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Abstract

The results of this thesis belong to area of Geometric Functional Analysis. In particular we study
some problems in Convex Geometry using geometrical, analytical and also algebraic tools. We deal with
problems on volume concavity, extremizability and isoperimetric type inequality. It follows a summary
of the thesis.

log- Brunn-Minkowski conjecture. We show (with Kéroly Bordezky) the well-known log-Brunn-Minkowski
conjecture posed by Boroczky, Lutwak, Yang and Zhang [33], for convex bodies which are symmetric
with respect to n-independent linear hyperplanes. In particular, under this high symmetry we show

[hi *hpll = [KIAL,

where [-] stands for the Wulff shape and hx, hy, are the support functions of K, L. Our results strengthen a
previous result due to Saroglou [142] (see Bollobds-Leader [24], Uhrin [150], Cordero-Erausquin, Fradelizi,
Maurey [60]), treating the unconditional symmetry. We also clarify its equality case and we discuss some
consequences including the uniqueness for the solution of the logarithmic Minkowski problem for convex
bodies under this symmetry.

Equality on Geometric Barhte’s inequality. We characterize (with Karoly Boroczky and Dongmeng Xi)
the equality case of the geometric reverse Brascamp-Lieb or Barthe’s inequality [15], that states the
following: if F; be some subspaces in R™ and ¢; > 0 be some positive numbers that satisfy Zle ¢; P, =
I,,, then for any non-negative integrable function f; : E; — [0,00), i = 1,...,k, it holds

* k k ci
/]R sup Hfl(xl)dng(/n“fl) )
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Here, Pg stands for the orthogonal projection from R™ onto F and I,, the identity map. It turns out that
the extremizers follow almost the same form with the extremizers in the Brascamp-Lieb inequality, found
by Valdimarisson [152]. However, our argument is quite different from the one used by Valdimarisson
[152].

j-Santald conjecture. We introduce (with Christos Saroglou) a new family of sharp Santalé type conjec-
tures, motivated by a recently work of Kolesnikov and Werner [97], and we prove them in some cases.
For integers 1 < j < k denote s; the elementary symmetric polynomial of k variables and degree j (see
(2.47)). Fix a basis {ex,} in R™ and denote B7 the ball of £;-norm. We study the following question: If
Ky, ..., Kj; symmetric convex bodies in R™ that satisfy

> silaa(l), .. m(1) < (’“) Vo, € K;, i=1,...,k,

=1 J
(where z(1) is the I’th coordinate of a vector x € R™), then does it hold
(K| | Kk < |Bf|F ?

We were able to prove it in some cases, including the case j = 1, j = k and the unconditional case
for all j’s and we set up an equivalent functional form. Our results also strengthen one of the main
results in [97], which corresponds to the case 7 = 2. All members of the family of our conjectured
inequalities, excluding the exceptional case j = 1, can be interpreted as generalizations of the classical
Blaschke-Santalé inequality, which corresponds to the case j = k = 2. Related, we discuss an analogue
of a conjecture due to K. Ball [10] in the multi-entry setting and establish a connection to the j-Santald
conjecture.
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Chapter 1

Notation and Preliminaries

This section shortly quote some fundamental elements from the area of Convex Geometry that we will
need later, and in parallel settles thesis notation. For proofs and more information we refer to the
Schneider’s books [144].

Notation

We work in R endowed with an Euclidean structure |- ||2, (-, -) and |- |, H* stands for volume (Lebesgue
measure) and k-dimensional Hausdorff measure, respectively. We write Pr M for the orthogonal projec-
tion of a set M in R™ into a linear subspace E. We denote with 9B and relint B the relative boundary
and the relative interior with respect to the affine hull of a subset B in R"™, respectively, and intB the
interior of B with respect to R™. For p > 1 we write B} for the unit ball of the usual £,-norm and
S"—1 = 9BY stands for the unite sphere. Also, ellipsoid is any set of the form ®(B%) where ® € GL(n).
The Minkowski sum of two sets A and B in R" is given by

A+B={a+b:ac A, be B}

and scalar multiplication by AA = {Xa : a € A}, A € R. A set X in R” is said to be invariant under
® € GL(n) if X = X. A subset X of R™ is said to be origin symmetric (or simply symmetric) if X is
invariant under —1I,,. Moreover, X is said to be unconditional (with respect to a prefixed orthonormal
basis e1,...,e,) if X is invariant under the the orthogonal reflections Refef, ..., Refer.

Functions on convex sets

In this thesis a compact convex subset of R™ with non-empty interior is called convex body. The
Minkowski functional or gauge function | - || x : R™ — [0, o0] of a convex body K that contains the origin
in its interior, is given by

|z||x :==min{t > 0:2 € tK}.

If in addition K is a symmetric then || - ||k is a norm with unit ball K. For a compact convex set K in
R™ its support function hyx : R™ — R is defined by

hi(z) = max{(z,y) : y € K}.

Note that hg is 1-homogeneous which means that can be viewed as a function on the S"~!. It can be
checked that hx < hy, if and only if K C L, also hp, i (u) = hg(u) for any subspace F and v € E and
K +— hg is linear with respect to the Minkowski sum and scalar multiplication. Moreover, if a function
h:R™ — R is sublinear and positively homogeneous, namely, h(u +v) < h(u) + h(v) and h(Au) = Ah(u)
for u,v € R™ and A > 0, then there exist a unique compact convex set K with h = hx. For a compact
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star-shaped K (i.e. Az € K for any x € K and X € (0,1)) its radial function pg : R™ \ {0} — R is given
by

pr(z) = max{\:x € AK'}.

Note that radial function is positively homogeneous of degree —1. The polar (or dual) set K° of a convex
body K in R" is given by
K°:={zeR": (z,y) <1, Vye K}.

From the definition it follows that (®K)° = & *(K°) for ® € GL(n). We note that, polarity for
symmetric convex bodies can be explained or equivalently defined by the relation (Bx)® = Bx+ where
Bx is the unit ball of a Banach space norm X and X* is the dual space. Boroczky, Schneider [35]
have shown that, if a map T that goes from the class of convex bodies that contains the origin to
itself, satisfy K C L = T(K) D T(L) and T(T(K)) = K, then T = SK° for some self-adjoint linear
transformation S. We also note that, for any convex body K that contains the origin in its interior
hio(u) = ||lullxk = pr(u)~!, for any u € S"~1. Last, by the use of spherical coordinates, one can
represent volume with respect to the above functions, see Schneider’s book [144] pp 62-63.

Mixed volumes and the Brunn-Minkowski inequality

Minkowski’s mixed volumes theorem asserts that, for any integer £ > 1, any convex bodies K1, ..., K
in R™ and positive real number Aq,...,\x > 0, one has
k
MK+ N KR = > N A V(KL K, (1.1)
11,00in=1
where the coefficients V (K7, ..., K,,), called mixed volumes. We note that, mixed volume are nonneg-

ative, symmetric (namely, invariant under permutations of the Kj;’s), multilinear and continuous with
respect to the Hausdorff metric. The Brunn-Minkowski inequality expose the %—concavity of volume
|-|=V(,...,-), stating, for any convex bodies K and L in R™ it holds

|K + L|% > |K|% +|L|", (1.2)

with equality if and only if K and L are (positive) homothetic. Minkowski’s first inequality asserts that,
for any convex body K and L in R™ it holds
1 ne
f/ hydSk = V(L K,...,K) > |L|=| K| . (1.3)
n Jgn-1
with equality if and only if K and L are (positive) homothetic. The classic isoperimetric inequality
and Urysohn (consequently isodiametric) inequality follows from Minkowski’s first inequality, and in
particular corresponds to the cases L = B and K = BY, respectively. Minkowski’s second inequality,
asserts that for any convex bodies K and L in R" it holds

V(LK,...,K)?>V(L,L,K,... K)\V(K,K, ..., K). (1.4)

For the equality we refer to Shenfeld and Handel [146]. It is well known that inequalities (1.2), (1.3)
and (1.4) are equivalent. Far strengthening of Minkowski’s second inequality is the Alexandrov-Fenchel
inequality, stating that, for any convex bodies K, L, K3, ..., K, _o in R™ it holds

V(K,L,Ks,..., K, 2)>>V(K,K,Ks...,K,_2)V(L,L,Ks,...,K,_3). (1.5)

For the equality cases (which is not completely known) we refer to the paper Shenfeld and Handel [147]
dealing with the case of polytopes.
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Smoothness - (Local mixed volumes)

A vector u € S"~! is said to be exterior unit normal vector at a boundary point x € 9K if (z,u) = hx (u).
The family of all exterior unit normal vectors at a point € K is denoted by v (x). It is known that for
H" ! almost all z € OK the vk () consist from one vector and in this case x is called smooth boundary
point. The set of smooth boundary points is denoted by &’ K and the vg : 'K — S"~! is known as
Gauss map. A convex body K is called smooth (or of class C!) if 9’ K = K. The surface area measure
Sk of a convex body K in R", is a Borel measure on the sphere S"~!, given for Borel sets w C S"~! by

Sk(w) =H" (vg'w).

We note, Sk is translation invariant and Sk is barycentered at the origin, that means fSn—l udSk(u) =
0. A convex body K is said to be of class C% if hx is twice differentiable on the sphere S™~! and
det(V2hg + hx Id) > 0. The Lg-surface area measure or cone volume measure Vi of a convex body K
with o € intK, is a Borel measure on the sphere S"~!, given by

1
dVkg = - hi dSk.

It is known that, the surface area measure can be obtained as a coefficient from the polynomial repre-
sentation of |K + tB¥| in a local sense. More informations can be found in [144] refereed as Cristoffel
problems. It is also known that, the cone volume measure can be captured from the same point of view.
This place both previous measure under the light of local mixed volumes.

John (Léwner) position and isotropic meaures on the sphere

For a general reference for the material in this short section, see Artstein-Avidan, Giannopoulos, Milman
[4, 5]. For any symmetric convex body K there exists a unique ellipsoid £ of maximal (minimal) volume
contained (cotaining) in K, known as John (Lowner) ellipsoid. Furthermore, we say that K is in John
(Léwner) position if BY is the maximal (minimal) volume ellipsoid. For u € S"~! denote u ® u the

orthogonal projection in direction w; namely v ® u(z) = (z,u)u, x € R™. John’s Theorem asserts
that, for any symmetric convex body K that is in John (Léwner) position, there exist contact points
Ul,...,ux € 0K NS™ 1 and positive real numbers c¢i, ..., c; > 0 such that
k
Zciui Qu; = 1I,. (1.6)
i=1

A known consequence of the John Theorem is that, for any symmetric convex body K in R™ in John
position, it holds K C y/nB%, and for any symmetric convex body K in R™ in Léwner position, it holds
ﬁ BY C K. Note that there is always a linear image TK of a symmetric convex body K in R" for
T € GL(n), such that TK is in John (Léwner) position.

A (not necessarily even) Borel measure y on the sphere S~ ! is said to be isotropic if

/ u®udp(u) =1I,.
Sn—1

1.1 log-Concavity

The purpose of this section is to formulate a picture with some facts, conjectures and links among them
related to concavity or log-concavity of certain functions in the area of Convex Geometry. The starting
point is the known concavity of volume, stated for general measures, and then we discuss related elements
as Santal6 and Prékopa-Leilder inequalities keeping this general setting.

Let o € [—00,00]. A function h : Q — [0,00) on a convex subset 2 C R™ is called a-concave if for
any z,y € Q and A € (0,1) it holds

h((1 = Nz + Ay) > (1= Mh(@)™ + M(y)*)=, (1.7)
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where the case p = —00,0,00 are given in the limit sense; meaning that, the left hand side of (1.7) is
greater than or equal to min{h(z), h(y)}, h(z)!=*h(y)*, max{h(z), h(y)}, respectively. It is simple to
check that, if a; < ay then as-concavity implies ap-concavity. The case p = 0 called log-concavity and
we note that, any functions of the form h = e~*®) with w convex function is a log-concave function
and visa versa. We note also that, product f - g and convolution f % g are two closed operations of
log-concavity. It is clear that the characteristic function 1x on a convex set K is co-concave while a
centered Gaussian function e~ ™{4%%) where A be a positive definite map is log-concave. In the same
spirit, a Borel measure p in R™ is said to be a-concave, o € [—o00, o], if for any Borel sets K and L in
R™ it holds

p((1 = NE +AL) = (1 = Vu(K)? + Ma(L)*)*. (18)

As previously, the cases 400, —oo are interpreted in the limit sense as well as the 0-concavity or log-
concavity which is of high interest, given by

(L= MK +AL) > p(K) (L) (1.9)
We remark the followings:
- As « increases the condition is stronger; namely, if a; < ap and p is ap-concave then p is ap-concave.

- By Borell [28], (or Brascamp, Lieb [39], Corollary 3.4) it holds that, if & € [-1, 0] and a density dyu/dx
is a-concave then the measure p is -concave. Consequently, log-concave densities are log-concave

measure, uniform measure on convex set are %—COHC&VG.

1
atn

- On the other hand, a log-concave measure p on R™ whose support does not lie in a hyperplane has a
log-concave density function according to Borell [28], Theorem 3.2.

Brunn-Minkowski inequality (1.2) appeared much earlier from the last two remarks and usually
referred to the log-concavity of volume (with equality on translates) or to the %—concavity of the volume
(with equality on homothetics) in the class of convex sets. Actually, in case of volume, a classical
argument that uses its n-homogeneity shows that the %—Concavity derive from log-concavity. This full
concavity of volume has been studied for more than a century and form the core of various areas in fully
non-liner partial differential equations, probability, statistics, information theory, additive combinatorics
and convex geometry (see for example Trudinger, Wang [149], Tao, Vu [148], Schneider [144]). It was
shown by Colesanti [55] that Brunn-Minkowski inequality receives a Poincaré type realization (see also
Kolesnikov, Milman [94] for an analogue about Ehrhard inequlaity), while its equality case clarifies
uniqueness of the surface area measure.

In the following two paragraphs we shortly analyze Hilbert’s and Gromov’s proofs of Brunn-Minkowksi
inequality. Their methods inspired several later results, however we note that, one can retrieve the %—
concavity of volume in the class of compact sets (not only convex sets), using elementary arguments;
induction and arithmetic-geometric mean inequality.

Hilbert’s proof of Minkowski’s second inequality (1.4) (equivalent to Brunn-Minkowski), is based on
interpretation of it as a reverse form of Cauchy-Schwarz inequality. He associated to any Ci convex
body K an (elliptic differential) operator Ax and a measure py for which mixed volume admits the
representation V(L, M, K, ..., K) = (hr, Axhar) 12 (uy)- We refer to Shenfeld, Handel [145] for the exact
construction and to Kolesnikov, Milman [95] for a slightly revised approach. This operator turns out
to be self-adjoint with discrete spectrum. The remarkable fact is that Ay contains Minkowski’s second
inequality on its eigenvalue distribution; namely, inequality (1.4) holds if and only if the second largest
eigenvalue of Ak is negative. A proof of the equivalence leads to a reverse form of Cauchy-Schwarz
inequality of (-, Af-)12(,,) which is exactly Minkowski’s second inequality. Hilbert’s argument extended
by Alexandrov (see Bonnesen, Fenchel [26]) providing a second proof of Aleksandrov-Fencel inequality
(1.5). Recently, in the papers of Kolesnikov, Milman [95], Handel [81] the validity of the log-Brunn-
Minkowski conjecture is studied under this approach, and we shortly discuss it in section 2.1.
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Gromov observed that a measure transportation argument (see section 4.4.1) imply the log-concavity
of volume. It is easy to check that the map S(z) = (1 — Az + AXT(x), x € R™ where T push for-
ward the measure 1x dx to the measure 1, dx, provided that the bodies have the same volume, deduce
La—ngr+a(S(x)) > 1k (x), x € R™. Thus, multiplying the last inequality with the Jacobian det(DS(z))
and then integrating it, one retrieve Brunn-Minkowski inequality by the log-concavity of A — det(A).
Then, a classical rescaling argument finishes the proof. In other words, Gromov’s idea was to reduce
Brunn-Minkowksi inequality to its discriminant analogue. This method extended from MacCann [118]
providing a second proof of Prékopa-Leindler inequality, and later Barthe [15] discovered the famous re-
verse Brascamp-Lieb (or Barthe’s) inequality. The last, is related with the "best” log-concavity property
that it holds for the determinant (see (2.28)) and we discuss it in section 2.2.

Turning to general measures, Gardner and Zvavitch [77] posed the question if any even log-concave
measure is also %—concave on the class of symmetric convex bodies. In other words, if all a-concavities
for o € [0, %] are equivalent for even measures on symmetric sets. This conjectured is true in dimension
two combining the work of Boroczky, Lutwak, Yang, Zhang [33], Saroglou [143], Livshyts, Marsiglietti,
Nayar, Zvavitch [107]. Moreover the conjecture has been established locally near the Euclidean ball by
Colesanti, Livshyts, Marsiglietti [57]. The most recent result is due to Cordero-Erausquin, Rotem [62]

where they proved that any rotational invariant density e~*(UI*lI2) where w : (0,00) — (—o00,00] be
1

non-increasing and ¢ — w(e!) convex, is %—concave. Consequently, any density e w72 with p > 0is

%—concave. We note that the case p = 2 treated earlier by Eskenazis, Moschidis [68].

Meyer-Pajor [119, 120] elegantly proved that the classical Blaschke-Santalé inequality derives from
the log-concavity of volume; namely, when du/dx = 1 and K be a symmetric convex body in R™, then

W) u(K®) < u(B})>. (1.10)

Cordero-Erasquin [59] posed the question whether inequality (1.10) holds for any even log-concave mea-
sure p and any symmetric convex body K in R™. The same author in [59] proved that inequality (1.10)
holds for certain class of measures and sets in C" and noted that it holds for the Gaussian measure.
Fradelizi-Meyer [75], applying the multiplicative Prékopa-Leindler inequality obtained (1.10) for uncon-
ditional log-concave measures and unconditional sets while also for any rotationally invariant log-concave
measure and symmetric sets. Klartag [91], found that there exist a family of densities that are not all
log-concave and satisfy (1.10) for symmetric convex bodies. In section 2.3 we discuss functional forms of
the classical Blaschke-Santal6 inequality which started by K. Ball [9].

We close this section with functional forms of log-concavity (1.9). Prékopa-Leindler inequality states
that, if A € (0,1) and h, f,g : R" — [0, 00) be some functions that satisfy, for any z,y € R™,

h((1 =Nz +Xy) > f(x) gy), (1.11)

then, for any log-concave measure p in R™,

. hdp > (/n fdu> - (/n gdu)l\. (1.12)

The original Prékopa-Leindler inequality state the case where p be the volume dx, however, volume
case implies the same statement for any log-concave density. It is also clear that plug in appropriate
characteristic functions one retrieve (1.9). Moreover, there is an equivalently and shorter way to state
this result by taking h to be the smallest function that satisfies (1.11) (see Theorem 4.4.3). We note
also that, the arithmetic mean in (1.11) can be replaced by the geometric mean (coordinatewise) when
h, f,g defined on the orthant R”} (see Theorem 5.1.3 for n = 1). Borell [28] (see Marsiglietti [114] for
a shorter proof) replaced geometric and arithmetic means that appear in (1.11) and (1.12) by general
functions ¢, ® that follows some differentiable and homogeneity assumptions, and provided an equivalent
formula to this generalized Prékopa-Leindler inequality correlating f, g, ¢, ® pointwise. We note that, a
Prékopa-Leindler type inequality on Riemmannian manifolds has been established by Cordero-Erausquin,
McCann, Schmuckenschlager [61], and recently Crasta, Fragald [65] presented a new geometric mean
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f % g with integral equal to ([ f)!=*([ g)* for any A € (0,1). It is easy to check that Prékopa-Leindler
inequality and Holder inequality can be expand inductively for several functions. This multi version
admits far reaching generalization and we discuss it in section 2.2
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Chapter 2

Presentation of the results

In this section we present our results which are essentially independent. In sections 3, 4, 5 we discuss
the following three papers in the same order.

e K. J. Boroczky, P. Kalantzopoulos, Log- Brunn-Minkowski inequality under symmetry, Transactions of
the American Mathematical Society, 375 (2022), 5987-6013.

e K. J. Boroezky, P. Kalantzopoulos, D. Xi, About the case of equality in the Reverse Brascamp-Lieb
inequality, Preprint available at https://arxiv.org/pdf/2203.01428.pdf

e P. Kalantzopoulos, C. Saroglou, On a j-Santalé Conjecture, Preprint available at
https://arxiv.org/pdf/2203.14815.pdf

2.1 L,-Brunn-Minkowski theory

Central role in Brunn-Minkowksi theory have the mixed volumes inequalities. Despite the nature of
these inequalities, which is completely geometric, they are linked with PDE and Operator theory. In
the rapid developed L,-Brunn-Minkowski theory, significant effort has been given to find and clarify
L,-analogues of the inequalities (1.2), (1.3), (1.4). The main motivation of this is the existence and
uniqueness Minkowski problems for the so called L,-surface area measure Sk p, introduced by Lutwak
[109]. For p € R and a convex body K in R™ that o € intK (namely hx > 0), the L,-surface area
measure Sk , is given by

1
dSi p = gh}gPdSK.

The existence L,-Minkowski problem posed by Lutwak in [109] and asks, for fixed p € R, find necessary
and sufficient conditions for a finite non-trivial Borel measure p on the sphere S™" !, so that there exist
a convex body K with o € int K which

SK’p = . (2.1)

Equation (2.1) can be viewed as a nonlinear partial differential equation on the sphere S?~! (namely as
a Monge-Ampere equation) in the class of C% convex bodies, with known the density of y and unknown
the density of Sk . In particular, the existence Minkowski problem in PDE sense asks, for a given
function f: S ! — (0,00), solve

1
~h*"Pdet(V?h + h1d) = f, (2.2)
n

where h is the restriction of the support function of a convex body containing the origin to S"~!, and

V2h denotes the Hessian matrix of h with respect to a moving orthonormal frame on S™~!. Alexandrov
proposed a way to include non smooth solution in (2.2), the so called Monge-Ampere solutions in the
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Alexandrov sense (we refer to Figalli [72] for more informations). The uniqueness L,-Minkowski problem
in a class of convex bodies /IC, ask to clarify the following relation ~ between two convex bodies K and
L in the class K,

SK,p = Sva = K~ L. (2.3)

Let us quote some historical importance result, towards the previous two L,-Minkowksi problems. First
Minkowski [129] studied the existence problem (2.1) for the surface area measure, the case p = 1.
The discrete case treated by him while the general by Alexandrov [1], Fenchel, Jessen [71]. Firey
[73] established the so called L,-Brunn-Minkowksi inequality, for p > 1, that is based on an extended
Minkowski sum, while also treat some uniqueness result for p = 0 in [74]. Lutwak posed the L,-Minkowski
problem and studied the case p > 1 in [109]. A result for p < 1 appeared first by Chen, Huang [54]. The
papers of Boroezky, Lutwak, Yang and Zhang [33, 34] approach the case p = 0 in a very inspired way,
characterizing the even cone volume measures. This triggered several later results under the L,-setting
and we discuss some of them in the following sections. Our result clarify the relation in (2.3) for p =0
and KC the class of convex bodies with n-hyperplane symmetries.

L,-sums and L,-Problems

To state Firey [73] extension of the usual Minkowski’s sum and scalar multiplication, we recall that, any
sub-linear and positive homogeneous function h in R™ corresponds to a unique convex body K in R", in
which h = hg. Thus, Minkowski’s operations, can be viewed (or equivalently defined) as follows, denote
with K + L and aK the convex bodies with support function,

hx+r =hxg +hy and hag = ahg.

Recall, the map K +— hg is linear with respect to the initially Minkowski definition for sum and scalar
multiplication. Firey [73] defined the so called L,-sum and scalar multiplication attaching the L,-norm
as follows: for any p € [1,00], denote with K +, L and « - K the convex bodies with support functions,

hice 1= (h% +h2)r  and  has = arhg. 2.4
P K L

For p € (1,00] the function (A%, + hi)% is sub-additive by Minkowksi’s inequality, while for p < 1
definition (2.4) fails. Bérdczky, Lutwak, Yang and Zhang extended Firey’s L,-sum for p < 1 in [33]. To
state it, the Wulff shape [f] of a continues function f : "~ — (0, 00) is the convex body given by

[fl:={z eR™: (z,u) < f(u) Yue S""}. (2.5)

Readily, K = [hk], thus Firey L,-combinations for p € [1,00] and bodies K and L that contain the
origin in its interior, can be written (or equivalently defined) as

(1= A) - K 4, A L:=[((1 = \)h2 + ABE)5). (2.6)

Boroczky, Lutwak, Yang and Zhang [33] defined the extended L,-sum for any p € [—o0,00] through
(2.6). The case p = 0 is known as logarithmic convex combination and is given in the limit sense,

(1—=X)-K 4o \-L:=[hy *h].

It is easy to check that the support function of the body [f] is less than or equal to f, namely hjs < f.
The well known Aleksandrov’s Lemma states that hys(u) = f(u), for any u belonging to the support of
the surface area measure Sjs). So, when [f] has smooth boundary then necessarily i) = f and in turn f
is a support function. We note, when p € [0, 1) the L,-convex combination of two smooth convex bodies
is not necessarily smooth.

We denote with K7 the set of all convex bodies in R™ containing the origin in its interior and with
K2 the set of all origin symmetric convex bodies. Boroczky, Lutwak, Yang and Zhang [33] posed the
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problem: for fixed p € [—o00, 00|, find a reasonably big class K’ of convex bodies so that, for any K, L € K’
and A € (0,1) it holds the so called L,-Brunn-Minkowksi inequality,

n

(=2 K 4y AL = (1= K]S+ ML) (2.7)
which, as usual the cases p = —00, 0, 0o are interpreted in the limit sense. Note that, a rescaling argument
(see [33]) shows that for any p € (0, 00] inequality (2.7) is equivalent to

(1= N) - K+, - L| > |K|* LY, (2.8)
and by the definition of L,-sum, it holds the following monotonicity: if —oo < p < ¢ < oo then
(1-=X)-K4+,A-LC(1—-X)-K+,X-L. (2.9)

Firey [73] established (2.8) for p > 1 and convex bodies in K. However, this inequality turns out to be
a direct consequence of Brunn-Minkowksi inequality (case p = 1) and monotonicity (2.9). It is known
that for the ranges p € [0,1) and p < 0 inequality (2.8) fails when is viewed as inequality on K7 and
K7, respectively. Examples that shows this, is to consider two translated cubes and non-homothetic
centered cubes, respectively. However, it was conjectures by Boroczky, Lutwak, Yang and Zhang [33]
that for p € [0,1) and symmetric convex bodies K and L in R", inequality (2.8) should hold, known as
L,-Brunn-Minkowski conjecture. The validity of that conjecture will significant strengthen the Brunn-
Minkowski inequality under central symmetry and will have various consequences in the area of Convex
Geometry. One of the most attractive problems corresponds to the case p = 0.

Conjecture 2.1.1 (log-Brunn-Minkowsi Conjecture). For any symmetric convez bodies K and L in R™
and any A € (0,1) it holds,

(1 =X)- K 4o\ L| > |K|'" LM (2.10)
In addition, equality holds if and only if K = K1+ ...+ K,, and L = L1+ ...+ L., for compact convez
sets K1,..., Ky, L, ..., Ly, of dimension at least one where 2211 dim K; = n and K; and L; are dilates

t=1,...,m.
Boroczky, Lutwak, Yang and Zhang [33] state the following related conjecture.

Conjecture 2.1.2 (Log-Minkowski conjecture). For any symmetric convex bodies K and L in R™, we

have b | | | |
log — dVig > — log — 2.11
/Sn—l ghK K= n g|K|7 ( )

with equality as in Conjecture 2.1.1.

The same authors in [33] proved that Conjecture 2.1.1 and Conjecture 2.1.2 are equivalent on the
family of all symmetric convex bodies. Actually, it holds the following slightly general statement (see
Proposition 3.5.2).

Lemma 2.1.3. If F is a class of convex bodies containing the origin in their interor and F is closed
under dilation and Lo-sum, then (2.10) for all A € [0,1] and K, L € F is equivalent with (2.11) for all
K, LeF.

Following again [33], the log-Minkowski conjecture (if true) characterize the even uniqueness Minkowski
problem for the cone-volume measure Sk o = Vik.

Conjecture 2.1.4 (Uniqueness for even Vi ). Within the class of symmetric convex bodies in R™, the
equation Vi = Vi, implies that K and L are related as equality in Conjecture 2.1.1

In the opposite direction, within the class of origin symmetric convex bodies with C¢° boundary,
uniqueness of the convex body with a prescribed cone volume measure implies the log-Minkowski con-
jecture according to Bordczky, Lutwak, Yang and Zhang [34]. Moreover the same authors in [33] proved
that the three previous conjectures are true in the plane.

Theorem 2.1.5 (Boroczky, Lutwak, Yang, Zhang). The log-Brunn-Minkowksi Conjecture 2.1.1 holds
in dimension two.
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Local case for p = 0 and the L,-triad

The first local result on the log-Brunn-Minkowski conjecture is due to Colesanti, Livshyts, Marsiglietti
[67], concerning neighborhood of BY. They proved that for any R € (0, 00) and any even strictly positive
¢ € C?(S"1) there exist a > 0 such that the conjecture holds for any pair with support function in
the class {R¢° : € € (0,«)}. This was strengthened by Kolesnikov and Milman [95] and we state here a
particular case for simplicity.

Theorem 2.1.6 (Kolesnikov, Milman). For any q € [2, 0] there exist ng > 2 such that, for any n > n,
the log-Brunn-Minkowski conjecture (2.10) holds for symmetric convex bodies in a C?-neighborhood of
Bj. Moreover, ny = 2.

We briefly give some explanation for the last two Theorems. Boéroczky, Lutwak, Yang and Zhang
[33] established the equivalence between (2.10) and (2.11) and solved (2.11) in the plane. The key point
concerning this equivalence, is that, inequality (2.10) deduce the log-concavity of A — [(1—=A)- K +qA- L]
and in turn when this concavity expressed under the first order derivative one obtains (2.11). This gives
the idea that a second equivalent form of (2.10) can be deduced from the second order condition for
this concavity. We note that, completely analogues equivalence has been obtained for the L,-sum. The
following Theorem states these two reformulations of the L,-Brunn-Minkowski inequality, proven by
the combine work of Boroczky, Lutwak, Yang and Zhang [33], Colesanti, Livshyts, Marsiglietti [57],
Kolesnikov, Milman [95], Chen, Huang, Li, Liu [51], Putterman [136].

