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It is difficult and often impossible to judge the value of a problem correctly in advance; for
the final award depends upon the gain which science obtains from the problem. Nevertheless
we can ask whether there are general criteria which mark a good mathematical problem. An
old French mathematician said: "A mathematical theory is not to be considered complete
until you have made it so clear that you can explain it to the first man whom you meet on the
street." This clearness and ease of comprehension, here insisted on for a mathematical theory,
I should still more demand for a mathematical problem if it is to be perfect; for what is clear
and easily comprehended attracts, the complicated repels us.

David Hilbert, Mathematical Problems,
International Congress of Mathematicians,

Paris, 1900.
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Abstract

A classical result of Erdős and Gallai determines the maximum number of edges in a simple
n vertex graph without a path of given length as a subgraph, i.e. they determined Turán
number of paths. They also determined Turán number of a class of long cycles. In this
dissertation, we extend those results for Hypergraphs. We follow one of the most general
definitions of paths and cycles in hypergraphs. A Berge-path of length k in a hypergraph H is
a sequence v1,e1,v2,e2, . . . ,vk,ek,vk+1 of distinct vertices and hyperedges with vi+1 ∈ ei,ei+1

for all i ∈ [k]. Berge-cycles are defined similarly. We study several generalizations of Erdős-
Gallai theorem for hypergraphs forbidding Berge families of paths and cycles and some
related problems.
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Notations, symbols

Functions

χ(G) Chromatic number of G.

ex(n,H) The maximum number of edges in an n-vertex H-free graph.

ex(n,H,F) max{N (G,F) : G ⊆ Kn, H ̸⊆ G}

exc(n,T ) Extremal function for vertex colored graphs.

exconn(n,H) The maximum number of edges in an n-vertex H-free connected graph.

N (G,F) The number of sub-graphs of G isomorphic to F

∂k(H) k-shadow of a hypergraph H, i.e. all k-sets contained in a hyperedge of H.

E(G) The edge set of graph / hypergraph G.

e(G) The number of edges of graph / hypergraph G.

fs(n,k,a)
(k−a

s

)
+(n− k+a)

( a
s−1

)
.

G1 +G2 A graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{(v,u) : v ∈
V (G1),u ∈V (G2)}.

G1 ∪G2 Disjoint union of graphs, i.e. it is a graph with vertex set V (G1)∪V (G2) and edge
set E(G1)∪E(G2).

N(G,F) The number of sub-graphs of G isomorphic to F .

tr(n) The number of edges of Turán graph Tr(n) i.e. tr(n) = e(Tr(n))

V (G) The vertex set of graph / hypergraph G.

v(G) The number of vertices of graph / hypergraph G.
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xvi Notations, symbols

General

[n] {1,2,3, · · · ,n}.

1A(·) Indicator function, 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

Graphs

C The family of all cycles, {C3,C4, . . .}.

C≥k The family of cycles of length at least k, {Ck,Ck+1, . . .}.

Codd The set of all cycles of odd length, i.e. {C3,C5, . . .}.

S(r)
n The n-vertex r-uniform hypergraph with n− r+1 hyperedges all intersecting in the

same r−1 set.

Cn A cycle with n vertices.

Gn,k,s
(
Kk−2s ∪Kn−k+1

)
+Ks.

Kn The complete graph with n vertices.

Kn,m Complete bipartite graph, with partite sets of size n and m.

Kr
n The complete r-uniform hypergraph on n vertices.

Pn A path of length n, i.e. n+1-vertex path.

Tr(n) Complete r-partite Turán graph with n-vertices.
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Chapter 1

Introduction

Extremal graph theory, in its strictest
sense, is a branch of graph theory de-
veloped and loved by Hungarians

Extremal Graph Theory [14],
Béla Bollobás

Extremal combinatorics is a branch of discrete mathematics that studies the maximum
or the minimum size of discrete structures under given constraints. For example, a classical
question studied by Mantel 1907 asks, ‘What is the maximum number of edges that a triangle-
free graph can have?’, see Theorem 1.1.4. Thus, extremal combinatorics can be thought
of as solving certain optimization problems, and as such has many real-world applications.
Extremal combinatorics, as one might guess, is about extreme behaviors therefore it fascinates
a wide range of audiences. In particular, since we are all naturally fascinated by everyday
objects that are extreme for various properties like speed, color, size, or time in much the
same way extremal objects in mathematics are inherently fascinating. In addition to the
natural beauty, extremal combinatorics is a useful tool for other fields of mathematics, even
more, extremal combinatorial problems encourage elegant mathematics that uses a variety of
techniques from different fields of mathematics.

In some sense, the first extremal result in graph theory was by Euler [40] in 1758, when he
showed that the maximum number of edges in a planar graph is at most 3n−6. After a couple
of centuries in 1907 Mantel determined the maximum number of edges in a triangle-free
graph. While working on a problem of number theory, Erdős maximized the number of
edges in an n-vertex graph without 4-cycles in 1938 [29]. Surprisingly, after obtaining this
result Erdős did not discover extremal graph theory as a research subject as he said. Extremal
combinatorics as a research subject was not discovered until 1941 when Turán determined
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2 Introduction

the maximum number of edges in an n-vertex graph without a complete graph of a given size,
Theorem 1.1.5. This result is counted as the birth of extremal combinatorics, naturally, we
refer to the extremal number of a graph as the Turán number of that graph. Soon after Turán’s
Theorem 1.1.5, Erdős and Stone in 1946, later Erdős and Simonovits in 1966 determined the
asymptotic behavior of Turán function for all non-bipartite graphs. On one hand, it seems
they have settled the majority of the problems but in the case of a bipartite graphs Turán
function is hard to determine and in some cases, we do not even know the order of magnitude.

This phenomenon having multiple results without discovering the subject repeats with
so-called Generalized Turán numbers also. If the Turán number of a graph counts the
maximum number of edges under some constraints, the generalized Turán number counts
the maximum number of given substructures under the same constraints. In particular, in
1949 Zykov [117] determined the maximum number of cliques of a given size in an n vertex
graph without cliques of larger size, since this result was about linear complexes. The same
result was done later by Erdős [24], independently. While Erdős was measuring how far
are the triangle-free graphs from bipartite graphs he naturally asked a question ‘What is the
maximum number of pentagons in a triangle-free graph’ [26]. This question was settled
half a century later by two groups of mathematicians using flag algebras. In 1991, Győri,
Pach, Simonovits [76], defined the generalized Turán number and obtained some results. In
particular, they maximized copies of a bipartite graph with 1-factor in triangle-free graphs.
While investigating pentagon-free 3-uniform hypergraphs Bollobás-Győri [15] initiated the
study of the converse of the problem of Erdős. They asked the following question ‘What
is the maximum number of triangles in pentagon-free graphs’. Surprisingly this question
is still open but we show a simple proof of an upper-bound in Chapter 3. After a decade
Alon, Shikhelman [3] defined the function ex(n,H,F), and obtained some general results
after which the generalized Turán number gained a wide range of interest.

Extremal questions for hypergraphs are even harder. Lately, numerous mathematicians
are investigating the Turán number for hypergraphs. In here there are lots of questions and
lots of open problems the majority of which are hard. The underlying theme of this work is
investigating variants of the Turán extremal problem for Berge-hypergraphs. In this work,
we determine extremal numbers of various kinds of paths and cycles in hypergraphs in the
spirit of the Erdős-Gallai theorem. In some sections, we prove some results for graphs which
are useful tools for getting results for hypergraphs.C
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1.1 The Turán number 3

1.1 The Turán number

Extremal Graph theory is a branch of discrete mathematics that studies relations between
graph invariants. In particular, how global parameters, such as the number of edges, can
influence local substructures. One of the most studied problems of this field is to determine
the Turán number of a graph.

Definition 1.1.1. The Turán number of a graph H, ex(n,H), is the maximum number of
edges in a simple graph on n vertices which does not have H as a sub-graph. In particular,

ex(n,H) = max
{

e(G) : G ⊆ Kn and H ⊈ G
}
.

For a given graph H, all n-vertex H-free graphs with ex(n,H) edges are extremal graphs.
Let us denote a path of length n by Pn, and cycle of length n by Cn. Note that number of
vertices of Pn is n+1.

Example 1.1.2. It is easy to note that

ex(n,P2) =
⌊n

2

⌋
.

even more, for a fixed n the only extremal graph is a perfect matching if n is even and almost
perfect matching otherwise.

This function naturally generalizes to a setting where rather than forbidding just a graph
H but a class of graphs H. In particular,

ex(n,H) = max
{

e(G) : G ⊆ Kn and H ⊈ G for all H ∈H
}
.

Let us denote class of all cycles by C, i.e. C = {C3,C4, . . .}. We give you another example
from classical graph theory.

Example 1.1.3. We know the maximum number of edges in an n-vertex graph without a
cycle is n−1. Therefore we have another Turán-type result

ex(n,C) = n−1.

In this case, extremal graphs are all n-vertex trees.

The basic theorem from extremal graph theory is Mantel’s theorem from 1907.1

1For the reader, not familiar with extremal graph theory we recommend to check different proofs of Mantel’s
theorem, see [21].
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4 Introduction

Theorem 1.1.4 (Mantel [100]). If a graph G is triangle-free, then it contains at most
⌊

n2

4

⌋
edges. Equality holds if and only if G is a complete balanced bipartite graph K⌊ n

2⌋,⌈ n
2⌉.

Mantel’s theorem in extremal graph theory language is ex(n,K3) =
⌊

n2

4

⌋
. The only

extremal graph for fixed integer n, is a balanced bipartite graph K⌊ n
2⌋,⌈ n

2⌉. Later Mantel’s
theorem was generalized for all complete graphs by Turán in 1941. This result is counted as
the birth of extremal combinatorics.

Theorem 1.1.5 (Turán [114]). For fixed integers n and r, let Turán graph T (n,r) be a
balanced, n-vertex r-partite graph. Let us denote the number of edges in T (n,r) by t(n,r).
Then we have

ex(n,Kr+1) = t(n,r)≤
(

1− 1
r

)(
n
2

)
.

The only extremal graph is T (n,r).

Since then researchers studied the Turán number of various graphs. Note that there are
different stages while searching for ex(n, ·). In particular, for a fixed graph it may be difficult
to find the exact Turán number, hence there are different relaxations of the problem. At first,
we try to find the order of magnitude of ex(n, ·) as a function of n, then asymptotic, only
after the exact value. Which is followed by characterizing all extremal graphs. Even more,
the research may be continued afterward by asking saturation and stability-type questions,
see Section 1.9. Note that there is a spectrum of other steps in between those steps. Like
sometimes it is hard to get the exact result for every n but it is possible to get the exact
result for infinitely many n. This spectrum of different problems, excited mathematicians of
different tastes which made this subject widely popular.

Soon after Turán’s Theorem 1.1.5, Erdős and Stone in 1946 proved a theorem, this was
later strengthened by Erdős and Simonovits in 1966, Theorem 1.1.6. This theorem at first
glance suggests that the majority of Turán problems are settled asymptotically.

Theorem 1.1.6 (Erdős, Stone, Simonovits [28, 33]).

ex(n,H) =

(
1− 1

χ(H)−1
+o(1)

)(
n
2

)
.

Note that if H is not bipartite i.e. χ(H) > 2 the this theorem determines asymptotic
of ex(n,H). This was a motivation for Zarankiewicz to generalize Turán’s problem in
1951 [116]. Before we state Zarankiewicz problem let us make a cosmetic change in the
definition of the function ex(·, ·). As we have seen ex(n,H) denotes the maximum number
of edges in an n-vertex graph not containing H as a sub-graph. Therefore we are searching
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1.2 The Turán number of degenerate (bipartite) graphs 5

between all sub-graphs of Kn one with the maximum number of edges and no H. Naturally,
one may generalize Turán function.

ex(F,H) = max
{

e(G) : G ⊆ F and H ⊈ G
}
.

or even more, let Fn be a family of n-vertex graphs. Then we may ask the following variant
of the Turán number

ex(Fn,H) = max
{

e(G) : G ∈ Fn and H ⊈ G
}
.

For the reader, we specify F can be all n-vertex planar graphs, or all n-vertex connected
graphs,2 or all n-vertex bipartite graphs. In this settings ex(n,H) is the same as ex(Kn,H).
Zarankiewicz proposed to study ex(Kn,n, ·) in 1951 [116].

1.2 The Turán number of degenerate (bipartite) graphs

As we have seen Erdős-Stone-Simonovits Theorem 1.1.6 settling Turán problem for all
but non-bipartite graphs. Naturally, mathematicians started investigating Turán functen for
bipartite graphs. Füredi and Simonovits [52] devote a one-hundred-page survey to this topic,
therefore we refer to this survey all the readers who are deeply interested in this topic. In this
section, we try to present some central theorems from this area. Some of those results will be
applied later.

Let Codd be the set of all cycles of odd length.

Theorem 1.2.1 (Kővári, Sós, Turán [92]).

ex(n,C4 ∪{Codd}) =
1

2
√

2
n

3
2 +o(n

3
2 ).

Theorem 1.2.2 (Kővári, Sós, Turán [92]). For all positive integers a,b, a ≤ b, we have

ex(n,Ka,b)≤
1
2

a
√

b−1n2− 1
a +

a−1
2

n.

The proof of Theorem 1.2.2 is an intuitive double counting idea. On one hand they count
the number of a-stars,3 which is ∑v∈V (G)

(d(v)
a

)
. If G is Ka,b-free then the number of a-stars

is at most (b−1)
(V (G)

a

)
. Finally they apply Jansen’s Inequality [85] to get the desired result.

2A graph is connected if there is a path between any two vertices of it.
3K1,a.
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6 Introduction

Conjecture 1.2.3 (Kővári, Sós, Turán [92]). The order of the upper bound in Theorem 1.2.2
is sharp.

This conjecture holds for some special cases. For example we have

Theorem 1.2.4 (Erdős, Rényi, Sós [27], Brown [19]).

ex(n,C4) =
1
2

n3/2 +O(n
3
2 − c).

The upper bound of this theorem comes from cherry4 counting argument as before. A
corresponding lower bound comes from finite geometry constructions.

Example 1.2.5 ([19, 27], see also [16, 52]). Let q be a prime power. The vertices of our
graph G are the equivalence classes of the non-zero triples (a,b,c) ∈ GF(q)3, Where GF(q)
is a finite field. Two triples (a,b,c) and (x,y,z) are considered in the same equivalence class
if (a,b,c) = (λx,λy,λ z) for some non-zero element λ ∈ GF(q). We have v(G) = q3−1

q−1 =

q2 +q+1. The edge set of graph G is

E(G) = {((a,b,c) ,(x,y,z)) : ax+by+ cz = 0 and (a,b,c) ̸= (x,y,z)}

One can easily see that the graph G from Example 1.2.5 is C4-free.

Theorem 1.2.6 (Füredi [44]). Let n = q2 + q + 1 where q is an integer such that q ̸=
1,7,9,11,13, then

ex(n,C4)≤
1
2

q(q+1)2.

Moreover, if q is a power of a prime, then

ex(n,C4) =
1
2

q(q+1)2.

Here we would like to highlight our favorite conjecture of Erdős.

Conjecture 1.2.7 (Erdős).

ex(n,{C3,C4}) =
1

2
√

2
n

3
2 +o(n

3
2 ).

On the other hand, there is a counter-conjecture from Allen, Keevash, Sudakov, and
Verstraëte.

4Cherry is a bipartite graph K1,2
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1.3 Erdős-Gallai Theorem, paths and cycles 7

Conjecture 1.2.8 (Allen, Keevash, Sudakov, Verstraëte [1]).

limsup
n→∞

ex(n,{C3,C4})
ex(n,Codd ∪{C4})

> 1.

Erdős, Simonovits determined extremal number of {C4,C5}.

Theorem 1.2.9 (Erdős, Simonovits [34]).

ex(n,{C5,C4}) =
1

2
√

2
n

3
2 +o(n

3
2 ).

Allen, Keevash, Sudakov, Verstraëte [1] generalized Erdős, Simonovits theorem.

Theorem 1.2.10 (Allen, Keevash, Sudakov, Verstraëte [1]). Let ℓ and t be integers, such that
ℓ≥ 2. Then we have

limsup
n→∞

ex(n,{K2,t ,C2ℓ+1})
ex(n,{K2,t ,Codd}))

.

Here comes another mysterious open problems for cycles. A well-known result of Bondy-
Simonovits [17] asserts that for all ℓ≥ 2 we have ex(n,C2ℓ) = O(n1+1/ℓ), however the order
of magnitude is only known to be sharp in the cases ℓ= 2,3,5.

In the following section, we concentrate on paths and long cycles.

1.3 Erdős-Gallai Theorem, paths and cycles

As we have seen Erdős-Stone-Simonovits Theorem 1.1.6 settling Turán problem for all but
non-bipartite graphs. Erdős-Gallai determined the Turán number of paths and a class of long
cycles in 1959.

Theorem 1.3.1 (Erdős, Gallai [31]). For two integers n and ℓ,

ex(n,Pℓ)≤
(ℓ−1)n

2
.

The equality holds if and only if ℓ|n and extremal graph is the disjoint union of n
ℓ cliques of

size ℓ, see Figure 1.1.

Strictly speaking, this theorem was a corollary of the following more general theorem.
Let us denote a family of cycles of length at least ℓ by C≥ℓ.

Theorem 1.3.2 (Erdős, Gallai [31]). For two integers n and ℓ,

ex(n,C≥ℓ)≤
(ℓ−1)(n−1)

2
.
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8 Introduction

Kℓ Kℓ

· · ·

Kℓ

Fig. 1.1 The extremal graph of Theorem 1.3.1, ex(n,Pℓ).

The equality holds if and only if ℓ−2|n−1 and G is the union of n−1
ℓ−2 disjoint cliques of size

ℓ−1 sharing a vertex in a tree-like structure 5, see Figure 1.2.

Let G be an n vertex Pℓ-free graph. We construct an auxiliary graph G′ from G, by adding
a vertex v to G which is joined to all vertices of G. In particular, we have V (G′) =V (V )∪{v}
and E(G′) =E(G)∪{(v,u) : u∈V (G)}. Note that since G is Pℓ-free, G′ is C≥ℓ+2-free. Hence
from Theorem 1.3.2 we have the desired inequality

e(G) = e(G′)−n ≤ (ℓ+2−1)(n+1−1)
2

−n =
(ℓ−1)n

2
.

Since we find the following trick is a useful tool we would like to show the proof of
Theorem 1.3.1 using Theorem 1.3.2 as in [31].

Let G be an n vertex Pℓ-free graph. We construct an auxiliary graph G′ from G, by adding
a vertex v to G which is joined to all vertices of G. In particular, we have V (G′) =V (V )∪{v}
and E(G′) =E(G)∪{(v,u) : u∈V (G)}. Note that since G is Pℓ-free, G′ is C≥ℓ+2-free. Hence
from Theorem 1.3.2 we have the desired inequality

e(G) = e(G′)−n ≤ (ℓ+2−1)(n+1−1)
2

−n =
(ℓ−1)n

2
.

After finding the Turán number of Pℓ, one may attempt to determine the Turán number
of ℓ+ 1-vertex trees. Surprisingly this problem remains still open despite of the interest
around it.

5Every vertex-maximal two-connected component of G is isomorphic to Kℓ−1. A graph is two-connected if
there are two internally disjoint paths between any two vertices.
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1.3 Erdős-Gallai Theorem, paths and cycles 9

Fig. 1.2 The extremal graph of Theorem 1.3.2, ex(n,C≥ℓ).

Conjecture 1.3.3 (Erdős, Sós [30]). Let Tℓ+1 be an arbitrary ℓ+1 vertex tree, then

ex(n,Tℓ+1)≤
(ℓ−1)n

2
.

A corresponding lower-bound comes from the same construction as in Theorem 1.3.1,
see Figure 1.1. It is believed that this conjecture is true since there are some specific cases
done. For the reader, interested in this subject we refer to the sixth chapter of the Survey [52].

Mordechai Lewin extended Erdős-Gallai Theorem 1.3.2 for directed cycles and obtained
sharp results for all n.

Woodall extended Theorem 1.3.2, they obtained sharp results for every n.

Theorem 1.3.4 (Woodall [115]). Let 0 ≤ t and 0 ≤ r < ℓ−2

ex(t(ℓ−2)+ r+1,C≥ℓ) = t
(

l −1
2

)
+

(
r+1

2

)
A corresponding lower-bound comes from a graph containing t copies of Kℓ−1 and a

Kr+1 sharing a vertex. Similarly, as before one may get a corollary for the paths, this was
already obtained by Faudree and Schelp including the classification of extremal graphs.

Theorem 1.3.5 (Faudree, Schelp [41]). Let 0 ≤ t and 0 ≤ r < ℓ

ex(tℓ+ r,Pℓ) = t
(
ℓ

2

)
+

(
r
2

)
.

C
E

U
eT

D
C

ol
le

ct
io

n



10 Introduction

Extremal graphs are G1 and G2, j. Where

G1 :=

(
t⋃

i=1

Kℓ

)⋃
Kr.

When ℓ is odd, t > 0 and r = n±1
2 then

G2, j :=
j⋃

i=1

Kℓ

⋃(
K ℓ−1

2
+K ℓ+1

2 +(t− j−1)ℓ+r

)
for every j, 0 ≤ j ≤ k−1.

Jackson [84], Gyárfás [65] obtained extremal numbers of paths in bipartite graphs.
Another extension of Theorem 1.3.2 was suggested by Woodall [115]. They considered
2-connected graphs without long cycles and obtained partial results. Later in 1977,Kopylov
settled the proposed conjecture in [86]. They determined extremal number for 2-connected
n-vertex graphs without a cycle of length at least ℓ. This result with the already mentioned
trick was implying result for paths too. Which was later also proved by Balister, Győri, Lehel,
Schelp in [9], including Extremal graphs.

Let us denote the maximum number of edges in an n-vertex H-free connected graph by
exconn(n,H).

Definition 1.3.6. For n ≥ k ≥ 2s let

Gn,k,s :=
(
Kk−2s ∪Kn−k+1

)
+Ks.

See figure 1.3.

Theorem 1.3.7 (Kopylov [86], Balister, Győri, Lehel, Schelp [9] ). Let n > ℓ≥ 3

exconn(n,Pℓ) = max
{

e(Gn,ℓ,1),e(Gn,ℓ,⌊ ℓ−1
2 ⌋)

}
.

Extremal graphs are Gn,ℓ,1 or Gn,ℓ,⌊ ℓ−1
2 ⌋, see Definition 1.3.6.

Another variant of Erdős-Gallai problem is to determine the Turán number of paths for
Erdős-Rényi random graphs. In particular, the random variable ex(Gn,p,H), where Gn,p is
the Erdős–Rényi random graph, was introduced by Babai, Simonovits, Spencer [8], and by
Frankl, Rödl [43]. For recent developments in this direction see [93, 12].
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1.4 Erdős-Gallai Theorem, for vertex colored graphs 11

Kk−2s Ks Kn−k+s

Fig. 1.3 The graph Gn,k,s, Definition 1.3.6.

1.4 Erdős-Gallai Theorem, for vertex colored graphs

In a relatively recent paper, Győri, Lemons [71] investigated the extremal number of hyper-
graphs avoiding Berge-cycles. To this end, they introduced a generalization of the theorem
of Erdős-Gallai about paths. By a proper vertex coloring of a graph G, we mean a coloring
of the vertices of G such that no two adjacent vertices are the same color. Győri, Lemons
proved the following lemma.

Lemma 1.4.1 (Győri-Lemons [71]). Let k be a positive integer and G be an n-vertex graph
with a proper vertex coloring such that G contains no P2k+1 with endpoints of different colors,
then

|E(G)| ≤ 2kn.

We show that the factor of 2 in Theorem 1.4.1 is not needed and, thus, recover the original
upper bound from the Erdős-Gallai theorem. We also determine which graphs achieve this
upper bound.

Theorem 1.4.2 (Salia, Tompkins, Zamora [106]). Let k ≥ 0 and G be an n-vertex graph with
a proper vertex coloring such that G contains no P2k+1 with endpoints of different colors,
then

|E(G)| ≤ kn,

and equality holds if and only if 2k+1 divides n and G is the union of n
2k+1 disjoint cliques

of size 2k+1.

We believe that an analog of Theorem 1.4.1 should hold in the setting of trees. Recall
that the extremal number ex(n,H) of a graph H is defined to be the largest number of edges
an n-vertex graph may have if it does not contain H as a sub-graph.

We introduce a new variation of the extremal function ex(n,T ) in the case of trees.
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12 Introduction

Definition 1.4.3. Let exc(n,T ) denote the maximum number of edges possible in an n-vertex
graph G with a proper vertex coloring (using any number of colors), such that in every copy
of T in G the leaves of T are all the same color.

As for what we experienced for paths we have two different cases for trees. The first
when the tree T has leaves from different color classes.

Theorem 1.4.4 (Salia, Tompkins, Zamora [106]). Let T be a tree with k edges such that
in the (unique) proper vertex 2-coloring of T all leaves are not in the same color, then
exc(n,T )≤ (k−1)n.

The second when all leaves are from the same color class.

Theorem 1.4.5 (Salia, Tompkins, Zamora [106]). Let T be a tree with k edges such that
in the proper vertex 2-coloring of T all leaves are the same color, then exc(n,T ) =

⌊
n2

4

⌋
,

provided n is sufficiently large.

We believe that a strengthening of Conjecture 1.3.3 should hold for trees whose 2-coloring
yields two leaves of different colors.

Conjecture 1.4.6 (Salia, Tompkins, Zamora [106]). Let T be a tree with k ≥ 1 edges such that
in the proper vertex 2-coloring of T all leaves are not the same color, then exc(n,T )≤ (k−1)n

2 .

One would hope that Conjecture 1.4.6 could be deduced directly from Conjecture 1.3.3,
but unfortunately, this does not seem to be the case. We take the first step towards Conjec-
ture 1.4.6 by proving it in the case of double stars.

Theorem 1.4.7 (Salia, Tompkins, Zamora [106]). For positive integers a and b, let Sa,b

denote the tree on a+ b+ 2 vertices consisting of an edge {u,v} where |N(u)\ v| = a,
|N(v)\u|= b and N(u)∩N(v) =∅ (See Figure 2.2, left). We have exc(n,Sa,b)≤ a+b

2 n.

Proofs of these theorems are in Chapter 2.

1.5 The generalized Turán number

Recall, for a fixed graph F , the classical Turán number ex(n,F) is defined to be the maximum
number of edges possible in an n-vertex graph not containing F as a sub-graph. This function
naturally generalizes to a setting where, rather than edges, we maximize the number of
copies of a given graph H in an n-vertex F-free graph. Following Alon, Shikhelman [3] (see
also [4]), we denote this more general function by ex(n,H,F). In particular, we have

ex(n,F,H) = max{N (G,F) : G ⊆ Kn, H ̸⊆ G}.
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1.5 The generalized Turán number 13

Where N (G,F) denotes the number of sub-graphs of G (not necessarily induced) isomorphic
to F .

Problems of this type have a long history beginning with a result of Zykov [117] (and later
independently Erdős [24]) who determined the value of ex(n,Kr,Kt) for any pair of cliques.
While Erdős was measuring how far are the triangle-free graphs from bipartite graphs he
naturally asked a question ‘What is the maximum number of pentagons in a triangle-free
graph’ [26]. This question was settled half a century later by Hatami, Hladký, Král, Norine,
Razborov [83] and independently by Grzesik [62], using flag algebras. In 1991, Győri,
Pach, Simonovits [76], defined the generalized Turán number and obtained some results. In
particular, they maximized copies of a bipartite graph with 1-factor in triangle-free graphs.
While investigating pentagon-free 3-uniform hypergraphs Bollobás-Győri [15] initiated the
study of the converse of the problem of Erdős. They asked the following question ‘What
is the maximum number of triangles in a pentagon-free graph’. Surprisingly this question
is still open but we show a simple proof of an upper-bound in Chapter 3. After a decade
Alon, Shikhelman [3] defined the function ex(n,H,F), and obtained some general results
after which the generalized Turán number gained a wide range of interest.

Bollobás, Győri [15] showed that

Theorem 1.5.1 (Bollobás, Győri [15]).

(n)
3
2

3
√

3
(1+o(1))≤ ex(n,C3,C5)≤ n3/2(

5
4
+o(1)).

The lower-bound of Theorem 1.5.1 comes from the following construction.

Example 1.5.2. There exists a balanced bipartite C4-free extremal graph G′ with 2n
3 vertices

and 1
3
√

3
n

3
2 edges, from Theorem 1.2.1. Let us denote partite sets of G′ by A= {a1,a2, . . . ,a n

3
}

and B = {b1,b2, . . . ,b n
3
}. Let A′ be a disjoint copy of A, A′ = {a′1,a

′
2, . . . ,a

′
n
3
}.

Let G be a graph on n vertices, such that 3|n. The vertex set of G is A∪A′∪B. The edge
set of G is

E(G) = {(ai,a′i) : i ∈ [
n
3
]}∪E(G′)∪{(a′i,b j) : (ai,b j) ∈ E(G′), i, j ∈ [

n
3
]}.

Theorem 1.5.1 was improved since then but it still stays open [3, 36, 39]. In [39],
Ergemlidze and Methuku prove the best known upper-bound.

Theorem 1.5.3 (Ergemlidze, Győri, Methuku, Salia [36]).

ex(n,C3,C5)≤
1

2
√

2
(1+o(1))n3/2.
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14 Introduction

See proof of this theorem in Section 3.2.
Luo determined the maximum number of cliques in a graph without long paths. Before

we need to introduce a function fs(n,k,a).

fs(n,k,a) =
(

k−a
s

)
+(n− k+a)

(
a

s−1

)
.

Theorem 1.5.4 (Luo [97]). Let n−1 ≥ k ≥ 4. Let G be a connected n-vertex graph with no
Pk, then the number of s-cliques in G is at most

max{ fs(n,k,⌊(k−1)/2⌋), fs(n,k,1)}.

As a corollary, she also showed

Corollary 1.5.5 (Luo). Let n ≥ k ≥ 3. Assume that G is an n-vertex graph with no cycle of
length k or more, then

Ns(G)≤ n−1
k−2

(
k−1

s

)
.

