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1 Introduction

In the text below we aim to exhibit some ideas of long term investment. Throughout

this section we do not pursue complete mathematical precision, but rather target a

discussion of the main flow of thought in a vague fashion, in the purpose of displaying

an outline of the topic.

Stochastic processes are defined on an underlying common stochastic basis

(Ω,F , (Ft)t∈F,P), where F will be either the set of positive real numbers R+ or the

set of real numbers R when we are in a continuous-time framework. In a discrete

setting, F is either the set of non-negative integers N or all the integer numbers Z.

The price of a tradable asset is an adapted stochastic process S = {St, t ∈ F} with

further possible structural restrictions. A trader can interact with this object in a

certain way, resulting in her wealth process Vt = 〈S ◦φ〉t, t ∈ F⋂
[0,T] and terminal

value VT = 〈S◦φ〉T at time F 3 T > 0, where φ=φ(T) denotes the strategy (“controlling

process”) chosen by the trader. The transformation 〈S ◦φ〉T , depending on the model

choice we make, can take various forms. To give a few examples, one can consider

classical, frictionless markets or models where the phenomenon of market friction is

taken into consideration. Furthermore, 〈S ◦φ〉T also depends on the representation

chosen to model the trading strategy: the number of shares held at a given time, the

speed of trading, or the proportion of wealth held in the risky asset. One could con-

sider, in a multivariate setting, a market with an arbitrary finite number of assets

but throughout the text we confine ourselves to two-asset settings.

The problem of long-term investment can be formulated as follows. The value of

portfolios is assessed through a utility function: a non-decreasing mapping U :R 7→R.

It is to model the psychological attitude of the investor towards taking risks. Usually,

she is considered to be risk-averse, meaning that she finds riskier market situations

repulsive and it is also common to postulate that, above a certain level of fortune,

she becomes insensitive to further gains. These characteristics can be reflected by

a concave utility function. It is much less common, but possible, to use a utility

function with convex sections that yield a behavior of risk seeking.
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The problem to solve is the optimization

E[U(VT)]→max, (1)

where E denotes expectation under the physical measure P, and the optimization is

developed over an appropriate set of strategies. To be more precise, fixing a set of

strategies X =XT , one searches for a family of strategies (φ∗ =φ∗,T)T>0 indexed by

T, with φ∗ =φ∗,T = (φ∗,T
t )t∈F∩[0,T], such that E

[
U

(〈S ◦φ∗〉T
)]

grows asymptotically as

u(T) := sup
{
E

[
U

(〈S ◦φ〉T
)]

, φ ∈XT

}
. (2)

when T →∞. Such a family φ∗ is usually found by first constructing some universal

upper bound for attainable terminal values with respect to the horizon T and then,

possibly by educated guesses, exhibiting an investment achieving the asymptotically

optimal performance.

The remaining text is organized as follows. In Section 2, based on Guasoni, Rá-

sonyi (2015) and Guasoni, Nika, Rásonyi (2019), we elaborate on how restricting our

attention on asset price models with stationary returns limits the possible growth

rate of asymptotically optimal portfolios. Then, through an example, we prognosti-

cate the intricate connection between optimality and the potential with which prices

retain information from the past. In Section 3 and Section 4, continuing the previ-

ous line of thought, we present a discussion on long memory and negative memory

(anti-persistence) respectively. We display how these two regimes cover the whole

spectrum of attainable optimal growth rates, when returns are stationary. Results

of Section 3 and 4 can be found in Guasoni, Nika, Rásonyi (2019) and Rásonyi, Nagy

(2021). In Section 5 we present a result on long term portfolio choice in a trading en-

vironment where the investor is heavily risk-averse and prices show mean-reversion

– here, we follow Guasoni, Nagy, Rásonyi (2021). Appendix A and appendix B con-

tains proofs for statements made in Section 4 and Section 5 respectively.

The new contributions of the author are Appendices A and B, Section 4 and Sub-

sections 5.3, 5.4, 5.6.
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2 Profit and price memory

2.1 Fractional Brownian motion

In a large part of the econometric literature, asset prices are assumed to have sta-

tionary increments: price changes form a stationary process in the weak or strong

sense. Most mainstream models also satisfy the Markov property. However, the

latter assumption has been challenged from rather early on.

A stochastic process, presented in the paper Mandelbrot (1971), was suggested

as a possible candidate to model asset prices by Benoit Mandelbrot himself. This

process, fractional Brownian motion (or simply FBM) paved the way for incorporating

memory into asset price dynamics. The decisive quantity for FBMs is the so-called

Hurst parameter H ∈ (0,1).

FBM with parameter H , 1/2 is a non-Markovian, centered Gaussian stochastic

process with corralated stationary increments with covariance structure defined by

E[BH(t)BH(s)]= 1
2

(
t2H + s2H − (t− s)2H

)
, (3)

where s and t are non-negative real numbers.

Long memory does not have a generally agreed definition. Vaguely speaking, a

discrete-time stationary process has long memory if its auto-covariance function de-

cays slowly at infinity.

We will use the definitions for describing memory given by Giraitis et al (2012).

Let Ȳk, k ∈ Z be a discrete time stationary process and define its auto-covariance

function for lag k ∈Z as

γ(k)= cov(Ȳ0, Ȳk). (4)

We say that the process Ȳk has long memory if∑
k∈Z

|γ(k)| =∞. (5)

It has short-memory if ∑
k∈Z

|γ(k)| <∞ and
∑
k∈Z

γ(k)> 0.
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It has negative memory, or equivalently, the process is anti-persistent when∑
k∈Z

|γ(k)| <∞ and
∑
k∈Z

γ(k)= 0. (6)

We could strengthen the memory conditions in (5) and (6) to attain a smaller class

of processes that satisfy these criteria in a natural way and, at the same time, they

can be handled more easily in the computations. Considering an asymptotic power

decay of the auto-covariance function γ in (4), greater than hiperbolic decay results

in a convergent absolute sequence while a slower decay results in divergence.

More precisely, on one hand, if for some fixed H ∈ (1/2,1) there exist constants

J̄1 > 0 and J̄2 > 0 such that the asymptotic behavior of γ(k) satisfies, after some

threshold k > T̄0, that

J̄1k2H−2 ≤ γ(k)≤ J̄2k2H−2, (7)

then we have that the underlying process has long memory in the sense of (5). This

is the case for FBM with H > 1/2.

On the other hand, if for some H ∈ (0,1/2) there exist constants J1 < 0 and J2 < 0

so that the asymptotic behavior of γ(k) satisfies, after some threshold k > T0, that

J1k2H−2 ≤ γ(k)≤ J2k2H−2 (8)

then, with the additional constraint that the lags sum up to zero, we have that the

underlying process has negative memory in the sense of (6). This is the case of FBM

with H < 1/2.

To see this more directly, let the extension to Z of the increment process of frac-

tional Brownian motion be denoted by X H
k , k ∈ Z and consider the corresponding

auto-covariance function (overriding previous notation), γ(k) = cov(X H
0 , X H

k ). Using

the formula in (3) we have that γ(0)= 1 and for k > 0 we have

γ(k)= 1
2

[
(k+1)2H −k2H −

(
k2H − (k−1)2H

)]
.

Observe that as a consequence∑
k∈Z

γ(k)= γ(0)+2
∑
k>0

γ(k),= lim
T→∞

[
(T +1)2H −T2H

]
.
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The expression in the argument of the limiting operation is roughly 2HT2H−1 and

this shows that the infinite series sums up zero and the corresponding absolute value

sum converges when H < 1/2 and there is divergence when H > 1/2.

2.2 A model with price-impact

The model considered here will be presented following Guasoni, Rásonyi (2015).

The stochastic basis (Ω,F , (Ft)t≥0 ,P) is assumed to have a filtration that is right-

continuous, F0 is trivial. Let O denote the optional sigma field over Ω× [0,T]. For

simplicity we assume zero interest rate, that is we assume the existence of a safe

asset with constant value equal to 1.

In a classical, frictionless market model, one would identify the payoff associated

with a square integrable strategy Φ, as the integral of the strategy with respect to

the price process in the Ito sense, i.e.∫ T

0
ΦudSu, (9)

where Φt is the amount of shares one holds at time t.

For the above integral to make sense, it is necessary that the process S is a semi-

martingale. This is the widest class for which the former object is well defined. How-

ever, fractional Brownian motion is not a semi-martingale thus, this process can not

be used as an integrator (at least not in the usual sense). We can consider an alter-

native to this integral for smooth enough integrands representing strategies by the

rate of trading. Let Φt =
∫ t

0 φu du hold for all t ∈ [0,T] with some optional process φ.

Formal partial integration yields∫ T

0
ΦudSu =−

∫ T

0
φuSudu+ (ΦTST −Φ0S0) (10)

The quantity φt represents the speed of trading at time t, that is, the rate at which

the number of shares changes over time.

If, in particular, it is assumed that we start at time t = 0 with no shares at hand

and furthermore postulate that we liquidate the risky position at the terminal time
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t = T, that is ΦT = 0, a more simple formula emerges as

−
∫ T

0
φuSudu. (11)

Using (11) instead of (9), one could enlarge the class of asset price processes to the

class of cadlag processes, and this would allow fractional Brownian motion to be used.

But then another problem emerges.

The econometric literature made considerable efforts to investigate models utiliz-

ing processes with correlated returns such as FBM. It turned out, however, that in

classical frictionless markets (where wealth is given by (9) or (11)), FBM becomes in-

admissible since it generates arbitrage opportunities. FBM thus remained neglected

for a long time. Later, trading models emerged where market friction was incorpo-

rated. It is significantly more difficult for arbitrage to exist in imperfect environ-

ments with friction and, indeed, FBM was found to be arbitrage-free and thus was

rehabilitated as a possible model.

Friction can be modeled with the introduction of a O ⊗B(R) measurable function

G : ω× [0,T]×R→ R+ such that G(ω, t, ·) is convex with G(ω, t, x) ≥ G(ω, t,0) for all

variables. In notation we drop the dependence in ω as usual.

Using the function G we can write

−
∫ T

0
Gu(φu)du

to represent friction on trading according to the rate of buying and selling. This is an

“accumulation of punishments” over time for taking action in the market. Convexity

implies that trading a given quantity in a given time is cheaper than trading twice

as intensely for half of the time. The fact that G t(0) is dominated by all other values

of the function means that in terms of adverse effects, inactivity is the best one can

achieve in terms of avoiding loss arising from trading activity itself.

Incorporating this quantity into the model, the dynamics can be proposed to be

VT(φ)= 〈S ◦φ〉T = z0 −
∫ T

0
φuSudu−

∫ T

0
Gu(φu)du, (12)

where z0 is an initial endowment.
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Let us call a strategy feasible if it is an element of the set

A (T)=
{
φ : φ is an R valued optional process with

∫ T

0
|φu|du <∞ a.s.

}
.

The finiteness of the integral has a meaning that the absolute turnover, that is the

total number of shares bought or sold up until the terminal time, remains finite for

all finite horizons.

When looking for an optimal investment, the general friction modeled by G as

above results in a complicated model. Instead, it is reasonable to further simplify the

above dynamics as follows. Fixing the parameters λ> 0 and α> 1 one can introduce a

model with superlinear friction by setting G t(x)=λ|x|α. Then, for φ ∈A , the position

at time t ∈ [0,T] in the risky asset and the safe asset are

V 0
T (φ)= z0 +

∫ T

0
φudu

VT(φ)= z1 −
∫ T

0
φuSudu−λ

∫ T

0
|φu|αdu,

(13)

where z0 is the initial number of shares held at time t = 0 and z1 is an initial endow-

ment. For simplicity, we will set z0 = z1 = 0.

By rewriting the above expression in (13), one gets that the evolution of the riskless

position equals

VT(φ)=−
∫ T

0
φu

(
Su +λsgn(φu)|φu|α−1)du,

coinciding with the portfolio value (11) resulting from the same strategy φ in a fric-

tionless market with price

St +λsgn(φt)|φt|α−1. (14)

The so-called instantaneous execution price (14), compared to the physical price St,

is higher when going long, that is, when buying assets, and lower when one is going

short, that is, when selling assets. This property intuitively explains the impact that

superlinear friction has on trading. We note here that, as it can be seen form (14), the

choice α= 2 amounts to a linear price impact and α= 3/2 yields a punishment term

that is proportional to the square root of the speed of trading. These are popular

choices in the corresponding literature and can be backed by empirical evidence -
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see for example Garleanu and Pedersen, (2013) backing the quadratic settings and

Almgren et al. (2005) on the square root rule.

