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Preface

The idea of gradient descent dates back to [Cauchy et al., 1847] and it is one of the
most well-known optimization methods. It is also very intuitive: the negative of the
gradient describing which way the function descends the fastest, one just starts at an
arbitrary point and takes steps in the direction of the negative of the gradient to reach
a point where there is no further descent: a local minimum.

The topic of this thesis is to study the convergence of stochastic gradient methods.
In practice, we might not be in a situation where the gradient is easily accessible and
this is the source of the stochasticity. This can be due to noisy measurements or
insufficient information.

This thesis is organized as follows. Chapter 1 is an introduction to recursive ap-
proximation and stochastic gradient methods in general as well as the summary of
important results about these algorithms.

Chapter 2 is devoted to applications, here we describe how the different versions of
stochastic gradient descent are used in machine learning, and in various applications
from mathematical finance.

Chapter 3 is based on the preprint [Rásonyi and Tikosi, 2020] and studies the con-
vergence of the Kiefer-Wolfowitz algorithm. This algorithm was designed to maximize
a real function U(θ), which is only available through noisy measurements. This means
that we observe another function J(θ,X) that is an unbiased estimate of U(θ), i.e.
EJ(θ,X) = U(θ), where X represents the noise. Starting from some initial guess θ0

the recursive algorithm reads

θn+1 = θn + anH(θn, Xn+1, cn),

where H(θn, Xn+1, cn) plays the role of the gradient estimate being a difference quotient
of two noise-corrupted measurements defined as

H(θn, Xn+1, cn) =
J(θ + cn, X

1
n+1)− J(θ − cn, X2

n+1)

2cn
,

with appropriately chosen deterministic sequences (an) and (cn). The variables X1 and
X2 were assumed to be independent in each step, however in our analysis we do not
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assume that. In Therorem 3.2.1 we prove that under suitable technical assumptions,
the Kiefer-Wolfowitz algorithm has a convergence rate O(n−1/5) in mean absolute error,
while Theorem 3.2.2 shows that the fixed gain version of the algorithm will track the
optimum. The novelty of these results is that we do not assume differentiability, not
even continuity of θ → J(θ, ·) and the sequence Xn is not assumed to be i.i.d., it may
well be dependent as long as it satisfies a mixing condition.

Chapter 4 is based on the preprint [Rásonyi and Tikosi, 2021] and studies the
convergence of the stochastic gradient Langevin algorithm. Starting from some initial
guess θλ0 the recursion defined as

θλn+1 = θλn − λH(θλn, Yn) +
√
λξn+1, n ∈ N,

where H(θ, Yn) is an unbiased estimate of ∇U(θ) and λ ∈ (0, 1]. This recursion was
designed to sample from the distribution proportional to e−U(θ) as it is the discretization
of the Langevin SDE, with ∇U replaced by H(θλt , Yt). In the main result Therorem
4.2.1 we prove that under suitable assumptions, the law of θn converges to a limiting
law in total variation distance. The novelty of this result is once again that we do not
assume that the noise sequence is i.i.d.

All the simulations and numeric experiments, as well as the illustrations for this
work were made in Python. While the code is not included here, the author is happy
to share it upon inquiry.
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Chapter 1

Stochastic gradient methods

Stochastic approximation methods (often abbreviated SA) are iterative procedures for
solving optimization problems. In this chapter we present the classical results in this
area that the rest of the thesis builds on.

The earliest and most well-known stochastic iterative schemes are the Robbins-
Monro (RM) algorithm [Robbins and Monro, 1951] and the Kiefer-Wolfowitz algorithm
(KW) [Kiefer and Wolfowitz, 1952]. These algorithms can be regarded as stochastic
versions of the classical gradient descent for optimization (therefore often referred to
as stochastic gradient descent or SGD, an abbreviation we will use in the rest of this
work as an umbrella term for the below presented schemes). In the context of these
algorithms the stochasticity is due to noise-corrupted observations or insufficient infor-
mation.

1.1 Deterministic recursive approximation

The zero-search of a continuous function as well as the classical gradient descent are
well-known methods in numerics for recursive approximation, see e.g. [Duflo, 2013,
Polyak, 1987]. We recall them to put the stochastic methods in context.

The following recursion will converge to a point where a continuous function crosses
a given level.

Theorem 1.1.1 (Zero search of a deterministic continuous function) Suppose that f
is a continuous real function such that f (θ∗) = α and such that, for all θ, (f(θ) −
α) (θ − θ∗) < 0 and |f(θ)| ≤ K(1 + |θ|) for some constant K. Suppose that (an) is a
positive sequence such that

∑
an =∞ and an → 0. Then the sequence (θn) defined by

θn+1 = θn − an (α− f (θn))

converges to θ∗, for all initial values θ0.
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Proof: Follows from Proposition 1.2.3 of [Duflo, 2013]. �

Remark 1.1.1 The special case when an = f ′(θn) and α = 0 is known as the Newton
method (or Newton-Raphson algorithm). Newton’s method has quadratic convergence
in general (see Theorem 1 of Section 1.5.2 of [Polyak, 1987]), but it can be poorer in
some cases (when the starting point is not well-chosen or when the function is not
continuously differentiable).

For the search of the optimum of a differentiable function one can use gradient
descent.

Theorem 1.1.2 (Gradient descent) Suppose that f : Rn → R is convex and differen-
tiable function, and that its gradient ∇f is Lipschitz continuous with constant L > 0.
Then the iterates (θn) of gradient descent started from some deterministic initial value
θ0, defined by

θn+1 = θn − an∇f(θn),

with a constant step size of an = a ≤ 1/L satisfy

|f (θn)− f (θ∗) | ≤ C
‖θ0 − θ∗‖2

2

n

where f (θ∗) is the optimal value and C is a positive constant depending on L.

Proof: The proof is straightforward estimations and uses telescoping sums. �

Clearly, if f is globally convex, this method will find the global optimum, otherwise
the recursion might be caught up in some local minima.

Remark 1.1.2 Theorem 1.1.2 shows that gradient descent has a convergence rate of
O(1/n) for convex functions. This rate can be improved by having stricter assumptions
(like strong convexity) or using a momentum term.

1.2 Robbins-Monro algorithm

The Robbins-Monro algorithm [Robbins and Monro, 1951] was introduced as a root-
finding recursion, where the function is given in the form of an expected value. As
seen below, the recursive algorithm (1.4) is a generalization of the classical gradient
descent method, but instead of the gradient we have a stochastic quantity: an unbiased
estimate of the gradient.

Assume that the function h(θ) is given and there is a unique θ∗ such that h(θ∗) = α.
The goal is to successively approximate the root of this equation, however, the classical
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methods like the Newton-method cannot be used as the function h(θ) is not available,
only an unbiased estimate, i.e. a function H(θ,X) with h(θ) = EH(θ,X) where X is
a random variable. The authors proposed the recursion

θn+1 = θn − an+1(α−H(θn, Xn+1)), (1.1)

where θ0 is an arbitrary constant starting point, (ak)k≥1 is a sequence of positive real
numbers such that

∞∑
k=0

ak =∞ (1.2)

∞∑
k=0

a2
k <∞. (1.3)

Robbins and Monro proved convergence in mean-square error and in probability
provided that the function is non-decreasing, h′(θ∗) exists and is positive and H(θ,X)

is uniformly bounded. Almost sure convergence of the algorithm is well known for
Lipschitz functions, whenever the driving noise is a square integrable martingale dif-
ference sequence, see [Bhatnagar et al., 2013]. The proof relies on the so called ODE-
method [Ljung, 1977] and [Ljung, 1980] and assumes global asymptotic stability of the
ordinary differential equation associated with the problem. The speed of convergence
in expectation is O(n−1) when h is strongly convex and twice continuously differen-
tiable and θ∗ belongs to the interior of a convex set, see [Chung, 1954]. However with
general convexity and without the smoothness the convergence rate is O(n−

1
2 ) only and

it was proven in [Nemirovskij and Yudin, 1983] that it cannot be further improved.
Clearly, the RM method can be transformed to a minimum (or maximum) search

if we treat the function h as the gradient of an objective function. Then the method
translates to finding the local extrema of a function, when we can observe noisy mea-
surements of its gradient. In this case we are looking for a θ∗ such that h(θ∗) = 0,
altering the recursion to

θn+1 = θn − anH(θn, Xn+1). (1.4)

In the rest of this thesis we will always refer to this form.

Remark 1.2.1 1. The sequence (ak)k≥1 is often called the step size, as it describes
the size of the step one makes towards the gradient-estimate. Assumptions 1.2
and 1.3 on the step size intuitively say that while it needs to diminish, divergence
of the sum is needed, i.e. the recursion needs to be have large enough steps to
reach the optimum no matter how far away we start from it.
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2. While the two assumptions 1.2, 1.3 are necessary for the convergence results, in
practice sometimes constant step size is used, often referred to as fixed gain

stochastic approximation as opposed to decreasing gain. With constant
step size convergence is not guaranteed, but the recursion is meant to track

the optimum if it is time-varying. Fixed gain recursion has been studied in the
literature starting with [Kushner and Huang, 1981,Benveniste and Ruget, 1982]
or more recently results in [Chau et al., 2019a] (which are relevant to our results).

3. In case of deterministic gradient descent as stated in Theorem 1.1.2 constant step
size yields convergence since the gradient itself will converge to 0 as the iterations
approach the optimum.

Remark 1.2.2 SGD vs. Monte Carlo: When unbiased estimates of the gradient
are available, it can be a natural idea to use Monte Carlo method for optimization i.e.
take a large number of observations, use their average as an estimate that is closer
to the true gradient and perform classical, non-stochastic gradient descent. While
this is a sensible strategy, SGD has the advantage of being an online method, which
means that it always considers the new measurements and therefore it can adapt to
slow changes in the dynamics too. A common practice in applications is to settle for
a middle step between the two options and use a mini-batch method, i.e. take a
number of measurements and use their mean as the gradient estimate:

H(θn, Xn+1) =
1

k

k∑
i=1

H(θn, X
k
n+1).

We will not go into discussing mini-batch methods in this thesis, but note that H is
still an unbiased estimate with reduced variance, therefore the same analysis would
apply.

1.3 Kiefer-Wolfowitz algorithm

The Kiefer-Wolfowitz algorithm [Kiefer and Wolfowitz, 1952] is often also referred
to as finite differences stochastic approximation (or FDSA), as the main idea is to
use a difference quotient as the gradient estimate. Here, the goal is to maximize (or
minimize) an objective function U : Rd → R, which is unknown, but one can observe the
function U at any level, however, the observations are noise corrupted. In the original
paper by Kiefer and Wolfowitz only the one dimensional version was introduced, for
the multi-dimensional case that we present below, one can consult [Bhatnagar et al.,
2013]. Comparing it to the Robbins-Monro algorithm, where noisy measurements of
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the gradient of the function were taken, now we can take measurements of the function
itself and therefore we will substitute the gradient-estimate H(θn, Xn+1) in (1.4) with
a finite difference of the form

H(θn, Xn+1, cn) =
d∑
i=1

J(θ + cnei, X
1
n+1)− J(θ − cnei, X2

n+1)

2cn
ei,

where J : Rd × Rm → R is measurable, X1
n+1 and X2

n+1 are random variables and
E[J(θ,X1,2

0 )] = U(θ), θ ∈ Rd. The recursion therefore is

θn+1 = θn + anH(θn, Xn+1, cn), (1.5)

where the usual assumptions about the deterministic step size sequences (an)n∈N and
(cn)n∈N are:

ck → 0, k →∞,
∞∑
k=1

ak = ∞,

∞∑
k=1

akck < ∞,

∞∑
k=1

a2
kc
−2
k < ∞.

From the assumptions it follows that also ak → 0 as k → ∞. A standard choice
for these sequences that fulfills these assumptions is ak = ak−1 and ck = ck−γ, where
a > 0, c > 0 and γ ∈ (0, 1/2).

Remark 1.3.1 1. Intuitively, the first and third assumption on the step sizes are
needed so that the gradient estimates become more precise, referring back to
Remark 1.2.1, the divergence of the sequence (ak) is still needed, while the last
assumption requires (ak) to converge to 0 quicker than (ck), which ensures that
the steps an+1H(θn, Xn+1, cn) do not blow up.

2. While in the case of the RM algorithm the gradient estimates were assumed to
be unbiased, note that in the present case the difference quotients in general are
not unbiased estimates of the gradient.

In their original paper Kiefer and Wolfowitz proved convergence in probability, later
Blum [Blum et al., 1954] proved almost sure convergence.

Spall [Spall et al., 1992] introduced a version of KW method where random direc-
tions are used. This is the so called simultaneous perturbation stochastic approximation
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(SPSA) method which then became very popular due to its computational simplicity.
In one dimension it is the same iteration as the KW method, but in d dimensions the
latter will use 2d measurements in each step, 2 for each coordinate, and SPSA will only
use 2 measurements in one random direction independent of the dimension:

H(θn, Xn+1, cn) =
J(θ + cn∆n, X

1
n+1)− J(θ − cn∆n, X

2
n+1)

2cn
ei,

where ∆n is a d-dimensional vector with i.i.d. coordinates with zero mean, a standard
choice being symmetrical Bernoulli ±1 random variables as they satisfy the moment
conditions that were proposed. More about SPSA and the conditions for almost sure
convergence and asymptotic normality are available in [Spall, 2005, Gerencsér et al.,
2007].

1.4 Stochastic gradient Langevin dynamics

Stochastic gradient Langevin dynamics (often abbreviated SGLD) is an iterative scheme
where additional noise is introduced to a standard stochastic gradient method with the
purpose of allowing the recursion to escape local extrema and find the global one
for non-convex objective functions. Proposed in [Welling and Teh, 2011], the SGLD
algorithm was designed to perform Bayesian learning on large data sets, as a compu-
tationally less expensive alternative to Markov chain Monte Carlo (MCMC) methods.
For more about SGLD see [Raginsky et al., 2017,Brosse et al., 2018].

Remark 1.4.1 While the SGD methods (RM and KW) presented in the previous
sections are designed with the goal of finding the optimum θ∗, that is finding the mode
of the posterior distribution, the objective of SGLD is to sample from the posterior
distribution.

The origin of the idea from Bayesian learning is explained below, yet the main task
for us boils down to sampling from a distribution

π(A) :=

∫
A

e−U(θ)dθ∫
Rd e−U(θ)dθ

,

where A is a Borel-set of Rd and U : Rd → R+ is a continuously differentiable function.
Recall the Langevin stochastic differential equation:

dΘt = −∇U(Θt) dt+
√

2dWt, (1.6)
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where W is a d-dimensional standard Brownian motion on a filtered probability space(
Ω,F , (Ft)t≥0 ,P

)
with the usual conditions1. Under mild assumptions on the drift

term ∇U(Θ) the Langevin SDE has a unique invariant probability π (with respect to
the d-dimensional Lebesgue measure) that is proportional to exp(−U(x)), x ∈ Rd.

Remark 1.4.2 Note that dΘt = −∇U(Θt) dt +
√

2 dWt and dΘt = −1
2
∇U(Θt) dt +

dWt generate the same dynamics and both are referred to as the Langevin SDE.

The Euler-discretization2 of (1.6) is a discrete-time Markov chain, named unad-
justed3 Langevin algorithm (or short ULA), defined by

θt+1 = θt − λt∇U(θt) +
√

2λtξt+1,

where ξt+1 is Gaussian noise.
To use this in the context of Bayesian learning, following [Welling and Teh, 2011],

let θ ∈ Rd be a parameter and X = {xi, i ∈ {1, 2, . . . N}} a set of data points with
a large N. Assume that θ has a prior density π0(θ). Then SGLD is meant to sample
from the posterior distribution with density π(θ) = π(θ|x) ∝ π0(θ)

∏N
i=1 p(xi|θ) using

the recursion

θt+1 = θt − λt

(
∇ log π0(θt) +

N

n

n∑
i=1

∇ log p(xi|θt)

)
+
√

2λtξt+1, (1.7)

where p(xti |θt) is the likelihood of the data conditioned on θt and ξt+1 is Gaussian noise.
In [Teh et al., 2016] the authors prove weak convergence of the recursion to π under
assumptions on the drift and the step size sequence, that converges to 0.

