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Abstract 

 

Accessing and mapping aboveground biomass (AGB) is crucial for understanding the 

global carbon cycle. Agricultural lands are providing carbon storage as an additional ecosystem 

service. Remotely sensed data can be used to estimate and monitor carbon stored in agricultural 

plantations. LiDAR data, Satellite Images, and field observations can be used for obtaining 

detailed information about carbon stocks on the local and global levels. Such parameters and 

Leaf and Plant Area index were retrieved from field data and NASA's GEDI product L2B, used 

for calculating AGB and tested for correlation with Landsat 8 bands and vegetation indices. 

The research showed the potential of using data retrieved from GEDI for assessing and mapping 

AGB and carbon stocks of olive groves on Lesvos Island, Greece. Maps on AGB and carbon 

stocks of olive groves on Lesvos were created and values on AGB and carbon stocks were 

obtained. The results show a necessity for the continuation of field work for further 

development of methodology for remote AGB estimation. Updated results can be used by 

policymakers for science-based decision-making in developing a more sustainable agriculture 

system aimed to store more carbon in agricultural groves at the local and regional levels. 

 

 

Keywords: remote sensing, GIS, biomass estimation, carbon stocks, olive groves, 

ecosystem services, agricultural monitoring, spatial modelling  
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1. Introduction 

1.1 General Introduction 

Accessing and mapping aboveground biomass (AGB) is crucial for understanding the 

global carbon cycle. Agricultural lands are providing carbon storage as an additional ecosystem 

service (ES). Remotely sensed (RS) data can be used to estimate and monitor carbon stored in 

agricultural groves.  

The current thesis presents the testing of a multi-step methodological approach that 

integrates RS and field data to estimate olive groves (Olea europaea L.) on Lesvos Island, 

Greece. Fusion of satellite imagery (Landsat 8), Laser imaging, Detection, and Ranging 

(LiDAR) data (NASA's GEDI mission), and field observation may predict AGB and improve 

estimation and mapping carbon stocks of olive groves on the island of Lesvos, Greece. 

Retrieving parameters connected to biomass such as Leaf and Plant Area index (LAI 

and PAI) from field measurements and GEDI data, the correlation and regression analysis 

between satellite imagery information on bands and vegetation indices (VI) will be conducted. 

The possibility of fusing field measurements, GEDI data, and spectral information from 

Satellites for accessing and mapping carbon stocks of olive groves on the local lever will be 

investigated. 

Developing a methodology for biomass estimation can provide illuminating information 

for policy-making and sustainable development of agricultural lands. 
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2. Literature Review 

2.1 Background and Significance 

2.1.1 Climate Crisis Overview 

Global COVID-19 pandemic for some time overshadowed the agenda of the world 

climate crisis, a problem common to all mankind that has not disappeared with the advent of 

the virus. Human-related factors such as fossil fuel combustion, deforestation, urbanization, 

and extensive agriculture are responsible for the increase of CO2 concentration in the 

atmosphere which is responsible for the global temperature rising by 1°C since pre-industrial 

times (IPCC 2015). To achieve the goal of the Paris Agreement, staying below 1.5°C, global 

CO2 emissions should be decreased to net-zero by 2050 (IPCC 2018).  

At the end of February 2021, the United Nations Framework Convention on Climate 

Change (UNFCCC 2021) published a report on Nationally Determined Contributions (NDCs) 

under the Paris Agreement. According to the report, with the national climate action plans 

developed by 75 nations, countries will be able to reduce greenhouse gas emissions by only 1% 

by 2030, while the declared figure is 45%. 

Reaching this ambitious and not yet seemingly achievable goal is not possible without 

countries’ efforts to change industries systematically and prepare and implement strategies to 

decarbonize economies. The NDC Global Outlook Report 2019, prepared by the United Nations 

Development Programme (UNDP) and UNFCCC, developed nations focus on longer-term 

strategies (LTS), carbon neutrality goals (UNDP 2019). 
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2.1.2 Ecosystem Services 

Maximising carbon storage in the biosphere is one of the objectives of climate change 

mitigation. Carbon storage is one of many ecosystem services (ES) are offered to mankind by 

nature for free that are often taken for granted and therefore excluded from the modern 

economic system and defined as non-market resources (Rashid and Seizov 2012). However, 

they play an important role in resisting the destructive anthropogenic impact on the planet. 

The ES framework is a fundamental natural resource management approach that has 

gained increasing attention from the scientific community and policymakers (Tallis et al. 2008). 

Researchers assume the framework to be a major future influence for shaping existing 

environmental policies in the coming decades (Matzdorf and Meyer 2014). 

The Millennium Ecosystem Assessment aimed to analyse the anthropological impact 

on ecosystems recognise four categories of ES: provisioning, regulating, cultural, and 

supporting services. Provisioning services include products taken from ecosystems, such as 

food, water, fuel, fiber, biochemicals, and genetic resources. Regulating services benefit from 

the regulation of ecosystem processes, such as climate, disease, and water regulation, water 

purification, and pollination. Cultural services include nonmaterial benefits, such as recreation 

and tourism, aesthetic, inspirational, educational, spiritual benefits, and cultural heritage. 

Supporting services are necessary for the production of all other ES, such as soil formation, 

nutrient cycling, and primary production (Alcamo et al. 2005). 

In case of affecting air quality, ecosystems both bring chemicals into the atmosphere 

and remove them from it. Climate regulation is a regulating service as well since on the global 

scale, ecosystems play an important role in climate by sequestering and emitting greenhouse 

gases. 

Carbon sinks are part of ES. They take CO2 from the atmosphere to sustain their life, 

by which they regulate carbon concentration and mitigate the effects of climate change.  
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According to the Paris Agreement, “Parties should take action to conserve and enhance, 

as appropriate, sinks and reservoirs of the greenhouse gases” (UNFCCC 2015). The 

Intergovernmental Panel on Climate Change (IPCC) claims that the global mitigation goal 

cannot be met without a significant contribution from carbon storage in ecosystems (IPCC 

2019). Nowadays carbon accounting is included in Land Use Land Use Change and Forestry 

(LULUCF) activities under the Kyoto Protocol, but it does not clarify the carbon stocks in 

ecosystems, their distribution, quality of the reservoirs, and therefore actions that can affect 

them positively or negatively (Keith et al. 2019). 

 

2.1.3 Agriculture and the Carbon Cycle 

Agriculture is responsible for 10% of 2019 world’s greenhouse gas emissions, the 

majority of which are coming from livestock, agricultural soils, and rice production (EPA 

2020). Along with it, agricultural lands play an important role in atmospheric CO2 storage 

globally. They are one of the sources of carbon storage in the terrestrial ecosystem and 

constitute around 20% of all living terrestrial biomass (Li et al. 2015). 

The multifunctionality of agricultural systems from the perspective of ES has been 

increasingly gaining significance and has become one of the main objectives in the design of 

policies (Fernández-Habas et al. 2018). Agricultural lands used for vegetation planting can be 

classified into several categories of ES. For example, olive groves can provide both 

provisioning services, such as food (olives and olive oil), and regulating services, such as air 

quality maintenance and climate regulation. Experts value the provisioning of regulating 

services (41%) of olive groves more than socio-cultural (30%) and provisioning services (29%), 

with the “food quality” and “biodiversity conservation” as services with the highest relative 

weight (Fernández-Habas et al. 2018). 
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While agriculture is considered a huge part of the climate change issue, the potential of 

olive groves for sequestering carbon in soil and woody compartments and climate change 

mitigation is widely acknowledged (Michalopoulos et al. 2020). The carbon storage capacity 

of agricultural lands is dependent on climatic conditions, soil properties, and agricultural 

practices used, such as the tillage practices, types of fertilizer used, and crop regimes, among 

other factors (Beaufoy 2001; Srivastava et al. 2012; Nair et al. 2015). Reducing the loss in 

agriculture and applying management techniques aimed at storing carbon can preserve current 

terrestrial carbon sink strength and even enhance it (Janssens 2003). 

 

2.1.4 Olive Cultivation on Lesvos 

Throughout the Mediterranean region, olive groves are culturally, aesthetically, and 

ecologically valuable (Moreira et al. 2019). They have been cultivated for over 4,000 years, so 

olive groves have become a crucial part of both the Mediterranean landscape and culture. They 

are one of the most important and extensively cultivated crops in the region, covering an area 

of 9.4 million hectares (Ladisa et al. 2012; Castro et al. 2008). 

The olive tree (Olea europaea L.) is a typical Mediterranean sclerophyllous species 

highly tolerant to drought and water shortages (Sofo et al. 2004). Apart from being 

commercially and culturally important, olive is a dominant species in the Mediterranean natural 

plant community (Höhnel 2019), with the floral composition of olive agroecosystems having 

been found to be exceptionally close to natural Mediterranean ecosystems. Traditionally, olive 

groves comprise a mosaic of semi-natural and cultivated areas, including ecological features 

such as meadows, hedges, and marginal shrublands.  

The biodiversity index values of the ecological features which exist in olive groves are 

consistent with the index values of those ecological components in large areas (Tartaglini et al. 
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2012), implying that olive agroecosystems maintain the ecological composition of the natural 

landscape features. Olive agroecosystems are therefore considered relatively ecologically stable 

compared to other agroecosystems, with olive groves providing a sanctuary for many plant and 

animal species (Loumou and Giourga 2003). The literature reports large numbers of vascular 

plants, insects, and birds associated with olive grove agroecosystems, and claims that 

herbaceous diversity in the majority of olive groves exists at the optimal level (Tartaglini et al. 

2012; Loumou and Giourga 2003). They furthermore provide vital refuges for birds migrating 

to Northern Europe (Loumou and Giourga 2003). 

Olive oil transformed from the Mediterranean to a global product and a multi-billion-

euro market (Dios-Palomares and Martínez-Paz 2011; International Olive Council 2015; 

Scheidel and Krausmann 2011). It has come with a similar transformation of olive groves from 

traditional to super-intensive, characterised by high use of fertilizers, pesticides, and densely 

planted olive groves, collectively leading to an array of negative environmental (Neves and 

Pires 2018), social and economic (Zagaria et al. 2017) impacts. 

Olive cultivation is one of the most significant agricultural activities in Greece, from 

economical, social, and ecological points of view (Michalopoulos et al. 2020). In 2018-2019, 

Greek olive oil production amounted to 185 million tonnes, while Spain and Italy – the main 

other producers of olive oil in the world – were responsible for 1790 and 173.6 million tonnes 

of olive oil, respectively (EC 2020). 

The Greek island of Lesvos located in Eastern Greece is also known as “Olive Island” 

due to the abundance of olive groves which occupy 28% of Lesvos’ surface area (Giourga et 

al. 2008). The olive industry is the third-largest economic activity on Lesvos, after tourism and 

ouzo production (Kizos and Koulouri 2010). Olive products have great economic importance 

for Lesvos (Hellenic Agricultural Enterprises 2020; Russo et al. 2016). It is the third largest 

producer in the country, which is, at the same time, the third largest producer in the world.  
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Olive cultivation for oil production has mostly traditional practices put in place since 

the activity is deeply rooted in the population’s culture (MESPOM 2020). On Lesvos, olive 

groves are classified as traditional extensive due to their low density of “old” trees which have 

an irregular pattern of the plantation, and their low yield, low labor and material inputs and 

manual harvesting (Giourga et al. 2008; Fleskens 2007). The olive groves of Lesvos are small-

sized and traditionally labour-intensive; they are found on sloping fields and are characterised 

by limited use of herbicides, diesel, and electricity (Giourga et al. 2008; Kizos and Vakoufaris 

2011; Russo et al. 2016). 

Lesvos has a typical Mediterranean climate, with 19,6°C as the mean annual 

temperature and 700 mm as the mean annual precipitation for 2019 (MESPOM 2020). The 

Mediterranean region is characterised by warm and rainy winter, hot dry summer, and frequent 

and intense precipitation events, particularly in autumn (Morugán-Coronado et al. 2020). 