Nowadays the generalized Turán number is in the center of attention of extremal combi-
natorialists, therefore there are many fresh results obtained in this subject [74, 77, 113, 59,
95, 75, 54, 95, 60, 79].

1.6 Berge-hypergraphs

A hypergraph H is a pair V (H) and E(H) where V (H) is a vertex set and E(H) is a hyperedge
set. Similarly, as for graphs v(H) := |V (H)|, e(H) := |E(H)|. Where E(H)⊆ 2V (H). For a
fixed set of positive integers R, a hypergraph H is R-uniform if the cardinality of each edge
belongs to R, i.e. ∀h ∈ H we have |h| ∈ R. If R = {r}, then an R-uniform hypergraph is
simply an r-uniform hypergraph. We say a hypergraph is F -free if it does not contain a copy
of any hypergraph from the family F as a sub-hypergraph.

Let H be a hypergraph. Then its k-shadow, denoted by ∂kH, is a hypergraph on the same
set of vertices and the hyperedge set is the collection of all k-sets that lie in some hyperedge
of H. In particular, E(∂kH) = {e : |e|= k and e ⊆ h ∈H}

A hypergraph H is connected if ∂2(H) is a connected graph.
Incidence bipartite graph G of a hypergraph H is a bipartite graph with partite sets V (H)

and E(H), i.e. V (G) =V (H)∪E(H). Two vertices of G, v and h, v ∈V (H) and h ∈ E(H),
are joined by an edge in G if v ∈ h.
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1.6 Berge-hypergraphs 15

Fig. 1.4 A block tree and S(r)
n .

Let n,k,r be integers such that k ≤ r. Fix s, s ∈ {r,r+ 1}. An r-uniform hypergraph
H is called an (s,k− 1)-block tree if ∂2(H) is connected and every 2-connected block of
∂2(H) consists of s vertices which induce k−1 hyperedges in H. An (s,k−1)-block tree
contains no Berge-cycle of length at least k, because each of its blocks contain fewer than k
hyperedges, see Figure 1.4.

We define the r-star, S(r)
n , as the n-vertex r-uniform hypergraph with vertex set V (S(r)

n ) =

{v1,v2, . . . ,vn} and edge set

E(S(r)
n ) = {{v1,v2, . . . ,vr−1,vi} : r ≤ i ≤ n},

the set {v1,v2, . . . ,vr−1} is called the center of the star. Since S(r)
n has r−1 vertices of degree

larger than 1, S(r)
n contains no Berge-cycle of length at least r.

Definition 1.6.1. For a set S ⊆V , the hyperedge neighborhood of S in an r-uniform hyper-
graph H is the set

NH(S) := {h ∈ E(H)|h∩S ̸= /0}

of hyperedges that are incident with at least one vertex of S.

There are no natural ways to generalize graph paths and cycles for hypergraphs. Hence
there are numerous definitions for them. In this work, we follow the definition of Berge [13].
Berge-paths and Berge-cycles are some of the most general definitions of paths and cycles
in hypergraphs. For example, there are linear-paths/cycles, loose-paths/cycles, and tight-
paths/cycles all of which are specific examples of a Berge-path/cycles. All such paths/cycles
coincide with the classical definition of path/cycle for graphs.

Definition 1.6.2. A hypergraph BCℓ is a Berge-cycle of length ℓ if

• V (BCℓ)⊇ {v1,v2, . . . ,vℓ};

• E(BCℓ) = {e1,e2, . . . ,eℓ};
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16 Introduction

• vi,vi+1 ∈ ei for all i ∈ [ℓ].6

The vertices v1,v2, . . . ,vℓ are called defining vertices and hyperedges e1,e2, . . . ,eℓ defin-
ing hyperedges of the Berge-cycle.

The class of all Berge-cycles of length ℓ is denoted by BCℓ and the class of all Berge-cycles
of length at least ℓ by BC≥ℓ.

Remark 1.6.3. We have defined that a hypergraph H is connected if ∂2(H) is a connected
graph. We can give an equivalent definition to this one.

A hypergraph H is connected if for all pairs of vertices v and u there is a Berge-path
from v to u.

For the completeness of this work we define Berge-paths.

Definition 1.6.4. A hypergraph BPℓ is a Berge-path of length ℓ if

• V (BPℓ)⊇ {v1,v2, . . . ,vℓ+1};

• E(BPℓ) = {e1,e2, . . . ,eℓ};

• vi,vi+1 ∈ ei for all i ∈ [ℓ].

The vertices v1,v2, . . . ,vℓ+1 are called defining vertices and hyperedges e1,e2, . . . ,eℓ
defining hyperedges of the Berge-path.

The class of all Berge-paths of length ℓ is denoted by BPℓ

Note that the number of vertices in BPℓ is at least ℓ+1 but it can be larger. The index of
path classically denotes the number of vertices in a path, but as we have seen it is not a case
for hypergraphs therefore we decided to use the index to denote the length of the path.

Those definitions of Berge-paths and cycles naturally generalize to other graphs.

Definition 1.6.5. A hypergraph BG is a Berge-G, for some fixed graph G if

• There is an injective function f1 : V (G)→V (BG);

• There is a bijective function f2 : E(G)→ E(BG);

• If {v1,v2} ∈ E(G), then { f1(v1), f1(v2)} ⊆ f2({v1,v2})

The vertices from f1(V (G)) are called defining vertices and hyperedges from f2(E(G))

defining hyperedges of the BG.
The class of all Berge-G is denoted by BG.

6indices are taken modulo ℓ
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1.7 The Turán number of Berge-hypergraphs 17

Recently there has been extensive study of various parameters of Berge-hypergraphs.
For example, it is a popular subject to determine Ramsey number for Berge-hypergraphs.
Ramsey theory is among the oldest and most intensely investigated topics in combinatorics.
It began with the seminal result of Ramsey from 1930.

Theorem 1.6.6 (Ramsey [104]). Let r, t and k be positive integers. Then there exists an
integer N such that any coloring of the N-vertex r-uniform complete hypergraph with k colors
contains a monochromatic copy of the t-vertex r-uniform complete hypergraph.

Estimating the smallest value of such an integer N (the so-called Ramsey number) is a
notoriously difficult problem and only weak bounds are known. Given the difficulty of this
problem, many people began investigating variations of this problem where graphs other
than the complete graphs are considered. An example of an early result in this direction
due to Chvátal [20] asserts that the Ramsey number of a t-clique versus any m-vertex tree is
precisely N = 1+(m−1)(t −1). That is any red-blue coloring of the complete graph KN

yields a red Kt or a blue copy of a given m-vertex tree. Ramsey problems for a variety of
hypergraphs and classes of hypergraphs have been considered (for a recent survey of such
problems see [102]). The Ramsey problem for Berge-paths and cycles has received much
attention. Of particular interest is a result of Gyárfás and Sárközy [66] showing that the
3-color Ramsey number of a 3-uniform Berge-cycle of length n is asymptotic to 5n

4 (the
2-color case was settled exactly in [64]). Since this is not a subject of this work we refer the
reader to the following manuscripts [7, 105, 55, 96, 53, 98].

1.7 The Turán number of Berge-hypergraphs

The Turán number naturally generalizes for hypergraphs.

Definition 1.7.1. The Turán number of a family of R-uniform hypergraphs F , denoted
exR(n,F), is the maximum number of hyperedges in an n-vertex, R-uniform, simple-hypergraph
which does not contain an isomorphic copy of H as a sub-hypergraph, for all F ∈ F .

The same question may be asked for multi-hypergraphs, we denote the Turán number for
multi-hypergraphs by exmulti

R (n,F). But this question is not always interesting.

Remark 1.7.2. If every hypergraph in F has at least r+ 1 vertices, then exmulti
r (n,F) is

infinite, since a hypergraph on r vertices and multiple copies of the same hyperedge is F -free.

Gerbner, Palmer [58] obtained general bounds for the Turán number of r-uniform Berge-
hypergraphs using the classical Turán number.
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18 Introduction

Theorem 1.7.3 (Gerbner, Palmer [58]). For all integer r ≥ 2 and a graph H we have

ex(n,F)≤ exr(n,BF)≤ ex(n,Kr,F)+ ex(n,F).

In 2004 Győri extended mantels theorem for 3 and 4 uniform hypergraphs [67].

Theorem 1.7.4 (Győri [67]). Let H be a BC3-free, n-vertex hypergraph. Then

∑
h∈E(H)

(|h|−2)≤ n2

8
.

for all n, n ≥ 100.

Example 1.7.5 (Győri [67]). For an integer n multiple of 4, let H4 be a 4-uniform hypergraph.
The vertex set of H4 is partitioned to four k-sets A, A′, B, and B′. The edge set of H4 is
E(H4) =

{
{ai,a′i,b j,b′j} : 1 ≤ i, j ≤ n

4

}
Clearly H4 is BC3-free and e(H4) =

n2

16 . Hence we have equality in Theorem 1.7.4

∑h∈E(H4) (|h|−2) = 2e(H4) =
n2

8 .

Example 1.7.6 (Győri [67]). For an integer n multiple of 4, let H3 be a 3-uniform hypergraph.
The vertex set of H3 is partitioned to three sets A, A′, and B of sizes n

4 , n
4 , and n

2 accordingly.
The edge set of H3 is E(H3) =

{
{ai,a′i,b j} : 1 ≤ i, j ≤ n

4

}
Clearly H3 is BC3-free and e(H3) =

n2

8 . Hence we have equality in Theorem 1.7.4

∑h∈E(H3) (|h|−2) = 2e(H4) =
n2

8 .

Putting together Theorem 1.7.4 and Examples 1.7.5, 1.7.6 we have a corollary.

Corollary 1.7.7 (Győri [67]). For all n ≥ 100, such that 4|n, we have

ex3(n,BC3) =
n2

8
,

and

ex4(n,BC3) =
n2

16
.

Later Győri, Lemons [71] gave an upper bound for the size of 3-uniform hypergraphs
avoiding BC2k+1. In particular, they show

ex3(n,BC2k+1)≤ 4k4n1+ 1
k +O(n).

They provide constructions showing that these bounds are best possible for k ∈ {1,2,3,5} up
to the constant factor. Győri, Lemons [72] extended their results for r-uniform hypergraphs
and non-uniform hypergraphs as well.

C
E

U
eT

D
C

ol
le

ct
io

n



1.7 The Turán number of Berge-hypergraphs 19

The Turán number of C4 was determined in Theorem 1.2.4.

ex(n,C4) =
n3/2

2
+o(n3/2).

Füredi, Özkahya [51] proved

ex3(n,BC4)≤ (1+o(1))
2
3

n3/2.

Recently we improved this result.

Theorem 1.7.8 (Ergemlidze, Győri, Methuku, Salia, Tompkins [37]).

ex3(n,BC4)≤ (1+o(1))
n3/2
√

10
.

See proof in Section 3.3. On the other hand, we have a lower-bound.

Theorem 1.7.9 (Bollobás, Győri [15], see also [70]).

(1−o(1))
n3/2

3
√

3
≤ ex3(n,BC4).

This lower bound comes from the following example.

Example 1.7.10 ( Bollobás, Győri [15]). There exists a balanced bipartite C4-free extremal
graph G with 2n

3 vertices and 1
3
√

3
n

3
2 edges, 1.2.1. Let us denote partite sets of G by A =

{a1,a2, . . . ,a n
3
} and B= {b1,b2, . . . ,b n

3
}. Let A′ be a disjoint copy of A, A′ = {a′1,a

′
2, . . . ,a

′
n
3
}.

Let H be a 3-uniform hyper-graph on n vertices, such that 3|n. The vertex set of H is
E(H) = A∪A′∪B. The edge set of H is

E(H) = {(ai,a′i,b j) : (ai,b j) ∈ E(G), i, j ∈ [
n
3
]}.

Interestingly the example of Bollobás, Győri initially was for pentagon-free hypergraphs
but it happened to be C4-free too. Which is an interesting phenomenon. We know even
and odd cycles behave extremely differently in the case of graphs. Here I would suggest an
exciting conjecture from Győri.

Conjecture 1.7.11 (Győri [68]). For all integer k ≥ 2, we have

lim
n→∞

ex3(n,BC2k)

ex3(n,BC2k+1)
= 1.
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This version of the conjecture is a modest version of the one we believe.
The Turán problem for Berge-cliques has been investigated heavily by several authors

in [67, 99, 63]. For further results see [6, 103, 61] also.

1.8 Extensions of Erdős-Gallai Theorem

In the last decade, there has been extensive study of hypergraphs without long Berge-paths
and cycles. But in contrast to graphs, the pattern shows that there are two distinct cases for
hypergraphs. The first when the forbidden structure has more vertices than uniformity and
the second when uniformity is ’larger’ than the number of defining vertices in a forbidden
structure. But in some cases, there are different constructions and situations when the number
of defining vertices of a forbidden structure is close to uniformity.

1.8.1 Hypergraphs without long Berge-paths

We open this section with a theorem of Győri, Katona, Lemons[69].

Theorem 1.8.1 (Győri, Katona, Lemons [69]). Let r ≥ k ≥ 3, then

ex(n,BPk)≤
(k−1)n

r+1
.

Theorem 1.8.2 (Győri, Katona, Lemons [69]). Let k > r+1 > 3, then

ex(n,BPk)
n
k

(
k
r

)
.

In the remaining case when k = r+ 1 was solved later by Davoodi, Győri, Methuku,
Tompkins [22], the extremal number matches the upper bound of Theorem 1.8.2.

Theorem 1.8.3 (Davoodi, Győri, Methuku, Tompkins [22]). Let r > 2, then

ex(n,BPr+1)≤
n

r+1

(
k
r

)
.

Similarly, as in the graph case in Theorem 1.3.7, it makes sense to ask the same question
requiring connectivity. We obtained the first partial result in this direction.

Theorem 1.8.4 (Győri, Methuku, Salia, Tompkins, Vizer [75]). Let Hn,k be a largest r-
uniform connected n-vertex hypergraph with no Berge-path of length k, then

lim
k→∞

lim
n→∞

∣∣E(Hn,k)
∣∣

kr−1n
=

1
2r−1(r−1)!

.
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1.8 Extensions of Erdős-Gallai Theorem 21

See proof of this theorem in Chapter 5.
In the recent work of Füredi, Kostochka, Luo [49], they investigate 2-connected hyper-

graphs7 and obtain many interesting results. To present their results, we start by introducing
the following two functions,

f (n,k,r,a) :=
(

k−a
min{r,⌊k−a

2 ⌋}

)
+(n− k+a)

(
a

min{r−1,⌊a/2⌋}

)
,

and

f ∗(n,k,r,a) :=
(

k−a
r

)
+(n− k+a)

(
a

r−1

)
.

Let us introduce another notion, a family of sets F is called a Sperner family, if for all
f ⊂F , there is no f ′ ⊂F such that f ′ ̸⊂ f .

Füredi, Kostochka, Luo [49] obtained a sharp upper bound for 2-connected Sperner
families without a long Berge-cycle.

Theorem 1.8.5 (Füredi, Kostochka, Luo [49]). Let n ≥ k ≥ r ≥ 3. If H is an n-vertex Sperner
2-connected r-uniform hypergraph with no Berge-cycle of length at least k, then

e(H)≤ max{ f (n,k,r,⌊(k−1)/2⌋), f (n,k,r,2)}.

They also obtained a sharp upper-bound for 2-connected r-uniform hypergraphs without
a long Berge-cycle.

Theorem 1.8.6 (Füredi, Kostochka, Luo [49]). Let n ≥ nk,r ≥ k ≥ 4r ≥ 12. If H is an
n-vertex 2-connected r-uniform hypergraph with no Berge-cycle of length k or longer, then

e(H)≤ f (n,k,r,⌊(k−1)/2⌋) = f ∗(n,k,r,⌊(k−1)/2⌋).

The following two results are for 2-connected hypergraphs, the first when the hypergraph
is a Sperner family and the second when the hypergraph is uniform.

Theorem 1.8.7 (Füredi, Kostochka, Luo [49]). Let n ≥ k ≥ r ≥ 3. If H is an n-vertex Sperner
connected ≤ r-uniform hypergraph with no Berge-path of length k, then

e(H)≤ max{ f (n,k,r,⌊(k−1)/2⌋), f (n,k,r,1)}.

7A hypergraph is k-connected if it’s incidence bipartite graph is k-connected.
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22 Introduction

Theorem 1.8.8 (Füredi, Kostochka, Luo [49]). Let n ≥ n′k,r ≥ k ≥ 4r ≥ 12. If H is an
n-vertex connected r-uniform hypergraph with no Berge-path of length k, then

e(H)≤ f (n,k,r,⌊(k−1)/2⌋) = f ∗(n,k,r,⌊(k−1)/2⌋).

Theorem 1.8.8 has the sharp upper bound. We extended Theorem for k ≥ 2r+ 13 as
well as we prove that there is only one hypergraph with the extremal number of hyperedges.
To describe the extremal result and to introduce our contributions, we need the following
definition that can be considered as an analog of Definition 1.3.6 for higher uniformity.

Definition 1.8.9. For integers n,a ≥ 1 and b1, . . . ,bt ≥ 2 with n ≥ 2a+∑
t
i=1 bi let us denote

by Hn,a,b1,b2,...,bt the following r-uniform hypergraph.

• Let the vertex set of Hn,a,b1,b2,...,bt be A∪L∪
⋃t

i=1 Bi, where A,B1,B2, . . . ,Bt and L are
pairwise disjoint sets of sizes |A|= a, |Bi|= bi (i = 1,2, . . . , t) and |L|= n−a−∑

t
i=1 bi.

• Let the hyperedges of Hn,a,b1,b2,...,bt be

(
A
r

)
∪

t⋃
i=1

(
A∪Bi

r

)
∪
{
{c}∪A′ : c ∈ L,A′ ∈

(
A

r−1

)}
.

Fig. 1.5 The hypergraph Hn,a,b1,b2,...,bt .

Observe that the number of hyperedges in Hn,a,b1,b2,...,bt is(
n−a−

t

∑
i=1

bi

)(
a

r−1

)
+

t

∑
i=1

(
a+bi

r

)
− (t −1)

(
a
r

)
.

Note that, if a ≤ a′ and bi ≤ b′i for all i = 1,2, . . . , t, then Hn,a,b1,b2,...,bt is a sub-hypergraph
of Hn,a′,b′1,b

′
2,...,b

′
t
. Finally, the length of the longest path in Hn,a,b1,b2,...,bt is 2a− t +∑

t
i=1 bi if

t ≤ a+1, and a−1+∑
a+1
i=1 bi if t > a+1 and the bi’s are in non-increasing order.
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1.8 Extensions of Erdős-Gallai Theorem 23

If k is odd. If k is even.

Fig. 1.6 The hypergraphs Hn,⌊ k−1
2 ⌋ and Hn,⌊ k−1

2 ⌋,2
.

With a slight abuse of notation, we define H+
n,a to be a hypergraph obtained from Hn,a

by adding an arbitrary hyperedge. Hyperedges containing at least r−1 vertices from A are
already in Hn,a, therefore there are r−1 pairwise different hypergraphs that we denote by
H+

n,a depending on the number of vertices from A in the extra hyperedge. Observe that the
length of the longest path in H+

n,a is one larger than in Hn,a, in particular, if k is even, then
H+

n,⌊ k−1
2 ⌋ does not contain a Berge-path of length k.

Let us denote the maximum number of edges in an n-vertex H-free connected r-uniform
hypergraph by exconn

r (n,H).

Theorem 1.8.10 (Győri, Salia , Zamora [80]). For all integers k,r with k ≥ 2r+ 13 ≥ 18
there exists nk,r such that if n > nk,r, then we have

• exconn
r (n,BPk) = |Hn,⌊ k−1

2 ⌋|, if k is odd, and

• exconn
r (n,BPk) = |Hn,⌊ k−1

2 ⌋,2|, if k is even.

Depending on the parity of k, the unique extremal hypergraph is Hn,⌊ k−1
2 ⌋ or Hn,⌊ k−1

2 ⌋,2, (see
Figure 1.6).

Later we extended this result to a stability result, since the proof is similar we will skip
the proof of this theorem in this work. Instead, we show the idea of it here.

At first let us study the extremal hypergraphs Hn,⌊ k−1
2 ⌋ and Hn,⌊ k−1

2 ⌋,2, Figure 1.6. For

fixed parity of k the extremal hypergraph is unique, let us describe the case when k is odd.8

The hypergraph Hn,⌊ k−1
2 ⌋ has two classes of vertices, one with degree Θ(n) and the others

with constant.9 It is easy to note that two vertices from the sparse family can not be neighbors
in a Berge-path, since there is no hyperedge incident with both. Therefore the longest
Berge-path and cycle of Hn,⌊ k−1

2 ⌋ has length k−1. This special structure was an inspiration

8This case is technically easier than the other.
9As function of n.
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to use the following argument for the desired result. Proof is by contradiction, let H be
a connected r-uniform BPk-free hypergraph with e(H) ≥ e(Hn,⌊ k−1

2 ⌋). At first we found
a sub-hypergraph with a large minimum degree, by a classical argument, removing low
degree vertices. The second important step was to show that the hypergraph we got was still
connected. Then by classical Dirac argument [23], we show that the hypergraph contains
a Berge-cycle of length k− 1 as the unique extremal hypergraph Hn,⌊ k−1

2 ⌋. The rest is to
show that there is a partitioning of vertices in two sets with the desired properties, which is
deduced from the Berge-cycle of length k−1.

This result was followed by a stability result which we show in Section 1.9, and prove in
Chapter 5.

1.8.2 Hypergraphs without long Berge-cycles

Similarly, as for the forbidden path case, the extremal hypergraphs when Berge-cycles of
length at least k are forbidden are different in the cases when k ≥ r+2 and k ≤ r+1 with
an exceptional third case when k = r case. The latter has a surprisingly different extremal
hypergraph. Füredi, Kostochka, Luo [47] provide sharp bounds and extremal constructions
for infinitely many n, for k ≥ r+3 ≥ 6. Later in [48] they also determined the exact bounds
and extremal constructions for all n, for the case k ≥ r+4. Kostochka, Luo [90] determine a
bound for k ≤ r−1 which is sharp for infinitely many n. Ergemlidze, Győri, Methuku, Salia,
Tompkins, Zamora [38] determine a bound in the cases where k ∈ {r+1,r+2}. The case
when k = r remained open. Both papers [90, 38] conjectured the maximum number of edges
to be bounded by max

{
(n−1)(r−1)

r ,n− (r−1)
}

(See Figure 1.4, the hypergraph S(r)
n is on

the right).

Theorem 1.8.11 (Füredi, Kostochka, Luo [48, 47]). Let r ≥ 3 and k ≥ r+3, then

ex(n,BC≥k)≤
n−1
k−2

(
k−1

r

)
.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kk−1 and H[D] = Kr

k−1, (see Figure 1.4).

Theorem 1.8.12 ( Győri, Methuku, Salia, Tompkins, Zamora [38]). If r ≥ 3 then

ex(n,BC≥r+2)≤
(n−1)(r+1)

r
.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] = Kr

r+1, (see Figure 1.4).
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1.8 Extensions of Erdős-Gallai Theorem 25

Theorem 1.8.13 (Kostochka, Luo [90]). Let k ≥ 4,r ≥ k+1 and

ex(n,BC≥k)≤
(k−1)(n−1)

r
.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] consists of k−1 hyperedges, (see Figure 1.4).

Theorem 1.8.14 ( Győri, Methuku, Salia, Tompkins, Zamora [38]). If r ≥ 3 then

ex(n,BC≥r+1)≤ n−1.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] consists of r hyperedges, (see Figure 1.4).

Let us note that our proof method is very different from the proof of Füredi, Kostochka,
Luo [47] [90]. One of our main ideas in proving the above two theorems is an unusual
application of Hall’s theorem to vertices of the hypergraph (instead of applying it to edges in
the shadow of the hypergraph). This allows us to assign a distinct hyperedge to each vertex
which is then very helpful in finding Berge-cycles. The notion of connectivity (i.e., the notion
of “cut hyperedges") in Berge-hypergraphs has also been very important. These ideas may
have further applications (see for e.g. [56]).

Note that Theorem 1.8.14 implies Theorem 1.8.3. In fact, it gives the following stronger
form. We prove this implication in Chapter 4.

Theorem 1.8.15 ( Győri, Methuku, Salia, Tompkins, Zamora [38]). Fix k = r+1 > 2 and let
H be an r-uniform hypergraph containing no Berge-path of length k. Then, e(H)≤ n

k

(k
r

)
= n.

Moreover, equality holds if and only if each connected component D of ∂2(H) is Kr+1, and
H[D] = Kr

r+1.

Theorem 1.8.16 (Győri, Lemons, Salia, Zamora [73]). Let k,n and r be positive integers
such that 3 ≤ k < r. Then

exr(n,BC≥k) =

⌊
n−1

r

⌋
(k−1)+1rN∗(n).

If r|(n−1), then the only extremal n-vertex r-graphs are the (r+1,k−1)-block trees, (see
Figure 1.4).

We note that as a corollary of Theorem 1.8.16, we obtain a slightly stronger version of
Theorem 1.8.1.

C
E

U
eT

D
C

ol
le

ct
io

n



26 Introduction

Corollary 1.8.17 (Győri, Lemons, Salia, Zamora [73]). Let k,n and r be positive integers
with 3 ≤ k ≤ r. Then

exr(n,BPk) =

⌊
n

r+1

⌋
(k−1)+1(r+1)N∗(n+1).

Theorem 1.8.18 (Győri, Lemons, Salia, Zamora [73]). Let r > 2 and n be positive integers.
Then

exr(n,BC≥r) = max
{⌊

n−1
r

⌋
(r−1),n− r+1

}
.

When n− r+1 > n−1
r (r−1) the only extremal graph is S(r)

n . When n−1
r (r−1)> n− r+1

and r|(n−1) the only extremal graphs are the (r+1,k−1)-block trees, (see Figure 1.4).

Remark 1.8.19 (Győri, Lemons, Salia, Zamora [73]). In particular, when n ≥ r(r−2)+2,
we have that exr(n,BC≥r) = n− r+1 and S(r)

n is the only extremal hypergraph.

Theorem 1.8.20 (Győri, Lemons, Salia, Zamora [73]). Let k,n and r be positive integers
such that 2 ≤ k ≤ r. Then

exmulti
r (n,BC≥k) =

⌊
n−1
r−1

⌋
(k−1).

If r−1|(n−1) then the only extremal graphs with n vertices are the (r,k−1)-block trees.

As a corollary of Theorem 1.8.20 we obtain a version of Theorem 1.8.1 with multiple
hyperedges.

Corollary 1.8.21 (Győri, Lemons, Salia, Zamora [73]). Let k,n and r be positive integers
with 2 ≤ k ≤ r then

exmulti
r (n,BPk) =

⌊n
r

⌋
(k−1).

Kostochka and Luo obtain Theorem 1.8.13 from the incidence bipartite graph by investi-
gating the structure of 2-connected bipartite graphs. Similarly, Jackson [84] gives an upper
bound on the number of edges of a multi r-uniform hypergraph with no Berge-cycle of length
at least r.

Theorem 1.8.22 (Jackson [84]). Let G be a bipartite graph with bipartition A and B such
that |A| = n and every vertex in B has degree at least r. If |B| >

⌊n−1
r−1

⌋
(r − 1), then G

contains a cycle of length at least 2r.

We study the structure of r-uniform hypergraphs containing no Berge-cycles of length at
least k, for all 3 ≤ k ≤ r. By exploring the structure of the hypergraphs, instead of bipartite
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1.8 Extensions of Erdős-Gallai Theorem 27

graphs, we can find the extremal number in the case when k = r, which also gives us a simple
proof for Theorem 1.8.13. Furthermore, our method lets us determine the extremal number
for every value of n in both simple r-uniform hypergraphs and multi r-uniform hypergraphs.

At the end of this section, we want to present one of our favorite conjectures.

Super-cyclic bipartite graphs

Kostochka, Lavrov, Luo, Zirlin [89, 91, 88] investigated pan-cyclic and super-pan-cyclic
graphs and hypergraphs. Without getting into the details we would like to state a version of
their conjecture here.

Conjecture 1.8.23 (Kostochka, Lavrov, Luo, Zirlin [88]). Let G be a bipartite graph, with
partite sets A and B. Let for every subset A′ of A, |A′| ≥ 2, the number of vertices incident
with at least two vertices of A′ is at least |A′| in G. Then for every subset A′ of A, |A′| ≥ 2,
there is a cycle CA′ in G such that V (CA′)∩A = A′.

Note that this conjecture has an equivalent variant for non-uniform Hypergraphs.

1.8.3 Hypergraphs without Berge-trees

The Turán number of certain kinds of trees in r-uniform hypergraphs has long been a major
topic of research. For example, there is a notoriously difficult conjecture of Kalai [42] which
is more general than the Erdős-Sós conjecture (see Conjecture 1.3.3). The trees which Kalai
considers are generalizations of the notion of tight paths in hypergraphs. In another direction,
Füredi [45] investigated linear trees, constructed by adding r−2 new vertices to every edge
in a (graph) tree. In this setting, he proved asymptotic results for all uniformities at least
4. Whereas, the articles above considered classes of trees containing tight and linear paths,
respectively, we will consider the setting of Berge-trees.

In the range when k > r, a number of results on forbidding Berge-trees were obtained by
Gerbner, Methuku, Palmer [56]. In particular, they proved that if we assume the Erdős-Sós
Conjecture 1.3.3 holds for a tree T with k edges and all of its sub-trees and also that k > r+1,
we have exr(n,BT )≤ n

k

(k
r

)
(a construction matching this bound when k divides n is given by

n/k disjoint copies of the complete r-uniform hypergraph on k vertices). In the present paper,
we will consider the range r > k, where we prove some exact results.

Considering multi-hypergraphs, we prove the following.
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Theorem 1.8.24 (Győri, Salia, Tompkins, Zamora [78]). Let n,k,r be positive integers and
let T be a k-edge tree, then for all r ≥ (k−1)(k−2),

exmulti
r (n,BT )≤ n(k−1)

r
.

