rank2(V )|∧2V |. Therefore, Theorem 1.4 can be proved using the following observation.

Lemma 7.22. If d is even, then < q ⊗ dq >∈ I2 for every q ∈ V n−1. If d is odd, then
< q⊗ dq >∈ I2 if and only if s(q) is an element of the subgroup V ′ = {2v|v ∈ V }. The subgroup
V ′ has index 2Rank2(V ) in V .

For odd d, Theorem 1.2 follows from Theorem 1.4 and Theorem 5.5 part (2).

8 The 2-Sylow subgroup in the case of even d

Assume that d is even. Let ∆n be the reduced Laplacian of Hn, and Γn be the corresponding
sandpile group. Theorem 1.4 provides us the limit of the surjective V -moments of Γn. However,
these moments grow too fast, so Theorem 5.3 can not be applied to get the existence of a limit
distribution. We can overcome this difficulty by using that Γn has a special property given in
the next lemma.

Lemma 8.1. The group Γn ⊗ Z/2Z has odd rank.

Given any integral matrix M , let M be its mod 2 reduction. That is, M is a matrix over the 2

element field, where an entry is 1 if and only if the corresponding entry of M is odd.

Proposition 8.2. Let M be a integral m×m matrix. Then

Rank(cok(M)⊗ Z/2Z) = dim kerM = m− Rank(M).

Proof. It is straightforward to verify the statement if M is diagonal. If M is not diagonal, then
M can be written as M = ADB, where D is diagonal, and A,B ∈ GLm(Z). This is the so-called
Smith normal form. The statement follows from the fact that dim kerM = dim kerADB =

dim kerA ·D ·B = dim kerD, and cokM = cokADB = cokD.
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Proof. (Lemma 8.1) Observe that ∆n is a symmetric matrix, where all the diagonal entries are
0. Such a matrix alway has even rank. See for example [44, Theorem 3]. Recall that ∆n is
an (n − 1) × (n − 1) matrix, where n is even. Thus, the statement follows from the previous
proposition.

In the first part of this section, we prove a modified version of Theorem 5.3, which allows us to
make use of the fact that Γn ⊗ Z/2Z has odd rank. For most of the proof we can follow the
original argument of Wood [58] almost word by word with only small modifications. A few proofs
are omitted, since they are almost identical to the proofs of Wood [58]. The interested reader
can find them in the Appendix of the paper [48].

We start by giving a few definitions. A partition λ of length m is a sequence λ1 ≥ λ2 ≥ · · · ≥
λm ≥ 1 of positive integers. It will be a convenient notation to also define λi = 0 for i > m. The
transpose partition λ′ of λ is defined by setting λ′j to be the number of λi that are at least j.
Thus, the length of λ′ is λ1. Recall that any finite abelian p-group G is isomorphic to

m⊕
i=1

Z/pλiZ

for some partition λ of length m. We call λ the type of the group G. In fact, this provides
a bijection between the set of isomorphism classes of finite abelian p-groups and the set of
partitions.

Lemma 8.3.

1. Given a positive integer m, and b ∈ Zm such that b1 is odd, b1 ≥ b2 ≥ · · · ≥ bm, we have
an entire analytic function in the m variables z1, . . . , zm

Hm,2,b(z) =
∑

d1,...,dm≥0
d2+···+dm≤b1

ad1,...,dmz
d1
1 · · · z

dm
m

and a constant E such that

ad1,...,dm ≤ E2−b1d1−d1(d1+1).

Further, if f is a partition of length ≤ m such that f > b (in the lexicographic ordering), f1

is odd, then Hm,2,b(2
f1 , 2f1+f2 , . . . , 2f1+···+fm) = 0. If f = b, then

Hm,2,b(2
f1 , 2f1+f2 , . . . , 2f1+···+fm) 6= 0.

2. Given a positive integer m, a prime p > 2,7 and b ∈ Zm with b1 ≥ b2 ≥ · · · ≥ bm, we have
an entire analytic function in the m variables z1, . . . , zm

Hm,p,b(z) =
∑

d1,...,dm≥0
d2+···+dm≤b1

ad1,...,dmz
d1
1 · · · z

dm
m

7In fact, this statement is also true for p = 2, but we will not use this.
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and a constant E such that

ad1,...,dm ≤ Ep−b1d1− d1(d1+1)
2 .

Further, if f is a partition of length ≤ m and f > b (in the lexicographic ordering), then
Hm,p,b(p

f1 , pf1+f2 , . . . , pf1+···+fm) = 0. If f = b, then Hm,p,b(p
f1 , pf1+f2 , . . . , pf1+···+fm) 6=

0.

Proof. See the Appendix of [48] for the proof.

In the original proof of Wood [58], the prime 2 was not handled separately. That is, the functions
given in part (2) of Lemma 8.3 were used for all primes. Let us restrict our attention to random
groups G where G⊗ Z/2Z has odd rank. Then, for the prime 2, we can use the functions given
in part (1) of Lemma 8.3 instead of the ones given in part (2), and still proceed with the proof,
as we show in the next lemmas. Note that part (1) provides better bounds for the coefficients.
This allows us to handle faster growing moments.

Theorem 8.4. Let 2 = p1, . . . , ps be distinct primes. Let m1, . . . ,ms ≥ 1 be integers.

LetMj be the set of partitions λ at mostmj parts. LetM =
∏s
j=1Mj. For µ ∈M , we write µj for

its jth entry, which is a partition consisting of non-negative integers µji with µ
j
1 ≥ µ

j
2 ≥ . . . µ

j
mj .

Let
M0 = {µ ∈M | µ1

1 is odd}.

Suppose we have non-negative reals xµ, yµ, for each tuple of partitions µ ∈M0. Further suppose
that we have non-negative reals Cλ for each λ ∈M such that

Cλ ≤ 2λ
1
1

s∏
j=1

Fmjp
∑
i

λ
j
i
(λ
j
i
−1)

2
j ,

where F > 0 is an absolute constant. Suppose that for all λ ∈M ,

∑
µ∈M0

xµ

s∏
j=1

p
∑
i λ
j
iµ
j
i

j =
∑
µ∈M0

yµ

s∏
j=1

p
∑
i λ
j
iµ
j
i

j = Cλ. (8.1)

Then for all µ ∈M0, we have that xµ = yµ.

Proof. See the Appendix of [48] for the proof.

Lemma 8.5. There is a constant F , such that for any finite abelian p-group G of type λ, we
have ∑

G1 subgroup of G

| ∧2 G1| ≤ F λ1p
∑
i

λ′i(λ
′
i−1)

2 .

Moreover, if G finite abelian 2-group G of type λ, we have∑
G1 subgroup of G

2Rank2(G1)| ∧2 G1| ≤ F λ12λ
′
1+

∑
i

λ′i(λ
′
i−1)

2 .
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Proof. The first statement is the same as [58, Lemma 7.5].8 The second statement follows
from first by using the elementary fact that for any subgroup G1 of G, we have Rank2(G1) ≤
Rank2(G) = λ′1.

Lemma 8.6. ([58, Lemma 7.1]) Let Gµ and Gλ be two finite abelian p-groups of type µ and λ.
Then

|Hom(Gµ, Gλ)| = p
∑
i µ
′
iλ
′
i .

Theorem 8.7. Let Xn be a sequence of random variables taking values in finitely generated
abelian groups. Let a be an even positive integer and A be the set of (isomorphism classes of)
abelian groups with exponent dividing a. Assume that Rank(Xn ⊗ Z/2Z) is odd with probability
1 for every n. Suppose that for every G ∈ A, we have

lim
n→∞

E| Sur(Xn, G)| = 2Rank2(G)| ∧2 G|.

Then for every H ∈ A, the limit limn→∞ P(Xn ⊗ Z/aZ ' H) exists, and for all G ∈ A, we have∑
H∈A

lim
n→∞

P(Xn ⊗ Z/aZ ' H)|Sur(H,G)| = 2Rank2(G)| ∧2 G|.

Suppose Yn is a sequence of random variables taking values in finitely generated abelian groups
such that Rank(Yn ⊗ Z/2Z) is odd with probability 1 for every n, and for every G ∈ A, we have

lim
n→∞

E|Sur(Yn, G)| = 2Rank2(G)| ∧2 G|.

Then, we have that for every every H ∈ A

lim
n→∞

P(Xn ⊗ Z/aZ ' H) = lim
n→∞

P(Yn ⊗ Z/aZ ' H).

Proof. See the Appendix of [48] for the proof.

In the rest of the section we find a sequence of random groups, such that they have same limiting
surjective moments as the sequence of sandpile groups of Hn. The nice algebraic properties
of these groups allow us to give an explicit formula for their limiting distribution. Then the
previous theorem can be used to conclude that the sandpile group of Hn has the same limiting
distribution.

We start by showing that Lemma 7.6 is true under slightly weaker conditions.

Lemma 8.8. Assume that n ≥ 2|V |. Let q ∈ V n be such that Gq = V . Let r ∈ V n such that
< q⊗r >∈ I2. Then there is a symmetric matrix A over Z such that r = Aq and all the diagonal
entries of A are even.

Proof. We start by the following lemma. As in Lemma 7.6, let V =
⊕`

i=1 < vi >.
8In the latest arxiv version of this paper this is Lemma 7.4

75

C
E

U
eT

D
C

ol
le

ct
io

n



THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

Lemma 8.9. There is an invertible integral matrix B, such that B−1 is integral, and q′ = Bq

satisfies that mq′(vi) > 0 for every 1 ≤ i ≤ `.

Proof. Using the condition n ≥ 2|V | and Gq = V , we can choose n − ` components of q such
that they generate V . Due to symmetry we may assume that q`+1, q`+2, . . . , qn generates V . Let
us define q′ = (v1, v2, . . . , v`, q`+1, q`+2, . . . , qn). We define the integral matrix B = (bij) by

bij =


1 for 1 ≤ i = j ≤ n,
0 for 1 ≤ j < i ≤ n,
0 for ` < i < j ≤ n,
0 for 1 ≤ i < j ≤ `.

We still have not defined bij for 1 ≤ i ≤ ` and ` < j ≤ n. Since q`+1, q`+2, . . . , qn generates V
we can choose these entries such that Bq = q′. Since B is an upper triangular integral matrix
such that each diagonal entry is 1, it is invertible and the inverse is an integral matrix.

Let B the matrix provided by the lemma above. Set q′ = Bq and r′ =
(
B−1

)T
r. Observe that

< q′ ⊗ r′ >=< Bq ⊗
(
B−1

)T
r >=< B−1Bq ⊗ r >=< q ⊗ r >∈ I2.

Applying Lemma 7.6, we obtain a symmetric integral matrix A′ with even diagonal entries such
that r′ = A′q′. Consider A = BTA′B. Then A is a a symmetric integral matrix with even
diagonal entries. Moreover,

Aq = BTA′Bq = BTA′q′ = BT r′ = BT
(
B−1

)T
r = r.

Lemma 8.10. Let V be a finite abelian 2-group. Assume that 2k is divisible by the exponent of
V . Let An be uniformly chosen from the set of symmetric matrices in Mn(Z/2kZ), such that all
the diagonal entries are even. Then we have

lim
n→∞

E|{q ∈ V n| Gq = V, Anq = 0}| = 2Rank2(V )| ∧2 V |.

Proof. Take any q ∈ V n such that Gq = V . Let Nn be the set of symmetric matrices with even
diagonal entries inMn(Z/2kZ). The distribution of Anq is the uniform distribution on the image
of the Nn → V n homomorphism C 7→ Cq. From Lemma 8.8 one can see that if n is large enough
then this image is {r ∈ V n| < q ⊗ r >∈ I2}, which has size |V |n

(
2Rank2(V )| ∧2 V |

)−1. It is clear
that 0 is always contained in the image, thus P(Anq = 0) = |V |−n2Rank2(V )| ∧2 V |. Thus

lim
n→∞

E|{q ∈ V n| Gq = V, Anq = 0}| =

lim
n→∞

E|{q ∈ V n| Gq = V }|2
Rank2(V )| ∧2 V |
|V n|

= 2Rank2(V )| ∧2 V |.
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Let Z2 be the ring of 2-adic integers. Recall the fact that Z2 is the inverse limit of Z/2kZ. Thus
combining the lemma above with the analogue of Proposition 2.1, we get the following.

Lemma 8.11. Let Symm0(n) be the set of n × n symmetric matrices over Z2, such that all
diagonal entries are even. Let Qn be a Haar-uniform element of Symm0(n). For any finite
abelian 2-group V , we have

lim
n→∞

E| Sur(cok(Qn), V )| = 2Rank2(V )| ∧2 V |.

Moreover, if Qn ∈ Mn(Z/2Z) is obtained by reducing each entry of Qn modulo 2, then Qn is
a symmetric matrix with 0 as its diagonal entries. Consequently, Rank(cok(Qn)) ≡ n modulo
2.

The next lemma gives an explicit formula for the limiting distribution of cok(Qn). The author
is grateful to Melanie Wood who proved this result for him.

Lemma 8.12. (Wood [59]) For any finite abelian 2-group G of odd rank, we have

lim
n→∞
n is odd

P(cok(Qn) ' G) =

2Rank(G) |{φ : G×G→ C∗ symmetric, bilinear, perfect}|
|G||Aut(G)|

∞∏
j=0

(1− 2−2j−1).

Proof. Assume that G =
⊕k

i=1(Z/2eiZ)ni where e1 > e2 > · · · > ek > 0.

We consider Zn2 as a Z2 module. Let Ln(G) be the set of submodules M of Zn2 such that Zn2/M
is isomorphic to G.

P(cok(Qn) ' G) = P(RowSpace(Qn) ∈ Ln(G)) =
∑

M∈Ln(G)

P(RowSpace(Qn) = M).

Let µn be the Haar probability measure on Symm0(n). Fix M ∈ Ln(G). We are interested in
the probability

P(RowSpace(Qn) = M) = µn({S ∈ Symm0(n)|RowSpace(S) = M}).

Fix any (not necessary symmetric) n × n matrix N over Zp such that RowSpace(N) = M .
Observe that

{S ∈ Symm0(n)|RowSpace(S) = M} = {CN | CN ∈ Symm0(n), C ∈ GLn(Z2)}.

Since Zp is a principal ideal domain N has a Smith normal form, that is, we can find A,B ∈
GLn(Z2) such that D = ANB is a diagonal matrix. Since each nonzero element of Z2 can
written as 2du, where d is a nonnegative integer, u is a unit in Z2, we may assume each entry of
D is of the form 2d for some d. But since Zn2/RowSpace(D) ' Zn2/RowSpace(N) ' G, we know

77

C
E

U
eT

D
C

ol
le

ct
io

n



THE SANDPILE GROUPS OF RANDOM REGULAR GRAPHS

exactly what is D. Let nk+1 = n −
∑k

i=1 ni, and ek+1 = 0. From now on it will be convenient
to view n× n matrices as (k+ 1)× (k+ 1) block matrices, where the block at the position (i, j)

is an ni × nj matrix. Then D is a block matrix (Dij)
k+1
i,j=1 where all the off-diagonal blocks are

zero and Dii = 2eiI.