Algorithm (1.7) can be interpreted as a minibatch version of the Euler-discretization
of (1.6), where the gradient ∇U(Θt) is substituted by its unbiased estimate. There-
fore it is a combination of a stochastic gradient method and the discretization of the
Langevin equation, where the gradient-part forces the iteration to step towards high

1A filtered probability space
(

Ω,F , (Ft)t≥0 , P
)
is said to satisfy the usual conditions if (Ft)t≥0 is

right-continuous and N ⊂ F0 with N = {X ⊂ Ω | ∃Y ∈ F : X ⊂ Y ∧ P (Y ) = 0}.
2The Euler-discretization (or Euler–Maruyama method) of an SDE dXt = a (t,Xt) dt +

b (t,Xt) dWt, X0 = c, where Wt is the standard Brownian motion, on an interval 0 ≤ t ≤ b is a
numerical method solving the initial value problem on a mesh 0 = t0 < t1 < · · · < tk = b. The step
sizes are hn = tn− tn−1 and the corresponding values x0, . . . , xk are defined as x0 = c and recursively
xn+1 = xn + hn−1a (tn, xn) + b (tn, xn)

(
Wtn+1

−Wtn

)
, where xn is the intended approximation of

Xtn .
3The adjusted version is usually referred to as Metropolis adjusted Langevin algorithm (MALA)

and it includes a Metropolis-Hastings-type accept-reject mechanism to correct for the discretization
error.
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probability areas while the noise term ensures that it will explore the whole parameter
space.

Using the notation H(θ,X) for the unbiased estimate, such that EH(θ,X) =

∇U(θt), the algorithm becomes

θt+1 = θt − λtH(θt, Xt) +
√

2λtξt+1, (1.8)

which in fact is a similar recursion to the RM algorithm (1.4) with the presence of the
additional noise sequence (ξt).

For the fixed gain version of algorithm (1.8) (where λt = λ for all t) the law of the
iterates converge to a limiting distribution πλ, which is in general different from π, but
for small λ it is close to it. The sampling error of θλt has been thoroughly analysed in the
literature: d(L(θλt ), µ) has been estimated for various probability metrics d, see [Chau
et al., 2021,Barkhagen et al., 2021,Raginsky et al., 2017,Brosse et al., 2018], it is of
the order

√
λ.
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Chapter 2

Applications of SGD

Stochastic approximation algorithms can be useful in practice when the data collected
is subject to noise, or when a mathematical model for the problem is too complicated
and therefore one tries to optimize the system by adjusting the parameters.

In this chapter we provide examples of application areas of recursive stochastic ap-
proximation schemes, with special focus on cases where assuming a dependent data
stream is sensible, as well as examples where discontinuous stochastic versions of the
objective functions naturally arise. First we briefly explain arguably the most im-
portant application of SGD: training models in machine learning. Then we present
various applications from mathematical finance. Here we assume that the reader is
familiar with the basic financial models, and we explain only the crucial concepts for
the examples.

2.1 SGD in machine learning

Recursive methods based on stochastic gradient descent are widely used in machine
learning and statistical learning including support vector machines, generative adver-
sarial networks etc. Combining it with backpropagation, SGD is the standard way for
training an artificial neural network, which is what we present below. As we will see,
in this setting the optimization problem can be high dimensional (with a complicated
network the number of parameters to train can easily go up to one million) and SGD
will reduce the computational burden by making the iterations fast.

In the case of feed-forward neural networks for supervised learning, as discussed in
[Bottou et al., 2018], one starts out with a {(x1, y1), . . . , (xn, yn)} collection of examples,
where xi ∈ X are the features of the data and yi ∈ Y are the labels. The goal is to
design a prediction function h(·, w) : X → Y using the collection of learning examples,
that maps the feature set into the labels, where w is the collection of all the parameters
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that are to be optimised. In deep neural networks the value of the prediction function
h will be computed by applying successive transformation to the input vector xi ∈ Rd0 .
A fully connected layer performs

x
(j)
i = s(Wjx

(j−1)
i + bj) ∈ Rdj ,

where xi(0) = xi, the matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj contain the jth layer
parameters, and s is a component-wise nonlinear activation function. Then the output
vector x(J)

i is the prediction function value h(xi;w), where the parameter vector w
collects all the parameters {(W1, b1), . . . , (WJ , bJ)} of the successive layers.

The training of the network is done by minimising the empirical risk of misclassifi-
cation:

min
w∈Rd

1

n

n∑
i=1

l(h(xi;w), yi),

where l is a loss function quantifying how much the prediction matches the correct label.
Often another quadratic regularization term is added to the minimization problem to
avoid the parameters taking extreme values:

min
w∈Rd

1

n

n∑
i=1

l(h(xi;w), yi) + κ|w|2

with some κ > 0. With supervised learning, often the set of labels is a discrete set
(e.g. in the case of identifying a written character, classifying texts, etc. the extent of
misclassification can not always be quantified), but the loss function l is usually chosen
in a way that it is continuous (the loss function is typically chosen by experimentation).

The minimization problem is then solved multiple times for a given training set
with various candidates for h and the ultimate solution w∗ is the one that yields the
best performance on the validation set1. For this optimisation SGD is the standard
method. The candidates for h might include various architectures of neural networks
with different hyperparameters, e.g. different numbers and types of layers, different
numbers of nodes in the layers and different parameters for the regularization.

The algorithm works as follows:
1The data set is typically divided into three subsets: the training set, the validation set and the

testing set. One uses the training set to train all the models, then chooses the one which has the
best performance on the validation set. Then the testing set is where the performance is checked.
The testing set is different from the validation set, because, intuitively, we do not want to test our
prediction function on the same exact dataset that made us choose that specific function.
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Initialize w (randomly or e.g. to be the zero-vector).
Repeat for t ∈ (1, . . . , T ):

1. Draw a random sample (xt, yt) from the training set with replacement.

2. Derive the prediction function h(xt, w).

3. Compute ∂l(h(xt;w),yt)
∂w

by the chain rule layer by layer, this algorithm is
called backpropagation.

4. Update w → w − λt ∂l(h(xt;w),yt)
∂w

.

Therefore here the stochasticity comes from the random selection of the pair (xi, yi)

from the learning set. In the machine learning setting, the step size is often called the
learning rate. Backpropagation (short for backward propagation of errors) means
that we calculate the derivative backwards: first the gradient of the final layer is
computed, then we proceed layer by layer using the rules of differentiation. For this
step it is convenient if the activation functions and the loss function are differentiable.

Referring back to 1.2.2, this method can be interpreted as an algorithm that uses
only one measurement at a time, in contrast to the mini-batch methods, where the
updating function is the average a few measurements, or the Monte-Carlo method,
where the goal would be to use a large number of measurements (or all of the data
points from the given data set, also known as batch gradient descent). Using mini-batch
methods or SGD have the advantage of being online methods: further data points can
be added anytime to improve the result without the need of recalculating anything.

2.2 Trading with a mean reverting asset

An application of stochastic approximation was presented in [Zhuang, 2008]. A mean-
reverting process is considered as a model for the asset prices and the goal is to nu-
merically develop a buy-low-and-sell-high strategy, i.e. to approximate two optimal
thresholds for trading: the investor will buy the stock whenever the low price limit
is hit, and sell when the price exceeds the high limit. In [Zhang and Zhang, 2008] a
closed form is presented to solve such a problem, stochastic approximation therefore
aims to reduce computational effort.

Let X(t) be a a mean reverting process described by

dX(t) = a(b−X(t))dt+ σdW (t), X(0) = x,
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where a > 0, σ > 0, b ∈ R and W (t) is a standard Brownian motion. Let the stock
price be given by the equation

S(t) = exp(X(t)).

The buying and selling times are defined as hitting times

0 ≤ τ b1 ≤ τ s1 ≤ τ b2 ≤ τ s2 ≤ . . . ,

where τ b1 is the first buying time, τ s1 is the first selling time etc. A proportional
transaction fee 0 < K < 1 and a discount factor ρ > 0 are taken into consideration.
Thus the goal is to find

arg maxU(θ), for θ = (θ1, θ2)T ∈ (0,∞)× (0,∞), where

U(θ) = E

[
∞∑
i=1

exp(−ρτ si)S(τ si )(1−K)− exp(−ρτ bi)S(τ bi)(1 +K)

]
.

Assume that the process S(t) can be observed and then the stopping times can be
computed as

τ b1n = inf{t > 0, S(t) ≤ exp(θ1
n)},

τ sin = inf{t > τ bin , S(t) ≥ exp(θ2
n)}, for i ≥ 1,

τ bin = inf{t > τ si−1
n , S(t) ≤ exp(θ1

n)}, for i ≥ 2.

Combine the random effects in the vector

ξn = (S(τ b1n ), S(τ s1n ), τ b2n ), S(τ s2n ), . . . , τ b1n , τ
s1
n , . . . ).

To design the recursive algorithm, gradient estimates with averaged samples are used,
however similar results can be achieved without averaging, so we will stick to presenting
only the latter version as it fits better in the present context.

Assume that a function J(θ, ξ) can be observed and it fulfills EJ(θ, ξ) = U(θ) for
each θ. Let J±n = (J±,1n , J±,2n )T be two measurements from the simulations, defined by

J±,in (θ, ξ±n ) = J(θ ± δnei, ξ±n ), for i = 1, 2,

where ei are the standard unit vectors, δn → 0 is the difference sequence, and ξ+ and
ξ− are two different aggregate noise process taken respectively at the threshold values
θ±δnei. Then the gradient estimate is defined as H(θn, ξn) = J+

n −J−n
2δn

and the stochastic
scheme has the form

θn+1 = θn + εnH(θn, ξn),

where (εn)n∈N is a sequence of positive step sizes.
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Remark 2.2.1 In practice, this would mean that having the data sequence of historical
prices, the algorithm uses the utility of the income generated by trading at the stopping
times given by the actual threshold values over a rolling window of training data, using
the newest data points to make a number of updates. The algorithm would work as
follows:

Initialize θ ideally within a couple of percents of the current price as we want
the stock prices to hit these thresholds eventually.
Repeat:

1. Collect historical stock price data for the last M time points (this can be
daily or even minute price data)

2. Repeat for N learning steps on this data: Compute∑∞
i=1 exp(−ρτ si)S(τ si )(1−K)− exp(−ρτ bi)S(τ bi)(1 +K) for θ ± δnei and

update θ based on these measurements (in this case there will of course be
a finite number of transactions).

3. Wait until m new data points are available, where m < M .

Note that although concrete dynamics of the system are assumed, when using the
algorithm on real data, one does not need to estimate the parameters describing the
dynamics. On the other hand if the parameters describing the dynamics are known,
they can be used to generate (independent) simulations to play the role of J(θ, ξ±n ).

In [Zhuang, 2008] weak convergence of the scheme is proven under assumptions on
the sequences (δn) and (εn), continuity of the second derivative Uθθ(.), and appropriate
integrability and mixing conditions.

2.3 Stock liquidation

In [Yin et al., 2002] the authors proposed a finite differences recursive algorithm for
stock liquidation, which was one of the first applications of stochastic approximation
in financial mathematics. When trading with a stock, a crucial question is when to
close one’s position and that is to be determined by a selling rule. Such a selling rule is
a pair of threshold levels: trading happens once the target price or the stop-loss limit
(i.e. a threshold where the trader closes the position in order to prevent further loss)
was hit. They consider a so called switching Black-Scholes model defined as follows.

Let α(t) be a finite-state continuous time Markov chain, where each member of the
states-space M = {1, . . . ,m} describes a specific economic environment. The easiest
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such example would be m = 2 with α(t) = 1 meaning economic growth with an upward
trend and α(t) = 2 meaning a downward trend. The stock price S(t) satisfies the SDE

dS(t)

S(t)
= µ(α(t))dt+ σ(α(t))dW (t), (2.1)

where W (.) with a standard Brownian motion independent of α(.) and the initial price
S(0) = S0. When the underlying Markov-chain has more than two states, the optimal
solution can be difficult to obtain in a closed form as a solution of a two-boundary
problem, although it is known that such a solution exists. A stochastic approximation
algorithm therefore aims to reduce computational effort in such a case. Defining the
process

X(t) =

∫ t

0

r(α(s))ds+ σ(α(s))dW (s), (2.2)

with r(i) = µ(i) − σ2(i)
2

for all i ∈ M one can rewrite the solution of (2.1) as S(t) =

S0 exp(X(t)). The pair of thresholds are defined as θ = (θ1, θ2) ∈ R × R, the stock is
liquidated as soon as the price process reaches S0 exp(−θ1) or S0 exp(θ2).

The optimisation task is to find the optimal threshold values so that the expected
return is maximal. Define the stopping time

τ = inf{t > 0 : S(t) /∈ (S0 exp(−θ1), S0 exp(θ2))}.

Then the goal is to find

arg maxU(θ), for θ ∈ R× R,

U(θ) = E[J(X(τ)) exp(−ρτ)],

where Φ : R→ R is a suitable utility function and ρ is the discount rate.
Similarly to the previous section, we will only discuss the algorithm without aver-

aging.
To get a gradient estimate they propose the following method: use (2.2) to generate

sample paths of X(t). At the nth iteration the threshold values are θn = (θ1
n, θ

2
n)T

and the corresponding stopping time τn can be computed. Use the notation ξn =

(X(τn), τn)T to combine the random effects from of the process X(t) and the stopping
time.

Let J(θ, ξ) be a real-valued function and assume that EJ(θ, ξ±n ) = U(θ) for each θ.
Let J±n = (J±,1n , J±,2n )T be two (not necessarily independent) measurements, defined by

J±,in (θ, ξ±n ) = J(θ ± δnei, ξ±n ), for i = 1, 2,
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where ei are the standard unit vectors and ξ+ and ξ− are two different aggregate noise
processes taken respectively at the threshold values θ±δnei. Then the gradient estimate
is defined as H = J+

n −J−n
2δn

and the stochastic scheme has the form

θn+1 = θn + εnH(θn, ξn),

where (εn)n∈N is a sequence of positive step sizes.
In practice we can use the same noisy measurements as in Remark 2.2.1.
In [Yin et al., 2002] weak convergence of the scheme is proven under assumptions on

the sequences (δn) and (εn), continuity of the second derivative Uθθ(.), and appropriate
integrability and mixing conditions. They also demonstrate the use of the algorithm
on real market data.

2.4 Trailing stop

A similar recursive algorithm was presented in [Zhuang, 2008] for trailing stop orders.
A trailing stop order, just like a stop-loss order is a tool to limit an investor’s loss in the
case of the stock price dropping, however this time the aim is to adjust to the market
price and initiate the selling at a given percentage below the market price. Thus if the
market price increases, the stop price also increases, whereas if the price drops, the
stop price does not drop and the stock is liquidated as soon as it is hit. Let S(t) be an
observable stochastic process modelling the stock price and h ∈ (0, 1) be the trailing
stop percentage. Then at time t the stop price is defined as

Th(t) = (1− h)Smax(t),

where Smax is the maximum price observed, i.e. Smax(t) = max{S(u) : 0 ≤ u ≤ t}.
Define the stopping time τ = inf{t > 0 : S(t) ≤ Th(t)}. The goal is to find

arg maxU(h), for h ∈ [a, 1], where

U(h) = E [Φ(S(τ)) exp(−ρτ)] ,

where a > 0 is a lower bound for the trailing stop percentage, ρ is the discount rate and
Φ(S) = S−S0

S0
is the reward function. A stochastic approximation algorithm is proposed

in [Zhuang, 2008] for this problem, with the same design as the previous examples.

