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Mathematics and its Applications,

Central European University,

Budapest, Hungary.

October, 2021.

© Debarun Ghosh 2021

All rights reserved

C
E

U
eT

D
C

ol
le

ct
io

n



C
E

U
eT

D
C

ol
le

ct
io

n



Certificate

This is to certify that this dissertation entitled Some problems in Extremal

Combinatorics towards the partial fulfilment of the Doctor of Philosophy (Phd) in Mathematics

And it’s Applications program at the Central European University, Budapest represents

study/work carried out by Debarun Ghosh at Central European University under the supervision
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Abstract

My thesis investigates various problems in the field of Extremal Combinatorics. We work on

the classical Turán problem for graphs before branching out into “Generalized Turán problems”.

Specifically, we were interested in the growing field of Planar Turán problems. We also explore the

natural generalization of Turán type problems in hypergraphs. In addition, we apply the concepts

of Planar Extremal Graph Theory in determining the Wiener index of planar graphs.

The thesis contains six chapters. The first chapter introduces the field of Extremal Graph

Theory and Turán type problems for graphs and hypergraphs. We delve into the basic notations

and famous theorems, which laid the foundations of Extremal Graph Theory and its generalizations.

The Turán number of a graph H, denoted by ex(n,H), is the maximum number of edges in

an n-vertex graph that does not have H as a subgraph. Erdős-Stone-Simonovits Theorem asserts

that ex(n,H) =
(

1− 1
χ(H)−1

) (
n
2

)
+ o(n2), where χ(H) is the chromatic number of H. If H is

non-bipartite, this result is an asymptotic form of ex(n,H), but if H is bipartite, the order of

magnitude of ex(n,H) is in general open. Even when the graph H is non-bipartite, it is still

interesting to know the order of magnitude of lower terms for ex(n,H). Let TPk be the triangular

pyramid of k-layers. For k ≥ 1, the chromatic number of TPk is 3. In Chapter 2, we determine

that ex(n, TP3) = 1
4n

2 + n + o(n) and pose a conjecture for ex(n, TP4). These results are based

on the paper “The Turán Number of the Triangular Pyramid of 3-Layers”, co-authored by Győri,

Paulos, Xiao and Zamora.

Now we look at problems in generalized Turán numbers. Let exP(n, T,H) denote the maximum

number of copies of T in an n-vertex planar graph which does not contain H as a subgraph. When

T = K2, exP(n, T,H) is the well-studied function, the planar Turán number of H. It is denoted

by exP(n,H) and was initiated by Dowden (2016). Unfortunately, the case when the forbidden

subgraph is a complete graph (i.e., the analog to Turán) and stars is fairly trivial. The next most

natural type of graph to investigate is perhaps a cycle. Dowden obtained a sharp upper bound for

both exP(n,C4) and exP(n,C5). Later, Lan, Shi and Song continued this topic and proved that

exP(n,C6) ≤ 18(n−2)
7 . In Chapter 3, we improve this result and give the following sharp upper

bound: exP(n,C6) ≤ 5
2n − 7, for all n ≥ 18. We also pose a conjecture on exP(n,Ck), for k ≥ 7.

These results are based on the paper “Planar Turán number of the 6-cycle”, co-authored by Győri,

Martin, Paulos and Xiao.

Another generalization of the planar Turán number of stars are the double stars as the forbidden

graph. Double stars are two adjacent vertices of degree m and n, respectively, and are denoted

by Sm,n. It is easy to see that ex(n, Sm,n) = 3n − 6, for m ≥ 2 and n ≥ 6. In Chapter 4, we

determine the upper bounds for exP(n, S2,2), exP(n, S2,3), exP(n, S2,4), exP(n, S2,5), exP(n, S3,3)
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and exP(n, S3,4). Moreover, the bound for exP(n, S2,2) is sharp. These results are based upon the

ongoing paper “Planar Turán Number of Double Stars”, co-authored by Győri, Paulos and Xiao.

Next, we consider a Turán type problem in the field of Hypergraphs. One of the first problems

in Extremal Graph Theory was the maximum number of edges that a triangle-free graph can have.

Mantel solved this, which built the foundations of what we know as Extremal Graph Theory. The

natural progression was to ask the maximum number of edges in a k-book free graph. A k-book,

denoted by Bk, is k triangles sharing a common edge. Given a graph G on n vertices and having⌊
n2

4

⌋
+ 1 edges. Erdős conjectured in 1962 [35] that the size of the largest book in G is n

6 and this

was proved soon after by Edwards (unpublished, see also Khadziivanov and Nikiforov [110] for an

independent proof). In the early 2000s, Győri [69] solved the hypergraph analog of the maximum

number of hyperedges in a triangle-free hypergraph. In a hypergraph, k-book denotes k Berge

triangles sharing a common edge. Let ex3(n,F) denote the maximum number of hyperedges in a

Berge-F-free 3-uniform hypergraph on n vertices. In Chapter 5, we prove ex3(n,Bk) =
n2

8
(1+o(1)).

These results are from the paper “Book free 3-Uniform Hypergraphs”, co-authored by Győri, Nagy-

György, Paulos, Xiao, and Zamora.

The Wiener index is the sum of the distances between all the pairs of vertices in a connected

graph. The Wiener index of an n-vertex maximal planar graph was conjectured to be at most

b 1
18(n3 +3n2)c. In Chapter 6, we prove this conjecture and determine the unique n-vertex maximal

planar graph attaining this maximum. These results are from the paper “The maximum Wiener

index of maximal planar graphs”, co-authored by Győri, Paulos, Salia, and Zamora.
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Chapter 1

Introduction

Notations and definitions:

All the graphs we consider in this chapter are simple and finite. Let G be a graph. We denote the

vertex and edge set of G by V (G) and E(G), respectively. We denote the degree of a vertex v by

d(v), the minimum degree in graph G by δ(G) and the maximum degree in graph G by ∆(G). Let

the complete graph on r vertices or a r-clique be denoted by Kr. The Chromatic number, denoted

by χ(G), is the smallest number of colors needed to color the vertex set of G such that no two

adjacent vertices share the same color. The Turán number of a graph H, denoted by ex(n,H),

is the maximum number of edges in an n-vertex graph that does not contain H as a subgraph.

Let EX(n,H) denote the set of extremal graphs, i.e., the set of all n-vertex, H-free graph G such

that e(G) = ex(n,H). A k-partite graph is a graph whose vertices are or can be partitioned into

k different independent sets. A complete bipartite graph is a bipartite (2-partite) graph (V1, V2, E)

such that for every two vertices v1 ∈ V1 and v2 ∈ V2, v1v2 is an edge in E. A complete bipartite

graph, with partitions of size |V1|= m and |V2|= n, is denoted by Km,n. A subgraph H of a graph

G is a graph whose vertex set V (H) is a subset of the vertex set V (G), and whose edge set E(H) is

a subset of the edge set E(G). A graph H is called a topological minor of the graph G if H can be

formed from G by deleting edges and vertices and by contracting edges. The join G = G1 +G2 of

graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets X1 and X2 is the graph union

G1∪G2 together with all the edges joining V1 and V2. A connected graph G is called a Hamiltonian

graph, if there is a cycle that includes every vertex of G, and the cycle is called a Hamiltonian cycle.
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Extremal Graph Theory is among the most natural fields in Graph Theory and filled with

intriguing results. Questions such as how global graph parameters, such as the edge number, density,

and chromatic number, influence the local substructures have been an ever-growing research field.

For instance, consider an n-vertex graph G. How many edges do we have to give the graph G to

make sure that, no matter the arrangement of the edges, G contains a Kr subgraph for some given

r? Or at least a Kr minor? Will some sufficiently high average degree or chromatic number ensure

that one of these substructures occurs?

Extremal Graph Theory problems can be broadly subdivided into two categories, as follows: If

we look for the global conditions that ensure a graph G contains some given graph H as a minor

(or topological minor), it will suffice to raise G above the value of some linear function of |G|, i.e.,

to make ε(G) := |E|
|V | large enough. On the other hand, if we ask what global assumptions imply the

existence of some given graph H as a subgraph, it will not help to raise in-variants such as ε. As

soon as H contains a cycle, there are graphs of arbitrarily large chromatic numbers not containing

H as a subgraph. In fact, let H be non-bipartite, and f be the function such that f(n) edges on

n vertices force a H as subgraph. Since complete bipartite graphs can have n2

4 edges, f(n) must

exceed n2

4 .

A systematic study of these type problems started after Turán found and characterized EX(n,Kr+1).

The case r = 2 was solved by Mantel in 1907.

Theorem 1.0.1 (Mantel [103]). The maximum number of edges in an n-vertex triangle-free graph

is
⌊
n2

4

⌋
. Furthermore, the only triangle-free graph with

⌊
n2

4

⌋
edges is the complete bipartite graph

Kbn2 cdn2 e.

The Turán graph, Tr(n), is an n-vertex complete r-partite graph whose parts have as equal as

possible sizes. Precisely speaking, the graph has (n mod r) parts of size dn/re and r − (n mod r)

parts of size bn/rc. Denote e(Tr(n)) by tr(n). Turán proved the following fundamental result in

Extremal Graph Theory:

Theorem 1.0.2 (Turán [122]). For an n-vertex Kr+1-free graph G, e(G) ≤ tr(n). Equality holds

if and only if G is the Turán graph Tr(n), i.e., ex(n,Kr+1) = tr(n) and EX(n,Kr+1) = Tr(n).

In 1966, Erdős, Stone, and Simonovits determined the asymptotic value of ex(n,H) by its chro-
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matic number only. In particular, for any non-bipartite graph H, their result gives an asymptotic

value which is best up to the leading term.

Theorem 1.0.3 (Erdős, Stone, and Simonovits [43, 45]). Let F be a non-bipartite graph. Then

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2),

where χ(H) denotes the chromatic number of H.

But when χ(H) = 2 we get that ex(n,H) = o(n2) and wish to know exactly how “small” is this

o(n2). The most natural classes of graphs that arise from this question are paths and complete

bipartite graphs. One of the oldest problems is the question of determining ex(n, Pk) and was

solved by Erdős and Gallai.

Theorem 1.0.4 (Erdős and Gallai [40]). If Gn is a graph containing no Pk, (k ≥ 2), then e(Gn) ≤
(k−2)n

2 .

The tightness of Theorem 1.0.4 is shown by the graph with n
k−1 disjoint Kk−1, where n is

divisible by k − 1. We refer the reader to an excellent survey on related topics by Füredi and

Simonovits [55].

If k is even, then there are nearly extremal graphs having a completely different structure.

Namely, one can take a complete bipartite graph with partite sets A and B of sizes |A|= k−2
2 and

|B|= n− k−2
2 and add all edges in A. Faudree and Schelp [49] proved that the extremal graph for

Pk can indeed be obtained in this way for all n and k.

We proceed to explore the complete bipartite graphs, specifically K2,2. The upper bound was

provided by Erdős, Rényi, and Sós [42]. The following K2,2-free construction, due to Erdős, Rényi

[41] (and independently re-discovered by Brown [17]), allows us to show that ex(n,K2,2) ≈ 1
2n

3/2.

Theorem 1.0.5 (Erdős, Rényi, and Sós [42], Erdős, Rényi [41], Brown [17]). The maximum number

of edges in a K2,2-free graph on n vertices is:(
1

2
− o(1)

)
n

3
4 ≤ ex(n,K2,2) ≤ n

4
(1 +

√
4n− 3).

3
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Construction: We first show that for every prime p, we can construct a K2,2-free graph on

n = p2− 1 vertices with m ≥ (p2− 1)(p− 1)/2 = (1
2 − o(1))n

3
2 edges. So given a prime p, we define

a graph on p2− 1 vertices where each vertex is a pair (a, b) ∈ Fp×Fp, (a, b) 6= (0, 0). We “connect”

vertex (a, b) to vertex (x, y), if and only if ax + by = 1(over Fp). Assume v = (a, b) 6= (0, 0).

Then, it is easy to check that in all cases (i.e., if v is either (a, 0), (0, b) or (a, b) with a, b 6= 0),

that there are exactly p solutions to ax + by = 1. This means that we always have d(v) ≥ p − 1

(we omit the possible solution satisfying x = a, y = b since we do not allow loops), implying that

m ≥ (p2 − 1)(p− 1)/2 as needed. To show that the graph is indeed K2,2-free, take any v = (a′, b′),

u = (a, b), u 6= v. Then the equations ax + by = 1 and a′x + b′y = 1 have at most one solution

implying that u and v have at most one common neighbor, so the graph is indeed K2,2-free.

There is also a result of Füredi extending this. He proved that for each t, ex(n,K2,t+1) ≈
√
t

2 n
3/2

[52]. The following construction is due to Brown and provides the lower bound ex(n,K3,3) ≥

c0n
5/3[17]. Roughly speaking, take a prime p ≡ 3(mod 4) and consider the graph on p3 vertices

whose vertex set is Z3
p, where (x, y, z) is joined to (a, b, c) if and only if (a−x)2 +(b−y)2 +(c−z)2 ≡

1(mod p). For any given (x, y, z), there will be on the order of p2 elements (a, b, c) to which it is

connected. There are, therefore, around c′n5/3 edges in the graph. Moreover, the unit spheres

around the three distinct points (x, y, z), (x′, y′, z′) and (x′′, y′′, z′′) cannot meet in more than two

points, so the graph does not contain a K3,3. The result follows for all n by a similar argument to

above.

The following generalization was proved by Kővári, Sós and Turán [121].

Theorem 1.0.6 (Kővári, Sós, Turán [121]). For every s ≤ t we have ex(n,Ks,t) ≤
(

1
2 + o(1)

)
(t−

1)
1
sn2− 1

s , where, o(1)→ 0 when n→∞.

Other than the constructions mentioned, there is also an impressive construction of Alon, Kollár,

Rónyai and Szabó which shows that if t ≥ (s−1)! +1, the upper bound mentioned above is essentially

sharp, that is, ex(n,Ks,t) ≥ c′n2− 1
c [2, 90].

The next natural step in understanding Turán numbers is to consider the extremal problem for

other bipartite graphs. Cycles of even length are one of the most obvious choices. Let cycles of

length k be denoted by Ck. Bondy-Simonovits proved the following upper bound for any general

cycle of even length:
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Theorem 1.0.7 (Bondy, Simonovits [15]). For any natural number k ≥ 2, there exists a constant

c such that ex(n,C2k) ≤ O(cn1+ 1
k ).

For k = 2, 3 and 5, that is, for C4, C6 and C10, this is known to be sharp. For cycles of

length 4, we have already seen that ex(n,C4) ≈ 1
2n

3
2 by Theorem 1.0.5. Benson [7] proved the

lower bounds of C6 and C10. Some other constructions achieving it were found by Wenger [126],

Lazebnik and Ustimenko [96], Mellinger [105], and Mellinger and Mubayi [106]. We refer the reader

to the paper [97] that presents new constructions as well as gives numerous references. One of the

most intriguing questions of modern Graph Theory is whether this upper bound is sharp or not.

Next, we consider the extremal number for odd cycles. We already know, by Theorem 1.0.3,

that ex(n,C2k+1) ≈ n2

4 . The so-called stability approach proves that, for n sufficiently large,

ex(n,C2k+1) =
⌊
n2

4

⌋
. The idea behind the stability approach is to show that a C2k+1-free graph with

roughly the maximal number of edges is approximately bipartite. Then one uses this approximate

structural information to prove an exact result.

Theorem 1.0.8 (Erdős [38]). For every natural number k ≥ 2 and ε > 0, there exists δ > 0 and a

natural number n0 such that, if G is a C2k+1-free graph on n ≥ n0 vertices with at least (1
4 − δ)n

2

edges, then G may be made bipartite by removing at most εn2 edges.

For more detailed values of ex(n,C2k+1), we refer the reader to the works of Bondy [14, 13],

Woodall [128], and Bollobás [8] (pp. 147–156). For a recent presentation, see Dzido [30], who also

considered the Turán number of wheels. One of the problems we worked on with the “stability

approach” was determining the Turán number of Triangular pyramids. Triangular pyramids with

k-layers are smaller triangles arranged in k layers to form a bigger triangle (see Figure 1.1) and are

denoted by TPk.

For k ≥ 1, the chromatic number of TPk is 3. Hence, by Theorem 1.0.3, we have ex(n, TPk) =

n2

4 + o(n2). Yet, it remains interesting to determine the exact value of ex(n, TPk). Recall, by

Theorem 1.0.1, the maximum number of edges in an n-vertex triangle-free graph is
⌊
n2

4

⌋
. Since

TP1 is a triangle, we have ex(n, TP1) =
⌊
n2

4

⌋
. The graph TP2 denotes the flattened tetrahedron.

Liu [99] determined ex(n, TP2) for sufficiently large values of n. Later, C. Xiao, G. O.H. Katona,

J. Xiao, and O. Zamora [129] determined ex(n, TP2) for small values of n. They showed that the
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x1
1

x2
1 x2

2

x3
1

x3
2

x3
3

x4
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x4
2 x4

2

x4
4

Figure 1.1: A Triangular Pyramid of 3 layers.

maximum number of edges in an n-vertex TP2-free graph (n 6= 5) is,

ex(n, TP2) =


⌊
n2

4

⌋
+
⌊n

2

⌋
, n 6≡ 2 (mod 4),

n2

4
+
n

2
− 1, n ≡ 2 (mod 4).

We studied the Turán number for the Triangular Pyramid with three layers in [63]. The maxi-

mum number of edges a TP3-free graph on n vertex can have is at most 1
4n

2 +n+o(n). We refer the

reader to the Chapter 2 for the details. The extremal constructions are interesting in their way. For

example, if n is divisible by 6, we take a complete bipartite graph with each class containing n/6

vertices. Replace every vertex with a triangle and add the edges between the vertices of triangles

in different classes, see Figure 1.2.

1.1 Generalized Turán Numbers

In this chapter, we briefly overview one of the many generalizations which have received an emerging

significance in recent years, from the many notable extensions of the Turán function ex(n, F ).

The first one officially carries the name of “Generalized Turán problems”. Given graphs H

and F , the generalized Turán number ex(n,H, F ) is the maximum number of copies of H in an

n-vertex F -free graph. Alon and Shikhelman [3] initiated the study of the function ex(n,H, F ).

Note that the case H = K2 gives back the well-studied Turán function. Moon and Moser [107]

studied the case when H is a triangle. A recent notable sharp result in this area is of Reiher [117],
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Figure 1.2: The extremal construction on n vertices with ex(n, TP3) edges, when n is divisible by
6.

concerning the clique case F = Kt for arbitrary t ∈ Z+, which answered the question of Lovász and

Simonovits [101]. In general, similarly to the basic Turán-function, there is an essential difference

in terms of the chromatic number of F . That is, we may expect asymptotically sharp results for

χ(F ) > 2, while in the case χ(F ) = 2 even the exponent of the function can be unclear in certain

domains of m. A few examples of ex(n,H, F ), with H 6= K2, were studied first by Zykov in [132]

and independently by Erdős [36]. They determined ex(n,Kr,Ks) for all r and s. Later Győri, Pach

and Simonovits [74] studied ex(n,H,Ks) for various graphs H when s ≥ 3. A different example

that has received considerable attention recently is ex(n,Cr, Cs) for various values of r and s. In

2008, Bollobás and Győri [11] showed that ex(n,C3, C5) = Θ(n3/2), and this paper was the start of

a more extensive study of this type of problems. Meanwhile, Győri and Li [73] obtained upper and

lower bounds on ex(n,K3, C2k+1), that were subsequently improved by Füredi and Ozkahya [54]

and by Alon and Shikhelman [3]. One of the most famous problems in this field was the following

conjecture by Erdős [37]:

Conjecture 1.1.1. The number of cycles of length 5 in a triangle-free graph on n-vertices is at

most (n5 )5 and the equality holds for the blown-up pentagon if 5 | n.

Hatami, Hladký, Král, Norine, and Razborov [81], and Grzesik [65] independently proved this

conjecture. Recently, attention has been given to the problem of maximizing the number of induced

copies of a fixed small graph H, see, for example, [48, 83, 116]. Morrison and Scott [108] determined
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the maximum possible number of induced cycles, without restriction on length, in an n-vertex

graph. The maximal number of induced complete bipartite graphs and induced complete r-partite

subgraphs have also been studied in [9, 12, 16]. The maximum number of induced C5’s has been

elusive for a long time, and Balogh, Hu, Lidický and Pfender [5] finally solved it. We mention this

result here since we worked on an extension in the case of planar Turán number, see Theorem 1.1.8.

Theorem 1.1.1 (Balogh, Hu, Lidický, Pfender [5]). Let C(n) denote the maximum number of

induced copies of 5-cycles in graphs on n vertices. For n large enough, C(n) = abcde + C(a) +

C(b) + C(c) + C(d) + C(e), where a + b + c + d + e = n and a, b, c, d, e are as equal as possible.

Moreover, if n is a power of 5, the unique graph on n vertices maximizing the number of induced

5-cycles is an iterated blow-up of a 5-cycle.

Another way to generalize the Turán problem is to study the so-called supersaturation problem

(or Rademacher-Turán type problem). Erdős and Simonovits [44] were the first to investigate this

systematically. At the same time, the pioneer result due to Rademacher (unpublished) revealed

a particular case, see [35]. Here the aim, in general, is to determine the minimum number of

subgraphs F in n-vertex graphs having m edges, in terms of m. This function was called the

supersaturation function of F , and it takes a positive value exactly if m > ex(n, F ). A sharp result

in this case is only known for graphs K2,t due to the Nagy [111] and He, Ma and Yang [82], based

on earlier work of Erdős and Simonovits [44], and the construction of Füredi [52]. Concerning the

theory of supersaturation, we refer the reader to the surveys of Simonovits[119], Füredi–Simonovits

[55] and Pikhurko and Yilma [112].

Now let us focus on a particular type of generalized Turán number of graphs. Let f(n,H) be

the maximum number of copies of H in an n-vertex planar graph. For a given graph H, let F

be the collection of subdivisions of K5 and K3,3. It follows from Kuratowski’s [92] theorem that

ex(n,H,F) is equal to f(n,H). In this sense, the problem of maximizing H copies in a planar

graph is in some sense a special case of the problem of Alon and Shikelman. The simplest case of

H = P2, or in other words, the maximum number of edges in an n-vertex planar graph is 3n − 6,

and it follows from Euler’s formula [47]. Hakimi and Schmeichel [79] initiated the study of this

function for non-trivial cases, such as when H is a cycle. They determined the value of f(n,C3)

and f(n,C4) precisely and showed that in general f(n,Ck) = Θ(nbk/2c). Their result for f(n,C4)

is as follows:
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Theorem 1.1.2 (Hakimi, Schmeichel [79]). For n ≥ 4, f(n,C4) = 1
2(n2 + 3n− 22).

Recently, Győri, Paulos, Salia, Tompkins, and Zamora [77] determined the exact answer for the

5-cycle. In the same paper, the order of magnitude is also given for f(n,H) when H is a cycle of

length more than 4.

Theorem 1.1.3 (Győri, Paulos, Salia, Tompkins, Zamora [77]). For n = 6 and n ≥ 8, f(n,C5) =

2n2 − 10n+ 12. For n = 5 we have f(n,C5) = 6, and for n = 7 we have f(n,C5) = 41.

It is natural to ask the value of f(n, Pk), where Pk is a path of k vertices. Recall f(n, P2) = 3n−6

if n ≥ 3. Alon and Caro [1] determined the exact value of f(n,H), where H is a complete bipartite

graph in which the smaller class is of size 1 or 2. The previous result consequently determines the

value of f(n, P3). They showed that

Theorem 1.1.4 (Alon, Caro [1]). For n ≥ 4, f(n, P3) = n2 + 3n− 16.

Győri, Paulos, Salia, Tompkins, and Zamora in [76] determined the exact value of f(n, P4).

Theorem 1.1.5 (Győri, Paulos, Salia, Tompkins, Zamora [76]). The maximum number of paths

of length 4 in a planar graph on n vertices is as follows:

f(n, P4) =



12, if n = 4;

147, if n = 7;

222, if n = 8;

7n2 − 32n+ 27, if n = 5, 6 and n ≥ 9.

The order of magnitude of f(n,H) when H is a fixed tree was determined in [75] and for general

H (and in arbitrary surfaces) by Huynh, Joret and Wood [84] (see also [85] for results in general

sparse settings). For a path on k vertices, we have f(n, Pk) = Θ(nb
k−1
2
c+1). In a follow-up paper,

we gave an asymptotic value of f(n, P5). This bound is asymptotically the best possible. Consider

the maximal planar graph on n vertices containing two degree n − 1 vertices as shown in Figure

1.3. It can be checked that this graph contains at least n3 copies of P5.
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...

Figure 1.3: A graph on n vertices containing at least n3 copies of P5.

Theorem 1.1.6 (Ghosh, Győri, Martin, Paulos, Salia, Xiao, Zamora [58]). The maximum number

of paths of length 5 in an n vertex planar graph is f(n, P5) = n3 +O(n2).

We also studied a variant of the above problem, where we are trying to maximize the number

of induced copies of a certain fixed graph H in an n-vertex planar graph. Considering the growing

interest in Turán number of induced graphs, see Theorem 1.1.1. In the planar case, the result of

Hakimi and Schmeichel [79] investigated the case where H is a cycle. For H = C4, note that the

planar graph K2,n−2 contains exactly 1
2(n2−5n+6) induced 4-cycles (see Figure 1.4(b)). It follows

from this observation and Theorem 1.1.2 that the maximum number of induced 4-cycles in a planar

graph with n vertices is 1
2n

2 +O(n). Induced 5-cycles are the next non-trivial case. We determined

the maximum number of induced 5-cycles in a planar graph on n vertices, for n sufficiently large,

exactly. To state the formula, we define the following function.

Definition 1.1.7. For n ≥ 7, let

h(n) = max{k1k2 + k2k3 + k3k1 : k1, k2, k3 ∈ N, k1 + k2 + k3 = n− 4}+ 2.

Clearly, the maximum is attained when k1, k2 and k3 are as close as possible. In particular,

h(n) = n2/3 +O(n).

Theorem 1.1.8 (Ghosh, Győri, Janzer, Paulos, Salia, Zamora [56] ). There exists a positive integer

n0 such that if n ≥ n0 and G is a planar graph on n vertices, then G contains at most h(n) induced

5-cycles. Moreover, there exists a planar graph on n vertices which contains precisely h(n) induced

5-cycles.

Since the extremal graph has a rather complex structure, we present a simpler n-vertex planar

10

C
E

U
eT

D
C

ol
le

ct
io

n



S1

S3

S2

w3

w1

w2 u

(a) (b)

Figure 1.4: Planar graphs containing asymptotically the maximum number of induced 5-cycles and
4-cycles, respectively

graph which has h(n)−2 induced 5-cycles. Let S1, S2 and S3 be pairwise disjoint sets of vertices such

that |S1|+|S2|+|S3|= n−4 and |S1|, |S2|, |S3| are as close as possible. We define an n-vertex planar

graph G as follows. The vertex set of G is the three sets of vertices S1, S2 and S3 together with four

vertices, say w1, w2, w3 and u. That is, V (G) = S1 ∪ S2 ∪ S3 ∪ {w1, w2, w3, u}. We define the edges

of G as E(G) = {w1w2, w2w3, w3w1} ∪ {w1v, vu| v ∈ S1} ∪ {w2v, vu| v ∈ S2} ∪ {w3v, vu| v ∈ S3}

(see Figure 1.4 (a)). It can be checked that G contains exactly |S1||S2|+|S2||S3|+|S3||S1|= h(n)−2

induced C5’s.

Let us introduce a special case of the Generalized Turán numbers. Over the last decade, a large

quantity of work has been carried out in the area of ‘random’ planar graphs (see, for example, [64],

and [104]). However, there seem to be no known results on questions analogous to the Erdős-Stone

Theorem, i.e., how many edges can an n-vertex planar graph have without containing a given

smaller graph? In 2016, Dowden [28] initiated the study of these specific Turán-type problems.

Note that this is the case of f(n,H), where H is K2. The planar Turán number of a graph H,

exP(n,H), is the maximum number of edges in a planar graph on n vertices which does not contain

H as a subgraph.

Unfortunately, the case when the forbidden subgraph is a complete graph (i.e., the analog to
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Turán) is fairly trivial. Since K5 is not planar, the only meaningful cases to look at are K3 and K4;

these are both straightforward. For the former, K2,n−2 must be extremal (since all faces have size

four when drawn in the plane), and so the extremal number of edges is 2n − 4. For the latter, it

suffices to note that there exist planar triangulations not containing K4 (e.g., take a cycle of length

n−2 and then add two new vertices that are adjacent to all those in the cycle). Thus, the extremal

number is 3n− 6. The planar Turán number, when the forbidden subgraph is a star, is also fairly

trivial. The next most natural type of graph to investigate is perhaps a path. We refer the reader

to [93] and [94], for extremal planar Turán number for paths of length {6, 7, 8, 9, 10, 11}. There are

also various ways to extend the topic further. For example, one natural idea is to obtain several

sufficient conditions on H which yield exP(n,H) = 3n− 6 for all n > |V (H)|. The authors in [94]

proved that exP(n,H) = 3n − 6 for all H with n > |H|+2 and either χ(H) = 4 or χ(H) = 3 and

∆(H) > 7. They also completely determine exP(n,H) when H is a wheel or a star, and the case

when H is a (t, r)-fan, that is, H is isomorphic to K1 + tKr−1, where t > 2 and r > 3 are integers.

The next most natural type of graph to investigate is perhaps a cycle. Dowden [28] obtained

the tight bounds exP(n,C4) ≤ 15(n−2)
7 , for all n ≥ 4 and exP(n,C5) ≤ 12n−33

5 , for all n ≥ 11. Later,

Lan, Shi and Song [95] proved the following:

Theorem 1.1.9 (Lan, Shi, Song [95]). Let θk denote the family of Theta graphs on k ≥ 4 vertices,

that is, graphs obtained from a cycle Ck by adding an edge joining two non-consecutive vertices.

1. For all n ≥ 4, exP(n, θ4) ≤ 12(n−2)
5 .

2. For all n ≥ 5, exP(n, θ5) ≤ 5(n−2)
2 .

3. For all n ≥ 7, exP(n, θ6) ≤ 18(n−2)
7 .

Because of the bound for θ6 in the same paper, they presented the following corollary for C6:

For all n ≥ 6, exP(n,C6) ≤ 18(n−2)
7 , with equality when n = 9. The tight bound for exP(n,C6) was

presented by Ghosh, Győri, Paulos, Xiao and Zamora in [57]. We proved that for n ≥ 18 and an

n-vertex C6-free plane graph G, e(G) ≤ 5
2n− 7. In Chapter 3, we present this proof. In a follow-up

paper, we improve the additive constant of the bound of exP(n, θ6) given by Lan, Shi, Song. [95]

and illustrate that our bound is sharp. We proved the following:
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a, b 2 3 4 5 ≥ 6

2 2n− 4 2n (8/3)n (20/7)n 3n− 6

3 2n (5/2)n− 2 (20/7)n - 3n− 6

4 (8/3)n (20/7)n - 3n− 6 3n− 6

5 (20/7)n - 3n− 6 3n− 6 3n− 6

≥ 6 3n− 6 3n− 6 3n− 6 3n− 6 3n− 6

Table 1.1: Upper bounds for exP(n, Sa,b).

a, b 2 3 4 5 ≥ 6

2 2n− 4 2n (15/7)n (5/2)n 3n− 6

3 2n (5/2)n− 5 (9/4)n - 3n− 6

4 (15/7)n (9/4)n - 3n− 6 3n− 6

5 (5/2)n - 3n− 6 3n− 6 3n− 6

≥ 6 3n− 6 3n− 6 3n− 6 3n− 6 3n− 6

Table 1.2: Lower bounds for exP(n, Sa,b).

Theorem 1.1.10 (Ghosh, Győri, Paulos, Xiao, Zamora[62]). Let G be a θ6-free planar graph on n

vertices. The maximum number of edges G can have is at most 18
7 n−

48
7 , for all n ≥ 14. Equality

holds when G is a 2-connected planar graph.