Observe that map S 7→ BTSB is an automorphism of the abelian group Symm0(n). Thus, it
pushes forward µn to µn, which gives us

µn({CN | CN ∈ Symm0(n), C ∈ GLn(Z2)})
= µn({BTCNB| BTCNB ∈ Symm0(n), C ∈ GLn(Z2)})
= µn({BTCA−1ANB| BTCA−1ANB ∈ Symm0(n), C ∈ GLn(Z2)})
= µn({BTCA−1D| BTCA−1D ∈ Symm0(n), C ∈ GLn(Z2)})
= µn({FD| FD ∈ Symm0(n), F ∈ GLn(Z2)}).

We consider F = (Fij)
k+1
i,j=1 as (k + 1) × (k + 1) block matrix as it was described above. Then

FD ∈ Symm0(n) if and only if for every i < j, we have

Fij = 2ei−ejF Tji (8.2)

and the diagonal entries of Fk+1,k+1 are even. Assuming that F has these properties, when does
F belong to GLn(Z2)? Observe that F ∈ GLn(Z2) if and only if the mod 2 reduction F of F is
invertible, but Equation (8.2) tells us F is a block lower triangular matrix, so F ∈ GLn(Z2) if
and only if Fii ∈ GLni(Z2) for each i.

From this it follows that {FD| FD ∈ Symm0(n), F ∈ GLn(Z2)} consists of all block matrices
H ∈ Symm0(n), such that

1. For 1 ≤ i, j ≤ k + 1 all entries of the block Hij is divisible by 2max(ei,ej).

2. For 1 ≤ i ≤ k + 1 the mod 2 reduction of the matrix 2−eiHii is an invertible symmetric
matrix over F2. Moreover, if i = k + 1, then all its diagonal entries are zero.

Let pm be the probability that a uniform random symmetric m×m matrix over F2 is invertible,
and let p′m be the probability that a uniform random symmetricm×mmatrix over F2 is invertible
and all its diagonal entries are zero.

P(RowSpace(Qn) = M) = µn({FD| FD ∈ Symm0(n), F ∈ GLn(Z2)})

= 2np′nk+1

k∏
i=1

pni2
ei(ni(n−

∑i
j=1 nj)+(ni+1

2 )).
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In particular, this does not depend on the choice of M ∈ Ln(G). Thus, we obtain that

P(cok(Qn) ' G) = |Ln(G)|2np′nk+1

k∏
i=1

pni2
ei(ni(n−

∑i
j=1 nj)+(ni+1

2 )).

Now let Q′n be a Haar-uniform n × n symmetric matrix over Z2. A very similar calculation as
above gives that

P(cok(Q′n) ' G) = |Ln(G)|pnk+1

k∏
i=1

pni2
ei(ni(n−

∑i
j=1 nj)+(ni+1

2 )).

Therefore,

P(cok(Qn) ' G)

P(cok(Q′n) ' G)
= 2n

p′nk+1

pnk+1

= 2n−nk+1
2nk+1p′nk+1

pnk+1

(8.3)

= 2Rank(G)
2nk+1p′nk+1

pnk+1

= 2Rank(G).

The last equality follows from the results of MacWilliams [44]. Note that here we needed to
use that n and Rank(G) are both odd, therefore nk+1 is even. As we already mentioned in the
Introduction in line (1.3) by the result of [18], we have

lim
n→∞

P(cok(Q′n) ' G) =
|{φ : G×G→ C∗ symmetric,bilinear, perfect}|

|G||Aut(G)|

∞∏
j=0

(1 − 2−2j−1).

Combining this with line (8.3) above, we get the statement.

Now we can prove the remaining part of Theorem 1.2

Proof. (Theorem 1.2 for even d)

Let pkii be the exponent of Gi.

Let Qn,1 be a Haar-uniform element of the the set of (2n − 1) × (2n − 1) symmetric matrices
over Z2, where all the diagonal entries are even. For i > 1, let Qn,i be a Haar-uniform element
of the the set of (2n − 1) × (2n − 1) symmetric matrices over Zpi . All the choices are made
independently. Let Q̄n,i ∈M2n−1(Z/pki+1

i Z) be the mod pki+1
i reduction of Qn,i.

Let a =
∏s
i=1 p

ki+1
i . Let Xn be the sandpile group Γ2n of H2n. Let

Yn =
⊕s

i=1 cok(Q̄n,i). Let V be a finite abelian group with exponent dividing a. Then, from
Theorem 1.4, we have

lim
m→∞

E| Sur(Xn, V )| = 2Rank2(V )| ∧2 V |.

Let Vi be the pi-Sylow subgroup of V . From Lemma 8.10, we have

lim
n→∞

E| Sur(cok(Q̄n,1), V1)| = 2Rank2(V1)| ∧2 V1|.
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For i > 1, from [18, Theorem 11], we have

lim
n→∞

E| Sur(cok(Q̄n,1), V1)| = | ∧2 Vi|.

It is also clear that

| Sur(Yn, V )| =
s∏
i=1

|Sur(cok(Q̄n,i), Vi)|.

Thus, from the independence of Qn,i, we get that

lim
n→∞

E|Sur(Yn, V )| =
s∏
i=1

lim
n→∞

E| Sur(cok(Q̄n,i), Vi)|

= 2Rank2(V1)
s∏
i=1

| ∧2 Vi| = 2Rank2(V )| ∧2 V |.

From Lemma 8.12 and [18, Theorem 2], we have

lim
n→∞

P(Yn ⊗ Z/aZ '
s⊕
i=1

Gi) = lim
n→∞

s∏
i=1

P(cok(Qn,i) ' Gi) =

2Rank(G1)
s∏
i=1

 |{φ : Gi ×Gi → C∗ symmetric, bilinear,perfect}|
|Gi||Aut(Gi)|

∞∏
j=0

(1− p−2j−1
i )

 .

Note that
⊕s

i=1 Γn,i '
⊕s

i=1Gi if and only ifXn⊗Z/aZ '
⊕s

i=1Gi. Note that both Rank2(Xn⊗
Z/2Z) and Rank2(Yn ⊗ Z/2Z) are odd. Therefore, Theorem 8.7 can be applied to finish the
proof.

9 The sublinear growth of rank

In this section we prove Theorem 1.9. Let Γn be the sandpile group of Hn. We start by a simple
lemma. Recall that Rankp(tors(Γn)) is the rank of the p-Sylow subgroup of tors(Γn).

Lemma 9.1. There is a constant cd such that | tors(Γn)| < cnd . Consequently, for any prime p,
we have

Rankp(tors(Γn)) ≤ n log cd
log p

.

Proof. Let v1, v2, ..., vk = n be a subset of the vertices ofHn, such that each connected component
of Hn contains exactly one of them. (With high probability k = 1.) Let ∆0 be the matrix
obtained from the Laplacian by deleting the rows and columns corresponding to the vertices
v1, v2, . . . , vk. Observe that tors(Γn) = |det ∆0|. Each row of ∆0 has Euclidean norm at most
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cd =
√

2d2. Thus, tors(Γn) = |det ∆0| ≤ cn−kd < cnd , from Hadamard’s inequality [12]. The proof
of the second statement is straightforward from this.

The lemma above will be used for large primes, for small primes we will use the next lemma.

Lemma 9.2. For every prime p, there is a constant Cp such that for any n and ε > 0, we have

P(Rank(Γn ⊗ Z/pZ) ≥ εn) ≤ Cpp−εn.

Proof. It is an easy consequence of Corollary 7.21 and Proposition 2.1 that

lim
n→∞

E|Hom(Γn ⊗ Z/pZ,Z/pZ)|

exists. This implies that there is a constant Cp such that

E|Hom(Γn ⊗ Z/pZ,Z/pZ)| ≤ Cp

for any n. Note that |Γn ⊗ Z/pZ| = |Hom(Γn ⊗ Z/pZ,Z/pZ)|. Thus, from Markov’s inequality

P(Rank(Γn ⊗ Z/pZ) ≥ εn) = P(|Γn ⊗ Z/pZ| ≥ pεn) ≤ p−εnE|Γn ⊗ Z/pZ|
= p−εnE|Hom(Γn ⊗ Z/pZ,Z/pZ)| ≤ Cpp−εn.

Now we are ready to prove Theorem 1.9. Take any ε > 0. Set K = exp(ε−1 log cd). Let
{p1, p2, . . . , ps} be the set of primes that are at most K. Using Lemma 9.2, we get that

P(Rank(Γn ⊗ Z/piZ) ≥ εn for some i ∈ {1, 2, . . . , s}) ≤
s∑
i=1

Cpip
−εn
i .

Since
∑∞

n=1

∑s
i=1Cpip

−εn
i is convergent, the Borel-Cantelli lemma gives us the following. With

probability 1 there is an N such that for every n > N and
i = 1, 2, . . . , s, we have Rank(Γn ⊗ Z/piZ) < εn. By the choice of K and Lemma 9.1, for a
prime p > K, we have Rankp(tors(Γn)) ≤ εn. Write Γn as Γn = Zf × tors(Γn). Then for n > N ,
we have

Rank(Γn) = f + max
p is a prime

Rankp(tors(Γn))

≤ Rank(Γn ⊗ Z/2Z) + max
p is a prime

Rankp(tors(Γn)) ≤ εn+ εn.

Tending to 0 with ε, we get the statement.
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10 Bounding the probabilities of non-typical events

At several points of the chapter we need to bound the probability of that something is not-typical.
These estimates are all based on the following lemma.

Lemma 10.1. Given 0 ≤ a, b ≤ n, let A and B be a uniform independent random subset of
{1, 2, . . . , n} such that |A| = a and |B| = b. Then for any k > 0, we have

P
(∣∣∣∣|A ∩B| − ab

n

∣∣∣∣ ≥ k) ≤ 2 exp

(
−2k2

a

)
≤ 2 exp

(
−2k2

n

)
.

Proof. Note that A∩B has the same distribution as
∑a

i=1Xi, where X1, X2 . . . , Xa is a random
sample drawn without replacement from an n element multiset, where 1 has multiplicity b and
0 has multiplicity n− b. Then the statement follows from [8, Proposition 1.2].

Applying this iteratively we get the following lemma.

Lemma 10.2. Given 0 ≤ a1, a2, ..., ad ≤ n, let A1, A2, ..., Ad be uniform independent random
subsets of {1, 2, . . . , n} such that |Ai| = ai for i = 1, 2, . . . , d. Then we have

P

(∣∣∣∣∣|A1 ∩ · · · ∩Ad| − n
d∏
i=1

ai
n

∣∣∣∣∣ ≥ (d− 1)k

)
≤ 2(d− 1) exp

(
−2k2

a1

)
≤ 2(d− 1) exp

(
−2k2

n

)
.

Proof. The proof is by induction. For d = 2, it is true as Lemma 10.1 shows. Now we prove for
d. By induction

P

(∣∣∣∣∣|A1 ∩ . . . Ad−1| − n
d−1∏
i=1

ai
n

∣∣∣∣∣ ≥ (d− 2)k

)
≤ 2(d− 2) exp

(
−2k2

a1

)
.

Using Lemma 10.1 for A1 ∩ . . . Ad−1 and Ad and the fact that |A1 ∩ . . . Ad−1| ≤ a1, we have

P
(∣∣∣∣|A1 ∩ . . . Ad| −

|A1 ∩ · · · ∩Ad−1|ad
n

∣∣∣∣ ≥ k) ≤ 2 exp

(
−2k2

a1

)
.

Thus, with probability at least 1− 2(d− 1) exp
(
−2k2

a1

)
, we have that∣∣∣∣|A1 ∩ . . . Ad| −

|A1 ∩ · · · ∩Ad−1|ad
n

∣∣∣∣ ≤ k
and for

∆ = |A1 ∩ . . . Ad−1| − n
d−1∏
i=1

ai
n
,
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the inequality |∆| ≤ (d− 2)k holds. Therefore,∣∣∣∣∣|A1 ∩ · · · ∩Ad| − n
d∏
i=1

ai
n

∣∣∣∣∣ =

∣∣∣∣|A1 ∩ · · · ∩Ad| −
ad(|A1 ∩ · · · ∩Ad−1| −∆)

n

∣∣∣∣
≤
∣∣∣∣|A1 ∩ · · · ∩Ad| −

ad|A1 ∩ · · · ∩Ad−1|
n

∣∣∣∣+
ad|∆|
n

≤ k + (d− 2)k ≤ (d− 1)k.

Next we give the analogue of Lemma 10.1 for uniform random perfect matchings.

Lemma 10.3. Assume that n is even. Let A and B be two fixed subsets of
{1, 2, . . . , n}, let |A| = a and |B| = b. Let M be uniform random perfect matching on the
set {1, 2, . . . , n}. Let X be the number of elements in A that are paired with an element in B in
the matching M . Then for any k > 0, we have

P
(∣∣∣∣X − ab

n

∣∣∣∣ ≥ 4k

)
≤ 6 exp

(
−2k2

a

)
≤ 6 exp

(
−2k2

n

)
.

Proof. Observe that the uniform random matching M can be generated as follows. First we
partition the set {1, 2, . . . , n} into two disjoint subsets H1 and H2 of size n

2 uniformly at random.
Then we consider a uniform random perfect matching between H1 and H2. For i ∈ {1, 2}, let
ai = |A∩Hi|, and let bi = |B ∩Hi|. Let Xi be the number of element in A∩Hi that are paired
with an element in B. From Lemma 10.1, we have

P
(∣∣∣a1 −

a

2

∣∣∣ ≥ k) ≤ 2 exp

(
−2k2

a

)
,

P
(∣∣∣∣X1 −

2a1b2
n

∣∣∣∣ ≥ k) ≤ 2 exp

(
−2k2

a1

)
,

P
(∣∣∣∣X2 −

2a2b1
n

∣∣∣∣ ≥ k) ≤ 2 exp

(
−2k2

a2

)
.

It follows from the union bound that with probability at least 1− 6 exp
(
−2k2

a

)
, we have that

∣∣∣a1 −
a

2

∣∣∣ < k,

∣∣∣∣X1 −
2a1b2
n

∣∣∣∣ < k and
∣∣∣∣X2 −

2a2b1
n

∣∣∣∣ < k.