Situated between the arid North African climate and temperate central Europe, the 

Mediterranean is uniquely positioned and is expected to face relatively high impacts due to 

climate change (IPCC 2013). In general, the region expects to see increases in temperatures and 

decreases in precipitation (IPCC 2013). Both temperature and precipitation are drivers of 

agricultural production, including olive fruit production (Aguilera and Valenzuela 2014). 

Olive groves on Lesvos are characterised by relatively low soil fertility as compared to 

other Mediterranean land-use types, and browsing pressure appears to further diminish the 

understorey of herbaceous plants associated with the olive groves (MESPOM 2020). However, 

the analysis based on data provided by the Biodiversity Conservation Laboratory of the 

Environment Department of the University of Aegean reveals a higher species richness in olive 

groves on Lesvos than in forest systems (MESPOM 2020). 

During the season 2019-2020, 57.600 tons of olives were processed in total on Lesvos, 

which translates into 13.200 tons of olive oil, with an average production of 230 kg of oil per 
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ton of olive processed. Out of this, 36.7% was extra virgin olive oil, 18.8% was virgin olive oil 

and 44.5% was lampante oil (Department of Agriculture 2020). These large production 

quantities show the relevance of this activity on Lesvos’ economy. 

Climate change associated with the increased level of greenhouse gases in the 

atmosphere can affect olive groves. Research has shown that olive trees may be strongly 

impacted by climate change, especially in Mediterranean climates (Orlandi et al. 2010). Olives 

trees are particularly well suited to the Mediterranean climate of Lesvos, with its warm and dry 

summers and wet and mild winters. However, the Mediterranean basin in general is considered 

to be a climate change hotspot (Giorgi 2006) and is expected to get warmer and drier (Aguilera 

and Valenzuela, 2014). 

There is a negative correlation between climate change and olive yield on Lesvos 

(Georgopoulou et al. 2017; MESPOM 2020). Major factors affecting olive yields are 

precipitation (Ozdemir 2016) and temperature (Gutierrez et al. 2009). According to Lesvos’ 

meteorological data which was collected through ground observation at the Mytilene Airport 

meteorological station, provided by the Greek National Weather Service, in the past 57 years, 

the annual precipitation on Lesvos is significantly decreasing and the annual mean temperature 

has already increased by 1.9°C (MESPOM 2020). Other important factors influencing yield are 

the previous year’s yield (MESPOM, 2020), pests (olive fruit fly), cultivar composition, tree 

density, training degree of mechanism and chemical input, irrigation, soil water condition, and 

the harvesting mechanism (FAO 2015). The yield also depends on the tree age and pruning 

(Vossen 2006). 

Weather related data show temperature and precipitation change which have a range of 

impacts on olive yield, with a general decreasing yield predicted as these factors are amplified 

over the coming 80 years (MESPOM 2020). In the face of climatic uncertainty, the 

agroecosystems of Greece, which are some of the oldest in the world, will need to adapt. Some 
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options include conserving soil water content, improving technology and irrigation, 

campaigning for carbon neutrality within the olive agri-food chain, and enabling future action 

through local and regional research (MESPOM 2020). By utilizing both the short- and long-

term options available, farmers may be able to reduce the shock of decreasing yields (MESPOM 

2020). 

The age of olive trees on Lesvos agricultural land can reach up to 400 years, according 

to local knowledge. Due to the local management strategies, trees are not burned or cut for 

many years and therefore can accumulate carbon for 300-400 years without releasing it into the 

atmosphere. One of the largest economic sectors on the island, olive production has been central 

for the well-being of the island inhabitants, as well as a valuable carbon sink for the world. 

However, environmental uses of olives such as carbon storage and climate change mitigation 

are underassessed (Kebede and Soromessa 2018). 

 

2.1.5 Carbon Oriented Management of Olive Groves 

While modern conventional agriculture is considered to pose one of the major threats to 

global biodiversity, organic farming can offer an alternative route for ensuring sustainability 

through the increasing of biological diversity and maintenance of soil fertility (Solomou and 

Sfougaris 2011). Proper agricultural techniques and sustainable land management, along with 

the increase in productivity and soil preservation, can also contribute to the removal of a 

significant amount of CO2 in the atmosphere (Sofo et al. 2004).  

However, there is still no consensus on how to manage agriculture in a sustainable 

manner to reduce CO2 emissions for typical Mediterranean crops (Robertson 2000). 

Since olives are widely cultivated in the Mediterranean basin, they can play a 

fundamental role in reducing the expected impact of climate change (Brilli et al. 2018). “Сarbon 
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oriented” management of olive groves can be a promising way to increase the carbon storage 

in agricultural land (Coderoni et al. 2014). 

Understanding how different management practices of olive groves in general, for 

example, relating to tillage, fertilizer usage (inorganic and organic), and cropping systems affect 

the soil properties of olive groves is extremely important. Specifically, regarding olive groves, 

the average organic carbon stock in olive groves is comparable to forest soil concentrations, 

highlighting the importance of Mediterranean olive orchards as carbon reservoirs (Panozzo et 

al. 2019). 

Since olive groves have wide implications for atmospheric carbon sequestration, it is 

obvious that the sustainable management of agricultural systems is important for the mitigation 

of the anthropogenic influence to local ecosystems through adverse farming practices, as well 

as to the global climate system. Sustainably managed olive agroecosystems can provide a 

variety of crucial ES, including the provision of food, firewood, and fodder, regulation of water 

and nutrient cycling, pollination, safeguarding of soil quality, conserving biodiversity, and 

preserving aesthetic, cultural, and traditional significance (Loumou and Giourga 2003; Brunori 

et al. 2019; Jiménez-Alfaro et al. 2020).  

Researchers highlight the importance of Mediterranean olive planting for fixing 

atmospheric CO2 and argue that training agricultural workers, plant density and the use of 

sustainable farming practices will also help increase the capacity of the orchard system for 

carbon storage (Sofo et al. 2004). For this, Brockett et al. (2019) highlight that an 

interdisciplinary approach to studying the agricultural environment can help to better 

understand how land is managed and how it affects the people who use it. This can help to 

develop policies that can improve the understanding of management changes and the efficiency 

of farming. 
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Greek target for 2030 is the decrease of greenhouse gases (GHG) emissions by 14% 

from the 2005 level. Greek National Energy and Climate plan estimates they may overachieve 

this target by 9-13 percentage points, which can open the opportunities to transfer emissions 

allocation to the other EU Member States. However, the plan does not include information on 

how Greece would achieve its commitment that LULUCF emissions do not exceed removals 

(EC 2019). The objectives of research and innovation are unclear now for the period after 2020, 

although Greece has a target for carbon intensity reduction (EC 2019). 

Regarding the agricultural management practices, in general, the olive plantations of 

Greece can be classified as either low-input traditional plantations, with few or no chemical 

inputs, with high labor requirements; intensified traditional regimes that utilize artificial 

fertilizers and pesticides, and more intensive soil management; and finally intensive modern 

plantations managed under a highly mechanized system (Beaufoy 2001). While traditional olive 

cultivation in Greece saw intercropping of olive with cereal or legumes as silvoarable systems 

(Papanastasis 2009), industrialisation saw multi-functional olive grove production shift toward 

non-sustainable paths such as mechanisation and intensification, as well as towards 

monocultures, in order to maximize yields (Moreira et al. 2019; Morugán-Coronado et al. 

2020). 

The European Union attempt to support olive farming is the Common Agricultural 

Policy (CAP). It is the core of the European farming sector and since its inception in 1962 has 

increasingly become the engine driving agriculture in the region (MESPOM 2020). It primarily 

consists of three main pillars: income support for farmers, instruments to deal with difficult 

market situations, and measures for rural development. However, CAP in its present state isn’t 

doing enough to incentivize farming. A major critique is the unjust distribution of benefits; 

large farmers receive a disproportionately large share of the benefits, while small farmers 

largely lose out (MESPOM 2020). While CAP payments do supplement farmers’ incomes, they 
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do not do enough to protect small farmers from shocks, and it is becoming increasingly common 

for farmers to turn to other economic activities to supplement family incomes (Buckwell et al. 

2017). Nowadays it became hard to ignore the outflow of farmers from the agricultural sector 

(MESPOM 2020). 

Policies should be implemented to transform olive farming on Lesvos into a more 

carbon oriented and therefore environmentally and socially sustainable business while at the 

same time reaffirm the olive sector's place as a crucial component of the island's economy and 

handle the declining number of farmers. 

 

2.2 Overview of Methods for AGB Estimation 

Since carbon stocks have a great scientific and political importance, they should be 

evaluated to provide data to support regional, national, and international policies. This will help 

in finding the right mitigation actions and trade-offs between different ES. Assessing and 

modelling carbon stock and carbon sequestration ES is necessary to make balanced and science-

based policy decisions.  

The adoption of the United Nations Framework Convention on Climate Change 

(UNFCCC) Kyoto Protocol, which, among other things, allowed vegetational sinks to be offset 

carbon emissions, sparked controversy over the adequacy of existing methods for estimating 

and predicting carbon stocks levels (Rosenqvist et al. 2003). 

Carbon stocks assessments in the literature on ES have largely focused on AGB 

estimation (Quijas et al. 2018), which is central in quantifying and monitoring the stored carbon 

amount. AGB estimation has received significant attention recently because the change in AGB 

is associated with the components of climate change (Poudel and Temesgen 2016). Quantifying 

the spatial pattern of biomass can provide a general picture of the carbon stocks in the region.  
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Researchers (Quijas et al. 2018) highlight that ES models can be an adequate source of 

information for policy makers only if they incorporate ecological processes, including the 

evaluation of ES, for which biomass component should be considered. Biomass models are 

important tools for quantifying biomass and carbon stock. Numerous AGB models exist, 

although many of them are showing large and significant prediction errors for AGB (Njana et 

al. 2015). 

The mapping of AGB, field observation data are used by researchers, as well as RS data. 

Traditional field method has greater accuracy, however, it is difficult to cover large areas since 

field work is time- and money-consuming, labor-intensive, and impractical (Maia Araújo et al. 

1999). Developing approaches combining ground- and space-based observations can help in 

more accurate assessment and modelling of biomass and carbon stocks. 

RS is becoming more popular for field studies for large regional AGB estimates because 

it is considered more practical and cost-effective (Silva et al. 2021). Nowadays RS data has 

become the primary source for biomass estimation (Lu 2006). In the Kyoto Protocol, among 

identified areas where remote sensing (RS) technology could be applied to support the treaty 

implementation, is “quantification of above-ground vegetation biomass stocks and associated 

changes therein” (UNFCCC 1998). Strategies for AGB estimation using RS tools can include 

several steps (Figure 1). 
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Figure 1. General strategy of biomass estimation modelling using RS techniques (Lu et al. 2014). 

 

RS has an advantage in the ability to get information in large areas, including remote 

regions. AGB can be estimated from different RS sensor types, such as synthetic aperture 

radars, light detection and ranging (LiDAR), and optical sensors. Radar and LiDAR data have 

an advantage in their accuracy because they can penetrate the forest canopy and get more 

information on trunks and branches, which are storing around 60% of the AGB (Bergen and 

Dobson 1999). Optical sensor data and radar data are suitable for places with a simple tree 

structure (Lu 2006). Also, the important advantage of RS used to calculate carbon stocks is that 

it is a systematic observation technique and has historical archives of data, which can be used 

for the prediction of current and future situations (Rosenqvist et al. 2003).  

The limitations of these methods are higher costs and big volumes of data to capture 

(Nguyen and Kappas 2020). Also, even with the development of RS technologies, biomass 

estimation is still challenging. With an abundance of RS data products, there are no techniques 

for biomass direct measurement (Nguyen and Kappas 2020).   
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When RS is combined with field data, the accuracy for the biomass prediction increases 

(Pandit et al. 2018, Rosenqvist et al. 2003). The combination of RS and field observations 

allows to reduce uncertainty and show the spatial distribution of biomass (Du et al. 2014).  

From the estimation of AGB, aboveground carbon indicator (AGCI) can be obtained. It 

is expressed in Mg of carbon per km2 and corresponds to the carbon fraction of the oven-dry 

weight of the woody parts (stem, bark, branches, and twigs) of all living trees, excluding stump 

and roots (EC 2018). AGCI can be used as an important indicator of monitoring carbon stock 

change in matters of climate change state monitoring and climate change consequences 

mitigation. 

