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Abstract
The thesis consists of three chapters: the first, single-authored chapter proposes a su-
pervised machine learning algorithm to discover heterogeneous treatment effects in
regression discontinuity designs. The second and third chapter, co-authored with Lás-
zló Mátyás and Felix Chan proposes a new data gathering method, which allows the
identification and consistent estimation of parameters in the linear regression model
when variables are observed through a discretization process. The second chapter dis-
cusses the so called split sampling data gathering method in detail and investigates the
properties of the least squares estimator when the discretized variable is on the right
hand side. Chapter 3 discusses the identification and estimation when the discretized
variable is on the left hand side.

Chapter 1: Heterogeneous Treatment Effects in Regression Disconti-
nuity Designs
The paper proposes a supervised machine learning algorithm to uncover treatment ef-
fect heterogeneity in classical regression discontinuity (RD) designs. Extending Athey
and Imbens (2016), I develop a criterion for building an honest “regression discontinu-
ity tree”, where each leaf of the tree contains the RD estimate of a treatment (assigned
by a common cutoff rule) conditional on the values of some pre-treatment covariates.
It is a priori unknown which covariates are relevant for capturing treatment effect het-
erogeneity, and it is the task of the algorithm to discover them, without invalidating
inference. I study the performance of the method through Monte Carlo simulations,
and apply it to the data set compiled by Pop-Eleches and Urquiola (2013) to uncover
various sources of heterogeneity in the impact of attending a better secondary school
in Romania.

Chapter 2: Modelling with Discretized Continuous Covariate
with Felix Chan and László Mátyás

The paper proposes a new data gathering method, called split sampling, which allows
the identification and consistent estimation of parameters in a linear regression model
with discretized covariates. This situation is common when modelling with survey
data where continuous random variables, such as income or expenditure, are being
transformed into a set of intervals. Such discretization prevents point-identification
and least squares type estimators are inconsistent. Split sampling method resolves
these problems by improving the design of the survey without creating additional
disincentives for respondents and additional complexity on the design of the survey
questions. The proposed methods can consistently reconstruct the distribution of the
underlying random variables, which leads to the consistent estimation of the param-
eters. Since the solution resides in the data collection stage, the proposed methods
should also be applicable for the identification of parameters in non-linear models.
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Chapter 3: Modelling with Discretized Continuous Dependent Vari-
able
with Felix Chan and László Mátyás

The paper deals with econometric models where the dependent variable is continu-
ous but cannot be observed directly. Instead, it is observed through intervals or dis-
cretized ordered choice windows. Manski and Tamer (2002) show that the parameters
in the conditional expectation cannot be point-identified using these discretized obser-
vations. Here we introduce a new sampling design, the so-called split sampling, which
makes the point-identification of the parameters in regression models feasible. Split
sampling yields point-identification through the way information is collected. The tar-
get sample set is split into multiple parts and data is collected in a differentiated way.
We explore how split sampling affects statistical inference, and further Monte Carlo
evidence is provided about its effect on estimation. Finally, we propose a simple for-
mulation to deal with an eventual perception effect.
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Chapter 1

Heterogeneous Treatment Effects in
Regression Discontinuity Designs

1.1 Introduction
In regression discontinuity (RD) designs one identifies the average treatment effect from
a jump in the regression function caused by the change in treatment assignment (or the
probability of treatment assignment) as a running variable crosses a given threshold.
Identification is based on comparing outcomes on the two sides of the cutoff, assum-
ing that all other factors affecting the outcome change continuously with the running
variable, which is not manipulable (see, e.g., Hahn et al., 2001, Imbens and Lemieux
(2008), Lee and Lemieux (2010), Calonico et al., 2014). From 2005 regression disconti-
nuity has become extremely popular in theoretical and empirical works, resulting in a
large number of extensions.1

This paper contributes to the literature by proposing a machine learning algorithm
designed to discover heterogeneity in the average treatment effect (ATE) estimated in
an RD setup. The subpopulations that the algorithm searches over are defined by the
values of a set of additional pre-treatment covariates. Analysis of treatment effect het-
erogeneity is important for at least two reasons. Firstly, researchers and policy makers
gain a more detailed understanding of the treatment by learning the extent to which
the treatment works differently in different groups. Indeed, the overall average effect
may not be very informative if there is substantial heterogeneity. For example, the
treatment may have no impact in one group while a large one in another, or there may

1E.g., Becker et al. (2013) defines heterogeneous local treatment effects in RD, where heterogeneity
comes from a known covariate; Calonico et al. (2019) analyze the effect of using additional covariates;
Xu (2017) extend the analysis with categorical variables as outcome; Cattaneo et al. (2016) concern mul-
tiple thresholds; Caetano et al. (2017) uses covariates to generate over-identifying restrictions in case of
multiple treatment variable; Robson et al. (2019) proposes decomposition of ATE and CATE using co-
variate(s) with non-parametric methods; Toda et al. (2019) uses multiple groups with multiple threshold
values to estimate CATE given by these pre-specified groups; Toda et al. (2019) uses machine learning
to find discontinuity when there are many (potential) running variables and thresholds – but no hetero-
geneity in the treatment effect. Cattaneo et al. (2019) gives a great overview of recent developments in
RD.
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even be groups where the average treatment effect has opposite signs. Secondly, un-
covering treatment effect heterogeneity – with strong external validity – can lead to a
more efficient allocation of resources. If the budget for implementing a treatment is
limited, decision makers can design future policies to focus on treating those groups
where the expected treatment effects are the largest.

Of course, heterogeneity analysis is routinely undertaken in applied work, typically
by repeating the main RD estimation within different groups defined by the researcher.
Nevertheless, ad-hoc (or even pre-specified) selection of sub-samples has disadvan-
tages: i) when there are many candidate groups defined by pre-treatment covariates,
searching across these groups presents a multiple testing problem and without correc-
tion, it leads to invalid inference. ii) The relevant groups may have a complicated non-
linear relationship with the treatment effect and discovering the non-linear pattern is
cumbersome or impossible “by hand.” For example, searching along the interactions
of the pre-treatment covariates is usually infeasible and the researcher only checks few
interactions motivated by theoretical considerations.2

By contrast, the method proposed in this paper allows discovering treatment effect
heterogeneity based on pre-treatment covariates in a systematic way while offering a
solution to the aforementioned challenges. At present, I know of no other paper that
accomplishes these goals specifically in an RD setup. The closest paper with an RD fo-
cus is perhaps Hsu and Shen (2019), who develop tests for possible heterogeneity in the
treatment effect based on the null hypothesis that the conditional average treatment ef-
fect (CATE) function is equal to a constant (the overall average treatment effect). Their
proposed tests reveal whether there are groups defined in terms of observed charac-
teristics for which the ATE deviates from the overall average, but they leave the dis-
covery and the estimation of the conditional average treatment effect function as an
open question. I address precisely this problem by proposing a data-driven machine
learning method, which discovers groups with different treatment effects, using many
candidate pre-treatment variables, without invalidating inference. The method pro-
vides discovery in the sense that the researcher does not need to specify the sources of
heterogeneity (the relevant variables) in a pre-analysis plan, but can use many poten-
tially relevant pre-treatment variables. The task of the algorithm is to find the relevant
variables and the functional form from the many possible combinations. The end re-
sult gives groups with differences in the treatment effects. The implementation of the
algorithm assumes that the standard RD identification conditions hold in the poten-
tially relevant subpopulations; e.g., one cannot consider groups in which the running
variable is always above or below the cutoff.

The paper also builds on and extends the more recent literature of discovering het-
erogeneous treatment effects with machine learning methods. There is a growing num-
ber of papers (e.g., Imai et al. (2013), Athey and Imbens (2016), Wager and Athey (2018),

2Hsu and Shen (2019) carry out a small survey of top publications in economics in 2005 that use the
RD design. They find that 15 out of 17 papers check for heterogeneity and only 2 address the issue with
interaction terms. The rest use subsample techniques without correcting for multiple testing.
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Athey et al. (2019) Bargagli and Gnecco (2020), Friedberg et al. (2020), Knaus (2021) or
Knaus et al. (2021)) using causal supervised machine learning (ML) techniques for this
purpose.3 All of these works are concerned with i) randomized experiments and/or
ii) observational studies with the unconfoundedness assumption or iii) using instru-
ments to estimate the local average treatment effect (LATE). Imai et al. (2013) use lasso
with two sparsity constraints to identify heterogeneous treatment effects. The idea is
to formulate heterogeneity as a variable selection problem in randomized experiments
or observational studies with the unconfoundedness assumption. Athey and Imbens
(2016) also focus on randomized experiments or observational studies with uncon-
foundedness, but use what they call honest regression trees to find heterogeneity in the
treatment effect. The honest approach means that independent samples are used for
growing the tree and estimating the average treatment effect in the resulting leaves.
This ensures that traditional confidence intervals constructed for the estimates have
the proper coverage rate. Bargagli and Gnecco (2020) follow the Athey and Imbens
(2016) approach and extend it with instrumental variable setting to estimate condi-
tional local average treatment effects (CLATE). Finally, the rest of the aforementioned
papers and references therein go beyond regression trees4 and use random forests or
other machine learning methods to estimate conditional treatment effects in settings
i), ii) and iii).5 As these methods are already developed, one may argue that CATE
function in RD can be estimated by using these causal supervised machine learning
methods. However, these methods require some restrictive and unnecessary assump-
tions when identifying the ATE parameter. For example, in observational studies with
unconfoundedness, it is impossible to construct a treatment-control contrast, without
overlap. The lack of overlap causes the propensity score to take either the value of 1
or 0. This is indeed a problem as in many causal supervised machine learning meth-
ods this is typically excluded by assumption. E.g., for the propensity score weighted
outcomes to make the transformation possible, one needs to assume that the propen-
sity score values are away from the boundaries. Another caveat is that these methods

3There is another, distinct, strand of the broader causal inference literature where ML techniques are
used for estimating high-dimensional nuisance parameters, while the parameter of interest is still the
average treatment effect or a reduced dimensional version of CATE. See e.g., Chernozhukov et al. (2018),
Semenova and Chernozhukov (2020) or Fan et al. (2020).

4Let me note here that in this paper I discuss building only one tree, which is known to be less stable
in case of variables are (highly) correlated with each other. Extension to forest methods would generate
a more robust estimator from this perspective. This extension is left for future research.

5Wager and Athey (2018), introduces causal (random) forests and shows that using honest trees to
construct the forest, yields asymptotic normality for the conditional treatment effect estimator. They im-
plement their theoretical results for causal forests in randomized experiments or observational studies
with unconfoundedness. Friedberg et al. (2020) uses ‘generalized random forests’ as an adaptive weight-
ing function to express heterogeneity. Friedberg et al. (2020) improves the asymptotic rates of conver-
gence for generalized random forests with smooth signals by using local linear regressions, where the
weights are given by the forests. Their method applies to randomized experiments and shows an appli-
cation with observational study with unconfoundedness assumption. Knaus (2021) synthesize different
methods using double machine learning with a focus on program evaluation under unconfoundedness
assumption. He also proposes a normalized DR-learner to estimate individual average treatment effects.
Knaus et al. (2021) provide a great overview about the Empirical Monte Carlo Study performances of
the different machine learning methods, which are available and used in practice.
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assume that the unobservable factors must be the same for treated and control units
for every value of the running variable, thus the treated and control conditional ex-
pectation functions (CEFs) are on top of each other. In contrast, RD only assumes
continuity for CEFs around the threshold, and CEFs can be anything away from the
cutoff. An other approach is to use instrumental variables which relaxes the assump-
tion of unobservable factors to be the same for both treated and control groups by using
instruments. With introducing instrument(s) the core assumption is the exclusion re-
striction, thus instrumental variables enter only to the selection equation, but not the
outcome equation, and are uncorrelated with the unobservables. Usually, it is hard to
find such variable(s) in the context of RD. Furthermore, when the instrument is binary
the ATE or CATE can be identified without further assumption. However, if this is not
the case one needs to use the “identification at infinity” assumption. In contrast, with
classical RD design, the researcher can avoid taking such strong assumption(s) while
relying on the observed running variable and the continuity assumptions. For a more
detailed discussion on how to estimate ATE with different types of models, see (Lee
and Lemieux, 2010) Section 3.5.
Finally, let me mention two closely related papers, which work out a general frame-
work for estimating heterogeneous treatment effects. (Athey et al., 2019) generalize
the method of random forests and offer a method, based on local moment conditions
to estimate the parameter of interest. In their paper, they work out local moment con-
ditions for nonparametric quantile regression, conditional average partial effect esti-
mation, and heterogeneous treatment effect estimation via instrumental variables, but
do not account for regression discontinuity designs. From their perspective, this paper
is a special case of their general method, tailored for RD. The other paper is a working
paper by (Nekipelov et al., 2019), which uses moment based models when constructing
trees, called “moment forest”. They use regression discontinuity design as an applica-
tion for their method, where they make some strong assumptions on the functional
form of conditional expectation functions, when estimating the CATE function, that I
do not impose in this paper.

I contribute to the causal machine learning literature by introducing a specialized
machine learning method to search for and estimate conditional average treatment ef-
fects in an RD setup. Following Athey and Imbens (2016) I capture heterogeneity by
building an honest “regression discontinuity tree”, where each leaf of the tree con-
tains a parametric RD regression (to be estimated over an independent sample) rather
than a simple difference between two means.6 Similarly, an expected mean squared
error criterion used to build the tree is modified appropriately to account for the more
complicated statistic to be computed within each candidate leaf. Furthermore, the tree
building algorithm also needs modifications to accommodate RD estimation and the
new criterion. From a strictly technical standpoint, these are the main contributions of
the paper. With the proposed algorithm, one can achieve unbiased estimates for the

6My future research agenda includes allowing for nonparametric RD estimation where the search for
heterogeneity and the choice of the appropriate bandwidth is handled simultaneously.
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group-level (conditional) average treatment effects and their variance.
I present Monte Carlo simulations to demonstrate that the algorithm successfully

discovers and estimates heterogeneity in a variety of settings — at least with suit-
ably large samples. In addition, I use the well-known and investigated dataset of
Pop-Eleches and Urquiola (2013) on the Romanian school system. Pop-Eleches and
Urquiola (2013) study the average treatment effect on Baccalaureate examination out-
comes of going to a better school, and undertake some additional ad-hoc heterogeneity
analysis. Hsu and Shen (2019) use their proposed test and show some evidence on the
heterogeneity in the treatment effect without identifying the sources of the heterogene-
ity. I show that using the algorithm I can refine their results, discovering important
treatment heterogeneity along with the level of school average transition scores7 and
number of schools in town. The algorithm reveals groups that have different treat-
ment effects, but were missed by Pop-Eleches and Urquiola (2013). Furthermore, with
a more extensive survey dataset with many socio-economic variables (but with fewer
observations), I find that the estimated intention-to-treat effect varies among other co-
variates with having internet access at home, gender of the student, the education of
the mother, and the proportion of novice teachers in school.

The paper is organized as follows. Section 1.2 introduces the concept of a sharp RD,
a regression tree, and defines the conditional average treatment effect for the regression
discontinuity tree. Section 1.3 develops the honest criterion for RD trees, which gov-
erns the discovery of the partitions. It also overviews the specifics of the algorithm for
RD trees along with some practical guidance on bandwidth and order of polynomial
selection. Section 1.4 shows the Monte Carlo simulation results with sharp regression
discontinuity design for linear and nonlinear in running variable cases. Section 1.5
demonstrates the usefulness of the algorithm on datasets, collected by Pop-Eleches
and Urquiola (2013). Section 1.6 extends the method to fuzzy RD designs. Section 1.7
concludes.

1.2 Regression Discontinuity Tree
With classical regression discontinuity design, researchers are interested in the causal
effect of a binary treatment. Let Y(1) denote the potential outcome, when a unit gets
the treatment and Y(0) if no treatment takes place. The observed outcome correspond-
ing to the actual treatment status can be written as

Y = Y(D) =

Y(0), if D = 0,

Y(1), if D = 1 .

7This is the average score within schools for incoming students. The transition score is calculated
based on students performance on the national test(s) and by their previous grades during classes 5-8.
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Treatment assignment in sharp RD8 is a deterministic function of a scalar variable,
called the running variable, which is denoted by X. This paper considers the standard
case, in which the treatment D is determined solely by whether the value of the run-
ning variable is above or below a fixed and known threshold c :

D = 1c(x) = 1[c,∞)(x)

1 , if x ≥ c

0 , otherwise

Treatment heterogeneity comes in the form of additional characteristics. Let Z be a
set of K random variables referring to the possible sources of heterogeneity. Z are pre-
treatment variables, therefore they must not have any effect on the value of the running
variable. Following the machine learning terminology, call these variables features.
This paper proposes a method to estimate, or in some cases approximate, the condi-
tional average treatment effect function given by

τ(z) = E [Y(1)−Y(0)|X = c, Z = z] (1.1)

This function can be continuous, discrete or a mixture in Z. The proposed regression
tree algorithm does not allow for such flexibility in each case, but gives a step-function
approximation, when this CATE function is continuous in z. I will now introduce the
basics of regression trees.

1.2.1 CATE in regression discontinuity tree
Regression trees – sometimes referred to as a partitioning scheme – allows one to
construct a simple, intuitive and easy-to-interpret step-function approximation to the
CATE. A tree Π corresponds to a partitioning of the feature space. Partitioning is car-
ried out by recursive binary splitting: 1) Split the sample into two sub-samples along
one feature with a split value. If a unit has a larger value for the selected feature than
the split value, then it goes to the first sub-sample, otherwise to the second sub-sample.
2) If needed, one repeats the split, but now one considers the already split sub-samples
for the next split. This way the feature space is partitioned into mutually exclusive
rectangular regions. These final regions are called ‘leaves’ or ‘partitions’, denoted by `j.
A regression tree, Π has #Π leaves, j = 1, . . . , #Π, whose union gives back the complete
feature space Z.

Π = {`1, . . . , `j, . . . , `#(Π)}, with
#Π⋃
j=1

`j = Z

For illustrative purposes, consider only two features Z1 and Z2. Figure 1.1 shows three
different trees with two representations.