2.5 Recursive computation of V@R and CV@R

Value at risk (V@R) and conditional value at risk (CV@R, also known as expected
shortfall) are two widely used risk measures in finance, which aim to quantify the tail
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risk of a portfolio or a financial instrument. In what follows we present a recursive
scheme to compute V@R and CV@R that can be found in [Laruelle and Pagès, 2012]
as an application to the convergence theorem established by the authors. The recursive
method to compute V@R and CV@R using stochastic approximation was introduced
in [Bardou et al., 2009].

Let X be a random variable representing the loss of a financial instrument.

Definition 2.5.1 The V@R at level α ∈ (0, 1) of a portfolio is the α-quantile of the
distribution X, i.e.

V@Rα(X) = inf{θ : P(X ≤ θ) ≥ α}.

Assume that X has a positive continuous density function fX on R. Then θα =

V@Rα(X) is the unique solution of

P(X > θα) = 1− α.

In application sometimes CV@R is preferred, since as opposed to V@R, it is a coherent
risk measure, meaning it satisfies the subadditivity property.

Definition 2.5.2 Let X ∈ L1(P) have an atomless distribution. The CV@R at level
α ∈ (0, 1) is the conditional expectation of loss assuming that the loss exceeds the V@R
at level α:

CV@Rα(X) = E[X|X ≥ V@Rα(X)].

The SA scheme for V@R and CV@R relies on a formulation of these risk measures
as the solutions to an optimization problem introduced in [Uryasev and Rockafellar,
2001].

Proposition 2.5.1 Let X ∈ L1(P) have an atomless distribution. Then the function
V (θ) = θ + 1

1−αE(X − θ)+, θ ∈ R is convex, and

CV@Rα(X) = min
θ

(
θ +

1

1− α
E(X − θ)+

)
,

V@Rα(X) = inf arg min
θ

(
θ +

1

1− α
E(X − θ)+

)
.

Proof: See [Uryasev and Rockafellar, 2001]. �

Then defining H(θ, y) = 1− 1
1−α1{y≥θ} yields V ′(θ) = EH(θ,X) and one can solve

the optimization problem and thus find the V@R with the stochastic gradient scheme

θk+1 = θk − λkH(θn, Xn), n ≥ 0.
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Note that one could solve the problem with classical gradient descent θk+1 = θn −
λk

1−α (FX(θk)− α) , but in general the cdf might not have a closed form or it might be
computationally demanding in higher dimensions. For the computation of CV@R the
following algorithm can be used with ζ0 = 0 and v(θ, x) = θ + (x−θ)+

1−α :

ζn+1 = ζn −
1

n+ 1
(ζn − v(θn, Xn)), n ≥ 0.

In [Laruelle and Pagès, 2012] the authors prove almost sure convergence of the
scheme under appropriate assumption about the noise, smoothness and Lyapunov as-
sumptions and suitable (λk) stepsizes.

2.6 Implicit correlation search

The following application is presented in [Laruelle and Pagès, 2012] as well.
As the model for the financial market a two-dimensional Black-Scholes model is

considered with one riskless asset X0
t = ert and two risky assets

X i
t = xi0 exp(r − σ2

i

2
)t+ σiW

i
t , i = 1, 2,

for t ≥ 0, with initial price xi0 > 0, i = 1, 2, where 〈W 1,W 2〉t = ρt, ρ ∈ [−1, 1]. A so
called best-of call option with strike price K on these assets is a basket option with the
payoff (max(X1

T , X
2
T )−K)+.

Thus the aim of the stochastic approximation procedure is to solve the equation

PBoC(x1
0, x

2
0, K, σ1, σ2, r, ρ, T ) = Pmarket

0

for ρ, where Pmarket
0 is the price observed on the market and

PBoC(x1
0, x

2
0, K, σ1, σ2, r, ρ, T )

= e−rTE
[
(max(X1

T , X
2
T )−K)+

]
= e−rTE

[(
max

(
x1

0e
µ1T+σ1

√
TZ1

, x2
0e
µ2T+σ2

√
T (ρZ1+

√
1−ρ2)Z2

)
−K

)
+

]
,

where µi = r − σ2
i

2
, i = 1, 2, Z = (Z1, Z2) ∼ N(0, I2). It is assumed that the equation

has at least one solution (say ρ∗) and a trigonometric parametrization ρ = cos θ, θ ∈ R

is used as ρ ∈ [−1, 1]. For simplicty denote P (θ) = PBoC(x1
0, x

2
0, K, σ1, σ2, r, cos(θ), T ).

Then finding the implicit correlation translates to solving P (θ) = Pmarket
0 . Set

H(θ, z) = e−rT
(

max
(
x1

0e
µ1T+σ1

√
Tz1 , x2

0e
µ2T+σ2

√
T (z1 cos θ+z2 sin θ)

)
−K

)
+
− Pmarket

0 ,
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for θ ∈ R and z ∈ R2. Then h(θ) = EH(θ, Z1) = P (θ) − Pmarket
0 and the recursive

algorithm is defined for n ≥ 0 as

θn+1 = θn − γn+1H(θn, Zn+1), with Zn+1 ∼ N(0, I2).

The authors once again prove almost sure convergence under appropriate assump-
tions.
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Chapter 3

Convergence of the Kiefer-Wolfowitz

algorithm in the presence of

discontinuities

This chapter is based on the preprint [Rásonyi and Tikosi, 2020]. In what follows we
estimate the expected error of the Kiefer-Wolfowitz stochastic approximation algorithm
where the maximum of a function is found using finite differences of a stochastic rep-
resentation of that function. An error estimate of the order n−1/5 for the nth iteration
is achieved using suitable parameters. The novelty with respect to previous studies
is that we allow the stochastic representation to be discontinuous and to consist of
possibly dependent random variables (satisfying a mixing condition).

3.1 Introduction

We are interested in maximizing a function U : Rd → R which is unknown. However,
we can observe a sequence J(θ,Xn), n ≥ 1 where J : Rd × Rm → R is measurable,

E[J(θ,X1)] = U(θ), θ ∈ Rd, (3.1)

and Xn, n ≥ 1 is an Rm-valued stationary process in the strong sense 1. The stochastic
representations J(θ,Xn) are often interpreted as noisy measurements of U(θ). In this
paper we focus on applications to mathematical finance, described in Section 3.6 below,
where J(θ,Xt) are functionals of observed economic variables Xt and θ determines
an investor’s portfolio strategy. In that context, stochasticity does not come from

1The process (xk)k∈Z is called strongly stationary (or strictly stationary) if the distribution is time
invariant, i.e. the joint distribution of (xt1 , . . . xtk) is the same as of (xt1+j , . . . xtk + j) for every
t1, . . . , tk indeces and for all k and j.
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measurement errors but it is an intrinsic property of the system. Maximizing U serves
to find the best investment policy in an online, adaptive manner.

We study a recursive algorithm employing finite differences, as proposed in [Kiefer
and Wolfowitz, 1952]. This is a variant of the Robbins-Monro stochastic gradient
method [Robbins and Monro, 1951] where, instead of the objective function itself, its
gradient is assumed to admit a stochastic representation.

The novelty in our work is that we do not assume differentiability, not even conti-
nuity of θ → J(θ, ·) and the sequence Xn may well be dependent as long as it satisfies a
mixing condition. The only result in such a setting that we are aware of is in [Laruelle
and Pagès, 2012], however, they only study almost sure convergence, without a conver-
gence rate. Our purpose is not to find the weakest possible hypotheses but to arouse
keen interest in the given problem that can lead to further, more general results. Our
work is also a continuation of [Fort et al., 2016,Chau et al., 2019a], where discontinuous
stochastic gradient procedures were treated.

The main theorems are stated in Section 3.2 and proved in Section 3.3. Section
3.4 recalls earlier results that we are relying on. A numerical example is provided in
Section 3.5. We explain the significance of our results for algorithmic trading in Section
3.6.

3.2 Setup and results

For real-valued quantities X, Y the notation O(X) = Y means that there is a constant
C > 0 such that |X| ≤ CY . We will always work on a fixed probability space (Ω,F , P )

equipped with a filtration Fn, n ∈ N such that F0 = {∅,Ω}. A decreasing sequence
of sigma-algebras F+

n , n ∈ N is also given, such that, for each n ∈ N, Fn and F+
n are

independent and Xn is adapted to Fn. The notation E[X] refers to the expectation
of a real-valued random variable X, while Ek[X] is a shorthand notation for E[X|Fk],
k ∈ N. Pk(A) refers to the conditional probability P (A|Fk). We denote by 1A the
indicator of a set A. The notation ω refers to a generic element of Ω. For r ≥ 1, we
refer to the set of random variables with finite rth moments as Lr. | · | denotes the
Euclidean norm in Rk where k may vary according to the context.

For i = 1, . . . , d, let ei ∈ Rd denote the vector whose ith coordinate is 1 and the
other coordinates are 0. For two vectors v, w ∈ Rm the relation v ≤ w expresses that
vi ≤ wi for all the components i = 1, . . . ,m. Let Br := {θ ∈ Rd : |θ| ≤ r} denote the
ball of radius r, for r ≥ 0.

Let the function U : Rd → R have a unique maximum at the point θ∗ ∈ Rd. Consider
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the following recursive stochastic approximation scheme for finding θ∗:

θk+1 = θk + λkH(θk, Xk+1, ck), for k ∈ N, (3.2)

starting from some initial (deterministic) guess θ0 ∈ Rd, where H is an estimator of
the gradient of J , defined as

H(θ, x, c) =
d∑
i=1

J(θ + cei, x)− J(θ − cei, x)

2c
ei,

for all θ ∈ Rd, x ∈ Rm and c > 0.
The sequences (λk)k∈N and (ck)k∈N appearing in (3.2) will consist of positive real

numbers, which are to be specified later. We will distinguish the cases where λk, ck
tend to zero and where they are kept constant, the former being called decreasing gain
approximation and the latter fixed gain approximation.

Remark 3.2.1 Our results below could easily be formulated in a more general setting
where J(θk + ckei, Xk+1(i)) and J(θk − ckei, X ′k+1(i)), i = 1, . . . , d are considered with
distinct Xk+1(i) and X ′k+1(i). In the applications that motivate us this is not the case
hence, for reasons of simplicity, we stay in the present setting.

Assumption 3.2.1 U is continuously differentiable with unique maximum θ∗ ∈ Rd.
Denote G(θ) = ∇U(θ). The function G is assumed Lipschitz-continuous with Lipschitz-
constant LG.

We assume in the sequel that the function J in (3.1) has a specific form. Note that
though J is not continuous, U can nonetheless be continuously differentiable, by the
smoothing effect of randomness.

Assumption 3.2.2 Let the function J be of the following specific form:

J(θ, x) = l0(θ)1A0(x) +
ms∑
i=1

1Ai(x)li(θ, x),

where li : Rd × Rm → Rd are Lipschitz-continuous (in both variables) for i = 1, . . . ,ms

and, for some mp,m
′
p ∈ N,

Ai(x) :=
(
∩mpj=1{θ : x ≤ gji (θ)}

)⋂(
∩m

′
p

j=1{θ : x > hji (θ)}
)
, i = 1, . . . ,ms

with Lipschitz-continuous functions gji , h
j
i : Rd → Rm. Furthermore, A0(x) := Rd \

∪msi=1Ai(x) and
∪x∈Rm ∪msi=1 Ai(x) ⊂ BD
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for some D > 0. The function l0 is twice continuously differentiable and there are
constants L′′1, L′′2 such that

L′′1I ≤ ∇∇l0 ≤ L′′2I

where I is the d× d identity matrix.

Remark 3.2.2 Assumption 3.2.2 implies that ∇l0 grows linearly, hence l0 itself is
locally Lipschitz with linearly growing Lipschitz-coefficient, that is,

|l0(θ1)− l0(θ2)| ≤ L0(1 + |θ1|+ |θ2|)|θ1 − θ2|,

with some L0 > 0, for all θ1, θ2 ∈ Rd.

In plain English, we consider J which is smooth on a finite number of bounded
domains (the interior of the constraint sets Ai(x), i = 1, . . . ,ms) but may have dis-
continuities at the boundaries. Furthermore, J (and hence also U) is required to be
quadratic “near infinity” (on A0(x)).

We briefly explain why such a hypothesis is not restrictive for real-life applications.
Normally, there is a compact set Q (e.g. a cube or a ball) such that only parameters
from Q are relevant, i.e. U is defined only on Q. Assume it has some stochastic
representation

U(θ) = E[J(θ,X0)], θ ∈ Q (3.3)

and a unique maximum θ∗ ∈ Q. Assume that Q ⊂ BD for some D. Extend U outside
BD as U(θ) = −A|θ|2 +B for suitable A,B. Extend U and J to BD \Q as well in such
a way that U is continuously differentiable, U(θ) < U(θ∗) for all θ 6= θ∗ (see Section 4
of [Chau et al., 2019b] for a rigorous construction of this kind). Set J := U outside Q.
Then our maximization procedure can be applied to this setting for finding θ∗.

Defining U = l0 (essentially) quadratic outside a compact set is one way of solving
the problem that such procedures often leave their effective domain Q. Other solutions
are resetting, see e.g. [Gerencsér, 1992]; or an analysis of the probability of divergence,
see e.g. [Benveniste et al., 1990].

The next assumption postulates that the process X should be bounded and the
conditional laws of Xk+1 should be absolutely continuous with a bounded density.

Assumption 3.2.3 For each k ∈ N,

Pk(Xk+1 ∈ A) =

∫
A

pk(u, ω) du, a.s.,A ∈ B(Rd),

for some measurable pk : Rd × Ω → R+ and there is a fixed constant F such that
pk(u, ω) ≤ F holds for all k, ω, u. The random variable X0 satisfies |X0| ≤ K0 for
some constant K0.
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Note that, by strong stationarity, the process Xk is uniformly bounded under As-
sumption 3.2.3.

We will assume a certain mixing property about the process Xn which we recall
now. A family of Rd-valued random variables Zi, i ∈ I is called Lr-bounded for some
r ≥ 1 if supi∈I E|Zi|r <∞, here I may be an arbitrary index set.

For a random field Yn(θ), n ∈ N, θ ∈ Rd bounded in Lr for some r ≥ 1, we define,
for all n ∈ N,

Mn
r (Y ) = ess sup

θ
sup
k∈N

E1/r[|Yn+k(θ)|r |Fn],

γnr (τ, Y ) = ess sup
θ

sup
k≥τ

E1/r
[∣∣Yn+k(θ)− E[Yn+k(θ)|F+

n+k−τ ∨ Fn]
∣∣r |Fn] , τ ≥ 0,

Γnr (Y ) =
∞∑
τ=0

γnr (τ, Y ).

These quantities clearly make sense also for any Lr-bounded stochastic process Yn,
n ∈ N (the essential suprema disappear in this case). Mn

r (Y ) measures the (conditional)
moments of Y while Γnr (Y ) describes its dependence structure (like covariance decay).
In particular, one can define Mn

r (X), Γnr (X). We clearly have Mn
r (X) ≤ K0 under

Assumption 3.2.3. The quantities Γnr (X) will figure in certain estimates later.

Assumption 3.2.4 For some ε > 0, γn3 (τ,X) = O((1 + τ)−4−ε), where the constant
of O(·) is independent of ω, τ and n. Furthermore,

E
[∣∣Xn+k − E[Xn+k|F+

n ]
∣∣] = O(k−2−ε), k ≥ 1,

where the constant of O(·) is independent of n, k.

Both requirements in Assumption 3.2.4 are about how the effect of the past on the
present decreases as we go back farther in time.

Example 3.2.1 Let εn, n ∈ N be a bounded i.i.d. sequence in Rm with bounded den-
sity w.r.t. the Lebesgue measure and choose Fk := σ(εj, j ≤ k) and F+

k := σ(εj, j ≥
k + 1) . Then Xn := εn, n ∈ N satisfies Assumptions 3.2.3 and 3.2.4.