Among other striking features, see Guasoni, Rásonyi (2015), a remarkable result

holds true in a market where friction is incorporated with the help of the function

G introduced above. Namely a uniform boundedness property holds with respect to

the set of feasible strategies. First, note that rewriting the riskless dynamics with

general friction in (12) we have

VT(φ)=
∫ T

0
φu(−Su)−Gu(φu)du

and defining for a real valued function f :R 7→R the Fenchel-Legendre conjugate as

f ∗(y)= sup
x∈R

(xy− f (x)) ,

we have for every φ ∈A that

VT(φ)≤
∫ T

0
G∗(−Su)du. (15)

This means that there exists a random variable that bounds all payoffs that are

generated by feasible strategies and this bound only depends on the price process and

the terminal time of trading but not on the particular strategies. Let us furthermore

denote the expected value of this bound by

QT(S)= E
[∫ T

0
G∗(−Su)du

]
. (16)

In case of the stylized model (13) the Legendre-Fenchel conjugate of the function

G(x)=λ|x|α can be explicitly calculated and turns out to be

G∗(y)= α−1
α

α
1

1−αλ
1

1−α |y| α
α−1

for all y ∈R. Thus the upper bound in (15) satisfies, for some C > 0,

VT(φ)≤ C
∫ T

0
|Su|α/(α−1)du. (17)

In the rest of the present section, we use a risk-neutral utility function defined by

U(x)= x and work with only those feasible strategies that finish with cash only. That
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is we consider the set

GT = {
φ ∈AT : V 0

T (φ)= 0 and E[VT(φ)−]<∞}
,

where x− = max(0,−x). This is the class of strategies that start from zero initial

position, liquidate until the terminal time and end with a cash position with a well-

defined expected value that is not −∞. The value function u with linear utility will

take the form

u(T)= sup
φ∈GT

E[VT(φ)]. (18)

2.3 Stationary returns and price impact

In the price impact setting introduced in the previous section, intriguing constraints

hold for the market bound presented above in (15). These results were obtained in

the paper Guasoni, Nika, Rásonyi (2019). Here, by displaying these, we aim to give

an intuitive picture of the long term optimality problem (1) with linear utility, and

with the dynamics (13). We infer useful properties of the asymptotics of the value

function defined in (18), in particular, we deduce certain limitations on the possible

optimal growth rates.

In this subsection we further simplify the model in (13) by setting λ= 1 and α= 2.

Definition 2.1. We say that a discrete parameter process Xk, k ∈Z is weakly station-

ary if Xk ∈ L2 (that is, Xk is square-integrable) for all k, the expectations E[Xk] are

the same for all k and E[Xk+nX l+n] depends only on k− l but not on k and l, for all

k, l ∈Z and n ∈Z.

Proposition 2.2. Let St ∈ L2 for all t ≥ 0 and let the mapping t → ES2
t be a non-

decreasing function. Furthermore, assume that the process Sk −Sk−1 = Xk with some

weakly stationary Xk, k ∈Z. Then there exists a constant C > 0 such that

E[VT(φ)]≤QT(S)≤ CT3

for all T ∈N\{0} and for all φ ∈A .
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Proof. Note first that, for all k ∈N, we have

Sk = S0 +
k∑

j=1

[
S j −S j−1

]
,

thus, the triangle inequality for the Hilbert space norm of L2 yields

(
E

[
S2

k
])1/2 ≤ (

E
[
S2

0
])1/2 +

k∑
j=1

(
E

[(
S j −S j−1

)2
])1/2 = C1 +kC2,

with C1 = E1/2S2
0 and C2 = E1/2(S j −S j−1)2. Using this we have

QT(S)=
∫ T

0
E[S2

u]du ≤
T∑

k=1
E[S2

k]≤
T∑

k=1
(C1 +kC2)2 .

We can conclude that for some C it holds that

QT(S)≤ CT3, T ≥ 1. (19)

�

Proposition 2.3. Let S0 = 0, let St ∈ L2 for all t ≥ 0 and let the mapping t → ES2
t

be a non-decreasing function. Furthermore assume that there is a weakly stationary

process Xk, k ∈ Z such that ∆Sk := Sk −Sk−1 = Xk for k ≥ 1. Denoting by Hn the

closed subspace in L2 generated by ∆Si, i ≤ n assume that ∆S1 is not an element of

H0. Under these conditions, there is C > 0 such that

QT(S)≥ CT, T ≥ 2.

Proof of Proposition 2.3. Denoting the correlation of arbitrary random variables X ,Y ∈
L2 as ρ(X ,Y ), we define

ρn = inf
X∈Hn

ρ(∆Sn+1, X ), n ∈N.

Using the stationarity property, the mapping n → ρn is constant, and we denote this

constant value by ω ∈ [−1,1]. If ω = −1 then we can easily see that ∆Sn+1 is in the

closure of Hn, hence it is in Hn, too. This means that, by our assumptions, ω>−1.
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In case ρ(
∑k−1

j=1 ∆S j, Ṡk)< 0, we can simply estimate

2cov

(
k−1∑
j=1
∆S j,∆Sk

)
= var

(
k−1∑
j=1
∆S j

)1/2

var(∆Sk)1/2ρ(
k−1∑
j=1
∆S j,∆Sk)

≥
(
var

(
k−1∑
j=1
∆S j

)
+var(∆Sk)

)
ρ(

k−1∑
j=1
∆S j,∆Sk)

By this, we have

var

(
k∑

j=1
∆S j

)
= var

(
k−1∑
j=1
∆S j

)
+var(∆Sk)+2cov

(
k−1∑
j=1
∆S j,∆Sk

)

≥ var

(
k−1∑
j=1
∆S j

)
+var(∆Sk)+

(
var

(
k−1∑
j=1
∆S j

)
+var(∆Sk)

)
ρ(

k−1∑
j=1
∆S j,∆Sk)

≥ (1+ω)var(∆Sk)

In the case ρ(
∑k−1

j=1 ∆S j,∆Sk)≥ 0, we naturally have

var

(
k∑

j=1
∆S j

)
≥ var(∆Sk) .

So in both cases

var(Sk)≥ var(Xk)= var(X0) .

This implies

QT(S)=
∫ T

0
E[S2

u]du ≥
T−1∑
k=0

E[S2
k]≥

T−1∑
k=0

var(Sk)

≥
T−1∑
k=1

min{1,1+ω}var(X0)= c(T −1),

(20)

for some positive constant c. This implies the statement easily. �

The bounds in (19) and (20) suggest a rather surprising “law of nature”, empha-

sized in the next remark.

Remark 2.4. In a trading environment where linear price impact is present, under

mild conditions, the range of optimal growth can only vary between T and T3.
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Remark 2.5. The sub-linear range, that is, an asymptotic growth rate of the order

Tx with some 0 < x < 1, lacks interest from an econometric perspective, since it would

result in an investment whose profit increments asymptotically vanish, and any fixed

annuity would outperform their gain on the long run. However, the question to spec-

ify what properties of the asset price lead to the attainable superlinear growth rates

appearing in Remark 2.4 naturally arises.

In the paper Guasoni, Nika, Rásonyi (2019) it is shown that the deterministic pro-

cess t → St := t reaches the growth rate of cubic power, and the Ornstein-Uhlenbeck

process produces a linear optimal rate, these two examples hence cover the extremi-

ties of the attainable growth rate region between T and T3. But what about the rates

in between?

2.4 An example

In this section we will present a result (see Theorem 2.6 below) from Guasoni, Nika,

Rásonyi (2019) to show how memory plays an important role in asymptotically opti-

mal investments. We use here the model (13) with general α> 1 and λ> 0, and the

value function is as in (18).

Theorem 2.6. [Optimality with fractional Brownian motion] Let α> 1 and λ> 0 and

let H ∈ (0,1/2)
⋃

(1/2,1). Then with setting St = BH
t we have that maximal expected

profits satisfy

limsup
T→∞

u(T)

TH(1+ 1
α−1 )+1

> 0,

for each 0< κ< 1
α−1 . Furthermore, the strategies

φ◦(T,κ)=

sgn(St(H−1/2))|St|κ, t ∈ [0,T/2]

− 1
T/2

∫ T
0 φsds, t ∈ [T/2,T]

satisfy

liminf
T→∞

EVT(φ◦(T,κ))
TH(1+κ)+1 <∞.

15
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As we can observe, setting α = 2 and λ = 1 in the above theorem, when κ is

close to 1
α−1 = 1, the optimal portfolio under an optimal investment generates profit

with the rate T2H+1. Taking into account that the Hurst parameter H varies in

(0,1/2)
⋃

(1/2,1), this shows that fractional Brownian motion covers the whole range

of possible growth rates under stationary returns (see Remark 2.4 above), except

T2. There is no growth corresponding to the parameter H = 1/2 since we have a

martingale (standard Brownian motion) in that case. To the best of our knowledge,

no example is known for the moment that generates a quadratic long-term optimal

growth rate.

In the proof of Theorem 2.6, the exact covariance structure of the underlying pro-

cess is heavily used and the results depend on certain analytic properties of the auto-

covariance function. Namely, if u/v is larger then a certain threshold value then the

covariance E[BH
u ,BH

v ] is bounded in a nontrivial way.

It is nevertheless natural to conjecture that these investment phenomena are not

caused by the exact shape of the covariance function but rather by the autocovariance

properties of the process. We will elaborate on this in the next two sections.

3 Optimality when prices have long memory

In the paper Guasoni, Nika, Rásonyi (2019), a class of long memory processes is given

which display the same asymptotic growth rate as fractional Brownian motion with

Hurst parameter H > 1/2. We quote here the corresponding results. The trading

dynamics is described by (13) and the value function u is defined as in (18).

Assumption 3.1. Let St, t ≥ 0 be a zero-mean Gaussian process with stationary in-

crements such that

cov(Su −St,St)≥ 0, 0≤ t ≤ u.

Let γ be the autocovariance of the increments, that is,

γ(k)= cov (S1 −S0,Sk+1 −Sk) , k ∈N.

Assume that it satisfies

γ(0)= 1, and J̄1k2H−2 ≤ γ(k)≤ J̄2k2H−2, k ≥ 1,
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for some J̄1, J̄2 > 0 and H ∈ (1/2,1).

The second part of this assumption defines a class of stochastic processes that, in

terms of the returns, satisfies the long memory criterion in (5). The first part of the

assumption expresses a certain positive autocorrelation property.

Theorem 3.2. Let the price process satisfy Assumption 3.1. Then the maximal ex-

pected profit has an upper bound:

limsup
T→∞

u(T)
TH(1+1/(α−1))+1 <∞.

For each 0< κ< 1/(α−1), the strategies

φ◦(T,κ)=

sgn(St)|St|κ, t ∈ [0,T/2]

− 1
T/2

∫ T
0 φsds, t ∈ [T/2,T]

satisfy
(4)

lim
T→∞

E[VT(φ◦(T,κ))]
TH(1+κ)+1 > 0,

where the limit is taken with T ranging over integers that are multiples of 4.

The proof heavily depends on the fact that, for s > t, Ss can be decomposed into a

sum, whose second term is orthogonal, to St (thus independent from it) and whose

first term is an affine transform of St. Using the quantity %(s, t)= cov(Ss,St)
var(St)

, we have

Ss = %(s, t)St +Ws,t, where Ws,t is independent of St.

Then the key property is that, for s > t, we have %(s, t)≥ 1 (or equivalently cov(Ss−
St,St) ≥ 0) by assumption, and on some region of R2 a stronger bound is achievable,

namely, with some c > 0 it holds that %(s, t)≥ 1+ c.

Theorem 3.2 generalizes Theorem 2.6 from the specific case of FBMs with H >
1/2 to a more general class of processes. A similar extension for H < 1/2, however,

remained an open question.

The difficulties that arise in the case of negative memory (defined in (6) and (8))

stems from the fact that the crucial assumption of positively auto-correlated asset

price process (we are referring here to the property %(s, t)≥ 1), postulated in Theorem

3.2, does not remain valid under anti-persistance.
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This is due to the shape of the auto-covariance function and can be explained by

observing that the mapping γ(k) takes a positive value at k = 0 and when there is

negative memory, by definition, we have that the negatively correlated lags balance

out the positive ones, thus both positive and negative lag-values are a necessity. For

this reason, even trivial bounds on % are not automatic.

4 Anti-persistence

In this section we discuss the new findings presented in Rásonyi, Nagy (2021). That

paper resolves the problem of long-term optimality when, instead of long memory,

anti-persistence is present.

Due to technical difficulties, we use a discrete-time adaptation of the model (13).

