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Introduction

The main goal of this work is to develop a generalization of the Selberg trace formula for
the manifold ΓK \H2, where ΓK is the Hilbert modular group for a totally real quadratic field
K (here H denotes the complex upper half-plane). This generalization was made by András
Biró in [1] for Γ \ H, where Γ is a finite volume Fuchsian group. We follow his proof closely
but widely lean on the book [5] as well where the Selberg trace formula is worked out in detail
for finite volume irreducible discrete subgroups of PSL(2,R)n (n ≥ 2). For simplicity, here we
restrict ourselves to the case n = 2 and we will also assume that K has class number 1.

In Chapter 1 we begin by introducing the Hilbert modular group for a totally real quadratic
field K. We give a classification of its elements and also describe its fundamental domain. In the
special case K = Q(

√
5) an alternative fundamental domain was given in [7]. In the second half

of Chapter 1 we prove a sharp lower bound for it that was conjectured in [4]. This proof has a
numerical flavour and in fact it was partly done by computer. However, the applied algorithms
are simple and the argument is formalized so that it can basically be checked without computer.
The omitted computational steps are reduced to the comparison of the magnitude of some
numbers.

In Chapter 2 we continue the preparation for the proof of the trace formula. It describes
a relation between the geometry of the manifold ΓK \ H2 and the spectrum of its invariant
differential operators whose algebra is generated by the Laplacians. For the description of the
spectrum we need to investigate the automorphic forms that are ΓK-invariant eigenfunctions of
the Laplace operators. To describe the continuous spectrum we introduce the Eisenstein series
and shortly list its basic properties that were proved in [5]. Also, some parts of the proof of the
generalized trace formula in [1] rely on estimates proved in [11] related to the spectrum. In the
second part of the chapter we give the two dimensional analogue of these results.

Chapter 3 contains the proof of the trace formula. As usual, we define an automorphic kernel
function K(z, w) in terms of ΓK so that the eigenfunctions of integral operator defined by it are
the same as the eigenfunctions of the Laplacians. Then we evaluate the trace∫

F

K(z, z)u(z) dµ(z),

where F is the fundamental domain of ΓK and following [1] we also include the factor u(z) that
is an eigenfunction of the Laplacians (in fact we replace the eigenfunction 1 by u). The measure

dµ(z) = (y1y2)
−2 dx1 dy1 dx2 dy2

is the product measure on H2 induced by the usual measure on H. Note that this integral does
not necessarily converge, hence we need to "cut" it at some "height" in general. Then, dividing
ΓK into conjugacy classes we compute the geometric trace, and after that we apply the spectral
theorem for a different computation of the integral above obtaining the trace formula that is
stated in Theorem 3.3.1.

C
E

U
eT

D
C

ol
le

ct
io

n



2 Introduction

The methods and computations that follow are undoubtedly quite involved and require the
usage of a large set of notations. Note that we use many notations that are very common in the
literature while almost every specific notation can be found in the List of Symbols (hopefully
making the whole work easier to read).
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Chapter 1

The Hilbert modular group

In this introductory chapter we define and examine a basic object that shows up consistently
throughout this whole work: the Hilbert modular group. Being a discrete subgroup of PSL(2,R)n
for some n ≥ 2 it is a multidimensional analogue of the modular group PSL(2,Z). The action
of PSL(2,R) on the upper half-plane H also provides a coordinate-wise action of PSL(2,R)n
on the product space Hn.

For simplicity we restrict ourselves to the case n = 2 and define the Hilbert modular group
for a totally real extension of Q with degree 2 and class number 1. This makes it possible
for us to give a quite explicit description of the fundamental domain in section 2. In fact we
describe two different fundamental domains: a general one is taken from [15] while for the
field K = Q(

√
5) a different domain is defined in [7]. The reason for this is that in the second

part of the chapter we make a detour and prove a sharp bound for the latter domain that was
conjectured in [4]. The proof that is given in section 4 is a more or less straightforward, though
at some points tedious analysis of certain functions. However, the investigation of the extreme
values leads us to the identification of the totally elliptic elements of the Hilbert modular group
which is done before the proof in section 3. As a byproduct, we easily derive Theorem 1.3.4
that will be useful in Chapter 3.

1.1 Definition and basic properties
In what follows, let Q ≤ K denote a totally real number field of degree 2. Then K is

isomorphic to Q(
√
dK) where dK is a positive square-free integer uniquely determined by the

field K. The notation dK will be fixed. The discriminant of K will be denoted by d(K), i.e.
d(K) = 4dK if dK ̸≡ 1 mod 4 and d(K) = dK if dK ≡ 1 mod 4. Let K(1), K(2) be the two
different embeddings of K into R. If a ∈ K, then let a(k) denote the embedding of a into K(k).
Moreover, let OK be the ring of integers in K and

PSL(2,OK) =

{[
a b
c d

]
∈ SL(2,R) : a, b, c, d ∈ OK

}
/{±1}.

The group of units in OK will be denoted by O×
K , while K× is the multiplicative group of K.

Let H denote the complex upper half-plane. The group PSL(2,R) acts on H in the usual

way, if γ =

[
a b
c d

]
∈ PSL(2,R) and z ∈ H, then

γz =
az + b

cz + d
. (1.1)
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4 The Hilbert modular group

The group PSL(2,R)2 acts then coordinate-wise on H2. For the elements z ∈ H2 we will
often use the notation z = (z1, z2) where zk = xk + iyk ∈ H with xk, yk ∈ R (k = 1, 2). So if
γ = (γ1, γ2) ∈ PSL(2,R)2 and z ∈ H2, then γz = (γ1z1, γ2z2).

Definition 1.1.1. LetK be a number field as above and let us define the group ΓK ≤ PSL(2,R)2
as follows:

ΓK =

{([
a(1) b(1)

c(1) d(1)

]
,

[
a(2) b(2)

c(2) d(2)

])
:

[
a(1) b(1)

c(1) d(1)

]
∈ PSL(2,OK(1))

}
.

This group is called the Hilbert modular group for the field K.

It is known that ΓK is a discrete subgroup of PSL(2,R)2 which acts discontinuously on H2.
The elements of ΓK can and often will be represented by the first coordinates of the pairs in
the definition above, i.e. by a two by two matrix of determinant 1. If σ ∈ PSL(2,R), then [σ]
denotes a matrix which represents σ. In addition, the conjugate of an element a ∈ K will often
be denoted by a′, the norm of this element is denoted by N(a) = aa′, while tr a = a+ a′ denotes
the trace.

We introduce the set K̂ = K ∪ {∞} together with the extended operations of K which
satisfy the following:

a+∞ = ∞ for any number a ∈ K,

a · ∞ = ∞,
a

0
= ∞,

a

∞
= 0 for any number 0 ̸= a ∈ K,

∞ ·∞ = ∞.

The expressions ∞ ± ∞, 0 · ∞ and ∞/∞ remain undefined. The elements of K̂ are called
cusps and ΓK acts on them, this action is defined by the action of the first coordinates of the
elements of ΓK as in (1.1). The cusps λ, µ ∈ K̂ are equivalent if µ = γλ for some γ ∈ ΓK ,
this is denoted by λ ∼ µ. The number of the equivalence classes of the cusps is the class
number of K (see Proposition 20 on page 188 in [15]). In the following we assume that this class
number is one, i.e. OK is a principal ideal domain. This means that the action of ΓK on K̂ is
transitive. We mention that W. Narkiewicz proved in [13] that all real quadratic number fields
with class number one are Euclidean except for at most two fields. Moreover, any exception
would contradict the Generalized Riemann hypothesis by the theorem of P. J. Weinberger,
who showed in [17] that the Generalized Riemann hypothesis implies that every real quadratic
number field with class number one is Euclidean. Still we do not restrict ourselves to Euclidean
rings because of the two possible exceptions. But since the Euclidean case K = Q(

√
5) will be

discussed later in detail, we give here a simple statement about the structure of ΓK when OK

is Euclidean. The proof is just an easy generalization of an analogous claim in [7] and will be
omitted.

Proposition 1.1.1. Let K be a quadratic field extension such that OK is Euclidean and let
β1, β2 be an integral basis in OK. Then ΓK is generated by the elements

S1 =

[
1 β1
0 1

]
, S2 =

[
1 β2
0 1

]
, T =

[
0 −1
1 0

]
, U =

[
ε 0
0 ε−1

]
,

where ε is the fundamental unit of OK.

C
E

U
eT

D
C

ol
le

ct
io

n



1.1 Definition and basic properties 5

The notation ε will also be fixed in the following and it denotes fundamental unit of OK ,
i.e. the generator of the unit group O×

K (modulo the roots of unity) uniquely determined
by the property ε > 1. Note that in the special case when K = Q(

√
5) the number of the

generator matrices can be reduced as in this case ε = 1+
√
5

2
, and with the notation of the previous

proposition if we set S = S1 with β1 = 1, then

Sε :=

[
1 ε
0 1

]
= S−1USU−1.

Moreover, the set {1, ε} is an integral basis in OK , so ΓK = ⟨S, T, U⟩.
In the following we categorise the elements of ΓK . We recall that an element γ ∈ PSL(2,R)

is called elliptic, parabolic or hyperbolic if |tr γ| < 2, |tr γ| = 2 or |tr γ| > 2, respectively. An
element of ΓK is called totally elliptic or totally parabolic, if both of its components are elliptic
or parabolic, respectively. If there are elements of different types among the components, then
this element is called mixed . Note that if one component of an element is parabolic, then so
is the other since in this case the (rational) trace remains unchanged. Hence a mixed element
consists of an elliptic and a hyperbolic component.

Before we turn to the case when every component is hyperbolic we examine the fixed points
of the elements. A totally elliptic element has a single fixed point x ∈ H2. Since ΓK acts
discontinuously on H2, x has a neighborhood U such that the set {γ ∈ ΓK : γU ∩ U ≠ ∅} is
finite. This means that a totally elliptic element must be of finite order. A totally parabolic

element fixes a single point in (R ∪ {∞})2. An element of the form
[
1 α
0 1

]
where α ∈ OK is

parabolic and fixes the point (∞,∞). The coordinates of a parabolic fixed point different from
(∞,∞) can be expressed from the elements of the matrices via addition, multiplication and the
inverse operations, so these points are of the form (α, α′) ∈ K2. Recall that ΓK acts transitively
on K̂. In fact, every number in K can be expressed as a fraction a/c, where a, c ∈ OK , (a, c) = 1,
hence finding an element which takes (∞,∞) to (a/c, a′/c′) ∈ K2 is equivalent to finding a
solution of the equation ad− bc = 1 which is possible because a and c are coprime. It follows
that the parabolic fixed points are (∞,∞) and the points (α, α′) ∈ K2.

A mixed element fixes two points in H× (R∪{∞}) or in (R∪{∞})×H. If every component
of γ ∈ ΓK is hyperbolic, then γ fixes 22 = 4 points in (R ∪ {∞})2. The element γ is called
hyperbolic-parabolic if there is a point among its fixed points that is also fixed by a (totally)
parabolic element. Otherwise it is called a totally hyperbolic element. Finding the fixed point of
a component of an element is equivalent to solving the equation

az + b

cz + d
= z ⇐⇒ cz2 + (d− a)z − b = 0.

The solutions are in K if and only if the discriminant of the quadratic polynomial above is a
square of an element of K. In this case the same is true for the polynomial c′z2 + (d′ − a′)z − b′,
and its roots will be the conjugates of the roots of the previous polynomial. It follows that
an element with two hyperbolic components is hyperbolic-parabolic if and only if any of its
components has a fixed point in K. It also follows that a hyperbolic component of a mixed
element fixes no points in K.

Example 1.1.2. We have already seen an example of a totally parabolic element. It is easy
to construct totally elliptic elements from those in PSL(2,Z). For a mixed element we set
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6 The Hilbert modular group

K = Q(
√
2), here the fundamental unit in OK is ε = 1 +

√
2. Let us consider([

ε ε
2 ε

]
,

[
ε′ ε′

2 ε′

])
∈ ΓK .

Since |2ε| > 2 and |2ε′| < 2 this is a mixed element with fixed points (±
√
ε/2, i

√
−ε′/2). Note

that
√
ε/2 is not in K since it is the root of the polynomial

(2x2 − 1)2 − 2 = 4x4 − 4x2 − 1

which is irreducible over Q (this can easily be seen by determining the decomposition of it into
irreducible components over R).

Since ε is a unit in OK , the element([
ε 0
0 ε−1

]
,

[
ε′ 0
0 ε′−1

])
is also in ΓK and its fixed points are (∞,∞), (0, 0), (∞, 0) and (0,∞), hence this is a hyperbolic-
parabolic element.

1.2 The fundamental domain
In this section we describe the fundamental domain of ΓK . It is given in [15] in the general

situation when Q ≤ K is a totally real number field of arbitrary (finite) degree and of arbitrary
class number. In our situation its description becomes simpler since every cusp is equivalent to
∞. The fundamental domain was constructed in a different way in [7] for the field K = Q(

√
5).

This will also be presented and we will prove a bound for it later that was conjectured in [4].
First we introduce the coordinates at the cusp ∞. We will see that the action of the stabilizer

of ∞ can be given in a simple way in terms of them. It is also possible to define the "distance"
of a point of H2 from a cusp which is a useful notion for the determination of the fundamental
domain. At this point we fix an integral basis {α1, α2} in OK . In fact we choose α1 = 1 and
we set α2 =

√
dK if dK ̸≡ 1 mod 4 while α2 =

1+
√
dK

2
if dK ≡ 1 mod 4. For a point z ∈ H2 we

define the coordinates Xk (k = 1, 2) by the system of linear equations

α1X1 + α2X2 = x1,
α′
1X1 + α′

2X2 = x2,
(1.2)

furthermore, let

Y0 = y1y2 and Y1 =
1

4 log ε
log

y1
y2
.

The equations in (1.2) can be written in the form AX = x where

X =

[
X1

X2

]
, x =

[
x1
x2

]
, A =

[
α1 α2

α′
1 α′

2

]
, (1.3)

and then X = A−1x, that is

X1 =
α′
2x1 − α2x2

α1α′
2 − α′

1α2

and X2 =
−α′

1x1 + α1x2
α1α′

2 − α′
1α2

.
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1.2 The fundamental domain 7

In particular, if dK ̸≡ 1 mod 4, then

X1 =
x1 + x2

2
, X2 =

x1 − x2

2
√
dK

.

On the other hand, if dK ≡ 1 mod 4, then

X1 =
(
√
dK − 1)x1 + (

√
dK + 1)x2

2
√
dK

, X2 =
x1 − x2√

dK
.

We may write Xk = Xk(z) for k = 1, 2 and Yj = Yj(z) for j = 0, 1 to indicate the point z that
the coordinates belong to.

Next we examine the action of the stabilizer of the cusp ∞ on these coordinates. This
stabilizer is denoted by Γ∞ and is given by

Γ∞ =

{([
u α
0 u−1

]
,

[
u′ α′

0 u′−1

])
: u ∈ O×

K , α ∈ OK

}
/{±1}.

Here u = ±εl where l ∈ Z so each element γ ∈ Γ∞ is represented by a matrix of the form

γ =

[
εl α
0 ε−l

]
. (1.4)

The action of such an element does not change the coordinate Y0, i.e. Y0(γz) = Y0(z), moreover,
Y1(γz) = Y1(z) + l. Let us write α = mα1 + nα2 where m,n ∈ Z. If l = 0, then

X1(γz) =
α′
2(x1 + α)− α2(x2 + α′)

α1α′
2 − α′

1α2

= X1(z) +
αα′

2 − α′α2

α1α′
2 − α′

1α2

= X1(z) +m, (1.5)

and similarly

X2(γz) =
−α′

1(x1 + α) + α1(x2 + α′)

α1α′
2 − α′

1α2

= X2(z) +
α1α

′ − α′
1α

α1α′
2 − α′

1α2

= X2(z) + n. (1.6)

As the numbers l, n, m can be chosen independently, it follows that every Γ∞-orbit has a point
in the set

F∞ =

{
z ∈ H2 : −1

2
≤ Y1 <

1

2
; −1

2
≤ X1, X2 <

1

2

}
. (1.7)

Furthermore, if two points of F∞ are on the same orbit, i.e. z = γw for some z, w ∈ F∞ and
γ ∈ Γ∞, then it follows from the transformation rule of Y1 and from −1

2
≤ Y1(z), Y1(w) <

1
2

that
in the matrix representation (1.4) of γ the exponent l must be 0. Then by (1.5) and (1.6) we
get that n = m = 0 (as −1

2
≤ Xk(z), Xk(w) <

1
2

for k = 1, 2).

Definition 1.2.1. Let the group G act on the topological space X . A fundamental domain for
G is a set F ⊂ X that contains exactly one point from each G-orbit.

In view of the previous definition we have already proved the following

Proposition 1.2.1. The set F∞ defined in (1.7) is a fundamental domain for Γ∞ in H2. If
dk ̸≡ 1 mod 4, then

F∞ = {z ∈ H2 : ε−2 ≤ y1/y2 < ε2, −1 ≤ x1 + x2 < 1; −
√
dK ≤ x1 − x2 <

√
dK},
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8 The Hilbert modular group

and if dK ≡ 1 mod 4, then

F∞ =

z ∈ H2 : ε−2 ≤ y1
y2
< ε2,

−
√
dK ≤ (

√
dK − 1)x1 + (

√
dK + 1)x2 <

√
dK ,

−
√
dK/2 ≤ x1 − x2 <

√
dK/2

 .

Note that we will often be a little unprecise about the notion of fundamental domain. Namely,
we may call a set a fundamental domain if it contains more than one point from some orbits
once it differs only in a measure zero set (with respect to the product measure obtained from
the usual measure on H, discussed in more detail in the next chapter) from a set that satisfies
the requirements of the previous definition. This will not affect our results but usually simplifies
the constructions. Let us remark though that the set F∞ is a fundamental domain of Γ∞ in the
strict sense (i.e. in the sense of Definition 1.2.1).

Now we clarify the expression "distance from a cusp". Obviously the hyperbolic metric is
not useful for our purposes as it would give infinite distance. Instead, we say that a point z is
close to the cusp ∞ if Y0(z) is big, or equivalently, if 1/Y0(z) is small. For an arbitrary cusp
λ ∈ K̂ there is a an element γλ ∈ ΓK such that γλ∞ = λ. We define the distance of a point
z ∈ H2 from the cusp λ by

∆(z, λ) = Y0(γ
−1
λ z)−

1
2 .

First of all we note that ∆ is well-defined. Indeed, if for the elements γλ, γ̃λ ∈ ΓK we have
γλ∞ = λ = γ̃λ∞, then γ̃−1

λ γλ ∈ Γ∞ and hence

Y0(γ
−1
λ z) = Y0((γ̃

−1
λ γλ)(γ

−1
λ z)) = Y0(γ̃

−1
λ z).

We mention that the exact value of the exponent −1
2

in the definition of ∆ is irrelevant from
our point of view, but this way we get same notion that is defined in section III.2 of [15], where
the following is proved:

Theorem 1.2.2. A fundamental domain of ΓK is given by the set

F = {z ∈ F∞ : ∆(z,∞) ≤ ∆(z, λ) for every cusp λ ∈ K̂}.

From now on the notation F is fixed for this fundamental domain (at least if it refers to a
subset of H2). The previous theorem and the definition of ∆ gives immediately that

F = {z ∈ F∞ : Y0(γz) ≤ Y0(z) for every γ ∈ ΓK}.

By the coordinate-wise application of the one dimensional formula for the imaginary part of a

point σw where σ ∈ PSL(2,R) and w ∈ H we get for a z ∈ H2 and a γ =

[
a b
c d

]
∈ ΓK the

important relation

Y0(γz) =
Y0(z)

|cz1 + d|2 |c′z2 + d′|2

which will be applied many times without referring to it. One easily derives the following:

Lemma 1.2.3. {z ∈ F∞ : 1 ≤ Y0(z)} ⊂ F .

Proof. Let us fix a z ∈ F∞ for which Y0(z) ≥ 1 holds. We have to show that Y0(γz) ≤ Y0(z)

for every γ ∈ ΓK . Equality holds if γ ∈ Γ∞. Otherwise γ =

[
a b
c d

]
, where a, b, c, d ∈ OK and
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1.2 The fundamental domain 9

c ̸= 0. Then

Y0(γz) =
Y0(z)

|cz1 + d|2 |c′z2 + d′|2
=

Y0(z)

[(cx1 + d)2 + (cy1)2][(c′x2 + d′)2 + (c′y2)2]

≤ Y0(z)

(cy1)2(c′y2)2
=

1

N(c)2Y0(z)
.

As N(c)2 is a positive integer and Y0(z) ≥ 1 we get that Y0(γz) ≤ 1 ≤ Y0(z) and we are
done.

We mention another basic result regarding the fundamental domain. It is shown on page
200 in [15] that there exists a constant CK depending on K such that for every z ∈ H2 there is
a cusp λ such that ∆(z, λ) < CK . In fact CK = 2

√
d(K) can be chosen. If z ∈ F and λ is a

cusp such that ∆(z, λ) < CK , then ∆(z,∞) ≤ ∆(z, λ) < CK . That is, one gets

Lemma 1.2.4. For every z ∈ F we have Y0(z) > 1
4d(K)

.

We make use of the following result later. It is a generalization of Lemma 2.10 in [11].

Lemma 1.2.5. Let z ∈ H2 and Y > 0. We have

#{γ ∈ Γ∞ \ ΓK : Y0(γz) > Y } < 1 +

(
1 + 4ε

√
d(K)

)2
Y 2

.

Proof. We may assume z ∈ F . Every coset different from the trivial one is represented by a

matrix Mc,d =

[
∗ ∗
c d

]
∈ SL(2,OK) where c ̸= 0. The matrices Mc,d and Mc′,d′ represent the

same coset if and only if (c′, d′) = (±εlc,±εld) for some l ∈ Z. So every nontrivial coset can be
represented uniquely by an ideal 0 ̸= (c) ◁ OK and a fraction d/c, where d ∈ OK .

Let γ ∈ Γ∞ \ Γ be a nontrivial element with Y0(γz) > Y , then we have c ̸= 0. Since z ∈ F ,

Y0(z) ≥ Y0(γz) =
Y0(z)

|c(1)z1 + d(1)|2 |c(2)z2 + d(2)|2

holds and hence
∣∣c(1)z1 + d(1)

∣∣ ∣∣c(2)z2 + d(2)
∣∣ ≥ 1 follows.

Since Y0(γz) > Y , this implies Y0(z) > Y and |N(c)| ≤ Y0(z)
− 1

2Y − 1
2 . Note that since z ∈ F ,

we have yk ≥ ε−1√y1y2 > (2ε
√
d(K))−1 for k = 1, 2 by the previous lemma. Hence

(c(1)x1 + d(1))2(c(2))2

4ε2d(K)
< (c(1)x1 + d(1))2(c(2))2y22 ≤ Y0(z)

Y
,

that is, ∣∣∣∣x1 + d(1)

c(1)

∣∣∣∣ < 2ε
√
d(K)Y0(z)

1
2

|N(c)|Y 1
2

.

The same bound holds for
∣∣x2 + d(2)/c(2)

∣∣.
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10 The Hilbert modular group

Now assume that α = d/c and α′ = d′/c′ are different numbers, where c, c′, d, d′ ∈ OK . Then∣∣α(1) − α′(1)∣∣+ ∣∣(α(2) − α′(2))
∣∣ ≥ 2

√
|α(1) − α′(1)| |α(2) − α′(2)|

= 2

√∣∣∣∣d(1)c(1)
− d′(1)

c′(1)

∣∣∣∣ · ∣∣∣∣d(2)c(2)
− d′(2)

c′(2)

∣∣∣∣
= 2

√
|N(c′d− cd′)|
|N(c)N(c′)|

≥ 2√
|N(c)N(c′)|

.

This means that once the absolute value of the norm of c is fixed, then the number of the
possibilities for d/c is at most

(
1 +

4ε
√
d(K)Y0(z)

1
2

|N(c)|Y 1/2
· |N(c)|

)2

<

(
1 + 4ε

√
d(K)

)2
Y0(z)

Y

since Y0(z) > Y . Summing over |N(c)| gives the bound(
1 + 4ε

√
d(K)

)2
Y0(z)

1
2

Y
3
2

≤

(
1 + 4ε

√
d(K)

)2
Y 2

since Y0(z)
1
2 ≤ Y0(z)

1
2 |N(c)| ≤ Y − 1

2 . Adding 1 to take account of Γ∞ we get the claim.

Now we turn to the special case K = Q(
√
5) and shortly describe the fundamental domain

given in [7]. Recall that ΓQ(
√
5) is generated by the elements S, T and U , where

S =

[
1 1
0 1

]
, T =

[
0 −1
1 0

]
, U =

[
ε 0
0 ε−1

]
.

We define three particular sets in H2. The first one is

U = {z ∈ H2 : ε−2 ≤ y2/y1 < ε2}, (1.8)

this is clearly a fundamental domain for the subgroup generated by U . Note that unlike in the
general case we use here the quotient y2/y1 instead of its reciprocal to follow the notations of
[7]. The subgroup generated by T is just a group of order 2 with the fundamental domain

T = {z ∈ H2 : |z1z2| ≥ 1}. (1.9)

Next we construct a fundamental domain for the subgroup N consisting of the totally parabolic

elements of the form
[
1 ν
0 1

]
where ν ∈ OK . The action of an element of this form on the

point z ∈ H2 does not change the values y1 and y2. So for some fixed s1, s2 > 0 N acts on the
set Hs1,s2 = {z ∈ H2 : y1 = s1, y2 = s2}. This set is homeomorphic to R2 and each N -orbit is
a lattice in it. From a fixed orbit we choose exactly one point z such that the function |z1z2|
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1.3 Totally elliptic elements 11

restricted to that orbit takes its minimal value at z. This is possible since every orbit is a
discrete subset of Hs1,s2 . Choosing one point this way from every orbit we obtain the set Ss1,s2 .
Finally, let

S =
⋃

s1,s2>0

Ss1,s2 , (1.10)

this is obviously a fundamental domain for N .
After this preparation we can formulate the following result (for a proof see [7]):

Theorem 1.2.6. The set F = U ∩ T ∩ S is a fundamental domain for ΓQ(
√
5).

Besides this the following lemma was proved in [7]:

Lemma 1.2.7. If z ∈ T ∩ S, then y1y2 > 0.54.

The sharp bound here is
√
5/4 and we will prove this in section 1.4. This is also a lower

bound then in the fundamental domain U ∩ T ∩ S and the minimum is taken at elliptic fixed
points, i.e. at points fixed by totally elliptic elements of ΓQ(

√
5). Before the proof we investigate

the totally elliptic conjugacy classes of ΓK in the next section.

1.3 Totally elliptic elements
The main purpose of this section is to show that there are only finitely many totally elliptic

conjugacy classes in ΓK and to list all of these classes in ΓQ(
√
5). A totally elliptic element of

ΓK can be represented by a matrix A ∈ SL(2,OK) which has finite order. Then all of the
eigenvalues of A are roots of unity, and these are also the roots of the characteristic polynomial
of A. This polynomial has coefficients in OK , so the degree of its roots over Q is at most 4. The
degree of an nth primitive root of unity over Q is φ(n) where φ(n) is the number of integers m
satisfying 1 ≤ m ≤ n with (n,m) = 1. In this case φ(n) is at most 4 and it is easy to see that
the possible values of n are 1, 2, 3, 4, 5, 6, 8, 10 or 12. The corresponding minimal polynomials
over Q are the nth cyclotomic polynomials:

Φ1(x) = x− 1,
Φ2(x) = x+ 1,
Φ3(x) = x2 + x+ 1,
Φ4(x) = x2 + 1,

Φ5(x) = x4 + x3 + x2 + x+ 1 =
(
x2 −

√
5−1
2
x+ 1

)(
x2 +

√
5+1
2
x+ 1

)
,

Φ6(x) = x2 − x+ 1,

Φ8(x) = x4 + 1 =
(
x2 −

√
2x+ 1

) (
x2 +

√
2x+ 1

)
,

Φ10(x) = x4 − x3 + x2 − x+ 1 =
(
x2 −

√
5+1
2
x+ 1

)(
x2 +

√
5−1
2
x+ 1

)
,

Φ12(x) = x4 − x2 + 1 =
(
x2 −

√
3x+ 1

) (
x2 +

√
3x+ 1

)
.

(1.11)

Now either both of the eigenvalues of A are real or they are both non-real and conjugate to
each other. In the first case there are 3 possibilities for the set of the eigenvalues: {1}, {−1} or
{1,−1}. However, for the first two sets the trace of the matrix would be ±2 which is impossible
because A represents a totally elliptic element, whereas in the third case the determinant would
be −1 contradicting A ∈ SL(2,OK).

So the eigenvalues of A are non-real complex numbers, let us denote them by λ and λ. They
are the roots of the characteristic polynomial k(x) of A which has real coefficients, hence k(x) is
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12 The Hilbert modular group

irreducible in R[x] and divides the minimal polynomial of λ over Q in R[x]. As R[x] is a unique
factorization domain and k(x) is a monic polynomial, it must coincide with one of the quadratic
polynomials listed in (1.11). Moreover, both of the eigenvalues have the same order and this is
also the order of the matrix A. Now we have proved the following:

Lemma 1.3.1. Let A ∈ SL(2,OK) represent a totally elliptic element of ΓK. Then A has
order 3, 4, 5, 6, 8, 10 or 12 and the characteristic polynomial of A coincides with one of the monic
quadratic polynomials that divide ΦordA.

Corollary 1.3.2. Let α ∈ ΓK be a totally elliptic element which is represented by the matrix
A ∈ SL(2,OK). Then ordα = ordA if ordA is odd and ordα = ordA/2 if ordA is even.
Hence a totally elliptic element of ΓK has order 2, 3, 4, 5 or 6.

Proof. Assume that the order of a totally elliptic element α is n and let A ∈ SL(2,OK) be
a matrix which represents this element. Then An = ±I and hence A2n = I. It follows that
ordA | 2n. On the other hand αordA is represented by AordA = I, so αordA = 1, which means
that n | ordA | 2n. So n = ordA or n = ordA/2. If ordA is odd then the first equality must
hold. If ordA = 2k is even, then A2k = (Ak)2 = I. Now the equation B2 = I has only two
solutions in SL(2,R) since B is the root of its characteristic polynomial and hence

B2 − trB ·B + detB · I = 2I − trB ·B = 0,

so B = cI for some c ∈ R such that B2 = c2I = I and then c = ±1. But then Ak = −I, and we
get that αk = 1, i.e. ordα = ordA/2. Finally, from the previous lemma we get the possible
values of ordα.

Corollary 1.3.3. Let α ∈ ΓK be a totally elliptic element. If ordα = 4, then K = Q(
√
2). If

ordα = 5, then K = Q(
√
5). Finally, if ordα = 6, then K = Q(

√
3).

Proof. Let A ∈ SL(2,OK) a matrix which represents the element α. If ordα = 4, then by the
previous corollary ordA = 8, and from Lemma 1.3.1 we get that the characteristic polynomial
k(x) of A divides Φ8(x). But each of its quadratic divisors has a coefficient from Q(

√
2), and so

Q(
√
2) ⊂ K, and since [K : Q] = 2 we have in fact K = Q(

√
2).

If ordα = 5, then ordA = 5 or ordA = 10, and if ordα = 6, then ordA = 12. Now as
before, we see that in the first case K = Q(

√
5) and in the second case K = Q(

√
3).

Next we calculate the fixed point of an elliptic element. Such an element is represented by a
matrix

A =

[
a c−1(a(trA− a)− 1)
c trA− a

]
=

[
a −c−1k(a)
c trA− a

]
, (1.12)

where k(x) is the characteristic polynomial of A. Note that c cannot be zero because ∞ is not
fixed by an elliptic element. If z ∈ H2 is the fixed point of A then

az1 − c−1k(a)

cz1 + trA− a
= z1 ⇐⇒ cz21 + (trA− 2a)z1 + c−1k(a) = 0,

that is,

z1 =
2a− trA±

√
(trA− 2a)2 − 4k(a)

2c
=

2a− trA±
√

(trA)2 − 4

2c
.
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1.3 Totally elliptic elements 13

As the imaginary part of z1 is positive, we have in fact

z1 =
2a− trA+ sgn(c)

√
(trA)2 − 4

2c
,

x1 =
2a− trA

2c
, y1 =

√
4− (trA)2

2 |c|
,

(1.13)

where we use the principal square root function, i.e. if z = reiφ with r ≥ 0 and −π < φ ≤ π,
then

√
z =

√
reiφ/2. Similarly,

x2 =
2a′ − (trA)′

2c′
, y2 =

√
4− (trA)′2

2 |c′|
. (1.14)

Every totally elliptic conjugacy class has an element which has a fixed point in F . If A represents
such an element, then by Lemma 1.2.4 we get that

y1y2 =

√
(4− (trA)2)(4− (trA)′2)

4 |N(c)|
>

1

4d(K)

and hence 1 ≤ |N(c)| < 4d(K). Moreover, since ε−2 ≤ y1/y2 < ε2, the quotient |c′/c| is also
bounded from above and from below. Consequently, c and c′ are bounded so we have only
finitely many choices for c. Finally, the coordinates x1 and x2 are bounded too (since z ∈ F )
and then so are a and a′. This means that we have finitely many possible values for a and we
obtain

Theorem 1.3.4. The number of the totally elliptic conjugacy classes in ΓK is finite.

Notice that in fact we described above an algorithm for finding all the totally elliptic
conjugacy classes. Now we apply basically this method to list all such classes in the case
K = Q(

√
5), but instead of F we work with the fundamental domain F defined in Theorem

1.2.6. The field K is fixed for the rest of this chapter and to follow the computations below
one may make use of the following table which contains the exact values of some powers of the
fundamental unit and some relations between them:

ε =
1 +

√
5

2
, ε−1 =

√
5− 1

2
, ε2 =

3 +
√
5

2
, ε−2 =

3−
√
5

2
,

ε3 = 2 +
√
5, ε−3 =

√
5− 2, ε4 =

7 + 3
√
5

2
, ε−4 =

7− 3
√
5

2
,

ε+ ε−1 =
√
5, ε− ε−1 = 1.

There is an element in every conjugacy class which has a fixed point in the fundamental
domain F . Let then the matrix A represent a totally elliptic element with fixed point z ∈ F .
We use the same notations as in (1.12). By Lemma 1.2.7 we have

y1y2 =

√
(4− (trA)2)(4− (trA)′2)

4 |N(c)|
> 0.54,

that is, 1 ≤ |N(c)| < 1/0.54 < 2 which means that the norm of c is ±1, i.e. c is a unit. Then
c = ±εk must hold for some k ∈ Z, and since z ∈ U (where the set U is defined in (1.8)) we
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14 The Hilbert modular group

obtain

ε−2 ≤ y2
y1

= ε2k

√
4− (trA)′2

4− (trA)2
< ε2.

From Corollary 1.3.2, 1.3.3 and Lemma 1.3.1 we conclude that the possible values of trA are 0,
±1 and ±ε±1. If trA = 0 or trA = ±1 then k = 0 or k = −1 follows. If trA = ±ε then√

4− (trA)′2

4− (trA)2
=

√
4− ε−2

4− ε2
=

√
5 +

√
5

5−
√
5
=

√
30 + 10

√
5

20
=

√
3 +

√
5

2
= ε,

and hence k = 0 or −1. Similarly, if trA = ±ε−1 then k is 0 or 1.
If one works with the set F it is easy to give exact bounds for x1 and x2. Instead of this we

use the definition of the set S to determine the possible values of a. Since A−1 fixes z too, we
have

y1y2 = Y0(z) = Y0(A
−1z) =

Y0(z)

|−cz1 + a|2 |−c′z2 + a′|2
=

y1y2

|z1 − a/c|2 |z2 − a′/c′|2

as c is a unit. Then |(z1 − a/c)(z2 − a′/c′)| = 1 follows but since z ∈ S ∩ T and a/c ∈ OK we
get

1 = |(z1 − a/c)(z2 − a′/c′)| ≥ |z1z2| ≥ 1,

and hence |z1z2|2 = 1. In more detail

|z1z2|2 =
[
(2a− trA)2

4c2
+

4− (trA)2

4c2

] [
(2a′ − (trA)′)2

4c′2
+

4− (trA)′2

4c′2

]
= (a2 − (trA)a+ 1)(a′ − (trA)′a′ + 1) = 1,

hence a2 − (trA)a+ 1 is a unit. This means that for some n ∈ Z

a2 − (trA)a+ 1 = ±εn ⇐⇒ a2 − (trA)a+ 1∓ εn = 0

and
a′2 − (trA)′a′ + 1∓ (−1)nε−n = 0.

As a and a′ are real roots of some quadratic polynomials the discriminant of these polynomials
must be non-negative. Thus

(trA)2 − 4± 4εn ≥ 0 and (trA)′2 − 4± (−1)n4ε−n ≥ 0.

As (trA)2 − 4 < 0 and (trA)′2 − 4 < 0 we get that a2 − (trA)a+ 1 is positive and n is even. In
other words, n = 2m for some m ∈ Z and

a2 − (trA)a+ 1− ε2m = 0.

So the possible values of a are

a =
trA±

√
(trA)2 − 4(1− ε2m)

2
.
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1.3 Totally elliptic elements 15

We also have
ε2m ≥ 4− (trA)2

4
and ε−2m ≥ 4− (trA)′2

4
.

If trA is 0 or ±1, then m = 0. In case of trA = ±ε we have

ε2m ≥ 4− ε2

4
=

5−
√
5

8
> −2 +

√
5 = ε−3,

ε−2m ≥ 4− ε−2

4
=

5 +
√
5

8
>

−4 + 4
√
5

8
= ε−1,

so 2m > −3 and 1 > 2m, and hence m = 0 or m = −1. In the latter case we write down the
details of the computation of a:

(trA)2 − 4(1− ε−2) = ε2 − 4 + 4ε−2 = (ε− 2ε−1)2,

and hence for trA = ε we get a = ε±(ε−2ε−1)
2

, i.e. a = 1 or a = ε−1 while for trA = −ε we
obtain a = −1 or a = −ε−1.

Finally, if trA = ±ε−1, then

ε2m ≥ 4− ε−2

4
> ε−1, ε−2m ≥ 4− ε2

4
> ε−3,

hence 2m > −1 and 3 > 2m, and m = 0 or m = 1 follows.
From all this we conclude the following:

Theorem 1.3.5. Let α ∈ ΓQ(
√
5) be a totally elliptic element with a fixed point z ∈ F , and let

A =

[
a c−1(a(trA− a)− 1)
c trA− a

]
be the unique matrix in SL(2,OK) representing α for which a ≥ 0 and if a = 0 then c > 0.
Then the possible values of trA are 0, ±1 and ±ε±1.

If trA = 0, then a = 0 and c = 1 or c = ε−1, so A is one of the following matrices:[
0 −1
1 0

]
,

[
0 −ε
ε−1 0

]
.

If trA = 1, then the possibilities for the pair (a, c) are (0, 1), (0, ε−1), (1, 1), (1,−1), (1, ε−1)
and (1,−ε−1), and A is one of the following matrices:[

0 −1
1 1

]
,

[
0 −ε
ε−1 1

]
,

[
1 −1
1 0

]
,

[
1 1
−1 0

]
,

[
1 −ε
ε−1 0

]
,

[
1 ε

−ε−1 0

]
.

If trA = −1, then a = 0 and c = 1 or c = ε−1, so A is one of the following matrices:[
0 −1
1 −1

]
,

[
0 −ε
ε−1 −1

]
.

If trA = ε, then a = 0, 1, ε or ε−1, while c = ±1 or ±ε−1. Hence the possibilities for the
pair (a, c) are (0, 1), (0, ε−1), (1,±1), (1,±ε−1), (ε,±1), (ε,±ε−1), (ε−1,±1), (ε−1,±ε−1).

If trA = −ε, then the possibilities for the pair (a, c) are (0, 1) and (0, ε−1).
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16 The Hilbert modular group

If trA = ε−1, then a = 0, ε or ε−1 and c = ±1 or c = ±ε, so the possibilities for the pair
(a, c) are (0, 1), (0, ε), (ε,±1), (ε,±ε), (ε−1,±1) and (ε−1,±ε).

Finally, if trA = −ε−1, then a = 0 or 1 and c = ±1 or ±ε, so the possibilities for the pair
(a, c) are (0, 1), (0, ε), (1,±1) and (1,±ε).

The fixed point of the elements listed above are given by (1.13) and (1.14).

We add some remarks here. First note that we did not prove that all the element listed in the
theorem have fixed point in F , and it is in fact not true. It follows from our argument that all
those fixed points are in the set U ∩ T but this does not hold for S. For example, the elements[

1 1
−1 0

]
and

[
0 −1
1 −1

]
have the fixed points

(
−1

2
+

√
3
2
i,−1

2
+

√
3
2
i
)

and
(

1
2
+

√
3
2
i, 1

2
+

√
3
2
i
)
.