Theorem 2.1.7. Let p € [0,1]. Withing the class symmetric convex bodies in R™ the following statements
are equivalent.

(i) The L,-Brunn-Minkowski inequliaty (2.8) holds.

(ii) The so called L,-Minkowski’s inequality holds:

1 1_ g 1,1 1
(3 [ mnicrase)” = joi i35,

n

where case p = 0 corresponds to the log-Minkowski inequality (2.11).

(11t) The so called local Ly-Brunn-Minkowski inequality holds

V(LK K)? _n—1 1-p / h?
> V(L,LK,...,K)+ ——2_ L g8y, 2.12
| K| n—p ( ) n(n —p) Jgn-1 hi K (2.12)

where case p = 0 is the so called local log-Brunn-Minkowski inequality.

For p = 1 these inequalities coincides with inequalities (1.2), (1.3), (1.4), respectively. We note that
the third statement, that reminiscent the Minkowski’s second inequality (in fact strengthens it) proved
equivalent with L,-Brunn-Minkowksi inequality by Kolesnikov, Milman [95], but in a local sense. This
was extended from local to global by Chen, Huang, Li, Liu [51] and Putterman [136] using different
approaches, and build on Kolesnikov, Milman [95] they proved that all three inequalities in Theorem
2.1.7 hold for p € [1 — c/n%7 1) where ¢ be an absolute constant. Handel approach this problem from
(2.12) (see related studies Shenfeld, Handel [146, 147]) and in [81] proved the following.

Theorem 2.1.8 (Handel). The log-Minkowksi inequality (2.11) holds if K is a zonoid.

Interrelated Problems

Banaszcyk (see Latala [99]) asked if for any symmetric convex set K in R" the function t — v(e'K)
is log-concave, where v be the standard Gaussian measure on R™. This was confirmed by Cordero-
Erasquin, Fradelizi and Maurey [60] applying a Poincare inequality, known as (B)-Theorem. The same
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authors asked if the function ¢ — u(e!K) is log-concave where p be any even log-concave measure
and K a symmetric convex set, known as (B)-conjecture. Saroglou [142] proved that, the log-Brunn-
Minkowksi inequality (if true) implies (B)-conjecture for the uniform measure on symmetric convex
bodies. In addition he obtain an equivalent formulation of the log-Brunn-Minkowski conjecture as a (B)-
type problem. To state it, let C,, the normalized cube and diag(si,...,s,) the diagonal transformation
with diagonal entries s1,...,Sy.

Theorem 2.1.9 (Saroglou). The log-Brunn-Minkowksi conjecture is equivalent with the following state-
ment: for any symmetric conver body K in R™ and any t1,...,t, > 0 the function

s+ |Cy, Ndiag(t], ..., t) K] (2.13)
is log-concave.

Nayar-Tkocz [130] raised the following problem: for fixed ¢ € [1,00] it holds that for any m-
dimensional subspace H of R™ the function

(t1,. ., 1) > [diag(e™, ..., ™) BE N H| (2.14)

is log-concave (here | - | stands for the m-dimensional Lebesque measure). The same author were able to
confirm it for ¢ = 1 in [130] and they noticed that their problem for ¢ = oo is equivalent with Saroglou’s
statement in (2.13). Under the same spirit of (B)-conjecture, Saroglou [143] observed that if one knows
the validity of the log-Brunn-Minkowski conjecture then volume can be replaced by any even log-concave
measure in (2.10). On the other hand, Livshyts, Marsiglietti, Nayar, Zvavitch [107], showed that the
validity of the log-Brunn-Minkowski conjecture for a particular even log-concave measure p (instead of
volume) implies the %—Concavity of u. Combining last two, it follows that the log-Brunn-Minkowksi
conjecture implies the Gardner-Zvavitch conjecture. Actually, Eskenazis, Moschidis [68] confirmed the
Gardner-Zvavitch conjecture in the Gaussian case; namely, the Gaussian measure is %—concave on the
class of symmetric convex bodies.

Case p = 0 under high Symmetry

Rotem [140] established the log-Brunn-Minkowksi conjecture for complex bodies K, L C C™, namely unit
balls of norms in C”, using a general theorem about complex interpolation of Cordero—Erausquin [59].
Turning to the real setting, the classical coordinatewise product of two unconditional convex bodies K
and L in R" is given

K. *= {(:|:|;v1\1_/\|y1|/\7...,:|:|;Un\1_)‘|yn|k) : (z1,...,2,) € K and (y1,...,yn) € L}.

As a strengthening of the log-Brunn-Minkowski inequality, it was shown that the volume of the above
set is greater than or equals to the geometric mean of the volumes of K and L, by Bollobds, Leader [24],
Uhrin [150] and Cordero-Erausquin, Fradelizi, Maurey [[60], Proposition 8], and the arguments are based
on the multiplicative Prékopa-Leindler inequality Theorem 5.1.3. The equality case was characterized
by Saroglou [142]. In the next Theorem, the set K1 @ ... ® K,, denotes the Minkowski sum of some
compact convex sets K1, ..., K,, C R" if their affine hulls are pairwise orthogonal.

Theorem 2.1.10 (Bollobds-Leader, Uhrin, Saroglou). If K and L are unconditional convex bodies in
R™ with respect to the same orthonormal basis and \ € (0,1), then

(1 —=N\)- K 4o\ L| > |K['*7 LN (2.15)

Equality holds if and only if K = K1 ®... &K, and L = L1 ®...® L, for unconditional compact convez
sets Ky,..., Ky, L1,..., Ly of dimension at least one where K; and L; are dilates, 1 =1,...,m.
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Our main result strengthen the previous Theorem. To state it, a map A € GL(n) is said to be linear
reflection (see Davis [66], Humphreys [85], Vinberg [155]) if there is a hyperplane H for which

A? =1d,, A#1d,, Alg =1dg. (2.16)

A linear reflection satisfies det A = —1 and there exists u € S"~!\ H with A(u) = —u. Recall, a set X
in R™ is invariant under A € GL(n) if AX = X. Our main result is the following.

Theorem 2.1.11 (Boroczky, K.). Let A € (0,1). If Ay, ..., A, are linear reflections such that HyN...N
H, = {o} holds for the associated hyperplanes Hy,...,H, and the convex bodies K and L are invariant
under Ai,...,A,, then

|(1—=A)- K 4o\ L| > |K|['*7 LN (2.17)

In addition, equality holds if and only if K = Ki + ...+ K,, and L = Ly + ... 4+ L., for compact
convex sets Kq,...,K,,L1,..., Ly of dimension at least one and invariant under Ai,..., A, where
S dimK; =n and K; and L; are homothetic, i = 1,...,m.

Note that, a subset of R™ with this type of symmetry described above is not necessarily origin
symmetric, the n-simplex is an example of that. Barthe, Fradelizi [20] and Barthe, Cordero-Erausquin
[19] provided lower bound of the volume product and bounded the isotropic constant, respectively, under
this type of symmetry. Very recently Crasta, Fragald [65] reprove Theorem 2.1.11 introducing a new
Prékopa-Leindler type inequality. In what follows, we list some consequences of Theorem 2.1.11, and for
convenient, two convex bodies K and L that satisfy the assumption of Theorem 2.1.11 are said to be
n-hyperplane symmetric with respect to the same linear reflections.

Symmetries of Regular polytopes. Theorem 2.1.11 settles the log-Brunn-Minkowski conjecture
for convex bodies invariant under the symmetry group of a regular polytope.

Log-Minkowksi inequality. According to Bordczky, Lutwak, Yang and Zhang [33], the Lg-sum
is covariant under linear tranformations (see (3.12)). Therefore, Theorem 2.1.11 and the method
of [33] imply the log-Minkowski inequality under this symmetry (see section 3.5.1): Let K and L
convex bodies in R™ which are n-hyperplane symmetric with respect to the same linear reflections,

then K| )
hr K L
log — dVg > — log — 2.18
/SH S T (2.18)
with equality as in Theorem 2.1.11. We remark that inequality (2.18) is scaling invariant. So, it
can be equivalently written for bodies of volume one, which in this case receives the form

/ 10ghL dVK Z / IOgthVK.
Sn—1 Sn—1

Unigness of Vi . The log-Minkowski inequality (2.18) characterize the uniqueness of cone-volume
measure according to Bordczky, Lutwak, Yang and Zhang [33]. We repeat this method in our case
in Section 3.5.2, and we obtain that, if K and L be two convex bodies in R™ which are n-hyperplane

symmetric with respect to the same linear reflections Ay, . .., A,, then the followings are equivalent:

(i) Vg =V
(i) V(K) = V(L) and K = K1+ ...+ K, and L = Ly + ... + L, for compact convex
sets K1,...,K,,,L1,...,L,, of dimension at least one and invariant under Aq,..., A, where

> dimK; = n and K; and L; are homothetic, i = 1,...,m.

According to Chen, Li, Zhu [52], for general convex bodies, no analogue of the above equivalence can
be expected. In particular, one can find two non-homothetic convex bodies with smooth boundary
and the same cone-volume measure.
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log-concavity with respect to the Lo-sum. Saroglou [[143], Theorem 3.1] proved that, the
log-Brunn-Minkowski conjecture (2.10) implies that for any even log-concave measure and any
symmetric convex bodies K and L in R and X € (0,1), it holds

p((1=X) - K +o X~ L) > p(K)' " u(L). (2.19)

We confirm the above inequality for convex bodies K and L in R™ which are n-hyperplane sym-
metric with respect to the same linear reflections, in Theorem 3.5.3.

Gardner-Zvavitch inequality. Livshyts, Marsiglietti, Nayar, Zvavitch [[107], Proposition 1]
showed that, if a Borel measure p with a radial decreasing density f (namely, f(tx) > f(x) for
x € R™ and ¢ € [0, 1]) satisfies inequality (2.19) for K, L in a class K, then for any K,L € K and
any A € (0,1), it holds

p((1= MK +AL)7 > (1= Nu(K)7 + A (L)

Thus, we immediately obtain the above inequality for a measure p and convex bodies K, L which
are n-hyperplane symmetric with respect to the same linear reflections.

Log-Minkowksi solution We note that for any convex body K, its centroid ﬁ / xxdr is
invariant under any affine transformation which leaves K invariant. Therefore, Theorem 1.1 in
Boroczky, Henk [29] and Theorem 1.4 in Bianchi, Bordczky, Colesanti, Yang [22] yield that the
subspace concentration condition characterizes the cone volume measures of convex bodies with
high symmetry: Let G C O(n) be a group acting on S"~! without fixed points, and let z be a finite
non-trivial Borel measure on S™~! invariant under G. Then there exists a G invariant solution of
the logarithmic Minkowski equation (namely, (2.1) for p = 0) in the Alexandrov sense if and only
if p satisfy the subspace concentration condition.

L,-Minkowski problems

The purpose of this section is to state some known results about the existence and uniqueness L,-
Minkowksi problems that has been given by several groups of authors. On what follows, p will always
be a finite non-trivial Borel measure on the sphere S”~! and supp p stands for the support of measure
1. A measure p satisfy the subspace concentration condition (introduced by Boroczky, Lutwak, Yang
and Zhang [34]) if, for any proper linear subspace L of R™, it holds

urns ) < Ty, (220)
with equality if and only if there exists a complementary subspace L’ to L such that supppu € LU L'.
We say that p is not concentrated on a set W if the support of i is not contained in W. A subspace
L is said to be essential with respect to p if L Nsuppp is not concentrated on any closed hemisphere of
LN S™ 1. A measure u satisfy the essential subspace concentration condition if it satisfy the subspace
concentration condition only for essential subspaces (with respect to u). A great subsphere is a set of
the form S™~!' N L, where L be a subspace of R" codimension one, and hemisphere is clearly the half
sphere. The following Theorem list some sufficient conditions for the L,-surface area measure in the
range p > —n and p # n and in the following paragraph we quote some necessary conditions.

Theorem 2.1.12 (L,-Minkowski’s Existence). For p € R and finite non-trivial Borel measure {1 on
S"=1, there exists a convex body K in R™ containing the origin such that p = Sk.p if either of the
following conditions hold.

(i) p > 1 and p # n and p is not concentrated on any closed hemisphere. This was first proved by
Chou, Wang [54] while a second approach has been given by Hug, Lutwak, Yang, Zhang [83].
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(ii) p=1 and p is not concentrated on a great subsphere and fsn,l wdp(u) = o. This was first proved
in the discrete case by Minkowski [129] while the general by Alexandrov [1], Fenchel, Jessen [71].

(i1i) p € (0,1) and p is not concentrated on a great subsphere. This was proved by Chen, Li, Zhu [53]
(see also Zhu [156] for the discrete case).

(iv) p =0 and p satisfies the subspace concentration condition. This was proved by Chen, Li, Zhu [52].

(v) p € (—n,0) and u has density f with respect to H" ! that f € L_a (S™=1). This was proved by
Bianchi, Boréczky, Colesanti, Yang [22].

Let us discuss some complementary facts to Theorem 2.1.12. Minkowski’s existence Theorem corre-
sponds to case p = 1 and the condition stated in (ii) is also necessary. About case (iv), it was proven
before [52] that even cone volume measure characterized by the subspace concentration condition, pro-
viding necessary and sufficient condition in that case, established by Boroczky, Lutwak, Yang and Zhang
[34]. We further note, that the cone volume measure of any centered convex body K in R™ satisfies the
subspace concentration condition according to Boroczky, Henk [29]. Concerning the characterization of
the cone volume measure in the non-symmetric case, all what is known is by Bordczky, Hegedtis [30],
where they characterized the restriction of Sk o = Vi to an antipodal pair of points.

The following Theorem list some results concerning uniqueness for the L,-Minkowski problem, that
turns out to be a more challenging task.

Theorem 2.1.13 (L,-Minkowski uniqueness). Let K and L two convex bodies in R™. If Sk, = Sr,
and

(i) p>1 andp#n then K = L.
(ii) p=1 then K and L are translates of each other.

(i) p € (1 — -5,1), where the absolute constant ¢ > 0 and K, L are symmetric and have CJQr boundary,
n2
then K = L by Kolesnikov, Milman [95], Chen, Huang, Li, Liu [51], Putterman [136]).

(iv) p=0 and K and L are n-hyperplane symmetric with respect to the same linear reflections, then K
and L are related as equality condition in Theorem 2.1.11.

For the proofs of the first two we refer to Schneider’s book [144]. We also note that for p < 0 it is
known that the even solution of Minkowski problem may not be unique according to Jian, Lu, Wang
[87], Li, Liu, Lu [103], Milman [125].

2.2 Brascamp-Lieb and Barthe’s inequalities

The starting point of this section is the Brascamp and Lieb inequalities [39]. The inequalities that we are
going to discuss follow the same pattern, which one can explain it as inequalities for which product and
integral change their order. The framework that describe this pattern is (now) called data, and many
central inequalities in analysis, like Holder inequalities, Loomis-Whitney inequality, Young for convo-
lution inequalities, hypercontractivity inequalities and many others, follows this pattern and captured
from specific datas. This high level of generalization found several use in many mathematical areas,
for example, in convex geometry, in harmonic analysis, in probability theory, in information theory, in
theoretical computer science and also in number theory, making this an significant tool concentrating lot
of interest. Each data is associated with an inequality (or more specific with two inequalities the forward
and the reverse) and the initial question/problem was, how one can easily know the best inequality from
a chosen data, in terms of its best constant defined below. The first result was due to Brascamp-Lieb
[39] where they proved that one can find the best constant testing only centered Gaussian functions.
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Recall, a centered Gaussian function is a function of the form e~ ™A% where A : H — H be a positive
definite linear transform and H be a Hilbert space. Recall, a well known formula

/ e ™ AZ2) g — (det A)_%. (2.21)
H

For some datas, Brascamp-Lieb result found to be an efficient computational tool and in particular to
those where later called Geometric datas. Albeit, these class of datas is quite small, there exist a very
natural equivalent relation partitioning the set of all datas with the property that, Geometric datas
represents those with equality case. This was an important observation which reduce the difficulty of
characterizing equality cases in the Brascamp-Lieb inequalities. In this topic our contribution is the
characterization of the equality cases in the Geometric Reverse Brascamp-Lieb (or Barthe’s) inequality.

Let us begin with the notation. For any k integer, the Brascamp-Lieb data (or simply data) is any
finite collection

(Bs, )iz, (2.22)

where B; : R® — H; be surjective linear maps, H; be a n;-dimensional Euclidean space endowed with
the Lebesgue measure dz and ¢; > 0 be non-negative real numbers, i = 1,..., k. Clearly, n > n; for all
i’s.

To each data (B, c;)¥_; a constant is attached as follows: Brascamp-Lieb constant is the smallest
real number cpy, € (0, 00] for which, for any non-negative f; € L1(H;), i =1,...,k it holds

/n ﬁfi(BNc)ci dx < CBLﬁ (/H fi) ) : (2.23)

The inequality that c¢pp can be calculated using only centered Gaussians is known as Brascamp-Lieb
inequality.

For example, Holder inequalities corresponds to all datas (I, ci)le where I, the identity map and
(ci)le be any collection of positive real number that satisfy Zle ¢; = 1. Moreover, Lommis-Whitheny
inequality [108] correspond to (Pel;, ﬁ)?ﬂ where P, is the orthogonal projection from R™ onto e;.
In all these cases the associated constants cpy, are one, since the inequalities are already known and they
are also sharp.

Replacing f;(x) — fi(5) in (2.23) and then making a change of variables one obtains A" and POPETLE
in the left-right hand sides of (2.23). Thus, to avoid datas with cgr, = 0o, we always assume the scaling

condition i
Z cng = n. (2.24)
i=1

This is a necessary condition for the finiteness of the constant cp;, but not a sufficient condition. This
will be discuss later (see Theorem 2.2.9).

Brascamp, Lieb [39] proved in the rank one case (when all dim H; = 1), that the class of centered
Gaussian functions compute cgy,. The authors used symmetrization techniques known as rearrangements
based in Brascamp, Lieb, Luttinger inequality [38]. After this result, Lieb [105] extended it in the
following general case using arguments related to Central limit Theorem.

Theorem 2.2.1 (Lieb). Let (B;,c;)*_, be a Brascamp-Lieb data that satisfy Ele cini = n. Then
centered Gaussian functions compute cgy,, namely the Brascamp-Lieb constant equals:

k .

_ Jon Ilizy 9i(Biw)® da

CBL = sup. % A
e i (f, )

In other words, applying identity (2.21) to (2.25), Theorem 2.2.1 asserts that inequality (2.23) holds
for any non-negative function f; € L1(H;), 7 =1,...,k with constant

(2.25)

1
2

clet(zkfz1 ciBfAB)\ . (2.26)
Hi:l (det A,‘)Ci’

CBL = sup

A; positive definite
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Here, B* denotes the adjoint of B. K. Ball [12, 13] observed that John decompositions (1.6) can be seen
as datas and in that cases the constant is computable by Lieb’s Theorem 2.2.1. In particular, for datas
that the H;’s are one dimensional subspaces of R™, nicely distributed, and the B;’s are one dimensional
orthogonal projections, then the Brascamp-Lieb constant is one. Recall, u ® u(x) := {(u,z)u, where
uw e S™ 1, z € R" denotes the one dimensional orthogonal projection in direction .

Theorem 2.2.2 (K. Ball). Let (u; ®u;,c;)¥_; be a Brascamp-Lieb data that satisfy Zle cu; Qu; = I,
Then, cgr, = 1, or in other words, for any integrable functions f; : R — [0,00), i = 1,...,k, it holds

/nﬁfi((m,umci da <f[1</Rf>

Under the assumptions of the above Theorem, cgy, < 1 by combining (2.26) and Proposition (4.2.4),
and also cgr, > 1 by sharpness of inequality (4.9). K. Ball applied his Theorem 2.2.2 in convex geometry
obtaining several results: bounds for the volume of the sections of the cube [12], estimates about volume
ratios [13] and a reverse isoperimetric inequality [13]. Moreover, S. Brazitikos [40] extended Theorem
2.2.2 and found new applications related to Helly’s Theorem.

F. Barthe [15] making use of optimal transport of measure (Brenier maps) obtained simultaneously a
second proof of Theorem 2.2.1 and a reverse (or dual) form of Brascamp-Lieb inequality (2.23). We note
that earlier, McCann [118] used this technique giving an second proof of Prékopa-Leindler inequality
which is a special case of the following Barthe’s Theorem 2.2.3.

To each data (B;, ¢;)¥_; a second constant is attached as follows: the Reverse Brascamp-Lieb constant
is the largest real number crpr € [0,00) for which, for any non-negative f; € Li(H;), i = 1,...,k it

holds . .
/ sup Hfz(ifz)ci dr > crBL H (/ fz) . (2.27)
R™ o=30F i=1 \ i

c¢;Bizi, x,€H; j—1

The inequality that czpr, can be calculated using only centered Gaussians is known as reverse Brascamp-
Lieb inequality or Barthe’s inequality. Note that this peculiar function on the left hand side is not always
integrable and the symbol [ " stands for the outer integral. F. Barthe proved in [14] the rank one case
and in [15] the following general case.

Theorem 2.2.3 (F. Barthe). Let (B;,c;)¥_, be a Brascamp-Lieb data that satisfy Zle cin; = n and

ﬂle ker B; = {o}. Then both cpy, in (2.23) and cgpr in (2.27) can be calculated using centered Gaus-
sians. In addition, if D be the largest real number for which, for any positive definite linear transform
A1H1 %Hl, 1= 1,,]17 it holds

k k
det (Z cz-B;‘AiBZ) > D[] det(A)“, (2.28)
i=1

i=1

then
CRBL — 1/CBL = \/5 (229)

Note, if the common kernels of the B; were not trivial then the left hand side of (2.28) is zero and in
turn D = 0. However, Theorem 2.2.3 still holds without condition ﬂle ker B; = {o}, including cases like
crpr, = 0 and ¢pr, = co. Also, note that both constants cgr, and cgrpr follows from inequality (2.28),
which for particular datas is just an extended version of the arithmetic-geometric mean inequality.

In addition to Barthe’s approach; there are two other methods of proofs that work for proving both
the Brascamp-Lieb and Barthe inequalities. First, a heat equation argument was provided in the rank
one case by Carlen, Lieb, Loss [50] for the Brascamp-Lieb inequality and by Barthe, Cordero-Erausquin
[17] for the Reverse Brascamp-Lieb inequality. The general versions of both inequalities are proved via
the heat equation approach by F. Barthe, N. Huet [18]. Second, probabilistic arguments for the two
inequalities are provided by Lehec [100].
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Courtade, Liu [64] extended the Brascamp-Lieb data (2.22), unifying into one inequality the Brascamp-
Lieb and the Barthe’s inequalities. For any k, m integers, we call extended Brascamp-Lieb data (or simply
extended data) any finite collection

(Bijacivdj)a
where B;; : H; — HJ be bounded linear transformations, H;, H? be finite dimensional Euclidean
spaces and c;, d; be positive real numbers, i = 1,...,k and j = 1,...,m. For all extended datas the

corresponding scaling condition, that extends (2.24), is,

> eidim(H;) =Y d; dim(H).
i=1 j=1
To each extended data (B;j,¢;,d;) a constant is attached as follows. Let ccp, € (0,00] be the smallest
constant for which it holds (the forward-reverse Brascamp-Lieb inequality)

k (&3 m dj -
1 (/E fz) <cor H (/EJ gj> Vfi € LT(E;), g; € LT (E7), (2.30)

i= j=1

provided
k

m k
=1 i=1

=1 g

Here, Li’ (H) stands for the non-negative integrable functions on H. In the same spirit Courtade and
Liu [64] proved the following.

Theorem 2.2.4 (Courtade, Liu). Let (B;;,c;,d;) be an extended Brascamp-Lieb data. Then ccr can
be computed only choosing centered Gaussian functions, namely ccr equals:

I (f 1)
H}n=1 (fEJ gj)dj

where the infimum is taken over all the centered Gaussian functions f; and g; that satisfy (2.31).

Ccr = inf

Lieb’s and Barthe’s Theorem appeared here as special cases, kK = 1 and m = 1 respectively. Moreover
the same authors in [64], generalized the duality relation (2.29) and they also deal with finiteness,
structure and extremals. Its important to note that this family of inequalities was introduced earlier
by Courtade, Liu together with Cuff and Verdu in [63]. We remark that the direct and the reverse
Brascamp-Lieb inequalities are sufficient tools for treating the Bollobas-Thomason inequality and its
dual. We provide this already known results in Appendix 6.3 together with equality cases. Thus,
one may expect that inequality (2.30) may possibly provide a unified version of Bollobds-Thomasson
inequality with its dual.

Geometric data

Let us turn our attention into datas that satisfy an isotropic type condition. For simplicity, let us assume
that the surjective linear maps B; : R™ — E; given in (2.22) have their linear image inside R” and in
addition are orthogonal projections, B; = Pg,. In this case, a data of the form

(PENCZ')?:D (2.32)

is said to be Geometric Brascamp-Lieb data if it satisfy the so called Geometric condition

k
> ¢iPg, =1,. (2.33)
i=1
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The ”Geometric” terminology coined by Bennett, Carbery, Christ, Tao in [21]. Note that, condition
(2.33) implies the scaling condition (2.24), by taking the traces. Barthe [15] extended Ball’s Theorem
2.2.2 stating the following.

Theorem 2.2.5 (Ball, Barthe). Let (Pg,,¢;)i=1
CRBL — 1.

k be a Geometric Brascamp-Lieb data. Then, cgr, =

,,,,,

This Theorem, significantly generalize the Holder, Loomis—Whitney and Prékopa-Leindler inequali-
ties. A proof of that follows by Proposition 4.2.10 which gives D = 1 in (2.28) and the Theorem 2.2.3.
It is proven by Valdimarsson in [151] that the Bracamp-Lieb constant, in this particular family of datas
(Pg,,c;)¥_,, is minimized by those that satisfy the Geometric condition, which by Theorem 2.2.5 is one.

Extremals for the Geometric data

The following Theorem restate Theorems 2.2.5 and as we have already discussed in previous sections
combines the work of Brascamp, Lieb [39], Lieb [105], Ball [13, 12], Barthe [15].

Theorem 2.2.6 (Geometric inequalities, Brascamp-Lieb, Ball, Barthe). Let (Pg,,c;)%_, be a Geometric
Brascamp-Lieb data. Then for any non-negative integrable f; € Li"(Ei), i=1,...,k one has

k k ci
fi(Pg,x)% dx < ( fl-) (2.34)
and

% k k ci
/R" ) sup Hfi(xi) dr > g (/E fi) . (2.35)

k
=305 Citi, T €E; j—1

Inequality (2.34) is known as Geometric Brascamp-Lieb inequality while (2.35) as Geometric reverse
Brascmap-Lieb (or Barhte’s) inequality. It is not hard to check that, both inequalities achieve equality
on Gaussian densities e=*1=1”. For a proof of that see Lemma 4.2.6 (i) and section 4.3. However, it turns
out that equalities can be attained in many other cases and to describe them we need some preparation.
For a Geometric data (Pg,,c;)¥_;, a non-zero linear subspace V is called critical subspace if

k
dimV =" ¢; dim(E; N V). (2.36)

=1

This condition is equivalent with E; = (E;NV)+ (E;NV>*) forany i = 1,...,k (see Lemma 4.2.6). We
say that a critical subspace V is indecomposable if V" has no proper critical linear subspace. For example,
the datas concerning Holder inequality any subspaces of R™ is critical, while the data concerning Loomis-
Whithey inequality a critical subspace is a subspace spanned by a subset of {e1, ..., e,}. Moreover, R" is
alway a critical for a Geometric data by the scaling condition (2.24). Critical subspaces was introduced
by Carlen, Lieb, Loss [50] in the rank one case and extended by Bennett, Carbery, Christ, Tao [21]. The
main reason of this notion was to reduce the problem of finiteness of the constant ([21], Lemma 4.6 and
4.8) to the case where the data has no critical subspaces.

For fixed subspaces F1, . .., Ej, of R", asubspace F of R™ is called independent subspace if F' = N¥_, E!
where E! is either F; or Ei*. When there exists ¢ in many non-trivial independent subspaces, we
always denoted them by Fi,..., Fy, otherwise we do the convention ¢ = 1 and F; = {o}. Set Fyep to
be the orthogonal complement of (@ﬁlej). Valdimarsson [152] introduced the so called independent
decomposition

R™ = Fuep @ (B4, F)) - (2.37)

The same author characterized extremizers (equality cases) of the Brascamp-Lieb inequality based on the
above decomposition in [152]. Let us note that, if there are no independent subspaces then the convention
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gives R" = Fycp and if the independent subspace span R”, namely R" = EB§=1F i then clearly Fyep = {0}
in that case. Moreover, criticality is closed under intersection, sum and orthogonal complement (see
Lemma 4.2.7) and in turn all the components in (2.37) are critical subspaces.

After partial results of Barthe [15], Carlen, Lieb, Loss [50], Bennett, Carbery, Christ, Tao [21], it
was Valdimarsson [152] who characterized extremizers in (2.34) following the proof that uses the heat
equation (or flow) argument.

Theorem 2.2.7 (Valdimarsson). Let (Pg,, ¢;)1<i<k be a Geometric Brascamp-Lieb data and let Fi, ..., Fy, Fyep
the components of the independent decomposition induced by this data. We assume that equality holds in

the Geometric Brascamp-Lieb inequality (2.34) for non-negative f; € L1(E;), i = 1,...,k. Then, there

exist b € Fyep and 0; > 0 for i =1,...,k, integrable non-negative h; : F; — [0,00) for j =1,...,¢, and

a positive definite matriz A : Faep — Faep such that the eigenspaces of A are critical subspaces and

fi(z) = 06 A PPacp ©Pracp =) H h;(Pr;(z))  for Lebesgue a.a. x € E;. (2.38)
F;CE;

On the other hand, if for any i = 1,...,k, f; is of the form as in (2.38), then equality holds in (2.34)
fO’I" f17"'7fk-

Our main result characterize extremizers of the Geometric reverse Brascamp-Lieb (or Barthe’s) in-
equality (2.35) following the proof that uses optimal transportation argument given by F. Barhte [15].