Another generalization of the planar Turán number of stars might be double stars as the for-

bidden graph. Double stars are two adjacent vertices of degree m and n, respectively, and are

denoted by Sm,n. It is easy to see that ex(n, Sm,n) = 3n − 6, for m ≥ 2 and n ≥ 6. The other

cases are non-trivial. The upper bounds were described by Ghosh, Győri, Paulos, and Xiao in [61].

They have some interesting extremal constructions, from disjoint copies of maximal planar graphs

to Apollonian networks. For example, the extremal structure for S3,3 is obtained by joining every

vertex of the maximal matching on n − 2 vertices with two vertices. For detailed proofs, we refer

the reader to Chapter 4. The following Table 1.1 compiles the upper bounds.
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1.2 Hypergraph Turán Type Problems

Definitions and Notations:

A hypergraph H = (V ;E) is a family E of distinct subsets of a finite set V . The members of E

are called hyperedges and the elements of V are called vertices. A hypergraph is called r-uniform

if each member of E has size r. A hypergraph H = (V,E) is called linear if every two hyperedges

have at most one vertex in common. For a family of forbidden r-uniform hypergraphs F , the Turán

number exr(n,F) denotes the maximum number of hyperedges in an r-uniform hypergraph on n

vertices with no element of F as a sub-hypergraph. For convenience, whenever F = {F} consists of

a single forbidden hypergraph, we write exr(n, F ) instead of exr(n, {F}). A Berge cycle of length

k, denoted by Berge-Ck, is an alternating sequence of distinct vertices and distinct hyperedges of

the form v1, h1, v2, h2, . . . , vk, hk where vi, vi+1 ∈ hi for each i ∈ {1, 2, . . . , k − 1} and vkv1 ∈ hk.

It is natural to consider the Turán Problem in the setting of r-uniform hypergraphs (r-graphs

for short). Surprisingly, while we have rather exact results for the graph Turán problem, already

for 3-graphs the problem becomes much harder. Consider the “first” non-trivial case, when we

forbid K3
4 , the complete 3-graph on 4 vertices. Let ex(n,K3

4 ) denote the maximum number of

edges a 3-graph can contain if it does not contain a copy of K3
4 . It is not hard to show that

ex(n,K3
4 ) ≥ (5

9 − o(1))
(
n
3

)
. We do something very similar to what we did in the graph case. We

take n vertices and partition them into 3 sets V1, V2, V3 of almost equal size. We then take as

edges all triples of vertices (x, y, z) if they are of the form x ∈ V1, y ∈ V2, z ∈ V3, or of the form

x, y ∈ Vi, z ∈ Vi+1, where i ∈ [3] (and addition is modulo 3). Denote this graph by T 3,4. A

well-known conjecture of Turán is that ex(n,K3
4 ) ≤ (5

9 + o(1))
(
n
3

)
. To date, the best known upper

bound is ex(n,K3
4 ) ≤ 0.561

(
n
3

)
[115].

A probable explanation for the hardness of proving tight bounds for hypergraph Turán problems

is the following: In the graph case, most proofs proved a tight upper bound along with the unique

extremal graph (the Turán graph). As it turns out, the 3-graph T 3,4 we described above is not

the unique K3
4 -free 3-graph with this many edges. In fact, for every n, there are exponentially

many non-isomorphic 3-graphs that are K3
4 -free and have the same number of edges as T 3,4. So, if

indeed ex(n,K3
4 ) = |E(T 3,4)|, then any proof would have to “avoid” proving that T 3,4 is the unique

maximum.
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A very natural and widely studied topic is Turán numbers of cycles in hypergraphs. Unlike

graphs, there are several types of cycles in hypergraphs. Most studied of them are Berge cycles and

linear cycles. The systematic study of Turán numbers of Berge cycles started with the investigation

of Berge triangles by Győri [69], who proved that the maximum number of hyperedges in a Berge

triangle-free 3-uniform hypergraph on n vertices is at most n2

8 . The construction for the lower

bound is the following: Take 3 disjoint sets, A = {a1, a2, . . . , an
4
}, A′ = {a′1, a′2, . . . , a′n

4
} and B =

{b1, b2, . . . , bn
2
}. The hypergraph H, whose vertex set is A ∪ A′ ∪B and the edge set is {ai, a′i, bj |

1 ≤ i ≤ n
4 , 1 ≤ j ≤ n

2 }, is Berge triangle-free and has n2

8 hyperedges. There is an informal but

convenient way to see this construction. First, we take a complete bipartite graph, and then we

make a copy of each vertex on one side. We create a triple corresponding to each edge of the

original bipartite graph and assign hyperedges to these triples. It is worth noting that this type

of hypergraph extension of a graph is quite common, and we will come across similarly obtained

hypergraphs in Chapter 5.

xi

yi

=⇒

xi

yi

x′i

y′i

Figure 1.5: Replacing every graph edge xiyi in the bipartite graph with two hyperedges xiyiy
′
i and

yiy
′
ix
′
i

Recently, Füredi, Kostochka, and Luo [53] proved similar results for Berge cycles. Instead

of forbidding Berge cycles of fixed length, they forbid all Berge cycles of length at least k. It

continued with the study of Berge five cycles by Bollobás and Győri [11]. They showed that

n
3
2 /3
√

3 ≤ ex3(n,C5) ≤
√

2n
3
2 + 4.5n. Very recently, this estimate was considerably improved by

Ergemlidze, Győri and Methuku [46]. Győri, Katona, and Lemons [70] proved the following analog

of the Erdős-Gallai Theorem 1.0.4 for Berge paths.

Theorem 1.2.1 (Győri, Katona, Lemons [70]). Fix k > r + 1 > 3 and let H be an r-uniform

hypergraph containing no Berge path of length k. Then e(H) ≤ n
k

(
k
r

)
. For the other case, fix

r ≥ k > 2. If H is an r-uniform hypergraph with no path of length k, then e(H) ≤ n(k−1)
r+1 .

For other results, see [4, 86]. Győri and Lemons considered a more general question and esti-

mated Turán number of Berge cycles of any given length.
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Theorem 1.2.2 (Győri, Lemons [71],[72]). For r ≥ 2, we have exr(n,C2l) = O(n1+ l
l ). For r ≥ 3,

we have exr(n,C2l+1) = O(n
1+l
l ).

The particular case of determining exlin3 (n,C3) is equivalent to the famous (6, 3)-problem, which

is a special case of a general problem of Brown, Erdős, and Sós. The famous theorem of Ruzsa and

Szemerédi states that there exists a constant c > 0 for which we have n
2− c√

logn < exlin3 (n,C3) =

o(n2).

Recall that the maximum number of edges in a triangle-free graph is one of the classical results

in Extremal Graph Theory, and Mantel proved it in 1907 [103]. The extremal problem for diamond-

free graphs follows from this. If there are 2 triangles sitting on an edge in a graph, we call this

a diamond. On the other hand, k triangles sitting on an edge is called a k-book, denoted by a

Bk. Given a graph G on n vertices and having
⌊
n2

4

⌋
+ 1 edges. Mantel showed that G contains a

triangle. Using Mantel’s Theorem, we can also prove that this graph G also contains a diamond.

Rademacher (unpublished and simplified later by Erdős in [39]) proved in the 1940s that the number

of triangles in G is at least
⌊
n
2

⌋
. Erdős conjectured in 1962 [35] that the size of the largest book

in G is n
6 and this was proved soon after by Edwards (unpublished [32], see also Khadziivanov and

Nikiforov [110] for an independent proof). Both Rademacher’s and Edwards’ results are sharp. In

the former, adding an edge to one part in the complete balanced bipartite graph (note that in G

there is an edge contained in
⌊
n
2

⌋
triangles) achieves the maximum. In the latter, every known

extremal construction of G has Ω(n3) triangles. For more details on book-free graphs, we refer the

reader to the following articles [10], [114] and [131].

The hypergraph equivalent of diamonds and k-books is defined similarly, with 2-Berge triangles

and k-Berge triangles sharing a common edge, respectively. We continue the work and determine

the maximum number of hyperedges for a k-book free 3-uniform hypergraph in [59]. The main

result is as follows: For a given k ≥ 2 and a 3-uniform Bk-free hypergraph H on n vertices,

e(H) ≤ n2

8
(1 + o(1)). Recall that ex(n,C3) = ex(n,Bk) = n2

4 in graph setting. Győri [69] proved

that the maximum number of hyperedges in a Berge triangle-free 3-uniform hypergraph on n vertices

is at most n2

8 . So, there is an obvious parallel between the triangle-free and book-free graphs and

hypergraphs, making the result much more intriguing. We refer the reader to Chapter 5 for the

details.
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1.3 Wiener Index

The Wiener index is named after Harry Wiener, who introduced it in 1947; at the time, Wiener

called it the “path number” [127]. He was studying its correlations with boiling points of paraffin,

taking into consideration its molecular structure. It is the summation of distances between all the

unordered pair of the vertices of G. It is the oldest topological index related to molecular branching.

Based on its success, many other topological indexes of chemical graphs, based on information in

the distance matrix of the graph, have been developed subsequently to Wiener’s work. Since

undirected graphs, especially trees, are used to model molecules. The concept of Wiener index has

been studied under different names such as the total status by [80], the total distance by Entringer,

Jackson, and Snyder [34], and the transmission by Plesńık [113] for various applications to topics

including chemistry, communication, Sociometry, and the theory of social networks. Several survey

papers [25, 26, 27, 88, 130] contain a great deal of knowledge on the Wiener index.

The average distance (or mean distance) µ(G) of the graph G is µ(G) = 2W (G)
n(n−1) . Networks with

small mean distances are desirable due to their good properties. Thus, the average distance of a

connected graph is at least 1 and can be realized only by a complete graph. On the other hand, the

average distance of a connected graph of order n is at most n+1
3 and this bound is attained only

by a path of order n, see [29, 34, 100]. Plesńık [113] showed that this bound can be improved to⌊
n2

4

⌋
(n−1) for 2-connected or 2-edge-connected graphs of order n, and can be attained only by a cycle of

order n. There is no closed or recursive formula to calculate their Wiener indices for most general

classes of graphs. Thus, finding bounds on Wiener indices for a general class of graphs of a given

order has been an attractive research topic.

Many sharp or asymptotically sharp bounds on W (G) in terms of other graph parameters are

known. Beezer, Riegsecker, and Smith [6] proved the following bound for graphs with minimum

degree δ.

Theorem 1.3.1 (Beezer, Riegsecker, Smith [6]). The Wiener index of a connected graph with n

vertices, e edges and minimum degree δ satisfies
⌊

(n−1)n(n+1)−2e
δ+1

⌋
.

Sharp bounds on Wiener indices of k-connected graphs or k-edge-connected graphs of order n

have been completely solved. The question in terms of finding a sharp upper bound on the average
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distances of k-connected (resp., k-edge-connected) graphs of a given order n for k ≥ 3 was posed by

Plesńık [113] in 1984. In 2006, Gutman and Zhang [68] gave a sharp lower bound on Wiener indices

of k-connected (resp., k-edge-connected) graphs of order n. Dankelmann, Mukwembi, and Swart

[22, 21] established asymptotically sharp upper bounds on average distances of k-edge-connected

graphs of a given order for k ≥ 3. When k ≥ 3 is odd, they [23] further showed that the upper bound

on the average distances of k-connected n-vertex graphs, can be improved to µ(G) ≤ n
2k+1 + 30.

This bound is the best possible, apart from an additive constant. For other results involving

graph parameters, for example, connectivity, edge-connectivity, and maximum degree see [51],

respectively. For finding more details in the mathematical aspect of the Wiener index, see also

results [24, 66, 87, 102, 89, 67, 109, 124, 123, 125, 20, 91].

One can study the Wiener index of the family of connected planar graphs. Since a path attains

the above, it is natural to ask the same question for some family of planar graphs. For instance, the

Wiener index of a maximal planar graph with n vertices, n ≥ 3 has a sharp lower bound (n−2)2+2.

Any maximal planar graph such that the distance between any pair of vertices is at most 2 (for

instance, a planar graph containing the n-vertex star) attains this bound. It is well-known [34] that

the Wiener index of a tree on n vertices attains the minimum value (n− 1)2, when it is a star. On

the other hand, it attains the maximum value 1
6(n3−n) in case of a path. Marraki, Mohamed, and

Abdelhafid [33] showed that a maximal planar graph minimizes the Wiener index of a planar map of

order n and is equal to (n−2)2+2. On the other hand, a path maximizes it and is equal to 1
6(n3−n).

Che and Collins [18], and independently Czabarka, Dankelmann, Olsen and Székely [19], gave a

sharp upper bound of a particular class of maximal planar graphs known as Apollonian networks.

An Apollonian network is an undirected graph formed by recursively subdividing a triangle into

three smaller triangles. Starting from a single triangle, select a triangular face repeatedly and add

a new vertex inside. Connect the new vertex to each vertex of the face containing it.

Theorem 1.3.2 (Che, Collins [18], Czabarka, Dankelmann, Olsen, Székely [19]). Let G be an

Apollonian network of order n ≥ 3. Then W (G) has a sharp upper bound

W (G) ≤
⌊

1

18
(n3 + 3n2)

⌋
=


1
18(n3 + 3n2), if n ≡ 0(mod 3);

1
18(n3 + 3n2 − 4), if n ≡ 1(mod 3);

1
18(n3 + 3n2 − 2), if n ≡ 2(mod 3).
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The authors in [18] also conjectured that this bound also holds for every maximal planar graph.

Dowden [19] showed that the conjectured bound holds asymptotically. In particular,

Theorem 1.3.3 (Dowden [19]). For k = 3, 4, 5, there exists a constant Ck such that

W (G) ≤ 1

6k
n3 + Ckn

5/2,

for every k-connected maximal planar graph of order n.

In [60], we confirm the conjecture above. We refer the reader to Chapter 6 for the details. The

authors in [18] also had a conjecture for Wiener index of quadrangulation graphs. Győri, Paulos,

and Xiao [78] proved this conjecture recently. Their result is as follows:

Theorem 1.3.4 (Győri, Paulos, Xiao [78]). Let G be a quadrangulation graph with n ≥ 4 vertices.

Then

W (G) ≤

 1
12n

3 + 7
6n− 2, if n ≡ 0(mod 2);

1
12n

3 + 11
12n− 1, if n ≡ 1(mod 2).
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Chapter 2

Turán Number of TP3

2.1 Introduction

All the graphs we consider in this chapter are simple and finite. Let G be a graph. We denote the

vertex and edge set of G by V (G) and E(G), respectively. Let e(G) and v(G) denote the number of

edges and vertices, respectively. We denote the degree of a vertex v by d(v), the minimum degree

in graph G by δ(G) and the maximum degree in graph G by ∆(G). The subgraph induced by

S ⊆ V (G), is denoted by G[S]. Moreover, N(v) denotes the set of vertices in G adjacent to v. Let

H be a subgraph of G and v be a vertex in H. Let NH(v) denote the set of vertices in H that are

adjacent to v. Let x1, x2, . . . , xk be k vertices in H. The set of vertices in H which are adjacent to

all these k vertices, x1, x2, . . . , xk, is denoted by N∗H(x1, x2, . . . , xk). We may omit the subscript in

the notation whenever the underlying graph is clear. Let A and B be subsets of V (G), then the

number of edges between them is denoted by e(A,B). We denote the cycle of length 6 by C6 or a

6-cycle. A 7-wheel, denoted by W7, is a 7-vertex graph containing a C6 and a vertex adjacent to

all the vertices of the 6-cycle. Recall that the Turán number of a graph H, denoted by ex(n,H), is

the maximum number of edges in an n-vertex graph that does not contain H as a subgraph. Let

EX(n,H) denote the set of extremal graphs, i.e., the set of all n-vertex, H-free graph G such that

e(G) = ex(n,H).

Definition 2.1.1. The Triangular Pyramid with k layers, denoted by TPk, is defined as follows:

Draw k+ 1 paths in layers such that the first layer is a 1-vertex path, the second layer is a 2-vertex
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(i) TP3

x1
1

x2
1 x2

2

x3
1

x3
2

x3
3

x4
1 x4

2 x4
3

x4
4

(ii) TP5

Figure 2.1: A Triangular Pyramid with 3 and 5 layers, respectively.

path, . . . , and the (k + 1)st layer is a (k + 1)-vertex path. Label the vertices of the ith layer’s path

from left to right as xi1, x
i
2, . . . , x

i
i, where i ∈ {1, 2, 3, . . . , k + 1}. The vertex set of the graph TPk

is the set of all the vertices of the (k + 1) paths. The edge set contains all the edges of the paths.

Additionally, for any two consecutive (i− 1)th and ith layer, xi−1
r xir and xi−1

r xir+1 are in E(TPk),

where i ∈ {1, 2, . . . , k + 1} and 1 ≤ r ≤ i− 1 (see Figure 2.1).

For k ≥ 1, the chromatic number of TPk is 3. Hence, by Theorem 1.0.3, we have ex(n, TPk) =

n2

4 + o(n2). Yet, it remains interesting to determine the exact value of ex(n, TPk). The graph TP1

is a triangle and by Mantel’s Theorem, ex(n, TP1) =
⌊
n2

4

⌋
. The graph TP2 denotes the flattened

tetrahedron. Liu [99] determined ex(n, TP2) for sufficiently large values of n. Later, Katona, Xiao,

Xiao, and Zamora [129] determined ex(n, TP2) for small values of n.

Theorem 2.1.2 (Katona, Xiao, Xiao, Zamora [129]). The maximum number of edges in an n-vertex

TP2-free graph (n 6= 5) is,

ex(n, TP2) =


⌊
n2

4

⌋
+
⌊n

2

⌋
, n 6≡ 2 (mod 4),

n2

4
+
n

2
− 1, n ≡ 2 (mod 4).

In this chapter, we study the Turán number of TP3, i.e., the Triangular Pyramid with three

layers.

Theorem 2.1.3. The maximum number of edges in an n-vertex TP3-free graph is:

ex(n, TP3) =
1

4
n2 + n+ o(n).
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It can be checked that the constructions given in Figure 2.2, 2.3 and 2.4 are TP3-free graphs

containing 1
4n

2 + n+ 1, 1
4n

2 + n+ 3
4 and 1

4n
2 + n edges, respectively. Thus, the bound in Theorem

2.2.3 is best up to the linear term for infinitely many values of n.

n
2 + 1

n
2 − 1

Figure 2.2: The extremal construction when n is even and n ≡ 2(mod 10).

n+1
2

n−1
2

Figure 2.3: The extremal construction when n is odd and n ≡ 1(mod 10).

This chapter is structured as follows: In Section 2.2, the proof of the main theorem is presented.

In Section 2.3, a conjecture on the exact extremal number of TP3 and TP4 is provided.

2.2 Proof of Theorem 2.1.3

We will be using the following classical stability result of Erdős and Simonovits:

Theorem 2.2.1 (Erdős, Simonovits [38]). Let k ≥ 2 and suppose that H is a graph with χ(H) =

k+1. If G is a H-free graph with e(G) ≥ tk(n)−o(n2), then G can be formed from Tk(n) by adding

and deleting o(n2) edges.

Since χ(TP3) = 3, the above theorem can be restated as follows:

23

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 2.4: The extremal construction when n is divisible by 6.

Theorem 2.2.2. For every γ > 0, there exists an ε > 0 and n0(γ) such that for every TP3-free

graph G on n (n > n0(γ)) vertices with e(G) ≥ n2

4 − εn
2, we have

|E(G)∆E(T2(n))|≤ γn2.

We will prove the following version of Theorem 2.1.3.

Theorem 2.2.3. For δ > 0 and n ≥ 5n0(δ)
2δ , the maximum number of edges in an n-vertex TP3-free

graph is ex(n, TP3) ≤ n2

4 + (1 + δ)n.

Given a δ, we define the following functions of δ: The n0(δ) in Theorem 2.2.3 is coming from

the Theorem 2.2.2. Let β(δ) ≤ min(1
6 + 2δ

3 ,
1
8 ,

δ
9296 ,

n−2
4n ). On the other hand, γ(δ) satisfies the

inequalities γ < min{ δ(1−4β)
7968 , β

2

3δ ,
1
24 ,

β2

24} and 4βγ < (β2 − 16γ)(1− 16γ). For brevity of the paper,

we do not calculate these functions precisely.

We start by proving the following weaker version of Theorem 2.2.3:

Lemma 2.2.4. Let G be a TP3-free graph on n (n ≥ 10) vertices. Then e(G) ≤ n2

4 + 7
2n.

Proof. Suppose e(G) > n2

4 + 7
2n. The maximum number of edges in a 7-wheel free graph on n

vertices is ex(n,W7) = bn2

4 + n
2 + 1c [31], which is less than n2

4 + 7
2n. So, we may assume that G

contains a 7-wheel. We claim that each edge in G is contained in at least 8 triangles. Suppose not,
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i.e., there is an edge xy ∈ E(G) such that |N∗(x, y)|≤ 7. In this case, the number of edges that are

incident to either x or y is at most n+ 6. By the induction hypothesis,

e(G) ≤ e(G− {x, y}) + (n+ 6) ≤ (n− 2)2

4
+

7

2
(n− 2) + (n+ 6) =

n2

4
+

7

2
n.

One can check that the statement also holds for small n.

Now consider a 7-wheel in G, containing the 6-cycle x1x2x3x4x5x6x1 and the center vertex

y. For any edge xixj in the 6-cycle, it can be easily seen that there are at least 3 vertices in

V (G)\{x1, x2, . . . , x6, y} which are adjacent to both xi and xj . Therefore, by the Pigeonhole prin-

ciple, we can find three distinct vertices, say y1, y2 and y3 which are in N∗(x1, x2), N∗(x3, x4), and

N∗(x5, x6), respectively. This is a contradiction, as G does not contain a TP3.

Lemma 2.2.5. Let δ > 0 be given. Let G be a graph on n (n ≥ 5n0(γ)
2δ ) vertices with e(G) >

n2

4 + (1 + δ)n. Then either G contains a TP3 as a subgraph or G contains a subgraph G0 on n′0

vertices such that e(G0) >
(n′0)2

4 + (1 + δ)n′0 with dG0(x) >
⌊
n′0
2 + 1

⌋
, for all x ∈ V (G0) and any

two adjacent vertices are incident to at least n′0 + 2 common vertices (so each edge is contained in

at least three triangles).

Proof. Let H be a subgraph of G. We call H a good subgraph if e(H) > v(H)2

4 + (1 + δ)v(H).

Additionally, for all x ∈ V (H)

dG0 >

⌊
v(H)

2
+ 1

⌋
, (2.1)

and any two adjacent vertices in H are incident to at least v(H) + 2 edges.

If every vertex in G satisfies the property (2.1) and any two adjacent vertices in G are incident

to at least v(G) + 2 edges (i.e., G itself is a good subgraph), then the lemma holds. Otherwise, we

delete the vertex in G if it doesn’t satisfy the degree condition in (2.1). If a vertex along with one

of its neighbors has fewer than v(G) + 2 edges incident to it, then we delete the vertex with the

smaller degree. We repeat this step, say m times, till we get a subgraph H, satisfying the property

(2.1) and any two adjacent vertices are incident to at least v(H) + 2 edges.

We claim the following:

Claim 1. e(H) ≥ (n−m)2

4 + (1 + δ)(n−m) + δm.
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Proof. Suppose not. Let e(H) < (n−m)2

4 + (1 + δ)(n−m) + δm. We distinguish the following four

cases based on the parity of n and m to complete the proof:

Case 1: n is odd. The sequence of the number of edges deleted in m steps from G, when m

is even and m is odd, is as follows:(
n+ 1

2
,
n+ 1

2
,
n− 1

2
,
n− 1

2
, . . . ,

n−m+ 3

2
,
n−m+ 3

2

)
and (

n+ 1

2
,
n+ 1

2
,
n− 1

2
,
n− 1

2
, . . . ,

n−m+ 4

2
,
n−m+ 4

2
,
n−m+ 2

2

)
.

When m is even, the number of edges deleted after m steps is at least m
4 (2n−m+ 4). Hence,

e(G) ≤ E(H) +
m

4
(2n−m+ 4) <

(
(n−m)2

4
+ (1 + δ)(n−m) + δm

)
+
m

4
(2n−m+ 4)

=
n2

4
+ (1 + δ)n,

which is a contradiction. Similarly, when m is odd, the number of edges deleted after m steps is at

least (m−1)
4 (2n−m+ 5) + n−m+2

2 = mn
2 −

m2

4 +m− 1
4 . Hence,

e(G) ≤ E(H)− m2

4
+
mn

2
+m− 1

4
<

(
(n−m)2

4
+ (1 + δ)(n−m) + δm

)
− m2

4
+
mn

2
+m− 1

4

=
n2

4
+ (1 + δ)n− 1

4
,

which is again a contradiction.

Case 2: n is even. The sequence of the number of edges deleted in m steps from G, when m

is odd and m is even, is as follows:(
n+ 2

2
,
n

2
,
n

2
, . . . ,

n−m+ 3

2
,
n−m+ 3

2

)
and (

n+ 2

2
,
n

2
,
n

2
, . . . ,

n−m+ 4

2
,
n−m+ 4

2
,
n−m+ 2

2

)
.

When m is odd, the number of edges deleted after m steps is at least m−1
4 (2n−m+ 3) + n+2

2 =

−m2

4 + mn
2 +m+ 1

4 . Hence,
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e(G) ≤ E(H)− m2

4
+
mn

2
+m+

1

4
<

(
(n−m)2

4
+ (1 + δ)(n−m) + δm

)
− m2

4
+
mn

2
+m+

1

4

=
n2

4
+ (1 + δ)n+

1

4
.

Clearly, e(G) ≤ n2

4 +(1+δ)n. Otherwise, we get an integer between n2

4 +(1+δ)n and n2

4 +(1+δ)n+ 1
4 ,

which is not true. This contradicts the fact that e(G) > n2

4 + (1 + δ)n.

Similarly, when m is even, the number of edges deleted after m steps is at least m−2
4 (2n−m+

4) + n+2
2 + n−m+2

2 = mn
2 −

m2

4 +m. Hence,

e(G) ≤ E(H)− m2

4
+
mn

2
+m <

(
(n−m)2

4
+ (1 + δ)(n−m) + δm

)
− m2

4
+
mn

2
+m

=
n2

4
+ (1 + δ)n,

which is again a contradiction.

If H contains a TP3 as a subgraph, we are immediately done. Consider H is TP3-free. By

Lemma 2.2.4, e(H) ≤ (n−m)2

4 + 7
2(n−m). Thus,

(n−m)2

4
+ (1 + δ)(n−m) + δm ≤ (n−m)2

4
+

7

2
(n−m).

Hence, m ≤ 2.5−δ
2.5 n. In other words n−m ≥ 2δn

5 . The condition, n ≥ 5n0(γ)
2δ implies n−m ≥ n0(γ).

Thus, we found the good subgraph H of G.

Definition 2.2.6. Let a 7-wheel in H be with center y and the 6-cycle x1x2x3x4x5x1. We call the

7-wheel, a sparse 7-wheel, if xixi+2 /∈ E(G) for all i ∈ {1, 2 . . . , 6} (see Figure 2.5).

We provide a sketch of the proof before going into the details. Suppose e(G) ≥ n2

4 + (1 + δ)n,

then one of the bipartitions must have more than n
2 + δn

2 edges. We prove the following lemmas as

stepping stones. Given a graph G on n vertices with at least n2

4 + (1 + δ)n edges and containing

a sparse 7-wheel as a subgraph, Lemma 2.2.7 proves that G contains a TP3 as a subgraph. We

take the biggest balanced bipartite splitting of G and prove in Lemma 2.2.9 that if one of the color

27

C
E

U
eT

D
C

ol
le

ct
io

n



x1 x2

x3x6

x4x5

y

Figure 2.5: A sparse 7-wheel, the dashed red edges are not in G.

classes contains a vertex with large enough degree, then G contains a TP3 as a subgraph. Lemma

2.2.12 shows that if one of the color classes contains more than n
2 + δn

2 edges, then G contains a

TP3 as a subgraph.

Lemma 2.2.7. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ , and e(G) > n2

4 + (1 + δ)n. If G

contains a sparse 7-wheel, then G contains a TP3 as a subgraph.

Proof. By Lemma 2.2.5, G contains a good subgraph H. In other words, for all x ∈ V (H) we have

d(x) >


v(H)

2 + 1, 2 | v(H),

v(H)+1
2 , 2 - v(H),

(2.2)

and any two adjacent vertices in H are incident to at least v(H) + 2 edges (and so every edge is

contained in at least three triangles).

Let a sparse 7-wheel in H be with center y and the 6-cycle x1x2x3x4x5x6x1, as shown in Figure

2.5. Since H is a good subgraph, for each xixi+1, i ∈ {1, 2, . . . , 6}, |N(xi, xi+1)|≥ 3. Moreover,

for each xixi+1, i ∈ {1, 2, . . . , 6}, all the remaining four vertices of the cycle are not in N(xi, xi+1).

Indeed, without loss of generality, consider the edge x1x2. The vertices x3 and x4 are not in

N(x1, x2), since the wheel is sparse. We can prove that the vertices x6 and x5 are not in N(x1, x2)

by a similar argument. Therefore, there exist at least two vertices in V (H)\{x1, x2, . . . , x6, y},

which are in N(xi, xi+1). Take the matching x1x2, x3x4 and x5x6. If there are three distinct

vertices in V (H)\{x1, x2, . . . , x6, y}, which are in N(x1, x2) ∪ N(x3, x4) ∪ N(x5, x6), then there is

a TP3 in H. Suppose not. Let z1, z2 and z3 be the vertices in V (H)\{x1, x2, . . . , x6, y} such that

{z1, z2, z3} ⊂ N(x1, x2)∪N(x3, x4)∪N(x5, x6). Since H is TP3-free and |N(x1, x2)|, N |(x3, x4)| and

|N(x5, x6)| are at least 3, it follows that each of the sets N(x1, x2), N(x3, x4) and N(x5, x6) must
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contain at least two of the vertices in {z1, z2, z3}. By Hall’s Theorem, we get a distinct pairing of

z1, z2, z3 and N(x1, x2), N(x3, x4) and N(x5, x6) such that zi ∈ N(xj , xk), i ∈ {1, 2, 3} and (j, k) ∈

{(1, 2), (3, 4), (5, 6)}, which is a contradiction to the fact that H does not contain a TP3. Now we

may assume that there are only two distinct vertices, say v1 and v2 in V (H)\{x1, x2, . . . , x6, y},

such that N(x1, x2, . . . , x6) = {v, v1, v2}(see Figure 2.6).

x1 x2

x3x6

x4x5

y

A B

v1

v2

Figure 2.6: Structure of the subgraph of G with 2 common neighbors for each vertex on the cycle
of the good wheel.

Consider the case when n is odd. Similarly, one can also solve when n is even. Let A and B

be the set of vertices in V (H)\{x1, . . . , x6, y, v1, v2} which are adjacent to x1 and x2, respectively

(see Figure 2.6). Obviously, A∩B = ∅. Otherwise, the graph contains a TP3 as a subgraph. Thus,

either |A|≤ n−9
2 or |B|≤ n−9

2 . Without loss of generality, suppose |A|≤ n−9
2 . If |A|≤ n−11

2 , then

d(x1) ≤ |A|+6 = n−11
2 + 6 = n+1

2 , which is a contradiction.

So, assume |A|= n−9
2 . In this case, we also have that |B|= n−9

2 . We need the following claim

to complete the proof of the lemma:

Claim 2. Each vertex in A is adjacent to at least one other vertex in A.

Proof. Suppose not. Let x be a vertex in A which is adjacent to no other vertex in A. The vertex

x is not adjacent to x2 and x6, otherwise, H contains a TP3 as a subgraph.

If x is adjacent to x4, then x is not adjacent to both x3 and x5. Otherwise, the graph contains
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a TP3 as a subgraph. In this case, the vertex x is possibly adjacent to y, v1, v2, and vertices in B.

Thus, considering the vertex x1 which is already adjacent to x, we get d(x) ≤ n−9
2 + 5 = n+1

2 . This

is a contradiction since H is a good subgraph.