These points are on the same N -orbit, so only at most one of them is contained in the set S.
Furthermore, we did not show that all the matrices listed in the theorem represent elements

from different conjugacy classes, and this is also not true. For example, we have[
1 −1
0 1

]−1 [
1 1
−1 0

] [
1 −1
0 1

]
=

[
0 1
−1 1

]
,

and this last matrix represents the same element as
[
0 −1
1 −1

]
.

What we can say is that every totally elliptic conjugacy classes of ΓQ(
√
5) is represented in

the list above at least once. It is not difficult to identify the conjugate elements in this list, but
it is still tiresome work and we will not do it here. At this point we only mention that for two
matrices A and B which represent conjugate elements we have |trA| = |trB| because matrix
conjugation does not change the trace. Also, if two different elements of α, β ∈ ΓK have the
same fixed point, then they cannot be conjugate. For if γ−1αγ = β, then γ has the same fixed
point as α and β, and it is easy to see that in this case they commute and hence α = β follows,
which is a contradiction.

1.4 An estimate on the fundamental domain of ΓQ(
√
5)

In this section the field K = Q(
√
5) is fixed and we recall the definitions of the sets U , T

and S in (1.8), (1.9) and (1.10). Also, we remind that by Theorem 1.2.6 the set F = U ∩ T ∩ S
is a fundamental domain for ΓQ(

√
5). In the following we prove the following claim conjectured

in [4].

Theorem 1.4.1. If z ∈ S ∩ T , then y1y2 ≥
√
5/4.

We are going to estimate the function

fy1,y2(x1, x2) = x21x
2
2 + x21y

2
2 + x22y

2
1 + y21y

2
2 = |z1z2|2

from above on the set Ss1,s2 ∩ T where s1, s2 > 0. For this end we will estimate on the set

P s1,s2
a =

z ∈ H2 : y1 = s1, y2 = s2,
−
√
5

2
≤ x1 − x2 <

√
5

2
,

−1 ≤ (1 + a)x1 + (1− a)x2 < 1

 ,

where a ∈ R is a parameter. This is a parallelogram on the plane {z ∈ H2 : y1 = s1, y2 = s2}
symmetric to the origin. By the definition of Ss1,s2 every upper bound on the latter set is
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1.4 An estimate on the fundamental domain of ΓQ(
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5) 17

clearly an upper bound on the former, since if z ∈ Ss1,s2 ∩ T , then for some ν ∈ OK we have
(z1 + ν, z2 + ν ′) ∈ P s1,s2

a . The parameter a will always be chosen so that 1+ a > 0 and 1− a > 0
will hold. To simplify notation we may write Pa instead of P s1,s2

a .
We will use the notations b = y1y2 and c = y2/y1, then

fy1,y1(x1, x2) = x21x
2
2 + (x21c+ x22c

−1)b+ b2.

The outline of the proof is the following: we always choose the parameter a so that the function
fy1,y2(x1, x2)− b2 takes its maximum on Pa at a certain vertex. Let us denote this maximum
temporarily by g(a, b, c), we will estimate it from above by different expressions depending on c.
To obtain the assertion of Theorem 1.4.1 we will use an inequality of the form

g(a, b, c) ≤ α + βb,

where α, β ∈ R are suitable numbers. So if z ∈ S ∩ T , then because of the definition of T we
have |z1z2| ≥ 1, on the other hand (z1 + ν, z2 + ν ′) ∈ Pa holds for some ν ∈ OK , then by the
definition of S we get

1 ≤ |z1z2|2 ≤ |(z1 + ν)(z2 + ν ′)|2 = fy1,y2(x1 + ν, x2 + ν ′) ≤ g(a, b, c) + b2 ≤ α + βb+ b2.

But then
0 ≤ α− 1 + βb+ b2 (1.15)

holds. The roots of the quadratic polynomial on the right hand side are

−β ±
√
β2 − 4(α− 1)

2
.

By Lemma 1.2.7 b > 1/2, so it is enough to choose α and β so that these roots are real, i.e.

β2 ≥ 4(α− 1), (1.16)

and the smaller root is less than 1/2, then (1.15) can hold only if b is greater than or equal to the
bigger root. Once the latter one is at least

√
5/4 we get the claim of the theorem. Thus, it will

be sufficient to check that these conditions are fulfilled. If (1.16) holds and β is positive, then
the smaller root is negative so it is smaller than 1/2, while the last condition can be formalized
in the following way:

−β +
√
β2 − 4(α− 1)

2
≥

√
5

4
,

4β2 − 16(α− 1) ≥ (
√
5 + 2β)2 = 5 + 4

√
5β + 4β2,

that is,
R(α, β) = 11− 16α− 4

√
5β ≥ 0. (1.17)

Note that (1.17) implies (1.16) so it is enough to check this latter inequality once β > 0.
First we show that it is enough to prove the statement if c ∈ [ε−1, ε]. To this end consider

the map Tn : H2 → H2, (z1, z2) 7→ (εnx1 + iεny1, (ε
n)′x2 + iε−ny2). As (εn)′ = (−1)−nε−n this
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18 The Hilbert modular group

takes the set P s1,s2
a to

TnP
s1,s2
a =

z ∈ H2 :
y1 = εns1
y2 = ε−ns2

,
−
√
5

2
≤ ε−nx1 − (−1)nεnx2 <

√
5

2
−1 ≤ (1 + a)ε−nx1 + (1− a)(−1)nεnx2 < 1

 .

As before, if z ∈ H2, y1 = εns1 and y2 = ε−ns2, then there is an integer ν ∈ OK such that
(z1 + ν, z2 + ν ′) ∈ TnP

s1,s2
a . Indeed, for any ν ∈ OK we have

ε−n (x1 + ν)− (−1)nεn (x2 + ν ′) = ε−nx1 − (−1)nεnx2 + ε−nν − (ε−nν)′. (1.18)

If ε−nν = A+Bε where A,B ∈ Z, then ε−nν − ε−nν = B
√
5 and hence the expression in (1.18)

can be shifted into the interval [−
√
5/2,

√
5/2) by choosing B properly. Similarly

(1 + a)ε−n (x1 + ν) + (1− a)(−1)nεn (x2 + ν ′) =

= (1 + a)ε−nx1 + (1− a)(−1)nεnx2 + (1 + a)ε−nν + (1− a)(ε−nν)′ =

= (1 + a)ε−nx1 + (1− a)(−1)nεnx2 + (1 + a)(A+Bε) + (1− a)(A+Bε′) =

= (1 + a)ε−nx1 + (1− a)(−1)nεnx2 + 2A+B + aB
√
5,

so this value can be shifted into the interval [−1, 1) by choosing A independently from B.
Moreover,

|z1z2|2 = |(Tnz)1(Tnz)2|2 (1.19)

holds for any n ∈ Z.
Let z ∈ S ∩ T an arbitrary point, then c ∈ [ε2k−1, ε2k+1] for some k ∈ Z. There is a ν ∈ OK

such that (z1 + ν, z2 + ν ′) ∈ T−kP
εky1,ε−ky2
a , and if N(z) = N(z1, z2) = |z1z2|2, then by (1.19)

and z ∈ S ∩ T we get

1 ≤ |z1z2|2 ≤ |(z1 + ν)(z2 + ν ′)|2 = N(z1 + ν, z2 + ν ′) = N(Tk(z1 + ν, z2 + ν ′)).

As Tk(z1 + ν, z2 + ν ′) ∈ P εky1,ε−ky2
a and the map Tk does not change the value y1y2, it is enough

to estimate on this parallelogram. In other words, we can and will assume from now on that
c ∈ [ε−1, ε].

1.4.1 Proof in the neighborhood of the endpoints of [ε−1, ε]

The function f takes its maximum on the boundary of the parallelogram Pa, since at every
local minimum or maximum in the interior of Pa the partial derivatives must vanish:

∂1fy1,y2(x1, x2) = 2x1x
2
2 + 2x1y

2
2 = 0,

∂2fy1,y2(x1, x2) = 2x21x2 + 2x2y
2
1 = 0.

As y1 and y2 are positive, this implies that x1 = x2 = 0, and at this point f clearly takes its
minimum. Moreover, since fy1,y2(x1, x2) = fy1,y2(−x1,−x2), it is enough to estimate on the lines
x1 = x2−

√
5
2

and x1 = − 1
1+a

− 1−a
1+a

x2 between the vertices of the parallelogram. Here f depends
on only one variable, say x2 =: x, and we also omit the constant term for now, that is, we are
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1.4 An estimate on the fundamental domain of ΓQ(
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looking for the maximum of the functions

gy1,y2(x) = fy1,y2

(
x−

√
5

2
, x

)
− y21y

2
2

and
hy1,y2(x) = fy1,y2

(
− 1

1 + a
− 1− a

1 + a
x, x

)
− y21y

2
2

on some closed intervals. For the first function gy1,y2(x) the endpoints of this is interval come
from the equations

x−
√
5

2
= − 1

1 + a
− 1− a

1 + a
x; x−

√
5

2
=

1

1 + a
− 1− a

1 + a
x, (1.20)

which means that x ∈
[√

5(1+a)−2
4

,
√
5(1+a)+2

4

]
, while in the case of hy1,y2(x) the first equation in

(1.20) and

x2 +

√
5

2
= − 1

1 + a
− 1− a

1 + a
x2

gives the interval x ∈
[
−
√
5(1+a)−2

4
,
√
5(1+a)−2

4

]
. We are going to show that for an appropriate

choice of the parameter a these functions take their maximum at an endpoint of these intervals.
But in this case it follows from fy1,y2(x1, x2) = fy1,y2(−x1,−x2) that it is enough to consider
the maximum of gy1,y2(x) (because two of the three vertices of the parallelogram that come
into question are symmetrical to the origin). We remind that a will always be chosen from the
interval (−1, 1). The proof of the following propositions will be postponed to Section 1.4.4:

Proposition 1.4.2. The function gy1,y2(x) restricted to the interval
[√

5(1+a)−2
4

,
√
5(1+a)+2

4

]
takes

its maximum at an endpoint of the interval for any a ∈ (−1, 1).

To obtain an analogous result for hy1,y2(x) we must be careful by the choice of a.

Proposition 1.4.3. Let us define the function

Ha(c) :=

(
1− a

1 + a

)2

c+
1

c
− 1

(1 + a)2
.

If Ha(c) ≥ 0, then the function hy1,y2(x) restricted to the interval
[
−
√
5(1+a)−2

4
,
√
5(1+a)−2

4

]
takes

its maximum at an endpoint of the interval.

The parameter a will be a function of c ∈ [ε−1, ε]. We choose different functions on different
subintervals of [ε−1, ε], a constant function will do on the middle intervals, while we have to
be more precautious by the endpoints where we will use linear functions. For these we will
always check the condition Ha(c) ≥ 0. We set a = p(c − ε) + 1√

5
on the interval [ε − δ, ε] for

some p > 0 and δ > 0 such that Ha(c) ≥ 0 holds. Similarly, we set a = p′(c− ε−1)− 1√
5

on the
interval c ∈ [ε−1, ε−1 + η] for some p′ > 0 and η > 0. While a detailed analysis will be made
in the former case, we simply choose p′ = 1 in the latter which makes the computations less
tedious and fortunately works. Let us explain first the case of the right endpoint. Again, the
following proposition is proved in Section 1.4.4 like some others in this section below which are
given here without proof.

C
E

U
eT

D
C

ol
le

ct
io

n



20 The Hilbert modular group

Proposition 1.4.4. If c ∈ [1, ε] and p ∈ [0.24, 0.66], then for a = p(c − ε) + 1√
5

we have
a ∈ (−1; 1) and Ha(c) ≥ 0.

For further simplification in the case of function gy1,y2(x) we substitute w = x−
√
5/4 and

omit the indices y1 and y2. This means that once we Ha(c) ≥ 0 holds we consider the function

g(w) =

(
w2 − 5

16

)2

+

(w −
√
5

4

)2

c+

(
w +

√
5

4

)2

c−1

 b
at the points w = a

√
5−2
4

and w = a
√
5+2
4

(for the detailed computation see the proof of Proposition
1.4.2). Putting these values in the place of w we get the expressions

g1(a, b, c) =

(√
5a+ 2

4

)2

− 5

16

2

+

(√
5a+ 2

4
−

√
5

4

)2

c+

(√
5a+ 2

4
+

√
5

4

)2

c−1

 b,

g2(a, b, c) =

(√
5a− 2

4

)2

− 5

16

2

+

(√
5a− 2

4
−

√
5

4

)2

c+

(√
5a− 2

4
+

√
5

4

)2

c−1

 b.
Now we compute their difference g1(a, b, c)− g2(a, b, c):(√

5a+ 2

4

)2

− 5

16

2

−

(√
5a− 2

4

)2

− 5

16

2

+

+


(√

5a+ 2

4
−

√
5

4

)2

−

(√
5a− 2

4
−

√
5

4

)2
 c+

(√
5a+ 2

4
+

√
5

4

)2

−

(√
5a− 2

4
+

√
5

4

)2
 c−1

 b.

The first term is(√
5a+ 2

4

)2

−

(√
5a− 2

4

)2
(√

5a+ 2

4

)2

+

(√
5a− 2

4

)2

− 10

16

 =

=

√
5a

2
· (2(5a

2 + 4)− 10)

16
=

√
5a(5a2 − 1)

16
,

while the second one is[(√
5a−

√
5

2

)
c+

(√
5a+

√
5

2

)
c−1

]
b =

√
5b

2
[(a− 1)c+ (a+ 1)c−1].
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1.4 An estimate on the fundamental domain of ΓQ(
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Let us introduce the notation

∆a,b,c = g1(a, b, c)− g2(a, b, c) =

√
5a(5a2 − 1)

16
+

√
5b

2
[(a− 1)c+ (a+ 1)c−1].

For every subintervals of [ε−1, ε] that we consider the parameter a will be always set so that the
sign of ∆a,b,c does not change on that interval. Once ∆a,b,c ≥ 0 we need to estimate the value
g1(a, b, c) on that particular interval while in the other case we work with g2(a, b, c). Note that
for a fixed a ∈ (−1, 1) and b > 0.54 ∆a,b,c is a decreasing function of c on the interval [ε−1, ε].

Let us continue the analysis of the case when c is in the neighborhood of ε. Recall that the
parameter a = p(c− ε) + 1√

5
is chosen for some p ∈ [0.24, 0.66] that we specify now. We have

already seen that in this case 1 ± a > 0 and Ha(c) ≥ 0 hold, and we will choose p such that
∆a,b,c will be non-negative. We have the following:

Proposition 1.4.5. If c ∈ [1, ε] and a = p(c− ε) + 1/
√
5 where p = 0.9/

√
5, then ∆a,b,c ≥ 0.

This means that in a neighborhood of ε with the choice a = p(c−ε)+1/
√
5 where p = 0.9/

√
5

the maximum value of the function fy1,y2(x1, x2)− b2 on Pa is g1(a, b, c). Substituting the value
of a in g1(a, b, c) and using the notation q =

√
5p we get that g1(a, b, c) is((

q(c− ε) + 3

4

)2

− 5

16

)2

+

(q(c− ε) + 3

4
−

√
5

4

)2

c+

(
q(c− ε) + 3

4
+

√
5

4

)2

c−1

 b.
This expression can be seen as a function of c with a fixed parameter b, let us denote its value
by g1(b, c).

Without loss of generality we can assume in the following that b < 0.56 (otherwise the claim
of the theorem holds). We will show that on some interval [ε − δ, ε] this function is strictly
increasing. For this it suffices if its derivative is positive and this is true for some δ > 0 small
enough:

Proposition 1.4.6. If c ∈ [1.48, ε] and q = 0.9, then the derivative of g1(b, c) (with respect to
c) is positive.

We are now in the position to finish the first part of the proof. Since g1(b, c) is strictly
increasing on [1.48, ε] we simply estimate it on this interval by the value g1(b, ε):

g1(b, c) ≤
1

16
+

[
ε−4

4
ε+

ε4

4
ε−1

]
b =

1

16
+
b

4
(ε3 + ε−3) =

1

16
+

√
5

2
b.

It remains to check the inequality (1.17) for α = 1
16

and β =
√
5
2

. We have R(α, β) = 0 so (1.17)
holds and the theorem is proved in the case c ∈ [1.48, ε]. We have also proved that equality can
only hold for c = ε.

Now we turn to the case when c is near to the other endpoint of the interval. As we mentioned
before we chose the parameter a = c− ε−1 − 1√

5
if c ∈ [ε−1, ε−1 + δ] for some small positive δ

specified later. Then we have the following:

Proposition 1.4.7. If c ∈ [ε−1; 1] and a = c− ε−1 − 1√
5
, then a ∈ (−1; 1) and Ha(c) ≥ 0 hold.

Proposition 1.4.8. If c ∈ [ε−1, 1] and a = c− ε−1 − 1√
5
, then ∆a,b,c ≤ 0.
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22 The Hilbert modular group

This means that in a neighborhood of ε−1 with the choice of a = c−ε−1−1/
√
5 the maximum

value of the function fy1,y2(x1, x2) − b2 on Pa is g2(a, b, c). If we substitute the value of a in
g2(a, b, c) then we get that this maximum is(√

5(c− ε−1)− 3

4

)2

− 5

16

2

+

(√
5(c− ε−1)− 3

4
−

√
5

4

)2

c+

(√
5(c− ε−1)− 3

4
+

√
5

4

)2

c−1

 b.
Let us denote this expression by g2(b, c), for a fixed b it is a function of c.

Proposition 1.4.9. For a fixed 0 < b < 0.56 the function g2(b, c) is strictly decreasing on the
interval [ε−1; 0.68].

It follows from this that

g2(b, c) ≤ g2(b, ε
−1) =

1

16
+
b

4
(ε4ε−1 + ε−4ε) =

1

16
+

√
5

2
b.

Then we get the same way as before that the theorem holds for c ∈ [ε−1; 0.68] and equality can
hold only if c = ε−1.

1.4.2 Proof on the middle intervals

In this section we prove the theorem in the case c ∈ [0.68, 1.48]. We divide this interval into
subintervals and we fix the constant a on each of them. We will always check the conditions
a ∈ (−1, 1) and Ha(c) ≥ 0. First we analyze Ha(c) as a function of c. Its derivative is

H ′
a(c) =

(
1− a

1 + a

)2

− 1

c2
.

If its sign is constant on an interval, then it is enough to check the sign of Ha(c) at an endpoint
to obtain this value for the whole interval. Similarly, to estimate g1 or g2 it will be sufficient
to do this at the endpoints once their derivative has a constant sign on a subinterval. These
derivatives are

g′1(a, b, c) =

(√
5a+ 2

4
−

√
5

4

)2

−

(√
5a+ 2

4
+

√
5

4

)2

c−2

 b,

g′2(a, b, c) =

(√
5a− 2

4
−

√
5

4

)2

−

(√
5a− 2

4
+

√
5

4

)2

c−2

 b.
As a first example we consider an interval [1, 1 + δ) and set a = 0. As H ′

a(c) is strictly
increasing and H ′

0(1) = 0 it is enough to check the condition Ha(c) ≥ 0 at the left endpoint.
Since H0(1) = 1, we get that Ha(c) ≥ 0 holds if c ∈ [1, 1+ δ]. Let us examine the function ∆a,b,c.
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Its derivative is

∆′
a,b,c =

√
5b

2
[(a− 1)− (a+ 1)c−2],

which is also a strictly increasing function (for c > 0). Since

a− 1− (a+ 1)ε−2 < −(a+ 1)ε−2 < 0,

the function ∆a,b,c is strictly decreasing on [ε−1, ε] for every a ∈ (−1, 1). Hence to show that
∆a,b,c ≤ 0 on an interval it is enough to check this at the left endpoint. This is true for a = 0
and c = 1 since ∆0,b,1 = 0.

It follows that the value g2(a, b, c) is an upper bound for the function fy1,y2(x1, x2)− b2 if
c ∈ [1, 1 + δ]. The derivative of g2(a, b, c) is again increasing (as a function of c) for every
a ∈ (−1, 1) and positive for a = 0 and c = 1, hence g2(0, b, c) is strictly increasing on [1, 1 + δ]
and can be estimated from above by its value at c0 = 1 + δ. Now if z ∈ S ∩ T with c ∈ [1, c0],
then

1 ≤ |z1z2|2 ≤ g2(0, b, c0) + b2,

i.e. 0 ≤ −1 + g2(0, b, c0) + b2. It is enough then if this quadratic polynomial r has real roots
and the smaller one is less than 1/2 (since b > 1/2) while the other one is bigger than

√
5/4.

This is true for c0 = 1.08 so with the choice a = 0 for the subinterval [1, 1.08) the theorem is
proved here. Note that on these subintervals b turns out to be strictly bigger than

√
5/4.

In the next step we increase a as much as possible, that is as long as Ha(c0) ≥ 0, ∆a,b,c0 ≤ 0
and g′2(a, b, c0) > 0 hold. For the estimate of ∆a,b,c0 we examine the sign of (a− 1)c+ (a+1)c−1.
This value is non-positive if and only if (a− 1)c2 + a+ 1 ≤ 0, that is (since a− 1 < 0)

c2 ≥ (1 + a)/(1− a). (1.21)

Then since b > 1/2, we have

∆a,b,c ≤
√
5a(5a2 − 1)

16
+

√
5

4
[(a− 1)c+ (a+ 1)c−1] = D(a, c).

We will choose a such that the function D(a, c) is non-positive. We have to take care also of the
condition (1.21), so a should satisfy the inequality a < (c20 − 1)/(c20 + 1). For practical reasons
(i.e. to make this proof readable) we chose numbers that we can write down easily, we typically
round down to 2 decimal places. This may increase the number of steps of the proof but not
significantly. The value a that we get this way will be denoted by a1. Like in the first step we
increase c0 after this as much as we can to get c1 and the proof of the theorem for c ∈ [c0, c1).
The same procedure provides then the values a2, a3, . . . and c2, c3, . . . until we have cn > 1.48
for some n ∈ N, in which case we stop. We summarize this algorithm in the following:

1. Set a0 = 0 (then H ′
a0
(c) ≥ 0 for c ∈ [1, ε], Ha0(1) ≥ 0, ∆a0,b,1 ≤ 0, g′2(a0, b, 1) > 0) and

n = 0.

2. Choose the maximal cn such that at most the first two digits of cn after the decimal
separator are non-zero and the smaller root of the polynomial −1 + g2(an, b, cn) + b2 is
less that 1/2, while the bigger one is greater than

√
5/4.

3. If cn > 1.48, then stop.

4. n→ n+ 1
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24 The Hilbert modular group

5. Choose the maximal an so that at most the first two digits of an after the decimal separator
are non-zero, furthermore H ′

an(cn−1) ≥ 0, Han(cn−1) ≥ 0, an ≤ c2n−1−1

c2n−1+1
, D(an, cn−1) ≤ 0

and g′(an, b, cn−1) > 0 hold. Continue with step 2.

The algorithm above gives the following values:

a1 = 0.07, c1 = 1.15,

a2 = 0.13, c2 = 1.21,

a3 = 0.18, c3 = 1.27,

a4 = 0.23, c4 = 1.32,

a5 = 0.27, c5 = 1.37,

a6 = 0.3, c6 = 1.41,

a7 = 0.33, c7 = 1.44,

a8 = 0.34, c8 = 1.46,

a9 = 0.36, c9 = 1.488.

This makes the proof complete if c ∈ [1, ε].
Now we examine the other half of the interval and prove the assertion on a subinterval

[c−1, 1). As before we require H ′
a(c−1) ≥ 0 and Ha(c−1) ≥ 0 but now ∆a,b,c ≥ 0 will be expected,

so it will be checked at the right endpoint. We will need the condition

c2 ≤ (1 + a)/(1− a).

Once this is fulfilled we get

∆a,b,c ≥
√
5a(5a2 − 1)

16
+

√
5

4
[(a− 1)c+ (a+ 1)c−1],

so it is enough to show that the right hand side is non-negative at the right endpoint. In
accordance with this we work with the function g1(a, b, c), its derivative is increasing for every
a ∈ (−1, 1). We check that this derivative is negative at 1 (at the right endpoint) and so we can
estimate by g1(a, b, c−1) (by the value at the left endpoint). Hence for z ∈ S ∩ T we have

1 ≤ |z1z2|2 ≤ g1(a, b, c−1) + b2,

so 0 ≤ −1+g1(a, b, c−1)+b
2. We choose c−1 so that the smaller root of the quadratic polynomial

on the right hand side is smaller than 1/2, while the bigger one is greater than
√
5/4.

We begin with a = 0 and looking for c−1. We have already seen that ∆0,b,1 = 0. Now
g1(0, b, 1) < 0 also holds, and for c−1 = 0.92 the other conditions are fulfilled. Then we decrease a
as much as we can so that the conditions c−1 ≤ (1+ a)/(1− a), ∆a,b,c−1 ≥ 0 and g1(a, b, c−1) < 0
hold. We get the value a−1 = −0.08 and continue with searching for the next left endpoit c−2.
We repeat these steps until we get that c−n < 0.68. This way we obtain

a0 = 0 c−1 = 0.92,

a−1 = −0.08 c−2 = 0.86,

a−2 = −0.14 c−3 = 0.82,

a−3 = −0.19 c−4 = 0.78,

a−4 = −0.24 c−5 = 0.75,
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a−5 = −0.27 c−6 = 0.73,

a−6 = −0.3 c−7 = 0.71,

a−7 = −0.32 c−8 = 0.7,

a−8 = −0.342 c−9 = 0.682,

a−9 = −0.365 c−10 = 0.668.

Hence the assertion follows for c ∈ [ε−1, ε] and the proof of the theorem is complete (with the
postponed computations in Section 1.4.4).

1.4.3 The case of equality

It is clear from Theorem 1.4.1 that y1y2 ≥
√
5/4 for every point z ∈ F as it is a subset of

S ∩ T . In this section we shortly analyse the case when equality holds in the inequality above.
Since z ∈ F we have ε−2 ≤ y2/y1 < ε2 and we have seen in the proof above that equality can
hold only if y2/y1 = ε±1. If y2/y1 = ε, then

y1 =
√

(y1y2)(y1/y2) =

√√
5

4
·
√
5− 1

2
=

1

2

√
5−

√
5

2
,

y2 =
√

(y1y2)(y2/y1) =

√√
5

4
· 1 +

√
5

2
=

1

2

√
5 +

√
5

2
.

Following our argument above we see that for some ν ∈ OK the point (z1 + ν, z2 + ν ′) is in
P1/

√
5. As before, we have

1 ≤ |z1z2|2 ≤ |(z1 + ν)(z2 + ν ′)| ≤ g1(
√
5/4, ε) +

5

16
=

1

16
+

5

8
+

5

16
= 1

This forces these values to be equal. That is, the point z can be translated to a vertex of the
parallelogram P1/

√
5 and it is clear from the proof that this vertex is one of the following points:(

ε−2

2
+ i

1

2

√
1 + ε−2,

ε2

2
+ i

1

2

√
1 + ε2

)
or

(
−ε

−2

2
+ i

1

2

√
1 + ε−2,−ε

2

2
+ i

1

2

√
1 + ε2

)
.

By (1.13) and (1.14) we get that these are the fixed points of totally elliptic elements represented
by the matrices

A1 =

[
ε−1 1− ε−1

−1 1

]
and A2 =

[
ε−1 ε−1 − 1
1 1

]
.

If Sν =
[
1 ν
0 1

]
, then z is the fixed point of a totally elliptic element α ∈ ΓQ(

√
5) represented

by a matrix S−1
ν A1Sν or S−1

ν A2Sν and hence it is an elliptic fixed point in F . If α is represented
by the unique matrix

A =

[
a c−1(a(trA− a)− 1)
c trA− a

]
∈ SL(2,OK)
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26 The Hilbert modular group

with the property a ≥ 0 and c > 0 once a = 0, then A = ±S−1
ν A1Sν or A = ±S−1

ν A2Sν and
hence trA = ±ε. Furthermore, A must be contained in the finite list in Theorem 1.3.5.

We get the same way in the case when y2/y1 = ε−1 that z is fixed by a totally elliptic element
α such that tr [α] = ±ε−1. This element is also listed in Theorem 1.3.5. Moreover, every element
with trace ±ε±1 that is listed in this theorem has a fixed point for which y1y2 =

√
5/4 holds.

We have
Corollary 1.4.10. Let z ∈ F , then y1y2 ≥

√
5/4. Equality holds if and only if z is fixed by a

totally elliptic element α ∈ ΓQ(
√
5) with |tr [α]| = ε±1. There are only finitely many points in F

with this property.

1.4.4 Proof of some propositions

In the following we give the missing proofs of some propositions stated in Section 1.4.1:

Proof of Proposition 1.4.2. We consider the function

gy1,y2(x) =

(
x−

√
5

2

)2

x2 +

(
x−

√
5

2

)2

y22 + x2y21

=

(
x−

√
5

2

)2

x2 +

(x− √
5

2

)2

c+ x2c−1

 b,
on the interval

[√
5(1+a)−2

4
,
√
5(1+a)+2

4

]
, where c = y2/y1 and b = y1y2. To simplify notations

we omit the indices y1 and y2 in gy1,y2 . Furthermore, to make the computation easier we
use the substitution w = x −

√
5/4 and we are looking for the maximum of the function

g̃(w) = g(w +
√
5/4) = g(x) on the interval

[
a
√
5−2
4

, a
√
5+2
4

]
. This function is given by the

formula

g̃(w) =

(
w −

√
5

4

)2(
w +

√
5

4

)2

+

(w −
√
5

4

)2

c+

(
w +

√
5

4

)2

c−1

 b

=

(
w2 − 5

16

)2

+

(w −
√
5

4

)2

c+

(
w +

√
5

4

)2

c−1

 b.
Its derivative is

g̃′(w) = 4w

(
w2 − 5

16

)
+ 2b

[(
w −

√
5

4

)
c+

(
w +

√
5

4

)
c−1

]

= 4w3 +

(
2b(c+ c−1)− 5

4

)
w +

b
√
5(c−1 − c)

2
.

Recall that since our initial point z is in the set Sy1,y2 ∩ T we have b > 0.54 by Lemma 1.2.7.
By this and the inequality c + c−1 ≥ 2 we get that the coefficient of w above is positive and
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hence the derivative of g̃ is strictly increasing on R. Thus, it takes the value 0 only once, so
g̃ has only one local extremum, and this must be a local minimum since limw→±∞ g̃(w) = ∞.
This means that independently of y1, y2 and the choice of a the function g̃ and then also g takes
their maximum on the intervals above at one of the endpoints. □

Proof of Proposition 1.4.3. We consider the function

hy1,y2(x) = h(x) =

(
1− a

1 + a
x+

1

1 + a

)2

x2 +

(
1− a

1 + a
x+

1

1 + a

)2

y22 + x2y21

=

(
1− a

1 + a

)2(
x+

1

1− a

)2

x2 +

[(
1− a

1 + a

)2(
x+

1

1− a

)2

c+ x2c−1

]
b

on the interval
[
−
√
5(1+a)−2

4
,
√
5(1+a)−2

4

]
. Let us introduce the notations α = (1 − a)/(1 + a),

β = 1/(2(1− a)) and u = x+ β. Then

h̃(u) = h(u− β) = h(x) = α2(u+ β)2(u− β)2 +
[
α2(u+ β)2c+ (u− β)2c−1

]
b

= α2(u2 − β2)2 +
[
α2(u+ β)2c+ (u− β)2c−1

]
b.

Now

h̃′(u) = 4α2u(u2 − β2) + 2α2(u+ β)bc+ 2(u− β)bc−1

= 4α2u3 + [2b(α2c+ c−1)− 4α2β2]u+ 2βb(α2c− c−1).

Here the coefficient of u3 is positive, and as αβ = 1
2(1+a)

the coefficient of u is

2

(
1− a

1 + a

)2

bc+ 2bc−1 − 1

(1 + a)2
≥
(
1− a

1 + a

)2

c+
1

c
− 1

(1 + a)2
= Ha(c)

since b > 1/2. Now as in the proof of Proposition 1.4.2 we can see the statement is true when
Ha(c) ≥ 0. □

Proof of Proposition 1.4.4. We set a = p(c− ε) + 1√
5

for some parameter p. To fulfill the
condition Ha(c) ≥ 0 it is enough if we have

1

c
− 1

(1 + p(c− ε) + 1√
5
)2

≥ 0. (1.22)

Of course we have to choose p such that 1± a > 0 holds (and then the denominator above does
not vanish). Then (1.22) is equivalent to:

0 ≤
(
1 + p(c− ε) +

1√
5

)2

− c =

(
5 +

√
5

5
+ p(c− ε)

)2

− c
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28 The Hilbert modular group

=

(
5 +

√
5

5

)2

+ p2(c2 − 2εc+ ε2) + 2

(
5 +

√
5

5

)
p(c− ε)− c

= p2c2 +

(
2

(
5 +

√
5

5

)
p− 2εp2 − 1

)
c+ p2ε2 − 2

(
5 +

√
5

5

)
pε+

(
5 +

√
5

5

)2

= p2c2 +

(
2

(
5 +

√
5

5

)
p− 2εp2 − 1

)
c+

(
pε−

(
5 +

√
5

5

))2

.

To fulfill this condition it is sufficient if the discriminant of this last quadratic polynomial is
negative:

0 >

[
2p

((
5 +

√
5

5

)
− εp

)
− 1

]2
− 4p2

(
pε−

(
5 +

√
5

5

))2

= 1− 4p

((
5 +

√
5

5

)
− εp

)
= 4εp2 − 4

(
5 +

√
5

5

)
p+ 1.

The roots of the latter quadratic polynomial are

p1,2 =
4
(

5+
√
5

5

)
±
√

16
(

5+
√
5

5

)2
− 16ε

8ε
=

(
5+

√
5

5

)
±
√

6+2
√
5

5
− 1+

√
5

2

2ε

=

(
5+

√
5

5

)
±
√

7−
√
5

10√
5 + 1

=

(5+
√
5)(

√
5−1)

5
±
√

(7−
√
5)(6−2

√
5)

10

4

=

4
√
5

5
±
√

52−20
√
5

10

4
=

1√
5
±

√
2

4

√
13− 5

√
5

5
.

Every p between these roots is good, in particular we can choose any value in the interval
[0.24, 0.66]. It remains to check that 1±

(
p(c− ε) + 1√

5

)
> 0. If 1 ≤ c ≤ ε, then

1 + p(c− ε) +
1√
5
≥ 1 + (1− ε) +

1√
5
> 2− 1 +

√
5

2
=

3−
√
5

2
> 0

and
1− p(c− ε)− 1√

5
≥ 1− 1√

5
> 0,

so the assertion is proved. □

Proof of Proposition 1.4.5. It is clearly enough to see that
√
5a(5a2 − 1) + 8b[(

√
5a−

√
5)c+ (

√
5a+

√
5)c−1] ≥ 0.
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If q =
√
5p, then

√
5a = q(c− ε) + 1 and the previous inequality can be written as

(q(c− ε) + 1)q(c− ε)(q(c− ε) + 2) + 8b[(q(c− ε) + 1−
√
5)c+ (q(c− ε) + 1 +

√
5)c−1] ≥ 0.

Multiplying by c and using the substitution t = ε− c we get that the left hand side is

f(t) = −qt(−qt+ 1)(−qt+ 2)(ε− t) + 8b[(−qt+ 1−
√
5)(ε− t)2 − qt+ 1 +

√
5].

We are going to show that for an appropriate choice of q the inequality f(t) ≥ 0 holds if
t ∈ [0, ε−1]. First we prove the inequality

φ(t) = (−qt+ 1−
√
5)(ε− t)2 − qt+ 1 +

√
5 ≥ 0

for any t ∈ [0, ε−1] and some q specified later. We rewrite φ(t) in a different form:

φ(t) = (−2ε−1 − qt)(ε2 − 2εt+ t2)− qt+ 2ε

= −2ε− ε2qt+ 4t+ 2εqt2 − 2ε−1t2 − qt3 − qt+ 2ε

= −qt3 + 2(εq − ε−1)t2 + (4− q(ε2 + 1))t

= −t(qt2 + 2(ε−1 − εq)t+ q(ε2 + 1)− 4).

Hence it is enough to show that qt2 + 2(ε−1 − εq)t + q(ε2 + 1) − 4 ≤ 0. The roots of this
polynomial are

t1,2 =
2(εq − ε−1)±

√
4(εq − ε−1)2 − 4q(q(ε2 + 1)− 4)

2q

=
εq − ε−1 ±

√
ε2q2 − 2q + ε−2 − q2(ε2 + 1) + 4q

q

=
εq − ε−1 ±

√
−q2 + 2q + ε−2

q
.

We want to choose a q > 0 such the discriminant −q2 + 2q + ε−2 is positive, one of the roots
above is non-positive and the other one is greater than ε−1. Clearly, for such a q the inequality
φ(t) ≥ 0 will hold on the interval [0, ε−1]. Let us begin with the condition

− q2 + 2q + ε−2 > 0 ⇐⇒ q2 − 2q − ε−2 < 0, (1.23)

the roots of the latter polynomial are 1±
√
1 + ε−2 hence (1.23) holds for 0.53 < q < 1.48 (and

so for every p that comes into question by the earlier results). We also need

εq − ε−1 ≤
√

−q2 + 2q + ε−2,
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30 The Hilbert modular group

and because of the assumption 0 < ε−2 < 0.58 < q both sides are non-negative, and then this is
equivalent to

ε2q2 − 2q + ε−2 ≤ −q2 + 2q + ε−2,

(ε2 + 1)q2 − 4q = q((ε2 + 1)q − 4) ≤ 0,

that is, to q ≤ 4/(ε2 + 1). Finally we need the following:

εq − ε−1 +
√

−q2 + 2q + ε−2

q
≥ ε−1,

(ε− ε−1)q − ε−1 +
√

−q2 + 2q + ε−2 = q − ε−1 +
√

−q2 + 2q + ε−2 ≥ 0.

If q > ε−1, then this holds.
So far we have seen that φ(t) ≥ 0 if 0.3 ≤ p ≤ 0.49, and since b > 1/2 we have

f(t) ≥ −qt(−qt+ 1)(−qt+ 2)(ε− t)− 4t(qt2 + 2(ε−1 − εq)t+ q(ε2 + 1)− 4) = f̃(t).

We will show that for a certain q the following holds for t ∈ (0, ε−1]:

f̃(t)/t = F (t) = q(t− ε)(qt− 1)(qt− 2)− 4(qt2 + 2(ε−1 − εq)t+ q(ε2 + 1)− 4) ≥ 0.

We do this as follows:

F (t) = (qt− εq)(q2t2 − 3qt+ 2)− 4qt2 + 8(εq − ε−1)t+ 16− 4q(ε2 + 1)

= q3t3 − εq3t2 − 3q2t2 + 3εq2t+ 2qt− 2εq − 4qt2 + 8(εq − ε−1)t+ 16− 4q(ε2 + 1)

= q3t3 − (εq3 + 3q2 + 4q)t2 + (3εq2 + 2q + 8(εq − ε−1))t+ 16− 4q(ε2 + 1)− 2εq.

Now

F (0) = 16− 4q(ε2 + 1)− 2εq = 16− (2(5 +
√
5) + 1 +

√
5)q = 16− (11 + 3

√
5)q ≥ 0

holds if and only if

q ≤ 16

11 + 3
√
5
,

and this is true when q ≤ 0.9.
Moreover,

F ′(t) = 3q3t2 − 2q(εq2 + 3q + 4)t+ 3εq2 + 2q + 8(εq − ε−1).

We show that for q = 0.9 this is positive on [0, ε−1], this clearly completes the proof. It is enough
to see that F ′(1) > 0 but F ′(q−1) < 0, since F ′ is a quadratic polynomial with positive leading
coefficient. Indeed,

F ′(q−1) = 3q − 2(εq2 + 3q + 4) + 3εq2 + 2q + 8(εq − ε−1)

= 3q − 2εq2 − 6q − 8 + 3εq2 + 2q + 8(εq − ε−1)

= εq2 − q + 8(εq − ε−1 − 1) = εq2 − q + 8ε(q − 1)
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= q(εq − 1) + 8ε(q − 1) < 0.9 · (ε− 1)− 0.8 · ε = 0.1 · ε− 0.9 < 0,

but

F ′(1) = 3q3 − 2q(εq2 + 3q + 4) + 3εq2 + 2q + 8(εq − ε−1)

= (3− 2ε)q3 + (3ε− 6)q2 − 6q + 8(εq − ε−1) > 0,

what can be checked easily. □

Proof of Proposition 1.4.6. We set q = 0.9 but to make the proof readable we use the letter
q instead of the value. The derivative of g1(b, c) is

g′1(b, c) = 4

((
q(c− ε) + 3

4

)2

− 5

16

)(
q(c− ε) + 3

4

)
· q
4
+

+ b

2(q(c− ε) + 3

4
−

√
5

4

)
· qc
4

+

(
q(c− ε) + 3

4
−

√
5

4

)2

+2

(
q(c− ε) + 3

4
+

√
5

4

)
· q
4c

−

(
q(c− ε) + 3

4
+

√
5

4

)2

· 1

c2

 .
We would like to show that this is positive on an interval [1 + r, ε] for some r ≥ 0. Multiplying
the expression by 16c2 does not change its sign:

16c2g′1(b, c) =
(
(q(c− ε) + 3)2 − 5

)(q(c− ε) + 3

4

)
qc2+

+ b
[
2
(
q(c− ε) + 2ε−2

)
qc3 +

(
q(c− ε) + 2ε−2

)2
c2

+2
(
q(c− ε) + 2ε2

)
qc−

(
q(c− ε) + 2ε2

)2]
.