8For fuzzy design, see Section 1.6
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(1) (2)

Partitioning Tree structure

Z1

Z
2 `0

`0 = Z

a) Π0: homogeneous treatment effect, no partitioning

Z1

Z
2

t1

`1 `2

Z

Z1 > t1

`2

Z1 ≤ t1

`1

b) Π1: two leaves, two treatment effects

Z1

Z
2

t1

`1

t2

`2 t3

`3

t4

`4 `5

Z

Z2 > t1

Z1 > t2

Z2 > t3

Z1 > t4
`5

Z1 ≤ t4
`4

Z2 ≤ t3
`3

Z1 ≤ t2
`2

Z2 ≤ t1
`1

c) Π2: five leaves, five treatment effects

Figure 1.1: Different trees and their conditional average treatment effects

Column (1) shows the partitioning scheme: how the different partitions (or leaves)
are split along the two features. Column (2) shows the tree structure: an intuitive
interpretation using yes or no decisions, depending on the feature values and on the
splitting values. Figure 1.1a) shows a tree, where there is only one leaf `0 containing all
the units. This tree corresponds to a homogeneous treatment effect: no matter which
value Z1 or Z2 takes, the treatment effect is always the same. In this case the conditional
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average treatment effect is the same as the simple average treatment effect. Figure
1.1b) has two leaves: `1 and `2 resulting in two different treatment effects. Leaf `1

contains values with Z1 ≤ t1 and `2 contains Z1 > t1, where t1 is the splitting value.
Note that Z2 does not affect the partitioning and irrelevant with respect to treatment
heterogeneity. Finally Figure 1.1c) shows a tree with five different leaves, resulting in
five different treatment effects depending on both Z1 and Z2. In this case if one wants
to find the treatment effect for a unit with Z1 = z1 and Z2 = z2, one needs to go
through the decisions given by the tree. Example: z1 > t3 and t2 < z2 ≤ t4, corresponds
to leaf `4. Note that the splitting values must satisfy t3 > t1, t1, t3 ∈ Supp(Z1) and
t2, t4 ∈ Supp(Z2).

Recursive splitting provides rectangular regions for the different treatment effects,
but never a continuous function. In case of a continuous CATE a simple tree offers
only a step-function approximation. However, the tree structure ensures an intuitive
decision-based interpretation for the treatment effects. Until Section 1.3, let us assume
that the (true) tree Π is given. Using this known tree, the average treatment effect for
leaf `j is defined as

τj = E
[
Y(1)−Y(0)|X = c, Z ∈ `j(Π)

]
(1.2)

To state the regression discontinuity tree approximation to the whole CATE function,
let me introduce the indicator function for leaf `j.

1`j(z; Π) =

1 , if z ∈ `j(Π)

0 , otherwise

The approximated conditional average treatment effect function provided by the re-
gression discontinuity tree is given by

τ(z; Π) =
#Π

∑
j=1

τj1`j(z; Π) (1.3)

This CATE function – which incorporates the tree structure – links the treat-
ment effects for each individual leaf. As the leaves represent rectangular parti-
tions, this function is a step-function approximation to the continuous CATE func-
tion. By the law of iterated expectation, this approximation has the property of
E
[
τ(Z)

∣∣ 1{c}(X),1`1(Z), . . . ,1`#Π(Z)
]
= τ(Z; Π). This means that at the threshold

value (X = c) with the given tree structure, the expected value of the continuous
CATE function over the leaves, is equal to the step-approximated CATE.

1.2.2 Identification of CATE in the sharp RD
To identify the conditional average treatment effect function for trees in sharp RD, the
following assumptions are needed:
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Identification assumptions

i) E
[
Y(1)|X = x, Z ∈ `j(Π)

]
and E

[
Y(0)|X = x, Z ∈ `j(Π)

]
, exists and continu-

ous at x = c for all leaves in the tree.

ii) Let f j(x) denote the conditional density of x in leaf j. In each leaf j, c is an interior
point of the support of f j(x).

Assumption i) states that the expected value of the potential outcomes conditional on
the running variable in each leaf exists and continuous. It is required to identify the
average treatment effects for all leaves. This assumption is similar to the classical RD
assumption (see e.g., Imbens and Lemieux (2008)), but somewhat stronger, due to ex-
tension to the tree.9 Assumption ii) ensures that the density for the running variable
is well behaved: it has positive probability below or above the threshold value within
each leaf. This excludes cases when there are no values of the running variable on
both sides of the threshold in a given leaf. Finally, in the RD literature it is common to
require the continuity of the conditional distribution functions – in this case it extends
to f j(x) to be continuous in x 10 – which is an implication of “no precise control over the
running variable” (see e.g., Lee and Lemieux (2010)). In case, when local randomization
around the threshold holds, the algorithm does not need this assumption. 11

9But less restrictive if one assumes continuity in Z = z as in e.g., Hsu and Shen (2019).
10One need to use the Bayes’ Rule to show this, along with assumption i)
11Note: Although the used conditional average treatment effect function here is a step-function ap-

proximation, it can be a building block of a causal forest for sharp RD, which produces continuous
condition average treatment effect. In this case one needs further modification on the assumption for
the conditional expectation and densities. Causal forests for RD is out of the scope of this current paper.
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If these assumptions hold, the (step-function approximated) conditional average treat-
ment effect given by a regression discontinuity tree is identified as

τ(z; Π) =
#Π

∑
j=1

τj1`j(z; Π)

=
#Π

∑
j=1

{
E
[
Y(1)|X = c, Z ∈ `j(Π)

]
−E

[
Y(0)|X = c, Z ∈ `j(Π)

]}
1`j(z; Π)

=
#Π

∑
j=1

{
lim
x↓c

E
[
Y(1)|X = x, Z ∈ `j(Π)

]
− lim

x↑c
E
[
Y(1)|X = x, Z ∈ `j(Π)

]}
1`j(z; Π)

= µ+(c, z; Π)− µ−(c, z; Π)
(1.4)

where

µ+(x, z; Π) =
#Π

∑
j=1

E
[
Y(1)|X = x, Z ∈ `j(Π)

]
1`j(z; Π)

µ−(x, z; Π) =
#Π

∑
j=1

E
[
Y(0)|X = x, Z ∈ `j(Π)

]
1`j(z; Π)

(1.5)

refers to the conditional expectation function for (µ+) above the threshold (treated) and
(µ−) below the threshold (untreated) units. That is, each τj is identified within its leaf
in the usual way.

1.2.3 Interpretation of the estimand conditional on (un)observables
The conditional average treatment effect estimand in regression discontinuity designs
is not as straightforward as in experimental designs or observational studies with the
unconfoundedness assumption. To interpret the estimand, let me formalize the indi-
vidual treatment effect as in (Lee and Lemieux, 2010),

Y(1) = Y(0) + τ(Z, U)

where Z are the known observed covariates and U is unobserved heterogeneity in the
individual treatment effect. In classical sharp RD setup12, τ(Z, U) does not depend
directly on the running variable X. Here, I will consider this simple case. Note that X,
Z and U can be correlated in this setup, thus individuals with characteristics of Z and
U can have typical X values, but X does not directly influence the magnitude of the
treatment effect.
Naturally, individual treatment effects can not be observed as one can not assign the
same unit to be treated and non-treated at the same time. Instead, one can identify a
type of conditional average treatment effect , where Z and X are fixed and U is aver-

12Simple assignment rule: X ≥ c, the individual gets the treatment, otherwise not.
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aged out:

τ(z) = E [τ(Z, U) | X = c, Z = z] = E [Y(1)−Y(0) | X = c, Z = z] .

For purposes of interpretation, I consider the case when Z and U are discrete, but a
similar argument applies to the continuous case. First, focus on the general case when
no tree structure is used. CATE is identified through

τ(z) = lim
x↓c

E [Y | X = x, Z = z]− lim
x↑c

E [Y | X = x, Z = z] .

For the identifying equality to hold, the following extension of standard continuity
conditions must hold:

i) E [Y(1)|X = x, Z = z] and E [Y(0)|X = x, Z = z], exists and continuous at x = c.

ii) Let f (x | Z = z) denote the conditional density of x given Z = z. For each value
of z ∈ Supp(Z), c is an interior point of the support f (x | Z = z).

Under these conditions, the CATE function is equal to,

E [Y(1)−Y(0) | X = c, Z = z] = E [τ(Z, U) | X = c, Z = z]

= ∑
u

τ(z, u)P [U = u | X = c, Z = z]

= ∑
u

τ(z, u)
f (c | U = u, Z = z)

f (c | Z = z)
P [U = u | Z = z]

where P [· | ·] denotes conditional probability and f (· | ·) denotes conditional density
function. This formula is the exact analog of equation (5) in (Lee and Lemieux, 2010).

Thus, the CATE function is a particular kind of average treatment effect across in-
dividuals with covariate values Z = z. If the term f (c|U = u, Z = z)/ f (c | Z = z)
were equal to 1, it would be the treatment effect for individuals with observed Z = z
averaged over the unobserved U = u values. This is the case if the unobserved het-
erogeneity U is independent of the running variable X conditional on the covariates
Z. More generally, the presence of the ratio f (c|U = u, Z = z)/ f (c | Z = z) implies
the regression discontinuity estimand is instead a weighted average treatment effect.
Within the subgroup Z = z, the weight is larger for individuals whose X value is ex-
ante more likely to be close to the threshold c based on their unobserved characteristics.
The weights may be relatively similar across individuals, in which case the individual
treatment effects would be closer to the CATE but, if the weights are highly varied and
also related to the magnitude of the treatment effect, then the individualized treatment
effects would be very different from the CATE. However, the weights across individu-
als is ultimately unknown, since we do not observe U. Thus, it is not possible to know
how close the individualized treatment effects are to the CATE and it remains the case
that the treatment effect estimated using an RD design is averaged over a larger popu-
lation than one would have anticipated from a purely “cutoff” interpretation.

11

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

Finally, let me discuss the impact of using a regression tree representation in the
interpretation of the CATE function. Following equation (1.2) from the paper, the leaf-
by-leaf treatment effect can be similarly decomposed as

τj = E
[
Y(1)−Y(0) | X = c, Z ∈ `j

]
= E

[
τ(Z, U) | X = c, Z ∈ `j

]
= ∑

z,u
τ(z, u)P

[
Z = z, U = z | X = c, Z ∈ `j

]
= ∑

z∈`j,u
τ(z, u)

f (c | Z = z, U = u, Z ∈ `j)

f (c | Z ∈ `j)
P
[
Z = z, U = u | Z ∈ `j

]
.

The interpretation remains similar, but with tree structure one needs to average over
not only the unobserved characteristics (U = u), but over the observed characteristics
within each leaf j as well.

Remarks:

i) If there is no unobserved heterogeneity in the treatment effect (τ(Z, U) = τ(Z))
then in the continuous case one can estimate the individualized treatment effects.
With tree structure, weights are still present as the conditional densities are not
necessarily same within leaf j for each values of z.

ii) In case the tree specification is correct in the sense that
E [τ(Z, U) | X = c, Z = z] = E

[
τ(Z, U) | X = c, Z ∈ `j

]
, then the interpre-

tation is the same as if τ(Z, U) would be continuous in Z.

iii) If the tree is correctly specified and there is no unobserved heterogeneity in the
treatment effect then the CATE via tree structure is the same as the individualized
treatment effect.

1.2.4 Parametrization and estimation
The paper assumes q-th order polynomial functional form in X for each leaf to iden-
tify τj. Each conditional expectation function – E

[
Y(d)|X = x, Z ∈ `j(Π)

]
, d ∈ {0, 1} –

is given by a q-th order polynomial, which ensures a flexible functional form. 13 To for-
malize the parametrization of the conditional expectation function given by equation
(1.5) first adjust X by c, and let X be the (q + 1)× 1 vector

X =
[
1, (X− c), (X− c)2, . . . , (X− c)q

]′
13Nonparametric estimations such as local polynomial regression is not considered in this paper –

mainly because of optimal criterion for growing a tree is more cumbersome in the presence of potentially
multiple bandwidth – however in case of strong non-linearity in X, I recommend to use a restricted
sample using a bandwidth (e.g., proposed by Imbens and Kalyanaraman (2012)), which is estimated on
the whole sample.
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For a given Π, one can then write

µ+(x, z; Π) = X ′
#Π

∑
j=1
1`j(z; Π)δ+

j , µ−(x, z; Π) = X ′
#Π

∑
j=1
1`j(z; Π)δ−j

where, δ+
j =

[
α+j , β+

1 , β+
2 , . . . , β+

q

]′
and δ−j =

[
α−j , β−1 , β−2 , . . . , β−q

]′
are a (q + 1) × 1

parameter vectors14 and depends on the partitioning. Note that this definition allows
for each leaf (thus group) to have different functional forms in X.

To estimate τ(z; Π) consider a sample S , consisting of independent and identically
distributed observations (Yi, Xi, Zi) ; i = 1, . . . , N. The paper employs leaf-by-leaf esti-
mation for the parameter vectors δ+

j and δ−j , using least squares.15 The estimator for
the parameters are given by

δ̂+
j = arg min

δ+
j

∑
i∈S

{
1c(Xi)1`j(Zi; Π)

(
Yi − X ′i δ

+
j

)2
}

δ̂−j = arg min
δ−j

∑
i∈S

{
[1− 1c(Xi)]1`j(Zi; Π)

(
Yi − X ′i δ

−
j

)2
}

, ∀j

Using these parameter vectors and the identification equation for CATE (equation 1.4),
the least squares estimator for conditional average treatment effect for regression dis-
continuity tree is given by,

τ̂(z; Π,S) = µ̂+(c, z; Π,S)− µ̂−(c, z; Π,S) =
#Π

∑
j=1
1`j(z; Π)

(
α̂+,j − α̂−,j

)
Remark: The sample S is highlighted in this notation, due to later purposes to differen-
tiate between estimates using different samples. Subscript i always refers to observa-
tions from sample S , j index represents leaf j from tree Π and subscripts +/− stands
for above or below the threshold.

1.3 Discovering regression discontinuity tree
In this section, the assumption of a known tree is gradually relaxed. I approach this
problem in three steps. Firstly, I introduce different distinct samples which are neces-
sary to obtain an unbiased estimator of the CATE function, when using the regression
tree algorithm. Here, I sketch some properties of the algorithm, which is detailed in

14For RD the main parameter of interest is α±j . β± should also be β1, j±, but I neglect j subscript for
convenience.

15This method has the advantage of relative fast estimation. Computationally it is much more com-
pelling than the two other alternatives: 1) joint estimation of the whole tree and 2) also include in one
regression the treated and non-treated units. Although, these methods use milder assumptions during
the search for proper tree, but when estimating with these setups there is a need for inverting large
sparse matrices (interactions of 1`j

(z; Π)X ′), which can lead to computationally expensive methods and
non-precise estimates.
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the last step. Secondly, I analyse the criterion, which compares different trees. At this
stage I assume that these different trees are exogeneously given. Finally, I show how
the optimal tree is found by the regression tree algorithm, using the different samples
and the proposed criterion.

1.3.1 Distinction of samples
An inherent problem of using only one sample for finding relevant sub-groups and
estimating treatment effects is that it results in incorrect inference if there is no adjust-
ment for multiple testing. (see, e.g., Romano and Shaikh, 2010 or Anderson, 2008)

Although regression tree algorithm controls for over-fitting in some way – as I will
discuss in Section 1.3.3 – the estimate is biased in finite samples and disappears only
slowly as the sample size grows. Athey and Imbens (2016) proposes ‘honest regression
tree’ approach to eliminate the bias from the estimated conditional average treatment
effects in experimental settings or observational studies with the unconfoundedness
assumption. By their definition, a regression tree is called ‘honest’ if it does not use
the same information for growing the candidate trees as for estimating the parameters
of that tree. This requires using two independent samples. The ‘test sample’ (S te) is
used for evaluating the candidate trees and the ‘estimation sample’ (S est) for estimating
the treatment effects. These samples are also used to derive and analyse the honest
criterion for the regression discontinuity tree. In Section 1.3.3 I elaborate further on
how the samples are used when growing a tree. Honesty has the implication that the
asymptotic properties of treatment effect estimates within the partitions are the same
as if the partition had been exogeneously given, thus biases are eliminated and one
can conduct inference in the usual way. The cost of the honest approach is the loss in
precision – less observation used – due to sample splitting (Athey and Imbens, 2016, p.
7353-7354).16

1.3.2 Criterion for RD tree
A natural – but in-feasible criterion – for evaluating the regression discontinuity tree
would be minimizing the mean squared error of the estimated CATE on the test sam-
ple. Let a partition (Π) be exogeneously given. The CATE function (τ̂(Zi; Π,S est)) is
estimated on S est and evaluated on S te. The in-feasible MSE criterion is

MSEτ(S te,S est, Π) =
1

Nte ∑
i∈S te

{[
τ(Zi)− τ̂(Zi; Π,S est)

]2 − τ2(Zi)
}

(1.6)

where Nte is the number of observations in the test sample. Note, in this formulation,
there is an extra adjustment term, τ2(Zi) – a scalar, independent of Π. Thus, it does not
have any effect on the results, but it facilitates theoretical derivations. Furthermore, let

16With the honest approach one does not need to place any external restrictions on how the tree is
constructed. In the literature, there are other papers, which use additional assumptions to get valid
inference, which is also a possible - but in my opinion a more restrictive approach. An example is Imai
et al. (2013), who use ‘sparsity’ condition: only few features affect the outcomes.
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me emphasize that this in-feasible criterion utilizes both the estimation sample and the
test sample in a way that observations are needed to be known for both samples.

Calculating this criterion for different exogeneously given trees, would allow one
to find the tree, whose deviation from the true CATE function is the smallest in the test
sample. The problem is that, τ(·) is unknown, thus this criterion is in-feasible. Instead
– following Athey and Imbens (2016) – I minimize the expected MSE over the test and
estimation samples. This formulation has two advantages: i) it gives the best fitting
tree for the expected test and estimation sample. This is favourable, because when the
tree is grown, both of these samples are locked away from the algorithm (see Section
1.3.3). ii) using this formulation, an estimable criterion can be derived for comparing
trees in practice. The expected MSE criterion is given by

EMSEτ(Π) = ES te,S est
[
MSEτ(S te,S est, Π)

]
(1.7)

This paper advocates trees (Π), which gives the smallest EMSEτ value from all the
candidate trees. Based on Athey and Imbens (2016), this EMSE criterion can be decom-
posed into two terms,17 which helps to evaluate why this criterion offers a good choice
for selecting a tree.