Let x be adjacent to x3. Then x cannot be adjacent to x4. If x5 is not adjacent to x, then

d(x) ≤ n−9
2 + 5 = n+1

2 , which is a contradiction. So, let x5 be adjacent to x. If x is not adjacent to

one of the vertices in {y, v1, v2}, then d(x) ≤ n−9
2 + 5 = n+1

2 , which is a contradiction. Otherwise,

consider the 7-wheel, with the 6-cycle x5yx3v1x1v2x5 (see the bold green cycle in Figure 2.7) and

center x. Consider the matching x5y, x3v1 and x1v2. Consider the vertices x4, x2, x6, which are

the common neighbors of the end vertices of the matching. These vertices along with the given

7-wheel form a TP3, a contradiction.

x1 x2

x3x6

x4x5

y

x

A

v1

v2

Figure 2.7: A graph containing a TP3.

With the same argument, one can verify that the minimum degree of each vertex in B is at

least 1. Now we finish the proof of Case 1. Consider the edge x5x6. Let A′ and B′ be the set of

vertices in V (H)\{x1, . . . , x6, y, v1, v2} which are adjacent to x5 and x6, respectively. For the same

reason given above, |A′|= |B′|= n−9
2 . Clearly A′ ∩ B′ = ∅. Since A ∩ B′ = ∅ and A′ ∩ B′ = ∅, i.e.,

B′ = B and A′ = A. Thus, |B′ ∩B|= |A ∩A′|= n−9
2 .

Let x ∈ A ∩ A′. We claim that x is not adjacent to y. Suppose on the contrary that x is
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adjacent to y. We can take the 7-wheel, with the 6-cycle xx1x2x3x4x5x and center y. By Claim 2,

there is a vertex z in A which is adjacent to x. Since this vertex is adjacent to x1, then taking the

matching xx1, x2x3 and x4x5 with common neighbors z, v1 and v2, respectively, we show that the

graph contains a TP3 as a subgraph. Hence, a contradiction.

Let t ∈ B ∩ B′. We claim that t cannot be adjacent to y. Suppose on the contrary that t is

adjacent to y. Consider the 7-wheel, with 6-cycle tx2x3x4x5x6t and center y. By Claim 2, t is

adjacent to a vertex r in B. Since this vertex is adjacent to x2, taking the matching tx2, x3x4

and x5x6 with common neighbors r, v1 and v2, respectively, we show that H contains a TP3 as a

subgraph. Hence, a contradiction. Thus, we found that y is a vertex in H with constant degree,

which is a contradiction to the fact that H is a good subgraph.

Remark 2.2.8. For the rest of the write-up, we always work on this “good” subgraph, and to

simplify notations, we denote it by G.

Lemma 2.2.9. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ , and e(G) ≥ n2

4 + (1 + δ)n. Let

A and B be a partition of V (G) with size as equal as possible and with e(A,B) maximal. If A

contains (or B contains) a vertex, say x, such that dA(x) ≥ βn (or dB(x) ≥ βn), then G contains

a TP3 as a subgraph.

Proof. Without loss of generality, suppose there exists a vertex x ∈ A such that dA(x) ≥ βn. Note

that, e(G) > n2

4 − εn
2, for any ε > 0. Thus, by the stability theorem, |E(G)∆E(Tn,2)|≤ γn2.

Let Ax be the graph induced by the vertices NA(x) ∪ {x} in A. We have e(Ax) ≤ γn2. The

average degree of a vertex in Ax is

d̄(Ax) ≤

∑
y∈V (Ax)

dAx(y)

v(Ax)
≤ 2e(Ax)

v(Ax)
≤ 2γn2

βn
=

2γn

β
.

Let X = {x ∈ V (Ax) | dAx(x) ≥ 4γn
β }. The size of X is at most 2γn2

4γn
β

= βn
2 . Let Y = V (Ax)−X.

Thus, |Y |≥ βn
2 and for each y ∈ Y , dAx(y) < 4γn

β . We color G[Y ] with 4γn
β colors. The average size

of the color class in G[Y ] is at least βn/2
4γn/β = β2

8γ ≥ 3. Barring at most 2 vertices, each of these color

classes can be divided into triples. Each of these triples form an induced K1,3 with the vertex x as
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A

BZ

Y

Figure 2.8: A sparse 7-wheel.

the center. Thus, we obtained at least 1
3

(
βn
2 −

2·4γn
β

)
induced K1,3’s in Ax(see Figure 2.8).

The graph induced byB, denoted byG[B], also contains at most γn2 edges. Thus, d̄(GB) ≤ 2γn.

Delete vertices in B whose degree is at least 4γn. By similar reasoning as above, the number of

vertices deleted is at most n
2 . Let Z be the set of remaining vertices in B. We color G[Z] with

4γn colors. The average size of the color class in G[Z] is at least n/2
4γn = 1

8γ ≥ 3. Barring at most

2 vertices, each of these color classes can be divided into triples. This implies that we can find at

least 1
3

(
n
2 − 2 · 4γn

)
= n

3

(
1
2 − 8γ

)
induced triples in GB (see Figure 2.8.)

If for each pair of induced K1,3’s and induced triples obtained in A and B, respectively, there is

a missing edge, then the number of missing edges is at least n
3

(
β
2 −

8γ
β

)
· n3
(

1
2 − 8γ

)
. The following

holds from the definition of β and γ:

n

3

(
β

2
− 8γ

β

)
· n

3

(
1

2
− 8γ

)
> γn2. (2.3)

Thus, the number of missing edges is greater than γn2, a contradiction. Hence, there must be an

induced K1,3 in A, which is joined completely to an induced triple of vertices in B. Therefore, we

get a sparse 7-wheel and, by Lemma 2.2.7, G contains a TP3 as a subgraph.

Definition 2.2.10. The tree given in Figure 2.9 with 3 legs and one joint, is denoted as the spider

graph.
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x

w1

w2

v1

v2

u1

u2

Figure 2.9: A spider graph with three legs and one joint.

Corollary 2.2.11. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ , and e(G) > n2

4 + (1 + δ)n.

Let A and B be a partition of V (G) with size as equal as possible and with e(A,B) maximal. If A

or B has a spider graph as a subgraph, then G contains a TP3 as a subgraph.

Proof. Let S denote the spider graph. Without loss of generality, suppose S ⊆ G[A].

We consider the 4-vertex subsets of S, namely {x, u1, u2, v1}, {x, v1, v2, w1} and {x,w1, w2, u1}.

Suppose we can find three vertices in B′, namely y1, y2 and y3, such that y1 is connected to all the

vertices in {x, u1, u2, v1}, y2 is connected to all the vertices in {x, v1, v2, w1} and y3 is connected to

all the vertices in {x,w1, w2, u1}. We immediately find a TP3. Thus, for every vertex y ∈ B except

for at most 2 vertices, y is not adjacent to at least one of the vertices in {x, u1, u2, v1}. The average

degree of vertices in {x, u1, u2, v1} to B is less than 3n
8 . So there exists a vertex z ∈ {x, u1, u2, v1},

such that dB(z) < 3n
8 . The minimum degree of the vertices in G is at least n

2 , thus dA(z) > n
8 .

Since β ≤ 1
8 , we are done by Lemma 2.2.9.

We want to prove ex(n, TP3) ≤ 1
4n

2 + (1 + δ)n. Assume that there is a TP3-free graph that has

more than 1
4n

2 + (1 + δ)n edges. Then one of the bipartitions must have more than n
2 + δn

2 edges.

We prove in Lemma 2.2.12 that this is not possible.

Lemma 2.2.12. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ . Let A and B be a partition

of V (G) with size as equal as possible and with e(A,B) maximal. Assume that neither A nor B

contains a spider graph as a subgraph and the maximum degree of vertices inside each class is less

than βn. If e(A) ≥ n
2 + δn

2 , then G contains a TP3 as a subgraph.

Proof. We start by claiming the following:
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Claim 3. Given a graph Gk on k vertices, with 2k edges. We can find an independent set of

vertices with size 3k
55 .

Proof. Say we delete the vertices with degree greater than 10. Denote the remaining graph with

G′k. The number of vertices deleted is denoted by l. The number of edges deleted is at least 5l.

Since the number of edges in Gk is 2k, l ≤ 2k
5 . The number of vertices in G′k is at least 3k

5 and every

vertex has degree at most 10. Start by choosing an arbitrary vertex x ∈ G′k, delete its neighbors,

and continue choosing another vertex in the graph G′k \N(x). In each step, we delete at most 11

vertices. Thus, we can get an independent set of size 3k
55 with this recursive procedure.

We use this to prove the following claim:

Claim 4. Let G be a graph on n vertices, where n ≥ 5n0(γ)
2δ . Let A and B be a partition of V (G)

with size as equal as possible and with e(A,B) maximal. Assume that neither A nor B contains a

spider graph as a subgraph and the maximum degree of vertices inside each class is less than βn.

If e(A) ≥ n
2 + δn

2 , then one of the following is true:

1. There are at least δn
664 vertex disjoint K1,3’s in A.

2. There are stars of size at least 85 in A, such that partitioning each of their leaves into triples

(1 or 2 vertices may be missed from each star), we have at least δn
664 triples forming an induced

K1,3 along with the center of the respective star.

Proof. The degree sum of vertices in A is greater than or equal to 2(n2 + δ n2 ). Since A has size at

least bn2 c, we have vertices with degree more than 2.

Let v be a vertex in A such that dA(v) = ∆A. Let Av be the graph induced by the vertices

{v} ∪NA(v). Note, Av doesn’t contain the spider graph as a subgraph. We consider the following

cases:

Case 1: ∆ ≤ 83. Let x1, x2 and x3 be the vertices in NA(v). The vertices v, x1, x2, and x3 form

a K1,3. Delete the set of vertices {v} ∪NA(v). We delete at most 332 edges in this step and since

e(A) ≥ δ n2 , we can continue repeating this process by taking another vertex v′, with dA(v′) equal

to the new maximum degree. Thus, the number of K1,3’s we can find is at least δn
664 .
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Case 2: ∆ ≥ 84. Denote the vertices in NA(v) with xi. Note that we do not have 3 independent

edges going out of NA(v) from xi’s, as we have a spider-free graph. Let x1, x2, and x3 be the vertices

with degree greater than 2. By Hall’s Theorem, we immediately get 3 independent edges going

from the set NA(v) to A\NA(v). Thus, we have at most 2 vertices in the set {xi}, who have degree

greater than 2. Thus, the number of edges incident to NA(v) is at most 2(∆−1)+2(∆−2)+∆ ≤ 5∆.

By the previous Claim 3, in the graph induced by the set of vertices xi with 2∆ edges, we can

find an independent set of size at least 3∆
55 . Hence, we can find at least ∆

55 triples such that they

form an induced K1,3 with v being the center. Delete the set of vertices {v} ∪NA(v). We delete at

most 5∆ edges in this step and since e(A) ≥ δ n2 , we can continue repeating this process by taking

another vertex v′, with dA(v′) equal to the new maximum degree. Thus, the number of induced

K1,3s we can find is at least δn
550 .

There are two possibilities to consider:

Case 1: Half of the triples in A lie in disjoint K1,3’s. Consider a vertex x ∈ B. We know

that the maximum degree of x inside B is less than βn. Thus, x has at most βn non-neighbors

in A. There are at least δn
1328 − βn triples in disjoint K1,3’s, such that all four of the vertices in

the K1,3 are adjacent to x. Recall that every vertex in G has degree strictly greater than
⌊
n
2 + 1

⌋
.

Since the partitions A and B are with size as equal as possible and with e(A,B) maximal, every

vertex in B has degree at least 1 in B. The maximum degree of vertices inside each class is less

than βn and n
2 ≥ 2βn+ 1, thus we can find at least 3 independent edges in B. Let y1z1, y2z2 and

y3z3 denote any three independent edges in B. For each of these 6 vertices, we can find at least

δn
1328 − βn triples in disjoint K1,3’s, such that the vertices of the K1,3 are joined completely to the

given vertex. By the definition of β, we have:

δn

1328
− βn ≥ 6

7
· δn

1328
. (2.4)

Thus, each of the vertices yi (similarly zi), for i ∈ {1, 2, 3}, is completely connected to all the

vertices of at least 6
7 triples of disjoint K1,3’s in A. By the Pigeonhole principle, we have a common

triple, such that these 3 independent edges are connected to it completely. Denote the vertices of
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this triple as x1, x2 and x3. The vertices x1, y1, x2, y2, x3, and y3 along with the vertex x as the

center form a 7-wheel. The triangles x1y1z1, x2y2z2, and x3y3z3 along with the 7-wheel, form a

TP3.

Case 2: Half of the triples in A lie in induced K1,3s with the center vertex having

degree at least 84. Let x ∈ A, such that dA(x) ≥ 84. The maximum degree of x in A is at most

βn. Hence, x can have at most βn non-neighbors in B. Delete these vertices in B and denote the

graph remaining by B′. We know that ∆(B′) ≤ βn. Hence, we can color it with βn colors. Barring

at most 2 vertices, each of these color classes can be divided into triples. We can choose
n
2
−2βn

3

independent triples in B′. Each of these triples must have a missing edge to the root vertices in

the K1,3 chosen in A. Otherwise, we have a sparse 7-wheel. By Lemma 2.2.7, G contains a TP3

as a subgraph, a contradiction. Thus, the total number of missing edges is at least δn
1328 ·

n
2
−2βn

3 .

However, δn
1328 ·

n
2
−2βn

3 > γn2. Thus, the number of missing edges is greater than γn2, which is a

contradiction. Hence, we can find a sparse 7-wheel in G. By Lemma 2.2.7, G contains a TP3 as a

subgraph, a contradiction.

2.3 Concluding remarks and Conjectures

Following the two constructions given in Figure 2.2 and Figure 2.3, we pose the following conjecture

concerning ex(n, TP3):

Conjecture 2.3.1.

ex(n, TP3) ≤

1
4n

2 + n+ 1, if n is even,

1
4n

2 + n+ 3
4 , otherwise.

We also pose the following conjecture related to ex(n, TP4).

Conjecture 2.3.2. For n sufficiently large, ex(n, TP4) = n2

4 + Θ(n4/3).

To show the lower bound, we consider an n-vertex graph G obtained from a complete bipartite

graph with color classes as equal as possible and adding a bipartite C6-free graph with cn4/3 edges

in one of the color classes. Thus, e(G) ≥ n2

4 + O(n4/3). We need the following claim to show that

G does not contain a TP4:
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Claim 5. Every 2-coloring of the TP4 such that color 1 is independent, contains either a C3 or a

C6 in color 2.

Proof. Consider a 2-coloring c of a TP4 such that color 1 is independent. We want to show that

there is either a C3 or a C6 in color 2. Suppose there is no such C3. Then one of the vertices of

the triangle x1x2x3 (see Figure 2.10) is in color 1. Without loss of generality, let the color of x1 be

1. Since c is a 2-coloring with the property that color 1 is independent, then all the 6 neighboring

vertices of x1 must be of color 2. Therefore, we obtain a C6 with color 2 and this completes the

proof.

x2

x1 x3

Figure 2.10: A Triangular Pyramid with 4 layers.

The following lemma is a consequence of Claim 5:

Lemma 2.3.1. If G is a graph obtained from a complete bipartite graph Kn
2
,n
2

(with color class 1

and 2) by adding a bipartite, C6-free graph to the color class 2, then G is a TP4-free graph.

Hence, the lower bound of Conjecture 2.3.2 holds.
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Chapter 3

Planar Turán Number of the 6-Cycle

3.1 Introduction and Main Results

All the graphs we consider in this chapter are simple and finite. Let G be a graph. We denote the

vertex and edge set of G by V (G) and E(G), respectively. Let e(G) and v(G) denote the number

of edges and vertices, respectively. The minimum degree of G is denoted by δ(G), whereas the

maximum degree of G is denoted by ∆(G). For a vertex v in G, the neighborhood of v, denoted

by NG(v), is the set of all vertices in G which are adjacent to v. We denote the degree of v by

dG(v) = |NG(v)|. We may avoid the subscripts if the underlying graph is clear. The number of

components of G is denoted by c(G). For the sake of simplicity, we may use the term k-cycle to

mean a cycle of length k and k-face to mean a face bounded by a k-cycle. A k-path is a path with k

edges. The Turán number of a graph H, denoted by ex(n,H), is the maximum number of edges in

an n-vertex graph that does not contain H as a subgraph. Let EX(n,H) denote the set of extremal

graphs, i.e., the set of all n-vertex, H-free graph G such that e(G) = ex(n,H).

In 2016, Dowden [28] initiated the study of Turán-type problems when host graphs are planar.

The planar Turán number of a graph H, exP(n,H), is the maximum number of edges in a planar

graph on n vertices which does not contain H as a subgraph. Dowden obtained the tight bounds

exP(n,C4) ≤ 15(n−2)
7 , for all n ≥ 4 and exP(n,C5) ≤ 12n−33

5 , for all n ≥ 11. Later, Lan, Shi and

Song [95] obtained the following bounds:

Theorem 3.1.1 (Lan, Shi, Song [95]). Let θk denote the family of Theta graphs on k ≥ 4 vertices,
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that is, graphs obtained from a cycle Ck by adding an edge joining two non-consecutive vertices.

1. For all n ≥ 4, exP(n, θ4) ≤ 12(n−2)
5 .

2. For all n ≥ 5, exP(n, θ5) ≤ 5(n−2)
2 .

3. For all n ≥ 7, exP(n, θ6) ≤ 18(n−2)
7 .

They also demonstrated that their bounds for Θ4 and Θ5 are tight. They presented the following

corollary, based on the bound for Θ6:

Corollary 3.1.2 (Lan, Shi, Song [95]).

exP(n,C6) ≤ 18(n− 2)

7

for all n ≥ 6, with equality when n = 9.

In this chapter, we present a tight bound for exP(n,C6). The main ingredient of the result is

as follows:

Theorem 3.1.3. Let G be a 2-connected, C6-free plane graph on n ≥ 6 vertices with δ(G) ≥ 3.

Then e(G) ≤ 5
2n− 7.

We use Theorem 3.1.3, which considers only 2-connected graphs with no degree 2 (or 1) vertices

and order at least 6, to prove the following result:

Theorem 3.1.4. Let G be a C6-free plane graph on n ≥ 18 vertices. Then

e(G) ≤ 5

2
n− 7.

Indeed, there are C6-free graphs on 17 vertices with 36 edges, see Figure 3.1.

We show that, for large graphs, Theorem 3.1.4 is tight.

Theorem 3.1.5. For every n ≡ 2(mod 5), there exists a C6-free plane graph G with v(G) = 18n+14
5

and e(G) = 9n. Thus, e(G) = 5
2v(G)− 7.
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Figure 3.1: A graph G on 17 vertices, such that e(G) > (5/2)v(G)− 7.

The chapter is structured as follows: In Section 3.2, we present the construction of the extremal

graph. In Section 3.3, we provide the definitions for the triangular blocks. In Section 3.4 and

Section 3.5, we present the proofs of Theorem 3.1.3 and Theorem 3.1.4, respectively. In Section

3.6, we present conjectures on generalizing the proof for cycles of higher order. In Section 3.7, the

tables give a summary of the results from Lemmas 3.4.2, 3.4.4, and 3.4.6.

3.2 Proof of Theorem 3.1.5: Extremal Graph Construction

Let G0 be an n (n ≡ 7(mod 10))-vertex plane graph, such that every face has length 7 and the

degree of every vertex is either 2 or 3. Given such a G0, we can construct G, where G is a C6-free

plane graph with v(G) = 18n+14
5 and e(G) = 9n. We then give a construction for such a G0, when

n ≡ 7(mod 10). In Remark 3.2.1, we summarize the construction for n ≡ 2(mod 10) and will not

show the details. Using Euler’s formula, we have e(G0) = 7(n−2)
5 and the number of degree 2 and

degree 3 vertices in G0 is n+28
5 and 4n−28

5 , respectively.

Given G0, we construct an intermediate graph G′ by step (1):

(1) Add halving vertices to each edge of G0 and join the pair of halving vertices with distance 2,

see an example in Figure 3.2. Let G′ denote this new graph. Thus, v(G′) = v(G0) + e(G0) =

12n−14
5 and the set of degree 2 vertices in G′ is the set of degree 2 vertices in G0. The same

holds for the degree 3 vertices. Hence, the number of degree 2 and degree 3 vertices in G′

equals the number of degree 2 and degree 3 vertices in G0, respectively.

To obtain G, we apply the following steps (2) and (3) on the degree 2 and degree 3 vertices

in G′.

(2) For each degree 2 vertex v in G′, let N(v) = {v1, v2}, and so v1vv2 forms an induced triangle

in G′. Fix v1 and v2. Replace v1vv2 with a K−5 by adding the vertices v
′
1, v

′
2 to V (G′) and
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=⇒

Figure 3.2: Adding a halving vertex to each edge of G0.

the edges v
′
1v, v

′
1v
′
2, v

′
1v1, v

′
1v2, v

′
2v1, v

′
2v2 to E(G′), see Figure 3.3.

v1 v2

v

=⇒

v1 v2

v

v′1

v′2

Figure 3.3: Replacing a degree 2 vertex of G0 with a K−5 .

(3) For each degree 3 vertex v in G′, such that N(v) = {v1, v2, v3}, the set of vertices {v, v1, v2, v3}

forms an induced K4 in G′. Fix v1, v2, and v3. Replace this K4 with a K−5 by adding a new

vertex v′ to V (G′) and the edges v′v, v′v1, v′v2 to E(G′), see Figure 3.4.

v1 v2

v3

v =⇒

v1 v2

v3

v

v′

Figure 3.4: Replacing a degree 3 vertex of G0 with a K−5 .

We present a construction for such a G0. For each integer k ≥ 0 and n = 10k + 7, denote it by

Gk0. Let vti and vbi (1 ≤ i ≤ k+1) be a subset of the top and bottom vertices of the heptagonal grids

with 3 layers and k columns, respectively (see the red vertices in Figure 3.5). Let v be the extra

vertex in Gk0 but not in the heptagonal grid. We join vt1v, vvb1 and vtiv
b
i (2 ≤ i ≤ k+ 1). Clearly, Gk0
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is a plane graph on (10k+ 7)-vertices and each face of Gk0 is a 7-face. Obviously e
(
Gk0
)

= 14k+ 7,

and the number of degree 2 and 3 vertices are 2k + 7 = n+28
5 and 8k = 4n−28

5 , respectively.

· · ·

· · ·

· · ·

v

vt1

vt2 vtk−2 vtk−1 vtk

vtk+1

vb1

vb2 vb3 vbk−1
vbk

vbk+1

x1

x5

x4 y
x2

x3

Figure 3.5: The graph Gk0, k ≥ 1, in which each face has length 7. The graph Hk
0 (see Remark 3.2.1)

is obtained by deleting x1, . . . , x5 and adding the edge vt1y.

After applying steps (1), (2), and (3) on Gk0, we get G. It is easy to verify that G is a C6-free

plane graph with

v(G) = v(Gk0) + e(Gk0) + 2(2k + 7) + 8k = (10k + 7) + (14k + 7) + 12k + 14 = 36k + 28,

e(G) = 9v(Gk0) = 90k + 63.

Thus, e(G) = 5
2v(G)− 7.

Remark 3.2.1. In fact, for k ≥ 1 and n = 10k + 2, there exists a graph Hk
0 which is obtained

from Gk0 by deleting the vertices (colored green in Figure 3.5) x1, x2, x3, x4, x5, and adding the

edge vt1y. Clearly, Hk
0 is a 10k + 2-vertex plane graph such that all faces have length 7. Moreover,

e(Hk
0 ) = 14k, and the number of degree 2 and degree 3 vertices are 2k+6 = n+28

5 and 8k−4 = 4n−28
5 ,

respectively. After applying steps (1), (2), and (3) to Hk
0 , we get a C6-free plane graph H, with

e(H) = (5/2)v(H)− 7.
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Thus, for any n ≡ 2(mod 5) (n ≥ 7), we have graphs on n vertices such that each face is a

7-gon, and we get a C6-free plane graph on n′ vertices with (5/2)n′ − 7 edges for n′ ≡ 10(mod 18)

if n′ ≥ 28.

3.3 Definitions and Preliminaries

We give some necessary definitions and preliminary results.

Definition 3.3.1. Let G be a plane graph and e ∈ E(G). If e is not in a 3-face of G, then we

call it a trivial triangular block. Otherwise, we recursively construct a triangular block in the

following way: Start with H as a subgraph of G, such that E(H) = {e}.

(1) Add the other edges of the 3-face containing e to E(H).

(2) Take e′ ∈ E(H) and search for a bounded 3-face containing e′. Add the other edge(s) in this

bounded 3-face to E(H).

(3) Repeat step (2) till we cannot find a bounded 3-face for any edge in E(H).

Let B(e) denote the triangular block obtained from e as the starting edge.

Let G be a plane graph. We have the following three observations:

(i) If H is a non-trivial triangular block and e1, e2 ∈ E(H), then B(e1) = B(e2) = H.

(ii) Any two triangular blocks of G are edge disjoint.

(iii) Every triangular block of G contains at most 5 vertices.

Let B be the family of triangular blocks of G. From observation (ii) above, we have

e(G) =
∑
B∈B

e(B),

where e(G) and e(B) are the number of edges of G and B, respectively.
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Definition 3.3.2. A triangulated graph is a graph in which for every cycle of length k > 3, there

is an edge joining two nonconsecutive vertices.

Lemma 3.3.3. If B is a triangular block with the unbounded region being a 3-face, then B is a

triangulation graph.

Proof. Suppose B is not a triangulation graph. Since each triangular block of G contains at most

5 vertices, we may assume that B contains a bounded 4-face or bounded 5-face.

If B contains a bounded 4-face, namely v1v2v3v4. By the definition of a triangular block, each

edge of B is contained in a bounded 3-face. If v(B) = 4, E(B) contains either v2v4 or v1v3. Without

loss of generality, suppose v2v4 ∈ E(B) and v2v1v4 be the bounded 3-face, then the edges v2v3 and

v3v4 are not in any bounded 3-face, which contradicts the fact that B is a triangular block. Let

v(B) = 5. Without loss of generality, suppose v1v2v5 forms a bounded 3-face in B. Since v1v4

should be contained in a bounded 3-face, then either v1v3 ∈ E(B) or v4v5 ∈ E(B). Suppose

v1v3 ∈ E(B). Similarly, v2v3 is contained in a bounded 3-face if the edge v3v5 ∈ E(B). Hence,

v1v3v5 forms an unbounded 3-face, see Figure 3.6(a). However, B is not a triangular block in this

case, a contradiction. Consider the case, when v4v5 ∈ E(B) and v1v4v5 is the resulting bounded

3-face. Since v2v3 should be contained in a bounded 3-face, either v2v4 ∈ E(B) or v3v5 ∈ E(B). If

v2v4 ∈ E(B), then B is not a triangular block. If v3v5 ∈ E(B) and v2v3v5 is the resulting bounded

3-face, clearly v3v4 is not contained in a bounded 3-face,see Figure 3.6(b). This contradicts the fact

that B is a triangular block.

If B contains a bounded 5-face, namely v1v2v3v4v5. Each edge of B is contained in a bounded

3-face. Without loss of generality, suppose that v1v4, v2v4 ∈ E(B). Therefore, v1v2 is not contained

in a bounded 3-face, which contradicts the fact that B is a triangular block.

We describe all the possible triangular blocks in G based on the number of vertices of the block.

For k ∈ {2, 3, 4, 5}, we denote the triangular blocks on k vertices as Bk.

Triangular blocks on 5 vertices.

There are four types of triangular blocks on 5 vertices, see Figure 3.7. Notice that B5,a is a K−5 .
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v1

v2 v3

v4

v5

(a)

v1

v2
v3

v4

v5

(b)

Figure 3.6: The triangular block B on 4 vertices containing a bounded 4 face.

B5,a B5,b B5,c B5,d

Figure 3.7: The triangular blocks on 5 vertices.

Triangular blocks on 4, 3, and 2 vertices.

There are two types of triangular blocks on 4 vertices, see Figure 3.8. Observe that B4,a is a K4.

The 3-vertex and 2-vertex triangular blocks are simply K3 and K2 (the trivial triangular block),

respectively.

B4,a B4,b B3 B2

Figure 3.8: The triangular blocks on 4, 3, and 2 vertices.

Definition 3.3.4. Let G be a plane graph.

(i) A vertex v in G is called a junction vertex if it is in at least two distinct triangular blocks

of G.

(ii) Let B be a triangular block in G. An edge of B is called an exterior edge if it is on a

boundary of a non-triangular face of G. Otherwise, we call it an interior edge. An end
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vertex of an exterior edge is called an exterior vertex. We denote the set of all exterior and

interior edges of B by Ext(B) and Int(B), respectively. Let e ∈ Ext(B), a non-triangular

face of G with e on its boundary is called the exterior face of e.

Notice that, an exterior edge of a non-trivial triangular block has one exterior face exactly.

On the other hand, if G is a 2-connected plane graph, then every trivial triangular block has two

exterior faces.

Definition 3.3.5. For a non-trivial triangular block B of a plane graph G, we call a path P =

v1v2v3 . . . vk an exterior path of B, if the following holds:

(i) The vertices v1 and vk are junction vertices,

(ii) The edges vivi+1 are exterior edges of B, for i ∈ {1, 2, . . . , k − 1}, and

(iii) The vertices vj are not a junction vertex, for j ∈ {2, 3, . . . , k − 1}.

The corresponding face in G, where P is on the boundary, is called the exterior face of P .

All graphs discussed from now on are C6-free plane graphs. We define the contribution of a

vertex to the number of vertices of a triangular block.

Definition 3.3.6. Let G be a plane graph, B be a triangular block in G and v ∈ V (B). The

contribution of v to the vertex number of B is denoted by nB(v), and is defined as

nB(v) =
1

# triangular blocks in G containing v
.

We define the contribution of B to the number of vertices of G as n(B) =
∑

v∈V (B)

nB(v).

Obviously, v(G) =
∑
B∈B

n(B), where v(G) is the number of vertices in G and B is the family of

all the triangular blocks of G.

Let BK−5
be a triangular block of G isomorphic to a B5,a with exterior vertices v1, v2, v3, where

v1 and v3 are the junction vertices, see Figure 3.9 for an example. Let F be a face in G such that

V (F ) contains all exterior vertices v1,1, . . . , v1,m, v2,1, . . . , v2,m, v3,1, . . . , v3,m of m (m ≥ 1) copies of
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BK−5
, such that v1,i, v2,i, v3,i are the exterior vertices of the i-th BK−5

and v1,i, v3,i (1 ≤ i ≤ m) are

the junction vertices. Let CF denote the cycle associated with the face F . We alter E(CF ) in the

following way:

E(C ′F ) :=E(CF )− {v2,1, v1,1} − {v2,1, v3,1} − · · · − {v2,mv1,m} − {v2,m, v3,m}

∪ {v1,1v3,1} ∪ . . . ∪ {v1,m, v3,m}.

Thus, |E(C ′F )|= |E(CF )|−m. For example, in Figure 3.9, |E(CF )|= 11 but |E(C ′F )|= 9. If G is a

C6-free plane graph, we have |E(C ′F )|> 6.

v2

v1 v3

v4

v5

Figure 3.9: An example of a face containing all the exterior vertices of at least one BK−5
.

Now, we can define the contribution of an “edge” to the number of faces of a C6-free plane

graph G.

Definition 3.3.7. Let F be an exterior face of G and CF := {e1, e2, . . . , ek} be the cycle associated

with F . The contribution of an exterior edge e to the face number of the exterior face F , is denoted

by fF (e) and is defined as follows:

(i) For 1 ≤ i ≤ k − 1, if ei and ei+1 are the adjacent exterior edges of a BK−5
, then fF (ei) +

fF (ei+1) =
1

|C ′F |
. For the ej’s on the exterior face F (which do not lie as an exterior edge

pair of a BK−5
), we define fF (ej) =

1

|C ′F |
.

(ii) Otherwise, fF (e) =
1

|CF |
.
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Note that
∑

e∈E(F )

fF (e) = 1. For a triangular block B, the total face contribution of B, denoted

by f(B), is defined as f(B) = (# interior faces of B) +
∑

e∈Ext(B)

fF (e), where F is the exterior face

of B with respect to e. Obviously, f(G) =
∑
B∈B

f(B), where f(G) is the number of faces of G.