If r > (k−1)(k−2) and T is not a star, equality holds if and only if r divides n and the
extremal multi-hypergraph is n

r disjoint hyperedges, each with multiplicity k−1. If T is a
star equality holds only for all (k−1)-regular multi-hypergraphs.

We conjecture that Theorem 1.8.24 holds for the following wider set of parameters.

Conjecture 1.8.25 (Győri, Salia, Tompkins, Zamora [78]). Let n,k,r be positive integers
and let T be a k-edge tree, then for all r ≥ k+1,

exmulti
r (n,BT )≤ n(k−1)

r
.

For all trees T , where T is not a star, equality holds if and only if r divides n and the extremal
multi-hypergraph is n

r disjoint hyperedges each with multiplicity k−1.

The special case of Conjecture 1.8.25, when the forbidden tree is a path, was settled by
Győri, Lemons, Salia, Zamora [73] (see the first corollary).

We now define a class of hypergraphs which we will need when we classify the extremal
examples in our main result about simple hypergraphs, Theorem 1.8.28.

Definition 1.8.26. An r-uniform hypergraph H is two-sided if V (H) can be partitioned
into a set X and pairwise disjoint sets Ai, i = 1,2, . . . , t (also disjoint from X) of size r−1,
such that every hyperedge is of the form {x}∪Ai for some x ∈ X. We say that a two-sided
r-uniform hypergraph is (a,b)-regular if every vertex of X has degree a and every vertex of

t⋃
i=1

Ai has degree b.

Remark 1.8.27. A two-sided r-uniform hypergraph can also be viewed as a graph obtained
by taking a bipartite graph G with bipartite classes X and Y , and “blowing up" each vertex
of Y to a set of size r−1, and replacing each edge {x,y} by the r-hyperedge containing x
together with the blown-up set for y.

Theorem 1.8.28 (Győri, Salia, Tompkins, Zamora [78]). Let n,k,r be positive integers and
let T be a k-edge tree which is not a star, then for all r ≥ k(k−2),

exr(n,BT )≤ n(k−1)
r+1

.
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r+1 vertices
k−1 hyperedges

r+1 vertices
k−1 hyperedges

r+1 vertices
k−1 hyperedges

|Ai|= r−1, d(Ai) =
k−1

2

d(x) = k−1

Fig. 1.7 An extremal graph, Theorem 1.8.28.

Equality holds if and only if r+ 1 divides n, and the extremal hypergraph is obtained
from n

r+1 disjoint sets of size r+1, each containing k−1 hyperedges. Unless k is odd, and T
is the balanced double star, where the balanced double star is the tree obtain from an edge
by adding k−1

2 incident edges to each of the ends of the edge, in which case equality holds
if and only if r+1 divides n and H is obtained from the disjoint union of sets of size r+1
containing k−1 hyperedges each and possibly a (k−1, k−1

2 )-regular two-sided r-uniform
hypergraph (see Figure 1.7).

1.9 Stability

As we have seen, the Turán number depicts how a global parameter number of edges
influence local substructures. In particular, for a given substructure, we determine the
maximum number of edges. The graphs with the maximum number of edges without a given
substructure are called Extremal graphs. Often such graphs are finite and unique. In other
words, if we have ’many’ edges and no given substructure, our graph must be one from the
given set of Extremal graphs. Naturally, arises another question are these properties stable?
in particular, if we have ’nearly as many’ edges as in an extremal graph and no substructure
are we ’close to’ a graph from the extremal family? One needs to define what do we mean in
’nearly as many’ and ’close to’. Those concepts are always dependent on the settings of the
problem.
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We open this section with a famous stability Theorem of Erdős, Simonovits [25, 108],
which has many useful applications [2, 10, 107, 112].

Theorem 1.9.1 (Erdős, Simonovits [25, 108]). Let G be an n vertex Kr+1 graph with t(n,r)+
o(n2) edges, then by changing o(n2) edges we can get T (n,r) graph from G.

While studying almost extremal graphs without Kr+1, Simonovits [109] observed that
by replacing a vertex from one color class to another in a Turán graph T (n,r) we lose a
constant number of edges but the distance to the Turán graph is θ(n). Therefore one may ask
a modified question- what is the minimum number of edges for a Kr+1-free graph to be an
r-partite graph. This type of questions were investigated in a series of papers [5, 87, 11, 18,
82, 32].

Let us recall Theorem 1.3.7,

exconn(n,Pℓ) = max
{

e(Gn,ℓ,1),e(Gn,ℓ,⌊ ℓ−1
2 ⌋)

}
.

Extremal graphs for this problem were Gn,ℓ,1 or Gn,ℓ,⌊ ℓ−1
2 ⌋ depending how large was n. The

stability version of these results was proved by Füredi, Kostochka, Verstraëte [50].

Theorem 1.9.2 (Füredi, Kostochka, Verstraëte [50]). Let t ≥ 2, n≥ 3t−1 and k ∈{2t,2t+1}.
Suppose we have a n-vertex connected Pk-free graph G with more edges than

∣∣Gn+1,k+1,t−1
∣∣−

n, where the graph Gn+1,k+1,t−1 is described in Definition 1.3.6. Then we have either
• k = 2t, k ̸= 6 and G is a sub-graph of Gn,k,t−1, or
• k = 2t +1 or k = 6, and G\A is a star forest for A ⊆V (G) of size at most t −1.

Our main result provides a stability version (and thus a strengthening) of Theorem 1.8.10
and also an extension of Theorem 1.9.2 for uniformity at least 3.

First we state it for hypergraphs with minimum degree at least 2, and then in full generality.
In the proof, the hypergraphs Hn, k−3

2 ,3 and Hn, k−3
2 ,2,2 will play a crucial role in case k is

odd, while if k is even, then the hypergraphs Hn,⌊ k−3
2 ⌋,4, Hn,⌊ k−3

2 ⌋,3,2 and Hn,⌊ k−3
2 ⌋,2,2,2 will

be of importance (Definition 1.8.9), note that all of them are n-vertex, maximal, BPk-
free hypergraphs. In both cases, the hypergraph listed first contains the largest number of
hyperedges. This number gives the lower bound in the following theorem.

Theorem 1.9.3 (Gerbner, Nagy, Patkós, Salia, Vizer ,[57]). For any ε > 0 there exist integers
q = qε and nk,r such that if r ≥ 3, k ≥ (2+ ε)r+q, n ≥ nk,r and H is a connected n-vertex,
r-uniform hypergraph with minimum degree at least 2, without a Berge-path of length k, then
we have the following.

• If k is odd and |H|> |Hn, k−3
2 ,3|= (n− k+3

2 )
( k−3

2
r−1

)
+
( k+3

2
r

)
, then H is a sub-hypergraph

of Hn, k−1
2

.
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1.9 Stability 31

• If k is even and |H| > |Hn,⌊ k−3
2 ⌋,4| = (n−⌊k+5

2 ⌋)
(⌊ k−3

2 ⌋
r−1

)
+
(⌊ k+5

2 ⌋
r

)
, then H is a sub-

hypergraph of Hn,⌊ k−1
2 ⌋,2 or H+

n,⌊ k−1
2 ⌋.

Let H′
n′,a,b1,b2,...,bt

be the class of hypergraphs that can be obtained from Hn,a,b1,b2,...,bt for
some n ≤ n′ by adding hyperedges of the form A′

j ∪D j, where the D j’s partition [n′]\ [n], all
D j’s are of size at least 2 and A′

j ⊆ A for all j. Let us define H+
n′,⌊ k−1

2 ⌋ analogously.

Theorem 1.9.4 (Gerbner, Nagy, Patkós, Salia, Vizer ,[57]). For any ε > 0 there exist integers
q = qε and nk,r such that if r ≥ 3, k ≥ (2+ ε)r+q, n ≥ nk,r and H is a connected n-vertex,
r-uniform hypergraph without a Berge-path of length k, then we have the following.

• If k is odd and |H|> |Hn, k−3
2 ,3|, then H is a sub-hypergraph of some H′ ∈H′

n, k−1
2

.

• If k is even and |H|> |Hn,⌊ k−3
2 ⌋,4|, then H is a sub-hypergraph of some H′ ∈H′

n,⌊ k−1
2 ⌋,2

or H+
n,⌊ k−1

2 ⌋.

We prove Theorem 1.9.3 and 1.9.4 in Capter 5.
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Chapter 2

Erdős-Gallai theorem, for vertex colored
graphs

Working with Paul Erdos was like taking
a walk in the hills. Every time when I
thought that we had achieved our goal
and deserved a rest, Paul pointed to the
top of another hill and off we would go.

Fan Chung

In a relatively recent paper, Győri, Lemons [71] investigated the extremal number of
hypergraphs avoiding Berge-cycles. To this end, they introduced a generalization of the
theorem of Erdős-Gallai about paths. Győri, Lemons proved the following Lemma 1.4.1.

Lemma (Győri-Lemons [71]). Let k be a positive integer and G be an n-vertex graph with a
proper vertex coloring such that G contains no P2k+1 with endpoints of different colors, then

|E(G)| ≤ 2kn.

This was a useful tool for determining the Turán number of Hypergraphs avoiding Berge-
cycles. One can see this lemma as a version of Theta-lemma of Bondy-Simonovits [17],
which has many useful applications like in [111].

In this Chapter we show proofs of theorems raised in Section 1.4. In the following section
at first we prove Theorem 1.4.2 for paths and in Section 2.2 we prove theorems for trees-
Theorem 1.4.4, Theorem 1.4.5, and Theorem 1.4.7.
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34 Erdős-Gallai theorem, for vertex colored graphs

2.1 Forbidden paths in vertex colored graphs

We start with a proof of Theorem 1.4.2, which eliminates the factor of 2 in Theorem 1.4.1.
Thus, we recover the original upper bound from the Erdős-Gallai theorem 1.3.1. We also
determine the family of extremal graphs.

Theorem (Salia, Tompkins, Zamora [106]). Let k ≥ 0 and G be an n-vertex graph with a
proper vertex coloring such that G contains no P2k+1 with endpoints of different colors, then

|E(G)| ≤ kn,

and equality holds if and only if 2k+1 divides n and G is the union of n
2k+1 disjoint cliques

of size 2k+1.

Proof. By induction on the number of vertices, we may assume that G is connected and has
minimum degree δ (G)≥ k. Indeed, if δ (v)< k then

e(G) = e(G− v)+δ (v)≤ k(n−1)+ k−1 < kn.

If G is Cℓ-free for all ℓ≥ 2k+1, then by Theorem 1.3.2 we have

|E(G)| ≤ (n−1)2k
2

< kn.

Thus, assume there is a cycle of length at least 2k+1, and let C be the smallest such cycle
with length ℓ. Let the vertices of C be v0,v1,v2, . . . ,vℓ−1,v0, consecutively. Addition and
subtraction in subscripts will always be taken modulo ℓ. We say that an edge e is outgoing if
it has one vertex in V (C) and the other in V (G)\V (C). We say a vertex v ∈V (C) is outgoing
if it is contained in an outgoing edge.

We will consider cases based on the value of ℓ. Observe that ℓ = 2k+2 is impossible
since v0,v1, . . . ,v2k+1 is a path of length 2k+1 but v0 and v2k+1 are adjacent, contradiction.
Case 1. Suppose ℓ ≥ 2k+ 4. Since we have chosen ℓ to be the length of the smallest

Cℓ with ℓ ≥ 2k + 1, we have v0 cannot be adjacent to any of v2,v3, . . . ,vℓ−2k nor any of
v2k,v2k+1, . . . ,vℓ−2, for otherwise we would have a shorter cycle of length at least 2k+ 1.
Also note that v0 is adjacent to v1 and vℓ−1.

Observe that v0 cannot have two consecutive neighbors in the ℓ-cycle. Indeed, if vi

and vi+1 are neighbors of v0, then we have the following (2k + 1)-paths starting at v1:
v1,v2, . . . ,v2k+1,v2k+2 and v1,v2, . . . ,vi,v0,vi+1,vi+2, . . . ,v2k,v2k+1. Thus, v2k+1 and v2k+2

would have to be colored the same, but this is impossible since they are neighbors.
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2.1 Forbidden paths in vertex colored graphs 35

If v0 has a neighbor outside of C, say u0, then we have two paths of length 2k + 1:
u0,v0,v1, . . . ,v2k and v2k,v2k−1, . . . ,v0,vℓ−1. It follows that u0 and vℓ−1 have the same color.
Similarly, u0 and v1 have the same color. Thus, vℓ−1 and v1 also have the same color, and
similarly, for every i such that vi is outgoing, we can conclude vi−1 and vi+1 have the same
color.

If ℓ= 2k+4 and there is an outgoing vertex, say v0, then v1 and v2k+3 have the same color
(from above), a contradiction since v1 and v2k+2 also have the same color (they are endpoints
of a length 2k+ 1 path along the cycle C). If there is no outgoing vertex in V (C), then C
uses all vertices of the graph. Since no vertex of the cycle has two consecutive neighbors, it
follows that each degree is bounded by 2+⌈2k−5

2 ⌉ ≤ k and so the number of edges is at most
(2k+4)k

2 = nk
2 < nk.

If ℓ ≥ 2k+5, we will show that v0 has an outgoing edge from the ℓ-cycle C. Suppose
not, then since v0 does not have consecutive neighbors, it follows that v0 has at most

2+
⌈

2k− (ℓ−2k+1)
2

⌉
≤ k−1

neighbors, a contradiction. Thus, v0 and similarly every other vi has an outgoing neighbor,
and it follows that for every i, the vertices vi and vi+2 have the same color. Hence v0 and
v2k have the same color, contradicting that v0 and v2k+1 have the same color, since they are
endpoints of a P2k+1.
Case 2. Suppose ℓ = 2k+3. For all 0 ≤ i ≤ ℓ−1, vi+2,vi+1, . . . ,vℓ−1,v0, . . . ,vi is a path

of length 2ℓ+1, and so vi and vi+2 have the same color. Thus, v0 and v2k+2 have the same
color, but they are adjacent, contradiction.
Case 3. Finally, suppose ℓ = 2k+1. If no edge is outgoing, then we are done, since by

connectivity the total number of edges in the graph is at most
(2k+1

2

)
= kn. If indeed the total

number of edges is kn, then G is a clique. This is the only case when equality holds. From
here on, we will assume there is an outgoing edge.

Observe that if u is not a vertex of C, then u cannot have two consecutive neighbors in C,
for otherwise we would have a cycle of length 2k+2. Moreover, u cannot be connected to vi

and vi+3, since there would be paths of length 2k+1 from u to vi+1 and vi+2. It follows that
u can have at most k−1 neighbors in C and, thus, must have a neighbor outside C.

If there are some two consecutive non outgoing vertices in C, then we may take two
such vertices vi and vi+1, for some index i, so that the next vertex vi+2 is outgoing. Suppose
{vi+2,u} is an outgoing edge. By the previous observation, there is an edge {u,w} where
w ̸∈C. So we have a 2k+1 length path from vi to w, then vi+1 cannot have two consecutive
neighbors from C, since that would also imply that there is also 2k+1 length path from w to
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36 Erdős-Gallai theorem, for vertex colored graphs

v0

vivi+1

v1

v2k+2
v2k+1

v0

u0

v1 vℓ−1

v2k

vi+2

ui+2

wi+2

vi+1
vi

v jv j+1

Fig. 2.1 Sketch of the proof of Theorem 1.4.2. The picture on the left is for Case 1, and the
other pictures show Case 4.

vi−1, similarly vi cannot have two consecutive neighbors in C, hence vi and vi+1 have degree
at most k. By removing these two vertices, we remove 2k−1 edges, and by the induction
hypothesis the resulting graph has at most k(n−2) edges. So e(G)< kn.

For every i, either vi+1 or vi+2 is an outgoing vertex. Hence the vertex vi has either the
same color as vi+2, if vi+1 is an outgoing vertex, or the same color as vi+4, if vi+2 is an
outgoing vertex. Hence by repeatedly applying this argument we obtain that v0 has the same
color as v2k or v1, contradiction.

2.2 Forbidden trees in vertex colored graphs

Let us recall Theorem 1.4.4.

Theorem. Let T be a tree with k edges such that in the (unique) proper vertex 2-coloring of
T all leaves are not the same color, then exc(n,T )≤ (k−1)n.

Proof. There is a path of odd length in T with endpoints which are leaves. Let G be an
n-vertex graph with more than (k−1)n edges with a proper vertex coloring. We may find a
subgraph G′ of G with the average degree at least that of G and minimum degree greater than
k−1. The proper coloring of G induces a proper coloring of G′ and so applying Theorem
1.4.1 we may find a copy of P2ℓ+1 in G′ with endpoints of distinct colors. We may now build
up the rest of the tree with a greedy argument, as every degree in G′ is at least k and T has
k+1 vertices. Thus, we have found a copy of T in the graph G with leaves of at least two
colors.

We recall Theorem 1.4.5.
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2.2 Forbidden trees in vertex colored graphs 37

u v...

A

...

B

u v ...

B

w
...

C

u x
...

B

...

Cy

Fig. 2.2 The graph Sa,b.

Theorem. Let T be a tree with k edges such that in the proper vertex 2-coloring of T all
leaves are the same color, then exc(n,T ) =

⌊
n2

4

⌋
, provided n is sufficiently large.

Proof. The fact that all leaves are colored the same by a 2-coloring implies that all paths
between a pair of leaves have even length. We add an edge e to T connecting an arbitrary
pair of leaves and let G be the resulting graph. Since G has an odd cycle, its chromatic
number is 3, and the deletion of e yields a 2-chromatic graph. It follows from a theorem
of Simonovits [108] that if n is sufficiently large, the extremal number of G is precisely
ex(n,G) =

⌊
n2

4

⌋
. Thus, in any n-vertex graph with more than

⌊
n2

4

⌋
edges we have a copy T

with two adjacent leaves, and so in any proper coloring of this graph we have a copy of T
with leaves of at least 2 colors. It follows that exc(n,T )≤

⌊
n2

4

⌋
, and this bound is realized

by the complete bipartite graph K⌊ n
2⌋,⌈ n

2⌉.

Remark 2.2.1. The paths of even length P2k are a special case of Theorem 1.4.5. Better
bounds on n are known to exist. For example, the result of Füredi [46] on the extremal
number of odd cycles implies that n ≥ 4k is sufficient.

We believe that a strengthening of Conjecture 1.4.6 should hold for trees whose 2-coloring
yields two leaves of different colors.

Let us recall and prove a special case of conjecture 1.4.6, Theorem 1.4.7.

Theorem. For positive integers a and b, let Sa,b denote the tree on a + b + 2 vertices
consisting of an edge {u,v} where |N(u)\ v|= a, |N(v)\u|= b and N(u)∩N(v) =∅ (See
Figure 2.2, left). We have exc(n,Sa,b)≤ a+b

2 n.

Proof. Let G be a vertex colored graph with |E(G)|> |V (G)| a+b
2 . Without loss of generality,

suppose a ≤ b. We may assume by induction that δ (G)> a+b
2 ≥ a. Since ex(m,Sa,b) =ma+b

2
(see, for example [101]), it follows that G contains a copy of Sa,b. Suppose this copy is defined
by the edge {u,v} together with the disjoint sets A ⊆ N(u), B ⊆ N(v) with |A|= a, |B|= b.
Now, if there is more than one color in A∪B, then we are done. So suppose the color of all
vertices in A∪B is the same. Hence A∪B is an independent set.
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38 Erdős-Gallai theorem, for vertex colored graphs

If u is not adjacent to some w ∈ B (See Figure 2.2, middle), since |N(w)| ≥ a+1, we can
pick C ⊆N(w)\{u,v} of size a. So the edge {v,w} together with the sets B′= (B∪{u})\{w}
and C define a Sa,b, where the colors of all vertices in C are different from the colors of
B′\{u}.

If u is adjacent to all w ∈ B, then fix x ∈ B (See Figure 2.2, right). Since |N(x)| ≥ a+1,
we can pick C ⊆ N(x)\{u} of size a. Let y ∈ A and define B′ = (B∪{y})\{x}. Observe that
B′ ⊆ N(u), and the edge {u,x} together with the sets B′ and C defines a Sa,b, where again the
color of the vertices in C is different from the color of vertices in B′.
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Chapter 3

Hypergraph girth problem

It’s like asking why is Ludwig van
Beethoven’s Ninth Symphony beautiful.
If you don’t see why, someone can’t tell
you. I know numbers are beautiful. If
they aren’t beautiful, nothing is.

Paul Erdős

3.1 Connection

In this chapter, we prove an upper bound on the number of triangles in pentagon-free graphs
Theorem 1.5.3 and an upper bound on the number of hyperedges in three uniform hypergraphs
without Berge-cycle of length 4, Theorem 1.7.8. At first one may think these two problems
are non-related, and it may seem an odd choice to put them together in this chapter. We try
to justify our choice at the end of this chapter, in Section 3.4.

3.2 Pentagons vs. triangles

We open this section by recalling Theorem 1.5.3.

Theorem (Ergemlidze, Győri, Methuku, Salia [36]).

ex(n,C3,C5)≤
1

2
√

2
(1+o(1))n3/2.
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40 Hypergraph girth problem

Fig. 3.1 An example of a crown-block and a K4-block.

Proof. Let G be a C5-free graph with the maximum possible number of triangles. We may
assume that each edge of G is contained in a triangle because otherwise, we can delete it
without changing the number of triangles. Two triangles T,T ′ are said to be in the same block
if they either share an edge or if there is a sequence of triangles T,T1,T2, . . . ,Ts,T ′ where
each triangle of this sequence shares an edge with the previous one (except the first one of
course). It is easy to see that all the triangles in G are partitioned uniquely into blocks. Below
we will characterize the blocks of G.

A block of the form {abc1,abc2, . . . ,abck} where k ≥ 1, is called a crown-block (i.e.,
a collection of triangles containing the same edge) and a block consisting of all triangles
contained in the complete graph K4 is called a K4-block. See Figure 3.1.

Claim 3.2.1. Every block of G is either a crown-block or a K4-block.

Proof. If a block contains only one or two triangles, then it is easy to see that it is a crown-
block. So we may assume that a block of G contains at least three triangles and let abc1,abc2

be two of them. We claim that if bc1x or ac1x is a triangle in G which is different from abc1,
then x = c2. Indeed, if x ̸= c2, then the vertices a,x,c1,b,c2 contain a C5, a contradiction.
Similarly, if bc2x or ac2x is a triangle in G which is different from abc2, then x = c1.

Therefore, if aci or bci (for i = 1,2) is contained in two triangles, then abc1c2 forms a
K4. However, then there is no triangle in G which shares an edge with this K4 but is not
contained in it, because otherwise, it is easy to find a C5 in G, a contradiction. So in this case,
the whole block consists only of a K4, and we are done.

So we can assume that whenever abc1,abc2 are two triangles then the edges ac1, bc1, ac2,
bc2 are each contained in exactly one triangle. Therefore, any other triangle which shares an
edge with either abc1 or abc2 must contain ab. Let abc3 be such a triangle. Then applying
the same argument as before for the triangles abc1,abc3 one can conclude that the edges
ac3,bc3 are contained in exactly one triangle and so, any other triangle of G which shares
an edge with one of the triangles abc1,abc2,abc3 must contain ab again. So by induction,
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3.3 3-uniform BC4-free hypergraphs 41

it is easy to see that all of the triangles in this block must contain ab. Therefore, it is a
crown-block, as needed.

Notice that, by the maximality, blocks of G are edge-disjoint. We claim that there is no
C4 in G whose edges lie in different blocks of G.

Claim 3.2.2. The edge set of every C4 is contained in some block of G.

Proof. Let xyzw be a 4-cycle in G. Every edge of G is contained in a triangle. So in
particular, let xyu be a triangle containing the edge xy. If u ̸∈ {x,y,z,w} then uxwzy is a C5, a
contradiction. Therefore, u = z or u = w. So either xyz and yzw or xyw and ywz are triangles
of G. In both cases, the two triangles share an edge, so they belong to the same block. Hence,
all four edges of xyzw lie in the same block.

We are now ready to prove the theorem. We want to select a C4-free subgraph G0 of G
such that the number of edges in G0 is the same as the number of triangles in G. By Claim
3.2.1 the edge set of every C4 is contained in some block of G. To make sure the selected
subgraph G0 is C4-free, it suffices to make sure the edges selected from each block of G do
not contain a C4, which is done as follows: From each crown-block {abc1,abc2, . . . ,abck},
we select the edges ac1,ac2, . . . ,ack to be in G0. From each K4-block abcd we select the
edges ab,bc,ac,ad to be in G0 (since every block is either a crown-block or a K4-block by
Claim 3.2.1, we have dealt with all blocks of G). Finally, notice that the number of selected
edges in each block is exactly the number of triangles in that block. Moreover, since blocks
are edge-disjoint, we never select the same edge twice. Therefore, since every triangle of G
is contained in some block, the total number of triangles in G is the same as the number of
edges in G0. On the other hand, as G0 is C4-free and also C5-free (as it is a subgraph of G), we
can use Theorem 1.2.9, to show that the number of edges in it is at most 1

2
√

2
(1+o(1))n3/2,

completing the proof of Theorem 1.5.3.

3.3 3-uniform BC4-free hypergraphs

In this section we prove Theorem 1.7.8.

Theorem (Ergemlidze, Győri, Methuku, Salia, Tompkins [37]).

ex3(n,C4)≤ (1+o(1))
n3/2
√

10
.
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42 Hypergraph girth problem

Proof. Let H be a 3-uniform hypergraph with no BC4 and no isolated vertices. A block B of
a hypergraph H is defined to be a maximal subparagraph of H with the property that for any
two edges e, f ∈ E(B), there is a sequence of edges of H, e = e1,e2, . . . ,et = f , such that
|ei ∩ ei+1|= 2 for all 1 ≤ i ≤ t −1 and V (B) = ∪h∈E(B)h. It is easy to see that the blocks of
H define a unique partition of E(H).

For a block B and an edge h ∈ E(B), we say h is a leaf if there exists x ∈ h such that
the only edge of B incident to x is h. It is simple to observe that the set of non-leaf edges of
a block B is either the empty set, a single edge, or the edges of a complete hypergraph on
4-vertices minus an edge, K(3)−

4 . Even more, if the set of non-leaf edges of B is E(K(3)−
4 ),

then B = K(3)−
4 . This implies that the set B(H) = {B | B is a block in H} of all blocks of H,

can be partitioned into the following types of blocks:

1. We say B ∈ B(H) is type 1 if there exists an edge e ∈ E(B) such that for all distinct
f1, f2 ∈ E(B), f1, f2 ̸= e, we have |e∩ fi|= 2, for i = 1,2 and f1 ∩ f2 ⊆ e.

2. We say B ∈ B(H) is type 2 if B = K(3)−
4 .

Define the 2-shadow of a hypergraph to be the graph on the same set of vertices whose
edges are all pairs of vertices {x,y} for which there exists an edge e ∈ E(H) such that
{x,y} ⊂ e. We denote the 2-shadow of a hypergraph H by ∂H. The proof of Theorem 1.7.9
will proceed by estimating the number of 3-paths (3-vertex paths) in the 2-shadow of a
Berge-C4-free hypergraph in two different ways. Given a vertex v in a hypergraph H, d(v)
denotes the classical hypergraph degree of v. In particular, d(v) = |{h ∈ E(H) : v ∈ h}|.
Let ds(v) be the (graph) degree of v in the 2-shadow of the hypergraph. In particular,
ds(v) = |{e ∈ E(∂H) : v ∈ e}|. Then, we define the excess degree of the vertex v to be
dex(v) = ds(v)− d(v). Finally, we define the block degree db(v) to be the total number of
blocks containing an edge which contains v.

Notice that for every 4-cycle x1,x2,x3,x4,x1 of ∂H, there exists three distinct integers
1 ≤ i < j < k ≤ 4 such that {xi,x j,xk} ∈ E(H), otherwise, H contains a copy of Berge-C4.
We call this edge a representative edge of this 4-cycle. Note that each 4-cycle of ∂H has
either 1, 2 or 3 representative edges. Two edges of H sharing two vertices yield a C4 in ∂H.
However these are not the only types of C4’s in ∂H. We call a 4-cycle of ∂H rare if the
induced subhypergraph of H on the vertices of cycle does not contain two edges sharing a
diagonal pair of vertices of the 4-cycle. In the following claim, we show that the number of
such cycles is small.

We define a particular type of 3-path of ∂H. A 3-path, x1,x2,x3, is called good if
{x1,x2,x3} /∈ E(H) and there is no x ∈V (H) such that x,x1,x2,x3,x is a rare cycle of ∂H.
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3.3 3-uniform BC4-free hypergraphs 43

Claim 3.3.1. For any a,b ∈V (H), there are at most two good 3-paths in ∂H with end points
a and b.

Proof. Suppose, by contradiction, that there are three distinct vertices v1,v2,v3 different from
a and b such that a,vi,b forms a good 3-path of ∂H for all integer 1 ≤ i ≤ 3. It follows that
there are three Berge-paths a,ei,vi, fi,b, for all integer 1 ≤ i ≤ 3 in H. Note that those edges
are not necessarily distinct. But we have ei ̸= fi and ei ̸= f j, i ̸= j, since {a,vi} ⊂ ei and
{b,v j} ⊂ f j and H is 3-uniform. Note that if e2 = e3, then e2 = {a,v2,v3}, hence e1 ̸= e2.
Similarly, we have either f1 ̸= f2 or f1 ̸= f3. We may assume, without loss of generality,
that e1 ̸= e2,e3. It follows that either a,e1,v1, f1,b, f2,v2,e2,a or a,e1,v1, f1,b, f3,v3,e3,a is
a Berge-C4, a contradiction.

Claim 3.3.2. There are at most 6 |E(H)| rare 4-cycles in ∂H.

Proof. We fix an edge {a,b,c} ∈ E(H). It suffices to show that the edge {a,b,c} is repre-
sentative of at most 6 rare 4-cycles (that is, {a,b,c} is contained in the vertex set of at most
6 rare 4-cycles). Suppose by contradiction that this is not true. Observe that there are three
possible positions for a fixed vertex v among the vertices of a 4-cycle in ∂H with {a,b,c}.
By the pigeonhole principle there are 3 distinct vertices v1,v2,v3 different from a, b or c with
the same position in the 4-cycle. Without loss of generality, we may assume they form a
4-cycle in the order vi,a,c,b,vi. Therefore from the definition of a rare 4-cycle, there are at
least three good 3-paths in ∂H from a to b, a contradiction to Claim 3.3.1.