EMSEτ(Π) = EZi

{
VS est

[
τ̂(z; Π,S est)

] ∣∣
z=Zi

}
−EZi

[
τ2(Zi; Π)

]
(1.8)

This formulation highlights the trade-off between finding new different treatment ef-
fects – hence larger trees – and minimizing the variance of the estimated treatment ef-
fects. The expected value18 of the squared CATE (EZi

[
τ2(Zi; Π)

]
) prefers trees which

are larger, as the expected squared treatment effects grows as there are more leaves (or
groups). On the other hand any estimator for this term is increasing in the number of
splits, which leads to select trees, that are too large, i.e. where the treatment effects are
in fact the same in different leaves. This is called over-fitting the true tree. The first
term, the expected value of the treatment effect variances, explicitly incorporates the
fact that finer partitions generate greater variance in leaf estimates in finite samples.
Therefore it prefers smaller trees, where the average variance of the estimated treat-
ment effects are lower. Through this channel, this term offsets the over-fitting caused
by the expected value of the squared treatments. Note that, the expected variance term
may select larger trees if leaves (or groups) have the same treatment effect, but have
lower expected variances.

A technical contribution of this paper is to provide estimators for the expected treat-
ment variances and the expected squared treatment effects in the regression disconti-

17See the detailed derivations in Appendix A.1. To derive estimable EMSE criterion, the assumption
of S est and S te being independent from each other is key.

18Zi refers to features from S te.
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nuity setup. Here I only present the results, refer to Appendix A.2 for the derivations.19

In order to analyse the proposed estimator, let me first introduce the following expres-
sions. Write the model as

Yi = 1c(Xi)µ+(Xi, Zi; Π) + (1− 1c(Xi))µ−(Xi, Zi; Π) + εi

where εi is the idiosyncratic disturbance term. Furthermore, let

σ̂2
+,j =

1
Nte
+,j − q− 1 ∑

i∈S te

[
1c(Xi)1`j(Zi; Π)ε̂i

]2
,

σ̂2
−,j =

1
Nte
−,j − q− 1 ∑

i∈S te

[
{1− 1c(Xi)}1`j(Zi; Π)ε̂i

]2

be the within leaf variance estimators for the disturbance terms in leaf j with Nte
+,j, Nte

−,j
number of observations within the same leaf for above and below the threshold respec-
tively. ε̂i are the OLS residuals. For simplicity, I assume same finite variance within the
leaves, when deriving these estimators.20 (See Appendix A.4 for extensions, which re-
lax the finite variance assumption.) Furthermore, let the cross-product of the running
variable above and below the threshold for leaf j be

M+,j =
1

Nte
+,j

∑
i∈S te

(
XiXi1`j(Zi; Π)1c(Xi)

)
,

M−,j =
1

Nte
−,j

∑
i∈S te

(
XiXi1`j(Zi; Π)(1− 1c(Xi))

)
.

Using these quantities, one can derive specifically scaled variance estimators for the
parameter vectors in leaf j:

V
[
δ̂+j

]
=

σ̂2
+,jM̂

−1
+,j

pest
+,j

, V
[
δ̂−j

]
=

σ̂2
−,jM̂

−1
−,j

pest
−,j

where pest
+,j and pest

−,j are the share of units above and below the threshold in the estima-
tion sample within leaf j. (Specific scaling is explained in Remarks ii-iii), see below.)

Estimator for the expected variance of the treatment effects can be derived as an

19For the derivations I have used two further simplifying assumptions: i) the share of observations
within each leaf – number of observations within the leaf compared to the number of observations in
the sample – are the same for the estimation and test sample. ii) the share of units below and above
the threshold within each leaf are the same for the estimation and test sample. Asymptotically both
assumptions are true.

20Also called homoscedastic errors within each leaf – which refers to the variances of the errors within
the leaves being the same. Note: that this only assumed for within leaves and not for the whole partition,
thus disturbance terms for all leaves (εi) does not need to be homoscedastic.
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average of these variance estimators,

ÊZi

{
V̂S est

[
τ̂(z; Π,S est)

] ∣∣
z=Zi

}
=

1
Nest

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}
(1.9)

where e1 = [1, 0 . . . , 0] is a 1× (q + 1) selector-vector to choose the variances of the
intercepts referring to the treatment effect.21 Nest is the number of observations in the
estimation sample, which is a result from the derivations (see Appendix A.2.1).

Remarks:

i) Although the variance of the treatment effects refers to the estimation sample,
σ̂2
±,j, M−1

±,j , ∀j are calculated using only observations from the test sample. This is
possible, as the estimation and the test samples are independent from each other,
therefore the asymptotic estimators for these quantities are the same.

ii) To adjust the variance estimator in finite samples for the estimation sample, one
only needs to use limited information from the estimation sample, namely the
share of observations above and below the threshold (pest

+,j, pest
−,j).

iii) Using the leaf shares instead of the number of observations for above and below
the threshold is possible, as the variance of the treatment effect estimators are the
same for each observation within the leaf, therefore one can use summation over
the leaves (j = 1, . . . , #Π) instead of individual observations.

The estimator for the expected value of the squared true CATE (second part of equa-
tion 1.8), uses the squared of estimated CATE and corrects the resulting bias with the
variance. The estimator uses only the test sample, apart from weights in the variance
estimator.22

ÊZi

[
τ2(Zi; Π)

]
=

1
Nte ∑

i∈S te

τ̂2(Zi; Π,S te)− 1
Nte

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}
(1.10)

The averaged squared treatment estimator prefers trees with many leaves. It is the
sample analogue for finding groups with different treatment effects. This term always
increases as the number of leaves increases, while the average of the sum of squared
treatment effects for two (or more) groups is always greater than the average of the
sum of one averaged squared treatment effect. The second part is similar to the de-
rived expected variance, but here the scaling for the average (Nte) comes from the
test sample, as the estimator refers to the expected value over the test sample.23 The

21In case of kink designs, the selector vector would choose the appropriate order of polynomial.
22See the derivations in Appendix A.2.2.
23An alternative estimator would be using the estimation sample only. However, my goal is to con-

struct an EMSE estimator, which uses only the test sample’s observation and only some additional infor-
mation from the estimation sample, to ensure that during the tree building phase the estimation sample
is locked away to get valid inference.
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weights of pest
+,j and pest

−,j comes from the estimation sample and they help the algorithm
to avoid sample specific splits – see the discussion in Section 1.3.3.
Putting together the two estimators one gets the following estimable EMSE criterion
for regression discontinuity trees:

ÊMSEτ(S te,S est, Π) =− 1
Nte ∑

i∈S te

τ̂2(Zi; Π,S te)

+

(
1

Nte +
1

Nest

) #Π

∑
j=1

e′1


(

σ̂2
+,jM̂

−1
+,j

)
pest
+,j

+

(
σ̂2
−,jM̂

−1
−,j

)
pest
−,j

 e1


(1.11)

Minimizing this criterion leads to trees, where i) there is a strong evidence for hetero-
geneity in the treatment effects for different groups; and ii) penalize a partition that
creates variance in leaf estimates. Furthermore, this criterion encourages partitions,
where the variance of a treatment effect estimator is lower, even if the leaves have the
same average treatment effect, thus finds features, which affect the mean outcome, but
not the treatment effects itself.
Finally, let me compare the estimator for EMSE criterion and the initial in-feasible MSE
criterion. As the in-feasible MSE criterion uses the estimation sample to get an esti-
mator for the CATE function and then evaluates it on the test sample, the estimator
for EMSE criterion uses the observations from the test sample and only scales it with
the number of observations (Nest) and share of units below and above the threshold
for each leaf (pest

±,j) from the estimation sample. This means there is only a limited in-
formation needed from the estimation sample to calculate the EMSE criterion, but not
individual observations. This property enables that the observation values from the
estimation sample are locked away for the algorithm, when searching for an optimal
tree.

1.3.3 Finding EMSE optimal RD tree
Unit now, I have compared different, already given partitions using the proposed cri-
terion. In this sub-section, I introduce the basic notations and steps to grow the EMSE
optimal regression discontinuity tree, following the literature on classification and re-
gression trees (CART) and honest causal regression trees. For more detailed descrip-
tion see, Breiman et al. (1984), Ripley (1996) or Hastie et al. (2011) on CART algorithms
and Athey and Imbens (2015, 2016) on honest causal tree algorithm.

Finding the EMSE optimal honest RD tree has four distinct stages:

1. Split the sample into two independent parts.

2. Grow a large tree on the first sample.

3. Prune this large tree to control for over-fitting. This is carried out by cross-
validation and it results in an EMSE optimal tree.
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4. Use this EMSE optimal tree to estimate the CATE function on the independent
estimation sample.

In the first stage ‘honest’ approach randomly assigns the initial sample into two samples
to achieve an unbiased CATE estimator. The first sample is called the ‘training sample’
(S tr) and its observations are used to grow trees. The second, ‘estimation sample’ has a
special role. In general, it is locked away from the algorithm, but information on the
number of observations is utilized during the tree building phase to control for finding
training sample specific patterns. Observation values from the estimation sample are
not used until the last stage. This division ensures valid inference for the CATE func-
tion in the fourth step. Figure 1.2 shows these two samples, which are used to grow a
large tree and providing valid inference.

S total

S tr S est

Figure 1.2: At stage 2, S tr is used to grow large tree
(
Π̂large)

In the second stage, a large tree is grown using all the observations from the train-
ing sample. The algorithm recursively partitions the training sample along with
the features. For each leaf the method evaluates all candidate features and their
possible splits inducing alternative partitions, with the ‘honest in-sample criterion’:
ÊMSEτ(S tr,S est, Π). This criterion uses additional information from the estimation
sample. The treatment effects and the variances are estimated on the training sample
only, but they are adjusted with the number of observations (Nest) and share of treated
and non-treated units within each leaf from the estimation sample (pest

±,j). Nest adjusts
for the sample shares (how the initial sample is divided into two parts). This does not
have a large impact on the in-sample criterion as the value is given by the first step and
does not change during the partitioning. Using pest

±,j instead of ptr
±,j has larger impli-

cation in finite samples. It prevents the algorithm to choose such feature and splitting
value, which is only specific to the training sample. After the split is done, the algo-
rithm iterates the procedure on the newly created leaves. The process repeats itself and
stops if the in-sample-criterion does not decrease any further or the magnitude of the
reduction is smaller than a pre-set parameter.24 With this method, one gets a large tree(
Π̂large).

24The algorithm accepts splits, where the in-sample-criterion decreases compare to a tree without the
split. It is possible to specify a minimum amount of reduction in the in-sample-criterion, which by
default is set to zero. Furthermore, the algorithm considers a split valid if the number of observations
within the leaves is more than a pre-set value (typically 50 observations) for both the treated and control
group. Finally, there are additional (optional) stopping rules implemented such as the maximum depth
of the tree, the maximum number of leaves, the maximum number of nodes, or the maximum number
of iteration.
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The resulting large tree is prone to over-fitting as ÊMSEτ(S tr,S est, Π) is not unbiased
when one uses it repeatedly to evaluate splits on the training data. The bias comes
from the fact that after the training sample has been divided once, the sample variance
of observations in the training data within a given leaf is on average lower than the
sample variance would be in a new, independent sample. This leads to finding fea-
tures relevant, which are in fact irrelevant to the true CATE function. Thus using only
ÊMSEτ(S tr,S est, Π) is likely to overstate the goodness of fit as one grows deeper and
deeper tree.
To solve for the over-fitting – in the third stage – cross-validation is used. The idea is
to split the training sample into two further parts: a sample where the tree is indepen-
dently grown S (tr,tr) and to a test sample S (tr,te) where the EMSE criterion can be safely
evaluated. This ensures that the tree grown on S (tr,tr) is exogenous for S (tr,te), thus the
estimated EMSE criterion is unbiased. 25 Figure 1.3, shows the splitting of the original
training sample into S (tr,tr) and S (tr,te).

S all

S tr S est

S tr,tr S tr,te

Figure 1.3: At stage 3, S tr,te is used to evaluate the tree Π̂ grown on S tr,tr

Note that, one needs to split the estimation sample as well for the accompanied infor-
mation on the shares of treated and non-treated units to evaluate the EMSE criterion.
The EMSE optimal tree is found via cost-complexity pruning, which utilizes a com-
plexity parameter (γ). The complexity parameter penalizes the number of leaves (#Π)

grown on the tree. The ‘honest cross-validation criterion’ adds this penalty term to the
original EMSE criterion,

ÊMSEcv(γ) = ÊMSEτ(S (tr,val),S (est,val), Π̂) + γ#Π̂ (1.12)

where, Π̂ is an estimator of the tree, grown on the samples of {S (tr,tr),S (est,tr)} and
the EMSE criterion is evaluated on the independent sample pair of {S (tr,te),S (est,te)}.
To find the optimal complexity parameter (γ∗) – hence the EMSE optimal tree – one
calculates the honest cross-validation criterion R times on the alternating test samples,

25The size of the samples are given by the number of folds (R) used in the cross-validation. S (tr,te) has
the smaller fraction: N(tr,te) = Ntr/R, while the sample S (tr,tr), which is used to grow the tree, contains
the larger fraction of observations N(tr,tr) = (R− 1)Ntr/R. The estimation sample is split in the same
way.
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which results in R criteria for each different candidate of γ.26 Taking the average over
the cross-validation samples one can choose γ, which gives the minimum criterion
value.27

γ∗ = arg min
γ

R−1
R

∑
cv=1

ÊMSEcv(γ) (1.13)

The final step of the third stage is to prune back the original large tree
(
Π̂large) grown

on the whole training sample with γ∗ to get the optimal tree Π̂∗.
In the fourth stage, one uses the locked away estimation sample and the found tree
structure Π̂∗ to estimate the CATE function for the regression discontinuity tree.

1.3.4 Refining honest tree algorithm for RD
In this subsection, I discuss the refinements of honest tree algorithms, which are
needed for the estimation of the CATE function in regression discontinuity designs.
The main challenge for RD algorithm takes place during the tree-building phase to
find the optimal splitting values for each candidate feature. As the algorithm em-
ploys many regressions when considering each possible splits, the inversion of M±,j

is computationally challenging. Instead of calculating the inverse each time, I use the
Sherman-Morison formula to estimate M−1

±,j. This iterative estimation enables to calcu-
late the inverse only once per splitting candidate feature.28

Another important detail of the honest algorithm is ‘bucketing’. Following Athey
and Imbens (2016), bucketing ensures that each candidate split has enough treated
and non-treated units, thus there is no ‘better’ split value only due to adding treated
or non-treated units, without the other. One should see bucketing as a smoother of
the splitting criterion, as it groups the treated and non-treated units and prevents the
splitting value to be a result of this unbalanced grouping of treated and non-treated
units. I refine the classical causal tree algorithm29, by carrying out the bucketing after
the criterion is calculated and using the last valid split value instead of taking the
average. This is an important nuisance as the criterion may vary too much without
this modification for regression discontinuity trees.

Finally, there are two important issues specific to RD literature: selection of obser-
vations that are close to the threshold parameter to get ‘local-randomization’ and to
get a precise conditional expectation estimate at the threshold from above and below.

26The candidates of γ, coming from weakest-link pruning: using the large tree built on the whole
training sample, γ values represent those penalty parameters which would result in a smaller tree for
this large partition. During cross-validation, these scaled candidate γ values are used to prune back
the trees. Scaling adjusts to the ‘typical value’ for the accompanied sub-tree. ‘Long introduction for
rpart package’ gives an excellent overview on the technicalities of the cross-validation as well, which is
available at https://rdrr.io/cran/rpart/f/inst/doc/longintro.pdf .

27In the case of flat cross-validation criterion function it is well accepted to use ‘one standard error
rule’: taking not the smallest value as the optimal, but the largest γ value which is within the one
standard error range of the smallest value. This results in a smaller tree, which is easier to interpret and
it filters out possible noise features, which would be relevant with the smallest cross-validation value.

28Note that there is a trade-off: if there are multiplicities in the value of the feature and it is not truly
continuous, it may be faster to calculate the inverse for each candidate splitting value.

29Published at https://github.com/susanathey/causalTree
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These issues, imply bandwidth selection procedure and choosing the order of polyno-
mial during the estimation.
Let us start with bandwidth selection. This paper does not offer a non-parametric
method to estimate the conditional expectation function in the running variable, only
parametric polynomials.30 However, in practice a properly working solution is to use
an under-smoothing bandwidth on the full sample, then restrict the used sample and
employ the algorithm in this restricted sample. There is a recent discussion on selecting
the order of polynomials used during the estimation (see, e.g., Gelman and Imbens
(2019) or Pei et al. (2020)). 31 This paper offers a natural approach to select the order of
polynomials: use the cross-validation procedure jointly with the complexity parameter
to select q. As the estimated EMSE value is an unbiased estimator, it will lead to EMSE
optimal order of polynomial selection as well.

1.4 Monte-Carlo simulations
For Monte Carlo simulation, I created five different designs investigating different
forms of heterogeneous treatment effects in RD. The first data generating process
(DGP) is a simple example to demonstrate how the algorithm finds a simple tree struc-
tured DGP. Its simplicity comes from employing only two treatment effects which are
defined by one dummy variable. The conditional expectation function (CEF) is linear
and homogeneous across the leaves. DGP-2 imitates the step-function approximation
nature of the algorithm: it has a continuous treatment effect function dependent on a
single continuous variable, while the conditional expectation function is a linear func-
tion of another pre-treatment variable. DGP-3 to 5 revisit the simulation designs of
Calonico et al. (2014) with non-linear conditional expectation function. I add hetero-
geneity to the treatment effects for DGP-3 and DGP-4, parallel to DGP-1 and DGP-2:
two treatment effects defined by a dummy variable for DGP-3 and a continuous CATE
for DGP-4. DGP-5 shows how the algorithm performs when there is no heterogeneity
in the treatment effect. Figure 1.4 shows the different sharp RD designs.

30It would be an interesting research avenue to extend the EMSE criterion to non-parametric estima-
tors as well. The algorithm could handle this extension naturally by including splitting the running
variable as well, but the bias-variance trade-off would alter the behavior of the criterion.

