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Introduction

The main goal of this work is to develop a generalization of the Selberg trace formula for
the manifold I'g \ H?, where ['g is the Hilbert modular group for a totally real quadratic field
K (here H denotes the complex upper half-plane). This generalization was made by Andras
Bir6 in [1] for I' \ H, where I' is a finite volume Fuchsian group. We follow his proof closely
but widely lean on the book [5] as well where the Selberg trace formula is worked out in detail
for finite volume irreducible discrete subgroups of PSL(2,R)" (n > 2). For simplicity, here we
restrict ourselves to the case n = 2 and we will also assume that K has class number 1.

In Chapter 1 we begin by introducing the Hilbert modular group for a totally real quadratic
field K. We give a classification of its elements and also describe its fundamental domain. In the
special case K = Q(1/5) an alternative fundamental domain was given in [7]. In the second half
of Chapter 1 we prove a sharp lower bound for it that was conjectured in [4|. This proof has a
numerical flavour and in fact it was partly done by computer. However, the applied algorithms
are simple and the argument is formalized so that it can basically be checked without computer.
The omitted computational steps are reduced to the comparison of the magnitude of some
numbers.

In Chapter 2 we continue the preparation for the proof of the trace formula. It describes
a relation between the geometry of the manifold T'x \ H? and the spectrum of its invariant
differential operators whose algebra is generated by the Laplacians. For the description of the
spectrum we need to investigate the automorphic forms that are I'g-invariant eigenfunctions of
the Laplace operators. To describe the continuous spectrum we introduce the Eisenstein series
and shortly list its basic properties that were proved in [5]. Also, some parts of the proof of the
generalized trace formula in [1] rely on estimates proved in [11] related to the spectrum. In the
second part of the chapter we give the two dimensional analogue of these results.

Chapter 3 contains the proof of the trace formula. As usual, we define an automorphic kernel
function K (z,w) in terms of 'k so that the eigenfunctions of integral operator defined by it are
the same as the eigenfunctions of the Laplacians. Then we evaluate the trace

/F K (2, 2)u(z) du(2),

where F' is the fundamental domain of 'y and following [1] we also include the factor u(z) that
is an eigenfunction of the Laplacians (in fact we replace the eigenfunction 1 by u). The measure

du(z) = (y1y2)* day dy dos dys

is the product measure on H? induced by the usual measure on H. Note that this integral does
not necessarily converge, hence we need to "cut" it at some "height" in general. Then, dividing
['k into conjugacy classes we compute the geometric trace, and after that we apply the spectral
theorem for a different computation of the integral above obtaining the trace formula that is
stated in Theorem 3.3.1.
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2 Introduction

The methods and computations that follow are undoubtedly quite involved and require the
usage of a large set of notations. Note that we use many notations that are very common in the
literature while almost every specific notation can be found in the List of Symbols (hopefully
making the whole work easier to read).
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Chapter 1

The Hilbert modular group

In this introductory chapter we define and examine a basic object that shows up consistently
throughout this whole work: the Hilbert modular group. Being a discrete subgroup of PSL(2,R)"
for some n > 2 it is a multidimensional analogue of the modular group PSL(2,Z). The action
of PSL(2,R) on the upper half-plane H also provides a coordinate-wise action of PSL(2,R)"
on the product space H".

For simplicity we restrict ourselves to the case n = 2 and define the Hilbert modular group
for a totally real extension of Q with degree 2 and class number 1. This makes it possible
for us to give a quite explicit description of the fundamental domain in section 2. In fact we
describe two different fundamental domains: a general one is taken from [15] while for the
field K = Q(v/5) a different domain is defined in [7]. The reason for this is that in the second
part of the chapter we make a detour and prove a sharp bound for the latter domain that was
conjectured in [4]. The proof that is given in section 4 is a more or less straightforward, though
at some points tedious analysis of certain functions. However, the investigation of the extreme
values leads us to the identification of the totally elliptic elements of the Hilbert modular group
which is done before the proof in section 3. As a byproduct, we easily derive Theorem 1.3.4
that will be useful in Chapter 3.

1.1 Definition and basic properties

In what follows, let Q < K denote a totally real number field of degree 2. Then K is
isomorphic to Q(v/dg) where dy is a positive square-free integer uniquely determined by the
field K. The notation dx will be fixed. The discriminant of K will be denoted by d(K), i.e.
d(K) = 4dk if dg # 1 mod 4 and d(K) = dg if dg = 1 mod 4. Let K, K® be the two
different embeddings of K into R. If a € K, then let a*) denote the embedding of a into K*).
Moreover, let Ok be the ring of integers in K and

PSL(2,0x) = H “! ] € SL2R): abcdc OK} J{=1)

The group of units in O will be denoted by Oy, while K* is the multiplicative group of K.
Let H denote the complex upper half-plane. The group PSL(2,R) acts on H in the usual

way, if v = { Z Z } € PSL(2,R) and z € H, then

az+b

T ard (1.1)
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The group PSL(2,R)? acts then coordinate-wise on H?. For the elements z € H? we will
often use the notation z = (z1, 29) where z; = xp + iyx € H with zp, yx € R (kK = 1,2). So if
v = (71,72) € PSL(2,R)? and z € H?, then vz = (7121, Y222)-

Definition 1.1.1. Let K be a number field as above and let us define the group 'y < PSL(2,R)?
as follows:

a® bW [a® p® MO0
e {(( R ) [ ] o)

This group is called the Hilbert modular group for the field K.

It is known that I'x is a discrete subgroup of PSL(2,R)? which acts discontinuously on H?.
The elements of 'k can and often will be represented by the first coordinates of the pairs in
the definition above, i.e. by a two by two matrix of determinant 1. If o0 € PSL(2,R), then [o]
denotes a matrix which represents o. In addition, the conjugate of an element a € K will often
be denoted by a’, the norm of this element is denoted by N(a) = ad’, while tra = a+ a’ denotes
the trace.

We introduce the set K = K U {00} together with the extended operations of K which
satisfy the following:

a+ oo =00 for any number a € K,

a
a-00 =00, — =00,

5 =0 for any number 0 # a € K,

a
0,9)
o0 -0 = OQ.

The expressions 0o + 00, 0 - 0o and 0o/oco remain undefined. The elements of K are called
cusps and I'k acts on them, this action is defined by the action of the first coordinates of the
elements of ' as in (1.1). The cusps A\, p € K are equivalent if 1 = A\ for some v € Ik,
this is denoted by A ~ u. The number of the equivalence classes of the cusps is the class
number of K (see Proposition 20 on page 188 in [15]). In the following we assume that this class
number is one, i.e. Ok is a principal ideal domain. This means that the action of ', on K is
transitive. We mention that W. Narkiewicz proved in [13] that all real quadratic number fields
with class number one are Euclidean except for at most two fields. Moreover, any exception
would contradict the Generalized Riemann hypothesis by the theorem of P. J. Weinberger,
who showed in [17] that the Generalized Riemann hypothesis implies that every real quadratic
number field with class number one is Euclidean. Still we do not restrict ourselves to Euclidean
rings because of the two possible exceptions. But since the Euclidean case K = Q(\/g) will be
discussed later in detail, we give here a simple statement about the structure of I'x when O
is Euclidean. The proof is just an easy generalization of an analogous claim in |7] and will be
omitted.

Proposition 1.1.1. Let K be a quadratic field extension such that O is Euclidean and let
B, B2 be an integral basis in Ok . Then 'k is generated by the elements

R U B i Bl A B N

where ¢ is the fundamental unit of O .
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The notation ¢ will also be fixed in the following and it denotes fundamental unit of Ok,
i.e. the generator of the unit group Ok (modulo the roots of unity) uniquely determined
by the property € > 1. Note that in the special case when K = Q(\/g) the number of the
generator matrices can be reduced as in this case ¢ = %5, and with the notation of the previous
proposition if we set S = 5, with §; = 1, then

|l e|_ o -1
SE.—{O 11_5 Usu'.
Moreover, the set {1,e} is an integral basis in O, so 'y = (S, T, U).

In the following we categorise the elements of I'y. We recall that an element v € PSL(2,R)
is called elliptic, parabolic or hyperbolic if [trvy| < 2, |[try| = 2 or |try| > 2, respectively. An
element of I' is called totally elliptic or totally parabolic, if both of its components are elliptic
or parabolic, respectively. If there are elements of different types among the components, then
this element is called mized. Note that if one component of an element is parabolic, then so
is the other since in this case the (rational) trace remains unchanged. Hence a mixed element
consists of an elliptic and a hyperbolic component.

Before we turn to the case when every component is hyperbolic we examine the fixed points
of the elements. A totally elliptic element has a single fixed point x € H?. Since I' acts
discontinuously on H?, x has a neighborhood U such that the set {y € T : YU NU # (0} is
finite. This means that a totally elliptic element must be of finite order. A totally parabolic

element fixes a single point in (R U {oo})?. An element of the form where a € Ok is

1 «
0 1
parabolic and fixes the point (00, 00). The coordinates of a parabolic fixed point different from
(00, 00) can be expressed from the elements of the matrices via addition, multiplication and the
inverse operations, so these points are of the form (a, a’) € K?. Recall that 'k acts transitively
on K. In fact, every number in K can be expressed as a fraction a/c, where a,c € Ok, (a,c) =1,
hence finding an element which takes (0o, 00) to (a/c,d’/c’) € K? is equivalent to finding a
solution of the equation ad — bc = 1 which is possible because a and ¢ are coprime. It follows
that the parabolic fixed points are (0o, 00) and the points (a, ') € K2.

A mixed element fixes two points in H x (RU{oo}) or in (RU{oo}) x H. If every component
of v € Tk is hyperbolic, then v fixes 22 = 4 points in (R U {oc})?. The element + is called
hyperbolic-parabolic if there is a point among its fixed points that is also fixed by a (totally)
parabolic element. Otherwise it is called a totally hyperbolic element. Finding the fixed point of
a component of an element is equivalent to solving the equation

az+b

_ 2 e
Cz+d—z<:>cz +(d—a)z—0b=0.

The solutions are in K if and only if the discriminant of the quadratic polynomial above is a
square of an element of K. In this case the same is true for the polynomial ¢/z? + (d' — a’)z — b/,
and its roots will be the conjugates of the roots of the previous polynomial. It follows that
an element with two hyperbolic components is hyperbolic-parabolic if and only if any of its
components has a fixed point in K. It also follows that a hyperbolic component of a mixed
element fixes no points in K.

Example 1.1.2. We have already seen an example of a totally parabolic element. It is easy
to construct totally elliptic elements from those in PSL(2,7Z). For a mixed element we set
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K= Q(\/E), here the fundamental unit in O is € = 1 + v/2. Let us consider

€ € g €
(12 (2 2])eme
Since |2¢] > 2 and |2¢’| < 2 this is a mixed element with fixed points (£+/¢/2,i4/—¢’/2). Note
that y/e/2 is not in K since it is the root of the polynomial

(22% —1)2 — 2 =4a* —42% — 1

which is irreducible over @ (this can easily be seen by determining the decomposition of it into
irreducible components over R).
Since ¢ is a unit in O, the element

(Lo 216 )

is also in I'; and its fixed points are (oo, 00), (0,0), (00,0) and (0, c0), hence this is a hyperbolic-
parabolic element.

1.2 The fundamental domain

In this section we describe the fundamental domain of T'k. It is given in [15] in the general
situation when Q < K is a totally real number field of arbitrary (finite) degree and of arbitrary
class number. In our situation its description becomes simpler since every cusp is equivalent to
0. The fundamental domain was constructed in a different way in [7] for the field K = Q(V/5).
This will also be presented and we will prove a bound for it later that was conjectured in [4].

First we introduce the coordinates at the cusp co. We will see that the action of the stabilizer
of oo can be given in a simple way in terms of them. It is also possible to define the "distance"
of a point of H? from a cusp which is a useful notion for the determination of the fundamental
domain. At this point we fix an integral basis {aj,as} in Ok. In fact we choose oy = 1 and
wesetagzx/@ifd;(;élmod4whilea2:%ﬂidezlmodéL For a point z € H? we
define the coordinates X}, (k = 1,2) by the system of linear equations

a1 X1 + e Xy = 11, (1.2)
O/le + O/QXQ = T9, .

furthermore, let
= ! log o
4loge "y

Yo = y1y0 and Y,

The equations in (1.2) can be written in the form AX = = where

. X1 . I . a1 Qo
S N T R
and then X = A~ 'z, that is

/ /
Qo1 — QT2 —O0 T + aq1xo

X = and X, =

a0l — afag a0l — afag
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In particular, if dg # 1 mod 4, then

T+ X9 Ty — T2
X, = Xy = .
1 2 N

On the other hand, if dg = 1 mod 4, then

vV dK — 1)513'1 + (\/ dK + 1)1’2 X2 _ Tr1 — X2
2v/d ’ Vdk

We may write Xy = Xj(2) for k =1,2 and Y; = Yj(z) for j =0, 1 to indicate the point z that
the coordinates belong to.

Next we examine the action of the stabilizer of the cusp oo on these coordinates. This
stabilizer is denoted by I'y, and is given by

U« u o
[ = {({ 0yl } ,{ 0 -1 }) : ueOf(,anK}/{il}.
Here u = +¢! where [ € Z so each element v € I'y, is represented by a matrix of the form
el a
e e ”

The action of such an element does not change the coordinate Yy, i.e. Yy(vz) = Yo(2), moreover,
Yi(vz) = Yi(z) + I. Let us write @ = may + nas where m,n € Z. If [ = 0, then

r
=X (2)+ 227X v em, (15)

a0l — oy

ay(xy + a) — ag(zy + )

a0l — afag

Xi(yz) =

and similarly

o n n Lo I
oy (r1 + a) + ag(xe a):X2(Z)+a10z—04/1a:X2(2)+n (1.6)

Xa(vz) = Y,

As the numbers [, n, m can be chosen independently, it follows that every I'..-orbit has a point
in the set

2

Furthermore, if two points of F, are on the same orbit, i.e. z = yw for some z,w € F,, and
7 € I', then it follows from the transformation rule of ¥; and from —% < Y;(2), Vi (w) < & that
in the matrix representation (1.4) of  the exponent [ must be 0. Then by (1.5) and (1.6) we
get that n =m =0 (as —3 < Xj(2), Xp(w) < 5 for k=1,2).

1 1 1 1
FOO—{ZEHZI—§§}/1<—;—§§X1,X2<§}. (17)

Definition 1.2.1. Let the group G act on the topological space X. A fundamental domain for
G is a set F C X that contains exactly one point from each G-orbit.

In view of the previous definition we have already proved the following

Proposition 1.2.1. The set F,, defined in (1.7) is a fundamental domain for Ty, in H?. If
di, Z 1 mod 4, then

Fo={zel?: e?<yfyp<e’ —1<a+a<1; —/dg <21 — 29 < \dg},
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and if dg =1 mod 4, then

Vi o —Vdx < (Vdg — Day + (Vdg + 1oy < \/dx,

Fo=<zeH?: e?< = <&

Y2 —\/dK/2§$1—$2<\/dK/2

Note that we will often be a little unprecise about the notion of fundamental domain. Namely,
we may call a set a fundamental domain if it contains more than one point from some orbits
once it differs only in a measure zero set (with respect to the product measure obtained from
the usual measure on H, discussed in more detail in the next chapter) from a set that satisfies
the requirements of the previous definition. This will not affect our results but usually simplifies
the constructions. Let us remark though that the set F is a fundamental domain of I'y, in the
strict sense (i.e. in the sense of Definition 1.2.1).

Now we clarify the expression "distance from a cusp". Obviously the hyperbolic metric is
not useful for our purposes as it would give infinite distance. Instead, we say that a point z is
close to the cusp oo if Yy(z) is big, or equivalently, if 1/Y;(z) is small. For an arbitrary cusp
A € K there is a an element vx € 'k such that yy00 = A\. We define the distance of a point
z € H? from the cusp \ by

Az, ) = Yo(13'2) 2.

First of all we note that A is well-defined. Indeed, if for the elements ~v,, 7, € 'k we have
YAO0 = A = 4,00, then ﬁ;lw € ', and hence

Yo(v3'2) = Yo((35 ') (3 '2)) = Yo (35 '2).

We mention that the exact value of the exponent —% in the definition of A is irrelevant from
our point of view, but this way we get same notion that is defined in section II1.2 of [15], where
the following is proved:

Theorem 1.2.2. A fundamental domain of ' is given by the set
F={z€Fy: Alz,00) < A(z,\) for every cusp \ € K}.

From now on the notation F' is fixed for this fundamental domain (at least if it refers to a
subset of H?). The previous theorem and the definition of A gives immediately that

F={z€Fy: Yo(yz) <Yy(z) for every v € ' }.

By the coordinate-wise application of the one dimensional formula for the imaginary part of a
point ow where 0 € PSL(2,R) and w € H we get for a z € H?> and a v = [ CCL Z } € I'k the

important relation

%)
lezy +d? |2y + d

Yo(v2) 2
which will be applied many times without referring to it. One easily derives the following;:

Lemma 1.2.3. {z € F,: 1 <Yy(2)} C F.

Proof. Let us fix a z € F, for which Y;(z) > 1 holds. We have to show that Yy(vz) < Yy(2)
for every v € I'k. Equality holds if v € I'y,. Otherwise v = { CCL Z } , where a,b,c,d € O and
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¢ # 0. Then
Yol2) Ya(2)
Y = =
o(72) lez1 + d|2 |2 + d’]g [(cx1 4+ d)? + (eyr)?][(dza + d')? + (ya)?]
Yo(2) 1

= (ap)?(dy2)® N(e)*Yo(2)

As N(c)? is a positive integer and Yy(z) > 1 we get that Yy(vz) < 1 < Yy(2) and we are
done. O

We mention another basic result regarding the fundamental domain. It is shown on page
200 in [15] that there exists a constant C'x depending on K such that for every z € H? there is
a cusp A such that A(z,\) < Ck. In fact Cx = 24/d(K) can be chosen. If z € F and A is a
cusp such that A(z, ) < Ck, then A(z,00) < A(z,\) < Ck. That is, one gets

Lemma 1.2.4. For every z € F we have Yy(z) > m.
We make use of the following result later. It is a generalization of Lemma 2.10 in [11].
Lemma 1.2.5. Let z € H? and Y > 0. We have

2
1+ 4e d(K))
Y2

#{7 € Too \ ' : Yo(vz)>Y}<1+<

Proof. We may assume z € F. Every coset different from the trivial one is represented by a

* Z € SL(2,0k) where ¢ # 0. The matrices M. and My 4 represent the

same coset if and only if (¢, d’) = (+elc, +eld) for some [ € Z. So every nontrivial coset can be
represented uniquely by an ideal 0 # (¢) << Ok and a fraction d/c, where d € Ok.
Let 7 € ' \ I be a nontrivial element with Y5(vz) > Y, then we have ¢ # 0. Since z € F,

matrix M. 4 =

Yo()

Y, > Y =
0(2) = Yo(v2) |C(1)Z1 + d(1)|2 |c(2)z2 + d(2)|2

holds and hence |c(1)z1 + d(l)‘ ‘0(2)22 + d(2)| > 1 follows.
Since Yy(yz) > Y, this implies Yp(z) > Y and |N(c)] < Yo(z)~2Y ~=2. Note that since z € F,
we have y, > 1 /1y > (264/d(K))~! for k = 1,2 by the previous lemma. Hence

(C(l)xl +d(1))2(c(2))2 (1) (1)\2/ .(2)32, 2 Yo(2)
<
122d(K) < (Hzr+dV)N () y; < v
that is,
- dW . 2e/d(K)Yy(2)2
1+ — —.
M| " TNV

The same bound holds for |z + d® /c?)|.
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Now assume that o = d/c and o = d'/c’ are different numbers, where ¢, ¢, d,d" € Ok. Then

a® — /D] 4 |(a® - o/@)| > 2\/ ) — /)] [a® — /)]

:2\/
_y |IN(dd — cd')|
\ IN(eN()]

NN ()]

dV g

4@ @@
) @

EORe)

This means that once the absolute value of the norm of ¢ is fixed, then the number of the
possibilities for d/c is at most

<1+ de /AR Yo(2)? .|N(C)|>2 ) (1+4g d(K)) Yo(2)

IN(c)| Y12 Y

since Yy(2z) > Y. Summing over |N(c)| gives the bound

<1+4s d(K)) Yo(2)3 < (1+4e\/m>
Y - Y?

(NI

since Yp(2)2 < Yo(2)2 [N(c)| < Y 2. Adding 1 to take account of I's, we get the claim. O

Now we turn to the special case K = Q(\/g) and shortly describe the fundamental domain
given in [7]. Recall that FQ( V5 18 generated by the elements S, T" and U, where

11 0 —1 e 0
el U B s B Y

We define three particular sets in H?. The first one is
U={zcH?: e ? <y <}, (1.8)

this is clearly a fundamental domain for the subgroup generated by U. Note that unlike in the
general case we use here the quotient ys/y; instead of its reciprocal to follow the notations of
[7]. The subgroup generated by T is just a group of order 2 with the fundamental domain

T={zeH?: |22 >1}. (1.9)
Next we construct a fundamental domain for the subgroup N consisting of the totally parabolic

elements of the form [ é T } where v € Og. The action of an element of this form on the

point z € H? does not change the values 3; and 3. So for some fixed 51,55 > 0 N acts on the
set Hy, 5, = {2 € H? : y; = s1,Y2 = s2}. This set is homeomorphic to R? and each N-orbit is
a lattice in it. From a fixed orbit we choose exactly one point z such that the function |z;z;|
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restricted to that orbit takes its minimal value at z. This is possible since every orbit is a
discrete subset of Hj, 5,. Choosing one point this way from every orbit we obtain the set S, ,.
Finally, let

S=J S (1.10)

51,52>0

this is obviously a fundamental domain for N.
After this preparation we can formulate the following result (for a proof see [7]):

Theorem 1.2.6. The set F =UNT NS is a fundamental domain for Lows)-
Besides this the following lemma was proved in |7]:
Lemma 1.2.7. If z € T NS, then y1y, > 0.54.

The sharp bound here is v/5/4 and we will prove this in section 1.4. This is also a lower
bound then in the fundamental domain & N7 NS and the minimum is taken at elliptic fixed
points, i.e. at points fixed by totally elliptic elements of Lows)- Before the proof we investigate
the totally elliptic conjugacy classes of I'x in the next section.

1.3 Totally elliptic elements

The main purpose of this section is to show that there are only finitely many totally elliptic
conjugacy classes in I'x and to list all of these classes in Lows)- A totally elliptic element of
'k can be represented by a matrix A € SL(2,Ok) which has finite order. Then all of the
eigenvalues of A are roots of unity, and these are also the roots of the characteristic polynomial
of A. This polynomial has coefficients in O, so the degree of its roots over Q is at most 4. The
degree of an nth primitive root of unity over Q is ¢(n) where ¢(n) is the number of integers m
satisfying 1 < m < n with (n,m) = 1. In this case p(n) is at most 4 and it is easy to see that
the possible values of n are 1,2,3,4,5,6,8,10 or 12. The corresponding minimal polynomials
over Q are the nth cyclotomic polynomials:

(I)l(.iE) = T — 1,

@2(.%) = x + 17

P3(r) = 2*+x+1,

Oy(r) = 2°+1,

Os(z) = '+ +2i+r+1= <x2— \/52_1a:+1) <x2+@x+1> , (1.11)
Ps(z) = 2>—x+1,

Og(z) = x4+1:(x2—\/§m+1)(x2+\/§a7+1),

= -+t 4+1= 332—@:6+1>(x2+@w+1),
= - +1= (2" -VBr+1) (2 +V3r +1),

N

Now either both of the eigenvalues of A are real or they are both non-real and conjugate to
cach other. In the first case there are 3 possibilities for the set of the eigenvalues: {1}, {—1} or
{1, —1}. However, for the first two sets the trace of the matrix would be +2 which is impossible
because A represents a totally elliptic element, whereas in the third case the determinant would
be —1 contradicting A € SL(2, Ok).

So the eigenvalues of A are non-real complex numbers, let us denote them by A and A. They
are the roots of the characteristic polynomial k(x) of A which has real coefficients, hence k(x) is
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irreducible in R[z] and divides the minimal polynomial of A over Q in R[z]. As R[z| is a unique
factorization domain and k(z) is a monic polynomial, it must coincide with one of the quadratic
polynomials listed in (1.11). Moreover, both of the eigenvalues have the same order and this is
also the order of the matrix A. Now we have proved the following:

Lemma 1.3.1. Let A € SL(2,0k) represent a totally elliptic element of I'x. Then A has
order 3,4,5,6,8,10 or 12 and the characteristic polynomial of A coincides with one of the monic
quadratic polynomials that divide Porg 4.

Corollary 1.3.2. Let a € ' be a totally elliptic element which is represented by the matriz
A € SL(2,0k). Then orda = ord A if ord A is odd and orda = ord A/2 if ord A is even.
Hence a totally elliptic element of I'x has order 2,3,4,5 or 6.

Proof. Assume that the order of a totally elliptic element « is n and let A € SL(2,Ok) be
a matrix which represents this element. Then A" = 4] and hence A*" = [. It follows that
ord A | 2n. On the other hand a®d4 is represented by A°44 = [, so a®*44 = 1, which means
that n | ord A | 2n. Son =ord A or n = ord A/2. If ord A is odd then the first equality must
hold. If ord A = 2k is even, then A%* = (A4*)2 = I. Now the equation B? = I has only two
solutions in SL(2,R) since B is the root of its characteristic polynomial and hence

B> —trB-B+detB-I1 =2 —trB- B =0,

so B = ¢l for some ¢ € R such that B? = ¢2I = I and then ¢ = £1. But then A¥ = —I, and we
get that o = 1, i.e. orda = ord A/2. Finally, from the previous lemma we get the possible
values of ord a. O

Corollary 1.3.3. Let a € Tk be a totally elliptic element. If orda = 4, then K = Q(v/2). If
orda =5, then K = Q(v/5). Finally, if orda = 6, then K = Q(v/3).

Proof. Let A € SL(2,Ok) a matrix which represents the element . If ord & = 4, then by the
previous corollary ord A = 8, and from Lemma 1.3.1 we get that the characteristic polynomial
k(x) of A divides ®g(z). But each of its quadratic divisors has a coefficient from Q(1/2), and so
Q(v2) C K, and since [K : Q] = 2 we have in fact K = Q(v/2).

If orda = 5, then ord A = 5 or ord A = 10, and if orda = 6, then ord A = 12. Now as

before, we see that in the first case K = Q(+/5) and in the second case K = Q(v/3). O

Next we calculate the fixed point of an elliptic element. Such an element is represented by a
e altr A= a)— 1) 'k(a)
a ¢ (a(trA—a)—1 a —c k(a

A= trA—a }_[c trA—a}’ (1.12)

where k(x) is the characteristic polynomial of A. Note that ¢ cannot be zero because oo is not
fixed by an elliptic element. If z € H? is the fixed point of A then

az — ¢ 'k(a)

m =21 < CZ% + (tI'A — 2@)21 + c_lk(a) = 0,

that is,

21 =

20 —tr A+ \/(tr A—2a)? —4k(a) 20 —tr A+ \/(tr A)> —4
B 2¢ ‘

2c
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As the imaginary part of z; is positive, we have in fact

2a — tr A + sgn(c)y/(tr A)?2 — 4
21 = % )
2a —tr A 4 — (tr A)?

331:2—6, ylzTa

(1.13)

where we use the principal square root function, i.e. if z = re’’ with r > 0 and —7 < p < T,

then \/z = y/re’?/2. Similarly,

_ 2ad’ — (tr A)
B 2¢ ’

4 — (tr A)?

1.14

X2 Yo =

Every totally elliptic conjugacy class has an element which has a fixed point in F'. If A represents
such an element, then by Lemma 1.2.4 we get that

V(A= (trA)?)(4 - (tr 4)?) -
1[N (o) 1d(K)

Y1Y2 =

and hence 1 < |N(c)| < 4d(K). Moreover, since e 2 < y; /ys < €2, the quotient |¢//c| is also
bounded from above and from below. Consequently, ¢ and ¢ are bounded so we have only
finitely many choices for ¢. Finally, the coordinates x; and x5 are bounded too (since z € F')
and then so are a and a’. This means that we have finitely many possible values for a and we
obtain

Theorem 1.3.4. The number of the totally elliptic conjugacy classes in Ik is finite.

Notice that in fact we described above an algorithm for finding all the totally elliptic
conjugacy classes. Now we apply basically this method to list all such classes in the case
K = Q(+/5), but instead of F' we work with the fundamental domain F defined in Theorem
1.2.6. The field K is fixed for the rest of this chapter and to follow the computations below
one may make use of the following table which contains the exact values of some powers of the
fundamental unit and some relations between them:

1+v5 . V5-1 5, 3+v6 ., 3-45

5 o ° 5 0 5 o 7

E =

74 3vV5 7T—3V5
63:2—1—\/3, 5_32\/5—2, 54:—+2\/_, 5_4:—2\/_,

e+e =45 e—ecl=1.

There is an element in every conjugacy class which has a fixed point in the fundamental
domain F. Let then the matrix A represent a totally elliptic element with fixed point z € F.
We use the same notations as in (1.12). By Lemma 1.2.7 we have

V(4 - (trA)?)(4 — (tr 4)?)
4[N (c)]

Y1Y2 = > (.54,

that is, 1 < |N(c¢)| < 1/0.54 < 2 which means that the norm of ¢ is £1, i.e. ¢ is a unit. Then
¢ = +& must hold for some k € Z, and since z € U (where the set U is defined in (1.8)) we
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obtain

-2 Y2 _ o 4—(trA)’2<82

TR T

From Corollary 1.3.2, 1.3.3 and Lemma 1.3.1 we conclude that the possible values of tr A are 0,
+1 and £ IftrA=0or trA = £1 then k =0 or k = —1 follows. If tr A = %¢ then

A—(rA)> _ Ja—e? 54V [304+10V6 34V
4—(trA)2  V4-e2 N5-_5 20 B 2
and hence k = 0 or —1. Similarly, if tr A = 4¢~! then k is 0 or 1.
If one works with the set F' it is easy to give exact bounds for z; and x,. Instead of this we

use the definition of the set S to determine the possible values of a. Since A™! fixes z too, we
have

_ Yo(2) _ Y1ys
|—cz1 +af’ |z +d)? |z —a/e| |z —a )¢

hye = Yo(2) = YO(A_IZ)

as ¢ is a unit. Then |(z; — a/c)(z2 — ' /)| = 1 follows but since z € SNT and a/c € Ok we

get
L= (21 —a/c)(z —d'/)| = |2122] > 1,

and hence \zlz2|2 = 1. In more detail

|le2|2 =

(2a — tr A)? n 4 — (tr A)?] [(2a — (tr A))? 4 — (tr A)”
4¢? 4c? 4 47

= (a® = (trA)a+1)(d' — (tr A)'a' +1) =1,
hence a? — (tr A)a + 1 is a unit. This means that for some n € Z
> —(trA)a+1==4c"<=a* - (trd)a+1F" =0

and
a? — (trA)'d +1F (=1)"" =0.

As a and @ are real roots of some quadratic polynomials the discriminant of these polynomials
must be non-negative. Thus

(trA)? —4+4e" >0 and  (trA)? —44(=1)"4e™™ > 0.