On this event∣∣∣∣X − ab

n

∣∣∣∣ =

∣∣∣∣(X1 −
ab2
n

)
+

(
X2 −

ab1
n

)∣∣∣∣
≤
∣∣∣∣X1 −

ab2
n

∣∣∣∣+

∣∣∣∣X2 −
ab1
n

∣∣∣∣
≤
∣∣∣∣X1 −

2a1b2
n

∣∣∣∣+

∣∣∣∣2a1b2
n
− ab2

n

∣∣∣∣+

∣∣∣∣X2 −
a2b1
2n

∣∣∣∣+

∣∣∣∣2a2b1
n
− ab1

n

∣∣∣∣
< 2k +

2b1
n

∣∣∣a2 −
a

2

∣∣∣+
2b2
n

∣∣∣a1 −
a

2

∣∣∣ < 4k.
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Applying this iteratively, we can get a lemma similar to Lemma 10.2.
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3
Limiting entropy of determinantal

processes

We extend Lyons’s tree entropy theorem to general determinantal measures. As a byproduct
we show that the sofic entropy of an invariant determinantal measure does not depend on the
chosen sofic approximation.

1 Introduction

Let P = (pij) be an orthogonal projection matrix, where rows and columns are both indexed
with a finite set V . Then there is a unique probability measure ηP on the subsets of V such that
for every F ⊂ V we have

ηP ({B|F ⊂ B ⊂ V }) = det(pij)i,j∈F .

The measure ηP is called the determinantal measure corresponding to P [42]. Let BP be a
random subset of V with distribution ηP . In this chapter we investigate the asymptotic behavior
of the Shannon-entropy of BP defined as

H(BP ) =
∑
A⊂V
−P(BP = A) logP(BP = A).

Let P1, P2, . . . be a sequence of orthogonal projection matrices. Assume that rows and columns of
Pn are both indexed with the finite set Vn. Let Gn be a graph on the vertex set Vn. Throughout
the chapter we assume that the degrees of graphs are at most D for some fixed finite D.
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LIMITING ENTROPY OF DETERMINANTAL PROCESSES

Our main theorem is the following.

Theorem. Assume that the sequence of pairs (Gn, Pn) is Benjamini-Schramm convergent and
tight. Then

lim
n→∞

H(BPn)

|Vn|
exists.

Note that this theorem will be restated in a slightly more general and precise form as Theorem
2.5 in the next section. We will also give a formula for the limit.

We define Benjamini-Schramm convergence of (Gn, Pn) along the lines of [10] and [4] via the
following local sampling procedure. Fix any positive integer r, this will be our radius of sight. For
a vertex o ∈ Vn let Br(Gn, o) be the r-neighborhood of o in the graph Gn, and let Mn,r,o be the
submatrix of Pn determined by rows and columns with indeces in Br(Gn, o). Then the outcome
of the local sampling at o is the pair (Br(Gn, o),Mn,r,o). Of course, we are only interested in the
outcome up to rooted isomorphism. Now if we pick o as a uniform random element of Vn, we
get a probability measure µn,r on the set of isomorphism classes of pairs (H,M), where H is a
rooted r-neighborhood and M is a matrix where rows and columns are indexed with the vertices
of H. We say that the sequence (Gn, Pn) converges if for any fixed r the measures µn,r converge
weakly as n tends to infinity. See the next section for more details including the description of
the limit object.

To define the notion of tightness, we introduce a measure νn on N ∪ {∞} for each pair (Gn, Pn)

as follows. Given k ∈ N ∪ {∞} we set

νn({k}) = |Vn|−1
∑

u,v∈Vn
dn(u,v)=k

|Pn(u, v)|2,

where dn is the graph metric on Vn = V (Gn). Then the sequence (Gn, Pn) is tight if the family
of measures νn is tight, that is, for each ε > 0 we have a finite R such that

νn ({R+ 1, R+ 2, . . . } ∪ {∞}) < ε

for all n. Tightness makes sure that the local sampling procedure from the previous paragraph
detects most of the significant matrix entries for large enough r.

Note that a related convergence notion of operators was introduced by Lyons and Thom [43].
We expect that their notion is slightly stronger, but were unable to clarify this.

The idea of the proof of the main theorem is the following. Consider a uniform random ordering
of Vn. Then using the chain rule for conditional entropy we can write H(BPn) as the sum of
|Vn| conditional entropies. We show that in the limit we can control these conditional entropies.
This method in the context of local convergence first appeared in [15].
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Now we describe a special case of our theorem. Consider a finite connected graph G, and
consider the uniform measure on the set of spanning trees of G. This measure turns out to
be a determinantal measure, the corresponding projection matrix PF(G) is called the transfer-
current matrix [17]. Since this is a uniform measure, the Shannon-entropy is simply log τ(G),
where τ(G) is the number of spanning trees in G. A theorem of Lyons [41] states that if Gn is a
Benjamini-Schramm convergent sequence of finite connected graphs then

lim
n→∞

log τ(Gn)

|V (Gn)|

exists. This theorem now follows from our results, because it is easy to see that the sequence
(L(Gn), PF(Gn)) is convergent and tight in our sense, where L(Gn) is the line graph of Gn. See
Section 7. Note that we need to take the line graph of Gn, because the uniform spanning tree
measure is defined on the edges of Gn rather than the vertices of Gn. We also obtain a formula
for the limit which is different from Lyons’s original formula. However, in practice it seems easier
to evaluate Lyons’s original formula.

Another application comes from ergodic theory. Let Γ be a finitely generated countable group,
and let T be an invariant positive contraction on `2(Γ). Here a linear operator is called a positive
contraction if it is positive semidefinite and has operator norm at most 1. Invariance means that
for any γ, g1, g2 ∈ Γ we have

〈Tg1, g2〉 = 〈T (γ−1g1), γ−1g2〉.

Note that here we identify elements of Γ with their characteristic vectors. Then the determinantal
measure µT corresponding to T gives us an invariant measure on {0, 1}Γ. Note that there is a
natural graph structure on Γ. Namely, we can fix a finite generating set S, and consider the
corresponding Cayley-graph Cay(Γ, S). When Γ belongs to the class of sofic groups, one can
define the so-called sofic entropy of this invariant measure [3]. This is done by first considering
an approximation of Cay(Γ, S) by a sequence of finite graphs Gn, and then investigating how we
can model µT on these finite graphs. In general it is not known whether sofic entropy depends on
the chosen approximating sequence Gn or not, apart from certain trivial examples. However, in
our special case, our results allow us to give a formula for the sofic entropy, which only depends
on the measure µT , but not on the finite approximations. This shows that in this case the sofic
entropy does not depend on the chosen sofic approximation.

Observe that in our main theorem the graphs Gn do not play any role in the definition of the
random subsets BPn or the Shannon entropy H(BPn), they are only there to help us define our
convergence notion. This suggests that there might be a notion of convergence of orthogonal
projection matrices without any additional graph structure such that the normalized Shannon
entropy of BPn is continuous.

Structure of the chapter. In Section 2 we explain the basic definitions and state our results.
In Section 3 we investigate what happens if we condition a Benjamini-Schramm convergence
sequence of determinantal measures in a Benjamini-Schramm convergent way. In Sections 4,
5 and 6 we prove the theorems stated in Section 2. In Section 7 we explain the connections
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LIMITING ENTROPY OF DETERMINANTAL PROCESSES

of our results and Lyons’s tree entropy theorem. The proof of a technical lemma about the
measurability of the polar decomposition is given in the Appendix.

2 Definitions and statements of the results

2.1 The space of rooted graphs and sofic groups

Fix a degree bound D. A rooted graph is a pair (G, o) where G is a (possibly infinite) connected
graph with degrees at most D, o ∈ V (G) is a distinguished vertex of G called the root. Given two
rooted graphs (G1, o1) and (G2, o2) their distance is defined to be the infimum over all ε > 0 such
that for r = bε−1c there is a root preserving graph isomorphism from Br(G1, o1) to Br(G2, o2).
Let G be the set of isomorphism classes of rooted graphs. With the above defined distance G is a
compact metric space. Therefore, the set of probability measures P(G) endowed with the weak*
topology is also compact. A sequence of random rooted graphs (Gn, on) Benjamini-Schramm
converges to the random rooted graph (G, o), if their distributions converge in P(G). Given any
finite graph G, we can turn it into a random rooted graph U(G) = (Go, o) by considering a
uniform random vertex o of G and its connected component Go. A sequence of finite graphs
Gn Benjamini-Schramm converges to the random rooted graph (G, o) if the sequence U(Gn)

Benjamini-Schramm converges to (G, o).

Let S be a finite set, an S-labeled Schreier graph is a graph where each edge is oriented and
labeled with an element from S, moreover for every vertex v of the graph and every s ∈ S there
is exactly one edge labeled with s entering v and there is exactly one edge labeled with s leaving
v. For example, if Γ is a group with generating set S, then its Cayley-graph Cay(Γ, S) is an
S-labeled Schreier-graph. The notion of Benjamini-Schramm convergence can be extended to the
class of S-labeled Schreier-graphs with the modification that graph isomorphisms are required
to respect the orientation and labeling of the edges. Let Γ be a finitely generated group. Fix a
finite generating set S, and consider the Cayley-graph GΓ = Cay(Γ, S). Let eΓ be the identity
of Γ. We say that Γ is sofic if there is a sequence of finite S-labeled Schreier-graphs Gn, such
that Gn Benjamini-Schramm converges to (GΓ, eΓ).

2.2 The space of rooted graph-operators

Fix a degree bound D, and let K be a non-empty finite set.

A rooted graph-operator (RGO) is a triple (G, o, T ), where (G, o) is a rooted graph and T is a
bounded operator on `2(V (G) × K). In this chapter we will use real Hilbert spaces, but the
results can be generalized to the complex case as well. Note that to prove our main theorem it
suffices to only consider the case |K| = 1. The usefulness of allowing |K| > 1 will be only clear
in Section 5, where we extend our results to positive contractions.

Given two RGOs (G1, o1, T1) and (G2, o2, T2) their distance d((G1, o1, T1), (G2, o2, T2)) is defined
as the infimum over all ε > 0 such that for r = bε−1c there is a root preserving graph isomorphism
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ψ from Br(G1, o1) to Br(G2, o2) with the property that

|〈T1(v, k), (v′, k′)〉 − 〈T2(ψ(v), k), (ψ(v′), k′)〉| < ε (2.1)

for every v, v′ ∈ V (Br(G1, o1)) and k, k′ ∈ K. Here we identified elements of V (Gi) ×K with
their characteristic vectors in `2(V (Gi)×K).

Two RGOs (G1, o1, T1) and (G2, o2, T2) are called isomorphic if their distance is 0, or equivalently
if there is a root preserving graph isomorphism ψ from (G1, o1) to (G2, o2) such that

〈T1(v, k), (v′, k′)〉 = 〈T2(ψ(v), k), (ψ(v′), k′)〉

for every v, v′ ∈ V (G1) and k, k′ ∈ K. Let RGO be the set of isomorphism classes of RGOs. For
any 0 < B <∞, we define

RGO(B) = {(G, o, T ) ∈ RGO| ‖T‖ ≤ B}.

One can prove that RGO(B) is a compact metric space with the above defined distance d. Let
P(RGO(B)) be the set of probability measures on RGO(B) endowed with the weak* topology,
this is again a compact space. Often it will be more convenient to consider an element P(RGO)

as a random RGO.

A RGO (G, o, T ) is called a rooted graph-positive-contraction (RGPC) if T is a self-adjoint positive
operator with norm at most 1. Then the setRGPC of isomorphism classes of RGPCs is a compact
metric space. Therefore, P(RGPC) with the weak* topology is compact.

We need a slight generalization of the notion of RGO. An h-decorated RGO is a tuple
(G, o, T,A(1), A(2), . . . , A(h)), where G, o and T are like above, A(1), A(2), . . . , A(h) are subsets of
V (G) × K. Given two h-decorated RGOs (G1, o1, T1, A

(1)
1 , A

(2)
1 , . . . , A

(h)
1 ) and

(G2, o2, T2, A
(1)
2 , A

(2)
2 , . . . , A

(h)
2 ) their distance is defined as the infimum over all ε > 0 such

that for r = bε−1c there is a root preserving graph isomorphism ψ from Br(G1, o1) to Br(G2, o2)

satisfying the property given in (2.1), and for i = 1, 2, . . . , h we have

ψ̄(A
(i)
1 ∩ (Br(G1, o1)×K)) = A

(i)
2 ∩ (Br(G2, o2)×K),

where ψ̄(v, k) = (ψ(v), k).

Two h-decorated RGOs (G1, o1, T1, A
(1)
1 , . . . , A

(h)
1 ) and (G2, o2, T2, A

(1)
2 , . . . , A

(h)
2 ) are called iso-

morphic if their distance is 0. Let RGOh be the set of isomorphism classes of h-decorated RGOs.
We also define RGOh(B) and RGPCh the same way as their non-decorated versions were de-
fined. With the above defined distance they are compact metric spaces. Similarly as before,
P(RGOh(B)) and P(RGPCh), endowed with the weak* topology, are compact spaces. When-
ever the value of h is clear from the context, we omit it and simply use the term "decorated
RGO".
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A finite graph-positive-contraction is a pair (G,T ), where G is finite graph with degrees at most
D, and T is a positive contraction on `2(V (G)×K). It can be turned into a random RGPC

U(G,T ) = (Go, o, To)

by choosing o as a uniform random vertex of G.

Note that all the definitions above depend on the choice of the finite set K. In most of the
chapter we can keep K as fixed. Whenever we need to emphasize the specific choice of K, we
will refer to K as the support set of RGOs. Unless stated otherwise the support set is always
assumed to be K. Let L ⊂ K and let (G, o, T ) be a RGO with support set K. Let PL be the
orthogonal projection from `2(V (G) × K) to `2(V (G) × L) ⊂ `2(V (G) × K). We define the
operator restL(T ) on `2(V (G) × L) as restL(T ) = PLT �`2(V (G)×L). So (G, o, restL(T )) is an
RGO with support set L.

Sometimes we need to consider more than one operator on a rooted graph. A double RGO will
mean a tuple (G, o, T1, T2) where (G, o) is a rooted graph and T1, T2 are bounded operators on
`2(V (G)×K). We omit the details how the set of isomorphism classes of double RGOs can be
turned into a metric space. It is also clear what we mean by a decorated double RGO, or a triple
RGO, or a double RGPC.

2.3 Determinantal processes

Let E be a countable set, and T be a positive contraction of `2(E). Then there is a random
subset BT of E with the property that for each finite subset F of E we have

P[F ⊂ BT ] = det(〈Tx, y〉)x,y∈F ,

where we identify an element x ∈ E with its characteristic vector in `2(E). The distribution
of BT is uniquely determined by these constraints, and it is called the determinantal measure
corresponding to T [42].