Example 3.2.2 A causal infinite moving average process whose coefficients decay suf-
ficiently fast is another pertinent example. Indeed, using the argument of Lemma 4.2
of [Chau et al., 2019a] one can show that Xn :=

∑∞
j=0 sjεn−j, n ∈ N satisfies Assump-

tion 3.2.4 where the εi are as above, s0 6= 0 and |sj| ≤ (1+j)−β holds for some β > 9/2.
Assumption 3.2.3 is also clearly satisfied in that model.
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Remark 3.2.3 A random field Yn(θ), n ∈ N is called uniformly conditionally L-mixing
if Yn(θ) is adapted to the filtration Fn, n ∈ N for all θ, and the sequencesMn

r (Y ), Γnr (Y ),
n ∈ N are bounded in Lr for each r ≥ 1. Our Assumption 3.2.4 thus requires a sort of
related mixing property.

The concept of conditional L-mixing was introduced in [Chau et al., 2019a], inspired
by [Gerencsér, 1989].

3.2.1 Decreasing gain stochastic approximation

The usual assumption on the sequences (λk)k=1,2,... and (ck)k=1,2,... in the definition of
the recursive scheme (3.2) are the following, see [Kiefer and Wolfowitz, 1952]:

ck → 0, k →∞,
∞∑
k=1

λk = ∞,

∞∑
k=1

λkck < ∞,

∞∑
k=1

λ2
kc
−2
k < ∞. (3.4)

In the sequel we stick to a more concrete choice which clearly fulfills the conditions
in (3.4) above.

Assumption 3.2.5 We fix λ0, c0 > 0, γ ∈ (0, 1/3) and set

λk = λ0

∫ k+1

k

1

u
du,

and ck = c0k
−γ, k ≥ 1. We also assume c0 ≤ 1.

Asymptotically λk behaves like λ0/k. However, our choice somewhat simplifies the
otherwise already involved theoretical analysis.

The ordinary differential equation associated with the problem is

ẏt =
λ0

t
G(yt). (3.5)

The idea to use an associated deterministic ODE to study the asymptotic proper-
ties of recursive schemes was introduced in [Ljung, 1977]. The intuition behind this
association is that on the long run the noise effects average out and the asymptotic
behavior is determined by this ’mean’ differential equation.
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Remark 3.2.4 Heuristic connection between the dynamics of the recursive scheme
and the ODE can be seen if one looks at the Euler-discretization2 of the latter. Recall
that the Euler discretization of ODE (3.5) with the initial value y0 = θ0 and step size
1 is

yk+1 = yk +
λ0

k
G(yk).

This gives the step sizes λk a different interpretation: the time-step in the ODE.

The solution of (3.5) with initial condition ys = ξ will be denoted by y(t, s, ξ) for
0 < s ≤ t.

Assumption 3.2.6 The ODE (3.5) fulfills the stability assumption formulated below:
there exist C∗ > 0 and α > 0 such that∣∣∣∣∂y(t, s, ξ)

∂ξ

∣∣∣∣ ≤ C∗
(s
t

)αλ0
for all 0 < s < t.

Our main result comes next.

Theorem 3.2.1 Let Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5 and 3.2.6 hold. Then

E|θn − θ∗| = O(n−χ + n−α), n ≥ 1,

where χ = min{1
2
− 3

2
γ, γ} and the constant in O(·) depends only on θ0.

To get the best result set γ = 1
5
. In this case the convergence rate is χ = 1

5

(provided that α ≥ 1/5). For Kiefer-Wolfowitz procedures [Sacks, 1958] establishes
a convergence rate n−1/3 under fairly restrictive conditions (e.g. J is assumed smooth
and X is i.i.d.). Our approach is entirely different from that of [Sacks, 1958] and relies
on the ODE method (see e.g. [Kushner and Clark, 2012]) in the spirit of [Gerencsér,
1992,Gerencsér, 1999,Gerencsér, 1998] where so-called SPSA procedures were analysed.

Theoretical analysis in the present case is much more involved for two reasons: the
discontinuities of J and the state-dependent setting (hardly analysed in the literature
at all). Our results are closest to [Gerencsér, 1998] where a rate of n−2/7 is obtained for
the SPSA algorithm (a close relative of Kiefer-Wolfowitz) imposing strong smoothness
assumptions on J . As already remarked, in the absence of smoothness ours is the first
study providing a convergence rate. Eventual strengthening of our result seems to be
difficult and will be object of further investigations.

2The Euler discretization (as described in [Ascher and Petzold, 1998]) of an ODE y′ = f(t, y),
y(0) = c on an interval for 0 ≤ t ≤ b is a first order numerical method solving the initial value problem
on a mesh 0 = t0 < t1 < · · · < tk = b. The step sizes are hn = tn − tn−1 and the corresponding
values y0, . . . , yk are defined as y0 = c and recursively yn = yn−1 + hnf (tn−1, yn−1) , where yn is the
intended approximation of y(tn).
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3.2.2 Fixed gain stochastic approximation

Let us also consider a modified recursive scheme

θk+1 = θk + aH(θk, Xk+1, c), k ∈ N, (3.6)

where a and c are fixed (small) positive reals, independent of k. In contrast with the
previous scheme (3.2), which is meant to converge to the maximum of the function,
this method is expected to track the maximum.

The ordinary differential equations associated with the problem are

ẏt = aG(yt), (3.7)

for each a > 0.

Remark 3.2.5 Here we refer back to Remark 3.2.4, noting that the Euler dicretization
of ODE (3.7) with the initial value y0 = θ0 and step size 1 is

yk+1 = yk + aG(yk).

Lemma 3.2.1 Assumption 3.2.6 on the ODE (3.5) implies (3.7) being exponentially
stable, i.e. satisfying ∣∣∣∣∂y(t, s, ξ)

∂ξ

∣∣∣∣ ≤ C∗e−αa(t−s), 0 < s ≤ t

for some α > 0 (possibly different from the one in (3.5)).

Proof: Let Assumption 3.2.6 hold for ODE (3.5). Use exponential time-change with
s = eu and t = ev, and note that in the fixed gain case a will take the role of λ0. Then
we have the reparametrized ODE

ẏt = ẏev =
λ0

ev
G(yt)e

v = λ0G(yt),

as well as the stability∣∣∣∣∂y(t, s, ξ)

∂ξ

∣∣∣∣ =

∣∣∣∣∂y(ev, eu, ξ)

∂ξ

∣∣∣∣ ≤ C∗
(
eu

ev

)αλ0
= C∗e−αλ0(t−s), 0 < s ≤ t.

�

Theorem 3.2.2 Let Assumptions 3.2.1, 3.2.2, 3.2.3, 3.2.4 and 3.2.6 hold. Then

E|θn − θ∗| = O

(
max

(
c2,

√
a

c

)
+ e−aαn

)
holds for all n ≥ 1 where the constant in O(·) depends only on θ0.

Note that, similarly to the decreasing gain setting, this leads to the best choice
being c = a

1
5 . We know of no other papers where the fixed gain case has been treated.

In the case of stochastic gradients there are many such studies obtaining a rate of
√
a

for step size a, see e.g. [Chau et al., 2019a] and the references therein.
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3.3 Proofs

The following lemma will play a pivotal role in our estimates: it establishes the condi-
tional Lipschitz-continuity of the difference function obtained from J .

Lemma 3.3.1 Under Assumptions 3.2.2 and 3.2.3, there is C[ > 0 such that, for each
i = 1, . . . , d and c ≤ 1,

Ek|J(θ̄1 + cei, Xk+1)− J(θ̄1 − cei, Xk+1)− J(θ̄2 + cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

≤ C[[|θ̄1 − θ̄2|+ c2]

holds for all k ∈ N and for all pairs of Fk-measurable Rd-valued random variables θ̄1,
θ̄2.

Proof: We assume that ms = 1, mp = 1, m′p = 0. We will shortly refer to the
general case later. We thus assume that J(θ, x) = l1(θ, x)1{x≤g(θ)} + l0(θ)1A0(x) with
some Lipschitz-continuous g, l1 with Lipschitz-constant L1 (for both). Let K1 be an
upper bound for l1 in BD+2.

Consider first the event A1 := {θ̄1, θ̄2 ∈ BD+1} and the corresponding indicator
I1 := 1A1 . Note that on I1 we have θ̄j ± cei ∈ BD+2, j = 1, 2. Now estimate

Ek|I1l1(θ̄1 + cei, Xk+1)1{Xk+1≤g(θ̄1+cei)} − I1l1(θ̄2 + cei, Xk+1)1{Xk+1≤g(θ̄2+cei)}|

≤ Ek|I1l1(θ̄1 + cei, Xk+1)1{Xk+1≤g(θ̄1+cei)} − I1l1(θ̄2 + cei, Xk+1)1{Xk+1≤g(θ̄1+cei)}|

+ Ek|I1l1(θ̄2 + cei, Xk+1)1{Xk+1≤g(θ̄1+cei)} − I1l1(θ̄2 + cei, Xk+1)1{Xk+1≤g(θ̄2+cei)}|

≤ L1Ek|θ̄1 − θ̄2|

+ K1

m∑
j=1

[
Pk(g

j(θ̄2 + cei) < Xj
k+1 ≤ gj(θ̄1 + cei)) + Pk(g

j(θ̄1 + cei) < Xj
k+1 ≤ gj(θ̄2 + cei))

]
≤ L1|θ̄1 − θ̄2|+ 2mK1L1F |θ̄1 − θ̄2|.

In the same way, we also get

Ek|I1l1(θ̄1 − cei, Xk+1)− I1l1(θ̄2 − cei, Xk+1)| ≤ L1|θ̄1 − θ̄2|+ 2mK1L1F |θ̄1 − θ̄2|.

As l0 is clearly Lipschitz on BD+2, we also have

|I1l0(θ̄1 ± cei, Xk+1)− I1l0(θ̄2 ± cei, Xk+1)| = O(|θ̄1 − θ̄2|).

Let L′′2 be an upper bound for the second derivative ∇∇l0, recall Assumption 3.2.2.
Now let A2 be the event that the line from θ̄1 to θ̄2 does not intersect BD+1 at all, let
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I2 := 1A2 . It follows in particular that neither θ̄1 ± cei nor θ̄2 ± cei fall into BD. Since
J = l0 outside BD we can write, by the Lagrange mean value theorem,

EkI2|J(θ̄1 + cei, Xk+1)− J(θ̄2 + cei, Xk+1)− J(θ̄1 − cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

= 2cEkI2|∂θil0(ξ1)− ∂θil0(ξ2)|

≤ 2c sup
u∈Rd
|∇(∂θil0(u))|Ek|ξ1 − ξ2|

≤ 2cL′′2Ek|ξ1 − ξ2|

≤ 2cL′′2[|θ̄1 − θ̄2|+ 2c] ≤ 2L′′2|θ̄1 − θ̄2|+ 4c2L′′2

holds with some random variables ξj ∈ [θ̄j − cei, θ̄j + cei], j = 1, 2, remembering our
assumptions on l0 and c ≤ 1.

Turning to the event Ω \ (A1 ∪ A2), let us consider the directed straight line from
θ̄1(ω) to θ̄2(ω) and let its first intersection point with the boundary of BD+1 be denoted
by κ1(ω) and its second intersection point by κ2(ω). In the case where there is only
one intersection point it is denoted by κ1(ω). Let I3 be the indicator of the event that
there is only one intersection point (κ1) with BD+1 and that θ̄1 is inside BD+1. The
arguments of the previous two cases guarantee that

EkI3|J(θ̄1 + cei, Xk+1)− J(θ̄2 + cei, Xk+1)− J(θ̄1 − cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

≤ EkI3|J(θ̄1 + cei, Xk+1)− J(κ1 + cei, Xk+1)− J(θ̄1 − cei, Xk+1) + J(κ1 − cei, Xk+1)|

+ EkI3|J(κ1 + cei, Xk+1)− J(θ̄2 + cei, Xk+1)− J(κ1 − cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

= O(|θ̄1 − κ1|) +O(|κ1 − θ̄2|) +O(c2)

= O(|θ̄1 − θ̄2|) +O(c2).

Similarly, if I4 is the indicator of the event where there is one intersection point
and θ̄2 is inside BD+1 then we also get

EkI4|J(θ̄1 + cei, Xk+1)− J(θ̄2 + cei, Xk+1)− J(θ̄1 − cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

= O(|θ̄1 − θ̄2|+ c2).

Let I5 denote the indicator of the case where both θ̄1, θ̄2 are outside BD+1 and there
are two intersection points κ1, κ2. We get, as above,

EkI5|J(θ̄1 + cei, Xk+1)− J(θ̄2 + cei, Xk+1)− J(θ̄1 − cei, Xk+1) + J(θ̄2 − cei, Xk+1)|

= O(|θ̄1 − κ1|) +O(|κ1 − κ2|) +O(|κ2 − θ̄2|) +O(c2)

= O(|θ̄1 − θ̄2|+ c2).

Finally, in the remaining case (where there is only one intersection point with BD+1

though both θ̄1, θ̄2 are outside BD+1) we similarly get an estimate of the order O(|θ̄1−
θ̄2|+ c2) and hence we eventually obtain the statement of the lemma.
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When mp = 0 and m′p = 1, the same ideas work. When mp + m′p > 1 we can rely
on the following elementary observation:∣∣∣∣∣
mp∏
j=1

1{Xk+1≤gj(θ̄1+cei)} −
mp∏
j=1

1{Xk+1≤gj(θ̄2+cei)}

∣∣∣∣∣ ≤
mp∑
j=1

∣∣1{Xk+1≤gj(θ̄1+cei)} − 1{Xk+1≤gj(θ̄2+cei)}
∣∣ ,

and its counterpart for the hj. Estimates can be repeated for each summand in the
definition of J so the case ms > 1 follows, too. �

The arguments of the previous lemma, (3.8) in particular, also give us the following:

Lemma 3.3.2 Under Assumptions 3.2.2 and 3.2.3, there is C\ > 0 such that, for each
i = 1, . . . , d,

Ek|J(θ̄ + cei, Xk+1)− J(θ̄ − cei, Xk+1)| ≤ C\c, 0 < c ≤ 1,

holds for all k ∈ N and for all Fk-measurable BD-valued random variables θ̄. �

3.3.1 Moment estimates

In this subsection, we will prove that the first moments of our iteration scheme remain
bounded. We start with a preliminary lemma on deterministic sequences.

Lemma 3.3.3 Let xk ≥ 0, k ∈ N be a sequence, let ζk > 0, k ≥ 1 be another sequence.
If they satisfy νζk < 1, k ≥ 1 and

xk ≤ (1− νζk)xk−1 + cζk, k ≥ 1,

with some c, ν > 0 then
sup
k∈N

xk ≤ x0 +
c

ν
.

Proof: Following the argument of Lemma 1 in [Durmus and Moulines, 2017], we
notice that

xk ≤
k∏
i=1

(1− νζi)x0 + c
k∑
i=1

ζi

k∏
j=i+1

(1− νζj),

where an empty product is meant to be 1. We can write

k∑
i=1

ζi

k∏
j=i+1

(1− νζj)

=
1

ν

k∑
i=1

(
k∏

j=i+1

(1− νζj)−
k∏
j=i

(1− νζj)

)

≤ 1

ν
.
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This shows the claim. �

Certain calculations are easier to carry out if we consider the continuous time
embedding of the discrete time processes. Consider the following extension θt, t ∈ R+

of θk, k ∈ N: let

θt := θk +

∫ t

k

auH(u, θk) du

for all k ∈ N and for all k ≤ t < k + 1, where H(t, θ) = H(θ,Xk+1, ck) for all k ∈ N

and for all k ≤ t < k + 1, ct = ck and au = λ0/max{u, 1}, u ≥ 0. Extend the
filtration to continuous time by Ft := Fdte, t ∈ R+. Now fix µ > 1. We introduce an
auxiliary process that will play a crucial role in later estimates. For each n ≥ 1 and for
dnµe ≤ t < d(n+ 1)µe define yt := y(t, dnµe, θdnµe), i.e. the solution of (3.5) starting at
dnµe with initial condition ydnµe = θdnµe.