As (trA)? —4 < 0 and (tr A)”? — 4 < 0 we get that a® — (tr A)a + 1 is positive and n is even. In
other words, n = 2m for some m € Z and

a?> — (trA)a+1— "™ =0,

So the possible values of a are

Ctr AL \/(tr A)? —4(1 — )
= 5 ,

a
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We also have e Ay
2m24_(flr ) and 6—2m24_(zr ) )

If tr A is 0 or 1, then m = 0. In case of tr A = +¢ we have

€

4—¢2 5-+/5
g?m > - \/—>—2+\/g:5_3,

- 4 8
m s 4—e? _ 5++5 - —4+ 45 _
- 4 8 8 ’
so 2m > —3 and 1 > 2m, and hence m = 0 or m = —1. In the latter case we write down the

details of the computation of a:

(trA? —4(1—e?)=e> -4 +4e7? = (e — 2e71)?,

and hence for tr A = ¢ we get a = Ei(%%_l), ie. a =1or a= ¢! while for trA = —¢ we
obtain a = —1 or a = —&~ 1.
Finally, if tr A = +¢7!, then
4 — —2 4 — 2
£2m > 45 e g2 > € >3,

hence 2m > —1 and 3 > 2m, and m = 0 or m = 1 follows.
From all this we conclude the following:

Theorem 1.3.5. Let o € Ly 5 be a totally elliptic element with a fived point z € F, and let

[z ]

be the unique matriz in SL(2,Ok) representing o for which a > 0 and if a = 0 then ¢ > 0.
Then the possible values of tr A are 0, £1 and +e**.
IftrA=0, thena=0andc=1 orc=c"', so A is one of the following matrices:

0 —1 0 —e
1 0 [|et 0 |°
If tr A =1, then the possibilities for the pair (a,c) are (0,1), (0,e71), (1,1), (1,-1), (1,e71)
and (1,—&71), and A is one of the following matrices:

E A ST E e

IftrA=—1, thena=0andc=1 orc=c"1, so A is one of the following matrices:

0 —1 0 —e¢
1 -1 || et =1
IftrA=c¢, thena =0, 1, € or e, while c = £1 or e~ !. Hence the possibilities for the

pair (a,¢) are (0,1), (0,671), (1,21), (1, +7), (6, %1), (6, 4e ), (=, 1), (!, e ).
If tr A = —¢, then the possibilities for the pair (a,c) are (0,1) and (0,e71).
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IftrA=¢et thena =0, c ore ! and c = £1 or c = %¢, so the possibilities for the pair
(a,c) are (0,1), (0,¢), (,%1), (e,%¢), (7', £1) and (7', +e).

Finally, iftr A= —c7', then a =0 or 1 and c = £1 or e, so the possibilities for the pair
(a,c) are (0,1), (0,¢), (1,£1) and (1, £e).

The fized point of the elements listed above are given by (1.13) and (1.14).

We add some remarks here. First note that we did not prove that all the element listed in the
theorem have fixed point in F, and it is in fact not true. It follows from our argument that all
those fixed points are in the set & N7 but this does not hold for S. For example, the elements
{ _11 (1) } and [ (1) :1 } have the fixed points (—% + \/751’, —% + @2) and (% + ‘/751', % + @2)
These points are on the same N-orbit, so only at most one of them is contained in the set S.

Furthermore, we did not show that all the matrices listed in the theorem represent elements
from different conjugacy classes, and this is also not true. For example, we have

1 —177'[1 17[1 =17 [o 1

DR RER EE
0 -1
1 -1

What we can say is that every totally elliptic conjugacy classes of FQ( V5 18 represented in
the list above at least once. It is not difficult to identify the conjugate elements in this list, but
it is still tiresome work and we will not do it here. At this point we only mention that for two
matrices A and B which represent conjugate elements we have [tr A| = |tr B| because matrix
conjugation does not change the trace. Also, if two different elements of a, 5 € ', have the
same fixed point, then they cannot be conjugate. For if y"'ay = 3, then 7 has the same fixed
point as « and (3, and it is easy to see that in this case they commute and hence o = (3 follows,
which is a contradiction.

and this last matrix represents the same element as

1.4 An estimate on the fundamental domain of F@( V5)

In this section the field K = Q(+/5) is fixed and we recall the definitions of the sets U, T
and S in (1.8), (1.9) and (1.10). Also, we remind that by Theorem 1.2.6 the set F =UNT NS
is a fundamental domain for I'g 5. In the following we prove the following claim conjectured
in [4].

Theorem 1.4.1. If 2 € SNT, then y1ya > V5/4.

We are going to estimate the function
2
Fyr e (@1, 22) = 2725 + 27Y5 + 25y + yiys = |212]
from above on the set S;, 5, N7 where 51,52 > 0. For this end we will estimate on the set

\/g \/3
— < — -
P =gz e Py = s1, 4o = $o, g =TT s ;

—1<(I+a)r+(1—-a)ry <1

where a € R is a parameter. This is a parallelogram on the plane {z € H? : y; = s1, yo = s}
symmetric to the origin. By the definition of Sy, 5, every upper bound on the latter set is
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clearly an upper bound on the former, since if z € S;, 5, N T, then for some v € Ok we have
(21 + v, 29+ 1) € P?v°2. The parameter a will always be chosen so that 1 +a >0and 1 —a > 0
will hold. To simplify notation we may write P, instead of P;!*2.

We will use the notations b = 4y, and ¢ = yo/y;, then

Furn (1, 2) = wiws + (we + a5¢7 )b+ b,

The outline of the proof is the following: we always choose the parameter a so that the function
furu (21, 22) — b? takes its maximum on P, at a certain vertex. Let us denote this maximum
temporarily by g(a, b, ¢), we will estimate it from above by different expressions depending on c.
To obtain the assertion of Theorem 1.4.1 we will use an inequality of the form

g(a,b,c) < o+ pb,

where «, § € R are suitable numbers. So if z € S N 7T, then because of the definition of 7 we
have |z122| > 1, on the other hand (21 + v, 29 + V') € P, holds for some v € Ok, then by the
definition of & we get

1< |2122|2 < |(z1 +v)(22 + 1/)]2 = [y (@1 +v,20 + V) < g(a,b,c) +0* < a+ Bb+ 2.

But then
0<a—1+p8b+0b (1.15)
holds. The roots of the quadratic polynomial on the right hand side are
-6+ +/F?—4(a—1)

By Lemma 1.2.7 b > 1/2, so it is enough to choose o and [ so that these roots are real, i.e.
B2 > d(a — 1), (1.16)

and the smaller root is less than 1/2, then (1.15) can hold only if b is greater than or equal to the
bigger root. Once the latter one is at least v/5 /4 we get the claim of the theorem. Thus, it will
be sufficient to check that these conditions are fulfilled. If (1.16) holds and § is positive, then
the smaller root is negative so it is smaller than 1/2, while the last condition can be formalized
in the following way:

54 VF T _ 5
2 — 4

4% — 16(a — 1) > (V5 +28)? =5 + 453 + 452,
that is,
R(a, ) = 11 — 16a — 458 > 0. (1.17)

Note that (1.17) implies (1.16) so it is enough to check this latter inequality once 8 > 0.
First we show that it is enough to prove the statement if ¢ € [e7!,]. To this end consider
the map T), : H? — H?, (21, 22) > ("1 + ic™yy, (") xg + i "yp). As (e") = (—1)""e™" this
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takes the set P;"* to

$1,8 2 n = e"sy _\/_g <e"ry— (—l)nEnZEQ < Lg
T, P2 =<¢ zec H: n. s 2 2

e <(1+4a)e "z + (1 —a)(—1)""xy < 1

As before, if z € H?, y; = €"s; and y» = € "s9, then there is an integer v € O such that
Y Y
(21 + v, 20 + V') € T, P72, Indeed, for any v € O we have

e M (wy+v)— (=1)"" (z2+ V) = "xy — (—1)"e"ay + v — (eT)". (1.18)

If e"v = A+ Be where A, B € Z, then e "v — ¢ v = B+/5 and hence the expression in (1.18)
can be shifted into the interval [—+/5/2,v/5/2) by choosing B properly. Similarly

1+a)e(z+v)+ (1 —a)(—1)"" (g + V) =
=(14a)e "1+ (1 —a)(-D)""zs+ (1 +a)e v+ (1—a)(c ") =
=(1+a)e "z +(1—a)(-1)""zs+ (1 +a)(A+ Be)+ (1 —a)(A+ Be') =

= (1+a)e ™z + (1 —a)(—1)"c"zy + 2A + B + aBV5,

so this value can be shifted into the interval [—1,1) by choosing A independently from B.

Moreover,
212" = |(Tw2)1(T2)s|” (1.19)

holds for any n € Z.

Let 2 € SN T an arbitrary point, then ¢ € [¢2*71 £2%F1] for some k € Z. There is a v € O
such that (z; + v, 20 + /) € T, P " and if N(z) = N(z1, 2,) = |z12|°, then by (1.19)
and z € SNT we get

1< \2122|2 < |(z1 +v)(22 —1—1/)]2 = N(z1 + v, 20+ V') = N(Ti(21 + v, 20 + 1V)).

AsTip(z1+v, 20+ V) € ijyl’s_km and the map T} does not change the value 1,1, it is enough
to estimate on this parallelogram. In other words, we can and will assume from now on that
c€let el

1.4.1 Proof in the neighborhood of the endpoints of [¢7!, ¢]

The function f takes its maximum on the boundary of the parallelogram P,, since at every
local minimum or maximum in the interior of P, the partial derivatives must vanish:

81fyhy2(x17$2) - 21‘11’% + Qxlyg = 0’
a2fy17y2 (:L‘17 .'])2) = 21;%1‘2 ‘l‘ 2[L‘2y% = 0

As y; and ys are positive, this implies that x1 = x9 = 0, and at this point f clearly takes its
minimum. Moreover, since fy, ,, (21, 22) = fy, 4, (=21, —x2), it is enough to estimate on the lines
T = Tg— ‘/75 and r; = _14%1 — ;—‘;xg between the vertices of the parallelogram. Here f depends

on only one variable, say o =: x, and we also omit the constant term for now, that is, we are
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looking for the maximum of the functions

NG
gyl,yz(l’) = fyrm (x - T’x - y%yg

and

1 l1—a
hyl,yz(x) = fyrm (_1 T a - 1+a$71’> _y%yg

on some closed intervals. For the first function g, ,,(x) the endpoints of this is interval come
from the equations

V5 1 1—a

2 l1+a 1+4a

501 1-
V5 _ _ 4, (1.20)
2 14+4a 1+a

which means that x € [\/5(1:“)_2, \/g(ll-a)+2:| , while in the case of Ay, ,,(x) the first equation in

(1.20) and
V5 1 l—a

x2+7:_1+a_1+ax2

—/5(1+a)—2 V5(14a)—2
4 ) 4

choice of the parameter a these functions take their maximum at an endpoint of these intervals.
But in this case it follows from f, ,,(21,22) = fy, 4. (=21, —22) that it is enough to consider
the maximum of g,, ,,(z) (because two of the three vertices of the parallelogram that come
into question are symmetrical to the origin). We remind that a will always be chosen from the
interval (—1,1). The proof of the following propositions will be postponed to Section 1.4.4:

gives the interval z € [ } We are going to show that for an appropriate

(14a)—2 V5(1+a)+2
) 4

Proposition 1.4.2. The function g,, ,,(x) restricted to the interval [\/5 1 takes

its maximum at an endpoint of the interval for any a € (—1,1).
To obtain an analogous result for h,, ,,(z) we must be careful by the choice of a.

Proposition 1.4.3. Let us define the function

1—a\? 1 1
H.(c) = S
«e) (Ha) ‘T Urap

If H,(c) > 0, then the function hy, ,,(z) restricted to the interval [7\/5(14”)72, ‘/5(11“)72 takes

its mazimum at an endpoint of the interval.

The parameter a will be a function of ¢ € [e71,¢]. We choose different functions on different
subintervals of [e7! ¢], a constant function will do on the middle intervals, while we have to
be more precautious by the endpoints where we will use linear functions. For these we will

always check the condition H,(c) > 0. We set a = p(c —¢) + % on the interval [¢ — §, €] for

some p > 0 and § > 0 such that H,(c) > 0 holds. Similarly, we set a = p'(c — &™) — \/ig on the
interval ¢ € [e7!,e7! + 7] for some p’ > 0 and > 0. While a detailed analysis will be made
in the former case, we simply choose p’ = 1 in the latter which makes the computations less
tedious and fortunately works. Let us explain first the case of the right endpoint. Again, the
following proposition is proved in Section 1.4.4 like some others in this section below which are
given here without proof.
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Proposition 1.4.4. If ¢ € [1,¢] and p € [0.24,0.66], then for a = p(c —¢€) + \/Lg we have

€ (—1;1) and Hy(c) > 0.

For further simplification in the case of function g,, ,,(z) we substitute w = x — v/5/4 and
omit the indices y; and y,. This means that once we H,(c) > 0 holds we consider the function

g(w) = <w2—1—56>2+ (w—§>2c+ (w—k?)Qc‘l b

at the points w = @ and w = # (for the detailed computation see the proof of Proposition
1.4.2). Putting these values in the place of w we get the expressions

g1(a.bc) = <\/5cil+2> _1% N <\/5a+2 \/3> C+<\/3a+2+\/_3) o,

4 4 4 4

g2(a, b, c) = (@) —% + (M—é> c—i—(M—i—é) c o

4 4 4 4
Now we compute their difference g;(a,b,c) — g2(a, b, ¢):

4 16 4

4 4

N <\/5a+2 ¢5>2_<¢5a—z \/5> .

4 4 4

(o2 Y (s )]

The first term is
2 2 2 2
Vba+2)  [V5a—2 VBa + 2 N Vba—2\ 10|
4 4 4 4 16|

_ Vha (2(5a® +4) —10) _ V5a(5a” — 1)

- 9

2 16 16

while the second one is

N —
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Let us introduce the notation

Vol 1) | Vo= 1o+ (a+ 17

Aa,b,c - 91(6% b? C) - 92(6% ba C) -

For every subintervals of [¢7!, €] that we consider the parameter a will be always set so that the
sign of A, ;. does not change on that interval. Once A, ;. > 0 we need to estimate the value
g1(a, b, ¢) on that particular interval while in the other case we work with gs(a, b, ¢). Note that
for a fixed a € (—1,1) and b > 0.54 A, . is a decreasing function of ¢ on the interval [¢7!, ¢].
Let us continue the analysis of the case when c is in the neighborhood of €. Recall that the
parameter a = p(c — ) + \/ig is chosen for some p € [0.24,0.66] that we specify now. We have
already seen that in this case 1 +a > 0 and H,(c) > 0 hold, and we will choose p such that

Agp,c will be non-negative. We have the following:
Proposition 1.4.5. If c € [1,¢] and a = p(c — &) + 1/\/5 where p = 0.9/\/5, then Agp. > 0.

This means that in a neighborhood of ¢ with the choice a = p(c—¢)+1/+/5 where p = 0.9/v/5
the maximum value of the function f,, ,,(z1,22) — b* on P, is g1(a, b, ¢). Substituting the value
of a in g;(a,b, ¢) and using the notation ¢ = v/5p we get that g, (a, b, ¢) is

qglc—¢)+3 > 5 ’ glc—e)+3 V5 ’ glc—e)+3 5 ’ .
(=) | ) () e

This expression can be seen as a function of ¢ with a fixed parameter b, let us denote its value
by g1(b, ¢).

Without loss of generality we can assume in the following that b < 0.56 (otherwise the claim
of the theorem holds). We will show that on some interval [¢ — §, ] this function is strictly
increasing. For this it suffices if its derivative is positive and this is true for some ¢ > 0 small
enough:

Proposition 1.4.6. If c € [1.48,¢] and ¢ = 0.9, then the derivative of g,(b,c) (with respect to
c) is positive.

We are now in the position to finish the first part of the proof. Since g;(b,c) is strictly
increasing on [1.48, ] we simply estimate it on this interval by the value g1 (b, ¢):

1 et e 1 b 1 V5
< < C 1y = 423 =By - 4 Y9y
gl(b,c)_16+[45+45 }b 16+4(€ +e77) T 2b

It remains to check the inequality (1.17) for oo = 55 and 8 = ‘/75 We have R(a, ) = 0so (1.17)
holds and the theorem is proved in the case ¢ € [1.48,¢]. We have also proved that equality can
only hold for ¢ = ¢.

Now we turn to the case when c is near to the other endpoint of the interval. As we mentioned
before we chose the parameter a = ¢ — e~ ! — \/ig if c € [e71, e + 4] for some small positive §
specified later. Then we have the following:

Proposition 1.4.7. Ifc€ [e7; 1] anda=c— e~ — —=, then a € (—1;1) and Hy(c) > 0 hold.

Proposition 1.4.8. Ifce e 1] anda=c—e7' — \/ig, then Agpe < 0.
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This means that in a neighborhood of ! with the choice of a = ¢c—e~' —1/+/5 the maximum
value of the function f,, ,,(z1,22) — b* on B, is ga(a,b,c). If we substitute the value of a in
g2(a, b, c¢) then we get that this maximum is

<\/5(c—5_1)—3>2 5

4 16

2

4 4

Vi(c—e1) =3
+ ( 4 4

_\/_3) c—|—<\/5<c_5_1)_3 ﬁ) c o

Let us denote this expression by ¢»(b, ¢), for a fixed b it is a function of c.

Proposition 1.4.9. For a fized 0 < b < 0.56 the function go(b, c) is strictly decreasing on the
interval [e~1; 0.68].

It follows from this that

1 b 1 5
< N T o —ay L VO,
g2(b,¢) < go(b,e™) T 4(86 + e %) 16+ 5 b

Then we get the same way as before that the theorem holds for ¢ € [¢71;0.68] and equality can

hold only if ¢ = 71,

1.4.2 Proof on the middle intervals

In this section we prove the theorem in the case ¢ € [0.68, 1.48]. We divide this interval into
subintervals and we fix the constant a on each of them. We will always check the conditions
€ (—1,1) and H,(c) > 0. First we analyze H,(c) as a function of ¢. Its derivative is

1-a\* 1
H!(c) = - —.
If its sign is constant on an interval, then it is enough to check the sign of H,(c) at an endpoint
to obtain this value for the whole interval. Similarly, to estimate g; or g it will be sufficient

to do this at the endpoints once their derivative has a constant sign on a subinterval. These
derivatives are

/ - \/BCL + 2 \/5 ? \/ga +92 \/3 2 72-
g1(a,b,c) = (T - T) - (T T) c b,

As a first example we consider an interval [1,1+ ¢) and set a = 0. As H/(c) is strictly
increasing and H{(1) = 0 it is enough to check the condition H,(c) > 0 at the left endpoint.
Since Hy(1) = 1, we get that H,(c) > 0 holds if ¢ € [1,1+6]. Let us examine the function A, .
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Its derivative is

By = Y0 = 1)~ (a+ )2,

which is also a strictly increasing function (for ¢ > 0). Since
a—1—(a+1)e?<—(a+1)e?<0,

the function A, is strictly decreasing on [}, ¢] for every a € (—1,1). Hence to show that
Agpe < 0 on an interval it is enough to check this at the left endpoint. This is true for a =0
and ¢ = 1 since Agp1 = 0.

It follows that the value g2(a, b, c) is an upper bound for the function f,, ,, (@1, 2z2) — b? if
¢ € [1,1 4 9]. The derivative of go(a,b,c) is again increasing (as a function of ¢) for every
a € (—1,1) and positive for « = 0 and ¢ = 1, hence g5(0, b, ¢) is strictly increasing on [1,1 + ¢]
and can be estimated from above by its value at ¢g =14 6. Now if z € SNT with ¢ € [1, ¢},
then

1 S |2122|2 S 92(0,[), CO) + an

ie. 0 < —1+4 go(0,b,c0) + b* Tt is enough then if this quadratic polynomial r has real roots
and the smaller one is less than 1/2 (since b > 1/2) while the other one is bigger than v/5/4.
This is true for ¢y = 1.08 so with the choice a = 0 for the subinterval [1,1.08) the theorem is
proved here. Note that on these subintervals b turns out to be strictly bigger than v/5/4.

In the next step we increase a as much as possible, that is as long as H,(co) > 0, Agpe, <0
and gj(a, b, co) > 0 hold. For the estimate of A, ., we examine the sign of (a —1)c+ (a+1)c 1.
This value is non-positive if and only if (a — 1)c* + a + 1 < 0, that is (since a — 1 < 0)

> (1+a)/(1—a). (1.21)
Then since b > 1/2, we have

2
Agpe < \/Ba(5+61) + ?[(a — e+ (a+1)c ] = D(a,c).

We will choose a such that the function D(a, ¢) is non-positive. We have to take care also of the
condition (1.21), so a should satisfy the inequality a < (¢ — 1)/(c2 + 1). For practical reasons
(i.e. to make this proof readable) we chose numbers that we can write down easily, we typically
round down to 2 decimal places. This may increase the number of steps of the proof but not
significantly. The value a that we get this way will be denoted by a;. Like in the first step we
increase ¢, after this as much as we can to get ¢; and the proof of the theorem for ¢ € [¢g, ¢1).
The same procedure provides then the values as, a3, ... and cs, c3, ... until we have ¢, > 1.48
for some n € N, in which case we stop. We summarize this algorithm in the following:

1. Set ap = 0 (then H| (c) > 0 for ¢ € [1,¢], Hyy(1) > 0, Aggp1 < 0, go(ao,b,1) > 0) and
n = 0.

2. Choose the maximal ¢, such that at most the first two digits of ¢, after the decimal
separator are non-zero and the smaller root of the polynomial —1 + gy(ay,,b,c,) + b* is
less that 1/2, while the bigger one is greater than v/5/4.

3. If ¢, > 1.48, then stop.

4. n—-n-+1
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5. Choose the maximal a,, so that at most the first two digits of a,, after the decimal separator
2
are non-zero, furthermore H (c,—1) > 0, H,,(ch—1) > 0, a, < %, D(ap,cn1) <0

and ¢'(an, b, c,—1) > 0 hold. Continue with step 2.

The algorithm above gives the following values:

ap = 0.07, ¢y =1.15,
as = 0.13, ¢ =1.21,
as = 0.18, c3=1.27,
ay = 0.23, ¢4 =1.32,
as = 0.27, c5 =1.37,
ag = 0.3, cg=1.41,
ar = 0.33, c; = 1.44,
ag = 0.34, cg = 1.46,
ag = 0.36, cg = 1.488.

This makes the proof complete if ¢ € [1,¢].

Now we examine the other half of the interval and prove the assertion on a subinterval
[c_1,1). As before we require H.(c_;) > 0 and H,(c_1) > 0 but now A,p. > 0 will be expected,
so it will be checked at the right endpoint. We will need the condition

A< (1+a)/(1—a).
Once this is fulfilled we get

2
Agpe > Valse —1) ﬁ[(a = De+(a+ e,
16 4
so it is enough to show that the right hand side is non-negative at the right endpoint. In
accordance with this we work with the function ¢ (a, b, ¢), its derivative is increasing for every
€ (—1,1). We check that this derivative is negative at 1 (at the right endpoint) and so we can
estimate by g1(a,b,c_1) (by the value at the left endpoint). Hence for z € SN T we have

1< 12122‘2 < gi(a,b,c_y) + %

500 < —1+gi(a,b,c_1)+b? We choose c_; so that the smaller root of the quadratic polynomial
on the right hand side is smaller than 1/2, while the bigger one is greater than v/5/4.

We begin with a = 0 and looking for c_;. We have already seen that A, = 0. Now
91(0,b,1) < 0 also holds, and for ¢_; = 0.92 the other conditions are fulfilled. Then we decrease a
as much as we can so that the conditions c_y < (1+4+a)/(1 —a), Agpe, > 0and gi(a,b,c_1) <0
hold. We get the value a_; = —0.08 and continue with searching for the next left endpoit c_s.
We repeat these steps until we get that c¢_,, < 0.68. This way we obtain

ag =10 c_1 =0.92,
a_1 =—0.08 c_y=0.86,
a_o=—0.14 c_3=0.82,
a_3=—0.19 c_4 =0.78,
a_y=—0.24 c_5=0.75,
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—0.27 c_g=0.73,
0.3 ¢, =0.71,
—0.32 c5=0.7,
—0.342 c_y = 0.682,
—0.365 c_19 = 0.668.

5

6

a_
a_

a_7
a_g
a_

9

Hence the assertion follows for ¢ € [, &] and the proof of the theorem is complete (with the
postponed computations in Section 1.4.4).

1.4.3 The case of equality

It is clear from Theorem 1.4.1 that y,yo > v/5/4 for every point z € F as it is a subset of
S N T. In this section we shortly analyse the case when equality holds in the inequality above.
Since z € F we have e 72 < y/y; < €2 and we have seen in the proof above that equality can
hold only if yo/y; = e*t. If yo/y; = €, then

5
i
5

y1 = v (y2)(yi/y2) = - 9 = 9 5

S
-
S
o
S

Y2 = v (1y2) (Y2 /1) = T T3 5 5

Following our argument above we see that for some v € Ok the point (21 + v, 20 + /') is in
Py, 5. As before, we have

5 1 5 5
1< 2 <~ N < 5/4 —=—=+-+—==1
<|zzel® < |(z1 4+ v)(z2 + )| < 1 (V5/ ,6)+16 16+8+16
This forces these values to be equal. That is, the point z can be translated to a vertex of the
parallelogram P, s and it is clear from the proof that this vertex is one of the following points:

2 > 2 >
<%+¢§\/1+52,%+z§\/1+52) or (—%+i§\/1—|—62,—%+i§\/1+52).

By (1.13) and (1.14) we get that these are the fixed points of totally elliptic elements represented
by the matrices

et 1—¢! el 711
A1:|:_1 1 1 and A2:|: 1 1 :|

1 v
s -[1
by a matrix S; 14,5, or S; 14,5, and hence it is an elliptic fixed point in F. If a is represented
by the unique matrix

} , then z is the fixed point of a totally elliptic element o € L'g(y5) represented

A= [‘CL Cl(“(ttfj:? —1) ] € SL(2,Ok)
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with the property a > 0 and ¢ > 0 once a = 0, then A = +£5,;14,5, or A = +£5,14,5, and
hence tr A = +¢. Furthermore, A must be contained in the finite list in Theorem 1.3.5.

We get the same way in the case when 1, /y; = 7! that z is fixed by a totally elliptic element
« such that tr [a] = £e~!. This element is also listed in Theorem 1.3.5. Moreover, every element
with trace +e*' that is listed in this theorem has a fixed point for which 3,1, = v/5/4 holds.
We have
Corollary 1.4.10. Let z € F, then yy, > \/5/4. Equality holds if and only if z is fived by a
totally elliptic element o € L /5, with [tr[a]| = e*l. There are only finitely many points in F
with this property.

1.4.4 Proof of some propositions
In the following we give the missing proofs of some propositions stated in Section 1.4.1:

Proof of Proposition 1.4.2. We consider the function

2 2
5 5
Gyr,p5(T) = (-73 — g) z? + (:B — g) W2 + 2y’

2 2
:(x—?) 2+ (m—?) c+z?c | b,

on the interval [\/5(1:“)*2 ﬁ(lza)w

we omit the indices y; and y, in gy, ,,. Furthermore, to make the computation easier we
use the substitution w = x — \/3/4 and we are looking for the maximum of the function

g(w) = g(w + /5/4) = g(z) on the interval [#, #} This function is given by the

formula
f](w)—<w—§> (w—%?) + (w—?) c—i—(w—k?) o

], where ¢ = yo/y1 and b = y195. To simplify notations

Its derivative is

[0 ()

= 4uw® + <2b(c+ ) - z) w + w

§'(w) =4 P — | +2b
g (w) w(w 16)+

Recall that since our initial point 2 is in the set S, ,, N7 we have b > 0.54 by Lemma 1.2.7.
By this and the inequality ¢ + ¢~ > 2 we get that the coefficient of w above is positive and
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hence the derivative of g is strictly increasing on R. Thus, it takes the value 0 only once, so
g has only one local extremum, and this must be a local minimum since lim,, .+, §(w) = oo.
This means that independently of y1, y» and the choice of a the function g and then also g takes
their maximum on the intervals above at one of the endpoints. U

Proof of Proposition 1.4.3. We consider the function

l—a 1\’ l1—a 1 \?2
) = ) = (1+a$+ 1—|—a> o (1+ax+ 1—|—a) ys + 2%y}

1—a\? 1\, 1—a\? 1\’ )
= T+ ¥+ T+ c+ac | b
I1+a l—-a I1+a 1—-a
on the interval 7\/5(14“)72, \/5(11“)72] Let us introduce the notations o = (1 — a)/(1 + a),

f=1/(2(1—a)) and u =z + 3. Then

h(u) = h(u = B) = h(z) = a®(u+ B)*(u = B)* + [a*(u + B+ (u— )] b

=o?(u® = ) + [P (u+ B)’c+ (u—B)’c '] b
Now

W (u) = 4a’u(u® — 5%) 4+ 202 (u + B)be + 2(u — B)be™!

= 40%u® + [2b(a’c + ¢ ) — 4a?B%|u + 2B8b(a’c — 7).

Here the coefficient of u? is positive, and as a8 = ﬁ the coeflicient of w is

1—a\’ 1 1—a\® 1 1
2 be + 2be™ ! — > -————=H,
(l—l—a> ¢ e (1+a)2_<1+a) c—i_c (1+a)? (€)

since b > 1/2. Now as in the proof of Proposition 1.4.2 we can see the statement is true when
H,(c) > 0. O

Proof of Proposition 1.4.4. We set a = p(c —¢) + \/Lg for some parameter p. To fulfill the
condition H,(c) > 0 it is enough if we have

1 1
- > 0. (1.22)

¢ (T+ple—e)+ )2~

Of course we have to choose p such that 1 4+ a > 0 holds (and then the denominator above does
not vanish). Then (1.22) is equivalent to:

0< (1+p(c—e)+%) —c= (5+5\/5+p(c—€)> —c
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— <5+\/5> +p*(c® — 2ec+€%) + 2 <5+5\/5) plc—¢e)—c

5

2
5 5 ) ) 5 5
=p?c? + (2 ( +5\/_) p — 2ep® — 1) c+p*e? —2 ( +5\/_> pe + ( +5\/_>

=p’ + (2 <5+5\/5> p — 2ep® — 1) c+ (ps— <5+5\/5)> .

To fulfill this condition it is sufficient if the discriminant of this last quadratic polynomial is

negative:
(5 o) (e (057)
= 1—4p<<5+5\/3> —5p) = dep® — 4 (5+5\/g>p+1.

The roots of the latter quadratic polynomial are

4 <5+5\/5> + \/16 <5+5\/5>2 — 16¢e <5+\/5> 4 /6425 146
5

P12 = 8¢ 2

<_5+x/5>i =6 GHEIE-D [ (-VE)6-2V5)
5 10 5 10

N VE+1 4

WEYERE 1 V2 [13-5V5
ST Sy i Ay
4 N 5
Every p between these roots is good, in particular we can choose any value in the interval
[0.24,0.66]. It remains to check that 1+ (p(c —e)+ \%) >0. If 1 <c¢<e, then

1 1 1+v5 3—-+5
l1+plc—e)+—=>14+(1—-e)+ —>2— = >0
and
1 —p( ) : >1 ! >0
—plc—¢) — — - — ,
P VE T V5

so the assertion is proved.

Proof of Proposition 1.4.5. 1t is clearly enough to see that

V5a(5a? — 1) + 8b[(v5a — V5)e + (Va4 V5)c ] > 0.
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If ¢ = v/Bp, then v5a = q(c — €) + 1 and the previous inequality can be written as
(glc —€) 4+ Dglc—e)(qlc — &) + 2) + 8b[(qlc —€) + 1 — VB)e + (q(c — ) + 1+ v/5)c '] > 0.
Multiplying by ¢ and using the substitution ¢ = ¢ — ¢ we get that the left hand side is
F(t) = —qt(—qt + 1)(—qt +2)(e — t) + 8b[(—qt + 1 — V5)(e — ) — gt + 1 + V/5).

We are going to show that for an appropriate choice of ¢ the inequality f(¢) > 0 holds if
t € [0,e7Y]. First we prove the inequality

pt)=(—qt+1—V5)(e—t)> —qt+1+V5>0
for any ¢ € [0,e7!] and some ¢ specified later. We rewrite ¢(¢) in a different form:

o(t) = (=27 — qt)(e® — 2t +t?) — qt + 2¢
= —2¢ — gt + 4t + 2eqt® — 272 — qt® — gt + 2¢
= —qt* +2(eq— e )t*+ (4 — q(e? + 1))t

= —t(qt* +2(e" —eq)t + q(e* + 1) — 4).