This is a polynomial in c of degree 5. We define

A1(c) =
(
(q(c− ε) + 3)2 − 5

)(q(c− ε) + 3

4

)
qc2

and

B1(c) = 2
(
q(c− ε) + 2ε−2

)
qc3 +

(
q(c− ε) + 2ε−2

)2
c2

+ 2
(
q(c− ε) + 2ε2

)
qc−

(
q(c− ε) + 2ε2

)2
such that 16c2g′1(b, c) = A1(c) + bB1(c). Since 1 ≤ c ≤ ε we have

B1(c) ≤ 2
(
q(c− ε) + 2ε−2

)
qε3 +

(
q(c− ε) + 2ε−2

)2
ε2

+ 2
(
q(c− ε) + 2ε2

)
qε−

(
q(c− ε) + 2ε2

)2
.
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32 The Hilbert modular group

This is a quadratic polynomial of c but to simplify the computation a little bit we substitute
t = q(c− ε). Then c ∈ [1, ε] ⇔ t ∈ [−qε−1, 0] and the previous expression can be written as

γ1(t) = 2
(
t+ 2ε−2

)
qε3 +

(
t+ 2ε−2

)2
ε2 + 2

(
t+ 2ε2

)
qε−

(
t+ 2ε2

)2
= 2qε3t+ 4qε+ (t2 + 4ε−2t+ 4ε−4)ε2 + 2qεt+ 4qε3 − t2 − 4ε2t− 4ε4

= (ε2 − 1)t2 + (2qε3 + 4 + 2qε− 4ε2)t+ 4q(ε3 + ε) + 4ε−2 − 4ε4

= εt2 + (2qε(ε2 + 1)− 4ε)t+ 4qε(ε2 + 1) + 4ε−2 − 4ε4.

Now
γ1(0)

4ε
= q(ε2 + 1) + ε−3 − ε3 =

q(5 +
√
5)

2
− 4 <

√
5− 3

2
< 0,

while

γ1(−qε−1) = q2ε−1 + q(4− 2q(ε2 + 1)) + 4ε

(
q(5 +

√
5)

2
− 4

)

= q2ε−1 + 4q − q2(5 +
√
5) + 2εq(5 +

√
5)− 16ε

= q(qε−1 + 4) + q(5 +
√
5)(2ε− q)− 16ε

< ε−1 + 4 + (5 +
√
5)(0.1 +

√
5)− 8(1 +

√
5) = 1− 2.4

√
5 < 0,

so γ1(t) is negative on the whole interval [−qε−1, 0]. It follows that B1(c) < 0 for c ∈ [1, ε], and
then

16c2g′1(b, c) = A1(c) + bB1(c) > A1(c) + 0.56B1(c).

Hence it is enough to show that A1(c) + 0.56B1(c) > 0 for c ∈ [1.48, ε]. To avoid the work with
complicated algebraic expressions we do this by the following way. We show that the polynomial
F1(c) = A1(c) + 0.56B1(c) + 8.001 has 5 roots, and therefore if x0 is the biggest root, then F1

must be strictly increasing on the interval [x0,∞). We do all this by giving pairs c1, c2 of real
numbers such that c1 < c2 and the sign of F1(c1) and F1(c2) is different. One checks easily (e.g.
by a computer) that

F1(−14) < 0, F1(−13) > 0, F1(−0.1) < 0, F1(0) > 0, F1(0.1) < 0, F1(0.6) > 0.

Thus the function A1(c) + 0.56B1(c) is strictly increasing for c ≥ 0.6. On the other hand, for
c = 1.48 its value is positive and hence the same is true for c ≥ 1.48. □

Proof of Proposition 1.4.7. First we check that 1± a > 0:

1 + c− ε−1 − 1√
5
≥ 1− 1√

5
> 0,

1− c+ ε−1 +
1√
5
≥ ε−1 +

1√
5
> 0.
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1.4 An estimate on the fundamental domain of ΓQ(
√
5) 33

In the case when c is near to the endpoint ε one may omit a term in Ha(c) to simplify the
computations but now we would lose too much this way. Instead, we work with the function
Ha(c) and show that (

1− a

1 + a

)2

c+
1

c
− 1

(1 + a)2
≥ 0

if c ∈ [ε−1, 1]. Multiplying by (1 + a)2c we get

(1− a)2c2 + (1 + a)2 − c =

(
1− c+ ε−1 +

1√
5

)2

c2 +

(
1 + c− ε−1 − 1√

5

)2

− c

≥
(
ε−1 +

1√
5

)2

c2 − c+

(
1− 1√

5

)2

.

The discriminant of this latter quadratic polynomial is

1− 4

(
ε−1 +

1√
5
(1− ε−1)− 1

5

)2

= 1− 4

(
ε−1 +

1√
5
ε−2 − 1

5

)2

≈ −0.387,

so the polynomial does not have real roots. Since its leading coefficient is positive it takes
positive values for every c, i.e. Ha(c) ≥ 0 holds. □

Proof of Proposition 1.4.8. It is enough to show that
√
5a(5a2 − 1) + 8b[(

√
5a−

√
5)c+ (

√
5a+

√
5)c−1] ≤ 0,

and as a = c− ε−1 − 1√
5
, the left hand side above is

(
√
5(c− ε−1)− 1)

√
5(c− ε−1)(

√
5q(c− ε−1)− 2)+

+ 8b[(
√
5(c− ε−1)− 1−

√
5)c+ (

√
5(c− ε−1)− 1 +

√
5)c−1].

Multiplying by c and substituting t = c− ε−1 we get

f(t) =
√
5t(

√
5t− 1)(

√
5t− 2)(t+ ε−1)+

+ 8b[(
√
5t− 1−

√
5)(t+ ε−1)2 +

√
5t− 1 +

√
5].

We show that f(t) ≤ 0 once t ∈ [0, 1− ε−1]. Note that 1− ε−1 = ε−2. First we check that

φ(t) := (
√
5t− 1−

√
5)(t+ ε−1)2 +

√
5t− 1 +

√
5 ≤ 0 (1.24)

if t ∈ [0, ε−2]. The function φ(t) is a polynomial function of degree 3:

φ(t) = (
√
5t− 2ε)(t2 + 2ε−1t+ ε−2) +

√
5t+ 2ε−1

=
√
5t3 + 2ε−1

√
5t2 + ε−2

√
5t− 2εt2 − 4t− 2ε−1 +

√
5t+ 2ε−1

=
[√

5t2 + 2(ε−1
√
5− ε)t+ (

√
5(ε−2 + 1)− 4)

]
t = φ̃(t)t
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34 The Hilbert modular group

with φ̃(t) =
√
5t2+2(ε−1

√
5− ε)t+(

√
5(ε−2+1)−4). Now φ(0) = 0 and on the interval (0, ε−2]

the sign of φ is the same as the sign of φ̃. One checks that φ̃(0) < 0 and

φ(ε−2) = φ(1− ε−1) = 2
√
5ε−2 − 2 < 0,

so φ̃(t) is negative for t ∈ (0, ε−2] and then so is φ(t), hence (1.24) is proved.
As b > 0.5 we have

f(t) ≤
√
5t(

√
5t− 1)(

√
5t− 2)(t+ ε−1) + 4φ(t) =: f̃(t).

Since f̃(0) = 0, it is enough to show that f̃ ′ is negative on the interval [0, ε−2]. Now the first
term of f̃ is

ψ(t) =
√
5t(

√
5t− 1)(

√
5t− 2)(t+ ε−1)

= (
√
5t2 + ε−1

√
5t)(5t2 − 3

√
5t+ 2)

= 5
√
5t4 + (5

√
5ε−1 − 15)t3 + (2

√
5− 15ε−1)t2 + 2

√
5ε−1t,

and

ψ′(t) = 20
√
5t3 + 15(

√
5ε−1 − 3)t2 + 2(2

√
5− 15ε−1)t+ 2

√
5ε−1,

while

4φ′(t) = 12
√
5t2 + 16(

√
5ε−1 − ε)t+ 4(

√
5(ε−2 + 1)− 4),

so f̃ ′(t) = ψ′(t) + 4φ′(t). One may check that

0.862 ≈ f̃ ′(−0.5) > 0,

−0.875 ≈ f̃ ′(0) < 0,

−3.118 ≈ f̃ ′(ε−2) < 0,

hence the assertion follows (because f̃ ′ is a polynomial function of degree 3 with positive leading
coefficient). □

Proof of Proposition 1.4.9. It is enough to see that the derivative of g2(b, c) is negative. This
derivative is

g′2(b, c) = 4

(√
5(c− ε−1)− 3

4

)2

− 5

16

(√
5(c− ε−1)− 3

4

)
·
√
5

4
+

+ b

2(√
5(c− ε−1)− 3

4
−

√
5

4

)
·
√
5c

4
+

(√
5(c− ε−1)− 3

4
−

√
5

4

)2

+2

(√
5(c− ε−1)− 3

4
+

√
5

4

)
·
√
5

4c
−

(√
5(c− ε−1)− 3

4
+

√
5

4

)2

· 1

c2

 .
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We will show that this function is negative on the interval [ε−1, ε−1 + r] for some r > 0. we
multiply by 16c2, this does not change the sign:

16c2g′2(b, c) =

((√
5(c− ε−1)− 3

)2
− 5

)(√
5(c− ε−1)− 3

4

)
√
5c2+

+ b

[
2
(√

5(c− ε−1)− 2ε2
)√

5c3 +
(√

5(c− ε−1)− 2ε2
)2
c2

+2
(√

5(c− ε−1)− 2ε−2
)√

5c−
(√

5(c− ε−1)− 2ε−2
)2]

.

Like in an earlier proof, we define

A2(c) =

((√
5(c− ε−1)− 3

)2
− 5

)(√
5(c− ε−1)− 3

4

)
√
5c2,

B2(c) = 2
(√

5(c− ε−1)− 2ε2
)√

5c3 +
(√

5(c− ε−1)− 2ε2
)2
c2

+ 2
(√

5(c− ε−1)− 2ε−2
)√

5c−
(√

5(c− ε−1)− 2ε−2
)2
.

From now on we assume that c ∈ [ε−1, 0.68], so c− ε−1 < 0.68− ε−1 < 0.062, and then
√
5(c− ε−1)− 2ε2 < 0,

√
5(c− ε−1)− 2ε−2 < 0,

therefore

B2(c) ≥ 2
(√

5(c− ε−1)− 2ε2
)√

5 · 0.683 +
(√

5(c− ε−1)− 2ε2
)2
ε−2

+ 2
(√

5(c− ε−1)− 2ε−2
)√

5 · 0.68−
(√

5(c− ε−1)− 2ε−2
)2
.

This lower bound is a quadratic polynomial of c. We substitute t =
√
5(c − ε−1), then

c ∈ [ε−1, 0.68] ⇔ t ∈ [0,
√
5(0.68− ε−1)] and the latter expression can be written as

γ2(t) = 2
(
t− 2ε2

)√
5 · 0.683 +

(
t− 2ε2

)2
ε−2 + 2

(
t− 2ε−2

)√
5 · 0.68−

(
t− 2ε−2

)2
= 2 · 0.683

√
5t− 4 · 0.683

√
5ε2 + (t2 − 4ε2t+ 4ε4)ε−2

+ 1.36
√
5t− 2.72

√
5ε−2 − t2 + 4ε−2t− 4ε−4

= −ε−1t2 + (2 · 0.683
√
5− 4 + 1.36

√
5 + 4ε−2)t

+ (4− 4 · 0.683
√
5)ε2 − 2.72

√
5ε−2 − 4ε−4.
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36 The Hilbert modular group

One may check that one of the roots of γ2(t) is greater than 3 and the other one is negative,
and since the leading coefficient is also negative we get that γ(t) is positive on the interval
[0,

√
5(0.68− ε−1)]. It follows that B2(c) > 0 on [ε−1, 0.68] and hence

16c2g′2(b, c) < A2(c) + 0.56B2(c).

To see that this is negative we consider the function F2(c) = A2(c) + 0.56B2(c) + 2.5. This is a
polynomial of degree 5 with positive leading coefficient, and we have that

F2(−0.4) < 0, F2(−0.3) > 0, F2(0) < 0, F2(0.2) > 0,

F2(1.2) > 0, F2(1.3) < 0, F2(3) > 0.

This implies that F2 has a root x1 in [0, 0.2] and another one in [1.2, 1.3] denoted by x2. Further-
more, F2 is positive on (x1, x2), where it has exactly one local maximum taken at the point xm, so
F2 is increasing on [x1, xm], while it is decreasing on [xm, x2]. As F2(0.2) < F2(0.7) < F2(0.8) we
get that xm > 0.7 and hence F2 is increasing on the interval [0.2, 0.7], and so is A2(c)+0.56B2(c).
Moreover, A2(0.7) + 0.56B(0.7) < 0, therefore g′2(b, c) < 0 on the interval [ε−1, 0.68]. □
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Chapter 2

Automorphic forms

In this chapter we introduce the notion of automorphic functions on H2 with respect to the
group ΓK . These are complex valued functions that are invariant under the action of ΓK .

In the first section we examine the Fourier expansion of some special automoprhic fuctions,
the so-called automorphic forms. These are smooth eigenfunctions of the Laplace operators, and
also, certain restrictions on their growth are made. We derive basic estimates for them with
special emphasis on square-integrable forms.

The Eisenstein series are introduced in the second section. These special examples of
automophic forms have an essential role in the spectral decomposition of square-integrable
automorphic functions (see Theorem 2.2.10). This section is basically a short summary of
Chapter II of the book [5], though minor complements are added.

After that we define the automorphic kernel functions that are crucial in the remaining
part of this work. In the last two sections further preparation is made for the next chapter:
Proposition 7.2 and the formula (8.27) of [11] are generalized and some related results are given.

We remark that the results and estimates that are obtained in this chapter are not necessarily
the best possible ones. Still, they provide sufficient tools for the work in Chapter 3.

2.1 Fourier expansion of automorphic forms
A function f : H2 → C is called an automorphic function with respect to the Hilbert modular

group ΓK if it is invariant under the action of ΓK , that is, f(γz) = f(z) holds for every z ∈ H2

and γ ∈ ΓK .
A linear operator L acting on a vector space of functions f : H2 → C is said to be invariant

if it commutes with the action of the group PSL(2,R)2, that is, if L(f(σz)) = (Lf)(σz) holds
for every σ ∈ PSL(2,R)2. The Laplace operators

∆k = y2k

(
∂2

∂x2k
+

∂2

∂y2k

)
, (k = 1, 2)

act on the space of smooth automorhpic functions and they form a generating system in the
algebra of the invariant differential operators on this space. An automorphic form u is a smooth
automorphic function which is an eigenfunction of the Laplacians, that is, for which the equations

(∆k + λk)u = 0
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38 Automorphic forms

hold with some λk ∈ C (k = 1, 2). Let B(ΓK \ H2) denote the space of bounded smooth
automorphic functions, and

D(ΓK \H2) := {f ∈ B(ΓK \H2) : ∆kf ∈ B(ΓK \H2), k = 1, 2}.

Then D(ΓK \H2) is dense in L2(ΓK \H2), i.e. in the Hilbert space of the automorphic functions
that are of square-integrable on F with respect to the measure

dµ(z) = (y1y2)
−2 dx1 dy1 dx2 dy2,

which is the product measure on H2 obtained from the usual measure y−2dx dy on the hyperbolic
plane H derived from the Poincaré differential ds = y−1 |dz|.

The Laplacians are symmetric operators on D(ΓK \H2) and −∆k is non-negative. Hence by
Friedrichs’ theorem they have a unique self-adjoint extension to L2(ΓK \H2). It follows also
that the Laplace eigenvalues λk = sk(1− sk) of an automorphic form u ∈ D(ΓK \H2) are real
and non-negative. Therefore, either sk = 1

2
+ irk for an rk ∈ R or 0 ≤ sk ≤ 1 (k = 1, 2).

If u is an automorphic form, then it is invariant under the action of the translation operator
Tαu = u(z1 + α, z2 + α′) for any α ∈ OK . It is well known that the set

LK := {(α, α′) : α ∈ OK} ⊂ R2

is a discrete additive subgroup of R2 of rank 2, i.e. a lattice. So for any fixed y1, y2 > 0 the
function uy1,y2 : R2 → R2 defined by uy1,y2(x1, x2) := u(x1 + iy1, x2 + iy2) is a smooth function
which is invariant under translations by the elements of LK , hence it has the Fourier expansion

u(z) =
∑
l∈L∗

K

ϕ(y, l)e2πi<l,x>,

where x = (x1, x2), y = (y1, y2) and L∗
K = {v ∈ R2 : ⟨v, w⟩ ∈ Z for any w ∈ LK} is the dual

lattice of LK . The elements of L∗
K can be given in terms of LK :

Proposition 2.1.1. If Λ = A(Zn) ⊂ Rn is a lattice, where A ∈ GL(Rn), then its dual lattice is
given by Λ∗ = (A−1)T (Zn).

Proof. If v ∈ Λ′ = (A−1)T (Zn), then v = (A−1)Tu1 for some u1 ∈ Zn. Similarly, for a w ∈ Λ one
has w = Au2 for some u2 ∈ Zn, hence

⟨v, w⟩ =
〈
(A−1)Tu1, Au2

〉
=
〈
u1, A

−1Au2
〉
= ⟨u1, u2⟩ ∈ Z,

so Λ′ ⊂ Λ∗.
On the other hand, assume that v ∈ Λ∗. If v′ = ATv and u ∈ Zn arbitrary, then

⟨v′, u⟩ =
〈
v′, A−1Au

〉
= ⟨v, Au⟩ ∈ Z,

hence v′ ∈ Zn must hold and then v = (A−1)Tv′ ∈ Λ′.

Since LK = A(Z2), where A is defined in (1.3) on page 6, we can give the elements of L∗
K

explicitly. They are of the form

(l1, l2) =
1√
d(K)

(n−mβ′,−n+mβ),
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2.1 Fourier expansion of automorphic forms 39

where n,m ∈ Z and β =
√
dK if dK ≡ 2, 3 (mod 4), and β = 1+

√
dK

2
if dK ≡ 1 (mod 4). In other

words,
L∗
K = {((ω−1l), (ω−1l)′) : l ∈ OK}, (2.1)

where ω = 2
√
dK if dK ≡ 2, 3 (mod 4), and ω =

√
dK if dK ≡ 1 (mod 4).

For a number α ∈ K and a lattice Λ ⊂ R2 we define

αΛ = {(αl1, α′l2) : (l1, l2) ∈ Λ}.

From (2.1) we infer that uL∗
K = L∗

K for any u ∈ O×
K .

The Fourier coefficients of an automorphic form can be expressed by means of the modified
Bessel function of the second kind, denoted by Kν(z) (see Theorem 5.1 in [16]):

Theorem 2.1.2. Let u be an automorphic form with Lapalace eigenvalues sk(1 − sk) which
satisfies the growth condition u(z) = o(e2πyk) as yk → ∞ (k = 1, 2). Then u admits a Fourier
expansion of the form

u(z) =
∑
l∈L∗

K

al(y)e
2πi<l,x>, (2.2)

where
al(y) = cl

√
y1y2Ks1−1/2(2π |l1| y1)Ks2−1/2(2π |l2| y2)

for l ̸= 0, while a0(y) is the linear combination of ys11 y
s2
2 , ys11 y

1−s2
2 , y1−s11 ys22 and y1−s11 y1−s22 , except

for the case s1 = s2 =
1
2
, when a0(y) is the linear combination of (y1y2)

1
2 and log(y1y2)(y1y2)

1
2 .

In the following we always assume that an automorphic form u satisfies the growth condition
of Theorem 2.1.2 and hence admits the Fourier expansion (2.2). Since u is invariant under the

action of the element ρ =
[
ε 0
0 ε−1

]
, we have

u(z) = u(ρz) = a0(ε
2y1, ε

−2y2) +
∑

l∈L∗
K\0

al(ε
2y1, ε

−2y2)e
2πi<(l1,l2),(ε2x1,ε−2x2)>

= a0(ε
2y1, ε

−2y2) +
∑

l∈L∗
K\0

cl
√
y1y2Ks1−1/2(2π

∣∣ε2l1∣∣ y1)Ks2−1/2(2π
∣∣ε−2l2

∣∣ y2)×
× e2πi<(ε2l1,ε−2l2),(x1,x2)>.

As ε2L∗
K = L∗

K and the Fourier coefficients are determined uniquely, we get

Proposition 2.1.3. Let u be an automorphic form with Fourier expansion (2.2). Then cε2l = cl
for every l ∈ L∗

K \ 0 (where ε2l = (ε2l1, ε
−2l2)).

We also have that a0(y1, y2) = a0(ε
2y1, ε

−2y2). One may deduce from this by a calculation
that if s1 ̸= 1

2
̸= s2 holds, then only two of the four terms mentioned in the theorem can occur

in a0(y) except for in at most countably many possible cases. In the following we choose the
notation so that

Re s1,Re s2 ≥
1

2
is assumed

unless it is told otherwise, and in the important cases a0(y) = ηys11 y
s2
2 + ϕy1−s11 y1−s22 will always

hold for some η, ϕ ∈ C, hence from now on we disregard other cases. The notations η and ϕ will
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40 Automorphic forms

be fixed and (at least if they refer to complex numbers) they will always denote the coefficients
in a0(y).

Assume that a0(y) is nonzero. Then a0(y1, y2) = a0(ε
2y1, ε

−2y2) gives

ηε2(s1−s2)ys11 y
s2
2 + ϕε2(s2−s1)y1−s11 y1−s22 = ηys11 y

s2
2 + ϕy1−s11 y1−s22 . (2.3)

We handle the case when η ̸= 0, the case when ϕ ̸= 0 is similar. We multiply (2.3) by ys1−1
1 ys2−1

2

to get
ηε2(s1−s2)y2s1−1

1 y2s2−1
2 + ϕε2(s2−s1) = ηy2s1−1

1 y2s2−1
2 + ϕ,

(ε2(s1−s2) − 1)ηy2s1−1
1 y2s2−1

2 = ϕ(1− ε2(s2−s1)).

The right hand side of the last equation is constant hence so is the left hand side. If at least one
of s1 and s2 is not 1/2 then ε2(s1−s2) = 1 must hold. Also, if s1 = s2 = 1/2, then ε2(s1−s2) = 1
holds anyway. We have

Proposition 2.1.4. Let u be an automorphic form with Lapalace eigenvalues sk(1 − sk) for
k = 1, 2. If the zeroth Fourier coefficient of u is nonzero, then log ε(s1 − s2) ≡ 0 modulo πi. In
other words,

(s1, s2) =

(
s+

πim

2 log ε
, s− πim

2 log ε

)
,

for s = s1+s2
2

and some m ∈ Z.

The dominant term of the Fourier expansion is the zeroth coefficient. To estimate the
remaining part we need the asymptotic behavior of the Bessel function Kν(y). It is known that

Kν(y) =

(
π

2y

) 1
2

e−y

(
1 +O

(
1 + |ν|2

y

))
(2.4)

for y > 1 + |ν|2 (see formula (B.36) in [11]). First we use this to derive an upper bound for the
Fourier coeffitients of an automorphic form u. By (2.1) and Proposition 2.1.3 we have

u(z)− a0(y) =
∑

0̸=(l)◁OK

(clSl(z) + cεlSεl(z) + c−lS−l(z) + c−εlS−εl(z)) , (2.5)

where for an l ∈ OK we set cl = c(lω−1,(lω−1)′) and Sl(z) is

∞∑
k=−∞

√
y1y2Ks1− 1

2
(2πε2k

∣∣lω−1
∣∣ y1)Ks2− 1

2
(2πε−2k

∣∣(lω−1)′
∣∣ y2)e2πi(ε2klω−1x1+ε−2k(lω−1)′x2) (2.6)

for every 0 ̸= l ∈ OK . As we sum over ideals, we may choose l so that ε−2 ≤ |l| / |l′| < ε2 holds.
As the Fourier series converges absolutely, we may drop some terms in (2.6) and keep only those
ones where k = 0, which gives that the sum∑

0̸=(l)◁OK

ε−2≤|l|/|l′|<ε2

|cl|
√
y1y2

∣∣∣Ks1− 1
2
(2π

∣∣lω−1
∣∣ y1)Ks2− 1

2
(2π

∣∣(lω−1)′
∣∣ y2)∣∣∣

converges for every y1, y2 > 0, hence the sequence of the terms tends to 0 if |N(l)| → ∞.
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2.1 Fourier expansion of automorphic forms 41

Let us fix a small δ > 0 and set y1 = y2 =
δ
√
d(K)

4πε
. As

ε−1
√

|N(l)| ≤ |l| , |l′| < ε
√

|N(l)| (2.7)

by our choice, (2.4) gives that if the absolute value of the norm of l is big enough, then

√
y1y2

∣∣∣Ks1− 1
2
(2π

∣∣lω−1
∣∣ y1)Ks2− 1

2
(2π

∣∣(lω−1)′
∣∣ y2)∣∣∣≫ e−

δ
2ε

|l|e−
δ
2ε

|l′| > e−δ
√

|N(l)|,

therefore

cl ≪ eδ
√

|N(l)| (2.8)

holds, where the implied constant depends on u. One can see this for cεl, c−l and c−εl similarly.
We will need an upper bound for Kν(y) also in those cases when y is small. The following

statement was formulated in this form by András Biró.

Lemma 2.1.5. Assume that 1
2
≤ Re s ≤ B for some constant B > 0. Then there are constants

C > 0 and d > 0 such that
Ks− 1

2
(y) ≪ e−dy

holds whenever y > C |s|, and the implied constant depends on B and C. On the other hand,
we have

Ks− 1
2
(y) ≪

(
|s|
y

)Re s+ 1
2

e−
π
2
|s|

for any y > 0, where the implied constant depends on B.

The first estimate follows easily from the the integral representation

Kν(z) = π
1
2Γ(ν +

1

2
)−1
(z
2

)ν ∫ ∞

1

(t2 − 1)ν−1/2e−tz dt

while for the second estimate one can use the representation

Kν(z) = π− 1
2Γ(ν +

1

2
)
(z
2

)−ν ∫ ∞

0

(t2 + 1)−ν−1/2 cos(tz) dt

and integration by parts. Note that these formulae hold if Re z > 0 and Re ν > −1/2.

Proposition 2.1.6. Let u be an automorphic form with Laplace eigenvalues sk(1 − sk) that
satisfies the growth condition u(z) = o(e2πyk) for k = 1, 2. If y2 is bounded from below by a
positive costant, then u(z)− a0(y) = O(y−Re s1

1 ) as y1 → ∞ (where a0(y) is the zeroth Fourier
coefficient of u). The implied constant depends on the field K, the function u and the lower
bound on y2. An analogous statement holds if we replace the roles of y1 and y2.

Proof. We only prove the first statement, the second one is similar. Assume that y2 is bounded
from below by B. We use (2.5) and hence first estimate Sl(z) (defined in (2.6)).

As above, we may assume that ε−2 ≤ |l| / |l′| < ε2 and hence (2.7) hold. Now

2πε−2k
∣∣(lω−1)′

∣∣ y2 ≥ ε−1
√
N(l)√

d(K)
Bε−2k ≥ ε−1B√

d(K)
ε−2k ≥ C|s2|
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42 Automorphic forms

holds if
ε2k ≤ B

εC|s2|
√
d(K)

.

Here C is the constant from the previous lemma. On the other hand, if this latter inequality
does not hold, then

2πε2k|lω−1|y1 >
ε−1
√
N(l)By1

εC|s2|d(K)
≥ By1
ε2C|s2|d(K)

≥ C|s1|

is true once
y1 >

ε2C2|s1s2|d(K)

B
.

So let us set

N := log

(
B

εC|s2|
√
d(K)

)
/(2 log ε),

and if k ≥ N , then the previous lemma gives

Ks1− 1
2
(2π

∣∣lω−1
∣∣ ε2ky1)Ks2− 1

2
(2π

∣∣(lω−1)′
∣∣ ε−2ky2) ≪

≪ e−dε
2k|l|y1

(
ε2k

|l′|y2

)Re s2+
1
2

≪ e−d
′ε2k

√
|N(l)|y1

(
ε2k

y2

)Re s2+
1
2

where the implied constant depends on u, while if k < N , then

Ks1− 1
2
(2π

∣∣lω−1
∣∣ ε2ky1)Ks2− 1

2
(2π

∣∣(lω−1)′
∣∣ ε−2ky2) ≪

≪
(
ε−2k

|l|y1

)Re s1+
1
2

e−dε
−2k|l′|y2 ≪

(
ε−2k

y1

)Re s1+
1
2

e−d
′ε−2k

√
|N(l)|y2 .

As
√
N(l)y1 is bounded from below by a positive constant, the exponential factor absorbs the

power of ε2k in the first estimate. The analogous claim holds in the second estimate as well
since

√
N(l)y2 is also bounded from below. We obtain that

Sl(z) ≪
∑
k≥N

y
1
2
1 y

−Re s2
2 e−d

′′ε2k
√

|N(l)|y1 +
∑
k<N

y−Re s1
1 y

1
2
2 e

−d′′ε−2k
√

|N(l)|y2

Now we use that if k ≥ N , then ε2k
√
N(l) is bounded from below while if k < N , then

ε−2k
√

|N(l)| is bounded from below, and we can estimate from above by

B−Re s2
∑
k≥N

e−d3ε
2k
√

|N(l)|y1 + y−Re s1
1

∑
k<N

e−d
′′ε−2k

√
|N(l)|y2 .

We rewrite the first sum as
∑∞

k=0 e
−d3ε2⌈N⌉ε2k

√
|N(l)|y1 . Since k ≪ ε2k for a positive k, we obtain

∞∑
k=0

e−d3ε
2⌈N⌉ε2k

√
|N(l)|y1 ≪ e−d4ε

2⌈N⌉
√

|N(l)|y1
∞∑
k=0

(e−d4ε
2⌈N⌉

√
|N(l)|y1)k

= e−d4ε
2⌈N⌉

√
|N(l)|y1 1

1− e−d4ε
2⌈N⌉

√
|N(l)|y1

≪ e−d5
√

|N(l)|y1
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2.1 Fourier expansion of automorphic forms 43

since ε2⌈N⌉ and
√

|N(l)|y1 is bounded from below by a positive constant.
Similarly,

∑
k<N

e−d
′′ε−2k

√
|N(l)|y2 =

∑
k<⌈N⌉

e−d
′′ε−2k

√
|N(l)|y2 =

∞∑
k=1

e−d
′′ε2⌈N⌉ε2k

√
|N(l)|y2

≪ e−d6ε
2⌈N⌉

√
|N(l)|y2 1

1− e−d4ε
2⌈N⌉

√
|N(l)|y1

≪ e−d7
√

|N(l)|,

and we summarize this in

Sl(z) ≪ e−d
√

|N(l)|y1 + y−Re s1
1 e−d

′
√

|N(l)| ≪ y−Re s1
1 e−c

√
|N(l)|. (2.9)

We have seen in (2.8) that cl ≪ eδ
√

|N(l)| holds for every δ > 0, hence the right hand side
of (2.9) is in fact an upper bound for clSl(z) (with different constants of course). The same
argument applies for the terms cεlSεl(z), c−lS−l(z) and c−εlS−εl(z) in (2.5), hence

u(z)− a0(y) ≪ y−Re s1
1

∑
0̸=(l)◁OK

e−c
√

|N(l)| = y−Re s1
1

∞∑
n=1

ane
−c

√
n

where an is the number of ideals (l) with N((l)) = |N(l)| = n. This number can be expressed
as a sum

∑
b|n χd(K)(b), where χd(K) is a quadratic character modulo d(K) (see [12], Section 9.3

and 9.5). This means that |an| ≤ τ(n), where τ(n) denotes the number of the divisors of n. It
is known that τ(n) ≪δ n

δ for any δ > 0 (see e.g. [8], Chapter XVIII) and hence

u(z)− a0(y) ≪ y−Re s1
1

∞∑
n=1

nδe−c
√
n ≪ y−Re s1

1

∞∑
n=1

e−c
′√n ≪ y−Re s1

1

if y1 > M for some M > 0. The proof shows that the constant M and the implied constant in
the estimate above depends on the field K, u and the lower bound on y2.

It follows from the previous proposition that once an automorphic form satisfies the growth
condition u(z) = o(e2πyk) it will be automatically of polynomial growth. We remark that by
following the proof of Lemma 2.8.6 in [3] one easily gets a better upper bound for the Fourier
coefficients than the trivial bound (2.8). Namely, if u(z) = O(yαk ) for some α ≥ 0 and k = 1, 2,
then cl = O(|N(l)|

α+1
2 ) for every l ∈ OK \ {0} (where the constant depends on the field K and

u).
We will investigate now the automorphic forms in the space L2(ΓK \H2). Since they are

square integrable on the fundamental domain F , it follows that if their zeroth Fourier coefficient
is nonzero, then it must be of the form ϕy1−s11 y1−s22 , where 1

2
< s1, s2 ≤ 1. Now Proposition

2.1.4 gives that s1 = s2 must hold in this case. The automorphic forms with vanishing zeroth
coefficient are called cusp forms. It is known that Re sk = 1

2
for a cusp form. To a further

analysis we need the following

Lemma 2.1.7. If l ∈ L∗
K, then∫∫

− 1
2
≤X1,X2<

1
2

e2πi<l,x> dx1 dx2 =

{ √
d(K), if l = 0,

0 otherwise.
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44 Automorphic forms

Proof. It can easily be checked by a computation.

Now suppose that u ∈ L2(ΓK \H2) is a non-constant automorphic form with eigenvalues
sk(1− sk), where Re sk ≥ 1/2 (k = 1, 2). We give a two dimensional analogue of the argument
in the proof of Theorem 3.2 in [11]. We are going to estimate u in terms of Y0 = y1y2 whenever
B1 <

y1
y2
< B2 holds for some constants 0 < B1 < 1 and 1 < B2. Note that this implies

B1y2 < y1 < B2y2 and B−1
2 y1 < y2 < B−1

1 y1. By the previous lemma we get

|a0(y)|2 +
∑

l∈L∗
K\0

|al(y)|2 =
1√
d(K)

∫∫
− 1

2
≤X1,X2<

1
2

|u(z)|2 dx1 dx2, (2.10)

where a0(y) and al(y) are the Fourier coefficients of u given in Theorem 2.1.2. The formula
above is in fact Parseval’s identity. Now we integrate both sides of (2.10) over

P (A) = {−1

2
≤ Y1 <

1

2
, Y0 ≥ A}

with respect to the measure dy1 dy2
y21y

2
2

= 2 log ε dY0
Y 2
0
dY1. Note that y1 = Y

1
2
0 ε

2Y1 and y2 = Y
1
2
0 ε

−2Y1 ,
hence the integral of the left hand side is

2 |ϕ|2 log ε A
1−(s1+s2)

s1 + s2 − 1
+

+ 2 log ε
∑

l∈L∗
K\0

|cl|2
∞∫
A

1
2∫

− 1
2

Y0K
2
s1− 1

2
(2π |l1|Y

1
2
0 ε

2Y1)K2
s2− 1

2
(2π |l2|Y

1
2
0 ε

−2Y1) dY1
dY0
Y 2
0

. (2.11)

Here the first term comes from the integral of the zeroth coefficient, and if u is a cusp form,
then this is simply 0 since ϕ = 0. Otherwise s := s1 = s2 and we simply integrate Y −2s

0 . We
also used that Ksk− 1

2
(y) is real if y ∈ R+. This follows from the integral representation

Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt) dt

which holds for Re z > 0 and Re ν > −1
2
, taking into account that sk − 1

2
is either real or purely

imaginary. Every orbit {γz : γ ∈ ΓK} has at most 1 + CKA
−2 points in

P (A) ∩ {−1/2 ≤ X1, X2 < 1/2}

by Lemma 1.2.5, hence (2.11) is bounded from above by d(K)−
1
2∥u∥2(1 + CKA

−2). Recall that
for an l ∈ OK \ 0 the coefficient cl was defined after (2.5) as the Fourier coefficient c(lω−1,(lω−1)′).
We can rearrange the sum in (2.11) as we did in (2.5) to obtain∑

0̸=(l)◁OK

|cl|2Σl + |cεl|2Σεl + |c−l|2Σ−l + |c−εl|2Σ−εl,
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2.1 Fourier expansion of automorphic forms 45

where

Σl =
∞∑

k=−∞

∞∫
A

1
2∫

− 1
2

Y0K
2
s1− 1

2
(2πε2k

∣∣lω−1
∣∣Y 1

2
0 ε

2Y1)K2
s2− 1

2
(2πε−2k

∣∣(lω−1)′
∣∣Y 1

2
0 ε

−2Y1) dY1
dY0
Y 2
0

.

Substituting Y ′
1 = Y1 − k the inner integral adds up to an integral on R, and in fact we get the

same integral for Σl, Σεl, Σ−l and Σ−εl.
For an l ∈ OK \ 0 we set

al = |cl|2 + |cεl|2 + |c−l|2 + |c−εl|2 . (2.12)

With this notation, the sum in (2.11) above equals 4 times

∑
0̸=(l)◁OK

al

∞∫
A

∞∫
−∞

Y0K
2
s1− 1

2
(2π

∣∣lω−1
∣∣Y 1

2
0 ε

2Y1)K2
s2− 1

2
(2π

∣∣(lω−1)′
∣∣Y 1

2
0 ε

−2Y1) dY1
dY0
Y 2
0

.

Now we fix an N > 0 and omit the zeroth term and the terms with |N(l)| > N from (2.11) to
get a lower estimate. Then by the substitution u1 = 2π |lω−1| y1 and u2 = 2π |(lω−1)′| y2 we
obtain ∑

0̸=(l)

|N(l)|≤N

al

∫∫
u1u2≥ (2π)2|N(l)|A

d(K)

K2
s1− 1

2
(u1)K

2
s2− 1

2
(u2)

du1 du2
u1u2

≪ ∥u∥2
(
1 +

CK
A2

)
.

Moreover, we note that

{(u1, u2) ∈ (R+)2 : u1 ≥ A1, u2 ≥ A2, A1A2 ≥ A} ⊂ {(u1, u2) ∈ (R+)2 : u1u2 ≥ A}

and hence we infer

∑
0̸=(l)

|N(l)|≤N

al

∞∫
A1

K2
s1− 1

2
(u1)

du1
u1

∞∫
A2

K2
s2− 1

2
(u2)

du2
u2

≪ ∥u∥2
(
1 +

CK
A2

)
.

once A1A2 ≥ (2π)2|N(l)|A
d(K)

. On the other hand, the following lower bound holds for the integral of
Ks− 1

2
(y) (see the proof of Theorem 3.2 in [11]):

∞∫
|s|/2

K2
s− 1

2
(y)

dy

y
≫ |s|−1 e−π|s|. (2.13)

Note that since |sk| ≥ 1
2
, we have

√
|sk|

2
√
2

≤ |sk|
2

, so choosing Ak =
√

|sk|
2
√
2

with

A =
d(K)

√
|s1s2|

2(4π)2N
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we conclude ∑
0 ̸=(l)

|N(l)|≤N

al ≪ ∥u∥2
(
|s1s2|+N2

)
eπ(|s1|+|s2|), (2.14)

where the implied constant depends on the field K.
Remark that if the zeroth term exists, then s1 = s2 = s ∈ (1/2, 1], and choosing A = 1 we

get ϕ≪ ∥u∥(s− 1
2
)
1
2 .

We will use (2.14) to estimate u(z). First note that

|u(z)− a0(y)| ≤
∑

0̸=(l)◁OK

(|cl||Sl(z)|+ |cεl||Sεl(z)|+ |c−l||S−l(z)|+ |c−εl||S−εl(z)|)

holds by (2.5). We only estimate the sum
∑

0̸=(l) |cl||Sl(z)|, the other terms can be estimated
similarly. That is, we work with the sum

∑
0̸=(l)

|cl|
√
y1y2

∞∑
k=−∞

∣∣∣Ks1− 1
2
(2π

∣∣ε2klω−1
∣∣ y1)∣∣∣ ∣∣∣Ks2− 1

2
(2π

∣∣(ε2klω−1)′
∣∣ y2)∣∣∣ , (2.15)

where we may choose l so that ε−2 ≤ |l|
|l′| < ε2 and hence ε−1

√
|N(l)| ≤ |l| , |l′| ≤ ε

√
|N(l)| hold.