31The main recommendation of Gelman and Imbens (2019) is to use low order (local) polynomials to
avoid noisy estimates. Pei et al. (2020) proposes a measure that incorporates the most frequently used
non-parametric tools to select the order of polynomial.
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DGP-1: Two treatment effects
with homogeneous CEFs

DGP-2: Heterogeneous CEF
with continuous CATE

DGP-3: Two treatment effects
with non-linear CEF

DGP-4: Continuous CATE
with non-linear CEF

DGP-5: Homogeneous treatment
effect

with non-linear CEF

Figure 1.4: Monte Carlo simulation designs

During the simulations, I use three different sample sizes: N = 1, 000; 5, 000 and
10, 000 to investigate the effect of the sample size on the algorithm. As the method
splits the initial sample, I use half of the observations for the training and the other
half for the estimation sample. I use MC = 1, 000 Monte Carlo repetition and the
variation comes from a normally distributed disturbance term, εi ∼ N (0, σ2

ε ), whereas
the features are uncorrelated32. For DGP 1 and 2, I use σ2

ε = 1 and for DGP 3-5, σ2
ε =

0.05.

Next, I discuss the main features of the proposed DGPs. For the complete specification
refer to Appendix A.5.

DGP-1: Imitates a simple tree structure: there is two distinct treatment effects,
conditioning on one binary variable. There is also an additional irrelevant
binary variable. Both of them generated by using the probabilities of P(Zk =

1) = 0.5 , k = {1, 2}.

– τ(Z1 = 1) = 1, τ(Z1 = 0) = −1, number of features: 2

DGP-2: The second design follows Athey and Imbens (2016), who uses hetero-
geneous conditional expectation function along with continuous treatment
effect. DGP-2 is modified for sharp RD and uses four different features: two
binary (Z1, Z2 with P(Z1 = 1) = P(Z2 = 1) = 0.5) and two continuous
(Z3, Z4 ∼ U(−5, 5)) variables. The conditional expectation is a function of Z2

along with the running variable, but has no effect on the magnitude of the

32This means, during the simulations there are no issues with (highly) correlated features, which
would alter the stability of the resulting trees.
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treatment. CATE is a linear function of Z3. This design shows a clean behav-
ior for the step-function approximation, while allowing heterogeneity in the
conditional expectation function.

– τ(Z3) = 2 Z3, number of features: 4

The last three designs investigate the performance of the algorithm when the condi-
tional expectation function is non-linear. These setups use the functional forms pro-
posed by Calonico et al. (2014) and imitate different RD applications. This exercise
exhibits how the performance of the algorithm alters compared to the linear cases. To
compare the behavior of the method I induce heterogeneity in the treatment effects
similarly as in DGP 1 and 2, but add more potential pre-treatment variables.

DGP-3: Imitates Lee (2008) vote-shares application. I assume two treatment ef-
fects with different conditional expectation functions for the leaves. I use 52
dummy variables representing political parties and different states. The artifi-
cial political party dummy (Z1) is relevant and has an effect on both treatment
and the functional form. Artificial state variables are irrelevant.

– τ(Z1 = 1) = 0.02, τ(Z1 = 0) = 0.07, number of features: 52

DGP-4: Follows Ludwig and Miller (2007), who studied the effect of Head Start
funding to identify the program’s effects on health and schooling. I assume
a continuous treatment effect based on the age of participants (Z1), while
adding (irrelevant) dummies representing different continents.

– τ(Z1) = −0.45− Z1, number of features: 7

DGP-5: An alternative DGP by Calonico et al. (2014), which adds extra curvature
to the functional form. This design is the same as in Calonico et al. (2014),
thus there is only one homogeneous treatment effect.

– τ = 0.04, number of features: 52

To evaluate the performance of the algorithm I am using three different measures. The
first measure investigates, whether the proposed estimable EMSE criterion is a good
proxy to minimize the ideal in-feasible criterion (equation 1.6). For transparent com-
parison, I calculate this in-feasible criterion on a third independent evaluation sample,
containing Neval = 10, 000 observations. The criterion is calculated on this evaluation
sample, and the CATE estimator comes from the tree, which is grown on the training
sample and estimated on the estimation sample. The Monte Carlo average of this esti-
mate is reported as “inf. MSE”. The second measure is the average number of leaves on
the discovered tree (#Π̂). DGP-2 and 4 with continuous CATE function should have an
increasing number of leaves as one increases the number of observations. This would
imply proper step-function approximation nature of the algorithm as more observa-
tions allow the algorithm to split more along with the relevant feature. For DGP-1, 3,
and 5 the number of leaves should be the same as the number of distinct treatment
effects in the true DGP. This measure may be misleading in cases when the algorithm
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finds different treatment effects, but the conditioning variables are not the same as in
the true DGP (e.g., in DGP-1 the algorithm splits with Z2 instead of Z1, which would
result in the same number of leaves, but not finding the true DGP). Therefore I also
calculate the percent how many times the true DGP is found, when the DGP has a tree
structure. (For DGPs with continuous CATE this is measure is not reported, as the
algorithm only provides a step-function approximation of the true CATE.). Table 1.1.
reports the results on the algorithm performance.

DGP N inf. MSE #Π̂ DGP found (%)

DGP-1
N = 1, 000 0.0620 2.00 100%
N = 5, 000 0.0135 2.04 96%
N = 10, 000 0.0065 2.04 96%

DGP-2
N = 1, 000 9.3103 2.00 -
N = 5, 000 1.3852 7.72 -
N = 10, 000 0.9233 11.68 -

DGP-3
N = 1, 000 0.0013 1.00 0%
N = 5, 000 0.0003 2.00 100%
N = 10, 000 0.0001 2.00 100%

DGP-4
N = 1, 000 1.3904 1.00 -
N = 5, 000 0.4160 3.00 -
N = 10, 000 0.2013 4.92 -

DGP-5
N = 1, 000 0.0007 1.00 100%
N = 5, 000 0.0002 1.03 97%
N = 10, 000 0.0001 1.02 98%

Table 1.1: Monte Carlo averages for performance measures
Number of true leaves: #ΠDGP−1 = 2, #ΠDGP−3 = 2, #ΠDGP−5 = 1

Algorithm setup: using the smallest cross-validation value to select γ∗,
q = 1 for DGP 1 and 2 and q = 5 for DGP 3,4 and 5.

From Table 1.1 one can see that the algorithm works considerably well. The infeasible
MSE is decreasing in N for each setup. This supports the theoretical claim that the es-
timable EMSE criterion is a proper proxy for the infeasible MSE, thus the resulted tree
is MSE optimal in this sense. The average number of leaves on the discovered trees
reflects the expectations. For DGP-2 and 4, where the CATE is continuous the average
number of leaves is increasing in N. Note that the algorithm performs better when
the CEF is linear compared to the non-linear case. For DGP-1, 3, and 5 the average
number of leaves reflects the true number of leaves for the DGPs with one exception:
for DGP-3 with N = 1, 000. In this case, the algorithm does not split but gives a homo-
geneous treatment effect instead of the two distinct treatment effects. The measure of
DGP found (%) reflects that the algorithm does not split along irrelevant variables but
along relevant variables. Finally, results in Table 1.1 shows that the algorithm is rather
conservative in discovering different treatment effects and a data intensive method.
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In the case of DGP-1 and DGP-5, the signal-to-noise ratio is relatively high and with
N = 1, 000 it does not discover any irrelevant features (only the true DGP) – however
due to randomness it should in some cases. DGP-3 on the other hand has a relatively
low signal-to-noise ratio, and with N = 1, 000 it never discovers the true DGP. In-
creasing the number of observations solves this problem. N = 5, 000 observations are
enough for DGP-1 and 5, but it takes N > 10, 000 for DGP-3, showing the data intensity
of the method.

Another important result for the regression discontinuity tree is Monte Carlo ev-
idence on providing valid inference. I calculate the average bias and the actual 95%
confident interval (CI) coverage for each leaf. Table 1.2 reports the Monte Carlo aver-
age of the bias for each leaf

(
MC−1 ∑MC

mc=1(τj − τ̂j,mc)
)

and the actual 95% CI coverage
for the different leaves conditionally whether the algorithm found the true DGP. I re-
port only DGPs, which has a tree structure, as in cases of continuous CATEs, the leaves
are varying due to different splitting values, making the reporting and aggregation
over the Monte Carlo sample non-trivial.33

DGP 1

Leaf `1 : τ1(Z1 = 1) = 1 `2 : τ1(Z1 = 0) = −1

Estimates
average actual 95% CI average actual 95% CI

bias coverage bias coverage
N = 1, 000 -0.0121 0.95 -0.0155 0.95
N = 5, 000 -0.0015 0.95 -0.0022 0.94
N = 10, 000 0.0009 0.96 0.0003 0.95

DGP 3

Leaf `1 : τ1(Z1 = 0) = 0.07 `2 : τ1(Z1 = 1) = 0.02

Estimates
average actual 95% CI average actual 95% CI

bias coverage bias coverage
N = 1, 000 - - - -
N = 5, 000 0.0002 0.94 0.0000 0.95
N = 10, 000 -0.0000 0.95 0.0004 0.96

DGP 5

Leaf Homogeneous Treatment, τ = 0.04

Estimates avgerage bias actual 95% CI coverage
N = 1, 000 -0.0001 0.95
N = 5, 000 0.0001 0.96
N = 10, 000 0.0004 0.95

Table 1.2: Estimated Monte Carlo average for bias and actual 95% confidence intervals
coverage for each leaves for tree structured DGPs, conditional on DGP is found

Note: For DGP-3, with N = 1, 000, there is no case when the true DGP is found, thus no values are reported.

Table 1.2 shows that the average bias is decreasing in N for each leaf individually

33Note that for continuous CATE the treatment effect conditional on the leaf is still an unbiased es-
timator for the given feature partition and has proper standard errors, however simple aggregation by
the Monte-Carlo simulation distorts these properties.
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(at least up to 3 digits), similarly to the infeasible MSE, which is averaged over these
leaves. The actual 95 % CI coverage reflects properly the nominal value. These results
provide evidence of valid inference for the estimated CATE function.

1.5 Heterogeneous effect of going to a better school
To show how the algorithm works in practice, I replicate and augment the heterogene-
ity analysis of Pop-Eleches and Urquiola (2013) on the effect of going to a better school.
Furthermore, I relate my results to Hsu and Shen (2019).
In Romania, a typical elementary school student takes a nationwide test in the last
year of school (8th grade) and applies to a list of high schools and tracks. The ad-
mission decision is entirely dependent on the student’s transition score, an average of
the student’s performance on the nationwide test, grade point average, and order of
preference for schools.34 A student with a transition score above a school’s cutoff is
admitted to the most selective school for which he or she qualifies. Pop-Eleches and
Urquiola (2013) use a large administrative dataset (more than 1.5 million observations)
and a survey dataset (more than 10,000 observations) from Romania to study the im-
pact of attending a more selective high school during the period of 2003-2007. Based
on the administrative dataset, they find that attending a better school significantly im-
proves a student’s performance on the Baccalaureate exam,35 but does not affect the
exam take-up rate.

Figure 1.5 summarizes the classic mean RD results from Pop-Eleches and Urquiola
(2013). In all three graphs the horizontal axis represents the running variable, which is
a student’s standardized transition score subtracting the school admission cut-off. The
vertical axis in Figure 1.5a) represents the peer quality, that each admitted student ex-
periences, when going to school. Peer quality is defined as the average transition score
for the admitted students in each school. This indicates that the higher the level of
average transition score is (e.g., the admitted students performed great in the nation-
wide test), the better the peer quality. Figure 1.5b) shows the probability of a student
taking the Baccalaureate exam, while Figure 1.5c) plots the Baccalaureate exam grade
among exam-takers. In all outcomes, school fixed effects are used as in Pop-Eleches
and Urquiola (2013), thus the vertical axis is centered around 0 for all plotted outcome.
Both left and right graphs show a jump in the average outcome at the discontinuity
point, but the jump in the exam-taking rate is quite noisy and seemingly insignificant.

34Grades on the nationwide test are from 1-10, where 5 is the passing score on each test. Grade point
average is an average of the past years course grades for different disciplines. Order of preference for
schools is a list submitted by the student before the nationwide test, showing their preferences for the
schools that they apply.

35Marks in BA Exam vary from 1-10, where there are multiple disciplines, where in each, one needs
to score above 5 and achieve a combined score of more than 6 to pass the BA Exam.

27

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

(a) Average transition score (b) Baccalaureate taken (c) Baccalaureate grade

Figure 1.5: Bin-scatter for main (pooled) RD results of Pop-Eleches and Urquiola (2013),
using school fixed effects

1.5.1 Revisiting heterogeneity analysis of Pop-Eleches and Urquiola
(2013)

First, I revisit Pop-Eleches and Urquiola (2013) heterogeneity analysis on the intent-
to-treat effects using peer quality (level of school average transition score) and the
number of schools in town as the sources of heterogeneity, using the administrative
data between 2003 to 2005.36 Similarly, I restrict the sample to observations which lies
within the ±0.1 interval of the admission cutoff for the running variable and I use the
same linear specification. Pop-Eleches and Urquiola (2013) inspect heterogeneity in the
treatment effect with pre-specified sub-samples. The first two sub-samples are differ-
entiated by the level of peer quality effect. Pop-Eleches and Urquiola (2013) investigate
treatment effects for students in the top and bottom tercile for the school level average
transition score. The second analysis focuses on the numbers of schools in town and
create groups defined by having i) four or more schools in towns, ii) three schools or iii)
two schools only. Instead of using these pre-specified (ad-hoc) groups, I use the algo-
rithm to identify the relevant groups and split values. I also use these two variables37

to explore the heterogeneity, but use them simultaneously allowing for finding differ-
ent non-linear patterns in the treatment effect. See more details about these variables
in Appendix A.7.

Let us consider the peer quality effect as the outcome, which is measured by the
average transition score at their respective school. Pop-Eleches and Urquiola (2013)
find significant positive treatment effects in all five groups. The regression discontinu-
ity tree algorithm finds a much more detailed tree, containing 24 leaves, which is an
indication of a continuous CATE function. Instead of showing a large tree, Figure 1.6
shows the marginalized treatment effects along the two variables.38 Figure 1.6a) shows

36Referring to Table 5 in Pop-Eleches and Urquiola (2013, p. 1310). See more details in Appendix A.7.
37I add dummy variables as well to search for a certain number of schools in the town.
38I have calculated the treatment effect for each observation then averaged them over the non-plotted

variable. In case of number of schools, I take students with the same number of schools in town and
average them along the level of school average transition score.
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the treatment effects conditional on the level of school average transition score.39 The
blue line represents the CATE function found by the algorithm, the black line shows
the overall average treatment effect, while the green and pink lines show the treatment
effects reported by Pop-Eleches and Urquiola (2013) for the bottom and top tercile. Fig-
ure 1.6b) shows the heterogeneity in the treatment effects along the number of schools.
Similarly to the previous plot, the different coloured error-bars show the treatment
effects for the different models.

(a) Level of school avg. transition score (b) number of schools

Figure 1.6: CATE for peer quality, intent-to-treat effects, using school fixed effects, stan-
dard errors are clustered at student level

It is interesting to compare the algorithm’s result (blue line) to Pop-Eleches and
Urquiola (2013) results (green and pink lines). Figure 1.6a) shows that the ‘bottom
tercile’ (green line) effect should be decomposed into two further parts: students with
the lowest scores have high treatment effect, but students above score 6, but below 6.8
face the lowest treatment effects. This indicates a different mechanism of the treatment
for these groups and aggregating them to bottom tercile may lead to misleading sug-
gestions. Conditioning the treatment effects on the number of schools results in the
same conclusion for two and three schools,40 but as Figure 1.6b) shows the treatment
effect suggested by the algorithm is still higher than the average for towns with 4-9
schools and it is significantly lower for towns with 18-20 schools.

Investigating the treatment effect on the probability of taking the Baccalaureate
exam – in contrast with Pop-Eleches and Urquiola (2013), who do not find significant
treatment effects – the algorithm discovers a group where there is a significant negative
effect on the exam taking rate.

39I used 50 equal sized bins to group school average values.
40The treatment effects are not the same as the algorithm uses only half the sample to estimate the

CATE, thus the blue line is not varying exactly around the pink line (or the black/green lines).
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All
-0.0005
(0.0022)

Test score > 8.63
-0.0076 (0.0071)

More than 10 schools in town
0.0021 (0.0076)

Less than 10 schools in town
-0.1028 (0.0196)

9 schools in town
0.0208 (0.0448)

Less than 9 schools in town
-0.1344 (0.0219)

Test score > 8.78
-0.1858 (0.0323)

Test score ≤ 8.78
-0.0703 (0.0301)

Test score ≤ 8.63
-0.0011 (0.0024)

Figure 1.7: Conditional treatment effects for probability of taking Baccalaureate exam,
intent-to-treat effects, using school fixed effects, standard errors are clustered at stu-
dent level

Although the majority of the discovered groups have non-significant treatment effect,
all these splits are needed to find the group which has a significant negative 19% treat-
ment effect on the probability of taking the BA exam. As this value is surprisingly
high, a researcher or policy maker may want to understand the background of this
(sub-)population. The group is defined as students whose level of school average tran-
sition score is above 8.78 (top 10%) and in their town there are less than 9 schools. Thus
these students are admitted into an extremely competitive school, but there are few (or
no) outside option to change school within the town. Overall, there are more than
20,000 cases that fall into this category. This result is aligned with the negative peer
effect that Pop-Eleches and Urquiola (2013) report. Namely, on a distinct survey data
set they find evidence that comparatively less talented students in competitive schools
are less likely to go and take the Baccalaureate exam.

Last, the heterogeneity found by the algorithm in the value of Baccalaureate grade is
the simplest as there are only two relevant groups. One group contains students whose
school average transition score is above the median (to be exact, 7.4, which is the 44-
th percentile in the sample). These students can expect a 0.0282 (0.0054) higher exam
grade on the Baccalaureate exam if going to a better school, while students below this
splitting value can expect only 0.0152 (0.0061) higher Baccalaureate exam grade. The
algorithm does not split further, thus providing no further evidence on heterogeneity
across the number of schools in town within these groups.41

Finally, let me relate these results to Hsu and Shen (2019). They search for het-
erogeneity using peer quality as the potential source and find strong evidence for the
exam-taking rate (under 1% p-values) and weak evidence for BA grade (around 10% p-
values) among schools. Although they restrict their sample to towns with two or three
schools and estimate the local average treatment effect, the conclusion is the same,
values of school level average test score have an impact on the level of treatment effect.