Theorem 2.2.8 (Bordczky, K., Xi). Let (Pg,,ci)i<i<k be a Geometric Brascamp-Lieb data and let
Fi, ..., Fy, Faep the components of the independent decomposition induced by this data. We assume that
equality holds in the Reverse Brascamp-Lieb inequality (2.35) for non-negative f; € L1(E;), i =1,...,k,
with positive integral. Then there exist 8; > 0, b; € E; N Fyep and w; € E; N FdLep fori=1,...k,
log-concave h; : F; — [0,00) for j =1,...,¢, and a positive definite matriz A : Fyep — Faep such that
the eigenspaces of A are critical subspaces and

filz) = 0, AP Faep @ Pracy ©—bi) H h;(Pr; (x —w;))  for Lebesgue a.a. x € E;. (2.39)
F;CE;

On the other hand, if for any i =1,...,k, f; is of the form as in (2.39) and equality holds for all x € E;
in (2.39), then equality holds in (2.35) for f1,..., f.

General data - Finiteness and Extremals

In this section we go back into the general setting (2.22), and we discuss part from the work of Ben-
nett, Carbery, Christ, Tao [21]. For convenient a Brascmap-Lieb data (B;,c;)%_; is denoted by (B, c)
and the associated constant by cpr(B,c). We write BL-extremizer and RBL-extremizer for a tuple
(f1,-.., fr) that achieve equality in (2.23) and (2.27), respectively. Our aim is to discuss finiteness and
extremizability. We first note that, finiteness cpr,(B,c) < oo does not imply the existence of an BL-
extremizer. Finiteness was first characterized by Bennett, Carbery, Christ, Tao [21] while later Garg,
Gurvits, Oliveira, Wigderson [78] (see Corollary 4.5) provided a second proof.

Theorem 2.2.9 (Bennett, Carbery, Christ, Tao). Let (B,c) be a Brascamp-Lieb data. Then, cgr (B, ¢) <
oo (equivalently crpr (B, ¢) > 0 by Theorem 2.2.3) if and only if

(i) Y5 cmi =n.
(i) dimV < Zle c;dimB;V for every subspace V' of R™.

Let us quote some facts for the so called Brascamp-Lieb polytope. For fixed linear maps B =
(By, ..., By,) the Brascamp-Lieb polytope (or polyhedron) is the set Pg C R* defined by,

Pg:={c=(c1,...,cx) € R" : cpp(B,c) < oo}
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In other words, Pg is the set of all ¢ € R% for which (i) and (ii) holds in Theorem 2.2.9. Trivially,
dimB;V € {1,...,n} for any subspace V, and in turn there is a finite number of linear inequalities in (ii).
In fact they are at most n”. Therefore, we conclude that Pg is the finite intersection of halfspaces and so
Ppg is indeed a polytope. For example, the Brascamp-lieb polytope of (I,,...,I,) and (P.,,..., P., ) are
{c: Zl v =1} and {c = (15,..., =4 1)} respectively, by Holder and Loomis-Whitney inequalities.
This polytope has completely determined in rank one case by Barthe [15] and some extension has been
given by Valdimarsson [153].

According to Bennett, Carbery, Christ, Tao [21], for a given data (B,c) if one set (B’, c) defined by
B! = Q;'B;Q where Q : H — H' and Q; : H; — H!, i =1,...,k be some invertible linear maps, then

one has N

15 (det Q)
det Q
This leads to the following relation. The collections B = (Bj,...,By) and B = (Bj,..., B},) are said

to be equivalent if & = k&’ and there exist invertible linear maps Q : H' — H and Q; : H] — H; such that
B! =Q; 'B;Q. One may prefer to see that equivalence as a commutative diagram

CBL(B/,C) = BL(B,C). (240)

H 2. @

g e

B!
H —— H

In addition, two datas (B,c) and (B’,c’) are said to be equivalent if B and B’ are equivalent and
p = p’. This relation is an equivalent relation on datas. Note, for two equivalent data as before it holds
dimH = dimH’ and dimH; = dimH], for all i’s, and critical subspaces are in 1 — 1 correspondence. The
last assertion follows from the fact, if V is critical for (B, p) then Q~1V is critical for (B, p).

In this setting, (B, c) is said to be Geometric data (see the simplified version (2.33)) if B; B} = Idp,
and

Z ¢iB}B; = Idy. (2.41)
Note that, for any data (B, ¢) one can always find an equivalent data (T, ¢) to it, so that (2.41) is satisfied.

For this, take any positive definite map Q; : H; — H;, i =1,...,k and set ) := Zle ¢;BfQiB;. Then
1
consider (T, c) defined by T; = Q2 BiQ =. Clearly, (B, c) and (T, c) are equivalents and

ZCZTT Zcz “IBIQH)(QFBQE) = (ZczBQz ) Q7 =Q 2QQ * =Idp.

In addition, if there exist Gaussian extremizer g;(x) = e ™@®% for (B,c) then this implies Q; =
B;Q7'B} and in turn T;T; = Idp, (see Bennett, Carbery, Christ, Tao [21], Proposition 3.6). This
briefly explains the direction (ii) = (iii) of the following Theorem.

Theorem 2.2.10 (Bennett, Carbery, Christ, Tao). Let (B, ¢) be a Brascamp-Lieb data. The following
statements are equivalent.

(i) (B, c) has an BL-extremizer.
(i) (B, c) has a Gaussian BL-extremizer.
(i1i) (B, c) is equivalent with a Geometric data,

The direction (i) = (ii) established by Barthe (see Remark page 17 in [15], see also Proposition 6.5 in
[21] for more details) and it based on the Central Limit Theorem. The idea is to apply successively the
closure properties of extremizability and find a sequence of extremizers that tends towards to a centered
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Gaussian tuple, with respect to L' norm. For (iii) = (i), one should find first a Gaussian extremizer for
the equivalent Geometric data and then transfer it to (B, c). We note that Valdimarsson [152] extended
his Theorem 2.2.7 applying Theorems 2.2.10. In particular, equalities in the general Brascamp-Lieb
inequality (2.23), when exist, can be understood via the language of equivalent relation. Lehec proved
the analogue (ii) = (iii) for the Reverse Brascamp-Lieb inequality in [100]. We note that our Theorem
2.2.8 can be extended if one can provide the analogue (i) = (ii) for Reverse Brascamp-Lieb inequality.

2.3 On functional versions of Santalé inequality

This section starts with a short discussion concerning the known upper and lower bounds of volume
product and then passes to functional forms. It is quite remarkable that after further strengthens of
Ball’s functional Santalé inequality several links and analogues appears into this new analytical area.
For example these functional Santalé forms are connected with entropy type inequalities according to
Fathi [69] while also to a reverse log-Sobolev inequality observed by Caglar, Fradelizi, Guédon, Lehec,
Schutt, Werner [48]. Our purpose is to study some new polar conditions in the multi entry setting. We
formulate the corresponding Santald type inequality for sets and functions and we prove it in some cases.
The volume product for a symmetric convex body K in R™ is defined by |K||K°|. It is clear that it
is continues with respect to the Hausdorff metric and also GL(n)-invariant; namely, the volume product
of ®(K) and K coincides for any ® € GL(n) . The classical Blaschke-Santal6 inequality (Blaschke [23],
Santal6 [141]) provide the exact maximum of the volume product: for any origin symmetric convex body
K in R™, one has
|K||K°| < |B3 %, (2.42)

with equality if and only if K is an ellipsoids. It is known that Brunn-Minkowksi inequality imply
a stronger fact than inequality (2.42), which says, the volume of the polar body increases after any
application of Steiner symmetrization (see Meyer, Pajor [119]). Also, it is known that inequality (2.42)
is equivalent with the so called affine isoperimetric inequality, under the prism of Minkowski’s first and
Holder inequalities.

The exact minimum of the volume product remains unknown and it is considered to be a major
problem in convexity. The symmetric Mahler conjecture asserts that the exact minimum is attained on
the cube: for any symmetric convex body K in R"” it should holds

4" n n o
o1 = |BalIBr] < |K||IK°). (2.43)

Except cube, it has been found there are many other minimizers, known as Hanner polytopes. This
in some sense indicates the difficulty of the problem if one aim to find a process that approach these
particular polytopes. However, the conjecture is known in dimension n = 2 by Mahler and in dimension
n = 3 by Iriyeh, Shibata [86]. In higher dimensions n > 4, minimizer of the volume product are known
in the unconditional setting by Saint-Raymond [137], (see also Meyer [123] for a shorter proof), while
also for bodies with n-hyperplane symmetries by Barthe, Fradelizi [20]. Reisner confirm the symmetric
Mahler conjecture for zonoid in [139] (see also Gordon, Meyer, Reisner [79] for a alternative proof). One
can check that John Theorem can lower bound the volume product by n~%|B%|2. Bourgain-Milman [36],
making of use of the so called M-position improved that bound significantly.

Theorem 2.3.1 (Bourgain-Milman). There exist an absolute constant ¢ > 0 such that, for any origin
symmetric conver body K in R™, one has

[KIIK°| > c"|B3|*.

Alternative proofs have been given by Kuperberg [98] and by Nazarov [131]. As a side note, it is easy
to check that John’s Theorem implies the log-Brunn-Minkowksi conjecture up to the factor n=%. One
may possible expect that M-position can improve this up to c”.
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Functional forms of the Santal6 inequality

K. Ball [9] formulated the first functional version of Santald inequality: for any integrable even functions
f,g9:R" = R, that satisfy f(z)g(y) < e ¥, for x,y € R”, one has

[ s@yde [ g dy < 2m (244)
Lehec [101] noticed that Ball’s result follows from induction on the dimension n, gaining in parallel
a strengthening of it, in which reduces the even assumption of f,g to f (or g) is barycentered at the
origin, that means [ zf(x)dx = o. Lehec’s proof strengthened also a previous result of Artstein, Klartag,
Milman [6] which the barycentered function should assumed to be log-concave and their techniques based
on approximation. Fradelizi-Meyer [75] first observed that polarity assumption can be relaxed.

Theorem 2.3.2 (Fradelizi, Meyer). Let p : R — Ry be a measurable function. If f,g: R™ — Ry are
even integrable functions satisfying f(x)g(y) < p({x,y)), for all z,y € R™, then

[ oo [ stnan< ([ ouigzan)

The proof of that use the same tools (Prékopa-Leindler and Santalé inequality for sets) as Ball’s proof
but different approach.

Functional Santalé for many sets and functions

Caglar, Fradelizi, Guédon, Lehec, Schutt, Werner in [48] obtain consequences from functional Santal4
inequalities. One of them is a reverse form of log-Sobolev inequality and an other is a functional affine
isoperimetric inequality. Fathi [69] observed that the functional Santald inequality given by Lehec [101] is
equivalent with an entropy inequality that strengthens Talagrand transportation inequality. Kolesnikov
and Werner [97] proposed the following extension.

Conjecture 2.3.3. (Kolesnikov-Werner) Let k > 2 be an integer, p : R — Ry be a decreasing function

and f1,..., fr : R® = Ry be even integrable functions, such that
k
Hfz(xv) <p Z (i, @) |, Vzy,...,zp € R™ (2.45)
i=1 1<i<I<k

Then, it holds

f[ il doi < (/p <k(kzl)||u§)l/k du)k

By the use of Prékopa-Leindler inequality the authors in [54] obtain the following.

Theorem 2.3.4. (Kolesnikov-Werner) Conjecture 2.3.3 holds if f1,..., fr are unconditional (with re-
spect to the same orthonormal basis {€m}).

While polarity in the case k = 2 is well understood (see Boroczky, Schneider [35], Artstein-Avidan,
Milman [7]; see also Artstein-Avidan, Sadovsky, Wyczesany [8] for generalizations), it is not clear if there
is such a notion for £ > 2. Therefore, we believe it is meaningful to seek for Santal6 type inequalities
for sets and for functions under different conditions than (2.45). More precisely, we give the following
definition.

Definition 2.3.5. Let ® : (R")*¥ — R be a function. We say that the sets Ki,..., Ky C R" satisfy
®-polarity condition, if ®(zq,...,2z,) < 1 for any x; € K;, i = 1,..., k. Similarly, we say that the
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functions fi,..., fr : R — Ry satisfy ®-polarity condition with respect to some decreasing function
p: R —[0,00], if

k
Hfz(xz) < p(®(z1,...,21)), Ve, e R?, i=1,... k.
i=1

In the rest note we study a specific family of functions ®. For integers 1 < j < k, we set

n

Sj(wr,. ) =Y si(ar(l),...,ax(l),  z1,...,ap €RT, (2.46)
1=1
where z(1) is the I’th coordinate (with respect to our fixed basis {e,,}) of a vector x € R", [ =1,...,n,
and s; is the elementary symmetric polynomial of £ variables and degree 7, i.e.
si(ri, ..., k) = Z Tiy o Tijs r1,...,7 € R, (2.47)
1<ir<..<i;j<k
Set, also,
S,
g =L, (2.48)

;)
Note that for j # 2 the map &; (or S;) depends on the basis {e,,}. However, for j = 2 this is not the
case; one can check that

So(x1,. .. xp) = Z (@4, 7).

1<i<i<k
We conjecture that a Santalé type inequality holds for symmetric sets, under the assumption of
&;-polarity condition.

Conjecture 2.3.6. (j-Santald conjecture) Let 1 < j < k be two integers, where k > 2. If Kq,..., Kj
are symmetric convex bodies in R™, satisfying £;-polarity condition, then it holds

k
[T1x:1 < By (2.49)
i=1
We, also, formulate the functional version of Conjecture 2.3.6.
Conjecture 2.3.7. (Functional j-Santald conjecture) Let 1 < j < k be two integers, where k > 2. If
fio--s fe : R® = Ry are even integrable functions, satisfying S;-polarity condition with respect to some
decreasing function p : R — [0, 00], then it holds

f[l | ilw)doi < (/Rnp <(§>Ilu||§)1/k dU>k- (2.50)

Clearly, for j = 2, Conjecture 2.3.7 is just Conjecture 2.3.3. As it expected, the functional j-Santald
Conjecture 2.3.7 implies the j-Santalé Conjecture 2.3.6 for sets. To see this, let K1,..., K} be symmetric
convex bodies satisfying &;-polarity condition. Then, setting

fi=1kg, i=1,...,k d (t) oe <9 (2.51)
P = K;» 1= yoeeey an pt = -1 , .

l 1o ((5)7t) t=0

one can check that the functions fi,..., fi satisfy S;-polarity condition with respect to p, where with

14 denotes the indicator function of a set A. Therefore, inequality (5.2) implies,

e (/p ((5)me)’ du>k = (1o (1) ) = (/B 1du>k = |y

i=1
It turns out, however, that the two conjectures are actually equivalent (see Section 5.1.5). Let us state
our main results.
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Theorem 2.3.8. Conjecture 2.5.6 holds in the following cases:

(i) Ki,..., Ky are unconditional convex bodies.
(i) j=1orj=k.
(iii) j is even and Ks, ..., Ky are unconditional convex bodies.
Moreover, in all three cases, (5.1) is sharp for K1 = Ko = ... = K}, = B}.
Theorem 2.3.9. Conjecture 2.5.7 holds in the following cases:
(i) fi,...,fr are unconditional functions.
(i) j=1o0rj=k.
(iii) j is even and fs3,..., fr are unconditional functions.

Notice that, by (2.51), (2.50) is also sharp for some specific choice of p. As mentioned earlier, Theorem
2.3.9 (case (iii), j = 2) slightly extends Theorem 2.3.4. Moreover, Theorem 2.3.8 (resp. 2.3.9) for j = k
can be viewed as a generalization of the classical Blasckhe-Santal6 inequality in the setting of many sets
(resp. many functions). The case j = 1 is somehow exceptional, as it is not directly related to the
classical Blasckhe-Santalé inequality (see, also, Section 5.1.3, Remark 5.1.10).

Ball’s conjecture

K. Ball [9] [10] extended volume product introducing the following SL(n)-invariant quantity

B(K) ::/K/O@:,y)?dxdy.

Using the multiplicative version of Prékopa-Leindler, (Theorem 5.1.3), he obtained the following.
Theorem 2.3.10. If K is an unconditional convezx body in R™, then
B(K) < B(BY).
Ball conjectured the following.
Conjecture 2.3.11. Theorem 2.3.10 holds true for arbitrary symmetric convex bodies.

We refer to Conjecture 2.3.11 as Ball’s conjecture. We should remark that Ball has shown that
Conjecture 2.3.11, if true, implies the Blaschke-Santalé inequality (2.42) (in the sense that given the
validity of Conjecture (2.3.11), one can prove (2.42) within a few lines). In Section 5.2, we formulate
the analogue of Ball’s conjecture for many sets that satisfy &;-polarity condition (resp. many functions
that satisfy S;-polarity condition). The primary goal is to state and discuss a natural (at least in our
opinion) extension of Conjecture 2.3.11, to the multi-entry setting. In this direction, let D(n) be the set
of all orthonormal basis’ in R", let £ > 2, j € {1,...,k} and for {e,,} € D(n), define

n k
By(K, . Kiy {em}) = 3 H/K (s em) da

m=1i=1

Define, also

Bi(Ky,...,Ky) = in  Bi(Ky,..., Kr {em)).
5 (F1 k) o 5 (F1 k> {€m})

One might dare to conjecture the following.

Conjecture 2.3.12. Let 1 < j < k be two integers, where k > 2. Let K1,..., Ky be symmetric conver
bodies in R™ satisfying £;-polarity condition. Then,

Bj(Ki, ..., Ky) < B;j(B},...,B}). (2.52)

In section 5.2 we prove this Conjecture in the unconditional case and in the case j = 1. Moreover,
we show that it implies Conjectures 2.3.6 and 2.3.7.
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Chapter 3

Log-Brunn-Minkowski inequality
under symmetry

3.1 Introduction
In this section we provide the proof of the Theorem below. Linear reflection is defined in (2.16).

Theorem 3.1.1 (Boroczky, K. [31]). Let A € (0,1). If Ay,..., A, are linear reflections such that
HiN...NH, ={o} holds for the associated hyperplanes Hy, ..., H, and the convez bodies K and L are
imvariant under A1, ..., A,, then

(1=X\) - K 4o\ L| > |K['*7 LN (3.1)

In addition, equality holds if and only if K = Ki + ...+ K, and L = Ly + ... + L., for compact
convex sets Ki,..., Ky, L1,..., Ly, of dimension at least one and invariant under Ay,..., A, where
2211 dim K; = n and K; and L; are homothetic, i =1,...,m.

Outline of the proof of (3.1.1)

We reduce the problem into the unconditional setting, by partitioning the Ly-sum of K and L into
congruent pieces. Let us sketch some key steps in the special case where the reflections are orthogonal
(the general is obtained by transforming K into its Lowner position). First, note that if K and L
are G-invariant, for some G C O(n), then their Lyp-sum @ := (1 — A) - K 49 A - L is G-invariant (see
(3.12)). So, in our case () is invariant under the linear reflections A;,..., A,. We partition @ in the
same sense like an unconditional convex body is partitioned by 2™ congruent pieces. To do that we use
the Weyl chamber. In particular, there exist a simplicial convex cone C that decompose R” in the sense
of Proposition 3.3.2 (iii), and decompose @ into congruent pieces, say ¢ of them. Thus, choosing any
® € GL(n) that ®(C) = R’} one has

(=X K+oA-Ll = £]CN[(1=X)-K +o\-L]|
= deiq)lR”ﬂ[(lA)~<I>(K)+0A.<1>(L)]|. (3.2)

Let K the unconditional set defined by K N R? = ®(K N Q);Similarly set L. The key property is that
C has small "angle”, which guaranties the convexity of K, L (showed in Lemma (3.3.6)) and implies
$~'C C R’} that conclude to (see (3.18))

[RY AL =X) - @(K) +o A @(L)]| = R} N[(1—A) - K 40 A- L. (3-3)
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Last, combining (3.2) and (3.3) and then applying the log-Brunn-Minkowski inequality for the uncondi-
tional convex bodies (Theorem 2.1.10) we finish the proof of the inequality.

We briefly explain the characterization of equality. Equality in (3.1) for some K, L implies equality
for the associated unconditional K, L. Applying Theorem 2.1.10, we obtain

K=@p Kz and L=®p}  Lg

where K = 03Lg, where 05 > 0. Let Eg :=1inKg, = 1,...,m. The key observation is that K and L
can be split on Ez and Eé-, meaning (see (3.26))

K:PEBK@PE%K and L:PEﬁL@PEéL.

for any 8 =1,...,m. Then by induction on m the body K (same for L) is written as the direct sum of
Pp K for f=1,...,m. Last, projecting onto Eg the K N R} = (K NC) yields Pg, (K) = 05 Pg, (L).
The other direction use elementary arguments in the section below.

3.2 Folklore Lemma’s

As the equality case of Theorem 3.1.1 indicates, we need a better understanding of convex bodies that
are sums convex compact sets in complementary linear subspaces.

Lemma 3.2.1 (Folklore). Let K be a convex body in R™, and let &,...,&m, m > 2 be non-trivial
complementary linear subspaces which together span R™. Then v (0'K) C & U...U&, if and only if
there exist compact conver sets Ku, ..., Km with lin(K; — K;) = (32,4 &)t (and hence dim K; = dim¢;)
fori=1,....m such that K = K1 + ...+ K,,.

Remark If K is unconditional and K1, ..., K,, are unconditional, then K; C &, i=1,...,m.

Proof. We may assume that o € K, and hence also that o € K; for ¢ = 1,...,m if suitable K1,..., K,,
exists.
If K=K +...+ K, for some compact convex K; C (Zj# {})L, t1=1,...,m, then

8'K = 0 8/K, + Z relint Kj y

i=1 J#i

which in turn yields that v (0'K) C & U... U&, by the property

ff‘ = lin Z relint K
J#i
fori=1,...,m (here & K; is the family of smooth points of the relative boundary of K;).

On the other hand, let us assume that vk (0'K) C & U... U &y, and let Vi = (32, ¢;)*. For any
i=1,...,m, let us consider the convex compact set

Ki={zeV;: (u,z) <hg(u) forall u € & Nvg(0'K)} .

As VA +& =R and VA N¢ = {o} fori =1,...,m, we deduce that K; is a dimV; = dim¢; dimensional
compact convex set. Since K is the intersection of the supporting halfspaces at the smooth boundary
points according to Theorem 2.2.6 in Schneider [144], the condition vi (0'K) C & U...U¢&,, implies

K={z €R": (u,2) < hx(w)Vu e vg(PK) N &} = [ (Ki +&5) = K1+ ...+ K.

i=1 i=1
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Next we show that equality really holds in Theorem 3.1.1 when promised (even without symmetry
assumption).

Lemma 3.2.2 (Folklore). If A € (0,1), K and L are convex bodies with o € intK and o € intL, and
K=Ki+--+Kypand L=Ly+---+ L, form >1 and compact convex sets K;,L;, 1 =1,--- ,m,
having dimension at least one and satisfying o € K;, K; = 0;L; for 8; > 0 fori = 1,--- ,m, and
S dimK; = n, then

(i) (1 =N - K+ L=00K 4+ +0)Kpn;
(ii) |(1 =) - K +0 A L] = |K|* AL

1
Proof. For i =1,...,m, we write V; = linK;, and & = (Ej# VJ> . We observe that if u € & N S™1,

then
hi(u) =hg,(u) and hp(u) = 0;hk, (u).

It follows from Lemma 3.2.1 that

K

n {zeR": (u,z) <hg(u)Vue&nS ')
i=1
L = n {z eR": (u,z) < Oihg(u) Vue &N S}
i=1
A
therefore, hp(u)t = (QihK(u)) = 02hg(u) foru € &N S L and i = 1,...,m yields that

(I=XN)-K+49A-LC ﬂ {z eR": (u,x) < 0} (u) Yue NSty :ZG;‘Ki.
i=1

i=1

To prove Y ;v O2K; € (1 —A) - K +9 A- L, it is enough to verify

7

A

Zeﬁhm (u) < h(u)' " hp(u) = (Z hk, (U)> (Z Oih e, (u)> (3.4)

for any u € S"~. However, (3.4) is a direct consequence of the Hélder inequality, completing the proof
of (i).

We observe that setting d; = dim K; for i = 1,...,m, we have |L| = (H:i1 Ggi) |K|, and (i) yields
that

m A
|(1>\)'K+0A'L|<H9fli> K,
i=1

verifying (ii). O

3.3 Simplicial cones and Representation of Coxeter groups

We say that a convex subset C' C R” is a convex cone if Ax € C' for any z € C and A\ > 0. The positive
dual cone of C' is defined by

C*={zeR": (z,y) >0 for each y € C}.

For any n independent vectors uy,--- ,u, € R", the convex cone C generated by their positive hull

C =pos{uy, - ,up} = {ZAiui: V)\i>()} (3.5)
i=1
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is called simplicial convex cone. In this case, the positive dual cone is
C* =pos{ui,...,ur}

where (u;,u}) = 0if i # j and (u;,u;) > 0. For i =1,...,n, the facets of C are

F; = pos{{u,...,un} \ {u;}} = C N (u)?t,
and the walls of C' are the linear subspaces

Wi =lin{{ug,...,un} \ {u;}}.

Note that the orthogonal reflection Refyy, through the wall W; of C is the map = — = — 2(z, u})uf. We

observe that —u} is an exterior normal to F;, and

C={zeR":(z,uj) >0fori=1,...,n}. (3.6)

A linear subspace E of R" is called non-trivial if dim F > 1. In this case, we write O(FE) to denote
the group of orthogonal transformations of E where O(n) = O(R"™).

If G is a group generated by reflections through n independent linear hyperplanes Hy, ..., H, (n
hyperplanes Hy, ..., H, with HyN...N H, = {o}), and H; = v} for v; € R"\{o} and i = 1,...,n, then
any non-trivial G invariant linear subspace F is of the form

E =linI for non-empty I C {vq,...,v,} where (v;,v;) =0ifv; € I and v; & I. (3.7

We call an invariant linear subspace irreducible with respect to the action of G if it has no proper G-
invariant linear subspace. It follows that there exist only finitely many irreducible subspaces E1, ..., Eg,
k > 1, satisfying that

[ ] Rn = @leE“
e F; and E; are orthogonal for i # j;
e G=G1 X ... x G where G; C O(E;) acts irreducibly on FE;.

This decomposition corresponds to the irreducible representations coming from the action of the closure
of G in O(n), see Humphreys [84] for representations of compact groups.

Typical example for a finite group G C O(n) generated by reflections through n independent hyper-
planes and acting irreducibly on R” is the symmetry group of a regular polytope P in R™ whose centroid
is the origin (see McCammond [115] or Humphreys [85]). For example, if P is a regular simplex, then
the n independent hyperplanes might be the perpendicular bisectors of the n edges meeting at a fixed
vertex of P.

The following Lemma 3.3.1 defines the Weyl chamber associated to an irreducible action of a fi-
nite Coxeter group, and dicusses the fundamental properties. These Weyl chambers partition R™ into
simplicial cones (see Lemma 3.3.1 (ii) and (iii)).

Lemma 3.3.1 (Coxeter). Let G be a finite group generated by reflections through n hyperplanes Hy, ..., H,
with Hy N ...,NH, = {o} and acting irreducibly on R™. Then there exists a simplicial cone C =
pos{uy, - ,un} (called a Weyl chamber) such that

(i) the n reflections through the walls of C generate G;
(1) R" = UgeqgC;
(111) if gC NintC # O for some g € G, then g is the identity;

() (x,y) >0 for z,y € C and writing C* = pos{v1,...,v,}, we have (v;,v;) < 0 provided i # j;
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(v) for any partition {1,...,n} =TUJ with I,J #0 and INJ =0, there exist i € I and j € J such
that (v;,v;) < 0.

Proof. According to the classical theory (see Humphreys [85]), one associates a so called root system
to G; namely, a finite set ® of non-zero vectors such that any two are either independent or opposite,
and the set of reflections in G coincides with the set reflections through the linear (n — 1)-dimensional
subspaces orthogonal to the elements of ®. It is a well-known result (see Humphreys [85]) that there
exists some n independent roots vi,...,v, € ® such that any other root can be written as a linear
combination of vy, ..., v, with all non-positive or all non-negative coefficients. Then vy,...,v, € ® are
called simple roots, and the simplicial cone C' = {x € R™ : (z,v;) > 0 for i = 1,...,n} satisfies (i), (ii),
(ili); moreover, vy, ..., v, satisfy that (v;,v;) < 0 for i # j (see Humphreys [85]), verifying the second
half of (iv).

We complete the proof of (iv) by contradiction, so we suppose that there exist x,y € C satisfying
(z,y) < 0, and seek a contradiction. We set v,11 = —x and v,42 = —y; therefore, (v;,v;) < 0
for i,57 = 1,...,n 4+ 2 and (vn41,0p42) < 0. According to Radon’s theorem, there exist non-empty
A, BC{l,...,n+2} with ANB =0, and o; > 0 and ; > 0 for i € A and j € B such that

E a;V; = E ,ijj:w.
i€EA jEB

We deduce that
0 < (w,w) = Z Z a;Bj{vi, vj),

icA jeB
thus (v;,v;) <0 for ¢ # j yields that
(vi,v;) =0for i€ Aand j € B, (3.8)
and hence w = o. In turn, the independence of vy, ..., v, shows that A N {v,41,vp42} # 0 and BN
{Vn+1, Unt2} # 0, which facts contradict (vp41,vUnt2) < 0 by (3.8).
Finally, we prove (v) again by contradiction. We suppose that there exists a partition {1,...,n} =

TUJ with I,J # 0 and I NJ = @ such that (v;,v;) =0 for i € I and j € J (note that (v;,v;) > 0 by
(iv)). Then both lin{v; : i € I'} and lin{v; : j € J} are invariant under reflections through the walls of
C, which contradicts the irreducibility of the action of G on R™. O

The main goal of this section is to prove the following statement which describes how the Weyl
chambers essentially partitioning R™ (see Proposition 3.3.2 (iii)) are related to the group action.