The AGB needs to be measured and monitored because of its importance to national 

greenhouse gas inventory and most land-based projects (Ravindranath and Ostwald 2008). 

Proper assessment and evaluation of AGB are important for sustainable management. Since 

agricultural practices can be very important in atmospheric CO2 emission and fixation, proper 

canopy management and agricultural techniques such as, for example, pruning in olive groves 

could increase the atmospheric CO2 emissions and storage (Sofo et al. 2005). 

 

2.2.1 Field Observations 

Allometric models are used to access AGB. They are based on correlations between 

biomass and morphological characteristics such as basal area, height, canopy diameter or 

volume. In the case of olives, AGB was found strongly correlated with diameter at breast height 

(DBH) and height; DBH and wood density; and the combination of DBH, height, and wood 

density (Kebede and Soromessa 2018). Canopy cover and height are linear with DBH and tree 

height, respectively, and have great potential for forest volume estimation (Chen et al. 2021). 
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“Plot method” is widely used by researchers in agriculture for estimating and monitoring 

biomass and carbon stock changes. Measurement and estimation of AGB stock can include the 

following steps (Ravindranath and Ostwald 2008; Woldemariam 2015) (Figure 2). 

 

Figure 2. Steps in measurement and estimation of AGB stock (Ravindranath and Ostwald 2008). 
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For estimating biomass, several parameters can be used. Among the most popular are 

stand volume, stump diameter, Leaf Area Index (LAI), or Plant Area Index (PAI).  

Stand volume is traditionally estimated by measuring canopy height and diameter from 

harvested trees (Boisvenue et al. 2016; Hyyppä et al. 2000). Nowadays, combining RS data and 

field retrieved data has become an efficient methodology to generate full-cover estimations of 

forest stand volume (Mauya et al. 2019; Saarela et al. 2015; Santoro et al. 2011). 

Stump diameter is an important tree variable used to describe stand structure, estimate 

tree volume, and select inventory sample trees (Corral-Rivas et al. 2007).  

LAI is a key characteristic that shows exchanges of mass and energy within a vegetated 

ecosystem. It is one half of the total leaf area per unit ground surface (Chen and Black 1992). 

It is linked to canopy cover through the gap distribution within the canopy.  

PAI is a closely related to LAI indicator which in addition to leaves also includes all 

canopy structural elements such as branches and trunks. The numeric difference of these indices 

is small, for instance, in dense broadleaf forests LAI ≈ 93% PAI (Tang et al. 2012), and this 

difference is often neglected (Tang and Armston 2019). 

 

2.2.2 GEDI Data 

LiDAR RS is a powerful tool for estimating canopy height and vegetation parameters 

(Adam et al. 2020) and is considered the most advanced technology to assess forest AGB. It is 

widely used to derive LAI (Jensen et al. 2008; Wang and Fang 2020), a parameter that can be 

used for biomass estimation, and gathering accurate data on the vertical structure of forest.  

Many RS products provide data that can be used for collecting data for calculating and 

mapping AGB. Among a few non-atmospheric space-based LiDAR missions are Shuttle Laser 

Altimeter (SLA), The Ice, Clouds, and Land Elevation Satellite (ICESat), and ICESat2. The 
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recent National Aeronautics and Space Administration (NASA) Global Ecosystem Dynamics 

Investigation (GEDI) project is one of them. It was selected as part of NASA’s Earth System 

Science Pathfinder Earth Ventures 2 competition to fill the gap in global observations of 

vegetation canopy structure. 

GEDI was launched from Cape Canaveral, Florida in the Dragon capsule of SpaceX 

CRS-16 on board of Falcon 9 rocket and installed on the Japanese Experiment Module-Exposed 

Facility on board of the International Space Station in December of 2018. Its data products offer 

three-dimensional forest structure measurements derived from terrestrial laser scanning and 

airborne discrete return of waveform LiDAR (Tang and Armston 2019).  

GEDI gathered information on vegetation over areas between ~52°N and ~52°S, 

coverage is limited due to the ISS orbit inclination. During its two years mission (2019-2020), 

it sampled 4% of the planet's surface (Dubayah et al. 2020). It consists of two lasers producing 

eight beams with 25 m footprint resolution on the three-dimensional structure of vegetation and 

their aboveground carbon content.  

Along with other similar products, it is used to produce wall-to-wall AGB maps. It is a 

geodetic-class laser altimeter and the first space-based LiDAR measuring ecosystem structure 

(Dubayah et al. 2020). GEDI was used in the Mediterranean region for studying pine forests 

(Guerra-Hernández et al. 2020). 

For canopy cover and LAI, there are a large number of data sets, such as MODIS and 

Landsat, however, measurements of vertical canopy structure are not largely available (Tang 

and Armston 2019). The uniqueness of GEDI is in its ability to specifically retrieve vegetation 

vertical structure. The main goal of the project is to collect data that allow receiving information 

on canopy structure, biomass, and carbon stocks. 

The products derived from this data contain among others canopy height and LAI. 

Canopy cover is a biophysical parameter widely used for describing the spatial geometric 
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properties of vegetation. Canopy cover definitions depend on the measuring techniques, such 

as whether the measurement is acquired at a specific viewing angle or over the entire 

hemisphere, and whether a tree crown is considered as an opaque object including gaps within 

the canopy. The GEDI derived canopy cover is the percent of the ground covered by the vertical 

projection of leaves, branches, and stems only (Tang and Armston 2019) (Figures 3 and 4). 

 

Figure 3. Three types of canopy cover: canopy closure (A), crown cover (B), and canopy fractional cover 

(C). GEDI will only produce canopy fractional cover (Tang and Armston 2019). 

 

 

Figure 4. GEDI beam ground-track configuration (Dubayah et al. 2020). 
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One of GEDI data limitations is the lack of representativeness. LiDAR with eight beams 

at a distance of 600 meters from each other measures the surface at points with a diameter of 

25 m at each footprint every 60 m along track, therefore most of the land surface leaves without 

observations. GEDI is not suitable for targeting rare forest change events such as selective 

logging, implementation at the local scale, or tracking events through time (Potapov et al. 

2021). 

Vegetation structure is the aboveground spatial distribution of individual tree crowns 

that is closely linked to ecological functions and services. Its key metrics include total canopy 

cover and its vertical profile, LAI or PAI, and its vertical profile (Tang and Armston 2019). 

GEDI’s product L2B includes canopy cover, PAI, Plant Area Volume Density, and Foliage 

Height Diversity. 

Vertical LAI which is a vertical variation of the index is closely related to foliage-height 

profiles. Different LiDAR systems are capable of deriving highly accurate LAI and profile data, 

however, GEDI's is the only database with the most precise footprint scale of ~25 m (Tang and 

Armston 2019). 

Since LiDAR data is usually spatially discontinuous, biomass prediction can be 

integrated with radar and passive optical imagery, typically using machine learning algorithms, 

although obtained data can have poorer resolution and be inaccurate (Gonçalves et al. 2017). 

 

2.2.3 Landsat 8 Data 

RS data and Landsat 8 Operational Land Imager in particular is an effective and widely 

used method for AGB estimation (Li et al. 2020). Landsat 8 product bands in red, green, blue 

(RGB), and near-infrared (NIR) wavelength ranges spectrum and RGB VI are used in 

vegetation biomass estimation models (Poley and McDermid 2020). 
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According to the United States Geological Survey (USGS), Landsat 8 Band 4 (red) with 

wavelength 0.64-0.67 is used to discriminates vegetation slopes, Landsat Band 5 (NIR) with 

wavelength 0.85-0.88 is used to emphasize biomass content and shorelines (USGS 2016). 

Red and NIR bands are used for recognising green vegetation, Red for areas where LAI 

exceeds 2, NIR responds significantly to changes in moderate-to-high vegetation density with 

LAI from 2 to 6 (Gitelson 2004). Green vegetation exhibits strong absorption in the Red range 

of the spectrum. In the NIR range, green vegetation strongly reflects incident irradiation 

(Gitelson 2004). 

A plant's greenness can be measured using remote sensing indices that measure its 

reflectance. These indices can be used to estimate the AGB. Spectral VI were used as indicators 

of temporal and spatial variations in vegetation structure and density. 

To estimate AGB, indices that measure plant greenness based on reflectance in the near-

infrared and visible wavelengths are used (Gitelson 2004; Prabhakara et al. 2015).  

Various VI such the Normalized Difference Vegetation Index (NDVI), the Ratio 

Vegetation Index (RVI), the Soil Adjusted Vegetation Index (SAVI), the Modified Soil 

Adjusted Vegetation Index (MSAVI), and Optimized Soil Adjusted Vegetation Index 

(OSAVI), all derived from red and NIR bands, are linked to green vegetation biomass and LAI 

(Prabhakara et al. 2015). The highest R2 value (0.94) was reported in the research where NDVI 

and number or other VI such as NGRDI, CVI, GLI, RVI, VARI, and WDRVI were used for 

modelling maize AGB, along with red and green bands (Han et al. 2019). 

For monitoring and mapping variation in vegetation cover in Greece, Enhanced 

Vegetation Index (EVI) and LAI are used for forest cover assessment in Crete island (Elhag et 

al. 2021), as well as the Bare Soil Index (BSI), Tasseled Cap Greenness (TCG), and Tasseled 

Cap Brightness (TCB) (Polykretis et al. 2020), representing soil conditions as well. 
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NDVI is considered the most popular index connected to biomass estimation, it enables 

assessment and monitoring of changes in canopy biophysical properties including LAI 

(Gitelson 2004). For accessing biomass, researchers claim that NDVI could outperform other 

indices (Poley and McDermid 2020). However, in the case of places with a lower density such 

as pastures, standard NDVI performed poorly in estimating biomass (R2 = 0.26) and more 

accurately estimated by VI based on wavelengths located in the red edge. Other indices such as 

MNDVIs yielded higher correlations with biomass (mean R2 = 0.77 for the highest 20 narrow 

band NDVIs), while Simple Ratio (SR) yielded the highest correlation coefficients with 

biomass as compared to narrow band NDVI and the Transformed Vegetation Index (TVI) 

(average R2 = 0.80, 0.77 and 0.77 for the first 20 ranked SR, NDVI and TVI respectively) 

(Mutanga and Skidmore 2004).  

Apart from NDVI, the most commonly used indices are Green Normalized Difference 

Vegetation Index (GNDVI) and OSAVI, GRVI/NGRDI, ExG, GLA/GLI/VDVI, VARI. They 

are also the most commonly used in vegetation biomass estimation models (Poley and 

McDermid 2020). 

TVI was most accurate in estimating high ranges of biomass (R2 = 0.86), while the 

NDVI was less accurate in estimating low and medium biomass ranges (Prabhakara et al. 2015). 

The variables that best predicted AGB, in order of importance, were the bands that 

belong to the region of red and near and middle infrared (López-Serrano et al. 2019). Also, 

among predictor variables for biomass estimation models are red and NIR bands, slope (β), 

Wetness Index (WI), NDVI, and MSAVI2 (López-Serrano et al. 2016).  

In the case of quantifying the density of vegetation ground cover in olive groves in the 

Mediterranean, Inverse Ratio Vegetation Index (IRVI) was found to be the most sensitive index 

accounting for 82% (p < .001) of the variability of VGC density. RVI most accurately 

distinguished VGC densities > 80% in a cover interval range of 10% (p < .001), while IRVI 
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was most accurate for VGC densities < 30% in a cover interval range of 15% (p < .01). IRVI, 

NRVI, NDVI, GNDVI, and SAVI differentiated the complete series of VGC densities when 

the cover interval range was 30% (p < .001 and p < .05) (Lima-Cueto et al. 2019). 

 

2.3 Research Gap 

One of the reasons for having difficulties associated with linking assessment of ES to 

decision-making is the lack of data required to develop an assessment at a local level 

(Fernández-Habas et al. 2018). The service of carbon storage of olive groves AGB is 

underrepresented in the research literature and policy documents.  