Using Claim 3.3.2, it is easy to see that the number of 3-paths in ∂H which are not good
is at most 3 |E(H)|+3 ·6 |E(H)|= 21 |E(H)|. Here we use the fact that each rare 4-cycle
induces an edge of H.

By conditioning on the middle vertex of the 3-path, we have the following estimate on
the number of 3-paths in ∂H:

#(3-paths in ∂H) = ∑
v∈V (H)

(
ds(v)

2

)
= ∑

v∈V (H)

(
d(v)+dex(v)

2

)
.

The following claim provides an upper bound on the number of good 3-paths in ∂H.

Claim 3.3.3.
#(good 3-paths in ∂H)≤ 2

(
n
2

)
−4 ∑

v∈V (H)

(
db(v)

2

)
.

Proof. Fix a vertex v and consider two adjacent edges {v,x1,x2} and {v,y1,y2} such that
they belong to the different blocks; clearly the vertices v,x1,x2,y1,y2 are all distinct. We
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44 Hypergraph girth problem

claim that there is at most one good 3-path, namely xi,v,y j, between xi and y j, for each
i, j ∈ {1,2}. Suppose this is not the case, then without loss of generality, there exists u ̸= v
such that x1,u,y1 is a good 3-path. By the definition of a good 3-path, there are two distinct
edges hx,hy ∈ H such that x1,u ∈ hx and y1,u ∈ hy. If {v,x1,x2}, {v,y1,y2}, hx and hy are
all different edges, then clearly there is a Berge-4-cycle. Therefore either {v,x1,x2} = hx

or {v,y1,y2}= hy. Hence we have u ∈ {x2,y2}, without loss of generality we may assume
u= x2. Observe that the 4-cycle x1,x2,y1,v of ∂H contains a good 3-path and so by definition
the 4-cycle x1,x2,y1,v is not a rare 4-cycle. Hence we have a contradiction to the statement
that edges {v,x1,x2} and {v,y1,y2} belong to the different blocks. Concluding that there
is at most one good path between xi and y j. So there are at least 4∑v∈V (H)

(db(v)
2

)
pairs of

vertices which have at most one good 3-path between them. From Claim 3.3.1, for each pair
of vertices there are at most two good 3-paths in ∂H. These observations complete the proof
of Claim 3.3.3.

Thus, since the number of 3-paths which are not good is at most 21 |E(H)|, we have

∑
v∈V (H)

(
d(v)+dex(v)

2

)
= #(3-paths in ∂H)≤ 2

(
n
2

)
−4 ∑

v∈V (H)

(
db(v)

2

)
+21 |E(H)| .

(3.1)
Now, we will obtain estimates for ∑v∈V (H) dex(v) and ∑v∈V (H) db(v). For each block B and
v ∈V (B), let dB

ex(v) denote an excess degree of v inside the hypergraph B. If B is type 1, then
every vertex v ∈ V (B) has dB

ex(v) ≥ 1, so for type 1 blocks, ∑v∈V (B) dB
ex(v) ≥ |V (B)|. It is

easy to see that for every block B we have |V (B)|> |E(B)|, so ∑v∈V (B) dB
ex(v)> |E(B)|, for

every type 1 block B. If B is a type 2 block, then ∑v∈V (B) dB
ex(v) = 3 = |E(B)| . Therefore,

∑
v∈V (B)

dB
ex(v)≥ |E(B)|

for every block B in B(H). This together with the fact that the blocks define a partition of
the edges E(H) implies

∑
v∈V (H)

dex(v) = ∑
B∈B(H)

∑
v∈V (B)

dB
ex(v)≥ ∑

B∈B(H)

|E(B)|= |E(H)| . (3.2)

On the other hand, a simple double counting argument yields

∑
v∈V (H)

db(v) = ∑
B∈B(H)

|V (B)| .

Therefore,
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3.4 Concluding remarks 45

∑
v∈V (H)

db(v) = ∑
B∈B(H)

|V (B)| ≥ ∑
B∈B(H)

|B|= |E(H)| . (3.3)

Now we will use the inequalities derived so far to get desired upper bound on |E(H)|.
By (3.2),

4 |E(H)|= 3 |E(H)|+ |E(H)| ≤ ∑
v∈V (H)

(d(v)+dex(v)).

Since
(x

2

)
is a convex function, by Jensen’s inequality we have(1

n ∑v∈V (H)(d(v)+dex(v))
2

)
≤ 1

n ∑
v∈V (H)

(
d(v)+dex(v)

2

)
.

Combining the above two inequalities we get

n
(4|E(H)|

n
2

)
≤ ∑

v∈V (H)

(
d(v)+dex(v)

2

)
. (3.4)

Similarly, by (3.3) and Jensen’s inequality, we have

n
( |E(H)|

n
2

)
≤ ∑

v∈V (H)

(
db(v)

2

)
. (3.5)

Combining (3.1), (3.4) and (3.5) we obtain

n
(4|E(H)|

n
2

)
+4n

( |E(H)|
n
2

)
≤ 2
(

n
2

)
+21 |E(H)| . (3.6)

Rearranging (3.6) yields the desired bound,

|E(H)| ≤ (1+o(1))
n3/2
√

10
.

3.4 Concluding remarks

We start with Lazebnik-Verstraëte theorem [94].

Theorem 3.4.1 (Lazebnik, Verstraëte [94]).

ex3(n,{BC2,BC3,BC4}) =
1
6

n3/2 +o(n3/2).
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46 Hypergraph girth problem

Surprisingly it is not known if there is a similar theorem for 4-uniform hypergraph of
girth six1. Let us state a bold conjecture.

Conjecture 3.4.2.
ex4(n,{BC2,BC3,BC4,BC5}) = o(n3/2).

Even more, if one believes Conjecture 3.4.2 is false, one may try to confirm the following
conjecture for 3-uniform hypergraphs.

Conjecture 3.4.3.
ex3(n,{BC2,BC3,BC4,BC5}) = Θ(n3/2).

Conjecture 3.4.3 is a strengthening of Theorem 3.4.1. Note that construction Lazebnik-
Verstraëte in Theorem [94] is full of BC5’s.

Example 3.4.4 (Lazebnik, Verstraëte [94]). Take Füredi graph G from Theorem 1.2.6. In
particular, G is a C4-free graph with a property that for every pair of vertices there is the
unique vertex connected with both of them. Therefore every edge is in a unique triangle. Let
H be a 3-uniform hypergraph on the vertex set V (G) and a triple is a hyperedge if and only
if it induces a triangle in G.

From the unique property of G, that every edge is in a unique triangle, H is linear. Even
more, since a Berge-triangle in H is a triangle in the shadow G, the same property implies
that H is Berge-triangle-free. Similarly, H is BC4-free too.

The graph G is full of C5’s. Since G is C4-free then every C5 is an induced C5 in G.
Finally, since every edge is in a triangle, we have for every C5 in G there is a BC5 in H.

All of these problems are closely related with the problem to determine ex3(n,BC4).
Since we conjectured the lower bound is the correct asymptotic see Theorem 1.7.9, and
the hypergraph in Example 1.7.10 is not only BC4-free but BC3 and BC5-free, we have the
following relaxed conjecture.

Conjecture 3.4.5.

ex3(n,{BC3,BC4,BC5}) = (1+o(1))
n3/2

3
√

3
.

Theorem 3.4.6 (Ergemlidze, Győri, Methuku [35] ).

ex3(n,{BC2,BC3,BC5}) = ex3(n,{BC2,BC5)}=
1

3
√

3
n3/2 +O(n).

1{BC2,BC3,BC4,BC5}-free
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3.4 Concluding remarks 47

Ergemlidze, Győri, Methuku provided the construction which has a beautiful geometric
interpretation. This geometric construction was found by Mubayi-Solymosi.

Example 3.4.7 (Mubayi, Solymosi [110]). For a fixed integer n, take a cube [n]3. The
axes parallel lines are {(a1,b1,x) : x ∈ [n]} for all a1,b1 ∈ [n], {(a2,x,c2) : x ∈ [n]} for all
a2,c2 ∈ [n], and {x,b3,c3) : x ∈ [n]} for all b3,c3 ∈ [n]. The vertices of the hypergraph H are
those lines, hence e(H) = 3n2. Three vertices form a hyperedge of size three if and only if
they meet in exactly one point-

E(H) = {((a,b, ·),(a, ·,c),(·,b,c)) : a,b,c ∈ [n]} .

In other words, all vertices (a,b,c) of the cube are hyperedges.
It is easy to verify that, this hypergraph is linear, BC3 and BC5-free but full of BC4.

Finally, we give you reasoning why the problem of maximizing triangles in a C5-free
graph is closely related to these problems. Let G be a C5-free graph. As we have seen in
the proof of Theorem 1.5.3, triangles are distributed in G as crown blocks or K4-blocks, see
Figure 3.1. It is easy to see that if one constructs a 4-uniform hypergraph on the same set of
vertices, taking 4-edges on vertices inducing K4 in G we would get a 4-uniform girth-6 graph.
Even more, by the conjectured lower-bound construction, Example 1.5.2, does not contain
any copy of K4. Therefore proving Conjecture 3.4.2 may be an important step towards
proving conjectured upper bound of ex(n,C3,C5).
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Chapter 4

The Structure of Hypergraphs avoiding
long Berge-cycles

Simplicity is the final achievement. Af-
ter one has played a vast quantity of
notes and more notes, it is simplicity that
emerges as the crowning reward of art.

Frederic Chopin

In this Chapter we consider a problem ex(n,BC≥k). Naturally, this problem is divided in
three parts with different extremal values and constructions.

1. k ≥ r+2;

2. k = r;

3. k < r and k = r+1;

Recently, Füredi, Kostochka, Luo [48, 47] proved exact bounds for k > r+2. Kostochka,
Luo [90] settled k < r case. In the following section we prove cases k = r+1 and k = r+2,
fully settling 1 and 3. After we prove k = r case with a lemma which also slightly improves
Kostochka, Luo [90] result in the case k < r.

4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2

In this section we prove Theorem 1.8.14 and theorem 1.8.12. Let us recall those theorems.
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50 The Structure of Hypergraphs avoiding long Berge-cycles

Theorem ( Győri, Methuku, Salia, Tompkins, Zamora [38]). If r ≥ 3 then

ex(n,BC≥r+1)≤ n−1.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] consists of r hyperedges, (see Figure 1.4).

Theorem ( Győri, Methuku, Salia, Tompkins, Zamora [38]). If r ≥ 3 then

ex(n,BC≥r+2)≤
(n−1)(r+1)

r
.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] = Kr

r+1, (see Figure 1.4).

4.1.1 Basic Lemmas, used in Subsection 4.1.2 and 4.1.3

Lemma 4.1.1. For any r ≥ 3, if a set S of size r+ 1 contains r hyperedges of size r, then
between any two vertices u,v ∈ S, there is a Berge-path of length r consisting of these
hyperedges.

Proof. Let H be the hypergraph consisting of r hyperedges on r+1 vertices. First notice
that for any pair of vertices x,y ∈ S, the number of hyperedges h ⊂ S such that {x,y} ̸⊂ h is
at most 2. (Indeed, there is at most one hyperedge that does not contain x and at most one
hyperedge that does not contain y.) This means that every pair x,y ∈ S is contained in some
hyperedge, as there are at least 3 hyperedges contained in S. In other words, ∂2(H) = Kr+1.

Consider an arbitrary path x1x2, . . . ,xr+1 of length r in the ∂2(H) connecting u = x1

and v = xr+1. We want to show that there are distinct hyperedges containing the pairs
xixi+1 for each 1 ≤ i ≤ r. To this end, we consider an auxiliary bipartite graph with pairs
{x1x2,x2x3, . . . ,xrxr+1} in one class and the r hyperedges h ⊂ S in the other class, and a pair
is connected to a hyperedge if it is contained in the hyperedge. We will show that Hall’s
condition holds [81]. As noted before, every pair is contained in a hyperedge. Given any two
distinct pairs xixi+1 and x jx j+1, there is at most one hyperedge that does not contain either of
them; i.e., at least r−1 hyperedges contain one of them. Thus we need 2 ≤ r−1 for Hall’s
condition to hold, but this is true as we assumed r ≥ 3. Moreover, if we take any 3 ≤ j ≤ r
distinct pairs, then every hyperedge contains one of them. Therefore, we need j ≤ r, but this
is true by assumption. This finishes the proof of the lemma.
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 51

Lemma 4.1.2. For any r ≥ 4, if a set S of size r+1 contains r−1 hyperedges of size r, then
between any two vertices u,v ∈ S, there is a Berge-path of length r−1 consisting of these
hyperedges.

Proof. The proof is similar to that of Lemma 4.1.1. Let H be the hypergraph consisting
of r−1 hyperedges on r+1 vertices. First notice that for any pair of vertices x,y ∈ S, the
number of hyperedges h ⊂ S such that {x,y} ̸⊂ h is at most 2. This means that every pair
x,y ∈ S is contained in some hyperedge, as there are at least r−1 ≥ 3 hyperedges contained
in S. In other words, ∂2(H) = Kr+1.

Consider an arbitrary path x1x2 . . .xr of length r − 1 in the ∂2(H) connecting u = x1

and v = xr. We want to show that there are distinct hyperedges containing the pairs xixi+1

for each 1 ≤ i ≤ r − 1. To this end, we consider an auxiliary bipartite graph with pairs
{x1x2,x2x3, . . . ,xr−1xr} in one class and the r−1 hyperedges h ⊂ S in the other class, and
a pair is connected to a hyperedge if it is contained in the hyperedge. We show that Hall’s
condition holds: As noted before, every pair is contained in a hyperedge. Given any two
distinct pairs xixi+1 and x jx j+1, there is at most one hyperedge that does not contain either
of them; i.e., at least r− 2 hyperedges contain one of them. Thus we need 2 ≤ r− 2 for
Hall’s condition to hold, but this is true as we assumed r ≥ 4. Moreover, if we take any
3 ≤ j ≤ r−1 distinct pairs, then every hyperedge contains one of them. Therefore, we need
j ≤ r−1 for Hall’s condition to hold, and this is true by assumption. This finishes the proof
of the lemma.

4.1.2 Extremal hypergraphs without BC≥r+1

We recall Theorem 1.8.14.

Theorem ( Győri, Methuku, Salia, Tompkins, Zamora [38]). If r ≥ 3 then

ex(n,BC≥r+1)≤ n−1.

Moreover, equality is achieved if and only if ∂2(H) is connected and for every block D of
∂2(H), D = Kr+1 and H[D] consists of r hyperedges, (see Figure 1.4).

Proof. We use induction on n. For the base cases, notice that the statement of the theorem
is trivially true if 1 ≤ n ≤ r. Moreover, if n = r + 1, then e(H) ≤ r because otherwise,
H= Kr

r+1 and then it is easy to see that there is a (Hamiltonian) Berge-cycle of length r+1
in H, a contradiction. Therefore, e(H)≤ r = n−1. Moreover, equality holds if and only if
∂2(H) = Kr+1 and H consists of r hyperedges.
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52 The Structure of Hypergraphs avoiding long Berge-cycles

We will show the statement is true for n assuming it is true for all smaller values. Let H
be an r-uniform hypergraph on n vertices having no Berge-cycle of length r+1 or longer.
We show that we may assume the following two properties hold for H.

(1) For any set S ⊆V (H) with |S| ≤ |V (H)|−1 = n−1, the number of hyperedges of H
incident to the vertices of S is at least |S|.

Indeed, suppose there is a set S ⊂ V (H) (i.e., |S| ≤ |V (H)|− 1) with fewer than |S|
hyperedges incident to the vertices of S. We delete the vertices of S from H to obtain a
new hypergraph H′ on n−|S| vertices. By induction, H′ contains at most (n−|S|−1)
hyperedges, so H contains less than (n − 1 − |S|) + |S| = (n − 1) hyperedges, as
required.

(2) There is no cut-hyperedge in H.

Indeed, if h ∈ E(H) is a cut-hyperedge, then ∂2(H\{h}) is not a connected graph,
so there are disjoint non-empty sets V1 and V2 such that V (H) = V1 ∪V2 and there
are no edges of ∂2(H\{h}) between V1 and V2. So the hypergraphs H[V1] and H[V2]

do not contain a Berge-cycle of length r + 1 or longer. Therefore, by induction,
e(H[V1])≤ |V1|−1 and e(H[V2])≤ |V2|−1. In total, e(H) = e(H[V1])+ e(H[V2])+

1 ≤ (|V1|+ |V2|−2)+1 = |V (H)|−1, as desired.

Moreover, we claim that the equality e(H) = |V (H)|−1 cannot hold in this case (i.e.,
if there is a cut-hyperedge). Indeed, if equality holds, then we must have e(H[V1]) =

|V1| − 1 and e(H[V2]) = |V2| − 1. Notice that since r ≥ 3, the hyperedge h either
contains at least two vertices x,y ∈ V1 or two vertices x,y ∈ V2. Without loss of
generality, assume the former is true. By induction, ∂2(H[V1]) is connected and for
every block D of ∂2(H[V1]), we have D = Kr+1 and the subhypergraph induced by
D consists of r hyperedges. So by Lemma 4.1.1, there is a Berge-path of length r
(consisting of the r hyperedges induced by D) between any two vertices of a block
D. Then it is easy to see that since ∂2(H[V1]) is connected, there is a Berge-path P of
length at least r between any two vertices of V1. In particular, between x and y. Then
P together with h forms a Berge-cycle of length r+1 in H, a contradiction.

Consider an auxiliary bipartite graph B consisting of vertices of H in one class and
hyperedges of H on the other class. Then property (1) shows that Hall’s condition holds for
all subsets of V (H) of size up to |V (H)|−1. Therefore, there is a matching in B that matches
all the vertices in V (H), except at most one vertex, say x. In other words, there exists an
injection f : V (H)\{x}→E(H) such that for every v∈V (H)\{x}, we have v∈ f (v). Given
an injection f : V (H) \ {x} → E(H) with v ∈ f (v), let P f be a longest Berge-path of the
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 53

form v1 f (v1)v2 f (v2) . . .vl−1 f (vl−1)vl where for each 1 ≤ i ≤ l −1, vi+1 ∈ f (vi). Moreover,
among all injections f : V (H)\{x}→ E(H) with v ∈ f (v), suppose φ : V (H)\{x}→ E(H)

is an injection for which the path Pφ = v1φ(v1)v2φ(v2) . . .vl−1φ(vl−1)vl is a longest path.
Because of the way Pφ was constructed, it is also clear that x ̸∈ {v1,v2, . . . ,vl−1}. We

consider two cases depending on whether vl is equal to x or not.

Case 1: vl ̸= x. Our aim is to get a contradiction, and show that this case is impossible.

Claim 4.1.3. If vl ̸= x, then φ(vl) = {vl−r+1,vl−r+2, . . . ,vl}.

Proof. If vl ̸= x, then we claim φ(vl) = {vl−r+1,vl−r+2, . . . ,vl}. Indeed, if φ(vl) contains a
vertex vi ∈{v1,v2, . . . ,vl−r}, then the Berge-cycle viφ(vi)vi+1φ(vi+1) . . .vlφ(vl)vi is of length
r+1 or longer, a contradiction. Moreover, if φ(vl) contains a vertex v ̸∈ {v1,v2, . . . ,vl}, then
Pφ can be extended to a longer path v1φ(v1)v2φ(v2), . . . ,vl−1φ(vl−1)vlφ(vl)v, a contradiction
again, proving that φ(vl) = {vl−r+1,vl−r+2, . . . ,vl}.

Fix some i ∈ {l − r+ 1, l − r+ 2, . . . , l − 1}. Let us define a new injection ψ : V (H) \
{x} → E(H) as follows: ψ(v) = φ(v) for every v ̸∈ {x,v1,v2, . . . ,vl}, and for every v ∈
{v1,v2, . . . ,vi−1}. Moreover, let ψ(vi) = φ(vl) and ψ(vk) = φ(vk−1) for each l ≥ k ≥ i+
1. Now consider the Berge-path v1φ(v1)v2φ(v2) . . . viφ(vl)vlφ(vl−1) . . .vi+2φ(vi+1)vi+1

= v1ψ(v1)v2ψ(v2) . . . viψ(vi)vlψ(vl) . . .vi+2ψ(vi+2)vi+1. This path has the same length as
Pφ , so it is also a longest path. Moreover, vi+1 ̸= x, so we can apply Claim 4.1.3 to conclude
that ψ(vi+1) = {vl−r+1,vl−r+2, . . . ,vl} = φ(vi). But then φ(vi) = φ(vl), a contradiction to
the fact that φ was an injection.

Case 2: vl = x.

Claim 4.1.4. φ(vl−1)⊂ {vl−r,vl−r+1, . . . ,vl}.

Proof. If φ(vl−1) contains a vertex v ̸∈ {v1,v2, . . . ,vl}, then we consider the Berge-path
v1φ(v1)v2 φ(v2) , . . . , vl−1φ(vl−1)v. Since v ̸= x, we get a contradiction by Case 1. More-
over, if φ(vl−1) contains a vertex vi with i ∈ {1,2, . . . , l − r − 1}, then the Berge-cycle
viφ(vi)vi+1φ(vi+1) . . .vl−1φ(vl−1)vi is of length r+ 1 or longer, a contradiction. This fin-
ishes the proof of the claim.

By Claim 4.1.4, we know that φ(vl−1) = {vl−r,vl−r+1, . . . ,vl−1,vl} \ {v j} for some j
with l − r ≤ j ≤ l −2. In the rest of the proof we fix this j.

Claim 4.1.5. For any i ∈ {l − r, l − r+1, . . . , l −1}\{ j}, we have

φ(vi)⊂ {vl−r,vl−r+1, . . . ,vl−1,vl}.
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54 The Structure of Hypergraphs avoiding long Berge-cycles

Proof. When i = l −1, we know the statement is true by Claim 4.1.4.
Suppose i ∈ {l − r, l − r+1, . . . , l −2}\{ j}. Let us define a new injection ψ : V (H)\

{x} → E(H) as follows: ψ(v) = φ(v) for every v ̸∈ {v1,v2, . . . ,vl}, and for every v ∈
{v1,v2, . . . ,vi−1}. Moreover, let ψ(vi) = φ(vl−1) and ψ(vk) = φ(vk−1) for each l − 1 ≥
k ≥ i+ 1. Now consider the Berge-path v1φ(v1)v2φ(v2) . . . viφ(vl−1)vl−1φ(vl−2). . .vi+1

= v1ψ(v1)v2ψ(v2) . . . viψ(vi)vl−1ψ(vl−1) . . .vi+1.
(Note that when i = l − 2, the Berge-path is simply v1φ(v1)v2φ(v2) . . . viφ(vl−1)vl−1 =

v1ψ(v1)v2 ψ(v2) . . .viψ(vi)vl−1.)
If ψ(vi+1) contains a vertex v ̸∈ {v1,v2, . . . ,vl}, then the Berge-path v1ψ(v1)v2ψ(v2) . . .

viψ(vi) vl−1ψ(vl−1) . . .vi+2ψ(vi+2)vi+1ψ(vi+1)v has the same length as Pφ , so it is also a
longest path. Moreover, since v ̸= x, we get a contradiction by Case 1.

If ψ(vi+1) contains a vertex vk ∈ {v1,v2, . . . ,vl−r−1} then one can see that the Berge-cycle
vkψ(vk)vk+1ψ(vk+1) . . . vl−1ψ(vl−1)vk is of length r+1 or longer, a contradiction. There-
fore, we have ψ(vi+1)⊂ {vl−r,vl−r+1, . . . ,vl}. But we defined ψ(vi+1) = φ(vi), proving the
claim.

Note that Claim 4.1.5 shows that r − 1 hyperedges of H are contained in a set S :=
{vl−r,vl−r+1, . . . , vl−1,vl} of size r+1. The following claim shows that if we can find one
more hyperedge of H contained in S, then S must induce a block of ∂2(H).

Claim 4.1.6. Suppose r ≥ 3. If a set S of size r+1 contains r hyperedges of H then it induces
a block of ∂2(H).

Proof. Since the set S contains at least 3 hyperedges every pair x,y ∈ S is contained in some
hyperedge. Thus ∂2(H[S]) = Kr+1. Consider a (maximal) block D of ∂2(H) containing S.

Suppose D contains a vertex t ̸∈ S. Then since D is 2-connected, there are two paths
P1,P2 in ∂2(H) between t and S, which are vertex-disjoint besides t. Let V (P1)∩S = {u}
and V (P2)∩S = {v}. For each edge xy ∈ E(P1)∪E(P2), fix an arbitrary hyperedge hxy of H
containing xy. It is easy to see that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)}
forms a Berge-path P between u and v.

On the other hand, by Lemma 4.1.1, there is a Berge-path P ′ of length r between u
and v consisting of the r hyperedges contained in S. Note that P and P ′ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in S, while hyperedges of P ′

are contained in S). Therefore, P together with P ′ forms a Berge-cycle of length r+1 or
longer, a contradiction. Therefore, D contains no vertex outside S; thus S induces a block of
∂2(H), as required.

We will use the above claim several times later. At this point, we need to distinguish the
cases r = 3 and r ≥ 4 since Lemma 4.1.2 only applies in the latter case.
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 55

The case r ≥ 4

Since r ≥ 4, by Claim 4.1.5 and Lemma 4.1.2 there is a Berge-path of length r−1 between
any two vertices of S = {vl−r,vl−r+1, . . . ,vl−1,vl}. This will allow us to show the following.
(Recall that j is defined just before Claim 4.1.5.)

Claim 4.1.7. φ(v j)⊂ {vl−r,vl−r+1, . . . ,vl−1,vl}= S.

Proof. Suppose for a contradiction that φ(v j) contains a vertex v ̸∈ S. The hyperedge φ(v j)

contains at least two vertices from S, namely v j and v j+1. By property (2), φ(v j) is not a
cut-hyperedge of H. So after deleting φ(v j) from H, the hypergraph H\{φ(v j)} is still
connected – so there is a (shortest) Berge-path Q in H\{φ(v j)} between v and a vertex s ∈ S
(note that the hyperedges of Q are not contained in S). The vertex s is different from either
v j or v j+1, say s ̸= v j, without loss of generality. By Lemma 4.1.2, there is a Berge-path Q′

of length r−1 between s and v j (consisting of the hyperedges contained in S). Then Q,Q′

and φ(v j) form a Berge-cycle of length at least r+1 in H, a contradiction.

Claim 4.1.5 and Claim 4.1.7 together show that there are at least r hyperedges of H
contained in S. If all r+1 subsets of S of size r are hyperedges of H, then S induces Kr

r+1

and it is easy to show that it contains a Berge-cycle of length r+1, a contradiction. This
means S contains exactly r hyperedges of H. Then by Claim 4.1.6, we know that S induces a
block of ∂2(H).

Let D1,D2, . . . ,Dp be the unique decomposition of ∂2(H) into 2-connected blocks. Claim
4.1.6 shows that one of these blocks, say D1, is induced by S. Let us contract the vertices
of S to a single vertex, to produce a new hypergraph H′. Then it is clear that the block
decomposition of ∂2(H′) consists of the blocks D2, . . . ,Dp. So H′ does not contain any Berge-
cycle of length r+1 or longer, also; moreover, |V (H′)|= |V (H)|− r and e(H′) = e(H)− r.
By induction, we have e(H′)≤ |V (H′)|−1. Therefore,

e(H) = e(H′)+ r ≤ (|V (H′)|−1)+ r = (|V (H)|− r−1)+ r = |V (H)|−1.

If e(H) = |V (H)|−1, then we must have e(H′) = |V (H′)|−1 and S must contain exactly
r hyperedges. Moreover, since equality holds for H′, by induction, ∂2(H′) is connected
and for each block Di (with 2 ≤ i ≤ p) of ∂2(H′), Di = Kr+1 and H′[Di] contains exactly
r hyperedges. This means that for every block D of ∂2(H), we have D = Kr+1 and H[D]

contains exactly r hyperedges, completing the proof in the case r ≥ 4.
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56 The Structure of Hypergraphs avoiding long Berge-cycles

The case r = 3

Recall that using Claim 4.1.5 we can find a set S of size 4 which contains 2 hyperedges
of H. Let S = {x,y,a,b} and the two hyperedges be xab and yab. By property (2), xab is
not a cut-hyperedge of H. So after deleting xab from H, the hypergraph H\{xab} is still
connected – so there is a (shortest) Berge-path Q between x and {y,a,b}. If Q is of length at
least 2, then it is easy to see that Q together with yab and xab form a Berge-cycle of length
at least 4, a contradiction. So Q consists of only one hyperedge, say h.

Our goal is to find a set of vertices that induces a block of ∂2(H) so that we can apply
induction.

If |h∩{y,a,b}|= 2 then h,xab,yab are 3 hyperedges of H contained in S, so by Claim
4.1.6, we can conclude that S induces a block of ∂2(H). (Notice that S contains exactly
|S|−1 = 3 hyperedges of H, otherwise it is easy to find a Berge-cycle of length 4; this will
be useful later.) So we can suppose |h∩{y,a,b}|= 1. We consider two cases depending on
whether h ∈ {xat,xbt}, or whether h = xyt for some t ̸∈ S.

Case 1. First suppose without loss of generality that h = xat for some t ̸∈ S. Consider the
set D of all hyperedges of H containing the pairs xa, ab or xb and let D be the set of vertices
spanned by them. For each pair of vertices i, j ∈ {x,a,b}, let Vi j = {v | i jv ∈H}\{x,a,b}.
We claim that the sets Vxa,Vab,Vxb are pairwise disjoint. Suppose for the sake of contradiction
that t ′ ∈ Vxa ∩Vab. Then the hyperedges xat ′,abt ′,xab are contained in a set of 4 vertices
{x,a,b, t ′}. Thus by Claim 4.1.6, this set induces a block of ∂2(H) and we are done. Thus
we can suppose Vxa ∩Vab = /0. Similarly, Vab ∩Vxb = /0 and Vxa ∩Vxb = /0. This shows that
|D| = 3+ |Vxa|+ |Vxb|+ |Vab|. On the other hand, D consists of 1+ |Vxa|+ |Vxb|+ |Vab|
hyperedges, so |D|= |D|−2.