As usual, we employ the triple (Ω,F ,P) as a probability space with attached filtration

Ft, t ∈Z. The financial market comprises a riskless asset with zero interest rate, and

a risky asset whose dynamics follows a process St, t ∈N, adapted to the filtration.

The class of feasible strategies up to the terminal time T ∈N is

S (T) :=
{
φ= (φt)T

t=0 :φ is an R-valued, adapted process
}

. (21)

The quantity φt represents the change in the position of the investor in the risky

asset. This quantity is the speed of trading in analogy with continuous-time mod-

els like the one in (12). Let furthermore z = (z0, z1) ∈ R2 be a deterministic initial

endowment where z0 is in cash and z1 is in the risky asset.

For a feasible strategy φ ∈ S (T), the number of shares in the risky asset, with

Φ0 = z1, at any time t ≥ 1, is equal to

Φt := z1 +
t−1∑
u=0

φu . (22)

For simplicity, we assume z1 = 0 from now on, i.e. the initial number of shares is

zero. We will shortly derive a similar formula for the cash position of the investor. In

classical, discrete time frictionless models of trading, cash at time T +1, in analogy

with the continuous time formula (9), the cash position equals
T+1∑
u=1

Φu (Su −Su−1) (23)
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when starting from a 0 initial position. Algebraic manipulation of (23), more specif-

ically the so-called Abel summation (the discrete analogue of partial integration)

yields
T+1∑
u=1

Φu (Su −Su−1)= −
T∑

u=0
φuSu +ST+1

T∑
u=0

φu +0 ·S0. (24)

We assume that price impact is a superlinear power function of the trading speed φ

so, in analogy with (13), we augment (24) with a term that implements the effect of

friction:

−
T∑

u=0
φuSu +ST+1

T∑
u=0

φu −
T∑

u=0
λ|φu|α

where we assume α> 1 and λ> 0. We wish to utilize only those portfolios where the

risky asset is liquidated by the end of the trading period so we define

D(T) :=
{
φ ∈S (T) :ΦT+1 =

T∑
u=0

φu = 0

}
.

Based on the previous discussion, for φ ∈ D(T), the position in the riskless asset at

time T +1, similarly to the continuous formula in (13), is defined by

VT(φ) := z0 −
T∑

u=0
φuSu −

T∑
u=0

λ|φu|α. (25)

For simplicity, we also assume z0 = 0 from now on, i.e. portfolios start with zero cash.

To investigate the potential of realizing monetary profits, we focus on a risk-

neutral objective: a linear utility function, that is we set U(x) := x, x ∈R.

Let x− :=max{−x,0} for x ∈R. Define, for T ∈N,

H (T) := {
φ ∈D(T) : E[(VT(φ))−]<∞}

,

the class of strategies starting from a zero initial position in both assets and ending

at time T+1 in a cash only position with expected value greater than −∞. The value

of the problem we will consider is thus

u(T) := sup
φ∈H (T)

E[VT(φ)].
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The investors’s objective is to find a family of strategies (φ∗,T)T≥0 with φ∗,T ∈HT for

which the portfolio value VT(φ∗,T), achieves the same asymptotic rate as u(T), when

T →∞.

First, we introduce assumptions on the price process and its dependence structure.

Assumption 4.1. Let Zt, t ∈Z be a real-valued, zero-mean stationary Gaussian pro-

cess which will represent price increments. Let Fn := σ(Zi, i ≤ n) for n ∈ N. Let

r(t) := cov(Z0, Zt), t ∈ Z denote its covariance function. We assume that there exists

T0 > 0 and J1, J2 < 0 such that for all t ≥ T0,

J1t2H−2 ≤ r(t)≤ J2t2H−2 (26)

is satisfied for some parameter H ∈ (0,1/2). Furthermore,∑
t∈Z

r(t)= 0. (27)

Let us introduce the adapted price process defined by S0 = 0 and St = St−1 +Zt, t ≥ 1.

Properties (26) and (27) express that Z is a process with negative memory, see (6)

and (8).

The next theorem is the main result of Rásonyi, Nagy (2021): it provides the ex-

plicit form of an asymptotically optimal strategy and determines its expected asymp-

totic growth rate, analogously to Theorem 2.6 in the case H < 1/2, but not only for

FBMs.

Theorem 4.2. Let Assumption 4.1 be in force. If λ is small enough then maximal

expected profits satisfy

limsup
T→∞

u(T)

TH
(
1+ 1

α−1
)+1

<∞ (28)

and the strategy

φt(T,α) :=


−sgn(St)|St| 1

α−1 , 0≤ t ≤ 3bT/6c,
− 1

3bT/6c
∑3bT/6c

s=0 φs, 3bT/6c < t ≤ 6bT/6c,
0, otherwise

(29)

satisfies

liminf
T→∞

EVT(φ(T,α))

TH
(
1+ 1

α−1
)+1

> 0. (30)
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The strategy above builds on the following intuition. In a market with friction one

can not sell or buy at an arbitrary speed. Such behavior is punished by superlinear

price-impact models. Strategies that are not trading assets gradually can generate

losses that ruin an otherwise profitable investment. Thus, liquidation must also be

done at a careful pace. Our strategy operates as follows. On the first half of the given

timeline, it trades the underlying in a contrarian manner, that is, going short when

prices are high and entering long positions when they are low. Liquidation is then

done with a constant speed. This is reflected in our strategy on the second half of the

timeline. Such liquidation may not be optimal but it is computationally convenient

and turns out to be “good enough” for our present purposes.

5 Optimal investment with high risk aversion

Previously used symbols that are reused over the course of the current section do

not inherit their meaning from previous definitions. The discussion below is self-

contained in terms of notions and notations.

Modern portfolio theory suggests that optimal strategies are insensitive to invest-

ment horizons and prescribes constant portfolio weights - see for example Merton

(1969). So called turnpike theorems propose that the aforementioned result of Robert

Merton is robust, and the phenomena of homogeneity is universal in the long run.

In contrast, the common advice in circles of retirement planners, given to heavily

risk averse investors, is instead to reduce risk with age, see Malkiel (1999, p. 361)

chiming in: "as investors age, they should start cutting back on riskier investments".

The work Guasoni, Nagy, Rásonyi (2020) displays theoretical evidence that when

prices mean-revert and investors are exponentially risk averse, in contrast with com-

mon tenets of modern portfolio theory, the advice to gradually reduce risk is most

relevant.
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5.1 Merton’s problem

To motivate the discussion let us first expose the emblematic work of Merton (1969).

The investment and consumption problem presented therein involves finding a pair

(C,π), consisting of the optimal consumption rate C = (Ct)t≥0 and the optimal invest-

ment strategy π= (πt)t≥0 under model-constraints that are laid out in what follows.

For simplicity we focus on a two asset market where the trader can invest in a

risky asset X0 = (X0
t )t≥0 and a safe asset X1 = (X1

t )t≥0. The risky asset X0 follows the

Balck-Scholes-Merton dynamics,

dX0
t =µX0

t dt+σX0
t dBt, (31)

where µ ∈ R, σ> 0 and Bt is a standard Wiener-Brownian motion process. The asset

X1 is described by the deterministic equation dX1
t = rX1

t dt, simulating an invest-

ment with guaranteed rate of return r > 0 with zero risk.

Before we introduce the continuous time model, for explanatory reasons let us

consider a one-period, discrete time budget equation. In this preliminary settings the

wealth of the investor at time t+h resulting from her consumption and investment

decisions made at time t is

Wt+h =
1∑

i=0
πi

t (Wt −hCt)
X i

t+h

X i
t

. (32)

The intuition behind this formulation is that profit and loss emerges from the strat-

egy πi
t, i = 0,1 prescribing what proportion of the post-consumption wealth (Wt −hCt)

is invested in the assets X i, i = 0,1.

To adapt the dynamics (32) to continuous time, note first that algebraic manipula-

tion of (32) yields

1∑
i=0

πi
t (Wt −hCt)

X i
t+h

X i
t

=
1∑

i=0
πi

t (Wt −hCt)
X i

t+h − X i
t

X i
t

+πi
t (Wt −hCt) .

(33)

For an arbitrary function f let us denote its increment from t to t+h as d f t = f t+h− f t.

Using the identity π0
t = 1−π1

t , and assuming in a heuristic fashion that zero can be
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substituted in place of the symbol dX tdt, we get from (33) that

dWt =Wtπ
0
t

dX0
t

X0
t

+Wtπ
1
t

dX1
t

X1
t

−Ctdt. (34)

The stochastic differential equation (34) for t ∈ [0,T] is the continuous time analog

of (32) and we refer to it as the budget constraint.

Let ρ > 0, c < 1, 0< ε< 1 and let the utility function be the isoelastic utility U(x)=
xc/c. The problem Merton (1969) solves is

E
[∫ T

0
e−ρtU(Ct) dt+ e1−ce−ρTU (W(T))

]
→ max, (35)

subject to the budget constraint (34) and Ct ≥ 0, Wt ≥ 0, W0 > 0. We quote the findings

corresponding to the optimal investment π∗
t = (π0,∗

t , π1,∗
t ): it turns out that optimality

happens with the choice

π
0,∗
t = µ− r

σ2(1− c)
. (36)

This quantity, not surprisingly, depends on parameters of the underlying model.

A higher risk-aversion parameter c or volatility σ implies a smaller invested portion

of the wealth on the risky side. Also, the more the average return µ dominates the

zero-risk rate r, the larger the quantity invested on the stochastic asset.

Yet, quite surprisingly, π∗
t is independent of both the elapsed time t and of the

horizon T - meaning that the strategy is homogeneous in the strictest possible sense.

Furthermore, the phenomenon of constant optimal investment holds true even if

we take a simplified version of the problem above with no consumption rules. For

example Pham (2009, Subsection 3.6.1) considers a geometric Brownian motion as

the price X0, a safe asset X1, and an iso-elastic utility exactly as above and solves

E
[
U(W̄T)

] → max, (37)

with the wealth-dynamics

dW̄t = W̄tπ̄
0
t

dX0
t

X0
t

+W̄tπ̄
1
t

dX1
t

X1
t

. (38)

Note that in contrast with (35) where consumption is taken into account, the op-

timization problem in (37) is simply the utility maximization of the wealth of the

23

C
E

U
eT

D
C

ol
le

ct
io

n



investor. Also observe that (38) is the special case of (34) when Ct = 0 for all t ≥ 0.

The optimization problem in (37) is often referred to as “Merton’s portfolio allocation

problem”.

The strategy π̄∗
t = (π̄0,∗

t , π̄1,∗
t ) optimizing Merton’s problem in (37) satisfies π̄∗ =

π∗, meaning that it is the same as the one in (36), when consumption was allowed:

constant across all times t ≥ 0 and independent of the time horizon T.

We continue with a brief discussion of turnpike theorems showing that homogene-

ity of optimal investments is not limited to the settings above, and the optimal strat-

egy in the solution of Mertons’s problem carries robust features.

5.2 Turnpike

Turnpike theorems are a happy exception in the midst of complicated portfolio choice

results. These roughly speaking state that on the long run optimal strategies become

homogeneous and in some sense only isoelastic utilities play a role.

Guasoni, Robertson (2009) develops the solution to the long horizon problem of

finding optimal portfolios and risk premia, under power utility, in a market where

asset prices are modeled with a general diffusion driven by an autonomous state

process. The paper considers the solution of an ergodic Hamilton Jacoby Bellmann

type equation that has no dependence on the time horizon. The function that satisfies

the HJB equation is then used to build the optimal investment strategy, in a way

that homogeneity is preserved. The conclusion is that under very general conditions,

long term optimal investments are homogeneous in the sense of independence of the

terminal time of trading, and they are also completely time-homogeneous if state

variables are constant (like in the model of Black, Scholes and Merton).

Guasoni, Kardaras, Robertson, Xing (2014, Theorem 2.20), employing a diffusion

model, claims that if we form the ratio of the finite horizon optimal strategies and

the long term optimal strategy (the latter coinciding with the homogeneous strat-

egy constructed utilizing the solution of the ergodic equation mentioned above) then

this ratio converges to one in probability. In more direct terms, short term optimal

strategies converge to a homogeneous limit under mild assumptions.
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Guasoni, Kardaras, Robertson, Xing (2014, Theorem 2.19) employs general utility

functions that are only constrained to behave similarly to power functions for large

values. The result states that, on the long run, optimal strategies corresponding to

general utilities converge to optimal investments under isoelastic utilities. In more

specific terms, if we are trading a Black, Scholes, Merton market, it does not matter

what utility function we use: optimal investments converge to a fixed, constant limit,

prescribed by Merton (1969) - see (36).