Hence it is enough to show that qt* + 2(e™* — eq)t + q(¢* + 1) — 4 < 0. The roots of this
polynomial are

20q—e ) £ \/4(eq — )2 —4q(q(2 + 1) — 4)
2q

t1o =

L eq—e /2@ -2+ e — 22+ 1)+ 4q
q

L eq—e Ttk /—?+2¢+¢e?
p .

2 is positive, one of the roots

We want to choose a ¢ > 0 such the discriminant —q? + 2q + ¢~
above is non-positive and the other one is greater than e!. Clearly, for such a ¢ the inequality

©(t) > 0 will hold on the interval [0,e7!]. Let us begin with the condition
— P42+ ?2>0= ¢ -2—c %<0, (1.23)

the roots of the latter polynomial are 1 4 /1 + £=2 hence (1.23) holds for 0.53 < ¢ < 1.48 (and
so for every p that comes into question by the earlier results). We also need

eq—e ' </ =@ +2q+¢2,
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and because of the assumption 0 < €72 < 0.58 < ¢ both sides are non-negative, and then this is

equivalent to
e —2q+e < —?+20+e7?,

(24+1)¢> —4g=q((e*+1)g—4) <0,
that is, to ¢ < 4/(¢2 4+ 1). Finally we need the following:

_ 1 2 -2
eq—e 4+ /2 +2¢+¢ o
q
(e—eg—et+ V- +2q+tet=q—c '+ /- +2+c2>0.

If ¢ > &1, then this holds.
So far we have seen that p(t) > 0 if 0.3 < p < 0.49, and since b > 1/2 we have

f(t) > —qt(—qt + 1)(—qt + 2)(e — t) — 4t(qt> + 2(e7' — eq)t + q(® + 1) — 4) = f(1).
We will show that for a certain ¢ the following holds for ¢ € (0,&7!]:

f)/t=F(t) =q(t —e)(qt — 1) (gt —2) — 4(qt* +2(e7" — eq)t + q(e2 + 1) — 4) > 0.
We do this as follows:

F(t) = (gt — 2q)(¢*> — 3qt + 2) — Aqt® + 8(eq — e )t + 16 — 4g(e> + 1)
= ¢*t® — e¢®t? — 3¢°1* + 3eq’t + 2qt — 2eq — 4qt® + 8(eq — e M)t + 16 — 4q(e* + 1)

=t — (eq® + 3¢* +49)t* + (3eq® +2¢ +8(eq — 1))t + 16 — 4q(e* + 1) — 2¢q.
Now
F(0) =16 —4g(2 +1) —2eq = 16 — (2(54+ V5) + 1+ V5)g = 16 — (11 + 3v5)g > 0

holds if and only if
16

<—7
q—11+3\/5

and this is true when ¢ < 0.9.
Moreover,

F'(t) = 3¢°t" — 2q(eq® + 3¢ + 4)t + 32¢° 4+ 2¢ + 8(eq — 7).

We show that for ¢ = 0.9 this is positive on [0,7!], this clearly completes the proof. It is enough
to see that F’(1) > 0 but F’(¢!) < 0, since F’ is a quadratic polynomial with positive leading
coefficient. Indeed,

F'(¢) =3¢ —2(eq®* +3q+4) +3e¢* +2¢+8(eq— 1)
=3¢ —2e¢° —6q — 8+ 3eq* +2q+ 8(eq— )

:5q2—q+8(5q—6_1—1):5q2—q—|—85(q—1)
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=q(eq—1)+8(¢q—1)<09-(e—1)—08-e=01-e—-09<0,
but
F'(1) =3¢* —2q(eq® +3q +4) +3eq* +2q + 8(eq — )
=(3-28)¢*+ (3e — 6)¢> —6q +8(eq — 1) >0,
what can be checked easily. 0

Proof of Proposition 1.4.6. We set ¢ = 0.9 but to make the proof readable we use the letter
q instead of the value. The derivative of g;(b, c) is

gi(b,c) =4 <(W)2 _ 1%) (Q(c—j) +3) '%‘i‘

L 2(q(c—5)+3 \/5>.q_c+<q(c—e)+3 \/5>2

4 4

4 ) 4c 4 4]

+2(q(c—5)+3+\/5) q (q(c—€)+3+£>2.1
4 4

We would like to show that this is positive on an interval [1 + 7, ] for some r > 0. Multiplying
the expression by 16¢? does not change its sign:

16¢*g (b, ¢) = ((g(c — &) + 3)? - 5) (W) g+

+b [2 (q(c—e)+2c7%) g + (q(c —€) + 25’2)2 c?

+2 (q(c—e) +2e*) qc — (qc — ) + 262)2} :

This is a polynomial in ¢ of degree 5. We define

(0 = ((ate =)+ 37 =) (L= 22 g

and
Bi(c) =2 (qlc —e) +2e7?) qc* + (qlc — ) + 25_2)2 c?
+2(q(c—e)+2e%) gc— (q(c — ) + 282)2
such that 16¢%g; (b, ¢) = A1(c) + bBi(c). Since 1 < ¢ < € we have
Bi(c) <2(qlc—e)+2e72) ¢® + (q(c — ) + 25_2)2 g

+2(q(c—e)+2e%) ge — (q(c— ) + 2&?2)2 .
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This is a quadratic polynomial of ¢ but to simplify the computation a little bit we substitute
t =q(c—¢). Then c € [1,e] &t € [—ge',0] and the previous expression can be written as

() =2 (t+2e72) g% + (t+2672)7 2 + 2 (£ 4 26%) ge — (¢ + 2¢2)°
= 2¢e’t + 4qe + (% + 4e7%t + 4e7 1) + 2qet + 4ge® — 1? — 4e’t — 4e*
= (2 = Dt? + (2 + 4+ 2qe — 4e®)t + 4q(3 + ¢) + 472 — 4

= ct® 4 (2qe(e® + 1) — 4e)t 4+ 4qe(e? + 1) + 472 — 4<%,

Now \/_ \/_
71m0) 5 s a5+ V) 5—3
e =q(e*+1)+¢ &= 4 < 5 <0,
while
54++5
71(—q€’1) = ¢+ ql4— 2q((€2 +1)) +4e (q(T\/_) — 4)

= ¢?c ' +4q— (5 + V5) + 2eq(5 + V5) — 16¢
=q(ge™ " +4) + q(5+ V5)(2c — q) — 16¢
<e 44+ 5+ VE)01+VE) —8(1+VE) =1-24V5<0,

so 71 (t) is negative on the whole interval [—ge~!,0]. It follows that Bi(c) < 0 for ¢ € [1,¢], and
then
16¢%g (b, ¢) = Ay(c) + bBi(c) > Ai(c) + 0.56B;(c).

Hence it is enough to show that A;(c) + 0.56B;(c) > 0 for ¢ € [1.48,¢]. To avoid the work with
complicated algebraic expressions we do this by the following way. We show that the polynomial
Fi(c) = Ai(c) + 0.56B;(c) 4 8.001 has 5 roots, and therefore if z, is the biggest root, then Fj
must be strictly increasing on the interval [xg,00). We do all this by giving pairs ¢1, ¢a of real
numbers such that ¢; < ¢y and the sign of Fi(c;) and Fj(cs) is different. One checks easily (e.g.
by a computer) that

Fi(—14) <0, F(-13)>0, F(-0.1)<0, F(0)>0, F(01)<0,  F(0.6)>0.

Thus the function A;(c) + 0.56B;(c) is strictly increasing for ¢ > 0.6. On the other hand, for
¢ = 1.48 its value is positive and hence the same is true for ¢ > 1.48. 0]

Proof of Proposition 1.4.7. First we check that 1 +a > 0:

1 1
l4c—ecl-—>1—-—>0,
V5 V5
1—c+5_1—|—i>5_1+i>0
NG V5
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In the case when c is near to the endpoint € one may omit a term in H,(c) to simplify the
computations but now we would lose too much this way. Instead, we work with the function

H,(c) and show that
1—a)’ 1 L oy
C _—,— —_—_—_—_——
1+a c (1+4a)?~

if c € [e71, 1]. Multiplying by (1 + a)?c we get

1) I
1—a)’*c® + 1+a2_c:(1—c+5_1+—) 62—1-(1—1-6—5_1——) —c
(- apé+(1+a —

The discriminant of this latter quadratic polynomial is

1 1\? 1 1\?
1—4 <5-1 +-—=1—-eh - —> =1-4 (5_1 + =% — —) ~ —0.387,

V5 5 V5 5
so the polynomial does not have real roots. Since its leading coefficient is positive it takes
positive values for every ¢, i.e. H,(c) > 0 holds. O

Proof of Proposition 1.4.8. 1t is enough to show that

V5a(5a? — 1) + 8b[(v5a — V5)e + (Va4 V5)e ] <0,

andasa=c—e ! — \/Lg, the left hand side above is

(VBle—e ™) = DVB(c— e D (Vbglc — ™) — 2)+
+8[(VE(c—e) —1—=VB)e+ (VB(e—eh) —1+VB)e Y.

L we get

Multiplying by ¢ and substituting t = ¢ — e~
F(t) = Vot(V5t — 1) (V5t — 2)(t + 1)+
+80[(V5t — 1 —VBE)(t+e )2 + VBt — 1+ V5],
We show that f(t) < 0 once t € [0,1 —e™']. Note that 1 —e~! = ¢72. First we check that
p(t) == Vbt —1—V5)(t+e )+ V5t —1++v5<0 (1.24)
if t € [0,e72]. The function (t) is a polynomial function of degree 3:

o(t) = (VBt —26) (12 + 2t +e72) + VBt 4+ 27

= /513 27512 L e 2Bt — 2et? — 4t — 2 4 VBt + 27!

= (V52 + 2 VB —e)t+ (VB(e 2+ 1) — 4)] t=g(t)
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with ¢(t) = V5t2 +2(e V5 —e)t + (v/5(e72+1) —4). Now ©(0) = 0 and on the interval (0, 2]
the sign of ¢ is the same as the sign of ¢. One checks that ¢(0) < 0 and

ple)=p(l—-eceH)=2v/52-2<0,

so ¢(t) is negative for ¢t € (0,e72] and then so is (), hence (1.24) is proved.
As b > 0.5 we have

F) < VBBt — 1) (VBt = 2)(t+ 1) + dp(t) =: f(t).

Since f(Q) — 0, it is enough to show that f’ is negative on the interval [0, e72]. Now the first
term of f is

() = V5t(V5t — 1)(V5t — 2)(t + 1)
= (V512 4+ e W5t (5t — 3v/5t + 2)
= 5v5t% + (5v/5e 7 — 15)t% + (2v/5 — 15e )2 + 2v/Be 1t
and
W' () = 20V/58% + 15(VBe = 3)t2 4 2(2v/5 — 15 1)t + 2v/5e
while
40/ (t) = 12582 + 16(VBe ™' — &)t + 4(Vb(e 2 +1) — 4),
so f'(t) = ' (t) + 4¢'(t). One may check that
0.862 ~ f'(—0.5) > 0,
—0.875 ~ f'(0) < 0,
—3.118 = f'(c72) < 0,

hence the assertion follows (because f"is a polynomial function of degree 3 with positive leading
coefficient). 0

Proof of Proposition 1.4.9. It is enough to see that the derivative of go(b, ¢) is negative. This
derivative is

16

o (VBe—ey =3\ 5\ (Vale—e-3) V5
(2 g (e 2

4
(e ) e (o )

4 4 ) 4 4 4

e 4 T

+2<\/5(c—5_1)—3+\/5> V5 (\/3(0—5_1)—3 \/3) 1
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We will show that this function is negative on the interval [~ ™! + r] for some r > 0. we
multiply by 16¢2, this does not change the sign:

16c¢%gy (b, c) = ((\/5(0 —e - 3>2 — 5) <\/§(C _451) — 3) VB +

2

+5b [2 (\/3(0 —eh - 252) V5 + (\/3(0 —eh - 252) c

2
+2 (\/g(c —e 1) — 25’2> Ve — (\/g(c —e™ ) — 25’2> ] :
Like in an earlier proof, we define

As(e) = ((\/E(c ey - 3)2 - 5> (ﬁ(c _Zl> - 3) VBe,

By(c) =2 (\/5(0 —e™h — 2€2> V5 + (\/5(0 —e™h — 252>2 c?

2

+2 (\/g(c —ehH - 25_2> Ve — <\/g(c —eh — 25_2> .
From now on we assume that ¢ € [e71,0.68], so ¢ — ™1 < 0.68 — 7! < 0.062, and then
Vi(e—e™) =22 <0,  Vic—e ) =22 <0,

therefore
2

Ba(c) 22 (VB(e— ™) = 2%) V50,687 + (VB(e —e7!) = 2¢2) e

+2 (\/E(c ey 252> V5 - 0.68 — <\/3(c ey 252>2 .

This lower bound is a quadratic polynomial of ¢. We substitute t = \/S(c — 1), then
cee71,0.68] t €[0,v/5(0.68 — 1) and the latter expression can be written as

yo(t) =2 (t —26%) V5 0.68° + (1 — 2e%) e 2+ 2 (t — 2e72) V5-0.68 — (t — 2¢72)”

= 2-0.68%V5t —4-0.68°V5e% + (1* — 46t + 4e*)e 2

+1.36V5t — 2.72v/5e72 — 2 4 472 — 47

M2 4+ (2 0.68°V5 — 44+ 1.36v5 + 4e )t

+(4—4-0.68V5)e? — 272572 — 474,
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One may check that one of the roots of v,(t) is greater than 3 and the other one is negative,
and since the leading coefficient is also negative we get that (t) is positive on the interval
[0,4/5(0.68 — ¢~ 1)]. Tt follows that By(c) > 0 on [¢~',0.68] and hence

16c%gh(b, ¢) < Ay(c) + 0.56By(c).

To see that this is negative we consider the function Fy(c) = As(c) + 0.56B5(c) + 2.5. This is a
polynomial of degree 5 with positive leading coefficient, and we have that

Fy(—04) <0, Fy(—0.3)>0, Fy0)<0, F0.2)>0,

This implies that F;, has a root 7 in [0, 0.2] and another one in [1.2, 1.3] denoted by z5. Further-
more, F; is positive on (x1, z3), where it has exactly one local maximum taken at the point x,,, so
F; is increasing on [x1, ,,], while it is decreasing on [z,,, 2]. As F5(0.2) < F5(0.7) < F5(0.8) we
get that x,, > 0.7 and hence F} is increasing on the interval [0.2,0.7], and so is As(c) +0.56 Ba(c).
Moreover, A5(0.7) + 0.56B(0.7) < 0, therefore g4(b,c) < 0 on the interval [¢7!,0.68]. O
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Chapter 2

Automorphic forms

In this chapter we introduce the notion of automorphic functions on H? with respect to the
group ['x. These are complex valued functions that are invariant under the action of I'k.

In the first section we examine the Fourier expansion of some special automoprhic fuctions,
the so-called automorphic forms. These are smooth eigenfunctions of the Laplace operators, and
also, certain restrictions on their growth are made. We derive basic estimates for them with
special emphasis on square-integrable forms.

The Eisenstein series are introduced in the second section. These special examples of
automophic forms have an essential role in the spectral decomposition of square-integrable
automorphic functions (see Theorem 2.2.10). This section is basically a short summary of
Chapter II of the book [5], though minor complements are added.

After that we define the automorphic kernel functions that are crucial in the remaining
part of this work. In the last two sections further preparation is made for the next chapter:
Proposition 7.2 and the formula (8.27) of [11] are generalized and some related results are given.

We remark that the results and estimates that are obtained in this chapter are not necessarily
the best possible ones. Still, they provide sufficient tools for the work in Chapter 3.

2.1 Fourier expansion of automorphic forms

A function f : H? — C is called an automorphic function with respect to the Hilbert modular
group I'f if it is invariant under the action of ', that is, f(7z) = f(z) holds for every z € H?
and v € I'gk.

A linear operator L acting on a vector space of functions f : H?> — C is said to be invariant
if it commutes with the action of the group PSL(2,R)?, that is, if L(f(cz)) = (Lf)(cz) holds
for every o € PSL(2,R)?. The Laplace operators

0? 0?
A=y = + = k=1,2
=itz ag) G-

act on the space of smooth automorhpic functions and they form a generating system in the
algebra of the invariant differential operators on this space. An automorphic form u is a smooth
automorphic function which is an eigenfunction of the Laplacians, that is, for which the equations

(Ak + )\k)u =0
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hold with some A\, € C (k = 1,2). Let B(I'x \ H?) denote the space of bounded smooth
automorphic functions, and

DT \H?) :={f € B \H?) : Arf € B(l'x \H?), k= 1,2}.

Then D(T'x \ H?) is dense in L?(T'x \ H?), i.e. in the Hilbert space of the automorphic functions
that are of square-integrable on F' with respect to the measure

du(z) = (y1y2)_2 dxq dyy dxs dys,

which is the product measure on H? obtained from the usual measure y~2dx dy on the hyperbolic
plane H derived from the Poincaré differential ds =y~ |dz|.

The Laplacians are symmetric operators on D(I'y \ H?) and —Ay is non-negative. Hence by
Friedrichs’ theorem they have a unique self-adjoint extension to L*(T'x \ H?). It follows also
that the Laplace eigenvalues N\, = sp(1 — s3,) of an automorphic form u € D(T'x \ H?) are real
and non-negative. Therefore, either s = % +irg foranr, € Ror0<s, <1 (k=1,2).

If u is an automorphic form, then it is invariant under the action of the translation operator
Tou =u(z + o, 29 + ) for any a € Ok. It is well known that the set

Li = {(a,d): a € Og} C R?

is a discrete additive subgroup of R? of rank 2, i.e. a lattice. So for any fixed ¥,y > 0 the
function w,, 4, : R*? — R? defined by wy, 4, (21, 22) := u(zy + iy1, 2 + iy2) is a smooth function
which is invariant under translations by the elements of Ly, hence it has the Fourier expansion

u(z) _ Z (b(y,l)e%id’p,

leLy

where x = (x1,22), ¥y = (y1,v2) and L} = {v € R? : (v,w) € Z for any w € Lk} is the dual
lattice of L. The elements of L} can be given in terms of L:

Proposition 2.1.1. If A = A(Z") C R" is a lattice, where A € GL(R™), then its dual lattice is
given by A* = (A=HT(Z").

Proof. Ifv e N = (A7Y)T(Z"™), then v = (A~1)Tu, for some u; € Z™. Similarly, for a w € A one
has w = Auy for some uy € Z", hence

(v,w) = (A wy, Ausg) = (uy, A7 Auy) = (uy, us) € Z,

so A" C A"
On the other hand, assume that v € A*. If v/ = ATv and u € Z" arbitrary, then

(W' u) = (v, A7 Au) = (v, Au) € Z,
hence v' € Z™ must hold and then v = (A~™H)Tv € A O

Since Lx = A(Z?), where A is defined in (1.3) on page 6, we can give the elements of L%
explicitly. They are of the form

1

VA(E)

(l1,lo) =

(’I’L - m/Blv —n+ mﬁ)a
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where n,m € Z and = \/dk if dxg = 2,3 (mod 4), and § = %ﬂ if dg =1 (mod 4). In other
words,

L= {((w™0), (wM)) : 1 € Ok}, (2.1)

where w = 2¢/dk if dx = 2,3 (mod 4), and w = \/dk if dx =1 (mod 4).
For a number o € K and a lattice A C R? we define

al = {(aly,dly) : (I1,13) € A}

From (2.1) we infer that uLj, = L}, for any u € Oj.
The Fourier coefficients of an automorphic form can be expressed by means of the modified
Bessel function of the second kind, denoted by K, (z) (see Theorem 5.1 in [16]):

Theorem 2.1.2. Let u be an automorphic form with Lapalace eigenvalues si(1 — si) which
satisfies the growth condition u(z) = o(e* ) as y, — oo (k =1,2). Then u admits a Fourier
expansion of the form

u(z) = Y ay)e’™ <, (2.2)

leLy,

where
ai(y) = e/l 17227 [l y1) Koy —1/2(27 12| y2)

S1. .82 S1..1—s92 1—s1. s2 1—s1 ., 1—s9

forl # 0, while ag(y) is the linear combination of y3*ys2, yi'ys 2, yi “‘ys? and y; *‘ys °2, except
for the case s1 = sy = 5, when ag(y) is the linear combination of (ylyg)% and log(ylyg)(ylyg)%.

In the following we always assume that an automorphic form u satisfies the growth condition
of Theorem 2.1.2 and hence admits the Fourier expansion (2.2). Since w is invariant under the
€

0 5(’)1 }, we have

action of the element p = {

u(2) = u(pz) = ao(%y1, e 2ya) + Z a)(2yy, e 2yp)e?mi<(la) (SPane 2>
leL3\O

= ao(y1,e ) + D /iy Ka 1227 |20 y1) Kopo1/2(2 e 720a] ) X
IELE\O
% 627ri<(82l1,672l2),(1‘1,1‘2)>.

As 2L}, = L3 and the Fourier coefficients are determined uniquely, we get

Proposition 2.1.3. Let u be an automorphic form with Fourier expansion (2.2). Then c.2; = ¢
for every 1 € L3 \ 0 (where e2l = (£2l1,e7%ly)).

We also have that ag(y1,y2) = ao(e%y1, e 2y2). One may deduce from this by a calculation
that if s; # % = $o holds, then only two of the four terms mentioned in the theorem can occur
in ap(y) except for in at most countably many possible cases. In the following we choose the
notation so that

1.
Res;,Resy > 3 is assumed

unless it is told otherwise, and in the important cases ag(y) = nys'ys? + oy *yy *> will always
hold for some 7, ¢ € C, hence from now on we disregard other cases. The notations 1 and ¢ will
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be fixed and (at least if they refer to complex numbers) they will always denote the coefficients

in ag(y).
Assume that ag(y) is nonzero. Then ag(y1, y2) = ao(e®y1, e 2ys) gives

e LRy 4 e (o2 T = RS 4 Sy T (2.3)

We handle the case when 1 # 0, the case when ¢ # 0 is similar. We multiply (2.3) by ¢ 1y52~*
to get
n€2(sl—82)y%8171y58271 +¢62(52—51) — ny%8171y58271 +¢,

82(81_32) o 1 nyQSlflyQngl — 1 o 82(82—51) )
1 2

The right hand side of the last equation is constant hence so is the left hand side. If at least one
of s; and sg is not 1/2 then g2(s1752) — 1 must hold. Also, if 51 = 55 = 1/2, then g2(s1752) = 1
holds anyway. We have

Proposition 2.1.4. Let u be an automorphic form with Lapalace eigenvalues si(1 — si) for
k =1,2. If the zeroth Fourier coefficient of u is nonzero, then loge(s; — s2) = 0 modulo wi. In

other words,
Tim mTIm
(51, 52) = (8+ 210g5’8_ 210g5> ’

and some m € 7.

for s = 2£%2

The dominant term of the Fourier expansion is the zeroth coefficient. To estimate the
remaining part we need the asymptotic behavior of the Bessel function K, (y). It is known that

K, (y) = (%) e (1 +0 (%)) (2.4)

for y > 1+ |v|? (see formula (B.36) in [11]). First we use this to derive an upper bound for the
Fourier coeffitients of an automorphic form u. By (2.1) and Proposition 2.1.3 we have

u(z) — ap(y) = Z (@51(2) + caSa(z) + coiS_i(2) + c—aS_a(z2)), (2.5)
0£() <0k

where for an [ € Ok we set ¢; = c(-1,(1w-1y) and Sy(2) is

Z /_y1y2K517%(27T€2k }lwil‘ y1)K527% (27_‘,67216 |(lw—1)/| y2)ezm(s%lw—lxl+5_2k(lw_1)’12) (26)

k=—o00

for every 0 # [ € Ok. As we sum over ideals, we may choose [ so that e2 < |I] / |[I'| < €2 holds.
As the Fourier series converges absolutely, we may drop some terms in (2.6) and keep only those
ones where k£ = 0, which gives that the sum

Z IRV

0#£(1)<O0k
e 2<|U)/ |l |<€?

K517%(27T ‘lw*1| yl)KST%(QW qu)/‘ Y2)

converges for every y;,y2 > 0, hence the sequence of the terms tends to 0 if |[N(I)] — occ.
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5+/d(K) As

4me

e WVINDI< I ] < e/ IN()] (2.7)

by our choice, (2.4) gives that if the absolute value of the norm of [ is big enough, then

Let us fix a small 6 > 0 and set y; = y2 =

_ _ _d _ S _
Kooy 2 [l [ 0) Ky (2 | (™Y )| 3 2l o=0V/INOL

VY1Y2
therefore

o < VINOI (2.8)

holds, where the implied constant depends on u. One can see this for ¢, c_; and c_,; similarly.
We will need an upper bound for K, (y) also in those cases when y is small. The following
statement was formulated in this form by Andras Biré.

Lemma 2.1.5. Assume that % < Res < B for some constant B > 0. Then there are constants
C >0 and d > 0 such that
K, 1(y) <e®

holds whenever y > C'|s|, and the implied constant depends on B and C. On the other hand,

we have )
|S| Res—&—i .
K, 1(y) < (?) e 5l

for any y > 0, where the implied constant depends on B.

The first estimate follows easily from the the integral representation

1 v [
K, (z) = 2T (v + 5)_1 (%) / (t> — 1) 12t at
1

while for the second estimate one can use the representation

K,(z) =7 (v + %) <§> B /Ooo(t2 + 1) 2 cos(t2) dt

and integration by parts. Note that these formulae hold if Rez > 0 and Rev > —1/2.

Proposition 2.1.6. Let u be an automorphic form with Laplace eigenvalues si(1 — si) that
satisfies the growth condition u(z) = o(e*™) for k = 1,2. If yo is bounded from below by a
positive costant, then u(z) — ao(y) = O(y; %°*") as y, — oo (where ag(y) is the zeroth Fourier
coefficient of u). The implied constant depends on the field K, the function u and the lower

bound on yo. An analogous statement holds if we replace the roles of y1 and 5.

Proof. We only prove the first statement, the second one is similar. Assume that ys is bounded
from below by B. We use (2.5) and hence first estimate S;(z) (defined in (2.6)).
As above, we may assume that e=2 < |I| / |I'| < €* and hence (2.7) hold. Now

gt N(Z)BE_Q,€ e'B

5_2k Z C|52|
d(K)

2me ™ | (lw™") | yo >
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holds if

2k < B )
— eClsg|y/d(K)

Here C' is the constant from the previous lemma. On the other hand, if this latter inequality
does not hold, then

-1/N()B B
€ () n > hn Z C‘Sl|

2me?*|lw ™ |y, >
Tl > R 2 2 sald(K)

1s true once

2C? d(K
> ECI)

So let us set

B
N :=log | ————— /(2loge),
(50‘82|\/d(K>>
and if k£ > N, then the previous lemma gives
KSF%(QW lw™!| e%yl)KST%(ZW |(lw™") e ) <
Reso+2 Resa+2
< e~ liln (_8% ) o < e~ EVINDIn (ﬁ) B
U']y2 Y2

where the implied constant depends on u, while if £ < N, then

K _%(27‘(‘ lw™ | ) K,

S1

_%(277 ’(lw‘l)" e Hy,) <

2

8_2k Resﬁ-% 5_2k Resﬁ—%
—2k —2k_/
< (_) e—da [U'y2 < (_) e—d’a \N(l)|y2‘

]y n

As \/N(l)y; is bounded from below by a positive constant, the exponential factor absorbs the
power of £2* in the first estimate. The analogous claim holds in the second estimate as well
since y/ N (l)ys is also bounded from below. We obtain that

1 7 1 " —
Si(z) < Y ypyp e EVINDIn Ny rReny g o md e IND e

k>N k<N

Now we use that if & > N, then ¢2*/N(l) is bounded from below while if k& < N, then
g2k /IN(l)| is bounded from below, and we can estimate from above by

B—Resg Z e—d3€2kw/\N(l)|y1 + yl—Resl Z e—d”a’ka/\N(lﬂyg‘

k>N k<N

—d3e2[N1g2k | /IN(1

We rewrite the first sum as ) ;- e )1 Since k < e2* for a positive k, we obtain

o0 o0
E e*dSEQrmE%\/lN(l)lyl < €,d452FN1 VINOy: E (6*61452rm \/\N(l)|y1>k
k=0 k=0

— o da®™IV/IND) Iy 1 < e~ U VINDm
1 — e dae™IV/IND)w
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since 2Vl and /|N(1)|y; is bounded from below by a positive constant.
Similarly,

Z —_d"e —2k / \yz _ Z —d"e —2k / |y2 Z —_d"e 2[N1 2k |N(l)|y2

k<N k<[N]

< e—de?™1V/IN D2 1 < /N
| — e~ dae™NV/IN Ol

)

and we summarize this in

Si(2) < e~V INDIy _|_y1*R681efd/ INQ)| <<y;Resle—c NI

(2.9)

We have seen in (2.8) that ¢; < ¢’VINOI holds for every § > 0, hence the right hand side
of (2.9) is in fact an upper bound for ¢;5;(z) (with different constants of course). The same
argument applies for the terms ¢S (z), c_;S_(2) and c_,S_4(2) in (2.5), hence

( ) — ao(y <y —Re s Z —c/IN()| — yl—Resl Z ane_c‘/ﬁ
n=1

0;!é <]OK

where a,, is the number of ideals (1) with N((1)) = |N(1)| = n. This number can be expressed
as a sum Y, Xd(x)(b), where xq(x) is a quadratic character modulo d(K) (see [12], Section 9.3
and 9.5). This means that |a,| < 7(n), where 7(n) denotes the number of the divisors of n. It
is known that 7(n) < n° for any § > 0 (see e.g. [8], Chapter XVIII) and hence

oo o
u(z) = ap(y) <y ") nlem Vg ROy T eIV g e
n=1 n=1

if y; > M for some M > 0. The proof shows that the constant M and the implied constant in
the estimate above depends on the field K, u and the lower bound on s. O

It follows from the previous proposition that once an automorphic form satisfies the growth
condition u(z) = o(e*™¥*) it will be automatically of polynomial growth. We remark that by
following the proof of Lemma 2.8.6 in [3| one easily gets a better upper bound for the Fourier
coefficients than the trivial bound (2.8). Namely, if u(z) = O(yg) for some o« > 0 and k = 1,2,

then ¢, = O(|N(1)| = 3 ) for every | € Ok \ {0} (where the constant depends on the field K and

We will investigate now the automorphic forms in the space L*(T'x \ H?). Since they are
square integrable on the fundamental domain F', it follows that if their zeroth Fourier coefficient
is nonzero, then it must be of the form ¢y~ Sly; %2 where % < 81,82 < 1. Now Proposition
2.1.4 gives that s; = s must hold in this case. The automorphic forms with vanishing zeroth
coefficient are called cusp forms. It is known that Re s, = % for a cusp form. To a further

analysis we need the following

Lemma 2.1.7. Ifl € L}, then

‘ d(K), ifl=0,
// 62m<l,:p> dl’l de —
0 otherwise.