Proposition 3.3.2. Let G C O(n) be the closure of a group generated by the orthogonal reflections
through the hyperplanes Hy, ..., H, of R™ with HyN...N H, = {o}, let E1, ..., E} be the corresponding
irreducible subspaces. Then there exist an n-dimensional simplicial convex cone C = ®F_,C, in R
where Cy, C E, is a Weyl chamber for the irreducible action of a finite subgroup Go C O(E,) on E,
and Gy, is generated by reflections through the walls of Cy, in E, for a =1,... k. In addition,

(i) G=Gy x...x Gy, is a subgroup of G;
(ii) writing W1, ..., W, to denote the walls of C, the reflections Refw,_ , a« =1,--- n, generate é;

(iii) gCNintC # O for g € G implies that g is the identity, and

R" = 9¢;

gEé

(iv) if C* = pos{v1,...,vn}, then (v;,v;) <0 provided i # j;
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(v) If K is a convex body in R™ invariant under G, then vk (x) € C for x € 'K N C, and if moreover
® € GL(n) satisfies ®(C) = R}, then the unconditional set K defined by K "R} = (K NC) is
an unconditional convex body.

We prepare the proof of Proposition 3.3.2 with a series of lemmas mostly discussing well-known
statements.
The following statement is Lemma 19 in Barthe, Fradelizi [20].

Lemma 3.3.3 (Barthe, Fradelizi). If G C O(n) is an infinite subgroup generated by reflections through
n hyperplanes Hy,...,H, with Hy N...N H, = {0}, and G acts irreducibly on R™, then the closure of
G is O(n).

Lemma 3.3.4. Fork > 2, let E,, a =1,...,k be pairwise orthogonal non-trivial linear subspaces of R™
with ®F_E, = R", and for a = 1,...,k, let G, C O(E,) be a finite subgroup generated by reflections
through dimFE, independent hyperplanes of E,, and let C, be a Weyl chamber for the action of G.
Then for the subgroup G = Gy x ... x Gy of O(n) and C = @%_,C,,, we have

(i) G is generated by the reflections through the walls of C;
(i) U{¢gC : g € G} =R"™;
(11i) if intgC NintC # 0 for a g € G, then g is the identity;
() (x,y) >0 for z,y € C.

Proof. (1) AsG =Gy x...x Gy and Fy,..., Ey are pairwise orthogonal, Lemma 3.3.1 (i) yields that
a set generators of G is the n reflections through the hyperplanes of R™ of the form W + EX where
for some F,, a =1,...,k, W is a wall of C, in E,. Since these n hyperplanes of R" are exactly
the walls of C, we deduce (i).

(ii) Write z € R™ as © = x1 + --- + 2, where 2, € FE,, a = 1,..., k. According to Lemma 3.3.1
(ii), there exits g, € G4 such that z, € ¢,C, for each a = 1,... k. Therefore z € gC for

g="(91,---,9x) € G.

(iii) Assume intgC NintC # () for g = (g1, -+ , gx) € G. Projecting into each E,, shows that the relative
interiors of g,C, and C, intersect for « = 1,...,k; therefore, g,C, = C, for a = 1,...,k by
Lemma 3.3.1 (iii), and hence gC = C.

(iv) This follows from Lemma 3.3.1 (iv) and the fact that the subspaces E1, ..., E} are pairwise orthog-

onal.
O

Lemma 3.3.5. If K is a convex body in R™, and there is a simplicial convex cone C such that K is
invariant with respect to the orthogonal reflections through the walls of C, then

(i) vk (z) € C holds for any z € 'K NC;
KNnC = {zeC:{(x,vk(z)) <hg(vk(z)) Vz€ IKNC}

(%) = {zeC:{(x,u) <hg(u)VueC}.
Proof. As in (3.5) and (3.6), we write the cone C as C = pos{ui,...,u,} and C = {z € R" : (z,z;) <
0, j =1,...,n} for independent uy,...,u, € S"°! and z1,...,z,, € S"! satisfying (z;,u;) = 0 for

j#iand (z;,u;) <0forj=1,...,n.
For z€ KNC and j € {1,---,n}, we show that

(v (2),z;) <0.

We use that K is symmetric with respect to the wall W, := lin{uq,--- ,un}\ {u;} = sr:JL of C; or in other
words, Refy, K = K.
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If z € xf", then the symmetry of K through W; shows that both vk (z) and Refyw, (vk (2)) are exterior
normals at z, and hence vk (z) € l’]l

Therefore, let (z,2;) < 0. As vi(z) is an exterior normal at z and Refy,z € K, we deduce that
(v (2), (Refw, 2) — z) < 0. However, (Refy,2) — z is a positive multiple of z;, thus (vk(z),z;) <0,
which implies vk (z) € C since j was arbitrary.

Since K is the intersection of the supporting halfspaces at the smooth boundary points according to
Theorem 2.2.6 in Schneider [144], (i) yields (ii). O

Lemma 3.3.6. Let K be a convex body in R™ and let C be a simplicial convex cone such that {x,y) > 0
for every x,y € C and K 1is invariant with respect to the orthogonal reflections through the walls of C.
If ® € GL(n) satisfies ®C = R}, then ®~'C C R"} and the unconditional set K defined by K NR? =
(K NC) is an unconditional convex body.

Proof. To show the convexity of K, we observe that C' C C* holds for the positive dual cone C* by the
condition on C, and hence

d'C COTICH = (BC)* = (RT)* =R". (3.9)

Now if z € 9'®(K)NR"}, then z = &y for some y € ' K NC where vk (y) € C according to Lemma 3.3.5.
Since @ 'vk (y) is an exterior normal to OP(K) at z = Py, we conclude from (3.9) and the conditions
on C and K that

As K is an unconditional set and K NR% = ®(K)NR?, its convexity is equivalent with the following
statement: If = (z1,...,2,) € K, y = (y1,...,yn) € K and X € (0,1), then

w=(|(L=Nz1+Ay1|,..., [(1 = Na, + Ayn|) € (K) NRY. (3.11)

If z € 0'®(K)NRY, then for = (|z1],...,|zs]) € 2(K)NRY and § = (|y1],..., |yn]) € ®(K) NRY, we
deduce from vgxy(2) € R (see (3.10)) and [(1 — A)z; + Ays| < (1 — X)|z;| + AJys| that

(W, ver) (2)) < (1L = AN)T + A, va(x)(2)) = (1 = AT, va(x) (2)) + MT, va () (2))
< (1 =)z, V@(K)(Z)> + Az, V@(K)(Z» = (2, V@(K)(Z»'

Since ®(K) is the intersection of the supporting halfspaces at the smooth boundary points (see Theo-
rem 2.2.6 in Schneider [144]), we conclude (3.11), and in turn Lemma 3.3.6. O

Now we are ready to give the proof of Proposition 3.3.2.

Proof of Proposition 3.3.2. Let G be the group generated by the orthogonal reflections through the
hyperplanes Hy, ..., H, of R® with H; N...N H, = {o}. Then the corresponding irreducible subspaces
E1, ..., Ey coincide for G and for its closure G. Let G4, Gy C O(E,), a = 1,--- ,n, be the subgroups
such that G = Gy x ... x G and G = Gy x ... x G}, where G, is the closure of G, in O(E,) for
a=1,---,n. In particular, G, is generated by reflections through all H; N E,, such that E, ¢ H; where
writing H; = w;- for w; € S" Y and i =1,...,n, we have E, = lin{w; : E,  H;}.

If G, is finite, then we simply define éa =G, = G, If G, is infinite, then G, = O(E,) according
to Lemma 3.3.3; therefore, we may choose CNT'Q to be the symmetry group of a regular simplex of E,
centered at the origin. In particular, for each o = 1,...,k, G, is finite and acts irreducibly on E,, and
let C,, € E, be a Weyl chamber for the action of G, as in Lemma 3.3.1.

We define G = G; X ... x Gy € O(n) and C = @F_,C,,. We deduce Proposition 3.3.2 (ii) and (iii)
from Lemma 3.3.4 (ii) and (iii).

For Proposition 3.3.2 (iv), the walls of C are of the form W + EX for a = 1,...,k and wall w of
Cq in E,. For 1 <i < j < mn, (v;,v;) <0 follows from Lemma 3.3.1 (iv) if v;,v; € E,, and from the
othogonality of E, and Ejg if v; € E, and v; € Eg for a # .

For Proposition 3.3.2 (v), we deduce from Lemma 3.3.4 that (x,y) > 0 holds for z,y € C. Combining
this with Proposition 3.3.2 (ii), Lemma 3.3.5 (i) and Lemma 3.3.6 yields Proposition 3.3.2 (v). O
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3.4 The proof for volume

Before the proof, let us state two easy remarks:

- the logarithmic sum is linear covariant; namely, for any ® € GL(n,R) it holds
O[(1—N)-K+4oA-L=(1—-X) - ®(K) 40 - D(L). (3.12)

follows from the fact hox (u) = hg (®'u). Therefore, if K and L are two convex bodies in R™ invariant
under some subgroup G C GL(n), then (1 — \) - K 49 A - L is also invariant under G.

- For any u € R™\{o}, one gets,

if w is an exterior normal at a z € &'((1 — A) - K 4+ A - L), then

ha—x)-k+orr (1) = hg (w) = hp (u)?. (3.13)

We may assume that u € S"~1. Since z € 9((1 — A) - K +¢ A - L) is a boundary point and hx and
hy, are continuous, there exists some v € S"7! such that h_y).xor.1(v) = (2,0) = hg (v) " hp (V) .
However, z is a smooth boundary point where there exists only a unique exterior unit normal; therefore,
we have u = v, verifying (3.13).

First we consider the version of Theorem 3.1.1 where each linear reflection is an orthogonal reflection.

Theorem 3.4.1. Let A € (0,1). If Ay,..., A, are orthogonal reflections such that Hy N...N H, = {o}
holds for the associated hyperplanes Hy,...,H, and the convex bodies K and L are invariant under
Ay, ..., A,, then

(1=X)- K 4o\ L| > |K|'" LM (3.14)

In addition, equality holds if and only if K = K1 ® - ® Ky, and L = L1 ® -+ ® Ly, for m > 1
and compact convex sets K;, L; invariant under A;, i = 1,--- ,m, having dimension at least one and
satisfying K; = ¢;L; forc; >0 fori=1,--- ,m, and Z:Zl dimK; = n.

Proof. Let G C O(n) be the closure of the group generated by A;,...,A,. We use the notation of
Proposition 3.3.2 applied to this G. In particular, for some k > 1, R® = ®%_, E,, for non-trivial linear
subspaces Ej, ..., Ey where Ey, ..., E;, are pairwise orthogonal if k > 2. In addition, C = @*_,C,, is
the simplicial cone of Proposition 3.3.2 where C,, is the Weyl chamber for the finite group G C O(E,)
generated by reflections through the walls of C, in F, and acting irreducibly on E, for a = 1,...,k,
and G = Gy X ... X Gy, is a subgroup of G, by Proposition 3.3.2 (i).

We fix an orthonormal basis e1, ..., e, of R™ such that {e; : ¢; € E,} spans E, for a« = 1,...,k, and
hence R’} = pos{ey,...,e,}, and let & € GL(n) be a linear transform such that ®C, = R} N E, for
a=1,..., k. We deduce that

(a) o(C) = B4
(b) ®E, =FE, fora=1,... k.

Since K and L are convex bodies invariant under G, their Ly sum (1 — \) - K +9 A- L is also invariant
under G, and in turn invariant under G. We write card(G) to denote the cardinatility of G. It follows
from the linear covariance of the logarithmic sum and Proposition 3.3.2 (iii) that

[(1=X) K +oA-LI =) |9CN[1 =) K +¢\- L]
geé

= card(G) - [CN[(1-A) - K +o A~ L]|. (3.15)
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Since any convex body is the intersection of the supporting halfspaces at the smooth boundary points
according to Theorem 2.2.6 in Schneider [144], we deduce from Lemma 3.3.5 (ii) and (3.13) that

CNlL—=AN) K+4+oA L ={z€C:(z,u) <hg(u) *h(u)VueC}. (3.16)

Let K and L the unconditional sets defined by K NR"} = ®(KNC) and LNR%} = ®(LNC) respectively.
Proposition 3.3.2 (v) implies that K and L are unconditional convex bodies. We observe that if u € R”},
then

hg(u) = max (u,z) <hgg(u) and hz(u) = max (u,z) < hor(u). (3.17)
c€KNRT z€LNR™

The key observation is that
RE N1 =) @(K) +o A+ (L)]| = [RE N[(1=A)- K +o A L], (3.18)

which follows from (a), (3.17) and ®~*C' C R (see Lemma 3.3.6) and

RYNP(1-A)-K+oA- L = @& ({zeC:(z,u) <hgw)' *hr(u)VueC})
= {zeR} (z,v) < hor (V) har(v) Vved 'C}
D {zeR}:(z,v) <hg(v )Hh—( )A Yve @ 'C}
O {zeR}:(z,v) <hg(v)' P hp(v)* Vv eRY}
= RYN[(1-N) K+oX-L]

From (3.15), (3.18) and Logarithmic Brunn Minkowski inequality Theorem 2.1.10 for unconditional
convex bodies, we deduce

(1=X)-K+oA-L| = card(G)-|CN[(1=\)-K 4o A-L]|
_ miﬁ) R A[(1 - A) - (K) +o A &(L)]
> Cfg(i(fl)-|Rim[(1—)\)-K+o)\~L]|
- ;’“}rjf;w(l—m-moxu
> mwm“w (3.19)
— KL,

proving the Logarithmic Brunn-Minkowski inequality (3.14).

Assume now that we have equality in (3.14). In particular, equality holds for the unconditional
convex bodies K and L in (3.19). Therefore, Theorem 2.1.10 implies that K = K; & --- & K,,, and
L=1Ly®:® Ly, for some m > 1, where Kz and Lg are unconditional convex sets, K@ = 0gLg for
some 0 >0, f=1,--- ,m, and > 5", dimKp = n.

If m =1, then
K = |JgEnC)=Jgod "(ENRY) =[] go® ' (6:LNRY)
9eG geG ged
= 0 JgLnC)=0.L
gGé

therefore, K and L are dilates.
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If m > 2, then we write E_’g = linl_(5 for 6 =1,---,m, and hence R"” = @g‘zlE_’B.
We claim that each Ejg is the direct sum of some E,; namely, there exists some non-empty =5 C
{1,---, k} such that

Ep = @aez, Ea (3.20)

We suppose that (3.20) does not hold, and seek a contradiction. We set u; = ® 1(e;) and v; = ®*(e;)
for i = 1,...,n; therefore, C' = pos{uy,...,u,} and C* = pos{vy,...,v,}. For any a = 1,... k and
B8 =1,...,m, we consider

In={i:e; € E,} and Jg={j: ¢; € Eg}.
Since {1,...,n} is partitioned in two ways once into Iy, ..., I, and secondly into .Ji, ..., Jp,, the indirect
hypothesis yields there exist @ € {1,--- ,k} and 8 € {1,--- ,m} such that Iz N Jj is non-empty and is a

proper subset of I5. It follows from Lemma 3.3.1 (v) applied to Cs and the partition Iz = (Iz N J/;,) U
(Ia\Jj) that there exist

p € 15N J; and g € 15\ J5 such that (v,,vg) <O0. (3.21)

Since for any convex body, smooth boundary points are dense on the boundary, there exists a zg €
relint (K3 NR%) and s > 0 such that 2 = 2o + se, € 9'K5 NRY. It follows that <VRB“R1 (2),ep) >0, and
hence

VRB”Ri(Z) = Z vj€e; where v; >0 for j € Jz and 7, > 0. (3.22)
jGJB

We choose a y € relint Zﬁ#;(f(g NR'); therefore, z +y € 9K NR and we deduce from (3.22) that

vig(z+y) = VKBmRi(Z) = Z vje; where v; >0 for j € J5 and v, > 0. (3.23)
J€J;

Writing @ 12z = 2’ and @1y = 3/, it follows that
Z+y € IKNC (3.24)
ve(Z'+y) = 0Pwg(z+y) for 0 =g (z+y)| ",
which combined with (3.23) leads to

vi(Z +vy) = Z 0v;jv; where v; > 0 for j € J5 and ;, > 0. (3.25)
jers

In turn, we deduce from (3.25), (vp, vg) <0 (see (3.21)) and (vy, v;) < 0 for j € Jj (see Proposition 3.3.2
(iv)) that
(Vp, vic (2 + ) = Ovg(vp, vg) + Z 0~ (vp,v;) <0,
JEJ 5

B
Ji#a

and hence C' = {x: (z,v;) >0fori=1,...,n} (see (3.6)) yields v (z' +¢') € C.

On the other hand, combining (3.24) and Proposition 3.3.2 (v) implies that vk (2’ +y’) € C. This
contradiction finally proves (3.20).

We recall that P M denotes the orthogonal projection of a compact convex set M onto a linear
subspace E. We deduce from (3.20) and Proposition 3.3.2 (i), (ii) and (iii) that for each 8 =1,...,m,
there exist convex compact sets Kg, Ls C Eg such that

KznC = @ YKzNRY);
K = KB+PE§-(K) and PEﬁ(K)ZKﬁ; (3.26)
LgnC = & HLzNRY);

L = Lﬁ—‘rPEé_(L) and PE5<L):Lﬂ- (3.27)
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In turn, we verify that (3.26) and (3.27) yield that
K =5 Ky and L= Ly (3.28)

by induction on m > 2. We only provide the argument in the case of K, because the argument for L is
similar.

If m = 2, then Ej = E, and so (3.28) readily follows.

If m > 3, then let K/ = Pz (K). Let 1 < 8 < m — 1. The main observation we use is that if
IIy C II are linear subspaces, then P, (PuX) = P, (X) for X CR™. On the one hand, we deduce from
Eg C E;L that

On the other hand, we also use that if X C Eé-, then Ppg. (X) = P-émg#’ (X) follows from Eg C EiL.

Therefore,

K' = Pg. (Kﬁ + Ppi(K)) = Pps(Kp) + Py (Ppy (K)) = Kp + Ppirps (Ppy (K))

(K) = Kp + Pgynps (K),

I
=
_|_
o
3F
B}
el

implying K’ = @g’;ll[(ﬁ by induction on m. Since K = K,,, + K’ by (3.26), we conclude (3.28).

As K, L and Eg are invariant under G, also K3 and Lg are invariant under G for 8 =1,...,m. Since
Kp = 05Lg, we also deduce that Kz = L for 3 =1,...,m, verifying the necessity of the condition in
Theorem 3.4.1 in the case of equality in (3.14).

Finally, if K and L are convex bodies with o € intK and o € intL, and K = K; + -+ 4+ K,,, and
L=Li+---+ L, for m > 1 and compact convex sets K;,L;, i = 1,--- ,m, having dimension at least
one and satisfying o € K; and K; = 6;L; for 6; >0fori=1,--- ,m, and Z:’;l dimK; = n, then equality
holds in (3.14) even without symmetry assumption according to Lemma 3.2.2. This completes the proof
of Theorem 3.4.1. O

We are ready to prove Theorem 3.1.1.

Proof of Theorem 3.1.1. According to John’s theorem (see Schneider [144]), there exists a unique ellip-
soid £ of minimal volume containing K, which is also known as Lowner ellipsoid. It follows that & is
also invariant under A;,. .., A,. For a linear transform ® € GL(n) satisfying that ®(£) = BY, the linear
transforms A, = ®A4;®71, i = 1,...,n leave B} invariant, thus A} is an orthogonal reflection through
the hyperlane H! = ®H; where Hy N...N H, = {o}. In addition, the convex bodies K’ = ®K and
L' = ®L are invariant under A},..., Al.

Finally, applying Theorem 3.4.1 to K’ and L’, and using the linear covariance of the Lg-sum (see
(3.12)), we conclude Theorem 3.1.1. O

3.5 Consequences under symmetry

3.5.1 Log-Minkowski inequality

For the following known Alexandrov variational formula we refer to Lemma 2.1 in [33] or Lemma 7.5.3
in Schneider [144]).

Lemma 3.5.1 (Alexandrov). Let hy : S 1 — (0,00) be continuous for t € [0,1) such that the limit
lim; o+ M = h{(u) exists and uniform in u € S"~1. Then the Wulff-shape W; = Nyegn-1{x €
R™; (z,u) < he(u)} fort € [0,1) satisfies

o Wil = ol _ 1
i =2 [ ot ds o)

t—0+ t n
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The Proposition below was stated in the case when C is the family of origin symmetric bodies in [33].
For completeness we repeat the method given in yielding the following slightly more general statement.

Proposition 3.5.2 (Boroczky, Lutwak, Yang, Zhang). Let C be a class of convex bodies containing the
origin in their interior such that C is closed under dilation and the Lo-sum (i.e. (1—=X)-K+oA-L€C
forany K,L € C, A € [0,1]), and
[(1=A)- K +oA-L| > [K[" L (3.29)
holds for any K,L € C. Then
h K
/ log—LdVK > ulogu
Sn—1 n

for any K, L € C with equality if and only if |3 - K +¢ 3 - L| = |K|Y/2|L|Y2.
Proof. We can assume that |K| = |L| = 1, and hence the inequality to prove is
/S  loghy dVic 2/5  loghy dVic. (3.30)
For A € [0,1], we consider the function f(X) = |Qa| where
Qx=(1-=XN)-K+oX-L.

First we prove that f(\) is log-concave. On the one hand, for A\,o,7 € [0,1] and o = (1 — A)o + A7, we
observe that,

(1-X):Qs+torQr C(l—0a)-K+oa-L

since the support function of a Wulff shape W is at most the function that is used in the definition of
W (see 2.10 in [33]); in particular,

hS ARy < (B Thg) Y Mk Th)N = hiohs.

On the other hand, log-Brunn-Minkowski inequality hold true for any pair @, and Q. with 0,7 € [0, 1]
because Q,,Q, € C. These two observations give,

logf((1 — X)o + A1) =logf(a)
= log|Qa/|
> 10g|(1 - )‘)QU +o A+ Q'r|
> log|Qo|'*og|Q [*
= (1= Mlogf (o) + Alogf(7),
verifying that f(\) is log-concave.

Since f(\) is log-concave on [0, 1], it has righ hand sided deivative f/ (X) for A € [0, 1), and left hand
sided deivative f” () for A € (0,1]. In addition, f(0) = f(1) = 1 and (3.29) yields that f(\) > f(0) for
A € (0,1); therefore, f/ (0) > 0.

We apply Lemma 3.5.1 to hy(u) = hg (u)'~thr(u)?, and hence
hi(u)

hi(u) = hi(u)log T (1)

It follows from f! (0) > 0, K = Qo and Lemma 3.5.1 that

0< f1(0) = Aliff)ﬂ |Qx| ; |Qol
1 hL(u) / hL
= — 1 = log — .
- /an hi (u)log e () dSk (u) . og e dVi
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In turn, we conclude (3.30).

Since f(A) is log-concave and f(0) = |K| = |L| = f(1), if f(3) = |3 - K +0 5 - L| = 1, then f is
constant, and hence f’, (0) = 0. Therefore, we have equality in (3.30).

Finally, if equality holds in (3.30), then f’ (0) = 0, thus the log-concavity of f and f(0) = f(1) yields
that f is constant, which in turn yields that

3K oLl = £(3) = £(0) = [K]"IL] %
completing the proof of Theorem 3.5.2. L]

We observe that log-Minkowski inequality (2.18) for bodies with n-symmetries follows from Theo-
rem 3.1.1 and Proposition 3.5.2

3.5.2 Uniqueness of V;

Now we recall the argument in [33] about the characterization of cone volume measure with respect to
uniqueness, in the slightly more general form.

Proposition 3.5.3. Let C be a class of convex bodies containing the origin in their interior such that C
is closed under dilation and the Lo-sum, and

[(1=X)- K +oA- L| > |K["L]} (3.31)
holds for any K,L € C. If Vi =V, for K,L € C, then |3 - K +¢ & - L| = |K|Y/2|L|}/2.

Proof. We deduce from Vi =V}, and the log-Minkowski inequality Theorem 3.5.2 that

/ loghrdVy, :/ loghdVk Z/ loghxdVik :/ loghkdVy,
Snfl Snfl Snfl Snfl

> / loghdV7y,.
Snfl

Thus we have equality in Theorem 3.5.2, proving |3 - K +¢ & - L| = |K|'/2|L|'/2. O

We observe that uniqueness of the cone volume measure follows from Theorem 3.1.1 and Proposi-
tion 3.5.3.

3.5.3 Passing to e ?@dx

Saroglou [143] proved that on the class of o-symmetric convex bodies and measures, the logarithmic-
Brunn-Minkowski inequality for the Lebesgue measure implies the logarithmic-Brunn-Minkowski inequal-
ity for any log-concave measure. In other words, according to Theorem 3.1 in [143], if (2.10) holds for
any o-symmetric convex bodies K, L in R", then for any even convex ¢ : R" — (—o0, 00| function, we

have
1—X A
/ =) g > ( / e_"”(‘r)dx) ( / e—w(m)dx)
(1=X)-K+oA-L K L

for any o-symmetric convex bodies K, L.

However, the proof of Theorem 3.1 in [143] does not actually use o-symmetry but a somewhat weaker
property of log-concave measures with rotational symmetry. Let o(z) = ¢ (]|z||) for an increasing convex
function ¢ : [0,00) = (—00, 00|, and let G be the subgroup generated by orthogonal reflections through
the linear hyperplanes Hy, ..., H, with Hy N...N H, = {0}, and hence if M is a convex body invariant
under G, then M N{p < r} is also invariant under G for any r > ¢(0) = ¢(0). It follows that if K and L
are convex bodies invariant under G, then all bodies used in the proofs of Lemma 3.7 and Theorem 3.1 in
[143] are also invariant under G; therefore, the argument by Saroglou [143] yields the following theorem.
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Theorem 3.5.4. Let A € (0,1), let o(x) = ¥(||x]|) for an increasing convex function ¢ : [0,00) —
(=00, 00] and let du(x) = e~?®) dx be the corresponding log-concave measure on R™. If HyN...N H, =
{0} holds for the linear hyperplanes Hy, ..., H,, and the convex bodies K and L are invariant under the
orthogonal reflections through Hy, ..., H,, then

p((L=A) - K +o X~ L) > p(K)' P u(L).

Note, Gaussian measure corresponds to the case 1(t) = t2.
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Chapter 4

About the case of equality in the
Geometric Reverse Brascamp-Lieb
inequality

4.1 Introduction

The Theorem below states the geometric reverse Brascamp-Lieb (or Barthe’s) inequality together with
its equality case which is our result. The Geometric data and independent decomposition are defined in
(2.32) and (2.37), respectively. We denote by L;(R™) the family of all the integrable functions on R”.

Theorem 4.1.1 (Boroczky, K., Xi [32]). Let (Pg,, ¢;)1<i<k be a Geometric Brascamp-Lieb data. Then,
for any non-negative f; € L1(E;), i =1,...,k, we have

k

/R* sup Hfi(-%‘i)ci dz > f[l (/E fi>Ci ) (4.1)

k S, )
=3 i, Ti€E; =1

We assume that equality holds for non-negative f; € L1(E;), i = 1,...,k, with positive integral and
denote the independent decomposition induced from this data by

R" = Faep ® (&1 ) -

Then there exist 6; > 0, b; € E; N Fyep and w; € E; N Fdlep fori=1,...,k, log-concave h; : F; — [0,00)

forj=1,...,¢, and a positive definite matriz A : Fyep, — Faep such that the eigenspaces of A are critical
subspaces and
filx) = 0,6 (APFacp Prac, ©=bi) H h;(Pr;(x —w;))  for Lebesgue a.a. x € E;. (4.2)
F;CE;

On the other hand, if for anyi=1,...,k, f; is of the form as in (4.2) and equality holds for all x € E;
n (4.2), then equality holds in (4.1) for fi,..., fx.

Outline of the proof of (4.2)

We briefly, write a sketch of the proof of Theorem 4.1.1. Let (Pg,, ¢;) be a Geometric Brascamp-Lieb data
and let R" = F, @ (@?lej) the induced independent decomposition. Let (f1,..., fix) be an extremizer
of the Reverse Brascamp-Lieb for this data (can be assumed probability densities) and let T; : E; — F;
be the Brenier map (see Theorem 4.4.1) for which

gi(x) = fi(Ti(x)) det VT (z), =€ R",
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with g;(z) = e~ "I, Barthes proof of inequality (4.1) follows (see (4.34)) from the inequality

k k
det <Z e;VT; (Pg,x ) H (det VT; (Pg,z))" z e R™
i=1

i=1

By the extremizability of (f1,..., fx) one obtains equality on the above inequality. After characterizing
these equality cases (see Proposition 4.2.10) we get (see Proposition 4.4.2 (i)) that for some h;; on E;NF}

fi(z) = hio(Pp,) H hij(Pp,z)  for € E;.
F CE
=1

Then, we drop the index i on the h;; (see Proposition 4.4.4 (ii)) applying the know equality case of
Prékopa-Leindler inequality. Last, it remains to show that h;g is a Gaussian. We observe the followings:

(i) (Pg,nr,,ci)f_; is a Geometric data on Fyy with no independent subspaces.
(ii) (h10,---,hro) is an extremizer for the data (Pg,nr,,ci)%_; (see Proposition 4.4.4 (i)).
(iii) Tio := Ti|E;nF, is the Brenier map for which g;o(x) = hio(Tio(z)) det VT (z).

Afterwards, we show (in Proposition 4.6.3) that if one assume that Tjo has linear growth then Tjo is
linear, thus by (iii) we get that h;o is Gaussian and this deduce the form in (4.2). To involve this
extra assumption on Tj one can use closure properties of extremizabilty (in our case convolution and
product see (4.78)) and first get an extremizer ( fi,.. ., fk) for which f; < cg; for some ¢ > 0. This
control gives (see Proposition 4.7.1) that the corresponding Brenier map T; has linear growth and in
turn corresponding T} as well. Therefore, one can write f; as in (4.2) and in turn f; is written as (4.2)
using some classic facts from Fourier transform (see the paragraph before (4.81)). A complete proof is
written in section 4.7.2.

4.2 Structure theory and the Determinantal inequality

4.2.1 In rank one case

This section just retells the story of Section 2 of Barthe [15] in the language of Carlen, Lieb, Loss [50]
and Bennett, Carbery, Christ, Tao [21].