In the following discussions it will be displayed that the above ostensible univer-

sality carries its limitations in terms of the level of risk-aversion.

5.3 Non-linear mean reverting models

Now we turn to the work Guasoni, Nagy, Rásonyi (2021). Results therein show that

in the presence of mean reverting prices and a highly risk averse investor, portfolios

exhibit a qualitatively different sensitivity to investment horizons compared to the

case of power utilities. Instead of convergent investment strategies, suggested by

turnpike theorems, the optimal investments actually diverge.

Stochastic processes are defined on a common probability space (Ω,F ,P) with an

augmented natural filtration (Ft)t≥0. The market model employs a riskless asset and

a risky asset with price St that follows the dynamics

dSt =µdt+dX t,

dX t =−αsgn(X t)|X t|βdt+dBt,
(39)

where µ ∈ R, α ≥ 0, β > 1 and Bt is a standard one-dimensional Brownian motion.

Without the loss of generality we assume unit volatility. The stochastic differential

equation (39) has a unique strong solution, see Krylov (1999).

When µ = 0, the process (39) admits a stationary distribution. This implies that

when µ, 0, the asset price is the sum of an asymptotically stationary process and a

deterministic linear drift.

We note here that the dynamics (39), with the choice α = 0, covers the Bachelier

model. Here, an arithmetic drift dSt = µdt+ dX t is used, but note that employing

a geometric drift dSt/St = µdt+dX t instead, would generate the same payoff space
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and replicating strategies could be matched with a one-to-one correspondence. This

shows that findings that are developed for (39) have implications also on the Black,

Scholes, Merton model.

The choice β = 1 retrieves the Ornstein-Uhlenbeck process with drift. The model

that is generated by other values of β > 1 can be contrasted with the case β = 1 as

follows. Observe that (39) can be written as

d(St −µt)=−sgn(St −µt)|St −µt|βdt+dBt,

showing that when β = 1, the force that pulls back the price to the trendline µt is

linear. As opposed to this, in case of β > 1, the distance from the trendline is raised

to a power greater than 1, resulting in a superlinear retrograde force.

The case µ , 0 and µ = 0 separate two regions with different characteristics. The

non-stationary regime (µ , 0) corresponds to assets whose prices admit nonzero av-

erage growth rate. These are stocks and bonds, having a historical record of outper-

forming inflation. In contrast with this the stationary regime (µ= 0) corresponds to

assets whose price tends to grow at the rate of inflation, without exceeding it. These

assets that possess considerable short term fluctuations but do not show significant

behavior of long term trending, are called long-term safe assets. Examples of long-

term safe assets are gold, platinum and silver.

A trading strategy is an adapted, S integrable process H = (Ht)t∈[0,T], where Ht

represents the amount of shares the trader holds on the risky asset at time t. If the

investor uses the strategy H then her wealth at the terminal time T > 0 is prescribed

to be the stochastic integral

(H ◦S)T =
∫ T

0
HtdSt. (40)

Let us denote the unique risk-neutral measure QT (for details of its existence

see Proposition B.1). We define the set of admissible strategies XT as the set of

S-integrable processes (Ht)t∈[0,T] such that (H ◦S)T is a QT martingale.

With the notions above for a fixed terminal time T the investor aims at maximizing

her exponential utility

E
[
−e−(H◦S)T

]
→max,
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where the optimization happens over the set of admissible strategies XT . For all

T > 0 we associate the value function

uT = sup
H∈XT

E
[
−e−(H◦S)T

]
(41)

to the portfolio optimization problem on [0,T]. We define the corresponding certainty

equivalent, the amount of value a potential market participant would accept as com-

pensation for not being able to trade on the interval [0,T], as

cT =− ln(−uT). (42)

The rest of the section is structured as follows. First, using Deák, Rásonyi (2015),

we derive a heuristic formula for the optimal growth of the Ornstein-Uhlenbeck pro-

cess without drift – (39) with µ = 0 and β = 1. Then, utilizing dynamical program-

ming, we derive the same type of results, still in a heuristic manner, when we allow

an arbitrary linear drift – (39) with µ ∈ R and β= 1. After these, we present results

on the general model – (39) with µ ∈R and β> 1.

5.4 Ornstein-Uhlenbeck process

In the special case µ = 0 and β = 1 the dynamics (39) coincides with the Ornstein-

Uhlenbeck process

dSt = dX t =−αX tdt+dBt. (43)

For the purpose of inferring about the optimal growth rate associated with the

asset price St subject to (43) we first present the findings of Deák and Rásonyi (2015).

Let ηk, k ∈N be an independent and identically distributed sequence of standard

Gaussian random variables. Set R0 = 0 and recursively define the autoregressive

process of order one Rk, k ∈N with the parameter of mean reversion ν0 ∈ (−1,1) for

k ≥ 1 as

Rk = ν0Rk−1 +ηk.

Reordering the equation above one gets

Rk −Rk−1 = νRk−1 +ηk, k ≥ 1, (44)
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where ν := ν0−1 is a parameter corresponding to the returns of the process Rk, k ≥ 0.

Define a filtration as Gk :=σ(R0, . . . ,Rk), k ∈N. Trading will follow the discrete analog

of the dynamics (9), that is, the wealth of the investor at any time N, with strategy

Φ= (Φk)N
k=1, assuming no initial endowments, is

LΦN :=
N∑

j=1
Φ j(R j −R j−1). (45)

The process Φk is predictable with respect to G , and represents the number of shares

held by the investor on the risky asset at time k. Deák and Rásonyi (2015) displays

the following result.

Theorem 5.1. For each N ≥ 1, the optimal strategy for time horizon N is given by

φ̄N
k := gN

k (Rk−1), 1≤ k ≤ T,

where

gN
k (z)= νz[1− (N −k)ν] for all 1≤ k ≤ N and z ∈R. (46)

Using these strategies, the maximal expected utilities are

r(N;ν) := sup
φ
E
[
−e−Lφ

N

]
= E

[
−e−Lφ̄

N

]
= − γ̄(N;ν)−

1
2 , (47)

where γ̄(N;ν) := ν2NΓ(1/ν2+N)Γ(1/ν2)−1 and Γ is the well-known gamma function. 2

We note a few remarkable features of Theorem 5.1. First, calculations show that

the certainty equivalent − ln(−r(N,ν)) grows as N ln(N). In case when ν= 0, that is

when R is a random walk, not surprisingly, no growth is possible. Actually it can be

easily seen that for a martingale the certainty equivalent is bounded by −1.

Second, the temporal structure is decisive. This can be seen by examining the

wealth process (45) when Φk is a time homogeneous measurable function of the past

of the asset price. In this case the summands in (45) form a stationary sequence,

thus, it is intuitively clear that a growth of order N can not be exceeded.

Third, mean reversion is exploited in the beginning and then to a less and less

extent. Furthermore, although the former temporal interaction between the strategy
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and the fluctuations of the price vanishes close to the horizon, positions are never

fully liquidated. There is a non-zero exposure to the risky asset even at the terminal

time.

Now we use the Euler scheme to formulate a discrete time approximation of the

Ornstein-Uhlenbeck process (43). The approximating process (R̄k)N
k=1 up to the fixed

time horizon T, with a grid of resolution N is

R̄(N)
k = R̄(N)

k−1 −α
T
N

R̄(N)
k−1 + η̄k, (48)

where R̄N
0 = 0 and (η̄)N

k=1 is a standard Gaussian white noise.

Notice that R̄k is an autoregressive process of order one for every single fixed N.

This means that the result of Rásonyi and Deák is applicable. Reordering (48) to

match the parameters we get

R̄(N)
k − R̄(N)

k−1 =−αT
N

R̄(N)
k−1 + η̄k. (49)

With the help of (47) we produce the mapping

T → r
(
N;−αT

N

)
. (50)

This should provide heuristics for the growth rate of the certainty equivalent for the

limiting process (43).

Considering ln γ̄(N;ν) and using the estimate ln(n!)≈ n ln(n)−n, we have

lnγ̄ (N;ν)≈−N ln(1/ν2)+ (1/ν2 +N) ln(1/ν2 +N)

− (1/ν2 +N)− (1/ν2) ln(1/ν2)+1/ν2

= (1/ν2 +N)
(
ln(1/ν2 +N)− ln(1/ν2)

)−N

= (1/ν2 +N)
(
ln(1+ν2N)

)−N.

With the substitution ν = −αT
N , algebraic manipulation, and Taylor’s expansion we
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get

lnγ̄
(
N;−αT

N

)
≈

(
N2

α2T2 +N
)
ln

(
1+ α2T2

N

)
−N

= N
(

N
α2T2 ln

(
1+ α2T2

N

)
−1

)
+ ln

(
1+ α2T2

N

)N

= N
(

N
α2T2

(
α2T2

N
+O (N−2)

)
−1

)
+ ln

(
1+ α2T2

N

)N

=O (1)+ ln
(
1+ α2T2

N

)N

.

Taking limit as N → ∞, in a heuristic fashion, yields the following. The optimal

expected exponential utility corresponding to the model (43) on the trading interval

[0,T], is estimated to be

− e−α
2T2/2. (51)

Thus, we arrive at the surprising conjecture that, dissimilarly to the discrete time

sub-quadratic optimal growth rate of N ln N with autoregressive asset price, the

analogous continuous time settings with the Ornstein-Uhlenbeck process yields in-

stead a quadratic optimal growth rate of order T2.

5.5 Ornstein-Uhlenbeck process with drift

In this subsection we consider (39) with µ ∈ R and β = 1, when the price is an

Ornstein-Uhlenbeck process augmented with a linear drift. Arguments here are still

heuristic but it seems that they could be made rigorous easily. Referring back to the

heuristic calculations of Subsection 5.4, results below in particular also retrieve the

limit (51), and suggest that it is indeed the true asymptotics of the driftless Ornstein-

Uhlenbeck model.

Let the asset price process St follow the dynamics

dSt =µdt+dX t

dX t =−αX tdt+dBt.
(52)

As before, the investor aims to maximize the expected exponential utility of the ter-

minal portfolio value

E[−e−(H◦S)T ]→max,
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where H varies among the set of admissible strategies defined right below formula

(40). Let us denote the wealth of the investor Wt = (H ◦S)t. Then, the value of the

optimization problem is

V (t,w, x)= sup
H

E
[
−e−WT |X t = x, Wt = w

]
. (53)

This quantity follows the dynamics

dV (t,Wt, X t)=
(
Vt + (µ−αX t)HtVw −αX tVx + 1

2
H2

t Vww +HtVwx + 1
2

Vxx

)
dt

+ (VwHt +Vx)dBt.

The martingale principle of optimal control of Davis, Varaiya (1973) says that the

value function is a supermartingale for every admissible strategy and it is a martin-

gale for the optimal one. This requires that the maximal drift over all strategies is

zero, yielding the Hamilton-Jacobi-Bellman-type equation

Vt + 1
2

Vxx −αX tVx sup
Ht

(
(µ−αX t)HtVw + 1

2
H2

t Vww +HtVwx

)
= 0. (54)

This implies a candidate for the optimal strategy

Ht =− (µ−αX t)Vw

Vww
− Vwx

Vww
.

Substituting this into the HJB equation (54) reduces it to

Vt + 1
2

Vxx −αX tVx −
(
(µ−αX t)Vw +Vwx

)2

2Vww
= 0.

To solve this we can utilize an exponential-quadratic guess

V (t,w, x)= exp
{
−

(
w+ a(t)

2
x2 +b(t)x+ c(t)

)}
.

This eliminates the variable x from (54) and a more simple form emerges as(
−α

2

2
− a′(t)

2

)
x2 + (

αµ+µa(t)−b′(t)
)
x+

(
−µ

2

2
− a(t)

2
+µb(t)− c′(t)

)
= 0.

The equation must hold for all t and x and hence the coefficients of x2, x and 1 must

vanish and this yields the system of equations

α2 +a′ = 0

αµ+µa−b = 0

µ2

2
+ a

2
−µb− c′ = 0.
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Solving the system gives

a(t)=α2(T − t)

b(t)=−(T − t)αµ− (T − t)2α
2µ

2

c(t)= µ2

2
(T − t)+ α(2µ2 +α)

2
(T − t)2 + α2µ2

6
(T − t)3.