Using the definition of the random subset BT , we can define a map τ : RGPC → P(RGPC1)

by τ(G, o, T ) = (G, o, T,BT ). This induces a map τ∗ : P(RGPC) → P(P(RGPC1)). Taking
expectation we get the map Eτ∗ : P(RGPC)→ P(RGPC1). So given a random RGPC (G, o, T )

the meaning of (G, o, T,BT ) is ambiguous. Unless stated otherwise (G, o, T,BT ) will mean a
random decorated RGPC, i.e., its distribution is an element of P(RGPC1).

Proposition 2.1. The maps τ, τ∗ and Eτ∗ are continuous.

2.4 Trace and spectral measure

Given a random RGO (G, o, T ) we define

Tr(G, o, T ) = E
∑
k∈K
〈T (o, k), (o, k)〉.
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We extend the definition to the decorated case in the obvious way.

Given a random RGPC (G, o, T ) its spectral measure is the unique measure µ = µ(G,o,T ) on [0, 1]

with the property that, for any integer n ≥ 0 we have

Tr(G, o, Tn) =

∫ 1

0
xndµ.

Note that µ([0, 1]) = |K|. Also if T is a projection with probability 1, then we have

µ = Tr(G, o, T )δ1 + (|K| − Tr(G, o, T ))δ0.

If (G,T ) is a finite graph-positive-contraction, then the spectral measure of U(G,T ) can be
obtained as

1

|V (G)|

|V (G)×K|∑
i=1

δλi ,

where λ1, λ2, . . . , λ|V (G)×K| are the eigenvalues of T with multiplicity.

2.5 An equivalent characterization of tightness

We already defined the notion of tightness in the Introduction. Here we repeat the definition
in a slightly more general setting. For a finite graph-positive-contraction (G,T ) we define the
measure ν(G,T ) on N ∪ {∞} by setting

ν(G,T )({t}) = |V (G)|−1
∑

(v1,k1),(v2,k2)∈V (G)×K
dG(v1,v2)=t

|〈T (v1, k1), (v2, k2)〉|2,

for all t ∈ N ∪ {∞}. A sequence (Gn, Tn) of finite graph-positive-contractions is tight if the
family of measures ν(Gn,Tn) is tight, that is, for each ε > 0 we have a finite R such that

ν(Gn,Tn) ({R+ 1, R+ 2, . . . } ∪ {∞}) < ε

for all n. The next lemma gives an equivalent characterization of tightness.

Lemma 2.2. Let (Gn, Pn) be a Benjamini-Schramm convergent sequence of finite graph-positive-
contractions with limit (G, o, T ). Assume that P1, P2, . . . are orthogonal projections. Then the
following are equivalent

i) The sequence (Gn, Pn) is tight.

ii) The limit T is an orthogonal projection with probability 1 and ν(Gn,Pn)({∞}) = 0 for every
n.

Proof. i)⇒ ii): Recall the following well-known result.
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Proposition 2.3. Let E be a countable set, and let T be a positive contraction on `2(E). Then
for all e ∈ E we have 〈T 2e, e〉 ≤ 〈Te, e〉. Moreover, if for all e ∈ E we have 〈T 2e, e〉 = 〈Te, e〉,
then T is an orthogonal projection.

Let (Hn, on, Tn) = U(Gn, Pn). Then

ν(Gn,Pn)(N ∪ {∞}) = |V (Gn)|−1 Tr(P ∗nPn) = |V (Gn)|−1 Tr(Pn) = Tr(Hn, on, Tn).

Combining this with the definition of tightness we get that for any ε > 0 we have an R such that

E
∑
k∈K

∑
(v,k′)∈BR(Hn,on)×K

|〈Tn(on, k), (v, k′)〉|2 > Tr(Hn, on, Tn)− ε (2.2)

for every n.

Using the convergence of (Hn, on, Tn) we get that

lim
n→∞

Tr(Hn, on, Tn) = Tr(G, o, T ),

and

lim
n→∞

E
∑
k∈K

∑
(v,k′)∈BR(Hn,on)×K

|〈Tn(on, k), (v, k′)〉|2 = E
∑
k∈K

∑
(v,k′)∈BR(G,o)×K

|〈T (o, k), (v, k′)〉|2.

Combining these with inequality (2.2) we get that

Tr(G, o, T 2) = E
∑
k∈K

∑
(v,k′)∈V (G)×K

|〈T (o, k), (v, k′)〉|2

≥ E
∑
k∈K

∑
(v,k′)∈BR(G,o)×K

|〈T (o, k), (v, k′)〉|2 ≥ Tr(G, o, T )− ε.

Tending to 0 with ε we get that

Tr(G, o, T 2) ≥ Tr(G, o, T ).

Combining this with the first statement of Proposition 2.3 we get that with probability 1 we have
〈T 2(o, k), (o, k)〉 = 〈T (o, k), (o, k)〉 for every k ∈ K. But then it follows from the unimodularity
of (G, o, T ) that with probability 1 we have 〈T 2(v, k), (v, k)〉 = 〈T (v, k), (v, k)〉 for any (v, k) ∈
V (G)×K. See [4, Lemma 2.3 (Everything Shows at the Root)] and Section 3. Then Proposition
2.3 gives us that T is a projection with probability 1. From the definition of tightness it is clear
that νn({∞}) = 0 for every n.

ii)⇒ i): Pick any ε > 0. From the monotone convergence theorem and the fact that T is a
projection with probability 1, we have
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Tr(G, o, T ) = Tr(G, o, T 2) = E
∑
k∈K

∑
(v,k′)∈V (G)×K

|〈T (o, k), (v, k′)〉|2

= lim
R→∞

E
∑
k∈K

∑
(v,k′)∈BR(G,o)×K

|〈T (o, k), (v, k′)〉|2.

Thus, if we choose a large enough R0, then we have

Tr(G, o, T )− E
∑
k∈K

∑
(v,k′)∈BR0

(G,o)×K

|〈T (o, k), (v, k′)〉|2 < ε

2
.

Then from the convergence of (Hn, on, Tn) we get that there is an N such that if n > N we have

ν(Gn,Pn)({R0 + 1, R0 + 2, . . . } ∪ {∞}) =

Tr(Hn, on, Tn)− E
∑
k∈K

∑
(v,k′)∈BR0

(Hn,on)×K

|〈Tn(on, k), (v, k′)〉|2 < ε.

Using the condition that ν(Gn,Pn)({∞}) = 0 for all n and the definition of ν(Gn,Pn) we get
that the support of the measure ν(Gn,Pn) is contained in {0, 1, . . . , |V (Gn)|}. Thus, the choice
R = max(R0, |V (G1)|, |V (G2)|, . . . , |V (GN )|) is good for ε.

2.6 Sofic entropy

Let C be a finite set and let Γ be a finitely generated group. Let f be a random coloring of
Γ with C, that is a random element of CΓ. (The measurable structure of CΓ comes from the
product topology on CΓ.) Given a coloring f ∈ CΓ and γ ∈ Γ we define the coloring fγ by
fγ(g) = f(γ−1g) for all g ∈ Γ. This notation extends to random colorings in the obvious way.
A random coloring f is invariant if for every γ ∈ Γ the distribution of fγ is the same as the
distribution of f .

Now assume that Γ is a finitely generated sofic group, and f is an invariant random coloring of
Γ. Let S be a finite generating set, and let G1, G2, . . . be a sequence of S-labeled Schreier-graphs
Benjamini-Schramm converging to the Cayley-graph GΓ = Cay(Γ, S). Now we define the so
called sofic entropy of f . There are many slightly different versions of this notion [16, 5], we
will follow Abért and Weiss [3]. Let G be a finite S-labeled Schreier graph and g be a random
coloring of V (G). Given ε > 0 and a positive integer r, we say that g is an (ε, r) approximation
of f on the graph G, if there are at least (1 − ε)|V (G)| vertices v ∈ V (G), such that Br(G, v)

is isomorphic to Br(GΓ, eΓ), moreover dTV (f � Br(GΓ, eΓ), g � Br(G, v)) < ε, where dTV is the
total variational distance, and it is meant that we identify Br(GΓ, eΓ) and Br(G, v). Let us
define

H(G, ε, r) = sup

{
H(g)

|V (G)|

∣∣∣ g is an (ε, r) approximation of f on G
}
.
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Here H(g) is the Shannon-entropy of g. Let H(ε, r) be the supremum of H(G, ε, r), over all
finite S-labeled Schreier graphs G. We define two versions of sofic entropy. The first one

h(f) = inf
ε,r

lim sup
n→∞

H(Gn, ε, r).

Note that this might depend on the chosen sofic approximation. Another option is to define sofic
entropy as

h′(f) = inf
ε,r
H(ε, r).

Observe that h′(f) ≥ h(f). It is open whether h′(f) = h(f) for any sofic approximation apart
from trivial counterexamples. We can also express these quantities as

h(f) = inf
ε

lim sup
n→∞

H(Gn, ε, bε−1c) and h′(f) = inf
ε
H(ε, bε−1c).

The quantities h(f) and h′(f) are isomorphism invariants in the abstract ergodic theoretic sense.

Remark. Sofic entropy can be defined in a more general setting. Namely, let Q be a locally finite
vertex transitive graph. Let o be any vertex of it. Assume that (Q, o) is a Benjamini-Schramm
limit of finite graphs. Let f be a random coloring of V (Q) with C such that the distribution of
f is invariant under all automorphisms of Q. We would like to define the sofic entropy of f the
same way as above. The only problematic point is that in the definition of (ε, r)-approximation
we need to identify Br(G, v) with Br(Q, o). But Br(Q, o) might have non-trivial automorphisms,
in which case there are more than one possible identifications and it is not clear which we should
choose. If all the automorphisms Br(Q, o) can be extended to an automorphism of Q, then we can
choose any identification, because they all give the same total variation distance. But if Br(Q, o)
has other automorphisms then things get more complicated. However, one can overcome these
difficulties and get a sensible notion of sofic entropy [3]. Here we do not give the details, we just
mention that Theorem 2.6 stated in the next subsection can be extended to this more general
setting.

2.7 Our main theorems

Let E be a countable set, and T be a positive contraction on `2(E). Let c be a [0, 1] labeling of
E. For e ∈ E let I(e) be the indicator of the event that e ∈ BT . For e ∈ E we define

h̄(e, c, T ) = H(I(e)|{I(f)|c(f) < c(e)}).

Here, H is the conditional entropy, that is, with the notation

g(x) = −x log x− (1− x) log(1− x),

we have
H(I(e)|{I(f)|c(f) < c(e)}) = Eg(E[I(e)|{I(f)|c(f) < c(e)}]).
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Moreover, we define
h̄(e, T ) = Eh̄(e, c, T ),

where c is an i.i.d. uniform [0, 1] labeling of E.

For a random RGPC (G, o, T ) we define

h̄(G, o, T ) = E
∑
k∈K

h̄((o, k), T ).

If L ⊂ K and (G,T ) is a finite graph-positive-contraction we define hL(G,T ) to be the Shannon
entropy of BT ∩ (V (G)× L).

Theorem 2.4. Let (Gn, Pn) be a sequence of finite graph-positive-contractions, such that
limn→∞ U(Gn, Pn) = (G, o, P ) for some random RGPC (G, o, P ). Assume that P1, P2, . . . are
orthogonal projections, and P is an orthogonal projection with probability 1. Let L ⊂ K. Then

lim
n→∞

hL(Gn, Pn)

|V (Gn)|
= h̄(G, o, restL(P )).

Using Lemma 2.2 we immediately get the following theorem.

Theorem 2.5. Let (Gn, Pn) be a tight sequence of finite graph-positive-contractions, such that
limn→∞ U(Gn, Pn) = (G, o, P ) for some random RGPC (G, o, P ). Assume that P1, P2, . . . are
orthogonal projections. Let L ⊂ K. Then

lim
n→∞

hL(Gn, Pn)

|V (Gn)|
= h̄(G, o, restL(P )).

Let Γ be a finitely generated sofic group. A positive contraction T on `2(Γ×K) is called invariant,
if for any γ, g1, g2 ∈ Γ and k1, k2 ∈ K we have

〈T (g1, g1), (g2, k2)〉 = 〈T (γ−1g1, k1), (γ−1g2, k2)〉.

For an invariant positive contraction if we regard the random subset BT as a random coloring
with {0, 1}K , we see that BT is an invariant coloring. Thus we can speak about its sofic entropy.

As before let S be a finite generating set of Γ, let eΓ be the identity of Γ, and GΓ = Cay(Γ, S)

be the Cayley-graph of Γ.

Theorem 2.6. Let Γ be a finitely generated sofic group. If T is an invariant positive contraction
on `2(Γ×K) then we have

h(BT ) = h′(BT ) = h̄(GΓ, eΓ, T )

for any sofic approximation of Γ.
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Note that we can easily generalize the definition of h̄ to any invariant random coloring f . It is
known that even in this more general setting h̄ is an upper bound on the sofic entropy. However,
h̄ is not an isomorphism invariant in the ergodic theoretic sense. See [55].

The random ordering idea above was used by Borgs, Chayes, Kahn and Lovász [15] to give the
growth of the partition function and entropy of certain Gibbs measures at high temperature on
Benjamini-Schramm convergent graph sequences. See also [6].

2.8 An example: Why tightness is necessary?

We consider two connected graphs H1 and H2. Let H1 be the complete graph on 4 vertices,
and let H2 be the graph that is obtained from a star with 3 edges by doubling each edge. Both
have 4 vertices and 6 edges. Let Ti be a uniform random spanning tree of Hi, and let Pi be
the corresponding 6 × 6 transfer-current matrix. It is straightforward to check that for any
e ∈ E(Hi) we have P(e ∈ Ti) = 1

2 . Thus, in both P1 and P2 all the diagonal entries are equal
to 1

2 . Now let Gi be the empty graph on the vertex set E(Hi). Then the pairs (G1, P1) and
(G2, P2) are indistinguishable by local sampling, that is, U(G1, P1) and U(G2, P2) have the same
distribution. On the other hand H1 has 16 spanning trees, and H2 has only 8 spanning trees.
So |V (G1)|−1H(BP1) 6= |V (G2)|−1H(BP2). This shows that the condition of tightness can not
be omitted in Theorem 2.5. One could think that this only works, because the graphs G1 and
G2 are not connected. But Theorem 2.5 still fails without the assumption of tightness, even if
we assume that all the graphs are connected. We sketch the main idea. Let i ∈ {1, 2}. For
each n we consider a block diagonal matrix Bi,n, where we have n diagonal blocks each of which
equal to Pi. Then we take a connected graph Gi,n on Vi,n (the set of columns of Bi,n) in such
a way that if two columns are in the same block, then they must be at least at distance d(n)

in the graph Gi,n for some d(n) tending to infinity. Moreover, we can choose Gi,n such that
the sequences (G1,n) and (G2,n) have the same Benjamini-Schramm limit (G, o). Then both of
the sequences (G1,n, B1,n) and (G2,n, B2,n) have the same limit, namely, (G, o, 1

2I). But their
asymptotic entropies are different.