—3<X1,X2<3
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Proof. Tt can easily be checked by a computation. O]

Now suppose that u € L*(T'x \ H?) is a non-constant automorphic form with eigenvalues
sk(1 — sg), where Re sy > 1/2 (k= 1,2). We give a two dimensional analogue of the argument
in the proof of Theorem 3.2 in [11]. We are going to estimate u in terms of Yy = y1y2 whenever
B < z—; < B holds for some constants 0 < B; < 1 and 1 < B,. Note that this implies

By, < y1 < Boys and B;lyl < Yo < Bl_lyl. By the previous lemma we get

/ / 2 Gy o, (2.10)

——<X1,X2<7

a0+ Y laly)* =

where ag(y) and a;(y) are the Fourier coefficients of u given in Theorem 2.1.2. The formula
above is in fact Parseval’s identity. Now we integrate both sides of (2.10) over

1 1
P(A) = {5 <Yi< 3, Y2 )

l\’)\»—t

with respect to the measure di’/l 53’2 =2loge & dYO dYi. Note that y; = Y2 M oand gy, = Yie M,

hence the integral of the left hand side is

2 21 17(81+52)
oose 1t
21 YK2 (2 LIYEEDY K2 | (2n | Yie ) dy, D0 (211
- og€Z|cz\ 0 (2m [l ) K 2%(7T|2\05 ) Lyz (2.11)
leL3\0 1

L\)

Here the first term comes from the integral of the zeroth coefficient, and if u is a cusp form,
then this is simply 0 since ¢ = 0. Otherwise s := s; = s, and we simply integrate Yy 2. We
also used that K, 1 (y) is real if y € R*. This follows from the integral representation

K,(z)= / et cosh(vt) dt
0

which holds for Rez > 0 and Rev > —%, taking into account that s, — % is either real or purely
imaginary. Every orbit {yz : 7 € 'k} has at most 1 + CxA~2 points in

P(A)N{-1/2 < X, X, < 1/2}

by Lemma 1.2.5, hence (2.11) is bounded from above by d(K)~2|[u|[%(1 + CxA~2). Recall that
for an [ € O \ 0 the coeflicient ¢; was defined after (2.5) as the Fourier coefficient c¢(j,-1, (1)
We can rearrange the sum in (2.11) as we did in (2.5) to obtain

Z lc|*S + |ca|* e + emi]*Zoy + |e—aPE_a,
0#(1)<O0k
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where

N|=

1 dY
¥ = Z / / YoK? . zm%}zw—lyw K, (2me T (W) | YT e 2Y1)dYY—2°

Substituting Y/ = Y} — k the inner integral adds up to an integral on R, and in fact we get the
same integral for 3;, ¥, ¥_; and ¥_,.
For an [ € Ok \ 0 we set

a = |al* + |eal® + e + |e_al’. (2.12)

With this notation, the sum in (2.11) above equals 4 times

1 1 dY,
Z al/ / YoK (27T |lw ™| Y[fswl)KfT%(QW |(lw™")| Y2e™1) dy Y_20
0£(1) <90k

Now we fix an N > 0 and omit the zeroth term and the terms with |[N(l)| > N from (2.11) to
get a lower estimate. Then by the substitution u; = 27 |lw™|y; and uy = 27 |(lw™)| y2 we

obtain
duy du C
2 19%4%2 2 YK
)RR M e (14 )

> @02 NGl

( uLug
IN(DISN

Moreover, we note that
{(Ul,UQ) S (R+)2 LUy Z Al, U9 Z AQ, A1A2 Z A} C {(Ul,UQ) S <R+)2 D ULU2 Z A}

and hence we infer

o0

du1 dusy Ck
K2 _ K2 1 (ug) — 21+ =5 ).
Y / o 2 [ K20 22 <l (14 55)
07£(1) e
IN@)IN

once Ay Ay > w On the other hand, the following lower bound holds for the integral of
K,_1(y) (see the proof of Theorem 3.2 in [11]):

S
[e.e]

d _
K2 y) >l e (2.13)
Isl/2

Note that since |sx| > %, we have Y i < |S’“|, so choosing Aj, = 2\‘;;' with

2v/2 2
V8182

_ d(K)
2(47m)2N

A=
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we conclude
ST < lull? (|sise] + NZ) emleltiseD (2.14)

0#(1)
IN(I<N
where the implied constant depends on the field K.
Remark that if the zeroth term exists, then s; = so = s € (1/2, 1], and choosing A = 1 we

1

get ¢ < JJufl(s — 3)2.
We will use (2.14) to estimate u(z). First note that

[u(z) —ao)| < Y (allSi(2)] + leallSa(2)] + el S-i(2)] + le—allS-a(2)])

0#A(1)<0k

holds by (2.5). We only estimate the sum ;) |a[|Si(2)], the other terms can be estimated
similarly. That is, we work with the sum

Z lctlv/Y1y2 Z ‘Ksl—%(Qﬂ- | lw™| y1)‘ ‘KSZ_%(% (el yg)‘ , (2.15)

0#£(1) k=—o00

where we may choose [ so that 72 < % < % and hence e~ 1\/|N(1)| < |I], |I'| < e+/|N(1)| hold.

2
f—d(ﬁ—)m > 1, where C' is at least the constant denoted by
132 Y1y2

the same letter in Lemma 2.1.5. This means that gy, is smaller than a constant times \5152\2.
We separate the sum in (2.15) and first handle the terms that belong to those ideals for which
|IN(1)] > L holds. In this case, if £ > 0 in the inner sum, then

First we assume that L :=

2 [l gy > 26/ INWD)VAK)  /Biv/iiis > 2v/BoC [s152] > Clsal

while if £ < 0, then

21 |(™Mlw ™) | g2 > 267N ()] d(K) 1\/B2’1\/y1y2 > 2/ By 'O |s185] > C syl

In the first case we use the following estimates (given by Lemma 2.1.5):

2re2k /IN(D]d

K %(271’ e lw™ ) < e VIO

81—

€2k| | Resz-‘r% 62k: Resﬁ—%
_ S92 T
K, 127 |(52klw 1)/| p) < | —F——— O Ll g

e [N (D)l [N (D] y1y2

for some constants d, D > 0. We get an analogous bound for a negative k by switching the
roles of the variables. Since 3 < Re sy < 1 and therefore | N(1)] y1y» is bounded from below by a
positive constant, we estimate the sum over k’s by

& < e—Dé‘% [N (D) y1y2

o oo

2k 2k
3 e VINDlyry2 <Y v VINDyry2
k=0 k=0
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Also, k < €% holds, hence we can bound the sum above by

LU <GD'\/|N<1>|y1y2>k _ o DINOw (4 1
- | — D/ IN O
k=1 e
< e D'V \N(l)|y1y27

again, since /|N(1)| y1y2 is bounded from below by a positive constant.
Now we turn to the case when |N(l)| < L. Here the tails of the inner sum will be small

again, but we make a different upper estimate for the central terms. By central terms, we mean

the ones for which e=* |N(I)| < L (i.e. |k| < W) holds. Then the tails can be bounded

by e~VE¥vz gimilarly as before. For the other terms we simply use the bounds

| Reler%
Ksl_%(QW‘52klw_l|y1) < ( |51 ) e~ zlsl

eV IN (Dl

2%k Resz-i-%
Ks 71(27‘, ‘(E%lw*l)l‘ y2) < €—|S2| e*§|82|'
e IN(D)ly2

As Re s := Re s; = Re sy, we infer

io: ‘K81_%(27r |€2klw_1‘ yl)’ )Ksz_%(%r ‘(52klw_1)” yg)‘ <

k=—o00

<1 ( L ) ( |5152] )Res+§ —gs1l+ls2l) 4 o—evLyiyz
O (& e .
S\INOT) UND 1w

So far, we have that >, |c[|Si(2)| is bounded by

Z lalv/y1ye [Mu<l’ylay2) +e° Lym} + Z |cr] /e VIVl (2.16)

0<IN(DI<L IN(O)I>L

where

I 15150] Res+1 .
T . 2(|81‘+|52|).
WL yr,y2) = log <|N(l)|> <|N(l)| Y12 ‘

We apply Cauchy’s inequality for the first sum:
2

M2 = Z |Cl|\/MMu<lvylvy2) S Z ‘CZ|2 Z ylyQMu(l,yhy2)2

0<IN()I<L 0<INWISL  0<IN()I<L

As the number of the ideals with a given norm n is O(|n|’) for any § > 0 (see the proof of
Proposition 2.1.6), we obtain

Z ylngu(l’yl,yz)Q < (10g2 L) |8182|2Res+1 (ylyQ)—2Rese—7r(|sl\—Hsg|) Z n&—QRes—l

0<IN()I<L 0<n<L

2Re s+1 ( —2Rese—n(\sl|+|52\)L5—2Res'

< |8189| Y1Y2)
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On the other hand,

Yoo laP < Y a < fulPertitheD (s s 4 L),
0<|N()I<L 0<|N()I<L

by (2.14) and then
M2 < HU’||2 (|8182‘2Res+2 <y1y2)—2RcsL§—2Rcs + |8152‘2Res+1 <y1y2)_2RCSL2+5_2RCS>

As [2H0-2Res |5 g0 17 HRC S0 (y192)25=27%  the second term is bounded by

5—2Re s+24 ( —6

‘3152‘ yly2)_2

while the first term can be bounded by

2—2Re s+26 (

|5159] y1y2)75‘

This can be expressed in terms of L:

2—2Res Lé 1—2Res L2+5).

M? < ful?(]s1s2] + [s159]

Note that for a cusp form this bound is |Jul|?(|s1s2] L + L*9), and this is a correct bound even
if s; = s9 are in the section [1/2,1].
Next, it follows from (2.14) that

2

STl ] < ulP(siso| + LRl ST

0<|N(1)|<L .
< [ul[s150] L30emlsiltlsz))

SO

e_c‘/m\/yl?h Z la] < ||ull |8182‘% \/Me_cme%(‘“'H”DL%H-
0<IN()I<L

If the constant C' in the definition of L is big enough, then the factor e cvVIvit2 = e=¢lsis|
absorbs the powers of |s;s5| and also the factor ez(si+52D hence we get the upper bound
|| (y192) 17 that is smaller than the bound for the central terms.

Finally, we investigate the sum

Z |Cl| /ylyge—cv|N(l)|y1y2. (2‘17)

IN({)|>L

We use the trivial bound (obtained from (2.14))

e < Jull s152]7 [N (1)] et HD,
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and since |N(1)|y1y2 is bounded from below, we can estimate (2.17) by

||u|| |3182|%e%(\31|+|52\) Z |N(l)|%€_c',/|N(l)\y1y2<<

IN()|>L

< |[ull |s152|? 3 sl Zn%—kée—c’m
n>L

Nl

/ % . . . . oy
The function z29e¢®@1v2)222 ig decreasing if 2 > | L] once the constant C' in the definition of
L is big enough (this can be seen by examining its derivative). Hence

oo oo
1 1 11 1 1 1

One may use integration by parts to show that this last integral is bounded from above by
6_6‘5182‘(y1y2)_%_5. Again, if the constant C' is big enough, then e~¢**2l absorbs the factor
ez (siltls2) and all the powers of |syss|, and we infer that (2.17) is bounded by [|ul|(y12) "2~
(and the implied constant depends only on the field K).

Now assume that y;ys is bounded from below by a constant. This is the case when L < 1
and then only the terms in (2.17) occur on the right hand side of (2.16). Then the bound

] ‘31$2|% ez (s1l+ls2)) Z N

n>L

is still valid, but now as ¢,/y1y2 is bounded from below, we can estimate this sum by

! / /
=Yz < o~ 5V Iy —SVY2 < o—C'|s1s2] — S V/Y1Y2
e <e e <e e ,

n>L n>L n>0

and as before, e=“"I51521 absorbs the factor |5132|% ez(s1l+ls2) - Ag above, one can see that the
last sum bounded by e~%¥1¥2 for some d. We have proved the following:

Theorem 2.1.8. Let u € L*(T'x \ H?) an automorphic form with eigenvalues si(1 — si), where
Re s, > % (k =1,2), and let ag(y) be the zeroth Fourier coefficient of u. Assume that z € H? is
a point for which 0 < By < y1/ys < By holds for some constants 0 < By < 1 and By > 1. Then
there is a constant C'x depending only on Bi, By and the field K such that if L := CK% > 1,
then for any 6 > 0 we have

3

u(z) = ao(y) < [lull { (Isvsal L7+ L)% + () 577}

where the implied constant depends only on 6, By, By and the field K. Moreover, if y1ys is
bounded from below by a constant, then the term (ylyg)_%_‘S in the estimate above can be omitted.
Also, if L < 1, then

u(2) = ao(y) < |lulle” Vo,

for some constant d > 0.

Observe that if u ¢ L?(T'x \ H?) but satisfies the requirements of Theorem 2.1.2, then an
analogue of the argument in the last paragraph above the theorem is still valid. The major
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difference in this case is that the estimate in (2.14) cannot be applied, but we may use the trivial
bound in (2.8) to estimate the Fourier coefficients of u. We conclude that if By < y;/y2 < Bs
holds and y;y» is big enough, then u(z) — ag(y) < e~¥1%2 where the implied constant and the
lower bound on ¥y, depends on u, the field K, By and Bs.

2.2 Eisensteln series

In this section we introduce an important family of automorphic forms, the Fisenstein series,
and give a few basic results about them. Most of them will be stated without a proof, the
details can be found for example in Chapter II of the book [5].

The function y;* is an eigenfunction of Ay with eigenvalue A\, = s;(1 — s), and also, the
Laplace operator commutes with the group action. Hence if s1, s € C are such numbers for

which the function y;'y3? is invariant under the action of I'y,, then the sum

> () pa(r2)”
’YGFOO\FK

(at least if it converges) is invariant under the action of I'x and also an eigenfunction of Ay,
that is, an automorphic form.

As the translations does not change the function yj'ys5?, it is invariant under the action of
I's if and only if €2(1=52) = 1. Then, as in the previous section, we must have

(51782): 5+ aik S — Gl
2loge 2loge

for s = % and for some m € Z.
For an s € C and m € Z we define the Eisenstein series as follows:

Tim

s Tim S*M s z 2loge
E(z,s,m) - § : y1(72) +21ogsy2(/yz) 2loge — § YE)(’YZ) <y1(7 ))
2

YT \I'k ~ED o \[x Y <7Z)

= ) Yolyr)emmMON = 3" Yy(y2) An(y2),

’YGFOO\FK ’YEFOO\FK

where A, (2) := e2™™1() (it is a so-called Gréssencharacter-type exponential sum, see [5], Section

I1.1). Regarding the convergence properties of the series above, we have the following (see
Proposition I1.1.8 and Corollary I1.1.9 in [5]):

Proposition 2.2.1. The Fisenstein series E(z,s,m) converges absolutely for Res > 1 and
uniformly on the compact subsets of this half-plane.

Proposition 2.2.2. If s € C, Res > 1, then
E(z,s,m) — Yo(2)’Am(2) = E(z,8,m) — yi'y5? — 0

once yr — oo and the other y coordinate is fized (k =1,2).

Hence by Theorem 2.1.2 the function F(z, s, m) admits the Fourier expansion

E(z,s,m) = Z a(y, s, m)e*™<br>

leL
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where for an [ € Lj, \ 0 we have
al(y, s,m) = ¢u(s, m)\/yr1y2 Ky, —1/2(2m [l 1) Ky 172 (27 [l2] 12)
for some ¢;(s,m) € C, while the last proposition also shows that
ao(y, s,m) = yi'ys* + (s, m)yr " gy~ = Yo(2)"Am(2) + b(s,m)Yo(2)! A (2)
for some ¢(s,m) € C. That is,

E(z,5,m) =Yp(2)* Am(2) + 6(s,m)Yo(2)' " A_m(2)+

+ > Gl MmN K e 1227 1| Y1) Kapo1/2(2 [lo] )€™ b= (2.18)

1€L3\O
The functions ¢(s,m) and ¢;(s, m) can be determined explicitly:

o(s.m) = T Sx(2s =1 —m)[(s1 — ) (s — 5)
| VA(K) Ck(2s,—m) T(s1)T ()

T Cr(2s —1,—m) D(s + gigs — )T — 5igz — 5)

VA(K)  Ck(2s,—m) Do+ Fg)T(s — Figs)

A% oy gy (1) L] |l 2

gbl(sv m) = \/MCK(QS’ —m) F(Sl)r(32)

47'('28 0'1_257_m(l) ’11’5+%_% |12‘S_2ﬂ12%_%

V) G2 m) Tl i)l — )

where
Q| et s
Celsm) = Y0 |5 v
0#(a)<0k
is a Hecke L-function (see [9]) and
C | s
Us,m(l) = Z g ‘N(C)‘

IOD

Here D denotes the different of K, i.e. the inverse of the fractional ideal
D'={a€ K: tr(aOk) C Z}.
2711’2')7;6 =85— 27;2?5
['(s) = I'(s) hold, we obtain that ¢(s,m) = ¢(5, —m) and ¢;(s,m) = ¢ (5, —m). Similarly,
using that K,(y) = Ky(y) holds for a positive y (where K, (y) is the Bessel function) and

that the Fourier coefficient belonging to —I[ is the same as the one belonging to [ we conclude
E(z,s,m) = E(z,3,—m).

and

Note that (x (5, —m) = (k(s,m), 05-m(l) = 0sm(l). Moreover, since s +
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The functions E(z,s,m) and ¢(s,m) are holomorphic on the half-plane Re s > 1, they can
be continued meromorphically to the whole complex plane and satisfy the following functional
equation:

E(z,1—s,—m)=¢(1 —s,—m)E(z,s,m).
Regarding the poles one can say the following (see Proposition I1.6.1 in [5]):

Proposition 2.2.3. The functions E(z,s,m) and ¢(s,m) has no poles on the half-plane Re s >

% except for finitely many in (1/2,1] if m = 0.

The functions F(z,s,m) are not in L?(T'x \ H?), hence we define the truncated Eisenstein
series for any A > 0 by

E (Z s m) L E(z,s,m) - %(Z)S)‘m(z) - Cb(s,m)yb(z)lfs)\_m(z)’ lfYo(z) > A
ammr E(z,s,m) otherwise.

For these we have the following (see Theorem I1.7.2 in [5]):

Theorem 2.2.4 (Maass-Selberg). Let s,s' € C, m,m’ € Z, and assume that (s,m) # (s',m’)
and (s,m) + (s',m') # (1,0). Then

/F Ea(z,8,m)E4(z,s,m")du(z) =

As+s’—1 . ¢(8, m)¢(sl’ m/)Al—s—s/
s+s —1

= 2/d(K)1og |6

+

ASiS/Qﬁ(SI, m/) _ As’fsgb(s’ m)

/

+5m,m’
S— S

A few corollaries can be derived from this:
Corollary 2.2.5. If ¢(s,m) is holomorphic at s, then E(z,s,m) is also holomorphic at s.

Corollary 2.2.6. If s = § +it, then |p(s,m)|> = ¢(s,m)(s, —m) = 1. Therefore the function
E(z,s,m) is holomorphic on the line s = % + it.

Corollary 2.2.7. The exceptional poles of E(z,s,0) are simple.

Corollary 2.2.8. The function ¢(s,m) is bounded in the half-plane Re s > % if s 1s bounded
away from the real line.

Now we use Theorem 2.2.4 to determine the value of the integral
[ 1Bates.m) dutz)
F

in the case when s = % + r for some r € R. Note that the theorem does not apply directly
here since at least one of the requirements (s, m) # (s',m’) and (s, m) + (s',;m’) # (1,0) is not
fulfilled. Assume that the Eisenstein series F(z, s, m) is holomorphic in the strip 1/2 < o < oy.
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If o + ¢r is in this strip and m # 0, then Theorem 2.2.4 gives

/\EA(z,U—i-z'r,m)]Q du(z) = / Ex(z,0 +ir,m)Ea(z,0 —ir,—m) du(z) =
F F

A%l — ¢(o +ir,m)¢(o —ir, —m) A1 =2

= 2loge/d(K)

20 —1

A2~ — (o + ir,m)d(o + ir,m) A%
=21 K ’ ’
ogevd(K) Y
in this strip.
The power series of ¢(s, m) around 1/2 + ir is
2L 9 (L +ir,m) .
$(1/2 + ir,m) +¢'(1/2 +ir,m)(s — 1/2 —ir) + Yy | —2— (s —1/2 —ir),
J!

i=2

and as |¢(s,m)| =1 on the line s = 1/2 + ir, we have for such an s that

o(s+it,m) — o(s,m)

; L
¢/(s,m) = Jin it
1 1
o Sl it m) = o(s,m)
t—0 —1t

B (s, m) — P(s +it,m)
{50 it (s + it, m)d(s,m)

. @(s+it,m) — ¢(s,m) 1
N 11—138 it o(s + it, m)o(s, m)
_ ¢'(s,m)
- o(s,m)?
Therefore,
: ¢V (L +ir,m) .
d(o +ir,m) = ¢(1/2 + ir,m) + &' (1/2 + ir,m)(c — 1/2) +Z i (o —1/2),
j=2 '
oo 1 irm) = (12 +irm) + §(1/2 + irm)(o — 1/2) + Z Gt ;“" ) (5 12y
j=2 ’
_ ~ L (G Hinm) —Hr m) ;
_¢(1/2—|—zr,m) +¢(;_|_—an —1/2 +Z (0'—1/2),
and hence

¢ (5 +ir,m)

o( + ir,m) (0 —1/2)+ Y a(j,r,m)(c —1/2)

=2

(o +ir,m)p(o +ir,m) =1+ 2
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and

A2 — ¢(o +ir,m)p(o + ir,m) Al =27
20— 1

A20-1 _ Al-20 ¢/(% +ar m) Al-20 oo )
- - LA ' —1/2)77L,
2 — 1 o(L + ir,m) 2 ;“U’T’m)(a /2)

We conclude

/ |Ea(z,1/2 +ir,m)[* du(z) = lim | |Ea(z,0 +ir,m)[*> du(z)
F

1
o—5 JF

= 2loge/d(K) [2 log A — M} : (2.19)

¢(5 +ir,m)
If m =0 and r # 0, then Theorem 2.2.4 gives
[ 1Eatz.o +in 0 du) -
F

A%~ — p(a +ir,0)p(c —ir,0) A2 N
20 —1

= 2loge/d(K)

+gz5(0 —ir,0)A?" — ¢(o + ir, O)Azm}

2r1
hence, taking the limit as ¢ — 1/2 we infer

/F\EA(z, 1/2+ir,0)* du(z) =

_ ¢ (2 4ir,0)  $(1/2 —ir, 0) A2 — $(1/2 + ir,0) A=2r8
= 2logey/d(K) [2logA— ¢(§+z’r,0) + - }

(2.20)
Finally, if m = 0 and r» = 0, then

/F Balz,1/2,0)F du(2) = lim / Ea(2,1/2 4 ir, 0) du(z) =

i ¢'(3,0)
= 2loger/d(K) {210@;’4 B qﬁ(%,o)}

[cﬁ(l/? —ir, 0)A*" — ¢(1/2 + i, O)A%]

211

+ 2logey/d(K) lim

r—0

1

= 2loge\/d(K) {2 log A — z((f(?)) +2¢(1/2,0)log A — ¢/(1/2, 0)} .




CEU eTD Collection

2.3 The automorphic kernel 55

We note that ¢(1/2,0) = ¢(1/2,0) and hence ¢(1/2,0)* =1 hold. This means that ¢(1/2,0) =
#(1/2,0)"! = +1 and we can write

/F |Ea(z,1/2,0))* du(z) = 2loge/d(K)(2log A — ¢'(1/2,0))(1 + $(1/2,0)). (2.21)

We mention another important basic result, that will be useful for us also in a later section
(see Theorem II.8.1 in [5]):

Theorem 2.2.9 (Plancherel formula). Assume that f(t),g(t) € C5°(0,00), m € Z and let us
define

Fo.(z) = /000 fOE (z,1/244t,m) dt, Gun(2) = /000 g(t)E (z,1/2 +it,m) dt.

Then Fy,, Gy, € L*(T \ H?) and we have

1 o .
A loge/d(K) /F Fin(2)Gm(2) dp(z) = /0 f(t)g(t)dt.

Finally, we turn to the decomposition of L*(T'x \ H?) into subspaces which are invariant
under the action of Aj. The map f — F,, defined in the theorem above extends to an isometry
of L?(0,00) into L*(T'x \ H?). Let &,,(Tx \ H?) denote the subspace in L?(T' \ H?) generated
by the images of L?*(0,00) under the maps f — F,, and f + F_,. Then the &, (T'x \ H?)’s
are invariant subspaces which are orthogonal to each other for different m’s. Let us define
E(T \H?) = @2_ & (T \H?), moreover let us denote the subspace of cusp forms by C(I'x \ H?).
The residues of E(z,s,0) in (1/2,1] are also automorphic forms which are in L?(T'yc \ H?) and
generate the finite dimensional subspace R(I' \ H?). These subspaces are all invariant and we
have the orthogonal decomposition

L*(Tg \H?) =C(Tx \H?) @ R(T'x \ H?) @ (T \ H?).

Let {u; : j > 0} be a complete orthonormal system of L*-eigenfunctions, which span *.
Then, together with the Eisenstein series they give the spectral decomposition of square-integrable
functions (see Theorem I1.9.8 in [5]):

Theorem 2.2.10. If f(z) € L*(T'x \ H?), then

= 1 =7 | |
f(z):ZO<f,uj)uj(z)+87T10g6\/m 3 /<f,E(-,1/2+zt,m))E(z,1/2—|—zt,m)dt.

J m=—00_"

2.3 The automorphic kernel

The so-called automorphic kernel functions will play a basic role in the following. In this
section we define them and discuss some of their most important properties. For this definition
we choose a function ¢ € C*(R?) and set

|21 —w1|2 |22—w2!2
Imz; - Imw; Im 29 - Imwy

ky(z,w) = k(z,w) =1 (
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for every z,w € H2. The function k(z,w) is a so-called point-pair invariant kernel which means
that k(z,w) = k(oz,0w) holds for every z,w € H? and 0 € PSL(2,R)? (this can easily be
checked by a computation). Note that certain control over its growth will be required and this
will be discussed later in this section.

A new kernel is given by the series

w) = Z k(z,yw). (2.22)

This is clearly an automorphic function in every variable (at least if the series above converges
absolutely), and hence called an automorphic kernel.
Now we define some transforms of v, they often occur in computations:

Q(th)Q) = /oo /Oo 77Z)(t1’t2) dtl dtg,

w Vi — Wity —wy

glu,ug) == Q(e™ +e ™ —2 e +e "2 —2), (2.23)

7’1, TQ : / / Ul, l (riurtrauz) dU1 d’UQ

These notations will be fixed in the following.

We often restrict ourselves to a compactly supported smooth function ¥. Then g is also a
smooth function with compact support and hence h is rapidly decreasing. However, in many
situations this condition is not essential. It is simpler to express the sufficient conditions in terms
of h rather than k. Following [11], we will assume that h is even in every variable, holomorphic
in the strip [Im 7| < 1 + ¢ in every variable and that

h(ry,re) < (|m] + 1)_2_5(]7“2\ + 1)

Also, many times it is more convenient to choose g or h instead of 1, therefore we frequently
use the inverses of the transforms above, that are described in the following statement (see
Proposition 1.2.2 in [5]).

Proposition 2.3.1. If h satisfies the above mentioned properties, then

h(ry, rg)e_’(”“ﬁ”“” drq drs,

g(uh u2)

Bwlawg 1’w2>
t,t = dwy dw,.
Vit ta) / /1 Vwy — tiy/wy — ty e

We close this short section with an important claim that will be applied several times later
(see Theorem 1.14 and Theorem 1.16 in [11] together with the remark after the proof of Theorem
1.16, and see also Lemma 1.2.1 and Proposition 1.2.2 in [5]):
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Lemma 2.3.2. If h(ry, ) satisfies the properties above, and u : H? — C is an eigenfunction
of Ay with eigenvalue A\, = si(1 — si), where s = % +iry (k=1,2), then

/H 2 k(z, w)u(w) du(w) = h(ry, ro)u(z).

2.4 An application of Bessel’s inequality

In this section we generalize some results that are given in sections 7.2 and 10.2 of [11].

Let {u;j(z) : j > 0} be a complete orthonormal system of automorphic forms for the discrete
spectrum of T with eigenvalues AP AP, A = D1 — 59y where Re st > 1 is assumed

and we write 8(] ) = —|— zrk (k = 1,2). The Fourier expansion of u; is

S(J) ) . i<
w2 =dm T T+ Y @ VI e 2Ly K (2 [l y)e <

1€LN\O

where ¢; # 0 only if u; is not a cusp form.
We will need an analogue of the triangle inequality for the function

|2 — wl”

plz,w) = Imz-Imw’

where 2z, w € H. One can express the hyperbolic distance function d by means of p:

d(z,w) = cosh™! (1 42 (22’“’)) .

As the triangle inequality holds for d, one derives easily that if p(z,w) < § and p(w,u) < §, then
p(z,u) <6(4+0). (2.24)

We fix a point w € H? and define the function

f(z) = K(z,w) = ) k(z,yw).

Since 1) has compact support, the same holds for f and hence f € L*(T'x \ H?). Then by the
spectral theorem and Lemma 2.3.2 we have K (z,w) = >, f;(2) + >, ,cz Em(2), where

£i(2) = h(r? 9w (2)u; (w),

En(2) = / (r+ ™)
m\< , T =
87r10g5\/d 210g5 2loge

1 1
X E(z,§+ir,m> E(w,§+ir,m) dr.
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In fact we do not need the spectral formula in this section, an approximation is sufficient. First,
we have

(F 1) = sy (w) (Fg) = B vy () /H h(z w)u (=) dp(2)

= [ i) =151

by Lemma 2.3.2. Now we define

m 1 1
Gm /— - E PP ) ) E PPN ) ) d
(z) = 47r10g5 K / ( 210g5 T 210g5) (z 5 +ir m) (w 5 +ir m) r

for some numbers 0 < A < B < 0co. We set

1 ™ ™ 1
h{r+ T — Elw, -+ir,m|, ifrelA, B,
h(r) = { 4mlogey/d(K) < 2loge 210g5) < 2 ) | |

0 otherwise.

Now applying Lemma 2.3.2 together with Theorem 2.2.9 for a smooth approximation of h(r)
and then taking limit we obtain

- /FK(z, W) G (2) dpa(2)

2

dr = |G|l

| (s 5i) (e o)
= w, = +ir,m
47710g5 d(K 210g€ 2loge 2

Hence Bessel’s inequality is applicable: >° . || f;[|* +>,,c5 [Gmll* < [If]]?, that is,

Z‘hrl, (w)

Z /) ( ST = 7Tm)E(wl—i—irm>
87Tlog5«/d 210g8 2loge "2 ’

meZ

2
()| +

2

dr (2.25)

< [ IKGw)l duce)

We can drop the restriction A < r < B in the second term since we integrate a non-negative
function. Then by substituting R = —r, adding the terms belonging to m and —m and finally,
summing over Z and dividing by 2 we obtain the inequality above.

We apply this inequality for a compactly supported kernel 1) which is a smooth approximation
of the characteristic function of the rectangle [0, ;] x [0, d5] for some small §; > 0 and d5 > 0
satisfying 0 < ) < 1 and [j0,5,x[0,5) = 1. We assume further that supp(t) C [—m, 01 + m] X
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[—1n2, 02 + mo] for some n; > 0, 7y > 0. Then by Lemma 2.3.2 we get the integral representation

) = [ KG9 ()

for any s, so € C, in particular, for s; = sy = 0 we obtain

h (%%) _ /H k((3,4), 2) dp(2).