We introduce the L1-norm
‖Z‖1 := E|Z|,

for each Rd-valued random variable Z.

Lemma 3.3.4 Under Assumptions 3.2.2 and 3.2.3, we have

sup
t≥1
‖yt‖1 + sup

t≥1
E‖θt‖1 <∞.

Proof: Note that 2ckH
j(θ, x, ck) = l0(θ + ckej)− l0(θ − ckej), for all x, j = 1, . . . , d

when θ /∈ BD+1. Furthermore, the function l0(θ + ckej) − l0(θ − ckej) is Lipschitz on
BD+1 which, together with Lemma 3.3.2 implies∥∥∥∥ l0(θ + ckej)− l0(θ − ckej)

2ck
−Hj(θ,Xk+1, ck)

∥∥∥∥
1

≤ C̄, θ ∈ Rd, (3.8)

for a fixed constant C̄. Clearly,

||θk+1||1 ≤

∥∥∥∥∥θk − λk
2ck

d∑
j=1

[l0(θk + ckej)− l0(θk − ckej)]ej

∥∥∥∥∥
1

+

∥∥∥∥∥ λk2ck

d∑
j=1

[l0(θk + ckej)− l0(θk − ckej)]ej − λkH(θk, Xk+1, ck)

∥∥∥∥∥
1

.

Note that, by Assumption 3.2.2, l0 is strongly convex, in particular,

〈∇l0(θ)−∇l0(0), θ〉 ≥ A0|θ|2, θ ∈ Rd

for all θ, with some A0 > 0. Hence also

〈∇l0(θ), θ〉 ≥ A|θ|2 −B, θ ∈ Rd
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for suitable A,B > 0. But then for all a > 0 small enough,

|θ − a∇l0(θ)| ≤ (1− A′a)|θ|+ aB′, θ ∈ Rd

for suitable A′, B′ > 0. By the mean value theorem,

l0(θk + ckej)− l0(θk − ckej) = 2ck∂jl0(ξj)

for some random variable ξj ∈ [θk − ckej, θk + ckej]. Since ∇l0 is Lipschitz,

max
j
‖∇l0(θk)−∇l0(ξj)‖1 ≤ L′

for some L′ > 0. It follows then easily that, for k ≥ k0 large enough such that λk is
small enough, ∥∥∥∥∥θk − λk

2ck

d∑
j=1

[l0(θk + ckej)− l0(θk − ckej)]ej

∥∥∥∥∥
1

≤ λkdL
′ + ||θk − λk∇l0(θk)||1

≤ λk(B
′ + dL′) + (1− A′λk)||θk||1

holds. By (3.8),∥∥∥∥∥ λk2ck

d∑
j=1

[l0(θk + ckej)− l0(θk − ckej)]ej − λkH(θk, Xk+1, ck)

∥∥∥∥∥
1

≤ λkdC̄.

Apply Lemma 3.3.3 with the choice xk := ||θk||1, c := d(L′ + C̄) +B′ and ζk := λk,
ν := A′ to obtain that supk≥k0 ‖θk‖1 <∞. Then trivially also supn∈N ‖θn‖1 <∞ holds,
which easily implies supt≥1 ‖θt‖1 <∞ as well.

Now turning to yt we see that, for n ≥ 1 and dnµe ≤ t < d(n+ 1)µe,

|yt − θ∗| = |yt − y(t, dnµe, θ∗)|

≤ |θdnµe − θ∗|C∗,

finishing the proof. �

Lemma 3.3.5 Let Assumptions 3.2.2 and 3.2.3 hold. Then there exists Cl > 0 such
that supk≥1 |J(θ,Xk)| ≤ Cl(1 + |θ|2), i.e. J grows at most quadratically in θ.

Proof: Recall that

|J(θ, x)| ≤ |l0(θ)|+
ms∑
i=1

1Ai(x) |li(x, θ)| ,

where the functions li are bounded on the bounded sets ∪x∈RdAi(x) for i = 1, . . . , d,
and l0 grows quadratically. �

The difficulty of the following lemma consists in handling the discontinuities and
the dependence of the sequence Xk at the same time.
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Lemma 3.3.6 Let Assumptions 3.2.2 and 3.2.3 hold. Then for each R > 0 the random
field J(θ,Xn), θ ∈ BR, n ∈ N satisfies

Mn
3 (J(θ,X)) ≤ Cl(1 +R2),

Γn3 (J(θ,X)) ≤ L(1 +R2),

for some L > 0, where Cl is as in Lemma 3.3.5.

Proof: The first statement follows from Lemma 3.3.5.
Let n ≥ 0, τ ≥ 1 be fixed. For k ≥ τ , define X+

k = E[Xn+k|F+
n+k−τ ∨ Fn]. For

the sake of simplicity, assume that ms = 1 in the definition of J , mp = 0, but the
same argument would work for several summands, too. We also take the process X
unidimensional (m := 1) noting that the same arguments easily carry over to a general
m.

We now perform an auxiliary estimate. Let ετ > 0 be a parameter to be chosen
later and let 1 ≤ j ≤ m′p. We will write h below instead of h1. Define Zk = Xn+k−X+

k

and estimate

En
∣∣∣1{Xn+k>hj(θ)} − 1{X+

k >h
j(θ})

∣∣∣3 = En
∣∣∣1{Xn+k>hj(θ)} − 1{X+

k >h
j(θ})

∣∣∣
≤ Pn

(
Xn+k ∈

(
hj(θ)− |Zk|, hj(θ) + |Zk|

))
≤ Pn

(
Xn+k ∈

(
hj(θ)− |Zk|, hj(θ) + |Zk|

)
, |Zk| ≤ ετ

)
+ Pn(|Zk| ≥ ετ )

≤ 2Fετ +
En[|Xn+k −X+

k |3]

ε3τ
,

where the last inequality follows from Assumption 3.2.3 and the Markov inequality.
Now estimate

E1/3
n

∣∣∣∣∣∣
m′p∏
j=1

1{Xn+k>hj(θ)}

 l1(Xn+k, θ)−

m′p∏
j=1

1{X+
k >h

j(θ)}

 l1(X+
k , θ)

∣∣∣∣∣∣
3

≤ E1/3
n

∣∣∣∣∣∣
m′p∏
j=1

1{Xn+k>hj(θ)} −
m′p∏
j=1

1{X+
k >h

j(θ)}

 l1(Xn+k, θ)

∣∣∣∣∣∣
3

+ E1/3
n

∣∣∣∣∣∣(l1(Xn+k, θ)− l1(X+
k , θ)

) m′p∏
j=1

1{X+
k >h

j(θ)}

∣∣∣∣∣∣
3

≤ E1/3
n

∣∣∣∣∣∣
m′p∑
j=1

∣∣∣1{Xn+k>hj(θ)} − 1{X+
k >h

j(θ)}

∣∣∣
∣∣∣∣∣∣
3

(L1(|Xn+k|+R) + |l1(0, 0)|)3


+ L1E

1/3
n |Xn+k −X+

k |
3

≤ C1(1 +R)

(
ε1/3τ +

E1/3
n [|Xn+k −X+

k |3]

ετ

)
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for some C1, where we used the Lipschitz-continuity of the function l1, as well as the
observation that∣∣∣∣∣∣

m′p∏
j=1

1{Xn+k>hj(θ)} −
m′p∏
j=1

1{X+
k >h

j(θ)}

∣∣∣∣∣∣ ≤
m′p∑
j=1

∣∣∣1{Xn+k>hj(θ)} − 1{X+
k >h

j(θ)}

∣∣∣ .
A similar estimate works for l0 but we get the upper bound

E1/3
n

∣∣∣1A0(Xn+k)l0(θ)− 1A0(X+
k )l0(θ)

∣∣∣3
≤ C1(1 +R2)

(
ε1/3τ +

E1/3
n [|Xn+k −X+

k |3]

ετ

)

instead. For the second inequality of the present lemma, note first that Lemma 3.4.1
below implies

E1/3
n

[∣∣J(θ,Xn+k)− E[J(θ,Xn+k)|Fn ∨ F+
n+k−τ ]

∣∣3]
≤2E1/3

n

[∣∣J(θ,Xn+k)− J(θ,X+
k )
∣∣3] ,

hence it suffices to estimate the latter quantity. From our previous estimates it follows
that, for some C > 0,

E1/3
n

[
|J(θ,Xn+k)− J(θ,X+

k )|3
]
≤ C(1 +R2)

[
3
√
ετ +

E1/3
n |Xn+k −X+

k |3

ετ

]
(3.9)

Choose ετ := (τ + 1)−3−ε/2. Summing up the right-hand side for τ ≥ 1 we see that,
by Assumption 3.2.4, the sum has an upper bound independent of k. The statement
follows as the case τ = 0 is easy. �

3.3.2 Decreasing gain case

The following lemma contains the core estimates of the present paper.

Lemma 3.3.7 Let n ≥ 1. Let dnµe ≤ t < d(n+1)µe for µ := 1/γ and let Assumptions
3.2.1, 3.2.2, 3.2.3, 3.2.4, 3.2.5 and 3.2.6 hold. Then E|θt − yt| = O(n−β), where
β = min

(
1

2γ
− 1

2
, 2
)
.
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Proof: For dnµe ≤ t < d(n+ 1)µe,

|θbtc − yt| ≤ |ybtc − yt|+ |θbtc − ybtc|

≤
t∫

btc

au |G(yu)| du+

∣∣∣∣∣∣∣
btc∫

dnµe

au
(
H(u, θbuc)−G(yu)

)
du

∣∣∣∣∣∣∣
≤ anµ

t∫
btc

|G(yu)| du

+

∣∣∣∣∣∣∣
btc∫

dnµe

au
(
H(u, θbuc)−H(u, yu)

)
du

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
btc∫

dnµe

au
(
H(u, yu)− E[H(u, yu)|Fdnµe]

)
du

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
btc∫

dnµe

au
(
E[H(u, yu)|Fdnµe]−G(yu)

)
du

∣∣∣∣∣∣∣
=: Σ0 + Σ1 + Σ2 + Σ3.

Estimation of Σ0. Since G has at most linear growth, Lemma 3.3.4 guarantees that

E[Σ0] = O

(
anµ

∫ t

btc
(E|yu|+ 1) du

)
= O(n−µ).

Estimation of Σ1. Recall that, by the tower property for conditional expectations,

E |H(u, θu)−H(u, yu)| = EEk |H(u, θu)−H(u, yu)|

for all integers k. Applying this observation to k = buc, Lemma 3.3.1 implies that

E[Σ1] = E

∣∣∣∣∣∣∣
btc∫

dnµe

au
(
H(u, θbuc)−H(u, yu)

)
du

∣∣∣∣∣∣∣
≤

t∫
dnµe

auE
∣∣H(u, θbuc)−H(u, yu)

∣∣ du
≤ C[

t∫
dnµe

au
cu

E
∣∣θbuc − yu∣∣ du+ C[

t∫
dnµe

au
cu
c2
u du (3.10)

Henceforth we will denote

Σ′1 := C[

t∫
dnµe

au
cu
c2
u du.
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Notice that
E[Σ′1] = O(n−µγ−1) = O(n−2).

Estimation of Σ2. Notice that H(u, θ̄) = E[H(u, θ̄)|Fdnµe] for all Fdnµe-measurable θ̄
such that a.s. θ̄ /∈ BD since J(θ, x) does not depend on x outside BD by Assumption
3.2.2. Thus

Σ2 ≤ sup
dnµe≤t<d(n+1)µe

∣∣∣∣∣∣∣
t∫

dnµe

au1{yu∈BD} (H(u, yu)− E[H(u, yu)|Fnµ ]) du

∣∣∣∣∣∣∣ .
We will use the inequality of Theorem 3.4.1 below with r = 3, with Rt := Ft+dnµe,

t ∈ R+, R+
t := F+

t+dnµe with the process defined by

Wt = 1{yt+dnµe∈BD}ct+dnµe
(
H(t, yt+dnµe)− E[H(t, yt+dnµe)|Fdnµe]

)
, t ≥ 0 (3.11)

and with the function ft = at+dnµe/ct+dnµe. Note that {yt ∈ BD} ∈ Fdnµe for all
dnµe ≤ t < d(n+ 1)µe. We get from Lemma 3.4.2 below and from the cited inequality
that

E[Σ2] = E[E[Σ2|Fdnµe]] ≤ E[E1/3[Σ3
2|Fdnµe]]

≤ C ′(3)

 d(n+1)µe∫
dnµe

(
au
cu

)2

du


1/2

E[M̃3 + Γ̃3]

≤ C ′(3)

 d(n+1)µe∫
dnµe

(
au
cu

)2

du


1/2

C(1 +D2).

We thus get

E[Σ2] = O

 d(n+1)µe∫
dnµe

(
au
cu

)2

du


1/2

.
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Estimation of Σ3.

E[Σ3] ≤ E

 t∫
dnµe

au
∣∣E[H(u, yu)|Fdnµe]−G(yu)

∣∣ du


≤ E

 t∫
dnµe

au sup
ϑ∈Rd

∣∣E[H(ϑ,Xbuc+1, cbuc)|Fdnµe]−G(ϑ)
∣∣ du


≤ E

 t∫
dnµe

au sup
ϑ∈Rd

∣∣E[H(ϑ,Xbuc+1, cbuc)|Fdnµe]− E[H(ϑ,Xbuc+1, cbuc)]
∣∣ du


+ E

 t∫
dnµe

au sup
ϑ∈Rd

∣∣E[H(ϑ,Xbuc+1, cbuc)]−G(ϑ)
∣∣ du

 (3.12)

To handle the second sum, note that, for each i = 1, . . . , d,

E[H i(ϑ,Xk+1, ck)] =
U(ϑ+ ckei)− U(ϑ− ckei)

2ck
= Gi(ξik),

for some ξik ∈ [ϑ− ckei, ϑ+ ckei]. The Lipschitz continuity of G implies that |Gi(ξik)−
Gi(ϑ)| ≤ LGck so

E

 t∫
dnµe

au sup
ϑ∈Rd

∣∣E[H(ϑ,Xbuc+1, cbuc)]−G(ϑ)
∣∣ du

 ≤ t∫
dnµe

audLGcdue du

= O

 d(n+1)µe∫
dnµe

u−1−γ du

 = O(n−2).

Now we turn to the first sum in (3.12). Define X+
k = E[Xk|F+

dnµe], k ≥ dnµe. First
let us estimate

Ednµe[|H(ϑ,Xk+1+dnµe, ck+dnµe)−H(ϑ,X+
k+1+dnµe, ck+dnµe)|].

Fix εk > 0 to be chosen later. By an argument similar to that of Lemma 3.3.6 (using
the first instead of the third moment in Markov’s inequality) we get that, for some
constant C1,

ck+dnµeEdnµe[|H(ϑ,Xdnµe+k+1, ck+dnµe)−H(ϑ,X+
dnµe+k+1, ck+dnµe)|]

≤ C1

[
εk +

Ednµe[|Xdnµe+k+1 −X+
dnµe+k+1|]

εk

]
.
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Choose εk = (1 + k)−1−ε/2. Then using Assumption 3.2.4 we get

ck+dnµe sup
ϑ∈Rd

E[|H(ϑ,Xdnµe+k+1, cdnµe+k)−H(ϑ,X+
dnµe+k+1, ck+dnµe)||Fdnµe] = O(k−1−ε/2)

which also implies

ck+dnµe sup
ϑ∈Rd

E[|H(ϑ,Xdnµe+k+1, cdnµe+k)−H(ϑ,X+
dnµe+k+1, cdnµe+k)|] = O(k−1−ε/2).