Optical sensor data products, especially Landsat, are widely used for biomass 

estimation. However, they are not suitable for vertical vegetation structure such as canopy 

height, only for the development of horizontal vegetation structure such as the canopy cover 

(Hudak et al. 2002). The use of the stereo-viewing capability of various optical sensor data can 

provide a better representation of the vertical structure. The integration of vertical structure 

features and optical spectral response and textures in a biomass estimation model may be a new 

direction to improve the biomass estimation accuracy but has not been paid enough attention 

(Lu et al. 2014). 

Few studies tested the use of LiDAR to estimate AGB linking ground measurements up 

to satellite observations (Puletti et al. 2020). To fill this gap, we performed a study on olive 

groves on Lesvos where field inventory, Landsat satellite images, and the recent spaceborne 

GEDI data were simultaneously acquired. 
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2.4 Aim and Objectives 

Researchers use and develop different approaches and methods to assess AGB, based 

on both field and remote sensing observations. The aim of the study is to examine the ability of 

LiDAR data and satellite imagery to estimate AGB and carbon stocks of olive groves on Lesvos 

Island, Greece. 

In order to achieve the aim  of the research, the objectives of this study are: 

1) to use GEDI for estimating and mapping AGB and carbon stocks of olive groves at the 

local level; 

2) to examine the potential of fusing satellite spectral information and vegetation indices 

with GEDI and field observation for calculating AGB and carbon stocks. 

 

As a physical location for the development of the method, the case of Lesvos Island, 

Greece, was used, where it was possible to conduct field work to estimate the biomass of Olea 

europaea L. groves.  
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3. Materials and Methods 

The common way to estimate biomass from RS data was used. It contains two steps: 

first, field measurements of AGB are obtained from sample plot data with allometric equations, 

which allow estimating the tree-level biomass from different parameters, for example, diameter, 

height, and wood density (Chave et al. 2005, 2014). Second, the field measurements are related 

to the same places to RS data on the structure, such as canopy height, and then applied together 

to predict biomass in the hardly accessible locations (Asner and Mascaro 2014; Drake et al. 

2003; Treuhaft et al. 2010). 

 

3.1. Study Area 

The study area was the island of Lesvos, Greece. For this area, Satellite and RS data 

were retrieved. Field work was carried out there on olive (Olea europaea L.) groves. Field work 

was conducted to evaluate total vegetation biomass and calculate LAI. Field surveys were 

conducted in February-May 2021. 

 

3.2. GEDI L2B Product 

LiDAR data from GEDI L2B standard data product was used for retrieving Plant Area 

Index (PAI) (Dubayah et al. 2020). The purpose of the L2B dataset is to extract biophysical 

metrics from each GEDI waveform. These metrics are based on the directional gap probability 

profile derived from the L1B waveform and include canopy cover, PAI, plant area volume 

density, and foliage height diversity. For each laser footprint, it contains latitude, longitude, 

elevation, vegetation height, cover, PAI, and also vertical profile metrics for cover and PAI. 
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GEDI data was used for retrieving data as well on the height of trees range (with 5 m step) and 

accurate height of trees (Appendix I). 

For simulated AGB estimates for GEDI data, algorithm flow for obtaining AGB values 

from LAI described below was used. It was developed by Fyllas' Research Group during field 

work.  

 

3.3. Landsat 8 Bands and VI 

Landsat 8 Satellite Images were downloaded from the USGS Earth Explorer data portal 

(USGS 2021) specifically for GEDI points dates and dates of field work within a time window 

of 15-20 days. Based on the literature review, 7 following VI were chosen (Table 1). Data for 

all bands (Band 1 – Coastal aerosol; Band 2 – Blue; Band 3 – Green; Band 4 – Red; Band 5 – 

NIR; Band 6 – SWIR 1; Band 7 – SWIR 2; Band 10 – TIRS) was retrieved and selected VI 

were calculated from it using Python (Appendix IV). 

 

Table 1. Landsat 8 derived VI and their formulas. 

VI Formula 

NDVI (NIR − R) / (NIR + R) 

IRVI R / NIR 

RVI or SR NIR / R 

GNDVI (NIR − G) / (NIR + G) 

SAVI (NIR - R) / (NIR + R + 0.5)) * (1 + 0.5) 

TVI √(NDVI)+0,5 

EVI 2.5 * ((NIR - R) / (NIR + 6 * R – 7.5 * B + 1)) 
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3.4. Sampling Algorithm 

The algorithm for selecting random points from GEDI data was developed in order to 

conduct field observations on selected plots. For this, GIS software ArcMap 10.2.2 (ESRI 2014) 

and Python 3.7 programming language (Pilgrim and Willison 2009) were used. 

Olive grove areas were classified into 12 categories in terms of geology, slope, and 

elevation. All geology types on the island have been divided into 3 categories based on the 

amount of nutrients the soil can supply to plants. Slope was categorized into 2 classes, up to 

7% and more than 7%. Elevation was categorized into 2 classes, up to 200 m and more than 

200 m. In each of 12 categories 10 plots were randomly selected. Since no points existed for 

the two categories, a total of 108 points were obtained. 

The area of Lesvos was divided into three geographical areas (Eastern, Central, Western 

Lesvos) with borders based mainly on municipalities distribution (Figure 5).  

 

Figure 5. Map of geographical distribution of Lesvos.  
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Random points were selected based on the percentage of olive groves in each 

geographical area. Calculations showed that from the whole area of Lesvos olive groves, 40% 

of groves are located in the Central part, 40% are in the Eastern part, and the rest 20% are in 

the Western part of the island. Therefore random 10 points for each of 12 categories were 

distributed accordingly: 4 points for the Eastern part, 4 points for the Central part, and 2 points 

for the Western part.  

Data on olive groves distribution (Figure 6) was retrieved from the Greek Payment 

Authority of Common Agricultural Policy (OPEKEPE 2021). 

 

Figure 6. Map of olive groves on Lesvos. 

 

From the digital elevation model of Lesvos, data on elevation and slope for the territory 

of Lesvos were selected (Figures 7 and 8). 
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Figure 7. Elevation map of Lesvos. 

 

Figure 8. Slope map of Lesvos. 

  

Data on the elevation and the slope was reclassified into 2 categories each (Figures 9 

and 10), based on the methodology described above, for future usage in the sampling model.  
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Figure 9. Map on reclassified elevation on Lesvos. 
  

 

Figure 10. Map of reclassified slope on Lesvos. 
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The geology of Lesvos was classified into 3 categories based on geology types (Figure 

11). 

 

Figure 11. Map of reclassified geology types of Lesvos. 

 

Using Python (Appendix I), data from the GEDI L2B product was retrieved for the 

specific area of Lesvos for all dates of observation. Quality and Sensitivity flags were checked 

and taken into consideration and values with no data were removed. For each file, information 

on date and time, coordinates, elevation, height, canopy cover, and PAI was retrieved, as well 

as data on the vertical profile of tree heights (Figure 12). 
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Figure 12. Map on initial GEDI points for Lesvos. 
  

All points were categorized by date (Figure 13).  

 

Figure 13. Map of GEDI points categorised by date. 
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In Python, a fishnet of squares of 100x100 m was created (Appendix II) and masked for 

Lesvos coordinates (Figure 14). 

 

Figure 14. Model for creating the fishnet for Lesvos. 

 

Then, the fishnet was masked for GEDI points falling on olive groves (Figures 15 and 

16).  

 

Figure 15. Model for calculating the area of fishnet cells having olive groves for each geographical area. 
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Figure 16. Model for masking the fishnet for GEDI point on olive groves on Lesvos. 

 

Each fishnet’s cell was assigned into one of 12 categories based on geographical 

distribution on Lesvos, geology, slope, and elevation (Figures 17 and 18, categories are 

described in Table 2).  

 

Figure 17. Model for assigning the fishnet cells into 12 categories based on geographical distribution, 

geology, elevation, and slope.  
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Figure 18. Map of cells on the fishnet created for Lesvos reclassified by geology types, slope, and 

elevation. 

 

Table 2. Reclassified categories of cells. 

Category Geology Type Slope Elevation 

111 Limestones/Schists <7° <200 m 

112 Limestones/Schists <7° >200 m 

121 Limestones/Schists >7° <200 m 

122 Limestones/Schists >7° >200 m 

211 Sediments <7° <200 m 

212 Sediments <7° >200 m 

221 Sediments >7° <200 m 

222 Sediments >7° >200 m 

311 Volcanic <7° <200 m 

312 Volcanic <7° >200 m 

321 Volcanic >7° <200 m 

322 Volcanic >7° >200 m 
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For each plot, the distance from the center of the fishnet’s polygons to the nearest GEDI 

points falling on olive groves was calculated (Figure 19).  

 

Figure 19. Model for calculating the distance from the center of fishnet cells to the nearest GEDI points. 

 

Finally, the model was created for selecting random points for fieldwork plots (Figure 

20), using the Python script (Appendix III).  

  

Figure 20. Final model for selecting random points for fieldwork plots. 
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This algorithm flow was used further for selecting 10 random points per category. These 

points were located in the field using a GPS device. 

 

3.5. Field Data Collection 

For carbon estimations, only aboveground living tree biomass was measured using non-

destructive sampling, with allometric equations retrieved from variables. The methodology for 

field data gathering was proposed by Nikolaos Fyllas Research Group of the Department of the 

Environment, University of the Aegean, based on a variety of research literature and the 

personal experience of group members. 

Plot-level information includes plot ID, region of the plot (Eastern, Central, Western 

Lesvos), date, coordinates of the plot center and four corners, elevation, aspect and slope 

degrees, and LAI data. The number of trees and all tree species were also recorded for each 

measured plot. Each tree height was measured using a measuring tape for measuring 10 m away 

from the tree to set up the point of observation, where the ruler was used for accessing the height 

of the tree. Basic information on the vegetation, land cover, the way of management 

(abandoned, low, mid, high), ground layer (low, mid, high), landscape homogeneity (low, mid, 

high) was also collected.  

The accurate plot center coordinates and 4 plot corners including latitude and longitude 

were taken for each plot using a Google maps smartphone app (Google 2021). The slope was 

measured using a clinometer and Laser Level 1.5.02 (EXA Tools 2021) smartphone app. 
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3.5.1 LAI Estimation 

LAI is a leaf area per unit of ground area. It was assessed using hemispherical 

photography as it is a common method to use for trees taller than 1.5 m (Veenendaal et al. 

2015). It records the fraction of light below the canopy to the above canopy light. 

LAI of plant canopy was derived using Decagon Accupar LAI Ceptometer portable 

sensor or a smartphone app VitiCanopy developed by a team from The University of Adelaide 

and The University of Melbourne (De Bei et al. 2016). A total of 30 samples were taken in each 

sample plot with 4 measurements from above each tree canopy. 

 

3.5.2 Canopy Area Measurements 

Canopy area is a sum of all tree crown areas on the plot. Tree crown was measured using 

a cross-method, which included measuring the longest spread from edge to edge and longest 

spread perpendicular to the first measurement using the measuring tape. The method is 

described in “Tree Measuring Guidelines of the Eastern Native Tree Society” (Blozan 2004). 

Crown area was used for estimating canopy cover and predicting tree volume and 

biomass. In order to calculate it, the crown diameter is measured crosswise in two directions, 

the largest diameter and the diameter perpendicular to it (Figure 21). 
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Figure 21. Measurement of crown diameter. The determination of the largest diameter is based on the 

visual assessment (Blozan 2004). 

 

Crown area of trees for each plot was calculated as an area of an ellipse, using the 

following formula: 

Crown area = longest spread * longest cross-spread * π / 4. 

 

3.5.3 Stump Diameter Measurements 

The average stump diameter (Ds) on the plot is the average diameter of the stumps of 

trees at a height of 30 cm from the surface. Within the plots, for each tree in the plot, the 

diameter at 30 cm above the ground was measured using a ruler. 

The method for measuring tree stumps described in “Tree Measuring Guidelines of the 

Eastern Native Tree Society” (Blozan 2004) was used. In the case of the Blozan guideline, tree 

diameter was retrieved by measuring the DBH which is the height of 1.3 m above the ground 

level (Figure 22). In our case, measurements of the diameter of 0.3 m above the ground level 

were conducted since its higher predictive power. 
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Figure 22. Measurement of DBH in different situations. 