First we assume that L := εC2d(K)

B1B
−1
2

|s1s2|2
y1y2

≥ 1, where C is at least the constant denoted by

the same letter in Lemma 2.1.5. This means that y1y2 is smaller than a constant times |s1s2|2.
We separate the sum in (2.15) and first handle the terms that belong to those ideals for which
|N(l)| > L holds. In this case, if k ≥ 0 in the inner sum, then

2π
∣∣ε2klω−1

∣∣ y1 ≥ 2ε−1
√

|N(l)|
√
d(K)

−1√
B1

√
y1y2 ≥ 2

√
B2C |s1s2| ≥ C |s1| ,

while if k < 0, then

2π
∣∣(ε2klω−1)′

∣∣ y2 ≥ 2ε−1
√

|N(l)|
√
d(K)

−1
√
B−1

2

√
y1y2 ≥ 2

√
B−1

1 C |s1s2| ≥ C |s2| .

In the first case we use the following estimates (given by Lemma 2.1.5):

Ks1− 1
2
(2π

∣∣ε2klω−1
∣∣ y1) ≪ e

− 2πε2k
√

|N(l)|d
ε
√

d(K)
y1 ≤ e−Dε

2k
√

|N(l)|y1y2

Ks2− 1
2
(2π

∣∣(ε2klω−1)′
∣∣ y2) ≪ (

ε2k |s2|√
|N(l)|y2

)Re s2+
1
2

e−
π
2
|s2| ≪

(
ε2k√

|N(l)| y1y2

)Re s2+
1
2

for some constants d,D > 0. We get an analogous bound for a negative k by switching the
roles of the variables. Since 1

2
≤ Re s2 ≤ 1 and therefore |N(l)| y1y2 is bounded from below by a

positive constant, we estimate the sum over k’s by

∞∑
k=0

ε2ke−Dε
2k
√

|N(l)|y1y2 ≪
∞∑
k=0

e−D
′ε2k

√
|N(l)|y1y2 .
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Also, k ≪ ε2k holds, hence we can bound the sum above by

e−D
′
√

|N(l)|y1y2 +
∞∑
k=1

(
e−D

′
√

|N(l)|y1y2
)k

= e−D
′
√

|N(l)|y1y2

(
1 +

1

1− e−D
′
√

|N(l)|y1y2

)
≪ e−D

′
√

|N(l)|y1y2 ,

again, since
√

|N(l)| y1y2 is bounded from below by a positive constant.
Now we turn to the case when |N(l)| ≤ L. Here the tails of the inner sum will be small

again, but we make a different upper estimate for the central terms. By central terms, we mean
the ones for which ε±4k |N(l)| ≤ L (i.e. |k| ≤ log(L/|N(l)|)

4 log ε
) holds. Then the tails can be bounded

by e−c
√
Ly1y2 similarly as before. For the other terms we simply use the bounds

Ks1− 1
2
(2π

∣∣ε2klω−1
∣∣ y1) ≪ (

|s1|
ε2k
√
|N(l)|y1

)Re s1+
1
2

e−
π
2
|s1|,

Ks2− 1
2
(2π

∣∣(ε2klω−1)′
∣∣ y2) ≪ (

ε2k |s2|√
|N(l)|y2

)Re s2+
1
2

e−
π
2
|s2|.

As Re s := Re s1 = Re s2, we infer

∞∑
k=−∞

∣∣∣Ks1− 1
2
(2π

∣∣ε2klω−1
∣∣ y1)∣∣∣ ∣∣∣Ks2− 1

2
(2π

∣∣(ε2klω−1)′
∣∣ y2)∣∣∣≪

≪ log

(
L

|N(l)|

)(
|s1s2|

|N(l)| y1y2

)Re s+ 1
2

e−
π
2
(|s1|+|s2|) + e−c

√
Ly1y2 .

So far, we have that
∑

0̸=(l) |cl||Sl(z)| is bounded by∑
0<|N(l)|≤L

|cl|
√
y1y2

[
Mu(l, y1, y2) + e−c

√
Ly1y2

]
+

∑
|N(l)|>L

|cl|
√
y1y2e

−c
√

|N(l)|y1y2 , (2.16)

where

Mu(l, y1, y2) = log

(
L

|N(l)|

)(
|s1s2|

|N(l)| y1y2

)Re s+ 1
2

e−
π
2
(|s1|+|s2|).

We apply Cauchy’s inequality for the first sum:

M2 :=

 ∑
0<|N(l)|≤L

|cl|
√
y1y2Mu(l, y1, y2)

2

≤
∑

0<|N(l)|≤L

|cl|2
∑

0<|N(l)|≤L

y1y2Mu(l, y1, y2)
2

As the number of the ideals with a given norm n is O(|n|δ) for any δ > 0 (see the proof of
Proposition 2.1.6), we obtain∑

0<|N(l)|≤L

y1y2Mu(l, y1, y2)
2 ≪ (log2 L) |s1s2|2Re s+1 (y1y2)

−2Re se−π(|s1|+|s2|)
∑

0<n≤L

nδ−2Re s−1

≪ |s1s2|2Re s+1 (y1y2)
−2Re se−π(|s1|+|s2|)Lδ−2Re s.
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On the other hand, ∑
0<|N(l)|≤L

|cl|2 ≪
∑

0<|N(l)|≤L

al ≪ ∥u∥2eπ(|s1|+|s2|)(|s1s2|+ L2),

by (2.14) and then

M2 ≪ ∥u∥2
(
|s1s2|2Re s+2 (y1y2)

−2Re sLδ−2Re s + |s1s2|2Re s+1 (y1y2)
−2Re sL2+δ−2Re s

)
As L2+δ−2Re s ≪ |s1s2|4−4Re s+2δ (y1y2)

2Re s−2−δ, the second term is bounded by

|s1s2|5−2Re s+2δ (y1y2)
−2−δ.

while the first term can be bounded by

|s1s2|2−2Re s+2δ (y1y2)
−δ.

This can be expressed in terms of L:

M2 ≪ ∥u∥2(|s1s2|2−2Re s Lδ + |s1s2|1−2Re s L2+δ).

Note that for a cusp form this bound is ∥u∥2(|s1s2|Lδ + L2+δ), and this is a correct bound even
if s1 = s2 are in the section [1/2, 1].

Next, it follows from (2.14) that ∑
0<|N(l)|≤L

|cl|

2

≪ ∥u∥2(|s1s2|+ L2)eπ(|s1|+|s2|)
∑

0<|N(l)|≤L

1

≪ ∥u∥2 |s1s2|L3+δeπ(|s1|+|s2|),

so

e−c
√
Ly1y2

√
y1y2

∑
0<|N(l)|≤L

|cl| ≪ ∥u∥ |s1s2|
1
2
√
y1y2e

−c
√
Ly1y2e

π
2
(|s1|+|s2|)L

3
2
+δ.

If the constant C in the definition of L is big enough, then the factor e−c
√
Ly1y2 = e−c

′|s1s2|

absorbs the powers of |s1s2| and also the factor e
π
2
(|s1|+|s2|), hence we get the upper bound

∥u∥(y1y2)−1−δ that is smaller than the bound for the central terms.
Finally, we investigate the sum∑

|N(l)|>L

|cl|
√
y1y2e

−c
√

|N(l)|y1y2 . (2.17)

We use the trivial bound (obtained from (2.14))

cl ≪ ∥u∥ |s1s2|
1
2 |N(l)| e

π
2
(|s1|+|s2|),
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2.1 Fourier expansion of automorphic forms 49

and since |N(l)| y1y2 is bounded from below, we can estimate (2.17) by

∥u∥ |s1s2|
1
2 e

π
2
(|s1|+|s2|)

∑
|N(l)|>L

|N(l)|
1
2 e−c

′
√

|N(l)|y1y2 ≪

≪ ∥u∥ |s1s2|
1
2 e

π
2
(|s1|+|s2|)

∑
n>L

n
1
2
+δe−c

′√ny1y2

The function x
1
2
+δe−c

′(y1y2)
1
2 x

1
2 is decreasing if x ≥ ⌊L⌋ once the constant C in the definition of

L is big enough (this can be seen by examining its derivative). Hence

∑
n>L

n
1
2
+δe−c

′√ny1y2 ≤
∞∫

⌊L⌋

x
1
2
+δe−c

′(y1y2)
1
2 x

1
2 dx ≤

∞∫
L/2

x
1
2
+δe−c

′(y1y2)
1
2 x

1
2 .

One may use integration by parts to show that this last integral is bounded from above by
e−c|s1s2|(y1y2)

− 3
2
−δ. Again, if the constant C is big enough, then e−c|s1s2| absorbs the factor

e
π
2
(|s1|+|s2|) and all the powers of |s1s2|, and we infer that (2.17) is bounded by ∥u∥(y1y2)−

3
2
−δ

(and the implied constant depends only on the field K).
Now assume that y1y2 is bounded from below by a constant. This is the case when L < 1

and then only the terms in (2.17) occur on the right hand side of (2.16). Then the bound

∥u∥ |s1s2|
1
2 e

π
2
(|s1|+|s2|)

∑
n>L

n
1
2
+δe−c

√
ny1y2

is still valid, but now as c√y1y2 is bounded from below, we can estimate this sum by∑
n>L

e−c
′√ny1y2 ≤ e−

c′
2

√
Ly1y2

∑
n>L

e−
c′
2

√
ny1y2 ≤ e−C

′|s1s2|
∑
n>0

e−
c′
2

√
ny1y2 ,

and as before, e−C′|s1s2| absorbs the factor |s1s2|
1
2 e

π
2
(|s1|+|s2|). As above, one can see that the

last sum bounded by e−d
√
y1y2 for some d. We have proved the following:

Theorem 2.1.8. Let u ∈ L2(ΓK \H2) an automorphic form with eigenvalues sk(1− sk), where
Re sk ≥ 1

2
(k = 1, 2), and let a0(y) be the zeroth Fourier coefficient of u. Assume that z ∈ H2 is

a point for which 0 < B1 < y1/y2 < B2 holds for some constants 0 < B1 < 1 and B2 > 1. Then
there is a constant CK depending only on B1, B2 and the field K such that if L := CK

|s1s2|2
y1y2

≥ 1,
then for any δ > 0 we have

u(z)− a0(y) ≪ ∥u∥
{
(|s1s2|Lδ + L2+δ)

1
2 + (y1y2)

− 3
2
−δ
}
,

where the implied constant depends only on δ, B1, B2 and the field K. Moreover, if y1y2 is
bounded from below by a constant, then the term (y1y2)

− 3
2
−δ in the estimate above can be omitted.

Also, if L < 1, then
u(z)− a0(y) ≪ ∥u∥e−d

√
y1y2 .

for some constant d > 0.

Observe that if u /∈ L2(ΓK \H2) but satisfies the requirements of Theorem 2.1.2, then an
analogue of the argument in the last paragraph above the theorem is still valid. The major
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50 Automorphic forms

difference in this case is that the estimate in (2.14) cannot be applied, but we may use the trivial
bound in (2.8) to estimate the Fourier coefficients of u. We conclude that if B1 < y1/y2 < B2

holds and y1y2 is big enough, then u(z)− a0(y) ≪ e−d
√
y1y2 , where the implied constant and the

lower bound on y1y2 depends on u, the field K, B1 and B2.

2.2 Eisenstein series
In this section we introduce an important family of automorphic forms, the Eisenstein series,

and give a few basic results about them. Most of them will be stated without a proof, the
details can be found for example in Chapter II of the book [5].

The function yskk is an eigenfunction of ∆k with eigenvalue λk = sk(1− sk), and also, the
Laplace operator commutes with the group action. Hence if s1, s2 ∈ C are such numbers for
which the function ys11 y

s2
2 is invariant under the action of Γ∞, then the sum∑

γ∈Γ∞\ΓK

y1(γz)
s1y2(γz)

s2

(at least if it converges) is invariant under the action of ΓK and also an eigenfunction of ∆k,
that is, an automorphic form.

As the translations does not change the function ys11 y
s2
2 , it is invariant under the action of

Γ∞ if and only if ε2(s1−s2) = 1. Then, as in the previous section, we must have

(s1, s2) =

(
s+

πim

2 log ε
, s− πim

2 log ε

)
for s = s1+s2

2
and for some m ∈ Z.

For an s ∈ C and m ∈ Z we define the Eisenstein series as follows:

E(z, s,m) : =
∑

γ∈Γ∞\ΓK

y1(γz)
s+ πim

2 log εy2(γz)
s− πim

2 log ε =
∑

γ∈Γ∞\ΓK

Y0(γz)
s

(
y1(γz)

y2(γz)

) πim
2 log ε

=
∑

γ∈Γ∞\ΓK

Y0(γz)
se2πimY1(γz) =

∑
γ∈Γ∞\ΓK

Y0(γz)
sλm(γz),

where λm(z) := e2πimY1(z) (it is a so-called Grössencharacter-type exponential sum, see [5], Section
II.1). Regarding the convergence properties of the series above, we have the following (see
Proposition II.1.8 and Corollary II.1.9 in [5]):

Proposition 2.2.1. The Eisenstein series E(z, s,m) converges absolutely for Re s > 1 and
uniformly on the compact subsets of this half-plane.

Proposition 2.2.2. If s ∈ C, Re s > 1, then

E(z, s,m)− Y0(z)
sλm(z) = E(z, s,m)− ys11 y

s2
2 → 0

once yk → ∞ and the other y coordinate is fixed (k = 1, 2).

Hence by Theorem 2.1.2 the function E(z, s,m) admits the Fourier expansion

E(z, s,m) =
∑
l∈L∗

K

al(y, s,m)e2πi<l,x>,
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2.2 Eisenstein series 51

where for an l ∈ L∗
K \ 0 we have

al(y, s,m) = ϕl(s,m)
√
y1y2Ks1−1/2(2π |l1| y1)Ks2−1/2(2π |l2| y2)

for some ϕl(s,m) ∈ C, while the last proposition also shows that

a0(y, s,m) = ys11 y
s2
2 + ϕ(s,m)y1−s11 y1−s22 = Y0(z)

sλm(z) + ϕ(s,m)Y0(z)
1−sλ−m(z)

for some ϕ(s,m) ∈ C. That is,

E(z, s,m) =Y0(z)
sλm(z) + ϕ(s,m)Y0(z)

1−sλ−m(z)+

+
∑

l∈L∗
K\0

ϕl(s,m)
√
y1y2Ks1−1/2(2π |l1| y1)Ks2−1/2(2π |l2| y2)e2πi<l,x>. (2.18)

The functions ϕ(s,m) and ϕl(s,m) can be determined explicitly:

ϕ(s,m) =
π√
d(K)

ζK(2s− 1,−m)

ζK(2s,−m)

Γ(s1 − 1
2
)Γ(s2 − 1

2
)

Γ(s1)Γ(s2)

=
π√
d(K)

ζK(2s− 1,−m)

ζK(2s,−m)

Γ(s+ πim
2 log ε

− 1
2
)Γ(s− πim

2 log ε
− 1

2
)

Γ(s+ πim
2 log ε

)Γ(s− πim
2 log ε

)
,

ϕl(s,m) =
4π2s√
d(K)

σ1−2s,−m(l)

ζK(2s,−m)

|l1|s1−
1
2 |l2|s2−

1
2

Γ(s1)Γ(s2)

=
4π2s√
d(K)

σ1−2s,−m(l)

ζK(2s,−m)

|l1|s+
πim
2 log ε

− 1
2 |l2|s−

πim
2 log ε

− 1
2

Γ(s+ πim
2 log ε

)Γ(s− πim
2 log ε

)
,

where

ζK(s,m) =
∑

0̸=(α)◁OK

∣∣∣ α
α′

∣∣∣ πim
log ε |N(α)|−s

is a Hecke L-function (see [9]) and

σs,m(l) =
∑

(c)|(l)D

∣∣∣ c
c′

∣∣∣ πim
log ε |N(c)|s .

Here D denotes the different of K, i.e. the inverse of the fractional ideal

D−1 = {α ∈ K : tr (αOK) ⊂ Z}.

Note that ζK(s,−m) = ζK(s,m), σs,−m(l) = σs,m(l). Moreover, since s+ πim
2 log ε

= s− πim
2 log ε

and
Γ(s) = Γ(s) hold, we obtain that ϕ(s,m) = ϕ(s,−m) and ϕl(s,m) = ϕl(s,−m). Similarly,
using that Kν(y) = Kν(y) holds for a positive y (where Kν(y) is the Bessel function) and
that the Fourier coefficient belonging to −l is the same as the one belonging to l we conclude
E(z, s,m) = E(z, s,−m).
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52 Automorphic forms

The functions E(z, s,m) and ϕ(s,m) are holomorphic on the half-plane Re s > 1, they can
be continued meromorphically to the whole complex plane and satisfy the following functional
equation:

E(z, 1− s,−m) = ϕ(1− s,−m)E(z, s,m).

Regarding the poles one can say the following (see Proposition II.6.1 in [5]):

Proposition 2.2.3. The functions E(z, s,m) and ϕ(s,m) has no poles on the half-plane Re s >
1
2

except for finitely many in (1/2, 1] if m = 0.

The functions E(z, s,m) are not in L2(ΓK \H2), hence we define the truncated Eisenstein
series for any A > 0 by

EA(z, s,m) :=

{
E(z, s,m)− Y0(z)

sλm(z)− ϕ(s,m)Y0(z)
1−sλ−m(z), if Y0(z) > A

E(z, s,m) otherwise.

For these we have the following (see Theorem II.7.2 in [5]):

Theorem 2.2.4 (Maass-Selberg). Let s, s′ ∈ C, m,m′ ∈ Z, and assume that (s,m) ̸= (s′,m′)
and (s,m) + (s′,m′) ̸= (1, 0). Then∫

F

EA(z, s,m)EA(z, s
′,m′) dµ(z) =

= 2
√
d(K) log ε

[
δm,−m′

As+s
′−1 − ϕ(s,m)ϕ(s′,m′)A1−s−s′

s+ s′ − 1
+

+δm,m′
As−s

′
ϕ(s′,m′)− As

′−sϕ(s,m)

s− s′

]
.

A few corollaries can be derived from this:

Corollary 2.2.5. If ϕ(s,m) is holomorphic at s, then E(z, s,m) is also holomorphic at s.

Corollary 2.2.6. If s = 1
2
+ it, then |ϕ(s,m)|2 = ϕ(s,m)ϕ(s,−m) = 1. Therefore the function

E(z, s,m) is holomorphic on the line s = 1
2
+ it.

Corollary 2.2.7. The exceptional poles of E(z, s, 0) are simple.

Corollary 2.2.8. The function ϕ(s,m) is bounded in the half-plane Re s ≥ 1
2

if s is bounded
away from the real line.

Now we use Theorem 2.2.4 to determine the value of the integral∫
F

|EA(z, s,m)|2 dµ(z)

in the case when s = 1
2
+ ir for some r ∈ R. Note that the theorem does not apply directly

here since at least one of the requirements (s,m) ̸= (s′,m′) and (s,m) + (s′,m′) ̸= (1, 0) is not
fulfilled. Assume that the Eisenstein series E(z, s,m) is holomorphic in the strip 1/2 < σ ≤ σ0.
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2.2 Eisenstein series 53

If σ + ir is in this strip and m ̸= 0, then Theorem 2.2.4 gives∫
F

|EA(z, σ + ir,m)|2 dµ(z) =
∫
F

EA(z, σ + ir,m)EA(z, σ − ir,−m) dµ(z) =

= 2 log ε
√
d(K)

A2σ−1 − ϕ(σ + ir,m)ϕ(σ − ir,−m)A1−2σ

2σ − 1

= 2 log ε
√
d(K)

A2σ−1 − ϕ(σ + ir,m)ϕ(σ + ir,m)A1−2σ

2σ − 1

in this strip.
The power series of ϕ(s,m) around 1/2 + ir is

ϕ(1/2 + ir,m) + ϕ′(1/2 + ir,m)(s− 1/2− ir) +
∞∑
j=2

ϕ(j)(1
2
+ ir,m)

j!
(s− 1/2− ir)j,

and as |ϕ(s,m)| = 1 on the line s = 1/2 + ir, we have for such an s that

ϕ′(s,m) = lim
t→0

ϕ(s+ it,m)− ϕ(s,m)

it

= lim
t→0

ϕ(s+ it,m)−1 − ϕ(s,m)−1

−it

= lim
t→0

−ϕ(s,m)− ϕ(s+ it,m)

itϕ(s+ it,m)ϕ(s,m)

= lim
t→0

ϕ(s+ it,m)− ϕ(s,m)

it
· 1

ϕ(s+ it,m)ϕ(s,m)

=
ϕ′(s,m)

ϕ(s,m)2
.

Therefore,

ϕ(σ + ir,m) = ϕ(1/2 + ir,m) + ϕ′(1/2 + ir,m)(σ − 1/2) +
∞∑
j=2

ϕ(j)(1
2
+ ir,m)

j!
(σ − 1/2)j,

ϕ(σ + ir,m) = ϕ(1/2 + ir,m) + ϕ′(1/2 + ir,m)(σ − 1/2) +
∞∑
j=2

ϕ(j)(1
2
+ ir,m)

j!
(σ − 1/2)j

= ϕ(1/2 + ir,m)−1 +
ϕ′(1

2
+ ir,m)

ϕ(1
2
+ ir,m)2

(σ − 1/2) +
∞∑
j=2

ϕ(j)(1
2
+ ir,m)

j!
(σ − 1/2)j,

and hence

ϕ(σ + ir,m)ϕ(σ + ir,m) =1 + 2
ϕ′(1

2
+ ir,m)

ϕ(1
2
+ ir,m)

(σ − 1/2) +
∞∑
j=2

a(j, r,m)(σ − 1/2)j
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and

A2σ−1 − ϕ(σ + ir,m)ϕ(σ + ir,m)A1−2σ

2σ − 1
=

=
A2σ−1 − A1−2σ

2σ − 1
−
ϕ′(1

2
+ ir,m)

ϕ(1
2
+ ir,m)

A1−2σ − A1−2σ

2

∞∑
j=2

a(j, r,m)(σ − 1/2)j−1.

We conclude∫
F

|EA(z, 1/2 + ir,m)|2 dµ(z) = lim
σ→ 1

2

∫
F

|EA(z, σ + ir,m)|2 dµ(z)

= 2 log ε
√
d(K)

[
2 logA−

ϕ′(1
2
+ ir,m)

ϕ(1
2
+ ir,m)

]
. (2.19)

If m = 0 and r ̸= 0, then Theorem 2.2.4 gives∫
F

|EA(z, σ + ir, 0)|2 dµ(z) =

= 2 log ε
√
d(K)

[
A2σ−1 − ϕ(σ + ir, 0)ϕ(σ − ir, 0)A1−2σ

2σ − 1
+

+
ϕ(σ − ir, 0)A2ri − ϕ(σ + ir, 0)A−2ri

2ri

]
,

hence, taking the limit as σ → 1/2 we infer∫
F

|EA(z, 1/2 + ir, 0)|2 dµ(z) =

= 2 log ε
√
d(K)

[
2 logA−

ϕ′(1
2
+ ir, 0)

ϕ(1
2
+ ir, 0)

+
ϕ(1/2− ir, 0)A2ri − ϕ(1/2 + ir, 0)A−2ri

2ri

]
.

(2.20)

Finally, if m = 0 and r = 0, then∫
F

|EA(z, 1/2, 0)|2 dµ(z) = lim
r→0

∫
F

|EA(z, 1/2 + ir, 0)|2 dµ(z) =

= 2 log ε
√
d(K)

[
2 logA−

ϕ′(1
2
, 0)

ϕ(1
2
, 0)

]

+ 2 log ε
√
d(K) lim

r→0

[
ϕ(1/2− ir, 0)A2ri − ϕ(1/2 + ir, 0)A−2ri

2ri

]

= 2 log ε
√
d(K)

[
2 logA−

ϕ′(1
2
, 0)

ϕ(1
2
, 0)

+ 2ϕ(1/2, 0) logA− ϕ′(1/2, 0)

]
.
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2.3 The automorphic kernel 55

We note that ϕ(1/2, 0) = ϕ(1/2, 0) and hence ϕ(1/2, 0)2 = 1 hold. This means that ϕ(1/2, 0) =
ϕ(1/2, 0)−1 = ±1 and we can write∫

F

|EA(z, 1/2, 0)|2 dµ(z) = 2 log ε
√
d(K)(2 logA− ϕ′(1/2, 0))(1 + ϕ(1/2, 0)). (2.21)

We mention another important basic result, that will be useful for us also in a later section
(see Theorem II.8.1 in [5]):

Theorem 2.2.9 (Plancherel formula). Assume that f(t), g(t) ∈ C∞
0 (0,∞), m ∈ Z and let us

define

Fm(z) =

∫ ∞

0

f(t)E (z, 1/2 + it,m) dt, Gm(z) =

∫ ∞

0

g(t)E (z, 1/2 + it,m) dt.

Then Fm, Gm ∈ L2(ΓK \H2) and we have

1

4π log ε
√
d(K)

∫
F

Fm(z)Gm(z) dµ(z) =

∫ ∞

0

f(t)g(t) dt.

Finally, we turn to the decomposition of L2(ΓK \ H2) into subspaces which are invariant
under the action of ∆k. The map f 7→ Fm defined in the theorem above extends to an isometry
of L2(0,∞) into L2(ΓK \H2). Let Em(ΓK \H2) denote the subspace in L2(ΓK \H2) generated
by the images of L2(0,∞) under the maps f 7→ Fm and f 7→ F−m. Then the Em(ΓK \ H2)’s
are invariant subspaces which are orthogonal to each other for different m’s. Let us define
E(ΓK \H2) = ⊕∞

m=0Em(ΓK \H2), moreover let us denote the subspace of cusp forms by C(ΓK \H2).
The residues of E(z, s, 0) in (1/2, 1] are also automorphic forms which are in L2(ΓK \H2) and
generate the finite dimensional subspace R(ΓK \H2). These subspaces are all invariant and we
have the orthogonal decomposition

L2(ΓK \H2) = C(ΓK \H2)⊕R(ΓK \H2)⊕ E(ΓK \H2).

Let {uj : j ≥ 0} be a complete orthonormal system of L2-eigenfunctions, which span E⊥.
Then, together with the Eisenstein series they give the spectral decomposition of square-integrable
functions (see Theorem II.9.8 in [5]):

Theorem 2.2.10. If f(z) ∈ L2(ΓK \H2), then

f(z) =
∞∑
j=0

⟨f, uj⟩uj(z) +
1

8π log ε
√
d(K)

∞∑
m=−∞

∞∫
−∞

⟨f, E (·, 1/2 + it,m)⟩E(z, 1/2 + it,m) dt.

2.3 The automorphic kernel
The so-called automorphic kernel functions will play a basic role in the following. In this

section we define them and discuss some of their most important properties. For this definition
we choose a function ψ ∈ C∞(R2) and set

kψ(z, w) = k(z, w) = ψ

(
|z1 − w1|2

Im z1 · Imw1

,
|z2 − w2|2

Im z2 · Imw2

)
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56 Automorphic forms

for every z, w ∈ H2. The function k(z, w) is a so-called point-pair invariant kernel which means
that k(z, w) = k(σz, σw) holds for every z, w ∈ H2 and σ ∈ PSL(2,R)2 (this can easily be
checked by a computation). Note that certain control over its growth will be required and this
will be discussed later in this section.

A new kernel is given by the series

K(z, w) =
∑
γ∈ΓK

k(z, γw). (2.22)

This is clearly an automorphic function in every variable (at least if the series above converges
absolutely), and hence called an automorphic kernel.

Now we define some transforms of ψ, they often occur in computations:

Q(w1, w2) :=

∫ ∞

w2

∫ ∞

w1

ψ(t1, t2)√
t1 − w1

√
t2 − w2

dt1 dt2,

g(u1, u2) := Q(eu1 + e−u1 − 2, eu2 + e−u2 − 2), (2.23)

h(r1, r2) :=

∫ ∞

−∞

∫ ∞

−∞
g(u1, u2)e

i(r1u1+r2u2) du1 du2.

These notations will be fixed in the following.
We often restrict ourselves to a compactly supported smooth function ψ. Then g is also a

smooth function with compact support and hence h is rapidly decreasing. However, in many
situations this condition is not essential. It is simpler to express the sufficient conditions in terms
of h rather than k. Following [11], we will assume that h is even in every variable, holomorphic
in the strip |Im rk| ≤ 1

2
+ ε in every variable and that

h(r1, r2) ≪ (|r1|+ 1)−2−ε(|r2|+ 1)−2−ε.

Also, many times it is more convenient to choose g or h instead of ψ, therefore we frequently
use the inverses of the transforms above, that are described in the following statement (see
Proposition I.2.2 in [5]).

Proposition 2.3.1. If h satisfies the above mentioned properties, then

g(u1, u2) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
h(r1, r2)e

−i(r1u1+r2u2) dr1 dr2,

Q(w1, w2) = g

(
2 log

(√
w1

4
+ 1 +

√
w1

4

)
, 2 log

(√
w2

4
+ 1 +

√
w2

4

))
,

ψ(t1, t2) =
1

π2

∫ ∞

t2

∫ ∞

t1

∂2Q
∂w1∂w2

(w1, w2)√
w1 − t1

√
w2 − t2

dw1 dw2.

We close this short section with an important claim that will be applied several times later
(see Theorem 1.14 and Theorem 1.16 in [11] together with the remark after the proof of Theorem
1.16, and see also Lemma I.2.1 and Proposition I.2.2 in [5]):
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2.4 An application of Bessel’s inequality 57

Lemma 2.3.2. If h(r1, r2) satisfies the properties above, and u : H2 → C is an eigenfunction
of ∆k with eigenvalue λk = sk(1− sk), where sk = 1

2
+ irk (k = 1, 2), then∫

H2

k(z, w)u(w) dµ(w) = h(r1, r2)u(z).

2.4 An application of Bessel’s inequality
In this section we generalize some results that are given in sections 7.2 and 10.2 of [11].

Let {uj(z) : j ≥ 0} be a complete orthonormal system of automorphic forms for the discrete
spectrum of ΓK with eigenvalues (λ

(j)
1 , λ

(j)
2 ), λ(j)k = s

(j)
k (1− s

(j)
k ), where Re s

(j)
k ≥ 1

2
is assumed

and we write s(j)k = 1
2
+ ir

(j)
k (k = 1, 2). The Fourier expansion of uj is

uj(z) = ϕjy
1−s(j)1
1 y

1−s(j)2
2 +

∑
l∈L∗

K\0

c
(j)
l

√
y1y2Ks

(j)
1 − 1

2

(2π |l1| y1)Ks
(j)
2 − 1

2

(2π |l2| y2)e2πi<x,l>

where ϕj ̸= 0 only if uj is not a cusp form.
We will need an analogue of the triangle inequality for the function

ρ(z, w) =
|z − w|2

Im z · Imw
,

where z, w ∈ H. One can express the hyperbolic distance function d by means of ρ:

d(z, w) = cosh−1

(
1 +

ρ(z, w)

2

)
.

As the triangle inequality holds for d, one derives easily that if ρ(z, w) ≤ δ and ρ(w, u) ≤ δ, then

ρ(z, u) ≤ δ(4 + δ). (2.24)

We fix a point w ∈ H2 and define the function

f(z) = K(z, w) =
∑
γ∈ΓK

k(z, γw).

Since ψ has compact support, the same holds for f and hence f ∈ L2(ΓK \H2). Then by the
spectral theorem and Lemma 2.3.2 we have K(z, w) =

∑
j fj(z) +

∑
m∈ZEm(z), where

fj(z) = h(r
(j)
1 , r

(j)
2 )uj(z)uj(w),

Em(z) =
1

8π log ε
√
d(K)

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
×

× E

(
z,

1

2
+ ir,m

)
E

(
w,

1

2
+ ir,m

)
dr.
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58 Automorphic forms

In fact we do not need the spectral formula in this section, an approximation is sufficient. First,
we have

⟨f, fj⟩ = h(r
(j)
1 , r

(j)
2 )uj(w) ⟨f, uj⟩ = h(r

(j)
1 , r

(j)
2 )uj(w)

∫
H2

k(z, w)uj(z) dµ(z)

=
∣∣∣h(r(j)1 , r

(j)
2 )uj(w)

∣∣∣2 = ∥fj∥2

by Lemma 2.3.2. Now we define

Gm(z) =
1

4π log ε
√
d(K)

B∫
A

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
E

(
z,

1

2
+ ir,m

)
E

(
w,

1

2
+ ir,m

)
dr

for some numbers 0 < A < B <∞. We set

h(r) =


1

4π log ε
√
d(K)

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
E

(
w,

1

2
+ ir,m

)
, if r ∈ [A,B],

0 otherwise.

Now applying Lemma 2.3.2 together with Theorem 2.2.9 for a smooth approximation of h(r)
and then taking limit we obtain

⟨f,Gm⟩ =
∫
F

K(z, w)Gm(z) dµ(z)

=
1

4π log ε
√
d(K)

B∫
A

∣∣∣∣h(r + πm

2 log ε
, r − πm

2 log ε

)
E

(
w,

1

2
+ ir,m

)∣∣∣∣2 dr = ∥Gm∥2.

Hence Bessel’s inequality is applicable:
∑

j ∥fj∥2 +
∑

m∈Z ∥Gm∥2 ≤ ∥f∥2, that is,

∑
j

∣∣∣h(r(j)1 , r
(j)
2 )uj(w)

∣∣∣2+
+
∑
m∈Z

1

8π log ε
√
d(K)

∞∫
−∞

∣∣∣∣h(r + πm

2 log ε
, r − πm

2 log ε

)
E

(
w,

1

2
+ ir,m

)∣∣∣∣2 dr (2.25)

≤
∫
F

|K(z, w)|2 dµ(z).

We can drop the restriction A ≤ r ≤ B in the second term since we integrate a non-negative
function. Then by substituting R = −r, adding the terms belonging to m and −m and finally,
summing over Z and dividing by 2 we obtain the inequality above.

We apply this inequality for a compactly supported kernel ψ which is a smooth approximation
of the characteristic function of the rectangle [0, δ1]× [0, δ2] for some small δ1 > 0 and δ2 > 0
satisfying 0 ≤ ψ ≤ 1 and ψ|[0,δ1]×[0,δ2] ≡ 1. We assume further that supp(ψ) ⊂ [−η1, δ1 + η1]×
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2.4 An application of Bessel’s inequality 59

[−η2, δ2 + η2] for some η1 > 0, η2 > 0. Then by Lemma 2.3.2 we get the integral representation

h(r1, r2) =

∫
H2

k((i, i), z)ys11 y
s2
2 µ(z)

for any s1, s2 ∈ C, in particular, for s1 = s2 = 0 we obtain

h

(
i

2
,
i

2

)
=

∫
H2

k((i, i), z) dµ(z).

If ϱ1 > 0 and ϱ2 > 0, then we have ∫
ρ(i,zk)≤ϱk
k=1,2

1 dµ(z) = ϱ1ϱ2π
2,

since it is the product of the areas of hyperbolic circles with hyperbolic radius cosh−1(1 + ϱk
2
)

(k = 1, 2). It follows that δ1δ2π2 ≤ h(i/2, i/2) ≤ (δ1 + η1)(δ2 + η2)π
2.

We would like to estimate the value of h(r1, r2) where λk = 1
4
+ r2k (k = 1, 2) and (λ1, λ2)

is an eigenvalue vector of a uj or an Eisenstein series. For this we estimate the distance of
the numbers h(r1, r2) and h(i, i). We will handle this problem coordinate-wise, so assume that
δk > 0 and ηk > 0 are some small numbers and 0 < δk + ηk < C for some constant C > 0. If
zk ∈ H and ρ(i, zk) ≤ δk + ηk, then

|yk − 1|2

yk
≤ |zk − i|2

Im zk
= ρ(i, zk) ≤ δk + ηk,

and hence y2k − 2yk + 1 ≤ (δk + ηk)yk < Cyk, that is, yk lies between the values

2 + C ±
√

(2 + C)2 − 4

2
=

2 + C ±
√
C(C + 4)

2
.

Choosing a small enough C we can reach |yk − 1| ≤ 2
√
δk + ηk.

If |s| ≤ 1, then one can show easily using the power series of ysk that

|ysk − 1| ≤ |s|max

{
|yk − 1| ,

∣∣∣∣ 1yk − 1

∣∣∣∣} ≤ 2 |s| |yk − 1|

holds (for a small enough C). However, we need a similar estimate also if s = 1
2
+ ir for some

r ∈ R. If |s| ≤ c
|log yk|

for some constant c > 0, then

ysk − 1 = es log yk − 1 ≪ |s| |log yk| ≪ |s| |yk − 1| ,

where the implied constant depends on c and C. Finally, if |s| ≥ c
|log yk|

, then by the triangle
inequality

|ysk − 1| ≤ 1 + y
1
2
k ≪ 1 ≪ |s| log yk ≪ |s| |yk − 1| .
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Now we restrict ourselves to the cases when the real part of s1 and s2 is 1
2

or when both s1 and
s2 are on the interval [1

2
, 1]. If C is small enough and δk + ηk < C, then we have

|h(r1, r2)− h(i/2, i/2)| ≤ |h(r1, r2)− h(r1, i/2)|+ |h(r1, i/2)− h(i/2, i/2)|

≤
∫

ρ(i,zk)≤δk+ηk
k=1,2

|ys11 ys22 − ys11 | dµ(z) +
∫

ρ(i,zk)≤δk+ηk
k=1,2

|ys11 − 1| dµ(z)

≤
∫

ρ(i,zk)≤δk+ηk
k=1,2

2 |ys22 − 1| dµ(z) +
∫

ρ(i,zk)≤δk+ηk
k=1,2

|ys11 − 1| dµ(z)

≪ (|s1|
√
δ1 + η1 + |s2|

√
δ2 + η2)(δ1 + η1)(δ2 + η2)

≪ (|s1|
√
δ1 + |s2|

√
δ2)δ1δ2

for ηk = cδk for example, where 0 < c < 1 is a small constant, and if |sk| ≪ δ
− 1

2
k with an

appropriate implied constant, then

1

2
π2δ1δ2 ≤ h(r1, r2) ≤ 2π2δ1δ2. (2.26)

Now we estimate the L2-norm of K(z, w). First, we have∫
F

|K(z, w)|2 dµ(z) =
∑

γ,γ′∈ΓK

∫
F

k(γ′z, w)k(γ′z, γw) dµ(z)

=
∑
γ∈ΓK

∫
H2

k(z, w)k(z, γw) dµ(z).

If k(z, w)k(z, γw) ̸= 0, then ρ(zk, wk) ≤ 2δk and ρ(zk, γ
(k)wk) ≤ 2δk hold and then we get

ρ(wk, γ
(k)wk) ≤ 4δk(2 + δk) by (2.24) (k = 1, 2). Setting

Nδ1,δ2(w) = #{γ ∈ ΓK : ρ(wk, γ
(k)wk) ≤ 4δk(2 + δk), k = 1, 2},

we obtain ∫
F

|K(z, w)|2 dµ(z) ≤ Nδ1,δ2(w)

∫
H2

k((i, i), z) dµ(z) ≤ Nδ1,δ2(w)(2π)
2δ1δ2.

If we restrict the summation and the integration in (2.25) to the points s(j)k = 1
2
+ ir

(j)
k and

1
2
+ ir + (−1)k−1 im

2 log ε
with absolute value less than a constant times δ−

1
2

k for k = 1, 2 and apply
the lower estimate in (2.26), then we infer

∑
j

′ |uj(z)|2 +
∑
m∈Z

1

8π log ε
√
d(K)

∫ ′ ∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dr ≪ δ−1
1 δ−1

2 Nδ1,δ2(z),
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2.4 An application of Bessel’s inequality 61

where ′ denotes our restriction. If T1 > 0 and T2 > 0 are big enough, then we can choose
δk = (cTk)

−2 with some constant c to obtain

∑
|s(j)k |≤Tk
k=1,2

|uj(z)|2 +
∑
m∈Z

1

8π log ε
√
d(K)

∫ ′ ∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dr ≪ (2.27)

≪ T 2
1 T

2
2N(cT1)−2,(cT2)−2(z),

where for a fixed m we integrate over those r’s for which
∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣ ≤ Tk holds.
We proceed by estimating Nδ1,δ2(z) for some special points. The following set occurs many

times later: for an A > 0 we define

FA := {z ∈ F : Y0(z) = y1y2 ≤ A}.

This is the "central part" of the fundamental domain, i.e. the points that are "close to the cusp"
are omitted from F .

Lemma 2.4.1. There is a constant CK depending on the field K such that if z ∈ FA and
0 < δ1, δ2 < CK, then Nδ1,δ2(z) ≪ 1 + A(

√
η1 +

√
η2)

2, where ηk = 4δk(2 + δk) for k = 1, 2 and
the implied constant depends only on K.