Since E[H(ϑ,X+
k+1, cdnµe+k)|Fdnµe] = E[H(ϑ,X+

k+1, ck+dnµe)] for k ≥ dnµe by inde-
pendence of Fdnµe and F+

dnµe, we have

t∫
dnµe

auE sup
ϑ∈Rd

∣∣E[H(ϑ,Xbuc+1, cbuc)|Fdnµe]− E[H(ϑ,Xbuc+1, cbuc)]
∣∣ du

≤
∞∫

dnµe

au
cu
cuE sup

ϑ∈Rd
E[
∣∣∣H(ϑ,Xbuc+1, ck)−H(ϑ,X+

buc+1, ck)
∣∣∣ |Fdnµe] du

+

∞∫
dnµe

au
cu
cu sup

ϑ∈Rd
E
[∣∣∣H(ϑ,Xbuc+1, ck)−H(ϑ,X+

buc+1, ck)
∣∣∣] du

≤ C2

adnµe
cdnµe

∞∑
k=1

k−1−ε/2

with some C2, so
E[Σ3] = O

(
nµ(γ−1)

)
.

Combining the estimates we have so far, we get

E[Σ0 + Σ′1 + Σ2 + Σ3] = O(n−µ + n−2 + n
−µ+2µγ−1

2 + n−2 + nµ(γ−1)). (3.13)

Notice that E|θt − yt| is always finite, see Lemma 3.3.4 above. Use Gronwall’s lemma
and (3.10) to obtain the inequality

E[|θbtc − yt|] ≤ E[Σ0 + Σ′1 + Σ2 + Σ3] exp

(
C3

∫ d(n+1)µe

nµ

au
cu
du

)

with some constant C3. From Lemma 3.3.2 it is also easy to check that E|θt − θbtc| =
O(n−µ). Note furthermore that the terms n−µ and nµ(γ−1) are always negligible in
(3.13). These observations lead to

E|θt − yt| = O(n
−µ+2µγ−1

2 + n−2) exp
(
C4n

µγ−1
)

= O(n
1
2
− 1

2γ + n−µγ−1)

with some C4, finsihing the proof. �
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Proof: [Proof of Theorem 3.2.1] Denote

di = sup
diµe≤s<d(i+1)µe

E|θs − ys|, i = 1, 2, . . .

By Fatou’s lemma, we also have

E|θd(i+1)µe − yd(i+1)µe−| ≤ di

where ys− denotes the left limit of y at s.
It follows from Lemma 3.3.7, that di = O(i−β). Combining this with Assumption

3.2.6 and using telescoping sums we get, for each integer N ≥ 1,

E|y(dNµe, 1, θ1)− θdNµe|

= E|y(dNµe, 1, θ1)− y(dNµe, dNµe, θdNµe)|

≤
N∑
i=2

E
∣∣y(dNµe, d(i− 1)µe, θd(i−1)µe)− y(dNµe, diµe, θdiµe)

∣∣
≤

N∑
i=2

E
∣∣y(dNµe, diµe, y(diµe, d(i− 1)µe, θd(i−1)µe))− y(dNµe, diµe, θdiµe)

∣∣
≤ C∗

N∑
i=2

(
i+ 1

N

)αµ
di−1 = O(N−β+1),

noting that y(diµe, d(i− 1)µe, θd(i−1)µe) equals the left limit ydiµe−. A similar argument
provides, for all t ∈ (dNµe, d(N + 1)µe),

E|θt − y(t, 1, θ1)| = O(N−β+1).

Taking µth root we obtain

E|θt − y(t, 1, θ1)| = O(t
−β+1
µ ), t ≥ 1.

To conclude, note that by the stability Assumption 3.2.6, |y(t, 1, θ1) − θ∗| ≤ C∗|θ1 −
θ∗|t−α and that E|θ1| <∞, as easily seen using Lemma 3.3.2. �

3.3.3 Fixed gain case

Define T = c
a
. For nT ≤ t < (n + 1)T , define yt = y(t, nT, θnT ), i.e. the solution of

(3.5) with the initial condition ynT = θnT . We use the piece-wise linear extension θt

of θt and the piece-wise constant extension H(t, θ) of H(θ,Xk+1, c) as defined in the
decreasing gain setting, but a and c are now constants.

Lemma 3.3.8 Let Assumptions 3.2.1,3.2.2, 3.2.3 3.2.4 and 3.2.6 hold. Then for t ∈
[nT, (n+ 1)T ] there is C > 0 such that E|θt − yt| ≤ C max(c2,

√
a
c
).
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Proof: Using essentially the same estimates we derived in the decreasing gain setting,
for fixed a and c we get

E[Σ0] ≤ C0a (3.14)

E[Σ1] ≤ C1

[
a

c

t−1∑
nT

E|θk − yk|+ c2

]
(3.15)

E[Σ2] ≤ C2

(
t−1∑
nT

(
a2

c2

))1/2

≤ C2

(
c

a

a2

c2

)1/2

= C2

√
a

c
(3.16)

E[Σ3] ≤ C3

[
a

c
+

t−1∑
nT

ac

]
= C3Tac+ C3

a

c
= O

(
c2 +

a

c

)
, (3.17)

with suitable constants C0, C1, C2, C3. Combine these estimates and use Gronwall-
lemma to get the statement. To choose optimally, set c2 =

√
a
c
, that is c = a

1
5 . In this

case E|θt − yt| ≤ C4a
2
5 for some C4. �

Proof: [Proof of Theorem 3.2.2] Denote

di = sup
iT≤s<(i+1)T

E|θs − yis|.

It follows from Lemma 3.3.8, that di ≤ C max(c2,
√

a
c
). Combining this with Assump-

tion 3.2.6 and using telescoping sums we get

E|y(NT, 1, θ1)− θNT | = E|y(NT, 1, θ1)− y(NT,NT, θNT )|

≤
N∑
i=2

E
∣∣y(NT, (i− 1)T, θ(i−1)T )− y(NT, iT, θiT )

∣∣
≤

N∑
i=2

E
∣∣y(NT, iT, y(iT, (i− 1)T, θ(i−1)T ))− y(NT, iT, θiT )

∣∣
≤

N∑
i=2

(
C∗e−aα(NT−iT )

)
di−1 ≤ Ĉ max

(
c2,

√
a

c

)
,

with some Ĉ since
∑N

i=2 e
−aα(NT−iT ) has an upper bound independent of N . We simi-

larly get

sup
NT≤t<(N+1)T

E|θt − y(t, 1, θ1)| ≤ Č max

(
c2,

√
a

c

)
with some Č. To conclude, note that by the stability Assumption 3.2.6, |y(t, 1, θ1) −
θ∗| ≤ C∗|θ1 − θ∗|e−aαt and therefore

E|θt − θ∗| = O

(
max

(
c2,

√
a

c

)
+ e−aαt

)
.

�
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3.4 Auxiliary results

We define continuous-time analogues of the key quantities M and Γ from Assumption
3.2.4 and establish a pivotal maximal inequality for them.

Consider a continuous-time filtration (Rt)t∈R+ as well as a decreasing family of
sigma-fields (R+

t )t∈R+ . We assume that Rt is independent of R+
t , for all t ∈ R+.

We consider an Rd-valued continuous-time stochastic process (Wt)t∈R+ which is
progressively measurable (i.e. W : [0, t] × Ω → Rd is B([0, t]) ⊗ Rt-measurable for all
t ∈ R+).

From now on we assume that Wt ∈ L1, t ∈ R+. Fix r ≥ 1. We define the quantities

M̃r := ess sup
t∈R+

E1/r [|Wt|r|R0] ,

γ̃r(τ) := ess sup
t≥τ

E1/r[|Wt − E[Wt|R+
t−τ ∨R0]|r|R0], τ ∈ R+,

and set Γ̃r :=
∑∞

τ=0 γ̃r(τ).
Now we recall a powerful maximal inequality, Theorem B.3 of [Barkhagen et al.,

2019].

Theorem 3.4.1 Let (Wt)t∈R+ be Lr-bounded for some r > 2 and let M̃r + Γ̃r <∞ a.s.
Assume E[Wt|R0] = 0 a.s. for t ∈ R+. Let f : [0, T ] → R be B([0, T ])-measurable with∫ T

0
f 2
t dt <∞. Then there is a constant C ′(r) such that

E1/r

[
sup
s∈[0,T ]

∣∣∣∣∫ s

0

ftWt dt

∣∣∣∣r |R0

]
≤ C ′(r)

(∫ T

0

f 2
t dt

)1/2

[M̃r + Γ̃r], (3.18)

almost surely. �

We also recall Lemma A.1 of [Chau et al., 2019a].

Lemma 3.4.1 Let G,H ⊂ F be sigma-algebras. Let X, Y ∈ Rd be random variables
in Lp such that Y is measurable with respect to H ∨ G. Then for any p ≥ 1,

E1/p
[
|X − E[X|H ∨ G]|p

∣∣G] ≤ 2E1/p
[
|X − Y |p

∣∣G] .
�

Lemma 3.4.2 Let the process Wt be defined by (3.11). Taking the filtration Rt :=

Ft+dnµe and R+
t := F+

t+dnµe, we get M̃(W ) + Γ̃(W ) ≤ C(1 +D2) for some C > 0.
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Proof: Note that the multiplication with the indicator function can only reduce the
values, so we leave that away. We will prove this statement in the one-dimensional
case, the several dimensional follows similarly. By the definition of H we can write

ct+dnµe
(
H(t, yt+dnµe)− E[H(t, yt+dnµe)|Fdnµe]

)
=

1

2
(J(θ + ct+dnµe, yt+dnµe)− E[J(θ + ct+dnµe, yt+dnµe)|Fdnµe])

− 1

2
(J(θ − ct+dnµe, yt+dnµe)− E[J(θ − ct+dnµe, yt+dnµe)|Fdnµe])

,
Denote W±

t = J(θ ± ct+dnµe, yt+dnµe) − E[J(θ ± ct+dnµe, yt+dnµe)|Fdnµe] and set R =

D. Lemma 3.3.1, Lemma A.3 and Remark A.4 of [Chau et al., 2019a] imply that
M̃(W±) ≤ 2M̃(J) and Γ̃(W±) = Γ̃(J). Then use the estimates of Lemma 3.3.6 to
conclude. �

3.5 Numerical experiments

In what follows we present numerical results to check the convergence of the algorithm
for a simple discontinuous function J , defined as

J(θ,X) =

(θ −X)2 + 1, if X ≤ θ

(θ −X)2, otherwise,

where X is a square-integrable, absolutely continuous random variable. Clearly, this
function is not continuous in the parameter, but its expectation is continuous:

U(θ) = EJ(X, θ) =

∫ θ

−∞
((x− θ2) + 1)f(x)dx+

∫ ∞
θ

(x− θ)2f(x)dx

= E(X − θ)2 + F (θ) = EX2 − 2θEX + θ2 + F (θ),

where f(·) and F (·) are the density function resp. the distribution function of X.
See Figure 3.1 below to see a visualization of such function. Assuming that F is
differentiable, we need to solve

∂U(θ)

∂θ
= −2EX + 2θ − f(θ) = 0

in order to find arg min EJ(X, θ).
For the numerical examples we will use the recursion

θk+1 = θk +
1

k + k0

J(θ + (k + k0)−1/5, Xk+1)− J(θ − (k + k0)−1/5, X ′k+1)

(k + k0)−1/5
. (3.19)
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To compute the expected error, Monte Carlo simulations were used with 10000

sample paths and the number of steps k ranging from 28 to 220. We fit regression on
the log-log plot to get the convergence rate only on [213, 220] and set k0 = 10000 to
avoid the initial fluctuations of the algorithm. More technical remarks on the numerical
examples are included in A

3.5.1 Independent innovations

In this section we assume that the consecutive “measurement noises” Xn are i.i.d.
We consider three different choices for the distribution of the noise: normal, uniform
and beta distributions. Note that normal distribution violates boundedness and for
uniform distribution the differentiability of F fails, however convergence is achieved
even in these cases. We also distinguish between the case where the observations Xk+1

and X ′k+1 are the same and when they are independent. Here we refer back to Remark
3.2.1 where we point out that this choice does not influence our theoretical results,
however it may make a visible difference numerically. This phenomenon has already
been observed, see [Glasserman and Yao, 1992,Spall, 2005] for more about the variance
reduction technique called common random numbers (CRN). The values in Table 3.1
below represent the slope of linear regression we fit on the log-log plot of the average
absolute error vs. the number of steps, together with the R-squared value measuring
the goodness of the fit.

independent Xk+1,X ′k+1 identical Xk+1 = X ′k+1

N(0, 1) −0.299 (R2 = 0.999) −0.459 (R2 = 0.999)

U([0, 1]) −0.14 (R2 = 0.997) −0.14 (R2 = 0.997)

Beta(2, 2) −0.374 (R2 = 0.999) −0.393 (R2 = 0.999)

Table 3.1: Convergence speed for different distributions of i.i.d. noise

The lower limit that we theoretically achieved for the convergence rate in Theorem
3.2.1 was −0.2, however the numerical experiments we present show that the practical
convergence rate can outperform this.

Standard normal distribution

Assume that X ∼ N(0, 1). Then the function we aim to find the minimum of is
U1(θ) = 1 + θ2 + Φ(θ), where Φ denotes the the cumulative distribution function of
standard normal distribution. We get the solution θ∗ = −

√
W
(

1
8π

)
≈ −0.19569, where

W is the Lambert-W function.
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(a) J(θ∗, X) for the optimal θ∗

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

3

4

5

6

(b) U1(θ) = E[J(θ,X)]

Figure 3.1: The discontinuous stochastic representation and the smooth objective func-
tion

Figure 3.2 illustrates the convergence of two variations of algorithm (3.19) for U1,
starting the iteration from θ0 = −0.1. On figure (3.2a) we present the case where Xk+1

and X ′k+1 are independent on a log-log plot, we observe a convergence rate of k−0.299

while (3.2b) shows the case where Xk+1 = X ′k+1 which yields a convergence rate of
k−0.459.
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lin. regression on [13,20], slope=-0.299
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(a) Xk+1 and X ′k+1 independent
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(b) Xk+1 = X ′k+1

Figure 3.2: Log-log plot of E|θ∗−θk| vs. number of iterations for i.i.d. standard normal
innovations

Uniform([0,1]) distribution

Let X ∼ Uniform([0, 1]). Then the function we aim to find the minimum of is U2(θ) =

1/3− θ + θ2 + Funi(θ), where Funi denotes the the cumulative distribution function of
Uniform([0,1]) distribution. We get the solution θ∗ = 0.
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Figure 3.3 illustrates the convergence of two variations of algorithm (3.19) for U2,
starting the iteration from θ0 = 1. On figure (3.3a) we present the case where Xk+1 and
X ′k+1 are independent on a log-log plot, while (3.3b) shows the case whereXk+1 = X ′k+1,
both of which yield a convergence rate of k−0.14, worse that the theoretical rate k−0.2.
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(a) Xk+1 and X ′k+1 independent

8 10 12 14 16 18 20
log2k

6

5

4

3

2

1

lo
g 2

E|
*

k|

reference: slope=-0.2
lin. regression on [13,20], slope=-0.14
values

(b) Xk+1 = X ′k+1

Figure 3.3: Log-log plot of E|θ∗ − θk| vs. number of iterations for i.i.d. uniform
innovations

Beta(2,2) distribution

Let X ∼ Beta(2, 2). Then the function we aim to find the minimum of is U3(θ) =

0.3 − θ + θ2 + Fβ(θ), where Fβ denotes the the cumulative distribution function of
Beta(2,2) distribution. We get the solution θ∗ = 2−

√
2.5

3
≈ 0.13962.

Figure 3.4 illustrates the convergence of two variations of algorithm (3.19) for U3,
starting the iteration from θ0 = 1. On figure (3.4a) we present the case where Xk+1

and X ′k+1 are independent on a log-log plot, we observe a convergence rate of k−0.374

while (3.4b) shows the case where Xk+1 = X ′k+1 which yields a convergence rate of
k−0.393.