41If one only uses the number of schools to find heterogeneity, the algorithm finds different treatment
effects, but jointly it is non-relevant. See more details in Appendix A.7, Table A.5.
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1.5.2 Exploring heterogeneity in survey-based dataset
To explore treatment effect heterogeneity and show how the algorithm performs, when
there are many covariates with potential non-linearities, I use the survey dataset
from 2005-2007. This sample contains less observations, but a rich variety of socio-
economic factors (e.g., gender, ethnicity, education, accessibility of internet or phone),
school characteristics (e.g., novice teacher among teachers, highly certified teachers in
schools) and study behavior specific questions (e.g., parents pay for tutoring, parents
help students, child does homework every day, peer ranking, teacher characteristics).
In the survey, there are only 135 schools located in 59 towns with 2 to 4 schools and
a questionnaire was administered between 2005 to 2007. Overall, I use 29 different
features to search for heterogeneity. As the survey corresponds to later years, the data
includes only observations on level of school average transition scores, but not on the
other two outcomes. See more detailed description in Appendix A.7.

All
0.46 (0.022)

3 schools
0.35 (0.037)

Internet
0.37 (0.04)

Score ≥ 8.03
0.55 (0.06)

Score < 8.03
-0.07 (0.06)

No internet
0.32 (0.07)

2 or 4 schools
0.55 (0.03)

No novice
among teachers

0.58 (0.029)

No phone
0.62 (0.04)

No highly certified
teacher

0.65 (0.06)

Male
0.62 (0.08)

Female
0.66 (0.09)

Highly certified
teachers

0.61 (0.04)

Phone
0.49 (0.05)

Mother’s education:
secondary
0.53 (0.07)

Mother’s education:
not secondary

0.45 (0.08)

Novice
among teachers

0.15 (0.14)

Figure 1.8: Exploring heterogeneous groups for peer quality - intent-to-treat effects,
standard errors are in parenthesis and clustered on student level.

The fitted tree, shown in Figure 1.8, suggests an informative result: for towns with 2 or
4 schools, admitted students (on average) have 0.55 higher scores. If one goes further,
the tree suggests that when having a novice among teachers (less than 2 years of expe-
rience), the treatment effect may disappear (although only 319 cases fall into this cat-
egory). It is interesting that having a phone would somewhat reduce the peer quality
effect in 2005-07 but it should also be noted that during the studied time-period it was
not common for students aged 12-14 to have phones. I also find interesting splits with
respect to i) education of the mothers, ii) if there are teachers with highest state certifi-
cation in the school, and iii) if the student gender is male or female. These are indeed
interesting splits, but statistically non-distinguishable.42 Heterogeneity among groups
in the other branch is more informative and more robust. If there are three schools and
accessibility of the internet, the level of school average transition scores is an impor-
tant split to identify a group. For schools, which have student scores above the bottom

42As the cross-validation criterion is quite flat with the one standard error rule, these splits are pruned
back.
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tercile (8.03 is the 35% percentile in this sample), the peer quality effect is similar to
students with 2 or 4 schools in town (0.55 higher scores). However, for students in
these schools with internet access at home, but below the bottom tercile, the peer qual-
ity effect is insignificant. This suggest potential segregation for this discovered group
and encourages the researcher or policy maker to make further investigation on this
specific group. Finally, let me note that the results are quite robust to randomization
of the observations in the training/estimation sample. Some of the splits may vary but
the main conclusion is similar in most of the cases.

1.6 Extension to fuzzy designs
The method can be extended to fuzzy designs as well, where the probability of treat-
ment needs not change from 0 to 1 at the threshold, and can allow for a smaller jump
in the probability of assignment.
Let me use a distinct variable T for getting the treatment in case of fuzzy design. As
the probability does not change from 0 to 1 at the threshold, there are different types of
participants, depending on whether they are subject of the treatment or not. Compliers
are units that get the treatment if they are above the threshold but do not get the treat-
ment if they are below: T(1)− T(0) = 1. Always takers get the treatment regardless
of whether they are below or above the threshold, while never takers never take the
treatment regardless of the threshold value. For both behavior, the following applies:
T(1) − T(0) = 0. As in classical fuzzy RD, I eliminate by assumption defiers, who
does not take the treatment if above the threshold and takes the treatment if below the
threshold.
Fuzzy RD identifies treatment effect for compliers, thus extending the algorithm to
fuzzy designs result in conditional local average treatment effects (CLATE). To identify
CLATE, the following assumptions are needed:

Identifying assumptions of CATE in fuzzy RD

i) limx↓c P [T = 1|X = x] ≥ limx↑c P [T = 1|X = x]

ii) E
[
Y(d) | T(1)− T(0) = d′, X = x, Z ∈ `j(Π)

]
exists and continuous at x = c for

all pairs of d, d′ ∈ {0, 1} and for all leaves j in the tree.

iii) P
[
T(1)− T(0) = d |X = x, Z ∈ `j(Π)

]
exists and continuous at x = c for d ∈

{0, 1}, ∀j and for all leaves j in the tree.

iv) Let, f j denotes the conditional density of x in leaf j. In each leaf j, c must be an
interior point of the support of f j(x).

Identification assumptions are similar to classical fuzzy RD, but it needs to be valid
within each leaf. Assumption i) rules out defiers as it requires a non-negative disconti-
nuity in the probability of taking the treatment around the threshold. This is not only
an assumption, but a built-in restriction for the algorithm. If this condition’s sample
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analogue is not satisfied, it is not considered as a valid split. Assumptions ii) and iii)
ensure the existence and continuity of the expected potential outcomes at the thresh-
old value for always-takers, compliers and never-takers with respect to the running
variable within each leaf, while assumption iv) ensures that the conditional density of
x for each leaf is well behaving, similarly to sharp RD.
Under these assumptions, the CLATE for RD tree is identified as

τFRD(z; Π) =
limx↓c µ

y
+(x, z; Π)− limx↑c µ

y
−(x, z; Π)

limx↓c µt
+(x, z; Π)− limx↑c µt

−(x, z; Π)

=
µ

y
+(c, z; Π)− µ

y
−(c, z; Π)

µt
+(c, z; Π)− µt

−(c, z; Π)

=
τy(z; Π)

τt(z; Π)

=
#Π

∑
j=1
1`j(z; Π)

α
y
+,j − α

y
−,j

αt
+,j − αt

−,j

where, similarly to sharp RD, I use a parametric functional forms for approximating
the conditional expectation functions for both the participation and outcome equations
below and above the threshold,

µt
+(x, z; Π) = X ′

#Π

∑
j=1
1`j(z; Π)δ−,t

j , µ
y
+(x, z; Π) = X ′

#Π

∑
j=1
1`j(z; Π)δ

−,y
j ,

µt
−(x, z; Π) = X ′

#Π

∑
j=1
1`j(z; Π)δ+,t

j , µ
y
−(x, z; Π) = X ′

#Π

∑
j=1
1`j(z; Π)δ

+,y
j ,

δt
j,± =

[
αt

j,±, βt
j,1,±, . . . , βt

j,p,±

]′
, δ

y
j,± =

[
α

y
j,±, β

y
j,1,±, . . . , β

y
j,p,±

]′
The sample estimates for fuzzy design is provided in Appendix A.3.

Using the same logic to find the optimal EMSE tree, I minimize the expected mean
squared error function over the estimation and test sample. In case of homoscedastic
disturbance terms within each leaf, the estimable EMSE criterion for fuzzy designs is
given by

ÊMSEFRD(S te,S est, Π) =− 1
Nte ∑

i∈S te

τ̂2
FRD(Zi; Π,S te)

+

(
1

Nte +
1

Nest

) #Π

∑
j=1

e′1

(
V+,j

pest
+,j

+
V−,j

pest
−,j

)
e1

where

V±,j =
M̂−1
±,j

τ̂t
j (Zi; Π,S te)2

(
σ̂

2,y
±,j +

τ̂
y
j (Zi; Π,S te)2

τ̂t
j (Zi; Π,S te)

σ̂2,t
±,j +

τ̂
y
j (Zi; Π,S te)

τ̂t
j (Zi; Π,S te)

Ĉy,t
±,j

)
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is the within leaf variance of the outcome equation at the threshold, estimated from
above (+) or below (-) and τ̂t

j (·), τ̂
y
j (·) are the j’th leaf treatment effect estimated on the

participation equation (τ̂t
j (·)) and on the outcome equation (τ̂

y
j (·)). σ2,t

±,j, σ
2,y
±,j and Cy,t

±,j
are estimators for the variances and co-variance for the leaf-by-leaf disturbance terms.
See the derivations in the Appendix, Section A.3.

The EMSE criterion for the fuzzy design combines the jumps in the outcome and in
the participation equation along with the variance. This means that if there is a differ-
ence in two groups in the participation probabilities at the threshold or in the outcome
equation, then the EMSE criterion results in a lower value and finds this difference.
Similarly, if the variance of τ̂y, τ̂t or their co-variance gets lower by a split, the EMSE
criterion will be lower, thus even if there is no big change in the treatment effect, but
there is in its variance, the algorithm considers this split.
One feature of this criterion is that, if the changes in the jump in the outcome equation
and in the participation equation are with the same magnitude – resulting in the same
treatment effect – then the EMSE criterion does not changes. If one is interested in het-
erogeneity in the participation effect and in the intent-to-treat effect separately as well,
then it is possible to use sharp design for both equation separately and then assemble
the results from the two trees.

1.7 Conclusions
The paper proposes an algorithm, that uncovers treatment effect heterogeneity in clas-
sical regression discontinuity (RD) designs. Heterogeneity is identified through the
values of pre-treatment covariates and it is the task of the algorithm to find the rele-
vant groups. The introduced honest “regression discontinuity tree” algorithm ensures a
fairly flexible functional form for the conditional treatment effect (CATE) with valid
inference, while handling many potential pre-treatment covariates and their interac-
tions.
The properties of the CATE function for sharp regression design is analysed in detail
and the paper shows the properties of the algorithm. An estimable EMSE criterion is
put forward, which uses the specifics of RD setup, such as distinct estimation of poly-
nomial functions below and above the threshold. Furthermore the algorithm utilize
two distinct samples to get valid inference.
Monte Carlo simulation results show that the proposed algorithm and criterion work
well and discover the true tree in more than 95% of the cases. The estimated condi-
tional treatment effects - if the true tree is found - are unbiased and the standard errors
provide proper estimates for 95% confident interval coverage.
Finally, the paper shows how one can utilize the algorithm in practice. I use Pop-
Eleches and Urquiola (2013) data on Romanian school system, and uncover hetero-
geneous treatment effects on the impact of going to a better school. The algorithm
shows a more detailed picture, when revisiting the heterogeneity analysis done by
Pop-Eleches and Urquiola (2013). Furthermore, results suggest that i) in the most com-
petitive schools without an outside option, students are less likely to take the Baccalau-
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reate exam when going to a better school indicating a negative peer effect; and ii) there
is a no positive peer quality effect for students who scored in the lowest 35% with
internet access. The discovery of these groups encourage further investigations and
future research may help to better understand the different effects when students are
admitted to a better school.
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Chapter 2

Modelling with Discretized Continuous
Covariate

joint with Felix Chan and László Mátyás

2.1 Introduction
There is an increasing number of survey-based large data sets where many (sometimes
all) variables are observed through the window of individual choices, i.e., by picking
one option from a pre-set class list, while the original variables themselves are in fact
continuous. For example, in transportation modelling, the US Federal Transportation
Office creates surveys to measure different transportation behaviours. This practice
is also common for major cities like London, Sydney and Hong Kong. Usually, the
reported values are a discretized version of variables, like average personal distance
travelled, or use of public or private transportation (e.g., Santos et al., 2011). Such ex-
amples emerges in many other areas, like credit ratings in financial economics, corrup-
tion measures or institutional development in political economy. These are discretized
variables which have the characteristics of interval data (see e.g., Mauro (1995), Mén-
dez and Sepúlveda (2006), Knack and Keefer (1995) and Acemoglu et al. (2002)). Typ-
ically, such variables are related to income, expenditure on something over a period
of time, willingness to take some action (e.g., how much would you be willing to pay
for ... ?) or questions about likelihood(s) (e.g., how likely would you be to download
this application ... ?) and questions related to time (e.g., how much time did you spend
commuting last week ... ?).
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To formalise the discussion, consider the random variable xi ∼ f (al, au), where
f (al, au) denotes1 an unknown distribution with support in [al, au], where al, au ∈
R , al < au and realizations i = 1, . . . , N. Furthermore, define the discretized variable
as

x∗i =



z1 if c0 ≤ xi < c1 or xi ∈ C1 = [c0, c1) 1st choice,

z2 if c1 ≤ xi < c2 or xi ∈ C2 = [c1, c2),
...

...

zm if cm−1 ≤ xi < cm or xi ∈ Cm = [cm−1, cm),
...

...

zM if cM−1 ≤ xi ≤ cM or xi ∈ CM = [cM−1, cM],

last choice.

(2.1)

We refer to zm as the choice values for m = 1, . . . , M. It can be a measure of centrality
of the given choice class, or can be an arbitrarily assigned value in Cm. x∗i is considered
as an interval data, as the class boundaries are known by the researchers. The main
difficulty is that xi is not directly observable, in fact only the response x∗i is observed.
In other words, variable x is observed through the discrete ordered window of x∗i .

It is not uncommon among empirical researchers to estimate linear regression mod-
els using x∗i instead of xi as the latter is not available.2 Manski and Tamer (2002) show
that the parameters in those cases are not point-identifiable, even though they may be
partially identifiable. That is, it is possible to identify a region where the true parame-
ters reside. This paper echoes the results in Manski and Tamer (2002) and shows that
the Least Squares (LS) estimator is inconsistent in general and can only be consistent
in a few very specific and restrictive cases.

More importantly, this paper proposes a new data gathering technique, called split
sampling,3 which can map the underlying distribution of the unobserved random vari-
ables, and thus, lead to consistent estimation of the parameters in (linear) regression
models. The basic idea is to allow each survey to have different class boundaries. This
induces additional information on the distribution of the random variables when con-
sidering all the responses as a whole. The proposed techniques do not induce any
disincentive for respondents since the number of choices of each question remains the
same. It also does not create additional complexity in the design of the questions, since
the adjustments focus on the responses rather than the questions. Perhaps more im-
portantly, the proposed solution focuses on the data collection stage and is invariant to
the relation between the variables.

1A complete list of the notations used in the paper is given in Appendix B.4.
2Let us note here, that an other common practice is to create M− 1 dummy variable for each different

choices and use these variables instead of x∗i . This solution is feasible if the parameter of interest is not
a measure such as the elasticity for this discretized variable. In this paper we focus on these cases, thus
using dummy variables is not a solution.

3The term split sampling in this paper is not related to the technique occasionally used in chromatog-
raphy (Schomburg et al., 1977, Schomburg et al., 1981) or methods in machine learning, which splits the
initial sample into folds.
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The organisation of the paper is as follows. Section 2.2 motivates the problem from
both empirical and theoretical perspectives. It shows that LS is inconsistent in gen-
eral, except in a few restricted cases, and provides support to the results in Manski
and Tamer (2002) on the limit of identification when using discretized data that share
the same boundary points. Section 2.3 introduces the two split sampling techniques
namely, the magnifying and shifting methods, that allow consistent estimation of the
underlying distribution as well as of the parameters in the linear regression model us-
ing discretized data. The finite sample performance of these techniques is analysed in
Section 2.4. Section 2.5 discusses some possible extensions of the techniques and con-
cluding remarks are made in Section 2.6. All technical proofs and additional Monte
Carlo results can be found in the Appendix.

2.2 Motivation
Consider the following data generating process

yi = w′iγ + x′i β + ui, (2.2)

and the following linear regression model

yi = w′iγ + x∗
′

i β + εi, (2.3)

where i = 1, . . . , N, w is a K1 × 1 vector of explanatory variables that can be di-
rectly observed, x is a K × 1 vector of continuous random variables that cannot be
directly observed and x∗ is the corresponding K × 1 vector of discretized choice vari-
ables as defined in (2.1). ui is the idiosyncratic disturbance term of model (2.2) and
εi = (xi− x∗i )

′β+ ui denotes the disturbance term of model (2.3), while γ and β are un-
known parameter vectors. We also maintain the assumption of independence between
individuals. The two main questions are the identification and consistent estimation
of β based on model (2.3). Equation (2.2) and model (2.3) represent a common problem
in empirical research.

Let us take an example from the transportation economics literature. Assume that
in a given city we would like to model the factors explaining individual transport
expenditures (TE) in a given period of time, using the simple model:

TEi = w′iγ + β UPTi + εi , (2.4)

where, TEi is the transport expenditure for individual i, wi are ‘usual’ controls and
UPTi is the daily average use of public transport in commuting measured in minutes.
UPTi is not observed directly, but we observe only the individual’s choice from a pre-
set list UPT∗i via a questionnaire.
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We ask the use of public transport in the following way

a) between 1 and 2 hours,
b) between 30 minutes and 1 hour,
c) between 15 and 30 minutes,
d) between 5 and 15 minutes,
e) less than 5 minutes,

For simplicity, let us neglect the possible answer of ‘more than 2 hours’ travelling time,
but we will come back to this issue at Section 2.3. These choice options can be con-
verted to given intervals and let us set the choice values (zm) as the mid-value for each
class. The discretized variable UPT∗i has the following form

UPT∗i =



90 , if 60 ≤ UPTi ≤ 120, ←− a) between 1 and 2 hours
45 , if 30 ≤ UPTi ≤ 60, ←− b) between 30 minutes and 1 hour
22.5 , if 15 ≤ UPTi ≤ 30, ←− c) between 15 and 30 minutes
10 , if 5 ≤ UPTi ≤ 15, ←− d) between 5 and 15 minutes
2.5 , if 0 ≤ UPTi ≤ 5, ←− e) less than 5 minutes

Obviously, we can use many possible values for the zm. Using the mid-values seems to
be reasonable when the only available information is that an observation is in a given
class.

To the best of our knowledge, with the exception of Hsiao (1983), Terza (1987) and
Manski and Tamer (2002), there has been no study investigating the estimation of dis-
cretized continuous variable(s) when the categories/classes are not represented by the
expected values of the underlying distribution(s). There is, however, some work on
related issues. Taylor and Yu (2002) consider a regression model with three multivari-
ate normal random variables. In their setting, the response variable is correlated with
the first variable while the second variable does not affect the response variable con-
ditional on the first. They show that if one dichotomizes the first variable, the least
squares estimate of the coefficient for the second variable will be biased. However,
they do not extend their results to the more general settings where the response vari-
able may depend on more than two covariates. Lagakos (1988) analyses the correct
cut values for the grouping of continuous explanatory variables. He derives a test on
deviating from the expected group mean and the categorized value if the group mean
is known. He refers to this solution as the optimization criterion for discretizing an
explanatory variable, using the argument in Connor (1972).