Proof. Assume that z ∈ FA. If γ =

[
a b
c d

]
∈ Nδ1,δ2(z) then we have ρ(zk, γ(k)zk) ≤ ηk for

k = 1, 2, and this is equivalent to∣∣γ(k)zk − zk
∣∣2 ≤ ηk · Im zk · Im γ(k)zk. (2.28)

If c = 0, then a(k) = εl for an l ∈ Z. Then

Im 2(γ(k)zk − zk) = (ε2l − 1)2y2k ≤
∣∣γ(k)zk − zk

∣∣2 ≤ ηkε
2ly2k,

that is, (εl − ε−l)2 ≤ ηk. If δk is small enough, then so is ηk and this latter inequality holds only
for l = 0, and then a = d = 1. It follows that∣∣γ(k)zk − zk

∣∣2 = ∣∣b(k)∣∣2 ≤ ηky
2
k ≤ ηkε

2y1y2 ≤ ηkε
2A,

so |b(k)| ≤ ε
√
ηkA. It follows that there are at most 1 + cKA(

√
η1 +

√
η2)

2 possibilities for b,
where cK is a constant depending only on K.

Now assume that c ̸= 0. Then (2.28) gives(
yk

|c(k)zk + d(k)|2
− yk

)2

≤
∣∣γ(k)zk − zk

∣∣2 ≤ ηk
y2k

|c(k)zk + d(k)|2
,

that is, (Bk −B−1
k )2 ≤ ηk for Bk =

∣∣c(k)zk + d(k)
∣∣. From this we obtain

ηk + 2 ≥ B2
k +B−2

k ≥ B2
k =

∣∣c(k)zk + d(k)
∣∣2 ≥ (c(k))2y2k >

(c(k))2

4ε2d(K)

C
E

U
eT

D
C

ol
le

ct
io

n



62 Automorphic forms

by Lemma 1.2.4. If η1, η2 < 1, then |c(1)| and |c(2)| are bounded by a constant depending only
on K, so there are only finitely many possible values for c. For a fixed c we have

(c(k)xk + d(k))2 ≤
∣∣c(k)zk + d(k)

∣∣2 ≤ ηk + 2,

and since |xk| is bounded, d can be chosen only from a finite set. So there are only finitely many
possibilities for the pair (c, d). Finally, (2.28) gives∣∣a(k)zk + b(k) − zk(c

(k)zk + d(k))
∣∣2 ≤ ηky

2
k.

Since Im (zk(c
(k)zk + d(k))) = 2c(k)xkyk + d(k)yk, we obtain (a(k) − (2c(k)xk + d(k)))2 ≤ ηk, and

since (2c(k)xk + d(k)) is bounded, we get that so is a(1) and a(2). This completes the proof of the
lemma.

From (2.27) and the lemma above we infer

Theorem 2.4.2. If A > 0, z ∈ FA and T1, T2 > 0 are big enough, then we have

∑
|s(j)k |≤Tk
k=1,2

|uj(z)|2 +
∑
m∈Z

1

8π log ε
√
d(K)

∫ ′ ∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dr ≪
≪ T 2

1 T
2
2 + A(T 2

1 + T 2
2 + T1T2), (2.29)

where for a fixed m we integrate over those r’s for which
∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣ ≤ Tk holds.

Next we omit the second sum from the estimate above, set A = cT1T2 for some big enough
constant c > 0 and integrate both sides on FA:∑

|s(j)k |≤Tk
k=1,2

∫
FA

|uj(z)|2 dµ(z) ≪ T 2
1 T

2
2 + T 3

1 T2 + T1T
3
2 .

Also, we define FB
A := {z ∈ F : A ≤ Y0(z) ≤ B}. If we choose A = cT1T2, B = cT 2

1 T
2
2 , and

integrate both sides on FB
A , then we obtain∑

|s(j)k |≤Tk
k=1,2

∫
FB
A

|uj(z)|2 dµ(z) ≪ (T 2
1 T

2
2 + T 2

1 T
2
2 (T

2
1 + T 2

2 + T1T2))

∫
FB
A

1dµ(z)

≪ 1

A
(T 2

1 T
2
2 + T 2

1 T
2
2 (T

2
1 + T 2

2 + T1T2)) ≪ T 2
1 T

2
2 + T 3

1 T2 + T1T
3
2 .

Summing these two inequalities we get the following on the left hand side:∑
|s(j)k |≤Tk
k=1,2

∫
FB

|uj(z)|2 dµ(z) =
∑

|s(j)k |≤Tk
k=1,2

1−
∫
F\FB

|uj(z)|2 dµ(z).
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2.4 An application of Bessel’s inequality 63

For a big enough c we infer by Theorem 2.1.8 that∫
F\FB

|uj(z)|2 dµ(z) ≪ |ϕj|2
∞∫

cT 2
1 T

2
2

Y 1−s
0

dY0
Y 2
0

+

∞∫
cT 2

1 T
2
2

e−d
√
Y0
dY0
Y 2
0

≪ δϕj ̸=0
(cT 2

1 T
2
2 )

−s

|s|
+ e−d

√
cT1T2 ≪ 1√

c
+ e−d

√
c,

where s is defined to be s1 = s2 when ϕj ̸= 0, and the implied constant depends only on the
field K. Hence if c is big enough, then the integral above is uniformly small for every j. We can
summarize this as

#{j : |s(j)1 | ≤ T1, |s(j)2 | ≤ T2} ≪ T 2
1 T

2
2 + T 3

1 T2 + T1T
3
2 . (2.30)

As the last result of this section we prove a bound for the logarithmic derivative of the zeroth
Fourier coefficient of the Eisenstein series:

Theorem 2.4.3. If T1, T2 > 0 are big enough, then

∑
m∈Z

∫ ′ −ϕ′(1
2
+ ir,m)

ϕ(1
2
+ ir,m)

dr ≪ T 2
1 T

2
2 +

√
T1T2(T

2
1 + T 2

2 + T1T2),

where for a fixed m we integrate over the r’s for which
∣∣∣12 + ir + (−1)k−1 πim

2 log ε

∣∣∣ ≤ Tk holds.

Proof. First we fix some big numbers T1, T2 > 0 and for a fixed z ∈ F we set A = y1y2 and
integrate both sides of (2.29) over {−1

2
≤ X1, X2 <

1
2
} to infer∑

|s(j)k |≤Tk
k=1,2

∑
l∈L∗

K\0

|c(j)l |2y1y2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)+

+
∑
m∈Z

∫ ′ ∑
l∈L∗

K\0

|ϕl(1/2 + ir,m)|2 y1y2K2
ir+ πim

2 log ε
(2π |l1| y1)K2

ir− πim
2 log ε

(2π |l2| y2) dr

(2.31)

≪ T 2
1 T

2
2 + y1y2(T

2
1 + T 2

2 + T1T2),

where for a fixed m we integrate over those r’s for which
∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣ ≤ Tk holds.
We use the bound (see [11] p. 141)∫ ∞

T

|Ks− 1
2
(2πy)|2dy

y
≪ |s|

∫ ∞

T/2

|Ks− 1
2
(2πy)|2dy

y2
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and estimate as follows:∫
F\F√

T1T2

∣∣E√
T1T2(z, s,m)

∣∣2 dµ(z) =
=
∑

l∈L∗
K\0

|ϕl(s,m)|2
∫∫

√
T1T2≤Y0

− 1
2
≤Y1< 1

2

|Ks− 1
2
+ πim

2 log ε
(2π |l1| y1)|2|Ks− 1

2
− πim

2 log ε
(2π |l2| y2)|2

dy1 dy2
y1y2

≤
∑

l∈L∗
K\0

|ϕl(s,m)|2
∫∫

√
Tk≤yk
k=1,2

|Ks− 1
2
+ πim

2 log ε
(2π |l1| y1)|2|Ks− 1

2
− πim

2 log ε
(2π |l2| y2)|2

dy1 dy2
y1y2

≪
∣∣∣∣s+ πim

2 log ε

∣∣∣∣ ∣∣∣∣s− πim

2 log ε

∣∣∣∣ ∑
l∈L∗

K\0

|ϕl(s,m)|2 ·

·
∫∫

√
Tk/2≤yk
k=1,2

|Ks− 1
2
+ πim

2 log ε
(2π |l1| y1)|2|Ks− 1

2
− πim

2 log ε
(2π |l2| y2)|2

dy1 dy2
y21y

2
2

,

hence, using this and the estimate (2.31) we get that∑
m∈Z

∫ ′ ∫
F\F√

T1T2

∣∣E√
T1T2(z, 1/2 + ir,m)

∣∣2 dµ(z) dr ≪
≪

∫∫
√
Tk/2≤yk
k=1,2

T 3
1 T

3
2 + y1y2T1T2(T

2
1 + T 2

2 + T1T2)
dy1 dy2
y31y

3
2

≪ T 2
1 T

2
2 +

√
T1T2(T

2
1 + T 2

2 + T1T2)

Now we apply Theorem 2.4.2 with A =
√
T1T2. Omitting the first sum on the left hand side

of (2.29) and integrate the remaining terms over F√
T1T2 we infer

∑
m∈Z

∫ ′ ∫
F√

T1T2

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dµ(z) dr ≪ T 2
1 T

2
2 +

√
T1T2(T

2
1 + T 2

2 + T1T2).

Note that here we also have to estimate the integral of the zeroth coefficients, hence we show
that ∑

m∈Z

∫ ′
log T1T2 dr ≪ (T 2

1 + T 2
2 ) log T1T2, (2.32)

where the integration is restricted to those points for which∣∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣∣ ≤ Tk
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2.4 An application of Bessel’s inequality 65

holds (k = 1, 2). The inequalities above are equivalent to∣∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣∣2 = 1

4
+

(
r + (−1)k−1 m

2 log ε

)2

≤ T 2
k ,

and adding the two inequalities we obtain

1

2
+ 2r2 +

m2

2 log2 ε
≤ T 2

1 + T 2
2 .

That is, both |r| and |m| are bounded by a constant times
√
T 2
1 + T 2

2 and our claim follows.
Now ∑

m∈Z

∫ ′ ∫
F

∣∣∣∣E√
T1T2

(
z,

1

2
+ ir,m

)∣∣∣∣2 dµ(z) dr =
=
∑
m∈Z

∫ ′ ∫
F√

T1T2

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dµ(z) dr+
+
∑
m∈Z

∫ ′ ∫
F\F√

T1T2

∣∣∣∣E√
T1T2

(
z,

1

2
+ ir,m

)∣∣∣∣2 dµ(z) dr,
hence ∑

m∈Z

∫ ′ ∫
F

∣∣∣∣E√
T1T2

(
z,

1

2
+ ir,m

)∣∣∣∣2 dµ(z) dr ≪ T 2
1 T

2
2 +

√
T1T2(T

2
1 + T 2

2 + T1T2)

follows. By (2.19) on page 54∫
F

∣∣E√
T1T2(z, 1/2 + ir,m)

∣∣2 dµ(z) = 2 log ε
√
d(K)

[
log T1T2 −

ϕ′(1
2
+ ir,m)

ϕ(1
2
+ ir,m)

]
holds if m ̸= 0, while for m = 0 we have∫

F

∣∣E√
T1T2(z, 1/2 + ir, 0)

∣∣2 dµ(z) =
= 2 log ε

√
d(K)

[
log T1T2 −

ϕ′(1
2
+ ir, 0)

ϕ(1
2
+ ir, 0)

+
ϕ(1/2− ir, 0)(T1T2)

ri − ϕ(1/2 + ir, 0)(T1T2)
−ri

2ri

]
if r ̸= 0 and∫

F

∣∣E√
T1T2(z, 1/2, 0)

∣∣2 dµ(z) = 2 log ε
√
d(K)(log T1T2 − ϕ′(1/2, 0))(1 + ϕ(1/2, 0))
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(see (2.20) and (2.21)). That is,∑
m∈Z

∫ ′ ∫
F

∣∣E√
T1T2(z, 1/2 + ir,m)

∣∣2 dµ(z) =
= 2 log ε

√
d(K)

∑
m∈Z

∫ ′ [
log T1T2 −

ϕ′(1
2
+ ir,m)

ϕ(1
2
+ ir,m)

]
dr+

+ 2 log ε
√
d(K)

∫
| 12+ir|≤min(T1,T2)

ϕ(1/2− ir, 0)(T1T2)
ri − ϕ(1/2 + ir, 0)(T1T2)

−ri

2ri
dr.

We define T = min(T1, T2). Since
∣∣1
2
+ ir

∣∣ ≤ T holds if and only if |r| ≤
√
T 2 − 1/4, we

need to estimate
√
T 2− 1

4∫
√
T 2− 1

4

ϕ(1/2− ir, 0)(T1T2)
ri − ϕ(1/2 + ir, 0)(T1T2)

−ri

2ri
dr. (2.33)

As |ϕ(1/2 + ir)|2 = 1 by Corollary 2.2.6, we have for every 0 < c <
√
T 2 − 1/4 that

√
T 2− 1

4∫
c

ϕ(1/2− ir, 0)(T1T2)
ri − ϕ(1/2 + ir, 0)(T1T2)

−ri

2ri
dr ≪ log(T/c) ≪ log(T1T2/c),

hence it remains to estimate the integral around 0 and to choose an appropriate c. As

c∫
−c

ϕ(1
2
− ir, 0)(T1T2)

ri − ϕ(1
2
+ ir, 0)(T1T2)

−ri

2ri
dr =

=

c∫
−c

ϕ(1
2
− ir, 0)(T1T2)

ri − ϕ(1
2
− ir, 0)(T1T2)

−ri

2ri
dr

+

c∫
−c

ϕ(1
2
− ir, 0)(T1T2)

−ri − ϕ(1
2
+ ir, 0)(T1T2)

−ri

2ri
dr

=

c∫
−c

ϕ(
1

2
− ir, 0)

(T1T2)
ri − (T1T2)

−ri

2ri
dr +

c∫
−c

(T1T2)
−riϕ(

1
2
− ir, 0)− ϕ(1

2
+ ir, 0)

2ri
dr.

If c < 1, then the fraction in the second integral is bounded by a constant depending on the
field K, so the second integral is O(c). Similarly, the fraction in the first integral is bounded by
a constant times log T1T2 around zero, hence by choosing c = 1/ log T1T2 the second integral is
O(1) and we conclude that (2.33) is bounded by a constant times log T1T2 and together with
(2.32) the theorem follows.
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2.5 A spectral mean-value estimate 67

2.5 A spectral mean-value estimate
In this section we derive a mean-value estimate for the Fourier coefficients of automorphic

forms and Eisenstein series. Our main goal is to generalize formula (8.27) in [11]. For this
we first fix a complete orthonormal system of automorphic forms for the discrete spectrum
of ΓK like in the previous section, let us denote this set by {uj : j ≥ 0}. We also pick an
appropriate kernel function ψ and apply the spectral theorem for the automorphic kernel K.
In fact we choose the function g (that is defined in (2.23) on page 56) instead of ψ such that
g(u1, u2) = g0(u1)g0(u2) holds for some g0 : R → R that is positive and decreasing on R+ making
ψ non-negative and real by Proposition 2.3.1.

Like it was mentioned in the previous section, by Theorem 2.2.10 and Lemma 2.3.2 the
function K(·, z′) has the spectral decomposition

K(z, z′) =
∑
j

h(r
(j)
1 , r

(j)
2 )uj(z)uj(z′)+

+
1

8π
√
d(K) log ε

∞∑
m=−∞

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
×

× E

(
z,

1

2
+ ir,m

)
E

(
z′,

1

2
+ ir,m

)
dr.

We write CK = 8π
√
d(K) log ε, zk = xk + iyk and z′k = x′k + iy′k for k = 1, 2, and then for every

l ∈ L∗
K we have

1

d(K)

∫∫
− 1

2
≤X1(z),X2(z)<

1
2

∫∫
− 1

2
≤X1(z′),X2(z′)<

1
2

e−2πi<l,x>e2πi<l,x
′>K(z, z′) dx′1 dx

′
2 dx1 dx2 =

=
∑
j

h(r
(j)
1 , r

(j)
2 )|c(j)l |2

∏
k=1,2

√
yky′kKs

(j)
k − 1

2

(2π |lk|)yk)Ks
(j)
k − 1

2

(2π |lk|)y′k)+

+
1

CK

∞∑
m=−∞

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

) ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2×
×
∏
k=1,2

√
yky′kKir+(−1)k−1 πim

2 log ε
(2π |lk|)yk)Kir+(−1)k−1 πim

2 log ε
(2π |lk|)y′k) dr.

(2.34)

On the other hand, as the function ψ is non-negative, so is the kernel function K and the
absolute value of the left hand side above is less than

1√
d(K)

∫∫
− 1

2
≤X1(z),X2(z)<

1
2

H(z, y′) dx1 dx2,
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68 Automorphic forms

where

H(z, y′) =
1√
d(K)

∫∫
− 1

2
≤X1(z′),X2(z′)<

1
2

K(z, z′) dx′1 x
′
2

=
1√
d(K)

∑
γ∈Γ∞\ΓK

∞∑
k=−∞

∑
ν∈OK

∫∫
− 1

2
≤X1(z′),X2(z′)<

1
2

k((n(ν)ρkγ)z, z
′) dx′1 dx

′
2,

and
ρk =

[
εk 0
0 ε−k

]
, n(ν) =

[
1 ν
0 1

]
.

We obtain

H(z, y′) =
1√
d(K)

∑
γ∈Γ∞\ΓK

∞∑
k=−∞

∫∫
R2

k((ρkγ)z, z
′) dx′1 dx

′
2, (2.35)

and for further estimates we first compute the integral of the kernel k(z, z′) with respect to the
arguments x′1 and x′2 (and then we may substitute anything in the place of z later):

∫∫
R2

k(z, z′) dx′1 dx
′
2 =

∞∫
−∞

∞∫
−∞

ψ

(
(x1 − x′1)

2 + (y1 − y′1)
2

y1y′1
,
(x2 − x′2)

2 + (y2 − y′2)
2

y2y′2

)
dx′1 dx

′
2

= 4

∞∫
0

∞∫
0

ψ

(
(x′1)

2 + (y1 − y′1)
2

y1y′1
,
(x′2)

2 + (y2 − y′2)
2

y2y′2

)
dx′1 dx

′
2

=
√
y1y′1y2y

′
2

∞∫
0

∞∫
0

ψ(u1 +
y1
y′1

+
y′1
y1

− 2, u2 +
y2
y′2

+
y′2
y2

− 2)
√
u1u2

du1 du2

=
√
y1y′1y2y

′
2g(log(y1/y

′
1), log(y2/y

′
2)).

The last equality above is obtained by (2.23).
We make the choice g0(u) = 1√

π
Te−u

2T 2 for some T ≥ 1, and then

g(u1, u2) =
1

π
T 2e−(u21+u

2
2)T

2

=
1

π
T 2e−

(u1+u2)
2T2

2 e−
(u1−u2)

2T2

2 ,

so that √
y1y2y′1y

′
2 g(log(y1/y

′
1), log(y2/y

′
2)) =

=

√
y1y2y′1y

′
2T

2

π
e
− log2

(
y1y2
y′1y

′
2

)
T 2/2

e
− log2

(
y1y

′
2

y′1y2

)
T 2/2

=

√
Y0(z)Y0(z′)T

2

π
e− log2(Y0(z)/Y0(z′))T 2/2e−(4 log ε)2(Y1(z)−Y1(z′))2T 2/2.
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2.5 A spectral mean-value estimate 69

We write this in (2.35) and express H(z, y′) as a function of z, Y ′
0 = y′1y

′
2 and Y ′

1 = 1
4 log ε

log
y′1
y′2

:

H(z, Y ′
0 , Y

′
1) =

T 2

π
√
d(K)

∑
γ∈Γ∞\ΓK

√
Y0(γz)Y ′

0e
− log2(Y0(γz)/Y ′

0)T
2/2×

×
∞∑

k=−∞

e−(4 log ε)2(Y1(ρkγz)−Y ′
1)

2T 2/2.

As Y1(ρkγz) = Y1(γz) + k, we can apply the Poisson summation formula (in the form as it is
written in (1.9) in [10]) to estimate the inner sum:

∞∑
k=−∞

e−8(T log ε)2(k+Y ′
1−Y1(γz))2 =

√
π

2
√
2T log ε

∞∑
k=−∞

e
− π2k2

8(T log ε)2 e2πik(Y
′
1−Y1(γz)),

and this last sum can be estimated by
√
π

2
√
2T log ε

∞∑
k=−∞

e
− π2k2

8(T log ε)2 =
∞∑

k=−∞

e−8(T log ε)2k2 ≤
∞∑

k=−∞

e−8(log ε)2|k| =
2

1− e−8(log ε)2
− 1,

where we used the Poisson summation again after the (first) estimate. That is,

H(z, Y ′
0 , Y

′
1) ≪ T

∑
γ∈Γ∞\ΓK

√
Y0(γz)Y ′

0 g0

(
log(Y0(γz)/Y

′
0)√

2

)
, (2.36)

where the implied constant depends only on the field K. We set f(y) = (yY ′
0)

1
2 g0

(
log(y/Y ′

0)√
2

)
for a positive real number y. The contribution of the identity element in the previous sum is
f(Y0) =

√
Y0Y ′

0 g0(log(Y0/Y
′
0)/

√
2). We will use Lemma 1.2.5 to estimate the remaining part of

the sum. Recall that for a γ ∈ Γ∞ \ ΓK different from the identity we have Y0(γz) ≤ Y0(z)
−1.

Examining the derivative of f one infers that f is increasing on the interval (0, e
1

2T2 Y ′
0 ] and

decreasing on [e
1

2T2 Y ′
0 ,∞). We first handle the case when Y −1

0 (z) ≤ e
1

2T2 Y ′
0 , then f is increasing

on the interval (0, Y0(z)−1]. Now we partition the sum in (2.36) as follows:

∑
id̸=γ∈Γ∞\ΓK

f(Y0(γz)) =
∞∑
n=1

∑
id ̸=γ∈Γ∞\ΓK

Y0(z)
−1

n+1
<Y0(γz)≤Y0(z)

−1

n

f(Y0(γz))

≤
∞∑
n=1

an(z, Y0(z)
−1)f

(
Y0(z)

−1

n

)
,

where
an(z, Y0(z)

−1) = #

{
id ̸= γ ∈ Γ∞ \ ΓK :

Y0(z)
−1

n+ 1
< Y0(γz) ≤

Y0(z)
−1

n

}
for every n ∈ N+. Note that an(z, Y0(z)−1) is finite by Lemma 1.2.5. Let Az(x, Y0(z)−1) =∑

1≤n≤x an(z, Y0(z)
−1), then Az(x, Y0(z)−1) ≪ x2Y0(z)

2 by Lemma 1.2.5, and by partial summa-
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tion we obtain

∞∑
n=1

an(z, Y0(z)
−1)f(Y0(z)

−1/n) ≪
∞∫
0

|f ′(y)|
y2

dy.

Now we turn to the case when Y0(z)
−1 > e

1
2T2 Y ′

0 so that Y0(γz) may be in the interval
(e

1
2T2 Y ′

0 , Y0(z)
−1]. There is an N ∈ N such that M := Ne

1
2T2 Y ′

0 ≥ Y0(z)
−1, so we partition the

sum in (2.36) the following way:

∑
id ̸=γ∈Γ∞\ΓK

f(Y0(γz)) =
∞∑
n=1

∑
id̸=γ∈Γ∞\ΓK

M
n+1

<Y0(γz)≤M
n

f(Y0(γz))

≤
∞∑
n=1

an(z,M)f(M/n) +
∞∑
n=1

an(z,M)f(M/(n+ 1),

since f takes its maximum on every interval [M/(n+ 1),M/n] at one of the endpoints. From
here we can continue as in the previous case and obtain that the elements different from the
identity contribute in (2.36) all together at most a constant times

∞∫
0

y−2 |f ′(y)| dy ≤ 1

Y ′
0

∞∫
0

(
√
2g0(u)− 2g′0(u)) cosh

(
3
√
2

2
u

)
du,

where we get the last estimate by a straightforward computation. First we estimate the second
term. Note that coshu ≤ eu for any u ≥ 0, hence

∞∫
0

−2g′0(u) cosh

(
3
√
2

2
u

)
du ≤

∞∫
0

−2g′0(u)e
3u du =

4T 3

√
π

∞∫
0

ue−u
2T 2+3u du

=
4T√
π
e

9
4T2

∞∫
− 3

2T

(
t+

3

2T

)
e−t

2

dt≪ T,

where the implied constant is absolute. Turning to the first integral, we remark that the Fourier
transform ĝ0 of g0 is e−(2π)2t2/(4T 2), so

∞∫
0

g0(u)(e
cu + e−cu) du =

∞∫
−∞

g0(u)e
cu = ĝ0

(
ic

2π

)
= e

c2

4T2 ≪ 1.

Therefore, we have

H(z, Y ′
0 , Y

′
1) ≪ T

√
Y0(z)Y ′

0 g0

(
log(Y0(z)/Y

′
0)√

2

)
+
T 2

Y ′
0

.
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Choosing y1 = y′1 and y2 = y′2 in (2.34) we infer∑
j

h(r
(j)
1 , r

(j)
2 )|c(j)l |2y1y2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)+

+
∞∑

m=−∞

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

) ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2×
× y1y2K

2
ir+ πim

2 log ε
(2π |l1| y1)K2

ir− πim
2 log ε

(2π |l2| y2) dr ≪ T 2

(
y1y2 +

1

y1y2

)
.

As

h(r1, r2) =

∞∫
−∞

g0(u1)e
ir1u1 du1

∞∫
−∞

g0(u2)e
ir2u2 du2 = ĝ0

( r1
2π

)
ĝ0

( r2
2π

)
= e−

r21+r22
4T2 ≫ 1

once |r1|, |r2| ≪ T , we obtain∑
|s(j)1 |,|s(j)2 |≤T

|c(j)l |2y1y2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)+

+
∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2 y1y2K2
ir+ πim

2 log ε
(2π |l1| y1)K2

ir− πim
2 log ε

(2π |l2| y2) dr

≪ T 2

(
y1y2 +

1

y1y2

)
,

where for a fixed m we integrate over those r’s for which
∣∣∣12 + ri± πim

2 log ε

∣∣∣ ≤ T holds. Note that
the implied constant depends on the field K.

To separate the coordinates we assume that T1 ≤ T , T2 ≤ T and then the previous estimate
implies ∑

T1
2
≤|s(j)1 |≤T1, T22 ≤|s(j)2 |≤T2

|c(j)l |2y1y2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)+

+
∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2 y1y2K2
ir+ πim

2 log ε
(2π |l1| y1)K2

ir− πim
2 log ε

(2π |l2| y2) dr

≪ T 2

(
y1y2 +

1

y1y2

)
,

where for a fixed integer m we integrate over the r’s for which T1
2
≤
∣∣∣12 + ir + πim

2 log ε

∣∣∣ ≤ T1 and
T2
2
≤
∣∣∣12 + ir − πim

2 log ε

∣∣∣ ≤ T2 hold. Next we integrate on the square[
c1T1
|l1|

,
d1T1
|l1|

]
×
[
c2T2
|l2|

,
d2T2
|l2|

]
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for some positive real constants c1, d1, c2, d2 w.r.t. the measure dy1 dy2
y21y

2
2

:

∑
T1
2
≤|s(j)1 |≤T1, T22 ≤|s(j)2 |≤T2

|c(j)l |2

d1T1
|l1|∫

c1T1
|l1|

K2

s
(j)
1 − 1

2

(2π |l1| y1)
dy1
y1

d2T2
|l2|∫

c2T2
|l2|

K2

s
(j)
2 − 1

2

(2π |l2| y2)
dy2
y2

+

+
∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2
d1T1
|l1|∫

c1T1
|l1|

K2
ir+ πim

2 log ε
(2π |l1| y1)

dy1
y1

d2T2
|l2|∫

c2T2
|l2|

K2
ir− πim

2 log ε
(2π |l2| y2)

dy2
y2

dr

≪ T 2


d1T1
|l1|∫

c1T1
|l1|

dy1
y1

d2T2
|l2|∫

c2T2
|l2|

dy2
y2

+

d1T1
|l1|∫

c1T1
|l1|

dy1
y31

d2T2
|l2|∫

c2T2
|l2|

dy2
y32

≪c1,c2,d1,d2 T
2 +

T 2 |N(l)|2

T 2
1 T

2
2

.

Substituting uk = 2π |lk| yk for k = 1, 2, the left hand side becomes

∑
T1
2
≤|s(j)1 |≤T1, T22 ≤|s(j)2 |≤T2

|c(j)l |2
2πd1T1∫

2πc1T1

K2

s
(j)
1 − 1

2

(u1)
du1
u1

2πd2T2∫
2πc2T2

K2

s
(j)
2 − 1

2

(u2)
du2
u2

+

+
∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2
2πd1T1∫

2πc1T1

K2
ir+ πim

2 log ε
(u1)

du1
u1

2πd2T2∫
2πc2T2

K2
ir− πim

2 log ε
(u2)

du2
u2

dr

Since in the first sum we have |s(j)k | ≥ Tk
2

(k = 1, 2), we infer that

2πdkTk∫
2πckTk

K2

s
(j)
k − 1

2

(uk)
duk
uk

≥
2πdkTk∫

|s(j)k |/2

K2

s
(j)
k − 1

2

(uk)
duk
uk

holds if ck ≤ 1/(8π) . Also, for sk(r,m) = 1
2
+ ir + (−1)k−1 πim

2 log ε
we have

2πdkTk∫
2πckTk

K2
sk(r,m)− 1

2
(uk)

duk
uk

≥
2πdkTk∫

|sk(r,m)|/2

K2
sk(r,m)− 1

2
(uk)

duk
uk

.

As Tk ≥ |sk| , |sk(r,m)|, we have by Lemma 2.1.5 and by the estimate (2.13) on page 45 that
if dk is big enough, then

2πdkTk∫
|s(j)k |/2

K2

s
(j)
k − 1

2

(uk)
duk
uk

=

∞∫
|s(j)k |/2

K2

s
(j)
k − 1

2

(uk)
duk
uk

−
∞∫

2πdkTk

K2

s
(j)
k − 1

2

(uk)
duk
uk

≫ |s(j)k |−1e−π|s
(j)
k |,
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2.5 A spectral mean-value estimate 73

and an analogous statement holds with sk(r,m) instead of s(j)k . Using this and also the condition
|sk| , |sk(r,m)| ≤ Tk we conclude

∑
Tk
2
≤|s(j)k |≤Tk
k=1,2

|c(j)l |2e−π(|s
(j)
1 |+|s(j)2 |) +

∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2 e−π(s1(r,m)+s2(r,m)) dr (2.37)

≪ T1T2T
2 +

T 2 |N(l)|2

T1T2
,

where the estimate holds once T , T1 and T2 are bounded from below by a positive constant and
T1, T2 ≤ T . We recall that the second sum and the integration is restricted to those m’s and r’s
for which Tk

2
≤ |sk(r,m)| ≤ Tk holds, where

sk(r,m) =
1

2
+ ir + (−1)k−1 πim

2 log ε
.

The estimate (2.37) is the one that will be needed in the next chapter, but we derive a
statement from this that resembles formula (8.27) in [11]. Let us denote the left hand side above
by Σ(T1, T2), then taking the integral (for a fixed m) over those r’s for which |sk(r,m)| ≤ T
holds we obtain∑

|s(j)1 |≤T, |s(j)2 |≤T

|c(j)l |2e−π(|s
(j)
1 |+|s(j)2 |) +

∑
m∈Z

∫ ′ ∣∣∣∣ϕl(1

2
+ ir,m

)∣∣∣∣2 e−π(s1(r,m)+s2(r,m)) dr

=

log2(2T )∑
k1=0

log2(2T )∑
k2=0

Σ(2−k1T, 2−k2T ) ≪
⌊log2(2T )⌋∑
k1=0

⌊log2(2T )⌋∑
k2=0

2−(k1+k2)T 4 + 2k1+k2N(l)2

≪ T 4 + T 2N(l)2.
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Chapter 3

A generalization of the Selberg trace
formula

In this chapter we give a two dimensional version of the generalized Selberg trace formula
worked out in [1]. This was obtained by computing the integral

TrK =

∫
F

K(z, z)u(z)
dx dy

y2

in two different ways ("geometrically" and "spectrally"). Here y−2 dx dy is the usual measure on
H, K(z, w) is an automorphic kernel function and u is a fixed automorphic form with respect to
a finite volume Fuchsian group Γ with fundamental domain F ⊂ H.

For the two dimensional trace formula we fix an automorphic form u that satisfies the growth
condition o(e2πyk) for k = 1, 2. Then by Theorem 2.1.2 and Proposition 2.1.6 it is in fact of
polynomial growth. Its eigenvalues are denoted by λk = sk(1− sk), and we assume for simplicity
that 1

2
≤ Re sk < 1 holds (k = 1, 2). If u is not a cusp form, then its zeroth Fourier coefficient is

ηys11 y
s2
2 + ϕy1−s11 y1−s22 for some η, ϕ ∈ C and by Proposition 2.1.4 we have

(s1, s2) =

(
s+

πimu

2 log ε
, s− πimu

2 log ε

)
, (3.1)

for s = s1+s2
2

and some mu ∈ Z. The notations η, ϕ, s and mu will be fixed throughout this
chapter. Further assumptions will be made on the function u in Section 3.2.

We also fix an automorphic kernel function defined in (2.22). To this end we have to choose
a function ψ ∈ C∞(R2) and from now on it will be assumed to be compactly supported. We
will evaluate the integral

TruK =

∫
F

K(z, z)u(z) dµ(z)

in two different ways. As to that, we have to be careful here since this integral does not
necessarily converge. Therefore, instead of this we work with the expression

TrAuK :=

∫
FA

K(z, z)u(z) dµ(z), (3.2)

where
FA = {z ∈ F : Y0(z) ≤ A}
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76 A generalization of the Selberg trace formula

for any A > 0. That is, we remove the part that is "close to the cusp ∞" from the fundamental
domain of ΓK .

Most of the methods in this chapter are generalizations of the ones used in [1] and [5]. But
the main arc of our argument is in fact very common. The so-called geometric trace is obtained
by the evaluation of (3.2) by partitioning ΓK into conjugacy classes which results in integrals
over fundamental domains of centralizers whose structures are convenient for computations.
After that, we make use of the spectral theorem to obtain a different evaluation of the trace and
infer the trace formula by comparing the two results.

The trace formula is given in Theorem 3.3.1 that clearly resembles Theorem 1 in [1]. Among
others the Hecke L-functions appears in the result (in fact on both sides: as the contribution of
the totally parabolic classes on the geometric side and in the zeroth coefficient of the Eisenstein
series on the spectral side) in the same way as the zeta function does in the one dimensional
case.

3.1 The geometric trace
In the following we compute TrAuK by partitioning ΓK into conjugacy classes. For an element

γ ∈ ΓK we denote the conjugacy class of γ by {γ}. This way we get

TrAuK =
∑
{γ}

∑
σ∈{γ}

∫
FA

k(z, σz)u(z) dµ(z).

where F is the fundamental domain of ΓK .
The conjugacy class of the identity element consists only of itself, and the term that belongs

to it is a constant multiple of the integral∫
FA

u(z) dµ(z).

This integral converges as A → ∞ and the limit is zero since the Laplacians are symmetric
operators and the eigenvalues of 1 and u are different.

From now on we assume that γ ∈ ΓK is not the identity. Since σ−1
1 γσ1 = σ−1

2 γσ2 if and only
if σ2σ−1

1 ∈ C(γ), where C(γ) is the centralizer of γ, this is equivalent to σ2 ∈ C(γ)σ1 and we
get that

TAγ :=
∑
σ∈{γ}

∫
FA

k(z, σz)u(z) dµ(z) =
∑

σ∈C(γ)\ΓK

∫
FA

k(z, σ−1γσz)u(z) dµ(z).

As k(ϱz, ϱw) = k(z, w) for every ϱ ∈ PSL(2,R)2 and u is invariant under the action of ΓK , this
last sum is ∑

σ∈C(γ)\ΓK

∫
FA

k(σz, γσz)u(σz) dµ(z) =

∫
C(γ)\HA

k(z, γz)u(z) dµ(z),

where HA = ∪γ∈ΓK
FA. Now for every ϱ ∈ PSL(2,R)2 this is∫

ϱ−1(C(γ)\HA)

k(ϱz, γϱz)u(ϱz) dµ(z) =

∫
(ϱ−1C(γ)ϱ)\ϱ−1HA

k(z, ϱ−1γϱz)u(ϱz) dµ(z)
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3.1 The geometric trace 77

since the measure µ and the function k are PSL(2,R)2-invariant. So far this holds for every
id ≠ γ ∈ ΓK . If γ is totally elliptic, totally hyperbolic or a mixed element then Tγ = limA→∞ TAγ
exists and

Tγ =

∫
(ϱ−1C(γ)ϱ)\H2

k(z, ϱ−1γϱz)u(ϱz) dµ(z) (3.3)

holds. The existence of the limit follows easily from the absolute convergence of the final results
of the next three sections which justifies the correctness of the prior computations. Note that
(ϱ−1C(γ)ϱ)\H2 is nothing else but the fundamental domain of the group ϱ−1C(γ)ϱ. We proceed
by calculating TAγ or in the three cases mentioned above the limit Tγ.

3.1.1 Contribution of totally elliptic elements

Let γ ∈ ΓK be a totally elliptic element with the elliptic fixed point zγ ∈ H2. Then the
centraizer C(γ) consists of the elements in ΓK which fix the point zγ (see [14], p. 37) and the
stabilizer Γzγ of zγ in ΓK is a finite cyclic group (see Remark 2.14 in [6]). Let us denote by mγ

the order of C(γ). Every elliptic element in PSL(2,R) is conjugate to an element of the form[
cos θ sin θ
− sin θ cos θ

]
, hence the generator γ0 of C(γ) can be chosen so that

γ0 ∼ γ′0 =


 cos

π

mγ

sin
π

mγ

− sin
π

mγ

cos
π

mγ

 ,
 cos

k2π

mγ

sin
k2π

mγ

− sin
k2π

mγ

cos
k2π

mγ


 ,

where the sign ∼ means that the two elements are conjugate by an element ϱ ∈ PSL(2,R)2, and
k2 ∈ Z with gcd(k2,mγ) = 1. Let us write γ′ = ϱ−1γϱ. To compute Tγ we give the fundamental
domain FC(γ′) of C(γ′) = ⟨γ′0⟩ ≤ ϱ−1ΓKϱ. Since the first coordinate of γ′0 is a rotation around
the point i ∈ H by the angle 2π/mγ every C(γ′)-orbit has exactly one point in the set F0 ×H,
where F0 ⊂ H is a sector enclosed by two half-lines with endpoint i and angle 2π/mγ. Note
that in fact both coordinates are rotations around i which means that ϱ takes the point (i, i) to
the fixed point of γ, namely zγ. Now by (3.3) we have

Tγ =

∫
FC(γ′)

k(z, γ′z)u(ϱz) dµ(z) =
1

mγ

∫
H2

k(z, γ′z)u(ϱz) dµ(z),

where we used the PSL(2,R)2-invariance of the function k and the measure µ, the ΓK-invariance
of u and that γ′ and γ′0 commute. As z = (z1, z2) one can write∫

H2

k(z, γ′z)u(ϱz) dµ(z) =

∫
H

∫
H
k(z, γ′z)u(ϱz) dµ(z1) dµ(z2), (3.4)

where µ(zk) denotes the measure y−2
k dxk dyk. In the inner integral above the coordinate z2 is

fixed. Then the function u(ϱz) is a function of z1 and it is the eigenfunction of the Laplace
operator ∆1 (because the operator commutes with the group action), furthermore, the value of
k(z, γ′z) depends only on the hyperbolic distance of z1 and γ′(1)z1. To simplify the notation
later we now write u(ϱz) = uz2(z1) and k(z, w) = kz2,w2(z1, w1). Furthermore, as γ′ is fixed we
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78 A generalization of the Selberg trace formula

can simply write k(z, γ′z) = kz2(z1, γ
′(1)z1). With this notation the inner integral is

Tz2 =

∫
H
k(z, γ′z)u(ϱz) dµ(z1) =

∫
H
kz2(z1, γ

′(1)z1)uz2(z1) dµ(z1).

For an α ∈ R we introduce the notation

R(α) =

[
cosα sinα
− sinα cosα

]
, (3.5)

moreover, for a vector φ = (φ1, φ2) ∈ R2 we define R(φ) = (R(φ1), R(φ2)) ∈ PSL(2,R)2.
Then the elements of C(γ′) are of the form R(φ) and similarly γ′ = R(θ) for some θ = (θ1, θ2)
where θk ∈ [0, π). Since γ′ ∈ C(γ′) we have in fact θk = lkπ/mγ for some integer 0 < lk < mγ

(k = 1, 2). Note that all the elements R(φ) have the same fixed point, namely (i, i), and hence
they commute with each other (see [14], p. 36). It follows from this that θ is determined by γ,
i.e. it is independent of the choice of ϱ (at least if both coordinates are in the interval [0, π)).
Indeed, if ϱ−1γϱ = R(θ) and σ−1γσ = R(θ′) then

(ϱ−1σ)−1R(θ)(ϱ−1σ) = σ−1ϱR(θ)ϱ−1σ = σ−1γσ = R(θ′),

so R(θ) and R(θ′) are conjugate. But then ϱ−1σ fixes the point (i, i) and hence it is of the form
R(φ) and commutes with R(θ). Consequently R(θ) = R(θ′) and then θ = θ′. From now on we
write θ(γ(k)) instead of θk and θ(γ) = (θ(γ(1)), θ(γ(2))) instead of θ.