3.4 Proof of Theorem 3.1.3

We begin by outlining our proof. Let f , n, and e be the number of faces, vertices, and edges of G,

respectively. Let B be the family of all triangular blocks of G.

The main target of the proof is to show that

7f + 2n− 5e ≤ 0. (3.1)

Once we prove Equation (3.1), then by using Euler’s Formula, we can finish the proof of The-

orem 3.1.3. To prove (3.1), we show the existence of a partition P1,P2, . . . ,Pm of B such that

7
∑
B∈Pi

f(B) + 2
∑
B∈Pi

n(B) − 5
∑
B∈Pi

e(B) ≤ 0, for all i ∈ {1, 2, 3 . . . ,m}. Since f =
∑
B∈B

f(B),

n =
∑
B∈B

n(B) and e =
∑
B∈B

e(B) we have

7f + 2n− 5e = 7

m∑
i

∑
B∈Pi

f(B) + 2

m∑
i

∑
B∈Pi

n(B)− 5

m∑
i

∑
B∈Pi

e(B)

=
m∑
i

(
7
∑
B∈Pi

f(B) + 2
∑
B∈Pi

n(B)− 5
∑
B∈Pi

e(B)

)
≤ 0.

The following proposition is used throughout the chapter:

Proposition 3.4.1. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with

δ(G) ≥ 3.

(i) If B is a non-trivial triangular block (that is, not B2), then none of the exterior faces can

have length 5.

(ii) If B is in {B5,a, B5,b}, then none of the exterior faces can have length 4.
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(iii) If B is in {B5,d, B4,a, B4,b} and an exterior face of B has length 4, then that 4-face must share

a 2-path with B (shown in blue in Figures 3.14 and 3.16). The other edges of the 4-face must

be in trivial triangular blocks. If B5,c has an exterior face of B with length 4, then that 4-face

must share a 3-path with B5,c. The other edge of the 4-face must be a trivial triangular block.

(iv) No two 4-faces can be adjacent to each other.

Proof. (i) Observe that for every non-trivial triangular block B and every pair of vertices on the

exterior of B, there is a 2-path (recall a 2-path has two edges) between them, using edges of

B. That is, if u and v are vertices on the exterior of B, then there is a vertex w ∈ V (B)

such that uwv is a path. Thus, if an exterior face of B is a 5-face, the edge lying in B can be

replaced with the 2-path, resulting in a 6-cycle.

(ii) Similar to (i). If B ∈ {B5,a, B5,b} and it has an exterior 4-face, then either B shares an edge

with the exterior face, or it shares a 2-path with the exterior face. If B shares an edge with

the exterior face, then B has a 3-path between the vertices of the shared edge, which forms a

6-cycle with the remaining 3-path of the 4-face. If B shares a 2-path with the exterior face,

then B has a 4-path which forms a 6-cycle with the remaining 2-path in the exterior face.

(iii) If B ∈ {B5,d, B4,b, B5,c}, then any pair of consecutive exterior vertices has a path of length 3

between them. For B5,d (see Figure 3.14), we see that there is a path of length 4 between v2

and v4. Thus, the only way a 4-face can be adjacent to B is via a 2-path with end vertices

v1 and v3. Since there is no vertex of degree 2, the path must be v1v4v3. For B4,b (see

Figure 3.16) since B cannot have a vertex of degree 2, the 4-face and B cannot share the

path v2v1v4 or the path v2v3v4. Thus, the only paths that can share a boundary with a 4-face

are v1v4v3 and v1v2v3. For B4,a, it can be easily checked that the only path that can share

a boundary with a 4-face is v1v4v3. For B5,c, any pair of consecutive exterior vertices has a

path of length 4 between them. Thus, the only possibility that B5,c has an exterior 4-face is

when v1v5v4v3v1 forms a 4-face.

As to the other blocks that form edges of such a 4-face, consider the case when B ∈

{B5,d, B4,a, B4,b}. Figure 3.10 shows that if, say v1u is in a non-trivial triangular block,
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v1

v3

v4x u

w v1

x

v3

v4 u

w

w

v1

x

u

v3

v4

w

v1 v2

v3

v4v5

Figure 3.10: The blocks defined by blue edges must be trivial.

then there exists a vertex w in that block such that wv1xv4v3uw forms a 6-cycle, a contradic-

tion. When B = B5,c, Figure 3.10 shows that if v1v3 is in a non-trivial triangular block, then

there exists a vertex w in that block, such that wv1v5v4v2v3w forms a 6-cycle, a contradiction.

(iv) If two 4-faces share an edge, then there is a 6-cycle formed by deleting that edge. If two

4-faces share a 2-path, then the midpoint of that path is a vertex of degree 2 in G. In both

cases, we get a contradiction.

Lemma 3.4.2 verifies 7f(B) + 2n(B) − 5e(B) ≤ 0 for most blocks B. As for the exceptions,

Lemmas 3.4.3, 3.4.4, 3.4.5, and 3.4.6 will give bounds for 7f(B) + 2n(B) − 5e(B) for B5,c, B5,d,

B4,a, and B4,b, respectively. See Tables 3.2, 3.3, 3.4, and 3.5 in Section 3.7.

Lemma 3.4.2. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3. If

B is a triangular block in G such that B /∈ {B5,c, B5,d, B4,a, B4,b}, then 7f(B)+2n(B)−5e(B) ≤ 0.

Proof. We separate the proof into several cases.
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Case 1: B is B5,a. Let v1, v2 and v3 be the exterior vertices of the K−5 . At least two of them

must be junction vertices, otherwise G contains a cut vertex. We consider the following possibilities:

(a) Let B be B5,a with 3 junction vertices (see Figure 3.11(a)). By Proposition 3.4.1, every

exterior edge in B is contained in an exterior face with length at least 7. Thus, f(B) =

(# interior faces of B)+
∑

e∈Ext(B)

fF (e) ≤ 5+3/7. Moreover, every junction vertex is contained

in at least 2 triangular blocks, so we have n(B) ≤ 2 + 3/2. With e(B) = 9, we obtain

7f(B) + 2n(B)− 5e(B) ≤ 0.

(b) Let B be B5,a with 2 junction vertices, say v2 and v3 (see Figure 3.11(b)). Let F and F1 be

the exterior faces of the exterior edge v2v3 and exterior path v2v1v3 of the triangular block,

respectively. Notice that v1v2 and v2v3 are the adjacent exterior edges in the same face F1,

hence |C(F1)|≥ 8. By Definition 3.3.7, we have fF1(v1v2) + fF1(v1v3) ≤ 1/7. Since there can

be no C6, one can see that regardless of the configuration of the BK−5
, we have fF (v2v3) ≤ 1/7.

Thus, f(B) ≤ 5+2/7. Moreover, since v2 and v3 are contained in at least 2 triangular blocks,

we have n(B) ≤ 3 + 2/2. With e(B) = 9, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

v1

v2 v3

K−5

(a)

v1

v2 v3

F1

F

K−5

(b)

Figure 3.11: A B5,a triangular block with 3 and 2 junction vertices, respectively.

Case 2: B is B5,b. When B is B5,b, there are 4 faces inside the triangular block and each

face incident to this triangular block has length at least 7. So, f(B) ≤ 4 + 4/7. Since there is no

cut-vertex, this triangular block must have at least two junction vertices, hence n(B) ≤ 3 + 2/2.

With e(B) = 8, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0, as seen in Table 3.3.

Case 3: B is B3. Let v1, v2 and v3 be the exterior vertices of the triangular block B. Each
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of these three vertices must be a junction vertex, since there is no degree 2 vertex in G. Thus, the

vertices are contained in at least 2 triangular blocks. We consider the following possibilities:

(a) Let the three exterior vertices be contained in exactly 2 triangular blocks. By Proposi-

tion 3.4.1(i), the length of each exterior face is either 4 or at least 7. We want to show that at

most one exterior face has length 4. If not, then let v1 be a vertex that is in two such faces.

Consider the triangular block incident to B at v1, call it B′. By Proposition 3.4.1(ii), B′ is

not in {B5,a, B5,b}.

If B′ is in {B5,d, B4,b, B3}, then the triangular block has vertices `2, `3, each adjacent to v1

and the length 4 faces consist of {v1, `2,m2, v2} and {v1, `3,m3, v3}. Either `2 is adjacent

to `3 or there is a `′ distinct from v1 that is adjacent to both `2 and `3. In the first case,

`2m2v2v3m3`3`2 is a 6-cycle (see Figure 3.12(a)). When `′ is distinct from m2 and m3,

`′`2m2v2v1`3`
′ is a 6-cycle. When `′ is m2 or m3, `′(= m2)v2v1v3m3`3`

′(= m2) or `′(=

m3)v3v1v2m2`2`
′(= m3) is a 6-cycle, see Figure 3.12(b).

If B′ is B2, then the trivial triangular block is {v1, `}, in which case {`,m2, v2, v1, v3,m3} is a

C6, see Figure 3.12(c). Thus, we may conclude that if each of the three exterior vertices are

in exactly 2 triangular blocks, then f(B) ≤ 1 + 2/7 + 1/4 and n(B) ≤ 3/2. With e(B) = 3,

we obtain 7f(B) + 2n(B)− 5e(B) ≤ −5/4.

v1

v2 v3

`2 `3

m2 m3
B

B′

(a)

v1

v2 v3

`2 `3

`′

m2 m3
B

B′

(b)

v1

v2 v3

`

m2 m3

B

B′

(c)

Figure 3.12: A B3 triangular block, B which is incident to two 4-faces.

(b) Let at least one exterior vertex be contained in at least 3 triangular blocks and the others

be contained in at least 2 triangular blocks. In this case, we have f(B) ≤ 1 + 3/4 and

n(B) ≤ 2/2 + 1/3. With e(B) = 3, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1/12.
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Case 4: B is B2. Recall, there is no vertex of degree 2. Thus, if an end vertex is in exactly

two triangular blocks, then the other one cannot be a B2. We consider the following possibilities:

(a) Let each end vertex be contained in exactly 2 triangular blocks. Since neither of the triangular

blocks that are incident to B can be trivial, they cannot be incident to a face of length 5 by

Proposition 3.4.1(i). Thus, B cannot be incident to a face of length 5. Moreover, the two

faces incident to B cannot both be of length 4, again by Proposition 3.4.1(iv). Hence, f(B) ≤

1/4+1/7. Clearly n(B) ≤ 2/2 and with e(B) = 1, we obtain 7f(B)+2n(B)−5e(B) ≤ −1/4.

(b) Let one end vertex be contained in exactly 2 triangular blocks and the other end vertex be

contained in at least 3 triangular blocks. This is like case (a) in that neither of the faces can

have length 5 and they cannot both have length 4. The only difference is that n(B) ≤ 1/2+1/3

and so 7f(B) + 2n(B)− 5e(B) ≤ −7/12.

(c) Let each end vertex be contained in at least 3 triangular blocks. The two faces cannot both

be of length 4 by Proposition 3.4.1(iv). Hence, f(B) ≤ 1/4 + 1/5 and n(B) ≤ 2/3. With

e(B) = 1, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −31/60.

Lemma 3.4.3. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B5,c, then 7f(B) + 2n(B) − 5e(B) ≤ 7/12. Moreover, 7f(B) + 2n(B) − 5e(B) ≤ 0 unless

B shares a 3-path with a 4-face.

v1 v2

v3

v4v5

(a)

v1 v2

v3

v4v5

(b)

Figure 3.13: A B5,c triangular block and a B5,c with a 4-face incident to it.

Proof. Let B be B5,c with vertices v1, v2, v3, v4, and v5, as shown in Figure 3.13(a). By Proposi-

tion 3.4.1(i), no exterior face of B can have length 5. By Proposition 3.4.1(iii), if there exists an
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exterior face of B that has length 4, this 4-face must be v1v5v4v3v1. Since there is no vertex of

degree 2 in G, v1 and v3 are junction vertices. We consider the following cases:

(a) None of the exterior faces of B5,c are of length 4. Thus, each exterior face has length at least 7.

Hence, f(B) ≤ 3+5/7 and n ≤ 3+2/2. With e = 7, we obtain 7f(B)+2n(B)−5e(B) ≤ −1.

(b) The vertices v1v5v4v3v1 form an exterior face of length 4. Since G contains no cut vertex,

at least 2 of the vertices v1, v2 and v3 are contained in one more triangular block. Hence,

f(B) ≤ 3 + 3/4 + 2/7 and n(B) ≤ 2 + 1 + 1/3 + 1/3. With e(B) = 7, we obtain 7f(B) +

2n(B)− 5e(B) ≤ 7/12.

Lemma 3.4.4. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B5,d, then 7f(B) + 2n(B)− 5e(B) ≤ 1/2. Moreover, 7f(B) + 2n(B)− 5e(B) ≤ 0 unless B

shares a 2-path with a 4-face.

v1

v4v5

v3

v2

(a)

v1

v4v5

v3

v2

(b)

Figure 3.14: A B5,d triangular block and a B5,d with a 4-face incident to it.

Proof. Let B be B5,d with vertices v1, v2, v3, v4, and v5, as shown in Figure 3.14(a). By Propo-

sition 3.4.1(i), no exterior face of B can have length 5. By Proposition 3.4.1(iii), if there is an

exterior face of B that has length 4, this 4-face must contain the path v1v4v3. Since there is no

vertex of degree 2, v2 is a junction vertex. There is at least one other junction vertex, since G has

no cut-vertex. We consider the following cases:
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(a) Let v4 be a junction vertex. This prevents an exterior face of length 4. Thus, each exterior

face has length at least 7. Hence, f(B) ≤ 4 + 4/7 and n(B) ≤ 3 + 2/2. With e(B) = 8, we

obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(b) Suppose v4 fails to be a junction vertex and exactly one of the vertices v1, v3 is a junction

vertex. Without loss of generality, let it be v3. In this case, each exterior face has length

at least 7. (In fact, it can be shown that the length of the exterior face containing the path

v2v1v4v3 is at least 9. These yields f(B) ≤ 4+1/7+3/9 and 7f(B)+2n(B)−5e(B) ≤ −2/3.

However, this precision is unnecessary.) Again, f(B) ≤ 4 + 4/7 and n(B) ≤ 3 + 2/2. With

e(B) = 8, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(c) Suppose v4 fails to be a junction vertex and both the vertices v1 and v3 are junction vertices.

Here, either the exterior path v1v4v3 is part of an exterior face of length at least 4, or each

edge must be in a face of length at least 7. If each exterior face is of length at least 7, then

f(B) ≤ 4+4/7, otherwise f(B) ≤ 4+2/4+2/7. In both cases, n(B) ≤ 2+3/2 and e(B) = 8.

Hence, we obtain 7f(B)+2n(B)−5e(B) ≤ −1 in the first case and 7f(B)+2n(B)−5e(B) ≤

1/2 in the case where B is incident to a 4-face.

Lemma 3.4.5. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B4,a, then 7f(B) + 2n(B)− 5e(B) ≤ 3/2. Moreover, 7f(B) + 2n(B)− 5e(B) ≤ 0 unless B

shares a 2-path with any 4-face.

v1

v2

v3

v4

v1

v2

u

v3

v4

Figure 3.15: A B5,a triangular block and a B5,a with a 4-face incident to it.

Proof. Let B be B4,a with vertices v1, v2, v3, and v4, as shown in Figure 3.15(a). By Proposi-

tion 3.4.1(i), no exterior face of B can have length 5. If there exists an exterior face of B that has
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length 4, it is easy to verify that this exterior 4-face contains 2 exterior edges of B. Since G has no

cut-vertex, there are at least two junction vertices in B. We consider the following cases:

(a) None of the exterior faces of B4,a has length 4. Thus, each exterior face has length at least 7.

Hence, f(B) ≤ 3 + 3/7 and n ≤ 2 + 2/2. With e = 6, we obtain 7f(B) + 2n(B)− 5e(B) ≤ 0.

(b) Without loss of generality, suppose v1v4v3 is part of an exterior face of length 4. Hence,

f(B) ≤ 3+2/4+1/7 and n(B) ≤ 2+2/2. With e(B) = 6, we obtain 7f(B)+2n(B)−5e(B) ≤

3/2.

Lemma 3.4.6. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

If B is B4,b, then 7f(B) + 2n(B) − 5e(B) ≤ 4/3. Moreover, 7f(B) + 2n(B) − 5e(B) ≤ 1/6 if B

shares a 2-path with exactly one 4-face and 7f(B) + 2n(B)− 5e(B) ≤ 0 if B fails to share a 2-path

with any 4-face.

v1

v2

v3

v4

(a)

v1

v2

v3

v4

(b)

v1

v2

v3

v4

(c)

Figure 3.16: A B4,b triangular block and a B4,b with a 4-face incident to it.

Proof. Let B be B4,b with vertices v1, v2, v3, and v4, as shown in Figure 3.16(a). By Proposi-

tion 3.4.1(i), no exterior face of B can have length 5. Suppose there is an exterior face of B that

has length 4. Since G is a C6-free graph and contains no vertices of degree 2, v1 and v3 must be

the junction vertices. We consider the following cases:

(a) Let either v2 or v4 be a junction vertex. Without loss of generality, let it be v2. All the

exterior faces have length at least 7 except for the possibility that the path v1v4v3 may form

two sides of a 4-face. Hence, f(B) ≤ 2 + 2/4 + 2/7 and n(B) ≤ 1 + 3/2. With e(B) = 5, we

obtain 7f(B) + 2n(B)− 5e(B) ≤ −1/2.
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(b) Let neither v2 nor v4 be a junction vertex. Hence, there are two exterior faces: One that

shares the exterior path v1v4v3 and the other shares the exterior path v1v2v3. Each exterior

face has length either 4 or at least 7. We consider several subcases:

(i) If both faces are of length at least 7, then f(B) ≤ 2 + 4/7, and n(B) ≤ 2 + 2/2. With

e(B) = 5, we obtain 7f(B) + 2n(B)− 5e(B) ≤ −1.

(ii) If only one of the exterior faces is of length 4, then f(B) ≤ 2 + 2/7 + 2/4. Moreover, at

least one of the vertices between v1 and v3 must be a junction vertex with more than

two triangular blocks, otherwise either v(G) = 5 or the vertex incident to two blue edges

in Figure 3.16(b) is a cut-vertex. Hence, n(B) ≤ 2 + 1/3 + 1/2 and e(B) = 5, we have

7f(B) + 2n(B)− 5e(B) ≤ 1/6.

(iii) Both the exterior faces are of length 4. Thus, f(B) ≤ 2 + 4/4. By Proposition 3.4.1(iii),

the blocks represented by the blue edges in Figure 3.16(c) are trivial. Hence, n(B) ≤

2 + 2/3. With e(B) = 5, we get 7f(B) + 2n(B)− 5e(B) ≤ 4/3.

The last step in the proof of Theorem 3.1.3 is Lemma 3.4.7, which collects the blocks into parts

of a partition such that the blocks B for which 7f(B) + 2n(B) − 5e(B) is positive, are balanced

with those for which it is negative.

Lemma 3.4.7. Let G be a 2-connected, C6-free plane graph on n (n ≥ 6) vertices with δ(G) ≥ 3.

Then the triangular blocks of G can be partitioned into sets, P1, P2,. . . , Pm such that 7
∑
B∈Pi

f(B)+

2
∑
B∈Pi

n(B)− 5
∑
B∈Pi

e(B) ≤ 0 for all i ∈ [m].

Proof. As it can be seen from Tables 3.2, 3.3, 3.4, and 3.5 in Section 3.7, there are 5 possible cases

where 7f(B)+2n(B)−5e(B) assumes a positive value. We deal with each of these blocks as follows:

(1) Let B be a B5,c triangular block as described in the proof of Lemma 3.4.3(b), see Figure

3.13(b). By Proposition 3.4.1(iii), the edge v1v3 is a trivial triangular block. Denote this

triangular block by B′. One of the exterior faces of B′ has length 4, whereas by Proposi-

tion 3.4.1(iv), the other has length at least 5. If it has length 5, then either (i) one of the edges
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v1v2 or v2v3 is contained in this 5-face or (ii) none of the edges v1v2 and v2v3 are contained

in it. For case (i), v2v5v4v3 or v2v4v5v1 would complete it to a 6-cycle. For case (ii), v1v2v3

would complete it to a 6-cycle. Hence, the other exterior face of B′ has length at least 7.

Thus, f(B′) ≤ 1/4+1/7 and n(B′) ≤ 1/2+1/2. With e(B′) = 1, we obtain 7f(B′)+2n(B′)−

5e(B′) ≤ −7/12. Define P ′ = {B,B′}. Thus, 7
∑

B∗∈P ′
f(B∗) + 2

∑
B∗∈P ′

n(B∗)−5
∑

B∗∈P ′
e(B∗) ≤

1/2 + 2(−7/12) = −2/3.

Therefore, for each triangular block in G as described in Lemma 3.4.3(b), it belongs to a

set P ′ of three triangular blocks such that 7
∑

B∗∈P ′
f(B∗) + 2

∑
B∗∈P ′

n(B∗)− 5
∑

B∗∈P ′
e(B∗) ≤ 0.

Denote such sets as P1,P2, . . . ,Pm1 if they exist.

v1

v2

v3

v4v5

u
B′

B′′

Figure 3.17: Structure of a B5,d if it is incident to a 4-face, as in Lemma 3.4.7. The triangular
blocks B′ and B′′ are trivial.

(2) Let B be a B5,d triangular block as described in the proof of Lemma 3.4.4(c), see Figure 3.17.

By Proposition 3.4.1(iii), the edges v1u and v3u are trivial triangular blocks. Denote these

triangular blocks as B′ and B′′. Consider B′. One of the exterior faces of B′ has length

4, whereas by Proposition 3.4.1(iv), the other has length at least 5. It must have length at

least 7. Otherwise, if it had length 5, then the path v1v3u would complete it to a 6-cycle.

Thus, f(B′) ≤ 1/4 + 1/7. Since the vertex u cannot be of degree 2, then this vertex is shared

in at least three triangular blocks. Thus, n(B′) ≤ 1/2 + 1/3. With e(B′) = 1, we obtain

7f(B′) + 2n(B′)− 5e(B′) ≤ −7/12 and similarly 7f(B′′) + 2n(B′′)− 5e(B′′) ≤ −7/12. Define

P ′′ = {B,B′, B′′}. Thus, 7
∑

B∗∈P ′′
f(B∗) + 2

∑
B∗∈P ′′

n(B∗)− 5
∑

B∗∈P ′′
e(B∗) ≤ 1/2 + 2(−7/12) =

−2/3.

Therefore, for each triangular block in G as described in Lemma 3.4.4(c), it belongs to a set

P ′′ of three triangular blocks such that 7
∑

B∗∈P ′′
f(B∗) + 2

∑
B∗∈P ′′

n(B∗) − 5
∑

B∗∈P ′′
e(B∗) ≤ 0.

Denote such sets as Pm1+1,Pm1+2, . . . ,Pm2 if they exist.
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v1

v2

u

v3

v4

B′′ B′

Figure 3.18: Structure of a B4,a triangular block if it is incident to a 4-face, as in Lemma 3.4.7.
The triangular blocks B′and B′′ are all trivial.

(3) Let B be a B4,a triangular block as described in the proof of Lemma 3.4.5(b), see Figure 3.18.

By Proposition 3.4.1(iii), the edges v1u1 and v3u1 are trivial triangular blocks. Denote them

as B′ and B′′, respectively. Consider B′. One of the exterior faces of B′ has length 4 and by

Proposition 3.4.1(iv), the other has length at least 5. It is easy to check that if another face

of B′ has length 5, then no matter whether this 5-face contains v3 or not, we can find a copy

of C6 in G. Hence, f(B′) ≤ 1/4 + 1/7. Similarly, for B′′.

Since the vertex u cannot be of degree 2, u is contained in at least 3 triangular blocks.

Since G does not contain a cut vertex, at least one of v1 or v3 is contained in one more

triangular block. To get the upper bound of n(B) + n(B′) + n(B′′), we may assume that

v1 is contained in at least 3 triangular blocks and v3 is contained in at least 2 triangular

blocks. Thus, n(B′) ≤ 1/3 + 1/3. With e(B′) = 1, we obtain 7f(B′) + 2n(B′) − 5e(B′) ≤

−11/12. Similarly, for B′′, we have f(B′′) ≤ 1/4 + 1/7. But n(B′′) ≤ 1/3 + 1/2, with

e(B′′) = 1, we obtain 7f(B′′) + 2n(B′′)− 5e(B′′) ≤ −7/12. Define P ′′′ = {B,B′, B′′}. Thus,

7
∑

B∗∈P ′′′
f(B∗) + 2

∑
B∗∈P ′′′

n(B∗)− 5
∑

B∗∈P ′′′
e(B∗) ≤ 3/2 + (−7/12) + (−11/12) = 0.

Therefore, for each triangular block in G as described in Lemma 3.4.5(b), it belongs to a set

P ′′′ of three triangular blocks such that 7
∑

B∗∈P ′′′
f(B∗) + 2

∑
B∗∈P ′′′

n(B∗)− 5
∑

B∗∈P ′′′
e(B∗) ≤ 0.

Denote such sets as Pm2+1,Pm2+2, . . . ,Pm3 if they exist.

(4) Let B be a B4,b triangular block as described in the proof of Lemma 3.4.6(b)(ii), See Fig-

ure 3.19(a).

By Proposition 3.4.1(iii), the edges v1u1 and v3u1 are trivial triangular blocks. Denote them

as B′ and B′′, respectively. Consider B′. One of the exterior faces of B′ has length 4 and
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v1

v2

v3

v4

u1

B′

B′′

(a)

v1

v2

v3

v4

u1u2

B′

B′′

B′′′

B′′′′

(b)

Figure 3.19: Structure of a B4,b triangular block if it is incident to a 4-face, as in Lemma 3.4.7.
The triangular blocks B′, B′′, B′′′, and B′′′′ are all trivial.

by Proposition 3.4.1(iv), the other has length at least 5. Thus, f(B′) ≤ 1/4 + 1/5. Since

the vertex u1 cannot be of degree 2, then this vertex is shared in at least three triangular

blocks. Thus, n(B′) ≤ 1/2 + 1/3. With e(B′) = 1, we obtain 7f(B′) + 2n(B′) − 5e(B′) ≤

−11/60. Similarly, 7f(B′′) + 2n(B′′) − 5e(B′′) ≤ −11/60. Define P ′′′′ = {B,B′, B′′}. Thus,

7
∑

B∗∈P ′′′′
f(B∗) + 2

∑
B∗∈P ′′′′

n(B∗)− 5
∑

B∗∈P ′′′′
e(B∗) ≤ 1/6 + 2(−11/60) = −1/5.

Therefore, for each triangular block in G as described in Lemma 3.4.6(b)(ii), it belongs to a set

P ′′′′ of three triangular blocks such that 7
∑

B∗∈P ′′′′
f(B∗)+2

∑
B∗∈P ′′′′

n(B∗)−5
∑

B∗∈P ′′′′
e(B∗) ≤ 0.

Denote such sets as Pm3+1,Pm3+2, . . . ,Pm4 if they exist.

(5) Let B be a B4,b triangular block as described in the proof of Lemma 3.4.6(b)(iii), see Fig-

ure 3.19(b). By Proposition 3.4.1(iii), the edges v1u1, v3u1, v1u2, and v3u2 are trivial triangu-

lar blocks. Denote them asB′, B′′, B′′′ andB′′′′, respectively. ConsiderB′. One of the exterior

faces of B′ has length 4, whereas the other has length at least 5. Thus, f(B′) ≤ 1/4 + 1/5.

Since the vertex u1 cannot be of degree 2, then this vertex is shared in at least three triangular

blocks. Clearly, v1 is in at least three triangular blocks. Thus, n(B′) ≤ 2/3. With e(B′) = 1,

we obtain 7f(B′) + 2n(B′) − 5e(B′) ≤ −31/60 and the same inequalities hold for B′′, B′′′,

and B′′′′.

Define P ′′′′′ = {B,B′, B′′, B′′′, B′′′′}. Thus, 7
∑

B∗∈P ′′′′′
f(B∗)+2

∑
B∗∈P ′′′′′

n(B∗)−5
∑

B∗∈P ′′′′′
e(B∗) ≤

4/3 + 4(−31/60) = −11/15.

Therefore, for each triangular block inG as described in Lemma 3.4.6(b)(iii), it belongs to a set

P ′′′′′ of four triangular blocks such that 7
∑

B∗∈P ′′′′′
f(B∗)+2

∑
B∗∈P ′′′′′

n(B∗)−5
∑

B∗∈P ′′′′′
e(B∗) ≤ 0.

Denote such sets as Pm4+1,Pm4+2, . . . ,Pm5 if they exist.
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Now define Pm5+1 = B −
m5⋃
i=1
Pi, where B is the set of all blocks of G. Clearly, for each block

B ∈ Pm5+1, 7f(B)+2n(B)−5e(B) ≤ 0. Thus, 7
∑

B∈Pm5+1

f(B)+2
∑

B∈Pm5+1

n(B)−5
∑

B∈Pm5+1

e(B) ≤

0. Putting m := m5 + 1 we got the partition P1,P2, . . . ,Pm of B meeting the condition of the

lemma.

3.5 Proof of Theorem 3.1.4

Let G be a C6-free plane graph. We will show that either 5v(G)− 2e(G) ≥ 14 or v(G) ≤ 17.

If we recursively delete a vertex x with degree at most two from G, then

5v(G− x)− 2e(G− x) = 5(v(G)− 1)− 2(e(G)− deg(x))

= 5v(G)− 2e(G)− 5 + 2 deg(x)

≤ 5v(G)− 2e(G)− 1.

So, if the procedure ends with an empty graph, then e(G) ≤ 2n − 3 ≤ 5
2n − 7, when n ≥ 8. If

not, the graph G has an induced subgraph G′ with δ(G′) ≥ 3 and

5v(G)− 2e(G) ≥ 5v(G′)− 2e(G′) +
(
v(G)− v(G′)

)
. (3.2)

In line with usual graph theoretic terminology, we call a maximal 2-connected subgraph a block.

Let B′ denote the set of blocks of G′ with the ith block having ni vertices and ei edges. Let b be

the total number of blocks of G′. Specifically, let b2, b3, b4, and b5 denote the number of blocks

of size 2, 3, 4, and 5, respectively. Let b6 denote the number of blocks of size at least 6. Then we

have b = b6 + b5 + b4 + b3 + b2 and, using Table 3.1:

5v(G′)− 2e(G′) = 5

(
b∑
i=1

ni − (b− 1)

)
− 2

b∑
i=1

ei

=

b∑
i=1

(5ni − 2ei − 5) + 5

≥ 9b6 + 2b5 + 3b4 + 4b3 + 3b2 + 5. (3.3)
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min of 5n− 2e− 5

n ≥ 6 14− 5 ≥ 9 Theorem 3.1.3

n = 5 5(5)− 2(9)− 5 ≥ 2 B5,a, Figure 3.7

n = 4 5(4)− 2(6)− 5 ≥ 3 B4,a, Figure 3.8

n = 3 5(3)− 2(3)− 5 ≥ 4 B3, Figure 3.8

n = 2 5(2)− 2(2)− 5 ≥ 3 B2, Figure 3.8

Table 3.1: Estimates of 5n− 2e− 5 for various block sizes.

Combining (3.2) and (3.3), we obtain

5v(G)− 2e(G) ≥ 9b6 + 2b5 + 3b4 + 4b3 + 3b2 + 5 +
(
v(G)− v(G′)

)
. (3.4)

If b6 ≥ 1, then the right-hand side of (3.4) is at least 14, as desired.

So, let us assume that b6 = 0 and b = b5 + b4 + b3 + b2. Furthermore,

v(G′) = 5b5 + 4b4 + 3b3 + 2b2 − (b− 1)

= 4b5 + 3b4 + 2b3 + b2 + 1. (3.5)

So, substituting 2b5 from (3.5) into (3.4), we have

5v(G)− 2e(G) ≥ 2b5 + 3b4 + 4b3 + 3b2 + 5 +
(
v(G)− v(G′)

)
=

(
1

2
v(G′)− 3

2
b4 − b3 −

1

2
b2 −

1

2

)
+ 3b4 + 4b3 + 3b2 + 5 +

(
v(G)− v(G′)

)
= v(G)− 1

2
v(G′) +

3

2
b4 + 3b3 +

5

2
b2 +

9

2

≥ 1

2
v(G) +

9

2
,

which is strictly larger than 13 if v(G) ≥ 18. Since 5v(G)− 2e(G) is an integer, it is at least 14 and

this completes the proof of Theorem 3.1.4.