We will now show that D induces a block of ∂2(H).
Let D′ be a (maximal) block of ∂2(H) containing D and suppose for the sake of a

contradiction that it contains a vertex p ̸∈D. Then since D′ is 2-connected, there are two paths
P1,P2 in ∂2(H) between p and D, which are vertex-disjoint besides p. Let V (P1)∩D = {u}
and V (P2)∩D = {v}. For each edge xy ∈ E(P1)∪E(P2), fix an arbitrary hyperedge hxy of
H containing xy. It is easy to see that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)}
forms a Berge-path P between u and v. If uv ̸∈ {xa,ab,xb}, then it is easy to see that there is
a path P ′ of length 3 between u and v consisting of the hyperedges of D. Then P together
with P ′ forms a Berge-cycle of length at least 4 in H, a contradiction. On the other hand,
if uv ∈ {xa,ab,xb}, then P must contain at least two hyperedges of H because otherwise
P = {puv} but then puv should have been in D (since by definition D must contain all the
hyperedges of H containing the pair uv); moreover, it is easy to check that between u and
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 57

v there is a Berge-path P ′ of length 2 consisting of the hyperedges of D. Then again, P
together with P ′ forms a Berge-cycle of length at least 4 in H, a contradiction. Therefore,
D′ contains no vertex outside D; so D induces a block of ∂2(H) (which contains |D| − 2
hyperedges of H), as desired.

Case 2. Finally suppose h = xyt for some t ̸∈ S. Let D be the set of all hyperedges of
H containing the pair xy plus the hyperedges xab and yab, and let D be the set of vertices
spanned by the hyperedges of D. Let Vxy = {v | xyv ∈H}. We claim that a ̸∈Vxy and b ̸∈Vxy.
Indeed suppose for the sake of a contradiction that a ∈Vxy. Then the hyperedges xab,yab,xya
are contained in a set of 4 vertices {x,y,a,b}. So by Claim 4.1.6, this set induces a block
of ∂2(H), and we are done. So a ̸∈ Vxy. Similarly, we can conclude b ̸∈ Vxy. Therefore,
|D|=

∣∣Vxy
∣∣+4. On the other hand, |D|=

∣∣Vxy
∣∣+2, so |D|= |D|−2.

We claim that D induces a block of ∂2(H). The proof is very similar to that of Case 1,
but we still give it for completeness. Let D′ be a (maximal) block of ∂2(H) containing D
and suppose for the sake of a contradiction that it contains a vertex p ̸∈ D. Then since D′ is
2-connected, there are two paths P1,P2 in ∂2(H) between p and D, which are vertex-disjoint
besides p. Let V (P1)∩D = {u} and V (P2)∩D = {v}. For each edge xy ∈ E(P1)∪E(P2), fix
an arbitrary hyperedge hxy of H containing xy. It is easy to see that a subset of the hyperedges
{hxy | xy ∈ E(P1)∪E(P2)} forms a Berge-path P between u and v.

If uv ̸= xy, then it is easy to see that there is a path P ′ of length 3 or 4 between u and v
consisting of the hyperedges of D. (Indeed if u,v ∈ Vxy, then P ′ is of length 4, otherwise
it is of length 3.) Then P together with P ′ forms a Berge-cycle of length at least 4 in H, a
contradiction. On the other hand, if uv = xy, then P must contain at least two hyperedges of
H because otherwise P = {puv} but then puv should have been in D (since by definition D
must contain all the hyperedges of H containing the pair uv); moreover, it is easy to check
that between u and v there is a Berge-path P ′ of length 2 consisting of the hyperedges of D.
Then again, P together with P ′ forms a Berge-cycle of length at least 4 in H, a contradiction.
Therefore, D′ contains no vertex outside D; so D induces a block of ∂2(H) (and contains
|D|−2 hyperedges of H), as desired.

Let D1,D2, . . . ,Dp be the unique decomposition of ∂2(H) into 2-connected blocks. In
Case 1 and Case 2 we showed that one of these blocks, (say) D1 = D is such that H[D1]

contains |D1| − 2 hyperedges of H, otherwise, D1 is a set of 4 vertices such that H[D1]

contains exactly |D1| − 1 = 3 hyperedges of H. In all these cases, note that e(H[D1]) ≤
|D1|−1.

Let us contract the vertices of D1 to a single vertex, to produce a new hypergraph H′.
Then it is clear that the block decomposition of ∂2(H′) consists of the blocks D2, . . . ,Dp.
So H′ does not contain any Berge-cycle of length 4 or longer, also; moreover, |V (H′)| =
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58 The Structure of Hypergraphs avoiding long Berge-cycles

|V (H)|−|D1|+1 and e(H′)= e(H)−e(H[D1]). By induction, we have e(H′)≤ |V (H′)|−1.
Therefore,

e(H) = e(H′)+ e(H[D1])≤ |V (H′)|−1+ |D1|−1

= (|V (H)|− |D1|+1)−1+ |D1|−1 = |V (H)|−1.

If e(H) = |V (H)|−1, then we must have e(H′) = |V (H′)|−1 and H[D1] must contain
exactly |D1|−1 hyperedges. As noted before, this is only possible if D1 has 4 vertices and
induces exactly 3 hyperedges of H. Moreover, since equality holds for H′, by induction,
∂2(H′) is connected and for each block Di (with 2 ≤ i ≤ p) of ∂2(H′), Di = K4 and H′[Di]

contains exactly 3 hyperedges. This means for every block D of ∂2(H), we have D = K4 and
H[D] contains exactly 3 hyperedges of H, completing the proof in the case r = 3.

Note that Theorem 1.8.14 easily implies Theorem 1.8.3. In fact, it gives the following
stronger form.

Theorem 4.1.8. Fix k = r + 1 > 2 and let H be an r-uniform hypergraph containing no
Berge-path of length k. Then, e(H)≤ n

k

(k
r

)
= n. Moreover, equality holds if and only if each

connected component D of ∂2(H) is Kr+1, and H[D] = Kr
r+1.

Proof. We proceed by induction on n. The base cases n ≤ r+1 are easy to check. Let H be
an r-uniform hypergraph containing no Berge-path of length k = r+1 such that e(H)≥ n.
Then by Theorem 1.8.14, H contains a Berge-cycle C of length r + 1 or longer. C must
be of length exactly r + 1, otherwise it would contain a Berge-path of length r + 1. Let
v1, . . . ,vr+1 and e1, . . . ,er+1 be the vertices and edges of C where {vi,vi+1} ⊆ ei (indices are
taken modulo r+1). For any i with 1 ≤ i ≤ r+1, if ei contains a vertex v ̸∈ {v1, . . . ,vr+1},
then vi+1ei+1vi+2ei+2 . . .ei−1vieiv forms a Berge-path of length r+1 in H, a contradiction.
Therefore, all of the edges ei (for 1 ≤ i ≤ r+1) are contained in the set S := {v1, . . . ,vr+1}.
That is, H[S] = Kr

r+1. It is easy to see that S forms a connected component in ∂2(H) because
if any hyperedge h of H (with h ̸∈ C) contains a vertex of C, then C can be extended to form
a Berge-path of length r+1.

Let S1,S2, . . . ,St be the vertex sets of connected components of ∂2(H). As noted before,
one of them, say S1, is equal to S. We delete the vertices of S1 from H to form a new
hypergraph H′; note that |V (H′)| = |V (H)|− (r+ 1) and |E(H′)| = |E(H)|− (r+ 1) and
the connected components of ∂2(H′) are S2, . . . ,St . By induction |E(H′)| ≤ |V (H′)|. Thus
|E(H)|= |E(H′)|+(r+1)≤ |V (H′)|+(r+1) = |V (H)|. Moreover, if |E(H)|= |V (H)|,
then |E(H′)|= |V (H′)|, so by the induction hypothesis each connected component Si (i ≥ 2)
of ∂2(H′) is Kr+1, and H′[Si] = Kr

r+1, proving the theorem.
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 59

4.1.3 Extremal hypergraphs without BC≥r+2

We will prove the theorem by induction on n. For the base cases, note that if 1 ≤ n ≤ r then
the statement of the theorem is trivially true. If n = r+1, the statement is true since there are
at most r+1 hyperedges of size r on r+1 vertices. Moreover, equality holds if and only if
H= Kr

r+1.
We will show the statement is true for n ≥ r+2 assuming it is true for all smaller values.

Let H be an r-uniform hypergraph on n vertices having no Berge-cycle of length r+2 or
longer. We show that we may assume the following two properties hold for H.

(1) For any set S ⊆ V (H) of vertices, the number of hyperedges of H incident to the
vertices of S is at least |S|.

Indeed, suppose there is a set S ⊆V (H) with fewer than |S| hyperedges incident to the
vertices of S. If |S|= n we immediately have the required bound on e(H), so assume
n > |S|. We can delete the vertices of S from H to obtain a new hypergraph H′ on
n−|S| vertices. By induction, H′ contains at most r+1

r (n−|S|−1) hyperedges, so H
contains less than r+1

r (n−1−|S|)+ |S|< r+1
r (n−1) hyperedges, as desired.

(2) There is no cut-hyperedge in H.

Indeed, if h ∈ E(H) is a cut-hyperedge, then ∂2(H\{h}) is not a connected graph, so
there are non-empty disjoint sets V1 and V2 such that V (H) =V1 ∪V2, and there are no
edges of ∂2(H\{h}) between V1 and V2. So both hypergraphs H[V1] and H[V2] do not
contain a Berge-cycle of length r+2 or longer. By induction, e(H[V1])≤ r+1

r (|V1|−1)
and e(H[V2])≤ r+1

r (|V2|−1). In total, e(H) = e(H[V1])+ e(H[V2])+1 ≤ r+1
r (|V1|+

|V2|−2)+1 < r+1
r (|V (H)|−1), as desired.

Consider an auxiliary bipartite graph B consisting of vertices of H in one class and
hyperedges of H in the other class, and the edges of B are defined as follows: xh ∈ E(B) if
and only if the vertex x is contained in the hyperedge h.

Then property (1) shows that Hall’s condition holds in B. Therefore, there is a perfect
matching in B. In other words, there exists an injection f : V (H)→ E(H) such that v ∈ f (v).

Given an injection f : V (H)→ E(H) with v ∈ f (v), let P f be a longest Berge-path of the
form v1 f (v1)v2 f (v2) . . .vl−1 f (vl−1)vl where for each 1 ≤ i ≤ l −1, vi+1 ∈ f (vi). Moreover,
among all injections f : V (H) → E(H) with v ∈ f (v), suppose φ : V (H) → E(H) is an
injection for which the path Pφ = v1φ(v1)v2φ(v2) . . .vl−1φ(vl−1)vl is a longest path.

Claim 4.1.9. φ(vl)⊂ {vl−r,vl−r+1, . . . ,vl−1,vl}.
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60 The Structure of Hypergraphs avoiding long Berge-cycles

Proof. First notice that if φ(vl) contains a vertex vi ∈ {v1,v2, . . . ,vl−r−1}, then the Berge-
cycle viφ(vi)vi+1φ(vi+1) . . .vlφ(vl)vi is of length r+2 or longer, a contradiction. Moreover,
if φ(vl) contains a vertex v ̸∈ {v1,v2, . . . ,vl}, then Pφ can be extended to a longer path
v1φ(v1)v2φ(v2) . . .vl−1φ(vl−1)vlφ(vl)v, a contradiction. This completes the proof of the
claim.

By Claim 4.1.9, we know that φ(vl) = {vl−r,vl−r+1, . . . ,vl−1,vl}\{v j} for some l− r ≤
j ≤ l −1.

Claim 4.1.10. For any i ∈ {l − r, l − r+1, . . . , l}\{ j}, we have

φ(vi)⊂ {vl−r,vl−r+1, . . . ,vl−1,vl}.

Proof. When i = l, we know the statement is true. Suppose i ∈ {l − r, l − r+1, . . . , l −1}\
{ j}. Let us define a new injection ψ : V (H) → E(H) as follows: ψ(v) = φ(v) for every
v ̸∈ {v1,v2, . . . ,vl}, and for every v ∈ {v1,v2, . . . ,vi−1}. Moreover, let ψ(vi) = φ(vl) and
ψ(vk) = φ(vk−1) for each l ≥ k ≥ i+1.

Now consider the Berge-path

v1φ(v1)v2φ(v2) . . .viφ(vl)vlφ(vl−1) . . .vi+2φ(vi+1)vi+1,

equivalently v1ψ(v1)v2ψ(v2) . . .viψ(vi)vlψ(vl) . . .vi+2ψ(vi+2)vi+1. This path has the same
length as Pφ , so it is also a longest path. Moreover, notice that the sets of last r + 1
vertices of both paths are the same. Thus we can apply Claim 4.1.9 to conclude that
φ(vi) = ψ(vi+1)⊂ {vl−r,vl−r+1, . . . ,vl−1,vl}, as desired.

Claim 4.1.10 shows that there are r hyperedges (each of size r) contained in the set
S := {vl−r,vl−r+1 , . . . , vl−1,vl} of size r+1. We will apply Lemma 4.1.1 to S.

Claim 4.1.11. The set S = {vl−r,vl−r+1, . . . ,vl−1,vl} induces a block of ∂2(H).

Proof. Since the set S = {vl−r,vl−r+1, . . . ,vl−1,vl} contains r ≥ 3 hyperedges every pair
x,y ∈ S is contained in some hyperedge. Thus ∂2(H[S]) = Kr+1. Consider a (maximal) block
D of ∂2(H) containing S.

Suppose D contains a vertex t ̸∈ S. Then since D is 2-connected, there are two paths
P1,P2 in ∂2(H) between t and S, which are vertex-disjoint besides t. Let V (P1)∩S = {u}
and V (P2)∩S = {v}. For each edge xy ∈ E(P1)∪E(P2), fix an arbitrary hyperedge hxy of H
containing xy. It is easy to see that a subset of the hyperedges {hxy | xy ∈ E(P1)∪E(P2)}
forms a Berge-path P between u and v.
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4.1 Avoiding long Berge-cycles, cases k = r+1 and k = r+2 61

On the other hand, by Lemma 4.1.1, there is a Berge-path P ′ of length r between u
and v consisting of the r hyperedges contained in S. Note that P and P ′ do not share any
hyperedges (indeed, each hyperedge of P contains a vertex not in S, while hyperedges of P ′

are contained in S). Therefore, P ∪P ′ forms a Berge-cycle of length r+2 or longer unless
P consists of only one hyperedge, say h. Note that h contains a vertex x ̸∈ S and u,v ∈ h;
moreover by property (2), h is not a cut-hyperedge of H. So after deleting h from H, the
hypergraph H\{h} is still connected – so there is a (shortest) Berge-path Q in H\{h}
between x and a vertex s ∈ S. (Note that the hyperedges of Q are not contained in S, and as it
is a shortest Berge-path, both u and v do not appear among the “defining" vertices of Q.) The
vertex s is different from either u or v, say s ̸= u without loss of generality. By Lemma 4.1.1,
there is a Berge-path Q′ of length r between s and u (consisting of hyperedges contained in
S). Then, Q,Q′ and h form a Berge-cycle of length at least r+2, a contradiction. Therefore,
D contains no vertex outside S; thus S induces a block of ∂2(H), as required.

Let D1,D2, . . . ,Dp be the unique decomposition of ∂2(H) into 2-connected blocks. Claim
4.1.11 shows that one of these blocks, say D1, is induced by S. Let us contract the vertices
of S to a single vertex, to produce a new hypergraph H′. Then it is clear that the block
decomposition of ∂2(H′) consists of the blocks D2, . . . ,Dp. So H′ does not contain any
Berge-cycle of length r + 2 or longer, also; moreover |V (H′)| = |V (H)| − r. Thus, by
induction, we have e(H′)≤ r+1

r (|V (H′)|−1). Therefore,

e(H)≤ r+1
r

(|V (H′)|−1)+(r+1) =
r+1

r
(|V (H)|−r−1)+(r+1) =

r+1
r

(|V (H)|−1).

Now if e(H) = r+1
r (|V (H)|− 1), then we must have e(H′) = r+1

r (|V (H′)|− 1) and S
must contain all r+1 subsets of size r (i.e., H[S] =H[D1] = Kr

r+1). Moreover, since equality
holds for H′, by induction, ∂2(H′) is connected and for each block Di (with 2 ≤ i ≤ p) of
∂2(H′), Di = Kr+1 and H′[Di] = Kr

r+1. This means that for every block D of ∂2(H), we have
D = Kr+1 and H[D] = Kr

r+1, completing the proof.

4.1.4 A corollary

We note that Theorem 1.8.14 implies Theorem 1.8.3. In fact, it gives the following stronger
form. Here we prove this implication.

Theorem 4.1.12. Fix k = r+ 1 > 2 and let H be an r-uniform hypergraph containing no
Berge-path of length k. Then, e(H)≤ n

k

(k
r

)
= n. Moreover, equality holds if and only if each

connected component D of ∂2(H) is Kr+1, and H[D] = Kr
r+1.
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62 The Structure of Hypergraphs avoiding long Berge-cycles

Proof. We proceed by induction on n. The base cases n ≤ r+1 are easy to check. Let H be
an r-uniform hypergraph containing no Berge-path of length k = r+1 such that e(H)≥ n.
Then by Theorem 1.8.14, H contains a Berge-cycle C of length r + 1 or longer. C must
be of length exactly r + 1, otherwise it would contain a Berge-path of length r + 1. Let
v1, . . . ,vr+1 and e1, . . . ,er+1 be the vertices and edges of C where {vi,vi+1} ⊆ ei (indices are
taken modulo r+1). For any i with 1 ≤ i ≤ r+1, if ei contains a vertex v ̸∈ {v1, . . . ,vr+1},
then vi+1ei+1vi+2ei+2 . . .ei−1vieiv forms a Berge-path of length r+1 in H, a contradiction.
Therefore, all of the edges ei (for 1 ≤ i ≤ r+1) are contained in the set S := {v1, . . . ,vr+1}.
That is, H[S] = Kr

r+1. It is easy to see that S forms a connected component in ∂2(H) because
if any hyperedge h of H (with h ̸∈ C) contains a vertex of C, then C can be extended to form
a Berge-path of length r+1.

Let S1,S2, . . . ,St be the vertex sets of connected components of ∂2(H). As noted before,
one of them, say S1, is equal to S. We delete the vertices of S1 from H to form a new
hypergraph H′; note that |V (H′)| = |V (H)|− (r+ 1) and |E(H′)| = |E(H)|− (r+ 1) and
the connected components of ∂2(H′) are S2, . . . ,St . By induction |E(H′)| ≤ |V (H′)|. Thus
|E(H)|= |E(H′)|+(r+1)≤ |V (H′)|+(r+1) = |V (H)|. Moreover, if |E(H)|= |V (H)|,
then |E(H′)|= |V (H′)|, so by the induction hypothesis each connected component Si (i ≥ 2)
of ∂2(H′) is Kr+1, and H′[Si] = Kr

r+1, proving the theorem.

4.2 Hypergraphs with a circumference at most uniformity

In this Section we prove Theorem 1.8.16, Theorem 1.8.18 and Theorem 1.8.20 using a
powerful Lemma 4.2.2.

We recall Theorem 1.8.16.

Theorem. Let k,n and r be positive integers such that 3 ≤ k < r. Then

exr(n,BC≥k) =

⌊
n−1

r

⌋
(k−1)+1rN∗(n)

If r|(n−1) the only extremal n-vertex r-graphs are the (r+1,k−1)-block trees.

We recall Theorem 1.8.18.

Theorem. Let r > 2 and n be positive integers. Then

exr(n,BC≥r) = max
{⌊

n−1
r

⌋
(r−1),n− r+1

}
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4.2 Hypergraphs with a circumference at most uniformity 63

When n− r+1 > n−1
r (r−1) the only extremal graph is S(r)

n . When n−1
r (r−1)> n− r+1

and r|(n−1) the only extremal graphs are the (r+1,k−1)-block trees.

Remark 4.2.1. In particular when n ≥ r(r−2)+2, we have that exr(n,BC≥r) = n− r+1
and S(r)

n is the only extremal hypergraph.

We recall Theorem 1.8.20.

Theorem. Let k,n and r be positive integers such that 2 ≤ k ≤ r.
Then

exmulti
r (n,BC≥k) =

⌊
n−1
r−1

⌋
(k−1)

If r−1|(n−1) the only extremal graphs with n vertices are the (r,k−1)-block trees.

All three theorems have essentially the same proof since, these results follow from our
Lemma 4.2.2, which to some extent lets us understand the structure of long Berge-cycle free
hypergraphs.

Lemma 4.2.2. Let r,k,n and m be positive integers, with r ≥ k ≥ 3, and let H be an n-vertex
r-graph which is BC≥k-free such that every hyperedge has multiplicity at most m. Then at
least one of the following holds.

i) There exists S ⊆ V of size r−1 such that |Nh(S)| ≤ m. Moreover, if m < k−1 there
exists a set S of size r−1 such that Nh(S) is d ≤ m copies of a hyperedge h and S ⊂ h.

ii) There exists S ⊆V of size r such that |Nh(S)| ≤ k−1.

iii) k = r, m < k− 1, and there exists e ∈ E(H) such that after removing e from H the
resulting r-graph can be decomposed in two r-graphs, S and K sharing one vertex,
such that S is an r-star with at least r−1 edges, the shared vertex is in the center of S ,
e∩V (S) is a subset of the center of S and v(K)≥ 2.

In particular, since no hyperedge can have multiplicity larger than k − 1, by setting
m = k−1 we have that there exists a set S of size r−1 incident with at most k−1 edges.

In Subsection 4.2.1 we deduce Theorems 1.8.16, 1.8.18 and 1.8.20 from Lemma 4.2.2.
We deduce corollaries of those theorems in the end of this chapter Subsection 4.2.3. | We
give the proof of Lemma 4.2.2 in Subsection 4.2.2.
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64 The Structure of Hypergraphs avoiding long Berge-cycles

4.2.1 Proof of Theorem 1.8.16, 1.8.18, 1.8.20

To obtain the extremal constructions in Theorem 1.8.16, first we are going to show that in an
(r+1,k−1)-block tree, for every pair of vertices there exists a Berge-path of length k−1
joining them. For this, we prove the following statement by induction.

Claim 4.2.3. Let r ≥ 4 and H1 a multi (not necessarily uniform) hypergraph such that
v(H1) = r+1 > e(H1)≥ 2, and every hyperedge h ∈ E(H1), h ̸=V (H1), has size at least r
and multiplicity at most one. Then every pair of vertices of H1 are joined by a Berge-path of
length e(H1).

Proof. The proof is by induction on r. The case where r = 4 is simple to check, as well as
the case when e(H1) = 2, since every edge contains all but at most one vertex. So suppose
r > 4 and e(H1) > 2. Let v,u be two distinct vertices, take any hyperedge h containing v,
then choose w ∈H\{v,u}, consider H2 obtain by removing v and h from H1 and by deleting
v from the remaining hyperedges, then H2 satisfy the conditions of the claim, hence there
exists a Berge-path of length e(H2) = e(H1)−1 joining w and u, we can extend this path
with h to be a Berge-path of length e(H1) joining v and u.

Therefore we proved that, when r ≥ 4, in an (r+1,k−1)-block tree for every pair of
vertices from the same block there exists a Berge-path of length k−1 joining them, hence
the statement trivially holds for every pair of vertices too, since an (r+1,k−1)-block tree is
a connected hypergraph. The same is true for (r,k−1)-block trees.

Proof of Theorem 1.8.16. For the lower bound we can observe that an (r+1,k−1)-block
tree on ar + 1 vertices is a BC≥k-free graph with a(k − 1) edges, for n ∈ {ar + 1,ar +
2, . . . ,(a+1)r−1} this proves the lower bound, if n = (a+1)r add an extra edge containing
r−1 new vertices to this construction and we will get a desired lower bound.

For the upper bound, let H is an r-uniform, n-vertex, hypergraph, without a Berge-cycle
of length at least k. The proof is by induction on the number of vertices. The theorem trivially
holds for n ≤ r. So suppose n > r and that the theorem holds for any graph with less than n
vertices, by Lemma 4.2.2 there exists a set S ⊆V such that either |S|= r−1 and |NH(S)|= 1
or |S|= r and |NH(S)|= k−1. Let H′ be the graph induced by V ′ =V\S. Then either

e(H)≤ 1+e(H′)≤ 1+
⌊

n− r
r

⌋
(k−1)+1rN∗(n− r+1)≤

⌊
n−1

r

⌋
(k−1)+ ·1rN∗(n), or

e(H)≤ (k−1)+ e(H′)≤ (k−1)+
⌊

n− (r−1)−1
r

⌋
(k−1)+1rN∗(n− r)

=

⌊
n−1

r

⌋
(k−1)+1rN∗(n).
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4.2 Hypergraphs with a circumference at most uniformity 65

From the above calculations equality holds, only when |S| = r, |NH(S)| = k− 1 and
e(H′) =

⌊n−r−1
r

⌋
(k− 1) or r|n, |S| = r− 1, |NH(S)| = 1 and e(H′) =

⌊n−r−1
r

⌋
(k− 1)+ 1.

If r|n− 1, we will prove that the only extremal hypergraph is an (r+ 1,k− 1)-block tree.
We have |S| = r and by induction H′ is an (r+ 1,k− 1)-block tree. For any hyperedge h
incident with S we have that |h∩V ′| ≤ 1, otherwise, since any two vertices of V ′ are joined
by a Berge-path of length at least k−1 in H′, we have a Berge-cycle of length at least k in
H, a contradiction. If there exist two hyperedges h, h′ incident with S such that, there exists
two distinct vertices v, v′ ∈V ′, such that v ∈ h and v′ ∈ h′ then both h\{v} and h′\{v′} have
r−1 elements in S, then these hyperedges must intersect in a vertex x, x ∈ S. So v,h,x,h′,v′

together with a Berge-path of length at least k−1 joining v to v′ in H′ is a Berge-cycle of
length at least k+1. Therefore every edge in NH(S) is either S or intersects the same vertex
v of V ′, hence H is an (r+1,k−1)-block tree.

Remark 4.2.4. If H is an n-vertex multi r-graph in which each edge has multiplicity at
most m ≤ k−1 and contains no Berge-cycle of length at least k, then Lemma 4.2.2 implies
e(H)≤ max{a(k−1)+bm : ar+b(r−1)< n}, this holds for all k ≥ 2.

Proof of Theorem 1.8.20. This theorem follows by induction in the same way as Theo-
rem 1.8.16 since we can always find a set S of size r − 1 incident with at most k − 1
edges.

Proof of Theorem 1.8.18. The Theorem trivially holds for n ≤ r. So suppose n ≥ r+1 We
will assume by induction that Theorem 1.8.18 holds for n′ < n. Note that for n′ > 2, we have
that any n′ vertex BC≥r-free r-graph have at most n′−2 hyperedges, more over the only such
r-graphs with precisely n′− 2 hyperedges are S(3)

n′ , when r = 3, or an (r+ 1,r− 1)-block
when n′ = r+1, both of which are connected.

Let H be an n-vertex BC≥k-free r-graph, with maximum number of hyperedges. Applying
Lemma 4.2.2, one of i), ii) or iii) must hold.

Suppose iii) holds in Lemma 4.2.2, and let S and K be the given decomposition of H
after removing the hyperedge e. Let v be the only vertex in V (S)∩V (K). If e∩V (S) = {v},
then we can in fact decompose H into S and K′, where K′ is obtain from K by adding e.
By induction we have that e(H)≤ e(S)+ e(K′)≤ v(S)− (r−1)+ v(K)−2 < n− (r−1),
a contradiction. Hence we have that e∩V (S) ̸= {v}. Let u ∈ e∩V (S) and w ∈ e∩V (K),
with both u,w different from v. If v(K) ≥ 3, then e(H) = e(S)+ e(K)+ 1 ≤ v(S)− (r−
1)+v(K)−2+1 = n− (r−1), but equality is not possible, since by connectivity of K there
is a Berge-path from w to v in K and we have a Berge-path of length r−2 in S from v to
u, finally we can use the hyperedge e to connect u to w, we get a Berge-path of length at
least k, a contradiction. So H has n− (r−1) edges only if v(K) = 2. In this case e(K) = 0,
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66 The Structure of Hypergraphs avoiding long Berge-cycles

and therefore e contains the center of S and the only vertex of V (K)\{v}, hence H = S(r)
n .

Finally we have e(H)≤ n− (r−1) and equality holds when H= S(r)
n .

If
⌊n−1

r

⌋
(r−1)≥ n− r+1 then either iii) in Lemma 4.2.2 holds and e(H)≤ n− (r−1),

or the proof of extremal number follows by induction in the similar way as Theorem 1.8.16.
Suppose n− r+ 1 >

⌊n−1
r

⌋
(r− 1). If i) holds in Lemma 4.2.2 then we have e(H) <

n−(r−1) since n′−r+1≥
⌊

n′−1
r

⌋
(r−1) for n′ = n−(r−1), a contradiction. If ii) holds in

Lemma 4.2.2 then we have e(H)< n−(r−1) since n′−r+1 ≥
⌊

n′−1
r

⌋
(r−1) for n′ = n−r,

which is also a contradiction. Therefore iii) holds in Lemma 4.2.2, hence H= S(r)
n .

4.2.2 Proof of Lemma 4.2.2

Definition 4.2.5. A semi-path of length t in a hypergraph, is an alternating sequence of
distinct hyperedges and vertices, e1,v1,e2,v2, . . . ,et ,vt (starting with a hyperedge and ending
in a vertex) such that, v1 ∈ e1 and vi−1,vi ∈ ei, for i = 2,3, . . . t.

Let r ≥ k ≥ 3 be fixed integers and let H be a BC≥k-free multi r-graph, consider a semi-
path P= e1,v1,e2,v2, . . . ,et ,vt of maximal length. Consider P′ the semi-path e1,v1,e2,v2, . . . ,

eℓ,vℓ obtained from the first ℓ vertices and hyperedges of P, where ℓ = min{k− 1, t}, let
F = {e1,e2, . . . ,eℓ} and U = {v1,v2, . . . ,vℓ}, the defining vertices and hyperedges of this
path. Note that |e1 ∩U | ≤ k−1 < r, so e1\U ̸= /0.