If p; > 0 and g, > 0, then we have

/ ldu(z) = g1027,

p(i,2k) <ok
k=12

since it is the product of the areas of hyperbolic circles with hyperbolic radius cosh™(1 + %)
(k =1,2). It follows that 6,0om% < h(i/2,7/2) < (81 + n1) (02 + 1) 7>

We would like to estimate the value of h(ry, 7o) where Ay, = 1 + 72 (k= 1,2) and (A1, A2)
is an eigenvalue vector of a u; or an Eisenstein series. For this we estimate the distance of
the numbers h(ry,r2) and h(i,7). We will handle this problem coordinate-wise, so assume that
0r > 0 and n, > 0 are some small numbers and 0 < d; + 7 < C for some constant C' > 0. If
2, € H and p(i, zx) < 0 + Mg, then

lye — 11° _ [z — [’
<

< = p(1, z) < O + M,
Yk Im 2z,

and hence y? — 2y, + 1 < (0 + me)yr < Cyi, that is, yi lies between the values

24 C+4/(2+C)2—-4 2+4C+/C(C+4)
2 - 2 '

Choosing a small enough C' we can reach |y, — 1] < 2¢/; + .
If |s| <1, then one can show easily using the power series of y; that

e (e N | N[V

holds (for a small enough C). However, we need a similar estimate also if s = 3 + ir for some

reR.If |s| < Toar] for some constant ¢ > 0, then

v — 1= e — 1< s [log yi| < |s] |y — 1],
where the implied constant depends on ¢ and C. Finally, if |s] > Toagl then by the triangle
inequality

1
lyp — 1 < 1T+y; <1< [s]logye < |5 |ye — 1]
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Now we restrict ourselves to the cases when the real part of s; and ss is % or when both s; and
s9 are on the interval [%, 1]. If C is small enough and & + nx < C, then we have

|h(r1,re) — h(i/2,1/2)| < |h(r1,72) — h(r1,1/2)| + |h(r1,i/2) — h(i/2,i/2)|

< / iy — | duz) + / g — 1 duz)

p(i,2) <Op+ms, p(i,21) <O+
k=12 k=1,
< [ wwevdes [ et
p(4,21) <Ok +1k p(,2k) <Ok +nk

k=1,2 k=1,2

L ([s1] /01 +m + |s2] /02 +12) (61 + m1) (02 + 12)
< (|s1] V01 + |s2] V/02)010:

_1
for n, = cd; for example, where 0 < ¢ < 1 is a small constant, and if |s;| < J, > with an
appropriate implied constant, then

1
571'2(5152 S h(?"l,?“g) S 27'('25152. (226)

Now we estimate the L2-norm of K(z,w). First, we have

/Isz du(z Z/ (v'z, W)k (v z,yw) dp(2)

v,y €Tk

Z/ (2, )2, y) dp2).

vel'k

If k(z,w)k(z,yw) # 0, then p(zg, wy) < 26, and p(zx, YPwy) < 28, hold and then we get
p(wp, Y®wy,) < 40,(2 + &) by (2.24) (k = 1,2). Setting

Ny, 5,(w) = #{v € Txc : p(wy, YFwy) < 46,(2 + 6), k = 1,2},

we obtain

J IR G )l du) < Nos(w) [ K(G0).2)dul) < Noy () 2510

HQ

If we restrict the summation and the integration in (2.25) to the pomts 3(]) + ZT(J and

s + ir + (—1)* 1522 with absolute value less than a constant times d, : for k = 1, 2 and apply

210g6
( —+ar m)

the lower estimate in (2.26), then we infer

> () +Z

2
dr < (51_1(52_1]\[51,52(2)7

7, 8T log €
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where ’ denotes our restriction. If 7 > 0 and 75 > 0 are big enough, then we can choose
8x = (¢T},)~% with some constant ¢ to obtain
( — 4ar m)

> lw@)r +Z
< T12T22N(CT1)*2,(CT2)*2 (Z),

2
dr < (2.27)

7 8T logs d(K

where for a fixed m we integrate over those r’s for which ‘% +r + (_1)k_1%

holds.

We proceed by estimating Ny, 5,(2) for some special points. The following set occurs many
times later: for an A > 0 we define

Fy:={z€ F:Yyz) =uyy < A}

This is the "central part" of the fundamental domain, i.e. the points that are "close to the cusp"
are omitted from F'.

Lemma 2.4.1. There is a constant Cx depending on the field K such that if 2 € Fa and
0 < 01,02 < Ck, then Ny, 5,(2) < 14 A(/11 + /12)?, where ny, = 40,(2 + 6x) for k =1,2 and
the implied constant depends only on K.

Proof. Assume that z € Fy. If v = | ¢ 2 } € Njs, 5,(2) then we have p(z;, v¥2,) < ny for
k = 1,2, and this is equivalent to
’fy(k)zk — zk‘Q < Mg - Imzg - Im fy(k)zk. (2.28)

If c=0, then a®*) = ¢! for an I € Z. Then

2
Im (Y2 — 2) = (% = 1)°98 < 7w — z|” < ey,

that is, (! —e!)? < mp. If 6 is small enough, then so is 7, and this latter inequality holds only
for [ =0, and then a = d = 1. It follows that

Y0z — 2" = 0O < g < mePyiye < me?A,

so [b)| < ey/mpA. Tt follows that there are at most 1 + cx A(\/71 + /72)? possibilities for b,
where cg is a constant depending only on K.
Now assume that ¢ # 0. Then (2.28) gives

2
2
Yk (k) 2 Yk
S L — < |y W — < mpp—Th

that is, (By — By, N2 < for B, = ‘c K)o+ d k)| From this we obtain

()

(k 2,2
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by Lemma 1.2.4. If 1,75 < 1, then |cV| and |¢®| are bounded by a constant depending only
on K, so there are only finitely many possible values for ¢. For a fixed ¢ we have

(Mg +d®)? < |c® 2+ dP ‘2 <+ 2,

and since |zy| is bounded, d can be chosen only from a finite set. So there are only finitely many
possibilities for the pair (¢, d). Finally, (2.28) gives

M@%+HM_Q@W%+$%f§m%-

Since Im (z;(c® 2z, + d®)) = 2P x4y, + dFyy,, we obtain (a® — (2¢Wzy + d*))? < 5, and
since (20(k)xk + d(k)) is bounded, we get that so is a(!) and a®. This completes the proof of the
lemma. O

From (2.27) and the lemma above we infer

Theorem 2.4.2. If A >0, z € Fa and Ty, T, > 0 are big enough, then we have

1 / 1 2
u;(2)[° + / E (z,——i—ir,m) dr <
|<§<:T %8ﬂlog5\/d(}() 2
S IS4k
12:1,2
L THTE + A(T? + Ty + Th Ty), (2.29)

% +ir 4+ (=11 < Ty holds.

where for a fired m we integrate over those r’s for which
2loge

Next we omit the second sum from the estimate above, set A = ¢TT, for some big enough
constant ¢ > 0 and integrate both sides on Fl4:

> /hwmmma<ﬁﬁ+ﬁg+ﬂ@.
s@<r,

k=1,2

Also, we define F¥ := {2 € F: A <Yy(2) < B}. If we choose A = ¢I'Ty, B = ¢T?T$, and
integrate both sides on F'¥, then we obtain

S [ G due) < (T + T+ T ) [ 1du)
k =
k=1,2

1
<Zgﬁ}uﬁﬁﬁ+ﬁ+ﬂn»<ﬁﬁ+ﬁn+n@.

Summing these two inequalities we get the following on the left hand side:

S / () du(z) = S 1 / G dute)

s91<Ty
k=1,2 k=1,2
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For a big enough ¢ we infer by Theorem 2.1.8 that

r dY; r dY-

/ |uj(2)’2 du(z) < ’¢j’2 / Y0175_20_i_ / %] 20

e Y; Y,
cIPTS cT2T2

(cTYT5)"

1
<K (S(;)ﬁé()T + e_d\ﬁT1T2 < % + e—d\/a

where s is defined to be s; = s when ¢; # 0, and the implied constant depends only on the
field K. Hence if ¢ is big enough, then the integral above is uniformly small for every j. We can
summarize this as

#{j sV < T, 8P| < T} < TPTE + TPT, + TV T3 (2.30)

As the last result of this section we prove a bound for the logarithmic derivative of the zeroth
Fourier coefficient of the Eisenstein series:

Theorem 2.4.3. If Ty, T > 0 are big enough, then

! /(1 .
—@(5 twr,m
E:/ 1(2 : )dr<<T12T22+ TTo(T? + T2 + T\ Ty),
o(5 +ir,m)

meZ

Lir 4 (—1)F 1A < Ty holds.

where for a fixed m we integrate over the r’s for which
2loge

Proof. First we fix some big numbers 77,7, > 0 and for a fixed z € F we set A = y;9» and
integrate both sides of (2.29) over {—3 < X, X, < 1} to infer

D > 1 PR @n ] y) K, (2 [la] ye)+

\sg)ISTk leL7\O

k=1,2

/
+ Z/ Z |¢l(1/2 —|—’iT, m>|2 y1y2Ki2r+2ﬁ%(2ﬂ- ‘lllyl)Ki_ (271' |l2| yg) dr

meZ leL}\O

(2.31)
L TPTS + e (TE + T3 + Th 1),

where for a fixed m we integrate over those r’s for which ‘% +ir + (—1)F 1| < T holds.

2loge
We use the bound (see [11] p. 141)

K, 1Qry)P—= < [s] | |K,_1(27y)]*—
/T | 2( ) Y T/2 ? | y?
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and estimate as follows:

2
/ |E\/T1T2<szam)| du(z) =
ENF iy
dy, d
= 3 Jous,m)P? //|K1 o (2 || )3 g (2 o] ) P2
leLs\0 o8e Y192
K
VT T2 <Yy
-i<vi<d
dy, d
S35 IR BT R APAICY SR PRI
1€L%N\O Y1y2
K
VT <ys
k=12
mTim Tim 9
< S+210g5 2loge Z [91(s,m)|
leL3\O
dyy dys
K 1 ﬁzm 2w ll U1 K 1_ _mim 2 l2 Yo 2 y
] PR, o ol P
VT /2<ys,
k=1,2

hence, using this and the estimate (2.31) we get that

Z/ /F }Em(%l/?Hnm)\z du(z) dr <

MEZ
dyy d
< // TS 4+ iy T (T + T3 + Tsz)—Zéygz
192
VT /2<y)
k=1,2

L THT? + /TN Ty (TE + T 4 11 Ty)

Now we apply Theorem 2.4.2 with A = /T1T5. Omitting the first sum on the left hand side
of (2.29) and integrate the remaining terms over F 77 we infer

S G|

meEZ
Note that here we also have to estimate the integral of the zeroth coefficients, hence we show
that

du(z) dr < TPTy + /T T (T? + Ty + Ti'Ty).

> / log Ty Ty dr < (T2 + T2) log Ty T, (2.32)

mez
where the integration is restricted to those points for which

m
<Ty

1
~ 4ir 4 (=)

'2 2loge
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holds (k = 1,2). The inequalities above are equivalent to

2 m O\ 2
= - —1)Ft <T¢
+(T+< ) 21og5) =k

and adding the two inequalities we obtain

m

1
B +ir + (—1)k_1

2loge

[\

<T:+T;.

1
—+2r? +
2 2log® e

That is, both |r| and |m| are bounded by a constant times /77 + T3 and our claim follows.

Now
2
//‘Em( +z7°m> du(z)dr =
meEZ
2
= Z/ / ( = +ar, m) dp(z) dr+
meEZ
1 2
+ Z / / Em (z, — +ir, m) du(z)dr,
meZ F\F 2
hence
2
/ / ‘E\/T—T ( = +ir, m) du(z) dr < TPTy + TV (T + Ty + Th'Ty)
meZ

follows. By (2.19) on page 54

. 2 @' (% +ir,m)
/F ‘Em(z, 1/2 +ir, m)| du(z) = 2loge/d(K) |log Th T, — m
holds if m # 0, while for m = 0 we have

/F|Em(z, 1/2 +ir,0)|” du(z) =

B (3 +ir,0)  P(1/2 —ir,0) (T To)" — ¢(1/2 + ir, 0) (T 1) "
= 210g8\/d(K) |:10gT1T2 - ¢<§—|—ZT, 0) + i :|

if r # 0 and

/F |E 75 (2,1/2,0)|” dpu(2) = 21og e /d(K) (log Ty T, — ¢/(1/2,0)) (1 + 6(1/2,0))
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(see (2.20) and (2.21)). That is,

Z//’E\/TTH/QHTW)I dy(z) =

meZ
¢'(%+ir,m)
= 2loge/d(K locTZ Ty — —2 ' | dq
5" ;Z/ {Og Ty my ) U
o(1/2 —1 T, T5)% — H(1/2 + i T T,
+ 2loge/d(K) / o(1/ ir, 0)(T1T3) 2rf( /2 +ir,0)(T\T3) dr.

| 2+zr‘<mm T1,T2)

We define T' = min(7y,T3). Since |3+ ir| < T holds if and only if |r| < /T2 — 1/4, we
need to estimate

T27

I

O(1/2 — ir, 0(TyTo)" — §(1/2 +ir, ) (L To) ™" (2.33)

2r1
T2

N

As |¢(1/2 4 ir)|* = 1 by Corollary 2.2.6, we have for every 0 < ¢ < /T2 — 1/4 that

/ ¢(1/2 —ir, 0) (TlTQ)ri _ ¢(1/2 + ar, 0) (T1T2)7M dr < log(T/C) < log(Tng/C)

2r1

hence it remains to estimate the integral around 0 and to choose an appropriate c. As

/qb % ZT O TlTQ) — QS(% + i?", 0)<T1T2)7M dr —
2ri N

- /C (5 = ir, ) (T)" = ¢(5 — ir, 0) (T T5) ™" dr

2r1

—C

C

/ (b(% - Z"I", 0) <T1T2)_M - Qb(% + ir, 0) (T1T2>—T’i dr

+ 211

—C

C Tt —ri F 1 . 1 .
_ / ¢(%_”70)<T1T2) - (M) /(T1T2)_m¢(2 ir, 0) '¢(2+mo) .

2ri 2r1
If ¢ < 1, then the fraction in the second integral is bounded by a constant depending on the
field K, so the second integral is O(c). Similarly, the fraction in the first integral is bounded by
a constant times log 71T, around zero, hence by choosing ¢ = 1/log 7175 the second integral is
O(1) and we conclude that (2.33) is bounded by a constant times log 7175 and together with
(2.32) the theorem follows. O



CEU eTD Collection

2.5 A spectral mean-value estimate 67

2.5 A spectral mean-value estimate

In this section we derive a mean-value estimate for the Fourier coefficients of automorphic
forms and Eisenstein series. Our main goal is to generalize formula (8.27) in [11]. For this
we first fix a complete orthonormal system of automorphic forms for the discrete spectrum
of I' like in the previous section, let us denote this set by {u; : 7 > 0}. We also pick an
appropriate kernel function ¢/ and apply the spectral theorem for the automorphic kernel K.
In fact we choose the function g (that is defined in (2.23) on page 56) instead of ¢ such that
g(uq,us) = go(uy)go(uz) holds for some g : R — R that is positive and decreasing on R* making
1 non-negative and real by Proposition 2.3.1.

Like it was mentioned in the previous section, by Theorem 2.2.10 and Lemma 2.3.2 the
function K (-, z") has the spectral decomposition

Zh ry ’7”2 i(2)u;(2)+

™m
T — X
87r\/d )loge Z / ( 210g5 210g5>

1 1
x F <z,§ +ir,m) E (z’,§ —|—z’r,m> dr.

We write Cx = 8m\/d(K)loge, z = xy, + iy and z, = ), + iy, for k = 1,2, and then for every
l € L} we have

1 | -
d(K) / / / / e 2mi<ha>mi<la’> [ ) da) daly day dwy =

—3<X1(2),X2(2)<3 —3<X1(2'),Xa(2)<3

= 2 AN E TT gy m Ky T+

k=12
1+,
'\ 3 w,m

Z / oy R, T
210g€ 2loge
X H V ykyk: ir4(—1)k-1 mm (27T |lk|>yk)Kir+(fl)k—1%(2ﬂ- ’lk|)yl/§) dr

m=—o0
k=1,2

2
X

(2.34)

On the other hand, as the function v is non-negative, so is the kernel function K and the
absolute value of the left hand side above is less than

dl(K) // H(z,y') dzy dzs,
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where
1
Hzy) = Il weans
d(K)
—7<X1(Z XQ(Z/)<7
> XY [ sewnnnwtag
v ’yEFoo\FK k=—o0 V€<9K,;<x1 (2/),X2(2") <%
and
[0 W=, "
Pk— 0 g_k s n\r) = O 1 .
We obtain

H(z,y’):\/_ > Z // (pey)z, 2') day dacl, (2.35)

’YEFOO\FK k=—o00 R2

and for further estimates we first compute the integral of the kernel k(z, z’) with respect to the
arguments xj and x4, (and then we may substitute anything in the place of z later):

// 2, ) doy day = / / (wl—wl +/<y1—ya>27<x2—x;>2+,<y2—y;>2) &2 ds,
G Y2Ya

T 7 /\2 a2 /1\2 )2
:4//w <(5L’1) +(y} ) (a) +(y? Ya) ) 0! d)
s Y1t Y29

wu1+yl+yl—2 up + 2 4+ £ 9)

=V Y1Y1Y2Y5 // N Y2 2 duy dusy
) 1U2

= Vinyiyys9(og(y1/y1), 1og(y2/ys)).-

The last equality above is obtained by (2.23).
We make the choice go(u) = \/%?TeﬂﬁTQ for some 7' > 1, and then

g(uy,ug) = lTQe—(U?ﬂ%)TQ — lTQG—(“ﬁuf)%Q e—(ul_?)QTQ,
T T
so that
vV vy v g(log(yr /y1), log(ya/ys)) =
_ yl?/lelyéTze—logz( ’ /2)T2/2e log? (”“‘2)1“2/2

™

Yo(2)Yo(2)T™ _1og2(vo e/ vo(e )72 /2, — (410 )2 (i (5)-Yi (+))T2/2
T
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We write this in (2.35) and express H(z,y') as a function of z, Y] = yjy} and Y/ = log

410g5

H(Z’}/E)/7§/1) Z Y, ,-YZ —log?(Yo(v2) /YO)T2/2
v 'YGFOO\FK
% Z 6—(4log5)2(Y1(pk'yz)—Yl’)2T2/2‘
k=—00

As Yi(pryz) = Yi(vz) + k, we can apply the Poisson summation formula (in the form as it is
written in (1.9) in [10]) to estimate the inner sum:

Z 6—8(T10g5)2(k+Y1/—Y1(7z)) _ \/_ Z e &B(TfTs)Q 2mik (Y Yl('yz))
2\/_ 2T loge , Z

k=—o0

and this last sum can be estimated by

ﬁ 8(Tloge) 2k2 —8(loge)? k| _ 2 .
2\/_T10g5 Z ¢ Z < Z ‘ 1 — e8(oge)? L

k=—o00 k=—o00

where we used the Poisson summation again after the (first) estimate. That is,

log(Yo(v2)/Yy) )

7 (2.36)

H(z,Yy,Y)<T Z Yo(72)Yy 90 (
YEl o \I'k

where the implied constant depends only on the field K. We set f(y) = (yYO’)% 9o (%)

for a positive real number y. The contribution of the identity element in the previous sum is
F(Yo) = /YoYd go(log(Yo/Yd)/v/2). We will use Lemma 1.2.5 to estimate the remaining part of
the sum. Recall that for a v € T, \ 'k different from the identity we have Yy(vz) < Yy(z)™*

Examining the derivative of f one infers that f is increasing on the interval (0, e Yy] and

decreasing on [eﬁYO’, o). We first handle the case when Y; '(2) < eﬁYo’, then f is increasing
on the interval (0,Yy(2)™!]. Now we partition the sum in (2.36) as follows:

Z fFYo(v2)) Z Z f(YVo(v2))

id#£v€l o \['k n=1 id#v€lc\I'x

Yo(z)~ 1L Yo(z)~ 1
0B <yvy(yz)< & —

<3 (e (),

where

an(2, Yol2) ) = {ldmaoo\rK 2oL < vy < 0L

for every n € N*. Note that a,(z,Yy(z)™") is finite by Lemma 1.2.5. Let A, (z,Yy(2)™!) =
D icn<a @n(2, Yo(2) 1), then A.(z,Yy(2)™") < 2?Yy(2)? by Lemma 1.2.5, and by partial summa-

Yol2)”! M}



CEU eTD Collection

70 Automorphic forms

tion we obtain

ianzyo (3/0 1/n /f/y

n=1 0

Now we turn to the case when Yy(2)™! > ezT%YO’ so that Yj(vz) may be in the interval
(e217 Y, Yy(2)~]. There is an N € N such that M := Nez?Y] > Yy(z)~L, so we partition the
sum in (2.36) the following way:

> fM2) Z Y. f(2)

AT e\ e e\

n+1 <YO (’YZ) S n

<Zan =, M) f(M/n) —|—Zan 2, M) f(M/(n+1),

since f takes its maximum on every interval [M/(n + 1), M/n] at one of the endpoints. From
here we can continue as in the previous case and obtain that the elements different from the
identity contribute in (2.36) all together at most a constant times

[ an< g / (V2g0(00) = 29} (u) cosh (?) du

0

where we get the last estimate by a straightforward computation. First we estimate the second
term. Note that coshu < e* for any u > 0, hence
o0
/ —u?T?+3u du
0
o0

/ —2gp(u) cosh (%u) du</ 20 (u)e® du_
AT
= 64;2/<t+i e dt < T,

0 0
JT 2T

S\

where the implied constant is absolute. Turning to the first integral, we remark that the Fourier

transform gy of go is e~ 7*#/GT%) g0
cu —cu R 1c =
/go(u)(e +e )du = /go(u) = Qo (27‘(‘) =ear? K 1.
0 —o0o

Therefore, we have

log(Yi (= >/Y'>> LT

H(Zai/b/?}/{) <T Y()<Z)Yo/90 ( \/5 y!”
0
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Choosing y; = v} and yo = ¢ in (2.34) we infer

Zh e Pyiys K o3 2 L y) Ko (2 [la] y2)+

) <% + ir, m)

1
X y1y2Ki2T+27§ﬂ (27T |ll| yl)Ki.,;;ﬂ(zﬂ- ”2’ ’yQ) dr < T2 (y1y2 + _>
oge oge

2
X

- ™
h _
* Z / (T+2log5 " 210g5>

m=—o00 _°

Y1Yy2
As
. r r ri+r3
h(T177"2) = /go(ul)emul du1 /go(u ) irauz d’lLQ = ng ( ! > ng (—2> =e 1T22 >1
2w 21

once |rq], |ra] < T', we obtain

D 1 Pynkl | @m bl y) K, (2 [l y)+
o475 <7
+> /nqx( -FW?n) 192K i (27 1 9)I) (27 Lo o) dr
oge
meZ

1
< T? (y1y2 + —) ;

Y1Y2

% +ri+ 27{3;‘ < T holds. Note that

the implied constant depends on the field K.
To separate the coordinates we assume that 77 < T, T, < T and then the previous estimate

implies

> 6 Pyl @l KR, (2 bl )+

Do <m, <59 |1<Ty

+Z/¢(+w@

mEZ

ylyQK 71'7/m (27T Illl yl) r— ﬂiggg (27T |l2| y2) dr

Y1Y2

1
< T? (y1y2 + —) ;

%—i—i?“-}- mim | < T\ and

where for a fixed integer m we integrate over the r’s for whic Sloss

% < % +ir — 27{”” < T5 hold. Next we integrate on the square

|:ClT1 d1T1:| % |:C2T2 d2T2:|

] |l Lo 7 |l
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for some positive real constants ¢y, di, ¢z, dy w.r.t. the measure %2 %2.
195
a1 Ty daTo
l1] d o] d
(42 2 1 2
> KR [ K e D [ K erlhw s
, ) 2 2
%SlSSNISTL %S\SéﬂléTz Ty cTy
l1] 2]
d17i doTy
d 2]
ayr 2 Y2
( +ar m) / i i 27T \l1] y1)— K Jmim_ (27T |l2] y2) = dr
meZ 1
Uz\

d1 Ty doTy d1 Ty

1] ll2] 1] 9
T2 d?h d?/2 dy dyo T2 T ‘N( )’
< 3 3 <<61702,d1,d2 + 2 T2T2 .
1 2
[SHS coTy a1y caTy
[1] li2] [1] li2]

Substituting uy = 27 |l | yx for k = 1,2, the left hand side becomes

2wd1 Ty 2mdo T
; du du
2 2 1 2 2
> W [ R @5 [ K
87 —35 g 1
Ty ) ey T2 o) D S
S <y I<T, 2 <55 [<T 2me1Th 2meaTh
2md1Th 2wdaTo
E ’ 2 duy 9 dus
+ ¢l + ZT m K’LT’+ Tim (U/l) KiT— Tim (U/Q)_ d?”
2loge Ul 2loge U2
mez 2me1 Ty 2w Ts

Since in the first sum we have |s,(€j)| > It (k =1,2), we infer that

2nd Ty 2mdy Tk

duk duk
/K(J)luk‘_> Km;uk
2 U

2
2 Ty (J”/Z

holds if ¢, < 1/(87) . Also, for s,(r,m) = 3 +ir + (—1)’“427{(’;’; we have
2mdy Tk d 2mdy Ty d
2 Uk 2 Uk
Ksk(rym)*% (uk)u_k, > Ksk(nm)i%(ll/k)u—k.
2mer Ty ‘sk(rvm)|/2

As Ty, > |sk|, |sk(r,m)|, we have by Lemma 2.1.5 and by the estimate (2.13) on page 45 that
if dj, is big enough, then

O

—
~
e
g
[SIE
=
=
S—
Q.
|8
Il
= .
—
.
<
[SIE
=
)
Q.
£|8
|
—
.
m\»—x
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and an analogous statement holds with s (7, m) instead of sfcj ), Using this and also the condition
|sk|, |sk(r,m)| < Ty we conclude
( +r, m)

Z ’ (U )‘2 —( |s(])\+\s(])|

y j
T <))<y
k=1,2

2
o (s1(rm)+s2(rm) g (2.37)

meZ

T*IN(DF

T, T5T?
<< 142 + T1 T2 )

where the estimate holds once T', T7 and T5 are bounded from below by a positive constant and
T, T, < T We recall that the second sum and the integration is restricted to those m’s and r’s
for which & < |sx(r,m)| < T} holds, where

1 |
su(rym) = o +ir + (—1)F 1

2 2loge’

The estimate (2.37) is the one that will be needed in the next chapter, but we derive a
statement from this that resembles formula (8.27) in [11]|. Let us denote the left hand side above
by ¥(711,T3), then taking the integral (for a fixed m) over those r’s for which |sy(r,m)| < T

holds we obtain
gbl ( + mﬂ m) —m(s1(r,m)+s2(r,m)) dr

S Ry f e
|s(1j) |<T, |Séj) |<T MEZ
log,(2T) log, (2T) [logy(2T) ] |log,(2T) |
Z Z le, 2—k2T << Z Z 9= (k1tk2)pa + 2k1+k2N(l)2
k1=0 ko=0 k1=0 ko=0

< T*+TAN(1)*.
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Chapter 3

A generalization of the Selberg trace
formula

In this chapter we give a two dimensional version of the generalized Selberg trace formula
worked out in [1|. This was obtained by computing the integral

dx dy
Y2

TrK = /F K (2 2)u(2)

in two different ways ("geometrically" and "spectrally"). Here y~2 dx dy is the usual measure on
H, K(z,w) is an automorphic kernel function and w is a fixed automorphic form with respect to
a finite volume Fuchsian group I' with fundamental domain F' C H.

For the two dimensional trace formula we fix an automorphic form u that satisfies the growth
condition o(e*™*) for k = 1,2. Then by Theorem 2.1.2 and Proposition 2.1.6 it is in fact of
polynomial growth. Its eigenvalues are denoted by Ay = sx(1 — si), and we assume for simplicity
that % < Res, < 1 holds (k=1,2). If u is not a cusp form, then its zeroth Fourier coefficient is
Nyt ys? 4 dyi Slys 2 for some 1, ¢ € C and by Proposition 2.1.4 we have

(51, 59) = < N T, . mmu)’ (3.1)

° 2loge’”  2loge

for s = % and some m, € Z. The notations n, ¢, s and m, will be fixed throughout this
chapter. Further assumptions will be made on the function u in Section 3.2.

We also fix an automorphic kernel function defined in (2.22). To this end we have to choose
a function v € C°°(R?) and from now on it will be assumed to be compactly supported. We
will evaluate the integral

TruK—/FK(z,z)u(z) du(z)

in two different ways. As to that, we have to be careful here since this integral does not
necessarily converge. Therefore, instead of this we work with the expression

T K = i K(z,2)u(z) du(z), (3.2)

where

Fi={z€F: Yo(z) < A}
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for any A > 0. That is, we remove the part that is "close to the cusp oco" from the fundamental
domain of I'g.

Most of the methods in this chapter are generalizations of the ones used in [1] and [5]. But
the main arc of our argument is in fact very common. The so-called geometric trace is obtained
by the evaluation of (3.2) by partitioning ' into conjugacy classes which results in integrals
over fundamental domains of centralizers whose structures are convenient for computations.
After that, we make use of the spectral theorem to obtain a different evaluation of the trace and
infer the trace formula by comparing the two results.

The trace formula is given in Theorem 3.3.1 that clearly resembles Theorem 1 in [1|. Among
others the Hecke L-functions appears in the result (in fact on both sides: as the contribution of
the totally parabolic classes on the geometric side and in the zeroth coefficient of the Eisenstein
series on the spectral side) in the same way as the zeta function does in the one dimensional
case.

3.1 The geometric trace

In the following we compute Ter by partitioning ' into conjugacy classes. For an element
v € I'k we denote the conjugacy class of v by {v}. This way we get

TrAK = Z Z k(z,02)u(z) du(z).

(7} oefyy /4

where [ is the fundamental domain of I'j.
The conjugacy class of the identity element consists only of itself, and the term that belongs
to it is a constant multiple of the integral

/FA u(z) du(z).

This integral converges as A — oo and the limit is zero since the Laplacians are symmetric
operators and the eigenvalues of 1 and u are different.

From now on we assume that v € ' is not the identity. Since oy 'yo, = o5 'voy if and only
if o0, € C(7), where C(v) is the centralizer of +, this is equivalent to oy € C(v)o; and we
get that

T3 = Uezh} /FA k(z,02)u(z)du(z) = UGC%\FK /FA k(z, 0 'yo2)u(z) du(z).

As k(oz, ow) = k(z,w) for every o € PSL(2,R)? and u is invariant under the action of I'g, this
last sum is

Z /FA k(oz,yoz)u(oz) du(z) = / k(z,v2)u(z) du(z),

ceC(y)\I' C(y\Ha

where Hy = U, er, Fa. Now for every o € PSL(2,R)? this is

/ k(oz,voz)u(oz) du(z) = / k(z, 0™ voz)uloz) du(2)
o HC(V\Ha) (e71C(Mo)\o™tHa
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since the measure p and the function k are PSL(2,R)*invariant. So far this holds for every
id # v € I'k. If v is totally elliptic, totally hyperbolic or a mixed element then T, = lims_,o T ;‘
exists and

r,- | Kz, 0~ 02)u(02) dp(2) (3.3)
(07 1C(v)0)\H2

holds. The existence of the limit follows easily from the absolute convergence of the final results
of the next three sections which justifies the correctness of the prior computations. Note that
(07'C(v)o) \ H? is nothing else but the fundamental domain of the group o~ *C(7)o. We proceed
by calculating T;‘ or in the three cases mentioned above the limit 7.