Next we use geodesic polar coordinates (see [11], section 1.3), i.e. we make the substitution
z1 = R(φ1)e

−r1i where r1 ∈ (0,∞) is the hyperbolic distance of i and z1 and φ1 ∈ [0, π). Then
we have

dµ(z1) = (2 sinh r1) dr1 dφ1

and the integral above is

Tz2 =

∫ ∞

0

∫ π

0

kz2(R(φ1)e
−r1i, R(θ(γ(1)))R(φ1)e

−r1i))uz2(R(φ1)e
−r1i)2 sinh r1 dφ1dr1.

As the elements R(θ(γ(1))) and R(φ1) commute and kz2 depends only on the hyperbolic distance
of the variables we get that

Tz2 =

∫ ∞

0

kz2(e
−r1i, R(θ(γ(1)))e−r1i))

(∫ π

0

uz2(R(φ1)e
−r1i) dφ1

)
(2 sinh r1) dr1.

We recall that

kz2,w2(z1, w1) = ψ (ρ(z1, w1), ρ(z2, w2)) =: ψz2,w2(ρ(z1, w1)),

where

ρ(zk, wk) =
|zk − wk|2

Im zk Imwk

for k = 1, 2. One gets by a computation that

ρ(zk, R(θ(γ
(k)))zk) =

|z2k + 1|2 sin2 θ(γ(k))

y2k
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3.1 The geometric trace 79

where zk = xk + iyk and then

ρ(e−rki, R(θ(γ(k)))e−rki) =
|−e−2rk + 1|2 sin2 θ(γ(k))

e−2rk
= (2 sinh rk)

2 sin2 θ(γ(k)).

This gives that

Tz2 =

∫ ∞

0

ψz2((2 sinh r1)
2 sin2 θ(γ(1)))

(∫ π

0

uz2(R(φ1)e
−r1i) dφ1

)
(2 sinh r1) dr1,

where ψz2 is just an abbreviation for ψz2,γ′(2)z2 . Let us define

Gz2(z1) =
1

π

∫ π

0

uz2(R(φ1)z1) dφ1.

By Lemma 1.10 in [11] the value of Gz2 depends only on the hyperbolic distance of z1 and i.
Moreover, Gz2 is the eigenfunction of the operator ∆1 with eigenvalue λ1, where λ1 is the first
coordinate of the eigenvalue vector of u. Now by Lemma 1.12 of [11] this function is unique up
to a constant factor. Furthermore

∆1 =
∂2

∂r21
+

cosh r1
sinh r1

∂

∂r1
+

1

4 sinh2 r1

∂2

∂φ2
1

,

so with the notation Gz2(z1) = Gz2(r1, φ1) we have

∂2

∂r21
Gz2(r1, φ1) +

cosh r1
sinh r1

∂

∂r1
Gz2(r1, φ1) = λ1Gz2(r1, φ1).

Let gλ1(r) : [0,∞) → C be the unique solution of the differential equation

g′′(r) +
cosh r

sinh r
g′(r) = λ1g(r) (3.6)

satisfying the initial condition g(0) = 1, then

Gz2(z1) = gλ1(r1)uz2(i) = gλ1(r1)u(ϱ
(1)i, ϱ(2)z2).

That is,

Tz2 = 2πu(ϱ(1)i, ϱ(2)z2)

∫ ∞

0

ψz2((2 sinh r1)
2 sin2 θ(γ(1)))gλ1(r1) sinh r1 dr1.

Substituting this in (3.4) and interchanging the integrals we get

Tγ =
2π

mγ

∫ ∞

0

Tr1gλ1(r1) sinh r1 dr1,

where
Tr1 =

∫
H
ψ((2 sinh r1)

2 sin2 θ(γ(1)), ρ(z2, γ
′(2)z2))u(ϱ

(1)i, ϱ(2)z2) dµ(z2).
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80 A generalization of the Selberg trace formula

Evaluating Tr1 the same way as above we get that

Tγ =
(2π)2

mγ

u(zγ)

∞∫
0

∞∫
0

ψ(S(r1, θ(γ
(1))), S(r2, θ(γ

(2))))

(∏
k=1,2

gλk(rk) sinh rk

)
dr1dr2,

where S(r, θ) = (2 sinh r)2 sin2 θ. Finally we recall that by Theorem 1.3.4 the contribution of
the elliptic conjugacy classes in the formula is a finite sum of Tγ’s.

3.1.2 Contribution of totally hyperbolic elements

Let γ ∈ ΓK be a totally hyperbolic element. Then by Theorem I.5.7 in [5] the centralizer
C(γ) of γ is a free abelian group of rank 2. The element γ is conjugate in PSL(2,R)2 to an
element of the form

ν =

([
N(γ(1))1/2 0

0 N(γ(1))−1/2

]
,

[
N(γ(2))1/2 0

0 N(γ(2))−1/2

])
where N(γ(k)) > 1. Note that N(γ(k)) is called the norm of γ(k) and it is determined uniquely
by γ(k) since if

σ−1ασ =

[
a 0
0 a−1

]
and ϱ−1αϱ =

[
b 0
0 b−1

]
hold for some elements in PSL(2,R) and a, b > 1 is true as well, then

[ϱ−1][σ]

[
a 0
0 a−1

]
[σ−1][ϱ] = [ϱ][α][ϱ−1] = ±

[
b 0
0 b−1

]
,

so for some real numbers x, y, z, w we have[
x y
z w

] [
a 0
0 a−1

]
=

[
ax a−1y
az a−1w

]
= ±

[
b 0
0 b−1

] [
x y
z w

]
= ±

[
bx by
b−1z b−1w

]
.

If the equation holds with negative sign, then x = y = z = w = 0, and this is impossible. Hence
we have positive sign above, and if x ̸= 0 then a = b. Otherwise z ̸= 0 and then a = b−1 which
is also impossible since a, b > 1.

If ν = ϱ−1γϱ, then the centralizer C(ν) ≤ ϱ−1ΓKϱ is ϱ−1C(γ)ϱ and it is generated by the
elements νi = ϱ−1γiϱ for i = 1, 2 where γ1 and γ2 are the generators of C(γ). As the γi’s have
the same fixed points as γ this is true also for the conjugates and therefore

νi =

([
N(γ

(1)
i )1/2 0

0 N(γ
(1)
i )−1/2

]
,

[
N(γ

(2)
i )1/2 0

0 N(γ
(2)
i )−1/2

])

for i = 1, 2. Note that N(γ
(1)
i ) > 1 can be reached by changing the generator to its inverse if

necessary (but then N(γ
(2)
i ) > 1 may not be assured).

For every z = (z1, z2) we have∣∣∣ν(k)i zk

∣∣∣ = N(γ
(k)
i ) |zk| , arg ν

(k)
i zk = arg zk,

and from this one easily gets the following
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3.1 The geometric trace 81

Proposition 3.1.1. The fundamental domain FC(ν) = Fϱ−1C(γ)ϱ for the group C(ν) = ϱ−1C(γ)ϱ
is given by

(log |z1| , log |z2|) ∈ Pγ, (arg z1, arg z2) ∈ (0, π),

where

Pγ = {s(logN(γ
(1)
1 ), logN(γ

(2)
1 )) + t(logN(γ

(1)
2 ), logN(γ

(2)
2 )) : 0 ≤ s, t < 1} ⊂ R2.

Now from (3.3) we have

Tγ =

∫
FC(ν)

k(z, νz)u(ϱz) dµ(z).

We change to polar coordinates, i.e. make the substitution zk = rke
i(π/2+ϑk) where rk ∈ (0,∞)

and ϑk ∈ (−π
2
, π
2
) (k = 1, 2). We obtain by a computation that

ρ(zk, ν
(k)zk) =

N(γ(k)) +N(γ(k))−1 − 2

cos2 ϑk
,

and since
dxk dyk
y2k

=
drk dϑk
rk cos2 ϑk

,

the integral Tγ is

π
2∫

−π
2

π
2∫

−π
2

ψ

(
N(γ(1)) +N(γ(1))−1 − 2

cos2 ϑ1

,
N(γ(2)) +N(γ(2))−1 − 2

cos2 ϑ2

)
F (ei(

π
2
+ϑ1), ei(

π
2
+ϑ2)) dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

,

where
F (z) =

∫
(log r1,log r2)∈Pγ

u(ϱ(1)(r1z1), ϱ
(2)(r2z2))

dr1 dr2
r1r2

(3.7)

for any z ∈ H2.

Lemma 3.1.2. The function F defined in (3.7) is invariant under coordinate-wise scalar
multiplication, i.e. F (R1z1, R2z2) = F (z1, z2) for every R1, R2 ∈ (0,∞) and z1, z2 ∈ H.

Proof. By the definition of the function F we have

F (R1z1, R2z2) =

∫
(log r1,log r2)∈Pγ

u(ϱ(1)(r1R1z1), ϱ
(2)(r2R2z2))

dr1 dr2
r1r2

=

∫
(log r1,log r2)∈Pγ+(logR1,logR2)

u(ϱ(1)(r1z1), ϱ
(2)(r2z2))

dr1 dr2
r1r2

We can divide the parallelogram Pγ + (logR1, logR2) into at most four disjoint parts such
that each part is entirely contained in a parallelogram of the form Pγ + kn1 + mn2, where
ni = (logN(γ

(1)
i ), logN(γ

(2)
i )) (i = 1, 2) and k,m ∈ Z, i.e. in a translated image of Pγ by a

lattice point of the lattice generated by n1 and n2. Since u is invariant under the action of ΓK ,
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82 A generalization of the Selberg trace formula

it follows that
u(ϱνiz) = u(ϱ(ϱ−1γjϱ)z) = u(ϱz)

for i = 1, 2. Using this equality one can translate back the above mentioned parts into Pγ in the
last integral by the same type of substitutions that we did above. Then the translated parts
make up Pγ and the assertion follows.

Using the notation zk = rke
i(π

2
+ϑk) (k = 1, 2), the previous lemma gives that F depends only

on the vector (ϑ1, ϑ2). Since u is the eigenfunction of ∆k with eigenvalues λk and this operator
commutes with the group action, we infer that F (z) is also an eigenfunction of the Laplacians
with the same eigenvalues. As

∆k = (rk cosϑk)
2

(
∂2

∂r2k
+ r−1

k

∂

∂rk
+ r−2

k

∂2

∂ϑ2
k

)
,

we obtain the differential equations

∂2F

∂ϑ2
k

(ϑ1, ϑ2) =
λk

cos2 ϑk
F (ϑ1, ϑ2) (ϑk ∈ (−π/2, π/2), k = 1, 2). (3.8)

Let fλk(ϑ) be the unique solution of the differential equation

F ′′(ϑ) =
λk

cos2 ϑ
F (ϑ) (ϑ ∈ (−π/2, π/2)) (3.9)

with the initial condition fλk(0) = 1 and f ′
λk
(0) = 0, and f̃λk(ϑ) the one with f̃λk(0) = 0 and

f̃ ′
λk
(0) = 1. Note that fλk(−ϑ) satisfies (3.9) and the initial conditions of fλk(ϑ) and hence they

agree, i.e. fλk is an even function. Similarly, f̃λk is an odd function.
Now by (3.8)

F (ϑ1, ϑ2) = F (0, ϑ2)fλ1(ϑ1) +
∂F

∂ϑ1

(0, ϑ2)f̃λ1(ϑ1)

holds for every fixed ϑ2, and using the notation

ψγ(ϑ1, ϑ2) := ψ

(
N(γ(1)) +N(γ(1))−1 − 2

cos2 ϑ1

,
N(γ(2)) +N(γ(2))−1 − 2

cos2 ϑ2

)
we get that

Tγ =

π
2∫

−π
2

π
2∫

−π
2

ψγ(ϑ1, ϑ2)

(
F (0, ϑ2)fλ1(ϑ1) +

∂F

∂ϑ1

(0, ϑ2)f̃λ1(ϑ1)

)
dϑ1

cos2 ϑ1

dϑ2

cos2 ϑ2

=

π
2∫

−π
2

π
2∫

−π
2

ψγ(ϑ1, ϑ2)F (0, ϑ2)fλ1(ϑ1)
dϑ1

cos2 ϑ1

dϑ2

cos2 ϑ2

because ψγ(·, ϑ2) and cos−2 are even and hence ψγ(·, ϑ2) cos
−2 f̃λ1 is an odd function. Similarly,

F (0, ϑ2) = F (0, 0)fλ2(ϑ2) +
∂F

∂ϑ2

(0, 0)f̃λ2(ϑ2)
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3.1 The geometric trace 83

and using also that fλ1 is an even function we have

Tγ = F (0, 0)

π
2∫

−π
2

π
2∫

−π
2

ψγ(ϑ1, ϑ2)fλ1(ϑ1)fλ2(ϑ2)
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

,

where
F (0, 0) =

∫
(log r1,log r2)∈Pγ

u(ϱ(1)(r1i), ϱ
(2)(r2i))

dr1 dr2
r1r2

.

Note that since ψ has compact support and

N(γ(k)) +N(γ(k))−1 − 2

cos2 ϑk
≥ N(γ(k)) +N(γ(k))−1 − 2 =

∣∣tr [γ(k)]∣∣− 2

for k = 1, 2, we get Tγ = 0 once tk :=
∣∣tr [γ(k)]∣∣ is big enough for some k. But tk ∈ OK and

t2 = t′1 so there are only finitely many possible pairs (t1, t2) for which Tγ ̸= 0. Moreover, for
every t1 ∈ OK there are only finitely many totally hyperbolic conjugacy classes with trace t1
(see [5], Proposition I.7.1 and the paragraph after Definition I.7.2) and hence Tγ = 0 for all but
finitely many classes.

3.1.3 Contribution of mixed elements

For a mixed element we can apply the methods of the previous two sections and most of
the computations will be omitted. Let γ ∈ ΓK be a mixed element, without loss of generality
we may assume that its first coordinate is hyperbolic and the second one is elliptic. Then by
Theorem I.5.7 of [5] the centralizer C(γ) of γ is a free abelian group of rank 1 generated by an
element γ0 of the same type (since the fixed points of γ and γ0 are the same) and hence for
some ϱ ∈ PSL(2,R)2 we have

γ′ := ϱ−1γϱ =

([
(N(γ(1)))

1
2 0

0 (N(γ(1)))−
1
2

]
,

[
cos θ(γ(2)) sin θ(γ(2))
− sin θ(γ(2)) cos θ(γ(2))

])
and

γ′0 := ϱ−1γ0ϱ =

([
(N(γ

(1)
0 ))

1
2 0

0 (N(γ
(1)
0 ))−

1
2

]
,

[
cos θ(γ

(2)
0 ) sin θ(γ

(2)
0 )

− sin θ(γ
(2)
0 ) cos θ(γ

(2)
0 )

])
,

and the centralizer of γ′ in ϱ−1ΓKϱ is ϱ−1C(γ)ϱ.
Now we determine the fundamental domain of ϱ−1C(γ)ϱ. If z ∈ H2, then

γ′0z = (N(γ
(1)
0 )z1, R(θ(γ

(2)
0 ))z2),

where R(θ0) ∈ PSL(2,R) is defined in (3.5). Since γ0 is the generator of ϱ−1C(γ)ϱ it follows
immediately that the fundamental domain of this group is

Fϱ−1C(γ)ϱ = {z ∈ H2 : log |z1| ∈ [0, logN(γ
(1)
0 ))}.
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84 A generalization of the Selberg trace formula

So then

Tγ =

∫
Fϱ−1C(γ)ϱ

k(z, γ′z)u(ϱz) dµ(z) =

∫
log|z1|∈[0,logN(γ

(1)
0 ))

∫
H

k(z, γ′z)u(σz) dµ(z2) dµ(z1).

Like in Section 3.1.1 we get that this is

2π

∞∫
0

∫
log|z1|∈[0,logN(γ

(1)
0 ))

ψ(ρ(z1, γ
′(1)z1), S(r2, θ(γ

(2))))u(ϱ(1)z1, ϱ
(2)i) dµ(z1) gλ2(r2) sinh r2 dr2.

where S(r, θ) = (2 sinh r)2 sin2 θ and gλ2(r) : [0,∞) → C is the unique solution of the differential
equation (3.6) satisfying the initial condition g(0) = 1.

From here we can continue as in the previous section to obtain that Tγ is

2π

N(γ
(1)
0 )∫

1

u(ϱ(1)(r1i),ϱ
(2)i)

dr1
r1

·

·
∞∫
0

π
2∫

−π
2

ψ(N(γ(1), ϑ1), S(r2, θ(γ
(2))))

fλ1(ϑ1) dϑ1

cos2 ϑ1

gλ2(r2) sinh r2 dr2,

where

N(γ(1), ϑ1) =
N(γ(1)) +N(γ(1))−1 − 2

cos2 ϑ1

,

and fλ1(ϑ) : (−π
2
, π
2
) → C is the unique solution of the differential equation (3.9) satisfying

fλj(0) = 1 and f ′
λj
(0) = 0. Finally, as in the previous section one can see that Tγ ̸= 0 holds for

only finitely many mixed classes.

3.1.4 Contribution of hyperbolic-parabolic elements

We continue with the identification of the hyperbolic-parabolic conjugacy classes. Every
element of this type is conjugate in ΓK to an element of the form

γm,α :=

[
εm α
0 ε−m

]
, (3.10)

where m ∈ Z \ {0} and α ∈ OK . If two such elements γm,α and γn,β are conjugate in ΓK , then

there exists an element
[
a b
c d

]
∈ ΓK such that

[
εm α
0 ε−m

] [
a b
c d

]
=

[
a b
c d

] [
εn β
0 ε−n

]
,

that is [
εma+ αc εmb+ αd
ε−mc ε−md

]
=

[
aεn aβ + bε−n

cεn cβ + dε−n

]
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3.1 The geometric trace 85

The equations ε−mc = cεn and εma+ αc = aεn give that if c = 0, then m = n, while if c ̸= 0,
then n = −m.

Next we show that for every m ∈ Z \ {0}, α ∈ OK the element γm,α is conjugate to a γ−m,β
for some β ∈ OK . Suppose that τγm,ατ−1 = γ−m,β. If q is the real fixed point of γm,α, then the
conjugate fixes τ∞ and also τq, so one of these two points must be ∞. Now if τ∞ = ∞, then

τ =

[
a b
0 d

]
, which is impossible since then the conjugate would be of the form γm,β (as we

have seen in the previous paragraph). It follows that τ takes q to ∞. This point can be written
explicitly:

εmq + α

ε−m
= q ⇐⇒ q =

−α
εm − ε−m

.

The group ΓK acts transitively on K ∪ {∞}, so there is a τ =

[
a b
c d

]
∈ ΓK that takes

−α
εm−ε−m to ∞ and then

d =
cα

εm − ε−m
.

Moreover, the determinant of the matrix is 1, i.e.

acα

εm − ε−m
− bc = 1,

and from this we infer

c =
εm − ε−m

aα− b(εm − ε−m)
, d =

α

aα− b(εm − ε−m)
.

These two numbers are coprime in OK and hence Λ= aα− b(εm − ε−m) is the generator of the
ideal (εm − ε−m, α) so it is determined up to a unit factor. This means that the positive integer
N(Λ)2 is independent of the choice of τ . As τγm,ατ−1 fixes the point ∞ it must be of the form
γn,β for some n ∈ Z \ {0} and β ∈ OK . We have already seen that n = ±m holds in this case
and since c ̸= 0 we must have in fact n = −m. But τγm,ατ−1 fixes also the point τ∞ = aΛ

εm−ε−m

and hence
τγm,ατ

−1 =

[
ε−m aΛ
0 εm

]
.

Now assume that the elements γm,α and γm,β are conjugate to each other. Then for some
l ∈ Z and a ∈ OK [

εm β
0 ε−m

]
=

[
ε−l −a
0 εl

] [
εm α
0 ε−m

] [
εl a
0 ε−l

]

=

[
εm−l ε−lα− ε−ma
0 εl−m

] [
εl a
0 ε−l

]

=

[
εm εm−la+ ε−2lα− ε−m−la
0 ε−m

]
,

that is,
β = ε−la(εm − ε−m) + ε−2lα.
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86 A generalization of the Selberg trace formula

This means that β is congruent to ε−2lα for some l ∈ Z modulo εm − ε−m. On the other hand,
choosing an appropriate a and l and conjugating by γl,a we get that γm,α is conjugate to γm,β
for any element β of the cosets of the principal ideal (εm − ε−m) represented by a number ε2lα
for some l ∈ Z. The number of these cosets is finite (in fact at most |N(εm − ε−m)|) and we
can summarize all this in the following statement:

Proposition 3.1.3. Every hyperbolic-parabolic element is conjugate in ΓK to an element of the
form γm,α for some m ∈ N+ and α ∈ OK. Moreover, for a fixed m ∈ N+, the number of the
conjugacy classes represented by an element γm,α is finite.

We also have the following result (see §20 in [14]):

Proposition 3.1.4. The centralizer C(γm,α) of the element γm,α is a cyclic group generated by
an element

γk(m,α) = γk :=

[
εk α εk−ε−k

εm−ε−m

0 ε−k

]
,

where k ∈ Z \ {0}.

One can prove by induction that γnk = γnk for any n ∈ Z. As γm,α is in the centralizer, we
have that γm,α = γnk = γnk for some n ∈ Z which means that nk = m, i.e. k | m. If follows that
k can be chosen as the smallest positive divisor of m for which α(εk−ε−k)

εm−ε−m is an algebraic integer.
We now describe a fundamental domain FC(γα,m) of the centralizer C(γα,m) = ⟨γk⟩. Let Ck

denote the cyclic group generated by

ρk :=

[
εk 0
0 ε−k

]
. (3.11)

We fix the notation E = Em = εm − ε−m. Then C(γα,m) = σ−1Ckσ where σ =

[
1 α

E

0 1

]
(because γk = σ−1ρkσ) and hence if FCk

is a fundamental domain for Ck, then

FC(γα,m) = σ−1FCk
= FCk

−
(
α

E
,
α′

E ′

)
is a fundamental domain for C(γα,m).

As in the case of the totally hyperbolic elements we use polar coordinates. That is, for a
point z = (z1, z2) ∈ H2 we write zj = rj(sinϑj + i · cosϑj) where rj ∈ R+ and −π

2
≤ ϑj <

π
2

(j = 1, 2). Now the fundamental domain FCk
is given by

−π
2
≤ ϑ1, ϑ2 <

π

2
, 1 ≤ r1 < ε2k, r2 ∈ R+.

We consider the integral

TAγ =
∑

σ∈C(γm,α)\ΓK

∫
σFA

k(z, γm,αz)u(z) dµ(z). (3.12)

The union of the sets σFA above makes up the fundamental domain of the centralizer C(γm,α)
except for the images of the part F \ FA =: F ∗

A. For some cosets it is unnecessary to omit the
images of F ∗

A. To see this we separate the cosets in the sum that contain elements that take the
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3.1 The geometric trace 87

point ∞ to a fixed point of γm,α. Note that in this case σ∞ is the same for every element σ of
the coset. If σ leaves ∞ fixed, then the part σF ∗

A is the same as

{z ∈ FC(γm,α) : σ
−1z ∈ F, Y0(σ

−1z) ≥ A}.

But as σ∞ = ∞, the values Y0(σ−1z) and Y0(z) are the same.
If σ∞ = q, then

z ∈ σF ∗
A ⇐⇒ z ∈ FC(γm,α), σ

−1z ∈ F, Y0(σ
−1z) ≥ A. (3.13)

As σ−1 takes q to ∞ it is of the form
[
a b
E
Λ

α
Λ

]
and then

Y0(σ
−1z) =

N(Λ2)Y0(z)

|Ez1 + α|2 |E ′z2 + α′|2
,

hence Y0(σ−1z) is the same for every σ wich takes ∞ to q. So we can fix an element τ−1 with
this condition and write the last inequality in (3.13) in the form Y0(τz) ≥ A.

Before we turn to the remaining cosets we compute the value k(z, γm,αz). Substituting the
definitions we get

k(z, γm,αz) = ψ


∣∣∣z1 − γ

(1)
m,αz1

∣∣∣2
y1(z)y1(γm,αz)

,

∣∣∣z2 − γ
(2)
m,αz2

∣∣∣2
y2(z)y2(γm,αz)



= ψ

∣∣z1 − εmz1+α
ε−m

∣∣2
ε2my1(z)2

,

∣∣∣z2 − (ε′)mz2+α′

(ε′)−m

∣∣∣2
(ε′)2my2(z)2


= ψ

(
|Ez1 + α|2

y1(z)2
,
|E ′z2 + α′|2

y2(z)2

)
= ψ

(
(Ex1 + α)2

y21
+ E2,

(E ′x2 + α′)2

y22
+ E2

)

= ψ

(
|z1 − q|2

E−2y21
,
|z2 − q′|2

E−2y22

)

using that q = −α/E and E2 = (E ′)2 (since ε′ = ±ε−1). Now assume that σ is from a coset

such that σ∞ ≠ ∞, q. Writing σ =

[
a b
c d

]
with c ̸= 0 we have

Y0(σz) =
Y0(z)

|cz1 + d|2 |c′z2 + d′|2
,

and then

|σz1 − q|2

E−2y1(σz)2
· |σz2 − q′|2

E−2y2(σz)2
=

E4

Y0(σz)2
·
∣∣∣σ(1)z1 +

α

E

∣∣∣2 · ∣∣∣∣σ(2)z2 +
α′

E ′

∣∣∣∣2
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=
E4

Y0(σz)2
·
∣∣∣∣az1 + b

cz1 + d
+
α

E

∣∣∣∣2 · ∣∣∣∣a′z2 + b′

c′z2 + d′
+
α′

E ′

∣∣∣∣2

≥ E4

Y0(σz)2
· (Ea+ αc)2y21
E2 |cz1 + d|2

· (E
′a′ + α′c′)2y22

E2 |c′z2 + d′|2

=
N(Ea+ αc)2Y0(z)

2

Y0(σz)2 |cz1 + d|2 |c′z2 + d′|2

= N(Ea+ αc)2 |cz1 + d|2 |c′z2 + d′|2

≥ N(Ea+ αc)2N(c)2Y0(z)
2.

The numbers N(c)2 and N(Ea+ αc)2 are positive integers since σ∞ ≠ ∞, q. From this we see
that if Y0(z) is big enough, then

ψ

(
|σz1 − q|2

E−2y1(σz)2
,
|σz2 − q′|2

E−2y2(σz)2

)
= 0

as ψ has compact support. It follows that for a big enough A we can write σF instead of σFA
on the right hand side of (3.12) once σ∞ ≠ ∞, q. Hence we have to integrate over

SA = {z ∈ FC(γm,α) : Y0(z) ≤ A and Y0(τz) ≤ A}.

First we make the substitutions x1 7→ x1 − α/E and x2 7→ x2 − α′/E ′ to get∫
SA

k(z,γz)u(z) dµ(z) =

=

∫
SA

ψ

(
(Ex1 + α)2

y21
+ E2,

(E ′x2 + α′)2

y22
+ E2

)
u(z)

dx1 dx2 dy1 dy2
y21y

2
2

=

∫
S′
A

ψ

(
E2(x21 + y21)

y21
,
E2(x22 + y22)

y22

)
u

(
z1 −

α

E
, z2 −

α′

E ′

)
dx1 dx2 dy1 dy2

y21y
2
2

,

where

S ′
A =

{
z ∈ FC(γm,α) +

(
α

E
,
α′

E ′

)
: Y0

(
z −

(
α

E
,
α′

E ′

))
≤ A, Y0

(
τ

(
z −

(
α

E
,
α′

E ′

)))
≤ A

}

=

{
z ∈ FCk

: y1y2 ≤ A,
N(Λ)2y1y2

E4 |z1z2|2
≤ A

}
.

As y1y2 = r1r2 cosϑ1 cosϑ2 the conditions above can be written in the following form:

Ar1,ϑ1,ϑ2 :=
N(Λ)2 cosϑ1 cosϑ2

E4Ar1
≤ r2 ≤ Ar1,ϑ1,ϑ2 :=

A

r1 cosϑ1 cosϑ2

.
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Since
dx dy

y2
=

dr dϑ

r cos2 ϑ
, after changing variables we get that

TAγ =

∫
SA

k(z, γz)u(z) dµ(z) =

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
Iu(A, ϑ1, ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

where

Iu(A, ϑ1, ϑ2) =

ε2k∫
1

Ar1,ϑ1,ϑ2∫
Ar1,ϑ1,ϑ2

u

(
r1e

i(π
2
+ϑ1) − α

E
, r2e

i(π
2
+ϑ2) − α′

E ′

)
dr2
r2

dr1
r1
.

Note that if |m| is big then so is E2 = (εm − ε−m)2 and hence

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
= 0.

It follows that the sum over the hyperbolic-parabolic conjugacy classes is in fact finite.
We divide Iu(A, ϑ1, ϑ2) into two parts:

ε2k∫
1

Ar1,ϑ1,ϑ2∫
Ar1,ϑ1,ϑ2

u

(
r1e

i(π
2
+ϑ1) − α

E
, r2e

i(π
2
+ϑ2) − α′

E ′

)
dr2
r2

dr1
r1

=

=

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

u

(
r1e

i(π
2
+ϑ1) − α

E
, r2e

i(π
2
+ϑ2) − α′

E ′

)
dr2
r2

dr1
r1

+

ε2k∫
1

1∫
Ar1,ϑ1,ϑ2

u

(
r1e

i(π
2
+ϑ1) − α

E
, r2e

i(π
2
+ϑ2) − α′

E ′

)
dr2
r2

dr1
r1
.

Since u is invariant under the action of ΓK the second part equals

ε2k∫
1

1∫
Ar1,ϑ1,ϑ2

u

(
τ
(
r1e

i(π
2
+ϑ1) − α

E

)
, τ ′
(
r2e

i(π
2
+ϑ2) − α′

E ′

))
dr2
r2

dr1
r1
.

As
τ
(
z − α

E

)
=

az − aα
E

+ b
E
Λ
(z − α

E
) + α

Λ

= Λ
az − aα

E
+ b

Ez
= L+

M

z

where L = aΛ
E

and M = Λ
E

(
b− aα

E

)
= −Λ2

E2 we get after the substitutions r1 7→ 1
r1

and r2 7→ 1
r2

that the latter double integral is

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

u
(
−Mr1e

i(π
2
−ϑ1) + L,−M ′r2e

i(π
2
−ϑ2) + L′) dr2

r2

dr1
r1

=
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=

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

u

(
τ
[
T (r1e

i(π
2
−ϑ1))− α

E

]
, τ ′
[
T (r2e

i(π
2
−ϑ2))− α′

E ′

])
dr2
r2

dr1
r1

=

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

u

(
T (r1e

i(π
2
−ϑ1))− α

E
, T (r2e

i(π
2
−ϑ2))− α′

E ′

)
dr2
r2

dr1
r1
,

where T is the transformation
[
0 −1
1 0

]
and

Âr1,ϑ1,ϑ2 =
E4A

r1N(Λ)2 cosϑ1 cosϑ2

.

Let us define
U1(z) = u(z1 − α/E, z2 − α′/E ′) (3.14)

and
U2(z) = u(−Mz + L,−M ′z + L′) = U1(Tz). (3.15)

With this notation we have

Iu(A, ϑ1, ϑ2) =

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

U1(r1e
i(π

2
+ϑ1), r2e

i(π
2
+ϑ2))

dr2
r2

dr1
r1

+

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

U2(r1e
i(π

2
−ϑ1), r2e

i(π
2
−ϑ2))

dr2
r2

dr1
r1
.

Note that if u is a cusp form, then u(z) = O(y
− 1

2
2 ) by Proposition 2.1.6 once y2 → ∞ and y1 is

bounded from below. Hence in this case the integrals above converge (note that cosϑj ≥ δ > 0
for j = 1, 2 since ψ has compact support).

Now we handle the case when u is not a cusp form. We are going to subtract the main terms
of U1 and U2 to get convergent integrals. By main term we mean the zeroth coefficient of the
Fourier series. Recall that the zeroth coefficient u is ηys11 y

s2
2 + ϕy1−s11 y1−s22 where η, ϕ ∈ C and

at least one of them is non-zero. Also, by (3.1) we have

(s1, s2) =

(
s+

πimu

2 log ε
, s− πimu

2 log ε

)
for some s ∈ C and mu ∈ Z. Hence by Proposition 2.1.6 the function

U1(z) = U1(z)− (ηys11 y
s2
2 + ϕy1−s11 y1−s22 ) = U1(z)−m1(z) (3.16)

is O(y−Re s2
2 ) as y2 → ∞ and y1 is bounded from below. Similarly, the main term of U2(z) is

m2(z) = η
|N(Λ)|2s λmu(Λ

2)

|E|4s
ys11 y

s2
2 + ϕ

|N(Λ)|2(1−s) λ−mu(Λ
2)

|E|4(1−s)
y1−s11 y1−s22 ,
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3.1 The geometric trace 91

where λm(α)= |α/α′|
πim
2 log ε for any α ∈ K× and m ∈ Z. It is a so-called Grössencharacter that

will occur again in the next section. Hence

U2(z) = U2(z)−m2(z) (3.17)

is also O(y−Re s2
2 ) as y2 → ∞ and y1 is bounded from below. Note that the numbers λ±mu(Λ

2)
and N(Λ)2 depend only on the ideal (Λ).

We write
Iu(A, ϑ1, ϑ2) = I1u(A, ϑ1, ϑ2) + I2u(A, ϑ1, ϑ2),

where

I1u(A, ϑ1, ϑ2) =

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

U1

(
r1e

i(π
2
+ϑ1), r2e

i(π
2
+ϑ2)

) dr2
r2

dr1
r1

+

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

U2

(
r1e

i(π
2
−ϑ1), r2e

i(π
2
−ϑ2)

) dr2
r2

dr1
r1

and

I2u(A, ϑ1, ϑ2) =

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

m1(r1e
i(π

2
+ϑ1), r2e

i(π
2
+ϑ2))

dr2
r2

dr1
r1

+

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

m2(r1e
i(π

2
−ϑ1), r2e

i(π
2
−ϑ2))

dr2
r2

dr1
r1
.

By the estimates on U1(z) and U2(z) the function I1u(A, ϑ1, ϑ2) converges as A→ ∞ and hence
we can write I1u(A, ϑ1, ϑ2) = Iγu (ϑ1, ϑ2) + o(1) where

Iγu (ϑ1, ϑ2) =

ε2k∫
1

∞∫
1

U1

(
r1e

i(π
2
+ϑ1), r2e

i(π
2
+ϑ2)

) dr2
r2

dr1
r1

+

1∫
ε−2k

∞∫
1

U2

(
r1e

i(π
2
−ϑ1), r2e

i(π
2
−ϑ2)

) dr2
r2

dr1
r1
. (3.18)

We continue with the calculation of the term I2u(A, ϑ1, ϑ2). The first term is

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

η(r1 cosϑ1)
s1(r2 cosϑ2)

s2 + ϕ(r1 cosϑ1)
1−s1(r2 cosϑ2)

1−s2 dr2
r2

dr1
r1

=
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= η(cosϑ1)
s1(cosϑ2)

s2

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

rs2−1
2 dr2

 rs1−1
1 dr1

+ ϕ(cosϑ1)
1−s1(cosϑ2)

1−s2

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

r−s22 dr2

 r−s11 dr1.

We compute the first inner integral on the right hand side:

Ar1,ϑ1,ϑ2∫
1

rs2−1
2 dr2 =

1

s2

[
(Ar1,ϑ1,ϑ2)s2 − 1

]
=

1

s2

[
As2

rs21 (cosϑ1 cosϑ2)s2
− 1

]
,

and hence

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

rs2−1
2 dr2

 rs1−1
1 dr1 =

1

s2

 As2

(cosϑ1 cosϑ2)s2

ε2k∫
1

rs1−s2−1
1 dr1 −

ε2k∫
1

rs1−1
1 dr1

 .
But once s1 ̸= s2 we have that

ε2k∫
1

rs1−s2−1
1 dr1 =

1

s1 − s2
(ε2k(s1−s2) − 1) = 0

by (3.1), that is,

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

rs2−1
2 dr2

 rs1−1
1 dr1 =

1− ε2ks1

s1s2
=

1− sg(kmu)ε
2ks

s2 + π2m2
u

4 log2 ε

.

Similarly,

Ar1,ϑ1,ϑ2∫
1

r−s22 dr2 =
1

1− s2

[
(Ar1,ϑ1,ϑ2)1−s2 − 1

]
=

1

1− s2

[
A1−s2

r1−s21 (cosϑ1 cosϑ2)1−s2
− 1

]
,

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

r−s22 dr2

 r−s11 dr1 =
1

1− s2

 A1−s2

(cosϑ1 cosϑ2)1−s2

ε2k∫
1

rs2−s1−1
1 dr1 −

ε2k∫
1

r−s11 dr1

 .
Again, if s1 ̸= s2, then

ε2k∫
1

rs2−s1−1
1 dr1 =

1

s2 − s1
(ε2k(s2−s1) − 1) = 0,
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3.1 The geometric trace 93

ε2k∫
1

 Ar1,ϑ1,ϑ2∫
1

r−s22 dr2

 r−s11 dr1 =
1− ε2k(1−s1)

(1− s1)(1− s2)
=

1− sg(kmu)ε
2k(1−s)

(1− s)2 + π2m2
u

4 log2 ε

.

On the other hand, if s1 = s2 = s, then

ε2k∫
1

rs2−s1−1
1 dr1 =

ε2k∫
1

rs1−s2−1
1 dr1 =

ε2k∫
1

r−1
1 dr1 = 2k log ε.

Summarizing all this we get

ε2k∫
1

Ar1,ϑ1,ϑ2∫
1

m1(r1e
i(π

2
+ϑ1), r2e

i(π
2
+ϑ2))

dr2
r2

dr1
r1

=

= δs1=s2=s2k log ε

[
ηAs

s
+
ϕA1−s

1− s

]

+
η(cosϑ1)

s1(cosϑ2)
s2(1− sg(kmu)ε

2ks)

s2 + π2m2
u

4 log2 ε

+
ϕ(cosϑ1)

1−s1(cosϑ2)
1−s2(1− sg(kmu)ε

2k(1−s))

(1− s)2 + π2m2
u

4 log2 ε

.

Now we turn to the second double integral in I2u(A, ϑ1, ϑ2):

1∫
ε−2k

Âr1,ϑ1,ϑ2∫
1

m2(r1e
i(π

2
−ϑ1), r2e

i(π
2
−ϑ2))

dr2
r2

dr1
r1
.

Substituting the definition of m2 one gets

η |N(Λ)|2s λmu(Λ
2)

E4s
(cosϑ1)

s1(cosϑ2)
s2

1∫
ε−2k

 Âr1,ϑ1,ϑ2∫
1

rs2−1
2 dr2

 rs1−1
1 dr1+

+
ϕ |N(Λ)|2(1−s) λ−mu(Λ

2)

|E|4(1−s)
(cosϑ1)

1−s1(cosϑ2)
1−s2

1∫
ε−2k

 Âr1,ϑ1,ϑ2∫
1

r−s22 dr2

 r−s11 dr1.

As before, we have

Âr1,ϑ1,ϑ2∫
1

rs2−1
2 dr2 =

1

s2

[
|E|4s2 As2

rs21 |N(Λ)|2s2 (cosϑ1 cosϑ2)s2
− 1

]
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and

Âr1,ϑ1,ϑ2∫
1

r−s22 dr2 =
1

1− s2

[
|E|4(1−s2)A1−s2

r1−s21 |N(Λ)|2(1−s2) (cosϑ1 cosϑ2)1−s2
− 1

]
.

This gives the same way as before that the term that depends on A is

δs1=s2=s2k log ε

[
ηAs

s
+
ϕA1−s

1− s

]
.

The constant term comes from

− 1

s2

∫ 1

ε−2k

rs1−1
1 dr1 =

1

s1s2
(ε−2ks1 − 1) =

sg(kmu)ε
−2ks − 1

s2 + π2m2
u

4 log2 ε

and

− 1

1− s2

∫ 1

ε−2k

r−s11 dr1 =
1

(1− s1)(1− s2)
(ε−2k(1−s1) − 1) =

sg(kmu)ε
−2k(1−s) − 1

(1− s)2 + π2m2
u

4 log2 ε

.

We summarizing this in the following

Lemma 3.1.5. If u is not a cusp form, then

I2u(A, ϑ1, ϑ2) = δmu4k log ε

[
ηAs

s
+
ϕA1−s

1− s

]
+ ηCγ,ϑ1,ϑ2(s,mu) + ϕCγ,ϑ1,ϑ2(1− s,−mu),

where

Cγ,ϑ1,ϑ2(s,mu) = (cosϑ1)
s1(cosϑ2)

s2Cγ(s,mu),

Cγ(s,mu) = Cγm,α(s,mu) =
(1−Mγ(s,mu)− sg(kmu)(ε

2ks −Mγ(s,mu)ε
−2ks))

s2 + π2m2
u

4 log ε

,

and

Mγ(s,mu) =
|N(Λ)|2s λmu(Λ

2)

|E|4s
.