We discuss the basic properties of a set of vectors uy,...,ux € S"~! and constants c;,...,c; > 0
occurring the rank one Geometric Brascamp-Lieb data (u; ® w;, ci)le; namely, satisfying

k
i=1
Lemma 4.2.1. For uy,...,u; € S" ! and c1,...,c, > 0 satisfying (4.3), we have

(i) Xy ci = n;
(i) Zf:l cilui, 2)? = ||z||? for all x € R™;
(iii) ¢; <1 fori=1,...,k with equality if and only if u; € ui- for j # i;

(iv) uy,...,ux spans R™, and k = n if and only if uy,...,u, is an orthonormal basis of R"™ and
co=...=c¢c,=1;



CEU eTD Collection

41

v) if L is a proper linear subspace of R™, then
(v) if prop /2

Z c; <dimL,

u; €L
with equality if and only if {uy,...,up} C LU L*.
Remark If ), ., ¢; =dim L in (v), then lin{u; : u; € L} = L and lin{u; : u; € L+} = L*.

Proof. Here (i) follows from comparing the traces of the two sides of (4.3), and (ii) is just an equivalent
form of (4.3). To prove ¢; < 1 with the characterization of equality, we substitute = u; into (ii).
Turning to (iv), ui,...,ux spans R™ by (ii). Next, let us assume that uq,...,u, € S" ! and
c1,...,cn > 0 satisfy (4.3). We consider w; € S"~1 for j = 1,...,n such that (wj,u;) = 0 if i # j, and
hence (ii) shows that u; = +w; and ¢; = 1.
For (v), if u; € L, then we consider the unit vector

PLJ.'LLZ‘

i = —=—— e L*.
C Pl
We deduce that if z € L+, then
k
llz||? = Zci<ui,m>2 = Z ci(Ppiug, x)* = Z cil| Pr g || (4, )2
i=1 ui¢L u; &L

It follows from (i) and (ii) applied to {i; : u; € L} in L that

dim L+ = Z ci||Proug))? < Z Ci-

u; €L u; €L

In turn, we conclude the inequality in (v) by (i). Equality holds in (v) if and only if ||Priw|| = 1

whenever u; ¢ L; therefore, uy,...,u, C L UL O
Let u1,...,ur € S" ! and cp,...,c, > 0 satisfy (4.3). Following Bennett, Carbery, Christ, Tao [21],
we say that a non-zero linear subspace V is a critical subspace with respect to uy,...,ur and cq,...,ck
if
Z c; =dimV.
u; €V
In particular, R™ is a critical subspace according to Lemma 4.2.1. We say that a non-empty subset
U C{uq,...,ur} is indecomposable if lin/ is an indecomposable critical subspace.
In order to understand the equality case of the rank one Brascamp-Lieb inequality, Barthe [15]
indicated an equivalence relation on {uy,...,u;}. We say that a subset D C {uq,...,ux} is minimally

dependent if D is dependent and no proper subset of D is dependent. The following is folklor in matroid
theory, was known most probably already to Tutte (see for example Theorem 7.3.6 in Recski [138]). For
the convenience of the reader, we provide an argument.

Lemma 4.2.2. Given non-zero vi,...,v, spanning R", n > 1, we write v; < v; if either v; = v;, or
there exists a minimal dependent set D C {v1,..., v} satisfying v;,v; € D.

(i) v; > v; if and only if there exists a subset U C {v1,...,vx} of cardinality n — 1 such that both
vi} UU and {v;} UU are independent;
J

(ii) < is an equivalence relation on {v1,...,vk};

(iwi) if Vi,..., Vi are the linear hulls of the equivalence classes with respect to >, then they span R™
and V; N V; = {o} fori#j.
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Proof. We prove the lemma by induction on n > 1 where the case n = 1 readily holds. Therefore, we
assume that n > 2.
We may readily assume that

{v1,...,utNlin{v;} ={v;} fori=1,... k. (4.4)

For (i), if D is a minimal dependent set with v;, v; € D, then adding some V C {v1, ..., v} to D\{v;},
we obtain a basis of R”, and we may choose &/ =V U (D\{v;,v;}). On the other hand, if the suitable ¢/
of cardinality n — 1 exists such that both {v;} UY and {v;} UU are independent, then any dependent
subset of U U {v;,v;} contains v; and v,.

For (ii) and (iii), we call a non-zero linear subspace W C R™ unsplittable with respect to {vy,..., v} if
W is spanned by WN{vy, ..., v}, but there exist no non-zero complementary linear subspaces A, B C W
with {v1,...,v.}NW C AUB. Readily, there exist pairwise complementary unsplittable linear subspaces
Wi,..., Wy, CR"™ such that {vy,...,0.} CWiU...UW,,.

On the one hand, if v; € W, and v; € Wps for a # 3, then trivially v; 4 v;. Therefore all we need
to prove is that if v;,v; € Wy, then v; < v;. By the induction on n, we may assume that m = 1 and
W, = R"™. We may also assume that i =1 and j = 2.

The final part of argument is indirect; therefore, we suppose that

v1 DA v, (4.5)

and seek a contradiction.
(4.5) implies that v; and v are independent, and hence vy p4 ve and (4.4) yield that L = lin{vy, v}
satisfies

{v1,..., v} N L ={v1,va}. (4.6)
Now R" is unsplittable, thus n > 3.
Since vy, ..., v, span R™, we may assume that vy, ..., v, form a basis of R™. Let Ly = lin{vs, ..., v,},
and Ly = lin{vs, Lo} for t = 1,2. We may also assume that vq,...,v, is an orthonormal basis.

For any | > n, (i) and vy b4 vy yield that
either v; € L1, or v; € Ls. (4.7)
Since R™ is unsplittable, there exist p,q > n such that
vp € L1\ Lo and v, € Lo\ Lyg. (4.8)
For any w & L, we write
suppw = {v;: 1 € {3,...,n} & (w,v;) # 0};
namely, the basis vectors where the corrresponding coordinate of w|L — 0 is non-zero.

Case 1 There exist v, € L1\Lg and v, € La\Log, p,q > n, such that (suppvp) N (suppv,) # 0
Let v € (suppwvy) N (suppvg). Now the n + 1 element set

{v1,vp,v2, 04} U{vr : 1 €{3,...,n}\{s}}

is dependent, and considering the 1%, 27 and s** coordinates show that both v; and v, lie in any
dependent subset. This fact contradicts (4.5).

Case 2 (suppvp) N (suppvy) = 0 for any v, € Li1\Lo and vqg € Lo\Lo with p,q > n

Let Uy = U{suppuv, : p > n & v, € L\Lo} for t = 1,2. It follows that U; NUz = 0, thus n > 4.
For any partition U] UUS = {vs,...,v,} (and hence Uj NU,) = () such that Uy C U] and Uy C U,
there exists some v; € Lo that is contained neither in lin (4] U {v1}) nor in lin (4§ U {v2}) because R"
is unslittable. In turn we deduce that we may reindex the vectors vs, ..., v, on the one hand, and the
vectors vp41, ...,V on the other hand to ensure the following properties:
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® Upnt1 € Ll\LO and Un42 € LQ\LQ;

e there exist « € {3,...,n — 1} and § € {n + 3,...,k} such that suppv; C {va,...,v,} for I €
{n+1,....,6},and v, € Ly if n+3 <1 < B;

e for any partion Wy UW, = {v,,...,v,} into non-empty sets, there exist | € {n+1,...,5} such
that supp v; intersects both W; and Ws.

We observe that Eo = lin{vq, ..., v, } is unsplittable with respect to
{Ua, cey Un,y UTL+1|L03 Un+2|L07 Un+37 ... 7’Uﬂ}'

Therefore, this last set contains a minimal dependent subset D with Un+1|Los Vnt2|Lo € D by induction;
namely, the elements of D different from v, 41|Lg, vp+2|Lo are vectors of the form v; that lie in Ly. We
conclude that

D = {v1,v2, Vp41, Vpy2} U (D\{Un—&-l‘LO’ Un+2|L0})

is a minimal dependent set, contradicting (4.5), and proving Lemma 4.2.2. O

Lemma 4.2.3. Foruy,...,ur € S" ! and cy,...,cp > 0 satisfying (4.3), we have
(i) a proper linear subspace V.C R™ is critical if and only if {uy,...,ury CV UVL;

(ii) if V,W are proper critical subspaces with V NW # {o}, then VX, VNW and V + W are critical
subspaces;

(iii) the equivalence classes with respect to the relation < in Lemma 4.2.2 are the indecomposable subsets

of {ur,...,ux};

(iv) the proper indecomposable critical subspaces are pairwise orthogonal, and any critical subspace is
the sum of some indecomposable critical subspaces.

Proof. (i) directly follows from Lemma 4.2.1 (v), and in turn (i) yields (ii).

We prove (iii) and and first half of (iv) simultatinuously. Let Vi,...,V,, be the linear hulls of the
equivalence classes of uq, ..., u; with respect to the 0 of Lemma 4.2.2. We deduce from Lemma 4.2.1
(v) that each V; is a critical subspace, and if ¢ # j, then V; and V; are orthogonal.

Next let U C {uq,...,ur} be an indecomposable set, and let V = linld. We write I C {1,...,m}
to denote the set of indices 4 such that V; NU # (. Since V is a critical subspace, we deduce from
Lemma 4.2.1 (v) that V; NV is a critical subspace for i € I, as well; therefore, I consists of a unique
index p as U is indecomposable. In particular, V = V,,.

It follows from Lemma 4.2.1 (v) that {u,...,ux} C V U V"L, therefore, there exists no minimally
dependent subset of {u1,...,u;} intersecting both U and its complement. We conclude that V = V,,.
Finally, the second half of (iv) follows from (i) and (ii). O

The following is the main result of theis section, where the inequality is proved by Ball [12, 13], and
the equality case is clarified by Barthe [15].

Proposition 4.2.4 (Ball-Barthe Lemma). For uy,...,ux € S"~ ! and c1,...,cx > 0 satisfying (4.3), if
t; >0 fori=1,...,k, then

k k
det <Z citiu; @ ul> > H tfl (49)
1=1 =1

FEquality holds in (4.9) if and only if t; = t; for any u; and u; lying in the same indecomposable subset
Of {ula B auk}‘
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Proof. To simplify expressions, let v; = \/cu; for i = 1,... k.
In this argument, I always denotes some subset of {1,...,k} of cardinality n. For I = {i1,...,i,},

we define
dr = det[v,;l,...,vin]2 and ty =ty -t

im, *

For the n x k matrices M = [vy, ..., v;] and M = [VT1v1,- ..,k vk], we have
o k
MMT =1, and MM" = Ztm ® v;. (4.10)
i=1

It follows from the Cauchy-Binet formula that

k
Zd; =1 and det (Ztivi(@vi) = thdl,
I i=1 I
where the summations extend over all sets I C {1,...,k} of cardinality n. It follows that the discrete

measure y on the n element subsets of {1,...,k} defined by u({I}) = d; is a probability measure. We
deduce from inequality between the arithmetic and geometric mean that

k
det (Ztivi ® vi> => tidy > [t (4.11)
I I

i=1

The factor ¢; occurs in [, t?l exactly »; ;c;dr times. Moreover, the Cauchy-Binet formula applied
to the vectors vy, ...,v;—1,Vi41,..., v implies

Zd}ZZd]— Zd}zl—det ZU]‘@U]'
I

I,i€l 1,igI1 JF#i
=1—det (Idn —U; Q 1)2‘) = <’Uz',1)i> = C;.

Substituting this into (4.11) yields (4.9).

We now assume that equality holds in (4.9). Since equality holds in (4.11) when applying arithmetic
and geometric mean, all the ¢; are the same for any subset I of {1,...,k} of cardinality n with d; # 0.
It follows that ¢; = t; whenever u; < u;, and in turn we deduce that ¢; = t; whenever u; and u; lie in
the same indecomposable set by Lemma 4.2.3 (i).

On the other hand, Lemma 4.2.3 (ii) yields that if ¢; = ¢; whenever u; and u; lie in the same
indecomposable set, then equality holds in (4.9). O

Combining Lemma 4.2.3 and Proposition 4.2.4 leads to the following:

Corollary 4.2.5. For u; € S" ! and ¢;,t; > 0, i = 1,...,k satisfying (4.3), equality holds in (4.9) if
and only if there exist pairwise orthogonal linear subspaces Vy,..., Vy, m > 1, such that {u,...,ux} C
ViU...UV,, and t; =t; whenever u; and u; lie in the same V,, for some p € {1,...,m}.

4.2.2 In higher rank cases

We build a structural theory for a Brascamp-Lieb data based on results proved or indicated in Barthe
[15], Bennett, Carbery, Christ, Tao [21] and Valdimarsson [152].

We study the properties of a set of non-zero linear subspaces Ei,...,E; of R® and constants
c1,- -, ¢, > 0 occurring the Geometric Brascamp-Lieb data (Pg,, ¢;)¥_;; namely, satisfying

k
> ¢iPg, =1I,. (4.12)
i=1
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We connect (4.12) to (4.3). For i =1,...,k, let dim E; = n; and let ugi), ...,u}) be any orthonormal
basis of E;. In addition, for i« = 1,...,k, we consider the n x n; matrix M; = \/cﬁ[ugz), . ,uﬁf)} We
deduce that

ciPp, = MM = Z ciu;l) ® uy) fori=1,...,k; (4.13)
j=1
I, = Z ¢iPg, = Z Z ciugz) ® uy) = Z Z cgz)uy) ® ugl) (4.14)
i=1 i=1j=1 i=1 j=1
and hence u!” € $"~1 and cy) =¢ >0fori=1,...,kand j =1,...,n; form a Geometric Brascamp-

Lieb data like in (4.3).

Lemma 4.2.6. For linear subspaces E1,...,Ey of R™ and c1,...,c, > 0 satisfying (4.12),
(i) if * € R", then Y1, ¢;|| P, x||* = |||%;
(i) if V.C R™ is a proper linear subset, then

Y dim(E;NV)<dimV (4.15)
E;NV#{o}

where equality holds if and only if E; = (E;NV)+ (E;NV™Y) fori=1,...,k; or equivalently, when
V=(ENV)+(E-NV) fori=1,....k

Proof. Fori=1,... k, let dim E; = n; and let ugi), ey uﬁf) be any orthonormal basis of E; such that if
VN E; # {o}, then ugi), ... ,u%)i is any orthonormal basis of V N E; where m; < n;.
For any z € R" and i = 1,...,k, we have || Pg,z|?* = Z;L;1<U§Z)a z)?, thus Lemma 4.2.1 (ii) yields (i).
Concerning (ii), Lemma 4.2.1 (v) yields (4.15). On the other hand, if equality holds in (4.15), then
V' is a critical subspace for the rank one Geometric Brascamp-Lieb data ugz) € " ! and cﬁi) =c¢ >0
fori =1,...,k and j = 1,...,n; satisfying (4.14). Thus Lemma 4.2.6 (ii) follows from Lemma 4.2.1

(v). O

We say that a non-zero linear subspace V is a critical subspace with respect to the proper linear
subspaces F1,..., Er of R™ and ¢y, ..., ¢, > 0 satisfying (4.12) if

> cdim(EinV)=dimV.
E;NV#{o}

In particular, R™ is a critical subspace by calculating traces of both sides of (4.12). For a proper linear
subspace V C R"™, Lemma 4.2.6 yields that V is critical if and only if V* is critical, which is turn
equivalent saying that
or in other words,

V=(ENV)+(ENV)fori=1,... k. (4.17)

We observe that (4.16) has the following consequence: If Vi and V, are orthogonal critical subspaces,
then
Ezﬂ(vl-‘r‘/z):(Elﬂ‘/l)-i-(Ezﬁva) fori=1,... k. (418)

We recall that a critical subspace V' is indecomposable if V' has no proper critical linear subspace.

Lemma 4.2.7. If Ey, ..., Ey are linear subspaces of R™ and ¢y, ...,cp > 0 satisfying (4.12), and V,W
are proper critical subspaces, then V+ and V + W are critical subspaces, and even V NW s critical
provided that VN W # {o}.
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Proof. We may assume that dim F; > 1 fori=1,... k.
The fact that V= is also critical follows directly from (4.16).
Concerning VNW when VNW # {0}, we need to prove that if i = 1,...,k, then

VAW)NE +(VnNW)*nNE; = E,. (4.19)

For a linear subspace L C E;, we write L+ = LNE; to denote the orthogonal complement within E;. We
observe that as V and W are critical subspaces, we have (VNE;)Yi = VANE; and (WNE;)Y = WANE,.
It follows from the identity (V N W)+ = V4 + W+ that

Ei > (VAW)NE+VnW)rnE =VnE)N(WNE)+(Vi+WhHnE
> (VNE)N(WNE)+(VEnE)+(WtnE)
= VNE)N(WNE)+(VnE)Y +(WnE)t
= (VAE)N(WNE)+[(VNE)N(WNE)*" = E;,

yielding (4.19).
Finally, V + W is also critical as V + W = (VN W)+ O

We deduce from Lemma 4.2.7 that any critical subspace can be decomposed into indecomposable
ones.

Corollary 4.2.8. If Ey,...,E) are proper linear subspaces of R™ and cq,...,c; > 0 satisfy (4.12),
and W is a critical subspace or W = R", then there exist pairwise orthogonal indecomposable critical
subspaces Vi, ..., Vi, m > 1, such that W =Vi + ...+ V,, (possiblym =1 and W =V, ).

We note that the decomposition of R into indecomposable critical subspaces is not unique in general
for a Geometric Brascamp-Lieb data. Valdimarsson [152] provides some examples, and in addition, we
provide an example where we have a continuous family of indecomposable critical subspaces.

Example 4.2.9 (Continuous family of indecomposable critical subspaces). In R*, let us consider the
following six unit vectors: uy(1,0,0,0), us(%,%2,0,0), uz(5L, %2,0,0) , v1(0,0,1,0), v2(0,0, %, %2),
v3(0,0, 5 2 , ‘2[) which satisfy us = uj + us and v = vy + vs.
For any = € R%, we have
3

Il = D2 2 (G ) + (o, 0?)

i=1

Therefore, we define the Geometric Brascamp-Lieb Data E; = lin{u;,v;} and ¢; = % fori=1,2,3
satisfying (2.33). In this case, Fyep = R*.
For any angle t € R, we have a two-dimensional indecomposable critical subspace

Vi = lin{(cos t)u; + (sint)vy, (cost)ug + (sint)va, (cost)us + (sint)vs}.
Next we prove the crucial determinantal inequality. Its proof is kindly provided by Franck Barthe.

Proposition 4.2.10 (Barthe). For linear subspaces E1, ..., Ex of R, n > 1 andcy,...,cr > 0 satisfying
(4.12), if A; : E; — E; is a positive definite linear transformation for i =1,... k, then

k k
det (Z ciAiPEi> H det A;) (4.20)
=1

i=1

Equality holds in (4.20) if and only if there exist linear subspaces Vi, ..., Vy, where Vi = R™ if m =1
and Vq, ...,V are pairwise orthogonal indecomposable critical subspaces spanning R™ if m > 2, and a
positive definite n x n matriz ® such that Vi, ..., V,, are eigenspaces of ® and ®|g, = A; fori=1,...,k.
In addition, ® = Zle ¢iA; Pg, in the case of equality.
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Proof. We may assume that dim F; > 1 for i =1,. k

For i = 1,...,k, let dim E; = n;, let u() .. ) be an orthonormal basis of E; consisting of

eigenvectors of A;, and let )\gi) > 0 be the elgenvalue of Ai corresponding to u(

H;l:1 /\gi) for i =1,...,k. In addition, for : = 1,...,k, we set M; = \/Ei[ugi), .. ugf)] and B; to be the
positive definite transformation with A; = B;B;, and hence

) In particular det A; =

We deduce from Lemma 4.2.4 and (4.14) that

k ko n;
det <Z ciAiPEi> = det Z Z ci)\;-l)uy) ® ug-z)
i=1 i=1 j=1

Ci

k n; k
> TTITIAY | =[](det i) (4.21)

i=1 \j=1 i=1

If we have equality in (4.20), and hence also in (4.21), then Corollary 4.2.5 implies that there exist
pairwise orthogonal critical subspaces Vi,...,V,,, m > 1 spanning R™ and Aq,..., A, > 0 (where
Vi =R" if m = 1) such that if E;NV; # {o}, then E; NV is an eigenspace of A; with eigenvalue A;. We
conclude from (4.16) that each V; is a critical subspace, and from Corollary 4.2.8 that each V; can be
assumed to be indecomposable. Finally, (4.18) yields that each F; is spanned by the subspaces E; NV
forj=1,...,m

To show that each Vj is an eigenspace for the positive definite linear transform Zle ¢;A; Pg, of R"

with eigenvalue \;, we observe that
A,‘PEiI = /\jPE,iﬂf

forany ¢ =1,...,k and x € V;. It follows that if x € V}, then

k k
CZAZPEI' =\; CiPE.(E = A'LL‘,
D_cidiPrz =Xy ciPru =X

i=1 =1

proving that we can choose ® = Zle ¢;Ai Py, .
On the other hand, let us assume that there exists a positive definite n xn matrix © whose eigenspaces

Wh,...,W; are critical subspaces (or I = 1 and W; = R”) and O|g, = A; for i = 1,..., k. In this
(1) (4)

case, for any ¢ = 1,...,k, we may choose the orthonormal basis u;’,...,un; of E; in a way such that
ugz), - ,u&) C Wy U...UW;, and hence Corollary 4.2.5 yields that equahty holds in (4.20). O

Remark While Proposition 4.2.10 has a crucial role in proving both the Brascamp-Lieb inequality
(2.34) and the Reverese Brascamp-Lieb inequality (2.35) and their equality cases, Proposition 4.2.10
can be actually derived from say (2.34). In the Brascamp—Lieb inequality, choose f;(z) = e ™(4i%2) for

z€ FE;andi=1,...,k, and hence fE1 fi = (det A;) 2 . On the other hand, if x € R™, then

k
. k k k
Hfi (PEi‘r)Cl —e T i ci{AiPp,x,Pp, x) —e T >y ci{AiPp,x,x) — e_ﬂ'<z7‘,:1 ciAiPEia:,:Q;

i=1
therefore, the Brascamp-Lieb inequality (2.34) yields

—1

k 2 k
<det Z CZAZPEI> H det A
i=1

=1
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In addition, the equality conditions in Proposition 4.2.10 can be derived from Valdimarsson’s Theo-
rem 2.2.7.

Let us show why indecomposability of a critical subspaces in Proposition 4.2.10 is useful.

Lemma 4.2.11. Let the linear subspaces En, ..., Ey, of R™ and c1,...,c, > 0 satisfy (4.12), let Faep #
R™, and let Fy, ..., F; be the independent subspaces, | > 1. If V' is an indecomposable critical subspace,
then either V' C Fqep, or there exists an independent subspace F;, j € {1,...,1} such that V C Fj.

Proof. Tt is equivalent to prove that if V' is an indecomposable critical subspace and j € {1,...,1}, then
V ¢ F; implies F; CV*. (4.22)

We deduce that VN F; = {o} from the facts that V' is indecomposable and Fj is a critical subspace, thus
F; NV is a critical subspace or {o}. There exists a partion M UN = {1,...,k} with M NN = () such
that

Fj = (Niem ;) N (ﬂieNEiL) .

Let y € F;. Since V is a critical subspace, we conclude that Pyy € E; for i € M and Pyy € Ej- for
1 € N, and hence Pyy € VN (Niem Ei) N (ﬁieNEiJ-) = {0}. Therefore, y € V*+. O

4.3 (Gaussian extremizability

This section continues to build on work done in Barthe [15], Bennett, Carbery, Christ, Tao [21] and
Valdimarsson [152].

For linear subspaces F1, ..., Ex of R" and ¢y, . . ., ¢, > 0 satisfying (4.12), we deduce from Lemma 4.2.6
(i) and (4.17) that if V' is a critical subspace, then writing ngr)wv to denote the restriction of Pg,ny onto
V', we have

> Py =1Iv (4.23)
E;NV#{o}

where Iy, denotes the identity transformation on V.

The equality case of Proposition 4.2.10 indicates why Lemma 4.3.1 is important.

Lemma 4.3.1. For linear subspaces Eq,...,Ex of R", n>1 and cy,...,c; > 0 satisfying (4.12), if
is a positive definite linear transform whose eigenspaces are critical subspaces, then for any x € R™, we
have

CiTq .
€8y

k
[|®z]|? = w_g{lin‘ > il @i, (4.24)
Tt

Proof. We may assume that dim F; > 1 fori=1,... k.
As the eigenspaces of ¢ are critical subspaces, we deduce by (4.18) that

®(F;) = E; and ®(E;j") = E}-. (4.25)

?

For any x € R", we have ®Pg,x = Pg,®x for i = 1,...,k by (4.25); therefore, Lemma 4.2.6 (i) yields

k k
(Bz, ®x) = Y ¢il|Pe,@x|* =D ci| @ Pg,x|. (4.26)

i=1 =1

Since z = Zle ¢;Pp,x by (4.12), we may choose x; = Pg,z in (4.24), and we have equality in (4.24) in

this case. Therefore, Lemma 4.3.1 is equivalent to proving that if x = Zle cix;forx; € E;,i=1,...,k,
then
k
[@]* < e @ay*. (4.27)

i=1
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Casel dimE;=1fori=1,...,kand ® =1,

Let E; = Ru; for u; € S~ If z € R", then Pg,x = (u;,z)u; for i = 1,...,k, and (4.26) yields that

k
(x,x) = Zci<ui,x 2
i=1

In addition, any x; € F; is of the form x; = t;u; for i = 1,... k where ||2;]|> = 2. If x = Zle cititli,
then the Holder inequality yields

k k k k k
x) = <m, Zcitiui> = Zciti@;,ui) < Zcitf : Zcz z,u;)? = Zcit? A/ (z, ),
i=1 i=1 i=1 i=1 i=1

proving (4.27) in this case.

Case 2 The general case, Fy, ..., Ex and ® are as in Lemma 4.3.1

Let Vi,...,Vy,, m > 1, be the eigenspaces of ¢ corresponding to the eigenvalues Ai,...,A,,. As
Vi,...,Vy, are orthogonal critical subspaces and R" = @7,V As Vi,...,V,, are orthogonal critical
subspaces and R" = @7, V;, we deduce that z;; = Py,z; € E;NVjforanyi=1,...,kand j =1,...,m,
and z; = Y10 @y for any i = 1,..., k. It follows that

m
T = E E CiTyj where

j=1 \E:nV,#{o}

ijx = Z CiZij- (428)
EinV;#{o}
For any ¢ = 1,...,k, the vectors ®z;; = \;z;; are pairwise orthogonal for j = 1,...,m, thus
k m
> il @a)? = Z ZczH‘I’%Hz =3 > alldwyl’
i=1 i=1 \j=1 j=1 \ E;nV;#{o}

Since ||®z|* = Z;nzl | Pv, Pz||? = 27:1 H<I>ijx||2, (4.27) follows if for any j =1,...,m, we have

[@Pyz|> < > @yl (4.29)
E;nV;#{o}

To prove (4.29), if E;NV; # {o}, then let dim(E;NV}) = n;;, and let ugij), ... ,qug) be an orthonormal
basis of E; N'Vj. Since Vj is a critical subspace (see (4.23)), if z € Vj, then

k MNij
z= Z ¢iPg,z = Z ¢iPp,nv,z = Z Z 2)ul), (4.30)
1=1 E;nV;#{o} E;NV;#{o} a=1
(4.30) shows that the system of all u(ij ) qul']) when E; NV} # {o} form a rank one Brascamp-Lieb
data where the coefficient correspondmg to u( 7 is Ci.
According to (4.28), we have
g

Pyx = Z Z (ul) iU ulih,

E;nV;#{o} a=1
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We deduce from Case 1 applying to Py, z to the rank one Brascamp-Lieb data in V; above that

[@Pyz|> = MPuzl><A? Y > @ ay)?
BinV, {0} a=1
= X D> aleglP= DD all®wgl?
iV 20} iV £{0}
proving (4.29), and in turn (4.27) that is equivalent to Lemma 4.3.1. O

We now use Proposition 4.2.10 and Lemma 4.3.1 to exhibit the basic type of Gaussian exemizers of
the Reverse Brascamp-Lieb inequality.

Proposition 4.3.2. For linear subspaces E1,...,E of R", n > 1 and ¢1,...,c; > 0 satisfying (4.12),
if ® is a positive definite linear transform whose eigenspaces are critical subsapces, then

k k

* Ci
/ sup Hefml\@zll\ dr — H </ oo dz:,;> _
mo\ e=Shoy im0 B

i=1
z; €EE;

Proof. Let d=n"3®. Fori= 1,...,k, let A; = &)|Ew and hence A; : E; — F; as the eigenspaces of ®
are critical subspaces. We deduce first using Lemma 4.3.1, and then the equality case of Proposition 4.2.10
that

. k k
/ sup He‘ci”‘l’wi\P der = / e~ %el® gy — (det 6) ' = H(det A7
I o L SR e | " i=1
z; €E;
_ c; k ci
- 11 (/ e_mmudxi) | (/ €—|q>xi|2dxi> |
i=1 /i i=1 \/Ei
proving Proposition 4.3.2. O

4.4 First form of extremixers via the Determinantal inequality

4.4.1 Brenier maps

Optimal transportation as a tool proving geometric inequalities was introduced by Gromov in his Ap-
pendix to [128] in the case of the Brunn-Minkowski inequality. Actually, the Reverse Brascamp-Lieb
inequality in [15] was one of the first inequalities in probability, analysis or geometry that was obtained
via optimal transportation.

We write VO to denote the first derivative of a C! vector valued function © defined on an open subset
of R™, and V?¢ to denote the Hessian of a real C? function ¢. We recall that a vector valued function
O on an open set U C R™ is C* for a € (0, 1) if for any xg € U there exist an open neighborhood Uy of
xo and a ¢y > 0 such that [|©(z) — O(y)| < collz — y||* for x,y € Up. In addition, a real function ¢ is
C?2 if p is C? and V2p is C°.