First, we will show that any vertex from e1 ∩U is the only incident with the defining
hyperedges from F .

Lemma 4.2.6. Suppose w ∈ e1\U, then NH(w)⊆F . Hence NH(e1\U)⊆F .

Proof. If w is incident with a hyperedge of P not in F , then t ≥ k. Let j ≥ k be the smallest
index such that w is incident with e j, then v1,e2,v2 . . . ,v j−1,e j,w,e1,v1 is a Berge-cycle of
length at least k, a contradiction. If w is incident with an edge e not in the semi-path P, then
e,w,P is a longer semi-path, a contradiction to the maximality of P.

For simplicity Lemma 4.2.6 was stated and proved for the maximal semi-path P , but
similarly, it holds for every maximal semi-path. Hence we may apply Lemma 4.2.6 for other
maximal semi-paths.

For each defining vertex vi, vi ∈ e1∩U , we find another maximal semi-path by rearranging
P, starting at ei, without changing the set of the first ℓ vertices and hyperedges.

Lemma 4.2.7. If for some i we have that vi ∈ e1 ∩U, then NH(ei\U)⊆F .

C
E

U
eT

D
C

ol
le

ct
io

n



4.2 Hypergraphs with a circumference at most uniformity 67

e1 e2 e j ei−1 ei et

v1 v2
v j vi vt

v j u u

e1

ei

Fig. 4.1 Semi-path P1 in the proof of Lemma 4.2.8

Proof. Consider the semi-path ei,vi−1,ei−1,vi−2, . . . ,e2,v1,e1,vi,ei+1,vi+1, . . . ,et ,vt , this
semi-path has length t, so it is maximal, then NH(ei\U)⊆F follows from Lemma 4.2.6 for
this path.

Lemma 4.2.8. If there are two vertices vi,v j ∈ e1 ∩U, with i > j such that (ei ∩ e j)\U ̸= /0,
then NH(vi−1)⊆F and NH(v j)⊆F .

Proof. Fix a vertex u ∈ (ei ∩ e j)\U and consider maximal length semi-paths P1 and P2, (see
Figure 4.1).

P1 = ei−1,vi−2,ei−2,vi−3, . . . ,e j+1,v j,e1v1,e2,v2, . . . ,v j−1,e j,u,ei,vi,ei+1,vi+1, . . . ,et ,vt ,

P2 = e j+1,v j+1,e j+2,v j+2, . . . ,vi−1,ei,u,e jv j−1,e j−1,v j−2, . . . ,e2,v1,e1,vi,ei+1, . . . ,et ,vt .

Applying Lemma 4.2.6 for P1 and P2, we get NH(vi−1)⊆F and NH(v j+1)⊆F .

Let d ≤ m be an integer such that V (e1) =V (e2) = · · ·=V (ed) ̸=V (ed+1).

Claim 4.2.9. If e1 ∩U = {v1,v2,v3, . . . ,vd} then either e1\{vd} is incident with d, d ≤ m,
hyperedges or there exists a set S of size r such that NH(S)⊆ F . In particular if e1 ∩U =

{v1,v2,v3, . . . ,vd} then Lemma 4.2.2 holds.

Proof. First note that the vertices v1,v2, . . . ,vd−1 can be exchanged with the vertices of
e1\U ̸= /0, hence from the Lemma 4.2.6, we have Nh(e1\{vd})⊆F . Suppose w ∈ e1\{vd}
is incident with a hyperedge e j, ℓ ≥ j > d, we may assume w ∈ e1\U , then the semi-path
P1 = e j−1,v j−2,e j−2,v j−3, . . . . . . ,e2,v1,e1,w,e j,v j, . . . ,et ,vt has maximal length. Since
v j−1 is a non-defining vertex in the first hyperedge P1, applying Lemma 4.2.6 to P1, we have
that NH(v j−1)⊆F , therefore the set (v1\{vd})∪{v j−1} is a set of r vertices incident with
at most k−1 hyperedges from F . Otherwise, if there is no such w then we have a set of r−1
vertices, e1\{vd} incident with at most m hyperedges.
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From here we may assume that |e1 ∩U | > d. Let e1 ∩U = {vi0,vi1,vi2, . . . ,vis}, where
1 = i0 < i1 < i2 < · · · < is, define recursively the sets A1 := e1\U and for j = 1, . . . ,s, if
(ei j\U)∩A j = /0, take A j+1 := A j ∪ (ei j\U), otherwise take A j+1 := A j ∪ (ei j\U)∪{vi j−1}.
Note that the only possible defining vertices in A j are vi1−1,vi2−1, . . . ,vi j−1−1, therefore
vi j−1 is not contained in A j. Let us denote A := As+1. We have that

∣∣A j
∣∣ < ∣∣A j+1

∣∣, for all
j ∈ {1,2, . . . ,s}, so |A| ≥ |A1|+ s ≥ r−1, by Lemmas 4.2.6, 4.2.7 and 4.2.8, we have that
NH(A) ⊆ F . If m ≥ k− 1 then A is a set of at least r − 1 vertices incident with at most
m hyperedges, hence Lemma 4.2.2 holds. If |A| ≥ r then A is a set of at least r vertices
incident with at most k − 1 hyperedges, hence Lemma 4.2.2 holds. From here we may
assume m < k− 1 and |A| = r− 1. Observe that |A| = r− 1 is only possible if for every
i = 1,2, . . . ,s, |Ai+1|= |Ai|+1. We will assume, without loss of generality, that among all
possible semi-paths of maximal length, P is one for which |e1\U | is minimal. There are two
cases:

Case 1: There exists an index j ≥ d, such that A j intersects (ei j\U), let j′ be the first such
index, then there is another index d −1 ≤ q < j′ such that (ei′j

\U)∩ (eiq\U) ̸= /0, and
let u be an element in this intersection.

If iq < i j′−1 then viq ̸∈ A from the minimality of j′, and by Lemma 4.2.8, NH(viq)⊆F
so A∪{viq} is a set of vertices, of size r, incident with at most k−1 hyperedges, hence
Lemma 4.2.2 holds.

If d < iq = i j′ −1 then by applying Lemma 4.2.6 to the maximal semi-path,

eiq−1,viq−2,eiq−2,viq−3, . . . ,v2,e2,v1,e1,viq,eiq ,u,eiq+1,viq+1,eiq+2, . . . ,et ,vt

we get NH(viq−1)⊆F , since viq−1 is a non-defining vertex in the first hyperedge. Also
we have viq−1 ̸∈ A from the minimality of j′, hence A∪{viq−1} is a set of r vertices,
incident with at most k−1 hyperedges and therefore Lemma 4.2.2 holds.

Suppose d = iq = i j′ −1. Since |Ad+1|= |Ad|+1, Ad+1 = Ad ∪ (eid\U)∪{vid−1} and
vid−1 /∈ Ad , we have (ed+1\U) ⊆ (e1\U), otherwise Ad+1 would have at least two
new elements, but by the minimality of |e1\U |, we have (ed+1\U) = (e1\U). Fix any
vertex vx, vx ∈U ∩ (ed+1\e1). We need a similar lemma as Lemma 4.2.8.

Claim 4.2.10. Suppose v j ∈ e1 is such that (e j\U) intersects (ex\U) then

Nh(vmax{ j,x}−1)⊆F .

We skip the proof of Claim 4.2.10, since it is similar to the proof of Lemma 4.2.8.
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4.2 Hypergraphs with a circumference at most uniformity 69

Let (e1 ∩U)∪ {vx} = {v j0,v j1, . . . ,v js+1}, where 1 = j0 < j1 < · · · < js+1, define
recursively the following sets B1 = e1\U, and for c = 1,2, . . . ,s+1 let Bc+1 = Bc ∪
(ev jc

\U), if Bc ∩ (ev jc
\U) = /0, otherwise take Bc+1 = Bc ∪{v jc−1}. Finally Bs+2 has

size at least r and is incident with at most k−1 hyperedges, therefore Lemma 4.2.2
holds.

Case 2: For every index j ≥ d, A j and (ei j\U) are disjoint. In this case, by construction, we
have that r − 1 = |A| = |e1\U |+(d − 1)+ |eid\U |+ · · ·+ |eis\U | , this implies that∣∣ei j\U

∣∣= 1 for every j, hence |U | ≥ r−1, but since k−1≥ |U |, we have that k = r and
|U |= r−1. So there exists distinct vertices ud,ud+1, . . . ,ur−1 such that ei =U ∪{ui}
for each i ∈ {d,d +1, . . . ,r−1} and A = {v1,v2, . . . ,vd−1,ud,ud+1, . . . ,ur−1}.

If d > 1, take the maximal semi-path, obtained from P, by changing the vertex vr−2 with
v1 and the vertex v1 with ud , that is e1,ud,e2,v2, . . . ,vr−3,er−2,v1,er−1,vr−1, . . . ,vt . By
Lemma 4.2.6, we have that NH(vr−2)⊆F . Therefore A∪{vr−2} is a set of vertices of
size r incident with at most k−1 hyperedges, thus Lemma 4.2.2 holds. Thus, we can
suppose, that d = 1, and then each ui is vertex of degree one.

We may also assume that the length of P is at least r, otherwise NH(vr−1)⊂F , hence
A∪{vr−1} is a vertex set of size r incident with at most k−1 hyperedges, therefore
Lemma 4.2.2 holds.

Claim 4.2.11. If there exists a hyperedge e, such that e ̸= er and e∩ (U\{vr−1}) ̸= /0
then the vertices in e\U are only incident with e.

Proof. Suppose without loss of generality v1 ∈ e, otherwise we can rearrange the path.
If e is a hyperedge of semi-path P, then e = e j for some j < r, otherwise we have a
Berge-cycle length at least k, a contradiction. If e = e j, j < r then we already deduced
that Claim 4.2.11 holds. If e is a non-defining hyperedge of semi-path P, then consider
P′ obtain by replacing e1 in P with e, from Lemma 4.2.6, a vertex in v ∈ e\U can only
be incident with e,e2,e3, . . . ,er−1, but if v is incident with one of these hyperedges
from e2,e3, . . . ,er−1 then e,e1,e2, . . . ,er−1 together with the vertices v,v1,v2, . . . ,vr−1

in some order would be a Berge-cycle of length r, a contradiction. Finally we have
NH(e\U) = {e}, therefore Claim 4.2.11 holds.

Let h1,h2, . . . ,hp be the hyperedges incident with U\vr−1. If |hi\U | ≥ 2, for some i,
then (e1∪e2∪·· ·∪er−2∪hi)\U is a set of size at least r incident with k−1 hyperedges,
hence Lemma 4.2.2 holds. Otherwise we have |hi\U |= 1, so these hyperedges form an
r-star S with p ≥ r−1 hyperedges. Every hyperedge from E(H)\{er,h1,h2, . . . ,hp}
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70 The Structure of Hypergraphs avoiding long Berge-cycles

can only intersect V (S) in vr−1, by setting K to be the r-graph induce from H by the
vertices {vr−1}∪ (V (H)\V (S)), we get the desired partition of H after removing the
hyperedge er, therefore Lemma 4.2.2 holds.

4.2.3 Corollaries

We note that as a corollary of Theorem 1.8.16 we obtain a slightly stronger version of
Theorem 1.8.1.

Let us recall Corollary 1.8.17.

Corollary. Let k,n and r be positive integer with 3 ≤ k ≤ r. Then

exr(n,BPk) =

⌊
n

r+1

⌋
(k−1)+1(r+1)N∗(n+1)

Proof of Corollary 1.8.17. Let H be an n-vertex r-graph containing no Berge-path of length
k. Define an (r+1)-graph H′ by adding a new vertex v to the vertex set of H and extending
every hyperedge of H with v.

If H′ is BC≥k-free, then from Theorem 1.8.16, we have

e(H) = e(H′)≤
⌊

n+1−1
r+1

⌋
(k−1)+1(r+1)N∗(n+1) =

⌊n
r

⌋
(k−1)+1(r+1)N∗(n+1).

Suppose H′ contains a copy of a Berge-cycle v1,h1,v2 . . . ,hℓ−1,vℓ,hℓ,v1, of length ℓ, for
some ℓ ≥ k. If v is one of the defining vertices, suppose without loss of generality v = v1,
and let h′i = hi\{v} for each i = 1,2 . . . ℓ then

∣∣(h′1 ∪h′k)\{v2, . . . ,vk}
∣∣≥ r+1− (k−1)≥ 2

and that set intersects both h′1 and h′k hyperedges. Therefore we can find two distinct vertices
u∈ h′1 and u′ ∈ h′k different from all vi, i∈ {1,2, . . . ,k} then u,h′1,v2,h′2,v3, . . . ,h′k−1,vk,h′k,u

′

is a Berge-path of length k in H, a contradiction. If v is not one of the defining vertices, then
a similar argument leads us to contradiction.

As a corollary of Theorem 1.8.20 we obtain a version of Theorem 1.8.1 with multiple
hyperedges.

Let us recall Corollary 1.8.21.

Corollary. Let k,n and r be positive integer with 2 ≤ k ≤ r then

exmulti
r (n,BPk) =

⌊n
r

⌋
(k−1).
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4.2 Hypergraphs with a circumference at most uniformity 71

Proof of Corollary 1.8.21. This follows in a similar way as the previous corollary, by con-
structing a BC≥k-free r-multi-graph H′.

Hence, by Theorem 1.8.20, e(H) = e(H ′)≤
⌊

n+1−1
r+1−1

⌋
(k−1) =

⌊n
r

⌋
(k−1).

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 5

Connected Hypergraphs without long
Berge-paths

If I feel unhappy, I do mathematics to
become happy. If I am happy, I do math-
ematics to keep happy.

Alfréd Rényi

In this Chapter we prove the analogues of Theorem 1.3.7 for higher uniformity. Let us
recall Theorem 1.3.7.

Theorem (Kopylov [86], Balister, Győri, Lehel, Schelp [9] ). Let n > ℓ≥ 3

exconn(n,Pℓ) = max
{

e(Gn,ℓ,1),e(Gn,ℓ,⌊ ℓ−1
2 ⌋)

}
.

Extremal graphs are Gn,ℓ,1 or Gn,ℓ,⌊ ℓ−1
2 ⌋, see Definition 1.3.6.

In the following section we prove Theorem 1.8.4.

Theorem (Győri, Methuku, Salia, Tompkins, Vizer [75]). Let H′
n,k be a largest r-uniform

connected n-vertex hypergraph with no Berge-path of length k, then

lim
k→∞

lim
n→∞

∣∣∣E(H′
n,k)
∣∣∣

kr−1n
=

1
2r−1(r−1)!

.

We omit the proof of Theorem 1.8.10.
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74 Connected Hypergraphs without long Berge-paths

If k is odd. If k is even.

Fig. 5.1 The hypergraphs Hn,⌊ k−1
2 ⌋ and Hn,⌊ k−1

2 ⌋,2.

Theorem (Győri, Salia , Zamora [75]). For all integers k,r with k ≥ 2r + 13 ≥ 18 there
exists nk,r such that if n > nk,r, then we have

• exconn
r (n,BPk) = |Hn,⌊ k−1

2 ⌋|, if k is odd, and

• exconn
r (n,BPk) = |Hn,⌊ k−1

2 ⌋,2|, if k is even.

Depending on the parity of k, the unique extremal hypergraph is Hn,⌊ k−1
2 ⌋ or Hn,⌊ k−1

2 ⌋,2, (see
Figure 5.1).

Instead we prove a stability version of Theorem 1.8.10, in Section 5.2.

5.1 Proof of asymptotic

Here we start to prove Theorem 1.8.4. We will use the following simple corollary of Theorem
1.5.4.

Corollary 5.1.1. Let G be a connected graph on n vertices with no Pk, then G has at most

kr−1n
2r−1(r−1)!

r-cliques if n ≥ ck,r for some constant ck,r depending only on k and r.

Proof. From Theorem 1.5.4, it follows that for large enough n, the number of r-cliques is at
most (

n−
⌊

k−1
2

⌋)(⌊k−1
2

⌋
r−1

)
+

(⌊k−1
2

⌋
r

)
+

(⌊k−1
2

⌋
r−2

)
< n
( k

2
r−1

)
.

Given an r-uniform hypergraph H we define the shadow graph of H, denoted ∂H to be
the graph on the same vertex set with edge set:

E(∂H) := {{x,y} : {x,y} ⊂ e ∈ E(H)}.
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5.1 Proof of asymptotic 75

Definition 5.1.2. If r = 3, then we call an edge e ∈ E(∂H) fat if there are at least 2 distinct
hyperedges h1,h2 with e ⊂ h1,h2. If r > 3, then we call an edge e ∈ E(∂H) fat if there are at
least k distinct hyperedges h1,h2, . . . ,hk in H with e ⊂ hi for 1 ≤ i ≤ k.

We call an edge e ∈ E(∂H) thin if it is not fat.

Thus, the set E(∂H) decomposes into the set of fat edges and the set of thin edges. We
will refer to the graph whose edges consist of all fat edges in ∂H as the fat graph and denote
it by F .

Lemma 5.1.3. There is no Pk in the fat graph F of the hypergraph H.

Proof. Suppose we have such a Pk with edges e1,e2, . . . ,ek. For r = 3, if a hyperedge contains
two edges from the path, then it must contain consecutive edges ei,ei+1. Select hyperedges
h1,h2, . . . ,hk where ei ⊂ hi in such a way that hi+1 is different from hi for all 1 ≤ i ≤ k−1,
and these edges yield the required Berge-path.

Suppose now that r > 3, we will find a Berge-path of length k in H, with a greedy
argument. For e1, select an arbitrary hyperedge h1 containing it. Suppose we have found a
distinct hyperedge hi containing the fat edge ei for all 1 ≤ i < i∗. Since the edge ei∗ is fat,
there are at least k different hyperedges h1

i∗,h
2
i∗, . . . ,h

k
i∗ containing it. Select one of them, say

h j
i∗ , which is not equal to any of h1,h2, . . . ,hi∗−1. Thus, we may find distinct hyperedges

h1,h2, . . . ,hk where ei ⊂ hi for 1 ≤ i ≤ k, and thus, we have a Berge-path of length k.

We call a hyperedge h ∈ E(H) fat if h contains no thin edge. Let F denote the hypergraph
on the same set of vertices as H consisting of the fat hyperedges, then

Lemma 5.1.4. If r = 3, then

|E(H\F)| ≤ (k−1)n
2

.

If r > 3, then

|E(H\F)| ≤ (k−1)2n
2

.

Proof. Arbitrarily select a thin edge from each h ∈ H\F . Let G be the graph consisting
of the selected thin edges. We know that each edge in G was selected at most once if r = 3
and at most k− 1 times in the r > 3. Thus, we have that |H\F| ≤ |E(G)| for r = 3 and
|H\F| ≤ (k− 1) |E(G)| for r > 3. Moreover, G is Pk-free since a Pk in G would imply a
Berge Pk in H by considering any hyperedge from which each edge was selected. It follows
by Theorem 1.3.1 that |E(G)| ≤ (k−1)n

2 , so |H\F| ≤ (k−1)n
2 if r = 3, and |H\F| ≤ (k−1)2n

2
if r > 3.
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76 Connected Hypergraphs without long Berge-paths

Any hyperedge of F contains only fat edges, so it corresponds to a unique r-clique in F .
This implies the following.

Observation 5.1.5. The number of hyperedges in E(F) is at most the number of r-cliques in
the fat graph F.

To this end we will upper bound the number of r-cliques in F , by making use of the
following important lemma.

Lemma 5.1.6. There are no two disjoint cycles of length at least k/2+1 in the fat graph F.

Proof. Let C and D be two such cycles. By connectivity, there are vertices v ∈ V (C) and
w ∈V (D) and a Berge-path from v to w in H containing no additional vertices of C or D as
defining vertices. This path can be extended using the hyperedges containing the edges of C
and D to produce a Berge-path of length k in H (note that here we used that the edges of C
and D are fat), a contradiction.

Assume that F has connected components C1,C2, . . . ,Ct . Trivially,

Nr(F) =
t

∑
i=1

Nr(Ci). (5.1)

If |V (Ci)| ≤ k/2, then trivially

Nr(Ci)≤
(
|V (Ci)|

r

)
≤ |V (Ci)|r

r!
≤ kr−1 |V (Ci)|

2r−1(r−1)!
.

So we can assume |V (Ci)| ≥ k/2. By Lemma 5.1.6, we have that for all but at most one i, Ci

does not contain a cycle of length at least k/2+1. So by Corollary 1.5.5, for all but at most
one i, say i0, we have

Nr(Ci)≤
|V (Ci)|−1

k/2−2

(
k/2−1

r

)
≤ kr−1 |V (Ci)|

2r−1(r−1)!
+O(kr−2).

If |V (Ci0)| ≥ ck,r, then by Lemma 5.1.3 and by Corollary 5.1.1 we have

Nr(Ci0)≤
kr−1 |V (Ci)|
2r−1(r−1)!

.

Otherwise, Nr(Ci0)≤
(|V (Ci0)|

r

)
= o(n). Therefore, by (5.1), we have

Nr(F) =
t

∑
i=1

Nr(Ci)≤

C
E

U
eT

D
C

ol
le

ct
io

n



5.2 Proof of stability 77

≤
t

∑
i=1

(
kr−1 |V (Ci)|
2r−1(r−1)!

+O(kr−2)

)
+o(n)≤ kr−1n

2r−1(r−1)!
+O(kr−2)n+o(n).

Therefore, by Observation 5.1.5,

|E(F)| ≤ Nr(F)≤ kr−1n
2r−1(r−1)!

+O(kr−2)n+o(n). (5.2)

Since |E(H)|= |E(H\F)|+ |E(F)|, adding up the upper bounds in (5.2) and Lemma
5.1.4, we obtain the desired upper bound on |E(H)|.

5.2 Proof of stability

Let us start with recalling Definition 1.8.9.

Definition 5.2.1. For integers n,a ≥ 1 and b1, . . . ,bt ≥ 2 with n ≥ 2a+∑
t
i=1 bi let us denote

by Hn,a,b1,b2,...,bt the following r-uniform hypergraph.

• Let the vertex set of Hn,a,b1,b2,...,bt be A∪L∪
⋃t

i=1 Bi, where A,B1,B2, . . . ,Bt and L are
pairwise disjoint sets of sizes |A|= a, |Bi|= bi (i = 1,2, . . . , t) and |L|= n−a−∑

t
i=1 bi.

• Let the hyperedges of Hn,a,b1,b2,...,bt be

(
A
r

)
∪

t⋃
i=1

(
A∪Bi

r

)
∪
{
{c}∪A′ : c ∈ L,A′ ∈

(
A

r−1

)}
.

Fig. 5.2 The hypergraph Hn,a,b1,b2,...,bt .

The result here provides a stability version of Theorem 1.8.10 and also an extension of
Theorem 1.9.2 for uniformity at least 3.
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78 Connected Hypergraphs without long Berge-paths

First we state a theorem for hypergraphs with minimum degree at least 2, and then in
full generality. In the proof, the hypergraphs Hn, k−3

2 ,3 and Hn, k−3
2 ,2,2 will play a crucial

role in case k is odd, while if k is even, then the hypergraphs Hn,⌊ k−3
2 ⌋,4, Hn,⌊ k−3

2 ⌋,3,2 and
Hn,⌊ k−3

2 ⌋,2,2,2 will be of importance (Definition 1.8.9), note that all of them are n-vertex,
maximal, BPk-free hypergraphs. In both cases, the hypergraph listed first contains the largest
number of hyperedges. This number gives the lower bound in the following theorem. We
recall Theorem 1.9.3.

Theorem (Gerbner, Nagy, Patkós, Salia, Vizer ,[57]). For any ε > 0 there exist integers
q = qε and nk,r such that if r ≥ 3, k ≥ (2+ ε)r+q, n ≥ nk,r and H is a connected n-vertex,
r-uniform hypergraph with minimum degree at least 2, without a Berge-path of length k, then
we have the following.

• If k is odd and |H|> |Hn, k−3
2 ,3|= (n− k+3

2 )
( k−3

2
r−1

)
+
( k+3

2
r

)
, then H is a sub-hypergraph

of Hn, k−1
2

.

• If k is even and |H| > |Hn,⌊ k−3
2 ⌋,4| = (n−⌊k+5

2 ⌋)
(⌊ k−3

2 ⌋
r−1

)
+
(⌊ k+5

2 ⌋
r

)
, then H is a sub-

hypergraph of Hn,⌊ k−1
2 ⌋,2 or H+

n,⌊ k−1
2 ⌋.

Let H′
n′,a,b1,b2,...,bt

be the class of hypergraphs that can be obtained from Hn,a,b1,b2,...,bt for
some n ≤ n′ by adding hyperedges of the form A′

j ∪D j, where the D j’s partition [n′]\ [n], all
D j’s are of size at least 2 and A′

j ⊆ A for all j. Let us define H+
n′,⌊ k−1

2 ⌋ analogously. We recall

Theorem 1.9.4.

Theorem 5.2.2 (Gerbner, Nagy, Patkós, Salia, Vizer ,[57]). For any ε > 0 there exist integers
q = qε and nk,r such that if r ≥ 3, k ≥ (2+ ε)r+q, n ≥ nk,r and H is a connected n-vertex,
r-uniform hypergraph without a Berge-path of length k, then we have the following.

• If k is odd and |H|> |Hn, k−3
2 ,3|, then H is a sub-hypergraph of some H′ ∈H′

n, k−1
2

.

• If k is even and |H|> |Hn,⌊ k−3
2 ⌋,4|, then H is a sub-hypergraph of some H′ ∈H′

n,⌊ k−1
2 ⌋,2

or H+
n,⌊ k−1

2 ⌋.

We start the proof of Theorem 1.9.3 with a technical lemma that will be crucial later.

Lemma 5.2.3. Let H be a connected r-uniform hypergraph with minimum degree at least
2 and with longest Berge-path and Berge-cycle of length ℓ−1. Let C be a Berge-cycle of
length ℓ−1 in H, with defining vertices V = {v1,v2, . . . ,vℓ−1} and defining edges E(C) =

{e1,e2, . . . ,eℓ−1} with vi,vi+1 ∈ ei (modulo ℓ−1). Then, we have
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5.2 Proof of stability 79

(i) every hyperedge h ∈H\C contains at most one vertex from V (H)\V .

(ii) If u,v are not necessarily distinct vertices from V (H) \V , then there cannot exist
distinct hyperedges h1,h2 ∈H\C and an index i with v,vi ∈ h1 and u,vi+1 ∈ h2.

(iii) If there exists a vertex v∈V (H)\V and there exist different hyperedges h1,h2 ∈H\C
with v,vi−1 ∈ h1 and v,vi+1 ∈ h2, then there exists a cycle of length ℓ−1 not containing vi as
a defining vertex.

Proof. We prove (i) by contradiction. Suppose h∈H\C contains two vertices from V (H)\V .
We distinguish two cases.

Case 1. Hyperedge h contains a vertex u ̸∈ V and a different vertex v ∈ ei \V for
some i ≤ ℓ. Then vi+1,ei+1,vi+2, . . . ,vℓ,eℓ,v1,e1, . . . ,vi,ei,v,h,u is a path of length ℓ, a
contradiction.

Case 2. Hyperedge h contains two vertices u and v from V (H)\V (C). We consider the
hypergraph H′ obtained from H by removing a hyperedge h.

Case 2.1. There is a Berge-path in H′ from {v,u} to the cycle C, in particular, to a
defining vertex of C. Then let P be a shortest such path, let us assume P is from v to vi.
Without loss of generality we may suppose that P does not contain ei as a defining hyperedge,
(it is possible P contains ei−1 as a defining hyperedge). Then u,h,v,P,vi,ei,vi+1, . . . ,ei−2,vi−1

is a Berge-path of length at least ℓ, contradicting the assumption that the longest path in H is
of length ℓ−1.

Case 2.2. Suppose there is no Berge-path from the vertex v to the cycle C in H′.
However by connectivity of H, there is a shortest path P from v to a defining vertex of C,
say vi and it does not use any defining hyperedge of C but possibly ei−1. Also, h is not
a hyperedge of P. There exists a hyperedge h′ ̸= h containing v, as the minimum degree
is at least 2 in H. Note that h′ is not a hyperedge of the path P, even more all vertices
of h′ different from v are not defining vertices of P or C. Fix a vertex u′ ∈ h′ \ {v}. Then
u′,h′,P,ei,vi+1, . . . ,ei−2,vi−1 is a Berge-path of length at least ℓ, a contradiction.

To prove (ii), assume first that u = v. Then one could enlarge C by removing ei and
adding h1,v,h2 to obtain a longer cycle, a contradiction. Assume now u ̸= v. Then removing
ei and adding h1,v and h2,u, one would obtain a path of length ℓ, a contradiction.

Finally to show (iii), we can replace ei−1,vi,ei in C by h1,v,h2 to obtain the desired
cycle.

We say that an r-uniform hypergraph H has the set degree condition, if for any set X of
vertices with |X | ≤ k/2, we have |E(X)| ≥ |X |

(⌊ k−3
2 ⌋

r−1

)
, i.e., the number of those hyperedges
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80 Connected Hypergraphs without long Berge-paths

that are incident to some vertex in X is at least |X |
(⌊ k−3

2 ⌋
r−1

)
. We first prove Theorem 1.9.3 for

such hypergraphs.

Proof of Theorem 1.9.3 for hypergraphs having the set degree condition. Let a hypergraph
H be an n-vertex BPk-free with the set degree condition. Also, assume |H| is as claimed in
the statement of the theorem. However, for the most part of the proof, we will only use the
set degree condition.

Claim 5.2.4. Let P be a longest Berge-path in H with defining vertices U = {u1, . . . ,uℓ} and
defining hyperedges F = { f1, f2, . . . , fℓ−1} in this given order. Suppose P minimizes x1 + xℓ
among longest Berge-paths of H, where xi for i ∈ [ℓ], denotes the number of hyperedges in F
incident to ui. Then the sizes of NH\F(u1) and NH\F(uℓ) are at least

⌊k−3
2

⌋
.