3 Unimodularity and conditional determinantal processes

3.1 Unimodularity

We define bi-rooted graph-operators as tuples (G, o, o′, T ), where G is a connected graph with
degree bound D, o, o′ ∈ V (G) and T is a bounded operator on `2(V (G) ×K). Let biRGO be
the set of isomorphism classes of bi-rooted graph-operators. We omit the details how to endow
this space with a measurable structure. A random RGO (G, o, T ) is called unimodular, if for any
non-negative measurable function f : biRGO → R we have

E
∑

v∈V (G)

f(G, o, v, T ) = E
∑

v∈V (G)

f(G, v, o, T ).
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The next lemma gives some examples of unimodular random RGOs. The proof goes like the one
given in [10].

Lemma 3.1. If (G,T ) is a finite graph-positive-contraction, then U(G,T ) is unimodular. The
limit of unimodular random RGOs is unimodular.

Of course the notion of unimodularity can be extended to double/triple (decorated) RGOs. We
will use the following consequence of unimodularity.

Lemma 3.2. Let (G, o, T, S) be a unimodular random double RGO. Assume that there is a finite
B such that ‖T‖, ‖S‖ < B with probability 1. Then

Tr(G, o, TS) = Tr(G, o, ST ).

Proof. The proof is the same as in [4, Section 5].

It has the following consequences.

Lemma 3.3. In the following statements we always assume that P and Pi are all orthogonal
projections with probability 1.

1. Let (G, o, P1, P2, U) be a unimodular random triple RGO, such that with probability 1 we
have U � kerP1 ≡ 0 and U � ImP1 is an isomorphism between ImP1 and ImP2. Then

Tr(G, o, P1) = Tr(G, o, P2).

2. Let (G, o, P1, P2, T ) be a unimodular random triple RGO, such that with probability 1 we
have ImTP1 = ImP2 and T is injective on ImP1. Then

Tr(G, o, P1) = Tr(G, o, P2).

3. (rank-nullity theorem) Let (G, o, P, P1, P2, T ) be a unimodular random quadruple RGO,
such that with probability 1 we have that P1 is the orthogonal projection to ker(T � ImP )

and P2 is the orthogonal projection to Im(T � ImP ). Then

Tr(G, o, P ) = Tr(G, o, P1) + Tr(G, o, P2).

Proof. To prove part 1 observe that P1U
∗U = P1 and UP1U

∗ = P2. Note that all operators have
norm at most 1, so from Lemma 3.2

Tr(G, o, P1) = Tr(G, o, (P1U
∗)U) = Tr(G, o, U(P1U

∗)) = Tr(G, o, P2).

To prove part 2 let TP1 = UH be the unique polar decomposition of TP1, then (G, o, P1, P2, UP1)

satisfies the conditions in part 1, so the statement follows. The rather technical details why the
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polar decomposition is measurable are given in the Appendix. Note that once we established the
measurability of U , unimodularity follows from the uniqueness of the decomposition.

To prove part 3 let H = ImP ∩ (kerT � ImP )⊥. Let PH be the orthogonal projection to H, then
we have P = P1 + PH . Therefore, Tr(G, o, P ) = Tr(G, o, P1) + Tr(G, o, PH). It is also clear that
ImTP = Im(T � H) and T is injective on H. Thus part 2 gives us Tr(G, o, PH) = Tr(G, o, P2).
Putting everything together we obtain that

Tr(G, o, P ) = Tr(G, o, P1) + Tr(G, o, PH) = Tr(G, o, P1) + Tr(G, o, P2).

3.2 Conditional determinantal processes

Let P be an orthogonal projection to a closed subspace H of `2(E). Given C ⊂ E, let [C]

be the closed subspace generated by e ∈ C, and let [C]⊥ be the orthogonal complement of it.
Note that [C]⊥ = [E\C]. We define P/C as the orthogonal projection to the closed subspace
(H ∩ [C]⊥) + [C], and P×C as the orthogonal projection to the closed subspace H ∩ [C]⊥. We
also define P−C = I − (I − P )/C .

Proposition 3.4. We have P/C = P×C + P[C], where P[C] is the orthogonal projection to [C].
In other words P/Ce = e for e ∈ C and P/Ce = P×Ce for e ∈ E\C. Moreover, if Cn is an
increasing sequence of subsets of E and C = ∪Cn, then P/Cn converges to P/C in the strong
operator topology. Furthermore, the sequence 〈P×Cne, e〉 is monotone decreasing.

Proof. The first statement is trivial. To prove the second statement, observe that P×Cn is a
sequence of orthogonal projections to a monotone decreasing sequence of closed subspaces with
intersection ImP×C , so P×Cn converge to P×C in the strong operator topology. It is also clear
that P[Cn] converge to P[C], so from P/Cn = P×Cn + P[Cn] the statement follows. To prove the
third statement observe that 〈P×Cne, e〉 = ‖P×Cne‖22. So the statement follows again from the
fact that P×Cn is a sequence of orthogonal projections to a monotone decreasing sequence of
closed subspaces.

For C,D ⊂ E we define P/C−D = (P/C)−D, and we define P−D/C = (P−D)/C . We only include
the next lemma here to make it easier to compare formulas in [42] with our formulas.

Lemma 3.5. Let P be an orthogonal projection to a closed subspace H. Then for any D ⊂ E

we have
ImP−D = H + [D] ∩ [D]⊥.

Moreover, if C and D are disjoint subsets of E, then

ImP/C−D = (H ∩ [C]⊥) + [C ∪D] ∩ [D]⊥

and
ImP−D/C = (H + [D] ∩ [C ∪D]⊥) + [C].
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If C and D are finite, then the above formulas are true even if we omit the closures.

Proof. We only prove the first statement. The other statements can be easily deduced from it.
Unpacking the definitions we need to prove that

((H⊥ ∩ [D]⊥) + [D])⊥ = H + [D] ∩ [D]⊥.

As a first step observe that H + [D] ∩ [D]⊥ = Im(P[D]⊥ � H). Indeed, if x ∈ (ImP[D]⊥ � H),
then x = limxn, where for all n we have xn ∈ [D]⊥ and there is an yn ∈ [D] such that
xn + yn ∈ H. But then xn = (xn + yn)− yn ∈ H + [D], which implies that x ∈ H + [D]. Clearly
x ∈ [D]⊥, so x ∈ H + [D] ∩ [D]⊥.

To prove the other containment let x ∈ H + [D] ∩ [D]⊥, then x = limxn where
xn = yn + zn with yn ∈ H and zn ∈ [D]. Since P[D]⊥ is continuous, we have

x = P[D]⊥x = limP[D]⊥(yn + zn) = limP[D]⊥yn ∈ Im(P[D]⊥ � H).

Now it is easy to see that we need to prove that

(H⊥ ∩ [D]⊥) + [D] = (ImP[D]⊥ � H)⊥.

First let x ∈ (ImP[D]⊥ � H)⊥. Then for any h ∈ H we have

0 = 〈x, P[D]⊥h〉 = 〈P[D]⊥x, h〉,

which implies that P[D]⊥x ∈ H⊥ ∩ [D]⊥. Thus, x = P[D]⊥x+ P[D]x ∈ (H⊥ ∩ [D]⊥) + [D]. To
show the other containment let us consider x = y + z such that y ∈ H⊥ ∩ [D]⊥ and z ∈ [D].
Then for any h ∈ H we have

〈x, P[D]⊥h〉 = 〈P[D]⊥x, h〉 = 〈y, h〉 = 0,

because y ∈ H⊥.

For the last statement, see the discussion in the paper [42] after the proof of Corollary 6.4.

We have the following lemma. See [42, Equation (6.5)].

Lemma 3.6. Let C and D be disjoint finite subsets of E such that
P[BP ∩ (C ∪ D) = C] > 0. Then P/C−D = P−D/C and conditioned on the event
BP ∩ (C ∪D) = C, the distribution of BP is the same as that of BP/C−D .

The lemma above shows why the pairs (C,D) of finite disjoint sets with the property that
P[BP ∩ (C ∪ D) = C] > 0 are interesting for us. The next proposition gives an equivalent
characterization of these pairs.

Proposition 3.7. Let C and D be disjoint finite subsets of E. Then we have
P[BP ∩ (C ∪D) = C] > 0 if and only if ImP[C]P = [C] and ImP[D](I − P ) = [D].
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This motivates the following definitions. A (not necessary finite) subset C of E is called inde-
pendent (with respect to P ) if ImP[C]P = [C]. A subset D of E is called dually independent
(with respect to P ) if ImP[D](I − P ) = [D]. A pair (C,D) of subsets of E is called permitted
(with respect to P ) if C and D are disjoint, C is independent and D is dually independent.

We will need the following theorem of Lyons [42, Theorem 7.2].

Theorem 3.8. The pair (BP , E\BP ) is permitted with probability 1.

We will also need the following statements.

Proposition 3.9. If (C,D) is permitted, C ′ ⊂ C and D′ ⊂ D, then (C ′, D′) is permitted.

Proposition 3.10. Assume (C,D) is a permitted pair. Then D is dually independent with
respect to P/C , or equivalently, D is independent with respect to I − P/C .

Proof. By the definition of a permitted pair ImP[D](I − P ) = [D], so it is enough to show that
ImP[D](I − P ) ⊂ ImP[D](I − P/C). Take any r ∈ ImP[D](I − P ), then there is x such that
r = P[D](I−P )x. Let y = P[C]⊥(I−P )x. We claim that y ∈ Im(I−P/C), or in other words, y is
orthogonal to any element w ∈ ImP/C . We can write w as w = w0 +w1, where w0 ∈ ImP ∩ [C]⊥

and w1 ∈ [C]. We have

〈y, w0〉 = 〈P[C]⊥(I − P )x,w0〉 = 〈(I − P )x, P[C]⊥w0〉 = 〈(I − P )x,w0〉 = 0,

since w0 ∈ ImP . Moreover 〈y, w1〉 = 0, because y ∈ [C]⊥ and w1 ∈ [C]. Thus, 〈y, w〉 = 0, so y
is indeed in the image of I −P/C , then P[D]y is in the image of P[D](I −P/C). Using that C and
D are disjoint P[D]y = P[D]P[C]⊥(I − P )x = P[D](I − P )x = r.

Assume for a moment that E is finite, then |BP | = dim ImP with probability 1. If (C,D) is
a permitted pair, then the distribution of BP/C−D is the same as that of BP conditioned on
the event that BP ∩ (C ∪D) = C. So |BP/C−D | = dim ImP with probability 1. In particular,
E|BP | = E|BP/C−D |. The next lemma extends this statement to the more general unimodular
setting.

Lemma 3.11. Let (G, o, P, C,D) be a unimodular random decorated RGPC where P is an
orthogonal projection and the pair (C,D) is permitted with probability 1. Then

Tr(G, o, P ) = Tr(G, o, P/C−D) = Tr(G, o, P−D/C).

This can be obtained from combining Proposition 3.10 and the following lemma.

Lemma 3.12. Let (G, o, P, C) be a unimodular random decorated RGPC where P is an orthog-
onal projection and C is independent with probability 1. Then

Tr(G, o, P ) = Tr(G, o, P/C).
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We also have the corresponding dual statement, that is, let (G, o, P,D) be a unimodular random
decorated RGPC where P is an orthogonal projection and D is dually independent with probability
1. Then

Tr(G, o, P ) = Tr(G, o, P−D).

Proof. We only need to prove the first statement, because the second one can be obtained by
applying the first statement to I − P .

Observe that ker(P[C] � ImP ) = ImP×C from the definition of P×C , moreover,
Im(P[C] � ImP ) = [C], because C is independent. Applying the rank nullity theorem (Lemma
3.3.3) and then using the fact P/C = P×C + P[C] from Proposition 3.4 we get that

Tr(G, o, P ) = Tr(G, o, P×C) + Tr(G, o, P[C]) = Tr(G, o, P×C + P[C]) = Tr(G, o, P/C).

The next lemma gives an extension of Lemma 3.6.

Lemma 3.13. Let F ⊂ E, and assume that

〈P/BP∩F−F\BP e, e〉 = 〈P−F\Bp/BP∩F e, e〉

for all e ∈ E with probability 1. Then for any finite A ⊂ E we have

P(A ⊂ BP |BP � F ) = P(A ⊂ BP
/BP∩F−F\BP ).

Proof. Let F1, F2, . . . be an increasing sequence of finite sets such that their union is F . The
crucial step in the proof is the following lemma.

Lemma 3.14. Let (C,D) be a permitted pair, such that C ∪ D = F . Then 〈P/C−De, e〉 ≤
〈P−D/Ce, e〉 for all e ∈ E. Now assume that 〈P/C−De, e〉 = 〈P−D/Ce, e〉 for all e ∈ E. Let us
define Pn = P/C∩Fn−D∩Fn. Then B

P/C−D is the weak limit of BPn.

Proof. Let A be a finite set such that, A ∩ F = ∅, moreover let A be an upwardly closed subset
of 2A, i.e. if X ⊂ Y ⊂ A and X ∈ A, then Y ∈ A. Using that determinantal measures have
negative associations ([42, Theorem 6.5]) we get the following inequality for m > n

P[BPn ∩A ∈ A] = P[BP/C∩Fn−D∩Fn ∩A ∈ A] ≥ P[BP/C∩Fm−D∩Fn ∩A ∈ A].

Tending to infinity with m, we get that

P[BPn ∩A ∈ A] ≥ P[BP/C−D∩Fn ∩A ∈ A]. (3.1)

To justify this last statement, let U be the set of orthogonal projections R such that D ∩ Fn is
dually independent with respect toR. Combining Proposition 3.9 and Proposition 3.10, we obtain
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that P/C∩Fm and P/C are all contained in U . For R ∈ U , the probability P[BR−D∩Fn ∩A ∈ A] is
a continuous function of (〈Re, f〉)e,f∈A∪(D∩Fn). As we proved in Proposition 3.4, P/C∩Fm tends
to P/C in the strong operator topology. Thus,

lim
m→∞

P[BP/C∩Fm−D∩Fn ∩A ∈ A] = P[BP/C−D∩Fn ∩A ∈ A].

This gives us Inequality (3.1).

Tending to infinity with n we get that

lim inf
n→∞

P[BPn ∩A ∈ A] ≥ lim
n→∞

P[BP/C−D∩Fn ∩A ∈ A] = P[BP/C−D ∩A ∈ A].

A similar argument gives that

lim sup
n→∞

P[BPn ∩A ∈ A] ≤ P[BP−D/C ∩A ∈ A]

Therefore,

P[BP−D/C ∩A ∈ A] ≥ lim sup
n→∞

P[BPn ∩A ∈ A] (3.2)

≥ lim inf
n→∞

P[BPn ∩A ∈ A] ≥ P[BP/C−D ∩A ∈ A].

