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1 Project Goal

The client’s request was to build a highly scalable standardized platform, which consolidates a cohort
of SaaS startups in a single pipeline and streamlines the automation of KPI generation. The driving
incentive behind it was to be able to see the performance of a particular cohort, the return on their
investments, as well as to develop a product that can be deployed to other companies interested. This
should open possible sales opportunities and promote analytics in the financial sector, given the time
it takes to extract value from the data in the modern era.

2 Initial Challenges

2.1 Technical

The project I joined had already built out the foundational tools and concepts used currently. The
exception was that the tools used were not efficient and cost-friendly by any means. The ingestion
process was done via (unnecessarily) repeated micro-batch processing rather than on-demand, and the
data integration tool used for loading structured and semi-structured files from our proprietary data
lake cost thousands of dollars per month for our client. A cost that can be pushed down to zero very
easily. At the time when we onboarded ourselves, a substantial amount of project time was spent
on making the existing pipeline work as it is. There were no tests (nor integration), no concept of
development or deployment process.

2.2 Circumstantial

Since our client is working in a highly competitive area, the delivery had to be punctual, and often
we had tight schedules for shipping a feature. This could result in accumulating technical debts by
releasing suboptimal development work. I have personally experienced that between them (analysts)
and us (engineers) there is still a notable gap in understanding how much time it takes to deliver a
certain feature. The fact that we are not working in the same time zones and there are constant changes
in the ongoing sprint scope, as well as ad-hoc requests taking priority, describes how challenging it is
to ship data as a feature.

3 Implementation

Our approach was to level the playing field between data analysts and engineers. Luckily, the emergence
of analytics engineering and the renaissance of SQL gave rise to easy-to-use building tools. Most of
the great practices in the profession are inherited from software engineering, which was never used in
data. That is how we test and deploy features, and how we collaborate and document new releases.
All the great evolutions of cloud data warehousing made in the last decade made it obvious that the
entry fee is substantially low to shift companies to a data-centric direction because of how it uses its
resources to separate compute from storage and prevent customers from paying hefty license fees even
when the engine is idle. The flowchart below best describes the core pipeline as of today, supercharging
the analytics for analysis.
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3.1 Data Ingestion

Our data ingestion was completely refactored when I joined the project. We found out that there is a
direct integration between our data lake and cloud data warehouse, which makes the integration tool
mentioned before redundant. Also, the streaming services used for doing table-to-table refreshes in the
warehouse were deemed to be in contrast with the OLAP system we wanted to develop. Therefore,
we used open-source, free services to onboard data from startups. At the end of the implementation,
we compared billing costs, and it turned out that we brought down the cost of ingestion from 15,000
USD per month to 0 USD per month.

3.2 Data Processing

We processed our data using the Kimball dimensional modeling. The transformation tool we used
allowed us to build business logic in a modular fashion. In other words, we had layers in our pipeline
(base and staging) specifically allocated for rationalizing the various ways we can receive submissions
from SaaS companies. That means we had to map columns together and align calculation values before
pulling them together to a join schema definition. Our core integration layer transformed our tables
into an aggregated form with all the necessary KPIs our client wanted to see on the other side. The
KPIs we focused on were revolving around recurring revenue, customer retention, time to conversion,
and sales funnel.

3.3 Data Quality

As I mentioned before, there wasn’t a testing framework around the pipeline. Since we joined, we set
up more than 500 testing suites, constantly checking descriptives and references in our models. This
was we ensure that before each feature delivery there are no discrepancies in the data. Furthermore,
we made it possible to continuously integrate and deploy in an isolated environment after each pull
request submission. One more thing I wanted to mention is how we deploy new changes. We this
particular process blue-green deployment, simply because when we deploy to the production database,
we load all the data into a staging environment instead. When the data is loaded and tested, we switch
over the traffic by swapping out the two databases. This way, we guarantee that there is no downtime
during a release and that bad data is not provisioned to production.

4 Results and Discussion

We have identified a lot of strengths as well as weaknesses of an arbitarily chosen Company X (which
remains nameless because of confidentiality). For instance, we saw from the change in quarterly net
bookings (+160%) and average seats purchased (+50%) that there was a steady growth in both. Not
only did they onboard more customers, but also the average contract value of a subscription also
increased. The latter is verified by a 45% increase in the compound annual growth rate of the average
contract value. One reason why customers are buying larger contracts can be attributed to the new
packages Company X has introduced, which are more extensive compared to what was on the counter
before. We have seen metrics trailing the competition in our customer retention analysis, where we
noticed that the majority of customers are only active for four quarters after their first purchase. In
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the recent quarters after the pandemic, we have also seen that active user growth has trended lower
than usual. Finally, we wanted to see how hard is it to pull customers through the sales funnel, and
we concluded that from the total number of seats purchased, only around 7% of the prospects are
integrated and only 0.4% of the total is active every week.

5 Future Challenges

We pinpointed two major concerns in how the product will evolve in the future. One of them originates
from the fact that at the end of the day, we want to onboard as much startup data as we can on a
single platform. One can easily see the exponential growth in terms of how much computing and
storage we need. Latency is what keeps our users tied to our platform, but in the meantime, we
tackled optimization steps such as selective processing, sampling to development, and handling rows
that do not have to be aggregated (e.g. missing values). Our goal is to simplify our onboarding process
because a large chunk of the deployment is taken by figuring out the proper mapping and implementing
temporary data imputation due to source issues.

The other one is observability and transparency. There is a lack of centralized documentation,
especially in complex business transformations. There is a lot of friction when our client asks for a
definition of a column when he/she could easily browse that from a data catalog. What’s more, even
ourselves, developers find it hard to keep track of schema changes imposed in the backend when we
expose new dimensions to the users in the visualization layer. The introduction of a data catalog would
help immensely in keeping everything organized, even on a larger scale. Besides, a data monitoring
tool can also be useful to catch silent data bugs not introduced by code.

6 Resolution

I have already mentioned a couple of ways we are working on to resolve the situation, but none of them
affects the user experience, rather the developer experience. To improve the former, we were thinking
of building another cloud data warehouse focusing on ”last mile queries” as an acceleration layer on
top of our ELT stack. This would benefit from the rigorous indexes, partitioned storage format, and
materialized views stored in memory. We already did a POC on mirroring dashboards between the two
warehouses, and query times were three times faster on average. We somehow still need to automate
the process of deploying in production in our ELT stack and syncing newly added calculations and
columns to the acceleration layer. We expect to overhaul this issue with the help of an orchestrator
tool that will be finely integrated with our project.

7 Recommendations

The way how we imagined the future of the product is we supply a spreadsheet for potential client
companies who configure the necessary mapping for us. After that, the data goes through a profiler
where we perform sanity checks on the data and flag data issues with actionable feedback to the source.
Then on, it would be processed in our ELT warehouse driven by a modular framework and loaded
into the acceleration layer, energizing user queries in the dashboarding layer. For each new company
onboarded, we generate the dashboards based on the template to save resources on building the same
charts over and over again. All these steps are going to be documented end-to-end in our future data
catalog, while the backend will monitor the tables for any anomalies deviating from the predicted
descriptives based on past data.
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