Proof of Claim 5.2.4. Observe that the statement is trivially true for r ≥ 4 and for arbitrary
longest path, as by the set degree condition, there exist at least

(⌊ k−3
2 ⌋

r−1

)
− k+1 hyperedges in

H\F incident to u1. This is strictly greater than
(⌊ k−5

2 ⌋
r−1

)
if r ≥ 4 and k ≥ (2+ ε)r+q, for

large enough q, hence |NH\F(u1)|> k−5
2 , finishing the proof for r ≥ 4.

Thus we can assume that r = 3. Let P be a longest Berge-path in H, minimizing x1 + xℓ.
First we claim that if u1 ∈ fi then xi ≥ x1. Note that the Berge-path

ui, fi−1,ui−1, fi−2,ui−2, . . . ,u2, f1,u1, fi,ui+1, fi+1, . . . ,uℓ, fℓ−1,uℓ

is also a longest Berge-path, with the same set of defining vertices and defining hyperedges
and endpoint xℓ, hence by the minimality of the sum x1 + xℓ, the number of hyperedges from
F incident to ui is at least x1.

This means that if we consider all possible Berge-paths obtained from P by the way
described above (including itself), then the number of pairs (u, f ), where u ∈U , f ∈ F and
u ∈ f , is at least x2

1. On the other hand, this number is upper bounded by 3|F|= 3(ℓ−1),
hence we have x2

1 ≤ 3(ℓ−1)≤ 3(k−1), therefore x1 ≤
√

3(k−1). The same holds for the
other end vertex uℓ and so for xℓ by symmetry.

Since the degree of u1 is at least
(⌊ k−3

2 ⌋
2

)
, out of which at most

√
3(k−1) of the hyper-

edges are defining hyperedges, the degree of u1 in H\F is at least(⌊k−3
2

⌋
2

)
−
√

3(k−1)>
(⌊k−3

2

⌋
−1

2

)
,

if k ≥ 21. Thus |NH\F(u1)| ≥
⌊k−3

2

⌋
and in the same way we have |NH\F(ul)| ≥

⌊k−3
2

⌋
.
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5.2 Proof of stability 81

Claim 5.2.5. Let ℓ−1 be the length of the longest Berge-path in H. Then ℓ≥ k−3 and H
contains a Berge-cycle of length ℓ−1.

Proof of Claim 5.2.5. Let u1, f1,u2, f2, . . . ,uℓ−1, fℓ−1,uℓ be a longest Berge-path given by
Claim 5.2.4 with defining hyperedges F = { f1, f2, . . . , fℓ−1} and defining vertices U =

{u1,u2, . . . ,uℓ}.
For E ⊆ E(H) and an integer j with 1 ≤ j ≤ ℓ, let S j,E denote the set of indices of

vertices in U ∩NH\E(u j), and we simply denote S j,F by S j. In particular S j denotes the set of
indices i such that there is a hyperedge of H that contains both ui and u j and is not a defining
hyperedge of the path. For any set S of integers let S− := {a : a> 0, a+1∈ S}, S−− = (S−)−.
The operations + and ++ are defined analogously.

To start the proof, observe first that H cannot contain a Berge-cycle C of length ℓ. Indeed,
the hyperedges of such a cycle contain at most ℓ(r−1) vertices. Therefore there is a vertex
v ∈ V (H)\ V (C), then as H is connected, there exists a path from v to C and we obtain a
path of length at least ℓ, contradicting our assumption on the length of the longest path.

If ℓ ∈ S1 or equivalently 1 ∈ Sℓ, then a hyperedge showing this, together with F
forms a Berge-cycle of length ℓ in H. So we can assume S1,Sℓ ⊆ {2, . . . , ℓ− 1} and so
S−1 ⊆ {1,2, . . . , ℓ− 1}.

If S−1 ∩Sℓ ̸= /0 (or symmetrically S1 ∩S+ℓ ̸= /0), then H contains a Berge-cycle of length
ℓ. Indeed, if i ∈ S−1 ∩ Sℓ, then there are hyperedges e and e′ in H\F with u1,ui ∈ e and
uℓ,ui−1 ∈ e′. Then

ui−1, fi−2,ui−2, . . . , f2,u2, f1,u1,e,ui, fi+1,ui+2, . . . , fℓ−1,uℓ,e′

is a Berge-cycle of length ℓ. (Note that e and e′ are distinct hyperedges as ℓ ̸∈ S1.) Note that
by Claim 5.2.4, we have |Sℓ|, |S−1 | ≥

⌊k−3
2

⌋
. So to avoid S−1 ∩Sℓ ̸= /0, we have ℓ≥ k−3.

The exact same argument shows that if S−−
1 ∩Sℓ ̸= /0 or symmetrically S1∩S++

ℓ ̸= /0, then
H contains a Berge-cycle of length ℓ−1 and we are done in this case.

For two indices x < y ∈ Sℓ, let us introduce the relation x ∼ y if S1 ∩ (x,y] = /0. Clearly,
∼ is an equivalence relation. Assume Sℓ has m1 equivalence classes. Also, we say that a
maximal subset of consecutive integers in Sℓ is an interval of Sℓ. As S+ℓ ∩S1 = /0 by the above,
elements of the same interval belong to the same equivalence class. Let m2 be the number
of intervals in Sℓ. If H does not contain cycles of length ℓ and ℓ−1, then for the maximal
element z of each equivalence class, we have that z+1,z+2 /∈ S1 and so by the definition of
equivalence classes z+1,z+2 /∈ Sℓ. Moreover, if an element z belongs both to S1 and Sℓ,
then z is the smallest element of an equivalence class. Also if z is the largest element of an
interval that is not the rightmost interval in an equivalence class, then z+1 /∈ S1 ∪Sℓ. These
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82 Connected Hypergraphs without long Berge-paths

observations show that 2⌊k−3
2 ⌋+m1 −2+(m2 −m1)≤ ℓ−2 holds. As ℓ≤ k, we must have

m2 ≤ 4.
Similarly as in the proof of Claim 5.2.4 we can see that for any j ∈ S−1 , the vertex u j

is the endpoint of a longest path F j with other end vertex uℓ and with defining vertex set
U . Observe that the neighborhood Sℓ of uℓ with respect to the non-defining hyperedges of
F and F j is the same, as the single hyperedge h ∈ F j \F contains u1 and therefore cannot
contain uℓ without creating a cycle of length ℓ. Therefore S j,F j ⊆U and similarly as above if
[(S−ℓ ∪S−−

ℓ )∩ (S+ℓ ∪ S++
ℓ )]∩ S j,F j ̸= /0, then H contains a Berge-cycle of length ℓ or ℓ−1.

Let S∗ := (S−ℓ ∪S−−
ℓ )∩ (S+ℓ ∪S++

ℓ ) then |S∗| ≥ |Sℓ|−2m2 ≥
⌊k−3

2

⌋
−8. Let US−1

:= {ui :
i ∈ S−1 } and consider E(US−1

). Observe that all but one of the defining hyperedges of Fi are
in F , thus there are at most |F|+ |US−1

| ≤ k−1+ |S−1 | hyperedges altogether in E(US−1
) that

are defining hyperedges of F or an Fi. From above, all other hyperedges in E(US−1
) are

completely in U \S∗, thus we have

E(US−1
)⊆

(
U \S∗

r

)
∪F ∪

⋃
x∈S−1

Fx.

By the set degree condition and the above, we must have

|S−1 |
(⌊k−3

2

⌋
r−1

)
≤ |E(US−1

)| ≤
(

k−
⌊k−3

2

⌋
+8

r

)
+ k−1+ |S−1 |. (5.3)

Using
⌊k−3

2

⌋
≤ |S−1 |,

(a
r

)
= a

r

(a−1
r−1

)
and (a+1

r−1)
( a

r−1)
= a+1

a−r+2 ≤ a
a−r , and writing k = αr we have

(
k−
⌊k−3

2

⌋
+8

r

)
=

k−
⌊k−3

2

⌋
+8

r

(
k−
⌊k−3

2

⌋
+7

r−1

)
≤
(

k/2+9
r

)(⌊k+17
2

⌋
r−1

)
=
(

α

2
+9/r

)(⌊k+17
2

⌋
r−1

)
≤
(

α

2
+9/r

)(
α

α −2

)10(⌊k−3
2

⌋
r−1

)
.

(5.4)

Therefore (5.3), (5.4) and k−1+ |S−1 | ≤ 2k = 2αr implies αr/2−2 ≤ (α

2 +9/r)( α

α−2)
10 +

2α . This shows that for any ε > 0, there is an r0 such that if r > r0, then α < 2+ ε must
hold, a contradiction. For the finitely many smaller values of r, the above inequality gives an
upper bound βr for α = k/r, which might be larger than 2+ ε . In that case we can choose
qε := maxr≤r0 βrr. Then we have k > qε ≥ αr = k, a contradiction.
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5.2 Proof of stability 83

Note that the cycle C given by Claim 5.2.5 is a longest Berge-cycle in H and let its defining
vertices and defining hyperedges be V := {u1,u2, . . . ,uℓ−1} and E(C) := {e1,e2, . . . ,eℓ−1},
respectively, with ui,ui+1 ∈ ei. We have ℓ is either k−3, k−2, k−1 or k by Claim 5.2.5.
Let us call ui−1 and ui+1 the neighbors of ui on C.

5.2.1 Preliminary technical claims

By Lemma 5.2.3 (i), for any vertex w ∈ V (H) \V we have NH\C(w) ⊆ V . For any vertex
w ∈V (H)\V , we partition NH\C(w) into two parts the following way: let Mw denote the set
of vertices v ∈V such that there exists exactly one hyperedge in H\C containing both w and
v, and let Dw denote the set of those vertices v ∈V for which there exist at least 2 hyperedges
in H\C containing both v and w.

Claim 5.2.6. For any w and w′ with w,w′ ∈V (H)\V and not necessarily distinct, we have
(i) If u j ∈ NH\C(w), u j+1 ∈ NH\C(w′), then w = w′, u j,u j+1 ∈ Mw and there exists a

non-defining hyperedge h with w,u j,u j+1 ∈ h.
(ii) If u j ∈ NH\C(w), u j+2 ∈ Dw, then there exists a cycle C′ of length ℓ− 1 in H such

that the defining vertices of C′ are those of C but u j+1 replaced by w.

Fig. 5.3 Sketch of the proof of Claim 5.2.6.

Proof. Let u j ∈ NH\C(w), u j+1 ∈ NH\C(w′). If w ̸= w′, then for the hyperedges h,h′ ∈H\C
with u j,w ∈ h and u j+1,w′ ∈ h′, we have h ̸= h′, from Lemma 5.2.3 (i). But then

w′,h′,u j+1,e j+1,u j+2, . . . ,uℓ−1,eℓ−1,u1,e1, . . . ,u j,h,w
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84 Connected Hypergraphs without long Berge-paths

is a Berge-path of length ℓ, see Figure 5.3, a contradiction. So w = w′, and if there exist h ̸= h′

with u j,w ∈ h and u j+1,w ∈ h′, then the Berge-path presented above is in fact a Berge-cycle
that is longer than C, a contradiction. This proves (i).

For the second part of the claim, observe that if u j ∈ NH\C(w) and u j+2 ∈ Dw, then there
exist two distinct hyperedges h,h′ ∈ H\C such that u j,w ∈ h and u j+2,w ∈ h′, so in C we
can replace e j,u j+1,e j+1 by h,w,h′ to obtain desired cycle C′, see Figure 5.3.

Claim 5.2.7. Suppose ui−1,ui+1,u j ∈ Dw are three distinct vertices for some w ∈V (H)\V
and let w∗ ∈V (H)\V be a vertex distinct from w. Then we have the following.

(i) There is no hyperedge h ∈H\C with ui,u j−1 ∈ h nor with ui,u j+1 ∈ h.
(ii) If u j+2 ∈ NH\C(w), then ei−1,ei do not contain u j+1.
(iii) Hyperedges ei−1 and ei are not incident with the vertices w,w∗.
(iv) Suppose ut+1 ∈ Dw∗ or ut−1 ∈ Dw∗ for some t ̸= i. Then there is no h ∈H\C incident

to ui and ut .
(v) The hyperedges e j−1,e j are not incident with ui.

Fig. 5.4 Sketch of the proof of Claim 5.2.7.

Proof. We start with the proof of (i), see Figure 5.4 (i). Suppose by contradiction that
ui,u j−1 ∈ h ∈ H\C. Then by Claim 5.2.6 (i), we have w /∈ h (as otherwise ui,ui−1 ∈ Mw,
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5.2 Proof of stability 85

contradicting ui−1 ∈ Dw). Furthermore, as ui+1,u j ∈ Dw, there exist two distinct hyperedges
h′,h′′ ∈H\C with ui+1,w ∈ h′ and u j,w ∈ h′′. Using the fact that u j−1 and ui+1 are different
vertices as there can not be neighboring vertices in Dw by Lemma 5.2.3 (ii), we have that

ui−1,ei−1,ui,h,u j−1,e j−2,u j−2, . . . ,ui+1,h′,w,h′′,u j,e j,u j+1, . . . ,ei−2

is a Berge-cycle longer than C, a contradiction. Similarly we can extend the cycle C if
ui,u j+1 ∈ h ∈ H \ C. This proves (i).

To show (ii) see Figure 5.4 (ii), it is enough to get a contradiction if ei contains u j+1,
since the other case ei−1 contains u j+1 is symmetric. We have two non-defining distinct
hyperedges, a hyperedge h′′ incident to w and u j+2 and a hyperedge h′ incident to w and ui+1

as ui+1 ∈ Dw. Then

ui,ei,u j+1,e j,u j,e j−1, . . . ,ei+1,ui+1,h′,w,h′′,u j+2,e j+2, . . . ,ui−2,ei−2,ui−1,ei−1

is a Berge-cycle longer than C, a contradiction.

To show statement (iii), suppose first w∗ ∈ ei. Then for a non-defining hyperedge h
incident to w and ui+1, we have that w∗,ei,ui,ei−1,ui−1, . . . ,ui+1,h,w is a path of length
ℓ - a contradiction. If w∗ ∈ ei−1, then similarly, for a non-defining hyperedge h incident
to w and ui−1, we have that w∗,ei−1,ui,ei,ui+1, . . . ,ei−2,ui−1,h,w is a path of length ℓ - a
contradiction. If w ∈ ei−1, then we have a contradiction since there exists a cycle longer
than C, which is obtained from C by exchanging the edge ei−1 with h,w,ei−1, where h is a
non-defining hyperedge incident to w and ui−1. Similarly we get a contradiction if w ∈ ei.

To prove (iv) by a contradiction, suppose that we have a non-defining hyperedge h of C
incident to ui and ut . Assume without loss of generality that ut−1 ∈ Dw∗ since the other case
is symmetrical. Then there exists a non-defining hyperedge h′ different from h, incident to
ut−1 and w∗. Also there are two distinct non-defining hyperedges h′′,h′′′ with w,ui−1 ∈ h′′

and w,ui+1 ∈ h′′′. At first note that hyperedge h is distinct from h′′ and h′′′ by Claim 5.2.6 (i).
From Lemma 5.2.3 (i) we have that hyperedges h′′ and h′′′ distinct from h′. Finally we have
a contradiction since the following is a Berge-path of length ℓ

w∗,h′,ut−1,et−2, · · ·ui+1,h′′′,w,h′′,ui−1,ei−2, · · · ,ut+1,et ,ut ,h,ui.

To prove (v) suppose by a contradiction that e j contains ui. There are distinct non-defining
hyperedges h,h′ with w,u j ∈ h and w,ui−1 ∈ h′. Then

u j+1,e j,ui,ei,ui+1,ei+1, . . . ,e j−1,u j,h,w,h′,ui−1,ei−2,ui−2, . . . ,e j+2,u j+2,e j+1
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86 Connected Hypergraphs without long Berge-paths

is a Berge-cycle of length longer than C. This contradiction proves (v). The proof for the
case ui ∈ e j−1 is analogous.

By Claim 5.2.6 and the set degree condition

(
⌊k−3

2 ⌋
r−1

)
≤ |Mw|+

(
min

{⌊
ℓ−1−|Mw|

2

⌋
, |Dw|

}
r−1

)
must hold for all w ∈V (H)\V (C). At first we observe that |Mw| ≤ 3 as otherwise ℓ−1−
|Mw| ≤ k−5. Therefore, we have |Dw| ≥ ⌊k−3

2 ⌋, if k ≥ 11.

We say that a vertex ui ∈V is replaceable by w, if ui−1,ui+1 ∈ Dw, and we denote by Rw

the set of vertices that are replaceable by w. A vertex is called replaceable, if it is replaceable
by w for some w ∈ V (H) \V . For a replaceable vertex w′, we define Dw′ and Mw′ as for
vertices in V (H)\V .

For a vertex w ∈V (H)\V let us call a maximal set I of consecutive defining vertices of
C in V \Dw a missing interval for w (or just missing intervals, if w is clear from the context),
if its size is at least two. Let I1, I2, . . . , Is be the missing intervals of C for w and let us denote
by I1, I2, . . . , Is the same intervals without the terminal vertices (it is possible that I j = /0).
We have ∑

s
i=1(|Ii| − 1) = ℓ− 1− 2|Dw|. In particular, as |Dw| ≥

⌊k−3
2

⌋
by the set degree

condition and Lemma 5.2.3 (i), we have s ≤ 3, if k is even and s ≤ 2, if k is odd. Let us
consider a hyperedge e j ∈C such that u j or u j+1 is from a missing interval. The number of
such hyperedges is ∑

s
i=1(|Ii|+1), which is at most 9, if k is even, and at most 6, if k is odd.

Our next technical claim is about missing intervals.

Claim 5.2.8. Suppose that ui,ui+1, . . . ,ui+t form a missing interval for some w ∈V (H)\V .
Then

(i) ei−1 and ei+t do not contain vertices w∗ ∈V (H)\V ; and
(ii) if ui−1 ∈ Dw′ (resp. ui+t+1 ∈ Dw′) for some w′ ̸= w, then ei−1 (resp. ei+t) does not

contain a vertex from Rw.

Proof. To prove (i) observe that there exists a Berge-path starting with the vertex w, a non-
defining hyperedge h, the vertex ui−1, going around C with defining vertices and hyperedges
and finishing with a vertex ui. Such h exists since ui−1 does not belong to the missing interval,
so ui−1 ∈ Dw. Note that we did not use a hyperedge ei−1 which contains w∗. If w = w∗, then
ei−1 closes a Berge-cycle longer than C, a contradiction, while if w ̸= w∗, then finishing with
ei−1,w∗ we obtain a Berge-path of length ℓ, a contradiction. This contradiction proves (i).
Similar argument shows the statement for the hyperedge ei+t .

We omit the proof of part (ii) since the same argument will provide the desired result
after changing a replaceable vertex with w.
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5.2 Proof of stability 87

Here we will show that |Dw∗| ≥
⌊k−3

2

⌋
holds even for vertices w∗ ∈V (C)\V , therefore

we have |Dw′| ≥
⌊k−3

2

⌋
for all w′ ∈V (H)\V .

By Claim 5.2.7 (iii) and Claim 5.2.8 (i), if w∗ ∈V (C)\V and ui ∈ Dw, then w∗ /∈ ei−1,ei.
Therefore the number of defining hyperedges that may contain w∗ is at most 3. So Claim 5.2.6
and the set degree condition implies

(
⌊k−3

2 ⌋
r−1

)
≤ 3+ |Mw∗|+

(
min

{⌊
ℓ−1−|Mw∗ |

2

⌋
, |Dw∗|

}
r−1

)
.

Just as for w ∈V (H)\V (C), in two steps we obtain |Dw| ≥ ⌊k−3
2 ⌋ for k large enough.

Before continuing with a give possible embeddings of H into some Hn,a,b1,...,bs let us
state a last technical claim that will be used several times. Let us recall that a terminal vertex
v is a vertex of a missing interval that is adjacent to a vertex from Dw.

Claim 5.2.9. Suppose Dw = Dw′ for some w′ ∈V (H)\V with w′ ̸= w.

(i) There does not exist h ∈H\C such that h contains terminal vertices of two distinct
missing intervals of w.

(ii) If {ui,ui+1,ui+2} and {u j,u j+1} form missing intervals of w and there exists h∈H\C
with ui+1,u j ∈ h or ui+1,u j+1 ∈ h, then there does not exist h′ ∈H\C, with ui,ui+2 ∈ h′.

Proof. We prove (i) by contradiction. Suppose {ui,ui+1, . . . ,ui+t} and {u j,u j+1, . . . ,u j+z}
are two distinct missing intervals of w.

• Suppose first ui,u j+z ∈ h ∈H\C. We have ui+t+1,ui−1,u j+z+1 ∈ Dw, therefore there
are three different hyperedges hw, h′w and hw′ , such that hw is incident to w and ui+t+1, h′w is
incident to w and ui−1 and hw′ is incident to u j+z+1 and w′. Note that all those hyperedges
are different from h by Claim 5.2.6 (i). Then we have a contradiction since the following
Berge-path is of length ℓ, as it contains all the ℓ−1 defining vertices of C and w and w′:

ui+t , . . . ,ui,h,u j+z,e j+z−1, . . . ,ui+t+1,hw,w,h′w,ui−1,ei−2, . . . ,u j+z+1,hw′,w′.

• If ui+t ,u j+z ∈ h ∈H\C, then the Berge-path of length ℓ (using similar ideas as in the
previous bullet) is

ui, . . . ,ui+t ,h,u j+z,e j+z−1, . . . ,ui+t+1,hw,w,h′w,ui−1,ei−2, . . . ,u j+z+1,hw′,w′,

and we are done with the proof of (i).

In (ii) we can assume that ui+1,u j+1 ∈ h holds since the case ui+1,u j ∈ h is identical.
The proof of this part is similar, at first we observe from part (i) that we have h ̸= h′. Then
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88 Connected Hypergraphs without long Berge-paths

the following Berge-path of length ℓ gives us a contradiction:

ui,h′,ui+2,ei+1,ui+1,h,u j+1,e j,u j,e j−1, . . . ,ui+3,hw,w,h′w,ui−1,ei−2, . . . ,u j+2,hw′,w′.

5.2.2 Possible embeddings of Hypergraph

Now we are in the situation to be able to give possible embeddings of H into some Hn,a,b1,...,bs .
In this subsection, we gather all the information that we know about these embeddings so far
and in the next subsection, we analyze further the different cases to finish the proof.

Let us fix w ∈V (H)\V with Dw of maximum size and let H∗ denote the subhypergraph
of H that we obtain by removing those defining hyperedges ei of C for which at least one of
ui or ui+1 is a vertex of a missing interval for w. By the above, |H| ≤ |H∗|+9.

If we are in a case when for all w′ ∈V (H)\V we have Dw′ ⊆ Dw, then let A = Dw, Bi = Ii

for i = 1,2, . . . ,s and L =V (H)\ (Dw∪s
i=1 Ii). Let us summarize the findings of the technical

claims and enumerate the types of different hyperedges in H\Hn,a,b1,b2,...,bs in this scenario.

Summary 5.2.10. If h ∈H\Hn,a,b1,b2,...,bs is not a defining hyperedge of C (i.e., h ∈H\C),
then

1. either there exists v∈ (V (H)\V )∪Rw such that h\{v}⊆Dw∪
⋃s

i=1 Ii and h∩
⋃s

i=1 Ii ̸=
/0; We refer to these hyperedges as type 1 hyperedges in what follows.

2. h ⊆ V \Rw and h contains vertices from at least two distinct missing intervals. We
refer to these hyperedges as type 2 hyperedges in what follows.

If ei ∈H\Hn,a,b1,b2,...,bs is a defining hyperedge of C, then

3. either ei ∈H\H∗; or

4. ui or ui+1 belongs to Rw, ei \{ui,ui+1} ⊆ Dw ∪
⋃s

i=1 Ii and ei ∩
⋃s

i=1 Ii ̸= /0.

Proof. Suppose first that h is not a defining hyperedge of C and h contains a vertex v ∈
(V (H)\V )∪Rw. We claim that h cannot contain any v′ ∈V (H)\V with v′ ̸= v. Indeed, if
v /∈V , then it follows from Lemma 5.2.3 (i). If v ∈ Rw and v′ = w, then w can be inserted
to obtain a longer cycle than C, while if w ̸= v′, then using h, the defining vertices and
hyperedges of C one can create a Berge-path of length ℓ from v′ to w.

We also claim that h cannot contain a neighbor of a vertex in Dw on C. Indeed, if v /∈V ,
then it follows from Lemma 5.2.3 (ii) and (iii). If v ∈ Rw, then it follows from Claim 5.2.7 (i).
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5.2 Proof of stability 89

Therefore, h cannot contain other vertices of Rw, nor terminal vertices of missing intervals.
This gives possibility 1.

Otherwise if h ∈H\Hn,a,b1,b2,...,bs is not a defining hyperedge of C, then we must have
h ⊆V \Rw. As all hyperedges in

(A∪I j
r

)
belong to Hn,a,b1,b2,...,bs , there must exist two distinct

missing intervals meeting h. This gives possibility 2.

Let ei ∈ H\Hn,a,b1,b2,...,bs be a defining hyperedge of C. If at least one of ui or ui+1

belongs to a missing interval, then ei ∈H\H∗ by definition of H∗. This gives possibility 3.
Note that we have more information on some of these hyperedges by Claim 5.2.8.

Otherwise ui or ui+1 belongs to Rw. By Claim 5.2.7 (ii), ei does not contain any other
vertex from Rw, and by Claim 5.2.7 (iii) ei cannot contain any vertex from V (H)\V . This
gives us possibility 4. Even more, if the unique element of ei ∩Rw is also replaceable by
some w′ ̸= w, then ei cannot contain w either.

If we are in a case when we have vertices w,w′ ∈ V (H)\V with Dw ̸⊆ Dw′ and Dw′ ̸⊆
Dw, then as

⌊k−3
2

⌋
≤ |Dw|, |Dw′|, we will have

⌊k−1
2

⌋
≤ |Dw ∪Dw′|. Since the elements

of Dw ∪Dw′ cannot be neighbors on C by Claim 5.2.6 (i) and |C| ≤ k− 1, we must have
|Dw ∪Dw′|=

⌊k−1
2

⌋
.

If |C|= 2
⌊k−3

2

⌋
+2, then we will embed H to Hn,⌊ k−1

2 ⌋, with A = Dw ∪Dw′ and all the
other vertices are going to L.

If |C|= 2
⌊k−3

2

⌋
+3, then we will embed H∗ to Hn,⌊ k−1

2 ⌋,2 with A = Dw∪Dw′ , the unique
missing interval goes to B1 and all the remaining vertices are going to L.

Summary 5.2.11. If for w,w′ ∈V (H)\V we have Dw ̸⊆ Dw′ and Dw′ ̸⊆ Dw, then

1. there is no hyperedge h ∈H\C with h ∈H\Hn,⌊ k−1
2 ⌋ or h ∈H\Hn,⌊ k−1

2 ⌋,2 depending

on whether |V |= 2
⌊k−3

2

⌋
+2 or |V |= 2

⌊k−3
2

⌋
+3; and

2. if ui−1,ui+1 ∈ Dw∪Dw′ , then ei−1 \{ui},ei \{ui} ⊆ Dw∪Dw′∪ I, where I is the unique
possible interval u j,u j+1 of size two disjoint with Dw ∪Dw′ . Furthermore, if ui is
replaceable by either w or w′, then ei−1 \{ui},ei \{ui} ⊆ Dw ∪Dw′ .

Proof. Note that every u ∈ V \ (Dw ∪Dw′) has a neighbor on C in Dw ∪Dw′ . Therefore,
if v ∈ h ∈ H\C with v ∈ V (H) \V , then Claim 5.2.6 (i) yields h \ {v} ⊆ Dw ∪Dw′ . So
we only have to consider hyperedges h ⊂ V . If ui is replaceable by either w or w′ and
ui ∈ h ∈ H\C, then Claim 5.2.7 (i) and (iv) yield h\{ui} ⊆ Dw ∪Dw′ . Finally, if u j,u j+1

form the unique interval of V \ (Dw ∪Dw′), and ui is neither replaceable by w nor by w′,
then one of ui−1,ui+1 belong to Dw, the other to Dw′ . Suppose that ui,u j ∈ h ∈ H\C, the
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90 Connected Hypergraphs without long Berge-paths

other case ui,u j+1 ∈ h ∈ H\C is symmetric. Then u j−1 ∈ Dw∗ and ui−1 ∈ Dw∗∗ for some
w∗,w∗∗ ∈ {w,w′}. Therefore

w∗,h′,u j−1,e j−2, . . . ,ui+1,ei,ui,h,u j,e j,u j+1, . . . ,ei−2,ui−1,h′′,w∗∗

is either a cycle (if w∗ = w∗∗) or a path (if w∗ ̸= w∗∗) of length k. Such distinct hyperedges
h′,h′′ exist from the definition of Dw∗,Dw∗∗ as well as they are different from the hyperedge
h since h ⊂V . This settles part 1.

For part 2, let us consider defining hyperedges ei−1,ei of C with ui−1,ui+1 ∈ Dw ∪Dw′ .
Observe first that all but at most one of the ui’s are replaceable either by w or by w′. If ui is
indeed replaceable by w or by w′, then Claim 5.2.7 (iii) yields ei−1\{ui},ei\{ui}⊆Dw∪Dw′ .
For the at most one exception ui, we have that one of ui−1,ui+1 is in Dw, the other one is in
Dw′ and by Claim 5.2.7 (v) we are done.

5.2.3 Case-by-case analysis

We finish the proof with a case-by-case analysis according to the length of the longest Berge-
cycle C and subcases will be defined according to the size of Dw. Let us remind the reader
that the length of the cycle C, ℓ−1, might take the values 2

⌊k−3
2

⌋
, 2
⌊k−3

2

⌋
+1, 2

⌊k−3
2

⌋
+2

or 2
⌊k−3

2

⌋
+3, and in the last case k is even. In each case we will use the summaries from

the previous subsection.

CASE I ℓ−1 = 2
⌊k−3

2

⌋
.