3.5.2 AR(1) innovations

For an example with non-i.i.d. Xt, assume that the “noise” is an AR(1) process defined
as

Yt+1 = κYt + εt+1, for t ∈ Z,

where εt is standard normal for t ∈ Z and |κ| < 1. Clearly, Yt =
∑∞

k=0 κ
kεt−k, and

therefore Yt ∼ N
(
0, 1

1−κ2
)
. For the sequences Xt and X ′t we have two options: either
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(a) Xk+1 and X ′k+1 independent
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(b) Xk+1 = X ′k+1

Figure 3.4: Log-log plot of E|θ∗−θk| vs. number of iterations for i.i.d. beta innovations

we take consecutive measurements i.e. Xk = Y2k−1 and X ′k = Y2k or we use identical
values, i.e. Xk = X ′k = Yk. In both cases

U4(θ) = EJ(θ,X) = θ2 +
1

1− κ2
+ Φ

(
θ
√

1− κ2
)
.

Solving this for κ = 0.75 we get the optimal value θ∗ ≈ −0.13144.

Figure 3.5 and table 3.2 illustrate the convergence rate of algorithm (3.19) for the
function U4, starting from θ0 = 0. On figure (3.5a) we present the rate in the case where
we take consecutive measurements of the AR(1) process, (Xk = Y2k−1 and X ′k = Y2k),
the convergence rate of k−0.333 was observed. Figure (3.5b) shows the case where the
two measurements are the same, (Xk = X ′k = Yk), with the rate k−0.487.

consecutive observations: Xk = Y2k−1 and X ′k = Y2k identical: Xk = X ′k = Yk

AR(1) -0.333 (R2 = 0.999) -0.487 (R2 = 0.999)

Table 3.2: Convergence rate for AR(1) noise

3.6 Application to mathematical finance

The price of a financial asset either follows a trend during a given period of time or
just rambles around its “fair” price value – at least so it seems to many actual traders.
This “rambling”, in more mathematical terms, means that the price is reverting to its
long-term average. Such a mean-reversion phenomenon can be exploited by “buying
low, selling high”-type strategies. Related discussions involve plenty of common-sense
advice and benevolent concrete suggestion, see e.g. [TraderGav, 2020,WarriorTrading,
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Figure 3.5: Log-log plot of E|θ∗ − θk| vs. number of iterations for AR(1) innovations

2020,TradingStrategyGuides, 2021]. There exist also theoretical studies about optimal
trading with such prices, see e.g. [Guasoni et al., 2019]. However, a rigorous approach
to adaptive trading algorithms of this type is lacking.

Results of the present paper provide theoretical convergence guarantees for such al-
gorithms which cannot be deduced from existing literature on stochastic approximation.
The most conspicuous feature of mean-reversion strategies is that they are triggered
when the price reaches a certain level. This means that their payoffs are discontinu-
ous with respect to the parameters, gradients do not exist and only finite-difference
approximations can be used (the Kiefer-Wolfowitz method). Their convergence in the
given discontinuous case cannot be shown based on available results hence we fill an
important and practically relevant gap here.

We describe in some detail a trading model below and explain how it fits into the
framework used in the previous sections. Let the price of the observed financial asset
be described by a real-valued stochastic process St, t ∈ Z, adapted to a given filtration
Ft, t ∈ Z, representing the flow of information. (Alternatively St may be the increment
of the price at t which can safely be assumed to follow a stationary process.)

Our algorithm will be based on several dynamically updated estimators which are
assumed to be functionals of the trajectories of St and possibly of another adapted
process Ft describing important economic factors. The estimate for the long-term
average of the process is denoted by At(θ) at time t. The upper and lower bandwith
processes will be denoted B+

t (θ) and B−t (θ), they are non-negative. All these estimates
depend on a parameter θ to be tuned, where θ ranges over a subset Q of Rd.

In practice, At(θ) is some moving average (or exponential moving average) of pre-
vious values of S but it may depend on the other indicators F (market indices, etc.).
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Here θ determines, for instance, the weights of the moving average estimate. The
quantities B±t (θ) are normally based on standard deviation estimates for S but, again,
may be more complex with θ describing weighting of past information. If we peek
from time t back to time t − p with some p ∈ N then At(θ), B±t (θ) are functionals of
(St−p, Ft−p, . . . , St, Ft).

The price range [At − B−t , At + B+
t ] is considered to be “normal” by the algorithm

while quitting that interval suggest “extremal” behaviour that the market should correct
soon. For example, reaching the level At−B−t means that the price is abnormally low
for the present circumstances, hence it is worth buying a quantity b(θ) of them where,
again, the parameter θ should be optimally found. When the price returns to At′ at
some later time t′, the asset will be sold and a profit is (hopefully) realized. Similarly,
when reaching At +B+

t , quantity s(θ) of the asset is sold (the price being abnormally
high) and it will be repurchased once the “normal” level At′ is reached at some future
t′ > t, aiming to realize profit.

The value of the parameter θ will be updated at times tN , t ∈ N where N ≥ 1 is
fixed. The (random) profit (or loss) resulting from trading on the interval [N(t−1), Nt]

is denoted by u(θ,Xt) with Xt = (SN(t−1)−p, FN(t−1)−p, . . . , SNt, FNt). We could even
write an explicit expression for u based on the description of the trading mechanism in
the previous paragraph but it would be very cumbersome without providing additional
insight hence we omit it. We also add that, in many cases, a fee must also be paid at
every transaction. Such strategies being “threshold-type”, the function u is generically
a discontinuous function of θ.

We furthermore argue that one cannot smooth out u and make it continuous without
losing essential features of the problem. Approximating the indicator function of the
interval [0,∞) by a function f which is 1 on [0,∞), 0 on (−∞,−ε] for some small
ε > 0 and linear on (−ε, 0) may look reasonable at first sight but in this way we get a
Lipschitz approximation with a huge Lipschitz constant hence with a poor convergence
rate! This is just to stress that such simple tricks might work in certain practical
situations but they only obscure the real issues in the theoretical analysis (namely,
there is a discontinuity to be handled).

The described algorithm is very close to what actual investors do, see [TraderGav,
2020,WarriorTrading, 2020,TradingStrategyGuides, 2021]. We also mention the related
theoretical studies [Leung and Li, 2015,Cartea et al., 2015] which, however, do not take
an adaptive view and calculate optimal strategies for concrete models.

Taking a more realistic, adaptive approach, the investor may seek to maximize
Eu(θ,X0) by dynamically updating θ at every instant tN , t ∈ N. Our versions of
the Kiefer-Wolfowitz algorithm, presented in the previous sections, are tailor-made for
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such online optimization, both the decreasing and the fixed gain version, depending on
the circumstances. Theorems 3.2.1 and 3.2.2 provide a solid theoretical convergence
guarantee for such procedures.
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Chapter 4

On the stability of the stochastic

gradient Langevin algorithm with

dependent data stream

This chapter is based on the preprint [Rásonyi and Tikosi, 2021]. We prove, under mild
conditions, that the fixed gain stochastic gradient Langevin dynamics converge to a
limiting law as time tends to infinity, even in the case where the driving data sequence
is dependent.

4.1 Stochastic gradient Langevin dynamics

Sampling from high-dimensional, possibly not even logconcave distributions is a chal-
lenging task, with far-reaching applications in optimization, in particular, in machine
learning, see [Raginsky et al., 2017, Chau et al., 2021, Barkhagen et al., 2021, Brosse
et al., 2018].

Let U : Rd → R+ be a given function and consider the corresponding Langevin
equation

dΘt = −∇U(Θt) dt+
√

2 dWt, (4.1)

where W is a d-dimensional standard Brownian motion. Under suitable assumptions,
the unique invariant probability µ for the diffusion process (4.1) has a density (with
respect to the d-dimensional Lebesgue measure) that is proportional to exp(−U(x)),
x ∈ Rd.

In practice, Euler approximations of (4.1) may be used for sampling from µ, i.e. a
recursive scheme

ϑλt+1 = ϑλt − λ∇U(ϑλt ) +
√

2λξt+1 (4.2)
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is considered for some small λ > 0 and independent standard d-dimensional Gaussian
sequence ξi, i ≥ 1.

In some important applications however, U and ∇U are unknown, one disposes
only of unbiased estimates H(θ, Yt), t ∈ N of ∇U(θ), where Yt is some stationary data
sequence. From this point on we switch to rigorous mathematics.

Let us fix integers d,m ≥ 1 and a probability space (Ω,F ,P). B(X) denotes the
σ-algebra of the Borel-sets of a Polish space1 X . For a random variable X, L(X)

denotes its law. The Euclidean norm on Rd or Rm will be denoted by | · |, while
|| · ||TV stands for the total variation distance of probability measures 2 on B(Rd). Let
Br := {θ ∈ Rk : |θ| ≤ r} denote the ball of radius r, for r ≥ 0, for both k = d and
k = m, depending on the context. The notation Leb(·) refers to the d-dimensional
Lebesque-measure.

For 0 < λ ≤ 1, t = 0, 1, . . . and for a constant initial value θ0 ∈ Rd consider the
recursion

θλt+1 = θλt − λH(θλt , Yt) +
√

2λξt+1, t ∈ N, θλ0 := θ0, (4.3)

where ξi, i ≥ 1 is an i.i.d. sequence of d-dimensional random variables with independent
coordinates such that E[ξi] = 0 and E[|ξi|2] = σ2 for some σ ≥ 0. Furthermore,
the density function f of ξi with respect to the Lebesque-measure is assumed strictly
positive on every compact set. Assume that (Yt)t∈Z is a strict sense stationary3 process
with values in Rm and it is independent of the noise process (ξt)t≥1. Finally, H :

Rd × Rm → Rd is a measurable function.
A particular case of (4.3) is the stochastic gradient Langevin dynamics (SGLD),

introduced in [Welling and Teh, 2011], designed to learn from large datasets. See more
about different versions of SGLD and their connections in [Brosse et al., 2018]. Note
that in the present setting, unlike in SGLD, we do not assume that H is the gradient
of a function and we do not assume ξi to be Gaussian.

A setting similar to ours was considered in [Lovas and Rásonyi, 2021] under different
assumptions. We will compare our results to those of [Lovas and Rásonyi, 2021] at the
end of Section 4.2 below.

The sampling error of θλt has been thoroughly analysed in the literature: d(L(θλt ), µ)

has been estimated for various probability metrics d, see [Chau et al., 2021,Barkhagen
1separable completely metrizable topological space
2The total variation distance of probability measures P and Q on a probability space (Ω,F) is

defined as ||P −Q||TV = supA∈F |P (A)−Q(A)|.
3The process (xk)k∈Z is called strongly stationary (or strictly stationary) if the distribution is

time invariant, i.e. the joint distribution of (xt1 , . . . xtk) is the same as of (xt1+j , . . . xtk+j) for every
t1, . . . , tk indices and for all k and j.
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et al., 2021, Raginsky et al., 2017, Brosse et al., 2018]. The ergodic behaviour of θλt ,
however, has eluded attention so far. If Yt are i.i.d. then θλt is a homogeneous Markov
chain and standard results of Markov chain theory apply. In the more general stationary
case (considered in [Barkhagen et al., 2021,Chau et al., 2021]) however, that machinery
is not available. In the present note we study scheme (4.3) with stationary Yt and
establish that its law converges to a limit in total variation.

4.2 Assumptions and main result

Below we state the assumptions for our main result. The first two assumptions concern
the growth of the estimates H(θ, y). The following assumption is often referred to as
dissipativity.

Assumption 4.2.1 There is a constant ∆ > 0 and a measurable function b : Rm → R+

such that, for all θ ∈ Rd and y ∈ Rm

〈H(θ, y), θ〉 ≥ ∆|θ|2 − b(y). (4.4)

Assumption 4.2.2 There exist constants K1, K2, K3 > 0 and β ≥ 1 such that

|H(θ, y)| ≤ K1|θ|+K2|y|β +K3. (4.5)

Assumption 4.2.2 is satisfied in particular if the function H(θ, y) is Lipschitz con-
tinuous in θ and has polynomial growth in y. The following assumption is posed on
the elements of the stationary noise sequence Y .

Assumption 4.2.3 There exist constants My,Mb > 0 such that E[|Y0|2β] ≤ My and
E[b(Y0)] ≤Mb.

Theorem 4.2.1 Let Assumptions 4.2.1, 4.2.2 and 4.2.3 hold. Then, for λ small
enough, the law L(θλt ) of the iteration defined by (4.3) converges in total variation
as t→∞ and the limit does not depend on the initialization X0.

In [Lovas and Rásonyi, 2021], ∆ in (4.4) was allowed to depend on y but b in (4.4)
had to be constant, the process Y was assumed bounded and the process ξ Gaussian.
Furthermore, in Assumption 4.2.2, β had to be 1. Under these conditions the conclusion
of Theorem 4.2.1 was obtained, together with a rate estimate.

Theorem 4.2.1 above complements the results of [Lovas and Rásonyi, 2021]: ∆ must
be constant in our setting but the restrictive boundedness hypothesis on Y could be
removed, ξ need not be Gaussian, β in (4.5) can be arbitrary and b in (4.4) may depend
on y. The examples in Section 4.5 demonstrate that our present results cover a wide
range of relevant applications where the obtained generalizations are crucial.
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4.3 Markov chains in random environment

The rather abstract Theorem 4.3.1 below, taken from [Gerencsér and Rásonyi, 2020],
is the key result we use in this paper. Let us first recall the related terminology and
the assumptions.

Let X and Y be Polish spaces and let (Xn)n∈N (resp. (Yn)n∈N) be a non-decreasing
sequence of (non-empty) Borel-sets in X (resp. Y). Consider a parametric family of
transition kernels, i.e. a map Q : X × Y × B(X) → [0, 1] such that for all B ∈ B(X)

the function (x, y) → Q(x, y, B) is measurable and for every (x, y) ∈ X × Y Q(x, y, ·)
is a probability measure. The parameters y will play the role of the environment that
affects the process (Xt)t∈N defined below. Let Yt be a Y-valued strongly stationary
process.

Definition 4.3.1 An X valued stochastic process (Xt)t∈N is called a Markov chain in a
random environment with transition kernel Q if X0 ∈ X is deterministic (for simplicity)
and

P(Xt+1 ∈ A|Ft) = Q(Xt, Yt, A), for t ∈ N, (4.6)

where we use the filtration Ft = σ(Yk, k ∈ Z;Xj, 0 ≤ j ≤ t).

Definition 4.3.2 (kernels as operators) For a parametric family of transition kernels
Q and a bounded (or non-negative) function V : X→ R define

[Q(y)V ](x) =

∫
X

V (z)Q(x, y, dz), for x ∈ X. (4.7)

This is in fact associating the kernel with the linear operator by the above definition.

We will use the short notation Q(y) for the kernel Q(·, y, ·) and thus Q(y)V means the
action of Q(y) on the function V . We recall the definition of the product of kernels.

Definition 4.3.3 The product of two kernels Q(y1) and Q(y2) is defined as

Q(y2)Q(y1)(x,B) =

∫
X

Q(x, y2, dz)Q(z, y1, B).

The following tells that the starting point of the Markov chain is such, that the
process fulfills a tightness-like assumption.

Assumption 4.3.1 Let the process (Xt)t∈N started from X0 with be such that

sup
t∈N

P(Xt /∈ Xn)→ 0, n→∞. (4.8)
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Assumption 4.3.2 (Minorization condition) Let P(Y0 /∈ Yn) → 0, n → ∞. Assume
that there exists a sequence of probability measures (νn)n∈N and a non-decreasing se-
quence (αn)n∈N with αn ∈ (0, 1] such that for all n ∈ N, x ∈ Xn, y ∈ Yn, and A ∈ B(X ),

Q(x, y, A) ≥ αnνn(A). (4.9)

Here the lower bound αnνn(A) depends on x and y only though the sets Xn and
Yn, thus this assumption tells, intuitively, that there exist sets A which have positive
probability under the kernel regardless of the starting point x and the parameter y.