Level ground (a); slope (b), uneven ground (c); if the trunk is bent or inclined (d); if the tree has a limb, 

bulge or other abnormality (e); if the tree has buttresses (f); if tree forks exactly at breast height (g); if the tree has 

multiple stems (h) (Blozan 2004). 

 

In total, 40 plots (30 x 30 m) were sampled and inventoried (Figures 23-28). These plots 

are part of all randomly generated plots. They were located in the field using a GPS device with 

errors up to 5 m. 

C
E

U
eT

D
C

ol
le

ct
io

n



 43 

 
Figure 23. Stump diameter measurements. 

 
Figure 24. Setting plot borders. 

 
Figure 25. LAI measurements. 
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Figure 26. DBH measurements. 

 

Figure 27. Setting 90° angle for the plot corners. 

 

Figure 28. Tree height measurements. 
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3.6 Data Analysis 

Python 3.7 (Pilgrim and Willison 2009) was used to download GEDI files for Lesvos 

and extract the data. 

Python 3.7 and ArcMap 10.2.2 (ESRI 2014) were used to process the data from Landsat 

8 and obtain VI from satellite images. 

Statistical analysis was conducted by using the R statistical platform (R Core Team 

2014).  

For the retrieving equations which help to calculate total AGB on the plot, plot data 

were analysed with a simple linear regression analysis in R. To built algorithm flow for 

biomass, field data on LAI, Canopy Area (m2), average stump diameter (cm), number of trees 

(#/m2) was used. 

For olive groves the generic equation predicting the total AGB from LAI was invented, 

equation based on field data for projecting data on PAI retrieved from GEDI points for the area 

of the olive grove on the island could be used. For calculating the AGCI, the conversion factor 

of 0.5 applied to the AGB was used. 

A simple linear regression was used to calculate the correlation between canopy area 

and PAI, then average stump diameter and canopy area, number of trees and the average stump 

diameter, and, finally, total AGB and the number of trees and the average stump diameter. 

Relationships between GEDI and Landsat data with field measurements were analysed 

using simple and multiple linear regression.  
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3.7. Strengths and Limitations 

Among the strengths of the chosen methods, there are getting specific and detailed 

information about the specific location and chosen time frame, high representativeness, and the 

possibility to combine with other statistical and programming methods. 

Among the limitations of these methods, there can be excessive damage in case of an 

internal fault, complex data structures, and issues connected with large amounts and complexity 

of data. Also, one of the main limitations of this approach is that biomass is not measured 

directly, by harvesting and weighing the leaves, branches, and stems of trees (Gonçalves et al. 

2017). 

 

3.8. Ethical Considerations  

The research used quantitative methods so there were no ethical conflicts associated 

with the use of respondents. However, in relation to the research, many of the field work areas 

were fenced off as they are private agricultural areas. The members of the research group had 

to make their way to some closed areas, first asking permission from local farmers. Many 

fenced-in areas had to be avoided. 

It was not implied that the research will be sponsored by external organizations, nor will 

it be supervised by external professionals and therefore external factors should not influence 

the course and results of the work. 

Data was stored on a personal drive and duplicated on the OneDrive cloud service, 

provided by the Central European University. It is a safe and reliably protected service and 

therefore did not pose a danger to any actors involved in the research. 
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3.9. COVID-19 Impact 

Travel restrictions on Lesvos island due to the COVID-19 outbreak prevented all field 

data from being collected by the end of the study programme, and the master's thesis field data 

was collected at 40 locations. However, the research work will continue until the end of 2021 

and data for 108 points will be collected and analysed. 
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4. Results 

4.1. Randomly Selected Points 

Using the developed algorithm for selecting random points described in the Materials 

and Methods section, 10 random points per each of the 12 categories were selected (Figure 29). 

categories are described above in Table 2 in section Materials and Methods. 

 

Figure 29. GEDI random points for conducting the fieldwork. 

 

4.2. Field Work 

Field work was carried out in accordance with the methodology described above in the 

Materials and Methods section. Due to restrictions related to COVID-19, data were obtained 
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from only 40 sites as a result. However, work on the project will continue and data for 108 sites 

will be collected by the end of the year. 

Fyllas' Research Group developed an algorithm flow for estimating biomass based on 

field measurements (Figure 30). 

 

Figure 30. Algorithm flow for biomass estimation. 

 

The following equations were achieved by a simple linear regression analysis: 

Equations for average Canopy Area (m2): 

if Elevation is less than 200 m, Elevation_Class = 0 

if Elevation is more than 200 m, Elevation_Class = 1 

if Slope is less than 7%, Slope_Class = 0 

if Slope is more than 7%, Slope_Class = 1 

CanArea = 18.665 + (20.687 * LAI) - (2.364 * Elevation_Class) - (5.366 * Slope_Class) 

Equations for average stump Diameter (cm): 

Ds = 36.2457+ (0.8371 * CanArea) 

Equations for number of trees (#/m2): 

N = (1/900) * exp(3.519229 - 0.013677 * Ds) 

Equation for total AGB (kg DM / m2): 

AGBt = N * (0.125 * Ds^2.279) 
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4.3. Statistical Analysis 

After obtaining the data from the field work and GEDI products, the Landsat 8 Satellite 

Images were downloaded for GEDI point dates and dates of field work. Data on bands was 

retrieved and VI were calculated from spectral information using Python and analysed in R, 

with removing areas with clouds. For testing the correlation, the most common method of 

finding Pearson's r correlation coefficient was used in R, which measures the linear correlation 

between two sets of data. The correlation was tested between GEDI data on AGB and Landsat 

8 bands and 7 chosen VI and field data on AGB and Landsat 8 bands and 7 chosen VI (Appendix 

V and VI). 

Simple linear regression analysis was conducted for each band and each indices and 

multiple linear regression analysis was conducted for different combinations of bands and 

indices. Analysis was conducted for all the available dates of satellite data. 

Data obtained on statistical significance (p-value) and correlation (Adjusted R-squared) 

did not show any significance and correlation (Figures 31 and 32). 

 

Figure 31. Results of correlation analysis between GEDI data and Landsat 8 images  

for April 1, 2019, where y is GEDI data on AGB, x1-x10 are Landsat 8 bands, and NDVI, IRVI, RVI, 

GNDVI, SAVI, TVI, and EVI are tested VI. 
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Figure 32. Results of correlation analysis between field data and Landsat 8 images  

for April 1, 2019, where y is field data on AGB, x1-x10 are Landsat 8 bands, and NDVI, IRVI, RVI, 

GNDVI, SAVI, TVI, and EVI are tested VI. 

 

For GEDI and Landsat regression analysis, the scatterplots show some intense 

clustering of values for most of the bands and VI (Figure 33). This clustering can be further 

investigated using multidimensional clustering techniques, such as, for example, the most 

popular k-means clustering method. 
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Figure 33. Regression analysis Scatter Plots  

between GEDI data and Landsat 8 Band 4 (Red), Band 5 (NIR), NDVI, and EVI for April 1, 2019. 

 

4.3. AGB and AGCI Mapping 

AGB and AGCI estimations for GEDI points were calculated from the PAI value using 

the algorithm described above. To interpolate data of GEDI points to the area of olive groves 

on Lesvos, two interpolation methods were applied, simple Kriging and Inverse distance 

weighting (IDW). By masking the interpolation results to olive groves, maps for the amount of 

AGB and carbon stocks were created (Figures 34-37) and then the biomass and carbon stocks 

values were calculated for the area of olive groves. 
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Figure 34. AGB map of Lesvos olive groves created by using the Kriging method. 

 

 

Figure 35. AGB map of Lesvos olive groves created by using the IDW method. 
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Figure 36. AGCI map of Lesvos olive groves created by using the Kriging method. 

 

 

Figure 37. AGCI map of Lesvos olive groves created by using the IDW method. 
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Using Zonal Statistics tool, total AGB and AGCI of Lesvos olive groves were 

calculated. According to the Kriging method, the total AGB of Lesvos olive groves is 8.151 

billion kg. IDW showed a similar result, 8.155 billion kg. 

AGCI from Kriging showed a predictable result of 4.075 billion, which is half number 

of AGB estimation. IDW, consequently, showed a result of 4.077 billion. 
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5. Discussion 

5.1. General Discussion 

According to the correlation analysis between Landsat 8 Bands and VI and GEDI data, 

and Landsat 8 Bands and VI and field biomass estimations, there is no linear correlation 

discovered. At the beginning of the research, Pearson's r between PAI values from GEDI and 

LAI from fieldwork, as well as biomass estimations retrieved from PAI and LAI values, was 

around 0.7 for 20 plots and downgraded to around 0.45 for 40 plots. However, more field trips 

are expected and this value may change later with obtaining more results from the field work 

and updating the equation for biomass estimation from the LAI indicator. Updating the equation 

can lead to better correlation results between field and Landsat 8 derived data. 

Possible reasons for the lack of correlation can be the spatial accuracy of GEDI data and 

the failure of GEDI to capture accurate PAI values in less dense forests such as olive groves. 

The aim of GEDI as it claimed is to enhance large-scale forest maps. GEDI LiDAR data was 

used for tropical forest and global forest mapping (Dubayah 2020; Potapov et al. 2021; Tang 

and Armston 2019) and deciduous and conifer forests (Adam et al. 2020; Chen et al. 2021; 

Guerra-Hernández and Pascual 2021). However, GEDI data was not used for agricultural lands.  

Guerra-Hernández and Pascual (2021) highlight that errors in GEDI data can come from 

positioning, ground finder, and estimating canopy structure for GEDI. The analysis of biomass 

of olive groves would benefit by using more extensive field observations, and adjusting GEDI 

data settings precisely for PAI on agricultural groves. 

The developed method of sampling random points for field work can be used for 

subsequent research. The proposed biomass and carbon estimates based on GEDI data and 
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fieldwork can be used to inform policy makers regarding agricultural management at the 

regional level. 

 

5.2. Implications and Policy Recommendations 

Greece has a target for carbon intensity reduction (EC 2019), however, objectives of 

research and innovation are unclear now for the period after 2020. To set the objectives, Greek 

policy makers should use science-based information for decision-making regarding carbon 

stocks. Results obtained in this thesis can be used as one of the milestones in understanding and 

developing the correct methodology for estimating biomass and therefore carbon stocks. 

The results can also be useful in the development of management proposals for 

sustainable olive groves agriculture. As a result of MESPOM (2020) research group work on 

the effects of climate change on Lesvos’ olive production, Campaign for Carbon Neutrality was 

offered. To start developing the campaign, the initial step is to assess existing carbon stocks 

and identify the best strategy for estimating biomass. There is a need to improve the 

methodology for estimating biomass using GIS tools, RS, and LiDAR data, as field work is 

very labor-intensive, expensive, and time-consuming. 

Among policy recommendations, it is worth emphasizing the necessity of creating a 

clear and user-friendly information hub on carbon stocks, for Greece and specifically Lesvos, 

for forests in general, and for olive groves in particular. The creation, supporting, and timely 

updating of such a hub with clear information on sustainable farming, as well as implementing 

leverages for farmers, can help to conduct more sustainable agriculture aimed at storing more 

carbon and increase the potential storage volume of olive trees as an additional ES.  

Lesvos can be used as a pilot area due to the developed olive farming and big farmers’ 

community. Farmers might use the information from the hub for achieving more precise 
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information on the adoption of new cultivars, more sustainable ways of pruning, and necessary 

changes in farmers’ training. Lesvos's experience can be applied to agricultural management in 

Greece and the Mediterranean region. 
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6. Conclusion 

The principal aim of the thesis research was to examine the ability of LiDAR data and 

satellite imagery to estimate AGB and carbon stocks of olive groves on Lesvos Island, Greece. 

For the research, the most commonly used satellite data (Landsat 8) and relatively new LiDAR 

data (GEDI) have been assessed for developing the methodology for biomass and carbon stocks 

monitoring. 

The research showed the potential of using data retrieved from the GEDI product L2B 

for assessing and mapping biomass and carbon stocks of olive groves on Lesvos island, Greece. 