Remark 3.5.1. Observe that for n ≥ 17, the only graphs on n vertices with e edges such that

e > (5/2)n − 7 have blocks of order 5 or less and by (3.4), there are at most 4 such triangular

blocks. A bit of analysis shows that the maximum number of edges is achieved when the number of

blocks of order 5 is as large as possible.
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3.6 Concluding remarks and Conclusions

We note that the proof of Theorem 3.1.3, particularly Lemma 3.4.7, can be rephrased in terms of

a discharging argument.

We believe that our construction in Theorem 3.1.5 can be generalized to prove exP(n,C`) for n

sufficiently large. That is, we construct a plane graph G0 such that all the faces are of length `+ 1

and all the vertices have degree either 2 or 3. (As above, n belongs to a congruence class.)

If such a G0 exists, then the number of degree 2 and degree 3 vertices are (`−5)n+4(`+1)
`−1 and

4(n−`−1)
`−1 , respectively. We could then apply steps like (1), (2), and (3) in the proof of Theorem 3.1.5

in that we add halving vertices and insert a graph B`−1 in Figure 3.20 (or another maximal planar

graph of `− 1 vertices) in place of the vertices of degree 2 and 3. For the resulting graph G,

v(G) = v(G0) + e(G0) + (`− 4)
(`− 5)n+ 4(`+ 1)

`− 1
+ (`− 5)

4(n− `− 1)

`− 1

= n+
`+ 1

`− 1
(n− 2) +

(`2 − 5`)n+ 2(`+ 1)

`− 1

=
`2 − 3`

`− 1
n+

2(`+ 1)

`
,

and e(G) = (3`− 9)v(G0) = (3`− 9)n.

Therefore, e(G) = 3(`−1)
` v(G) − 6(`+1)

` . We conjecture that this is the maximum number of

edges in a C`-free planar graph – at least if ` is small.

B6 B7 B8

Figure 3.20: B`−1 is used in the construction of a C`-free graph.

Conjecture 3.6.1. Let G be C`-free plane graph (10 ≥ ` ≥ 7) on n vertices, then there exists an

integer N0 > 0, such that when n ≥ N0, e(G) ≤ 3(`−1)
` n− 6(`+1)

` .

Remark 3.6.1. The conjecture is different if ` ≥ 11, since instead of B`−1 we can use a bigger

graph which is not Hamiltonian, or if ` is even bigger, then we can take an appropriate maximal
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planar graph not containing a cycle C`. Even more, in these cases, the proof technique is not just

more complicated, but some other difficulties may rise too. Here, we do not want to go into details.

3.7 Tables

The following tables give a summary of the results from Lemmas 3.4.2, 3.4.4, and 3.4.6.

A red edge incident to a vertex of a triangular block indicates the corresponding vertex is a

junction vertex. Moreover, if a vertex has only one red edge, the vertex is shared in at least two

triangular blocks. Whereas, if a vertex has two red edges, the vertex is shared in at least three

blocks.

A pair of blue edges indicates the boundary of a 4-face.

Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 3.4.2
1(a)

B5,a
K−5

5 +
3

7
2 +

3

2
9 0

Lemma 3.4.2
1(b)

B5,a
K−5

5 +
2

7
3 +

2

2
9 0

Table 3.2: The B5,a blocks in G and the estimation of 7f(B) + 2n(B)− 5e(B).
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Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 3.4.2
2

B5,b 4 +
4

7
3 +

2

2
8 0

Lemma 3.4.3
(a)

B5,c 3 +
5

7
3 +

2

2
7 −1

Lemma 3.4.3
(b)

B5,c 3 +
3

4
+

2

7
2 + 1 +

1

3
+

1

3
7

7

12
?

Lemma 3.4.4
(a)

B5,d 4 +
4

7
3 +

2

2
8 0

Lemma 3.4.4
(b)

B5,d 4 +
4

7
3 +

2

2
8 0

Lemma 3.4.4
(c)

B5,d 4 +
2

4
+

2

7
2 +

3

2
8

1

2
?

Table 3.3: The possible B5 blocks that are not a K−5 in G and the estimation of 7f(B) + 2n(B)−
5e(B).
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Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 3.4.5
(a)

B4,a 3 +
3

7
2 +

2

2
6 0

Lemma 3.4.5
(b)

B4,a 3 +
2

4
+

1

7
2 +

2

2
6

3

2
?

Lemma 3.4.6
(a)

B4,b 2 +
2

4
+

2

7
1 +

3

2
5 −1

2

Lemma 3.4.6
(b)(i)

B4,b 2 +
4

7
2 +

2

2
5 −1

Lemma 3.4.6
(b)(ii)

B4,b 2 +
2

4
+

2

7
2 +

1

3
+

1

2
5

1

6
?

Lemma 3.4.6
(b)(iii)

B4,b 2 +
2

4
+

2

4
2 +

2

3
5

4

3
?

Table 3.4: All possible B4 blocks in G and the estimate of 7f(B) + 2n(B)− 5e(B).
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Case B Diagram f(B) ≤ n(B) ≤ e(B) = 7f + 2n− 5e ≤

Lemma 3.4.6
3(a)

B3 1 +
2

7
+

1

4

3

2
3 −5

4

Lemma 3.4.6
3(b)

B3 1 +
3

4

2

2
+

1

3
3 − 1

12

Lemma 3.4.6
4(a)

B2
1

4
+

1

7

2

2
1 −1

4

Lemma 3.4.6
4(b)

B2
1

4
+

1

7

1

2
+

1

3
1 − 7

12

Lemma 3.4.6
4(c)

B2
1

4
+

1

5

2

3
1 −31

60

Table 3.5: All possible B3 and B2 blocks in G and the estimate of 7f(B) + 2n(B)− 5e(B).
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Chapter 4

Planar Turán Number of Double Stars

4.1 Introduction

All the graphs we consider in this chapter are simple and finite. Let G be a graph. We denote the

vertex and edge set of G by V (G) and E(G), respectively. Let e(G) and v(G) denote the number of

edges and vertices, respectively. We denote the degree of a vertex v by d(v), the minimum degree

in graph G by δ(G) and the maximum degree in graph G by ∆(G). The subgraph induced by

S ⊆ V (G), is denoted by G[S]. Moreover, N(v) denotes the set of vertices in G adjacent to v. Let

A and B be disjoint subsets of V (G). Let e(A,B) denote the number of edges in G, that joins a

vertex in A and a vertex in B. An m-n edge is an edge such that the end vertices of the edge are

with degree m and n. The Turán number of a graph H, denoted by ex(n,H), is the maximum

number of edges in an n-vertex graph that does not contain H as a subgraph. Let EX(n,H) denote

the set of extremal graphs, i.e., the set of all n-vertex, H-free graph G such that e(G) = ex(n,H).

The join G = G1 + G2 of graphs G1 and G2 with disjoint vertex sets V1 and V2 and edge sets X1

and X2 is the graph union G1 ∪G2 together with all the edges joining V1 and V2.

Recall that one of the famous problems in Extremal Graph Theory is determining the number

of edges in an n-vertex graph to force a certain graph structure. The well-known result of Turán

(Theorem 1.0.2) gives the maximum number of edges in an n-vertex graph, containing no complete

graph of a given order. The result of Erdős, Stone and Simonovits (Theorem 1.0.3) asymptotically

determines ex(n, F ) for all non-bipartite graphs F . In the last decade, the area of ‘random’ planar
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graphs has received considerable attention. However, there seem to be no known results on questions

analogous to the Erdős-Stone Theorem, i.e., how many edges can a planar graph on n vertices have

without containing a given smaller graph? In 2016, Dowden [28] initiated the study of these

specific Turán-type problems. The planar Turán number of a graph F , denoted by exP(n, F ), is

the maximum number of edges in a planar graph on n vertices containing no F as a subgraph.

The analog to Turán’s theorem in the case of planar graphs is fairly trivial. Since K5 is not

planar, there are only two meaningful cases. For the K3, the extremal number of edges is 2n− 4,

and the extremal graph is K2,n−2 (since all faces have size four when drawn in the plane). Note

that there exist planar triangulations not containing K4 (e.g., take a cycle of length n− 2 and then

add two new vertices that are adjacent to all those in the cycle). Thus, the extremal number in

the case of K4 is 3n− 6. The planar Turán number when the forbidden subgraph is a star is also

fairly trivial. The authors in [94] proved that exP(n,H) = 3n − 6 for all H with n > |H|+2 and

either χ(H) = 4 or χ(H) = 3 and ∆(H) > 7. They also completely determine exP(n,H) when H

is a wheel or a star, and the case when H is a (t, r)-fan, that is, H is isomorphic to K1 + tKr−1,

where t > 2 and r > 3 are integers. The next most natural type of graph to investigate is perhaps a

path. For extremal planar Turán number for paths of length {6, 7, 8, 9, 10, 11}, we refer the reader

to [93] and [94]. The next natural extension of the topic is considering double stars as the forbidden

graph.

Definition 4.1.1. An (m,n)-double star, denoted by Sm,n, is the graph obtained by taking an edge,

say xy, and joining one of its end vertices, say x, with m vertices and the other end vertex, y,

with n vertices which are different from the m vertices. The edge xy is called the backbone of the

double star. The vertices adjacent to an end vertex of the backbone are called the leaf-sets of the

double star. Figure 4.1 shows an m-n double star such that the backbone is xy and the leaf-sets are

{x1, x2, . . . , xm} and {y1, y2, . . . , yn}, respectively.

x y

y1

y2

y3

yn

x1

x2

x3

xm

Figure 4.1: An (m,n)-double star.
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In this chapter, we address the planar Turán number of double stars. The main results can be

summarized as follows:

Theorem 4.1.2. Estimates on the planar Turán number of double stars Sm,n for given values of

{m,n} are as follows:

(i) For any n ≥ 16, exP(n, S2,2) = 2n− 4.

(ii) For any n ≥ 1, exP(n, S2,3) = 2n.

(iii) For any n ≥ 1, 15
7 n ≤ exP(n, S2,4) ≤ 8

3n.

(iv) For n ≥ 1, 5
2n ≤ exP(n, S2,5) ≤ 20

7 n.

(v) For n ≥ 3, 5
2n− 5 ≤ exP(n, S3,3) ≤ 5

2n− 2.

(vi) For n ≥ 1, 9
4n ≤ exP(n, S3,4) ≤ 20

7 n.

The chapter is structured as follows: Each section proves parts of the previous Theorem one by

one.

4.2 Planar Turán number of S2,2

We start by proving the following weaker bounds:

Lemma 4.2.1. Let G be an S2,2-free plane graph on n (n 6= 5) vertices, then e(G) ≤ 2n− 2.

Proof. Suppose that G contains 6 vertices. There are only two 6-vertex maximal planar graphs M1

and M2 as shown in Figure 4.2. It can be checked that M−1 and M−2 both contain an S2,2. Thus,

e(G) ≤ 10 = 2n − 2, when n = 6. Now let G be an S2,2-free planar graph on 7 vertices. If G

contains a vertex of degree at most 2, we are done by induction. Moreover, there is no vertex of

degree at least 5 in G. Suppose there is a vertex x ∈ V (G) such that d(x) = k, where k ≥ 5. In

this case, each vertex in N(x) must be of degree at most 2. Otherwise, it is easy to find an S2,2 in

G, which is a contradiction.
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M1 M2

Figure 4.2: The two 6-vertex maximal planar graphs.

Assume that ∆(G) ≤ 4. Let the number of vertices in G with degree at most 3 be k. Hence, G

contains at least n− k vertices of degree 4, which implies

e(G) ≤ 4(n− k) + 3k

2
= 2n− k

2
.

If there are at least 4 vertices of degree at most 3, then e(G) ≤ 2n− 4
2 = 2n−2. Let v be a degree 4

vertex in G. If each vertex in N(v) is of degree at most 3, then e(G) ≤ 2n− 2. So, there is a vertex

u ∈ N(v), such that uv is a 4-4 edge in G. Since G is an S2,2-free plane graph, uv must be contained

in 3 triangles. Let N(u) ∩ N(v) = {x1, x2, x3} and S = V (G)\{u, v, x1, x2, x3}. Observe that no

vertex in S is adjacent to a vertex in {x1, x2, x3}. Deleting the vertices {u, v, x1, x2, x3}. We deleted

at most 3 · 5− 6 = 9 edges. Hence, e(G) = e(G−{u, v, x1, x2, x3}) + 9 ≤ 2(n− 5)− 2 + 9 ≤ 2n− 2.

Hence, we are done by induction.

Lemma 4.2.2. Let G be an S2,2-free plane graph on n (n ≥ 8) vertices. If there is a vertex with

degree at least 5, then e(G) ≤ 2n− 4.

Proof. Let x ∈ V (G) such that d(x) = k ≥ 5. Let N(x) = {x1, x2, x3, . . . , xk}, and S be the

set of vertices in V (G)\N(x). Each vertex in N(x) is adjacent to at most one other vertex in

N(x). Otherwise, it is easy to show that G contains an S2,2. Similarly, for an edge xixj , where

xi, xj ∈ N(x), there is no vertex in S which is adjacent to either xi or xj . Thus, the number of

edges joining a vertex in N(x) and a vertex in S is at most k. If |S|6= 5, using Lemma 4.2.1,

e(G[S]) ≤ 2(n− k − 1)− 2. Therefore e(G) ≤ 2(n− k − 1)− 2 + k + k = 2n− 4, and we are done.

Let |S|= 5. Let the graph induced by S be a K−5 . Since G is an S2,2-free plane graph, no vertex

in N(x) is adjacent to any vertex in S. This implies that e(G[s]) = 9 and e(G[N(x)]) ≤ k
2 . Hence,

e(G) ≤ k+ k
2 + 9. Since n = k+ 6, we have e(G) ≤ (n− 6) + n−6

2 + 9 = 3n
2 ≤ 2n− 4 for n ≥ 8.
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Proof of Theorem 4.1.2(i). The lower bound is attained by considering the graph K2,n−2, which is

S2,2-free and contains 2n− 4 edges. From Lemma 4.2.2, we may assume that ∆(G) ≤ 4. Let k be

the number of vertices in G whose degree is at most 3. Then e(G) ≤ 4(n−k)+3k
2 = 2n− k

2 . If k ≥ 8,

then we are done. We may assume that the number of degree 4 vertices in G is at least 9, since

n ≥ 16. We start by proving the following claims:

Claim 6. There is no degree 4 vertex in G such that all its neighbors are of degree at most 3.

Proof. Suppose not. Let x be a degree 4 vertex in G, such that d(y) ≤ 3 for all y ∈ N(x). It is

easy to check that for each y ∈ N(x), if y is adjacent to any vertex in V (G)\({x} ∪ N(x)), then

d(y) = 2. Otherwise, G contains an S2,2. Therefore, using Lemma 4.2.1, e(G) = e(G[S]) + 4 + 4 ≤

2(n − 5) − 2 + 8 = 2n − 4. Assume that for each y ∈ N(x), y is not adjacent to any vertex in

V (G)\({x}∪N(x)). Then e(G[x∪N(x)]) ≤ 8. Therefore, using Lemma 4.2.1, e(G) = e(G[S])+8 ≤

2(n− 5)− 2 + 8 = 2n− 4.

Claim 7. The number of 4-4 edges in a matching in G is at least 3.

Proof. Suppose not. Let the number of 4-4 edges in a matching in G be 2. Denote the 4-4

edges in the matching by uv and xy. Each of the edges is contained in 3 triangles. Let N(u) ∩

N(v) = {u1, u2, u3} and N(x)∩N(y) = {x1, x2, x3}. Since G is an S2,2-free plane graph, no vertex

in {u1, u2, u3} is adjacent to a vertex in V (G)\{x, y, x1, x2, x3} and no vertex in {x1, x2, x3} is

adjacent to a vertex in V (G)\{u, v, u1, u2, u3}. Moreover, at least two vertices in {x1, x2, x3} and

in {u1, u2, u3} are of degree at most three. The number of degree 4 vertices in G is at least 9.

Thus, there is a degree 4 vertex, say z, in V (G)\{x, y, u, v, x1, x2, x3, u1, u2, u3} such that d(t) ≤ 3

for every t ∈ N(z). This contradicts Claim 6. A similar argument can be given, if we assume that

the number of 4-4 edges in a matching in G is 1.

From now on, suppose that the number of 4-4 edges in a matching in G is at least 3. We

distinguish the following two cases:

Case 1: The number of 4-4 edges in a matching in G is at least 4. Denote the 4-4

edges in the matching in G by x1x2, x3x4, x5x6 and x7x8, respectively. Recall that each edge is

contained in 3 triangles. Moreover, at least two vertices in N(xi) ∩N(xi+1) are of degree at most
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3, for each i ∈ {1, 3, 5, 7}. Thus, we have at least 8 vertices in G whose degree is at most 3. Hence,

we are done in this case.

Case 2: The number of 4-4 edges in a matching in G is 3. Denote the 4-4 edges in

the matching in G by x1x2, x3x4 and x5x6, respectively. At least two vertices in N(xi) ∩N(xi+1)

are of degree at most 3, for i ∈ {1, 3, 5}. This implies that G contains at least 6 vertices whose

degree is at most 3. Moreover, if a vertex in N(xi) ∩ N(xi+1) is of degree at most 2, for some

i ∈ {1, 3, 5}, then the remaining two vertices are of degree at most 3. Observe that in this case,

e(G) ≤ 4(n−7)+3·6+2
2 = 2n− 4 and we are done.

So, we assume exactly two vertices in N(xi)∩N(xi+1) are of degree 3, for each i ∈ {1, 3, 5}. In

this case, the remaining vertex in N(xi) ∩ N(xi+1) is of degree 4. Thus, the vertices {xi, xi+1} ∪

(N(xi) ∩N(xi+1)), for each i ∈ {1, 3, 5}, induce a K−5 , and it is a component in G. If n = 16, then

there is an isolated vertex. In this case, e(G) = 27 < 2n − 4. If n > 17, it is easy to find 2 more

vertices of degree at most 3 since the number of 4-4 edges in a matching in G is 3. Thus, there are

at least 8 degree 3 vertices in G. This completes the proof of Theorem 4.1.2(i).

4.3 Planar Turán number of S2,3

Proof of theorem 4.1.2(ii). Let G be an S2,3-free plane graph on n vertices. Since the graph S2,3

contains 7 vertices, a maximal planar graph with n ≤ 6 vertices does not contain an S2,4. Thus, the

lower bound is attained by considering disjoint copies of the maximum planar graphs on 6 vertices,

i.e., M1 or M2 (see Figure 4.2. If the maximum degree in G is at most 4, then e(G) ≤ 2n. Now we

separate the rest of the proof into 2 cases:

Case 1: There exists a vertex v ∈ V (G), such that d(v) ≥ 6. It is easy to check that for

each u ∈ N(v), d(u) ≤ 2, otherwise, we find a copy of S2,3 in G. Delete a vertex u ∈ N(v), then the

number of deleted edges is at most 2. By the induction hypothesis, we get e(G− {u}) ≤ 2(n− 1).

Hence, e(G) = e(G− {u}) + d(u) ≤ 2(n− 1) + 2 = 2n.

Case 2: There exists a vertex v ∈ V (G), such that d(v) = 5. It is easy to check that for

each u ∈ N(v), if u is adjacent to any vertex in V (G)\({v} ∪N(v)), then d(u) = 2. Otherwise, G
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contains an S2,3. As in Case 1, we are done by induction. Assume that for each u ∈ N(v), u is not

adjacent to any vertex in V (G)\({v}∪N(v)). Then e(G[v∪N(v)]) ≤ 3·6−6 = 12. By the induction

hypothesis, e(G−{v∪N(v)}) ≤ 2(n− 6). Therefore, e(G) = e(G−{v∪N(v)}) + e(G[v∪N(v)]) ≤

2n.

4.4 Planar Turán number of S2,4

Let G be an S2,4-free plane graph on n vertices. Since S2,4 contains 8 vertices, a maximal planar

graph with n ≤ 7 vertices, does not contain an S2,4. Let 7|n. Consider the plane graph consisting

of n
7 disjoint copies of maximal planar graphs on 7 vertices. This graph does not contain an S2,4.

Hence, exP(n, S2,4) ≥ 15
7 n.

Claim 8. Let G be an S2,4 on n (1 ≤ n ≤ 18) vertices. The number of edges in G is at most 8
3n.

Proof. Recall that, an n-vertex maximal planar graph contains 3n − 6 edges. Since 3n − 6 ≤ 8
3n

for n ≤ 18, e(G) ≤ 8
3n holds for all n, 1 ≤ n ≤ 18.

Lemma 4.4.1. If G contains a vertex of degree greater than or equal to 7, then e(G) ≤ 8
3n.

Proof. Let v ∈ V (G), such that d(v) ≥ 7. It is easy to check that for each u ∈ N(v), d(u) ≤ 2,

otherwise, we find a copy of S2,4 in G. Delete a vertex u ∈ N(v), then the number of deleted

edges is at most 2. By the induction hypothesis, we get e(G − {u}) ≤ 8
3(n − 1). Hence, e(G) =

e(G− {u}) + d(u) ≤ 8
3(n− 1) + 2 ≤ 8

3n.

Lemma 4.4.2. If G contains a vertex of degree 6, then e(G) ≤ 8
3n.

Proof. Let v ∈ V (G), such that d(v) = 6 and let H = N(v) ∪ {v}. It is easy to check that for

each u ∈ N(v), if u is adjacent to any vertex in V (G)\H, then d(u) = 2. Otherwise, G contains

an S2,4. We are done by induction in this case. Assume that for each u ∈ N(v), u is not adjacent

to any vertex in V (G)\H. Then e(G[H]) ≤ 3 · 7 − 6 = 15. Hence, e(G) = e(G −H) + e(G[H]) ≤
8
3(n− 7) + 15 ≤ 8

3n. We are done by induction.
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Proof of Theorem 4.1.2(iii). If G contains a vertex of degree at least 6, we are done by Lemmas

4.4.1 and 4.4.2. Hence, we can assume that ∆(G) ≤ 5.

x y

a

b

c

d

Figure 4.3: The graph G has a 5− 5 edge xy, with 4 triangles sitting on the edge xy.

Claim 9. If G contains a 5− 5 edge, then e(G) ≤ 8
3n.

Proof. Let xy ∈ E(G) be a 5 − 5 edge. There are at least 3 triangles sitting on the edge xy,

otherwise G contains an S2,4. We subdivide the cases based on the number of triangles sitting on

the edge xy.

1. There are 4 triangles sitting on the edge xy. Let a, b, c and d be the vertices in G which

are adjacent to both x and y (see Figure 4.3). Let S1 = {a, b, c, d} and H = {x, y, a, b, c, d}.

Delete the vertices in H. The vertices in S1 can have at most one neighbor in V (G)\H

each and can form a path of length 3 in S1. Hence, the number of edges deleted is at most

9 + 4 + 3 = 16. Using the induction hypothesis, e(G) ≤ e(G−H) + 16 ≤ 8
3(n− 6) + 16 = 8n

3 .

2. There are 3 triangles sitting on the edge xy. Let a, b and c be the vertices in G which

are adjacent to both x and y. Let d be the vertex adjacent to x but not adjacent to y, and e

be the vertex adjacent to y but not adjacent to x. Let S1 = {a, b, c} and H = {x, y, d, e}∪S1.

Delete the vertices in H. The vertices d and e can have at most one neighbor in V (G)\H

each. We distinguish the cases as follows:

(a) The vertices d and e have no neighbors in S1, see Figure 4.4(i). The vertices in S1

can have at most one neighbor in V (G)\H each and can form a path of length 2 in S1. If

the vertices d and e are adjacent, they cannot have a neighbor in V (G)\H. Otherwise,

we have an S2,4 with dx (or ey) as the backbone. Thus, the number of edges deleted is

at most 9 + 2 + 3 + 2 = 16.
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x y

a

b

c

d e

(i)

x y

a

b

c

d e

(ii)

x y

a

b

c

d e

(iii)

x

y

a

b

c

d e

(iv)

x y

a

b

c

d e

(v)

x y

a

b

c

d e

(vi)

x y

a

b

c

d e

(vii)

x y

a

b

c

d e

(viii)

x y

a

b

c

d e

(ix)

Figure 4.4: The graph G has a 5− 5 edge xy, with 3 triangles sitting on the edge xy.

(i) The vertices d and e have no neighbors in S1.

(ii) The vertex d has one neighbor in S1, and e has none.

(iii) The vertices d and e have one common neighbor in S1.

(iv) The vertices d and e have one distinct neighbor in S1.

(v) The vertex d has two neighbors in S1, while e has none.

(vi) The vertex d is the neighbor of a and c, and while e is the neighbor of c.

(vii) The vertex d is the neighbor of a and c, while e is the neighbor of b.

(viii) The vertices d and e are neighbors of a and c both.

(ix) The vertex d is the neighbor of a and c, while e is the neighbor of a and b.
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(b) One of the vertices d or e has one neighbor in S1, and the other has none.

Without loss of generality, suppose a is the neighbor of d, see Figure 4.4(ii). Note that a

cannot have a neighbor in V (G)\H. Otherwise, we have an S2,4 with ay as the backbone.

If the vertices d and e are adjacent, they cannot have a neighbor in V (G)\H. Similarly,

as before, the vertices b and c can have at most one neighbor in V (G)\H each and the

vertices {a, b, c} can form a path of length 2 in S1. Thus, the number of edges deleted

is at most 10 + 2 + 2 + 2 = 16.

(c) The vertices d and e have one neighbor in S1. There are two possibilities. In the

first case, without loss of generality, suppose a is the common neighbor of d and e, see

Figure 4.4(iii). Similarly, as before, a cannot have a neighbor in V (G)\H. If the vertices

d and e are adjacent, they cannot have a neighbor in V (G)\H. The vertices b and c can

have at most one neighbor in V (G)\H each, and the vertices {a, b, c} can form a path

of length 2 in S1. Thus, the number of edges deleted is at most 11 + 2 + 2 + 2 = 17.

Without loss of generality, suppose a is the neighbor of d while c is the neighbor of e,

see Figure 4.4(iv). Similarly, as before, the vertices a and c cannot have a neighbor

in V (G)\H. The vertex b can have at most one neighbor in V (G)\H and the vertices

{a, b, c} can form a path of length 2 in S1. Thus, the number of edges deleted is at most

11 + 2 + 1 + 2 = 16. (If the vertices d and e are adjacent, there can only be a path of

length 1 inside S1. Again, this precision is unnecessary. We skip this in the following

cases also.)

(d) One of the vertices d or e has two neighbors in S1, while the other has none.

Without loss of generality, suppose d is the neighbor of a and c, see Figure 4.4(v).

Similarly, as before, the vertices a and c cannot have a neighbor in V (G)\H. The vertex

b can have at most one neighbor in V (G)\H and the vertices {a, b, c} can form a path

of length 2 in S1. If the vertices d and e are adjacent, they cannot have a neighbor in

V (G)\H. Thus, the number of edges deleted is at most 11 + 2 + 1 + 2 = 16.

(e) One of the vertices d or e has two neighbors in S1, while the other has one

neighbor. There are two possibilities. In the first case, without loss of generality,

suppose d is the neighbor of a and c, and e is the neighbor of c (see Figure 4.4(vi)).

Similarly, as before, the vertices a and c cannot have a neighbor in V (G)\H. The vertex

b can have at most one neighbor in V (G)\H and the vertices {a, b, c} can form a path
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of length 2 in S1. If the vertices d and e are adjacent, they cannot have a neighbor in

V (G)\H. Thus, the number of edges deleted is at most 12 + 2 + 1 + 2 = 17.

In the other case, without loss of generality, assume that d is the neighbor of a and c,

and e is the neighbor of b (see Figure 4.4(vii)). The vertices a, b and c cannot have a

neighbor in V (G)\H, but they can form a path of length 2 in S1. Thus, the number of

edges deleted is at most 12 + 2 + 2 = 16.

(f) Both the vertices d and e have two neighbors in S1. There are two possibilities.

In the first case, without loss of generality, suppose d and e are the neighbors of a and

c both (see Figure 4.4(viii)). Similarly, as before, the vertices a and c cannot have a

neighbor in V (G)\H. The vertex b can have one neighbor in V (G)\H. The vertices

{a, b, c} can form a path of length 2 in S1. If the vertices d and e are adjacent, they

cannot have a neighbor in V (G)\H. Thus, the number of edges deleted is at most

13 + 1 + 2 + 2 = 18.

On the other hand, without loss of generality, assume d is the neighbor of a and c, while

e is the neighbor of a and b (see Figure 4.4(ix)). The vertices a, b and c cannot have a

neighbor in V (G)\H, but they can form a path of length 2 in S1. Thus, the number of

edges deleted is at most 13 + 2 + 2 = 17.

Using the induction hypothesis,

e(G) ≤ e(G−H) + 18 ≤ 8

3
(n− 7) + 18 =

8

3
n.

This completes the proof.

Take x, y ∈ V (G). By the previous claims, if d(x) + d(y) ≥ 10, we are done by induc-

tion. Assume that d(x) + d(y) ≤ 9. Summing it over all the edge pairs in G, we have 9e ≥∑
xy∈E(G) (d(x) + d(y)) =

∑
x∈V (G)(d(x))2 ≥ nd

2
= n(2e

n )2, where d is the average degree in G.

This gives us e ≤ 9
4n ≤

8
3n for n ≥ 1.
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4.5 Planar Turán number of S2,5

Let G be an S2,5-free plane graph on n vertices. Let 12|n. Consider the plane graph consisting of

n
12 disjoint copies of 5-regular maximal planar graphs with 12 vertices, see Figure 4.5. This graph

does not contain an S2,5, since it is a 5−regular graph. Hence, exP(n, S2,4) ≥ 5
2n.

Claim 10. Let G be an S2,5 on n (1 ≤ n ≤ 42) vertices. The number of edges in G is at most 20
7 n.

Proof. Recall that, an n-vertex maximal planar graph contains 3n − 6 edges. Since 3n − 6 ≤ 20
7 n

for n ≤ 42, e(G) ≤ 20
7 n holds for all n, 1 ≤ n ≤ 42.

Figure 4.5: (n/12)-disjoint copies of 5-regular maximal planar graphs with 12 vertices.

Lemma 4.5.1. If G contains a vertex v of degree greater than or equal to 8, then e(G) ≤ 20
7 n.

Proof. Let v ∈ V (G), such that d(v) ≥ 8. It is easy to check that for each u ∈ N(v), d(u) ≤ 2.

Otherwise, we find a copy of S2,5 in G. Delete a vertex u ∈ N(v), then the number of deleted

edges is at most 2. By the induction hypothesis, we get e(G − {u}) ≤ 20
7 (n − 1). Hence, e(G) =

e(G− {u}) + d(u) ≤ 20
7 (n− 1) + 2 ≤ 20

7 n.

Lemma 4.5.2. If G contains a vertex v of degree equal to 7, then e(G) ≤ 20
7 n.

Proof. Let v ∈ V (G), such that d(v) = 7 and let H = N(v) ∪ {v}. It is easy to check that

for each u ∈ N(v), if u is adjacent to any vertex in V (G)\H, then d(u) = 2. Otherwise, G

contains an S2,5. We are done by induction in this case. In the other case, assume that for each

u ∈ N(v), u is not adjacent to any vertex in V (G)\H. Then e(G[H]) ≤ 3 · 8 − 6 = 18. Hence,

e(G) = e(G−H) + e(G[H]) ≤ 20
7 (n− 8) + 18 = 20

7 n. We are done by induction.
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Proof of Theorem 4.1.2(iv). If G contains a vertex of degree at least 7, we are done by Lemmas

4.5.1 and 4.5.2. Hence, we can assume ∆(G) ≤ 6.

x y

a

b

c

d

e

Figure 4.6: The graph G has a 6− 6 edge xy, with 5 triangles sitting on the edge xy.

Claim 11. If G contains a 6− 6 edge, then e(G) ≤ 20
7 n.