These inequalities are in fact true without the assumption A ∩ F = ∅. Indeed, let A ⊂ E finite
and A be an upwardly closed subset of 2A. We define A′ = A\F and

A′ = {X ⊂ A′|X ∪ (A ∩ C) ∈ A}.

Note that A′ is upwardly closed subset of 2A
′ .

Then P[BP/C−D ∩ A ∈ A] = P[BP/C−D ∩ A′ ∈ A′]. Moreover, for any large enough n, we have
P[BPn ∩ A ∈ A] = P[BPn ∩ A′ ∈ A′]. Clearly A′ ∩ F = ∅, so we reduced the problem to the
already established case.

Choosing A = {e} and A = {{e}} in (3.2), we get that 〈P/C−De, e〉 ≤ 〈P−D/Ce, e〉 for all e ∈ E.
Inequality (3.2) tells us that BP−D/C stochastically dominates BP/C−D . But if 〈P/C−De, e〉 =

〈P−D/Ce, e〉 for all e ∈ E, then the distribution of BP/C−D and BP−D/C must be the same. Then
inequality (3.2) gives the statement.

Let A be any finite set. We define the martingale Xn by

Xn = P[A ⊂ BP |BP � Fn] = P[A ⊂ BP
/BP∩Fn−Fn\BP ].

Combining the previous lemma with our assumptions on BP we get that with probability 1 we
have limXn = P[A ⊂ BP

/BP∩F−F\BP ]. On the other hand we have

limXn = P[A ⊂ BP |BP � F ].

102

C
E

U
eT

D
C

ol
le

ct
io

n



CHAPTER 3

The statement follows.

Lemma 3.15. Let (G, o, P, F ) be a unimodular random decorated RGPC where P is an or-
thogonal projection with probability 1. Then with probability 1, we have that for any finite set
A ⊂ V (G)×K

P(A ⊂ BP |BP � F ) = P(A ⊂ BP
/BP∩F−F\BP ).

Proof. From Lemma 3.14, we have that for all e ∈ V (G)×K we have

〈P/BP∩F−F\BP e, e〉 ≤ 〈P−F\BP /BP∩F e, e〉.

From Lemma 3.11, we have Tr(G, o, P/BP∩F−F\BP ) = Tr(G, o, P−F\BP /BP∩F ), which imply that
with probability 1 we have 〈P/BP∩F−F\BP e, e〉 = 〈P−F\BP /BP∩F e, e〉 for any e ∈ {o} ×K, but
then it is true for any e from unimodularity. (See [4, Lemma 2.3 (Everything Shows at the
Root)].) Therefore, Lemma 3.13 can be applied to get the statement.

The lemma above establishes Conjecture 9.1 of [42] in the special unimodular case. Note that
this conjecture is false in general as it was pointed out to the author by Russel Lyons. Indeed,
it follows from the results of Heicklen and Lyons [31] that for the WUSF on certain trees,
conditioning on all edges but one does not (a.s.) give a measure corresponding to an orthogonal
projection, because the probability of the remaining edge to be present is in (0, 1) a.s.

3.3 Limit of conditional determinantal processes

Theorem 3.16. Let (Gn, on, Pn, Cn, Dn) be a convergent sequence of unimodular random deco-
rated RGPCs with limit (G, o, P, C,D). Assume that Pn and P are orthogonal projections and
(Cn, Dn) and (C,D) are all permitted with probability 1. Then (Gn, on, (Pn)/Cn−Dn) converges
to (G, o, P/C−D).

This will follow from applying the next lemma twice, first for the sequence Pn, then for I−(Pn)/C
with Dn in place of Cn. At the second time we need to use Proposition 3.10 to show that the
conditions of the lemma are satisfied.

Lemma 3.17. Let (Gn, on, Pn, Cn, Dn) be a convergent sequence of unimodular random decorated
RGPCs with limit (G, o, P, C,D). Assume that Pn and P are orthogonal projections and Cn, C
are all independent with probability 1. Then (Gn, on, (Pn)/Cn , Dn) converges (G, o, P/C , D).

Proof. The presence of Dn does not not add any extra difficulty to the problem, so for simplicity
of notation we will prove the following statement instead:
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Let (Gn, on, Pn, Cn) be a convergent sequence of unimodular random decorated RGPCs with limit
(G, o, P, C). Assume that Pn and P are orthogonal projections, Cn and C are all independent
with probability 1. Then (Gn, on, (Pn)/Cn) converges to (G, o, P/C).

We start by the following lemma.

Lemma 3.18. Let (Gn, on, Pn, Cn) be a convergent sequence of decorated RGPCs with limit
(G, o, P, C). Assume that Pn and P are orthogonal projections, Cn and C are all indepen-
dent, and there is an r such that Cn ⊂ V (Br(Gn, on)) × K and C ⊂ V (Br(G, o)) × K. Then
(Gn, on, (Pn)×Cn) converges to (G, o, P×C).

Proof. Let us choose an orthogonal projection Π from a small neighborhood U of P . If this
neighborhood is small enough, then C is independent with respect to Π. For c ∈ C, we have
Π×{c}e = Πe − 〈Πe,c〉〈Πc,c〉Πc. Indeed, clearly Πe − 〈Πe,c〉〈Πc,c〉Πc ∈ Im Π ∩ [{c}]⊥, moreover with the

notation α = 〈Πe,c〉
〈Πc,c〉 for any w ∈ Im Π ∩ [{c}]⊥ we have

〈w, e− (Πe− αΠc)〉 = 〈w, (I −Π)e〉+ 〈w,αΠc〉 = 〈Πw,αc〉 = 〈w,αc〉 = 0.

By induction we get that
Π×Ce = Πe−

∑
c∈C

αc,eΠc.

Here αc,e is a continuous function of (〈Πx, y〉)x,y∈C∪{e} in the neighborhood U . The statement
can be deduced using this.

From compactness every subsequence of (Gn, on, Pn, (Pn)/Cn , Cn) has a convergent subsequence,
so it is enough to prove the following lemma.

Lemma 3.19. Let (Gn, on, Pn, Cn) be a convergent sequence of unimodular random decorated
RGPCs with limit (G, o, P, C). Assume that Pn and P are orthogonal projections, Cn and C are
all independent with probability 1. If (Gn, on, Pn, (Pn)/Cn , Cn) converges to (G, o, P,Q,C), then
(G, o,Q) has the same distribution as (G, o, P/C).

Proof. Using Skorokhod’s representation theorem we can find a coupling of (Gn, on, Pn, (Pn)/Cn , Cn)

and (G, o, P,Q,C) such that limn→∞(Gn, on, Pn, (Pn)/Cn , Cn) = (G, o, P,Q,C) with probability
1. By definition there is a random sequence r1, r2, . . . such that limn→∞ rn =∞ with probabil-
ity 1, and there is a root preserving graph isomorphism ψn from Brn(G, o) to Brn(Gn, on) such
that ψ̄n(C ∩ (Brn(G, o)×K)) = Cn ∩ (Brn(Gn, on)×K), where ψ̄n(v, k) = (ψn(v), k) and with
probability 1 for each e, f ∈ V (G)×K we have

lim
n→∞

〈Pnψ̄ne, ψ̄nf〉 = 〈Pe, f〉,

and
lim
n→∞

〈(Pn)/Cnψ̄ne, ψ̄nf〉 = 〈Qe, f〉.

Of course, ψ̄ne only makes sense if n is large enough.
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Let us define Cn(r) = Cn ∩ (Br(Gn, on)×K) and C(r) = C ∩ (Br(G, o)×K).

Lemma 3.18 gives us that for any r we have

lim
n→∞

〈(Pn)×Cn(r)ψ̄n(e), ψ̄n(f)〉 = 〈P×C(r)e, f〉. (3.3)

Note that ImP×C(r) is a decreasing sequence of subspaces with intersection ImP×C . So P×C(r)

converges to P×C in the strong operator topology.

In particular, for any e, f ∈ V (G)×K, we have

lim
r→∞
〈P×C(r)e, f〉 = 〈P×Ce, f〉, (3.4)

and
lim
r→∞
〈(Pn)×Cn(r)ψ̄n(e), ψ̄n(f)〉 = 〈(Pn)×Cnψ̄n(e), ψ̄n(f)〉. (3.5)

We need the following elementary fact.

Lemma 3.20. Let a(r, n) be non-negative real numbers, such that for any fixed n, the sequence
a(r, n) is monotone decreasing in r. Let An = limr→∞ a(r, n), assume that for any fixed r the
limit Br = limn→∞ a(r, n) exists. Then limn→∞An ≤ limr→∞Br if these limits exist.

Note that if e = f then the limits in (3.4) and (3.5) are decreasing limits as we observed in
Proposition 3.4. So the previous lemma combined with equation (3.3) gives us that for any
e ∈ V (G)×K we have

lim
n→∞

〈(Pn)×Cnψ̄ne, ψ̄ne〉 ≤ 〈P×Ce, e〉.

Combining this with Proposition 3.4, we get that

〈Qe, e〉 = lim
n→∞

〈(Pn)/Cnψ̄ne, ψ̄ne〉 ≤ 〈P/Ce, e〉. (3.6)

On the other hand, from Lemma 3.12, we know that

E
∑
k∈K
〈Q(o, k), (o, k)〉 = Tr(G, o,Q) = lim

n→∞
Tr(Gn, on, (Pn)/Cn)

= lim
n→∞

Tr(Gn, on, Pn) = Tr(G, o, P ) = Tr(G, o, P/C)

= E
∑
k∈K
〈P/C(o, k), (o, k)〉.

From this and inequality (3.6) we get that 〈Q(o, k), (o, k)〉 = 〈P/C(o, k), (o, k)〉 for all
k ∈ K with probability 1, so from unimodularity ([4, Lemma 2.3 (Everything shows at the
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root)]) it follows that

〈Qe, e〉 = lim
n→∞

〈(Pn)/Cnψ̄ne, ψ̄ne〉 = 〈P/Ce, e〉 (3.7)

for all e ∈ V (G)×K with probability 1.

Now we prove that with probability 1 for every e, f ∈ V (G) ×K we have 〈Qe, f〉 = 〈P/Ce, f〉.
This is clear if e ∈ C, because in that case P/Ce = Qe = e. So assume that e 6∈ C, then

|〈P/Ce, f〉 − 〈Qe, f〉| = |〈P×Ce, f〉 − 〈Qe, f〉|
≤ |〈P×Ce, f〉 − 〈P×C(r)e, f〉|

+ |〈P×C(r)e, f〉 − 〈(Pn)×Cn(r)ψ̄ne, ψ̄nf〉|
+ |〈(Pn)×Cn(r)ψ̄ne, ψ̄nf〉 − 〈(Pn)×Cnψ̄ne, ψ̄nf〉|
+ |〈(Pn)×Cnψ̄ne, ψ̄nf〉 − 〈Qe, f〉|.

Pick any ε > 0. If we choose a large enough r, then |〈P×Ce, f〉 − 〈P×C(r)e, f〉| < ε and
|〈P×C(r)e, e〉 − 〈P×Ce, e〉| < ε from equation (3.4). Fix such an r. Then if n is large enough
|〈P×C(r)e, f〉 − 〈(Pn)×Cn(r)ψ̄ne, ψ̄nf〉| < ε from equation (3.3), and also |〈(Pn)×Cnψ̄ne, ψ̄nf〉 −
〈Qe, f〉| < ε, because of Proposition 3.4 and the fact that e 6∈ C. Finally, observing that
(Pn)×Cn(r) − (Pn)×Cn is an orthogonal projection, we have

|〈(Pn)×Cn(r)ψ̄ne,ψ̄nf〉 − 〈(Pn)×Cnψ̄ne, ψ̄nf〉|
≤ ‖(Pn)×Cn(r)ψ̄ne− (Pn)×Cnψ̄ne‖2

=
√
〈(Pn)×Cn(r)ψ̄ne− (Pn)×Cnψ̄ne, ψ̄ne〉

≤
(
|〈(Pn)×Cn(r)ψ̄ne, ψ̄ne〉 − 〈P×C(r)e, e〉|

+ |〈P×C(r)e, e〉 − 〈P×Ce, e〉|

+ |〈P×Ce, e〉 − 〈(Pn)×Cnψ̄ne, ψ̄ne〉|
) 1

2

Now, for a large enough n we have |〈(Pn)×Cn(r)ψ̄ne, ψ̄ne〉 − 〈P×C(r)e, e〉| < ε from equation
(3.3) and |〈P×Ce, e〉 − 〈(Pn)×Cnψ̄ne, ψ̄ne〉| = |〈P/Ce, e〉 − 〈(Pn)/Cnψ̄ne, ψ̄ne〉| < ε from line (3.7).
Finally, |〈P×C(r)e, e〉 − 〈P×Ce, e〉| < ε follows from the choice of r. Putting everything together,
|〈P/Ce, f〉 − 〈Qe, f〉| < 3ε+

√
3ε, so Lemma 3.19 follows.

This completes the proof of Lemma 3.17 and Theorem 3.16.

4 The proof of Theorem 2.4

First we observe that we may assume that |V (Gn)| → ∞. If not, then we can take a large
m = m(n) and replace Gn with m disjoint copies of Gn, and Pn with the m fold direct sum of
copies of Pn.
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Let (G,P ) be a finite graph-positive-contraction, where P is an orthogonal projection. Let
m = |V (G) × L|. Fix an ordering e1, e2, . . . , em of the element of V (G) × L.
Let Ei = {e1, e2, . . . , ei}. For e ∈ V (G) × L let I(e) be the indicator of the event that e ∈ BP .
Let g(x) = −x log x − (1 − x) log(1 − x). Using the chain rule for the conditional entropy and
Lemma 3.6 we obtain that

hL(G,P ) = H(I(e1), I(e2), . . . , I(em))

=

m−1∑
i=0

H(I(ei+1)|I(e1), I(e2), . . . , I(ei))

=

m−1∑
i=0

∑
C⊂Ei

P[BP ∩ Ei = C]g(P[ei+1 ∈ BP |BP ∩ Ei = C])

=

m−1∑
i=0

Eg(P[ei+1 ∈ B
P
/(Ei∩BP )−(Ei\BP ) ])

=

m−1∑
i=0

Eg(〈P/(Ei∩BP )−(Ei\BP )ei+1, ei+1〉).

Here expectation is over the random choice of BP .