The optimal strategy takes the form

Ht =
(
µ−αX t

)+α(
µ−αX t

)
(T − t)+ µα2

2
(T − t)2 (55)

and the certainty-equivalent C(t,w, x)=− ln(−V (t,w, x)) is

C(t,w, x)= w+ µ−αx
2

(T − t)+
(
αµ(µ−αx)

2
+ α2

4

)
(T − t)2 + µ2α2

6
(T − t)3. (56)

Thus, the leading order of the certainty equivalent cT = C(T,w, x) is

(i) (T − t)3 if α, µ, 0

(ii) (T − t)2 if µ= 0 but α, 0

(iii) (T − t)1 if µ, 0 but α= 0

(iv) (T − t)0 if α=µ= 0.

(57)

We will analyse these findings in light of the results corresponding to the general

model (39) in the forthcoming.

5.6 Optimality with superlinear mean-reversion

This section contains the main results of the paper Guasoni, Nagy, Rásonyi (2021).

The work considers the portfolio choice problem, already introduced in Subsection

5.3, with the non-linear mean-reversion model

dSt =µdt+dX t,

dX t =−αsgn(X t)|X t|βdt+dBt,

with the investor aiming to maximize her exponential expected utility

E[−e−(H◦S)T ]→max,
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where H varies in the set of admissible strategies XT (defined in Subsection 5.3).

The associated value function uT and cT is as in (41) and (42) respectively.

In (58) below we introduce a new notion that measures the asymptotic performance

of a family of trading strategies with the method of benchmarking the associated

certainty equivalent asymptotics to power growth rates. For a family of strategies

H= (H(T))T>0 with H(T) ∈XT , T > 0, define the order of the certainty-equivalent as

C (H)= sup

{
θ : liminf

T→∞
− ln(E

[
e−(H◦S)T

]
)

Tθ
> 0

}
. (58)

To give an example, note that in general, an annuity that grows with the rate

of change of the certainty equivalent cT , can compensate for the absence of trading

opportunity. The order of such an annuity equals the order of the optimal certainty

equivalent, minus one. The results presented in (57) states in particular that with

a nonzero average return (µ , 0) but in the absence of mean reversion (α = 0) the

optimal certainty equivalent cT is proportional to T, which means that its order is

one. This implies that the investor, in this particular case, is indifferent between

trading optimally and receiving a constant annuity.

Now we are ready to turn to the main theorems of Guasoni, Nagy, Rásonyi (2021)

treating the general model (39). In these theorems we focus on α> 0. We present first

the theorem on the case of non-stationary price (µ , 0). In this case the assertion

is that the optimal certainty equivalent grows with the horizon as T2β+1 and the

strategy in (59) below acquires this performance.

Theorem 5.2. If µ, 0, then cT ≤ Cβ,µ,αT2β+1 for some constant Cβ,µ,α > 0, each family

of strategies C (H) satisfy C (H) ≤ 2β+1. The family of strategies Hβ = (H(β,T))T>0

defined by

Ht(β,T)= (β+1)(T − t)βsgn(St)|St|β, t ∈ [0,T] (59)

satisfies C (Hβ)= 2β+1.

We highlight a few features of this result. First, no fixed annuity can compensate

for the loss of trading opportunity over an arbitrary long period of time, since the

order of the certainty equivalent surpasses one. Instead, the equivalent annuity

would have to grow with the power 2β of the horizon.
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Second, let us note that the intuitive homogeneous strategy would be to buy the

asset when it is below its long-term trend and sell it otherwise. Surprisingly, asymp-

totic optimality is achieved by an investment that times the market around the

starting point where the drift is negligible compared to later stages. It can be also

observed that the size of early bets on the market dominates later ones - risk is con-

centrated on early stages of the trading interval.

Interestingly, the mean reversion parameter β solely controls the sensitivity to

market states and adjusts the temporal magnification of positions. A higher curva-

ture implies a larger sensitivity to price changes along with a higher concentration

of resources to the beginning of the trading interval. Furthermore, a higher value of

β implies a better performance.

The second part of the main result of Guasoni, Nagy, Rasonyi (2021), Theorem

5.3 below, shows that when the price is stationary in an asymptotic sense (µ = 0),

optimality is significantly different compared to a trending asset price (treated in

Theorem 5.2 above).

Theorem 5.3. If µ= 0, then cT = CβT1+β for some constant Cβ > 0, and each family

of strategies H satisfy C (H) ≤ 1+β. If β > 1 then for each 1 < γ < β, the family of

strategies Hγ = (H(γ,T))T>0 defined by

Ht(γ,T) :=−2(T − t)γSt, t ∈ [0,T] (60)

satisfies C (Hγ)≥ 1+γ. If β= 1 then there exists δ0 ∈ (0,1/2) so that C (δ0H1)= 2= 1+β.

In the case µ = 0, Theorem 5.3 above shows that the certainty equivalent is of

order Tβ+1 in contrast with T2β+1 in case µ , 0 (as Theorem 5.2 displays the latter

asymptotics). This means that for long-term safe assets, in contrast with assets with

a non-trivial average growth rate, the mean-reversion curvature β adds only once

rather than twice to the order of growth.

We can understand these results in terms of the findings that correspond to the

drifted Ornstein-Uhlenbeck process in Subsection 5.5 above. Examining the cer-

tainty equivalent in (56) and its implications shown in (57) it becomes clear that

the growth of order T3 (corresponding to T2β+1 in the general case in Theorem 5.2
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above) emerges from the interaction between trend-like growth and mean-reversion,

hence is lost when either of these components vanish. In contrast with this, the

growth with order T2 (corresponding to Tβ+1 displayed in Theorem 5.3) is a result

solely from mean-reversion, so this rate is preserved even when there is no trend in

the dynamics.

The heuristic analysis above, using the results of Subsection 5.5 would further-

more suggest that any strategy that performs with the rate T2β+1 should incorporate

and exploit the parameters µ and α simultaneously. However Theorem 5.2 and The-

orem 5.3 show that this is not the case. Rather, trading strategies do not depend on

the average asset return or mean-reversion speed, but only on the mean-reversion

curvature.

This feature is of practical importance because it implies that to capture the lead-

ing order it is enough to estimate the mean-reversion curvature β. Thus, the param-

eter β, that grants the model its non-linear character, is of principal significance in

terms of strategies and performance. Other parameters, the speed of mean reversion

α and the expected rate of return µ, influence optimality but do not affect the growth

rate.

It is also important to note that since trading strategies grow with the horizon

without bounds it is obvious that there is no turnpike in the model. Additionally,

there are no time-homogeneous strategies that yield asymptotic optimality. Put dif-

ferently, despite the fact that the price process is modeled by a time-homogeneous

and ergodic Markovian process, time-homogeneity and ergodicity fails for the opti-

mal strategies.

As a possible path of ramifications we conjecture that simple asymptotically opti-

mal strategies can be found even in the case where 0<β< 1. This, however, requires

further study.

A Proofs of Section 4
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A.1 General bounds for variance and covariance

First we make some useful preliminary observations. Using stationarity of the incre-

ments of the process S, we have

var(St)= cov(St,St)= cov

(
t∑

j=1

(
S j −S j−1

)
,

t∑
i=1

(Si −Si−1)

)

= t ·var(S1 −S0)+2
t∑

i=2

i−1∑
j=1

cov(S j −S j−1,Si −Si−1)

= t ·var(S1 −S0)+2
t∑

i=2

i−1∑
j=1

cov(S1 −S0,Si− j+1 −Si− j)

= t · r(0)+2
t∑

i=2

i−1∑
j=1

r(i− j).

(61)

Furthermore, for s > t we similarly have

cov(Ss −St,St)=
s∑

i=t+1

t∑
j=1

r(i− j). (62)

Observe also that we can write

r(0)=−2
∞∑
j=1

r( j). (63)

Turning to the variances, we first obtain a convenient expression for them. Note that

for i > 1 we have

i−1∑
j=1

r(i− j)= r(i−1)+ . . .+ r(1)= r(1)+ . . .+ r(i−1)=
i−1∑
j=1

r( j). (64)

Using the observations (64), (61) and (63), we have

var(St)=−2t
t−1∑
j=1

r( j)−2t
∞∑
j=t

r( j)+2
t∑

i=2

i−1∑
j=1

r( j),
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and algebraic manipulation of the summation operation
(
−2t

∑t−1
j=1+2

∑t
i=2

∑i−1
j=1

)
yields

−2t
t−1∑
j=1

+2
t∑

i=2

i−1∑
j=1

=−2t

(
T0−1∑
j=1

+
t−1∑
j=T0

)
+2

(
T0−1∑
i=2

+
t∑

i=T0

)
i−1∑
j=1

=−2t
T0−1∑
j=1

−2t
t−1∑
j=T0

+2
T0−1∑
i=2

i−1∑
j=1

+2
t∑

i=T0

i−1∑
j=1

=−2t
T0−1∑
j=1

−2t
t−1∑
j=T0

+2
T0−1∑
i=2

i−1∑
j=1

+2
T0−1∑
j=1

+2
t∑

i=T0+1

(
T0−1∑
j=1

+
i−1∑

j=T0

)

=−2t
T0−1∑
j=1

−2t
t−1∑
j=T0

+2
T0−1∑
i=2

i−1∑
j=1

+2
T0−1∑
j=1

+2
t∑

i=T0+1

T0−1∑
j=1

+2
t∑

i=T0+1

i−1∑
j=T0

=−2t
T0−1∑
j=1

+2
T0−1∑
i=2

i−1∑
j=1

+2
T0−1∑
j=1

+2
t∑

i=T0+1

T0−1∑
j=1

−2t
t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

,

where the last line is only a reordering of terms. Setting C1 = ∑T0−1
j=1 r( j), C2 =∑T0−1

i=2
∑i−1

j=1 r( j) and C3 = 2(C2 − (T0 −1)C1), the above calculation gives

var(St)=−2tC1 +2C2 +2C1 +2(t−T0)C1 +
(
−2t

∞∑
j=t

−2t
t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

)
r( j)

= C3 +
(
−2t

∞∑
j=t

−2t
t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

)
r( j)

(65)

Now we are ready to present three lemmas, providing a lower and an upper bound

for the variance and an upper bound for the covariance.

Lemma A.1. There exist T1 ∈N and B1 > 0 such that for all t ≥ T1 we have

var(St)≥ B1t2H .
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Proof. Using properties induced by the choice of T0 in Assumption 4.1 first note that(
−2t

t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

)
r( j)

≥
(
−2t

t−1∑
j=T0

+2(t−T0)
t−1∑
j=T0

)
r( j)

=−2T0

t−1∑
j=T0

r( j)≥ 0.

Also notice that

−2t
∞∑
j=t

r( j)≥−2J2t
∞∑
j=t

j2H−2 ≥−2J2t
∫ ∞

t
u2H−2du

=−2J2t
1

2H−1

(
−t2H−1

)
= 2J2

2H−1
t2H .

Using these and (65)

var(St)≥ C3 + 2J2

2H−1
t2H .

The threshold T1 and the constant B1 can be explicitly calculated in terms of the

constants present in the above expression. This completes the proof. �

Lemma A.2. There exist T2 ∈N and B2 > 0 such that for all t ≥ T2 we have

var(St)≤ B2t2H .

Proof. First note that algebraic manipulation of the operation
(
−2t

∑t−1
j=T0

+2
∑t

i=T0+1
∑i−1

j=T0

)
yields

−2t
t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

=−2(t−T0 +T0)
t−1∑
j=T0

+2
t−1∑

i=T0

i∑
j=T0

=−2
t−1∑

i=T0

t−1∑
j=T0

+2
t−1∑

i=T0

i∑
j=T0

−2T0

t−1∑
j=T0

=−2
t−1∑

i=T0

(
t−1∑
j=T0

−
i∑

j=T0

)
−2T0

t−1∑
j=T0

=−2
t−1∑

i=T0

t−1∑
j=i+1

−2T0

t−1∑
j=T0

.
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By Assumption 4.1, this implies(
−2t

t−1∑
j=T0

+2
t∑

i=T0+1

i−1∑
j=T0

)
r( j)≤−2J1

(
t−1∑

i=T0

t−1∑
j=i+1

j2H−2 +T0

t−1∑
j=T0

j2H−2

)

≤−2J1

(
t−1∑

i=T0

∫ t−1

i
u2H−2du+T0

∫ t−1

T0−1
u2H−2du

)

=− 2J1

2H−1

(
t−1∑

i=T0

(
(t−1)2H−1 − i2H−1

)
+T0

(
(t−1)2H−1 − (T0 −1)2H−1

))

=− 2J1

2H−1

(
t(t−1)2H−1 −

t−1∑
i=T0

i2H−1 −T0(T0 −1)2H−1

)

≤ 2J1

2H−1

t−1∑
i=T0

i2H−1 + 2J1

2H−1
T0(T0 −1)2H−1

≤ 2J1

2H(2H−1)
((t−1)2H − (T0 −1)2H)+ 2J1

2H−1
T0(T0 −1)2H−1

≤ 2J1

2H(2H−1)
t2H + 2J1

2H−1
T0(T0 −1)2H−1.