Proof. Let xy ∈ E(G) be a 6-6 edge. There are at least 4 triangles sitting on the edge xy, otherwise

G contains an S2,5. We subdivide the cases based on the number of triangles sitting on the edge

xy.

1. There are 5 triangles sitting on the edge xy. Let a, b, c, d and e be the vertices in

G which are adjacent to both x and y (see Figure 4.6). Let S1 = {a, b, c, d, e} and H =

{x, y, a, b, c, d, e}. Delete the vertices in H. The vertices in S1 can have at most one neighbor

in V (G)\H each and can form a path of length 4 in S1. Hence, the number of edges deleted

is at most 11 + 5 + 4 = 20. Using the induction hypothesis, e(G) ≤ e(G − H) + 20 ≤
20
7 (n− 7) + 20 = 20

7 n.

2. There are 4 triangles sitting on the edge xy. Let a, b, c and d be the vertices in G

which are adjacent to both x and y. Let e be the vertex adjacent to x but not adjacent

to y, and f be the vertex adjacent to y but not adjacent to x. Let S1 = {a, b, c, d} and

H = {x, y} ∪ S1 ∪ {e, f}. Delete the vertices in H. The vertices e and f can have at most

one neighbor in V (G)\H each. We distinguish the cases based on the neighbors of e and f

as follows:
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x y

a

b

c

d
e f

(i)

x y

a

b

c

d
e f

(ii)

x y

a

b

c

d
e f

(iii)

x y

a

b

c

d
e f

(iv)

x y

a

b

c

d
e f

(v)

x y

a

b

c

d
e f

(vi)

x y

a

b

c

d
e f

(vii)

x y

a

b

c

d
e f

(viii)

x y

a

b

c

d
e f

(ix)

x y

a

b

c

d
e f

(x)
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Figure 4.7: The graph G has a 6− 6 edge xy, with 4 triangles sitting on the edge xy.

(i) the vertices e and f have no neighbors in S1.

(ii) The vertex e has one neighbor in S1 and f has none.

(iii) The vertices e and f have one common neighbor in S1.

(iv) The vertices e and f have one distinct neighbor in S1.

(v) The vertex e has two neighbors in S1 and f has none.

(vi) The vertex e is the neighbor of a and d, and f is the neighbor of d.

(vii) The vertex e is the neighbor of a and d, and f is the neighbor of b.

(viii) The vertices e and f are neighbors of both a and d.

(ix) The vertex e is the neighbor of a and d, while f is the neighbor of a and b.

(x) The vertex e is the neighbor of a and d, while f is the neighbor of b and c.

(a) The vertices e and f have no neighbors in S1, see Figure 4.7(i). The vertices in

S1 can have at most one neighbor in V (G)\H each and can form a path of length 3 in

S1. If the vertices e and f are adjacent, then they cannot have a neighbor in V (G)\H.

Otherwise, we have an S2,5 with ex (or fy) as the backbone. Thus, the number of edges

deleted is at most 11 + 3 + 4 + 2 = 20.

(b) One of the vertices e or f has one neighbor in S1, and the other has none.

Without loss of generality, suppose a and e are adjacent (see Figure 4.7(ii)), then a cannot

have a neighbor in V (G)\H. Otherwise, we have an S2,5 with ay as the backbone. If the

vertices e and f are adjacent, then they cannot have a neighbor in V (G)\H. Similarly,

as before, the vertices b, c and d can have at most one neighbor in V (G)\H each and the

vertices {a, b, c, d} can form a path of length 3 in S1. Thus, the number of edges deleted

is at most 12 + 3 + 3 + 2 = 20.

(c) The vertices e and f have one neighbor in S1. There are two possibilities. In the

first case, without loss of generality, suppose a is the common neighbor of e and f , see

Figure 4.7(iii). Similarly, as before, a cannot have a neighbor in V (G)\H. If the vertices

e and f are adjacent, they cannot have a neighbor in V (G)\H. The vertices b, c and d

can have at most one neighbor in V (G)\H each, and the vertices {a, b, c, d} can form a

83

C
E

U
eT

D
C

ol
le

ct
io

n



path of length 3 in S1. Thus, the number of edges deleted is at most 13 + 3 + 3 + 2 = 21.

Without loss of generality, suppose a is the neighbor of e while d is the neighbor of f ,

see Figure 4.7(iv). Similarly, as before, the vertices a and d cannot have a neighbor in

V (G)\H. The vertex b and c can have at most one neighbor in V (G)\H each, and the

vertices {a, b, c, d} can form a path of length 3 in S1. If the vertices e and f are adjacent,

then they cannot have a neighbor in V (G)\H. Thus, the number of edges deleted is at

most 13 + 3 + 2 + 2 = 20. (In fact, it can be shown that if the vertices w and f are

adjacent, there can only be a 2-path inside S1. However, this precision is unnecessary.

We skip this in the following cases also.)

(d) One of the vertices e or f has two neighbors in S1, while the other has

none. Without loss of generality, suppose e is the neighbor of a and d, see Figure

4.7(v). Similarly, as before, the vertices a and d cannot have a neighbor in V (G)\H.

The vertices b and c can have at most one neighbor in V (G)\H each, and the vertices

{a, b, c, d} can form a path of length 3 in S1. If the vertices e and f are adjacent, then

they cannot have a neighbor in V (G)\H. Thus, the number of edges deleted is at most

13 + 3 + 2 + 2 = 20.

(e) One of the vertices e or f has two neighbors in S1, while the other has one

neighbor. There are two possibilities. In the first case, without loss of generality,

suppose e is the neighbor of a and d, and f is the neighbor of d (see Figure 4.7(vi)).

Similarly, as before, the vertices a and d cannot have a neighbor in V (G)\H. The vertices

b and c can have at most one neighbor in V (G)\H each, and the vertices {a, b, c, d} can

form a path of length 3 in S1. If the vertices e and f are adjacent, then they cannot have

a neighbor in V (G)\H. Thus, the number of edges deleted is at most 14+3+2+2 = 21.

In the other case, without loss of generality, assume that e is the neighbor of a and d,

and f is the neighbor of b (see Figure 4.7(vii)). The vertices a, b and d cannot have a

neighbor in V (G)\H, but they along with c can form a path of length 3 in S1. The

vertex c can have at most one neighbor in V (G)\H. Thus, the number of edges deleted

is at most 14 + 3 + 1 + 2 = 20.

(f) Both the vertices e and f have two neighbors in S1. There are three possibilities.

In the first case, without loss of generality, suppose e and f are neighbors of both a and

d, see Figure 4.7(viii). Similarly, as before, the vertices a and d cannot have a neighbor
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in V (G)\H. The vertices b and c can have at most one neighbor in V (G)\H each. The

vertices {a, b, c, d} can form a path of length 3 in S1. If the vertices e and f are adjacent,

then they cannot have a neighbor in V (G)\H. Thus, the number of edges deleted is at

most 15 + 3 + 2 + 2 = 22.

On the other hand, without loss of generality, assume e is the neighbor of both a and

d, while f is the neighbor of a and b (see Figure 4.7(ix)). The vertices a, b and d cannot

have a neighbor in V (G)\H, but they along with c can form a path of length 3 in S1.

The vertex c can have at most one neighbor in V (G)\H each. Thus, the number of edges

deleted is at most 15 + 3 + 1 + 2 = 21.

In the last case, without loss of generality, assume e is the neighbor of a and d both,

while f is the neighbor of b and c (see Figure 4.7(x)). The vertices a, b, c and d cannot

have a neighbor in V (G)\H, but they can form a path of length 3 in S1. Thus, the

number of edges deleted is at most 15 + 3 + 2 = 20.

Using the induction hypothesis,

e(G) ≤ e(G−H) + 22 ≤ 20

7
(n− 8) + 22 =

20

7
n− 6

7
.

This completes the proof.

Consider x, y ∈ V (G). By the previous claims, if d(x) + d(y) ≥ 12, we are done by induction.

Assume that d(x) + d(y) ≤ 11. Summing it over all the edge pairs in G, we have 11e(G) ≥∑
xy∈E(G) (d(x) + d(y)) =

∑
x∈V (G)(d(x))2 ≥ nd

2
= n(2e(G)

n )2, where d is the average degree in G.

This gives us e(G) ≤ 11
4 n ≤

20
7 n, for n ≥ 1.

4.6 Planar Turán number of S3,3

We show that for infinitely many integer values of n, we can construct an n-vertex S3,3-free plane

graph Gn with 5
2n−5 edges. This is to verify that the bound we have is best up to the linear term.

Consider a plane graph Gn which is obtained by joining every vertex of the maximal matching on

n − 2 vertices with two vertices. Constructions of Gn when n is even or odd is shown in Figure
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4.8. Each edge in Gn has a degree 3 end vertex. Thus, Gn is an S3,3-free planar graph. Moreover,

e(Gn) =
⌊

5
2n
⌋
− 5.

(a) n is even. (b) n is odd.

Figure 4.8: Extremal Constructions for the lower bound of planar Turán number of S3,3.

Claim 12. Let G be an S3,3 on n(1 ≤ n ≤ 8) vertices. The number of edges in G is at most 5
2n−2.

Proof. Recall that, an n-vertex maximal planar graph contains 3n−6 edges. Since 3n−6 ≤ 5
2n−2

for n ≤ 8, e(G) ≤ 5
2n− 2 holds for all n, 1 ≤ n ≤ 8.

Let u be a vertex in G with degree at most 2. By the induction hypothesis, we get e(G−{u}) ≤
20
7 (n− 1). Hence, e(G) = e(G− {u}) + d(u) ≤ 5

2(n− 1)− 2 + 2 < 5
2n− 2. Similarly, if we have a

3-3 edge in G, we can finish the proof by induction. From now on, we may assume that G contains

no vertex of degree at most 2 and no 3-3 edge. The following claims deal with the different cases

of degree pairs in G:

Claim 13. No vertex in G with a degree at least 7 is adjacent to a vertex of degree at least 4.

Proof. Suppose not. Let xy be an edge in G such that d(x) ≥ 7 and d(y) ≥ 4. Obviously, there are

three vertices in V (G)\{x}, say y1, y2 and y3, which are adjacent to y. Since |N(x)\{y}|≥ 6, there

are three vertices x1, x2 and x3, not in {y, y1, y2, y3} which are adjacent to x. This implies we got

an S3,3 in G with backbone xy and leaf-sets {x1, x2, x3} and {y1, y2, y3}, respectively, which is a

contradiction. This completes the proof of Claim 13.

Claim 14. If there is a 6-6 edge in G, then e(G) ≤ 5
2n− 2.
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Proof. Let xy ∈ E(G) be a 6-6 edge. Since G is an S3,3-free plane graph, xy must be contained in

5 triangles, see Figure 4.9. Let a, b, c, d and e be the vertices in G which are adjacent to both x

x y

a

b

c

d

e

Figure 4.9: The graph G has a 6− 6 edge xy.

and y. Let S1 = {a, b, c, d, e} and H = {x, y, a, b, c, d, e}. Delete the vertices in H. Suppose a has

two neighbors in V (G)\H. We immediately get an S3,3 with xa or ya as the backbone. Thus, any

vertex in the set S1 can have at most 1 neighbor in V (G)\H. If there are no edges between the

vertices in S1, we deleted at most 11 + 5 = 16 edges. Assume that there is an edge between the

vertices in S1, say ab. If a (or b) has a neighbor in V (G)\H, xa (or xb) is the backbone of an S3,3.

Similarly, for the other edges in S1, both the vertices cannot have a neighbor in V (G)\H. Thus, if

there is an edge joining any two vertices in S1, the number of edges deleted is at most 11 + 4 = 15.

Using the induction hypothesis,

e(G) ≤ e(G−H) + 16 ≤ 5

2
(n− 7)− 2 + 16 =

5

2
n− 3.5 <

5

2
n− 2.

This completes the proof.

Claim 15. If there is a 5-6 edge in G, then e(G) ≤ 5
2n− 2.

Proof. Let xy be a 5-6 edge in G. Since G is an S3,3-free plane graph, xy must be contained

in 4 triangles, see Figure 4.10. Let a, b, c and d be the vertices in G which are adjacent to both

x and y. Let e be the vertex adjacent to y but not adjacent to x. Let S1 = {a, b, c, d} and

H = {x, y, a, b, c, d, e}. Delete the vertices in H. Any vertex in S1 can have at most 1 neighbor in

V (G)\H. If there is an edge joining any two vertices in S1, say ab. Similarly, as before, the vertices

87

C
E

U
eT

D
C

ol
le

ct
io

n



x y

a

b

c

d
e

(i)

x y

a

b

c

d
e

(ii)

x y

a

b

c

d
e

(iii)

Figure 4.10: The graph G has a 5− 6 edge xy.

(i) The vertex e has no neighbors in S1.

(ii) The vertex e has one neighbor in S1.

(iii) The vertex e has two neighbors in S1.

a and b cannot have a neighbor in V (G)\H. We further distinguish the cases based on the number

of edges from e as follows:

1. The vertex e has no neighbors in S1, see Figure 4.10(i). Clearly, the vertex e can have

at most 2 neighbors in V (G)\H. If there are no edges between the vertices in S1, we deleted

at most 10 + 2 + 4 = 16 edges. If there is an edge joining any two vertices in S1, the number

of edges deleted is at most 10 + 2 + 3 = 15.

2. The vertex e has one neighbor in S1. Without loss of generality, suppose a is the neighbor

of e, see Figure 4.10(ii). The vertex e can have at most one neighbor in V (G)\H. If the vertex

a has a neighbor in V (G)\H, we have an S3,3 with xa as the backbone. If there are no edges

between the vertices in S1, we have deleted at most 11 + 3 + 1 = 15 edges. If there is an edge

joining any two vertices in S1, the number of edges deleted is at most 11 + 3 + 1 = 15.

3. The vertex e has two neighbors in S1. Without loss of generality, suppose e is the

neighbor of a and d, see Figure 4.10(iii). The vertex e cannot have a neighbor in V (G)\H,

otherwise we have an S3,3 with ye as the backbone. If either a or d has a neighbor in V (G)\H,

we have an S3,3 with xa or xd as the backbone, respectively. Suppose there is no edge between

the vertices in S1. The total number of edges deleted is at most 12 + 2 = 14. Suppose a and
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b are adjacent, then b cannot have a neighbor in V (G)\H. Similarly, for the other edges in

S1 except ad, which is still possible without any extra restrictions. If there is an edge joining

any two vertices in S1, the total number of edges deleted is at most 12 + 3 = 15.

Thus, by induction

e(G) = e(G−H) + 16 ≤ 5

2
(n− 7)− 2 + 16 <

5

2
n− 2,

and we are done.

Claim 16. If there is a 4-6 edge in G, then e(G) ≤ 5
2n− 2.

Proof. Let xy be a 4− 6 edge in G. Since G is an S3,3-free plane graph, xy must be contained in 3

triangles, see Figure 4.11. Let a, b and c be the vertices in G which are adjacent to both x and y.

Let d and e be the vertices adjacent to y but not to x. Let S1 = {a, b, c} and H = {x, y, a, b, c, d, e}.

Delete the vertices in H. The vertices d and e can have at most two neighbors in V (G)\H each.

The vertices in S1 can have at most one neighbor in V (G)\H each. If there is an edge joining

any two vertices in S1, say ab. Similarly, as before, the vertices a and b cannot have a neighbor in

V (G)\H. We distinguish the cases based on the neighbors of d and e as follows:

1. The vertices d and e have no neighbors in S1, see Figure 4.11(i). If the vertices d and

e are adjacent, they can have at most one neighbor in V (G)\H each. Otherwise, we have an

S3,3 with dy (or ey) as the backbone. If there are no edges between the vertices in S1, the

number of edges deleted is at most 9 + 3 + 4 = 16. If there is an edge joining any two vertices

in S1, the number of edges deleted is at most 9 + 2 + 4 = 15.

2. One of the vertices d or e has one neighbor in S1, while the other has none.

Without loss of generality, suppose the vertices a and d are adjacent (see Figure 4.11(ii)).

The vertex a cannot have a neighbor in V (G)\H, and d can have at most one neighbor in

V (G)\H. If the vertices d and e are adjacent, then d cannot have a neighbor in V (G)\H and

e can have at most one neighbor in V (G)\H. Otherwise, we have an S3,3 with dy (or ey) as

the backbone. If there are no edges between the vertices in S1, the number of edges deleted
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x y

a

b
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d

e

(i)

x y

a

b

c

d

e

(ii)

x y

a

b

c

d

e

(iii)

x y

a

b

c

d

e

(iv)

x y

a

b

c

d

e

(v)

x y

a

b

c

d

e

(vi)

x y

a

b

c

d

e

(vii)

x y

a

b

c

d

e

(viii)

Figure 4.11: The graph G has a 4− 6 edge xy.

(i) The vertices d and e have no neighbors in S1.

(ii) The vertex d has one neighbor in S1, and f has none.

(iii) Both the vertices d and e have one common neighbor in S1.

(iv) The vertices d and e have one distinct neighbor in S1

(v) The vertex d has two neighbors in S1, while e has none.

(vi) The vertex d is the neighbor of a and c, while e is the neighbor of c.

(vii) The vertex d is the neighbor of a and c, while e is the neighbor of b.

(viii) Both the vertices d and e have two neighbors in S1.
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is at most 10 + 2 + 3 = 15. If there is an edge joining any two vertices in S1, the number of

edges deleted is at most 10 + 2 + 3 = 15.

3. Both the vertices d and e have one neighbor in S1. There are two possibilities. In the

first case, without loss of generality, suppose a is the common neighbor of d and e (see Figure

4.11(iii)). Similarly, as before, a cannot have a neighbor in V (G)\H, and d and e can have at

most one neighbor in V (G)\H each. If the vertices d and e are adjacent, they cannot have a

neighbor in V (G)\H. If there are no edges between the vertices in S1, the number of edges

deleted is at most 11 + 2 + 2 = 15. If there is an edge joining any two vertices in S1, the

number of edges deleted is at most 11 + 2 + 2 = 15.

Without loss of generality, suppose a is the neighbor of d while c is the neighbor of e (see Figure

4.11(iv)). Similarly, as before, the vertices a and c cannot have a neighbor in V (G)\H, and

d and e can have at most one neighbor in V (G)\H each. If the vertices d and e are adjacent,

they cannot have a neighbor in V (G)\H. If there are no edges between the vertices in S1, the

number of edges deleted is at most 11 + 1 + 2 = 14. If a and b are adjacent, then b does not

have a neighbor in V (G)\H. Similarly, for the edge bc. The vertices a and c can be adjacent

without any constraints. Thus, if there is an edge joining any two vertices in S1, the number

of edges deleted is at most 11 + 2 + 2 = 15.

4. One of the vertices d or e has two neighbors in S1, while the other has none.

Without loss of generality, suppose d is the neighbor of a and c, while e has no neighbors

in S1 (see Figure 4.11(v)). The vertex d cannot have a neighbor in V (G)\H. Similarly, as

before, the vertices a and c cannot have a neighbor in V (G)\H, whereas e can have at most

two neighbors in V (G)\H. If d and e are adjacent, then e can have at most one neighbor in

V (G)\H. If there are no edges between the vertices in S1, the number of edges deleted is at

most 11 + 1 + 2 = 14. If a and b are adjacent, then b does not have a neighbor in V (G)\H.

Similarly, for the edge bc. The vertices a and c can be adjacent without any constraints.

Thus, if there is an edge joining any two vertices in S1, the number of edges deleted is at

most 11 + 2 + 2 = 15.

5. One of the vertices d or e has two neighbors in S1, while the other has one. There

are two possibilities. In the first case, without loss of generality, suppose d is the neighbor of

a and c, while e is the neighbor of c (see Figure 4.11(vi)). Similarly, as before, the vertices
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a, c and d cannot have a neighbor in V (G)\H, whereas e can have at most one neighbor in

V (G)\H. If d and e are adjacent, then e cannot have a neighbor in V (G)\H. If there are no

edges between the vertices in S1, the number of edges deleted is at most 12 + 1 + 1 = 14. In

the other case, the vertices a and c can be adjacent without any constraints. Thus, if there is

an edge joining any two vertices in S1, the number of edges deleted is at most 12+2+1 = 15.

Without loss of generality, suppose d is the neighbor of a and c, while e is the neighbor of b

(see Figure 4.11(vii)). Similarly, as before, the vertices a, b, c and d cannot have a neighbor

in V (G)\H, whereas e can have at most one neighbor in V (G)\H. If d and e are adjacent,

then e cannot have a neighbor in V (G)\H. If there are no edges between the vertices in S1,

the number of edges deleted is at most 12 + 1 = 13. In the other case, the vertices a, b and

c can be adjacent without any constraints. Hence, the number of edges deleted is at most

12 + 2 + 1 = 15.

6. Both the vertices d and e have two neighbors in S1. Without loss of generality, suppose

d is the neighbor of a and c, while e is the neighbor of b and c (see Figure 4.11(viii)). Similarly,

as before, the vertices a, b, c, d and e cannot have a neighbor in V (G)\H. The vertex c can be

adjacent to a and b without any constraints. Hence, the number of edges deleted is at most

13 + 2 = 15.

Thus, by induction

e(G) = e(G−H) + 16 ≤ 5

2
(n− 7)− 2 + 16 ≤ 5

2
n− 2,

and we are done.

The following lemma completes the proof of the Theorem 4.1.2(v):

Lemma 4.6.1. Let G be an S3,3-free plane graph on n vertices, then e(G) ≤ 5
2n− 2.

Proof. Let A = {x ∈ V (G) | d(x) = 3}, B = {x ∈ V (G) | d(x) = 4 or d(y) = 5} and C = {x ∈

V (G) | d(x) ≥ 6}.

Since there is no 3-3 edge, the vertices in A are independent. From Claims 15 and 16, there is

no edge between the sets B and C. Moreover, C is independent by Claim 14. The distribution of
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the edges in G is shown in Figure 4.12.

AB C

Figure 4.12: A graph showing the distribution of edges in G.

Let |A|= a, |B|= b and |C|= c. Let x be the number of edges between the sets A and B, i.e.,

e(A,B) = x. Since the maximum degree in B is 5, we have 2e(G[B]) =
∑

v∈B d(v) − x which

implies e(G) ≤ 5b−x
2 . Each vertex in A has degree 3 and the vertices in A are independent, hence

e(A,C) = 3a− x. Thus, the number of edges in G is

e(G) = e(G[B]) + e(A,B) + e(A,C) ≤ 5b− x
2

+ x+ 3a− x =
5

2
a+

5

2
b+

a− x
2

.

On the other hand, since G is a plane graph and the graph induced by the vertices in A and the

vertices in C is bipartite, e(A,C) = 3a−x ≤ 2(a+c)−4. This implies that a−x
2 ≤ c−2 = 5

2c−
3
2c−2

for all c ≥ 0. Therefore, using the inequality in (4.1), we get

e(G) ≤ 5

2
a+

5

2
b+

5

2
c−

(
3

2
c+ 2

)
=

5

2
(a+ b+ c)−

(
3

2
c+ 2

)
≤ 5

2
n− 2. (4.1)

The last inequality in (4.1) holds (and hence Lemma 4.6.1) if a 6= 0 and c 6= 0. To finish the proof,

we distinguish the following two cases:

Case 1: a 6= 0 and c = 0. Observe that e(G) ≤ 5(n−a)+3a
2 = 5

2n − a. If a ≥ 2, then we are

done. Thus, a = 1. Let the number of degree 4 vertices in G be k. Hence, e(G) = 5(n−k−1)+4k+3
2 =

5
2n−

k
2 − 1. If k ≥ 2, then we are done.
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Let the number of degree 4 vertices in G be at most 1. Let A = {x} and N(x) = {x1, x2, x3}.

Let d(xi) = 5, for every i ∈ {1, 2, 3}. Considering that there is at most one degree 4 vertex in G, it

is easy to find a degree 5 vertex in ∪3
i=1N(xi), such that all its 5 neighboring vertices are of degree

5. Moreover, the same property holds if one vertex in N(x) is of degree 4. Let v be a degree 5

vertex in G, such that all its 5 neighboring vertices are of degree 5. Let N(v) = {x1, x2, x3, x4, x5},

such that a plane drawing of G results in a clockwise alignment of the vertices x1, x2, x3, x4, x5

around v. Since G is an S3,3-free plane graph, every 5-5 edge in G must be contained in at least

3 triangles. Thus, an edge x1v must be contained in at least 3 triangles. This implies, x1 must

be adjacent to at least one vertex in {x3, x4}. Without loss of generality, assume x1 and x3 are

adjacent. Then the 5-5 edge x2v is contained in at most 2 triangles, which results in an S3,3 in G

with x2v as the backbone.

Case 2: a = 0. Let the number of degree 4 vertices in G be k. Thus, e(G) = 5(n−k)+4k
2 = 5

2n−
k
2 .

If the number of degree 4 vertices is at least 4, then e(G) ≤ 5
2n− 2 and we are done. Now assume

that the number of degree 4 vertices in G is at most 3. Notice that, v(G) ≥ 8. Otherwise, taking

any maximal planar graph on n vertices, it can be checked that 3n− 6 < 5
2n− 2.

Let v be a degree 5 vertex in G, and N(v) = {x1, x2, x3, x4, x5}. At least two vertices in N(v)

must be of degree 5. Otherwise, the number of degree 4 vertices is at least 4 and we are done. Let

the plane drawing of G result in a clockwise alignment of the vertices x1, x2, x3, x4, x5 around v.

There are exactly 2 vertices in N(v), which are of degree 5. Indeed, suppose that the number of

degree 5 vertices is at least 3. We can assume that for some i ∈ [5], d(xi) = d(xi+1) = 5. Without

loss of generality, assume that these vertices are x1 and x2. Since x1v and x2v are 5-5 edges, they

must be contained in at least 3 triangles. Thus, both x1 and x2 must be adjacent to x4. On the

other hand, it is easy to see that x3v and x5v are 4-5 edges. Thus, the vertex x3 must be adjacent

to x2 and x4. Similarly, the vertex x5 must be adjacent to x1 and x4. Since d(x3) = 4, there must

be a vertex x6, such that x3x6 ∈ E(G). If d(x6) = 5, then x6 must be adjacent to x4. This is

impossible, as d(x4) = 5. Hence, d(x6) = 4. Similarly, we have another vertex x7 adjacent to x5

and d(x7) = 4. This is a contradiction, as we found 4 vertices of degree 4, namely x3, x5, x6 and x7.

Thus, we can assume that only two vertices in N(v) are of degree 5. Moreover, the vertices are

not consecutive with respect to the alignment in the clockwise direction. Without loss of generality,
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assume that the vertices are x2 and x4. It can be checked that the vertices x2 and x4 are adjacent.

Since x1v and x5v are 4-5 edges, then the edges x1x2, x1x5 and x5x4 are in G. Since d(x3) = 4,

there must exist a vertex x6 adjacent to the vertex x3. If this vertex is of degree 4, then it is a

contradiction as we found 4 vertices of degree 4, namely x1, x3, x5 and x6. Hence, d(x6) = 5 and the

edges x2x6 and x4x6 are in G. Since d(x1) is 4, there must exist a vertex x7 such that x1x7 ∈ E(G).

If d(x7) is 5, then x7 is adjacent to x2 and d(x2) ≥ 6, which is a contradiction. Hence, x7 must be a

vertex of degree 4. This is a contradiction, as we found 4 vertices of degree 4, namely x1, x3, x5 and

x7. This completes the proof of Claim 4.6.1, and subsequently the proof of Theorem 4.1.2(v).

4.7 Planar Turán number of S3,4

Proof of the Theorem 4.1.2(vi). Let G be an n-vertex S3,4-free plane graph. Since S3,4 contains 9

vertices, a maximal planar graph with n ≤ 8 vertices, does not contain an S3,4. Let 8|n. Consider

the plane graph consisting of n
8 disjoint copies of maximal planar graphs on 8 vertices. This graph

does not contain an S3,4. Hence, exP(n, S3,4) ≥ 9
4n.

Claim 17. Let G be an S3,4 on n (1 ≤ n ≤ 42) vertices. The number of edges in G is at most 20
7 n.

Proof. Recall that, an n-vertex maximal planar graph contains 3n − 6 edges. Since 3n − 6 ≤ 20
7 n

for n ≤ 42, e(G) ≤ 20
7 n holds for all n, 1 ≤ n ≤ 42.

The following claims deal with the different cases of degree pairs in G:

Claim 18. No vertex in G with a degree at least 8 is adjacent to a vertex of degree at least 4.

Proof. Suppose not. Let xy be an edge in G such that d(x) ≥ 8 and d(y) ≥ 4. Obviously, there are

three vertices in V (G)\{x}, say y1, y2 and y3, which are adjacent to y. Since |N(x)\{y}|≥ 7, there

are four vertices x1, x2, x3 and x4, not in {y, y1, y2, y3} which are adjacent to x. This implies we

got an S3,4 in G with backbone xy and leaf-sets {x1, x2, x3, x4} and {y1, y2, y3}, respectively, which

is a contradiction. This completes the proof.

Claim 19. If there is a 7-7 edge in G, then e(G) ≤ 20
7 n.
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x y

a

b

c

d

e

f

Figure 4.13: The graph G has a 7− 7 edge xy.

Proof. Let xy ∈ E(G) be a 7-7 edge. Since G is an S3,4-free plane graph, xy must be contained

in 6 triangles. Let a, b, c, d, e and f be the vertices in G which are adjacent to both x and y,

see Figure 4.13(i). Let S1 = {a, b, c, d, e, f} and H = {x, y, a, b, c, d, e, f}. Delete the vertices in

H. Assume a has two neighbors in V (G)\H. We immediately get an S3,4 with xa or ya as the

backbone. Thus, any vertex in the set S1 can have at most 1 neighbor in V (G)\H. If there are

no edges between the vertices in S1, we deleted at most 13 + 6 = 19 edges. Assume that there is

an edge between the vertices in S1, say ab. If a (or b) has a neighbor in V (G)\H, then xa (or xb)

is the backbone of an S3,3. Similarly, for the other edges in S1, both the vertices cannot have a

neighbor in V (G)\H. Thus, if there is an edge joining any two vertices in S1, the number of edges

deleted is at most 13 + 5 = 18. By the induction hypothesis, we get e(G−H) ≤ 20
7 (n− 8). Hence,

e(G) = e(G−H) + 19 ≤ 20
7 (n− 8) + 19 ≤ 20

7 n.

Claim 20. If there is a 6-7 edge in G, then e(G) ≤ 20
7 n.

Proof. Let xy ∈ E(G) be a 6-7 edge. Since G is an S3,4-free plane graph, xy must be contained

in 5 triangles. Let a, b, c, d and e be the vertices in G which are adjacent to both x and y. Let

f be the vertex adjacent to y but not to x, see Figure 4.14. Let S1 = {a, b, c, d, e} and H =

{x, y, a, b, c, d, e, f}. Delete the vertices in H. Any vertex in S1 can have at most 1 neighbor in

V (G)\H. If there is an edge joining any two vertices in S1, say ab. Similarly, as before, the vertices
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x y

a

b

c

d

e f

(i)

x y

a

b

c

d

e f

(ii)

x

y

a

b

c

d

e f

(iii)

Figure 4.14: The graph G has a 6− 7 edge xy.

(i) The vertex f has no neighbors in S1.

(ii) The vertex f has one neighbor in S1.

(iii) The vertex f has two neighbors in S1.

a and b cannot have a neighbor in V (G)\H. We further distinguish the cases based on the number

of edges from f as follows:

1. The vertex f has no neighbors in S1, see Figure 4.14(i). Clearly, the vertex f can have

at most 2 neighbors in V (G)\H. If there are no edges between the vertices in S1, we deleted

at most 12 + 2 + 5 = 19 edges. If there is an edge joining any two vertices in S1, the number

of edges deleted is at most 12 + 2 + 4 = 18.

2. The vertex f has one neighbor in S1. Without loss of generality, suppose a is the

neighbor of f , see Figure 4.14(ii). The vertex f can have at most one neighbor in V (G)\H. If

the vertex a has a neighbor in V (G)\H, we have an S3,4 with xa as the backbone. If there are

no edges between the vertices in S1, we have deleted at most 13+4+1 = 18 edges. If there is

an edge joining any two vertices in S1, the number of edges deleted is at most 13+4+1 = 18.