There are many papers considering the discretization of a continuous variable, but
all assume that the choice values properly represent each class. In these papers, the
main question is the effect of discretization in terms of efficiency loss (see e.g., Cox,
1957, Cohen, 1983, Johnson and Creech, 1983).

The measurement error literature has not considered the problem in details either,
as it has been assumed that the class choice values are taking the expected values of
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the known underlying distribution (Wansbeek and Meijer, 2001), or the measurement
error is on top of a categorized variable (Buonaccorsi, 2010).

Hsiao (1983) shows that LS is inconsistent in general when assigning zm using the
mid-point values.4 In a seminal paper, Manski and Tamer (2002) extend this result and
show that β in model (2.3) is not point-identifiable without any further assumption
and can only be partially identifiable. That is, it is possible to identify the region in
which β resides. However, this region cannot be estimated using the LS estimator on
model (2.3) as it is inconsistent. In fact, it can be shown that with one regressor5

plim
N→∞

(
β̂∗LS − β

)
=

β ∑M
m=1 zm {E(xi|xi ∈ Cm)− zm}

∑M
m=1 z2

m
. (2.5)

Equation (2.5) is insightful for two reasons. First, the right-hand side is generally not
zero which shows that LS is inconsistent in general. Second, the right-hand side can be
zero when E(xi|xi ∈ Cm) = zm. That is, when the choice value equals the expectation
of the explanatory variable given its value lies in the corresponding class.

The result here also justifies the Berkson model (see Berkson (1980) and Wansbeek
and Meijer (2000) pp. 29-30). That is, if f (·), the probability density of xi, is known
with known boundaries, the expected value of each variable in x∗ can be consistently
estimated. As such, the LS estimator of model (2.3) is consistent.

Another implication is that assigning mid-point values of each class to the choice
values would make sense if one could safely assume that the explanatory variable
follows a uniform distribution. In that case, the mid-point value equals the conditional
expectation in equation (2.5).

Together with the results from Manski and Tamer (2002), there are two immediate
conclusions: (i) There is a limit on the identification of parameters. That is, β cannot
be point-identified under equation (2.2) and model (2.3) and the procedure for partial
identification is complicated. (ii) It follows from (i) and the analysis above, that simple
techniques, such as the LS estimator, do not seem to be appropriate even when partial
identification is possible.

In the next section, we introduce the split sampling approach that can provide a
solution to these identification and estimation issues.

2.3 Split sampling
Since there is a limit on identification given the data, one ‘natural’ solution is to im-
prove the information content of the data at the data collection stage. This improve-
ment must satisfy two criteria. First, it cannot induce additional disincentive for re-
spondents. That is, the design of the survey cannot create an additional hurdle for

4As a solution Hsiao (1983) offers an iterative maximum likelihood method to estimate β, using a
strong distributional assumption for point-identification. Terza (1987) improves the method of Hsiao
(1983), with two-stage maximum likelihood method, still requiring assumption on the distribution.

5Detailed derivations and in-depth analysis on the consistency of the LS estimator for Equation (2.2)
and Model (2.3) can be found in Appendix B.2
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respondents to answer the questions truthfully. Second, it cannot create additional
complications in the design of the survey questions.

The main approach of the proposed methods is to create a number of split samples
(S), while fixing the number (M) of choices in each split sample, in order to reduce
the estimation bias. The reason for fixing M is the restricted human cognitive capacity
as noted above. Nevertheless, we can achieve an increase in M through changing
the class boundaries in each split sample, which in practice means different survey
questionnaires for each split sample.

The intuition behind the method is that this leads to a better mapping of the un-
known distribution of x and thus reduces the estimation bias. By merging the different
split samples into one data set, which we call the ‘working sample’. With the working
sample, we get b = 1, . . . , B overall number of choice classes across the merged split
samples, where B is much larger than M. In a given split sample each respondent
(individual i) is given one questionnaire only.6 The set of respondents who fill in the
questionnaire with the same class boundaries defines a split sample. Each split sample
has N(s), number of observations (s = 1, . . . , S , ∑s N(s) = N).

In this setup, a split sample looks exactly as the problem introduced above in (2.1),
with the only difference across the split sample that the class boundaries are different.7

Note that the number of observations across split samples can be the same or, more
likely, different. Now a split sample looks like,

x(s)i =



z(s)1 if xi ∈ C(s)
1 = [c(s)0 , c(s)1 ),

1st choice for split sample s,

z(s)2 if xi ∈ C(s)
2 = [c(s)1 , c(s)2 ),

...
...

z(s)m if xi ∈ C(s)
m = [c(s)m−1, c(s)m ),

...
...

z(s)M if xi ∈ C(s)
M = [c(s)M−1, c(s)M ],

last choice for split sample s.

(2.6)

Let us take a very simple illustrative example. Assume that M = 2, S = 2, N = 60,
N(1) = 30 and N(2) = 30. Let x be a continuously distributed variable in [0, 4] and
define the class boundaries in the first split sample as [0, 2) and [2, 4], while in the
second split sample [0, 1) and [1, 4], with 10, 20, 5, and 25 observations respectively in
each class. Next, we merge the information obtained in the two split samples in one
working sample in such a way that we are not introducing any selection bias. This
working sample now has B = 3 classes (or bins): [0, 1), [1, 2) and [2, 4] and number of

6In the case of cross sectional data. For panel data one shall assign different questionnaires for each
individual through time.

7In order to simplify the notation, we use instead of x∗(s) simply x(s). For each split sample the
discretization of x result in a new random variable.
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observations NWS with the working sample’s artificially created variable xWS
i . Using

the information from the 2nd split sample, we know that of 30 observations 5 are in the
1st bin. Similarly, we can deduce that in the 2nd bin there are 5 observations as well,
while in the last 3rd bin 20 observations (see Figure 2.1 below). Piecing this information
together, we can create xWS

i . Clearly, this way the working sample maps the unknown
distribution of x better than any one of the two split samples.

0 2 4

z(1)1 = 1 z(1)2 = 3

N(1) = 30

0 1 4

z(2)1 = 0.5 z(2)2 = 2.5

N(2) = 30

0 1 2 4

zWS
1 = 0.5 zWS

2 = 1.5 zWS
3 = 3

NWS = 60

Figure 2.1: The basic idea of split sampling

2.3.1 Construction of the Working Sample
The construction of questionnaires for each split sample and the merger into the work-
ing sample can be done in many ways, depending on the assignments of boundary
points (c(s)m ) and on the choice values (z(s)m ) for each split samples. We assume that
the number of observations (N), their allocation among split samples (N(s)) and the
number of split samples (S) are given, and also that the number of choices (M) is fixed
across the split samples. The class boundaries in the working sample are constructed
by the union of the split samples’ class boundaries, that is

B⋃
b=0

cWS
b =

S⋃
s=1

M⋃
m=0

c(s)m .

This translates in our example to the following: cWS
0 = c(1)0 = c(2)0 = 0; cWS

1 = c(2)1 = 1 ;

cWS
2 = c(2)1 = 2; cWS

3 = c(1)2 = c(2)2 = 4.
Also, we restrict the domain of the underlying distribution for each split sample. We
construct the split sample questionnaires’ and the working sample’s boundary points
so that: al = c(s)0 = cWS

0 , au = c(s)M = cWS
B , ∀s. It is possible to accommodate distribu-

tion with infinite support (al = −∞, au = ∞). In this case all split samples will have
infinite boundary points at the boundaries.

42

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

With the creation of S split samples, we introduce

x(1), . . . , x(s), . . . , x(S)

new random variables (x(s) := ψ(s)(x)), where ψ(s)(·) is the function that discretizes
the continuous x into the choices of the split sample s. These then define a new random
variable, xWS = Ψ(x(1), . . . , x(s), . . . , x(S)) representing the working sample, where
Ψ(·) is the ‘merging function’.

x

x(1)

x(s)

x(S)

xWS

ψ(1)(x)

ψ(s)(x)

ψ(S)(x)

x

Figure 2.2: Creation of the working sample’s random variable

Each method to be discussed below specifies the functions ψ(s), the merging function
Ψ(·) and defines the random variable of the working sample xWS. These functions are
different across the methods, but all of them reflect the unknown random variable x.
To do so, we need the following property to hold

lim
S→∞

ES

[
xWS|y

]
= E [x|y] , (2.7)

which means that in the limit the conditional expectation of the working sample should
be the same as for the true underlying variable.

2.3.2 Probabilities in the Working Sample
To show later on that Equation 2.7. holds for the introduced methods, we need to cal-
culate the probability of an observation to fall into a working sample class. To derive
this, we have to derive the probability of an observation falling into a given split sam-
ple’s choice class and introduce an assigning mechanism taking an observation in a
split sample to a working sample class. Based on these, we can get the unconditional
probability for an observation to be in a given class in the working sample.

All individuals are initially allocated into a split sample. This, of course, defines
the number of observations in each split sample (N(s)), which in turn translates into
the probability of a given observation x being in split sample s: Pr(x ∈ Ss), where Ss

denotes the s-th split sample. Uniformly assigning these individuals to split samples is
the most straightforward procedure, (Pr(x ∈ Ss) = 1/S), however for the general case
we are going to use the probabilistic notations.
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Now, we can define the probability for an observation to be in a given class in a given
split sample,

Pr
(

x ∈ C(s)
m

)
= Pr(x ∈ Ss)

∫ c(s)m

c(s)m−1

f (x)dx .

As we observe a response in a given split sample, we would like to derive the probabil-
ity of this observation falling between given boundary points in the working sample.
We then assign these uniformly into the working sample’s classes to avoid any system-
atic bias during the merging process. 8

Pr
(

x ∈ CWS
b | x ∈ C(s)

m

)
=


cWS

b −cWS
b−1

c(s)m −c(s)m−1

, if cWS
b ≤ c(s)m and cWS

b−1 ≥ c(s)m−1 ,

0, otherwise .

Using the above two equations, we need to assign each individual from all split sam-
ples into the working sample without any additional information. Thus, the uncondi-
tional probability of an individual falling in the working sample between given bound-
ary points is

Pr
(

x ∈ CWS
b

)
=

S

∑
s=1

Pr(x ∈ Ss)
M

∑
m=1

Pr
(

x ∈ CWS
b | x ∈ C(s)

m

) ∫ c(s)m

c(s)m−1

f (x)dx . (2.8)

To simplify, we can assume uniform assignment of the observations to each split sam-
ple, and write

Pr
(

x ∈ CWS
b

)
=

1
S

S

∑
s=1

∑
m

if CWS
b ∈C(s)

m

cWS
b − cWS

b−1

c(s)m − c(s)m−1

∫ c(s)m

c(s)m−1

f (x)dx .

In some cases x may have infinite support, which implies classes not bounded from
below and/or above. Usually, this is related to survey questions like “... or less” or
“... or more”. Here we face censoring. As a consequence, the difference between the
class’s choice value (e.g., z(s)1 in Equation (2.1)) and the class’s conditional mean for the
underlying distribution can be potentially infinite, resulting in very large estimation
biases. We will return to this issue later in the paper.

2.3.3 Magnifying Method
In the magnifying method, we magnify the domain of the answers within the original
domain of the unknown distribution of x by one equally sized choice class. The size
of each of the classes depends on the number of split samples (S) and the number
of choice values (M). As the number of split samples increases class sizes decrease,

8Here we use the fact that the boundary points in the working sample are the union of the split
samples’ boundary points.
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which is the main mechanism to uncover the unknown distribution. Figure 2.3 shows
the main idea of the magnifying method: the last line shows the working sample, while
above, we can see the individual questionnaires for the case of M = 3, S = 4.

0

0

0

0

6

6

6

6

1

2

3

4

2

3

4

5

split samples
S = 4, M = 3

0 1 2 3 4 5 6
working sample

B = S(M− 2) + 2

Figure 2.3: The magnifying method

The first and last split samples are slightly different from the split samples in between.
They have one extra class with the same class width, while split samples in between
have M− 2 classes with the same class width. To further explore the properties of the
magnifying method, let us establish the connection between the number of magnified
classes in the working sample (B), and the number of split samples (S) and choices
(M)

B = S(M− 2) + 2 .

As mentioned above, we have 2 split samples, which lie in the boundary of the domain
and capture M− 1 classes of equal size; and there are S− 2 split samples in between
which capture M − 2 classes. After some manipulations, we get the number of the
classes in the working sample.

Given the fact that there are B classes in the working sample, we get the widths of
these classes, let us call it h such

h =
au − al

S(M− 2) + 2
.
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Algorithm 1 Magnifying method – creation of the split samples (ψ(s)(·))
1: For any given S and M. Set

B =S(M− 2) + 2

h =
au − al

B
s =1.

2: Set c(s)0 = al and c(s)M = au.
3: If s = 1, then set

c(s)1 = c(s)0 + h,

else set
c(s)1 = c(s−1)

M−1 .

4: Set c(s)m = c(s)m−1 + h for m = 2, . . . , M− 1.
5: If s < S then s := s + 1 and goto Step 2.

The magnifying method works as it converges to the unknown distribution of x as by
fixing the upper and lower bounds on the support for the split samples (al = cWS

0 =

c(s)0 ; au = cWS
B = c(s)M , ∀s), one can reduce the class size h → 0 as S → ∞. This can

also be seen through the working sample’s boundary points, which have the following
simple form

cWS
b = al + bh = al + b

au − al
S(M− 2) + 2

.

To show how the number of split samples affects the bias, we need the boundary points
for each split sample, which can be derived as

c(s)m =


al or −∞ if m = 0,

al + mh if 0 < m < M and s = 1,

al + h [(s− 2)(M− 2) + M + m− 2] if 0 < m < M and s > 1,

au or ∞ if m = M.

(2.9)

The intuition behind this is that on the boundaries of the support, the split samples
take the values of the lower and upper bounds. For the first split sample, one needs to
shift the boundary points m times. However, for the other split samples, one needs to
push by h(M− 1) times to shift through the first questionnaire and then h(M− 2) to
shift through each split sample in between s = 2 and s = S− 1, s− 2 times. Deriving
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this process algebraically will result in the above expression.9

From Equation (2.9), it is clear that the class widths differ from each other within
a split sample. Let ||C(s)

m || = c(s)m − c(s)m−1 be the m-th class width, then for the split
samples which are in-between the boundaries (1 < s < S) and substituting for h, we
can write

||C(s)
m || =


(au − al)

(
s(M−2)+2
S(M−2)+2 +

1−M
S(M−2)+2

)
if m = 1, 1 < s < S,

au−al
S(M−2)+2 if 1 < m < M, 1 < s < S,

(au − al)
(

1− s(M−2)+1
S(M−2)+2

)
if m = M, 1 < s < S .

We can also define the class widths for the first and last split samples as

||C(1)
m || =


au−al

S(M−2)+2 if 1 ≤ m < M,

(au − al)
(

1− M−1
S(M−2)+2

)
if m = M,

||C(S)
m || =

(au − al)
(

1− M−1
S(M−2)+2

)
if m = 1,

au−al
S(M−2)+2 if 1 < m ≤ M.

Note that ||C(s)
m || ≤ ||C

(s)
1 || and ||C(s)

m || ≤ ||C
(s)
M ||. Formally, let us define ζ :=

{C(s)
m | 1 < m < M, 1 < s < S, C(1)

m | 1 ≤ m < M, C(S)
m | 1 < m ≤ M}

as the set of classes which have the class width au−al
S(M−2)+2 . Then we can write

Pr
(
(x− x(s))2|x ∈ ζ ≤ (x− x(s))2 | x 6∈ ζ

)
= 1, which is true if and only if, E [x] =

E
[

x(s)
]

, ∀x. One example is when x is uniformly distributed.
Now, let us check the limit in the number of split samples. We end up with the

following limiting cases

lim
S→∞

(
||C(s)

m ||
)
=

0 if 1 ≤ m < M, 1 < s < S,

au − al if m = M, 1 < s < S;

and for the first and last split sample

lim
S→∞

(
||C(1)

m ||
)
=

0 if 1 ≤ m < M,

au − al if m = M,

lim
S→∞

(
||C(S)

m ||
)
=

au − al if m = M,

0 if 1 < m ≤ M.

This formulation takes al as the starting point and expresses the boundary points

9There is an alternative way to formalize the boundary points, when one starts from au. The formal-
ism will result in the same conclusions.
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given al. However, we can use au as the starting point as well to shift the boundary
point. This implies that the convergences on the bounds (||C(s)

1 ||, ||C
(s)
M ||) will change,

resulting in those parts not converging to 0 in general.
Based on the different magnitudes of measurement errors and depending on class

widths, it is clear that there are two types of observations: The first type is x(s)i ∈ ζ.

Here, the error is the smallest and has the feature of limS→∞ ||C
(s)
m || = 0. Moreover,

these observations have the same class width as the working sample’s classes and each
of them can be directly linked to a certain working sample class by design. Formally,
∃C(s)

m
∼= CWS

b such that c(s)m = cWS
b , c(s)m−1 = cWS

b−1. We call these values ‘directly trans-
ferable observations’, as we can directly transfer and use them in the working sample.
These observations are denoted by xWS

i,DTO := x(s)i ∈ ζ, ∀s, and the related random
variable by xWS

DTO.10

The second type of observations are all others for which none of the above is true. We
call them ‘non–directly transferable observations’. Algorithm 2 describes how to construct
the working sample, when using only the directly transferable observations.

Algorithm 2 Magnifying method - creation of the ‘DTO’ working sample (ΨDTO(·))
1: Set m = 1, s = 1 and xWS

i,DTO, yWS
i,DTO, wWS

i,DTO = ∅.

2: If C(s)
m ∈ ζ, add observations from class C(s)

m to the working sample:

xWS
i.DTO :=

xWS
i,DTO,

N⋃
j=1

(
x(s)j ∈ C(s)

m

) ,

yWS
i.DTO :=

yWS
i,DTO,

N⋃
j=1

y(s)j |
(

x(s)i ∈ C(s)
m

) ,

wWS
i.DTO :=

wWS
i,DTO,

N⋃
j=1

w(s)
j |

(
x(s)i ∈ C(s)

m

) ,

3: If s < S, then s := s + 1 and go to Step 2.
4: If s = S, then s := 1 and set m = m + 1 and go to Step 2.

Before proving the consistency of β̂, using only xWS
i,DTO — the directly transferable obser-

vations in the working-sample — we need to make some assumptions on these obser-
vations.