As |Dw| ≥
⌊k−3

2

⌋
, then by Claim 5.2.6 (i), Dw must consist of every second vertex of V ,

so there are no missing intervals. Summary 5.2.10 implies H⊆Hn,⌊ k−3
2 ⌋ thus

|H| ≤ |Hn,⌊ k−3
2 ⌋|< |Hn,⌊ k−3

2 ⌋,3|,

which contradicts the assumption on |H|.

CASE II ℓ−1 = 2
⌊k−3

2

⌋
+1.

|Dw| ≥
⌊k−3

2

⌋
and Claim 5.2.6 (i) imply that, after a possible relabelling we have Dw =

{u1,u4, . . . ,u2⌊ k−3
2 ⌋} and thus {u2,u3} is the only missing interval for w, and all other

vertices in V \Dw are in Rw. As all vertices in V \Dw are neighbors to some vertex in Dw, by
Summary 5.2.10, all hyperedges in H\C belong to Hn,⌊ k−3

2 ⌋,2.
To consider the defining hyperedges of C, let us analyze those that contain an ui ∈ Rw.

Observe that by Claim 5.2.6 (i) a vertex in Dw cannot be a neighbor on C of a vertex in Dw′

for some w′ ∈ V (H) \V , so Dw = Dw′ for any two w,w′ ∈ V (H) \V . Hence we have that
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5.2 Proof of stability 91

ei−1 and ei cannot contain any of u2 and u3 by Claim 5.2.6 (i) applied to the cycle C′ we
obtain by Claim 5.2.6 (ii). Therefore by Summary 5.2.10 we have that H∗ ⊆Hn,⌊ k−3

2 ⌋,2, thus

|H| ≤ |Hn,⌊ k−3
2 ⌋,2|+3 < |Hn,⌊ k−3

2 ⌋,3|,

which contradicts the assumption on |H|.

CASE III ℓ−1 = 2
⌊k−3

2

⌋
+2.

The three subcases below cover this case.

CASE III/A There exists w ∈V (H)\V with |Dw|=
⌊k−3

2

⌋
+1.

Then there is no missing interval for w, and so V \Dw ⊆ Rw, so by Summary 5.2.10 we
have H=H∗ ⊆Hn,⌊ k−1

2 ⌋.

CASE III/B There exists w ∈ V (H) \V , for which there are two missing intervals,
{ui,ui+1} and {u j,u j+1}.

Note that there is no type 1 hyperedge of H\C, as each vertex of the missing intervals
is terminal. Observe that all the vertices in V \Dw have neighbors in Dw, therefore the fact
that |Dw′| ≥

⌊k−3
2

⌋
, together with |Dw|=

⌊k−3
2

⌋
and Claim 5.2.6 (i) imply Dw = Dw′ for all

w,w′ ∈V (H)\V . This enables us to conclude that

- by Claim 5.2.9 (i), there is no hyperedge h ∈H\C of type 2; and

- by Claim 5.2.7 (v), if ul ∈ Rw, then el−1,el do not contain vertices of missing intervals.

So by Summary 5.2.10 we have H∗ ⊆Hn,⌊ k−3
2 ⌋,2,2 and thus

|H| ≤ |Hn,⌊ k−3
2 ⌋,2,2|+6 < |Hn,⌊ k−3

2 ⌋,3|,

contradicting the assumption on |H|.

CASE III/C For all w ∈V (H)\V , there is only one missing interval containing three
vertices {ui(w),ui(w)+1,ui(w)+2}.

If there exist two vertices w,w′ ∈V (H)\V with i(w) ̸= i(w′), then Dw∪Dw′ must contain
every second vertex of C. So by Summary 5.2.11, we have H⊆Hn,⌊ k−1

2 ⌋ as claimed by the
theorem.

So we can assume that the Dws are the same and without loss of generality suppose that
for every w ∈V (H)\V , the missing interval is {u1,u2,u3}. Moreover, as every replaceable
vertex ui is replaceable by any w ∈V (H)\V , replaceable vertices and defining hyperedges
ei−1,ei behave as vertices in V (H)\V and hyperedges in H\C. By Summary 5.2.10 and the
above, we have to deal with type 1 hyperedges of H\C and H\H∗ = {e2⌊ k−3

2 ⌋+2,e1,e2,e3}.
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92 Connected Hypergraphs without long Berge-paths

• At first suppose that there exists a type 1 hyperedge of H\C, i.e., h∈H\C with v,u2 ∈ h
for some v ∈ (V (H) \V )∪Rw. Without loss of generality we may assume v ∈ V (H) \V .
Then we claim that there is no hyperedge h′ ∈H with u1,u3 ∈ h′. Suppose by a contradiction
that such h′ exists, then observe that h′ ̸= h, as otherwise we would have v,u1,u3 ∈ h′ that
is not possible by Summary 5.2.10. Also, either h′ /∈ {e1,e3} or h′ /∈ {e2⌊ k−3

2 ⌋+2,e2}, so
we may assume h′ /∈ {e1,e3} without loss of generality. Since u2⌊ k−3

2 ⌋+2 ∈ Dv, there is a
hyperedge h′′ different from the hyperedges h and h′, incident to the vertices v and u2⌊ k−3

2 ⌋+2.
We have a contradiction since the following is a longer Berge-cycle than C, containing all
defining vertices of C and v:

v,h,u2,e1,u1,h′,u3,e3,u4, · · · ,u2⌊ k−3
2 ⌋+2,h

′′.

As no hyperedge contains both u1 and u3, we obtained H⊆Hn,⌊ k−1
2 ⌋ in this case.

• Suppose next that there is no type 1 hyperedge of H\C, i.e., by Summary 5.2.10,
we have H∗ ⊆ Hn,⌊ k−3

2 ⌋,3. Observe that e2⌊ k−3
2 ⌋+2 and e3 do not contain vertices from

(V (H)\V )∪Rw by Claim 5.2.8 (i) and (ii). If the same holds for e1,e2, then H⊆Hn,2⌊ k−3
2 ⌋,3

contradicting the assumption |H|> |Hn,2⌊ k−3
2 ⌋,3|. So we can assume that e2 contains a vertex

v ∈ (V (H)\V )∪Rw. Then we claim that there is no hyperedge h ∈H\C with u1,u3 ∈ h. In
here we get a contradiction as in the previous settings with a longer Berge-cycle, therefore
we omit the proof. We obtained the following contradiction

|H| ≤ 2+ |Hn,⌊ k−3
2 ⌋,3|−

(⌊k−3
2

⌋
r−2

)
< |Hn,⌊ k−3

2 ⌋,3|.

CASE IV ℓ−1 = 2
⌊k−3

2

⌋
+3.

Note that in this case k is even and the length of C is k−1. We again distinguish several
subcases.

CASE IV/A |Dw|=
⌊k−1

2

⌋
.

Then as Dw does not contain neighboring vertices on C, after relabelling, we can suppose
that we have Dw = {u1,u4,u6, . . . ,uk−2}. So there is one missing interval {u2,u3}, therefore
there does not exist a type 1 or type 2 hyperedge h∈H\C. If ui ∈Rw, then by Claim 5.2.7 (iii)
ei−1 and ei do not contain vertices from V (H)\V . We claim that ei−1 and ei do not contain
vertices from the missing interval {u2,u3}. Indeed, if there exists w∗ ̸=w with u1 ∈NH\C(w∗)

and u2 ∈ ei or ei−1, then the following is a Berge-path of length k:

ui,ei (or ei−1), u2,e2,u3, . . . ,ui−1,h,w,h′,ui+1,ei+1, . . . ,uk−1,ek−1,u1,h′′,w∗.
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5.2 Proof of stability 93

Here h and h′ exist and are distinct as ui is in Rw and h′′ exists by the choice of w∗.
Similarly, if there exists w∗∗ ̸= w with u4 ∈ NH\C(w∗), then ei−1,ei cannot contain

u3. As all Dw∗ is of size at least
⌊k−3

2

⌋
, the only cases when we are not yet done is

when u1 /∈ NH\C(w∗) and Dw∗ = {u4,u6, . . . ,u2⌊ k−3
2 ⌋+2} or u4 /∈ NH\C(w∗) and Dw∗ =

{u6,u8, . . . ,u2⌊ k−3
2 ⌋+2,u1}. By symmetry, we can assume the first. But then any replaceable

ui but u2⌊ k−3
2 ⌋+3 can be replaced with some w∗ ̸= w, and the above arguments applied to the

new cycle C′ show that any ui ∈ h ∈H\C′ (in particular, it applies to ei and ei−1!) cannot
contain u3, and by Summary 5.2.10, we already know that ei−1,ei cannot contain u2⌊ k−3

2 ⌋+3.
Therefore setting A = Dw \{u1}, B1 = {u2⌊ k−3

2 ⌋+3,u1,u2,u3} we have that H is a subfamily
of Hn,⌊ k−3

2 ⌋,4 apart from e2⌊ k−3
2 ⌋+2,e2⌊ k−3

2 ⌋+3,e1,e2,e3 and the hyperedges containing both
w and u1. On the other hand, there cannot exist h ∈ H\C with u2⌊ k−3

2 ⌋+3,u2 ∈ h nor with
u2⌊ k−3

2 ⌋+3,u3 ∈ h as in the former case

w,h′,u1,e2⌊ k−3
2 ⌋+3,u2⌊ k−3

2 ⌋+3,h,u2,e2, . . . ,u2⌊ k−3
2 ⌋+2,h

′′,w∗,

while in the latter case

w,h′,u1,e1,u2,e2,u3,h,u2⌊ k−3
2 ⌋+3,e2⌊ k−3

2 ⌋+2,u2⌊ k−3
2 ⌋+2, . . . ,e4,u4,h′′,w∗

is a Berge-path of length k. So we have

|H| ≤ |Hn,⌊ k−3
2 ⌋,4|+5+

(⌊k−3
2

⌋
r−2

)
−2
(⌊k−3

2

⌋
r−2

)
< |Hn,⌊ k−3

2 ⌋,4|,

contradicting the assumption on |H|. So we obtained that ei−1,ei cannot contain u2,u3 and
thus so far by Summary 5.2.10 we have H∗ ⊆Hn,⌊ k−1

2 ⌋,2.
Now let us concentrate on the hyperedges in H\H∗. So {u2,u3} is the unique missing

interval (all other vertices of V \Dw are in Rw), and thus H\H∗ contains three hyperedges:
e1,e2 and e3. Observe that by Claim 5.2.8 (i), e1 and e3 do not contain any w′ ∈V (H)\V .
By Claim 5.2.7 (v), e1 and e3 do not contain any vertex in Rw.

• If e2 does not contain any vertex in Rw ∪ (V (H) \V ), then we are done, since H ⊆
Hn,⌊ k−1

2 ⌋,2.

• If e2 does contain a vertex from Rw ∪ (V (H)\V ), then there does not exist any other
hyperedge h that contains both u2 and u3. Indeed, if e2 contained w, then w could be inserted
in between u2 and u3 in the Berge-cycle C to form a longer cycle than C, a contradiction. If
e2 contains some w′ ̸= w from V (H)\V , then we can reach a contradiction as before: we
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94 Connected Hypergraphs without long Berge-paths

would find a Berge-path of length k starting with w′,e2,u2,h,u3, then going through C and
ending with u1,h′,w as u1 ∈ Dw.

Finally, if e2 contains a replaceable ui, then at least one of u1,u4 belongs to Dw′ for some
w′ ∈ V (H) \V with w′ ̸= w, since Dw′ ⊆ Dw from Claim 5.2.6 (i) and |Dw \Dw′| ≤ 1. By
symmetry, we may assume that u1 ∈ Dw′ . Then we have a contradiction since the following
Berge-path has length k. The Berge-path is ui,e2,u2,h,u3,u4, . . . that goes around the cycle
C, replaces ui by w and finishes with u1,hw′,w′, such hw′ exists from the definition of Dw′ .
Therefore, if e2 does contain a vertex from Rw ∪ (V (H) \V ), then there does not exist
any other hyperedge h that contains both u2 and u3. Hence, H ⊆ H+

n,⌊ k−1
2 ⌋ with A = Dw,

L =V (H)\Dw and e2 being the unique hyperedge of H+
n,⌊ k−1

2 ⌋ that contains less than r−1

vertices of A.

CASE IV/B For all w′ ∈V (H)\V , we have |D′
w|= |Dw|=

⌊k−3
2

⌋
.

As the length of C is k− 1, k is even and vertices of Dw are not neighbors on C, we
have at most three missing intervals. If there are three missing intervals, then each of them
contains two vertices. If there are two missing intervals, then they contain two and three
vertices and if there is only one missing interval, then it contains 4 vertices. According to
this structure, we are going to consider the following three subcases.

-

CASE IV/B/1 There exists w ∈V (H)\V with V \Dw containing 3 intervals of length 2.

Observe that as all the missing intervals are of size 2, we do not have type 1 hyperedges
h ∈ H\C. As all vertices in V \Dw have neighbors in Dw, we obtain that for any w′ ∈
V (H)\V we have Dw = Dw′ . So Claim 5.2.9 (i) implies that there does not exist any type 2
hyperedges h ∈H\C. Finally, Claim 5.2.7 (v) implies that defining hyperedges of C, apart
from those in H\H∗, are in Hn,⌊ k−3

2 ⌋,2,2,2. So we obtained a contradiction as

|H| ≤ 9+ |Hn,⌊ k−3
2 ⌋,2,2,2|< |Hn,⌊ k−3

2 ⌋,4|.

CASE IV/B/2 For all w ∈ V (H)\V , the number of missing intervals is at most 2 and
there exist w,w′ ∈V (H)\V with Dw ̸= Dw′ .

By relabeling, we can assume that {u2,u3} forms the unique missing interval for both
w and w′, i.e., the unique interval of length more than 1 in V \ (Dw ∪Dw′). According
to Summary 5.2.11, if every ui /∈ Dw ∪Dw′ ∪ {u2,u3} is replaceable, then we have H\
{e1,e2,e3} ⊆Hn,⌊ k−1

2 ⌋,2, while if there is ui ∈V \(Dw∪Dw′) (i ̸= 2,3) that is not in Rw∪Rw′ ,
then we know ei−1 \{ui},ei \{ui} ⊆ Dw ∪Dw′ ∪{u2,u3}.
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5.2 Proof of stability 95

• At first we suppose that there exists a u ∈ Dw ∪Dw′ such that |{w∗ ∈ (V (H) \V )∪
Rw ∪Rw′ : u ∈ NH\C(w∗)}| = 1. In that case the unique w∗ must be either w or w′, say w.
Consider the hypergraph H\Hn,⌊ k−3

2 ⌋,3 with Hn,⌊ k−3
2 ⌋,3 having A = Dw ∪Dw′ \{u}= Dw′

and B1 = {u,u2,u3}. Then, by Summary 5.2.11, the hyperedges left are incident with the

vertex u, thus the number of hyperedges is at most
(⌊ k−3

2 ⌋
r−2

)
+5. Here the first term is an upper

bound for those hyperedges that are incident with both u and w, while the second term is 5
for {ei−1,ei,e1,e2,e3}. So we have a contradiction as

|H| ≤
(⌊k−3

2

⌋
r−2

)
+5+ |Hn,⌊ k−3

2 ⌋,3|< |Hn,⌊ k−3
2 ⌋,4|.

• Suppose now that for all u ∈ Dw ∪Dw′ ,

|{w∗ ∈ (V (H)\V )∪Rw ∪Rw′ : u ∈ NH\C(w
∗)}| ≥ 2.

At first we show that u2,u3 /∈ ei−1,ei if ui ∈V \(Dw∪Dw′) (i ̸= 2,3). This holds by Summary
5.2.11, if ui is replaceable by either w or w′. Therefore without loss of generality we may
assume ui+1 ∈ Dw \Dw′ and ui−1 ∈ Dw′ \Dw. Note that Dw = (Dw ∪Dw′) \ {ui−1} and
Dw′ = (Dw ∪Dw′)\{ui+1}. Because of symmetry, it is enough to show a contradiction only
if u2 ∈ ei, the three remaining cases are similar to this one. The following is a Berge-path of
length k

ui,ei,u2,e2,u3,e3, . . . ,ui−1,h,w′,h′,u1,ek−1,uk−1,ek−2 . . . ,ei+1,ui+1,h′′,w,

a contradiction. The hyperedges h,h′,h′′ can be chosen distinct as u1,ui−1 ∈ Dw′ and ui+1 ∈
Dw and by Lemma 5.2.3 (i), h∗ ∈H\C cannot contain distinct vertices from outside V .

By Claim 5.2.8 (i) and (ii), e1 and e3 are not incident with vertices in V (H) \V or in
Rw ∪Rw′ . Even more, they are not incident with ui either, since otherwise if ui ∈ e1, the
following path is of length k, a contradiction:

ui,e1,u2,e2,u3,e3, . . . ,ui−1,h,w′,h′,u1,ek−1,uk−1, . . . ,ei+1,ui+1,h′′,w.

An analogous argument shows ui /∈ e3.
Finally, if e2 contains any vertex from V (H) \ (Dw ∪Dw′), then similarly to previous

cases a hyperedge e2 ̸= h ∈H containing both u2,u3 would lead to a Berge-path of length k.
So if no such hyperedge h exists, then H⊆Hn,⌊ k−1

2 ⌋,2. Otherwise, we have H⊆H+
n,⌊ k−1

2 ⌋.

Both possibilities are as claimed by the theorem.
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96 Connected Hypergraphs without long Berge-paths

CASE IV/B/3 For all w′ ∈V (H)\V ∪Rw, the number of missing intervals is at most 2
and Dw = Dw′ .

As Dw = Dw′ for all w,w′ ∈ V (H) \V , it follows that we do not have to distinguish
between vertices in V (H)\V and vertices in Rw. Also, anything that we prove for hyperedges
h ∈H\C is valid for all ei,ei−1 if ui ∈ Rw, by Claim 5.2.6 (ii).

CASE IV/B/3/1 Let us consider first the case when for every v ∈ V (H) \V ∪Rw, the
missing intervals for v are {u2,u3,u4} and {ui,ui+1} for some 6 ≤ i ≤ k−2, after possible
relabeling. By Summary 5.2.10 and Claim 5.2.9 (i), we need to consider the 7 hyperedges
in H\H∗, the hyperedges in H\C containing u3,ui or u3,ui+1 and the hyperedges in H\C
containing u3 and some v ∈V (H)\V ∪Rw.

• If there are no hyperedges in H\C containing u3,ui or u3,ui+1 or u3 and some v ∈
V (H) \V ∪Rw, then H∗ ⊆ Hn,⌊ k−3

2 ⌋,3,2, with embedding A = Dw, B1 = {u2,u3,u4}, B2 =

{ui,ui+1} and
|H| ≤ |H∗|+7 ≤ |Hn,⌊ k−3

2 ⌋,3,2|+7 < |Hn,⌊ k−3
2 ⌋,4|,

contradicting the assumption on |H|.
• If there are no hyperedges in H\C containing u3 and some v ∈ V (H) \V ∪Rw, but

there exist a hyperedge h ∈ H\C containing u3,ui or u3,ui+1, then by Claim 5.2.9 (ii),
there is no hyperedge containing both u2 and u4. In particular, with embedding A = Dw,
B1 = {u2,u3,u4}, B2 = {ui,ui+1} we have |Hn,⌊ k−3

2 ⌋,3,2 \H| ≥
(⌊ k−3

2 ⌋
r−2

)
. Also, by Summary

5.2.10, the hypergraph H\Hn,⌊ k−3
2 ⌋,3,2 may contain the 7 hyperedges of H\H∗ and at most

2
(⌊ k−3

2 ⌋
r−2

)
+
(⌊ k−3

2 ⌋
r−3

)
hyperedges containing ui or/and ui+1 and u3. So we have

|H| ≤ |Hn,⌊ k−3
2 ⌋,3,2|+7+2

(⌊k−3
2

⌋
r−2

)
+

(⌊k−3
2

⌋
r−3

)
−
(⌊k−3

2

⌋
r−2

)
< |Hn,⌊ k−3

2 ⌋,4|,

which contradicts the assumption on |H|.
• Suppose that there is a hyperedge h ∈H\C containing u3 and some v ∈V (H)\V ∪Rw.

There is no h′ ∈H\C incident with u2 and u4. Indeed, otherwise

v,u3,e2,u2,h′,u4,e4, . . . ,u1,hw,w

is a Berge-path of length k, a contradiction.
By the above, Summary 5.2.10 and Claim 5.2.9 (i), we have that H∗ ⊆Hn,⌊ k−1

2 ⌋,2 with
embedding A = Dw ∪{u3}, B1 = {ui,ui+1}. Even more, since Dv = Dw ∋ u1,u5, by Lemma
5.2.3 (iii) there exist cycles C2,C4 with v replacing u2 and u4, respectively. Observe that
the set Dw∗ does not change when we apply these changes from C to C2 and C to C4. In C2,
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5.2 Proof of stability 97

e1,e2 are not defining hyperedges, while in C4, e3,e4 are not defining hyperedges. Therefore,
applying Lemma 5.2.3 (ii), we obtain that e1,e2 do not contain u4,ui,ui+1 and e3,e4 do not
contain u2,ui,ui+1. Hence hyperedges e1,e2,e3,e4 are also from Hn,⌊ k−1

2 ⌋,2 by Summary
5.2.10. By Claim 5.2.8 (i) and Claim 5.2.9 (i), we have that the hyperedges ei−1 and ei+1 are
also from Hn,⌊ k−1

2 ⌋,2. Finally, if ei does not contain any vertex from (V (H)\V )∪Rw ∪{u3},
then we have H⊆Hn,⌊ k−1

2 ⌋,2. Otherwise, as in Case IV/A, one can see that there does not

exist h ̸= ei with ui,ui+1 ∈ h and thus H =H+
n,⌊ k−1

2 ⌋ with A = Dw ∪{u3} and ei being the

unique hyperedge with less than r−1 elements in A.

CASE IV/B/3/2 For all v ∈V (H)\V ∪Rw, after possible relabelling the only missing
interval consists of {u2,u3,u4,u5}.

By Summary 5.2.10, we need to handle hyperedges e1,e2,e3,e4,e5 and those h ∈H\C
that contain a v ∈V (H)\V ∪Rw and u3 and/or u4.

• If there are no such hyperedges and e1,e2,e3,e4,e5 ⊆ Dw ∪{u2,u3,u4,u5}, then H⊆
Hn,⌊ k−3

2 ⌋,4 contradicting the assumption on |H|.
• Suppose next there is no h ∈H\C with a vertex from V (H)\V ∪Rw containing u3 or

u4, but some ei (i = 1,2,3,4,5) does contain a vertex from outside V . By Claim 5.2.8 (i), it
is neither e1 nor e5. If ei contains a vertex v from outside V , then there cannot exist h ∈H\C
with u2,ui+1 ∈ h, as then

v,ei,ui,ei−1, . . . ,u2,h,ui+1,ei+1,ui+2,ei+2, . . . ,uk−1,ek−1,u1,h′

is a Berge-cycle of length k. For the existence of h′ we used Dv = Dw ∋ u1. Therefore we
have

|H| ≤ 3+ |Hn,⌊ k−3
2 ⌋,4|−

(⌊k−3
2

⌋
r−2

)
< |Hn,⌊ k−3

2 ⌋,4|,

contradicting the assumption on |H|.
• If there exists a hyperedge h ∈H\C incident with some vertex v ∈V (H)\V ∪Rw and

u3, then there is no h′ ̸= h, h′ ∈ H\C incident with some vertex from V (H)\V ∪Rw and
u4, by Claim 5.2.6 (i). Even more, there is no h′′ ∈H\C with u2,u4 ∈ h′′. The argument is
the same as if e3 contained v from the previous bullet. Similarly one can get that there is no
hyperedge h′′ ∈H\C with u2,u5 ∈ h′′.

Observe that there should exist at least two distinct v1,v2 ∈ V (H) \V ∪Rw for which
hyperedges hv1,hv2 with v1,u3 ∈ hv1 and v2,u3 ∈ hv2 exist. Indeed, otherwise using that there
is no non-defining edge incident to u2,u4, we have

|H| ≤ 5+1+ |Hn,⌊ k−3
2 ⌋,4|−

(⌊k−3
2

⌋
r−2

)
< |Hn,⌊ k−3

2 ⌋,4|.
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98 Connected Hypergraphs without long Berge-paths

We will show that either H ⊆ Hn,⌊ k−1
2 ⌋,2 or H ⊆ H+

n,⌊ k−1
2 ⌋ with A = Dw ∪ {u3} and

B1 = {u4,u5}. Let w∗ denote an arbitrary vertex w∗ ∈V (H)\V with w∗ ̸= v1,v2. We will
use that u1,u6 ∈ Dw = Dw∗ = Dv1 = Dv2 thus there exists a hyperedge that is not a defining
hyperedge of C and is different from hv1 and hv2 , containing either u1 or u6 together with v1

or v2 or w∗.
We need to prove that u4,u5 /∈ e1,e2 and u2 /∈ e3,e5. In each of the cases we present a

Berge-path of length k below, which is a contradiction.

If u4 ∈ e1, then the path is

v1,hv1,u3,e2,u2,e1,u4,e4,u5, . . . ,uk−1,ek−1,u1,h,w∗.

If u4 ∈ e2, then the path is

u2,e2,u4,e4,u5,e5, . . . ,uk−1,ek−1,u1,h,v1,hv1,u3,hv2,v2.

If u5 ∈ e1 or e2 , then the path is

u2,e1 or e2,u5,e4,u4,e3,u3,hv1,v1,h,u6,e6, . . . ,uk−1,ek−1,u1,h′,w∗.

If u2 ∈ e3, then the path is

v1,hv1,u3,e2,u2,e3,u4,e4,u5, . . . ,uk−1,ek−1,u1,h,w∗.

If u2 ∈ e5, then the path is

u2,e5,u5,e4,u4,e3,u3,hv1,v1,h,u6,e6, . . . ,uk−1,ek−1,u1,h′,w∗.

From here, one can conclude to H ⊆ Hn,⌊ k−1
2 ⌋,2 or H ⊆ H+

n,⌊ k−1
2 ⌋ as in Case IV/A,

depending on whether e4 ⊆ Dw ∪{u3,u4,u5} or not.

The above case-by-case analysis concludes the proof of Theorem 1.9.3 under the set
degree condition, i.e., for any set X of vertices with |X | ≤ k/2 the number of hyperedges
incident with some vertex in X , |E(X)|, is at least |X |

(⌊ k−3
2 ⌋

r−1

)
.

Let n′k,r denote the threshold such that the statement of Theorem 6 holds for hypergraphs
with the set degree condition if n ≥ n′k,r. We are now ready to prove the general statements.
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5.2 Proof of stability 99

Proof of Theorem 1.9.3 and Theorem 1.9.4. Let H be a connected n-vertex r-uniform hyper-
graph without a Berge-path of length k, and suppose that if k is odd, then

|H|> |Hn,⌊ k−3
2 ⌋,3|=

(
n− k+3

2

)(
⌊k−3

2 ⌋
r−1

)
+

(
⌊k+3

2 ⌋
r

)
,

while if k is even, then

|H|> |Hn,⌊ k−3
2 ⌋,4|=

(
n−
⌊

k+5
2

⌋)(
⌊k−3

2 ⌋
r−1

)
+

(
⌊k+5

2 ⌋
r

)
.

We obtain a subhypergraph H′ of H using a standard greedy process: as long as there
exists a set S of vertices with |S| ≤ k/2 such that |E(S)|< |S|

(⌊ k−3
2 ⌋

r−1

)
, we remove S from H

and all hyperedges in E(S). Let H′ denote the subhypergraph at the end of this process.

Claim 5.2.12. There exists a threshold n′′k,r, such that if |V (H)| ≥ n′′k,r, then H′ is connected
and contains at least n′k,r vertices.

Proof. To see that H′ is connected, observe that every component of H′ possesses the set
degree condition. Therefore Claim 5.2.5 yields that every component contains a cycle of
length at least k−4. Therefore, as H is connected, H contains a Berge-path with at least
2k−8 vertices from two different components of H′, a contradiction as k ≥ 9.

Suppose to the contrary that H′ has less than n′k,r vertices. Observe that, by definition of

the process, |E(H′)|− |V (H′)|
(⌊ k−3

2 ⌋
r−1

)
strictly increases at every removal of some set X of at

most k vertices. Therefore if n > n′k,r + k
(n′k,r

r

)
= n′′k,r and |V (H′)|< n′k,r, then at the end we

would have more hyperedges than those in the complete r-uniform hypergraph on |v(H′)|
vertices, a contradiction.

By Claim 5.2.12 and the statement for hypergraphs with the set degree property, we
know that H′ has n1 ≥ n′k,r vertices, and H′ ⊆Hn1,⌊ k−1

2 ⌋ if k is odd, and H′ ⊆Hn1,⌊ k−1
2 ⌋,2 or

H+
n1,⌊ k−1

2 ⌋ if k is even. Then for any hyperedge h ∈ E(H)\E(H′) that contain at least one

vertex from V (H)\V (H′) with degree at least two, we can apply Lemma 5.2.3 (i) to obtain
that all such h must meet the A of H′ in r−1 vertices. This shows that if the minimum degree
of H is at least 2, then H⊆Hn2,⌊ k−1

2 ⌋ if k is odd, and H⊆Hn2,⌊ k−1
2 ⌋,2 or H⊆H+

n2,⌊ k−1
2 ⌋ if k

is even, where n2 ≤ n is the number of vertices that are contained in a hyperedge of H that is
either in H′ or has a vertex in V (H)\V (H′) with degree at least 2. This finishes the proof of
Theorem 1.9.3.

Finally, consider the hyperedges that contain the remaining n−n2 vertices. As all these
vertices are of degree 1, they are partitioned by these edges. For such a hyperedge h let
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100 Connected Hypergraphs without long Berge-paths

Dh denote the subset of such vertices. Observe that for such a hyperedge h, we have that
h\Dh ⊆ A. Indeed if v ∈ h\ (Dh ∪A), then there exists a cycle C of length k−1 in H′ not
containing v. Thus there is a path of length at least k starting at an arbitrary d ∈Dh, continuing
with h,v, and having k−1 more vertices as it goes around C with defining hyperedges and
vertices. This contradicts Claim 5.2.5 and finishes the proof of Theorem 1.9.4.
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