Instead of a fixed ordering of V (G) × L we can choose a uniform random ordering. Taking
expectation we get that

hL(G,P ) =

m−1∑
i=0

Eg(〈P/(Ei∩BP )−(Ei\BP )ei+1, ei+1〉),

where expectation is over the random choice of Ei = {e1, e2, . . . , ei} and BP . Note that g(0) =

g(1) = 0, so
g(〈P/(Ei∩BP )−(Ei\BP )e, e〉) = 0

whenever e ∈ Ei. Also note that ei+1 is a uniform random element of (V (G) × L)\Ei. From
these it follows that if e is a uniform random element of V (G)× L independent of Ei, then

m

m− i
Eg(〈P/(Ei∩BP )−(Ei\BP )e, e〉) = Eg(〈P/(Ei∩BP )−(Ei\BP )ei+1, ei+1〉) ≤ log 2. (4.1)

Thus,

hL(G,P ) =

m−1∑
i=0

m

m− i
Eg(〈P/(Ei∩BP )−(Ei\BP )e, e〉).

Let (G, o, P ) = U(G,P ). Then

hL(G,P ) =
m−1∑
i=0

m

m− i
1

|L|
E
∑
`∈L

g(〈P/(Ei∩BP )−(Ei\BP )(o, `), (o, `)〉).
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So
hL(G,P )

|V (G)|
=

m−1∑
i=0

1

m− i
E
∑
`∈L

g(〈P/(Ei∩BP )−(Ei\BP )(o, `), (o, `)〉).

For t ∈ [0, 1) we define

Ht(G,P ) = E
∑
`∈L

g(〈P/(Ei∩BP )−(Ei\BP )(o, `), (o, `)〉),

where i = btmc, and Ei is a uniform random i element subset of V (G) × L independent of BP

and o. For i = 0, 1, . . . ,m− 1, we have

1

m− i
E
∑
`∈L

g(〈P/(Ei∩BP )−(Ei\BP )(o, `), (o, `)〉) =

∫ (i+1)/m

i/m

m

m− btmc
Ht(G,P )dt.

Therefore
hL(G,P )

|V (G)|
=

∫ 1

0

m

m− btmc
Ht(G,P )dt. (4.2)

Let mn = |V (Gn) × L|. Recall that we observed at the beginning of the proof that we may
assume that |V (Gn)| → ∞. So we assume this.

Lemma 4.1. Let (Gn, Pn) be the sequence given in the statement of the theorem. For any
t ∈ [0, 1) we have

lim
n→∞

Ht(Gn, Pn) = E
∑
`∈L

g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉),

where Et is a Bernoulli(t) percolation of the set V (G)× L independent of BP . Consequently,

lim
n→∞

mn

mn − btmnc
Ht(Gn, Pn) =

1

1− t
E
∑
`∈L

g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉).

Proof. From Proposition 2.1 we have (Gn, on, Pn, B
Pn)→ (G, o, P,BP ). It is straightforward to

show that (Gn, on, Pn, Ebtmnc) → (G, o, P,Et), here mn = |V (G) × L| and Ebtmnc is a uniform
btmnc element subset of V (G) × L independent of BPn . Then it follows that
(Gn, on, Pn, Ebtmnc, B

Pn) → (G, o, P,Et, B
P ). But then with the notations Cn = Ebtmnc ∩ BPn ,

C = Et∩BP , Dn = Ebtmnc\BPn and D = Et\BP we have (Gn, on, Pn, Cn, Dn)→ (G, o, P, C,D).
It follows from Theorem 3.8 and Proposition 3.9, that (Cn, Dn) and (C,D) are all permitted with
probability 1. It is also clear that (Gn, on, Pn, Cn, Dn) are unimodular. Thus applying Theorem
3.16 we get that (Gn, on, (Pn)/Cn−Dn) converge to (G, o, P/C−D). We define the continuous map
f : RGPC → R as f(G, o, P ) =

∑
`∈L g(〈P (o, `), (o, `)〉). Then from the definition of weak*

convergence we get that

lim
n→∞

Ef(Gn, on, (Pn)/Cn−Dn) = Ef(G, o, P/C−D)

and this is exactly what we needed to prove.
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From (4.1) we have mn
mn−bmncHt(G,P ) ≤ log 2 for any n and t. So combining equation (4.2) and

Lemma 4.1 with the dominated convergence theorem we get that

lim
n→∞

hL(Gn, Pn)

|V (Gn)|
= lim

n→∞

∫ 1

0

mn

mn − btmnc
Ht(Gn, Pn)dt (4.3)

=

∫ 1

0
lim
n→∞

mn

mn − btmnc
Ht(Gn, Pn)dt

=

∫ 1

0

1

1− t
E
∑
`∈L

g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉)dt

=

∫ 1

0

1

1− t
∑
`∈L

P[(o, `) 6∈ Et]E
[
g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉)

∣∣(o, `) 6∈ Et] dt
=

∫ 1

0

∑
`∈L

E
[
g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉)

∣∣(o, `) 6∈ Et] dt.
Here we used the law of total expectation and the fact that
g(〈BP

/(Et∩BP )−(Et\BP )(o, `), (o, `)〉) = 0 whenever (o, `) ∈ Et. Let c be an i.i.d. uniform [0, 1]

labeling of V (G) × L. Observe that conditioned on the event (o, `) 6∈ Et the distribution of Et
is the same as the distribution of {e ∈ V (G) × L|c(e) < c(o, `)} conditioned on c(o, `) = t. Let
I(e) be the indicator of the event e ∈ BrestL P . From Lemma 3.15 we get for ` ∈ L∫ 1

0
E
[
g(〈P/(Et∩BP )−(Et\BP )(o, `), (o, `)〉)

∣∣(o, `) 6∈ Et] dt
=

∫ 1

0
E
[
g(E(I(o, `)|{I(f)|f ∈ Et}))

∣∣(o, `) 6∈ Et] dt
=

∫ 1

0
E
[
g(E(I(o, `)|{I(f)|c(f) < c(o, `)}))

∣∣c(o, `) = t
]
dt

= E [g(E(I(o, `)|{I(f)|c(f) < c(o, `)}))] = Eh̄((o, `), restL P ).

Combining this with equation (4.3) we get Theorem 2.4.

5 Extension of Theorem 2.4 to positive contractions

To state the extension of Theorem 2.4 we need another tightness notion. LetK0 ⊃ K be finite. A
random RGPC (G0, o0, T0) with support set K0 is called an K0-extension of the random RGPC
(G, o, T ) with support set K, if (G0, o0, restK(T0)) has the same distribution as (G, o, T ). We
say that the extension is tight if T0 is an orthogonal projection with probability 1. A finite
graph-positive-contraction (G0, T0) with support set K0 is called an K0-extension of the finite
graph-positive-contraction (G,T ) with support set K, if G = G0 and restK T0 = T . We say that
the extension is tight, if T0 is an orthogonal projection.

Given a sequence of finite graph-positive-contractions (Gn, Tn) with support K and a random
RGPC (G, o, T ) with support set K, we say that limU(Gn, Tn) = (G, o, T ) p-tightly, if there is a
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finite K0 ⊃ K and there are tight K0-extensions (Gn, Pn) of (Gn, Tn) and a tight K0-extension
(G, o, P ) of (G, o, T ) such that limU(Gn, Pn) = (G, o, P ).

With these definitions we have the following extension of Theorem 2.4.

Theorem 5.1. Let (Gn, Tn) be a sequence of finite graph-positive-contractions such that
limU(Gn, Tn) = (G, o, T ) p-tightly for some random RGPC (G, o, T ). Then

lim
n→∞

hL(Gn, Tn)

|V (Gn)|
= h̄L(G, o, T ).

Proof. By the definition of tight convergence, there is a finite K0 ⊃ K and there are tight
K0-extensions (Gn, Pn) of (Gn, Tn) and a tight K0-extension (G, o, P ) of (G, o, T ) such that
limU(Gn, Pn) = (G, o, P ). Note that the distribution of BTn is the same as
BPn ∩ (V (G) × K). So hL(Gn, Tn) = hL(Gn, Pn). Similarly, h̄L(G, o, T ) = h̄L(G, o, P ). So
from Theorem 2.4

lim
n→∞

hL(Gn, Tn)

|V (Gn)|
= lim

n→∞

hL(Gn, Pn)

|V (Gn)|
= h̄L(G, o, P ) = h̄L(G, o, T ).

We do not know whether the condition of p-tightness can be replaced with tightness in the
theorem above.

Later we will need the following proposition.

Proposition 5.2. Let K ⊂ K0, such that |K0| = 2|K|. Any finite graph-positive-contraction
(G,T ) has a tight K0-extension (G,P ).

Proof. This is well known, see for example [42, Chapter 9]. We include the proof for the reader’s
convenience. Let q(x) =

√
x(1− x) on the interval [0, 1] and 0 otherwise. Using functional

calculus we can define q(T ), for every positive contraction. Then the block matrix

P =

(
T q(T )

q(T ) I − T

)

gives the desired operator.

TheK0-extension given in the previous lemma will be called the standard K0-extension of (G,T ).
The standard K0-extension of a random RGPC is defined in the analogous way.
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6 Sofic entropy: The proof of Theorem 2.6

Note that for any graph G the set of random {0, 1}K colorings of V (G) can be identified with
the set of random subsets of V (G)×K. In this proof we use the random subset terminology.

As we mentioned in Subsection 2.7, the inequality h′(BT ) ≤ h̄(GΓ, eΓ, T ) is well known, but we
give the proof for completeness.

Let G be a graph, and F be a random subset of V (G)×K. Let c be a [0, 1] labeling of V (G)×K.
For e ∈ V (G)×K let I(e) be the indicator of the event that e ∈ F . For (v, k) ∈ V (G)×K we
define

h̄((v, k), c, F ) = H(I(v, k)|{I(v′, k′)|c(v′, k′) < c(v, k)}).

We also define
h̄((v, k), F ) = Eh̄((v, k), c, F ),

where c is an i.i.d. uniform [0, 1] labeling of V (G)×K.

Moreover, if r is an integer, then we define

h̄r((v, k), c, F ) = H(I(v, k)|{I(v′, k′)|c(v′, k′) < c(v, k) and (v′, k′) ∈ Br(G, v)×K})

and
h̄r((v, k), F ) = Eh̄r((v, k), c, F ),

where c is an i.i.d. uniform [0, 1] labeling of V (G)×K.

Comparing these definitions with the definitions given in Subsection 2.7, we see that if F = BT

for some positive contraction T , then h̄((v, k), F ) = h̄((v, k), T ). Thus, it is justified the use the
same symbol in both cases.

If c is a [0, 1]-labeling such that the labels are pairwise distinct and G is finite, the chain rule of
conditional entropy gives us

H(F ) =
∑

(v,k)∈V (G)×K

h̄((v, k), c, F ).

Taking expectation over c we get that

H(F ) =
∑

(v,k)∈V (G)×K

h̄((v, k), F ).

Or, alternatively,
H(F )

|V (G)|
= E

∑
k∈K

h̄((o, k), F )

where o is a uniform random vertex of V (G).
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Combining this with the well known monotonicity properties of conditional entropies, for any
integer r, we have

H(F )

|V (G)|
= E

∑
k∈K

h̄((o, k), F ) ≤ E
∑
k∈K

h̄r((o, k), F ).

Note that h̄r((o, k), F ) only depends on the distribution of F ∩ (Br(G, o)×K). Therefore, if F
is an (ε, r) approximation, then we have

H(F )

|V (G)|
≤ E

∑
k∈K

h̄r((o, k), F ) ≤
∑
k∈K

h̄r((eΓ, k), BT ) + ηr(ε),

where ηr(ε) does not depend on G, and ηr(ε)→ 0 as ε→ 0. In particular,

H(ε, r) ≤
∑
k∈K

h̄r((eΓ, k), BT ) + ηr(ε)

tending to 0 with ε we obtain that

inf
ε
H(ε, r) ≤

∑
k∈K

h̄r((eΓ, k), BT ).

But we have
lim
r→∞

∑
k∈K

h̄r((eΓ, k), BT ) =
∑
k∈K

h̄((eΓ, k), BT ).

Thus tending to infinity with r we get

h′(BT ) ≤
∑
k∈K

h̄((eΓ, k), BT ) = h̄(GΓ, eΓ, T ).

Now let G1, G2, . . . be a sequence of finite S-labeled Schreier graphs Benjamini-Schramm con-
verging to (GΓ, eΓ). Let K ⊂ K0, such that |K0| = 2|K|. Let P be the standard K0-extension
of T . Then it is clear that P is an invariant operator on `2(V (GΓ)×K0).

Lemma 6.1. There is a sequence of positive contractions Rn on `2(V (Gn) × K0) such that
limn→∞ U(Gn, Rn) = (GΓ, eΓ, P ). Moreover, the spectral measures µn = µU(Gn,Rn) weakly con-
verge to µ = µ(GΓ,eΓ,P ) = |K|(δ0 + δ1).

Proof. One can easily define a metric d′ on P(RGPC) such that for any
sequence of positive contractions Rn on `2(V (Gn) × K0), we have that
limn→∞ d

′(U(Gn, Rn), (GΓ, eΓ, P )) = 0 if and only if limn→∞ U(Gn, Rn) = (GΓ, eΓ, P ) and µn
weakly converge to µ.

Thus if the required sequence does not exist, then there is an ε > 0 and an infinite sequence
n1 < n2 < . . . such that d′(U(Gni , Rni), (GΓ, eΓ, P )) ≥ ε for any i and any positive contractions
Rni on `2(V (Gni)×K0).

We will now use the results of Lyons and Thom [43]. In their paper they are using ultra-
limits. However, by passing to a subsequence we may replace ultralimits by actual limits.
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Thus [43, Proposition 4.4, Lemma 4.7 and Remark 4.3] provide us a subsequence (mi) of
(ni) and positive contractions Rmi on `2(V (Gmi) × K0), such that limi→∞ U(Gmi , Rmi) =

(GΓ, eΓ, P ) and µmi weakly converge to µ. Indeed, [43, Proposition 4.4] gives us the conver-
gence limi→∞ U(Gmi , Rmi) = (GΓ, eΓ, P ) and [43, Proposition 4.7] is used to make sure Rmi is
indeed a positive contraction. Finally, the convergence of spectral measures follows from [43,
Remark 4.3].

Then limi→∞ d
′(U(Gmi , Rmi), (GΓ, eΓ, P )) = 0, which contradicts to the choice of the subse-

quence (ni).

Finally, observe that

Tr(GΓ, eΓ, P ) = Tr(GΓ, eΓ, T ) + Tr(GΓ, eΓ, I − T ) = |K|,

so the spectral measure µ is indeed equal to |K|(δ0 + δ1).

Note that Rn is not necessary an orthogonal projection. Now we modify Rn slightly to get an
orthogonal projection. Let us define

w(x) =

{
x for 0 ≤ x < 1

2 ,

x− 1 for 1
2 ≤ x ≤ 1

Note that w is not continuous, but w2 is continuous. Let (vi)
|V (Gn)×K0|
i=1 be an orthonormal basis

of `2(V (Gn) ×K0) consisting of eigenvectors of Rn, such that Rnvi = λivi. Let w(Rn) be the
unique operator, such that w(Rn)vi = w(λi)vi for i = 1, 2, . . . , |V (Gn)×K0|.