Combining Corollary 2.30, Corollary 2.32, Theorem 4.10 and Theorem 4.13 in Villani [154] on the
Brenier type based on McCann [116, 117] for the first two, and on Caffarelli [44, 45, 46] for the last two
theorems, we deduce the following:

Theorem 4.4.1 (Brenier, McCann, Caffarelli). If f and g are positive C* probability density functions
on R", n > 1, for a € (0,1), then there exists a C* convex function ¢ on R™ (unique up to additive
constant) such that T =V : R™ — R™ is bijective and

g(x) = f(T(x)) - det VT'(z) for x € R™. (4.31)
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The derivative T = V is the Brenier (transportation) map pushing forward the measure on R"
induced by g to the measure associated to f; namely, fT( x) =7 g for any measurable X C R". Also,
VT = V?p is a positive definite symmetric matrix in Theorem 4.4.1, and if f and g are C* for k > 1,
then T is C**1. Last, sometimes it is practical to consider the case n = 0, when we set T : {0} — {0}
to be the trivial map.

4.4.2 Barthe’s proof
The following proof is due to F. Barthe [15].

Proof of inequality (4.1). First we assume that each f; is a C'! positive probability density function on
R™, and let us consider the Gaussian densiy g;(z) = eIzl for 2 € E;. According to Theorem 4.4.1, if
i=1,...,k, then there exists a C® convex function ¢; on E; such that for the C? Brenier map T; = V;,
we have

gi(x) =det VT;(z) - fi(Ti(z)) for all z € E;. (4.32)

It follows from the Remark after Theorem 4.4.1 that VT; = V2¢;(z) is positive definite symmetric matrix
for all z € E;. For the C? transformation © : R™ — R" given by

Zcz i PE y y e Rna (433)
its differential .
VO(y) = > VT (Ppy)
i=1

is positive definite by Proposition 4.2.10. It follows that © : R™ — R" is injective (see [15]), and actually
a diffeomorphism. Therefore Proposition 4.2.10, (4.59) and Lemma 4.2.6 (i) imply

[ Tl

_21 L CiTi, TiEEG =1

= ) su fi(xs) det (VO d
/( — H ) (VO(y))

L CiTi, T €EE; j—1
>
n N

k
z/( i (T: (Pi,y)) >H (det VT (Ppy))" dy (4.34)

:/ ( gi (PE,-Z/)Ci> dy:/ e*‘fTHyH2 dy = 1.

Finally, the Reverse Brascamp-Lieb inequality (2.35) for arbitrary non-negative integrable functions f;
follows by scaling and approximation (see Barthe [15]). O

::]w

k
fi(T; (PE@-y))”> det (Z VI (PEiy)> dy

1 i=1

S, .
Il > B
= =

4.4.3 Form and Splitting

In this section, we are able to give the first formula of extremizers in the Geometric Reverse Brascamp-
Lieb inequality (4.1) and also to prove that if equality holds in the Geometric Reverse Brascamp-Lieb
inequality (4.1), then the diffeomorphism © in (4.33) splits along the independent subspaces and the
dependent subspace.
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First we explain how the Reverse Brascamp-Lieb inequality behaves under the shifts of the functions
involved. Given a Geometric data (Pg,,c;)¥_;, see (2.32), first we discuss in what sense the Reverse
Brascamp-Lieb inequality is translation invariant. For non-negative integrable function f; on F;, ¢ =

., k, let us define

F(x) = sup Hf1 ;)¢

= ZI L CiTi, T €EE; j—1
We observe that for any e; € E;, defining fi(z) = fi(z + ¢;) for z € E;, i = 1,...,k, we have

k k
ﬁ(x) = sup Hf (1) = (x + Zciei> . (4.35)
i=1

e=Yb, cimi, wi€B; 11

Proposition 4.4.2. For a Geometric data (PEi,ci)le, we write Fy, ..., F; to denote the independent
subspaces (if exist), and Fy to denote the dependent subspace (possibly Fy = {o}). Let us assume that
equality holds in (2.35) for positive C* probability densities f; on E;, i = 1,...,k, let g;(z) = el
for x € E;, let T; : E; — E; be the C? Brenier map satisfying

gi(x) =det VT;(x) - fi(Ti(z)) for all x € E;, (4.36)
and let
¢iT; (Pg,y) y € R™.

Mw

i=1

(i) For any i € {1,...,k} there exists positive C* integrable hio : Fo N E; — [0,00) (where hi(o) = 1
if FoNE; = {0}) and for any i € {1,...,k} and j € {1,...,1} with F; C E;, there exists positive
C* integrable h;j : F; — [0,00) such that

fi(x) = hio(Pr,x) H hij(Pr;x)  for x € E;.

F;jCB;

i>1
(it) Fori=1,...,k, T;(E; N F,) = E; N F, whenever E; N F, # {o} for p{0,...,1}, and if x € E;, then

Ti(x)= & Ti(Pra).

E;NnFp#{o}
p=0

(iii) Fori=1,...,k, there exist C? functions Q; : E; — E; and T; : B — E: such that
O(y) = Qi(Pp,y) + L'i(Ppry)  fory e R™
(i) If y € R™, then the eigenspaces of the positive definite matrix VO(y) are critical subspaces, and
VT;(Pg,y) =VO(y)lg, fori=1,... k.
Proof. According to (4.35), we may assume that
Ti(o)=0 fori=1,...,k, (4.37)

If equality holds in (2.35), then equality holds in the determinantal inequality in (4.34) in the proof
of the Reverse Brascamp-Lieb inequality; therefore, we apply the equality case of Proposition 4.2.10. In
particular, for any = € R", there exist m, > 1 and linear subspaces Vi 4, ..., Vi, » where V; , = R" if
mg = 1, and Vi 4,..., Vi, » are pairwise orthogonal indecomposable critical subspaces spanning R" if
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mg > 2, and there exist i z,..., Am, o > 0 such that if E; NV;, # {0}, then writing ﬁ”w to denote
the orthogonal projection into E; NV}, we have

VTi(Pij2%) | Binv;. = NalBnv; . (4.38)
and in addition, each E; satisfies (cf. (4.18))
FE;, = @Eiﬂ‘/ij?g{o}Ei N Vj)x. (4.39)
Let us consider a fixed E;, i € {1,...,k}. First we claim that if y € E;, then

VL) (F) = F if p>1and E;NF, # {0}

(4.40)
VTi(y)(FoNE;) = FyNE;.

If p>1and E;NF, # {o}, then F, C E;, and Lemma 4.2.11 yields that
Ornv.#{o}Via S Fp
Erv.=to)Vie S Fy

Since the subsapces Vj, span R", we have

Fp = D Einv; ,#{0} Vj,m;
ijmng

therefore, (4.38) implies (4.40) if p > 1.
For the case of Fy in (4.40), it follows from (4.39) and Lemma 4.2.11 that if E; N Fy # {o}, then

E,NFy= D minv; . #{0} E; N ij,r (441)

Vij,zEFo

Therefore, (4.38) completes the proof of (4.40).
The same argument involving (4.38) also shows that if y € F;, then

VTZ(y) = @Eiﬁpré{o}vTi(Ppr)|Fp. (442)

p=0

In turn, (4.40), (4.42) and T;(0) = o (c¢f. (4.37)) imply that if y € E;, then

T,(E;NF,) = E;NF, whenever E; NF, # {o} for p >0, (4.43)
Ti(y) = P TPry). (4.44)
EmFﬁn;é(o}

We deduce from (4.42) that if y € E;, then

det VTi(y) = [ det (VT(Pry)ls,)- (4.45)

E;NFp#{o}
p>0
We conclude (i) from (4.42), (4.43), (4.44), and (4.45) as (4.36) yields that if y € E;, then

o= mlIPr,yl?

det (VT;(Pr,y)lr,)”

Ty = 1
E;NFp#{o}
p>0
We deduce (ii) from (4.43) and (4.44).
For (iii), it follows from Proposition 4.2.10 that for any z € R™, the spaces Vj , are eigenspaces for
VO(z) and span R"™; therefore, (4.17) implies that if z € R® and i € {1,...,k}, then

VO(z) = VO(z)|g, ® VO(2)|p. -
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Since ©(0) = o by (4.37), for fixed i € {1,...,k}, we conclude
o) = Eij
Ox) = O(Ppa)ly e 0 (PEiLx) ‘EL if z € R™.

Finally, (iv) directly follows from Proposition 4.2.10, completing the proof of Proposition 4.4.2. [

Next we show that if the extremizers fi,..., fi in Proposition 4.4.2 are of the form as in (i), then
for any given F; # {o}, the functions h;; on F; for all i with E; N F; # {o} are also extremizers. We
also need the Prékopa-Leindler inequality Theorem 4.4.3 (proved in various forms by Prékopa [134, 135],
Leindler [102] and Borell [27]) whose equality case was clarified by Dubuc [67] (see the survey Gardner
[76]). In turn, the Prékopa-Leindler inequality (4.46) is of the very similar structure like the Reverse
Brascamp-Lieb inequality (2.35).

Theorem 4.4.3 (Prékopa, Leindler). For Ay,..., Ay € (0,1) with Ay + ...+ Ay = 1 and integrable
©1y -y om : R = [0,00), we have

/ﬂ: sup ﬁ‘Pi(m)/\i dx > f[l </]Rn @i)Ai ) (4.46)

n w:Z:ll Nix;i, x; ER" i=1

and if equality holds and the left hand side is positive and finite, then there exist a log-concave function
w and a; >0 and b; € R™ fori=1,...,m such that

¢i(x) = a; p(x — b;)
for Lebesgue almost allz e R™, i =1,...,m.

For a Gemetric data (PEi,ci)le, we assume that Fyep # R”, and write Fi,..., F] to denote the
independent subspaces. We verify that if j € {1,...,l}, then

Z ¢ =1. (4.47)

EiDFj

For this, let € F;\{o}. We observe that for any E;, either F; C E;, and hence Pg,z = z, or F; C Ej-,
and hence Pg,z = 0. We deduce from (2.33) that

k
x:E ¢iPp,x = E ¢ |-z,
i=1

F;CE;
which formula in turn implies (4.47).

Proposition 4.4.4. For a Gemetric data (Pg,,c;)* |, we write F1,...,F} to denote the independent
subspaces (if exist), and Fy denote the dependent subspace (possibly Fy = {o}). Let us assume that
equality holds in the Reverse Brascamp-Lieb inequality (4.1) for probability densities f; on E;, i =
1,...,k, and for any i € {1,...,k} there exists non-negative integrable h;o : Fy N E; — [0,00) (where
hio(o) =1 if Fo N E; = {o}), and for any i € {1,...,k} and j € {1,...,1} with F; C E;, there exists
non-negative integrable h;; : F; — [0,00) such that

fz<$) = hio(PFOa?) . H hij(Pij) fO?” x € FE;. (448)

F;CEB;

i>1

(i) If Fo # {0}, then 3 p gy 2(0) CiPEinF, = 1dR, and

/ sup H hio(xi)“ dx = H (/ hiO) .
Fo QZZZ{CiIiiwiEEiﬁFO&EiﬁF()?é{O}} EinFo;ﬁ{O} EiﬂFQ;é{O} E;NFy
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(it) If Fy # R™, then there exist log-concave integrable v; : F; — [0,00) for j = 1,...,l, and there
exist a;; > 0 and by; € Fj for any i € {1,...,k} and j € {1,...,l} with F; C E; such that
h”(a:) = Qij - 1%(.% — le) fO’I“i S {1, .. ,k‘} and] S {1, .. ,l} with Fj CFE;.

Proof. We only present the argument in the case Fy # R™ and Fy # {o}. If F; = R", then the same
argument works ignoring the parts involving F1,. .., F;, and if Fy = {0}, then the same argument works

ignoring the parts involving Fjp.
Since Fy @ F1 ®...® F; =R"™ and Fy, ..., F; are critical subspaces, (4.18) yields for ¢ = 1, ..., k that

E =(ENF)o P Fj (4.49)

FjCB;
i>1

therefore, the Fubini theorem and (4.48) imply that

/E f= ([EF l°> 1L / hij- (4.50)

J>1

On the other hand, using again Fy @ F; @ ... @ F; = R", we deduce that if x = 23:0 z; where z; € Fj
for j >0, then z; = Pp,x. It follows from (4.49) that for any x € R™, we have

k k
sup [ filw)™ = sup T rio(io) | x

a=F_ | ¢z, i=1 PF0w=Z?:1 CiTois =1
z;, €E; zg, €E;NFy

!
XH sup H hij(z:) |,

j=1 \ TRiTEECE T piCE,
wji€F;

and hence

« k x k
/ sup H filz)de = / sup Hhio(ﬂiz’) dx | x (4.51)
R™ z= Z — Fo a= Zl 1%i%i §—1
_L,L'EE,L @, €B;NFy

l *

c;

X H / sup H hij(x;) dz
j=1 F; w:ZFngi CiTy, F;CE;

©i€Fj

As Fj is a critical subspace, we have
k

> ¢iPgnr, =1dg,

=1

and hence the Reverse Brascamp-Lieb inequality (4.1) yields

sup hio(z;) dx > (/ ) . 4.52
/Fo z=3Fk iz H 0 H E;NFy ( )

i=1 %7
z;€B;NFy

We deduce from (4.47) and the Prékopa-Leindler inequality (4.46) that if j =1,...,[, then

/F* sup H hij(x;) dx > H </F )C (4.53)

av—ZF CGE iy, F;CE; E,DF;
T €F;
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Combining (4.50), (4.51), (4.52) and (4.55) with the fact that fi,..., fx are extremizers for the
Reverse Brascamp-Lieb inequality (4.1) implies that if j = 1,...,1, then

% k k [
sup hiO (xl) der = (/ hiO) (454)
/F‘U = ZL 1CiT5, 1;[1 H E;NFy

z;€E;NF
/ hij . (4.55)
Fj

/ sup H hij(x;) dx
Fj *=XF;CE, % F;CE; E;DF;
We observe that (4.54) is just (i). In addition, (ii) follows from the equality conditions in the Prékopa-
Leindler inequality (see Theorem 4.4.3). O

I
fjam

T, €F;

4.5 Closure properties of extremisers

Given a Geometric data (Pg,,c;)*_|, we say that the non-negative integrable functions f1, ..., fi with
positive integrals are extremizers if equality holds in (4.1). In order to deal with positive smooth functions,
we use convolutions.

4.5.1 Convolution

The following Lemma 4 is due to F. Barthe [15]. Since, we could not find a proof we also provide it.

Lemma 4.5.1. Given a Geometric data (PEi,ci)le, if fi,-.., fx and g1,...,gr are extremizers in the
Reverse Brascamp-Lieb inequality (4.1), then fi1 * g1, ..., fx * gi are also are extremizers.

Proof. We define

F(z) = sup H filwi)®
w=3F cizi, 2 €B; =1
Gly) = sup ng (yi)°
y=>F_; civi, ¥ €E; j—1
Possibly F' and G are not measurable but_ as fieos fr and g1, .-, gk are extremizers, there exist mea-
surable F' > F and G > G such that Jgn F(x)dx = [g, G(x)dz = 1. We deduce that

Rnf*é(x)dx = / s F(z —y) dyda:—/n/n z —y)G(y) daedy
= / G(y) (/ F(x —y)d:v> dy= [ Gy)-ldy=1. (4.56)

R™

We deduce writing z; = z; +y; in (4.57) for ¢ = 1,. ..,k and using the Reverse Brascamp-Lieb inequality
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n (4.58) that

1 = // (z — y)G(y) dydx

k k
= ./ / Hf (2:)" Hgi(yi)o" dydzx
n " x—y= Zz 1c zi, 2, €E; j—1 y=>r_ 101.%711L€EL bl
N / / Sup Hfi(zi)ci Hgi(yi)Ci dydx (4.57)
n " x—y= Z LCizin 2z €E; y="F_ ey, yi€B; ;4 i
k k
- / / Sup I it =) [T 9ilwi) dyda
n nog— EZ 1C T, €E; y= 21 LY Yi€E; =1 i}
* k
- / op / sup T (iles —yi)gi(y)™ dyda (4.58)
" £:Ek=1 ciwi, v €E; JR? y:Z'Iic=1 ciyi,Yi€E; ;=1
* k .
- / sub 11 ( fi(@i = yi)gi(yi) dyi) dx
R o=377% jo

1 CiTi, T EE; j—1

X k
= / sup H (fi * gi(asi))cidx
=1

R" 2=%"F  cz;,2,€E; ;—

Since fori =1,...,k, fE fi*g; = 1 can be proved similarly to (4.56), we conclude that f;xg;, i =1,...,k,
is also an extrermzer O

4.5.2 Product

Since in certain case we want to work with Lebesgue integral instead of outer integrals, we use the
following statement that can be proved via compactness argument.

Lemma 4.5.2. Given a Geometric data (Pg,,c;)¥ ., if h; is a positive continuous functions satisfying
limy, 00 hi(z) =0 fori=1,...,k, then the function

k
hz)= sup  [[hi(z)"

e=Tl_y eiwin 21
z, €E;

of x € R™ is continuous.

Next we show that the product of a shift of a smooth extremizer and a Gaussian is also an extremizer
for the Geometric Reverse Brascamp-Lieb inequality (4.1).

Lemma 4.5.3. Given a Geometric data (Pg,,c;)%_,, if fi,...,fx are positive, bounded, C* and ea-
tremizers in the Reverse Brascamp-Lieb inequality (2.35), g;(z) = el for x € E;, then there exist
zi € B, i = 1,...,k, such that the functions y — fi(y — z:)9:(y) of y € E;, i = 1,...,k, are also
extremizers in the Reverse Brascamp-Lieb inequality (2.35).

Proof. We may assume that f1,..., fi are probability densities.

Readily the functions fi,..., fi defined by fi(y) = fi(—y) for y € E; and i = 1,...,k are also
extremizers. We deduce from Lemma 4.5.1 that the functions ﬂ xg; fori=1,...,k are also extremizers
where each ﬁ x ¢g; is a probability density on E;. According to Theorem 4.4.1, if ¢ = 1,...,k, then there
exists a C? Brenier map S; : E; — FE; such that

gi(x) = det VS;(x) - (f; * g;)(Si(x)) for all z € E;, (4.59)
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and VS;(z) is a positive definite symmetric matrix for all x € F;. As in the proof of Theorem 2.2.3

above, we consider the C? diffeomorphism © : R® — R™ given by
Z ¢iSi (Pg,y) y € R™.
whose positive definite differential is

k
VO(y) = Z c;VS; (Pgy) -

i=1

On the one hand, we note that if z = Z§:1 c;x; for x; € E;, then

k
lzl® <D eillaal®
i=1

holds according to Barthe [15]; or equivalently,

k
Hgi(xi)ci S 6—77”55“2.
i=1

Since f; is positive, bounded, continuous and in L1 (E;) for i = 1,...,k, we observe that the function
Z sup H fi (; — Si(Pg,©~ 12) giai) dx (4.60)
R" a=%k_| c;=;,
2, €E;

of z € R™ is continuous.
Using also that f1, ..., fi are extremizers and probability density functions, we have

/ / sup sup ]._.[fl x; — 7)) gi(x;)% de dz
n JR 2

"zzl‘ilczl Tzk ciTy,
z; €E; a:EE

* * k
—[ [ sw (Hgim)@) sup Hfl v - %) dz do
n R .

" $=Z§:1 iy, z=2§:1 CiZis
z,€EE; 2, €E;

* 2 *
g/ e~ =l / sup sup Hfz Z; ) dz dx
R~ Rn o=k i

_ycimi, ==Xk i CiZis
T, €B; 2, €E;

* * k
_ 4”30”2/ 2 e
=1/ e sup fily:)“ dz da
Lo | Il

s _sk
Moz—e= g Vi —1
u; € By

* 5 * k B
:/ el / sup r[fz(yl)C dw dx
n n w=zi§:1 CiVir j—1
Yy, €EE;

:/ e l=l® g = 1.

Using Lemma 4.5.2 and (4.60) in (4.61), the Reverse Brascamp-Lieb inequality (4.1) in

(4.62) and
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Porposition 4.2.10 in (4.63), we deduce that

* * k
1> / / sup sup H filxi — ) gi(x;)“ dae dz

Z=Ef Ci%q ”—Zlf 1%%Ti =1

ziEE z; EE;
> / / sup H fi (zi — Si(Pp,©~" ))c gi(x;) da dz (4.61)
= / / sup H fi (zi — Si(Pg,©~ ))cl gi(x;)% dx dz (4.62)
n n ogp=yk ko ey,
z;, €EE;

> /lel (/E fi (zi — Si(Pp,©7 ))%(Ii)dﬁ«”i)% dz

k

H(fz * i) (Si(PEiG_lz))ci dz

_ k

— / <H(fz * g;) (S; (Pg,y))” ) det (Z cVS; (PEly)> dy (4.63)

k
Z/n H(ﬂ*gl)( (Pe,y)) )H (det VS; (Pg,y))” dy

k
:/ (Hgi (PE,-ZJ)Ci> dy:/ e*ﬂHyH2 dy = 1.

1=

=

In particular, we conclude that

/ / sup Hﬂ x; —S;(Pg,©~ ))m gi(z;)“ dx dz

i=

> /ﬁ</Ef( Si(Pp©! ))gi(mi)dxi>6idzzl.

Because of the Reverse Brascamp-Lieb inequality (4.1), it follows from (4.60) that

k k [
/ sup  [[ fi (2 = Si(P,©7'2))" gi(:)" da = [ | (/ fi (zi = Si(P,07"2)) gi(:) dm)
R™ o=%F | c;o;, ;7 i=1 Ei
z,€B;
for any z € R™; therefore, we may choose z; = S;(0) for i = 1,...,k in Lemma 4.5.3. O

4.6 Working on dependent subspace

4.6.1 Polynomial growth and Fourier transform

For positive C® probability density functions f and g on R™ for a € (0,1), the C! Brenier map T : R® —
R"™ in Theorem 4.4.1 pushing forward the the measure on R™ induced by ¢ to the measure associated to
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f satisfies that VT is positive definite. We deduce that
(T(y) —T(x),y —x) = /01<VT(J) +tly—x)) - (y—x),y—x)dt >0 for any x,y € R". (4.64)
We say that a continuous function 7" : R — R™ has linear growth if there exists a positive constant

¢ > 0 such that
1T ()] < ev1+|z|?

for x € R™. It is equivalent saying that

lim sup IT()] < 0. (4.65)

||| =00 [l

In general, T has polynomial growth, if there exists k > 1 such that

|7 ()l

< 0
[Eal

lim sup
llzll—o0

Proposition 4.6.3 shows that if the whole space is the dependent subspace and the Brenier maps
corresponding to the extremizers f1,..., fx in Proposition 4.4.2 have at most linear growth, then each
fi is actually Gaussian. The proof of Proposition 4.6.3 uses classical Fourier analysis, and we refer
to Grafakos [80] for the main properties. For our purposes, we need only the action of a tempered
distribution on the space of C§°(R™) of C'™° functions with compact support, do not need to consider
the space of Schwarz functions in general. We recall that if u is a tempered distribution on Schwarz
functions on R™, then the support supp v is the intersection of all closed sets K such that if ¢ € C§°(R™)
with supp ¢ € R™\ K, then (u, ¢) = 0. We write @ to denote the Fourier transform of a u. In particular,
if 0 is a function of polynomial growth and ¢ € C§°(R™), then

.00 = [ [ ba)ptwe e dady. (4.66)
n ]Rn

We consider the two well-known statements Lemma 4.6.1 and Lemma 4.6.2 about the support of a Fourier
transform to prepare the proof of Proposition 4.6.3.

Lemma 4.6.1. If 6 is a measurable function of polynomial growth on R™, and there exist linear subspace
E with1 <dimE <n —1 and function w on E such that (z) = w(Pgx), then suppf C E.

Proof. We write a z € R" in the form z = (21, 23) with z; € F and 23 € E+. Let p € C5°(R™) satisfy
that supp ¢ C R™\ E, and hence o(1,0) = 0 for ; € E, and the Fourier Integral Theorem in £+ implies

(p(xl’ Z) — / / (p(xl7x2)627ri<z—:r27y2> dxgdyg
EL+ JEL

for ; € E and z € E*+. Tt follows from (4.66) that

) / // /W(l'l)gO(Il,LE2)€727”‘<I1’y1>€72ﬂ—i<$2’y2> dxidxody dys
ertJeJer JE

//‘*)(331)6_27”'(%1"”1> (/ / 90(391»£C2)€2m<_$2’y2>dﬂ?zdy2> dy1dz;
EJE EL JEL

= //w(zl)ed“i(zl’y”gp(:ﬁ,O)dyldxl:O.
EJE

/\
£
x
>
I

Next, Lemma 4.6.2 directly follows from Proposition 2.4.1 in Grafakos [80].

Lemma 4.6.2. If 0 is a continuous function of polynomial growth on R™ and supp 6 C {0}, then 0 is a
polynomial.
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4.6.2 h,; is Gaussian in Proposition 4.4.2 under linear growth
Proposition 4.6.3. For a Geometric data (Pg,,c;)%_,, we assume that
Ni_y (B UE) = {o}. (4.67)

Let g;(x) = e~mlel? fori=1,....k and x € E;, let equality hold in (2.35) for positive C' probability
densities fi on E;, i =1,...,k, and let T; : E; — E; be the C? Brenier map satisfying

gi(x) = det VT;(z) - fi(Ti(z)) for allx € E;. (4.68)
If each T;, i = 1,...,k, has linear growth, then there exist a positive definite matriz A : R™ — R™ whose
eigenspaces are critical subspaces, and a; >0 and b; € E;, i =1,...,k, such that

fi(x) = age”AB2H0) for € E;.

Proof. We may assume that each linear subspace is non-zero.

We note that the condition (4.67) is equivalent saying that R™ itself is the dependent subspace with
respect to the Brascamp-Lieb data. We may assume that for some 1 <1 < k, we have 1 < dimF; < m—1
ifi=1,...,1, and still

Ni_, (E; U E+) = {o}. (4.69)

We use the diffeomorphism © : R™ — R™ of Proposition 4.4.2 defined by
k
O(y) =Y oTi(Pry), yeR™
i=1

It follows from (4.35) that we may asssume
T;(0) =0 fori=1,...,k, and hence ©(0) = o. (4.70)

We claim that there exists a positive definite matrix B : R™ — R™ whose eigenspaces are critical
subspaces, and

VO(y) = B for y € R™. (4.71)
Let O(y) = (61(y),--.,0m(y)) for y € R™ and §; € C*(R™), j =1,...,m. Since each T;, i = 1,...,k has
linear growth, it follows that © has linear growth, and in turn each §;, j = 1,...,m, has linear growth.

According to Proposition 4.4.2 (iii), there exist C? functions Q; : F; — E; and T); : Ef- — Ef- such
that
O(y) = Q(Pg,y) + L'i(Pgry)

fori=1,...,k and y € R". We write Q;(z) = (wi1(x),...,wim(z)) and T;(z) = (yi1(x), ..., Yim(2)) ;
therefore,
0;(y) = wij(Pr,y) + i (PpLy) (4.72)

forj=1,....,mandi=1,... k.
Fix a j € {1,...,m}. It follows from Lemma 4.6.1 and (4.72) that

supp éj CFE;U Ef
fori=1,...,1. Thus (4.69) yields that

supp; C {o},

and in turn we deduce from Lemma 4.6.2 that 6; is a polynomial. Given that §; has linear growth, it
follows that there exist w; € R™ and «; € R such that 6;(y) = (wj,y) + ;. We deduce from 6;(0) = 0
(cf. (4.70)) that a; = 0.
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The argument so far yields that there exists an m X m matrix B such that ©(y) = By for y € R™. As
VO(y) = B is positive definite and its eigenspaces are critical subspaces, we conclude the claim (4.71).

Since VT;(Pg,y) = VO(y)|g, for i =1,...,k and y € R™ by Proposition 4.4.2 (iv), we deduce that
T, ' =B Y, fori=1,... k. It follows from (4.68) that

filz) = e~mIB7 2l® L det (B 'g,) forzeE;

for i = 1,..., k. Therefore, we can choose A = 1B~2. O

4.7 Form of extremizers

4.7.1 Linear growth at Brenier maps

Proposition 4.7.1 related to Caffarelli Contraction Principle in Caffarelli [47] was proved by Emanuel
Milman, see for example Colombo, Fathi [58], De Philippis, Figalli [133], Fathi, Gozlan, Prod’homme
[70], Y.-H. Kim, E. Milman [90], Klartag, Putterman [92], Kolesnikov [96], Livshyts [106] for relevant
results.

Proposition 4.7.1 (Emanuel Milman). If a Gaussian probability density g and a positive C*, « € (0,1),
probability density f on R™ satisfy f < c- g for some positive constant ¢ > 0, then the Brenier map
T :R™ = R" pushing forward the measure on R™ induced by g to the measure associated to f has linear
growth.

—rlle]®

Proof. We may assume that g(z) = e

We observe that T : R™ — R"™ is bijective as both f and g are positive. Let S be the inverse of T
namely, S : R" — R” is the bijective Brenier map pushing forward the measure on R™ induced by f to
the measure associated to g. In particular, any Borel X C R" satisfies

/S N /X f (4.73)

We note that (4.65), and hence Proposition 4.7.1 is equivalent saying that

lim inf [S@)l

z=oo ||

> 0. (4.74)

The main idea of the argument is the following observation. For any unit vector w and 6 € (0, 7), we
consider

E(u,0) ={y : (y,u) = [lyll - cos 0} .
Since S is surjective, and (S(z) — S(w), z —w) > 0 for any z,w € R™ according to (4.64), we deduce that

S(w) +E(u,0) C 8 (w 4= (u 0+ g)) (4.75)

for any u € S"~' and 6 € (0, 3).
We suppose that T' does not have linear growth, and seek a contradiction. According to (4.74), there
exists a sequence {xy} of points of R™\{o} tending to infinity such that

S
lim o] = 0o and 1t 13@R _
k—o0 ks 00 ||5Ek||
In particular, we may assume that
Istal < 1221 .