Notice that if u is a cusp form, then U j = Uj and we have

Proposition 3.1.6. If u is a cusp form, then

TAγ =

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
F (ei(

π
2
+ϑ1), ei(

π
2
+ϑ2))

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

+ o(1)

as A→ ∞, where

F (z1, z2) =

ε2k∫
1

∞∫
0

U1 (r1z1, r2z2)
dr2
r2

dr1
r1
.
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The function U1(z) = u(z1 − α/E, z2 − α′/E ′) is not invariant under the action of ΓK but it
is still invariant under the action of ρk (defined in (3.11) on page 86), because

U1(ρkz) = u

(
ε2kz1 −

α

E
, ε−2kz2 −

α′

E ′

)

= u

(
ε2kz1 − ε2k

α

E
+ ε2k

α

E
− α

E
, ε−2kz2 − ε−2k α

′

E ′ + ε−2k α
′

E ′ −
α′

E ′

)

= u

(
ε2k
(
z1 −

α

E

)
+ εk

α

E
(εk − ε−k), ε′2k

(
z2 −

α′

E ′

)
+ ε′k

α′

E ′

(
ε′k − ε′−k

))

= u

(
z1 −

α

E
, z2 −

α′

E ′

)
since u is invariant under the action of γk (defined in Proposition 3.1.4). As in Section 3.1.2 we
get that F (R1z1, R2z2) = F (z1, z2) for any R1, R2 ∈ (0,∞), i.e. F (z1, z2) is a function of ϑ1 and
ϑ2 only and we can write F (ϑ1, ϑ2). Also, since the Laplace operators ∆j commute with the
action of PSL(2,R)2 this function satisfies the equation (3.8). Proceeding as in Section 3.1.2
we obtain

TAγ = F (0, 0)

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
fλ1(ϑ1)fλ2(ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

+ o(1),

where fλj are the solutions of the equation (3.8) with fλj(0) = 1 and f ′
λj
(0) = 0 and

F (0, 0) =

ε2k∫
1

∞∫
0

u

(
r1i−

α

E
, r2i−

α′

E ′

)
dr2
r2

dr1
r1
.

Next we turn to the case when u is not a cusp form. Note that by Lemma 3.1.5 we get a
main term (i.e. a term that does not converge as A→ ∞) only in the case mu = 0. To give the
contribution of a class we write

ψγ(ϑ1, ϑ2) = ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
,

and then

TAγ = δmu4k log ε

[
ηAs

s
+
ϕA1−s

1− s

] π/2∫
−π/2

π/2∫
−π/2

ψγ(ϑ1, ϑ2)
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

+

π/2∫
−π/2

π/2∫
−π/2

ψγ(ϑ1, ϑ2)C
γ
u(ϑ1, ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

+ o(1)
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96 A generalization of the Selberg trace formula

where Cγ
u(ϑ1, ϑ2) is

η(cosϑ1)
s1(cosϑ2)

s2Cγ(s,mu) + ϕ(cosϑ1)
1−s1(cosϑ2)

1−s2Cγ(1− s,−mu) + Iγu (ϑ1, ϑ2).

Here Iγu (ϑ1, ϑ2) was defined in (3.18) on page 91 while Cγ(s,mu) was introduced in Lemma 3.1.5.
We compute the coefficient of the main term:

π/2∫
−π/2

π/2∫
−π/2

ψγ(ϑ1, ϑ2)
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

= 4

π
2∫

0

π
2∫

0

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

=
1

E2

∞∫
E2

∞∫
E2

ψ(u1, u2)√
u1 − E2

√
u2 − E2

du1 du2

=
1

E2
g(log ε2m, log ε−2m).

Note that E2 = |N(E)| and by Proposition III.3.3 in [5] we have the following for a fixed m:∑
{γm,α} hyperbolic-parabolic

k

|N(E)|
= 1.

So if we gather the main terms that belong to the classes of γm,α for a fixed m, then we obtain

4g(log ε2m, log ε−2m) log ε

[
ηAs

s
+
ϕA1−s

1− s

]
.

Note that g(log ε2m, log ε−2m) = g(log ε2|m|, log ε−2|m|) for every m ∈ Z and hence instead of
summing over the positive integers we may sum over the non-zero integers and divide by 2.
Hence the hyperbolic-parabolic conjugacy classes give the main term

2 log ε

[
ηAs

s
+
ϕA1−s

1− s

] ∑
m∈Z\{0}

g(log ε2m, log ε−2m).

We elaborate also on the constant terms. Let us consider the integral

π
2∫

−π
2

π
2∫

−π
2

ψγ (ϑ1, ϑ2)(cosϑ1)
s1(cosϑ2)

s2
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

=

= 4

π
2∫

0

π
2∫

0

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
(cosϑ1)

s1(cosϑ2)
s2

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

.
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3.1 The geometric trace 97

As before, we make the substitution uj = E2/ cos2 ϑj, so the previous integral is

1

|E|2−s1−s2

∞∫
E2

∞∫
E2

ψ(u1, u2)u
− s1

2
1 u

− s2
2

2√
u1 − E2

√
u2 − E2

du1 du2.

In the following we omit the constant multiplier |E|s1+s2−2 and calculate just the integral above.
Using Proposition 2.3.1 we get that it is

1

π2

∞∫
E2

∞∫
E2

∞∫
u2

∞∫
u1

∂2Q
∂w1∂w2

(w1, w2)√
w1 − u1

√
w2 − u2

dw1 dw2
u
− s1

2
1 u

− s2
2

2√
u1 − E2

√
u2 − E2

du1 du2.

Now we interchange the order of integration to continue:

1

π2

∞∫
E2

∞∫
E2

∂2Q

∂w1∂w2

(w1, w2)

w2∫
E2

w1∫
E2

u
− s1

2
1 u

− s2
2

2√
w1 − u1

√
u1 − E2

√
w2 − u2

√
u2 − E2

du1 du2 dw1 dw2 =

=
1

π2

∞∫
0

∞∫
0

∂2Q

∂w1∂w2

(w1 + E2, w2 + E2)

w2∫
0

w1∫
0

(u1 + E2)−
s1
2 (u2 + E2)−

s2
2

√
w1 − u1

√
u1
√
w2 − u2

√
u2
du1 du2 dw1 dw2

=
1

π2

∞∫
0

∞∫
0

∂2Q

∂w1∂w2

(w1 + E2, w2 + E2)

1∫
0

1∫
0

(w1u1 + E2)−
s1
2 (w2u2 + E2)−

s2
2

√
1− u1

√
u1
√
1− u2

√
u2

du1 du2 dw1 dw2.

Then integration by parts with respect to the variable w2 gives

−(E2)−
s2
2

π2

∞∫
0

∂Q

∂w1

(w1 + E2, E2)

1∫
0

(w1u1 + E2)−
s1
2

√
1− u1

√
u1

du1

1∫
0

1√
1− u2

√
u2
du2 dw1

+
s2
2π2

∞∫
0

∞∫
0

∂Q

∂w1

(w1 + E2, w2 + E2)×

×
1∫

0

(w1u1 + E2)−
s1
2

√
1− u1

√
u1

du1

1∫
0

√
u2(w2u2 + E2)−

s2
2
−1

√
1− u2

du2 dw1 dw2.

Note that
1∫

0

1√
1− t

√
t
dt = π

and hence the first term above is

−(E2)−
s2
2

π

∞∫
0

∂Q

∂w1

(w1 + E2, E2)

1∫
0

(w1u1 + E2)−
s1
2

√
1− u1

√
u1

du1 dw1.
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98 A generalization of the Selberg trace formula

Again, integration by parts gives that this is

(E2)−
s1+s2

2 Q(E2, E2)− s1(E
2)−

s2
2

2π

∞∫
0

Q(w1 + E2, E2)

1∫
0

√
u1(w1u1 + E2)−

s1
2
−1

√
1− u1

du1 dw1 =

= (E2)−
s1+s2

2 Q(E2, E2)− (E2)−
s2
2

∞∫
E2

Q(w1, E
2)F̃s1,m(w1) dw1,

where

F̃s,m(w) =
s

2π

1∫
0

((w − E2)t+ E2)−
s
2
−1

√
t√

1− t
dt

We get similarly that the remaining terms are

−(E2)−
s1
2

∞∫
E2

Q(E2, w2)F̃s2,m(w2) dw2

and
∞∫

E2

∞∫
E2

Q(w1, w2)F̃s1,m(w1)F̃s2,m(w2) dw1 dw2.

Lastly, we substitute wj = exj + e−xj − 2 and define

Fs,m(x) =
(ex − e−x)s

2π

1∫
0

((ex + e−x − 2− E2)t+ E2)−
s
2
−1

√
t√

1− t
dt

to obtain

Ξs1,s2(m) :=

π
2∫

−π
2

π
2∫

−π
2

ψγ (ϑ1, ϑ2) (cosϑ1)
s1(cosϑ2)

s2
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

=

=
1

|E|2
g(log ε2m, log ε2m)− 1

|E|2−s1

∞∫
log ε2m

g(x1, log ε
2m)Fs1,m(x1) dx1

− 1

|E|2−s2

∞∫
log ε2m

g(log ε2m, x2)Fs2,m(x2) dx2

+
1

|E|2−2s

∞∫
log ε2m

∞∫
log ε2m

g(x1, x2)Fs1,m(x1)Fs2,m(x2) dx1 dx2.

Putting all these together we get
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3.1 The geometric trace 99

Proposition 3.1.7. If u is not a cusp form, then the contribution of the hyperbolic-parabolic
conjugacy classes in the trace is

δmu2 log ε

[
ηAs

s
+
ϕA1−s

1− s

] ∑
m∈Z\{0}

g(log ε2m, log ε−2m)+

+ η
∑
m∈N+

Ξs1,s2(m)
∑

{γm,α}

Cγm,α(s,mu)

+ ϕ
∑
m∈N+

Ξ1−s1,1−s2(m)
∑

{γm,α}

Cγm,α(1− s,−mu)

+
∑
m∈N+

∑
{γm,α}

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
Iγm,α
u (ϑ1, ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

+ o(1).

Here γm,α is defined in (3.10), E = εm − ε−m, Ξs1,s2(m) is defined above the proposition,
Cγm,α(s,mu) is defined in Lemma 3.1.5 and

Iγm,α
u (ϑ1, ϑ2) =

ε2k∫
1

∞∫
1

U1

(
r1e

i(π
2
+ϑ1), r2e

i(π
2
+ϑ2)

) dr2
r2

dr1
r1

+

1∫
ε−2k

∞∫
1

U2

(
r1e

i(π
2
−ϑ1), r2e

i(π
2
−ϑ2)

) dr2
r2

dr1
r1
,

where k is the positive integer defined uniquely by Proposition 3.1.4 and the functions U1 and
U2 are defined by (3.14), (3.15), (3.16) and (3.17) above.

3.1.5 Contribution of totally parabolic elements

Now we turn to the conjugacy classes of totally parabolic elements. Every element of this
type is conjugate in ΓK to an element of the form

γα :=

[
1 α
0 1

]
, (3.19)

where 0 ̸= α ∈ OK . Two such elements γα and γβ are conjugate if and only if[
1 α
0 1

] [
a b
c d

]
=

[
a b
c d

] [
1 β
0 1

]
for some a, b, c, d ∈ OK , that is,[

a+ αc b+ αd
c d

]
=

[
a βa+ b
c βc+ d

]
.
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100 A generalization of the Selberg trace formula

We obtain that a+ αc = a. This gives c = 0, which means that d = a−1, hence a ∈ O×
K . From

b+ αd = βa+ b we have α = a2β. We obtained the following:

Proposition 3.1.8. The representatives of the conjugacy classes of toltally parabolic elements
are given by the elements γα defined in (3.19), where α ∈ OK/(O×

K)
2.

We compute the centralizer of these elements:[
a b
c d

] [
1 α
0 1

]
=

[
1 α
0 1

] [
a b
c d

]
if and only if [

a αa+ b
c αc+ d

]
=

[
a+ αc b+ αd
c d

]
.

From a = a+ αc we have c = 0 (since α ̸= 0), from αa+ b = b+ αd we have a = d. So we have
the following

Proposition 3.1.9. The centralizer C(γα) of the totally parabolic element γα is{[
1 β
0 1

]
: β ∈ OK

}
.

We obtain immediately from (1.5) and (1.6) on page 7 that the fundamental domain of the
centralizer C(γα) is

FC(γα) =

{
z ∈ H2 : −1

2
≤ X1(z) <

1

2
, −1

2
≤ X2(z) <

1

2

}
.

We consider the sum ∑
0̸=α∈OK/(O×

K)2

∑
σ∈C(γα)\ΓK

∫
σFA

k(z, γαz)u(z) dµ(z), (3.20)

and proceed as in the previous section. The union of the sets σFA above makes up the set FC(γα)

except for the images of the remainder part F \ FA =: F ∗
A. If σ leaves ∞ fixed, then so does

every element in its coset, and the part σF ∗
A is the same as

{z ∈ FC(γα) : σ
−1z ∈ F, Y0(σ

−1z) ≥ A}.

But since σ∞ = ∞, the values Y0(σ−1z) and Y0(z) are the same.

Now assume that σ =

[
a b
c d

]
does not fix the cusp ∞, so c ̸= 0. If z ∈ F ∗

A, then

Y0(σz) ≤
1

N(c)2Y0(z)
≤ 1

A
,

and since

k(z, γαz) = ψ

(
|z1 − (z1 − α)|2

y21
,
|z2 − (z2 − α′)|2

y22

)
= ψ

(
α2

y21
,
α′2

y22

)
,
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3.1 The geometric trace 101

this is zero for σz if z ∈ F ∗
A and A is big enough (because ψ has compact support). So in this

case we can integrate over σF instead of σFA and (3.20) becomes∑
0̸=α∈OK/(O×

K)2

∫
z∈FC(γα),Y0(z)≤A

ψ

(
α2

y21
,
α′2

y22

)
u(z) dµ(z) =

=
∑

0̸=α∈OK/(O×
K)2

∫∫
− 1

2
≤X1,X2<

1
2

∫∫
Y0≤A

ψ

(
α2

y21
,
α′2

y22

)
u(z)

dy1 dy2
y21y

2
2

dx1 dx2.

The function u has the Fourier expansion

u(z) = ηys11 y
s2
2 + ϕy1−s11 y1−s22 +

∑
l∈L∗

K\0

al(y)e
2πi<l,x>

and since for every 0 ̸= l ∈ L∗
K we have∫∫

− 1
2
≤X1,X2<

1
2

e2πi<l,x> dx1 dx2 = 0,

by Lemma 2.1.7, which also gives that∫∫
− 1

2
≤X1,X2<

1
2

1 dx1 dx2 =
√
d(K),

we can write the sum above in the following way:√
d(K)

∑
0̸=α∈OK/(O×

K)2

∫∫
Y0≤A

ψ

(
α2

y21
,
α′2

y22

)
(ηys11 y

s2
2 + ϕy1−s11 y1−s22 )

dy1 dy2
y21y

2
2

.

We substitute uk =
∣∣α(k)

∣∣ /yk (k = 1, 2) to obtain√
d(K)

|N(α)|
∑

0̸=α∈OK/(O×
K)2

∫∫
0<u1,u2<∞

|α1α2|/A≤u1u2

ψ
(
u21, u

2
2

)
×

×

[
η
∣∣∣ α
α′

∣∣∣ πimu
2 log ε |N(α)|s

us11 u
s2
2

+ ϕ

∣∣∣∣α′

α

∣∣∣∣ πimu
2 log ε |N(α)|1−s

u1−s11 u1−s22

]
du1 du2

since by (3.1) s1 = s+ πimu

2 log ε
and s2 = s− πimu

2 log ε
for some s ∈ C and mu ∈ Z. Hence we have to

examine two terms:

η
√
d(K)

∫∫
0<u1,u2<∞

ψ
(
u21, u

2
2

)
u−s11 u−s22

∑
0̸=α∈OK/(O×

K)2

|N(α)|≤Au1u2

λmu(α)

|N(α)|1−s
du1 du2 (3.21)
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102 A generalization of the Selberg trace formula

and
ϕ
√
d(K)

∫∫
0<u1,u2<∞

ψ
(
u21, u

2
2

)
us1−1
1 us2−1

2

∑
0̸=α∈OK/(O×

K)2

|N(α)|≤Au1u2

λ−mu(α)

|N(α)|s
du1 du2. (3.22)

Here λm(α) = |α/α′|
πim
2 log ε is the Grössencharacter that occurred also in the previous section.

To follow the usual notation s will denote a complex variable for a little while (instead of
the fixed parameter of u). We consider the function

ZK(s,m) =
∑

0̸=α∈OK/(O×
K)2

λm(α)

|N(α)|s
,

it clearly converges absolutely for Re s > 1. We rewrite this sum in the following way:

ZK(s,m) =
∑

0̸=(α)◁OK

(
λm(α)

|N(α)|s
+

λm(−α)
|N(−α)|s

+
λm(εα)

|N(εα)|s
+

λm(−εα)
|N(−εα)|s

)
.

The first two and the second two terms are equal and |N(α)| = |N(εα)|, so let us calculate the
third numerator:

λm(εα) =
∣∣∣ εα
ε′α′

∣∣∣ πim
2 log ε

= (ε2)
πim
2 log ελm(α) = eπimλm(α).

Hence ZK(s,m) = 0 for an odd integer m. Note that if mu is odd, then the terms in the partial
sums in (3.21) and (3.22) also cancel each other and therefore the contribution of the totally
parabolic conjugacy classes is zero. In the following we assume that m denotes an even integer.
Then ZK(s,m) = 4ζK(s,m), where

ζK(s,m) =
∑

0̸=(α)◁OK

λm(α)

|N(α)|s
(3.23)

is a Hecke L-function. It is entire if m ̸= 0. For m = 0 it is the Dedekind zeta function, which
has a simple pole at s = 1 with residue 2 log ε/

√
d(K) and it is holomorphic elsewhere (see [9]).

We apply Theorem 5.2 and Corollary 5.3 in [12]. For this purpose we write

ζK(s,m) =
∞∑
n=1

an
ns
,

where
an =

∑
(α)◁OK

|N(α)|=n

λm(α).

We estimate the sum an by estimating the number of the ideals of norm n. We have already
mentioned in the proof of Proposition 2.1.6 that this is bounded by nδ for every δ > 0, so we
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3.1 The geometric trace 103

have an ≪δ n
δ. Now if 0 < Re s < 1 and σ0 > 1− Re s, then we have

∑
n≤A

′ an
ns

=
1

2πi

σ0+iT∫
σ0−iT

ζK(S + s,m)
AS

S
dS +R,

where
∑′ indicates that if A is an integer, then the last term is to be counted with half weight,

further

R ≪
∑

A/2<n<2A

n ̸=A

|an|n−Re smin

(
1,

A

T |A− n|

)
+

4σ0 + Aσ0

T

∞∑
n=1

|an|
nσ0+Re s

.

Let us fix a small number 0 < ε0 < Re s, set the value σ0 = 1− Re s+ ε0 + δ for some δ > 0
and estimate the second term on the right hand side. Since an ≪ nε0 we have

4σ0 + Aσ0

T

∞∑
n=1

|an|
nσ0+Re s

≪ A1−Re s+ε0+δ

T

∞∑
n=1

1

n1+δ
≪ A1−Re s+ε0Aδ

Tδ
.

Now if we choose δ = 1
logA

, then the right hand side is

≪ A1−Re s+ε0 logA

T
,

where the implied constant depends on ε0. If we set T = A1−Re s+ν for some ε0 < ν < Re s, then
this term is o(1) when A→ ∞.

Now we turn to the first error term∑
A/2<n<2A

n̸=A

|an|n−Re smin

(
1,

A

T |A− n|

)
=

∑
A/2<n<2A

n̸=A

|an|n−Re smin

(
1,
ARe s−ν

|A− n|

)
.

We divide this sum into two parts, the first is where |A− n| < ARe s−ν , here we get |an|n−Re s,
and the second part is where |A− n| ≥ ARe s−ν for which we get |an|n−Re s ARe s−ν

|A−n| , so this error
term is

≪ Aε0−Re sARe s−ν + ARe s−νAε0−Re s
∑

|A−n|≥ARe s−ν

1

|A− n|

= Aε0−ν

1 + ∑
|A−n|≥ARe s−ν

1

|A− n|


≪ Aε0−ν logA = o(1),

since we have 0 < ε0 < ν < Re s. Note that the implied constant depends on ε0, ν and Re s.
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104 A generalization of the Selberg trace formula

Now we return to the integral (3.21). Rewriting the partial sum as above we get

4η
√
d(K)

∞∫
0

∞∫
0

ψ
(
u21, u

2
2

)
u−s11 u−s22 ×

×

 1

2πi

σ0+iT∫
σ0−iT

ζK(1− s+ S,mu)
(u1u2A)

S

S
dS

 du1 du2 + o(1),

where σ0 = 1 − 1 + Re s + ε0 + δ = Re s + ε0 +
1

logA
for some 0 < ε0 < 1 − Re s. Note that

since ψ has compact support and hence u1 and u2 are bounded from above, one can see by
a closer studying of the arguments above that T can be chosen independently of them, i.e.
T = A1−1+Re s+ν = ARe s+ν works for some ε0 < ν < 1− Re s. Now we interchange the order of
integration to get

4η
√
d(K)

2πi

σ0+iT∫
σ0−iT

F (S)ζK(1− s+ S,mu)
AS

S
dS

where

F (S) =

∞∫
0

∞∫
0

ψ
(
u21, u

2
2

)
uS−s11 uS−s22 du1 du2. (3.24)

If G(S) = F (S)ζK(1− s+ S,mu)
AS

S
and σ1 < 0, then by the residue theorem

1

2πi

σ0+iT∫
σ0−iT

G(S) dS =ζK(1− s,mu)F (0) + δmu=0 ·
2 log ε√
d(K)

· A
s

s
F (s)

− 1

2πi

 σ1+iT∫
σ0+iT

G(S) dS +

σ1−iT∫
σ1+iT

G(S) dS +

σ0−iT∫
σ1−iT

G(S) dS

 .

(3.25)

To get the error terms we apply partial integration in F (S) with respect to u2, and here we
assume also that ReS > Re s− 1:

∞∫
0

∞∫
0

ψ
(
u21, u

2
2

)
uS−s11 uS−s22 du1 du2 =

∞∫
0

 ∞∫
0

ψ
(
u21, u

2
2

)
u1−s22 uS−1

2 du2

 uS−s11 du1.

The inner integral is

− 1

S

∞∫
0

[
2
∂ψ

∂u2

(
u21, u

2
2

)
u2−s22 + (1− s2)ψ

(
u21, u

2
2

)
u−s22

]
uS2 du2 =

1

S

∞∫
0

Hs2(u1, u2)u
S−s2
2 du2,

where
Hs(u1, u2) = −2u22

∂ψ

∂u2

(
u21, u

2
2

)
− (1− s)ψ(u21, u

2
2).
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3.1 The geometric trace 105

That is,

G(S) = ζK(1− s+ S,mu)
AS

S2

∞∫
0

∞∫
0

Hs2(u1, u2)u
S−s1
1 uS−s22 du1 du2.

We estimate the integrals on the right hand side of (3.25). First we examine the horizontal
segments:

∞∫
0

∞∫
0

Hs2(u1, u2)u
−s1
1 u−s22

 1

2πi

σ1±iT∫
σ0±iT

ζK(1− s+ S,mu)
(u1u2A)

S

S2
dS

 du1 du2.

We will set σ1 = Re s − 1 + δ1 for some small δ1 > 0 and estimate the inner integral by the
convexity bound:

ζK(σ + it,m) ≪ |t|1−σ+δ

as |t| → ∞ for any δ > 0 and 0 ≤ σ ≤ 1 (see e.g. [16]) 1. So if ReS = σ, then on the horizontal
lines we have

ζK(1− s+ S,mu)
(u1u2A)

S

S2
≪ Aσ

T 2
· T 1−(1−Re s)−σ+δ = AσT−2−σ+Re s+δ

= Aσ+(Re s+ν)(−2+Re s−σ+δ) = Aσ(1−Re s−ν)+(Re s+ν)(−2+Re s+δ),

since u1, u2 and σ are bounded. We will show that the exponent of A is negative if δ > 0
is chosen properly, so this last bound is o(1). As ν < 1 − Re s we increase this exponent by
increasing σ:

Aσ(1−Re s−ν)+(Re s+ν)(−2+Re s+δ) ≤ Aσ0(1−Re s−ν)+(Re s+ν)(−2+Re s+δ)

= A(Re s+ε0+
1

logA
)(1−Re s−ν)+(Re s+ν)(−2+Re s+δ)

≪ A(Re s+ε0)(1−Re s−ν)+(Re s+ν)(−2+Re s+δ)

Now this last exponent is negative if and only if

δ(Re s+ ν) < (2− Re s)(Re s+ ν)− (Re s+ ε0)(1− Re s− ν)

= Re s+ 2ν − ε0 + ε0(Re s+ ν).

The right hand side is positive since ε0 < ν, so this inequality holds for some δ > 0 small enough.
Then the integrals on the horizontal segments are o(1).

On the vertical line we have

ζK(1− s+ S,mu)
(u1u2A)

S

S2
≪ Aσ1

(1 + |t|)2
· |t|1−(1−Re s+σ1)+δ ≪ ARe s−1+δ1 |t|−1+δ+δ1

1Note that in [16] K is assumed to be of narrow class number one. However, by the derivation of the convexity
bound this condition is used there only through the functional equation of ζK(s,m) which is proved in full
generality in [9]. Hence we do not have to make this restriction.
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106 A generalization of the Selberg trace formula

and hence

σ1−iT∫
σ1+iT

G(S) dS ≪ ARe s−1+δ1T δ+δ1 + ARe s−1+δ1 = ARe s−1+δ1A(δ+δ1)(Re s+ν) + ARe s−1+δ1

Now if we choose δ and δ1 so that (δ + δ1)(Re s+ ν) < 1− Re s− δ1 = −σ1 holds, then we get
that this term is also o(1) and (3.21) is

4η
√
d(K)ζK(1− s,mu)F (0) + δmu=0 · 8η log ε ·

As

s
F (s) + o(1),

where F is defined in (3.24). We remark for the completeness that on the half-plane σ > 1 the
convexity bound is not applicable. However, a similar polynomial bound is obtained in terms of
|t| in this region for example in [2] and one may apply integration by parts above more than
once if necessary to get the result above.

One can show the same way that (3.22) is

4ϕ
√
d(K)ζK(s,−mu)F̃ (0) + δmu=0 · 8ϕ log ε ·

A1−s

1− s
F̃ (1− s) + o(1),

where

F̃ (S) =

∞∫
0

∞∫
0

ψ
(
u21, u

2
2

)
uS+s1−1
1 uS+s2−1

2 du1 du2.

It remains to evaluate F and F̃ at some points. If mu = 0, then

F (s) = F̃ (1− s) =

∞∫
0

∞∫
0

ψ(u21, u
2
2) du1 du2 =

1

4

∞∫
0

∞∫
0

ψ(u1, u2)√
u1u2

du1 du2 =
1

4
g(0, 0).

For an arbitrary even mu we have

F (0) =

∞∫
0

∞∫
0

ψ(u21, u
2
2)u

−s1
1 u−s22 du1 du2 =

1

4

∞∫
0

∞∫
0

ψ(u1, u2)√
u1u2

u
− s1

2
1 u

− s2
2

2 du1 du2.

As in the previous section, one can use Proposition 2.3.1 to see that this double integral is

1

4π2

∞∫
0

∞∫
0

∂2Q

∂w1∂w2

(w1, w2)

w1∫
0

u
− s1

2
1√

w1 − u1
√
u1
du1

w2∫
0

u
− s2

2
2√

w2 − u2
√
u2
du2 dw1 dw2.

We have
w∫

0

u−
α
2

√
w − u

√
u
du = w−α

2B

(
1− α

2
,
1

2

)
=

Γ(1−α
2
)Γ(1

2
)

Γ(1−α
2

+ 1
2
)
= w−α

2 2−α
Γ(1−α

2
)2

Γ(1− α)
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3.1 The geometric trace 107

for any w > 0 and α ∈ C with 0 < Reα < 1, where B is the beta function and we used the
following relations:

Γ (1/2) =
√
π, Γ(z)Γ

(
z +

1

2

)
= 21−2z

√
πΓ(2z).

Then

F (0) =
2−(s1+s2)

4π2

Γ(1−s1
2

)2Γ(1−s2
2

)2

Γ(1− s1)Γ(1− s2)

∞∫
0

∞∫
0

∂2Q

∂w1∂w2

(w1, w2)w
− s1

2
1 w

− s2
2

2 dw1 dw2.

Now we substitute wj = exj + e−xj − 2 to express this in terms of the function g. The integral
above becomes

∞∫
0

∞∫
0

∂2g

∂x1∂x2
(x1, x2)(e

x1 + e−x1 − 2)−
s1
2 (ex2 + e−x2 − 2)−

s2
2 dx1 dx2

Now
∂2g

∂x1∂x2
(x1, x2) = − 1

(2π)2

∞∫
0

∞∫
0

h(r1, r2)r1r2e
−i(r1x1+r2x2) dr1 dr2,

and

∞∫
0

(ex + e−x − 2)−αe−irx dx =

1∫
0

(
y−

1
2 − y

1
2

)−2α

yir−1 dy =

1∫
0

(1− y)−2α yα+ir−1 dy

= B(α + ir, 1− 2α) =
Γ(α + ir)Γ(1− 2α)

Γ(1− α + ir)
.

We obtain that F (0) is

−
(
2−(s1+s2)

4π2

)2

Γ

(
1− s1

2

)2

Γ

(
1− s2

2

)2
∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ( s1

2
+ ir)Γ( s2

2
+ ir)

Γ(2−s1
2

+ ir)Γ(2−s2
2

+ ir)
dr1 dr2.

Similarly, F̃ (0) is

−
(
2−(2−s1−s2)

4π2

)2

Γ
(s1
2

)2
Γ
(s2
2

)2 ∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ(1−s1

2
+ ir)Γ(1−s2

2
+ ir)

Γ( s1−1
2

+ ir)Γ( s2−1
2

+ ir)
dr1 dr2,

and we have

Proposition 3.1.10. Assume that u is not a cusp form, the main term of its Fourier expansion
is ηys11 y

s2
2 + ϕy1−s11 y1−s22 and the numbers s ∈ C and mu are defined in (3.1) on page 75. Then

the contribution of the totally parabolic conjugacy classes is∑
{γ} totally parabolic

∑
σ∈{γ}

∫
FA

k(z, σz)u(z) dµ(z) =
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108 A generalization of the Selberg trace formula

δmu=02 log ε

[
ηAs

s
+
ϕA1−s

1− s

]
g(0, 0)

− δmu≡0 (2)η
√
d(K)

(
2−(s1+s2)

2π2

)2

ζK(1− s,mu)Γ

(
1− s1

2

)2

Γ

(
1− s2

2

)2

×

×
∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ( s1

2
+ ir)Γ( s2

2
+ ir)

Γ(2−s1
2

+ ir)Γ(2−s2
2

+ ir)
dr1 dr2

− δmu≡0 (2)ϕ
√
d(K)

(
2−(2−s1−s2)

2π2

)2

ζK(s,−mu)Γ
(s1
2

)2
Γ
(s2
2

)2
×

×
∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ(1−s1

2
+ ir)Γ(1−s2

2
+ ir)

Γ( s1−1
2

+ ir)Γ( s2−1
2

+ ir)
dr1 dr2 + o(1),

where ζK(s,m) is given in (3.23).

3.2 Evaluation of the spectral part
As in Section 2.4 let {uj(z) : j ≥ 0} be a complete orthonormal system of automorphic

forms for the discrete spectrum of ΓK with eigenvalue (λ
(j)
1 , λ

(j)
2 ), λ(j)k = s

(j)
k (1 − s

(j)
k ), where

Re s
(j)
k ≥ 1

2
and s

(j)
k = 1

2
+ ir

(j)
k , hence λ(j)k = 1

4
+ (r

(j)
k )2 (k = 1, 2). Recall that the Fourier

expansion of uj is

uj(z) = ϕjy
1−s(j)1
1 y

1−s(j)2
2 +

∑
l∈L∗

K\0

c
(j)
l

√
y1y2Ks

(j)
1 − 1

2

(2π |l1| y1)Ks
(j)
2 − 1

2

(2π |l2| y2)e2πi<x,l>.

The Fourier expansion of the Eisenstein series is given in (2.18) on page 51. If ϕj ̸= 0 for some
j > 0, then uj is a constant multiple of a residue of an Eisenstein series. Note that the Eisenstein
series E(z, s,m) has no poles unless m = 0. In this case the poles in the half-plane Re s ≥ 1

2

are in fact on the section (1/2, 1] and they are simple. Furthermore, every pole of E(z, s, 0) is
also a pole of ϕ(s, 0). This function has only finitely many poles in Re s > 1/2 and all of them
are in (1/2, 1] (see Section 2.2). Let us denote this finite set by L and the residue of ϕ(s, 0) at
some sl ∈ L by Rsl . Hence if ϕj ̸= 0, then (s

(j)
1 , s

(j)
2 ) = (sl, sl) for some sl ∈ L. Recall that the

Fourier expansion of u is

u(z) = ηys11 y
s2
2 + ϕy1−s11 y1−s22 +

∑
l∈L∗

K\0

cl
√
y1y2Ks1− 1

2
(2π |l1| y1)Ks2− 1

2
(2π |l2| y2)e2πi<x,l>, (3.26)

and if at least one of η and ϕ is non-zero, then

(s1, s2) =

(
s+

πimu

2 log ε
, s− πimu

2 log ε

)
holds for some s ∈ C and mu ∈ Z. In this case we also assume for simplicity that 1

2
≤ Re s < 1

and, in addition, that s+1
2
, 2−s

2
̸∈ L.
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3.2 Evaluation of the spectral part 109

We are going to evaluate the truncated trace

TrAuK =

∫
FA

K(z, z)u(z) dµ(z)

using the spectral theorem which is applicable since ψ is assumed to be compactly supported
(see Theorem 2.2.10):

TrAuK =
∑
j

h(r
(j)
1 ,r

(j)
2 )IAu (uj)+

+
1

8π
√
d(K) log ε

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
IAu (r,m) dr,

where
IAu (uj) =

∫
FA

|uj(z)|2 u(z) dµ(z),

and

IAu (r,m) =

∫
FA

E

(
z,

1

2
+ ir,m

)
E

(
z,

1

2
− ir,−m

)
u(z) dµ(z)

=

∫
FA

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 u(z) dµ(z).
We define F 1 = {z ∈ FA : Y0(z) < 1}, then by Lemma 1.2.3 we have FA = F 1 ∪ FA

1 ,
where FA

1 = {z ∈ F∞ : 1 ≤ Y0(z) ≤ A}. Moreover, the set F 1 ⊂ H2 is compact by Lemma
1.2.4. Now we divide the integrals above into two parts: IAu (uj) = I1(uj) + IA1 (uj) and
IAu (r,m) = I1(r,m) + IA1 (r,m), where

I1(uj) =

∫
F 1

|uj(z)|2 u(z) dµ(z), IA1 (uj) =

∫
FA
1

|uj(z)|2 u(z) dµ(z),

I1(r,m) =

∫
F 1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 u(z) dµ(z),
IA1 (r,m) =

∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 u(z) dµ(z).
Let us examine first the integral IA1 (r,m). Recall that

FA
1 =

{
z ∈ H2 : 1 ≤ Y0 ≤ A, −1

2
≤ Y1 <

1

2
; −1

2
≤ X1, X2 <

1

2

}
,

and that we denote by a0(y) the zeroth Fourier coefficient ηys11 y
s2
2 + ϕy1−s11 y1−s22 of the function

u. Also, let a0(z, 12 + ir,m) be the zeroth Fourier coefficient of E(z, 1
2
+ ir,m) and we define
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110 A generalization of the Selberg trace formula

E(z, 1
2
+ ir,m) = E(z, 1

2
+ ir,m)− a0(z,

1
2
+ ir,m). Then by Lemma 2.1.7 we have∫

FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z) =
=

∫
FA
1

∣∣∣∣a0(z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z) + ∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z). (3.27)

Note that these integrals are non-zero only if u is not a cusp form. We calculate the first term
above in that case. Substituting

a0

(
z,

1

2
+ ir,m

)
= (y1y2)

1
2
+irλm(z) + ϕ

(
1

2
+ ir,m

)
(y1y2)

1
2
−irλ−m(z)

and using Lemma 2.1.7 we get that it is√
d(K)

∫∫
1≤Y0≤Y

− 1
2
≤Y1< 1

2

[
(y1y2)

1
2
+irλm(z) + ϕ

(
1

2
+ ir,m

)
(y1y2)

1
2
−irλ−m(z)

]
·
[
(y1y2)

1
2
−irλ−m(z) + ϕ

(
1

2
− ir,−m

)
(y1y2)

1
2
+irλm(z)

]
·
[
η(y1y2)

sλmu(z) + ϕ(y1y2)
1−sλ−mu(z)

] dy1 dy2
y21y

2
2

.

As an abbreviation we write ϕr,m = ϕ(1
2
+ ir,m). Since dy1 dy2

y21y
2
2

= 2 log ε dY0
Y 2
0
dY1, the previous

integral becomes

2 log ε
√
d(K)

A∫
1

1
2∫

− 1
2

[
Y

1
2
+ir

0 e2πimY1 + ϕr,mY
1
2
−ir

0 e−2πimY1
]

·
[
Y

1
2
−ir

0 e−2πimY1 + ϕ−r,−mY
1
2
+ir

0 e2πimY1
]

(3.28)

·
[
ηY s

0 e
2πimuY1 + ϕY 1−s

0 e−2πimuY1
] dY1 dY0

Y 2
0

.

Since ϕr,mϕ−r,−m = |ϕr,m|2 = 1 by Corollary 2.2.6 and∫ 1
2

− 1
2

e2πinY1 dY1 =

{
1, if n = 0,
0, otherwise,

we get that (3.28) is

2 log ε
√
d(K)

∫ A

1

2δmu=0(ηY
s−1
0 + ϕY −s

0 ) + ϕ−r,−m(δmu=−2mηY
s−1+2ir
0 + δmu=2mϕY

−s+2ir
0 )

+ ϕr,m(δmu=2mηY
s−1−2ir
0 + δmu=−2mϕY

−s−2ir
0 ) dY0,
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3.2 Evaluation of the spectral part 111

that is,

2 log ε
√
d(K)

[
2δmu=0

(
η
As − 1

s
+ ϕ

A1−s − 1

1− s

)
+ ϕ−r,−m

(
δmu=−2mη

As+2ir − 1

s+ 2ir
+ δmu=2mϕ

A1−s+2ir − 1

1− s+ 2ir

)
+ ϕr,m

(
δmu=2mη

As−2ir − 1

s− 2ir
+ δmu=−2mϕ

A1−s−2ir − 1

1− s− 2ir

)]
.

Now we set

Ψ(A, u, r,m) = 2 log ε
√
d(K)

[
2δmu=0

(
η
As

s
+ ϕ

A1−s

1− s

)
+ ϕ(1/2− ir,−m)

(
δmu=−2mη

As+2ir

s+ 2ir
+ δmu=2mϕ

A1−s+2ir

1− s+ 2ir

)
+ ϕ(1/2 + ir,m)

(
δmu=2mη

As−2ir

s− 2ir
+ δmu=−2mϕ

A1−s−2ir

1− s− 2ir

)]
.

and calculate

1

8π log ε
√
d(K)

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
Ψ(A, u, r,m) dr =

=
δmu=0

2π

(
η
As

s
+ ϕ

A1−s

1− s

)∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
dr

+
δmu≡0 (2)

4π
(Hu

1 (A) +Hu
2 (A)),

where

Hu
1 (A) =

∞∫
−∞

h

(
r +

πmu

4 log ε
, r − πmu

4 log ε

)(
ηϕr,mu

2

As−2ir

s− 2ir
+ ϕϕ−r,−mu

2

A1−s+2ir

1− s+ 2ir

)
dr (3.29)

and

Hu
2 (A) =

∞∫
−∞

h

(
r − πmu

4 log ε
, r +

πmu

4 log ε

)(
ηϕ−r,mu

2

As+2ir

s+ 2ir
+ ϕϕr,−mu

2

A1−s−2ir

1− s− 2ir

)
dr.