The probability that a directly transferable observation lies in a given class of the work-

10Notation: for the estimation we use the superscript ‘WS’ and define the construction method in the
subscript – here ‘DTO’.
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ing sample can be written based on Equation (2.8) as follows

Pr
(

x ∈ CWS
b

)
= Pr(x ∈ Ss)

∫ cWS
b

cWS
b−1

f (x)dx .

Here we used the fact that individual i being assigned to a split sample s is independent
of i choosing the class with choice value z(s)m .

We want to ensure that in each class in the working sample, there are directly trans-
ferable observations. This will ensure that the estimation is feasible. Thus, for each
split sample the expected number of directly transferable observations is

E(NWS
b ) = E

(
N

∑
i=1

1{xi∈CWS
b }

)

= N Pr(x ∈ Ss)
∫ cWS

b

cWS
b−1

f (x)dx.

(2.10)

Following from Equation (2.10), consider the following assumptions,

Assumption 1. Let x be a continuous random variable with probability density function f (x)
with S, N and C(s)

m follow the definitions above then

a. S
N → c with c ∈ (0, 1) as N → ∞.

b. All split samples will have non-zero respondents. (Pr (x ∈ Ss) > 0)

c.
∫ b

a f (y)dy > 0 for any (a, b) ⊂ [al, au].

Assumption 1a. ensures that the number of respondents will always be higher than
the number of split samples. Assumption 1b. ensures utilisation of all split samples,
i.e. each split sample will have non-zero respondents. Assumption 1c. imposes a mild
assumption on the underlying distribution. That is, the support of the random variable

is not disjoint. This implies
∫ cWS

b
cWS

b−1
f (x)dx > 0. These assumptions allow us to establish

the following.

Proposition 1. Under Assumptions 1a - c,

1.
E(NWS

b ) > 0

2.

Pr

(
b

∑
i=1

NWS
b > 0

)
→ 1.

3.
Pr
(

xWS
DTO < a

)
= Pr (x < a) for any a ∈ [al, au]
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See the proof in Appendix B.3.1.

The proposition established convergence in distribution which allows consistent esti-
mation of the underlying continuous distribution. This implies that the classical econo-
metric results stand and the LS estimator is consistent for β.
Note that we can decrease c as close to 0 as we would like to. This means that there
is an equal or higher number of observations than split samples. On the other hand,
we exclude by assumption the case when c ≥ 1, which means that there is an equal
or higher number of split samples than observations. In this case, we most certainly
would not observe values for each working sample class.

Next, let us consider the placement of the non-directly transferable observations. We
have seen that these observations do not reduce the measurement error in a systematic
way. One way to proceed is to remove them completely so that they do not appear in
the working sample (thus only using xWS

i,DTO). However, it seems that too many could
fall into this category, resulting in a large efficiency loss in estimation.

Another approach is to use the information available for these observations namely,
the known boundary points for these values. Then we could use all the directly transfer-
able observations from the working sample to calculate the conditional averages for all
non-directly transferable observations and replace them with those values. This way one
could construct a variable, which has the same number of observations as the number
of respondents. Let us denote this new variable xWS

i,ALL. This represents all the directly
transferable observations and the replaced values for non-directly transferable obser-
vations.
Let us formalize the non-directly transferable observations as x(s)i ∈ Cχ, where

Cχ :=
⋃
s,m

C(s)
m
⋂
b

CWS
b = ζ{

is the set for non-directly transferable observations from all split samples, with χ =

1, . . . , 2(S − 1). We can then replace x(s)i ∈ Cχ with π̂χ, which denotes the sample
conditional averages

π̂χ =

(
N

∑
i=1

1{xWS
i,DTO∈Cχ}

)−1 N

∑
i=1

1{xWS
i,DTO∈Cχ}x

WS
i,DTO.

Let us introduce xWS
i,NDTO as the variable which contains all the replaced values with

π̂χ, ∀x(s)i ∈ Cχ. This way we can create a new working sample as xWS
i,ALL :=

{xWS
i,DTO, xWS

i,NDTO}, which contains information from both types of observations.
Let us call π̂χ the ‘replacement estimator’ of the conditional expectation of the given

class. Under the WLLN, it is straightforward to show that the ‘replacement estimator’
for the sample conditional averages converges to the conditional expectations, thus
π̂χ → E(x|x ∈ Cχ) as N, S → ∞ and under the same assumptions as before. This also
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implies xWS
i,NDTO → E(x|x ∈ Cχ), which means using working sample xWS

i,ALL satisfies
Equation 2.7.

Algorithm 3 The magnifying method - creation of ‘ALL’ working sample (ΨALL(·))
1: Let, xWS

i,ALL := {xWS
i,DTO}, yWS

i,ALL := {yWS
i,DTO}, wWS

i,ALL := {wWS
i,DTO}

2: Set, m = 1, s = 1
3: If C(s)

m ∈ Cχ, then calculate π̂χ and expand the working sample as,

xWS
i.ALL :=

xWS
i,ALL,

N⋃
j=1

π̂χ |
(

x(s)j ∈ C(s)
m

) ,

yWS
i.ALL :=

yWS
i,ALL,

N⋃
j=1

y(s)j |
(

x(s)i ∈ C(s)
m

) ,

wWS
i.ALL :=

xWS
i,ALL,

N⋃
j=1

w(s)
j |

(
x(s)i ∈ C(s)

m

) ,

4: If s < S, then s := s + 1 and go to Step 3.
5: If s = S, then s := 1 and set m = m + 1 and go to Step 3.

We can obtain the asymptotic standard errors of this estimator, as if these are large, the
replacement might not be favorable, as it may induce more uncertainty relative to the
potential loss of efficiency by not including all the observations. To obtain the standard
errors, one can think of π̂χ as an LS estimator, regressing 1{xWS

i,DTO∈Cχ} on xWS
i,DTO. Here

1{xWS
i,DTO∈Cχ} is a vector of indicator variables, created by 2(S− 1) indicator functions: It

takes the value of one for the directly transferable observations, which are within Cχ.11

We can now write the following:

xWS
i,DTO = πππχ1{xWS

i,DTO∈Cχ} + ηi,

where πππχ stands for the vector of πχ, ∀χ. The LS estimator of πππχ is

π̂ππχ =

(
1′{xWS

i,DTO∈Cχ}
1{xWS

i,DTO∈Cχ}

)−1

1′{xWS
i,DTO∈Cχ}

xWS
i,DTO ,

and under the standard LS assumptions, we can write√
NWS

DTO (π̂ππχ −πππχ)
a∼ N (0, ΩΩΩχ) ,

where πππχ = E(x|x ∈ Cχ), ∀χ.

11The indicator variables are not independent of each other, while the non-transferable observation
classes (Cχ) are overlapping each other.
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The variance of the LS estimator is

ΩΩΩχ = V (ηi)

(
1′{xWS

i,DTO∈Cχ}
1{xWS

i,DTO∈Cχ}

)−1

.

Using this result, we may decide whether to replace NDTOs or not.
As a last step we need to consider the censoring case for the magnifying method.

A straightforward solution is to remove those observations which have infinite class
boundary. In the magnifying method, this means to remove observations in the
class/es CWS

1 if we have al = −∞ or/and CWS
B if au = ∞. This solution means we

artificially truncate y → ytr , x → xtr and w → wtr. For the truncated distribution,
we can use all the derivations presented above, and we end up with convergence in

distribution. That is, f (xWS
DTO ∈ ζtr)

d−→ f (xtr).12 Furthermore, the parameter estimates
βtr = β (under some reasonable assumptions), which implies that the LS estimator is
consistent for the truncated observations. Note that truncation implies that we cannot
replace the observations from the split samples with infinite boundaries, and also that
the replacement estimator does not converge to the conditional expectation due to the
truncation.

2.3.4 Shifting Method
The shifting method approaches the problem in a different way. It takes the origi-
nal questionnaire as given, with fixed class widths, and shifts the boundaries of each
choice with a given fixed value. This results in fixed class widths for the different split
samples, except in the boundary classes where the widths are changing. Increasing
the split sample size does not affect the boundary widths in between the support, only
the size of the shift. We can approach this method in two ways. Logically we could
consider the original questionnaire, and take the number of choices as fixed here, then
as we shift the boundaries, add an extra class for each split sample at the boundary
where, due to the shift, the class width has increased. For the mathematical deriva-
tions, however, it is more convenient to look at each split sample separately and take
the number of classes in each split sample as given, with the exception of the first split
sample, which we will regard as the starting benchmark. The first split sample in this
case has one fewer class. The discussion below focuses on this approach and Figure
2.4 shows the split samples following this logic with S = 4 and with M = 4 classes.

12ζtr is the set of intervals, which do not contains CWS
1 and/or CWS

B depending on the support. Fur-
thermore, note that truncation implies that we cannot replace the observations from the split samples
with infinite boundaries, and also that the replacement estimator does not converge to the conditional
expectation due to the truncation.
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Working sample
B = (M− 1)× S

Figure 2.4: The shifting method

As Figure 2.4 shows there is one split sample (the benchmark s = 1) where there is one
class fewer (M− 1), or if we prefer, we can look at the benchmark as where we shifted
the boundaries with zero. To get the properties of the working sample, let us define the
class widths for the first split sample as au−al

M−1 . We want to split this into S part in order
to be able to shift the boundaries S times in order to have S split samples. Thus, the
size of the shift is au−al

S(M−1) . This way we can define the number of classes in the working
sample as

B = S(M− 1).

Now, the boundary points for each split sample are

c(s)m =


al or −∞, if m = 0,

al + (s− 1) au−al
S(M−1) + (m− 1) au−al

M−1 if 0 < m < M,

au or ∞, if m = M.

For the working sample, we get cWS
b = al + b au−al

S(M−1) . The class widths are

||C(s)
m || =


0, if s = 1 and m = 1,
au−al
M−1 , if 1 < m < M,

(s− 1) au−al
S(M−1) , otherwise.

and for the class size in the working sample, ||CWS
b || =

au−al
S(M−1) .
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Some additional remarks on the boundary points:

• C(1)
1 has size 0 and does not exist in practice. Theoretically, it is induced by the

formalism.

• There are only two classes in the split samples which are congruent (with
the same boundary points) with the classes in the working sample: C(2)

1
∼=

CWS
1 , C(S)

M
∼= CWS

B . This means that directly transferable observations will not
help us here.

• One cannot decrease the class widths between C(s)
2 and C(s)

M−1 in the split samples
by increasing the number of split samples.

• However, the class widths in the working sample can be decreased by increasing
the number of split samples.

Algorithm 4 The shifting method - creation of split samples (ψ(s)(·))
1: For any given S and M, set

B =S(M− 1)

h =
au − al

B

∆ =
au − al
M− 1

s =1.

2: Set c(s)0 = al and c(s)M = au.
3: If s = 1, set

c(s)m = c(s)m−1 + ∆, m = 2, . . . , M− 1

else
c(s)m = c(s−1)

m + h, m = 1, . . . , M− 1.

Note: c(1)1 does not exist.
4: If s < S then s := s + 1 and goto Step 2.

The general idea is to reconstruct the underlying distribution f (x), with creating a new
random variable, which incorporates the information content of the boundary points.

The observations from a particular class in the split sample s can end up in several
classes in the working sample so the union of these classes gives one of the classes from
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the split samples

C(s)
m =


∅, if, s = 1 and m = 1,⋃s−1

b=1 CWS
b , if, s 6= 1 and m = 1,⋃s−1+(m−1)(M−1)

b=s−1+(m−2)(M−1) CWS
b , if, 1 < m < M,⋃B

b=B−S+s−1 CWS
b , if m = M.

(2.11)

Now, define Z(s, m), which creates sets for the scalar values of the working sample’s
choice values (zWS

b ) for each split sample class C(s)
m ,

Z(s, m) =


{∅}, if, s = 1 and m = 1,⋃s−1

b=1{z
WS
b }, if, s 6= 1 and m = 1,⋃s−1+(m−1)(M−1)

b=s−1+(m−2)(M−1){z
WS
b }, if, 1 < m < M,⋃B

b=B−S+s−1{zWS
b }, if m = M.

(2.12)

The number of elements in Z(s, m) depends on the split sample and its class. We use
these sets to create a new artificial variable x†

i .
The assignment mechanism can be written as

x†
i |x

(s)
i ∈ C(s)

m = z ∈ Z(s, m), with


Pr (1) , if s = 1 and m = 1,

Pr (1/(s− 1)) , if s 6= 1 and m = 1,

Pr (1/S) , if 1 < m < M, or

Pr (1/(S− s + 1)) , if m = M.

(2.13)

While by the definition, there is a direct mapping between z ∈ Z(s, m) and CWS
b , we

can write the probability of x†
i ∈ CWS

b , using Equation (2.8) and assuming Pr(x ∈ Ss) =

1/S,

Pr
(

x†
i ∈ CWS

b

)
=



0, if s = 1 and m = 1,
1
S ∑S

s=2
1

s−1

∫
C(s)

1 |C
WS
b ∈C(s)

1
f (x)dx, if s 6= 1 and m = 1,

1
S2 ∑S

s=1
∫

C(s)
m |CWS

b ∈C(s)
m

f (x)dx, if 1 < m < M,

1
S ∑S

s=1
1

S−s+1

∫
C(s)

M |C
WS
b ∈C(s)

M
f (x)dx, if m = M .

(2.14)

Algorithm 5 describes how to create an artificial variable which approximates the un-
derlying distribution of x.
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Algorithm 5 The shifting method – creation of artificial variable (x†
i )

1: Set s := 1, m := 1, x†
i = ∅ .

2: Create the set of observations from the defined split sample class:

A(s)
m := {x(s)i ∈ C(s)

m } ∀i,

where A(s)
m has N(s)

m number of observations.
3: Create Z(s, m), the set of possible working sample choice values,

Z(s, m) =



{∅}, if, s = 1 and m = 1,⋃s−1
b=1{z

WS
b }, if, s 6= 1 and m = 1,⋃s−1+(m−1)(M−1)

b=s−1+(m−2)(M−1){z
WS
b }, if, 1 < m < M,⋃B

b=B−S+s−1{zWS
b }, if m = M.

4: Draw Zj ∈ Z(s, m), j = 1, . . . , N(s)
m , with uniform probabilities given by

x†
i |x

(s)
i ∈ C(s)

m = z ∈ Z(s, m), with


Pr (1) , if s = 1 and m = 1,

Pr (1/(s− 1)) , if s 6= 1 and m = 1,

Pr (1/S) , if 1 < m < M, or

Pr (1/(S− s + 1)) , if m = M.

Example: Let C(2)
3 = [2.5, 4.5], A(s)

m = {3.5, 3.5, 3.5}, N(s)
m = 3, Z(s, m) =

{2.75, 3.25, 3.75, 4.25}, the uniform probabilities are 1/4 for each choice value. Then
we pick values with the defined probability from the set of Z(s, m), 3 times with

repetition, resulting in
⋃N(s)

m
j=1 Zj = {2.75, 3.25, 3.25}

5: Add these new values to x†
i ,

x†
i :=

x†
i ,

N(s)
m⋃

j=1

Zj


6: If s < S, then s := s + 1 and go to Step 2.
7: If s = S, then s := 1 and set m = m + 1 and go to Step 2.

It is possible to show that the distribution of this new variable converges to the distri-
bution of the true underlying random variable (x) as we increase the number of split
samples.
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Proposition 2. Under Assumptions 1a, 1c and Pr(x ∈ Ss) = 1/S,

lim
S→∞

Pr(x† < a) = Pr(x < a) ∀a ∈ (al, au)

or
lim

S→∞
FS(a) = F(a) ∀a ∈ (al, au),

where
FS(a) = Pr(x† < a) and F(a) = Pr(x < a)

See the proof in the Appendix B.3.2.

In addition, we can investigate the speed of convergence, as we increase the number
of split samples (S). The main result from the exercise is that on the boundaries of the
support13, the method converges slower, with log S

S , while for the rest it converges with
1/S. See the derivations in Appendix B.3.3.

Note that we cannot directly use x†
i for estimation, while by design each individual

observation only represents the conditional mean for the given split sample’s class,
and not the underlying variable’s conditional expectation

E
(

x†
i ∈ C(s)

m

)
= E

(
x(s)i ∈ C(s)

m

)
6= E

(
xi ∈ C(s)

m

)
.

However, while FS(x†) approximates the underlying distribution, we can use these
values to calculate the sample conditional means for a given split sample class. Thus,
the idea is to use this artificial distribution to calculate the conditional means and re-
place the class observations with these values.
Let π̂τ be the replacement estimator for the shifting method, where τ = 1, . . . , S×M.
Let us define

π̂τ :=

(
N

∑
i=1

1′
{x(s)i ∈C(s)

m }

)−1 N

∑
i=1

1′
{x(s)i ∈C(s)

m }
x†

i . (2.15)

Using the WLLN, it can be shown that the π̂τ for the sample conditional averages are
in fact converging to the true underlying distribution’s conditional expectations, thus

π̂τ → E(x|x ∈ C(s)
m )

as N, S→ ∞ under the same assumptions as before.
Using this fact, we can replace x(s)i ∈ C(s)

m with π̂τ for each value, thus the working
sample becomes the set of replacement estimators for each observation

xWS
i,Shi f ting := {π̂τ}.

13Which is given by the maximum distance from the support given by the split samples. For the lower
bound: c(1)1 + (c(S)2 − c(1)1 ) and for the higher bound: c(1)M + (c(1)M−1 − c(1)M ).
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We can also check the standard errors of the replacement estimator to have an idea
how precise our results are

x†
i = πππτ1{x†

i ∈C(s)
m }

+ ηi,

where πππτ denotes the vector of πτ, ∀τ. Using the standard LS technique we can derive

π̂ππτ =

(
1′
{x†

i ∈C(s)
m }

1{x†
i ∈C(s)

m }

)−1

1′
{x†

i ∈C(s)
m }

x†
i .

Under the standard LS assumption, we can write

√
NWS (π̂ππτ −E [πππτ])

a∼ N (0, ΩΩΩτ) ,

where E (πππτ) = E(x|x ∈ C(s)
m ), ∀τ. Furthermore, the variance of the LS estimator is

given by

ΩΩΩτ = V (ηi)

(
1′
{x†

i ∈C(s)
m }

1{x†
i ∈C(s)

m }

)−1

,

where π̂τ represents the first moments of the underlying random variable, thus using
xWS

i,Shi f ting for estimation will result in a consistent estimator for β.