To proceed observe that, using the asymptotics in Assumption 4.1, for t > 2 we have

−2t
∞∑
j=t

r( j)≤−2J1t
∞∑
j=t

j2H−2 ≤−2J1t
∫ ∞

t−1
u2H−2du

= 2J1t
2H−1

(t−1)2H−1 ≤ 2J1t
2H−1

(t− t/2)2H−1

= 22−2H J1

2H−1
t2H .

These results yield for t >max(2,T0), using again (65), that

var(St)≤ C3 +
(

2J1

2H(2H−1)
+ 22−2H J1

2H−1

)
t2H + 2J1

2H−1
T0(T0 −1)2H−1 (66)

The threshold T2 and the constant B2 could again be explicitly given. The proof is

complete. �

We proceed with the lemma controlling the covariance cov(Ss −St,St).

Lemma A.3. There exist T3 ∈N and D1,D2 > 0 such that

cov(Ss −St,St)≤ D1 for all s > t > T3.
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For a fixed v > 1, define

U(v) := J2 (2H)−1 (2H−1)−1
(
1−

(
v2H − (v−1)2H

))
.

Then

cov(Ss −St,St)≤ D2 −U(v)t2H < 0 holds for all s > t > T3 satisfying
s
t
> v.

There exists K > 1 and T4 ∈N such that

cov(Ss −St,St)≤ 0 for all s > t > T4 satisfying s− t > K .

Proof. Let us set

C4 =
0∑

j=−T0+1

1+T0∑
i=1

r(i− j), C5 = J2

0∑
j=−T0+1

1+T0∑
i=1

(i− j)2H−2,

and define C6 = C4−C5. Note that, for each t ∈N, C4 =∑t
j=t−T0+1

∑t+1+T0
i=t+1 r(i− j), and

C5 = J2
∑t

j=t−T0+1
∑t+1+T0

i=t+1 (i− j)2H−2. For t > T0, we have

cov(Ss −St,St)=
t∑

j=1

s∑
i=t+1

r(i− j)

≤ C6 + J2

t∑
j=1

s∑
i=t+1

(i− j)2H−2 ≤ C6 + J2

t∑
j=1

∫ s+1− j

t+1− j
u2H−2du

≤ C6 + J2

2H−1

t∑
j=1

(
(s+1− j)2H−1 − (t+1− j)2H−1

)
= C6 + J2

2H−1

t∑
j=1

(s+1− j)2H−1 − J2

2H−1

t∑
j=1

(t+1− j)2H−1

≤ C6 + J2

2H−1

∫ s

s−t
u2H−1du− J2

2H−1

∫ t+1

1
u2H−1du

= C6 + J2

2H(2H−1)

(
s2H − (s− t)2H

)
− J2

2H(2H−1)

(
(t+1)2H −1

)
= C6 + J2

2H(2H−1)

(
s2H − (s− t)2H −

(
(t+1)2H −1

))
.

=: C6 +C7

(
s2H − (s− t)2H −

(
(t+1)2H −1

))
.

(67)
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Since s ≥ t+1 the expression C7
(
s2H − (s− t)2H − (

(t+1)2H −1
))

is non-positive, which

yields

cov(Ss −St,St)≤ C6,

proving the first statement of the lemma. Now, for all v > 1 the property s
t > v -

together with the previous constraint of t > T0 - further implies

cov(Ss −St,St)≤ C6 +C7

(
s2H − (s− t)2H −

(
(t+1)2H −1

))
≤ C6 +C7

(
(v2H − (v−1)2H −1)t2H +1

)
= C6 +C7 +C7(v2H − (v−1)2H −1)t2H .

(68)

Obviously, for large enough t the bound becomes strictly negative, proving the second

statement. Now, assuming s− t ≥ K > 1 beside t > T0 we have

cov(Ss −St,St)≤ C6 +C7

(
(t+K)2H −K2H −

(
(t+1)2H −1

))
= C6 −C7

(
K2H −1

)
+C7

(
(t+K)2H − (t+1)2H

)
≤ C6 −C7

(
K2H −1

)
+C72HKt2H−1.

(69)

This shows that K can be chosen so large that C6 −C7
(
K2H −1

) < 0 and then, since

2H −1 < 0, a threshold T4 - depending on K - for the variable t can be specified so

that

C6 −C7

(
K2H −1

)
+C72HKt2H−1 ≤ 0

whenever t exceeds the threshold, proving the third statement, completing the proof

of the lemma. �

A.2 Key estimates

Define

ρ(s, t) := cov(Ss,St)
var(St)

= cov(Ss −St,St)
var(St)

+1, s ∈N, t ∈N\{0}.

Lemma A.4. There exist T̄ ∈N and constants R > 0, K > 1, η ∈ (1/2,1) and ε> 0 such

that
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1. ρ(s, t)< 1+R, for all t < s;

2. ρ(s, t)≤ 1, whenever T̄ < t < s and s− t > K ;

3. For all T ∈N, ρ(s, t) ≤ 1−ε, whenever T̄ < t < T
2 < ηT < s. Furthermore, one can

also guarantee T/2+K < ηT in this case.

Proof of Lemma A.4. Let B2, U(·), T1, T2, T3, T4, D1, D2 and K be as in Lemma A.2

and Lemma A.3. Choose T ′ > max{T1,T2,T3} so large that D2
B2

(T ′)−2H − U(4/3)
B2

< 0 and

set η := 2/3. Lemma A.2 and Lemma A.3 now show that whenever T ′ < t < T/2 and

s ∈ (ηT,T), we have

cov(Ss −St,St)
var(St)

≤ D2

B2
t−2H − U(4/3)

B2
≤ D2

B2
(T ′)−2H − U(4/3)

B2
, (70)

which yields ρ(s, t) ≤ 1− ε, where ε = −D2
B2

(T ′)−2H + U(4/3)
B2

. Lemma A.3 shows that

t > T4, ensures that s− t > K implies ρ(s, t) ≤ 1. Finally, set T̄ = max{T ′,T4,3K}. It

is clear – using (67) in the proof of Lemma A.3 – that for fixed t, the function (s, t) 7→
ρ(s, t) is bounded. So let D′

1 =max0<t<T̄ sups≥0ρ(s, t) and define R =max{D1,D′
1}−1 It

remains to guarantee T/2+K < ηT but this follows since T̄ < t < T/2 implies T > 6K .

The quantities η, T̄, R, K and ε constructed above fulfill all the requirements. �

Proof of Theorem 4.2. First we determine the maximal expected growth rate of port-

folios. Let us define

Q(T)=
T∑

t=0
E|St|

α
α−1 .

Let G(x) :=λ|x|α, x ∈R and denote its Fenchel-Legendre conjugate

G∗(y) := sup
x∈R

(xy−G(x))= α−1
α

α
1

1−αλ
1

1−α |y| α
α−1 , y ∈R. (71)

By definition of G∗, for all φ ∈G (T),

VT(φ)≤
T∑

t=0
G∗(−St)= C

T∑
t=0

|St|α/(α−1)

for some C > 0 and hence

EVT(φ)≤ CQ(T)<∞. (72)
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Note that this bound is independent of φ. Using Lemma A.2 it holds that

Q(T)= C α
α−1

T∑
t=0

var(St)
α

2(α−1)

≤ C α
α−1

T2−1∑
t=0

var(St)
α

2(α−1) +C α
α−1

B2

T∑
t=T2

t
Hα

(α−1)

≤ C α
α−1 ,T2 +Cα,H,B2 TH

(
1+ 1

α−1
)+1.

(73)

Thus the maximal expected profit grows as TH
(
1+ 1

α−1
)+1 with the power of the horizon,

this proves (28). Now, untill further notice, let T be a multiple of 6. With the strategy

defined in (29), the dynamics takes the form

VT(φ)=
T/2∑
t=0

|St|
α

α−1

−
T/2∑
t=0

λ|St|
α

α−1

− 1
T/2

T∑
s=T/2+1

Ss

T/2∑
t=0

sgn(St)|St|
1

α−1

− 1
T/2

T∑
s=T/2+1

λ

∣∣∣∣∣T/2∑
t=0

sgn(St)|St|
1

α−1

∣∣∣∣∣
α

.

In the above expression let us denote the four terms by I1(T), I2(T), I3(T), I4(T),

respectively, so that

VT(φ)= I1(T)− I2(T)− I3(T)− I4(T).

The upper bound constructed in (73) for Q(T) right away gives us an upper estimate

for EI1(T) as EI1(T) = Q(T/2). Using Lemma A.1, we likewise present a lower esti-

mate as

Q(T/2)= E[I1(T)]= C α
α−1

T/2∑
t=0

var(St)
α

2(α−1)

≥ C α
α−1

T1−1∑
t=0

var(St)
α

2(α−1) +C α
α−1

B1

T/2∑
t=T1

t
Hα
α−1

≥ C α
α−1 ,H,B1,T1 +C α

α−1 ,H,B1 TH(1+ 1
α−1 )+1,

(74)
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To treat the terms I2(T) and I4(T), note that with α > 1 the function x 7→ |x|α is

convex, thus applying Jensen’s inequality

|EI4(T)| ≤ E|I2(T)| =λE

[
T/2∑
t=0

|St|
α

α−1

]
=λ

T/2∑
t=0

E|St|
α

α−1 =λE[I1(T)]=λQ(T/2). (75)

Controlling term I3(T) is done via exploiting a specific property of Gaussian pro-

cesses, namely that Ss for s > t can be decomposed as Ss = ρ(s, t)St +Ws,t, where Ws,t

is independent of St and zero mean. With this, observe that

EI3(T)= 1
T/2

T∑
s=T/2+1

T/2∑
t=0

E[ρ(s, t)Stsgn(St)|St|
1

α−1 ]

= 1
T/2

T∑
s=T/2+1

T/2∑
t=0

E[ρ(s, t)|St|
α

α−1 ].

(76)

Let the constants T̄, R, K , η = 2/3 and ε be as in Lemma A.4, and decompose the

double sum in (76) as

T∑
s=T/2+1

T/2∑
t=0

=
T∑

s=T/2+1

T̄−1∑
t=0

+
T/2+K∑

s=T/2+1

T/2∑
t=T̄

+
ηT∑

s=T/2+K+1

T/2∑
t=T̄

+
T∑

s=ηT+1

T/2∑
t=T̄

Note that applying the upper bound developed in Lemma A.4 to the double sum

in (76), the summand no longer depends on the running variable of the outer sum.

Denoting CT̄ :=∑T̄−1
t=0 E|St| α

α−1 , this implies that

EI3(T)≤
(

T/2∑
t=0

+R
T̄−1∑
t=0

+2RK
T

T/2∑
t=T̄

−2ε
(
1− 2

3

) T/2∑
t=T̄

)
E|St|

α
α−1

= E[I1(T)]+
(
R

T̄−1∑
t=0

+2RK
T

T/2∑
t=T̄

−2ε
3

T/2∑
t=T̄

)
E|St|

α
α−1

= E[I1(T)]+
((

R+ 2ε
3

− 2RK
T

) T̄−1∑
t=0

+2RK
T

T/2∑
t=0

−2ε
3

T/2∑
t=0

)
E|St|

α
α−1

=
(
1− 2ε

3

)
E[I1(T)]+

(
R+ 2ε

3
− 2RK

T

)
CT̄ + 2RK

T
E[I1(T)],

so we have

E[I1(T)]−E[I3(T)]≥ 2ε
3

E[I1(T)]−
(
R+ 2ε

3
− 2RK

T

)
CT̄ − 2RK

T
E[I1(T)]
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The above, using (75), boils down to

VT(φ)≥ 2ε
3

Q(T/2)−
(
R+ 2ε

3
− 2RK

T

)
CT̄ − 2RK

T
Q(T/2)−2λQ(T/2)

Using (73) and (74), with λ< ε/3, dividing through with TH(1+ 1
α−1 )+1 proves the state-

ment in (30) with the constraint that the limiting operation runs through multiples

of 6. Now let T be general. The same calculations can be done as above, with mi-

nor changes in the formulas corresponding to the upper and lower limits in summa-

tions according to taking the appropriate floor values. That is, in the last inequality

Q(3bT/6c) appears - instead of Q(T/2) - and it grows in the order of (6bT/6c)H(1+ 1
α−1 )+1,

and using that 6bT/6c/T tends to 1 when T is large, the proof of Theorem 4.2 is com-

plete. �

B Proofs of Section 5

B.1 Preliminary calculations and estimates

Proposition B.1. The process

ξ∗t = exp
{
−

∫ t

0

(
µ−αsgn(Xu)|Xu|β

)
dBu − 1

2

∫ t

0

(
µ−αsgn(Xu)|Xu|β

)2
du

}
, t ∈R+

(77)

is a P-martingale and dQT /dP := ξ∗T defines a probability QT ∼ P on FT such that

St, t ∈ [0,T] is a QT-martingale (actually, a QT-Brownian motion) and QT is the only

such equivalent probability.