LAI and PAI values were retrieved from field data and GEDI and tested for correlation with 

Landsat 8. Although correlation and regression analysis between Landsat data and GEDI and 

fieldwork data did not show linear correlation, the GEDI data has potential in biomass and 

carbon stocks estimation, along with a combination of other RS technologies and field 

observations. The results show a necessity for continuation of field work for further 

development of methodology for remote biomass estimation. 

Maps on biomass and carbon stocks of olive groves on Lesvos were created and values 

on AGB and carbon stocks indicators were obtained. With the continuation of the fieldwork 

and finishing the project, updated results can be used by policy makers for science-based 

decision-making in developing a more sustainable agriculture system aimed to store more 

carbon in agricultural groves at the local and regional levels. 
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Appendices 

Appendix I. Python script for retrieving GEDI L2B data with 

vertical profiles 

import os 

import h5py 

import numpy as np 

import pandas as pd 

import geopandas as gp 

from shapely.geometry import Point 

import sys 

import datetime 

 

QualityCheck = True 

QualityFlag = 1 

SensitivityCheck = True 

SensitivityThreshold = 0.95 

CoverNoDataCheck = True 

PAINoDataCheck = True 

NoDataValue = -9999 

 

CalculateVegetationHeight = True 

RetrieveVerticalProfile = True 

 

WorkingDir = "/Users/elenapalenova/Desktop/GIS/GEDI" 

inDir = WorkingDir + "/GEDI_All_Files" 

inVectorDir = WorkingDir + "/Vector_Data" 

outDir = WorkingDir + "/Results/Vector" 

 

gediFiles = [g for g in os.listdir(inDir) if g.startswith('GEDI02_B') and g.endswith('.h5')] # List all GEDI L2B .h5 

files in inDir 

 

Coastline_gdf = gp.read_file(inVectorDir + "/Coastline_EGSA87.shp") 

 

Lesvos_Points_EGSA_DF = pd.DataFrame(columns=['Beam', 'ShotNm', 'Long', 'Lat', 'Elev', 'Quality', 'Sens', 

'Height', 'Cover', 'PAI', "Date", "Time"]) 
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for H5File in gediFiles: 

    theYear = H5File[9:13] 

    theDayOfYear = H5File[13:16] 

    theTime = H5File[16:22] 

 

    theDate = str(datetime.date(int(theYear), 1, 1) + datetime.timedelta(int(theDayOfYear) - 1)) 

    theDate = theDate[-2:] + "/" + theDate[5:7] + "/" + theYear 

    theTime = theTime[:2] + ":" + theTime[2:4] + ":" + theTime[-2:] 

    

    gediL2B = h5py.File(inDir + "/" + H5File, 'r') 

    H5_Keys = list(gediL2B.keys()) 

    H5_Metadata = list(gediL2B['METADATA']) 

 

    beamNames = [g for g in gediL2B.keys() if g.startswith('BEAM')] 

 

    gediL2B_objs = [] 

    gediL2B.visit(gediL2B_objs.append)                                           

    gediSDS = [o for o in gediL2B_objs if isinstance(gediL2B[o], h5py.Dataset)]  

    [i for i in gediSDS if beamNames[0] in i][0:10]      

 

    Longitudes, Latitudes, Elevation, Shots, Quality, Beam = [], [], [], [], [], []  

 

    Lesvos_Points_DF = pd.DataFrame(columns=['Beam', 'ShotNm', 'Long', 'Lat', 'Elev', 'Quality', 'Sens', 'Height', 

'Cover', 'PAI', "Date", "Time"]) 

    Points_DF = pd.DataFrame(columns=['Beam', 'ShotNm', 'Long', 'Lat', 'Elev', 'Quality', 'Sens', 'Height', 'Cover', 

'Cover_Z', 'PAI', "Date", "Time"]) 

 

    print("Reading Data for " + theDate) 

    i = 0 

    for b in beamNames: 

         

        dZ = gediL2B[b + '/ancillary/dz'] 

 

        Latitudes = gediL2B[b + '/geolocation/lat_lowestmode'] 

        Longitudes = gediL2B[b + '/geolocation/lon_lowestmode'] 

        Elevations = gediL2B[b + '/geolocation/elev_lowestmode'] 

        Shots = gediL2B[b + '/geolocation/shot_number'] 

         

        Quality = gediL2B[b + '/l2b_quality_flag'] 
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        Sensitivity = gediL2B[b + '/sensitivity'] 

 

        Cover = gediL2B[b + '/cover'] 

        Cover_z = gediL2B[b + '/cover_z'] 

        PAI = gediL2B[b + '/pai'] 

 

        RH100 = gediL2B[b + '/rh100'] 

         

        print(b, dZ[0]) 

 

        Points_DF = pd.DataFrame({'Beam': beamNames[i], 'ShotNm': Shots, 'Long': Longitudes, 'Lat': Latitudes, 

'Elev': Elevations, 

                                  'Quality': Quality, 'Sens': Sensitivity, 'Height': 0, 'Cover': Cover , 'Cover_Z': Cover_z , 'PAI': 

PAI, "Date": theDate, "Time": theTime, 

                                  "RH100": RH100})         

 

        PointsCount = len(Points_DF) 

        print("Found Total " + str(PointsCount) + " Points") 

 

        Spatial_Selection_DF = (Points_DF[((Points_DF["Long"] > 25.8) & (Points_DF["Long"] < 26.7)) & 

((Points_DF["Lat"] > 38.9) & (Points_DF["Lat"] < 39.4))]) 

        print("Removed " + str(PointsCount - len(Spatial_Selection_DF)) + " Points Outside Study Area") 

        PointsCount = len(Spatial_Selection_DF) 

             

        if (QualityCheck == True): 

            Spatial_Selection_DF = Spatial_Selection_DF[Spatial_Selection_DF["Quality"] == QualityFlag] 

            print("Removed " + str(PointsCount - len(Spatial_Selection_DF)) + " Points from QualityFlag") 

            PointsCount = len(Spatial_Selection_DF)             

        if (SensitivityCheck == True): 

            Spatial_Selection_DF = Spatial_Selection_DF[Spatial_Selection_DF["Sens"] >= SensitivityThreshold] 

            print("Removed " + str(PointsCount - len(Spatial_Selection_DF)) + " Points from Sensitivity Flag") 

            PointsCount = len(Spatial_Selection_DF)             

        if (CoverNoDataCheck == True): 

            Spatial_Selection_DF = Spatial_Selection_DF[Spatial_Selection_DF["Cover"] != NoDataValue] 

            print("Removed " + str(PointsCount - len(Spatial_Selection_DF)) + " Points Having Cover NoData 

Values") 

            PointsCount = len(Spatial_Selection_DF)              

        if (PAINoDataCheck == True): 

            Spatial_Selection_DF = Spatial_Selection_DF[Spatial_Selection_DF["PAI"] != NoDataValue] 

            print("Removed " + str(PointsCount - len(Spatial_Selection_DF)) + " Points Having PAI NoData Values") 
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            PointsCount = len(Spatial_Selection_DF) 

 

        print("Found " + str(len(Spatial_Selection_DF)) + " Points for " + b) 

        print() 

         

        if (len(Spatial_Selection_DF) > 0): 

            

            VegetationHeight = [] 

            if CalculateVegetationHeight == True: 

                TotalBeamPoints = 0 

                for BeamPointID in range(0,len(Spatial_Selection_DF)): 

                    BeamPoint = Spatial_Selection_DF.iloc[BeamPointID, 

Spatial_Selection_DF.columns.get_loc('Cover_Z')] 

                    BeamPointHeight = (len(BeamPoint) - BeamPoint.count(0)) * dZ[0] 

                    Spatial_Selection_DF.iloc[BeamPointID, Spatial_Selection_DF.columns.get_loc('Height')] = 

BeamPointHeight 

                    TotalBeamPoints = TotalBeamPoints + 1 

             

            Spatial_Selection_DF = Spatial_Selection_DF.drop(columns=['Cover_Z']) 

            Lesvos_Points_DF = Lesvos_Points_DF.append(Spatial_Selection_DF, ignore_index=True) 

            i += 1 

    print("Reading Completed") 

     

    geometry = [Point(xyz) for xyz in zip(Lesvos_Points_DF['Long'], Lesvos_Points_DF['Lat'], 

Lesvos_Points_DF['Elev'])] 

    crs_WGS84 = 'epsg:4326' 

    gdf_WGS84 = gp.GeoDataFrame(Lesvos_Points_DF, crs=crs_WGS84, geometry = geometry) 

 

    crs_EGSA87 = 'epsg:2100' 

    gdf_EGSA87 = gdf_WGS84.to_crs(crs_EGSA87) 

 

    gdf_EGSA87_Masked = gp.clip(gdf_EGSA87, Coastline_gdf) 

 

    Lesvos_Points_EGSA_DF = Lesvos_Points_EGSA_DF.append(gdf_EGSA87_Masked, ignore_index=True) 

 

    print("Found Total " + str(len(gdf_EGSA87_Masked)) + " Points for " +  theDate) 

    print() 

 

if (len(Lesvos_Points_EGSA_DF) > 0): 

    print("Exporting GEDI Data to Shapefile....") 
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    geometry = [Point(xyz) for xyz in zip(Lesvos_Points_EGSA_DF['Long'], Lesvos_Points_EGSA_DF['Lat'], 

Lesvos_Points_EGSA_DF['Elev'])] 

    crs_WGS84 = 'epsg:4326' 

    gdf_WGS84 = gp.GeoDataFrame(Lesvos_Points_EGSA_DF, crs=crs_WGS84, geometry = geometry) 

    crs_EGSA87 = 'epsg:2100' 

    gdf_EGSA87 = gdf_WGS84.to_crs(crs_EGSA87) 

 

    gdf_EGSA87.to_file(driver="ESRI Shapefile", filename = outDir + "/Points_EGSA87_Vertical_Profile.shp") 

 

 

Appendix II. Python script for Creating Fishnet for Lesvos island 

import arcpy 

from arcpy import env 

 

inFC = arcpy.GetParameterAsText(0) 

CS = int(arcpy.GetParameterAsText(1)) 

OutFC = arcpy.GetParameterAsText(2) 

 

desc = arcpy.Describe(inFC) 

inSRS = desc.spatialReference 

 

theExtent = desc.Extent 

theXmin = theExtent.XMin 

theNewXmin = int(theXmin / CS) * CS 

theYmin = theExtent.YMin 

theNewYmin = int(theYmin / CS) * CS 

 

theXmax = theExtent.XMax 

theNewXmax = (int(theXmax / CS) + 1) * CS 

theYmax = theExtent.YMax 

theNewYmax = (int(theYmax / CS) + 1) * CS 

 

print(theNewXmin, theNewYmin, theNewXmax, theNewYmax) 

 

arcpy.Delete_management(OutFC) 

 

originCoordinate = str(theNewXmin) + " " + str(theNewYmin) 

yAxisCoordinate = str(theNewXmin) + " " + str(theNewYmin + CS) 
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oppositeCoorner = str(theNewXmax) + " " + str(theNewYmax) 

 

numRows = "#" 

numColumns  = "#" 

 

labels = "NO_LABELS" 

templateExtent = '#' 

geometryType = 'POLYGON' 

 

arcpy.CreateFishnet_management(OutFC, originCoordinate, yAxisCoordinate, str(CS), str(CS), numRows, 

numColumns, oppositeCoorner, labels, templateExtent, geometryType) 

 

arcpy.DefineProjection_management(OutFC, inSRS) 

 

Fishnet = arcpy.MakeFeatureLayer_management(OutFC, "Fishnet") 

 

arcpy.SetParameter(3, Fishnet) 

 

 

Appendix III. Python script for selecting random sampling points 

import arcpy 

import numpy as np 

import random 

from arcpy import env 

import sys 

import math 

 

Points_Count = 20 

CoverThreshold = 70 

 

theCombinedRsterFN = "/Users/elenapalenova/Desktop/GIS/GEDI/Sampling_Model/Results/Combined.img" 

theCombinedRster = arcpy.RasterToNumPyArray(theCombinedRsterFN, nodata_to_value=-9999) 