8
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For any k, we consider the unit vector e, = zy/||lzx||. We observe that X = zj, + E(ey, 2F) avoids

the interior of the ball MB”; therefore, if k is large, then

V2
f<c: nmn/ P e dr < / e 22 dr = eIkl (4.77)
Xk e ll/v2 lzkll/v2
On the other hand, S(xx) + (e, §) contains the ball
E:ﬂmmﬁj+mw3 c Izl g

8v2 2
where we have used (4.76). It follows form (4.73) and (4.75) that if k is large, then

|ka||> o= (llzell/2? < o= llaxl®
g > / g > < k >e kI

This inequality contradicts (4.77), and in turn proves (4.74). O

4.7.2 Proof of Theorem 4.1.1
Here we give the final proof of our main result.

Proof of Theorem 4.1.1. We may assume that each linear subspace F; is non-zero in Theorem 4.1.1. Let
fi be a probability density on E; in a way such that equality holds for fy,..., fr in (4.1). Fori=1,...,k

and z € E;, let g;(z) = e*“”mnz, and hence g; is a probability distribution on E;, and g1,...,gx are
extremizers in the Reverse Brascamp-Lieb inequality (4.1).
It follows from Lemma 4.5.1 that the convolutions fi * g1,..., fr * g are also extremizers for (2.35).

We observe that for i = 1,...,k, f; * g; is a bounded positive C* probability density on E;. Next we
deduce from Lemma 4.5.3 that there exist z; € F; and 7; > 0 for ¢ = 1,..., k such that defining

fil@) =i gi(@) - (fi* gi) (@ — z) forz € E;, (4.78)

fl, ceey fk are probability densities that are extremizers for (2.35). We note that if ¢ = 1,...,k, then fz
is positive and C'°°, and there exists ¢ > 1 satisfying

fi<c g (4.79)
Let i : E; — FE; be the C°° Brenier map satisfying
gi(z) = det VTi(z) - fi(Ti(z)) for all x € E;, (4.80)

We deduce from (4.79) and Proposition 4.7.1 that T, has linear growth.

Fori=1,...,k and © € Fo N E;, let gjo(x) = e=llI* | Tt follows from Proposition 4.4.2 (i) that
for i € {1,...,k}, there exists positive C! integrable h;y : Fo N E; — [0,00) (where h;jo(o) = 1 if
FyN E; = {o0}), and for any i € {1,...,k} and j € {1,...,l} with F; C E;, there exists positive C!
integrable hy; : Fj — [0,00) such that

fi(x) = hio(Pp,) H hi;( Ppx) forz € E;.

FjCE;

i>1
We deduce from Proposition 4.4.2 (ii) that Tio = T| FonE; is the Brenier map pushing forward the

measure on Fy N E; determined g;p onto the measure determined by hio. Since T has linear growth, Tw
has linear growth, as well, for i =1,..., k.
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We deduce from Proposition 4.4.4 (i) that Zl 16 PE,nr, = ldg,, the Geometric Brascamp Lieb data
EyNFy,...,EyNFyin Fy has no independent subspaces, and hlo, .. hko are extremizers in the Reverse
Brascamp Lieb inequality for this data in Fj.

As Tjio has linear growth for ¢ = 1,...,k, Proposition 4.6.3 yields the existence of a positive definite
matrix A : Fy — F,y whose eigenspaces are crltlcal subspaces, and a; > 0 and b; € FoNE; fori = 1,...,k,
such that

fN'z(fE) = die_<gw’w+gi> . H Bij(Pij) for z € F;.
F;CE;
j=1

Dividing by g; and shifting, we deduce that there exist a symmetric matrix A : Fy — Fy whose cigenspaces
are critical subspaces, and a@; > 0 and b; € Fy N E; for i = 1,...,k, and for any i € {1,...,k} and
je{l,...,1} with F; C E;, there exists positive C! function h;; : F; — [0,00) such that

fi % gi(x) = ge~ (Asmtb) H hij(Prz) for x € E;.

FiCE;

i>1

Since f; * g; is a probability density on E;, it follows that A is positive definite and Bij € L1(E; N F;) for
ie{l,...,k}and j € {1,...,1} with F; C E;.

For any ¢ = 1,..., k, we write ¢ for the Fourier transform of a function on F;. For i =1,... k, using
that f; * g; = fi - §; and the inverse Fourier transform, we conclude that there exist a symmetric matrix
A : Fy — Fy whose eigenspaces are critical subspaces, and a; > 0 and b; € Fo N E; fori=1,...,k, and

for any i € {1,...,k} and j € {1,...,1} with F; C E;, there exists h;; : F; — [0, 00) such that

filx) = aze —{Az,z+b;) H hij(Pp;x) for x € E;. (4.81)

F;CBy
jZl

Since f; is a probability density on E;, it follows that A is positive definite and each h;; is non-negative and
integrable. Finally, Proposition 4.4.4 (ii) yields that there exist log-concave integrable v; : F; — [0, 00)
for j = 1,...,1, and there exist a;; > 0 and b;; € F; for any ¢ € {1,...,k} and j € {1,...,1} with
Fj C E; such that h”(l') = Q;j - "L/)J(ZL' — b”) fori e {1, .. ,k} andj S {1, .. ,l} with Fj CFE;.

Now, we assume that fi,..., fx are of the form as described in (4.2) and equality holds for all x € E;
n (4.2). According to (4.35), we may assume that there exist a positive definite matrix ® : Fy — Fp

whose proper eigenspaces are critical subspaces and a 6; > 0 for i = 1,...,k such that
filz) = f,e~12Proll? H h;(Pp,(z)) for x € Ej. (4.82)
F;CE;

We recall that according to (4.47), if j € {1,...,1}, then

d =1 (4.83)

EiDFj

We set 0 = [, 6% and ho(z) = e~ 1*#I” for z € Fy. On the left hand side of the Reverse Brascamp-Lieb
inequality (2.35), we use first (4.83) and the log-concavity of hj, j =1,...,1, secondly Proposition 4.3.2,
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thirdly (4.83), fourth the Fubini Theorem, and finally (4.83) again to prove that

* k
/R sup Hfz(:vl)c de =

3 —sk
Te=Eig it =1
z;, €E;

completing the proof of Theorem 4.1.1.

* Ik
0/ sup H H hj(z:5)° dx
R a=%iy Sf_geimij j=0i=1

z;; €E;NF;

x 1

k
0 H sup H hj(xi;)° dx

R =0 PF;==Xi1 ci®ij =1
©;jEB;NF;

k

* -
6/ sup H e=cill®iol®

o= ema .
Pro@=2i=1 ¢i%i0 =1 j=1
z;0€E;NFQ

k ci
P / o lloy)? dy> "
<H ( FoNE; .
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Chapter 5

On a j-forms of polarity

For the statements of this section, ®-polarity condition defined in 2.3.5, while S; and &; defined in (2.46)
and (2.48), respectively. Until the end of this thesis, an inner product (-, -) in R™ is fixed and an orthonor-
mal basis {e,,}? _; with respect to this inner product. Moreover, for a vector & = (x1,...,7,_1) € ey
and a real number r, the pair (Z,r) will always denote the vector z1eq + ...+ 16,1 + Tep.

5.1 On a j-Santalé Conjecture

5.1.1 Introduction

Let us restate our main results.

Theorem 5.1.1 (K. ,Saroglou [89]). Let 1 < j < k be two integers, where k > 2. Let Ky,..., K}y be
symmetric convex bodies in R", satisfying £;-polarity condition. Assume that one of the following holds:

(i) Ki,..., Ky are unconditional convex bodies.
(i) j=1o0rj=k.
(iti) j is even and Ks, ..., Ki are unconditional convex bodies.
Then,
k
T] 15 < |B7 . (5.1)

i=1
Moreover, in all three cases, (5.1) is sharp for K1 = Ko = ... = K} = B}

We also obtain the corresponding functional form of Theorem 5.1.1.

Theorem 5.1.2. Let 1 < j < k be two integers, where k > 2. Let f1,..., fr : R — R, be even integrable
functions, satisfying S;j-polarity condition with respect to some decreasing function p : R — [0, 00].
Assume that one of the following holds.

(i) fi,..., fr are unconditional functions.

(ii) j=1o0rj=k.
(iii) j is even and fs, ..., fr are unconditional functions.
Then,

k

1/k k
[T/ siteds < ( Lo () du> . 65:2)

=1
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Outline of the proof of Theorems 5.1.1 and 5.1.2

Due to (2.51), Theorem 2.3.9 implies immediately Theorem 2.3.8. However, for parts (i) and (iii), our
approach requires to first establish Theorem 2.3.8 and then deduce Theorem 2.3.9 from it. The proof for
both Theorems organized as follows:

- In Section 5.1.2, we establish the unconditional case. In particular, Theorem 5.1.2 (i) is a consequence
of the Prékpa-Leindler inequality. Then Theorem 5.1.1 (i) is an immediately corollary.

- In Section 5.1.3, we deal with the case 7 = 1 of Theorem 5.1.1, that follows from the fact: if K7,..., K
satisfy the & -polarity condition then %, w, Ks, ..., K}, satisfy the & -polarity condition, as
well.

- In Section 5.1.4, we establish cases (ii) for j = k and (iii) of Theorem 5.1.1. We use a symmetrization
argument, similar to the ones used by Meyer-Pajor [119].

- In Section 5.1.5, w show that Conjectures 5.1.1 and 5.1.2 are equivalent. Briefly, for the non trivial
direction, the level sets

Ki(ri) = {ZL‘iERn:fi(l‘i)Z’ri} ’I“iZO, iZl,...,k

satisfy the £;-polarity condition and after applying the hypothesis the multiplicative Prékpa-Leindler
inequality with respect to the r;’s finishes the proof.

5.1.2 The unconditional case

A function f : R® — R is said to be unconditional, if f(d121,...,0,2,) = f(z1,...,2,), for any
01,...,0n € {-1,1} and any (z1,...,2,) € R™. A subseteq A in R" is unconditional if its indicator
function 14 is unconditional. In this section, we establish Conjectures 5.1.1 and 5.1.2 for sets contained
in an orthant (resp. functions supported in an orthant). Since we wish to obtain slightly more general
results, we need to modify the definition of the functions S; and &; introduced previously. Namely, for
any two integers 1 < 7 < k and any positive real number p > 0, set

Sip(ri, ..., 7Tk) = Z [ra, |7 P r1,...,Tk €R,
1Si1<..~<ij§k

Sipl@r, .. xn) = sjplar(l),...,ax(l)),  x1,...,7 ER"
=1

and

Ejp =

Recall that z;(1) := (z;,¢1), i =1,...,k, l=1,...,n.
We refer to Borell [28], Ball [10] [11] , Uhrin [150] for the following version of the classical Prékopa-
Leindler inequality (see also [135], [102]).

Theorem 5.1.3. (1-dimensional multiplicative Prékopa-Leindler inequality) If some integrable functions
hohi :Ry =Ry, i =1,...,k, satisfy, for anyt; >0,i=1... k that

k k
[Trt)* <h (Ht}) :
i=1

i=1

ﬁ(/ hi(ti)d$i>i < / h(t)dt.

i=1

then it holds
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The result below slightly generalizes Theorem 2.3.4 and will follow by a more or less standard appli-
cation of the Prékopa-Leindler inequality (Theorem 5.1.3), which uses the inductive argument of K. Ball
[9, 10].

Proposition 5.1.4. Let p > 0, ¢ > —1 be real numbers and 1 < j < k be two integers, where k > 2.

For any integrable functions f; : Rt — Ry, i=1,...,k, satisfying S; ,-polarity condition with respect to
some decreasing function p : R — [0,00], and any m € {1,...,n}, it holds
k 1 k
k AN
[T [ oen)lthes do: < ( [ tweni ((5) 1) du) - 653
i=17RY RY J

Proof. We may assume that m = n. We will prove Proposition 5.1.4 by induction in the dimension

n. Since we want to deduce the base case n = 1 simultaneously with the inductive step, it is useful to

make some conventions: For a function ¢ : Ry — Ry, we set ¢(0,7) := ¢(r), [zo @(x)dz := ¢(0) and
+

Jgo p(z,7)dx = @(0,r) = ¢(r), r > 0. Assume that (5.3) holds for the non-negative integer n — 1,
9
where n > 2. In the inductive step (resp. the case n = 1), notice that for (z;,;) € R} (resp. r; € Ry),

i=1,...,k, the S;j p-polarity condition together with Maclaurin’s inequality (stating that 5 L/ > 5 1/i 2,
if j7 < ]2) and the monotonicity of p imply

k .
[ £ir) < p(sip(ra,. o) + Sjp(Er, .., 36) < p ((’;) (ry...6)® + 8, (F, ... ,:zk)> ,

i=1
where 1 = ... = T} := 0, if n = 1. Multiplying by HZ L we get
k k ip
Hr o) < T ((]) I+ +sj,p<azl,...,ozk>> . (5.4)
i=1 i=1
For fixed r1,...,ry > 0, set

k k

- k ip

p(t)=1Irl-» (( ) II- +t> . t>0
Applying the inductive hypothesis for ¢ = 0 to (5.4) if n > 2 or the conventions made above if n = 1, we
obtain

k AN
([ o ((rang)” )
R} J

k
E/Ri_l ri fi(%i,7i) dT;
1 ? k k ) k .
(H”k> /Rn1p<<j)Hrik+<j)”ﬂ”§-g> da| . (5.5)
' + i=1

=1

IN

=

For t,r; >0,i=1,...,k, set

. K
hi(ry) == / . ri fi(Z,r;) d2; and h(t) := tq/ N ((k> (P + ﬁ||;g)> dit.
RY RY J

Then, by (5.5), the functions h, hq,..., hj satisfy the assumption of Theorem 5.1.3, hence

% k
/ / T fz -Tz,rz dl’z d'l"z >~ / tq/ << ) tjp+ ||U|]p)> du dt
Ry JRIT? Ry R~

The assertion follows by Fubini’s Theorem. O
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Setting ¢ = 0 and p = 1 to Proposition 5.1.4, it follows immediately that Conjecture 5.1.2 holds
true for functions fi,..., fi supported in R’. Moreover, by (2.51), Conjecture 5.1.1 holds for convex
bodies K7, ..., K}, contained in R”. In particular, case (i) of Theorems 2.3.8 and 2.3.9 follows from the
previous discussion.

Corollary 5.1.5. Conjectures 5.1.1 and 5.1.2 hold in the unconditional setting.
We also have the following.

Corollary 5.1.6. Proposition 5.1.4 holds if R is replaced by R™.

Proof. Let O;,1=1,...,2" be an enumeration of all orthants. Then,
k
H/ [ (ir em) 9 fi (1) i = Z H/ (w5, €| fi (1) dzs.
i=17R" lp=11i=1

Therefore, it suffices to prove that if I1,...,lx € {1,...,2"}, then

f[ [, Veemitste e, < ( L wemit () ;ﬁg)’l“ du)k

Let f; : R? — R4 be the function defined by fi(lz)], ..., |Jz()]) = fi(z(1),...,z(n), i =1,... k.
Notice that, for any xy,...,z; € R it holds

k
Hf z;) < p(Sjp(x1,...,21))

and also
H/ (@i, em)| fi(w) day = H/ (i, em)|? fi(w;) da;.

The desired inequality follows by Proposition 5.1.4. O
Setting ¢ = 0 to Corollary 5.1.6 and using (2.51), we obtain the following.

Corollary 5.1.7. Let p > 0 and 1 < 57 < k be two integers, where k > 2. Then, for any integrable
functions f; : R — R, ¢ = 1,...,k, satisfying S; p-polarity condition with respect to some decreasing
function p : R — [0, 00], it holds

{1/, swincs ([ o(()ui) a)

i=1
Moreover, if K1,..., Ky are any convex bodies in R™ satisfying E; ,-polarity condition, one has
k
k
[T1%: < 1By, |*.
i=1

Remark 5.1.8. Kolesnikov and Werner [97, Proposition 5.5.] established a related result, stating the
following. If K1, ..., Ky are unconditional convex bodies satisfying

k n _%
[Irx. (i) < <Z|x1(z)|i ---|xk(1)|i> L Vo eS8V i=1,...k (5.6)
i=1 =1
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then |K1|---|Kg| < |BR|F, where ri,(u) :=sup{t > 0: tu € K;}, u € R", denotes the radial function of

K;. One can notice that, since rg,(-) = || - ||;<;L, (5.6) is equivalent to,
n 2 2
l) |% l) &
Z’ el L 1 R L VS TR
= |k, [EZY [P

which can be written as

STl @fF - Jae@F <1 Va e Ky, i=1,.. k.
=1

Thus, by Corollary 5.1.7 for j = k and p = 2/k, |Ki|---|Ky| < |BR* holds for any convex bodies
Ky, ..., Ky (not necessarily symmetric) that satisfy condition (5.6).

5.1.3 The case j =1

The purpose of this section is to establish Theorem 2.3.8 in the case j = 1. This will follow immedi-
ately from the next slightly more general statement (which will also be used in the last section of this
note).

Proposition 5.1.9. Let p be a Borel measure in R™, satisfying p((K + L)/2) > /u(K)u(L) (the
Lebesgue measure is such an example), for all symmetric conver bodies K and L. Then, for any sym-

metric convex bodies K1,..., Ky, satisfying &1 -polarity condition, it holds
k
[ n(K:) < w(B". (5.7)
i=1
Proof. One can check that the bodies %, %, K, ..., K} also satisfy & -polarity condition. On

the other hand, by the “log-concavity” assumption on u, we see that the product Hle w(K;) does
not decrease if the tuple (K7, ..., Kj) is replaced by the tuple (%, %, Ks, ..., Ky) (which also
satisfies &1-polarity condition). Thus, we may assume that Ky = K. A successive application of this
argument shows that, in order to prove (5.7), it suffices to prove that if K7, ..., K} satisfy & -polarity
condition and Ky = ... = Ky, then

k k
p(E)" < p(BY)"
From the definition of & -polarity condition, we conclude that u(K;)¥ is maximal (under the above
conditions) if and only if K is the largest symmetric convex set, satisfying

Because of this, the maximizing K7 is necessarily permutation invariant and, since it is also origin
symmetric, we deduce that K7 has to be unconditional. This together with (5.8) imply that |yi|+ ...+
lyn| <1, for all (y1,...,yn) € K1. Consequently, K1 = B} = K5 = ... = K}, which concludes the proof
of the proposition. O

Remark 5.1.10. We would describe E1-polarity condition as “exceptional”. The reason is that, as the
reader may check using arguments as above, given k > 2 and sets Ko, ..., Ky, the set

K = {.’El ER":Sl(:vl,xQ,...@k) <1, Vzx; GKi, 222,,]€}

is always homothetic to BY. That is, the largest possible set K1, such that K1, Ko, ..., Ky satisfy &1 -
polarity condition, is always a dilate of BT .
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5.1.4 Symmetrization

This section is devoted to completing the proof of Theorem 2.3.8. Our proof based on a modification of

a symmetrization technique used in [119] and on the following observation. If j is even and r1,...,7, € R,
then
sj(ri,—ra, ..., —rE) = 8;(—r1,re, ..., %), (5.9)
while
Sk(r1, —ro, s,y k) = Sk(—=71,72, 73, ..., TE). (5.10)

The proof will follow easily from the next lemma.

Lemma 5.1.11. Let2 < j <k and K1, ..., K} symmetric convez bodies satisfying £;-polarity condition.
Assume that one of the following holds

(i) j=k.
(i) j is even and Ks, ..., Ky are unconditional.

Then there exist Uy, ..., Uy unconditional convex bodies satisfying E;-polarity condition, such that

E E
1= <]l
i=1 i=1
Proof. For a set A CR"™ and a number r € R, set
A(r):={F €ef : (z,r) € A}.
The Steiner symmetrization of a convex body K with repsect to e; is given by

r—r'

stos (K) = {(j, o) €R" 13 € Py(K), and (#.7), (3.1) € K}

where P1 (K) denotes the orthogonal projection of K onto the subspace e:.

For symmetric convex bodies K1, K3, ..., K, set

k
(Kl,Kg,...,Kk);? = {xg eR"™: Sj(xl,xg,...,xk) < < _>, for all z; € K; with ¢ # 2}
J

This is a just generalization of the notion of the polar set in the case j = k = 2. Clearly, the set
(K1, K3, ..., Kg)$ is a symmetric convex body and, furthermore, if the K; are all unconditional then
(K1, K3, ..., Kg)$ is also unconditional. Notice also that (K1, K3,..., Kg)$ is the largest symmetric

convex body, suéh that the sets K, (K1, Ka,...,Kg)$, Ks, ..., Ky, satisfy &;-polarity condition. We
will prove both assertions of Lemma 5.1.11 simultaneously by Steiner symmetrization. We may clearly
assume that Ky = (K1, K3,...,Ky)j. We set Ky = (st 1 K1, K3,...,K;)$. We will show that, for
r >0, it holds
Ka(r) + Ka(—r)
2

Let &3 € Ka(r) and 5 € Ko(—r). Then, for all (Z;,r;) € K;,i=3,...,k, and for all (Z1,71), (Z1,7]) €
K1, it holds

c Ky(r). (5.11)

Si((T1,71), (Z2,7), (3,73), .., (Try 7)) < (f) (5.12)

and

Sj((i‘lﬁ Tll)’ (jév —’I"), (57377"3)7 ceey (i'ky Tk)) < <f) (5.13)
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When j is even and K, ..., Kj are unconditional, (5.13) can be equivalently written as

8;((F1,74) (Fyr =), (B —r3)s .+ (s —ra)) < (’j) (5.14)

Combining (5.10), (5.13) and (5.9), (5.14), we obtain (for both assertions of the Lemma)

S (@1, —r1), (@5, 1), (Z3,73), . . ., (Tpes 7)) < <I;), (5.15)

for all (#;,7;) € K;, i =3,...,k and for all (%1,r]) € K;. Averaging (5.12) and (5.15), and since S; is
affine with respect to each argument, we conclude that

. ori—ry\ Zo+ T . - k
Sj((fﬂl’ 1 . 1)7 ( 2 . 277~)’(xg,rg),...,(ﬂfk,"’k)) < ( .),
J
for all (Z;,7;) € K;, i =3,...,k and for all (Z1,71), (Z1,7]) € K1. This shows that h%j; € K/(r), which
establishes (5.11). Inclusion (5.11) together with the Brunn-Minkowski inequality and Fubini’s Theorem
show that

\K1|=2/ |K2<r>\drs2/ K ()| dr = | K.
0 0

Applying the same argument successively with respect to e,_1,...,e1, we arrive at an unconditional
convex body Ui, such that |Ui| = [Kil, the tuple Uy, Ky = (U, K3, ..., Ky)j, K3, ..., K}, satisfies
&j-polarity condition and |K»| < |K2|. This can be done for both cases (i) and (ii) of the lemma.

Recall that if K3,..., K are unconditional then K, is also unconditional and the proof of (i) is
complete.
In the case j = k, we repeat the same argument to the new tuple (U, Ko, K3, ..., K}) with respect

to the pair (Ky, K3). Thus, we are able to replace Kg by an unconditional convex body Uz and K3 by a
symmetric convex body K3, such that |Us| = |K3|, |[K3| > |K3|, while the tuple (U1, Uz, K3, Ky, ..., K)

also satisfies &;-polarity condition. We continue the same process until we replace all Ki,..., Kj_;
by unconditional convex bodies Uy, ...,Ui_1 without decreasing the volume product of the K;’s. We
conclude the proof by the fact that Uy := (Uy,...,Ux—1)5 is also unconditional. O

Proof of Theorem 2.3.8. Inequality (5.1) in all cases follows from Lemma 5.1.11 together with Corollary
5.1.5 and Section 5.1.3. It remains to verify that (5.1) is sharp for £;-balls. In other words we need to
prove that if K1 = ... = Ky = B}, then Ki,..., K} satisfy &;-polarity condition . But this is a simple
application of the arithmetic-geometric mean inequality: For any z1,...,z, € B}, it holds

IN

(k=) =
IR ) I (s VI L.
= G 2l = Gt - (y)
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5.1.5 Equivalence between j-Santalé and Functional j-Santal6 Conjectures

In this section we prove cases (ii) and (iii) of Theorem 2.3.9. This is done by establishing the
equivalence between Conjectures 5.1.1 and 5.1.2 (actually, a slightly more general result), mentioned in
the Introduction. Let us first introduce some notation. Let G be a subgroup of the orthogonal group
O(n) in R™. We set

S(G):={SCR":¢9gS=S5, VgeG} and FG):={f:R">R:fog=f Vge G}

Proposition 5.1.12. Let u be an a-homogeneous Borel measure in R™ for some a > 0, k be a positive
integer, j € {1,...,k} and G1,..., Gy be subgroups of O(n). The following statements are equivalent.

i) For any k-tuple of symmetric convex bodies (K, ..., Ky) € S(G1)x---xS(Gy), satisfying E;-polarity
condition, it holds

it) For any k-tuple of even non-negative measurable functions (f1,...,fr) € F(G1) x -+ x F(Gy),
satisfying S;-polarity condition with respect to some decreasing function p, it holds

ﬁ | filw) du(e) < (/Rn p ((?) ||u||jﬁ>1/k du(u)>k. (5.16)

i=1

The fact that Conjectures 5.1.1 and 5.1.2 are equivalent follows immediately from Proposition 5.1.12,
if we take p to be the Lebesgue measure. For the proof we will need the following lemma (which is well
known in the classical case j = k = 2).

Lemma 5.1.13. Let 1 < j < k and Ay,..., Ay be subsets of R™. If Ay,..., A satisfy E;-polarity
condition, then conv(A,),...,conv(Ayg) also satisfy E;-polarity condition.

Proof. Clearly, it suffices to prove that conv(A1), As, ..., Ay satisfy £;-polarity condition. This follows
from the observation that, if Aq,..., A, > 0 are real numbers that sum to 1 and if x5, ..., 2, € R™ and
Y1,-- 3 Yr € an then

Sj( Z )\mymu T2y 7.’L'k) = Z )\mgj(ym7x27 cee 7-’17k).
m=1 m=1

O

Proof of Proposition 5.1.12. The fact that (ii) implies (i), follows immediately from (2.51).

For the other direction, assume that (i) holds for all bodies K; € S(G;),i =1,...,k. Let (f1,...,fx) €
F(G1) x -+ x F(Gy) be functions that satisfy S;-polarity condition with respect to some p. In order to
prove the desired inequality (5.16), (by an approximation argument) we can assume that lim;_, o, p(t) = 0,
p is continuous, strictly decreasing and that lim;_,¢+ p(¢f) = co. Define the (not necessarily convex) sets
K;(r;) :={z; e R™: fi(x;) > 1}, r; > 0 and notice that K;(r;) € S(G;), i = 1,..., k. From S;-polarity
condition one obtains that, for z; € K;(r;), i =1,...,k, it holds

k
LT < Hfl(xz) <p(Sj(z1,...,xx)).
i=1

Moreover, using the the strict monotonicity of p, we get

Si(@1,...,zp) <p ri...rp).
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Consequently, by the fact that S; is homogeneous of order j, setting A := (
conclude

k
Sj(/\lL'l, ey )\(Ek) S <j)
Thus, by the assumption that (i) holds true and by Lemma 5.1.13 we obtain
wAK1(r1)) ... p(AKk(rg)) < p(conv(AK71(r1))) . .. plconv(AK(rr))) < M(B?)k.

Equivalently, using the homogeneity of u, one has

BM)* B ka
o)) < S = (U)o

Set ¢;(r;) := p(K;(r;)) , s > 0,4 =1,...,k and ¢(r) := (?)77M(B;L)p_l(rk)%, r > 0. Then, the
previous inequality can be written as

(p1(r1) - pu(ri)) * < o (- .m) /%)

and, therefore, the Prekopa-Leindler inequality (Theorem 5.1.3) together with the Layer-Cake formula
give

k k k —ka k
o) 00 k 3 [e) B a
1 [ seaute) =1 [ wtman< ([To) = (5) “wepr([Toteniar) . ean
i1 JR™ 170 0 J 0
On the other hand, using the extra assumptions on p and the homogeneity of 1, we see that
AV °° LAY k
g : . >
L) anto = "o () 1i) = e})
. o
: < “1(tk
JAaRC |u||J_<(j) b >> V) a

o

= ( ) u(B;?)/ p (R dt. (5.18)
J 0
Putting together (5.17) and (5.18), we arrive at (5.16), as claimed. O

The proof of Theorem 2.3.9 follows immediately from Theorem 2.3.8 and Proposition 5.1.12.

5.2 On a j-Ball Conjecture

5.2.1 Introduction

Let us recall the definition of Ball’s functional, mentioned in the Introduction. If K is a symmetric
convex body in R", B(K) is given by

B(K) ::/K/U@:,y)dedy.

It can be easily checked that B(-) is invariant under non-singular linear maps. The primary goal of
section 5.2 is to state and discuss a natural (at least in our opinion) extension of Conjecture 2.3.11, to
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the multi-entry setting. Let D(n) be the set of all orthonormal basis’ in R™. For k > 2, j € {1,...,k}
and {e;,} € D(n), define

n k .
Bi(Ky,..., K, {em}) = Z H/K (zi, em)|’ dx;.

m=11i=1
Define, also
Bi(Ky,...,Ky):= i Bi(Ki,...,Kg, {en}).
i (K1 k) o i (K1 ko {€m})
One might dare to conjecture the following.
Conjecture 5.2.1. Let 1 < j < k be two integers, where k > 2. Let K1,..., K} be symmetric convex
bodies in R™ satisfying E;-polarity condition. Then,
Bj(Ky,...,Ky) < B;(B},...,B}). (5.19)

For next Proposition it will be useful to recall the notion of isotropicity. A symmetric convex body
K in R"™ is called isotropic if

2
/(w,u>2dx:m/ l|||3 d, Yu € R™.
K n Jk

Notice (see [127]) that there is always a linear image T'K of K, such that TK is isotropic.
Proposition 5.2.2. Conjectured 5.2.1 for k = j = 2 agrees with Ball’s Conjecture 2.5.11

Proof. Let assume that conjecture 2.3.11 is true. Observe that there always exists an orthonormal basis
{€m } such that, for i # m, it holds

/Kl (z,€)(z, em) dz = 0.

Hence,
Bao(Ky, K2) < Ba(Ky, Ko, {em}) < Ba(Ky, K7, {em})
= Y [ wed [ ey
m=1 K1 Kf
= / / (z,y)* da dy
K; f
<

/ / (2,92 dedy — By(BY, BY).
2 2

Conversely, assume that Conjecture 5.2.1 is true for ¥ = j = 2 and for all symmetric convex bodies
K1, K. One can take K1 = K = K§. Since B(K) is invariant under non-singular linear maps, we can
assume that K is isotropic. We have

B(BY) = By(By,BY) > By(K,K°) = min / :c,emZdas/ cem)? d
(B) = BB B 2 Bl K0) = win S oo [ o)

: 2 2
= min x,€1)" dx LEm) - d
{em}eD(n) 2 /K< 2 /K W, em)” dy

m=1

= [ wapds [ Julde
K Ko
1 2 2
= n |z||3 dz Iyl dy
K Ko
= [ [ wwraeay - ).
K o
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5.2.2 The case j =1

We confirm in Proposition 5.2.3 that Conjecture 5.2.1 hold for j = 1. However, we are mostly interested
in the case j > 2 (see Remark...).