3. The vertex f has two neighbors in S1. Without loss of generality, suppose f is the

neighbor of a and e, see Figure 4.14(iii). The vertex f cannot have a neighbor in V (G)\H,

otherwise we have an S3,4 with yf as the backbone. If either a or e has a neighbor in V (G)\H,

we have an S3,4 with xa or xe as the backbone, respectively. Suppose there is no edge between
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the vertices in S1. The total number of edges deleted is at most 14 + 3 = 17. Suppose a and

b are adjacent, then b cannot have a neighbor in V (G)\H. Similarly, for the other edges in

S1 except ad, which is still possible without any extra restrictions. If there is an edge joining

any two vertices in S1, the total number of edges deleted is at most 14 + 4 = 18.

Thus, by induction

e(G) = e(G−H) + 19 ≤ 20

7
(n− 8) + 19 <

20

7
n,

and we are done.

Claim 21. If there is a 5-7 edge in G, then e(G) ≤ 20
7 n.

Proof. Let xy be a 5 − 7 edge in G. Since G is an S3,4-free plane graph, xy must be contained

in 4 triangles. Let a, b, c and d be the vertices in G which are adjacent to both x and y. Let

e and f be the vertices adjacent to y but not to x, see Figure 4.15. Let S1 = {a, b, c, d} and

H = {x, y, a, b, c, d, e, f}. Delete the vertices in H.

The vertices e and f can have at most two neighbors in V (G)\H each. The vertices in S1 can

have at most one neighbor in V (G)\H each. If there is an edge joining any two vertices in S1, say

ab. Similarly, as before, the vertices a and b cannot have a neighbor in V (G)\H. We distinguish

the cases based on the neighbors of e and f as follows:

1. The vertices e and f have no neighbors in S1, see Figure 4.15(i)). If the vertices e and

f are adjacent, they can have at most one neighbor in V (G)\H each. Otherwise, we have

an S3,4 with ey (or fy) as the backbone. If there are no edges between the vertices in S1,

the number of edges deleted is at most 11 + 4 + 4 = 19. If there is an edge joining any two

vertices in S1, the number of edges deleted is at most 11 + 3 + 4 = 18.

2. One of the vertices e or f has one neighbor in S1, while the other has none.

Without loss of generality, suppose e and a are adjacent (see Figure 4.15(ii)). The vertex a

cannot have a neighbor in V (G)\H, and e can have at most one neighbor in V (G)\H. If the

vertices e and f are adjacent, then e cannot have a neighbor in V (G)\H and f can have at

most one neighbor in V (G)\H. If there are no edges between the vertices in S1, the number
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Figure 4.15: The graph G has a 5− 7 edge xy.

(i) The vertices e and f have no neighbors in S1.

(ii) The vertex e has one neighbor in S1, and f has none.

(iii) Both the vertices e and f have one common neighbor in S1.

(iv) The vertices e and f have one neighbor in S1 and they are distinct.

(v) The vertex e has two neighbors in S1, while f has none.

(vi) The vertex e is the neighbor of a and d, while f is the neighbor of d.

(vii) The vertex e is the neighbor of a and d, while f is the neighbor of c.

(viii) The vertex e is the neighbor of a and d, while f is the neighbor of c and d.

(ix) The vertex e is the neighbor of a and d, while f is the neighbor of b and c.

of edges deleted is at most 12 + 3 + 3 = 18. If there is an edge joining any two vertices in S1,

the number of edges deleted is at most 12 + 3 + 3 = 18.

3. Both the vertices e and f have one neighbor in S1. There are two possibilities. In the

first case, without loss of generality, suppose a is the common neighbor of e and f (see Figure

4.15(iii)). Similarly, as before, the vertex a cannot have a neighbor in V (G)\H, and e and f

can have at most one neighbor in V (G)\H each. If the vertices e and f are adjacent, e and f

have no neighbors in V (G)\H. If there are no edges between the vertices in S1, the number

of edges deleted is at most 13 + 3 + 2 = 18. If there is an edge joining any two vertices in S1,

the number of edges deleted is at most 13 + 3 + 2 = 18.

Without loss of generality, suppose a is the neighbor of e and d is the neighbor of f (see Figure

4.15(iv)). Similarly, as before, the vertices a and d cannot have a neighbor in V (G)\H, and

e and f can have at most one neighbor in V (G)\H each. If the vertices e and f are adjacent,

then they have no neighbor in V (G)\H. If there are no edges between the vertices in S1, the

number of edges deleted is at most 13 + 2 + 2 = 17. If a and b are adjacent, then b does not

have a neighbor in V (G)\H. Similarly, for the other edges in S1, except ad. The vertices a

and d can be adjacent without any constraints. Thus, the number of edges deleted is at most

13 + 3 + 2 = 18.
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4. One of the vertices e or f has two neighbors in S1, while the other has none.

Without loss of generality, suppose e is the neighbor of a and d, while f has no neighbors

in S1 (see Figure 4.15(v)). The vertex e cannot have a neighbor in V (G)\H. Similarly, as

before, the vertices a and d cannot have a neighbor in V (G)\H, whereas f can have at most

two neighbors in V (G)\H. If e and f are adjacent, then f can have at most one neighbor in

V (G)\H. If there are no edges between the vertices in S1, the number of edges deleted is at

most 13 + 2 + 2 = 17. If a and b are adjacent, then b does not have a neighbor in V (G)\H.

Similarly, for the other edges in S1, except ad. The vertices a and d can be adjacent without

any constraints. Hence, the number of edges deleted is at most 13 + 3 + 2 = 18.

5. One of the vertices e or f has two neighbors in S1, while the other has one. There

are two possibilities. In the first case, without loss of generality, suppose e is the neighbor of

a and d, while f is the neighbor of d (see Figure 4.15(vi)). Similarly, as before, the vertices

a, d and e cannot have a neighbor in V (G)\H, whereas f can have at most one neighbor in

V (G)\H. If e and f are adjacent, then f cannot have a neighbor in V (G)\H. If there are

no edges between the vertices in S1, the number of edges deleted is at most 14 + 2 + 1 = 17.

In the other case, the vertices a and d can be adjacent without any constraints. Hence, the

number of edges deleted is at most 14 + 3 + 1 = 18.

Without loss of generality, suppose e is the neighbor of a and d, while f is the neighbor of c

(see Figure 4.15(vii)). Similarly, as before, the vertices a, c, d and e cannot have a neighbor in

V (G)\H, whereas f can have at most one neighbor in V (G)\H. If there are no edges between

the vertices in S1, the number of edges deleted is at most 14 + 1 + 1 = 16. In the other case,

the vertices a, c and d can be adjacent without any constraints. Hence, the number of edges

deleted is at most 14 + 3 + 1 = 18.

6. Both the vertices e and f have two neighbors in S1. There are two possibilities. In

the first case, without loss of generality, suppose e is the neighbor of a and d, while f is the

neighbor of c and d (see Figure 4.15(viii)). Similarly, as before, the vertices a, c, d, e and f

cannot have a neighbor in V (G)\H. If there are no edges between the vertices in S1, the

number of edges deleted is at most 15 + 1 = 16. In the other case, the vertices a, c and d can

be adjacent without any constraints. Thus, the number of edges deleted is 15 + 3 = 18.

Without loss of generality, suppose e is the neighbor of a and d, while f is the neighbor of
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b and c (see Figure 4.15(ix)). Similarly, as before, the vertices a, b, c, d, e and f cannot have

a neighbor in V (G)\H. The vertices a, b, c and d can be a path of length 3 without any

constraints. In this case, the number of edges deleted is 15 + 3 = 18.

Thus, by induction

e(G) = e(G−H) + 19 ≤ 20

7
(n− 8) + 19 <

20

7
n,

and we are done.

Claim 22. If there is a 6-6 edge in G, then e(G) ≤ 20
7 n.

Proof. Let xy ∈ E(G) be a 6-6 edge. There are at least 4 triangles sitting on the edge xy, otherwise

G contains an S3,4. We subdivide the cases based on the number of triangles sitting on the edge

xy.

1. There are 5 triangles sitting on the edge xy. Let a, b, c, d and e be the vertices in G which

are adjacent to both x and y, see Figure 4.6. Let S1 = {a, b, c, d, e}, and H = S1 ∪ {x, y}.

Delete the vertices in H. The vertices in S1 can have at most one neighbor in V (G)\H

each and can form a path of length 4 within S1. Hence, the number of edges deleted is

11 + 5 + 4 = 20. By the induction hypothesis, we get e(G − H) ≤ 20
7 (n − 7). Hence,

e(G) = e(G−H) + 20 ≤ 20
7 (n− 7) + 20 ≤ 20

7 n.

2. There are 4 triangles sitting on the edge xy. Let a, b, c and d be the vertices in G which

are adjacent to both x and y. Let e be the vertex adjacent to x but not adjacent to y, and

f be adjacent to y but not adjacent to x. Let S1 = {a, b, c, d} and H = {x, y} ∪ S1 ∪ {e, f}.

Delete the vertices in H. The vertices e and f can have at most two neighbors in V (G)\H

each. We distinguish the cases based on the neighbors of e and f as follows:

(a) The vertices e and f have no neighbors in S1, see Figure 4.7(i)). The vertices

in S1 can have at most one neighbor in V (G)\H each and can form a path of length 3

in S1. If the vertices e and f are adjacent, then both can have at most one neighbor

in V (G)\H. Otherwise, we have an S3,4 with ex (or fy) as the backbone. Thus, the

number of edges deleted is at most 11 + 3 + 4 + 4 = 22.
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(b) One of the vertices e or f has one neighbor in S1, while the other has none.

Without loss of generality, assume that e and a are adjacent, see Figure 4.7(ii). The

vertex a cannot have a neighbor in V (G)\H, and e can have at most one neighbor in

V (G)\H. Otherwise, if a has a neighbor in V (G)\H, ya is the backbone of an S3,4. If

the vertices e and f are adjacent, then the vertex e cannot have a neighbor in V (G)\H,

and f can have at most one neighbor in V (G)\H. Otherwise, we have an S3,4 with ex

(or fy) as the backbone. Similarly, as before, the vertices b, c and d can have at most

one neighbor in V (G)\H each and the vertices {a, b, c, d} can form a path of length 3 in

S1. Thus, the number of edges deleted is at most 12 + 3 + 3 + 3 = 21.

(c) The vertices e and f have one neighbor in S1. There are two possibilities. In the

first case, without loss of generality, suppose a is the common neighbor of e and f , see

Figure 4.7(iii). Similarly, as before, a cannot have a neighbor in V (G)\H, and e and

f can have at most one neighbor in V (G)\H each. The vertices b, c and d can have

at most one neighbor in V (G)\H each, and the vertices {a, b, c, d} can form a path of

length 3 in S1. If the vertices e and f are adjacent, then they cannot have a neighbor

in V (G)\H. Thus, the number of edges deleted is at most 13 + 3 + 3 + 2 = 21.

Without loss of generality, suppose a is the neighbor of e, and d is the neighbor of f ,

see Figure 4.7(iv). Similarly, as before, the vertices a and d cannot have a neighbor in

V (G)\H, and e and f can have at most one neighbor in V (G)\H each. The vertices b

and c can have at most one neighbor in V (G)\H each, and the vertices {a, b, c, d} can

form a path of length 3 in S1. If the vertices e and f are adjacent, then they cannot have

a neighbor in V (G)\H. Thus, the number of edges deleted is at most 13+3+2+2 = 20.

(In fact, it can be shown that if the vertices e and f are adjacent, there can only be a

2-path inside S1. However, this precision is unnecessary. We skip this in the following

cases also.)

(d) One of the vertices e or f has two neighbors in S1, while the other has none.

Without loss of generality, suppose e is the neighbor of a and d, see Figure 4.7(v).

Similarly, as before, a and d cannot have a neighbor in V (G)\H, and e at most one

neighbor in V (G)\H. The vertices b and c can have at most one neighbor in V (G)\H

each, and the vertices {a, b, c, d} can form a path of length 3 in S1. If the vertices e and

f are adjacent, then e cannot have a neighbor in V (G)\H and f can have at most one
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neighbor in V (G)\H. Thus, the number of edges deleted is at most 13 + 3 + 2 + 3 = 21.

(e) One of the vertices e or f has two neighbors in S1, while the other has one

neighbor. There are two possibilities. In the first case, without loss of generality,

suppose e is the neighbor of a and d, and f is the neighbor of d (see Figure 4.7(vi)).

Similarly, as before, the vertices a and d cannot have a neighbor in V (G)\H. The vertices

e and f can have at most one neighbor in V (G)\H each. On the other hand, the vertices

b and c can have at most one neighbor in V (G)\H each and the vertices {a, b, c, d} can

form a path of length 3 in S1. If the vertices e and f are adjacent, e and f cannot have a

neighbor in V (G)\H. Thus, the number of edges deleted is at most 14 + 3 + 2 + 2 = 21.

Without loss of generality, assume that e is the neighbor of a and d, and f is the neighbor

of b (see Figure 4.7(vii)). The vertices a, b and d cannot have a neighbor in V (G)\H,

but they along with c can form a path of length 3 in S1. The vertices c, e and f can

have at most one neighbor in V (G)\H each. Thus, the number of edges deleted is at

most 14 + 3 + 1 + 2 = 20.

(f) Both the vertices e and f have two neighbors in S1. There are three possibilities.

In the first case, without loss of generality, suppose e and f are neighbors of a and

d both, see Figure 4.7(viii). Similarly, as before, the vertices a and d cannot have a

neighbor in V (G)\H. The vertices e and f can have at most one neighbor in V (G)\H

each. The vertices b and c can have at most one neighbor in V (G)\H each. The vertices

{a, b, c, d} can form a path of length 3 in S1. If the vertices e and f are adjacent, e and

f cannot have a neighbor in V (G)\H. Thus, the number of edges deleted is at most

15 + 3 + 2 + 2 = 22.

On the other hand, without loss of generality, assume e is the neighbor of a and d both,

while f is the neighbor of a and b (see Figure 4.7(ix)). The vertices a, b and d cannot

have a neighbor in V (G)\H, but they along with c can form a path of length 3 in S1. The

vertices c, e and f can have at most one neighbor in V (G)\H each. Thus, the number

of edges deleted is at most 15 + 3 + 1 + 2 = 21.

In the last case, without loss of generality, assume e is the neighbor of a and d both,

while f is the neighbor of b and c (see Figure 4.7(x)). The vertices a, b, c and d cannot

have a neighbor in V (G)\H, but they can form a path of length 3 in S1. The vertices

e and f can have at most one neighbor in V (G)\H each. Thus, the number of edges
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deleted is at most 15 + 3 + 2 = 20.

By the induction hypothesis, we get e(G−H) ≤ 20
7 (n− 8). Hence, e(G) = e(G−H) + 22 ≤

20
7 (n− 8) + 22 ≤ 20

7 n.

Take x, y ∈ V (G). By the previous claims, if d(x) + d(y) ≥ 12, we are done by induc-

tion. Assume that d(x) + d(y) ≤ 11. Summing it over all the edge pairs in G, we have 11e ≥∑
xy∈E(G) (d(x) + d(y)) =

∑
x∈V (G)(d(x))2 ≥ nd

2
= n(2e

n )2, where d is the average degree in G.

This gives us e ≤ 11
4 n ≤

20
7 n for n ≥ 1.

4.8 Concluding remarks and Conclusions

Concerning the exact value of exP(n, S3,3), we conjecture the following:

Conjecture 4.8.1.

exP(n, S3,3) =



3n− 6, if 3 ≤ n ≤ 7,

16, if n = 8,

18, if n = 9,⌊
5
2n
⌋
− 5, otherwise.

105

C
E

U
eT

D
C

ol
le

ct
io

n



106

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 5

Book free 3-Uniform Hypergraphs

5.1 Introduction

All the graphs we consider in this chapter are simple and finite. Let G be a graph. We denote the

vertex and edge set of G by V (G) and E(G), respectively. If there are 2 triangles sitting on an

edge in a graph, we call this a diamond. On the other hand, k triangles sitting on an edge is called

a k-book and is denoted by Bk. Similarly, let H be a hypergraph. The vertex and edge set of H

are denoted by V (H) and E(H), respectively. A hypergraph is called r-uniform if each hyperedge

has size r. A hypergraph H = (V,E) is called linear if every two hyperedges have at most one

vertex in common. A Berge cycle of length k, denoted by Berge-Ck, is an alternating sequence of

distinct vertices and distinct hyperedges of the form v1, h1, v2, h2, . . . , vk, hk where vi, vi+1 ∈ hi for

each i ∈ {1, 2, . . . , k − 1} and vkv1 ∈ hk. The hypergraph equivalent of k-book is defined similarly,

with k-Berge triangles sharing a common edge.

The maximum number of edges in a triangle-free graph is one of the classical results in Extremal

Graph Theory. Mantel [103] proved this in 1907. The extremal problem of book-free graphs follows

from this. Given a graph G on n vertices and having
⌊
n2

4

⌋
+ 1 edges. Mantel showed that G

contains a triangle. Rademacher (unpublished and simplified later by Erdős in [39]) proved in the

1940s that the number of triangles in G is at least
⌊
n
2

⌋
. Erdős conjectured in 1962 [35] that the

size of the largest book in G is n
6 and this was proved soon after by Edwards (unpublished, see also

Khadziivanov and Nikiforov [110] for an independent proof).
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Theorem 5.1.1. [Edwards [32], Khadziivanov and Nikiforov [110]] Every n-vertex graph with more

than n2

4 edges, contains an edge that is in at least n
6 triangles.

Both Rademacher’s and Edwards’ results are sharp. In the former, the addition of an edge to

one of the parts in the complete balanced bipartite graph (note that, in G there is an edge contained

in
⌊
n
2

⌋
triangles) achieves the maximum. In the latter, every known extremal construction of G has

Ω(n3) triangles. For more details on book-free graphs, we refer the reader to the following articles

[10], [114] and [131]. We investigate the equivalent problem in the case of hypergraphs.

Given a family of hypergraphs F , we say that a hypergraph H is Berge-F-free if, for every

F ∈ F , the hypergraph H does not contain a Berge-F as a sub-hypergraph. The maximum

possible number of hyperedges in a Berge-F-free r-uniform hypergraph on n vertices is denoted by

exr(n,F). When F = {F}, then we simply write exr(n, F ) instead of exr(n,F). The linear Turán

number exlinr (n, F ) is the maximum number of hyperedges in a r-uniform linear hypergraph on n

vertices, which does not contain F as a sub-hypergraph.

The systematic study of the Turán number of Berge cycles started with Lazebnik and Verstraëte

[98], who studied the maximum number of hyperedges in a r-uniform hypergraph containing no

Berge cycle of length less than five. Another result was the study of Berge triangles by Győri [69].

He proved that:

Theorem 5.1.2 (Győri [69]). The maximum number of hyperedges in a Berge triangle-free 3-

uniform hypergraph on n vertices is at most n2

8 .

It continued with the study of Berge five cycles by Bollobás and Győri [11]. In [70], Győri,

Katona, and Lemons proved the analog of the Erdős-Gallai Theorem for Berge paths. For other

results, see [4, 86]. The particular case of determining exlin3 (n,C3) is equivalent to the famous

(6, 3)-problem, which is a special case of a general problem of Brown, Erdős, and Sós. The famous

theorem of Ruzsa and Szemerédi states:

Theorem 5.1.3. [Ruzsa and Szemerédi [118]] For any ε > 0 and n > n0(ε), we have

n
2− c√

logn < exlin
3 (n,C3) = εn2.
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We determine the maximum number of hyperedges for a k-book free 3-uniform hypergraph.

The main result is as follows:

Theorem 5.1.4. For a given k ≥ 2 and ε > 0, a 3-uniform Bk-free hypergraph H on n vertices

can have at most
n2

8
+ εn2 edges, where n > max(n1(ε)

√
(6k − 9)(3k − 3), 12k).

The following example shows that this result is asymptotically sharp. Take a complete bipartite

graph with color classes of size
⌈
n
4

⌉
and

⌊
n
4

⌋
, respectively. Denote the vertices in each class with xi

and yi, respectively. Construct a graph by doubling each vertex and replacing each edge with two

triangles, as shown below (Figure 5.1). Every graph edge xiyi is replaced by the two hyperedges

xiyiy
′
i and yiy

′
ix
′
i. The construction does not contain a Berge triangle. Hence, it does not contain

a k-book. With this, the number of hyperedges is 2 · n2

16 = n2

8 .

xi

yi

=⇒

xi

yi

x′i

y′i

Figure 5.1: Replacing every graph edge xiyi in the bipartite graph with two hyperedges xiyiy
′
i and

yiy
′
ix
′
i.

The chapter is structured as follows: In Section 5.2, we prove the main result of the chapter.

In Section 5.3, we conjecture the tight bound.

5.2 Proof of Theorem 5.1.4

Let H be a Bk-free 3-uniform hypergraph. We are interested in the 2-shadow, i.e., let G be a graph

with vertex set V (H) and E(G) = {ab | {a, b} ⊂ e ∈ E(H)}. If an edge in G lies in more than

one hyperedge in H, we color it blue. Otherwise, we color it red. We subdivide the hypergraph H

into two sub-hypergraphs, namely H1 and H2, such that H1 is the collection of hyperedges in H

containing two or more red edges in G. On the other hand, H2 is the collection of hyperedges in

H, containing two or more blue edges in G. Note that, H is the disjoint union of H1 and H2.

Lemma 5.2.1. Given n > 12k, the number of hyperedges in H1 is at most n2

8 .
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Proof. Recall that each hyperedge in H1 was replaced by two or more red edges in G. Let G1

denote the subgraph of G, formed by the red colored edges. By the definition of red colored edges,

we have e(G1) ≥ 2e(H1). If e(G1) ≤ n2

4 , we are done. Otherwise, assume e(G1) ≥ n2

4 + 1. By

Theorem 5.1.1, we have a book of size n
6 in G1. Denote the vertices of the n

6 -book in G1 with u, v

and {xi | 1 ≤ i ≤ n
6 }, where the edge uv denotes the base of the book. Denote the third vertex of

the hyperedge sitting on the edge uv by w. Let Vgood := {xi | 1 ≤ i ≤ n
6 } and Egood := ∅ denote

the set of “good” vertices and “good” hyperedges, respectively.

Consider the triangle uvx1. Denote the hyperedge sitting on the edge ux1 and vx1 by ux1y1

and vx1z1, respectively. We have a couple of cases to consider:

(i) Both the vertices y1 and z1 are distinct from {xi | 1 ≤ i ≤ n
6 }. In this case, add the hyperedges

ux1y1 and vx1z1 to Egood.

(ii) The vertex y1 6∈ {xi | 1 ≤ i ≤ n
6 }, whereas the vertex z1 ∈ {xi | 1 ≤ i ≤ n

6 }. In this case, add

the hyperedges ux1y1 and vx1z1 to Egood. Also remove the vertex z1 from Vgood.

(iii) The vertex y1 ∈ {xi | 1 ≤ i ≤ n
6 }, whereas the vertex z1 6∈ {xi | 1 ≤ i ≤ n

6 }. This is similar

to the previous case, and we add the hyperedges ux1y1 and vx1z1 to Egood, and remove the

vertex y1 from Vgood.

(iv) Both the vertices y1 and z1 belong to the set {xi | 1 ≤ i ≤ n
6 }. If y1 6= z1, then remove

the vertex x1 from Vgood and add the hyperedges ux1y1 and vx1z1 to Egood. Also add the

hyperedges sitting on the edge vy1 and uz1 to Egood. When y1 = z1, we remove the vertex y1

from Vgood and add the hyperedges ux1y1 and vx1z1 to Egood.

Continue repeating this process for all the other vertices in Vgood. Consider the set of hyperedges

Egood ∪ {uvw}. We delete at most one vertex from Vgood in each step and since n
6 ≥ 2k, the above

set of hyperedges forms a k-book. Hence, e(G1) ≤ n2

4 and e(H1) ≤ n2

8 .

Now let us work on the sub-hypergraph H2.

Lemma 5.2.2. A pair of vertices in H2 is contained in at most 2k − 2 hyperedges of H2.
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Proof. Suppose u and v be the pair of vertices in H2, which is contained in 2k − 1 hyperedges of

H2. The edge uv is colored blue. Denote the third vertex of each such hyperedge by xi, where

1 ≤ i ≤ 2k − 1. Let Vgood := {xi | 1 ≤ i ≤ 2k − 1}, Vbad := ∅ and Egood := ∅ denote the set

of “good” vertices, “bad” vertices and “good” hyperedges, respectively. Consider the hyperedge

uvx1. At least one of the edges ux1 or vx1 is colored blue. Without loss of generality, assume

ux1 is colored blue, i.e., there is at least one more hyperedge sitting on the edge ux1 other than

ux1v. Denote this hyperedge sitting on the ux1 by ux1y1. If y1 6∈ Vgood, add the hyperedges ux1y1

and ux1v to Egood. If y1 ∈ Vgood, then remove the vertex y1 from Vgood and add it to Vbad. The

hyperedges ux1y1 and ux1v are added to Egood. Continue doing this for every other vertex in Vgood.

Let xbad be a vertex in Vbad. Consider the set of hyperedges Egood∪{uvxbad}. Note, |Vgood|≥ k and

in each step we add two hyperedges to Egood. Thus, |Egood|≥ 2k, and it is easy to see that the set

Egood ∪ {uvxbad} forms a k-book sitting on the edge uv. If Vbad is empty, then consider the set of

hyperedges Egood ∪ {uvx2k−1}. Similarly, as above, |Egood|≥ 2k and it is easy to see that the set

Egood ∪ {uvx2k−1} forms a k-book sitting on the edge uv.

We now give an upper bound on the number of hyperedges in H2.

Lemma 5.2.3. For a given ε > 0 and n > n(ε)
√

(6k − 9)(3k − 3), the number of hyperedges in

H2,i.e., e(H2), is at most εn2.

Proof. Take a hyperedge xyz in the sub-hypergraph H2. By the previous Lemma 5.2.2, there are

at most 2k − 2 hyperedges of H2 sitting on each of the pairs of vertices xy, yz, and xz. Delete all

such hyperedges barring xyz. We have deleted at most 6k − 9 hyperedges. Repeat this for every

hyperedge left in H2. Hence, the total number of hyperedges remaining is at least e(H2)
6k−9 . Denote

the new hypergraph by H ′2. Any two hyperedges in H ′2 have at most 1 vertex in common. In other

words, H ′2 is a linear 3-uniform hypergraph.

Consider a hyperedge abc in H ′2. Since H ′2 is a Bk-free hypergraph, the number of Berge triangles

sitting on the edge ab is at most k−1. Otherwise, the k-Berge triangles sitting on the edge ab along

with the hyperedge abc form a k-book. Denote one such Berge triangle by abd. It is formed by the

set of hyperedges {abc, ade, bdf}, where e and f are the end vertices of the hyperedges sitting on the

edge ad and bd, respectively. We delete one of the hyperedges in {ade, bdf}. Continue this process
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for every Berge triangle sitting on the edge ab. Similarly, for the edges bc and ac. Repeat this for

every hyperedge left in H ′2. Hence, the total number of hyperedges remaining is at least
e(H′2)
3(k−1) .

Denote the resulting hypergraph as H
′′
2 . By construction, H

′′
2 is a linear triangle free 3-uniform

hypergraph. From Theorem 5.1.3, for the given ε and n1(ε) > n0(ε), the number of hyperedges

in a 3-uniform triangle free linear hypergraph is at most εn1(ε)2. Hence, e(H
′′
2 ) ≤ εn1(ε)2 and

e(H2) ≤ ε(n1(ε)
√

(6k − 9)(3k − 3))2. Since n > n1(ε)
√

(6k − 9)(3k − 3), we are done.

Proof of Theorem 5.1.4. By definition, H = H1 ∪ H2 and they are non-intersecting. By Lemma

5.2.1 and 5.2.3, e(H) ≤ e(H1) + e(H2) ≤ n2

8 + o(n2). Hence, we are done.

5.3 Concluding remarks and Conjectures

Recall that ex(n,C3) = ex(n,Bk) = n2

4 in graph setting. Győri [69] proved that the maximum

number of hyperedges in a Berge triangle-free 3-uniform hypergraph on n vertices is at most n2

8 .

Given the similarities, we conjecture the following:

Conjecture 5.3.1. For a given k ≥ 2 and a 3-uniform Bk-free hypergraph H on n vertices (n is

large), e(H) ≤ n2

8
.
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Chapter 6

The Maximum Wiener Index of

Maximal Planar Graphs

6.1 Introduction

The Wiener Index was first introduced by H. Wiener [127] in 1947 while studying the correlations of

the molecular structure with the boiling point of paraffin. It has become one of the most frequently

used topological indices in chemistry. Since undirected graphs, especially trees, are used to model

molecules. It has been used even in computer network representations and lattice hardware security

enhancements.

Definition 6.1.1. For a connected graph G, the Wiener index is the sum of distances between all

the unordered pairs of vertices in the graph and is denoted by W (G). That means

W (G) =
∑

{u,v}⊆V (G)

dG(u, v),

where dG(u, v) denotes the distance from u to v i.e., the minimum length of a path from u to v in

the graph G.

Many results on the Wiener index and closely related parameters such as the gross status [80],

the distance of graphs [34], and the transmission [120] have been studied. The survey papers [25,

26, 27, 88, 130] are among many which accumulate a great deal of knowledge on the Wiener index.
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Finding a sharp bound on the Wiener index for graphs under some constraints has been one of the

research topics attracting many researchers. One of the most basic upper bounds for W (G) is as

follows:

Theorem 6.1.2. [21, 113, 100] If G is a connected graph of order n, then,

W (G) ≤ (n− 1)n(n+ 1)

6
, (6.1)

which is attained only by a path.

Many sharp or asymptotically sharp bounds on W (G) in terms of other graph parameters are

known, for instance, minimum degree [6, 20, 91], connectivity [23, 50], edge-connectivity [22, 21]

and maximum degree [51]. More details of the mathematical aspect of Wiener index are covered

in [24, 66, 87, 102, 89, 67, 109, 124, 123, 125].

One can study the Wiener index of the family of connected planar graphs. Since a path attains

the bound given in Equation 6.1, it is natural to ask the same question for some family of planar

graphs. For instance, the Wiener index of a maximal planar graph on n (n ≥ 3) vertices has a

sharp lower bound of (n− 2)2 + 2. Any maximal planar graph such that the distance between any

pair of vertices is at most 2 attains this bound (for instance, a planar graph containing the n-vertex

star).

Che and Collins [18], and independently Czabarka, Dankelmann, Olsen and Székely [19], gave a

sharp upper bound of a particular class of maximal planar graphs known as Apollonian networks.

Definition 6.1.3. An Apollonian network may be formed, starting from a single triangle embedded

on the plane, by repeatedly selecting a triangular face of the embedding, adding a new vertex inside

the face, and connecting the new vertex to each of the three vertices of the face.

They showed that

Theorem 6.1.4 (Che, Collins [18] Czabarka, Dankelmann, Olsen, Székely [19]). Let G be an
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Apollonian network of order n ≥ 3. Then W (G) has a sharp upper bound

W (G) ≤
⌊

1

18
(n3 + 3n2)

⌋
=


1
18(n3 + 3n2), if n ≡ 0(mod 3);

1
18(n3 + 3n2 − 4), if n ≡ 1(mod 3);

1
18(n3 + 3n2 − 2), if n ≡ 2(mod 3).

It has been shown explicitly in [18] that the bound is attained for the maximal planar graphs

Tn. We will give the construction of Tn in the next section, see Definition 6.2.2. The authors in

[18] also conjectured that this bound also holds for every maximal planar graph. The authors in

[19] showed the following result:

Theorem 6.1.5 (Czabarka, Dankelmann, Olsen, Székely [19]). For k ∈ {3, 4, 5}, there exists a

constant Ck such that

W (G) ≤ 1

6k
n3 + Ckn

5/2

for every k-connected maximal planar graph of order n.

In this chapter, we confirm the above conjecture.