Theorem 4.3.1 (Theorem 2.11. of [Gerencsér and Rásonyi, 2020]) Let Assumptions
4.3.1 and 4.3.2 hold. Then there exists a probability µ∗ on B(X× YZ) such that

||L(Xt, (Yt+k)k∈Z)− µ∗||TV → 0, as t→∞.

If (X ′t)k∈N is another such Markov chain started from a different X ′0 satisfying Assump-
tion 4.3.1 then

||L(Xt, (Yt+k)k∈Z)− L(X ′t, (Yt+k)k∈Z)||TV → 0, as t→∞. �

4.4 Proofs

At the end of this section we prove Theorem 4.2.1. To get there we will need certain
lemmas.

Define the Markov chain associated to the recursive scheme (4.3) as

Q(θ, y, A) = P(θ − λH(θ, y) +
√

2λξn+1 ∈ A), (4.10)

for all y ∈ Y := Rm, θ ∈ X := Rd and A ∈ B(Rd).

Lemma 4.4.1 For small enough λ, under Assumptions 4.2.1 and 4.2.2, the process
(θλt )t∈N given by recursion (4.3) satisfies Assumption 4.3.1 with Xn := Bn (the ball of
radius n).

Proof: Choose V (θ) = |θ|2. Then, using that Eξ1 = 0, E[|ξi|2] = σ2, Assumption
4.2.2 and Assumption 4.2.1, we get that

[Q(y)V ](θ) = E[V (θ − λH(θ, y) +
√

2λξ1)]

= |θ|2 + λ2|H(θ, y)|2 + 2λE|ξ1|2 − 2λ 〈θ,H(θ, y)〉

≤ (1− 2λ∆)|θ|2 + 2λ(σ2 + b(y)) + 3λ2(K2
1 |θ|2 +K2

2 |y|2β +K2
3)

= (1− 2λ∆ + 3λ2K2
1)V (θ) + 2λ(σ2 + b(y)) + 3λ2(K2

2 |y|2β +K2
3)

= γV (θ) +K(y),
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with

K(y) = 2λ(σ2 + b(y)) + 3λ2[K2
2 |y|2β +K2

3 ]

γ = 1− 2λ∆ + 3λ2K2
1 .

Note that for small enough λ, γ ∈ (0, 1), independent of y.
Now using Lemma 4.4.2 below and setting θ = θ0 and yk = Yk for k ≥ 1 we get, for

each t ≥ 1, that

E|θλt |2 = E[Q(Yt)Q(Yt−1) . . . Q(Y1)V ](θ0)

≤ γtV (θ0) +
t∑
i=1

γiEK(Yi)

= γt|θ0|2 +
t∑
i=1

γi[λ(σ2 + 2E[b(Yi)]) + 3λ2(K2
2E|Yi|2β +K2

3)]

≤ |θ0|2 +
γ

1− γ
[(σ2 + 2Mb) + 3(K2

2My +K2
3)] <∞,

by Assumption 4.2.3. Then, using Markov’s inequality, we arrive at

P(θλt /∈ Xn) = P(|θλt | > n) ≤ supt E|θλt |2

n2
→ 0, as n→∞.

�

Lemma 4.4.2 Assume [Q(y)V ](θ) ≤ γV (θ) +K(y). Then

[Q(yk)Q(yk−1) . . . Q(y1)V ](θ) ≤ γkV (θ) +
k∑
i=1

γi−1K(yi). (4.11)

Proof: We prove the statement by induction. For k = 1, it is true by assumption.
Combining definition 4.3.2 and 4.3.3 we get that

[Q(y2)Q(y1)V ](x) =

∫
X

Q(x, y2, dr)

∫
X

V (z)Q(r, y1, dz), for r ∈ X,

and then for k > 1

[Q(yk)Q(yk−1) . . . Q(y1)V ](θ) =

∫
X

Q(θ, yk, dx)[Q(yk−1)Q(yk−2) . . . Q(y1)V ](x)

≤
∫
X

(
γk−1V (x) +

k−1∑
i=1

γi−1K(yi)

)
Q(θ, yk, dx)

= γk−1

∫
X

V (x)Q(θ, yk, dx) +
k−1∑
i=1

γi−1K(yi)

≤ γkV (θ) +
k∑
i=1

γi−1K(yi).

�
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Lemma 4.4.3 Define Xn = Bn, Yn := Bn, n ∈ N and let Assumptions 4.2.1 and 4.2.2
hold. Then Assumption 4.3.2 is satisfied, for all λ.

Proof: For all A ∈ B(X),

Q(θ, y, A) = P(θ − λH(θ, y) +
√

2λξ1 ∈ A)

≥
∫

Rd
1{θ−λH(θ,y)+

√
2λξ1∈A∩Bn}f(w)dw

=
1

λd/2

∫
A∩Bn

f

(
z − θ + λH(θ, y)√

2λ

)
dz

≥ Leb(A ∩Bn)

λd/2
C(n)

=
Leb(A ∩Bn)

Leb(Bn)

C(n)Leb(Bn)

λd/2
,

where we use that for θ, z ∈ Bn and y ∈ Bn we have∣∣∣∣z − θ + λH(θ, y)√
2λ

∣∣∣∣ ≤ n+ n+ λ(K1n+K2n
β +K3)√

2λ
=: R(n),

therefore the integrand can be bounded from below by C(n) := infx∈BR(n)
f(x) > 0.

Then define
νn(A) :=

Leb(A ∩Bn)

Leb(Bn)
and αn :=

C(n)Leb(Bn)

λd/2
,

which proves that Assumption 4.3.2 holds. �

Proof: [of Theorem 4.2.1.] Lemmas 4.4.1 and 4.4.3 ensure that the assumptions of
Theorem 4.3.1 hold, from which the statement follows. �

4.5 Examples

4.5.1 Multiple minima

Below we present a simple example of an objective function with two minima and we
check that it satisfies our assumptions.

Consider the function J : R×X → R defined below.

J(θ, Y ) =


(θ − Y )2 if θ ≤ 1

−(θ − 2− Y )2 + 4 if 1 ≤ θ ≤ 3

1
2
(θ − 5− Y )2 − 1 otherwise,

where Y ∼ N(0, 1) (or any other distribution with 0 mean and finite second moment).
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Figure 4.1: The function U(θ) = EJ(θ, Y ) with two minima

Then U(θ) = EJ(θ, Y ) (figure 4.1) has two minima in θ = 0 and θ = 5. U(θ) is
differentiable and with H(θ, Y ) = ∂J

∂θ
(θ, Y ) we get that

H(θ, Y ) =
∂J

∂θ
(θ, Y ) =


2θ − 2Y if θ ≤ 1

−2θ + 2Y + 4 if 1 ≤ θ ≤ 3

θ − Y − 5 otherwise,

< H(θ, Y ), θ >=


2|θ|2 − 2Y θ if θ ≤ 1

−2|θ|2 + 2Y θ + 4θ if 1 ≤ θ ≤ 3

|θ|2 − Y θ − 5θ otherwise.

Then the function H satisfies Assumption 4.2.2 with β = 1 and Assumption 4.2.1 with
∆ = 0.5 and b(Y ) = Y 2 + 25.

4.5.2 Nonlinear regression

Let us consider a nonlinear regression problem which can also be seen as a one layer
neural network in a supervised learning setting, where only one trainable layer connects
the input and the output vectors. The training set consists of entries Yt = (Zt, Lt) with
the features Zt ∈ Rd0 and the corresponding labels Lt ∈ Rd1 for t ∈ 1, . . . , N.We assume
that Yt is a stationary process. Set m := d0 + d1, the dimension of Yt.

The trainable parameters will be a matrix W ∈ Rd0×d1 and a vector g ∈ Rd1 ,
therefore the dimension of θ := (W, g) will be d = d0d1 + d1. The prediction function
h : Rd0 × Rd → Rd1 is defined by

h(z, θ) := s(Wz + g),

where s = (s1, . . . , sd1) is a collection of nonlinear activation functions si : R → R for
i = 1, . . . , d1. We will assume that each si and their derivatives s′i are all bounded by
some constant Ms for i = 1, . . . , d1.
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Remark 4.5.1 Some widely used differentiable activation functions are bounded with
bounded derivatives (sigmoid: σ(x) = 1

1+e−x
, tanh(x) = ex−e−x

ex+e−x
, softsign x

1+|x| , etc.)

Choosing the loss function to be mean-square error, one aims to minimize the
empirical risk, that is

min{E[|h(Zt, θ)− Lt|2] + κ|θ|2}, (4.12)

with some κ > 0, where the second term is added for regularization.
It is standard to solve this optimization step using gradient-based methods. For

y = (z, l) ∈ Rd0 × Rd1 denote

U(θ, y) = |h(z, θ)− l|2 + κ|θ|2

and the updating function to be used in the algorithm will be

H(θ, y) = ∇U(θ, y) =
∂

∂θ
|h(z, θ)− l|2 + 2κθ. (4.13)

Lemma 4.5.1 The function H(θ, y) defined as above satisfies Assumptions 4.2.1 and
4.2.2.

Proof: Using the chain rule, a short calculation gives

∣∣∣∣ ∂∂θ |h(z; θ)− l|2
∣∣∣∣ =

√√√√d0+1∑
i=1

d1∑
j=1

(2(h(z; θ)j − lj)sj ′(〈Wj, z〉+ gj)zi)
2, (4.14)

where we define zd0+1 = 1 and Wj stands for the jth row of W . Notice that by the
boundedness of s′ and s this is at most quadratic in y. Then Assumption 4.2.2 is
satisfied with β = 2.

Using the same argument about the boundedness of s and s′∣∣∣∣〈 ∂

∂θ
|h(z; θ)− l|2, θ

〉∣∣∣∣
=

∣∣∣∣∣
d0+1∑
i=1

d1∑
j=1

2(h(z; θ)j − lj)sj ′(Wjz + gj)ziθi,j

∣∣∣∣∣
≤C0

(
|y|2 + 1

)
|θ| ,

for some C0 > 0. Using that
〈
∂
∂θ
κ|θ|2, θ

〉
= 2κ|θ|2, we get that 〈∇U(θ), θ〉 ≥ c|θ|2 −

C(|y|4 + 1) with some c, C therefore Assumption 4.2.1 is satisfied with b(y) being of
degree 4 in y. �
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4.5.3 A tamed algorithm for neural networks

It has been observed that in multi-layer neural networks quadratic regularization is
not always sufficient to guarantee convergence of the SGLD scheme, while adding a
higher order term would violate Lipschitz continuity. So the standard SGLD algorithm
diverges anyway. To remedy this, certain “tamed” schemes have been suggested in
[Lovas et al., 2021].

In contrast to the previous case now we will have hidden layers between the input
and output: layer 0 is the input, layer n is the output and 1, . . . , n− 1 are the hidden
layers of the neural network for some n > 1. The prediction function h will be defined as
the composition of a sequence of n+ 1 linear transformations and activation functions,
i.e.

h(z, θ) = sn(Wnsn−1(Wn−1 . . . s0(W0z))),

where θ is the collection of all parameters Wi ∈ Rdi−1 ×Rdi , i = 1, . . . , n and si : Rdi →
Rdi is a componentwise non-linear activation function, assumed bounded together with
its derivatives by some constant Ms. Therefore h : Rd0 × Rd → Rdn , where d =∑n

i=1 di−1di is the dimension of θ. For the case of simplicity in this case we assumed
that there is no bias term g as in the previous example. The training set consists of
entries Yt = (Zt, Lt) with the features Zt ∈ Rd0 and the corresponding labels Lt ∈ Rdn ,
the dimension of each Yt is m = d0 + dn. We assume that Yt is a stationary process.

As in the previous subsection, the regularized empirical risk has the form

U(θ, y) = |h(z, θ)− l|2 +
η

2(r + 1)
|θ|2(r+1)

with some r ≥ 0, η > 0. Denoting G(θ, y) = ∇U(θ, y), the “tamed” updating function
we use will be defined as

H(θ, y) :=
G(θ, y)

1 +
√
λ|θ|2r

, for every θ ∈ Rd, y ∈ Rm.

Note that this function depends on λ!
We will use the following.

Lemma 4.5.2 (Proposition 4 of [Lovas et al., 2021])∣∣∣∣ ∂∂θ |h(z, θ)− l|2
∣∣∣∣ ≤ C(1 + |y|)2

(
1 + |θ|n+1

)
, (4.15)

where C > 0 depends on D = maxj=1,...,n dj, n and Ms. �

Lemma 4.5.3 For λ < 1 and η small enough, the conclusions of Theorem 4.2.1 hold
for the scheme (4.3) with H(θ, y) defined as above, provided that r ≥ n+2

2
and E[|Y0|2] <

∞.
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Proof: Using Lemma 4.5.2, Assumption 4.2.2 can be checked as follows:

|H(θ, y)| =

∣∣∣∣∣ ∂∂θ |h(z; θ)− l|2 + ηθ|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣∣
≤
∣∣∣∣C(1 + |y|)2 (1 + |θ|n+1)

1 +
√
λ|θ|2r

∣∣∣∣+

∣∣∣∣ ηθ|θ|2r

1 +
√
λ|θ|2r

∣∣∣∣
≤ K1|θ|+K2|y|β +K3,

where K1 = η√
λ
, β = 2 and the constants K2 and K3 depend on λ, η, n and C.

Let us check Assumption 4.2.1. For the regularization term we have〈
ηθ|θ|2r

1 +
√
λ|θ|2r

, θ

〉
=

η|θ|2r+2

1 +
√
λ|θ|2r

≥ min

{
η

2
√
λ
,
η

2

}
|θ|2 ≥ η

2
|θ|2 (4.16)

for λ < 1.
The Cauchy inequality, Lemma 4.5.2 and the choice of r ensure that∣∣∣∣∣

〈
∂
∂θ

(|h(z; θ)− l|2)

1 +
√
λ|θ|2r

, θ

〉∣∣∣∣∣ ≤ C ′(1 + |θ|n+2)(1 + |y|2)

1 +
√
λ|θ|2r

≤ K ′(1 + |y|2), (4.17)

for some C ′, K ′ > 0. Now combining these estimates, we get

〈H(θ, y), θ〉 ≥ η

2
|θ|2 −K ′(1 + |y|2), (4.18)

therefore Assumption 4.2.1 is satisfied with ∆ = η
2
and b(y) is quadratic in y.

We can check that γ = (1− ηλ + 3λη2) < 1 in Lemma 4.4.1 for η small enough so
the proof of Theorem 4.2.1 goes through for this choice of H. �

Assuming Y0 to have a finite moment of order 4, n+2
2

in Lemma 4.5.3 could be
decreased to n+1

2
, as easily seen.
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Appendix A

Notes on numerical experiments

A.1 Monte Carlo simulation

To numerically compute E|θn − θ∗| for a given starting point θ0 one can use Monte
Carlo simulation. In this case that means setting a number m of trials and running
the algorithm m times for n steps. Then we approximate the expected value with the
average of the simulations i.e.

E|θn − θ∗| ≈
1

m

m∑
i=1

θ(m)
n ,

where θ(m)
n denotes the nth recursion step of the mth simulation.

A.2 Log-log plots

When numerically measuring convergence speed we used log-log plots. The idea is
that we assume that the converge speed can be described as

E|θk − θ∗| = ckβ,

where c is some constant and β is the convergence rate that we are looking for. Such a
function will be a straight line on a log-log plot (the x axis being log k and the y axis
being log E|θk − θ∗|), as

log E|θk − θ∗| = log c+ β log k.

Then the task translates to finding the slope of this straight line that fit to the data
points.
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A.3 Linear regression and the goodness of fit

In the numerical experiments in Chapter 3.5 the line we fits best to the data is the
simple least squares linear regression line: for data points {x1, y1, . . . xn, yn} find α, β
such that

∑n
i=1(yi − α− βxi)2 is minimal.

One way to quantify the goodness of the fit is to use the R2 value, which intuitively
describes how much of the variance is explained and is defined as

R2 =
sum of squared residuals
sum of total residuals

=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2 ,

where ŷi are the fitted values and ȳ is the mean of the data points.
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