Proposition 5.2.3. Conjecture 5.2.1 holds if j = 1.

Proof. Let K,..., K}) be symmetric convex bodies satisfying &£;-polarity condition. It is clearly enough
to show the following.

f[l/Kiuxi,emwxis (/B

1

k
|<x,em>|dx> ) m=1,...,n. (5.20)

By proposition 5.1.9, it is enough to show that, for m = 1,...,n, the measure p,, in R™, with density
Y () 1= [(x, em)]|, satisfies pn, (K + L)/2) > \/ tom (K) i (L), for all symmetric convex bodies K and
L. To see this, fix symmetric convex bodies K and L and set H,} := {zr € R" : (z,e,,) > 0} and
H, :={z € R": (z,ey) < 0}. Then, the restriction of 1, either to H or to H,, is log-concave and,
therefore (see [28]),

1 1 1
“K+-L|NnHY| > ~(KNH,+LNH

> (K OV Hi o (L 0 H)

= % o (B pin (L), (5.21)

where we used the symmetry of K and L and the evenness of y,,. A similar argument shows that
1 1 _ 1
o, (<2K+ 2L) ﬂHm> > B o, (K) pom (L) (5.22)
The desired property for u,, follows by adding together (5.21) and (5.22). O

5.2.3 The j-Ball implies the j-Santal6

Next, we would like to explain the connection between the conjecture 5.2.1 and the j-Santald conjecture
5.1.1.

Proposition 5.2.4. Let k > 2 be a positive integer, j € {1,...,k} and K, ..., Ky be symmetric convex
bodies satisfying E;-polarity condition. If (5.19) holds, then (5.1) also holds.

Proposition 5.2.4 follows immediately from the following lemma (the corresponding fact involving
B(+) was obtained by Ball [9] [10]; see also Lutwak [111]).

Lemma 5.2.5. For convex bodies K;, i = 1,...,k we have
B;(B,...,B" Bi(Ki,...,.K
BT ¢ Bl K (5:29)
|B |~ (K- [Kg|) ™

Proof. We may assume that
Bj(Kh. .. ,Kk,{em}) = Bj(Kh. .. ,Kk).

Let Q be a convex body in R™. We will need the following simple fact.
Fact. Let T € SL(n) be a diagonal positive definite map (with respect to the basis {e,,}). Then,

(@, em))? dar = / (@, em)l? da.
n!_—Il/TQ 7711_:[1 Q
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Furthermore, there exists a diagonal positive definite map Ty € SL(n), such that

/ \(x,el>|jdx=...=/ (e da.
ToQ ToQ

It follows that

. /n . 1/n
(J_[ /Q <m,em>|jdw> - <m_1 /T0Q|<x,em>|jdx>
_ i;/TOQKx,em)de
- - /TOannzidx
— & [ 1@ e el 2 e
= o [ (mel- 1@ (o el < 293]) a
_ i/ooo (11~ 1@@) 0 (M By ) de.

Since, for all ¢t > 0, it holds

b

()@ Byl < | ((mel/Bp) " By ) o (#787) | = | ((1QINBIN "™ By ) 0 (14987

we arrive at

V

n 1/n 1
(H / <m,em>|fdx> > o el
me1/Q nJ(lQl/IBr) " By

n+j

_ 1@ /

n |BJ"| B

where ¢, ; is a positive constant that depends only on n and j, such that equality holds in (5.24) if

Q = B}.
By the arithmetic-geometric mean inequality and (5.24), one has

ntj
n
’

el dr = enslQ (5.24)

J

n k 1/n
m=1 \i=1 i
k n 1/n k
= n]] (H /K @i, em)l’ dm) > n(en,)* [T 11
i=1 \m=1 i e

Notice that if K3 = ... = Ky = BJ, then equality holds in all previous inequalities. This finishes the
proof of the Lemma. O

5.2.4 The unconditional case and the Functional j-Ball Conjecture

We also confirm Conjecture 5.2.1 in the unconditional setting. This is proven by passing throught its
analytical counterpart and settle this in the unconditional setting.....kati tetoio.....
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Finally, we would like to extend the definition of the B; functional, to tuples of functions instead
of tuples of convex bodies. For even non-negative integrable functions fi,..., fx, for 7 < k and for

{em} € D(n), set
n k

Bj(.fla ey fk; {Gm}) = Z H/ |<1'27€m>|jfz(xz) dxz
m=1i=1"R"
and
Bi(f1,---, = i Bi(f1y-- s [, {€m})-
i fi) = minBj(fi frodemd)
The functional version of the conjecture 5.2.1 states the following. Let f; : R* — Ry, i =1,...,k, be

even functions satisfying S;-polarity condition with respect to some non-negative and decreasing function
p. Then,

Byl fi) < ( [ e ( (i) du)k —ntH ( [ v (Y du)k

(5.25)
By (2.51), (5.25) would immediately imply (5.19). Using (2.51), Proposition 5.2.4, and Proposition 5.1.12
we obtain the following.

Corollary 5.2.6. If (5.25) holds for any even non-negative integrable functions f1,..., fr and any non-
negative decreasing function p, then the functional j-Santalo conjecture 5.1.2 holds in full generality.

Before ending this note, we wish to list some cases for which the conjectured inequalities (5.19) and
(5.25) are indeed correct. First notice that Proposition 5.1.4 and (2.51) imply the following.

Corollary 5.2.7. Inequalities (5.19) and (5.25) are both true in the unconditional case.
Furthermore, combining (5.20) and Proposition 5.1.12, we immediately obtain
Corollary 5.2.8. The conjectured inequality (5.25) is true if j = 1.

We mention that the authors in [82] proved the following functional version of Ball’s inequality: If
p : R — R, is a measurable function and fi, fo : R® — R, are integrable unconditional log-concave
functions satisfying fi(z1)f2(x2) < p({(x1,z2)), for all z1, x5 € R™, then

/" /n<$7y>2f1($)f2(y) dedy <n”' (/R a2 (J[u]2)® du>2 (5.26)

It is unknown if (5.26) holds for arbitrary even log-concave functions. Using similar arguments as in the
case of sets, one can show that the conjectured inequality (5.25) (for arbitrary even integrable functions)
for k = j = 2 is equivalent to (5.26). Hence, (5.25) for unconditional functions can be interpreted as
an extension of the functional version of Ball’s inequality to the multi-entry setting, if p is additionally
assumed to be decreasing.
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Chapter 6

Appendices

6.1 Log-Brunn-Minkowksi conjecture under the Brascamp-Lieb
inequality

The following two continuous version of the Brascamp-Lieb and its reverse form introduced by Barthe

in [16].

Theorem 6.1.1 (Continuous Brascamp-Lieb inequality). For an isotropic measure p on S™~! and
Ju = Liau)p(u) for u e S™=1 where a(u) < b(u) are bounded real integrable functions, we have

/n exp (/S log fu({z, u)u) du(u)) dz < exp (/S log (/R fu> du(u))

Theorem 6.1.2 (Continuous reverse Brascamp-Lieb inequality). For an integrable function h : R™ —
[0,00), an isotropic measure p on St and f, = Lja(u),bu) foru € S~ where a(u) < b(u) are bounded
real integrable functions, if for every continuous 6 : S*~1 — [0, 00) it holds

([ owudnt) e ([ 0w Loy dutw).

fren( m(f) )

For a function f : S"~! — R, an isotropic measure p and a continues function 6 : S"~! — R we
define,

then, one has

lfon0) = [ w0t dt)]

(11
where [f] be the Wulff shape of f (see (2.5)). Also, set
e(fyp) =min{c > 0: / uf(u) du(u) € c[f], ¥V |0] < f continues} (6.1)
Sn—1

which is nothing else than c(f, ) = supg < c(f, p, 0) and last we define

e(f) = inf{c(f,n) : p isotropic}. (6.2)

Note, we may have c(hg, 1) < c(f, 1) while [hg] = [f]. For example a polytope K can be written as the
Wulff shape a function f with extremely large values.
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Proposition 6.1.3. For every symmetric convex bodies K,L € K7, we have,

[(1=X)- K49\ Lj
[K|PALY

> c(hi hy) (6.3)

Proof. Let K and L be two symmetric convex bodies of R™ and A € [0,1]. Set h to be the characteristic
function of the set (1 — \) - K +, A - L. For an isotropic measure p, let ¢, := c¢(hlk*h}, u) and also for
t € R define,

fu(t) = li[—hK(u)l*”\hL(u)’\, he ()1 =k ()] (£)-

By the definition of c,, if |p(u)| < hx (u)!"*hy(u)? is any continuous function on S"~!, then
1
— up(u) du(u) € (1 —=N)- K +o A L,
Cu Jgn-1

and in turn,

1ogh(/sm £ d,u(u)) —0= /s— log fu(¢c(“)) dp(w).

Cu o

This means, if |6(u)| < éhK(u)l_’\hL(u))‘, then

togh( [ wbu)du)) > [ lox £u(0w) du(w). (6.4)

and so (6.4) holds for every continuous 6. In turn, we deduce that if 6 is any continuous function on
S7~! then

n( [ ubdn) = exp ([ 108 ful0(w) du(w). (65)
Snfl Snfl
Now we may apply the Continuous Reverse Brascamp Lieb inequality Theorem 6.1.2 by (6.5), and obtain

|(1—)\)~K+0A~L\:/ h(z) dz

n

> exp /S o /R fu) du(w))

=exp ([ Tor Zhc(w) i) duu))

Cu

(e ([ 10w ) du()) ™ (exp ([ 108 2wl auo))”

(e ([ 1og|Pu<;K>|du<u>))H(exp ([ oglPu(Dldu(w))”

123
1 1
>| =K' —L]*
Cu Cu

1 _
K
i

The last inequality, is the continuous form of the well known application of (classical) Brascamp Lieb
m

inequality. This is, if ¢; > 0 and I, =) _," ¢; P,,, then

¢

K| <[] 1P (K)
=1
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Last, since we proved that, for every p isotropic measure

AL (6.6)

1
|(1 - )‘) : = (C;L)n

we take (6.3). O

Fix orthonormal basis ey, ..., e,. Denote

n

Sl = |_| {x e S" tnilinfer,...,ei} : (x,e)) > 0}.

=1

Note, S"~1/2 is a connected set and does not contains antipondal points. Note, also that (6.1) is
equivalently written,

c(f, 1) sup
UES'O (n)

‘ / o flu d,u(u)H[f]. (6.7)

Lemma 6.1.4. For symmetric convex bodies K, L € K2 and any isotropic measure p we have

c(hy ™ h ) < e(hie, p) (b, ). (6.8)

Proof. Let U € O(n). We set

To :2/ uwhg (u) dup(u)
U(sm=1/2)

Yo =2 / uh (u) dp(u)
U(sn—1/2)

Zo :2/ whge (u) = hp (u) du(u).
U(sm=1/2)
For every v/ € S"~! we have (px (zo)2o,u') < hg(u') and in turn
/ | 2o ) d) < ).
Sn=1/2

The same holds for L and therefore applying Holder inequality we get,

A
2h ()i (o) . ) dp(u)

7;—1/2

i) s = ([ dnctupetan) o) duw)(
Sn=1/2 s
> [ 2 ) 0 ) ) )
= {pr (20) oL (Yo) 20, u),
for any u’ € S"~1. This shows that px (2,)' " pr(¥6) 2o € (1 = A) - K 4+, A~ L, and thus
Py K1orr(Z0) = pr(@0) ™ pr(yo)

and the proof finishes, since pr(-) = || - || " O
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6.2 A multidimensional Santal6 inequality

Following methods from [97], one can obtain the following extended version in the multi-dimensional
setting.

Theorem 6.2.1. Let s,k > 1 be two integers, (o1,...,0%) be an s-uniform cover of [n] and denote
E; = span{e,, : m € o;} for some fized basis e1,...,e,. If for some measurable and unconditional
functions f; : E; — R4 we have

k k
[Tr@) <p| D (@ia)) (6.9)
i=1 ig=1

i<j

for some decreasing function p : R — Ry which f]R < (t?) dt < oo, then one has

li/E filws) da; < UR p* <S(82_1)||:v2) dzr. (6.10)

Proof. Since the f;’s are unconditional, it is enough to show (6.10) on the positive cones (E; )+ and R U
provide that (6.9) holds on the positive cones. This is because the left side of (6.10) is H L2 )E =

2351 1 = 2" times the product of the integrals on (E;)4+. For € R™ we demote (x); the i-coordinate
of x and for m € [n] we write I,,, = {i € [k] : m € 0;}. Readily, for z; € E;, (z;)m, = 0 when m ¢ o; and
[T, | = s. Thus, the sum in (6.9) is written

Z Ti, ) Z Z ZTi)m(Tj)m = Z Z Zi)m( . (6.11)

1<J m=1 i<j m=1 4,j€l'm
1<j

Now, for t; € E; we denote el the vector in E; defined by

(") = {() me o
0 m ¢ ag;

We apply the change of variable z; = e’ and we get

k

E k %
H </(Ei)+ fi(;) dfCi) = };[1 </EZ fi(eti)ezme“l‘(ti)m dti)

i=1
By the Reverse Brascamp Lieb inequality then assumption (6.9) and last (6.11), we have

1

: ' : (ot 12,,,Legi<ti)m>
H</ " “‘““) <[ = [@ﬁ (e Jai (6:12)

i=1 % 1
t=321 st

k 1
S/n sup [p (Z ti et )1:[ s mea ( }dt (6.13)

ti’kEEj'l 1<j
=3 st

L g PO e fLmeo o

B m=1 i.j€lm
=30 st i<j

For fixed m = 1,...,n, AM-GM inequality implies,

Z (eti)‘m(etj)m > S(S 2_71) eﬁ Zi’jerm"i<j(t7"+t'j)m' = 75(82_ 1) Q% Eierm(ti)m (615)
i,j€ETm,
i<j
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Now, we use on (6.14) the monotonicity of p and we get,

1
k s n n
H (/ {L‘Z) dqjl> < / sup I:p% (8(52_ 1) Z 6‘% Eierm(ti)m) H e% Eierm(ti)m} dt
Ei)+ " m=1

t;€E;
=1 e 1, m=1
=21 5t

:/n %( s(s —1) Zezmm) S0 (O gy (6.16)
:/Rnpz(s(tnzuzn)du

+ m=1
1/s(s—1)
= [ o () du
R}
O
Theorem 6.2.2. Let s,k > 1 be two integers, (o1,...,01) be an s-uniform cover of [n] and denote
E; = span{e,, : m € o;} for some fized basis eq, ..., e,. If K; be some unconditional convezx bodies in E;
that
k ) , k
H€*§\|$1\|Ki <p Z (zi,25) (6.17)
=1 i,j=1

i<j

for a decreasing function p : R — R<q which fR p%(tQ) dt < oo, then one has
S

(i< (52 (Lo (o)

In particular, if p(t) = e~ FT namely, the t convex bodies satisfy

72 lzill%, = (@i, z5),

1<j

then,

k
[T1x <] 1B
=1

i=1
Proof. Let n; = dim F;. Then by Theorem 6.2.1 we have
k

k ni o k m L sls — , s
H|K¢\ :};[1 ((2]-:2)21 /E‘z e 27l dwi) < (}:[1 (fr)zl) (/Rnps((21)$| )d$> -

i=1

6.3 Equality case of Bollobas-Thomason inequality and its dual

We write eq,...,e, to denote an orthonomal basis of R"”. For a compact set K C R" with aff K = m,
we write |K| to denote the m-dimensional Lebesgue measure of K.
The starting point of this section is the classical Loomis-Whitney inequality [108].
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Theorem 6.3.1 (Loomis, Whitney). If K CR" is compact and affinely spans R™, then

k
K"t <[P K], (6.19)

i=1
with equality if and only if K = @], K; where aff K; is a line parallel to e;.

Meyer [122] provided a dual form of the Loomis-Whitney inequality where equality holds for affine
crosspolytopes.

Theorem 6.3.2 (Meyer). If K CR"™ is compact convex with o € intK, then

k
|
K" > ST IK e, (6.20)

i=1
with equality if and only if K = conv{xtAe;}1, for \; >0,i=1,...,n.

We note that various Reverse and dual Loomis-Whitney type inequalities are proved by Campi,
Gardner, Gronchi [49], Brazitikos et al [42, 43], Alonso-Gutiérrez et al [2, 3].
To counsider a genarization of the Loomis-Whitney inequality and its dual form, we set [n] :=

{1,...,n}, and for a non-empty proper subset ¢ C [n], we define E, = lin{e;};c,. For s > 1, we
say that the not necessarily distinet proper non-empty subsets o1, ...,0x C [n] form an s-uniform cover
of [n] if each j € [n] is contained in exactly s of o1,...,0%.

The Bollobds-Thomason inequality [25] reads as follows.

Theorem 6.3.3 (Bollobds, Thomason). If K CR™ is compact and affinely spans R™, and o1, ...,0% C
[n] form an s-uniform cover of [n] for s > 1, then

k
\K|* <[] Pk, Kl (6.21)
i=1

We note that additional the case when & = n, s = n — 1, and hence when we may assume that
o; = [n]\e;, is the Loomis-Whitney inequality Therem 6.3.1.

Liakopoulos [104] managed to prove a dual form of the Bollobds-Thomason inequality. For a finite
set o, we write |o| to denote its cardinality.

Theorem 6.3.4 (Liakopoulos). If K CR™ is compact conver with o € intK, and o1,...,0, C [n] form
an s-uniform cover of [n] for s > 1, then

s ]._.[l’ﬁzl |0i|! i
K|* > 2=t T IK N, (6.22)
i=1

()

However, unlike for Loomis-Whitney inequality and its dual form, neither the equality cases of the
Bollobas-Thomason inequality nor of its dual are known. The characterization of the equality cases of
Theorem 6.3.3 and Theorem 6.3.4 is the main focus of this section.

Let s > 1, and let 01,...,0% C [n] be an s-uniform cover of [n]. We say that &1,...,6; C [n] form a
1-uniform cover of [n] induced by the s-uniform cover o1, ...,0 if {F1,...,;} consists of all non-empty
distinct subsets of [n] of the form szlaf(z) where ¢(i) € {0,1} and o) = 0; and o} = [n]\ ;. We observe
that &1, ...,6; C [n] actually form a 1-uniform cover of [n]; namely, &1,...,d; is a partition of [n].

Theorem 6.3.5. Let K C R"™ be compact and affinely span R™, and let o1,...,0, C [n] form an s-
uniform cover of [n] for s > 1. Then equality holds in (6.21) if and only if K = EBﬁleEéiK where
G1,...,00 is the L-uniform cover of [n| induced by o1, ..., 0.
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Concerning the dual Bollobds-Thomason inequality Theorem 6.3.4, we have a similar result.

Theorem 6.3.6. Let K C R™ be compact conver with o € intK, and let o1,...,0, C [n] form an
s-uniform cover of [n] for s > 1. Then equality holds in (6.22) if and only if K = conv{K N F5,}!_,
where 61,...,0; s the 1-uniform cover of [n] induced by o1,..., 0.

According to Liakopoulos [104] (see also Section 6.3), a simply way to prove Theorem 6.3.3 and
Theorem 6.3.4 is via the Geometric Brascamp-Lieb inequality Theorem 2.2.6 and its Reverse form The-
orem 2.2.3. In particular, we prove the equality case Theorem 6.3.5 of the Bollobas-Thomason inequal-
ity via the characterization of the equality case Theorem 2.2.7 due to by Valdimarsson [152] of the
Brascamp-Lieb inequality. In addition, we prove Theorem 2.2.8 characterizing the equality case of the
Reverse Brascamp-Lieb inequality in a special case that yields the understanding of equality in the dual
Bollobas-Thomason inequality.

We will denote with 0¥ = o; and o} = [n] \ 0;. When we write 1, ..., d; for the induced cover from
01,...,0%, we assume that the sets are distinct.
Lemma 6.3.7. For s > 1, let 01,...,0, C [n] form an s-uniform cover of [n|, and let &1,...,5; be the
1-uniform cover of [n] induced by oy, ...,0r. Then
(i) for any fized orthonormal basis e1, ..., ey, the subspaces E,, == {ej : i € 0;} satisfy

®w | =

k
i=1
i.e. form a geometric Brascamp Lieb data.

(ii) the elements g; have the following form: there is v € [n] so that,

G; = m ol N m o} (6.24)

reo; réo;
(iii) the subspaces F5, :=lin{e; : j € d;} are the independent subspaces of the data (6.23) and Fyep =
{o}.

Proof. (i) Since oy, ..., 0 form a s-uniform cover, every e¢; € R" is contained in exactly s of F,,, ..., E,
So (i) follows.

(ii) Let o1,...,0% be just subsets of [n]. We take a I C [k] of cardinality s, and we consider the set
Ap = ﬂagﬁ ﬂail.
i€l igl

If, after a replacement of 0 by 1 (1 by 0) in the left (right) big intersection we have that the new
Aj is not empty, then there is 7 € [n] so that 7 is contained in exactly s —1 (s+1) from oy, ..., 0.
Now with the additional property that o1,...,0, C [n] form an s-uniform cover of [n], we have
that any o; has the form of A, and also for some r € [n]

IC{iclk]:reo;}
Since both cardinalities of the above sets is s we conclude to (6.24).

(iii) If we prove the independence of the subspaces, then immediate we have that Fye, = {0} since
for each r € [n] we have that r € A; where I, = {i € [k] : © € 0;}, namely one of the sub-
spaces Fiz,..., Fs contains e, and so they span R”. Now the independance follows from the easy
observation,

ﬂ?zl(lin{ei i€ o;})F9 =linfe; :i € ﬁ?zlaj(j)}

ke
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where, when ¢ takes the value 1, the left ¢ is the orthogonal complement in R™ and the right € is

the complement in [n].
O

Let us introduce the notation that we use when handling both the Bollobas-Thomason inequality and
its dual. Let o1,...,01 be the s cover of [n] occuring in Theorem 6.3.5 and Theorem 6.3.6, and hence
E,=E,, i=1,...,k, satisfies

gl
> - Py, =1, (6.25)
i=1°
Let 61,...,0; be the l-uniform cover of [n] induced by o1,...,0k. It follows that
F; = PE;, forj=1,...,1are the independent subspaces, (6.26)
Faep = {o}. (6.27)

For any 7 € {1,...,k}, we set
Il:{jE{l,,l} Fngi},

and for any j € {1,...,l}, we set
Jj:{iE{l,...,k’}i FJQE7}

For the reader’s convenience, we restate Theorem 6.3.3 and Theorem 6.3.5 as Theorem 6.3.8, and
Theorem 6.3.4 and Theorem 6.3.6 as Theorem 6.3.9.

Theorem 6.3.8. If K C R" is compact and affinely spans R™, and o1, ...,0, C [n] form an s-uniform
cover of [n] for s > 1, then
k
K" < [ 1Pe., K- (6.28)
i=1

Equality holds if and only if K = @ézle&iK where 61, ...,6; is the 1-uniform cover of [n] induced by
O1,...,0, and Fg, is the linear hull of the e;’s with indeces from ;.

Proof. We denote with F; := E,,, where from Lemma 6.3.7 (?7) these subspaces compose a geometric
data. We start with a proof of Bollobas-Thomason inequality. It follows directly from the Brascamp-Lieb
inequality as

k
|K|:/n 1K(x)dx§/R 1 1rs. () (Pr, () da

" i=1
k i i
<1l (f, 1emio)” = 17601 (6.29)

where the first inequality is from the monotonicity of the integral while the second is Brasmap-Lieb
inequality Theorem 2.2.6. Now, if equality holds in (6.29), then on the one hand,

k

1g(z) = H Lpy, (1) (PE; ()

i=1

and on the other hand, if Fi, ..., F; are the independent subspaces of the data, which from Lemma 6.3.7
(?7?) they span R™, namely Fye, = {0}, by Theorem 2.2.7 there are integrable functions h; : F; — R,
such that, for Lebesgue a.a. x; € F;

Lpp, k(i) = 0; H h;(Pr, (%))
Jjel;
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Therefore from the previous two, we have for x € R"

k
) = H9z‘ [T 7P, (Pe,(2))

JEL

Now, since for j € I; we have F; C E; we can delete the Pg, on the above product. Thus, for § = Hle 0;,
we have for Lebesgue a.a. z € R"

k l
2) =0 [T hsi(Pe, (= H NIl (6.30)

i=1jel;
Now, for z € K the last product on above is constant, so

1
0=— (6.31)
[Tizy 7y (Pr, (0))15]
for some z, € K. For j =1,...,l we set ¢; : F; — R", by
hj(x + P, (20))77]
(pj(a?): hi(P BA
i (Pr, (o))l

We see that ¢;(0) =1 and also (6.30) and (6.31) yields

l
Lo () = H 0 (Pr, (7)) (6.32)

For m € {1,...,1}, taking x € F,, in (6.32) (and hence ¢;(PF,(x)) = 1 for j # m) shows that

1k —a0(Y) = om(y),
for Lebesgue a.a. y € F,,,. Therefore (6.32) and the ortgonality of the F}’s,

l
K -0 =) Pe (Pr, (K —,)) @PF
j=1

completing the proof of Theorem 6.3.8. O

To prove Theorem 6.3.9, we use two small observations. First if M is any convex body with o € int M,
then

/ B*HIHM dr = / e*TnTn71|M| dr = ’/L'|M| (633)
n O

Secondly, if F; are pairwise orthogonal subspaces and M = conv {Mi,..., M;} where M; C F; is a
dimF};-dimensional compact convex set with o € relint M}, then for any z € R"

I
lzllar =Y I1Pey x| g, - (6.34)

In addition, we often use the fact, for a subspace F' of R™ and x € F, then ||z|x = ||| knF-

Theorem 6.3.9. If K CR" is compact convezr with o € intK, and o1,...,01, C [n] form an s-uniform
cover of [n] for s > 1, then

|K|® > i loift 1' H\KﬂEal (6.35)

Equality holds if and only if K = conv{Es, ﬁK}éZl where &1, . ..,0; is the L-uniform cover of [n] induced
by o1,...,0%.
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Proof. We define
fla) = e Iele, (6.36)

which is a log-concave function with f(o) = 1, and satisfying (c¢f (6.33))

f(y)ndy:/ - dy:/ Ml _
RTL " n

- fy)"dy > f[l (/E f(@i) dﬂﬁi) 1/8- (6.38)

1 !
! K‘ - LK. (6.37)
n n

We claim that

Equating the traces of the two sides of (6.23), we deduce that, d; := |o;| = dimFE;

k
3 di _ (6.39)

sn
i=1

For z = Zf 15 Lz with z; € E;, the log-concavity of f and its definition (6.36), imply

k
d;

k
f(z/n) > H s = Hf(atl)% (6.40)

i=1

Now, the monotonicity of the integral, and Reverse Brascamp Lieb inequality, give

flz/n)"dz > /* sup Hf e dz > H / f(z d:,C S. (6.41)

R™ Z:Ek m'umbeEz; 1

=173

R

Making the change of variable y = z/n we conclude to (6.38). Computing the right hand side of (6.38),
we have

/f(z:i)d:z:i:/ e*“lz‘“dei:/ e lzillknm: g, = d| K N Eyl. (6.42)

Therefore, (6.37), (6.38) and (6.42) yield (6.35).
Let us assume that equality holds in (6.35), and hence we have two equalities in (6.41). We set

M = COHV{KﬂFj}lgjgl-

Clearly, K O M. For the other inclusion, we start with z € intK, namely ||z||x < 1. Equality in the
first inequality in (6.41) means,

k
n
(e—nz/nux) - sup [T e =1,
z=38, t2i,2i€E =1

or in other words,

k
1 :
Izllx =~ - inf Z il = inf D llyillxe- (6.43)

z=3F  Lla;, z,€E; 2=325 0 yi, yi€ B Sy

We deduce that there exist y; € E;, : = 1,...,k such that

k k
z = Zyl and Z llyillx <1, (6.44)
i=1 i=1



CEU eTD Collection

91

Therefore, from (6.44), then (6.34) and after the triangle inequality for || - | knr;, we have

k
< Z Z ||Piji||KﬂFj : (6.45)

KnFp,  i=licl

> Pry:

i€l;

k k
lellar = 5" Prys|| =Y

i=1 jel; il

It suffices to show that
Kn El = COI’IV{K N Fj}jGIi (646)

because then, from (6.45), applying (6.34) and (6.44), we have

k

!
Izllar < Z Z HPFyyiHKij = Z yill e <1,

j=lielJ; i=1

which means z € M. Now, to show (6.46), we start with the equality case of the Reverse Brascamp-Lieb
inequality which has been applied in (6.41). From Theorem 2.2.8, there exist §; > 0 and w; € E; and
log-concave h; : F; — [0,00), namely h; = e~ % for a convex functon ¢;, such that

e lzillxne — ¢, H h;(Pr, (z; — w;)). (6.47)

JjEL;

for Lebesgue a.a. x; € E;. For i € [k] and j € I; we set, ¢;; : F; — R by

In Qi
vij(z) = @ (x = Prywi) — ¢; (—Prywi) + 2B
We see
1;;(0) = 0 and v;; is convex on Fj. (6.48)
and also (6.47) yields, for x € E;
e~ lzlxnm — oxp [ — Z Vi (Prz) | - (6.49)

JEL
For z € F}, we apply Az to (6.49) with A > 0, and we have from ;,,,(0) = 0 for m € L\{j} that

We deduce from (6.48) and (6.50) that v;; is a norm. Therefore, 1;;(z) = [|z[|c,; for some (dim F})-
dimensional compact convex set C;; C F; with o € relint C;;. Now (6.49) becomes,

|2/l e, =Y IPr ]

Je€l;

Cij

and hence by (6.34) we conclude to
Kn Ei = conv {Cij}je[i.

In particular, if ¢ € [k] and j € I;, then C;; = (K N E;) N F; = K N Fj, and hence we have (6.46) and the
proof is finished. O
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