Note that in fact Hu
1 (A) = Hu

2 (A) since h is even in every variable. By the Poisson summation
formula

∞∫
−∞

∑
m∈Z

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
dr =

∞∫
−∞

∑
m∈Z

∞∫
−∞

h

(
r +

πx

2 log ε
, r − πx

2 log ε

)
e−2πimx dx dr.
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112 A generalization of the Selberg trace formula

Substituting r1 = r+ πx
2 log ε

and r2 = r− πx
2 log ε

we have x = log ε
π

(r1 − r2) and dx dr = log ε
π
dr1 dr2:

log ε

π

∑
m∈Z

∞∫
−∞

∞∫
−∞

h(r1, r2)e
−2im log ε(r1−r2) dr1 dr2 = 4π log ε

∑
m∈Z

g(2m log ε, 2m log ε)

using that g is even in every variable.
Next we examine Hu

1 (A). We replace the line of integration to Im r = −Re s/2− δ for the
first term and to Im r = 1−Re s

2
+ δ for the second one in (3.29) and use the residue theorem to

get that this is

πηh

(
i
s

2
− πmu

4 log ε
, i
s

2
+

πmu

4 log ε

)
ϕ

(
1 + s

2
,
mu

2

)
+

+ πϕh

(
i
1− s

2
+

πmu

4 log ε
, i
1− s

2
− πmu

4 log ε

)
ϕ

(
2− s

2
,−mu

2

)

− δmu=02πη
∑

1
2
<sl<

Re s+1
2

sl∈L

h

(
i

(
sl −

1

2

)
, i

(
sl −

1

2

))
A1+s−2sl

1 + s− 2sl
Rsl

− δmu=02πϕ
∑

1
2
<sl<

2−Re s
2

sl∈L

h

(
i

(
sl −

1

2

)
, i

(
sl −

1

2

))
A2−s−2sl

2− s− 2sl
Rsl +O(A−δ).

Here we used that 1+s
2
, 2−s

2
/∈ L, the rapid decay of h and that ϕ(S,m) is bounded in ReS ≥ 1

2

once S is bounded away from the real line (see Corollary 2.2.8). We summarize this in

Proposition 3.2.1.

1

8π
√
d(K) log ε

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
Ψ(A, u, r,m) dr =

= δmu=0

[
2 log ε

(
η
As

s
+ ϕ

A1−s

1− s

)∑
m∈Z

g(2m log ε, 2m log ε) + S1 + S2

]
+

+ δmu≡0 (2)C
ψ
u,K +O(A−δ)

where

Cψ
u,K =πηh

(
i
s

2
− πmu

4 log ε
, i
s

2
+

πmu

4 log ε

)
ϕ

(
1 + s

2
,
mu

2

)
+

+ πϕh

(
i
1− s

2
+

πmu

4 log ε
, i
1− s

2
− πmu

4 log ε

)
ϕ

(
2− s

2
,−mu

2

)

C
E

U
eT

D
C

ol
le

ct
io

n



3.2 Evaluation of the spectral part 113

and

S1 = −η
∑

1
2
<sl≤Re s+1

2
sl∈L

h (rl, rl)
A1+s−2sl

1 + s− 2sl
Rsl ,

S2 = −ϕ
∑

1
2
<sl≤ 2−Re s

2
sl∈L

h (rl, rl)
A2−s−2sl

2− s− 2sl
Rsl

with rl = −i
(
sl − 1

2

)
.

Note that we changed the sign of the arguments of the even function h in S1 and S2. This
way the notation rl resembles the previous notations, i.e. sl = 1

2
+ irl holds.

Similarly, we evaluate the integral∫
FA
1

|ϕj|2 y
2(1−Re s

(j)
1 )

1 y
2(1−Re s

(j)
2 )

2 a0(y) dµ(z),

here ϕjy
1−s(j)1
1 y

1−s(j)2
2 is the zeroth term of the Fourier expansion of some uj which is not a cusp

form and hence ϕj ̸= 0. Note that in this case s(j)1 = s
(j)
2 = s(j) = sl ∈ L, and we write ϕl

instead of ϕj (as the uj’s are independent, at most one function belongs to an element of L, if
there is no such function, we simply set ϕl = 0). As before, we get that this is

2 log ε
√
d(K) |ϕl|2

∫ A

1

∫ 1
2

− 1
2

Y
2(1−sl)
0

[
ηY s

0 e
2πimuY1 + ϕY 1−s

0 (z)e−2πimuY1
]
dY1

dY0
Y 2
0

=

= δmu=02 log ε
√
d(K) |ϕl|2

[
η
A1+s−2sl − 1

1 + s− 2sl
+ ϕ

A2−s−2sl − 1

2− s− 2sl

]
.

We continue now with only those terms that depend on A:

δmu=02 log ε
√
d(K) |ϕl|2

[
η
A1+s−2sl

1 + s− 2sl
+ ϕ

A2−s−2sl

2− s− 2sl

]
.

Recall that L is a finite set, morover, if sl > (1+Re s)/2, then the first term above is O(A−δ) and
the same is true for the second term once sl > (2− Re s)/2. Multiplying by h(rl, rl), summing
over the elements of L and adding R1 and R2 we get δmu=0[Σ

A
u,h + Σ̃A

u,h +O(A−δ)], where

ΣA
u,h =

∑
1
2
<sl≤ 1+Re s

2
sl∈L

ηh (rl, rl)
A1+s−2sl

1 + s− 2sl

(
2 log ε

√
d(K) |ϕl|2 −Rsl

)
,

Σ̃A
u,h =

∑
1
2
<sl≤ 2−Re s

2
sl∈L

ϕh (rl, rl)
A2−s−2sl

2− s− 2sl

(
2 log ε

√
d(K) |ϕl|2 −Rsl

)
.

C
E

U
eT

D
C

ol
le

ct
io

n



114 A generalization of the Selberg trace formula

We proceed as follows. First, let us define

ĨAu (r,m) = IAu (r,m)−Ψ(A, u, r,m),

ĨAu (uj) = IAu (uj)− δmu=02 log ε
√
d(K) |ϕj|2

[
η
A1+s−2sj

1 + s− 2sj
+ ϕ

A2−s−2sj

2− s− 2sj

]
.

We will show that ∑
|s(j)k |<Tk
k=1,2

ĨAu (uj) +
∑
m∈Z

∫ ′
ĨAu (r,m) dr ≪ p(T1, T2), (3.30)

where p is a polynomial (and the implied constant does not depend on A) and for a fixed m

we restrict the integration to those r’s for which
∣∣∣12 + ir + (−1)k−1 im

2 log ε

∣∣∣ < Tk holds. Then the
limits

Iu(uj) = lim
A→∞

ĨAu (uj), Iu(r,m) = lim
A→∞

ĨAu (r,m)

exist and ∑
|s(j)k |<Tk
k=1,2

Iu(uj) +
∑
m∈Z

∫ ′
Iu(r,m) dr ≪ p(T1, T2) (3.31)

holds as well. We get by the rapid decay of the function h that the expression

∑
j

h(r
(j)
1 , r

(j)
2 )Iu(uj) +

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
Iu(r,m) dr

is finite and it is the limit of

∑
j

h(r
(j)
1 , r

(j)
2 )ĨAu (uj) +

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
ĨAu (r,m) dr.

It follows that the terms that tend to infinity as A→ ∞ are ΣA
u,h, Σ̃A

u,h and

2 log ε

(
η
As

s
+ ϕ

A1−s

1− s

)∑
m∈Z

g(2m log ε, 2m log ε), (3.32)

and these terms occur only if mu = 0. T They also appeared in the geometric trace as well,
in fact in two parts. The totally parabolic conjugacy classes give the part where m = 0 in
the last sum, while the main term that comes from hyperbolic-parabolic classes constitute the
remaining part (see Proposition 3.1.7 and Proposition 3.1.10). Observe that we got no other
terms in the previous sections that tend to infinity as A → ∞. This implies that ΣA

u,h + Σ̃A
u,h

must be identically zero. Note that since s can be chosen freely, it is easy to see that in fact
2 log ε

√
d(K) |ϕl|2 −Rsl = 0 holds for every sl ∈ L. Then, subtracting (3.32) from both sides
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3.2 Evaluation of the spectral part 115

the remaining terms are equal and give the trace formula, that is stated in Theorem 3.3.1 in the
next section, where we summarize the results of the whole chapter.

It remains to show (3.30). The contribution of the integrals∫
FA
1

|ϕj|2 y
2(1−Re s

(j)
1 )

1 y
2(1−Re s

(j)
2 )

2 a0(y) dµ(z) and
∫
FA
1

∣∣∣∣a0(z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z)
on the left hand side of (3.30) is bounded by∑

1
2
<sl≤ 1+Re s

2
sl∈L

1

|1 + s− 2sl|
+

∑
1
2
<sl≤ 2−Re s

2
sl∈L

1

|2− s− 2sl|
≪ 1

and ∑
m∈Z

∫ ′ 1

|s|
+

1

|1− s|
+

1

|s+ 2ir|
+

1

|1− s+ 2ir|
1

|s− 2ir|
+

1

|1− s− 2ir|
dr,

respectively. As in the proof of Theorem 2.4.3 one can see easily that the latter sum is O(T 2
1 +T

2
2 ).

Next we consider the expression∑
|s(j)k |<Tk
k=1,2

I1(uj) +
∑
m∈Z

∫ ′
I1(r,m) dr. (3.33)

Recall that

I1(uj) =

∫
F 1

|uj(z)|2 u(z) dµ(z), I1(r,m) =

∫
F 1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 u(z) dµ(z),
where F 1 = {z ∈ FA : Y0(z) < 1}. Since u(z) is bounded on F 1, we can use Theorem 2.4.2 to
bound (3.33) by

∑
|s(j)k |<Tk
k=1,2

∫
F 1

|uj(z)|2 dµ(z) +
∑
m∈Z

∫ ′ ∫
F 1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 dµ(z) dr ≪ T 2
1 T

2
2 .

We continue by estimating

∑
|s(j)k |<Tk
k=1,2

∫
FA
1

|uj(z)|2 u(z) dµ(z) +
∑
m∈Z

∫ ′ ∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 u(z) dµ(z),C
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116 A generalization of the Selberg trace formula

where u(z) = u(z)− a0(y). By the remark after Theorem 2.1.8 we have u(z) ≪ e−d
√
y1y2 once

Y0 ≫ T 2
1 T

2
2 . Using this and that the norm of uj is 1 for any j, we immediately obtain that∑

|s(j)k |<Tk
k=1,2

∫
FA
1

|uj(z)|2 u(z) dµ(z) ≪
∑

|s(j)k |<Tk
k=1,2

1 ≪ T 2
1 T

2
2 + T 3

1 T2 + T1T
3
2

by (2.30). We also get a polynomial bound for the second sum using the bound for u(z) and
the following

Lemma 3.2.2. For any big enough A > 0 and T1, T2 > 0 we have∑
m∈Z

∫ ′ ∫
FA

|E(z, 1/2 + ir,m)|2 dµ(z) dr ≪ T 2
1 T

2
2 +

√
T1T2(T

2
1 + T 2

2 + T1T2) + (T 2
1 + T 2

2 ) logA,

where for a fixed m we integrate over the r’s for which
∣∣∣12 + ir + (−1)k−1 πim

2 log ε

∣∣∣ ≤ Tk holds
(k = 1, 2).

Proof. First, notice that∑
m∈Z

∫ ′ ∫
FA

|E(z, 1/2 + ir,m)|2 dµ(z) dr =
∑
m∈Z

∫ ′ ∫
FA

|EA(z, 1/2 + ir,m)|2 dµ(z) dr

≤
∑
m∈Z

∫ ′ ∫
F

|EA(z, 1/2 + ir,m)|2 dµ(z) dr,

hence it is enough to estimate the last expression. As in the proof of Theorem 2.4.3 we can write

∑
m∈Z

∫ ′ ∫
F

|EA(z, 1/2 + ir,m)|2 dµ(z) = 2 log ε
√
d(K)

∑
m∈Z

∫ ′ [
2 logA−

ϕ′(1
2
+ ir,m)

ϕ(1
2
+ ir,m)

]
dr+

+ 2 log ε
√
d(K)

∫
| 12+ir|≤min(T1,T2)

ϕ(1/2− ir, 0)A2ri − ϕ(1/2 + ir, 0)A−2ri

2ri
dr.

(3.34)

Following that proof we also obtain that∑
m∈Z

∫ ′
2 logA≪ (T 2

1 + T 2
2 ) logA,

and that the last integral in (3.34) is bounded by log T1T2 + log logA. Together with the
statement of Theorem 2.4.3 the lemma follows.
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Finally, we handle the sum

∑
|s(j)k |<Tk
k=1,2

∫
FA
1

|uj(z)|2 a0(y) dµ(z) +
∑
m∈Z

∫ ′ ∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z) dr,

where uj(z) = uj(z)− ϕjy
1−s(j)1
1 y

1−s(j)2
2 for every j ≥ 0 and E(z, 1

2
+ ir,m) was defined similarly

before (3.27) on page 110.
By Parseval’s identity we have∫

FA
1

|uj(z)|2 a0(y) dµ(z) =

=
√
d(K)

∫∫
1≤Y0<A

− 1
2
≤Y1< 1

2

a0(y)
∑

l∈L∗
K\0

|c(j)l |2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)
dy1 dy2
y1y2

and∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z) =
√
d(K)

∫∫
1≤Y0<A

− 1
2
≤Y1< 1

2

a0(y)
∑

l∈L∗
K\0

|ϕl(1/2 + ir,m)|2K2
ir+ πim

2 log ε
(2π |l1| y1)K2

ir− πim
2 log ε

(2π |l2| y2)
dy1 dy2
y1y2

.

Note that if u is a cusp form, then these values are simply zero because a0(y) = 0. Otherwise
Re s1 = Re s2 =: Re s and a0(y) can be estimated by |η| (y1y2)Re s + |ϕ| (y1y2)1−Re s.

Before stating the last lemma that finishes the proof of the trace formula we make a technical
remark. To derive (3.31) from (3.30) we may use dyadic summation and set Tk = T/2ak for
some integers ak. Hence it is enough to prove the following

Lemma 3.2.3. For any T ≫ 1, δ > 0 and for any integers 0 ≤ a1, a2 ≤ ⌈log2 T ⌉ we have

Σ1 :=
∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

∫
FA
1

|uj(z)|2 a0(y) dµ(z) ≪
T 4+δ

2a1+a2

and

Σ2 :=
∑
m∈Z

∫ ′ ∫
FA
1

∣∣∣∣E (z, 12 + ir,m

)∣∣∣∣2 a0(y) dµ(z) dr ≪ T 4+δ

2a1+a2
,

where we integrate over those points for which T
2ak+1 ≤

∣∣∣12 + ir + (−1)k−1 im
2 log ε

∣∣∣ < T
2ak

holds
(k = 1, 2). The implied constant depends on δ and the field K, but not on A.
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118 A generalization of the Selberg trace formula

Proof. First note that if uj is not a cusp form, then for a big enough Y0 we have uj(z) ≪ e−d
√
y1y2

by Theorem 2.1.8, and as a0(y) is of polynomial growth, the integral∫
FA
1

|uj(z)|2 a0(y) dµ(z)

converges absolutely as A→ ∞. So the contribution of the finitely many terms belonging to
these uj’s is O(1). Hence we can assume that Re s

(j)
k = 1

2
holds.

We prove the statement for Σ1, the other estimate follows similarly. As we have already
remarked above we can estimate Σ1 by∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

∫∫
1≤Y0<∞

− 1
2
≤Y1< 1

2

(y1y2)
ReS

∑
l∈L∗

K\0

|c(j)l |2K2

s
(j)
1 − 1

2

(2π |l1| y1)K2

s
(j)
2 − 1

2

(2π |l2| y2)
dy1 dy2
y1y2

where 0 < ReS := max(Re s, 1− Re s) < 1. If we collect the terms εkl in the inner sum, this
becomes ∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

∑
0̸=(l)

a
(j)
l

∫∫
1≤Y0<∞

(y1y2)
ReSK2

s
(j)
1 − 1

2

(2π |l/ω| y1)K2

s
(j)
2 − 1

2

(2π |(l/ω)′| y2)
dy1 dy2
y1y2

,

(3.35)

where the inner sum runs over the non-zero ideals of OK and a(j)l = |cl|2 + |cεl|2 + |c−l|2 + |c−εl|2

as al was defined in (2.12) on page 45. For simplicity we omit the last three terms from a
(j)
l ,

but an analogous proof works for those as well.
We divide the inner sum in (3.35) into three parts. To this end we fix a small δ > 0 and set

N = 3/δ and ∆1,2 = 2|a1−a2|/N . Let us note that ∆1,2 ≥ 1 holds. We denote by Σ
(1)
1 the part

of the (double) sum above where |N(l)| ≤ c∆1,2T 2

2a1+a2
holds for some positive constant c. Here we

estimate the integral from above simply by extending it to H2. Substituting uk = 2π
∣∣(lω)(k)∣∣ yk

in the integral we obtain

(4π2|N(ω−1)|)−ReS |N(l)|−ReS

∞∫
0

∞∫
0

(u1u2)
ReSK2

s
(j)
1 − 1

2

(u1)K
2

s
(j)
2 − 1

2

(u2)
du1 du2
u1u2

.

Now
∞∫
0

∞∫
0

(u1u2)
ReSK2

s
(j)
1 − 1

2

(u1)K
2

s
(j)
2 − 1

2

(u2)
du1 du2
u1u2

=
∏
k=1,2

∞∫
0

uReS−1K2

s
(j)
k − 1

2

(u) du, (3.36)

and since Re s
(j)
1 = Re s

(j)
2 = 1

2
, we get

∞∫
0

uReS−1K2

s
(j)
k − 1

2

(u) du = 2ReS−3Γ(ReS)−1Γ

(
ReS

2

)2

Γ

(
ReS

2
+ ir

(j)
k

)
Γ

(
ReS

2
− ir

(j)
k

)
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3.2 Evaluation of the spectral part 119

(see the formula above (B.37) in [11]). Hence if |r(j)k | ≥ 1 for k = 1, 2, then

∞∫
0

uReS−1K2

s
(j)
k − 1

2

(u) du≪
∣∣∣∣Γ(ReS

2
+ ir

(j)
k

)
Γ

(
ReS

2
− ir

(j)
k

)∣∣∣∣≪ e−π|r
(j)
k ||r(j)k |ReS−1

by Stirling’s formula. Since |r(j)k | is bounded away from zero, we also have

|r(j)k | ≥ |s(j)k |
2

≥ T

2ak+2
.

On the other hand, if |r(j)k | ≤ 1, then Γ(ReS/2± ir
(j)
k ) is bounded by a constant (that depends

on u). As in this case 1
2
≤ |s(j)k | ≤

√
2 also holds, we get that the left hand side of (3.36) is

bounded by

e−π(|s
(j)
1 |+|s(j)2 |)

(
T 2

2a1+a2

)ReS−1

.

So using the estimate (2.37) on page 73 we estimate Σ
(1)
1 by(

T 2

2a1+a2

)ReS−1 ∑
0<|N(l)|≤

c∆1,2T
2

2a1+a2

|N(l)|−ReS
∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

|c(j)l |2e−π(|s
(j)
1 |+|s(j)2 |)

≪
(

T 2

2a1+a2

)ReS−1 ∑
0<|N(l)|≤

c∆1,2T
2

2a1+a2

(
|N(l)|−ReS T 4

2a1+a2
+ 2a1+a2|N(l)|2−ReS

)

=
∑

0<|N(l)|≤
c∆1,2T

2

2a1+a2

(
|N(l)|−ReS T 2+2ReS

2(a1+a2)ReS
+ |N(l)|2−ReS T 2ReS−2

2(a1+a2)(ReS−2)

)

≪ T 2+2ReS

2(a1+a2)ReS

∑
0<n≤

c∆1,2T
2

2a1+a2

n−ReS+δ +
T 2ReS−2

2(a1+a2)(ReS−2)

∑
0<n≤

c∆1,2T
2

2a1+a2

n2−ReS+δ

≪ ∆3
1,2 ·

T 4+2δ

2(a1+a2)(1+δ)
≤ T 4+2δ

2a1+a2
.

If |N(l)| = |ll′| > c∆1,2T
2/2a1+a2 , then we estimate in a different way. Let us note first that

for a fixed l ∈ OK we have∫∫
1≤Y0<∞

(y1y2)
ReSK2

s
(j)
1 − 1

2

(2π |l/ω| y1)K2

s
(j)
2 − 1

2

(2π |(l/ω)′| y2)
dy1 dy2
y1y2

=

=
∞∑

k=−∞

∫∫
1≤Y0<∞

− 1
2
≤Y1< 1

2

(y1y2)
ReSK2

s
(j)
1 − 1

2

(2π
∣∣εkl/ω∣∣ y1)K2

s
(j)
2 − 1

2

(2π
∣∣(εkl/ω)′∣∣ y2)dy1 dy2

y1y2
. (3.37)
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We estimate the Bessel functions using Lemma 2.1.5. If

2π
∣∣εkl/ω∣∣ y1 > C|s(j)1 |, (3.38)

where C is the constant in the lemma, then (using the condition ε−2 ≤ y1/y2 < ε2) we infer

K2

s
(j)
1 − 1

2

(2π
∣∣εkl/ω∣∣ y1)K2

s
(j)
2 − 1

2

(2π
∣∣(εkl/ω)′∣∣ y2) ≪ e−dε

k|l|√y1y2

(
εk|s(j)2 |

|l′|√y1y2

)2Re s
(j)
2 +1

e−π|s
(j)
2 |.

On the other hand, if
2π
∣∣(εkl/ω)′∣∣ y2 > C|s(j)2 |, (3.39)

then we get the bound

e−dε
−k|l′|√y1y2

(
ε−k|s(j)1 |
|l| √y1y2

)2Re s
(j)
1 +1

e−π|s
(j)
1 |.

Recall that Re s
(j)
1 = Re s

(j)
2 = 1

2
.

As we sum over ideals we can choose the generator l. We will make this choice so that
(3.38) will hold for any non-negative k while (3.39) will hold for any negative k. Then, for a
non-negative k the integral in (3.37) can be bounded by

|s(j)2 |2e−π|s
(j)
2 |

∫∫
1≤Y0<∞

− 1
2
≤Y1< 1

2

ε2k |l′|−2
(y1y2)

ReSe−dε
k|l|√y1y2 dy1 dy2

y21y
2
2

=

= 2 log ε|s(j)2 |2e−π|s
(j)
2 |

∫∫
1≤Y0<∞

− 1
2
≤Y1< 1

2

ε2k |l′|−2
Y ReS
0 e−dε

k|l|
√
Y0
dY0 dY1
Y 2
0

= 2 log ε|s(j)2 |2e−π|s
(j)
2 |
∫ ∞

1

ε2k |l′|−2
Y ReS−2
0 e−dε

k|l|
√
Y0 dY0

= |s(j)2 |2e−π|s
(j)
2 |4ε

k log ε

d |l| |l′|2
∫ ∞

1

Y
ReS− 3

2
0

(
1

2
dεk |l|Y − 1

2
0 e−dε

k|l|
√
Y0

)
dY0

≪ |s(j)2 |2e−π|s
(j)
2 | εk

|l| |l′|2
∫ ∞

1

1

2
dεk |l|Y − 1

2
0 e−dε

k|l|
√
Y0 dY0

= |s(j)2 |2e−π|s
(j)
2 | ε

k |l|
|N(l)|2

e−dε
k|l|.

Similarly, for a negative k we get the estimate

|s(j)1 |2e−π|s
(j)
1 | ε

−k |l′|
|N(l)|2

e−dε
−k|l′|.
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Now we handle the part of (3.35) where c∆1,2T 2

2a1+a2
< |N(l)| ≤ c2∆2

1,2T
4

22(a1+a2)
holds. Let us denote

this part by Σ
(2)
1 . Here we choose l so that

∣∣εkl∣∣ > √c∆1,2T/2
a1 holds for any k ≥ 0, while∣∣εkl∣∣ ≤√c∆1,2T/2

a1 for any k < 0. Then for any k < 0 we have
∣∣(εkl)′∣∣ >√c∆1,2T/2

a2 because
of the assumption on |N(l)|. As y1 and y2 are bounded from below in the integrals in (3.37)
and ∆1,2 ≥ 1, we get that if c is big enough, then 2π

∣∣εkl/ω∣∣ y1 > CT/2a1 ≥ C|s(j)1 | for any
k ≥ 0, while 2π

∣∣(εkl/ω)′∣∣ y2 > CT/2a2 ≥ C|s(j)2 | holds for any k < 0, where C is the constant
in Lemma 2.1.5. Note that the choice of c depends only on the field K. This means that the
estimates above apply for the integral on the right hand side of (3.37). As T/2a1 and T/2a2 are
bounded from below by a positive constant, so are

∣∣εkl∣∣ for a k ≥ 0 and
∣∣(εkl)′∣∣ for a k < 0.

Hence the referred integral can be bounded by

|s(j)2 |2e−π|s
(j)
2 | ε

k |l|
|N(l)|2

e−dε
k|l| ≪ |s(j)2 |2e−π|s

(j)
2 | 1

|N(l)|2
e−d

′εk|l|

for a non-negative k and by

|s(j)1 |2e−π|s
(j)
1 | ε

−k |l′|
|N(l)|2

e−dε
−k|l′| ≪ |s(j)1 |2e−π|s

(j)
1 | 1

|N(l)|2
e−d

′ε−k|l′|

for a negative k.
Summing over k we obtain

|s(j)2 |2e−π|s
(j)
2 |

|N(l)|2
e−d

′|l| +
|s(j)2 |2e−π|s

(j)
2 |

|N(l)|2
∞∑
k=1

e−d
′εk|l| +

|s(j)1 |2e−π|s
(j)
1 |

|N(l)|2
∞∑
k=1

e−d
′εk|l′|.

As k ≪ εk for a positive k, we can bound the sums above by

∞∑
k=1

(e−d
′|l|)k =

e−d
′|l|

1− e−d′|l|
≪ e−d

′|l| and
∞∑
k=1

(e−d
′|l′|)k =

e−d
′|l′|

1− e−d′|l′|
≪ e−d

′|l′|.

Hence we have the following bound for Σ2:∑
c∆1,2T

2

2a1+a2
<|N(l)|≤

c2∆2
1,2T

4

22(a1+a2)

1

|N(l)|2
∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

|c(j)l |2
(
|s(j)2 |2e−π|s

(j)
2 |e−d

′|l| + |s(j)1 |2e−π|s
(j)
1 |e−d

′|l′|
)
.

If the constant c > 0 is big enough, then so is c′ > 0, hence the inner sum above can be bounded
by ∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

|c(j)l |2e−π(|s
(j)
2 |+|s(j)2 |)

(
|s(j)2 |e−c2

√
∆1,2T/2a1 + |s(j)1 |e−c2

√
∆1,2T/2a2

)
.

Now if a1 ≥ a2, then

∆
1/2
1,2 T

2a1
≫
(
2(a1−a2)T 2

22a1

) 1
2N

=

(
T 2

2a1+a2

) 1
2N

≫ |s(j)2 |
1

2N
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while
∆

1/2
1,2 T

2a2
≥
(
T 2

22a2

) 1
2

≫
(

T 2

2a1+a2

) 1
2

≫ |s(j)1 |
1
2 .

Hence the exponential factors above in the parentheses absorb the polynomial ones. A similar
argument applies if a2 ≥ a1, and by (2.37) we obtain

Σ
(2)
1 ≪

∑
c∆1,2T

2

2a1+a2
<|N(l)|≤

c2∆2
1,2T

4

22(a1+a2)

1

|N(l)|2
∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

|c(j)l |2e−π(|s
(j)
2 |+|s(j)2 |)

≪ T 4

2a1+a2
+ 2a1+a2

∑
c∆1,2T

2

2a1+a2
<|N(l)|≤

c2∆2
1,2T

4

22(a1+a2)

1 ≪ T 4

2a1+a2
+ 2a1+a2

∆2+2δ
1,2 T 4+4δ

22(a1+a2)(1+δ)
≪ T 4+4δ

2a1+a2
.

Finally, if even |N(l)| > c2∆2
1,2T

4/22(a1+a2) is true, then we denote this part of (3.35) by Σ
(3)
1

and for every ideal we choose l uniquely so that ε−2 ≤ l/l′ < ε2 holds. This means that∣∣εkl∣∣ ≥ ε−1εk
√

|N(l)| ≫ c∆1,2T
2/2a1+a2 ≫ cT/2a1

once k ≥ 0, while ∣∣(εkl)′∣∣ ≥ ε−1ε−k
√

|N(l)| ≫ c∆1,2T
2/2a1+a2 ≫ cT/2a2

if k < 0, that is, (3.38) holds for any non-negative k and (3.39) holds for any negative k. As
before, we get the bound

|s(j)2 |2e−π|s
(j)
2 | ε

k |l|
|N(l)|2

e−dε
k|l| ≪ |s(j)2 |2e−π|s

(j)
2 | ε

k
√

|N(l)|
|N(l)|2

e−dε
k
√

|N(l)|

≤ |s(j)2 |2e−π|s
(j)
2 | (ε

k
√

|N(l)|)5

|N(l)|4
e−dε

k
√

|N(l)|

≪ |s(j)2 |2e−π|s
(j)
2 | 1

|N(l)|4
e−d

′εk
√

|N(l)|

for the integral on the right hand side of (3.37) if k ≥ 0, and

|s(j)1 |2e−π|s
(j)
1 | ε

−k |l′|
|N(l)|2

e−dε
−k|l′| ≪ |s(j)1 |2e−π|s

(j)
1 | 1

|N(l)|4
e−d

′ε−k
√

|N(l)|

if k < 0.
Summing over k as above we obtain

(|s(j)1 |2e−π|s
(j)
1 |+|s(j)2 |2e−π|s

(j)
2 |)

1

|N(l)|4
e−d

′
√

|N(l)| ≪

≪ 1

|N(l)|4
(|s(j)1 |2e−π|s

(j)
1 | + |s(j)2 |2e−π|s

(j)
2 |)e−c

′T 2/2a1+a2 ≪ e−π(|s
(j)
1 |+|s(j)2 |)

|N(l)|4
,
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and hence

Σ
(3)
1 ≪

∑
|N(l)|>

c2∆2
1,2T

4

22(a1+a2)

1

|N(l)|4
∑

T

2ak+1≤|s(j)k |< T
2ak

k=1,2

|c(j)l |e−π(|s
(j)
1 |+|s(j)2 |)

≪ T 4

2a1+a2 + 2a1+a2
≪ T 4

2a1+a2
+ T 2 ≪ T 4

2a1+a2

by (2.37). As we mentioned at the beginning of the proof, we get the upper bound for Σ2 in the
same way. This completes the proof of the trace formula.

3.3 The trace formula
In this section we summarize the results of the previous sections of this chapter. First of

all, we repeat some of the important notations and definitions, though many of them will not
be detailed here but can be found in the List of Symbols. We fix an automorphic form u that
satisfies the growth condition o(e2πyk) for k = 1, 2 and hence admits the Fourier expansion
(3.26) specified on page 108. Its eigenvaules are denoted by λk = sk(1 − sk) and we assume
for simplicity that 1

2
≤ Re sk < 1 (k = 1, 2). If u is not a cusp form, then the pair (s1, s2) has

a special form given in (3.1) on page 75. In the latter case we also make an assumption on s
(defined in (3.1)), namely we require that s+1

2
, 2−s

2
/∈ L holds, where the finite set L is defined in

the paragraph above (3.26).
We also fix a function ψ ∈ C∞

0 (R2) and define a point-pair invariant kernel

kψ(z, w) = k(z, w) = ψ

(
|z1 − w1|2

Im z1 · Imw1

,
|z2 − w2|2

Im z2 · Imw2

)

for every z, w ∈ H2, for which k(z, w) = k(σz, σw) holds for every z, w ∈ H2 and for any
σ ∈ PSL(2,R)2. The automorphic kernel K(z, w) is defined by

K(z, w) =
∑
γ∈ΓK

k(z, γw).

This is an automorphic function in both variables.
The main result of this chapter is obtained by the comparison of the results of two different

kind of evaluation of the truncated trace

TrAuK :=

∫
FA

K(z, z)u(z) dµ(z),

where A > 0 an arbitrary large enough number. The following terms come from the so-called
geometric trace (calculated in Section 3.1):

Σell :=
∑
{γ}

γ∈ΓK totally

elliptic

T eγ , Σhyp :=
∑
{γ}

γ∈ΓK totally

hyperbolic

T hγ , Σmix :=
∑
{γ}

γ∈ΓK mixed

Tmγ ,
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where the terms above are defined as follows:

T eγ =
(2π)2

mγ

u(zγ)

∞∫
0

∞∫
0

ψ(S(r1, θ(γ
(1))), S(r2, θ(γ

(2))))

(∏
k=1,2

gλk(rk) sinh rk

)
dr1dr2,

where mγ is the order of the centralizer of γ, zγ is the fixed point of γ, θ(γ(k)) is defined below
(3.5) on page 78, S(r, θ) = (2 sinh r)2 sin2 θ and the function gλk(r) : [0,∞) → C is the unique
solution of the differential equation

g′′(r) +
cosh r

sinh r
g′(r) = λkg(r)

satisfying the initial condition g(0) = 1,

T hγ = F (0, 0)

π
2∫

−π
2

π
2∫

−π
2

ψ(N(γ(1), ϑ1), N(γ(2), ϑ2))fλ1(ϑ1)fλ2(ϑ2)
dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

,

here

N(γ(k), ϑk) =
N(γ(k)) +N(γ(k))−1 − 2

cos2 ϑk
,

where N(γ(k)) is the norm of γ(k),

F (0, 0) =

∫
(log r1,log r2)∈Pγ

u(ϱ(1)(r1i), ϱ
(2)(r2i))

dr1 dr2
r1r2

(here ϱ ∈ PSL(2,R)2 is an element for which ϱ−1γϱ is diagonal, see secion 3.1.2, and the set Pγ
is defined in Proposition 3.1.1) and fλk(ϑ) is the unique solution of the differential equation

F ′′(ϑ) =
λk

cos2 ϑ
F (ϑ) (ϑ ∈ (−π/2, π/2))

with the initial condition F (0) = 1 and F ′(0) = 0, while

Tmγ = 2π

N(γ
(1)
0 )∫

1

u(ϱ(1)(r1i), ϱ
(2)i)

dr1
r1

·

·
∞∫
0

π
2∫

−π
2

ψ(N(γ(1), ϑ1), S(r2, θ(γ
(2))))

fλ1(ϑ1) dϑ1

cos2 ϑ1

gλ2(r2) sinh r2 dr2,

where γ0 is the generator of the centralizer C(γ) and for the definition of ϱ see the beginning
of section 3.1.3. This latter equatlity holds if the first component of the mixed element γ is
hyperbolic and the second one is elliptic. In the other possible cases Tmγ is simply obtained by
interchanging the coordinates in the expressions above.

We denote the contribution of the parabolic conjugacy classes by Σpar, it is given in
Proposition 3.1.10. Recall that we defined the number s and the integer mu in (3.1) on page 75
in the case when u is not a cusp form. Note that if u is a cusp form or if mu is odd, then Σpar is
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3.3 The trace formula 125

simply zero. Otherwise, we have

Σpar =− δmu≡0 (2)η
√
d(K)

(
2−(s1+s2)

2π2

)2

ζK(1− s,mu)Γ

(
1− s1

2

)2

Γ

(
1− s2

2

)2

×

×
∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ( s1

2
+ ir)Γ( s2

2
+ ir)

Γ(2−s1
2

+ ir)Γ(2−s2
2

+ ir)
dr1 dr2

− δmu≡0 (2)ϕ
√
d(K)

(
2−(2−s1−s2)

2π2

)2

ζK(s,−mu)Γ
(s1
2

)2
Γ
(s2
2

)2
×

×
∞∫
0

∞∫
0

h(r1, r2)r1r2
Γ(1−s1

2
+ ir)Γ(1−s2

2
+ ir)

Γ( s1−1
2

+ ir)Γ( s2−1
2

+ ir)
dr1 dr2,

where for an S ∈ C and m ∈ Z the function ζK(S,m) is the Hecke L-function with the
Grössencharacter λm(α):

ζK(S,m) =
∑

0 ̸=(α)◁OK

λm(α)

|N(α)|S
, λm(α) =

∣∣∣ α
α′

∣∣∣ πim
2 log ε

.

The last component Σh-p of the geometric trace comes from the hyperbolic-parabolic conjugacy
classes. First of all, we recall that every hyperbolic-parabolic element is conjugate to an element
γm,α that is given in (3.10) on page 84 (m ∈ Z \ {0}, α ∈ OK). By Proposition 3.1.3 there are
only finitely many conjugacy classes for a given m. Also, for a fixed m and α we define k as the
smallest positive divisor of m for which α(εk−ε−k)

E
is an algebraic integer, where E = εm − ε−m.

If u is a cusp form, then Σh-p =
∑

m,α Tm,α, where the terms Tm,α are similar to the terms
T hγ above:

Tm,α = F (m,α)

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
fλ1(ϑ1)fλ2(ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

,

where fλk are the solutions of the equation (3.8) with fλk(0) = 1 and f ′
λk
(0) = 0 and

F (m,α) =

ε2k∫
1

∞∫
0

u

(
r1i−

α

E
, r2i−

α′

E ′

)
dr2
r2

dr1
r1
.

On the other hand, if u is not a cusp form, then the inner integral above is not convergent, and
Σh-p is given by Proposition 3.1.7:

Σh-p =η
∑
m∈N+

Ξs1,s2(m)
∑

{γm,α}

Cγm,α(s,mu)

+ ϕ
∑
m∈N+

Ξ1−s1,1−s2(m)
∑

{γm,α}

Cγm,α(1− s,−mu)
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+
∑
m∈N+

∑
{γm,α}

π/2∫
−π/2

π/2∫
−π/2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
Iγm,α
u (ϑ1, ϑ2)

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

,

where

Ξs1,s2(m) :=

π
2∫

−π
2

π
2∫

−π
2

ψ

(
E2

cos2 ϑ1

,
E2

cos2 ϑ2

)
(cosϑ1)

s1(cosϑ2)
s2

dϑ1 dϑ2

cos2 ϑ1 cos2 ϑ2

(it is expressed in terms of the function g above Proposition 3.1.7), Cγm,α(s,mu) is defined in
Lemma 3.1.5 on page 94 and

Iγm,α
u (ϑ1, ϑ2) =

ε2k∫
1

∞∫
1

U1

(
r1e

i(π
2
+ϑ1), r2e

i(π
2
+ϑ2)

) dr2
r2

dr1
r1

+

1∫
ε−2k

∞∫
1

U2

(
r1e

i(π
2
−ϑ1), r2e

i(π
2
−ϑ2)

) dr2
r2

dr1
r1
,

where k is given for a fixed γm,α in Proposition 3.1.4 and the functions U1 and U2 are defined
by (3.14), (3.15), (3.16) and (3.17) on pages 90 and 90.

Now we turn to the spectral part and fix a complete orthonormal system of automorphic
forms {uj(z) : j ≥ 0}. Recall that the integrals IAu (uj) and IAu (r,m) are defined by

IAu (uj) =

∫
FA

|uj(z)|2 u(z) dµ(z), IAu (r,m) =

∫
FA

|E (z, 1/2 + ir,m)|2 u(z) dµ(z).

Let us define

Ψ(A, u, r,m) = 2 log ε
√
d(K)

[
2δmu=0

(
η
As

s
+ ϕ

A1−s

1− s

)
+ ϕ(1/2− ir,−m)

(
δmu=−2mη

As+2ir

s+ 2ir
+ δmu=2mϕ

A1−s+2ir

1− s+ 2ir

)
+ ϕ(1/2 + ir,m)

(
δmu=2mη

As−2ir

s− 2ir
+ δmu=−2mϕ

A1−s−2ir

1− s− 2ir

)]
.

and

ĨAu (r,m) = IAu (r,m)−Ψ(A, u, r,m),

ĨAu (uj) = IAu (uj)− δmu=02 log ε
√
d(K) |ϕj|2

[
η
A1+s−2sj

1 + s− 2sj
+ ϕ

A2−s−2sj

2− s− 2sj

]
,

where ϕjy
1−s(j)1
1 y

1−s(j)2
2 is the zeroth Fourier coefficient of uj (and hence ϕj is non-zero only if uj

is not a cusp form). The results of the previous section show that the limits

Iu(r,m) := lim
A→∞

ĨAu (r,m), Iu(uj) := lim
A→∞

ĨAu (uj)
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exist. Now we are ready to state our final result:

Theorem 3.3.1. With the notations above we have

Σell+Σhyp + Σmix + Σpar + Σh−p =

= δmu≡0 (2)
η

2
h

(
i
s

2
− πmu

4 log ε
, i
s

2
+

πmu

4 log ε

)
ϕ

(
1 + s

2
,
mu

2

)

+ δmu≡0 (2)
ϕ

2
h

(
i
1− s

2
+

πmu

4 log ε
, i
1− s

2
− πmu

4 log ε

)
ϕ

(
2− s

2
,−mu

2

)

+
∑
j

h(r
(j)
1 , r

(j)
2 )Iu(uj)+

+
1

8π
√
d(K) log ε

∑
m∈Z

∞∫
−∞

h

(
r +

πm

2 log ε
, r − πm

2 log ε

)
Iu(r,m) dr.
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