 

theGeographical_DistributionFN = 

"/Users/elenapalenova/Desktop/GIS/GEDI/Sampling_Model/Results/Geographical_Distribution.img" 

theGeographical_DistributionRsterArray = arcpy.RasterToNumPyArray(theGeographical_DistributionFN, 

nodata_to_value=-9999) 
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theGeographical_DistributionRsterUV_List = np.unique(theGeographical_DistributionRsterArray) 

theGeographical_DistributionRster = arcpy.Raster(theGeographical_DistributionFN) 

 

theMaskFN = "/Users/elenapalenova/Desktop/GIS/GEDI/Sampling_Model/Results/Mask.img" 

theMaskRsterArray = arcpy.RasterToNumPyArray(theMaskFN, nodata_to_value=-9999) 

 

Region_List = [] 

Percentage_List = [] 

for r in arcpy.SearchCursor(theGeographical_DistributionRster, "", "", "VALUE; Region; Percentage"): 

    Region_List.append(r.getValue("Region")) 

    Percentage_List.append(r.getValue("Percentage")) 

 

desc = arcpy.Describe(theCombinedRsterFN) 

inSRS = desc.spatialReference 

 

theXminimum = desc.extent.XMin 

theXmaximum = desc.extent.XMax 

theYminimum = desc.extent.YMin 

theYmaximum = desc.extent.YMax 

 

CS = desc.meanCellWidth 

 

NoDataValue = desc.noDataValue 

 

theCombinedRster = np.where(theCombinedRster != NoDataValue, theCombinedRster, -9999) 

 

theCombinedRster = np.where(theMaskRsterArray >= CoverThreshold, theCombinedRster, -9999) 

 

theCombinedRasterUV_List = np.unique(theCombinedRster) 

 

out_path = "/Users/elenapalenova/Desktop/GIS/GEDI/Sampling_Model/Results/" 

out_name = "Random_Points.shp" 

geometry_type = "POINT" 

template = "" 

has_m = "DISABLED" 

has_z = "DISABLED" 

 

arcpy.Delete_management(out_path + "\\" + out_name) 

fc = arcpy.CreateFeatureclass_management(out_path, out_name, geometry_type, template, has_m, has_z, inSRS) 

arcpy.AddField_management(fc, "Region", "TEXT", "", "", "20") 
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arcpy.AddField_management(fc, "Type", "TEXT", "", "", "5") 

 

#cursor = arcpy.da.InsertCursor(fc, ["SHAPE@"]) 

cursor = arcpy.da.InsertCursor(fc, ["SHAPE@", "Region", "Type"]) 

 

Points_Dir = {} 

for Region_index in range(1, len(theGeographical_DistributionRsterUV_List)): 

 

    theRegion_Raster = np.where((theCombinedRster != NoDataValue) & 

(theGeographical_DistributionRsterArray ==  theGeographical_DistributionRsterUV_List[Region_index]), 

theCombinedRster, -9999) 

    Region_Points_Count =  Points_Count * Percentage_List[Region_index-1] / 100 

    print(Region_Points_Count) 

    Region_Points_Dir = {} 

     

    for i in range(1, len(theCombinedRasterUV_List)): 

         

        points = [] 

        points_coordinates = []         

        c = np.where((theRegion_Raster != NoDataValue) & (theRegion_Raster == theCombinedRasterUV_List[i])) 

        X = c[0].tolist() # x list  

        Y = c[1].tolist() # y list     

 

        if (len(X) != 0): 

            while(len(points) < Region_Points_Count): 

 

                row= random.choice(X) # choose random point from class n 

                ind = X.index(row) # find location of this point 

                col = Y[ind] # find corresponding y point 

                points.append((row, col)) # add to points list 

                 

                XCoordinate = theXminimum + (col * CS) + (CS/2) 

                YCoordinate = theYmaximum - (row * CS) - (CS/2) 

                points_coordinates.append((XCoordinate, YCoordinate)) 

                cursor.insertRow([arcpy.Point(XCoordinate, YCoordinate), Region_List[Region_index-1], 

theCombinedRasterUV_List[i]])           

 

        Region_Points_Dir[theCombinedRasterUV_List[i]] = points_coordinates 

    Points_Dir[Region_List[Region_index-1]] = Region_Points_Dir 
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Appendix IV. Python script for creating VI from Satellite Images 

bands 

from osgeo import gdal 

import numpy as np 

import os 

import sys 

import math 

 

def array2raster(newRasterfn,rasterOrigin,pixelWidth,pixelHeight,inSRS_wkt,array,Pixel_Type,NoDataValue): 

    cols = array.shape[1] 

    rows = array.shape[0] 

    originX = rasterOrigin[0] 

    originY = rasterOrigin[1] 

    driver = gdal.GetDriverByName('GTiff') 

    outRaster = driver.Create(newRasterfn, cols, rows, 1, Pixel_Type) 

    outRaster.SetGeoTransform((originX, pixelWidth, 0, originY, 0, pixelHeight)) 

    outband = outRaster.GetRasterBand(1) 

    outband.WriteArray(array[::-1]) 

    outband.SetNoDataValue(NoDataValue) 

    outRaster.SetProjection(inSRS_wkt) 

    outband.FlushCache() 

 

def NDVI_calculation(theNoDataValue, Red_array, NIR_array): 

    NDVI_array_calculation = np.where((Red_array != theNoDataValue) & (NIR_array != theNoDataValue), 

(NIR_array - Red_array) / (NIR_array + Red_array), theNoDataValue) 

    return NDVI_array_calculation 

 

def TVI_calculation(theNoDataValue, Red_array, NIR_array): 

    No_Data_Array = np.where((Red_array != theNoDataValue) &  (NIR_array != theNoDataValue) , 1, 

theNoDataValue) 

    Negative_Values_Array = np.where(((NIR_array - Red_array) / (NIR_array + Red_array)) + 0.5  >= 0, 

(((NIR_array - Red_array) / (NIR_array + Red_array)) + 0.5), -theNoDataValue) 

    Boolean_Array = np.where((No_Data_Array != theNoDataValue) & (Negative_Values_Array != -

theNoDataValue), 1, -theNoDataValue) 

    TVI_array_calculation = np.where(Boolean_Array != -theNoDataValue,  (Negative_Values_Array ** 0.5) * 

100, theNoDataValue) 

    return TVI_array_calculation 
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def EVI_calculation(theNoDataValue, Blue_array, Red_array, NIR_array): 

    No_Data_Array = np.where((Blue_array != theNoDataValue) &  (Red_array != theNoDataValue) &  

(NIR_array != theNoDataValue), 1, theNoDataValue) 

    Zero_Values_Array = np.where((NIR_array + (6 * Red_array) - (7.5 * Blue_array) + 1)  != 0, (NIR_array + (6 

* Red_array) - (7.5 * Blue_array) + 1), theNoDataValue) 

    Boolean_Array = np.where((No_Data_Array != theNoDataValue) & (Zero_Values_Array != theNoDataValue), 

1, theNoDataValue) 

    EVI_array_calculation = np.where(Boolean_Array != theNoDataValue, 2.5 * ((NIR_array - Red_array) / 

Zero_Values_Array), theNoDataValue) 

    return EVI_array_calculation 

 

def SAVI_calculation(theNoDataValue, Red_array, NIR_array): 

    SAVI_array_calculation = np.where((Red_array != theNoDataValue) &  (NIR_array != theNoDataValue), 

((NIR_array - Red_array) / (NIR_array + Red_array + 0.5)) * (1.5), theNoDataValue) 

    return SAVI_array_calculation 

 

def MSAVI_calculation(theNoDataValue, Red_array, NIR_array): 

    No_Data_Array = np.where((Red_array != theNoDataValue) & (NIR_array != theNoDataValue) , 1, 

theNoDataValue) 

    Negative_Values_Array = np.where((np.sqrt((2 * NIR_array + 1) ** 2 - 8 * (NIR_array - Red_array)) < 0, 

np.sqrt((2 * NIR_array + 1) ** 2 - 8 * (NIR_array - Red_array)), theNoDataValue) 

    Boolean_Array = np.where(((No_Data_Array != theNoDataValue) & (Negative_Values_Array != -

theNoDataValue)), 1, -theNoDataValue) 

    MSAVI_array_calculation = np.where(Boolean_Array != -theNoDataValue, (2 * NIR_array + 1 - 

Negative_Values_Array), theNoDataValue) 

    return MSAVI_array_calculation 

 

def export_indices(output_folder, NDVI_array, TVI_array, EVI_array, SAVI_array, MSAVI_array): 

    filename = os.path.expanduser(output_folder + "/NDVI.TIF") 

    array2raster(filename,(originx,originy),xres,xres,inSRS_wkt,NDVI_array, gdal.GDT_Float32,-9999) 

 

    filename = os.path.expanduser(output_folder + "/TVI.TIF") 

    array2raster(filename,(originx,originy),xres,xres,inSRS_wkt,TVI_array, gdal.GDT_Float32,-9999) 

 

    filename = os.path.expanduser(output_folder + "/EVI.TIF") 

    array2raster(filename,(originx,originy),xres,xres,inSRS_wkt,EVI_array, gdal.GDT_Float32,-9999) 

 

    filename = os.path.expanduser(output_folder + "/SAVI.TIF") 

    array2raster(filename,(originx,originy),xres,xres,inSRS_wkt,MIRBI_array, gdal.GDT_Float32,-9999) 
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    filename = os.path.expanduser(output_folder + "/MSAVI.TIF") 

    array2raster(filename,(originx,originy),xres,xres,inSRS_wkt,MIRBI_array, gdal.GDT_Float32,-9999) 

 

satellite_sensor = "Landsat8" 

 

input_satellite_data_folder = 

os.path.expanduser("/Users/elenapalenova/Desktop/GIS/Indices/Input_Satellite_Images") 

 

if satellite_sensor == "Landsat8": 

    the_output_folder = "~/Desktop/GIS/Indices/Results/Indices/Landsat8/" 

else: 

    print("Code must be updated") 

 

subfolders = os.listdir(input_satellite_data_folder) 

for folder in subfolders: 

    if satellite_sensor == "Landsat8": 

        if folder[:4] == "LC08": 

            acquisition_date = folder[17:25] 

 

            date = acquisition_date[-2:] + "_" + acquisition_date [4:6] + "_" + acquisition_date[:4] 

            header_file = folder + "_MTL.txt" 

            header_file_path = input_satellite_data_folder + "/" + folder + "/" + header_file 

 

            f = open(header_file_path, "r") 

 

            lines = f.readlines() 

            count = 0 

 

            for line in lines: 

                acquired_bool = line[4:17] 

                if acquired_bool == "DATE_ACQUIRED": 

                    line_date = line[-3:-1] + "_" + line[-6:-4] + "_" + line[-11:-7] 

                    break 

 

            B2_file_path = input_satellite_data_folder + "/" + folder + "/" + folder + "_SR_B2.TIF" 

            B2 = os.path.expanduser(B2_file_path) 

            #blue 

 

            B4_file_path = input_satellite_data_folder + "/" + folder + "/" + folder + "_SR_B4.TIF" 

            B4 = os.path.expanduser(B4_file_path) 
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            #red 

 

            B5_file_path = input_satellite_data_folder + "/" + folder + "/" + folder + "_SR_B5.TIF" 

            B5 = os.path.expanduser(B5_file_path) 

            #NIR 

 

            B6_file_path = input_satellite_data_folder + "/" + folder + "/" + folder + "_SR_B6.TIF" 

            B6 = os.path.expanduser(B6_file_path) 

            #SWIR1 or sSWIR 

 

            B7_file_path = input_satellite_data_folder + "/" + folder + "/" + folder + "_SR_B7.TIF" 

            B7 = os.path.expanduser(B7_file_path) 

            #SWIR2 or lSWIR 

 

            input_image = gdal.Open(B2) 

            B2_raster_array = np.array(input_image.GetRasterBand(1).ReadAsArray().astype(np.float32)) 

 

            input_image = gdal.Open(B4) 

            B4_raster_array = np.array(input_image.GetRasterBand(1).ReadAsArray().astype(np.float32)) 

 

            input_image = gdal.Open(B5) 

            B5_raster_array = np.array(input_image.GetRasterBand(1).ReadAsArray().astype(np.float32)) 