3.1.1 Contribution of totally elliptic elements

Let v € T' be a totally elliptic element with the elliptic fixed point z, € H?. Then the
centraizer C(7y) consists of the elements in I'x which fix the point z, (see [14], p. 37) and the
stabilizer I',. of z, in I'k is a finite cyclic group (see Remark 2.14 in [6]). Let us denote by m,
the order of C(7). Every elliptic element in PSL(2,R) is conjugate to an element of the form

cosf sind
. , hence the generator vy of C'(y) can be chosen so that
—sinf cosf
T T kot ko
cos —  sin — cos —  sin —
;o s M.y s s
Y0~ Y = LT ™ ) kot kot )
— &ip — 2 . R2 2
gl My s My

where the sign ~ means that the two elements are conjugate by an element ¢ € PSL(2,R)? and
ko € Z with ged(ka, m,) = 1. Let us write v/ = ¢~ 'yp. To compute T, we give the fundamental
domain Fe(,y of C(7) = (7)) < 0 'T'ko. Since the first coordinate of ~{ is a rotation around
the point ¢ € H by the angle 2w/m., every C(v')-orbit has exactly one point in the set Fj x H,
where Fy C H is a sector enclosed by two half-lines with endpoint ¢ and angle 27/m.,. Note
that in fact both coordinates are rotations around ¢ which means that o takes the point (i,4) to
the fixed point of 7, namely z,. Now by (3.3) we have

7= [ ke dut) = - [ Kyl due),

ot My

where we used the P.S L(2 R)?-invariance of the function k and the measure p, the I'g-invariance
of u and that 7/ and ~{ commute. As z = (21, 22) one can write

ket dute) = [ [ ker2uten duz) dut), (3.4)

where pi(z;) denotes the measure y,fdxk dyi. In the inner integral above the coordinate 25 is
fixed. Then the function u(pz) is a function of z; and it is the eigenfunction of the Laplace
operator A; (because the operator commutes with the group action), furthermore, the value of
k(z,7'z) depends only on the hyperbolic distance of z; and 7/ z;. To simplify the notation
later we now write u(0z) = u,,(21) and k(z,w) = k., w, (21, w1). Furthermore, as 7' is fixed we
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can simply write k(z,7'2) = k.,(z1,7 1 2). With this notation the inner integral is

7., = [ by 2ulez) i) = [ Feory e, 1) i)
H H
For an o € R we introduce the notation

(3.5)

cosa sino
—sina cosa |’

R(a) = [

moreover, for a vector ¢ = (p1,2) € R? we define R(¢) = (R(p1), R(p2)) € PSL(2,R)%.
Then the elements of C'(7') are of the form R(p) and similarly v = R(0) for some 0 = (6,,65)
where 65, € [0, 7). Since 7' € C(v') we have in fact ; = lym/m, for some integer 0 < I}, < m,
(k =1,2). Note that all the elements R(p) have the same fixed point, namely (7,4), and hence
they commute with each other (see [14], p. 36). It follows from this that € is determined by -,
i.e. it is independent of the choice of ¢ (at least if both coordinates are in the interval [0, 7)).

Indeed, if p~'yv0 = R(0) and 0~ 'yo = R(6') then
(07'0)'R()(¢ ') = 0 '0R(0)0 "o = o'y = R(¥),

so R(#) and R(') are conjugate. But then o~'o fixes the point (4,7) and hence it is of the form
R(p) and commutes with R(#). Consequently R(#) = R(¢') and then 6 = ¢'. From now on we
write 0(7*)) instead of §; and () = (6(v),0(+?))) instead of 6.

Next we use geodesic polar coordinates (see [11], section 1.3), i.e. we make the substitution
z1 = R(p1)e i where r; € (0,00) is the hyperbolic distance of i and z; and ¢; € [0, 7). Then

we have
du(z1) = (2sinhry) dry dey

and the integral above is
T, :/ / k., (R(01)e i, RO(YW))R(p1)e ™) uzy (R e ™4)2 sinh 1y deydry.
o Jo

As the elements R(6(y(V)) and R(p;) commute and k., depends only on the hyperbolic distance
of the variables we get that

7= [ e mOGO) ) ([ oalBene i) o) s dn
0 0
We recall that

kz2,w2 (Zh wl) - ¢ (p<217 w1>7 p(Z27 w2)) = ¢22,w2(p(217 wl))a

where )
(zg, wy) = —‘Zk — Wil
P2 W) = T 2 Im wy,

for kK =1,2. One gets by a computation that

|22 + 1[* sin? 0(®)
= 2
Yk

p(zr, RO(Y™M)) 21,
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where z, = x; + iy, and then

|—e~2rk 4 1|% sin® (v %))

o = (2sinh )% sin? (™).
e T

ple™" i, R(O(y™))e i) =

This gives that

T, = /OO Y., ((2sinh )2 sin? A(y D)) (/” Uz, (R(p1)e” i) d@l) (2sinhrq) dry,
0 0

where 9, is just an abbreviation for ¢, _/2),,. Let us define

Goplm) = / "t (Rlgr)21) din,

™

By Lemma 1.10 in [11] the value of G,, depends only on the hyperbolic distance of z; and 1.
Moreover, G, is the eigenfunction of the operator A; with eigenvalue A\, where \; is the first
coordinate of the eigenvalue vector of u. Now by Lemma 1.12 of [11] this function is unique up
to a constant factor. Furthermore

0°> coshr; O 1 0?

A= — 4+ — -~ -
"7 0r2 " sinhr Or;  4sinh?r, 02

so with the notation G,,(z1) = G, (11, p1) we have

0? coshry O
G—T%Gm (r1, 1) + . 8_7"1G22 (r1,01) = MG, (11, 01).

Let gy, (r) : [0,00) — C be the unique solution of the differential equation

OSDT 1) = Aug(r) (3.6)

g"(r) +

sinh r
satisfying the initial condition ¢g(0) = 1, then
G(21) = g (r)uz, (i) = gxl(Tl)U(Q(l)ia 9(2)22)-

That is,
T., = 2mu(oWi, 0 2,) / Y., ((2sinh 1) sin? 0(y V) ga, (1) sinh ry dry.
0
Substituting this in (3.4) and interchanging the integrals we get

2 o
T, = i/ T, gx, (r1) sinhry dr,
0

My

where
1, :/¢((231nh7"1)231r12 9(7(1)>70(22771(2)22))U(Q(1)i,Q(Q)Zz)d,“(Zz)-
H
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Evaluating 7;, the same way as above we get that

7= B0 [ [ 0(s,660), 502062 <H 9Ak<m>smhrk> dndrs

m
k=1,2

where S(r,0) = (2sinh7)?sin?§. Finally we recall that by Theorem 1.3.4 the contribution of
the elliptic conjugacy classes in the formula is a finite sum of 77,’s.

3.1.2 Contribution of totally hyperbolic elements

Let v € T'x be a totally hyperbolic element. Then by Theorem 1.5.7 in [5] the centralizer
C(7) of v is a free abelian group of rank 2. The element v is conjugate in PSL(2,R)? to an
element of the form

(1 s o)

where N(7®) > 1. Note that N(y®) is called the norm of v*) and it is determined uniquely
by 7*) since if

1 | a 0 _1 . b 0
o Tao = {0 a‘l} and 0 ap= {0 b—l}
hold for some elements in PSL(2,R) and a,b > 1 is true as well, then

el [ § 2 |l =l = o 2

so for some real numbers x,y, z, w we have

[x y]{a 0]_{(& aly]_i[b O}lx y}_i{bx by}
z w 0 at | | az alw| 0 bt z ow | bz vlw |
If the equation holds with negative sign, then x = y = 2z = w = 0, and this is impossible. Hence
we have positive sign above, and if  # 0 then a = b. Otherwise z # 0 and then a = b~! which
is also impossible since a, b > 1.

If v = 0770, then the centralizer C'(v) < o 'T'xo is 07 'C(7)0 and it is generated by the

elements v; = g 17,0 for i = 1,2 where ; and 7 are the generators of C(7). As the ~,’s have
the same fixed points as ~ this is true also for the conjugates and therefore

N0 N2 o
v, = 7 , ?
0 N 0 N

for : = 1,2. Note that N(%-(l)) > 1 can be reached by changing the generator to its inverse if

necessary (but then N (’y-@)) > 1 may not be assured).

1
For every z = (z1, z2) we have

Vi(k)zk’ = N(%(k)) |zi|, arg VZ-(k)Zk = arg 2,

and from this one easily gets the following
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Proposition 3.1.1. The fundamental domain Fo(,) = Fy-10(4), for the group C(v) = 07'C(7)o
s given by
(log |z1|,log |22|) € Py, (arg z1, arg z5) € (0, ),

where
P, = {s(log N(7{"),1log N(4{?)) + t(log N(v{"),log N(+{)) : 0 < s,¢ < 1} C R%.

Now from (3.3) we have

T, = /FC(V) k(z,vz)u(oz) du(z).

We change to polar coordinates, i.e. make the substitution z, = rye’™/?t%) where 7, € (0, 00)
and ¥y, € (=%, %) (k= 1,2). We obtain by a computation that

N(*) + N(y®)~t -2
cos? Uy,

(2, v W zy) =

)

and since

dl’kdyk . d’f’kdﬁk
Y2 rpcos?dy

the integral T, is

/ /2¢ NAHW)+ Ny =2 N(y®) + N(y?) ™ = 2\ F(e' ) e(aH72) 4y, did,
cos? ¥4 ’ cos2 Y cos2 91 cos? ¥y

dTl d?”g

rire

F(z) = / u(0M(r121), 0% (r22,))

(logr1,log r2)EPy

for any z € H2.

Lemma 3.1.2. The function F defined in (3.7) is invariant under coordinate-wise scalar
multiplication, i.e. F(Ryz1, Razo) = F(z1,29) for every Ry, Ry € (0,00) and z1, 2o € H.

Proof. By the definition of the function F' we have
dr 1 d?”g

rre

F(Ryz1, Rozo) = / w(oW (11 Riz1), 0P (raRozs))

(logr1,logra)€P,

d?”l d?“g

rire

_ / u(oM(r121), 0@ (r222))

(logr1,log r2)€ Py +(log R1,log Ra)

We can divide the parallelogram P, + (log Ry,log R») into at most four disjoint parts such
that each part is entirely contained in a parallelogram of the form P, + kn; 4+ mn,, where
n; = (log N(yi(l))?log N(y»@))) (¢ =1,2) and k,m € Z, i.e. in a translated image of P, by a
lattice point of the lattice generated by n, and n,. Since u is invariant under the action of I'k,
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it follows that

u(oviz) = u(o(o™'v;0)2) = u(02)
for ¢ = 1,2. Using this equality one can translate back the above mentioned parts into P, in the
last integral by the same type of substitutions that we did above. Then the translated parts
make up P, and the assertion follows. O

Using the notation zj, = rpe’(2t%) (k = 1,2), the previous lemma gives that I’ depends only
on the vector (¥1,73). Since u is the eigenfunction of A, with eigenvalues A, and this operator
commutes with the group action, we infer that F'(z) is also an eigenfunction of the Laplacians
with the same eigenvalues. As

0? 0 5 07 )

Ay, = (1 cos ¥y)? <82—|—7’,C (97“k+ k 55

we obtain the differential equations

222 (’1917192) Ak (’1917192) (ﬁk S (—71'/2,71'/2), k= 1,2) (38)

cosZ 9y,
Let fy,(¢) be the unique solution of the differential equation

Ak

F"(9) =
(9) cos?

FO9) (e (—n/2,1/2)) (3.9)

with the initial condition fy, (0) =1 and f3 (0) = 0, and fr, () the one with fy, (0) = 0 and
ff\k(O) = 1. Note that f), (—) satisfies (3.9) and the initial conditions of fy, () and hence they

agree, i.e. f), is an even function. Similarly, f), is an odd function.

Now by (3.8)
OF

0, —(0,92) fr, (¥1)

F(7.91,192) = F<07192>f/\1 (19 )

holds for every fixed v5, and using the notation

NOW) + N(D)t =2 N(y®?) + N(®) ! - 2)

cos? 14 ’ cos? ¥y

Yo (01, 02) =9 (

we get that

dv,  dvs
cos? 9, cos? ¥y

T, _//% (91, 0,) (F(O,ﬁg)fxl(ﬁl) gi(() ﬁz)fxl(i%))

w\:i
m\=|

[VIE]

dv,  dis
cos2 1 cos2 Uy

/ / (91, 02) F (0, 02) i (1) —

w\:l
1\)\#

because 1, (-, ¥2) and cos™? are even and hence 1, (-, ¥5) cos™? fx, is an odd function. Similarly,

OF

F(OaﬁQ) = F<O7O)f/\2(192) 8192<

0,0) fr, (¥5)
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and using also that f), is an even function we have

jus
2

T, = F(0,0) / / U (91, 02) fas (01) g (02)

_ T

2 2

d¥y d¥s
cos2 Yy cos2 ¥y’

where dr d
F(0,0) = / (oM (r), 0 (ryi)) 22,

rire

(logr1,logra)€P,
Note that since ¥ has compact support and

N(*) + N(y¥) =t -2
cosZ 9,

> N(y®) + N(yW) ™ —2 = |tr [y®]] — 2

for k = 1,2, we get T, = 0 once ), := ’tr [’y(k)H is big enough for some k. But ¢, € Ok and
ty =t} so there are only finitely many possible pairs (¢1,t2) for which 7', # 0. Moreover, for
every t; € Ok there are only finitely many totally hyperbolic conjugacy classes with trace t;
(see [5], Proposition 1.7.1 and the paragraph after Definition 1.7.2) and hence 7', = 0 for all but
finitely many classes.

3.1.3 Contribution of mixed elements

For a mixed element we can apply the methods of the previous two sections and most of
the computations will be omitted. Let v € I'x be a mixed element, without loss of generality
we may assume that its first coordinate is hyperbolic and the second one is elliptic. Then by
Theorem 1.5.7 of [5] the centralizer C(7) of 7y is a free abelian group of rank 1 generated by an
element 7y, of the same type (since the fixed points of 7 and 7y are the same) and hence for
some o € PSL(2,R)? we have

R (A N B i Yl

and

—sin0(y”) cosO(7”)

()2 cos O(75? sin 0(7?
%Zzg_lmzqwm DERE( ” s0(5”) 9%)])7

and the centralizer of 7' in ¢ 'T'k0 is 07 1C(7)o.
Now we determine the fundamental domain of o= *C(7)o. If z € H?2, then

%z = (N(3§) 21, ROOGED)) 22),

where R(6y) € PSL(2,R) is defined in (3.5). Since 7, is the generator of o~'C(7)g it follows
immediately that the fundamental domain of this group is

Fyroie = {z € B2« log|| € [0,log N(+{"))}.
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So then
= [ Merpueddu = [ [ ket dut) duta).
Fo1o0e log|21|€[0log N (")) H

Like in Section 3.1.1 we get that this is

27r/ / Y(p(z1, 7/(1)21), S(ry, 9(7(2))))u(g(1)21, Q(Q)i> dp(z1) ga,(re) sinhrg drs.

O log|z1|€[0.1og N(vs)
where S(r,0) = (2sinhr)?sin? 6 and gy, (r) : [0,00) — C is the unique solution of the differential

equation (3.6) satisfying the initial condition g(0) = 1.
From here we can continue as in the previous section to obtain that 7 is

Nv

d
/ Tli (2 2)2
r1
1

//,[p (1) ,19 ( 9(7(2)))>M‘q}\2 (TZ) sinh r dr2,

cos?

where
N(D) + N(W)™t =2

cos?

Y

N(’y(l)a "91) -

and fy, (V) : (=F,%) — C is the unique solution of the differential equation (3.9) satisfying
1A ( ) = 0. Finally, as in the previous section one can see that 7, # 0 holds for

only finitely many mixed classes.

3.1.4 Contribution of hyperbolic-parabolic elements

We continue with the identification of the hyperbolic-parabolic conjugacy classes. Every
element of this type is conjugate in I'x to an element of the form

em  «
Ve = [ 0 e } , (3.10)

where m € Z \ {0} and a € O. If two such elements v, , and 7, 3 are conjugate in 'k, then

. b
there exists an element (2 d € I'k such that

[ e™  « a b| |a b e p
0 a_m}[c d]_[c d][o 5_”}’

that is

[ ema+ac e™bt+ad | [ as® aB+be"
e M e~™md | g™ B +de™
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The equations e ™c¢ = ce™ and €™a + ac = ae™ give that if ¢ = 0, then m = n, while if ¢ #£ 0,
then n = —m.

Next we show that for every m € Z \ {0}, oo € Ok the element ~,, , is conjugate to a y_,, g
for some 3 € Ok. Suppose that 77, 47" = v_us. If ¢ is the real fixed point of 7, o, then the
conjugate fixes 7oo and also 7¢, so one of these two points must be co. Now if 700 = 0o, then

T = [ 8 2 } , which is impossible since then the conjugate would be of the form ~,, s (as we

have seen in the previous paragraph). It follows that 7 takes g to co. This point can be written
explicitly:
q+ « -«

e—m em _ g—m '

b

d } € ', that takes

The group I' acts transitively on K U {oco}, so there is a 7 = [ Z

—
em _g—m

to oo and then

d— cx

em _ g—m :
Moreover, the determinant of the matrix is 1, i.e.

aco

—— —bc=1,
Em _ g—m
and from this we infer
gm —eg™m™m «
CcC = 5 d = .
ac — b(em — eg=m) ace — b(em — e=m)

These two numbers are coprime in Ok and hence A= aa — b(e™ — ¢~™) is the generator of the
ideal (¢™ — ™™ «) so it is determined up to a unit factor. This means that the positive integer
N(A)? is independent of the choice of 7. As 77,47 ! fixes the point co it must be of the form
n,p for some n € Z\ {0} and § € Ok. We have already seen that n = £m holds in this case

and since ¢ # 0 we must have in fact n = —m. But T’ymaT_l fixes also the point 700 = Emiﬁ_m
and hence
-1 g~ m CLA
TYm,aT — = 0 gm |-

Now assume that the elements v,, , and 7,, 3 are conjugate to each other. Then for some
l€Z and a € Ok

that is,
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This means that 3 is congruent to e ?a for some | € Z modulo €™ — e~™. On the other hand,
choosing an appropriate a and [ and conjugating by v;, we get that v,, , is conjugate to v, g
for any element 3 of the cosets of the principal ideal (€™ — ¢~™) represented by a number 2«
for some [ € Z. The number of these cosets is finite (in fact at most |[N(e™ — e~ ™)|) and we
can summarize all this in the following statement:

Proposition 3.1.3. FEvery hyperbolic-parabolic element is conjugate in I'i to an element of the
form Ym.o for some m € Nt and o € Og. Moreover, for a fired m € NT, the number of the
conjugacy classes represented by an element vy, o s finite.

We also have the following result (see §20 in [14]):

Proposition 3.1.4. The centralizer C(Yy.o) of the element vy, o is a cyclic group generated by
an element

k_—k
%(m a) ="k = e’ Otfm_;m
’ 0 gk ’

where k € 7\ {0}.

One can prove by induction that 7 = 7, for any n € Z. As 7, is in the centralizer, we
have that v, o = Vi = Yk for some n € Z which means that nk = m, i.e. k| m. If follows that

k can be chosen as the smallest positive divisor of m for which a(a—k) is an algebraic integer.
We now describe a fundamental domain Fgy,, ,,) of the Centrahzer C(Yaym) = (k). Let Cj
denote the cyclic group generated by

Pk = [ gg éEk ] . (3.11)

We fix the notation £ = E,, = ¢™ — e~ ™. Then C(yam) = 0 'Cro where 0 = [ é

— e
| IS |

(because 7, = 0 'pro) and hence if Fg, is a fundamental domain for Cj, then

_ a o
Fo(yam =0 'Fo, = Fo, — (E E)

is a fundamental domain for C(7a.m).

As in the case of the totally hyperbolic elements we use polar coordinates. That is, for a
point z = (21, 22) € H? we write z; = r;(sin?; + i - cosv;) where r; € RT and -5 <9; < %
( =1,2). Now the fundamental domain Fp, is given by

m m
—§§’1917192<§, 1§7’1<€2k, T2€R+.

We consider the integral

Tf = Z / (2, Ym.a2)u(z) du(z). (3.12)

c€C(Ym,a)

The union of the sets 0 F4 above makes up the fundamental domain of the centralizer C(7V,, )
except for the images of the part F'\ F4 =: F. For some cosets it is unnecessary to omit the
images of F7;. To see this we separate the cosets in the sum that contain elements that take the
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point oo to a fixed point of v, . Note that in this case coo is the same for every element o of
the coset. If o leaves oo fixed, then the part o F; is the same as

{z € Fo(y,n): 07 '2 € F, Yo(o7'2) > A}.

But as 0oo = oo, the values Yy(0712) and Yj(2) are the same.
If ooo = g, then

2 €0l <z € Fopy, ), 0 '2EF, Yy(07'2) > A (3.13)
As 07! takes g to oo it is of the form { g 2 } and then
A A

B N(A2)Y,(z
}/0(0_ lz): (2) 0() -,
|E21+C¥| |E/ZQ—|—O/|

hence Yy(07'2) is the same for every o wich takes oo to ¢. So we can fix an element 77! with
this condition and write the last inequality in (3.13) in the form Yy(72) > A.

Before we turn to the remaining cosets we compute the value (2, y,,2). Substituting the
definitions we get

W @ |
k( ) w 21 — Ym,aR1 29 — TYm,aR2
2y Ym,a”) = s
Y1(2)y1 (Yma2)” Y2(2)y2(Ym,a2)
2
m /mz +0(/
N = -
= 2y ()2 0 ()2 (2)?
2 2
:’17/} ’EZl +2CL" ,’E,22+20/| :¢((EQ?1‘;05)2+E2’ (E’;L‘2—2|-O/)2+E2)
yi(2) y2(2) 1 Y2
_ 21 — Q|2 |22 — q’|2
E=yt T By
using that ¢ = —a/E and E? = (E')? (since ¢/ = +¢7'). Now assume that o is from a coset

such that ooo # oo, q. Writing o = l CCL Z } with ¢ # 0 we have

Y
YE)(O'Z) = 20(Z> 29
lczy +d|” [ z0 + |
and then
2 712 4 ak

_ — FE 2
|0_'Zl ql” IG_Zz ¢ _ .’0<1>Zl+3 oz + =
E=2y1(02)* E-%yy(02)?  Yy(02)? L Ef
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2
a'zo+b0 o

Czy+d £

E4
"~ Yo(oz2)?

az1 + b al?
cz1+d FE

- E* ' (Ea + ac)?y? . (E'd' 4+ o'd)?y3
Z V0P Blen 1 dP | P |om it dP

N(FEa + ac)?Yy(2)?
Yo(02)? ez +d|” | z0 + |

= N(Ea+ ac)? |cz +d|* |[d 2z + d|

> N(Ea + ac)*N(c)*Yy(2)%

The numbers N(c)? and N(Ea + ac)? are positive integers since 0oo # 00, q. From this we see
that if Y5(2) is big enough, then

y o —gl* oz —q" | _
E=2y(02)?” E—2y,(02)?
as 1 has compact support. It follows that for a big enough A we can write o F instead of o Fy
on the right hand side of (3.12) once ooo # o0, q. Hence we have to integrate over

Sa=1{2€ Foyna) @ Yo(z) < Aand Yy(rz) < A}

First we make the substitutions x; — 1 — «/F and x9 — x5 — o/ /E’ to get
| keazute) dntz) -
Sa

_ / y <(Ex1 ;r a)? P (E'zs ;r )2 ) EQ) u(2>dx1 dx; d2y1 dyo
Sa Y2 Y1Y2

1

)

_/ ¥ (EQ(x%WLy%) E?(3 +y§)) " (21 o« Oé') dxy dzy dyy dys
/ E
SA

) = 2o — —
Y3 Y3 E yiys

where

a o a o a o
s fee et () 0 (s (55)) <20 (- (55))) =)
N(A)?
Z{ZGFCki?thA,Lyly;SA}-
E4 |z 2|

As y1y2 = 7179 cos ¥y cos s the conditions above can be written in the following form:

N(A)? cos ¥4 cos ¢ A
Ay 010, 7= (4) - 2 <py S A2 :
o E*Ary r1 cos U cos Us
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drd dr dv
Since Ty @ , after changing variables we get that
y? r cos2 v
w/2 w2 ) )
E E dvy dvy
T4 = k d = I,(A 0y, 0y)—— L1772
5 /SA (z,v2)u(z) du(z) / / (0 <COSQ T o 192) (A, ¥, 2)0082 9o I,
—7/2 —7/2
where

e2k Ar1,91,92

"N\ drq dr
(A i(3+01) _ i(5+92) _ @) 42 dn
U 02) = / / (“6 ol E') ry

Ary 91,94

Note that if |m| is big then so is E? = (¢™ — &~™)? and hence

E? E?
(0 T =0.
cos? 1y cos? 1,

It follows that the sum over the hyperbolic-parabolic conjugacy classes is in fact finite.
We divide I,,(A, 1,12) into two parts:

2k Ar1,91,92

!
Ty O izgeyy O\ dradr
/ / (Tle £ ’ E’> re T1

Ary 01,99

62k AT1,191,192

/
si0) _ & i(meey _ O dradry
/ / (7‘16 E,T‘QG E’) P .

Ary 01,99

Since u is invariant under the action of I'x the second part equals

/
i(5+9 a e a dry dry
/ / ( Tle(Q 1)__E) 77—, <T26(2 2) __El)) T_Q,r_l‘

71 91,99
As a4 1 M
az — % az — %
SIS S M
where L = % and M = % (b - %) = 22 we get after the substitutions ry — and Ty b -
that the latter double integral is
1 AT‘1,’191,192 d d
/ / u(=Mrie" T 4 L, —M'rye’a%) 4 1)) — rdn
e M

e—2k 1
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1 Arl ;91,99

/
= / / U (7‘ [T(rlei(g_ﬁl)) — %} T {T(me"(g_ﬁ?)) — %}) dry dry
e T

e—2k 1

1 Ar 9,0,

- o - o'\ dry dr
= / / u (T(he%ﬁl)) - E,T(rze’(fﬁ”) - E) T—;T—;,
e—2k 1

where T is the transformation { 1 _01 } and

i B'A

rid1dz riN(A)2 cos ¥y cos g
Let us define

Ui(z) =u(zy —a/E,zg —d'/E") (3.14)

and
Us(z)=u(—-Mz+ L, —M'2+ L") = Uy(T=z). (3.15)

With this notation we have

£2k Ar1.91.92

- . drs d
Iu(A, 91, 32) :/ / U1(7’1€l(5+191),7“261(5“92))22
11

ro T

1 Arlﬂhﬂb
+/ / Uy(ryeiG=1) pyeilG=i2)y dr2 dr

e—2k 1

T2 7“1'

Note that if w is a cusp form, then u(z) = O(y;%) by Proposition 2.1.6 once y, — oo and ¥ is
bounded from below. Hence in this case the integrals above converge (note that cosd; > 6 >0
for j = 1,2 since 9 has compact support).

Now we handle the case when u is not a cusp form. We are going to subtract the main terms
of Uy and U, to get convergent integrals. By main term we mean the zeroth coefficient of the
Fourier series. Recall that the zeroth coefficient u is ny'ys? + ¢y *'ys %2 where 7, ¢ € C and
at least one of them is non-zero. Also, by (3.1) we have

MMy, MMy,
(51,52) = ( + S >

N 2loge’”  2loge

for some s € C and m,, € Z. Hence by Proposition 2.1.6 the function
Ui(2) = Ur(2) = (ny'95° + o "y ) = Ui(2) —ma(2) (3.16)
is O(y5 %°*?) as yo — 0o and y; is bounded from below. Similarly, the main term of Us(z) is

|N(A)|2(1_S) A_mu<A2) 1—s1 1—s92

[N (D) A, (A?)
‘E‘4(1,s) U 2 )

|E|4s

Y'Yy + ¢

me(z) =



CEU eTD Collection

3.1 The geometric trace 91

where A\, (a)= |a/o/|2ls< for any o € K* and m € Z. It is a so-called Gréssencharacter that
will occur again in the next section. Hence

Us(2) = Uy(2) — ma(2) (3.17)
is also O(y, ) as y, — oo and ¥, is bounded from below. Note that the numbers Ai,,, (A?)
and N(A)? depend only on the ideal (A).
We write
L,(A,01,0,) = 1,(A, 01,05) + I3(A, 01, 0),
where

€2k AT1 ;91,99

= (T . d d
B = [ [ T nets pet) 200
1 1

ro T

1 Ary 9.0,

+/ / T (G, 1y G-92)

o2k 1

dry dry
ro T

and

EQk AT1 , 91,99

- o dro d
]3(A7191=192):/ / m1(7’161(5+§1),Tge“fﬂﬁ))ﬂﬂ
1

ro M

1 Ary 9.0,

. - dry dr
+/ / (150 i3 =02y T2 0T
To T1
e—2k 1

By the estimates on U, (z) and Uj(z) the function I}(A,;,1,) converges as A — oo and hence
we can write Il (A, 91,9) = I7(91,9) + o(1) where

g2k o
TT - . d d
13(191,192) = //U1 (Tlez(§+ﬁ1),r2€z(§+ﬁ2)) ﬂﬂ
Te T
1 1
1 oo d d
i / /U2 (rie (G0, pyei(E—02)) 22800 (3.18)
Ty T1

e—2k 1
We continue with the calculation of the term I2(A,¥1,92). The first term is

EQk AT1,191,192
d?“g dTl

/ / n(ry cos V1) (ry cos ¥g)%2 + ¢(r1 cos ¥1) 1 (ry cos g T2 —=— =
11

ro T
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&2k 7 AT1.91.92

= n(cosv)**(cos 192)52/ / r2 Vdry | 5 dry
1 1

o2k 7 AT1.91.92

+ ¢(cos 1) (cos ¥y ) 2 / / 5 %2 dry | vy dry.

1 1
We compute the first inner integral on the right hand side:

Ar1,191,192

. 1 ! A%
e Lipy = — [(Ar1,191,192)82 _ 1} =— | -1,
So Sy | r?(cos vy cos )2
1
and hence

g2k 7 AT1:01,02 e2* e’

_ — ]' AS2 o2 B

r2 Ndry | T dry = — riv ey — [ Ty
sy | (cos vy cos )2

1 1 1 !

But once s; # sy we have that

2k

1
/ril—sg—l Ch’l _ (€2k(51—52) _ 1) =0

S1 — S2

1

by (3.1), that is,

2k AT1:91,92

1— 2ks1 1 — k " 2ks
/ / rgrl drsy rf“l dry = c = sg(kmu)e .

2.2
5189 S2+ m2m?2
1 1 4log’ e

Similarly,

AT1,91,92

/ Ty 2 dry = [(ArPnozyimse 1] = { - - 1} :
1— sy 1 — 55 [r{ % (cos ¥y costdy)l—*2

1

&2k 7 ArT1.91.92 &2k &2k
1 A1—82
—s9 —51 so2—s1—1 —s1
ry 2dre | vy dry = ] dri — [ r{7tdr
/ / 1 — s9 | (cos ¥y costy)l—*2
1 1 1 1

Again, if s; # sg, then

SQk

[rietan = e 1 —o,

S2 — 51
1
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&2k 7 AT1,91.92

1 — 2k(1—s1) 1 — k N 2k(1—s)
[ ] i) rmman - L= 1 syl )
(I =s1)(1 = s2) (1—s)2+

4log? e

On the other hand, if s; = sy = s, then

o2k £2k g2k

—s51—1 —s2—1 —
/rfz =V dry :/TTI CThdn :/7"110““1 = 2kloge.
1 1 1

Summarizing all this we get

e2k AT1,91,92

1 1

ro M

As Alfs
= 05,=s,=s52k log € {ns + Qi — }

N n(cos 1)t (cos ¥2)%2(1 — sg(km,,)e?**)

52 + m2m?