Proof. By Girsanov’s theorem it suffices to establish that the process ξ∗ is a true

martingale. Apply Theorem 2.1 of Mijatović and Urusov (2012) with the choice J =R,

Yt = X t, b(x) :=µ−αsgn(x)|x|β, x ∈R. According to the notation of that paper, ρ̃(x)= 1

for all x ∈ R, as easily checked. Then the quantity ṽ(x) defined there equals x2/2

for all x ∈ R and this satisfies ṽ(±∞) =∞ hence the claim follows from Theorem 2.1

of Mijatović and Urusov (2012). An alternative proof could be obtained from the

abstract results in Cheridito et al. (2005) for general jump-diffusions. �
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Recall that QT (defined in Proposition B.1 above) is the unique martingale measure

for the process X . Hence, by the duality theory of optimal investment (see Delbaen

et al. (2002); Kabanov and Stricker (2002)), it follows that

uT =−e−J

where

J := E
[

dQT

dP
ln

(
dQT

dP

)]
= E[ξ∗T ln(ξ∗T)]= EQT [ln(ξ∗T)] (78)

(provided that the latter quantity exists and is finite). Here EQT denotes expectation

under the probability QT .

From (39) and reordering (77), it follows that

ln(ξT
∗)= 1

2

∫ T

0

(
µ−αsgn(Xu)|Xu|β

)2
du−

∫ T

0

(
µ−αsgn(Xu)|Xu|β

)
dSu.

Because, under the measure QT , the process S is a standard Brownian motion on

[0,T], the second term in the above expression is a QT-martingale and

J = EQT

[
µ2

2
T + α2

2

∫ T

0
|Xu|2βdu−αµ

∫ T

0
sgn(Xu)|Xu|βdu

]
≤ EQT

[
µ2

2
T + α2

2

∫ T

0
|Xu|2βdu+α|µ|

∫ T

0
|Xu|βdu

]
= µ2

2
T + α2

2

∫ T

0
EQT |Xu|2βdu+α|µ|

∫ T

0
EQT |Xu|βdu.

Note that under the measure QT , the process X t = St −µt is a standard Brownian

motion with a constant drift on [0,T]. Thus, in view of the convexity of the mappings

x →|x|β and x →|x|2β,

J ≤ µ2

2
T + α2

2

∫ T

0
EQT |Su −µu|2βdu+α|µ|

∫ T

0
EQT |Su −µu|βdu

≤ µ2

2
T + α2

2

∫ T

0

(
22β−1uβM2β+22β−1|µ|2βu2β

)
du+α|µ|

∫ T

0

(
2β−1uβ/2Mβ+2β−1|µ|βuβ

)
du

= µ2

2
T +α222β−2 M2βTβ+1

β+1
+α222β−2|µ|2β T2β+1

2β+1

+α|µ|2β−1 MβTβ/2+1

β/2+1
+α|µ|β+12β−1 Tβ+1

β+1
,
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where Mκ is the κth moment of a standard Gaussian variable. This shows that cT ≤
Cβ,µ,αT2β+1 where Cβ,µ,α can be explicitly given and the first statement of Theorem

5.2 is proved.

Now we turn to some estimates familiar in the theory of Markov processes. We

have been inspired by Kontoyiannis et al. (2005) in particular. Let C2(R) denote the

family of twice continuously differentiable functions on R. Define the operator A by

A f :=−αsgn(x)|x|β∂x f + 1
2
∂xx f , f ∈ C2(R), (79)

which coincides with the infinitesimal generator associated to the process X on its

domain of definition. Define also the operator H (the “nonlinear generator”, see

Kontoyiannis et al. (2005)) as

H f := e− f A e f , f ∈ C2(R).

Now we introduce a condition related to H .

Condition B.2. There is a compact C ⊂R, there are δ,b > 0 and functions V ,W :R→
R+ with W measurable and V ∈ C2(R) such that, for all x ∈R,

H V (x)≤−δW(x)+b1C(x). (80)

For a given δ,b > 0, define the process Mt by

Mt := exp
{

V (X t)+
∫ t

0

(
δW(Xu)−b1{Xu∈C}

)
du

}
, t ∈R+. (81)

Lemma B.3. If Condition B.2 holds then the process M is a supermartingale.

Proof. Setting Yt = exp{V (X t)} and Zt = exp
{∫ t

0
(
δW(Xu)−b1{Xu∈C}

)
du

}
, it follows

that Mt =YtZt. Now Ito’s formula yields

dYt = deV (X t) =A eV (X t)dt+∂xeV (X t)dBt

=A eV (X t)dt+ (eV∂xV )(X t)dBt

and

dZt = Zt
(
δW(X t)−b1{X t∈C}

)
dt.
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By the product rule of Ito calculus, using that [Y , Z]t ≡ 0,

dMt =YtdZt +ZtdYt

=YtZt
(
δW(X t)−b1{X t∈C}

)
dt+ZteV (X t)H V (X t)dt+Zt(eV∂xV )(X t)dBt,

= ZteV (X t)
(
δW(X t)−b1{X t∈C} +H V (X t)

)
dt+Zt(eV∂xV )(X t)dBt.

Here the last term is a local martingale, the first term is non-increasing by Condition

B.2, hence M is a local supermartingale. As M is positive, Fatou’s lemma guarantees

that it is, in fact, a true supermartingale. �

Corollary B.4. With Condition B.2 in force for T > 0 it follows that

E
[
exp

{∫ T

0
δW(Xu)du

}]
≤ eV (0)+bT .

Proof. By the supermartingale property of M, E[MT] ≤ M0 = 1. Since b1C ≤ b, the

statement follows. �

Define the functions

V̄ (x) := α

1+β |x|
1+β and W̄(x) :=α2|x|2β, x ∈R.

Proposition B.5. For each 0 < δ̄< 1/2, there is an appropriate constant b̄ > 0 and a

compact set C̄ such that Condition B.2 is fulfilled with V = V̄ , W = W̄ , b = b̄, δ= δ̄ and

C = C̄.

Proof. The claim would follow from Proposition 1.3 of Kontoyiannis and Meyn (2005)

but we provide a direct proof. Note that ∂xeV (x)= eV (x)∂xV (x), ∂xxeV (x)= eV (x)(∂xV (x))2+
eV (x)∂xxV (x), ∂xV (x)=αsgn(x)|x|β, and ∂xxV (x)=αβ|x|β−1. Thus, (79) yields

e−V A eV (x)=−α
2

2
|x|2β+ αβ

2
|x|β−1. (82)

The criterion in (80) then becomes equivalent to

αβ

2
|x|β−1 ≤

(
1
2
− δ̄

)
α2|x|2β+b1C(x)

which clearly shows that the set C and the constant b can be chosen in such a way

that Condition B.2 is fulfilled, provided that δ̄< 1/2. �
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Lemma B.6. There exist constants δ0, c0,C0 > 0 such that

E
[
exp

{
δ0

∫ T

0
|X t|2βdt

}]
≤ c0eC0T .

Proof. Corollary B.4, Proposition B.5 and the definitions of V̄ , W̄ immediately yield

the upper bound with δ0 :=α2δ̄. In fact, c0 = 1 can be chosen as V̄ (0)= 0. �

B.2 Asymptotic optimality in the case µ, 0

Consider the process Ut := (T − t)β|St|β+1, t ∈ [0,T]. As U0 = 0, Ito’s lemma implies

that

0=UT =
T∫

0

(β+1)(T−t)β sgn(St)|St|βdSt+
T∫

0

β(β+1)
2

(T−t)β|St|β−1dt−
T∫

0

β(T−t)β−1|St|β+1dt,

which is equivalent to∫ T

0
(β+1)(T−t)β sgn(St)|St|βdSt =−

∫ T

0

β(β+1)
2

(T−t)β|St|β−1dt+
∫ T

0
β(T−t)β−1|St|β+1dt.

Note that the above expression is the value of the investor’s portfolio utilizing the

strategy Ht(β,T) = (β+1)(T − t)β sgn(St)|St|β, t ∈ [0,T]. Since S is a QT-Brownian

motion, clearly H(β,T) ∈XT .

First we turn to the case β> 1. Let us denote I1(T) := ∫ T
0 β(T − t)β−1|St|β+1dt, and

I2(T) := ∫ T
0

β(β+1)
2 (T − t)β|St|β−1dt. This way we have

E
[
−e−(H·S)T

]
= E

[
−e−I1(T)+I2(T)

]
. (83)

Now let us define an event A(T) as

Ω⊃ A(T) :=
{∣∣∣∣∫ T/2

0
X tdt

∣∣∣∣≤ µT2

16

}
and denote its complement in the set theoretic sense as Ā(T). Now we give a deter-

ministic bound for I1(T) on the event A(T). First note that

I1(T)=
∫ T

0
β(T − t)β−1|St|β+1dt ≥β

(
T
2

)β−1 ∫ T/2

0
|St|β+1dt, (84)
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and again by Jensen’s inequality,(
1

T/2

∫ T/2

0
|St|β+1dt

)1/(β+1)

≥ 1
T/2

∣∣∣∣∫ T/2

0
Stdt

∣∣∣∣= 1
T/2

∣∣∣∣µT2

8
+

∫ T/2

0
X tdt

∣∣∣∣ . (85)

On the event A(T) these yield∫ T/2

0
|St|β+1dt ≥ 2−3(β+1)−1µβ+1Tβ+2. (86)

and in return using (85) and (86) we have on the event A(T) that

I1(T)≥β2−3(β+1)−βµβ+1T2β+1 =: Cβ,µT2β+1. (87)

Now the expectation in (83) will be estimated by splitting it along the event A(T).

First, by (87) we have

E
[
−e−I1(T)+I2(T)1A

]
≥−e−Cβ,µT2β+1

E
[
eI2(T)

]
≥−e−Cβ,µT2β+1

(
E

[
e2I2(T)

])1/2
. (88)

On the other hand, by the Cauchy-Schwartz inequality and recalling that −e−x ≥−1

for x ≥ 0,

E[−e−I1(T)eI2(T)1Ā]≥−
(
E

[
e2I2(T)

])1/2 (
P

(
Ā

))1/2 . (89)

Now, to estimate the quantities P(Ā(T)) and E[e2I2(T)], consider a corollary to Lemma

B.6 that handles P(Ā(T)) and a Lemma bounding E[e2I2(T)] which is also a conse-

quence of Lemma B.6.

Corollary B.7. There exist positive constants c1,C1 such that

P(Ā(T))≤ c1e−C1T2β+1
.

Lemma B.8. There exist positive constants c2,C2 and q > 0 such that

E[e2I2(T)]≤ c2eC2T2β+1−q
.

Corollary B.7 and Lemma B.8 will be proved shortly.

Proceeding with these results and using (83), (88) and (89), Corollary B.7 and

Lemma B.8 it follows that

E
[
−e−(H·S)T

]
≥−e−Cβ,µT2β+1

(
E

[
e2I2(T)

])1/2 −
(
E

[
e2I2(T)

])1/2 (
P

(
Ā

))1/2

≥−e−Cβ,µT2β+1
(
c2eC2T2β+1−q

)1/2 −
(
c2eC2T2β+1−q

)1/2 (
c1e−C1T2β+1

)1/2

=−c1/2
2 e−Cβ,µT2β+1+C2

2 T2β+1−q − c1/2
1 c1/2

2 e
C2
2 T2β+1−q−C1

2 T2β+1
.
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This completes the proof of Theorem 5.2 when β> 1. The exact same calculations can

be done when β= 1: Corollary B.7 holds with β= 1 as it is written. The term I2 being

deterministic and of order T2 shows that the conclusion of Lemma B.8 also remains

valid. This completes the proof of Theorem 5.2.

As promised earlier, we finish by presenting the proofs of Corollary B.7 and Lemma

B.8.