Then Pn = Rn −w(Rn) will be the orthogonal projection to the span of {vi|λi ≥ 1
2}. Moreover,

lim
n→∞

E
∑
k∈K0

‖w(Rn)(o, k)‖22 = lim
n→∞

E
∑
k∈K0

〈w(Rn)2(o, k), (o, k)〉 (6.1)

= lim
n→∞

∫ 1

0
w2dµn =

∫ 1

0
w2dµ

= |K|(w2(0) + w2(1)) = 0

Here the expectation is over a uniform random vertex o of V (Gn). This easily implies that
U(Gn, Rn) and U(Gn, Pn) have the same limit, that is, limU(Gn, Pn) = (GΓ, eΓ, P ). (Note that
in the language of [43] the vanishing limit in (6.1) means that (Rn) and (Pn) represent the same
operator.) Now using Theorem 2.4 we get that

lim
n→∞

H(BrestK(Pn))

|V (Gn)|
= lim

n→∞
hK(Gn, Pn)

= h̄(GΓ, eΓ, restK(P )) = h̄(GΓ, eΓ, T ).
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Now for any ε and r for large enough n we have that BrestK(Pn) is an (ε, r)-approximation of BT ,
because limn→∞ U(Gn, rest(Pn)) = (GΓ, eΓ, T ). So h̄(GΓ, eΓ, T ) ≤ h(BT ) follows.

Putting everything together we get that h̄(GΓ, eΓ, T ) ≤ h(BT ) ≤ h′(BT ) ≤ h̄(GΓ, eΓ, T ). So
Theorem 2.6 follows.

7 Tree entropy

Let G = (V,E) be a locally finite connected graph. Choose an orientation of each edge to obtain
the oriented graph ~G. The vertex-edge incidence matrix A = (ave) of ~G is a V × E matrix such
that

ave =


1 if e enters v,

−1 if e leaves v,

0 otherwise.

Let F = F(~G) be the closed subspace of `2(E) generated by the rows of A, and let PF be
the orthogonal projection from `2(E) to F. If G is finite, then the determinantal measure
corresponding to PF is the uniform measure on the spanning trees of G [17]. Let τ(G) be the
number of spanning trees of G, then H(BPF) = log τ(G). If G is infinite, the corresponding
determinantal measure is the so-called wired uniform spanning forest(WUSF) [52, 29, 9, 40].
Note that in both cases, the resulting measure does not depend on the chosen orientation of G.

Given a rooted graph (G, o) and a non-negative integer k, let pk(G, o) be the probability that a
simple random walk starting at o is back at o after k steps.

The following theorem was proved by Lyons [41].

Theorem 7.1. Let Gn be a sequence of finite connected graphs, such that |V (Gn)| → ∞ and
their Benjamini-Schramm limit is a random rooted graph (G, o). Then

lim
n→∞

log τ(Gn)

|V (Gn)|
= E

(
log deg(o)−

∞∑
k=1

1

k
pk(G, o)

)
.

Using our results we can give another expression for the limiting quantity. Let G be a connected
locally finite infinite graph, let F be the WUSF of G. For e ∈ E(G) let I(e) be the indicator of
the event that e ∈ F. Given a [0, 1] labeling c of E(G) and an edge e ∈ E(G) we define

h̄(G, e, c) = H(I(e)|{I(f)|c(f) < c(e)}),

and
h̄(G, e) = Eh̄(G, e, c),

where the expectation is over the i.i.d. uniform random [0, 1] labeling of G. Now we state our
version of the tree entropy theorem.
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Theorem 7.2. Let Gn be a sequence of finite connected graphs, such that |V (Gn)| → ∞ and
their Benjamini-Schramm limit is a random rooted graph (G, o). Then

lim
n→∞

log τ(Gn)

|V (Gn)|
=

1

2
E
∑
e∼o

h̄(G, e),

where the summation is over the edges e incident to the root o.

Proof. Let (~G, o) be the random rooted oriented graph obtained from (G, o) by orienting each
edge independently and uniformly to one of the two possible directions. Let L(~G) be the line
graph of ~G, that is the vertex set of L(~G) is V (~G) and two vertices of L(G) are connected if
the corresponding edges in ~G are adjacent. Let (~G′, o′) be obtained from (~G, o) by biasing by
the degree of the root. Let e be a uniform random edge incident to o′. Then (L(~G′), e, PF( ~G′))

will be a random RGPC, which we denote by (L, e, P ). (Here the support set K of (L, e, P ) is a
one element set.) Now there is an orientation ~Gn of Gn such that the Benjamini-Schramm limit
of ~Gn is (~G, o). This can be proved by choosing random orientations, and using concentration
results. We omit the details. Let (Ln, Pn) be the finite-graph-contraction (L(~Gn), PF( ~Gn)). We
have the following lemma.

Lemma 7.3. We have limn→∞ U(Ln, Pn) = (L, e, P ).

Proof. This can be proved by slightly modifying the argument of the proof of
[4, Proposition 7.1].

The proof can be finished using Theorem 2.4.

Both Lyons’s and our theorem can be extended to edge weighted graphs, but in this case they are
about two different quantities. However, these two quantities are closely related as we explain
now. Let G be a connected finite graph, and assume that each edge e has a positive weight w(e).
The weight of a spanning tree T is defined as w(T ) =

∏
e∈T w(T ). Let

Z(G,w) =
∑

T is a spanning tree

w(T )

be the sum of the weights of the spanning trees of G. Let F be a random spanning tree of G, such
that for any spanning tree T we have P(F = T ) = Z(G,w)−1w(T ). This is again a determinantal
process, the only difference compared to the uniform case is that for each edge e we need to
multiply the corresponding column of the vertex-edge incidence matrix by

√
w(e). In fact, this

is the way we define the weighted version of the WUSF for infinite graphs. The Shannon entropy
H(F) of F is related to Z(G,w) by the identity

H(F) = logZ(G,w)− E logw(F). (7.1)

Let (Gn, wn) be a Benjamini-Schramm convergent sequence of weighted connected graphs, such
that |V (Gn)| → ∞ and their Benjamini-Schramm limit is a random rooted weighted graph
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(G, o,w). Assume that the weights are uniformly bounded away from zero and infinity, that is,
there are 0 < C1 < C2 < ∞ such that all the weight are from the interval [C1, C2]. Then the
generalization of Lyons’s theorem states that

lim
n→∞

logZ(Gn, wn)

|V (Gn)|
= E

(
log π(o)−

∞∑
k=1

1

k
pk,w(G, o)

)
,

where π(v) is total weight of the edges incident to v, and pk,w(G, o) is defined using the random
walk with transition probabilities p(x, y) = π(x)−1w(xy) instead of the simple random walk. On
the other hand our theorem states that

lim
n→∞

H(Fn)

|V (Gn)|
=

1

2
E
∑
e∼o

h̄(G, e, w),

where h̄(G, e, w) is defined as above, but using the weighted version of the WUSF.

These two statements above together with equation (7.1) of course imply that
limn→∞ |V (Gn)|−1E logw(Fn) exists. However, there is a more direct proof. It is based on
the observation that

E logw(Fn)

|V (Gn)|
=

1

|V (Gn)|
∑

e∈E(Gn)

P(e ∈ Fn) logw(e)

=
1

2
E
∑
e∼o

P(e ∈ Fn) logw(e),

where the last expectation is over a uniform random o ∈ V (Gn). Since we know that the limit of
Fn is F, where F is the WUSF of the random rooted weighted graph (G, o,w) (see [4, Proposition
7.1]) we get that

lim
n→∞

E logw(Fn)

|V (Gn)|
=

1

2
E
∑
e∼o

P(e ∈ F) logw(e).

Using equation (7.1), this provides us another formula for the limit
limn→∞ |V (Gn)|−1 logZ(Gn, wn). Namely,

lim
n→∞

logZ(Gn, wn)

|V (Gn)|
=

1

2
E
∑
e∼o

(
P(e ∈ F) logw(e) + h̄(G, e, w)

)
.

Question 7.4. We have seen that if (G, o) is an infinite random rooted graph which is the limit
of finite connected graphs, then

E

(
log deg(o)−

∞∑
k=1

1

k
pk(G, o)

)
=

1

2
E
∑
e∼o

h̄(G, e).

Is this true for any infinite unimodular random rooted graph?
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8 Matchings on trees

Given a finite graph G, let mm(G) be the number of maximum size matchings of G. In this
section, we explain how to use Theorem 2.4 to prove the following theorem.

Theorem 8.1. Let G1, G2, . . . be a Benjamini-Schramm convergent sequence of finite trees with
maximum degree at most D. Then

lim
n→∞

log mm(Gn)

|V (Gn)|

exists.

Note that without the assumption that the graphs Gi are trees, the limit above might not exist,
even if the sequence converges to an amenable graph like Z2. Indeed, Figure 3.1 shows a graph
which is locally close to Z2 and it has a unique perfect matching. On the other hand one can see
that a 2n×2n box in Z2 has exponentially many perfect matchings. More results on the number
of perfect matchings in subgraphs of Z2 can be found in [37, 56, 23]. See also [2], for an example
of a Benjamini-Schramm convergent sequence of bipartite d-regular graphs such that the limit
above does not exist. However, if we restrict our attention to vertex transitive bipartite graphs,
the limit above exists for convergent graph sequences, as it was proved by Csikvári [22].

Figure 3.1: A subgraph of Z2 with a unique perfect matching

We only give the outline of the proof, the interested reader should consult the paper [47] for
more details.

Given a matching M , let U(M) be the vertices uncovered by M . The first step in the proof of
Theorem 8.1 is the following simple observation.

Proposition 8.2. Let G be a finite tree. Then any matching M of G can be uniquely recon-
structed from U(M).
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Consider a finite tree G. LetM be a uniform random maximum size matching of G. It follows
from Proposition 8.2 that log mm(G) = H(U(M)), where H denotes the Shannon entropy. Let
P̄G be the orthogonal projection to the kernel of the adjacency operator of G. The next theorem
shows that U(M) is a determinantal process.

Theorem 8.3. Let G be a finite tree. Then U(M) is the determinantal process corresponding
to the orthogonal projection P̄G.

Next we show that in the settings of Theorem 8.1, the finite graph positive contractions (Gn, P̄Gn)

converge to (G, o, P̄G), where (G, o) in the Benajamini-Schramm limit of Gn. Thus, Theorem 2.4
can be applied to deduce Theorem 8.1.

9 Measurability of the polar decomposition

We need the following characterisation of the polar decomposition.

Lemma 9.1. Let T be a bounded operator, and let T = UP , be it polar decomposition. Then
P = (T ∗T )

1
2 . Moreover, U = limε→0+ T (εI + T ∗T )−

1
2 in the strong operator topology.1

Proof. The formula for P is well-known. To verify the formula for U , we need to prove three three
things. (1) The limit indeed exists. (2) ‖Ux‖ = ‖x‖ for any x ∈ (kerT )⊥ and kerT ⊂ kerU . (3)
T = UP .

To prove (1), fix an element x of the Hilbert-space, and consider ε1, ε2 > 0, then

‖T (ε1I + T ∗T )−
1
2x− T (ε2I + T ∗T )−

1
2x‖2

=
〈
T
(

(ε1I + T ∗T )−
1
2 − (ε2I + T ∗T )−

1
2

)
x, T

(
(ε1I + T ∗T )−

1
2 − (ε2I + T ∗T )−

1
2

)
x
〉

=
〈(

(ε1I + T ∗T )−
1
2 − (ε2I + T ∗T )−

1
2

)
T ∗T

(
(ε1I + T ∗T )−

1
2 − (ε2I + T ∗T )−

1
2

)
x, x

〉
=

∫ ‖T ∗T‖
0

µT ∗T,x(t),

where hε1,ε2(t) = t
(

(ε1 + t)−
1
2 − (ε2 + t)−

1
2

)2
, and µT ∗T,x(t) is the spectral measure correspond-

ing to T ∗T and x. Note that for any t ≥ 0, and ε1, ε2 > 0, we have

hε1,ε2(t) =

(√
t

t+ ε1
−
√

t

t+ ε2

)2

≤ 1.

Also for any fixed t ≥ 0, we have limhε1,ε2(t) = 0, as (ε1, ε2) tends to 0. Thus, form the
dominated convergence theorem, we see that ‖T (ε1I+T ∗T )−

1
2x−T (ε2I+T ∗T )−

1
2x‖2 converges

to 0, as (ε1, ε2) tends to 0. Therefore, limε→0+ T (εI + T ∗T )−
1
2x indeed exists.

1Note that the spectrum of εI+T ∗T is contained in [ε, ε+‖T ∗T‖], so (εI+T ∗T )−
1
2 is well defined by functional

calculus.
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To prove (2) observe that

∥∥∥T (εI + T ∗T )−
1
2x
∥∥∥2

= 〈(εI + T ∗T )−
1
2T ∗T (εI + T ∗T )−

1
2x, x〉 =

∫ ‖T ∗T‖
0

gε(t)µT ∗T,x(t)

where gε(t) = t
t+ε . Note that limε→0 gε(0) = 0 and limε→0 gε(t) = 1 for any t > 0. Moreover

|gε(t)| ≤ 1 for any t, ε > 0. Thus, from the dominated convergence theorem, we have

lim
ε→0

∥∥∥T (εI + T ∗T )−
1
2x
∥∥∥2

= µT ∗T,x ((0, ‖T ∗T‖]) .

Therefore, ‖Ux‖ = ‖x‖ for any x ∈ (kerT )⊥ = ker(T ∗T )⊥ and kerT ⊂ kerU .

To prove (3) observe that

∥∥∥T ((εI + T ∗T )−
1
2 (T ∗T )

1
2 − I

)
x
∥∥∥2

=
〈(

(εI + T ∗T )−
1
2 (T ∗T )

1
2 − I

)
T ∗T

(
(εI + T ∗T )−

1
2 (T ∗T )

1
2 − I

)
x, x

〉
=

∫
fε(t)µT ∗T,x(t),

where fε(t) = t(( t
t+ε)

1
2 −1)2. Note that limε→0 fε(t) = 0 for any t, moreover, |fε(t)| < ‖T ∗T‖ for

any t, ε > 0. Thus, the statement again follows from the dominated convergence theorem.

Now it is clear that for any polynomial f , the map (G, o, T ) 7→ (G, o, f(T )) is measurable. Thus,
by functional calculus, the map (G, o, T ) 7→ (εI + T ∗T )−

1
2 is also measurable. Therefore, the

polar decomposition is also measurable.
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