, Bloos i)' (c0s ) =2 (1 = s, )=+ )

2,72
(1= 8)* + o

Now we turn to the second double integral in I2(A, ¥, Js):

1 Arp9q,99

[T et oo

—2k

d’l"gd’l"l
T2 7"1'

3

Substituting the definition of my one gets

1 Ary 91,99

(cosﬁl)sl(cosﬁg)”/ / rgrldm rflfldrl—i-

e—2k 1

N[N (A)[* A, (A?)
E4s

1 Arl,’&l,’ﬂz

(cos 1) 5 (cos ) 152 / / ry 2 dry | ri* dry.

e—2k 1

S IN(A)PP" ™ A, (A2)
|E|4(lfs)

As before, we have

Ary 91,99

E|**2 A
7,;2*1 dry = — - |25| 1
S2 | 12 [N (A)|7 (cos ¥y cos ¥q)%2

—_
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and

AT17791492

—S52 —
ry 2 dry =

I B0 a1 ) 1]

J 1— sy [ri” ]N(A)]2(1_82) (cos ¥ cosg) 152

This gives the same way as before that the term that depends on A is

¢A175
1—3]‘

AS
Sormopms 2k log e ["S +

The constant term comes from

I 1 sg(km,)e 2k — 1

—— rrl dr = — (67— 1) =
S L L e o
and
1 1 1 k " —2k(1-s) _ 1
o / T1_51 d?“l _ (5_2k(1_81) . 1) _ Sg( m )5 _
L =59 Je-on (I =s1)(1 = s2) (1) + fiogs
We summarizing this in the following
Lemma 3.1.5. If u is not a cusp form, then
: i
1 (A, 91,0) = 0, 4k logs St NCy 01,958, mMy) + ¢C 9, 9, (1 — 5, —my,),
where
Cyy9,.95(8,my) = (cos 1) (cos ¥s)*2C, (s, my,),
1— M. W) — k " QkS_M u —2ks
Co(s,ma) = Cy . (,m0) = ( 5 (5, mu) — sg( 2m )ﬂ(;Q 5 (8,my)e ))7
s°+ 410g1;
and

[N (A" A, (A2)

M'Y(s7mu) = |E|4S

Notice that if u is a cusp form, then U; = U; and we have

Proposition 3.1.6. If u is a cusp form, then

w/2 w/2
E? E? - - dd; di
TA _ F W(Z+91) Li(5+92) 1 2 1
i / / v (C0S2 ¥, cos? 192) (e ' )cos2 Y1 cos? Uy +o(1)
—7/2 —7/2

as A — oo, where

o
d7’2d7’1
21,22 Ul 7“121,7“222 -
2 T
0

1
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The function U;(z) = u(zy — a/E, 2o — o/ /E’) is not invariant under the action of 'y but it
is still invariant under the action of pj (defined in (3.11) on page 86), because

a o
Ui(prz) = u (€2k21 — E,é?_zkz2 - E)

I
IS
N
o
(V]
o
KN
|
n
no
o
Q
+
[
[ V]
=
o
|
e
[Q)
b
=
N
|
[©)
(]
+
|
(]
E
Q\
|
B
N—

since w is invariant under the action of v, (defined in Proposition 3.1.4). As in Section 3.1.2 we
get that F(Ryz1, Roze) = F(21, 22) for any Ry, Ry € (0,00), i.e. F(z1, 29) is a function of ¥; and
¥, only and we can write F'(;,7,). Also, since the Laplace operators A; commute with the
action of PSL(2,R)? this function satisfies the equation (3.8). Proceeding as in Section 3.1.2
we obtain

w/2 w2

2 =r00) [ [ o( D i) 00 o),

cos2 ¥y’ cos? vy cos2 1 cos? vy

—m/2 —m/2

where [, are the solutions of the equation (3.8) with f);(0) =1 and f} (0) =0 and

d?“g dTl
F(0,0) // (7’12 rol — E’) - 7”1‘

Next we turn to the case when u is not a cusp form. Note that by Lemma 3.1.5 we get a
main term (i.e. a term that does not converge as A — oo) only in the case m, = 0. To give the
contribution of a class we write

E? E?
cos? ¥, cos? 192)

Uy(01,02) = ¢ (

and then

w/2 w/2

S 1—s
T$‘=5mu4klogs{”f oA } [ [ oo

1—s cos? 1 cos?
—7/2 —7/2

w/2 w2

[ o (0, 03)C (9, 0)— 21002y o

cos? ¥ cos? ¥y
—7/2 —7/2
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where C) (¥, 12) is
n(cos¥1)* (cos Vo) C, (s, m,) + ¢(cos 91)' 1 (cos ¥o) ' ~2CL (1 — 5, —my,) + I (Y1, 92).

Here I7(01, ¥2) was defined in (3.18) on page 91 while C, (s, m,) was introduced in Lemma 3.1.5.
We compute the coefficient of the main term:

w/2 w2

/ / o (0, 0y)— D102 d di, // dv, dv,
AT P2 g2 ¥, cos? fﬁQ (:os2 9y’ COS2 P9 ) cos? ¥y cos? s

/2 —7/2

u17u2>
d d
/ / Vi — B, B2

E? E?

= g(log £*™ log e ™).
Note that E? = |N(E)| and by Proposition I11.3.3 in |5] we have the following for a fixed m:

2 NE) "

{¥m,a} hyperbolic-parabolic

So if we gather the main terms that belong to the classes of v,, o for a fixed m, then we obtain

As Al—s
4g(log ™, loge ™) loge {77 + Qi } .
s -5

Note that g(loge?™, loge=2™) = g(log ™ loge=2™l) for every m € Z and hence instead of
summing over the positive integers we may sum over the non-zero integers and divide by 2.
Hence the hyperbolic-parabolic conjugacy classes give the main term

nAs  pATE 2 2
21 log 2™ 1 my.
oge{ o+ E g(log e”™ loge™™)

1—s
meZ\{0}

We elaborate also on the constant terms. Let us consider the integral

dv, dvy B
cos2 ¥y cos? ¥y

//mﬁmeﬁwmwg

-z
2

m\:l

E? d; dvy
=4 9q)% ¥9)%2 —— .
/ /w <cos2 ¥, cos? 192> (cos ¥1)™ (cos V) cos? ¥ cos? 1y

0
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As before, we make the substitution u; = E*/ cos? 9;, so the previous integral is

1 S
(u1,us) U1 u2 2
|E|2 e / / Vi B

In the following we omit the constant multiplier |E |51+5T2 and calculate just the integral above.
Using Proposition 2.3.1 we get that it is

00 00 00 00 _S1 _ 52

Owq Ow 1,U)2) Uy 2u2 :
17z dwq dw duy dus.
////\/wl_ul\/wQ_UZ ! 2\/u1—E2\/u2—E2 L

E? E?2 u2 w1

Now we interchange the order of integration to continue:

31 __52

I
duy dug dwy dwy =
//31013102 //\/wl—un/ul B2/ — gy — B2 e L du
E? E? E2 E2
1 7T 8262 v E2 ( EQ) ED)
+ Uy + 3
Bz E? wy + B G duy dus duy d
WZ//3w13w2(wl+ W2+ ) VW1 — u\/Ur/wa — Uy Uz Uy Az AWy AW
0 0

oo 00 1 1
1 2 E E?
— // 0Q (wy + E% wq + E?) // Wit + (w2u2 + ) du1 dus dw; dws.
s 8w18w2 s v \/1—’11,1\/ \/1—162«/

Then integration by parts with respect to the variable wy gives

s9 X 1 s 1
<E2>_72 8@ 2 2 / (w1u1 + E2)_71
— I ) duy | ————=duyd
2 8w1(w1+ ’ ) \/1—u1\/ \/1—162\/ U2t

1 1 s
E2 -3 E2 -2
X / (w1UI + ) du1 / \/u_2<w2u2 + ) : dlLQ dw1 d'LUQ.
4 4 AV 1-— U2

Note that

and hence the first term above is

o0

1
2)-% 2
_E) /aQ (w1+E2,E2)/(w1u1+E) duy duws .
0

™ 8w1
0
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Again, integration by parts gives that this is

0 1 s
2% fur( 291
2T ) \/1 — Uy

0

(B2) 52 Q(i?, B2) -
(B R QUER B - EQ/QM7 P (1) duoy,

where

s s WVt

o) /((w—EQ)t+E2) ]

2T

We get similarly that the remaining terms are
() [ QUE wn) Py z)du
2

and

/ /Q<w17 w?)ﬁsl,m(wl) ~52,m<w2) dwl dw?‘
E? E2

Lastly, we substitute w; = €% + e~ — 2 and define

1

(e _e_z)S/ - 2 ov_iq Vi
Fs m = = r T _2—FE4)t FE 2 dt
i) = C2E (e e o+ B2y i M
0
to obtain
P di, dv
—_ S1 S 1 2 .
S s(m) == / /1/17 (91, 92) (cos 1)t (cosVz) 2m -
—2 7%
= Lg(logsm log e*™) — b / g(x1,1log ™) Fy, (1) day
‘E‘2 ) ’E|2,sl 2 ) s81,mMm
log e“™
1 I 2m
— |E|T52 g(loge™™, x9) Fs, m(x2) do
log g2m

|E|2 2s / / xl;x2)Fsl m(xl)FSQ m(xQ) dﬂ?l dﬂj‘z

log 2™ log g2m

Putting all these together we get
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Proposition 3.1.7. If u is not a cusp form, then the contribution of the hyperbolic-parabolic
conjugacy classes in the trace is

nA*  gA 2m —2m
Om,2loge [ . + T3 Z g(loge™™ loge ")+
meZ\{0}

+n§:EmMm)2:CWJ&mO

meNTt {vm,a}
+ ¢ Z E1_5171_52 (m) Z C’Y’"L,a<1 - 87 _mu)
meNTt {vm,a}

w/2 /2

E? E? di)y diy
Ime _— 1).
* Z Z / / v (COS2 ¥, cos? 192) v (191’192)0052 Y1 cos? Uy +o(1)

meNt {’ym*o‘}—ﬂ'/Q —7/2

—_

Here Yo is defined in (3.10), E = ™ — ™™, 24 5,(m) is defined above the proposition,
C.,. .(s,my) is defined in Lemma 3.1.5 and

Ym,«

2k

T (o drad
) = [ [T (e petion) 2200
1 1

T2 T

1 oo
_ - . dry dr
o T
e—2k 1

where k is the positive integer defined uniquely by Proposition 3.1.4 and the functions U, and
Uy are defined by (3.14), (3.15), (3.16) and (3.17) above.

3.1.5 Contribution of totally parabolic elements

Now we turn to the conjugacy classes of totally parabolic elements. Every element of this
type is conjugate in ['x to an element of the form

Vo 1= [(1) ﬂ , (3.19)

where 0 # a € Ok. Two such elements v, and 3 are conjugate if and only if

oL el el v

for some a, b, c,d € Ok, that is,

at+ac bt+ad | | a Ba+b
c d | ¢ Be+d |
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We obtain that a + ac = a. This gives ¢ = 0, which means that d = a™!, hence a € O}. From
b+ ad = Ba + b we have a = a?3. We obtained the following:

Proposition 3.1.8. The representatives of the conjugacy classes of toltally parabolic elements
are given by the elements 7y, defined in (3.19), where o € Ok /(OF)%.

We compute the centralizer of these elements:
a b I a| |1 « a b
c d 01| |01 c d

a aa+b| | at+ac b+ad
c ac+d | c d :

if and only if

From a = a + ac we have ¢ = 0 (since a # 0), from aa + b = b+ ad we have a = d. So we have
the following

Proposition 3.1.9. The centralizer C(7y,) of the totally parabolic element 7, is

([32] 5201}

We obtain immediately from (1.5) and (1.6) on page 7 that the fundamental domain of the
centralizer C'(7,) is

1 1 1 1
Feta) = {Z €W : —5 < Xi(2) < 5, =5 S X(3) < —}-

We consider the sum

XX [, ) (320)

0£a€0k /(0F)2 0€C(1a)\'k

and proceed as in the previous section. The union of the sets o F4 above makes up the set Fg,,)
except for the images of the remainder part F'\ Fy =: F;. If o leaves oo fixed, then so does
every element in its coset, and the part ¢ F’} is the same as

{2 € Fory: 02 € F, Yo(o'2) > A}

But since o0oo = oo, the values Yy(07'2) and Yy(2) are the same.

Now assume that o = [ Z 2 does not fix the cusp oo, so ¢ # 0. If z € F}, then
1 1
Y. < < =
) S Mo <

and since

oo (=0 oo (o o)

Yq Y5 Y1 Y
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this is zero for oz if z € F and A is big enough (because ¢ has compact support). So in this
case we can integrate over o F instead of o F4 and (3.20) becomes

> [ (%5 ) e -

07505601(/(0;()2 ZEFC(,YQ),Y()(Z)SA

: I [ Geig) i one

O#aeox/(o P _1<X1,Xp<] Yo<A

The function u has the Fourier expansion

( ) - Wyflygz + (ﬁy%—ﬁy%—w + Z al(y)e27ri<l,m>
leL7\0

and since for every 0 # [ € L}, we have
// 62m<l,x> d&?l d.TQ — 0’
—3<X1,X2<3

by Lemma 2.1.7, which also gives that

// 1dz, dzy = \/d(K),

—3<X1,X2<3

we can write the sum above in the following way:

S1..8 s s dyldyQ
V( iy + oy My :
2 // ( )(m 2 )ylyg

OséozGOK/(O 2 Yp<A

We substitute u;, = ’& k)| Jyr (k=1,2) to obtain
d(K) // > o
Y (ug, usy) X
[N(a)l 2 ‘o (1, 10)
#a€0k [(Og)

0<uy,u2<oco
loraz] /A<uius

. [n a s [N

Oé/

d'U,l dUQ

S1,,82 +¢

1—s1, 1—s9
Uy Uy U

/
« (07 1 9

i \N<a>|1-S]

since by (3.1) s1 = s + 72 and s; = s — g2« for some s € C and m,, € Z. Hence we have to

examine two terms:

\d u u? ", %2 /\m“—m)duld'@ 3.21
Ui // 1 2 Uy~ Uy Z |N(a)]1_5 ( )

0<u1,u2<00 0£a€0K /(0f)?
IN(a)|<Auiuz
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and

u2 u2 u51—1u52—1 )‘*mu<05) ws du
AR [[ vty Y e e G2

0<u1,u2<00 0#£a€0K /(OF)?
IN(a)|<Aujus

Here A\ () = |a/o/|2:= is the Grossencharacter that occurred also in the previous section.
To follow the usual notation s will denote a complex variable for a little while (instead of
the fixed parameter of u). We consider the function

Am (@)
ZK(s,m) = Z |N(C¥)|S’
0#£0€0K /(OF)?

it clearly converges absolutely for Res > 1. We rewrite this sum in the following way:

Am (@) Am(—a) Am () Am(—€Q)
Zelsm) = 30 (7l feo e Ay
osiazoe MN@T T IN(=a)"  [N(a)[” - [N(=ea)
The first two and the second two terms are equal and |N(«)| = |N(ea)]|, so let us calculate the

third numerator:

EQu

Tim

2loge _ (62)210g8 )\m(a) = em’m}\m(a)‘

Am(ea) =

e'a’
Hence Zk(s,m) = 0 for an odd integer m. Note that if m,, is odd, then the terms in the partial
sums in (3.21) and (3.22) also cancel each other and therefore the contribution of the totally

parabolic conjugacy classes is zero. In the following we assume that m denotes an even integer.
Then Zk(s,m) = 4k (s, m), where

Ce(s,m)= > ]AV’”(O‘) (3.23)

0#(a)<0k

is a Hecke L-function. It is entire if m # 0. For m = 0 it is the Dedekind zeta function, which
has a simple pole at s = 1 with residue 2loge/4/d(K) and it is holomorphic elsewhere (see [9]).
We apply Theorem 5.2 and Corollary 5.3 in [12]|. For this purpose we write

o an
CK(S7 m) = 57
n=1
where
ay, = Z Am (@)
(@)<O0k
[N (a)|=n

We estimate the sum a,, by estimating the number of the ideals of norm n. We have already
mentioned in the proof of Proposition 2.1.6 that this is bounded by n’ for every 6§ > 0, so we
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have a,, <5 n°. Now if 0 < Res < 1 and oy > 1 — Re s, then we have

oo+iT’
L an 1 A%

n=A oo—1iT

where Z' indicates that if A is an integer, then the last term is to be counted with half weight,
further

o0

, A 40 4 A0 |ay|
—Res n
R Xl (12 ) e AT S e
A/2<n<2A n=1
n#A

Let us fix a small number 0 < g5 < Re s, set the value 0g = 1 — Res 4+ g9 + 9 for some 6 > 0
and estimate the second term on the right hand side. Since a,, < n®® we have

Al—Re st+eg+d X 1 Al—Re s+eg A5

490 4 A% N ay,|
T Z noo+Res < T n1+6 < TS
n=1 n=1

Now if we choose § = @, then the right hand side is

< Al—Res-l—ao logA
T )

where the implied constant depends on &y. If we set 7' = A'~Res+” for some gy < v < Re s, then
this term is o(1) when A — 0.
Now we turn to the first error term

R ) A R ) Res—v
Z |@n| n ™7 min (Lm) = Z @, | n” " min (1,m) :
A/2<n<2A A/2<n<2A
n#A n#A

We divide this sum into two parts, the first is where |A — n| < AR®*™"_ here we get |a,|n 7%,

. _ . _ Res—v .
and the second part is where |A — n| > AR5~ for which we get |a,|n Re“? Jn7+ S0 this error

term is

< AsofResAResfy_i_AResvasnges Z 1
|A,n|2ARes—u |A - n|

W 1
=AY e

|A,n|2ARes—u
K A log A = o(1),

since we have 0 < g9 < v < Res. Note that the implied constant depends on gy, ¥ and Re s.
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Now we return to the integral (3.21). Rewriting the partial sum as above we get

4/ d(K) / / b (uf, uh) uy g "%
0 0

oo+iT

1
X % / <K(1—S+S,mu)

oo—iT

(U,1U2A)S

5 dS | duy dus + o(1),

where 0p = 1 -1+ Res + ¢+ 0 = Res + g9 + 5, for some 0 < g9 < 1— Res. Note that
since ¥ has compact support and hence u; and u2 are bounded from above, one can see by
a closer studying of the arguments above that T can be chosen independently of them, i.e.
T = Al-1HRestv — ARestv works for some g < v < 1 — Res. Now we interchange the order of

integration to get
oo+iT

S
47“27” 9)Cx (1—3+S,mu)%ds
oo—1iT'
where .
F(S)I//w(uf,ug) ud " us 2 duy dus. (3.24)
0 0
A

If G(S)=F(S)(k(l —s+ S, mu)?s and o7 < 0, then by the residue theorem

oo+iT

1 2loge A®
. —Cx(1— F - Ry o
57 / G(S)dS =Cx(1 — s,my,)F(0) + O =0 K s (s)
oo—1iT"
(3.25)
o1+1T o1—1T oo—1iT
/ G(S)dS + / G(S)dS + / G(S)dS
o
oo+iT o1+iT o1—1T

To get the error terms we apply partial integration in F'(S) with respect to ug, and here we
assume also that Re S > Res — 1:

[ el o] (e}

—S2 2 2 1—82 S—l S—sl
/ w ul,u2 s 2 duy dug = / /¢(u1,u2) uy Puy dug | up T dug.
00 0 \o

The inner integral is

8 —s —s 1 ! —s
X (uf,us) uz ™2 + (1 — o) (uf, u3) up ™ | u3 dus = — /H82<u1,u2>u§ 2 dus,
S 3 U S

0

where

0
Hifun, ) = ~2u 5 (i3,18) — (1= )0 (ud, )
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That is,

AS oo o0
G(S) = Gl = s+ 8,mu) o5 / / Ho ()= S duy duy.
0 0

We estimate the integrals on the right hand side of (3.25). First we examine the horizontal
segments:

o0 00 o1+:T

1 A)S
//Hsz(ulauQ)ul_51u2_52 % / CK(l - $+S, mu)% dS | duy dus.
0 0 ootiT

We will set 07 = Res — 1 4 §; for some small §; > 0 and estimate the inner integral by the

convexity bound:

Cielo+it,m) < [t~

as [t| — oo for any 6 > 0 and 0 < o < 1 (see e.g. [16]) *. So if Re S = o, then on the horizontal

lines we have

A S A°
(x(l—s+ S, mu)% < h T1-(1—Res)—o+5 _ pop—2—0+Res+s

_ AaJr(Re s+v)(—2+Res—o+d) _ Aa(lfRe s—v)+(Re s+v)(—2+Re s+9)

since uq, us and o are bounded. We will show that the exponent of A is negative if 6 > 0
is chosen properly, so this last bound is o(1). As ¥ < 1 — Res we increase this exponent by
increasing o:

Aa(l—Res—y)+(Res+V)(—2+Res+6) < Aao(l—Res—l/)+(Res+1/)(—2+Res+§)
:A(Res—&—so—l—@)(l—Res—u)+(Res+V)(—2+Res+6)

< A(Re s+e0)(1—Re s—v)+(Re s+v)(—2+Re s+9)

Now this last exponent is negative if and only if
d(Res+v) < (2—Res)(Res+v)— (Res+¢p)(1l —Res —v)
=Res+2v — ey +eo(Res +v).

The right hand side is positive since £y < v, so this inequality holds for some § > 0 small enough.
Then the integrals on the horizontal segments are o(1).
On the vertical line we have

(uluQA)S Aot . |t|17(17Res+al)+6 < ARes—1+61 |t|—1+5+51

1—
Ck(1—s+5,my) <2 < TENTIE

!Note that in [16] K is assumed to be of narrow class number one. However, by the derivation of the convexity
bound this condition is used there only through the functional equation of (x (s, m) which is proved in full
generality in [9]. Hence we do not have to make this restriction.
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and hence

o1—iT

G(S) dsS <<AR6571+51T5+51 _i_AResflJrJl :AResfl+61A(5+61)(Res+V) _i_AResflJrél
o1+iT

Now if we choose § and d; so that (0 4+ 6;)(Res+v) <1 — Res — d; = —o; holds, then we get
that this term is also o(1) and (3.21) is

AS
An\/d(K)Ck (1 — s,my)F(0) + 0y, —0 - 8nloge - ?F(s) + o(1),

where F is defined in (3.24). We remark for the completeness that on the half-plane o > 1 the
convexity bound is not applicable. However, a similar polynomial bound is obtained in terms of
|t| in this region for example in [2] and one may apply integration by parts above more than
once if necessary to get the result above.
One can show the same way that (3.22) is
1-s

815(1 —s)+o(1),

4/ d(K)Cr (s, =) F(0) 4 =0 - 8¢ log e -

where
o

o9
S) :/ w u17u2 S+81 1 S+52—1 du1 dUQ.
0 0

It remains to evaluate F and F at some points. If m, = 0, then

F(s) = 1—5 //w u?, u3) duy duy = 4_1// \/ull—u; duy duy = Zg((),()).
00 00

For an arbitrary even m, we have
1 w Ui, U ) 5L _32
Y(ud, ud)uy " uy % duy duy = ~ 2y 2uy 2 duy dus.
4 A/ UtU2
0 0 0 0

As in the previous section, one can use Proposition 2.3.1 to see that this double integral is

wq _ s w2 _l

472 // Ow,0ws wl’w2> Vwy — ul\/_ VW, —ug\/_

dUQ dw1 dUJQ .

We have

N———
|
—
e
\w‘\
Q
=

=
Q
+
[N o PN
=
—_
|
£

w‘

[ous . [(1—a 1

————du=w 2B , =
/ w — uy/u ( 2 72
0



CEU eTD Collection

3.1 The geometric trace 107

for any w > 0 and o € C with 0 < Rea < 1, where B is the beta function and we used the
following relations:

r(1/2) =7, T()I (z + l) = 2172 /71(22).

2

Then

2_(51+52) F(l s1 ZF 1— 52 9 X a 91 .

F(0) = 2 e d

W 42 T(1—s)T 1—82 //8w18w2 (w, wp)wy *wy * dwy dws.
0 0

Now we substitute w; = €% 4 e™* — 2 to express this in terms of the function g. The integral
above becomes

829 z —x — —z -2
($1,$2)<€1+€ 1—2) 2(€2+€ 2—2> 2 delde
0 0

81:18952
Now .
0? 1
Ox éqx (z1,22) = _(27T 2 //h (r1, 7o) ryroe” " ETI) Ay iy,
10T2 )
and

N

1
—2a —2a  o+tir—
) y“"‘ldyz/(l—y) 2o yotir=l gy
0

/(ez +e Tt —2) % T dy = / <y_% -y
0

0

I'a+ir)I(1 - 2a)
Ml—a+ir)

= B(a+ir,1—2a) =
We obtain that F'(0) is
oGt \? 15 \2 11—\ [ [ D5+ ir)D(2 + ir)
—|——— | T r h 2 2 dry dry.
( 47T2 ) ( 2 ) ( 9 ) // (TI’TQ)T1TZF<2_2A +Z7’)F<2_% +Z7") r1arp
00
Similarly, £(0) is

2—(2—51—52) 2 2 2 T T T 1-s1 + ) 1=s9 +
_ (—) T <%> T <%> //h T1,72) 7’17"2 ( 2 W) ( Z ir) dry drs,
) ) P(=5= sy )

472

and we have

Proposition 3.1.10. Assume that u is not a cusp form, the main term of its Fourier expansion
is nystys2 + oyl 'y *2 and the numbers s € C and m,, are defined in (3.1) on page 75. Then
the contribution of the totally parabolic conjugacy classes is

2 > / k(z,02)u(2) du(z) =

{7} totally parabolic o€{~v} Fa
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As Al—s
Om,=02loge {77 + ¢
S 1—s

2—(31+52) 2 1— s 2 1 — 59 2
— Om,=0(2)7] ﬂK)(—§§—> er—&mﬁr< 5 ) F< 5 ) X

r D2+ ir)T(2 +
/h 7“177”2 7”17“2 QESQ W) (22,5 W). dry dry
/ [(=2 4 ir) (552 +ir)

} 9(0,0)

X

— B0 23/ (K (%)2 Cie(s, —ma)T (%)2 r <%)2 x

rr D352 +ir)D(A52 +i
X//h T1,72) 7“17“2 ( = ZT) ( 2,1 /l.r>d7“1d7“2+0(1),
P~ sy )

where (x(s,m) is given in (3.23).

3.2 Evaluation of the spectral part

As in Section 2.4 let {u;(z) : j > 0} be a complete orthonormal system of automorphic
forms for the discrete spectrum of I' with eigenvalue ()\gj ), )\éj )), )\,(Cj ) = s,(f )(1 - s,(f )), where
Re sg) > £ and s,gj) =1+ z'r,ij), hence /\,gj) =14 (r,(f))2 (k = 1,2). Recall that the Fourier
expansion of u; is

(4) (4)
U( ) gb]yi ! y; ED) + Z Cl]) /_ylyQK (]) 1(27T|l1|y1)K(]) 1(27T|l2|y> 27rz<a:l>

1EL3\O

The Fourier expansion of the Eisenstein series is given in (2.18) on page 51. If ¢; # 0 for some
J >0, then u; is a constant multiple of a residue of an Eisenstein series. Note that the Eisenstein
series E(z, s, m) has no poles unless m = 0. In this case the poles in the half-plane Re s > %
are in fact on the section (1/2,1] and they are simple. Furthermore, every pole of E(z,s,0) is
also a pole of ¢(s,0). This function has only finitely many poles in Res > 1/2 and all of them
are in (1/2,1] (see Section 2.2). Let us denote this finite set by L and the residue of ¢(s,0) at
some s; € L by R,,. Hence if ¢; # 0, then (sgj), sg)) = (s1, ;) for some s; € L. Recall that the
Fourier expansion of u is

w(z) = myyst + oyt My 4 Y a1 (2n by K, 1 (27 |l yo)e”™ <, (3.26)

leL3\0

and if at least one of n and ¢ is non-zero, then

Timy, Ty, )

(s1,82) = <3 +

2log€’s_ 2loge

holds for some s € C and m,, € Z. In this case we also assume for simplicity that % <Res<1
and, in addition, that =% 222 & L.
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We are going to evaluate the truncated trace

TrAK = K(z,2)u(z) du(z)
Fa
using the spectral theorem which is applicable since ¢ is assumed to be compactly supported
(see Theorem 2.2.10):

TrAK = Zh ry ,7"2 IA (uj)+

1 ™m m™m
+ h{r+——r— If r,m)dr,
8 d(K)logemze:Z / ( 2loge 2log5) (r,m)
where
R = [ ) el duz),
Fy
and

A, m) = /F o <z, % +ar, m) E <z% —r, —m> u(2) dp(2)

1 2
:/ E(z,——l—ir,m)
Fa 2

uw(z) dp(z).

We define F!' = {z € Fy : Yp(z) < 1}, then by Lemma 1.2.3 we have Fy = F' U F{,
where F* = {2 € F, : 1 < Yy(z) < A}. Moreover, the set F1 C H? is compact by Lemma
1.2.4. Now we divide the integrals above into two parts: I2(u;) = I'(u;) + I{*(u;) and
IA(r,m) = I'(r,m) + I{*(r,m), where

P = [ P u@ ), 1) = [ P e due),

1
[1(r,m):/ E(Z,—+ir,m)
o 2

1
I r,m) = / E (Z, = +ir, m>
FA 2

Let us examine first the integral I{'(r,m). Recall that

2

u(z) du(2),

2

u(z) dp(z).

1 1 1 1
FA=32eH*: 1<Y) <A ——<Vi<-; —=<X,Xp< =¢,
2 2 2 2
and that we denote by ao(y) the zeroth Fourier coefficient ny;'ys* + gbyl 1y %2 of the function
u. Also, let ag(z, 3 + ir,m) be the zeroth Fourier coefficient of E(z, § + ir, m) and we define
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E(z,4 +ir,m) = E(z, % +ir,m) — ag(z, 3 + ir,m). Then by Lemma 2.1.7 we have

1
/ E(z,——i—ir,m)
FA 2
/ < 1 . ) _( 1 ‘ )
= aop | z,= +ir,m Elz,=-+wmr,m

Note that these integrals are non-zero only if u is not a cusp form. We calculate the first term
above in that case. Substituting

ao(y) du(z) =

2

ao(y) du(z).  (3.27)

2

aoly) dul2) + [

A
Fl

1 " 1 w
ao <Z, 5 T m) = (1112)2 " An(2) + ¢ (5 +ir, m> (1192)2 " A (2)

and using Lemma 2.1.7 we get that it is

VAR [ e o (5 inm) (o)

~i<ri<l ' |:(y192)é_ir>\_m<z) +¢ (% — _m) (91?/2)5“0\7”(2)}

dy dys
Y3

- [n(y2)* A, (2) + S(11y2) ' A, (2)]

As an abbreviation we write ¢,.,, = qb(% + ir,m). Since % = 2loge % dY7, the previous
192 0

integral becomes

A 3
Lir ; 1 .
2]0g5,/d<K)// |:YE)2+ 627”mY1+¢r,mYE)2 6727rsz11|
1

(NI

g i Lidr ;
. |:Y*02 6727rsz1 +¢7r,7myb2+ eszmYl] (328)

dY; dYy

. [n%seZTrimu}ﬁ + ¢}/61—S€—2Wimuyl] Y2 .
0

Since Grm®—r—m = |drm|> = 1 by Corollary 2.2.6 and

1
2 2minY1 _ 17 if n = 07
/ € ¥y = { 0, otherwise,

1
2

we get that (3.28) is

A
210g g/ d(K)/ 25771“:0(77}/68_1 + qﬁ/o—s) + gb—r,—m(ému:—anYoS_lJr%r + 5mu:2m¢%—s+2ir)
1
+ ¢T‘,m(5mu:2mnybs_l_2ir + 5mu:_2m¢}/0—s—2ir) dY(),
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that is,
A —1 A= —1
2log e/ d(K) [25mu:0 (77 + ¢ )
s 1—s
As—i—Qir -1 Al—s+2ir -1
—r,—m 5m:fm—. 5m:m—.
- ( “ 2775—1—2@7” * “2¢1—s+22r)
As—2ir -1 Al—s—2ir -1
r,m 5m:m - 4. 5m ——omWVW - .
+ o ( w2 T Omu=—2 ¢1—s—2@r)]
Now we set

s 1-s
V(A u,m,m) = 2loge\/d(K) [25%:0 (nA_ n qu )
$

+ ¢(1/2 —ir,—m) ((5mu:2mn

5+2ir A1—5+2ir )

6m:m - 4.
s+2ir+ w=2 ¢1—5—|—2zr

As—2ir Al s—2air

s — ur s — 2ur
and calculate

™m

T+ , T —
87r10g5\/d T;Z/ ( 210g6 2loge

- AS Al y ™
= — — — d
21 (77 ) Z / (r—i— 2loge’ " 210g5> "

meZ_ "

> V(A u,r,m)dr =

6mu5 u u
+ T (H(A) + H (4)),

where

o0

Tm Ty, As 2ir Alfs+2ir
Hi(A)= [ h . m L ) (32
1(4) / <r+410g5’r 410g5> <U¢T — +¢¢ = 1_S_|_2mﬂ) r(3.29)

—00

and

r ™m ™m Ast2ir Al—s—2ir
HY(A) = [ hr— =22 u ) I
+ / (7” 410??5’7“4_4108;5) ( ¢- E s+ 2ur +oor, 2 1—3—22‘7’) g

—00

Note that in fact Hi*(A) = HY(A) since h is even in every variable. By the Poisson summation

formula

T ;
h o —27rzm:cd dr.
/Z ( 210g5 T 2log5> /Z/ ( 210g5 " 210g5)6 var

s meZ "
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: : _ e loge . _ loge .
Substituting r, = r + 210g5 and ro =71 210g€ we have v = =2 (r1 —re) and dx dr = == dry dry:

1 ,
loge Z / / (11, ro)e~2mI8E1=12) g gy = 47 log e Z g(2mloge,2mloge)

meZ_ " meZ

using that ¢ is even in every variable.
Next we examine H}'(A). We replace the line of integration to Imr = —Res/2 — ¢ for the
first term and to Imr = % + 9§ for the second one in (3.29) and use the residue theorem to

get that this is

L um ,s+ Ty, 4 1+s m, n
s — i— —
TS T loge "2 T Aloge 2 72
1—s ™ 1—s ™m 2—s m
e ( 2 +410g5’l 2 4log5)¢( 2 2)

' 1 . 1 A1+5*251
— (5mu:027'r77 Z h (Z (Sl - §> , 2 <Sl - 5)) HS——QSZRSZ

1 Res+1
2<Sl< )
si€L

bo2re S h(i(si—2 )i (s AT oA
m=0=T T2\ ) ) e '
2— Res

<5l<
SZGL

Here we used that £, 222 ¢ L the rapid decay of h and that ¢(S,m) is bounded in Re S > 1
once S is bounded away from the real line (see Corollary 2.2.8). We summarize this in

Proposition 3.2.1.

w™m

T+ , T =
8m\/d(K logaz / ( 210g5 2loge

) V(A u,r,m)dr =

A Al—s
= Opmy=0 [210g5 (77? + gbl — s) n%:zg(Zmlogs, 2mloge) + S1 + S
+ Omu=02)C i + O(A7?)

u,

where

oo 5 MMy .S TMy, 1—|—S@
Cuge =m0 (Z2 410g5’22+410g5 ¢ 2 72 *

+roh ,1—3+ ™, .1—s= v 6 2—5 my
i i — ——
" 2 4loge’ 2 4loge 2 72
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and
A1+s—2$l
S| = — h(r , T —RS s
! n Z ( : l) 1+s—2g !
%<sl§Re§+1
sj€L
A273725l
Sy = — hr,r) ——R,
2 ¢ Z (7“17‘1)2_8_281 .
%<Sl§2—1§es
sieL
with 1 = —i (s, — 3).