Theorem 6.1.6. Let G be an n ≥ 6 vertex maximal planar graph. Then

W (G) ≤
⌊

1

18
(n3 + 3n2)

⌋
=


1
18(n3 + 3n2), if n ≡ 0(mod 3);

1
18(n3 + 3n2 − 4), if n ≡ 1(mod 3);

1
18(n3 + 3n2 − 2), if n ≡ 2(mod 3).

Equality holds if and only if G is isomorphic to Tn for all n ≥ 9.

The chapter is structured as follows: In Section 6.2, we have some notations and preliminaries.

In Section 6.3, we prove the main result of the chapter. In Section 6.4, we provide some conjectures

regarding the Wiener index of 4-connected planar graphs.
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6.2 Notations and Preliminaries

A path in a graph is an alternating sequence of distinct vertices and edges, starting from a vertex

and ending at a vertex, such that every edge is incident to neighboring vertices in the sequence.

The length of the path is the number of edges in the given path. A cycle in a graph G is a non-zero

length path from a vertex v to v itself. We use the standard function dG(v, u) to denote the length

of the shortest path from the vertex v to the vertex u. Even more, we may define a function that

denotes the distance from a vertex to a set of vertices. Let v be a vertex of G and S ⊆ V (G), then

dG(S, v) := minu∈S{dG(u, v)}.

Definition 6.2.1. For a vertex set S ⊂ V (G), the status of S is defined as the sum of all distances

from the vertices of the graph to the set S. It is denoted by σG(S), thus

σG(S) :=
∑

u∈V (G)

dG(S, u).

For simplicity, we may omit the subscript G in the above functions if the underlying graph is

obvious. With a slight abuse of notation, we use σG(v) := σG({v}).

We have,

W (G) =
1

2

∑
v∈V (G)

σG(v).

Here we use the definition from [18], for an Apollonian network Tn on n vertices. We will prove

that Tn is the unique maximal planar graph that maximizes the Wiener index of the maximal

planar graphs.

Definition 6.2.2. ([18]) The Apollonian network Tn is the maximal planar graph on n ≥ 3 vertices,

with the following structure, see Figure 6.1:

If n is a multiple of 3, then the vertex set of Tn can be partitioned in three sets of the same

size, A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk} and C = {c1, c2, . . . , ck}. The edge set of Tn is the

union of the following three sets: E1 =
⋃k
i=1{(ai, bi), (bi, ci), (ci, ai)} forming concentric triangles,

E2 =
⋃k−1
i=1 {(ai, bi+1), (ai, ci+1), (bi, ci+1)} forming ‘diagonal’ edges, and E3 =

⋃k−1
1 {(ai, ai+1),

(bi, bi+1), (ci, ci+1)} forming paths in each vertex class, see Figure 6.1a.
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(a) 3 | n (b) 3 | (n− 1)
(c) 3 | (n− 2)

Figure 6.1: Apollonian networks maximizing the Wiener index of maximal planar graphs [18].

If 3|(n − 1), then Tn is the Apollonian network which may be obtained from Tn−1 by adding a

degree three vertex in the face a1, b1, c1 or an−1
3
, bn−1

3
, cn−1

3
, see Figure 6.1b. Note that both graphs

are isomorphic.

If 3|(n − 2), then Tn is the Apollonian network which may be obtained from Tn−2 by adding a

degree three vertex in each of the faces a1, b1, c1 and an−1
3
, bn−1

3
, cn−1

3
, see Figure 6.1c.

At first, we would like to recall some standard definitions. A connected graph G is said to

be s-vertex connected or simply s-connected if it has more than s vertices and remains connected

whenever fewer than s vertices are removed. Formally, let G be a graph and S be a subset of the

vertices of G, S ⊆ V (G). Then the induced subgraph G[S] of G is a graph on the vertex set S and

E(G[S]) = {e ∈ E(G) : e ⊆ S}.

Lemma 6.2.3. Let G be an s-connected, maximal planar graph and S be a cut set of size s of G.

Then G[S] is Hamiltonian.

Proof. Let us denote the vertices of S by S = {v1, v2, . . . , vs}. Let u and w be two distinct vertices,

{u,w} ∈ V (G) \ S such that any path from u to w contains at least one vertex from S. Since G is

s-connected, by Menger’s Theorem, there are s-pairwise internally vertex disjoint paths from u to

w. Each of the paths intersects S in disjoint nonempty sets. Therefore, each of the paths contains

one vertex from S exactly. Assume that in a particular planar embedding of G, those paths are

ordered in the following way: One of the two regions determined by the cycle obtained from the

two paths from u to w, containing vix and vix+1 , has no vertex from S (where indices are modulo s),

see Figure 6.2. From the maximality of the planar graph, there is a path from vertex u to vertex w
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that does not contain a vertex from S, a contradiction. Thus, we must have the edges {vix , vix+1}.

Therefore, we have a cycle of length s on the vertex set S, vi1 , vi2 , · · · , vis , vi1 in the given order.

Hence, G[S] is Hamiltonian.

u w

vi1

vi2

vis−1

vis

Figure 6.2: s-pairwise disjoint paths from the vertices u to w.

The following definition is particularly helpful for the proof of Theorem 6.1.6: Given a set

S ⊆ V , the Breadth-First Search partition of V with root S, denoted by PGS (or simply PS when

the underlying graph is clear), is PS = {S0, S1, . . . }, where S0 = S, and for i ≥ 1, Si is the set of

vertices at distance exactly i from S. Formally Si = {v ∈ V (G) : dG(S, v) = i}. We refer to those

sets as levels of Ps. For example, S1 is the first level. For the largest integer k, for which Sk 6= ∅,

we refer to Sk as the last level. We refer to S0 and the last level as terminal levels. Note that every

level besides the terminal levels is a cut set of G. Let Pv denote the Breadth-First Search partition

from {v}, i.e., the partition P{v}.

The following three lemmas play a critical role in proving Theorem 6.1.6.

Lemma 6.2.4. Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of size s.

Suppose, each non-terminal level of PS has size at least 3. Then we have

σ(S) ≤ σ3(n) :=

1
6(n2 + 3n), if n ≡ 0 (mod 3);

1
6(n2 + 3n+ 2), if n ≡ 1, 2 (mod 3).

118

C
E

U
eT

D
C

ol
le

ct
io

n



Proof. If PS = {S0, S1, . . . }, by definition, we have that σ(S) =
∑
i

i |S| . Therefore

σ(S) = |S1|+ 2 |S2|+ 3 |S3|+ · · ·

≤ 3

(
1 + 2 + · · ·+

⌊n
3

⌋)
+

(⌊n
3

⌋
+ 1

)(
n− 3

⌊n
3

⌋)
= σ3(n).

Lemma 6.2.5. Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of size s.

Suppose, each non-terminal level of PS has size at least 4. Then we have

σ(S) ≤ σ4(n) :=


1
8(n2 + 4n), if n ≡ 0 (mod 4);

1
8(n2 + 4n+ 3), if n ≡ 1, 3 (mod 4);

1
8(n2 + 4n+ 4), if n ≡ 2 (mod 4).

Proof. We have

σ(S) ≤ 4

(
1 + 2 + · · ·+

⌊
n− 1

4

⌋)
+

(⌊
n− 1

4

⌋
+ 1

)(
n− 1− 4

⌊
n− 1

4

⌋)
= σ4(n)

Lemma 6.2.6. Let G be an n + s vertex graph and S, S ⊂ V (G), be a set of vertices of size s.

Suppose, each non-terminal level of PS has size at least 5. Then we have

σ(S) ≤ σ5(n) :=


1
10(n2 + 5n), if n ≡ 0 (mod 5);

1
10(n2 + 5n+ 4), if n ≡ 1, 4 (mod 5);

1
10(n2 + 5n+ 6), if n ≡ 2, 3 (mod 5).

Proof. We have

σ(S) ≤ 5

(
1 + 2 + · · ·+

⌊
n− 1

5

⌋)
+

(⌊
n− 1

5

⌋
+ 1

)(
n− 1− 5

⌊
n− 1

5

⌋)
= σ5(n)

6.3 Proof of Theorem 6.1.6

Proof. From [18], we know that the desired lower bound is attained by Tn. For the upper bound,

we are going to prove Theorem 6.1.6 by induction on the number of vertices. In [18], the authors

prove the upper bound for n ≤ 10 without computer aid. In [19], it is shown that the upper bound
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of Theorem 6.1.6 holds, for 6 ≤ n ≤ 18 by using a computer program. It is also shown, by means

of the computer program, that the upper bound is sharp for 6 ≤ n ≤ 18 and the extremal graph is

unique Tn for 9 ≤ n ≤ 18.

In our proof, we use the computer-aided result of [19] only in Case 2.1 and for the uniqueness

of the extremal graph. For the rest, the result in [18] is enough. When n ≤ 18, unfortunately, we

do not have a proof without the use of computers. So, we assume n ≥ 19 from now on. Let G

be a maximal planar graph of n vertices. Since G is a maximal planar graph, it is either 3, 4, or

5-connected. Notice that the result in [19] is much stronger asymptotically than ours if G is 4 or

5-connected.

Case 1: Let G be a 5-connected graph. For every fixed vertex v ∈ V (G), consider Pv.

Since G is 5-connected, and each of the non-terminal levels of Pv is a cut set, we have that each

non-terminal level has size at least 5. Therefore, from Lemma 6.2.6, we have,

W (G) =
1

2

∑
v∈V (G)

σ(v) ≤ n

2
σ5(n− 1) ≤ n

20
(n2 + 3n+ 2) <

⌊
1

18
(n3 + 3n2)

⌋
,

for all n ≥ 4. Therefore, we have the desired result if G is 5-connected.

Case 2: Let G be a graph which is 4-connected, but not 5-connected. G contains a

cut set of size 4, which induces a cycle of length four, by Lemma 6.2.3. Let us denote the vertices

of this cut set as v1, v2, v3 and v4, forming the cycle in this given order. The cut-set divides the

plane into two regions. We call them the inner and the outer region, respectively. Let us denote the

number of vertices in the inner region by x. Without loss of generality, assume that x is minimal

as possible but greater than one. Obviously x ≤ n−4
2 or x = n − 5. From here on, we deal with

several subcases depending on the value of x.

Case 2.1: Let x ≥ 4 and x 6= n − 5. Let us consider the subgraph of G, say G′, obtained

by deleting all vertices from the outer region of the cycle v1, v2, v3, v4 in G. The graph G′ is not

maximal since the outer face is a 4-cycle. The graph G is 4-connected; therefore, it does not contain

either {v1, v3} or {v2, v4}. Consequently, we may add any of them to G′ to obtain a maximal planar

graph. Adding an edge decreases the Wiener index of G′. In the following paragraph, we prove

that adding one of the edges decreases the Wiener index of G′ by at most x2

16 .
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Let Ai = {v ∈ V (G′)|d(v, vi) < d(v, vj), ∀j ∈ {1, 2, 3, 4} \ {i}}, for i ∈ {1, 2, 3, 4}. Let A be the

subset of the vertices of G′ not contained in any of the Ai’s. So A,A1, A2, A3, A4 is a partition of

the vertices of G′. It is simple to observe that, if adding an edge {vi, vi+2}, for i ∈ {1, 2}, decreases

the distance between a pair of vertices, then these vertices are from Ai and Ai+2. If there is a vertex

u which has at least three neighbors from the cut set, without loss of generality say v1, v2, v3, then

A2 = ∅, since G is 4-connected. Therefore, we are done if such vertex a vertex exists. Otherwise,

for each pair {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}, there is a distinct vertex which is adjacent to both

vertices of the pair. Hence, the size of A is at least 4. The size of the vertex set ∪4
i=1Ai, is at most

x. By the AM-GM inequality, we have that one of |A1| · |A3| or |A2| · |A4| is at most x2

16 . Therefore,

we can choose one of the edges {v1, v3} or {v2, v4}, such that after adding that edge to the graph

G′, the Wiener index of the graph decreases by at most x2

16 . Let us denote the maximal planar

graph obtained by adding this edge to G′ by Gx+4.

Similarly, the maximal planar graph obtained from G, by deleting all the vertices in the inner

region and adding the diagonal, is denoted by Gn−x. This decreases the Wiener index by at most

(n−x−4)2

16 .

Consider the graph Gn−x and a subset of its vertices S = {v1, v2, v3, v4}. Since the graph G

is 4-connected, each non-terminal level of PGn−xS has at least 4 vertices. Therefore, we get that

σGn−x(S) ≤ σ4(n− x− 4) = (n−x−2)2

8 , from Lemma 6.2.5.

Recall that G′ is the graph obtained from G by deleting the vertices from the outer region.

For each i ∈ {1, 2, 3, 4}, consider the BFS partition PG′vi . Note that, x ≥ 4, G is 4-connected, and

by minimality of x, we have that every non-terminal level of PG′vi has at least 5 vertices, except

for two cases. The first level may contain only four vertices, and the penultimate level may also

contain four vertices, with the last level having exactly one vertex. The status of the vertex vi is

maximized, if the first and the penultimate level contain four vertices each, the last level contains

only one vertex and every other level contains exactly five vertices.

To simplify calculations of the status of the vertex vi, we may hang a new temporary vertex on

the root, and we may bring a vertex from the last level to the previous level. These modifications

do not change the status of the vertex, but it increases the number of vertices. Now we may apply

Lemma 6.2.6 for this BFS partition, considering that the number of vertices in all levels is 5 exactly.
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Therefore, we have σG′(vi) ≤ (x+4)2+5(x+4)
10 . Observe that this status contains distances, from vi to

the other vertices in the cut set, which equals four. This is a uniform upper bound for the status

of each of the vertices from the cut set.

Finally, we may upper bound the Wiener index of G in the following way:

W (G) ≤W (Gn−x) +
(n− x− 4)2

16
+W (Gx+4) +

x2

16
− 8

+ x · σGn−x({v1, v2, v3, v4}) + (n− x− 4) · (σG′(v1)− 4).

In the first line, we upper bound all the distances between pairs of vertices on the cut set and the

outer region, and between pairs of vertices on the cut set and the inner region. We subtract 8 since

distances between the pairs from the cut set were double counted. In the second line, we upper

bound all the distances from the outer region to the inner region. These distances are split in two,

distances from the outer region to the cut set and from a fixed vertex of the cycle to the inner

region. Without loss of generality, let the fixed vertex of the cycle be v1.

We are going to prove that W (G) ≤ 1
18(n3 +3n2)−1. We need to prove the following inequality:

1

18
(n3 + 3n2)− 1 ≥ 1

18
((n− x)3 + 3(n− x)2) +

(n− x− 4)2

16

+
1

18
((x+ 4)3 + 3(x+ 4)2) +

x2

16
− 8

+ x · (n− x− 2)2

8
+ (n− x− 4) · ((x+ 4)2 + 5(x+ 4)

10
− 4).

After simplifications, we get

82

45
− 9n

10
+
n2

16
+
x

5
+

41nx

120
− n2x

24
− 3x2

40
+
nx2

60
+
x3

40
≤ 0. (6.2)

We know that 4 ≤ x ≤ n−4
2 and if we set x = 4, we get 2176 + 528n− 75n2 ≤ 0 which holds for all

n ≥ 10. The derivative of the right-hand side of the inequality is negative for all {x | 4 ≤ x ≤ n−4
2 }.

Thus, the inequality holds for all these values of x. Differentiating the LHS of the Inequality (6.2),

with respect to x, we get

δ

δx

(
82

45
− 9n

10
+
n2

16
+
x

5
+

41nx

120
− n2x

24
− 3x2

40
+
nx2

60
+
x3

40

)
=

1

5
+

41n

120
− n2

24
− 3x

20
+
nx

30
+

3x2

40
.

(6.3)
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If we set x = 4 in Equation 6.3, we get 1
120(96+57n−5n2), which is negative for all n ≥ 13. If we

set x = n−4
2 in Equation 6.3, we get 1

160(−n2+8n+128), which is negative for all n ≥ 17. Therefore,

Equation 6.3 is negative in the whole interval. Since n ≥ 19, we have W (G) ≤ 1
18(n3 + 3n2) − 1,

and this subcase is settled.

Case 2.2 : Let 2 ≤ x ≤ 3. By the minimality of x and maximality of G, we have x = 2. Let

Gn−2 denote the maximal planar graph obtained from G by deleting these two vertices from the

inner region and adding an edge which decreases the Wiener index by at most (n−6)2

16 . Such an edge

exists, as in the previous case.

Since G is 4-connected, for each vertex v, v ∈ V (G), each level of PGv contains at least 4

vertices, except the last one possibly. Therefore, status of both vertices inside can be bounded by

σ5(n) = 1
8((n− 1)2 + 4(n− 1) + 4). This bound comes from Lemma 6.2.5. Finally, we have

W (G) ≤W (Gn−2) +
(n− 6)2

16
+

2

8
((n− 1)2 + 4(n− 1) + 4)− 1

≤ 1

18
((n− 2)3 + 3(n− 2)2) +

(n− 6)2

16
+

2

8
((n− 1)2 + 4(n− 1) + 4)− 1

=
1

18
n3 +

7

48
n2 − 1

4
n+

49

18
− 1 ≤ 1

18
(n3 + 3n2)− 1.

(6.4)

The last inequality holds for all n ≥ 9, so we have the desired result in this subcase.

Case 2.3: Let x = n− 5. We have a vertex outside the cut set. Let Gn−1 denote the maximal

planar graph, obtained from G by deleting the vertex from the outer region and adding an edge

which decreases the Wiener index by at most (n−5)2

16 .

By the choice of x, we have that for the vertex outside the cut set v, each level of PGv contains at

least 5 vertices, except the first one which contains only 4 vertices. The penultimate level may also

contain 4 vertices followed by a vertex in the last level. The status of the vertex v is maximized, if

the first and the penultimate level contain four vertices each, the last level contains only one vertex

and every other level contains exactly five vertices.

Therefore, status of v can be bounded by 1
10(n2 + 5n). This bound comes from Lemma 6.2.6.

Finally, we have
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W (G) ≤W (Gn−1) +
(n− 5)2

16
+

1

10
(n2 + 5n)

≤ 1

18
((n− 1)3 + 3(n− 1)2) +

(n− 5)2

16
+

1

10
(n2 + 5n)

=
1

18
n3 +

13

80
n2 +

7

24
n− 241

144
≤ 1

18
(n3 + 3n2)− 1.

(6.5)

The last inequality holds for all n ≥ 9, so we have the desired result in this subcase.

Case 3: Let G be a graph which is 3-connected and not 4-connected. Since G is not

4-connected, and it is a maximal planar graph, it must have a cut set of size 3, say {v1, v2, v3}.

This induces a triangle from the Lemma 6.2.3. Without loss of generality, let us assume that the

number of vertices in the inner smaller region of the cut set is as minimal as possible, say x.

Case 3.1 : Let x ≤ 2. By the minimality of x, we have x = 1. Let us denote this vertex as v.

Let Gn−1 be a maximal planar graph obtained from G by deleting the vertex v. From the Lemma

6.2.4, we have σG(v) ≤ 1
6(n2 + n)− 1

313|(n−1), where 13|(n−1) equals one if 3 divides n− 1 and zero

otherwise. Finally, we have,

W (G) ≤W (Gn−1) + σG(v)

≤ 1

18
((n− 1)3 + 3(n− 1)2)− 1

9
13|n −

2

9
13|(n−2)

+
1

6
(n2 + n)− 1

3
13|(n−1) =

n3

18
+
n2

6
+

1

9
− 1

9
13|(n) −

2

9
13|(n−2) −

1

3
13|(n−1)

≤
⌊

1

18
(n3 + 3n2)

⌋
.

(6.6)

In this case, the equality holds if and only if the graph obtained after deleting the vertex v is Tn−1.

We can observe that, if we add the vertex v to the graph Tn−1, the choice that maximizes the status

of the vertex v, σG(v) = 1
6(n2 + n)− 1

313|(n−1), is only when we add the vertex v in one of the two

faces which gets us the graph Tn. Hence, we have the desired upper bound of the Wiener index

and equality holds if and only if G = Tn.

Case 3.2 : Let x = 3. Let us denote the vertices in the inner region as x1, x2 and x3. From

the minimality of x and maximality of the plane graph G, the structure of G in the inner region

is well-defined (see Figure 6.3a). If we remove these three inner vertices, the graph we get is

denoted by Gn−3 and is still maximal. Hence, we may use the induction hypothesis for the graph
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Gn−3. Consider the graph Gn−3 and a vertex set S = {v1, v2, v3}. Each level of PGn−3

S has at

least three vertices, except the terminal one. Therefore, we may apply Lemma 6.2.4, then we have

σGn−3({v1, v2, v3}) ≤ 1
6((n − 6)2 + 3(n − 6) + 2). To estimate the distances from the vertices in

the outer region to the vertices in the inner region, we do the following: We first estimate the

distances from the outer region to the cut set and from the fixed vertex on the cut set to all xi.

The distances from the vertices in the outer region to the set {v1, v2, v3}, is σGn−3({v1, v2, v3}). The

sum of distances from vi to the vertices {x1, x2, x3} is 4. If we take a vertex in the outer region that

has at least two neighbors on the cut set, then for this vertex we need to count 3 for the distances

from the cut set to the vertices {x1, x2, x3}. Since we have at least two such vertices, all the cross

distances can be bounded by 3σGn−3({v1, v2, v3}) + 4(n− 5) + 6. Thus,

W (G) ≤W (Gn−3) +W (K3) + 3σGn−3({v1, v2, v3}) + 4n− 14

≤ 1

18
((n− 3)3 + 3(n− 3)2) +

1

2
((n− 6)2 + 3(n− 6) + 2) + 4n− 11

<

⌊
1

18
(n3 + 3n2)

⌋
.

(6.7)

Therefore, this case is also settled.

v1 v3

v2

(a) x = 3.

v1 v3

v2

(b) x = 4.

Figure 6.3: The unique inner regions for the 3-connected case when x = 3 and x = 4.

Case 3.3: Let x = 4. By the minimality of x and the maximality of the planar graph G,

there is only one configuration of the inner region (see Figure 6.3b). Let Gn−4 be the maximal

planar graph on the n − 4 vertices, obtained from G by deleting the four inner vertices. We

will apply the induction hypothesis to upper bound the sum of distances between all pairs of

vertices from V (Gn−4) in G. By applying Lemma 6.2.4 for Gn−4 and S = {v1, v2, v3}, we get

σGn−4({v1, v2, v3}) ≤ 1
6((n− 4− 3)2 + (n− 4− 3) + 2). The sum of the distances between the four

inner vertices is 7. The sum of the distances from each vi to all the vertices inside is at most six.
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By a similar argument as in the previous case we have,

W (G) ≤ 1

18
((n− 4)3 + 3(n− 4)2) + 7 +

4

6
((n− 7)2 + (n− 7) + 2) + 6(n− 4)

<

⌊
1

18
(n3 + 3n2)

⌋
.

(6.8)

Therefore, this case is also settled.

Case 3.4: Let x = 5. By the minimality of x and the maximality of the planar graph G,

there are three configurations of the inner region, see Figure 6.4. Consider a maximal planar graph

on the n − 5 vertices, say Gn−5, obtained from G by deleting 5 vertices from the inner region.

We will apply the induction hypothesis to bound the sum of the distances between the vertices

of V (Gn−5) in the graph G. By applying Lemma 6.2.4 for Gn−5 and S = {v1, v2, v3}, we get

σGn−5({v1, v2, v3}) ≤ 1
6((n − 8)2 + (n − 8) + 2). The sum of the distances between the five inner

vertices is at most 13. The sum of the distances from vi to all the vertices inside is at most 8. We

have,

W (G) ≤ 1

18
((n− 5)3 + 3(n− 5)2) + 13 +

5

6
((n− 8)2 + (n− 8) + 2) + 8(n− 5)

<

⌊
1

18
(n3 + 3n2)

⌋
.

(6.9)

Therefore, this case is also settled.

v1 v3

v2

v1 v3

v2

v1 v3

v2

Figure 6.4: The unique inner regions for the 3-connected case when x = 5.

Case 3.5: Let x ≥ 6. First, we settle for the case for x ≥ 7. Consider the maximal planar

graph on n− x vertices, say Gn−x, which is obtained from G by deleting those x vertices from the

inner region of the cut set {v1, v2, v3}. Consider the maximal planar graph on x + 3 vertices, say

Gx+3, which is obtained from G, by deleting all n− x− 3 vertices from the outer region of the cut

set {v1, v2, v3}. We know by induction that W (Gx+3) ≤ 1
18((x + 3)3 + 3(x + 3)2). There are at
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least two vertices from the cut set {v1, v2, v3}, such that each of them has at least two neighbors

in the outer region of the cut set. Without loss of generality, we may assume they are v1 and v2.

Hence, if we consider PGn−xv1 and PGn−xv2 , we will have 4 vertices in the first level and at least three

in the following levels until the last one. Therefore, we have σGn−x(v1) ≤ σ3(n − x − 2) + 1 ≤
1
6((n− x− 2)2 + 3(n− x− 2) + 8) from Lemma 6.2.4 and same for v2. Now let us consider PGx+3

{v1,v2},

from minimality of x, each non-terminal level of the PGx+3

{v1,v2} contains at least 4 vertices. Therefore,

by applying Lemma 6.2.5, we get σGx+3({v1, v2}) ≤ 1
8(x2 + 6x+ 9). We have,

W (G) ≤(W (Gx+3) +W (Gn−x)− 3) + (n− x− 3)(σGx+3({v1, v2})− 1)

+ x

(
max

{
σGn−x(v1), σGn−x(v2)

}
− 2

)
.

(6.10)

The first term of the sum is an upper bound for the sum of all distances which does not cross

the cut set. The second and the third terms upper bounds all the cross distances in the following

way: we may split this sum into two parts. For each crossing pair, from inside to the set {v1, v2}.

Secondly from vi, i ∈ {1, 2} to the vertex outside. Therefore, applying estimates, we get

1

18
(n3 + 3n2)− 1 ≥ 1

18
((x+ 3)3 + 3(x+ 3)2) +

1

18
((n− x)3 + 3(n− x)2)− 3

+
(n− x− 3)(x2 + 6x+ 1)

8
+
x((n− x− 2)2 + 3(n− x− 2)− 4)

6
.

(6.11)

After simplification we have

− x3 + x2(n+ 3) + x(21− 6n)− (15 + 3n) ≥ 0, (6.12)

where

δ

δx

(
− x3 + x2(n+ 3) + x(21− 6n)− (15 + 3n)

)
= −3x2 + (2n+ 6)x+ 21− 6n.

The derivative is positive when x ∈ [7, n2 ]. Hence, since the inequality (6.12) holds for x = 7, it also

holds for all x, x ∈ [7, n2 ]. Therefore, if x ≥ 7, we have the desired result.

Finally, if x = 6, then distances from v1 and v2 to all vertices inside is 9 instead of 73
8 as it was

used in the Inequality 6.11. Thus, we get an improvement of Inequality (6.11), which shows that

W (G) <
⌊

1
18(n3 + 3n2)

⌋
even for x = 6. Therefore, we have settled the 3-connected case too.
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6.4 Concluding remarks and Conjectures

The maximal planar graph Tn maximizes the Wiener index and is unique, by Theorem 6.1.6. Clearly

Tn is not 4-connected. One may ask for the maximum Wiener index for the family of 4-connected

and 5-connected maximal planar graphs. In [19], asymptotic results were proved for both cases.

Moreover, based on their constructions, they conjecture sharp bounds for both 4-connected and

5-connected maximal planar graphs. Their conjectures are the following:

Conjecture 6.4.1. Let G be an n ≥ 6 vertex maximal 4-connected planar graph. Then

W (G) ≤


1
24n

3 + 1
4n

2 + 1
3n− 2, if n ≡ 0, 2 (mod 4);

1
24n

3 + 1
4n

2 + 5
24n−

3
2 , if n ≡ 1 (mod 4);

1
24n

3 + 1
4n

2 + 5
24n− 1, if n ≡ 3 (mod 4);

Conjecture 6.4.2. Let G be an n ≥ 12 vertex maximal 4-connected planar graph. Then

W (G) ≤



1
30n

3 + 3
10n

2 − 23
15n+ 32, if n ≡ 0 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n+ 156

5 , if n ≡ 1 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n+ 168

5 , if n ≡ 2 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n+ 31, if n ≡ 3 (mod 5);

1
30n

3 + 3
10n

2 − 23
15n+ 161

5 , if n ≡ 4 (mod 5);
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[27] Andrey Dobrynin and Leonid Melńikov. “Wiener index of line graphs”. Distance in molecular

graphs-theory, Univ. Kragujevac, Kragujevac (Jan. 2012), pp. 85–121.

[28] Chris Dowden. “Extremal C4-Free/C5-Free Planar Graphs”. J. Graph Theory 83.3 (2016),

pp. 213–230.

[29] James K Doyle and Jack E Graver. “Mean distance in a graph”. Discret. Math. 17.2 (1977),

pp. 147–154.

[30] Tomasz Dzido. “A Note on Turán Numbers for Even Wheels”. Graphs Comb. 29.5 (2013),

pp. 1305–1309.

[31] Tomasz Dzido and Andrzej Jastrzebski. “Turán numbers for odd wheels”. Discret. Math.

341.4 (2018), pp. 1150–1154.

[32] C.S. Edwards. “A lower bound for the largest number of triangles with a common edge

(unpublished manuscript)” (1977).

[33] Mohamed El marraki and Abdelhafid Modabish. Wiener Index of Planar Maps. Jan. 2010.

[34] Roger C. Entringer, Douglas E. Jackson, and D. A. Snyder. “Distance in graphs”. eng.

Czechoslovak Mathematical Journal 26.2 (1976), pp. 283–296.
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[46] Beka Ergemlidze, Ervin Győri, and Abhishek Methuku. “3-Uniform Hypergraphs without a

Cycle of Length Five”. Electron. J. Comb. 27.2 (2020), P2.16.

[47] Leonhard Euler. “Elementa doctrinae solidorum”. Novi commentarii academiae scientiarum

Petropolitanae (1758), pp. 109–140.

[48] Chaim Even-Zohar and Nati Linial. “A Note on the Inducibility of 4-Vertex Graphs”. Graphs

Comb. 31.5 (2015), pp. 1367–1380.

[49] Ralph Faudree and Richard Schelp. “Path Ramsey numbers in multicolorings”. Journal of

Combinatorial Theory - JCT 19 (Oct. 1975), pp. 150–160.

[50] Odile Favaron, Mekkia Kouider, and Maryvonne Mahéo. “Edge-vulnerability and mean dis-
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[62] Debarun Ghosh, Ervin Győri, Addisu Paulos, Chuanqi Xiao, and Oscar Zamora. “Planar

Turán Number of the Θ6”. arXiv preprint arXiv:2006.00994 (2020).

[63] Debarun Ghosh, Ervin Győri, Addisu Paulos, Chuanqi Xiao, and Oscar Zamora. “The Turán

Number of the Triangular Pyramid of 3-Layers”. arXiv preprint arXiv:2107.10229 (2021).

[64] Omer Gimenez and Marc Noy. “Asymptotic enumeration and limit laws of planar graphs”.

J Amer Math Soc 22 (Feb. 2005), pp. 309–329.

[65] Andrzej Grzesik. “On the maximum number of five-cycles in a triangle-free graph”. J. Comb.

Theory, Ser. B 102.5 (2012), pp. 1061–1066.

[66] Ivan Gutman, Roberto Cruz, and Juan Rada. “Wiener index of Eulerian graphs”. Discret.

Appl. Math. 162 (2014), pp. 247–250.

[67] Ivan Gutman, Xueliang Li, and Yaping Mao. “Inverse problem on the Steiner Wiener index”.

Discuss. Math. Graph Theory 38.1 (2018), pp. 83–95.

[68] Ivan Gutman and S Zhang. “Graph connectivity and Wiener index”. Bulletin (Académie

serbe des sciences et des arts. Classe des sciences mathématiques et naturelles. Sciences
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[71] Ervin Győri and Nathan Lemons. “3-uniform hypergraphs avoiding a given odd cycle”.

Comb. 32.2 (2012), pp. 187–203.
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[75] Ervin Győri, Addisu Paulos, Nika Salia, Casey Tompkins, and Oscar Zamora. “Generalized

Planar Turán Numbers”. arXiv preprint arXiv:2002.04579 (2020).

133

C
E

U
eT

D
C

ol
le

ct
io

n
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