Proof of Corollary B.7. By Jensen’s inequality we have∣∣∣∣ 1
T

∫ T

0
X tdt

∣∣∣∣2β ≤ 1
T

∫ T

0
|X t|2βdt. (90)

Using Lemma B.6 and Markov’s inequality leads to

P
(∣∣∣∣∫ T

0
X tdt

∣∣∣∣≥ µT2

16

)
≤ P

(∫ T

0
|X t|2βdt ≥µ2β2−8βT2β+1

)
(91)

= P
(
exp

{
δ0

∫ T

0
|X t|2βdt

}
≥ eδ0µ

2β2−8βT2β+1
)

(92)

≤ c0e−δ0µ
2β2−8βT2β+1+C0T . (93)

�

Proof of Lemma B.8. First note that there exist positive constants cβ and cβ,µ such

that

E[e2I2(T)]≤ E
[
exp

{
β(β+1)Tβ

∫ T

0
|St|β−1dt

}]
≤ E

[
exp

{
β(β+1)Tβ

∫ T

0

(
cβ|X t|β−1 + cβ,µtβ−1

)
dt

}]
= e(β+1)cβ,µT2β

E
[
exp

{
β(β+1)cβTβ

∫ T

0
|X t|β−1dt

}]
.

(94)

By Jensen’s inequality,

∫ T

0
|X t|β−1dt ≤ T1−β−1

2β

(∫ T

0
|X t|2βdt

)β−1
2β

.
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DenotingΞT := ∫ T
0 |X t|2βdt and defining h(x)= hβ,T(x) := exp{β(β+1)cβTβ+1−β−1

2β x
β−1
2β },

x > 0 the following estimate holds:

E[e2I2(T)]≤ e(β+1)cβ,µT2β
E

exp

β(β+1)cβTβ+1−β−1
2β

(∫ T

0
|X t|2βdt

)β−1
2β




= e(β+1)cβ,µT2β
Eh(ΞT).

(95)

The estimate in Lemma B.6, along with Markov’s inequality, implies that, for all

x > 0,

P (ΞT > x)≤ c0 exp{C0T −δ0x}, (96)

and also observe that

E[h(ΞT)]=
∫ ∞

0
h′(x)P(ΞT > x)dx. (97)

Since h′(x) = (β+1)β(β−1)
2β cβTβ+1−β−1

2β x
β−1
2β −1 exp{cβ(β+1)βTβ+1−β−1

2β x
β−1
2β }, x > 0, (96) and

(97) yield

E[h(ΞT)]≤
∞∫

0

(β+1)β(β−1)cβc0

2β
Tβ+1−β−1

2β x
β−1
2β −1 exp{cβ(β+1)βTβ+1−β−1

2β x
β−1
2β −δ0x+C0T}dx

= (β+1)β(β−1)cβc0

2β
Tβ+1−β−1

2β

∫ ∞

0
x
β−1
2β −1 exp{cβ(β+1)βTβ+1−β−1

2β x
β−1
2β −δ0x+C0T}dx

≤ (β+1)β(β−1)cβc0

2β
Tβ+1−β−1

2β ×

×
(
ecβ(β+1)βT

β+1−β−1
2β +C0T

∫ 1

0
x
β−1
2β −1dx+

∫ ∞

1
ecβ(β+1)βT

β+1−β−1
2β x

β−1
2β −δ0x+C0T dx

)

= c̃1Tβ+1−β−1
2β e

cβ(β+1)β
2 T

β+1−β−1
2β +C0T+

(β+1)β(β−1)cβc0

2β
Tβ+1−β−1

2β eC0T
∫ ∞

1
ecβ(β+1)βT

β+1−β−1
2β x

β−1
2β −δ0xdx, (98)

where c̃1 = (β+1)β(β−1)cβc0
2β

∫ 1
0 x

β−1
2β −1 dx. Now the integral

∫ ∞
1 ecβ(β+1)βT

β+1−β−1
2β x

β−1
2β −δ0xdx

will be estimated. First let us define

C̃(T) :=
(2(β+1)βcβ

δ0

) 2β
β+1

T
2β2+β+1

β+1 =: c̃2T
2β2+β+1

β+1 .
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First, note that cβ(β+1)βTβ+1−β−1
2β x

β−1
2β = cβ(β+1)βT

2β2+β+1
2β x

β−1
2β ≤ δ0

2 x for x > C̃(T),

whence∫ ∞

C̃(T)
exp{cβ(β+1)βTβ+1−β−1

2β x
β−1
2β −δ0x}dx ≤

∫ ∞

C̃(T)
e−

δ0
2 xdx

= 2
δ0

e−
δ0
2 C̃(T) = 2

δ0
exp

{
−δ0

2
c̃2T

2β2+β+1
β+1

}
≤ 2
δ0

exp
{
−δ0

2
c̃2T2

}
, (99)

where the last step follows from 2β2+β+1
β+1 > 2. Second, observing that

∂

∂x

(
cβ(β+1)βTβ+1−β−1

2β x
β−1
2β −δ0x

)
= cβ(β+1)β(β−1)

2β
T

2β2+β+1
2β x−

β+1
2β −δ0,

the integrand x → ecβ(β+1)βT
β+1−β−1

2β x
β−1
2β −δ0x reaches its maximum at

x = x0 :=
(

2βδ0

cβ(β+1)β(β−1)

)− 2β
β+1

T
2β2+β+1

β+1 =: c̃3T
2β2+β+1

β+1 ,

and the value of such maximum is

exp{cβ(β+1)βTβ+1−β−1
2β x

β−1
2β

0 −δ0x0}

= exp{cβ(β+1)βTβ+1−β−1
2β

(
c̃3T

2β2+β+1
β+1

)β−1
2β

−δ0 c̃3T
2β2+β+1

β+1 }

= exp{cβ(β+1)βc̃
β−1
2β

3 T
2β2+β+1

β+1 −δ0 c̃3T
2β2+β+1

β+1 }

(100)

Because 2β2+β+1
β+1 < 2β+1, there exists q > 0 such that∫ C̃(T)

1
exp{cβ(β+1)βTβ+1−β−1

2β x
β−1
2β −δ0x}dx ≤ (

C̃(T)−1
)
exp{cβ(β+1)βc̃

β−1
2β

3 T2β+1−q}.

(101)

Using (95), (98), (99) and (101), the proof is complete. �

B.3 The case µ= 0

Proceeding as in the case µ, 0,

ln(ξ∗T)= α2

2

∫ T

0
|Xu|2βdu+α

∫ T

0
sgn(Xu)|Xu|βdXu.
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As the process X is a standard Brownian motion on [0,T] under the measure QT , the

second term in the above expression is a QT-martingale so

J = α2

2

∫ T

0
EQ |Xu|2βdu = α2

2(1+β)
T1+β,

showing that cT = CβT1+β with Cβ = α2

2(1+β) , which proves the first statement of The-

orem 5.3. Note that for β = 1 this confirms the result obtained by the heuristic rea-

soning of Subsection 5.4.

Assume β> 1 until further notice. Consider the process Ut := (T − t)γX2
t , t ∈ [0,T]

with some 1< γ<β. Since U0 = 0, Ito’s lemma implies that

0=UT =
∫ T

0
2(T − t)γX tdX t +

∫ T

0
(T − t)γdt−

∫ T

0
γ(T − t)γ−1X2

t dt,

which is equivalent to∫ T

0
−2(T − t)γX tdX t = 1

γ+1
Tγ+1 −

∫ T

0
γ(T − t)γ−1X2

t dt.

Note that the above expression is the value of the investor’s portfolio utilizing the

strategy Ht(γ,T)=−2(T − t)γX t, t ∈ [0,T] hence

E
[
−e−(H·S)T

]
=−e−

1
γ+1 Tγ+1

E
[
exp

{∫ T

0
γ(T − t)γ−1X2

t dt
}]

. (102)

Since X is a QT-Brownian motion, clearly H(γ,T) ∈XT . Let us denote

G(T) := E
[
exp

{∫ T

0
γ(T − t)γ−1X2

t dt
}]

.

The next lemma states that G(T) is negligible in comparison with eTγ+1
, in the fol-

lowing sense:

Lemma B.9. There exist positive constants c1,C1 and 0< q < 1 such that

G(T)≤ c1eC1Tγ+q
.

Now, Lemma B.9 and (102) implies Theorem 5.3 in the case β > 1. For the case

β= 1, following an analogous method as above consider the process Ūt := δ0(T− t)X2
t .

Similar calculations to the ones that yield (102) leads to a strategy

H̄t =−2δ0(T − t)X t,
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and a portfolio value

E
[
−e−(H̄·S)T

]
=−e−

1
2 T2

E
[
exp

{∫ T

0
δ0X2

t dt
}]

.

Lemma B.6 with β= 1 immediately yields

E
[
−e−(H̄·S)T

]
≥−e−

1
2 T2+C0T ,

proving the claim for β= 1.

Proof of Lemma B.9. First note that, by Jensen’s inequality,∫ T

0
X2

t dt ≤ T1−1/β
(∫ T

0
|X t|2βdt

)1/β

.

Denoting ΞT := ∫ T
0 |X t|2βdt and defining h(x) = hγ,β,T(x) := exp{γTγ−1/βx1/β}, x > 0

yields the estimate

G(T)≤ E

[
exp

{
γTγ−1/β

(∫ T

0
|X t|2βdt

)1/β}]
= Eh(ΞT). (103)

The estimate in Lemma B.6 along with Markov’s inequality, implies that, for all x > 0,

P (ΞT > x)≤ c0 exp{C0T −δ0x}, (104)

and also observe that

E[h(ΞT)]=
∫ ∞

0
h′(x)P(ΞT > x)dx. (105)

Since h′(x)= γ

β
Tγ−1/βx1/β−1eγTγ−1/βx1/β

, x > 0, (104) and (105) yield

E[h(ΞT)]≤
∫ ∞

0

c0γ

β
Tγ−1/βx1/β−1eγTγ−1/βx1/β−δ0x+C0T dx

≤ c0γ

β
Tγ−1/βeγTγ−1/β+C0T

∫ 1

0
x1/β−1dx+

∫ ∞

1

c0γ

β
Tγ−1/βeγTγ−1/βx1/β−δ0x+C0T dx

= c̃Tγ−1/βeγTγ−1/β+C0T + c0γ

β
Tγ−1/βeC0T

∫ ∞

1
eγTγ−1/βx1/β−δ0xdx,

(106)
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where c̃ = c̃β,γ = c0
γ

β

∫ 1
0 x1/β−1 dx. To estimate the integral

∫ ∞
1 exp{γTγ−1/βx1/β−δ0x}dx,

first define

C̃(T) :=
(
2γ
δ0

) β
β−1

T
γβ−1
β−1 .

First note that γTγ−1/βx1/β ≤ δ0
2 x for x > C̃(T), whence∫ ∞

C̃(T)
exp{γTγ−1/βx1/β−δ0x}dx ≤

∫ ∞

C̃(T)
e−

δ0
2 xdx = 2

δ0
e−

δ0
2 C̃(T)

= 2
δ0

exp{−δ0

2

(
2γ
δ0

) β
β−1

T
γβ−1
β−1 }≤ 2

δ0
exp{−δ0

2

(
2γ
δ0

) β
β−1

T},

(107)

where the last step follows from γβ−1
β−1 > 1. Second, the integrand x → exp{γTγ−1/βx1/β−

δ0x} reaches its maximum at x = x0 :=
(
δ0β
γ

) β
1−β T

γβ−1
β−1 , and the value of such maximum

is

exp{γTγ−1/βx1/β
0 −δ0x0}= exp

{
γTγ−1/β

(
δ0β

γ

) 1
1−β

T
γ−1/β
β−1 −δ0

(
δ0β

γ

) β
1−β

T
βγ−1
β−1

}
. (108)

Noting that 0 < −1/β+ γ−1/β
β−1 = γ−1

β−1 < 1, there exists q̄ < 1 such that γ−1/β+ γ−1/β
β−1 =

γ+ γ−1
β−1 < γ+ q̄ which, along with (108) implies

∫ C̃(T)

1
exp{γTγ−1/βx1/β−δ0x}dx ≤ (

C̃(T)−1
)
exp{γ

(
δ0β

γ

) 1
1−β

Tγ+q̄}. (109)

To obtain a uniform upper bound for (109) and C̃(T), choose q ∈ (q̄,1). From (103),

(106), (107) and (109) it follows that

E[h(ΞT)]≤ c1eC1Tγ+q

for suitable constants c1 and C1, and the proof is complete. �
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