Note that we changed the sign of the arguments of the even function h in S; and S5. This
way the notation r; resembles the previous notations, i.e. s; = % + 2r; holds.
Similarly, we evaluate the integral

2 21—Res(j) 21—Res(j)
[ sttt ) d),
Fl

@) @)
1-s9) 1-s9) . . . o
here ¢y, "' y, ° is the zeroth term of the Fourier expansion of some u; which is not a cusp

form and hence ¢; # 0. Note that in this case sgj) = sgj) = sU) = 5, € L, and we write ¢,
instead of ¢, (as the u;’s are independent, at most one function belongs to an element of L, if
there is no such function, we simply set ¢, = 0). As before, we get that this is

A 1
2 s ) _ o dY;
210g€ /d(K) |¢l|2/ / Yv02(1 1) [nYOSGQTrzmu}ﬁ + ¢YE)1 8(2)6 27rzmuY1] in Y20 _
1 - 0

1
2

Alt+s—2s _ | A2—s5—2s1 _ 1}

B e

We continue now with only those terms that depend on A:

A1+572sl A27572sl :|

Omu—02loger/d(K) |¢n|? {771+8 v +¢2_ 525,

Recall that L is a finite set, morover, if s; > (1+Res)/2, then the first term above is O(A~?) and
the same is true for the second term once s; > (2 — Re s)/2. Multiplying by h(r;,7;), summing
over the elements of L and adding Ry and Ry we get 0, —o[X5 ), + X1 + O(A™°)], where

1+s—2s

She Y bl (2loas VAR 6 - Ry).

1+s—2g
%<Sl§1+§es
sieL

2—8—281

~ A
Son = Z oh (ri,m1) . (2 loge/d(K) |¢i|* — Rs;) :

1 2—Res
F<sISTH
si€L



CEU eTD Collection

114 A generalization of the Selberg trace formula

We proceed as follows. First, let us define
jvjl(T’ m) = I{LA(T7 m) - \II(A7 u,r, m)7

A1+s—25j A2—s—25]-

1+s—2s quZ52—3—233

T2(u5) = I (uty) — Gy o2 log e /AR |6 {
We will show that

Z I uy) —1—2/ IAr,m) dr < p(Ty, Ts), (3.30)

159 |<T;, mes

k=1,2

where p is a polynomial (and the implied constant does not depend on A) and for a fixed m

we restrict the integration to those r’s for which ‘% +ir + (—1)’“*12%0% < T}, holds. Then the
limits
L(uj) = lim I (uy), L(r,m) = lim I*(r,m)

A—o00 A—o0

exist and

Z I (uj) + Z/ (r,m) dr < p(Ty, Tz) (3.31)

\Sl(gj) |<T}
k=12

holds as well. We get by the rapid decay of the function h that the expression

™
Zh ry ,7"2 u(u; +Z/ (T+210g6 T—210g€) I,(r,m)dr

mezZ_*

is finite and it is the limit of

[A( o\ ja
Zh r9 9N (u;) —l—Z/ <T+210g5 T_210g5) I (r,m)dr.

meZ_ "

It follows that the terms that tend to infinity as A — oo are Ef b A o and

A Al s
2loge <n? + qb ) Zg 2mloge,2mloge), (3.32)

MEZ

and these terms occur only if m, = 0. T They also appeared in the geometric trace as well,
in fact in two parts. The totally parabolic conjugacy classes give the part where m = 0 in
the last sum, while the main term that comes from hyperbolic-parabolic classes constitute the
remaining part (see Proposition 3.1.7 and Proposition 3.1.10). Observe that we got no other
terms in the previous sections that tend to infinity as A — oo. This implies that ¥, + i;ﬁ h
must be identically zero. Note that since s can be chosen freely, it is easy to see that in fact
2loge/d(K) |¢1]> — R, = 0 holds for every s; € L. Then, subtracting (3.32) from both sides
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the remaining terms are equal and give the trace formula, that is stated in Theorem 3.3.1 in the
next section, where we summarize the results of the whole chapter.
It remains to show (3.30). The contribution of the integrals

2(1-Res{)) 2(1-Res . ?
/ 57y TR T g (y) da(z) and / ag | z,5 +ir,m || ao(y) dp(z)
A Fp 2
on the left hand side of (3.30) is bounded by
1 1
_— — K1
Z |1+3—251|jL Z |2 — s — 2]
%<slgl+§es %<Sl§27§{es
sieL sie€L
and
Z /’ 1 . 1 n 1 . 1 1 L 1 J
= r
ls|] " |1—s|  |s+2ir]  |1—s+2r||s—2ir] |[1—s—2ir]

MEZ

respectively. As in the proof of Theorem 2.4.3 one can see easily that the latter sum is O(TZ+T%).
Next we consider the expression

> Mu)+ ) /lll(r,m)dr. (3.33)

|S§Cj)\<Tk meZ
k=12

Recall that
2

u(z) du(2),

1
E <z, 5 +ir,m)

where F' = {z € F4 : Yy(z) < 1}. Since u(2) is bounded on F', we can use Theorem 2.4.2 to
bound (3.33) by

3 /|uj<z)|2 du(z)+mz€:Z///‘E (z%—i—zrm)

|S§Cj)|<Tk F1
k=1,2

IMuy) = /F luj () uz)du(z), — I'(r,m) = /F

2
du(z) dr < TPTs.

We continue by estimating

N NECIECETCES iy

\5;(5) |<T},
k=12

u(z) dp(z),

1
E <z, 5 + o, m)
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where %(z) = u(z) — ao(y). By the remark after Theorem 2.1.8 we have u(z) < e~ %¥¥2 once
Yo > T7T7. Using this and that the norm of u; is 1 for any j, we immediately obtain that

> i (2)Pa(z) du(z) < Y 1< TITE + TPTy + Ty T3
A
s )<Ty Fi 1s9)<Ty
k=1,2 k=1,2

by (2.30). We also get a polynomial bound for the second sum using the bound for @(z) and
the following

Lemma 3.2.2. For any big enough A > 0 and Ty, Ty > 0 we have

!/
> / / |E(2,1/2 +ir,m)|* du(z) dr < T*TE + /Ty To(T? + T2 + T\ Ty) + (T2 + T2) log A,
Fa

meEZ

s ir+ (D) < Ty holds

where for a fired m we integrate over the r’s for which
2loge

(k=1,2).
Proof. First, notice that

Z// /FA |E(2,1/2 4 ir,m)|* du(z) dr = Z// /FA |Ea(z,1/2 +ir,m)[* du(z) dr

MmEZ mEZ

< Z///F|EA(2',1/2+Z'7’,m)\2 du(z)dr,

meZ

hence it is enough to estimate the last expression. As in the proof of Theorem 2.4.3 we can write

! . 2 ! qb/(%%—ir,m)
Z//F|EA(Z,1/2+ZT,m)| d,u(z)z?logax/d(K)Z/ [2logA—¢— dr+

1 .
meZ meZ (5 + o, m)

+ 2log q/@ / d(1/2 —ir,0) A% — @(1/2 +ir, 0) A2 "

211

| %+i7"| <min(T1,T3)

(3.34)

Following that proof we also obtain that

!/
> / 2log A < (T? + T%) log A,
meZ

and that the last integral in (3.34) is bounded by log 71T + loglog A. Together with the
statement of Theorem 2.4.3 the lemma follows. O
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Finally, we handle the sum

2

Z / @ (2) | ao(y) du(z) + Z / /A E( = +ar, m) ao(y) du(z) dr,
|S<])‘<Tk meZ B
k=1,2

S(J) _ (J) __
where @;(z) = u;(z) — qﬁjyi yy *2 for every j >0 and E(z, % +ir,m) was defined similarly

before (3.27) on page 110.
By Parseval’s identity we have

[ anls) dut) =

1

dyy dys
—VAE) [ ) X PR erlnl KR, erlil )
leL*\0 Y192
K
1<Yp<A
—3<V1<3
and
_ 1 2
/ L <z = +ir, m) ao(y) du(z) =
FA 2
. 27-2 2 dyy dys
Vd |¢l(1/2 +ir,m)| KiHm(QW |11 yl)Kir_w(QW |l2] y2) .
N 2loge 2loge yl y2
leLK\O
1<Yp<A
—3<V1<3

Note that if u is a cusp form, then these values are simply zero because ag(y) = 0. Otherwise
Res; = Re sy =: Res and ag(y) can be estimated by |n] (y1y2)%¢* + |¢] (y1y2)7Res.

Before stating the last lemma that finishes the proof of the trace formula we make a technical
remark. To derive (3.31) from (3.30) we may use dyadic summation and set T, = T/2% for
some integers a;. Hence it is enough to prove the following

Lemma 3.2.3. For any T > 1, § > 0 and for any integers 0 < ay,as < [log, T'| we have

446
— 2
S Y [ Bl ab)die) < o
T ©) 1
sap+1 = ‘s |<2‘1k
k=1,2
and
. 1 2 T4+6
Y 1= E —+1 du(z)d
where we integrate over those points for which 2%—T+1 < ‘% +r + (—1)k_12f(7:;5 2:(fk holds

(k =1,2). The implied constant depends on 6 and the field K, but not on A.
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Proof. First note that if u; is not a cusp form, then for a big enough Y, we have u;(z) < e~ v¥i¥2
by Theorem 2.1.8, and as ag(y) is of polynomial growth, the integral

[ )P ) dice)

Fy

converges absolutely as A — oo. So the contribution of the finitely many terms belonging to
these u;’s is O(1). Hence we can assume that Re s,(j) = 1 holds.

We prove the statement for ¥;, the other estimate follows similarly. As we have already
remarked above we can estimate Y; by

. . dy, dy
Z // (y172) e Z ]cl(])\QK:@_%(ZW’l1|3/1)K52§j)_%<27T‘12‘y2) y11y22

leL3\0

7)
2ak+1—‘5k |< 3% 1<Yp<oo

k=12 L L
_§SY1<§

where 0 < Re S := max(Res, 1 — Res) < 1. If we collect the terms ] in the inner sum, this
becomes

dy, d
S Y // ) S I_ m Ul )R (2 ) 0n) 2,

<lsP <k 7O 1<vp<oo
k=1,2

2ak+1

(3.35)

where the inner sum runs over the non-zero ideals of Ok and agj) = |a* + |cal* + |ei]® + e_a?
as a; was defined in (2.12) on page 45. For simplicity we omit the last three terms from al(j ),
but an analogous proof works for those as well.

We divide the inner sum in (3.35) into three parts. To this end we fix a small 6 > 0 and set

N =3/§ and A5 = 2lar—a2l/N "1 ot us note that Aj5 > 1 holds. We denote by 2&” the part
of the (double) sum above where |N(1)| < % holds for some positive constant c¢. Here we
estimate the integral from above simply by extending it to H?. Substituting u; = 27 }(lw)(k)| Yk

in the integral we obtain

_ o “Re duy dusg
(4% N (™)) [N ) |RS/1/1LM K () () 02

2 UiUs

Now

rr duy du
//(U1U2)RQSK:9>_§(Ul)Kjgﬁ_%(Uz — =] / fes= 1K2 %(U)d% (3.36)
0 O

U1Uz
k=12
0

and since Re sgj) = Re sgj) = %, we get

2
/uReS—lK:(kj)%<u> du = 2F53P(Re §)~'T (R;S> - (R(;S N Z.701(3)) r (R(;S B ir,ij))

0
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(see the formula above (B.37) in [11]). Hence if ]r,ij)] > 1 for k = 1,2, then

[ ReS | o)\« (ReS e
/uReS—1K2(j) () du < ‘F( ‘ _{_i?n]gj)) F( o iréj))‘ < om0 Res
Sk T2

by Stirling’s formula. Since \r,gj )| is bounded away from zero, we also have

(4)
(1) s | T
’rk ’ z 9 = 9ak+2

On the other hand, if |r,§j)| <1, then I'(Re S/2 £+ ir,(gj)) is bounded by a constant (that depends
on u). As in this case 1 < |s,(€])| < /2 also holds, we get that the left hand side of (3.36) is

2
bounded by
) ] 9 ReS—1
€—w<|s§”+|s§”|>( r ) |

Qai+az

So using the estimate (2.37) on page 73 we estimate Egl) by

T2 ReS—1 | | |
( ) Z |N(l)|_ReS Z |CZ(J)|26_ﬂ(|SgJ)|+|sgg>|)
2a1+a2

cA1 oT? T @y _T
0<IN(DI< Sayfay ST I8 [< g
k=1,2
ReS—1 4
T2 Re S T
— ai1+tasz 2—Re S
< (e > (o i e
cA1’2T2
0<|]\7(l)‘S ga1+az
2+2Re S TQReS—Q
_ “Res I’ 9-ReS
- Z (’N(l)‘ 9(a1+az)Re S + ‘NU)’ 9(a1+az)(Re S—2)
CA1,2T2
0<IN ()< 2T
2+2Re S 2Re S—2
< T Z n,ReSH;_i_ T Z n27ReS+6
2(a1+az)Re S 2(a1+az)(Re S-2)
cAq T2 cAq 9T
0<n< Sa1Taz 0<n< Ja1taz
T4+26 T4+26

3
< AI,Q ’ 2(a1+a2)(1+6) — 9Qaitaz '

If IN()| = |Il'| > cA19T?/29792 then we estimate in a different way. Let us note first that
for a fixed | € Ok we have

o dy, dy
] sk em il er )]s 0 -
1<Yp<oo b P i
C ; dy, dy
-y // ()5 K2, 2 [0/ g) K2, (27 |(1/w) | 1) A2 (3.37)
k=—o00 roo2 2 T2 Y1Y2
1<Yp<oo

1 1
7§§Y1<§
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We estimate the Bessel functions using Lemma 2.1.5. If
2m el w| yr > C|st], (3.38)
where C'is the constant in the lemma, then (using the condition £7% < y; /ys < £2) we infer
@)
2 k 2 k el oY 5k|5(2j)| e s
K2, 2 |efl/w|y) K7y 2r|(eFl/w) L e ®lhivyz | — < Gl
ng)_%( 7T| / }yl) Sé])—%< 7T|( / ) ‘y2) € |l/|\/m €
On the other hand, if '
2 (¥l /w) | ya > C|s¥)], (3.39)
then we get the bound

&)

k@) 2Res .

o—de I/ <|€l| |51 |> o—mls1
VY12

Recall that Re ng) = Re séj) = %

As we sum over ideals we can choose the generator [. We will make this choice so that
(3.38) will hold for any non-negative k& while (3.39) will hold for any negative k. Then, for a
non-negative k the integral in (3.37) can be bounded by

|3§j)|264|8g)‘ // g ’l”_Q (ylyQ)ReSe’dEk‘”\/m—dyl 4y =

2,2
Y12
1<Yp<oo
—3<vi<3
— (42 —w\s(j)| 2k 11/1—2 v Re S _dskmmdyb in
= 2logelsy’|7e” %2 e |72 Y ReSe 5
0
1§Y0<oo
—3<Vi<i

; N )] & ) o gk
_ 210g€|sgj)’2€ mlss’ | / 82k ’l,| Y*OReS 2, de |l\\/170dYb
1

) k o)
_ ‘S(j)’%_ﬂ|sg]>|4e log e YRes—g ldgk 1 Y_%e_dgkmm ne
2 d‘” ’l/|2 1 0 2 0

(4)2 o & <1 —3_—de*|l|\/Yo
< |82j | 6_”‘32 |W/ §d€ |l’}/0 2e” VYo dYb
1

:‘ng),ze_ﬂsgm " 1] oAl
IN()I?

Similarly, for a negative k we get the estimate

gj)l Eik |l/| e_da—k‘l/"
IN()]*

|S(1j) |2e—7r|s
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cAq 2T? A7 ,T?
Now we handle the part of (3.35) where S5 < [N(I)| < 5%,y holds. Let us denote

this part by Zf). Here we choose [ so that ‘Ekll > \/cA12T/2% holds for any k > 0, while
|5kl‘ < /cAy 2T /2% for any k < 0. Then for any k£ < 0 we have ‘(skl)" > \/cA12T/2% because
of the assumption on |N(I)|. As y; and y, are bounded from below in the integrals in (3.37)
and Ao > 1, we get that if ¢ is big enough, then 27 |5kl/w| y1 > CT/2% > C|s§j)| for any
k > 0, while 27 |(5kl/w)" ys > CT /2% > C\sgj)| holds for any k£ < 0, where C' is the constant
in Lemma 2.1.5. Note that the choice of ¢ depends only on the field K. This means that the
estimates above apply for the integral on the right hand side of (3.37). As 7'/2%* and T'/2% are
bounded from below by a positive constant, so are |¢*l| for a k > 0 and |("1)'| for a k < 0.
Hence the referred integral can be bounded by

) k .
’8(.7')|2677r|sgj)\ ‘;(y)||2€dsk|l| < ‘ng)yzefﬂsgm |N<1[>’2ed’sk|l

for a non-negative k£ and by

—k |7/
|31)|2 —n|s\)| € ‘l‘ze—da*k|l’| < |S |2 —n]s{| 1 2€—d’a*k|l’|
IN(1)] [N ()]
for a negative k.
Summing over k we obtain
j —nx|s$) ()2 —W\s(j>| o0 7r|5 \ >
|59 2e—mlss" |83 [Peme —dre| ’31 ' —d'ek ||
e ¢t T ) e iz 2.°¢
[N (D)] [N (D)] ,; ;

As k < &* for a positive k, we can bound the sums above by

> e~ Il o —d'|l'|

—_d . _a e g
E iy —d/l<<e ¢ and E (e dl”)k:W«e I
— e—d'lll — 1 — e dV|

Hence we have the following bound for ¥5:

§ 1 . . - S(j) o - 8(7) g
|N(l)|2 Z |Cl(J)‘2 (|ng)|2€ s g='ll] + |S ‘2 [ =l |)
T4

2

2A
12 a0
<‘N(l)|<m 2ak-0—1<|S ‘ ar

cAq 2T
2a1+a2

If the constant ¢ > 0 is big enough, then so is ¢ > 0, hence the inner sum above can be bounded

by

; _ () (4) AT ay iV, — ag
2 : |Cl(J)|2e 7(|s5” |+]s5” ) <’ng)|e cay/A12T/2°0 ’8§J)|6 c2y/A1,2T/2 )
sarr<lsy 1<zt
k=1,2
Now if a; > as, then

L L

Al/ZT 2(a1—a2)T2 2N T2 SN
() ()

Qa1 92a1 2a1+az



CEU eTD Collection

122 A generalization of the Selberg trace formula

while

ALT _ (T2): T\ o
Qaz 2 22a2 > Qai+az > [si].

Hence the exponential factors above in the parentheses absorb the polynomial ones. A similar
argument applies if ay > a1, and by (2.37) we obtain

= « 3 ! S|P

o INOP

cA1,5T? 2A7,T @) T
ga1+ag <‘N(l)|7 2(a1+a2) gap+1 = |8 ‘<2ak
k=12
4 T4 2+25T4+45 T4+46
1,2
2a1+a2 Z 1 2a1+a2 X
< 9a1+az + < 9a1+az + 92(a1+az)(1+9) < a1+az
cAq oT? 243,74
Zartar <INOIS S Fayy

Finally, if even |N(I)| > ¢?A},T*/2%®1%9) s true, then we denote this part of (3.35) by n®
and for every ideal we choose [ uniquely so that e72 < /I’ < €2 holds. This means that

|51) > e " VN ()] > ey 2T /29792 > T /2%
once k > 0, while
(") | > e e TFVIN)| > e oT? /2792 > T /272

if k£ < 0, that is, (3.38) holds for any non-negative k£ and (3.39) holds for any negative k. As
before, we get the bound

)2 N gk | o2l € VINDI
EPRC < |s§ e
IN(D)[? IN (1)
< |ng)’2677r\séj)|( |N(4)|) efdsk IN()]
[N ()]
G2 —ns] 1 —d'ek\/IN(1)]
< |85’ |fe Ml ——e
[N ()]

for the integral on the right hand side of (3.37) if £ > 0, and

. . —k l/ e ) . 1 .
|S(J)|2€—7r|s§”| | |26—d5 1 ’S§J)|2e—w|s§”\ 46—d5 K /IN(D)
IN(D)] IN(1)]

if £ <0.
Summing over k as above we obtain

(|5§j)|2e’”|s(1j)‘+\séj)|Qe*”|séj)|) |N<1[>|4ed',/|1v(1)| <

—m(|sP | +1s5)

< NP

Y

]. 771.5) 771.5(3) 76,2 ai+a (&
W(! PRemInll oy |sf) Pemlea e TR
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and hence

3 1 N (16D )
e ) > e T
c2A2 T G T
Parrag) Za T SISk < 57

N>
k=1,2

T T T

2
< Qaitaz | 9aitaz < 2a1+az +I° < Qa1+az

by (2.37). As we mentioned at the beginning of the proof, we get the upper bound for 3, in the
same way. This completes the proof of the trace formula. O

3.3 The trace formula

In this section we summarize the results of the previous sections of this chapter. First of
all, we repeat some of the important notations and definitions, though many of them will not
be detailed here but can be found in the List of Symbols. We fix an automorphic form u that
satisfies the growth condition o(e*™) for k = 1,2 and hence admits the Fourier expansion
(3.26) specified on page 108. Its eigenvaules are denoted by A\; = sg(1 — sx) and we assume
for simplicity that 3 < Resj, <1 (k=1,2). If u is not a cusp form, then the pair (sy, s») has
a special form given in (3.1) on page 75. In the latter case we also make an assumption on s
(defined in (3.1)), namely we require that ==+, 22 ¢ L holds, where the finite set L is defined in
the paragraph above (3.26).

We also fix a function ¢ € C5°(R?) and define a point-pair invariant kernel

M—wﬁ |@—WF>

Imz; - Imw; Im 2o - Imw,

ky(z,w) = k(z,w) =1 (

for every z,w € H?, for which k(z,w) = k(cz,ow) holds for every z,w € H? and for any
o € PSL(2,R)?>. The automorphic kernel K(z,w) is defined by

K(z,w) = Z k(z,~yw).

ve€l'k

This is an automorphic function in both variables.
The main result of this chapter is obtained by the comparison of the results of two different
kind of evaluation of the truncated trace

TAK = K(z,2)u(z) dp(z),
Fa
where A > 0 an arbitrary large enough number. The following terms come from the so-called
geometric trace (calculated in Section 3.1):

Serc= > TS Sype= > T Sae= T,
r} r} r}

v€l' i totally v€el' i totally v€l' k mixed
elliptic hyperbolic
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where the terms above are defined as follows:

T’;B - (QW)ZU(Z’Y)//¢(S(T1’9(7(1)))’5(70270(7(2)))) (H gAk(Tk) Sinhrk) drydrs,

m
k=12

where m., is the order of the centralizer of v, z, is the fixed point of v, §(y¥)) is defined below
(3.5) on page 78, S(r,0) = (2sinhr)%sin® § and the function gy, (r) : [0, 00) — C is the unique
solution of the differential equation

coshr ,
g'(r) = Aey(r)

g'(r) +

sinh r

satisfying the initial condition g(0) = 1,

d¥y d¥s
cos2 9, cos2 ¥y’

7= F0.0) [ [ 06000, NG, 02)) s, (01 (02)

I
ol

here (k) (k)1
N N 19
cos2 Yy,

where N(7*)) is the norm of (¥,

F(0,0) = / w(oW (r17), 0¥ (rqi)) dry dry

(logr1,logra)€Py

rire

(here p € PSL(2,R)? is an element for which ¢~ 'vp is diagonal, see secion 3.1.2, and the set P,
is defined in Proposition 3.1.1) and f, (¥/) is the unique solution of the differential equation

Ak

cos?

F"(9) = F(9) (Ve (—n/2,m/2))

with the initial condition F'(0) =1 and F’(0) = 0, while

Ny ;
. A ar
" = 2m / u(oW (ryi), Q(Q)z)r—ll-
1
P fo, (01) dv
[ o000, S0, 062 P g 1) v i,
1

0 —

INE]

where ~q is the generator of the centralizer C(v) and for the definition of ¢ see the beginning
of section 3.1.3. This latter equatlity holds if the first component of the mixed element ~ is
hyperbolic and the second one is elliptic. In the other possible cases 77" is simply obtained by
interchanging the coordinates in the expressions above.

We denote the contribution of the parabolic conjugacy classes by X, it is given in
Proposition 3.1.10. Recall that we defined the number s and the integer m,, in (3.1) on page 75
in the case when u is not a cusp form. Note that if u is a cusp form or if m,, is odd, then X, is
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simply zero. Otherwise, we have

SH_SQ) 2 1—81 2 1—82 2
Epar = - mu—O 77 \/ 27T2 CK(l - Samu)r 9 r 9 X

/h(’f’l, 7"2)7“17”2 ( 2 ZT) ( 2 Zr) d?"l dT’Q
0

X —s1 . — 39 .
F(QT + @T)F(2T +ir)

0\8

e T (25 ) s () ()

// ™ 7"2 T1T2F(1 281 ha W)F(l o W) drl drg
(512 1 + ZT)F(S22 1 + ir )

where for an S € C and m € Z the function (x(S,m) is the Hecke L-function with the
Grossencharacter A\, («):

Cx(S,m) = Z Am(c) (@) = ‘g STos < .

0#(a)<0k

The last component Y};,., of the geometric trace comes from the hyperbolic-parabolic conjugacy
classes. First of all, we recall that every hyperbolic-parabolic element is conjugate to an element
Ym.o that is given in (3.10) on page 84 (m € Z \ {0}, a € Ok). By Proposition 3.1.3 there are
only finitely many conjugacy classes for a given m. Also, for a fixed m and « we define k as the
smallest positive divisor of m for which @ is an algebraic integer, where ' = ™ — ¢

If w is a cusp form, then ¥, = vaa Tin., Where the terms 7, , are similar to the terms

th above:

—m

w/2 /2

Tpo = F(m,a) / / ¢( E_ £ )fum)wg) 1040,

cos2 9, cos? vy cos2 9, cos2 ¥y’

—7/2 —7/2

where f), are the solutions of the equation (3.8) with fy, (0) = 1 and f} (0) = 0 and

// d?”gd?”l
m Oé r1e — 17— .
! "2 El Ty T

On the other hand, if u is not a cusp form, then the inner integral above is not convergent, and
Yh-p 1s given by Proposition 3.1.7:

=n Z 581,82(7”) Z Cm,a(57mu)

meNT {Ym,a}

+¢ Z Elfsl,lfsg Z Cma - mu)

mEN+ 'Ym a}



CEU eTD Collection

126 A generalization of the Selberg trace formula

w/2 w2

DD A

meN+t {’ym’“}—ﬂ'/Q —7/2

E? d¥; dis
s 1) (cos By)*2 — oL V2
1o // (C082 Yy cos? 192) (cos ¥)™ (cos V) cos? 19 cos2 9,

dy d¥s
cos? ¥y cos2 ¥y’

E? E?
(cos2 9, cos? Uy

) [’yma(ﬁl,ﬁg)

where

—3
(it is expressed in terms of the function g above Proposition 3.1.7), C,,. (s, m,) is defined in
Lemma 3.1.5 on page 94 and

2k oo

dry d
hma(ﬁl,ﬁz //U1 7’16 (5+91) Te( +,92)) Tgﬂ
T2 T
1
17 dry d
//U re (270 pyeil3=02)) radn.
T2 T1

e—2k 1

where k is given for a fixed 7, in Proposition 3.1.4 and the functions U; and U, are defined

by (3.14), (3.15), (3.16) and (3.17) on pages 90 and 90.
Now we turn to the spectral part and fix a complete orthonormal system of automorphic

forms {u;(z) : j > 0}. Recall that the integrals I(u;) and I}(r,m) are defined by
) = [P uE ), pem = [ B2+ i) ) duta)
Fy Fy

Let us define

A Alfs

V(A u,r,m) = 2loger/d(K) [25%:0 (n— + (bl )
s — S

As+2ir Al—s+2ir

st 2 6m“:2m¢1 — s+ 2ir)

d(1/2 —ir,—m) ((5mu=2m77

As—2ir Al s—2ir
1/2 41 Omy=2m : Omy=—omPp———— | | .
+o(l/ —Hr,m)( “2ns—22r+ b 2¢1—s—22r)}

and

j’f(r7 m) = I:?(T’, TTL) - \IJ(A7 u,T, m>7

T ;) = I2uy) — byso2og e /A(R) |6, |- 4 A
wiT w ™ M= J 1+3 2s; 2 — 5 —2s

() ()
1—s7) 1- . . . .
where ¢;y; "Iy, " is the zeroth Fourier coefficient of u; (and hence ¢; is non-zero only if u;

is not a cusp form). The results of the previous section show that the limits

L(r,m) := lim I2(r,m), L(u;) = lim I (u;)

A—o0 A—oo
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exist. Now we are ready to state our final result:

Theorem 3.3.1. With the notations above we have

Zell_‘_zhyp + Emix + Zpar + Ehfp =

i S ™, .S Ty, 14+s m,
:5m: _h o y o5 ' T o
=05 <Z2 4loge 12+410g5>¢( 2 2)
0] 1—s ™, .1—3s Ty, 2—8 my
Om. =0 (2)=h , — ,——
om0\ T e T T Tloge ) O\ T2 2

—I—Zh(r%j),réj))fu(uj)—i-
J

[e.o]

1 ™ ™n
+ h(?‘—l——,r— )[u r,m)dr.
SW\/d(K)loggn;Z / 2loge 2loge ( )
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