 

            input_image = gdal.Open(B6) 

            B6_raster_array = np.array(input_image.GetRasterBand(1).ReadAsArray().astype(np.float32)) 

 

            input_image = gdal.Open(B7) 

            B7_raster_array = np.array(input_image.GetRasterBand(1).ReadAsArray().astype(np.float32)) 

 

            ulx, xres, xskew, uly, yskew, yres  = input_image.GetGeoTransform() 

 

            inSRS_wkt = input_image.GetProjection() 

 

            In_RASTER_array = B4_raster_array 

 

            [rows,cols] = In_RASTER_array.shape    #Matrix shape on rows and cols 

            rows = len(In_RASTER_array) 

            columns = len(In_RASTER_array[0]) 

            originx = ulx 

            originy = uly - (rows*xres) 
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            NoDataValue = np.float64(input_image.GetRasterBand(1).GetNoDataValue()) 

 

            B2_NoData = np.where(B2_raster_array != 0, B2_raster_array, -9999) 

            B4_NoData = np.where(B4_raster_array != 0, B4_raster_array, -9999) 

            B5_NoData = np.where(B5_raster_array != 0, B5_raster_array, -9999) 

            B6_NoData = np.where(B6_raster_array != 0, B6_raster_array, -9999) 

            B7_NoData = np.where(B7_raster_array != 0, B7_raster_array, -9999) 

 

            print("Calculating NDVI for " + line_date) 

            NDVI_array = NDVI_calculation(-9999, B4_NoData, B5_NoData) 

 

            print("Calculating TVI for " + line_date) 

            TVI_array = TVI_calculation(-9999, B4_NoData, B5_NoData) 

 

            print("Calculating EVI for " + line_date) 

            EVI_array = EVI_calculation(-9999, B2_NoData, B4_NoData, B5_NoData) 

 

            print("Calculating SAVI for " + line_date) 

            SAVI_array = SAVI_calculation(-9999, B4_NoData, B5_NoData) 

 

            print("Calculating MSAVI for " + line_date) 

            MSAVI_array = MSAVI_calculation(-9999, B4_NoData, B5_NoData) 

 

            new_folder = the_output_folder + line_date 

            print("Export indices for " + line_date) 

 

            if os.path.exists(os.path.expanduser(new_folder)) == False: 

                os.makedirs(os.path.expanduser(new_folder)) 

 

            export_indices(new_folder, NDVI_array, TVI_array, EVI_array, SAVI_array, MSAVI_array)
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Appendix V. Correlation and regression analysis in R for field and 

Landsat 8 data 

library(readxl) 

library(raster) 

library(rgdal) 

library(sp) 

 

wd <- ("/Users/elenapalenova/Desktop/GIS/Fusion") 

datawd <- 

("/Users/elenapalenova/Desktop/GIS/Indices/Landsat_New_Data_GEDI_points/LC08_L2SP_181033_20190401

_20200829_02_T1/") 

setwd(datawd) 

 

theDateString = scan(text=basename(datawd), sep="_", what="", quiet=TRUE)[4] 

theDate = as.Date(paste0(substr(theDateString, 7, 8), "/", substr(theDateString, 5, 6), "/", substr(theDateString, 1, 

4)), format = "%d/%m/%Y") 

 

file_list = list.files(datawd, pattern = "B\\d+.TIF") 

 

band_list <- list() 

for (val in file_list){ 

band = file_list <- paste0(datawd, val) 

band_list <- append(band_list, list(band)) 

} 

rasStack = stack(band_list) 

 

my_data <- read_excel(paste0(wd, "/Data/Final_Plot_metadata.xlsx")) 

 

pointCoordinates=my_data[,c("Lon","Lat","AGBt_field")] 

 

coordinates(pointCoordinates) <- c("Lon", "Lat") 

proj4string(pointCoordinates) <- CRS("+init=epsg:4326") 

 

CRS.new <- CRS("+init=epsg:32635") 

Projected_pointCoordinates <- spTransform(pointCoordinates, CRS.new) 

 

Projected_pointCoordinates_ForDate <- Projected_pointCoordinates[, c("AGBt_field")] 
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theCloudImage  = paste0(datawd, list.files(datawd, pattern = "_ST_CDIST")) 

CloudStack <- stack(theCloudImage) 

CloudDistanceDF <- extract(CloudStack, Projected_pointCoordinates) 

 

colnames(CloudDistanceDF)[1] <- "CloudDistance" 

CloudDistanceDF = CloudDistanceDF[ , "CloudDistance"] 

 

Projected_pointCoordinates$CloudDistance = CloudDistanceDF 

Projected_pointCoordinates_WithoutClouds <- 

Projected_pointCoordinates[Projected_pointCoordinates$CloudDistance > 0, ] 

 

rasValue=extract(rasStack, Projected_pointCoordinates_WithoutClouds) 

 

Field_points_Biomass <- as.data.frame(Projected_pointCoordinates_WithoutClouds[,c("AGBt_field")]) 

Regression_Data <- as.data.frame(cbind(Field_points_Biomass[,c("AGBt_field")],rasValue)) 

 

colnames(Regression_Data)[1] <- "y" 

colnames(Regression_Data)[2] <- "x1" 

colnames(Regression_Data)[3] <- "x2" 

colnames(Regression_Data)[4] <- "x3" 

colnames(Regression_Data)[5] <- "x4" 

colnames(Regression_Data)[6] <- "x5" 

colnames(Regression_Data)[7] <- "x6" 

colnames(Regression_Data)[8] <- "x7" 

colnames(Regression_Data)[9] <- "x10" 

 

Regression_Data$NDVI = (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + 

Regression_Data$x4) 

Regression_Data$IRVI = Regression_Data$x4 / Regression_Data$x5 

Regression_Data$RVI = Regression_Data$x5 / Regression_Data$x4 

Regression_Data$GNDVI = (Regression_Data$x5 - Regression_Data$x3) / (Regression_Data$x5 + 

Regression_Data$x3) 

Regression_Data$SAVI = 1.5 * (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + 

Regression_Data$x4 + 0.5) 

Regression_Data$TVI = 100 * ((Regression_Data$NDVI + 0.5) ^ 0.5) 

Regression_Data$EVI = 2.5 * (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + (6 * 

Regression_Data$x4) - (7.5 * Regression_Data$x2) + 1) 

 

round(cor(Regression_Data), digits = 2) 
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plot(Regression_Data$y, Regression_Data$NDVI) 

fit <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x10 + NDVI, data=Regression_Data) 

summary(fit) 

 

Appendix VI. Correlation and regression analysis in R for GEDI 

and Landsat 8 data 

library(raster) 

library(rgdal) 

library(sp) 

library(math) 

 

wd <- ("/Users/elenapalenova/Desktop/GIS/Fusion") 

datawd <- 

("/Users/elenapalenova/Desktop/GIS/Indices/Landsat_New_Data_GEDI_points/LC08_L2SP_181033_20190401

_20200829_02_T1/") 

setwd(datawd) 

 

theDateString = scan(text=basename(datawd), sep="_", what="", quiet=TRUE)[4] 

theDate = as.Date(paste0(substr(theDateString, 7, 8), "/", substr(theDateString, 5, 6), "/", substr(theDateString, 1, 

4)), format = "%d/%m/%Y") 

 

file_list = list.files(datawd, pattern = "B\\d+.TIF") 

 

band_list <- list() 

for (val in file_list){ 

band = file_list <- paste0(datawd, val) 

band_list <- append(band_list, list(band)) 

} 

rasStack = stack(band_list) 

 

my_data <- readOGR("/Users/elenapalenova/Desktop/GIS/Fusion/Data/Final_Points/Final_GEDI_Points.shp", 

layer="Final_GEDI_Points") 

 

Biomass_DF <- as.data.frame(my_data[,c("Date", "PAI", "Slope", "Elevation")]) 

 

Biomass_DF$Slope_Rcl[Biomass_DF$Slope == ">7%"] <- 1 
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Biomass_DF$Slope_Rcl[Biomass_DF$Slope == "<7%"] <- 0 

Biomass_DF$Elevation_Rcl[Biomass_DF$Elevation == ">200 m"] <- 1 

Biomass_DF$Elevation_Rcl[Biomass_DF$Elevation == "<200 m"] <- 0 

 

Biomass_DF$CanArea <- 18.665 + 20.687*Biomass_DF$PAI - 2.364*Biomass_DF$Elevation_Rcl - 

5.366*Biomass_DF$Slope_Rcl 

 

Biomass_DF$Ds=36.2457+0.8371*Biomass_DF$CanArea 

 

Biomass_DF$N=(1/900)*exp(3.519229 - 0.013677*Biomass_DF$Ds) 

Biomass_DF$AGBt=Biomass_DF$N * (0.125*Biomass_DF$Ds^2.279) 

 

GEDI_points_data = my_data[,c("Date", "AGBt")] 

 

GEDI_points_data@coords <- GEDI_points_data@coords[, 1:2] 

 

CRS.new <- CRS("+init=epsg:32635") 

 

Projected_pointCoordinates <- spTransform(GEDI_points_data[,c("Date", "AGBt")], CRS.new) 

 

Projected_pointCoordinates_ForDate <- (subset(Projected_pointCoordinates, abs(difftime(as.Date(theDate, 

format = "%d/%m/%Y"), as.Date(Projected_pointCoordinates$Date, format = "%d/%m/%Y"), units = "days")) 

<= 20, select = c("Date", "AGBt"))) 

 

theCloudImage  = paste0(datawd, list.files(datawd, pattern = "_ST_CDIST")) 

CloudStack <- stack(theCloudImage) 

CloudDistanceDF <- extract(CloudStack, Projected_pointCoordinates_ForDate) 

 

colnames(CloudDistanceDF)[1] <- "CloudDistance" 

CloudDistanceDF = CloudDistanceDF[ , "CloudDistance"] 

themis = as.data.frame(CloudDistanceDF) 

 

Projected_pointCoordinates_ForDate$CloudDistance = CloudDistanceDF 

Projected_pointCoordinates_WithoutClouds <- 

Projected_pointCoordinates_ForDate[Projected_pointCoordinates_ForDate$CloudDistance > 100, ] 

 

rasValue=extract(rasStack, Projected_pointCoordinates_WithoutClouds) 

 

GEDI_points_Biomass <- as.data.frame(Projected_pointCoordinates_WithoutClouds[,c("Date", "AGBt")]) 

Regression_Data <- as.data.frame(cbind(GEDI_points_Biomass[,c("AGBt")],rasValue)) 
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colnames(Regression_Data)[1] <- "y" 

colnames(Regression_Data)[2] <- "x1" 

colnames(Regression_Data)[3] <- "x2" 

colnames(Regression_Data)[4] <- "x3" 

colnames(Regression_Data)[5] <- "x4" 

colnames(Regression_Data)[6] <- "x5" 

colnames(Regression_Data)[7] <- "x6" 

colnames(Regression_Data)[8] <- "x7" 

colnames(Regression_Data)[9] <- "x10" 

 

Regression_Data$NDVI = (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + 

Regression_Data$x4) 

Regression_Data$IRVI = Regression_Data$x4 / Regression_Data$x5 

Regression_Data$RVI = Regression_Data$x5 / Regression_Data$x4 

Regression_Data$GNDVI = (Regression_Data$x5 - Regression_Data$x3) / (Regression_Data$x5 + 

Regression_Data$x3) 

Regression_Data$SAVI = 1.5 * (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + 

Regression_Data$x4 + 0.5) 

Regression_Data$TVI = 100 * ((Regression_Data$NDVI + 0.5) ^ 0.5) 

Regression_Data$EVI = 2.5 * (Regression_Data$x5 - Regression_Data$x4) / (Regression_Data$x5 + (6 * 

Regression_Data$x4) - (7.5 * Regression_Data$x2) + 1) 

 

round(cor(Regression_Data), digits = 2) 

 

plot(Regression_Data$y, Regression_Data$EVI) 

fit <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x10 + NDVI + IRVI + RVI + GNDVI + SAVI + TVI + EVI, 

data=Regression_Data) 

summary(fit) 
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