Algorithm 6 Th shifting method – creation of working sample (ΨShi f ting(·))

1: Set s := 1, m := 1, {xWS
i , yWS

i , wWS
i } = ∅ .

2: Calculate the sample conditional mean π̂τ, for the given C(s)
m class, using

π̂τ :=

(
N

∑
i=1

1′
x(s)i ∈C(s)

m

)−1 N

∑
i=1

1′
x(s)i ∈C(s)

m
x†

i .

3: Add the conditional mean π̂τ and the observed values y(s)j , w(s)
j to the working

sample,

xWS
i :=

xWS
i ,

N⋃
j=1

π̂τ |
(

xj ∈ C(s)
m

)
yWS

i :=

yWS
i ,

N⋃
j=1

y(s)j |
(

xj ∈ C(s)
m

)
wWS

i :=

wWS
i ,

N⋃
j=1

w(s)
j |

(
xj ∈ C(s)

m

) .

4: If s < S, then s := s + 1 and go to Step 2.
5: If s = S, then s := 1 and set m = m + 1 and go to Step 2.
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2.4 Monte Carlo Experiments
In this section, we examine the finite sample performance of our split sampling meth-
ods through some Monte Carlo simulations. We use the following data generating
process (DGP)

yi = 0.5xi + εi εi ∼ N (0, σ2).

The explanatory variable, xi, is generated as different distributions. Appendix B.1 con-
tains detailed results with uniform, normal, exponential and weibull distributions with
different parameter settings. Here we present only some demonstrative results with
specifications shown in Table 2.1.

f (·; al, au) E [x | x ∈ Cm] and zm
∫ au

al
f (·)

Exp (0.5; 0, 1)
close to each other

complete mapping (100%)
Exp (0.5; 0, ∞) weak mapping (39%)
N (0, 0.2;−1, 1)

far from each other
complete mapping (100%)

N (0, 0.2;−∞, ∞) good mapping (99%)

Table 2.1: Distributions used for the underlying random variable x.

Overall, the results are consistent with the theoretical findings. Tables 2.2, 2.3, 2.4 and
2.5 shows the Monte Carlo average of the biases (β̂ − β), the Monte-Carlo mean ab-
solute biases (|β̂− β|), the Monte Carlo standard deviation

(
SD
[
β̂
])

and the average
of the number of effective observations

(
Ne f f ). The bias is in general decreasing as

the number of observations and the number of split samples increase. The relative
performance of the methods depends on two characteristics of the underlying distri-
bution namely, curvature (or the classes’ conditional expectations relative to the choice
values, E [x | x ∈ Cm] and zm), and the fraction of the probability mass covered by the
surveys (or what is the probability that a certain part of the distribution is neglected by
the surveys: Pr (x < al) or Pr (x > au)).

The Monte Carlo setup allows us to disentangle these two effects as shown in Ta-
ble 2.1. The exponential distribution with parameter λ = 0.5 provides a distribution
with flat curvature. Hence, E [x | x ∈ Cm] and zm are close to each other and the per-
formance of the two methods are similar to each other. The normal distribution with
µx = 0, σ2

x = 0.2 has steeper curvature. Thus, E [x | x ∈ Cm] and zm are far from each
other. The magnifying method appears to be better than the shifting method in this
case. In general, a large M appears to be critical if the distribution has a steep curva-
ture. Furthermore, we have checked the truncated case, where the probability mass
is completely covered by the surveys and the censored case, where there is a non-
negligible part of the probability mass which cannot be utilized for the estimation.
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Magnifying method - used as xWS
i,All

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0182 0.0032 0.0020 0.0015 0.1341 -0.0026 -0.1147 -0.2728
N=100,000 -0.0185 0.0020 0.0012 0.0016 0.1342 -0.0029 -0.0151 -0.0473
N=500,000 -0.0190 0.0004 0.0004 0.0008 0.1339 -0.0008 -0.0013 -0.0182

|β̂− β|
N=10,000 0.0415 0.0807 0.0902 0.0929 0.1342 0.3105 0.4537 0.5312
N=100,000 0.0208 0.0284 0.0312 0.0320 0.1339 0.0971 0.1676 0.2264
N=500,000 0.0191 0.0121 0.0138 0.0140 0.1342 0.0438 0.0760 0.1049

SD
[
β̂
] N=10,000 0.0489 0.1024 0.1147 0.0445 0.0785 0.3872 0.5653 0.6019

N=100,000 0.0163 0.0355 0.0392 0.0401 0.0137 0.1218 0.2108 0.2794
N=500,000 0.0073 0.0152 0.0172 0.0175 0.0061 0.0554 0.0961 0.1301

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 696 212 181
N=100,000 100,000 100,000 100,000 100,000 100,000 6,874 1,693 941
N=500,000 500,000 500,000 500,000 500,000 500,000 34,348 8,267 4,310

Shifting method - used as xWS
i

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0182 0.0023 0.0025 0.0027 0.1341 0.0864 0.0843 0.0861
N=100,000 -0.0185 0.0019 0.0021 0.0021 0.1342 0.0859 0.0809 0.0801
N=500,000 -0.0190 0.0018 0.0017 0.0016 0.1339 0.0865 0.0815 0.0805

|β̂− β|
N=10,000 0.0415 0.0703 0.0701 0.0701 0.1342 0.1811 0.1642 0.1630
N=100,000 0.0208 0.0238 0.0236 0.0235 0.1339 0.0926 0.0873 0.0869
N=500,000 0.0191 0.0103 0.0103 0.0103 0.1342 0.0866 0.0816 0.0806

SD
[
β̂
] N=10,000 0.0489 0.0879 0.0878 0.0879 0.0785 0.2078 0.1891 0.1864

N=100,000 0.0163 0.0297 0.0294 0.0293 0.0137 0.0683 0.0633 0.0632
N=500,000 0.0073 0.0130 0.0130 0.0130 0.0061 0.0308 0.0283 0.0280

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 5,071 5,334 5,387
N=100,000 100,000 100,000 100,000 100,000 100,000 50,704 53,162 53,491
N=500,000 500,000 500,000 500,000 500,000 500,000 253,492 265,711 267,270

∗BM = Benchmark: simple mid-values are used. For complete specification see Table B.4 in Appendix B.1..

Table 2.2: Monte Carlo statistics for xi ∼ Exp (0.5), M=3

Magnifying method - used as xWS
i,ALL

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0798 -0.0051 -0.0015 -0.0005 -0.0552 -0.0053 -0.1419 -0.3182
N=100,000 -0.0800 -0.0055 -0.0002 -0.0003 -0.0552 -0.0053 -0.0188 -0.0751
N=500,000 -0.0803 -0.0057 -0.0002 0.0000 -0.0554 -0.0054 -0.0037 -0.0160

|β̂− β|
N=10,000 0.0798 0.0264 0.0318 0.0356 0.0553 0.0669 0.1699 0.3198
N=100,000 0.0800 0.0100 0.0109 0.0120 0.0552 0.0226 0.0461 0.0863
N=500,000 0.0803 0.0063 0.0050 0.0054 0.0554 0.0104 0.0194 0.0301

SD
[
β̂
] N=10,000 0.0224 0.0329 0.0401 0.0447 0.0220 0.0842 0.1534 0.1485

N=100,000 0.0074 0.0111 0.0136 0.0151 0.0074 0.0282 0.0540 0.0721
N=500,000 0.0033 0.0051 0.0063 0.0068 0.0031 0.0117 0.0241 0.0349

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 946 241 195
N=100,000 100,000 100,000 100,000 100,000 100,000 9,381 1,983 1,069
N=500,000 500,000 500,000 500,000 500,000 500,000 46,891 9,730 4,953

Shifting method
Truncated Censored

BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0811 -0.0244 -0.0240 -0.0242 -0.0552 0.0106 0.0067 0.0049
N=100,000 -0.0810 -0.0246 -0.0241 -0.0241 -0.0552 0.0103 0.0069 0.0062
N=500,000 -0.0811 -0.0246 -0.0242 -0.0242 -0.0554 0.0102 0.0071 0.0065

|β̂− β|
N=10,000 0.0811 0.0288 0.0285 0.0286 0.0553 0.0346 0.0323 0.0316
N=100,000 0.0810 0.0246 0.0241 0.0241 0.0552 0.0137 0.0115 0.0112
N=500,000 0.0811 0.0246 0.0242 0.0242 0.0554 0.0104 0.0076 0.0072

SD
[
β̂
] N=10,000 0.0224 0.0251 0.0253 0.0253 0.0220 0.0421 0.0401 0.0395

N=100,000 0.0071 0.0083 0.0083 0.0082 0.0074 0.0134 0.0127 0.0126
N=500,000 0.0033 0.0036 0.0037 0.0037 0.0031 0.0059 0.0056 0.0055

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 8,064 8,250 8,280
N=100,000 100,000 100,000 100,000 100,000 100,000 80,631 82,428 82,654
N=500,000 500,000 500,000 500,000 500,000 500,000 403,167 412,108 413,203

∗BM = Benchmark: simple mid-values are used. For complete specification see Table B.5 in Appendix B.1..

Table 2.3: Monte Carlo statistics for xi ∼ N (0, 0.2), M=3

60

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

Magnifying method - used as xWS
i,All

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0074 0.0037 0.0004 -0.0002 0.1304 -0.0063 -0.1343 -0.2709
N=100,000 -0.0072 0.0014 0.0013 0.0012 0.1307 -0.0038 -0.0156 -0.0494
N=500,000 -0.0078 0.0005 0.0006 0.0007 0.1303 -0.0011 -0.0033 -0.0099

|β̂− β|
N=10,000 0.0394 0.0841 0.0908 0.0919 0.1305 0.2472 0.4654 0.5010
N=100,000 0.0145 0.0291 0.0314 0.0325 0.1307 0.0809 0.1599 0.2147
N=500,000 0.0090 0.0124 0.0138 0.0140 0.1303 0.0365 0.0746 0.1027

SD
[
β̂
] N=10,000 0.0489 0.1068 0.1155 0.1164 0.0437 0.3081 0.5710 0.5767

N=100,000 0.0165 0.0364 0.0395 0.0405 0.0135 0.1025 0.2048 0.2647
N=500,000 0.0073 0.0155 0.0173 0.0177 0.0059 0.0458 0.0938 0.1278

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 804 218 183
N=100,000 100,000 100,000 100,000 100,000 100,000 7,962 1,750 955
N=500,000 500,000 500,000 500,000 500,000 500,000 39,775 8,547 4,383

Shifting method - used as xWS
i

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0074 0.0020 0.0018 0.0016 0.1304 0.0269 0.0292 0.0311
N=100,000 -0.0072 0.0016 0.0015 0.0015 0.1307 0.0218 0.0209 0.0212
N=500,000 -0.0078 0.0007 0.0006 0.0006 0.1303 0.0221 0.0218 0.0218

|β̂− β|
N=10,000 0.0489 0.0674 0.0678 0.0680 0.1305 0.1112 0.1057 0.1053
N=100,000 0.0165 0.0230 0.0230 0.0230 0.1307 0.0394 0.0380 0.0381
N=500,000 0.0073 0.0099 0.0099 0.0099 0.1303 0.0247 0.0243 0.0243

SD
[
β̂
] N=10,000 0.0843 0.0837 0.0844 0.0846 0.0437 0.1359 0.1294 0.1280

N=100,000 0.0279 0.0285 0.0286 0.0285 0.0135 0.0444 0.0425 0.0425
N=500,000 0.0131 0.0124 0.0124 0.0124 0.0059 0.0200 0.0195 0.0193

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 6,379 6,552 6,589
N=100,000 100,000 100,000 100,000 100,000 100,000 63,814 65,404 65,619
N=500,000 500,000 500,000 500,000 500,000 500,000 319,061 326,956 327,963

∗BM = Benchmark: simple mid-values are used. For complete specification see Table B.4 in Appendix B.1.

Table 2.4: Monte Carlo statistics for xi ∼ Exp (0.5), M=5

Magnifying method - used as xWS
i,All

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0311 -0.0005 -0.0002 -0.0004 -0.0097 -0.0044 -0.1536 -0.3267
N=100,000 -0.0313 -0.0004 0.0001 0.0000 -0.0099 -0.0010 -0.0178 -0.0794
N=500,000 -0.0315 -0.0008 -0.0000 0.0000 -0.0100 -0.0010 -0.0039 -0.0164

|β̂− β|
N=10,000 0.0328 0.0274 0.0324 0.0368 0.0195 0.0649 0.1780 0.3282
N=100,000 0.0313 0.0093 0.0111 0.0121 0.0106 0.0204 0.0460 0.0901
N=500,000 0.0315 0.0042 0.0050 0.0054 0.0100 0.0095 0.0200 0.0306

SD
[
β̂
] N=10,000 0.0226 0.0343 0.0404 0.0461 0.0234 0.0815 0.1523 0.1495

N=100,000 0.0078 0.0116 0.0139 0.0152 0.0074 0.0257 0.0544 0.0747
N=500,000 0.0033 0.0052 0.0063 0.0068 0.0033 0.0118 0.0243 0.0346

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 973 243 196
N=100,000 100,000 100,000 100,000 100,000 100,000 9,643 1,994 1,072
N=500,000 500,000 500,000 500,000 500,000 500,000 48,204 9,771 4,965

Shifting method - used as xWS
i

Truncated Censored
BM∗ S=10 S=50 S=100 BM∗ S=10 S=50 S=100

β̂− β

N=10,000 -0.0311 -0.0052 -0.0050 -0.0052 -0.0097 0.0049 0.0038 0.0034
N=100,000 -0.0313 -0.0049 -0.0047 -0.0047 -0.0099 0.0054 0.0038 0.0035
N=500,000 -0.0315 -0.0052 -0.0049 -0.0049 -0.0100 0.0053 0.0037 0.0035

|β̂− β|
N=10,000 0.0328 0.0198 0.0198 0.0197 0.0195 0.0248 0.0241 0.0240
N=100,000 0.0313 0.0077 0.0076 0.0076 0.0106 0.0089 0.0082 0.0081
N=500,000 0.0315 0.0054 0.0052 0.0052 0.0100 0.0058 0.0046 0.0045

SD
[
β̂
] N=10,000 0.0226 0.0242 0.0243 0.0243 0.0234 0.0307 0.0300 0.0299

N=100,000 0.0078 0.0082 0.0083 0.0083 0.0074 0.0098 0.0095 0.0095
N=500,000 0.0033 0.0036 0.0036 0.0036 0.0033 0.0044 0.0043 0.0043

Ne f f
N=10,000 10,000 10,000 10,000 10,000 10,000 9,089 9,156 9,168
N=100,000 100,000 100,000 100,000 100,000 100,000 90,884 91,525 91,606
N=500,000 500,000 500,000 500,000 500,000 500,000 454,421 457,602 457,994

∗BM = Benchmark: simple mid-values are used. For complete specification see Table B.5 in Appendix B.1.

Table 2.5: Monte Carlo statistics for xi ∼ N (0, 0.2), M=5
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Let us summarize the results and conclusions from the Monte Carlo exercise.

• Magnifying method – Truncated case

– Exp(0.5; 0, 1): The bias decreases in S and N. The increase of M has no
significant effect, because the conditional expected values and choice values
are close to each other. The standard errors are decreasing in N, but slightly
increasing in S. This is due to the fact that the share of directly transferable
observations is decreasing in S. This implies more NDTOs, which increases
the standard errors of the estimated coefficient. The absolute bias therefore
first decreases, then starts to increase as the effect of standard errors starts
to dominate. Overall, with flat curvature and complete mapping of the probability
mass, S/N should be above 0.01%, and M can be small.

– N (0, 0.2;−1, 1): The bias decreases in S and N. There is a significant de-
crease in the bias if we increase M, because the conditional expected values
and choice values are not close to each other. All other results are the same
as in the exponential case above. Overall, with steep curvature and complete
mapping of probability mass, S/N should be above 0.01%, and increasing M can
significantly reduce the bias.

• Magnifying method – Censored case

– Exp(0.5; 0, ∞) and N (0, 0.2;−∞, ∞): The bias first decreases, but then it
starts to increase again. This is due to the fact there are only a few observa-
tions to calculate the replacement estimator values for non-directly transfer-
able observations. This lack of precision introduces bias during the estima-
tion of β. The number of observations is radically decreasing as S increases
and the standard errors are increasing in S. The absolute bias is mainly
driven by the standard errors. Overall, without complete mapping of the proba-
bility mass, the main driver of the bias is the number of observations in the working
sample. With fewer split samples, we can decrease the absolute bias, but using too
many split samples is counter-productive. S/N > 0.01% is a good rule of thumb
here as well.

• Shifting method – Truncated case

– Exp(0.5; 0, 1): The bias decreases in S and N. Using larger S will not help
reduce the bias on the same scale as in the magnifying method due to the
boundary classes’ slow convergence. On the other hand, using more choices
(M) will reduce the bias. It is interesting to note that the standard errors
remain unchanged as S increases. The absolute bias decreases and gets
smaller than in the benchmark case (with no split sampling) if we have a
large amount of observations. Overall, with complete mapping of the probability
mass and flat curvature distribution, increasing M helps to reduce the bias, and
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increasing S also decreases it, but at a much slower rate. We need a large amount of
observations in order to reduce the standard errors as well. As a rule of thumb we
may use a smaller number of split samples.

– N (0, 0.2;−1, 1): The bias decreases in S and N. Using larger S helps to
significantly reduce the bias similarly to using larger M. This makes the
approximation much better at the boundaries. Standard errors are the same
as in the benchmark case, and does not change as S or M increases. The
absolute bias is decreasing in N and S. Overall, with complete mapping of the
probability mass and steep curvature distribution, increasing M and S helps to
reduce the bias more effectively. The absolute bias is also decreasing in N, M and S.

• Shifting method – Censored case

– Exp(0.5; 0, ∞): The bias is decreasing in N and S, but it decreases more
slowly in S, because the main drivers of the bias are the boundary classes.
Increasing M will help to significantly reduce the bias. The standard errors
and the absolute bias behave similarly as in the truncated case. Note that
the number of observations used for the estimation is much larger than in
the magnifying case! Overall, without complete mapping of the probability mass,
with flat curvature distribution, using few split samples will eliminate the main
bias, and increasing M can help to reduce it even more.

– N (0, 0.2;−∞, ∞): The bias is decreasing in N and S. Now, the boundary
classes only take up a small fraction of the probability mass of the distribu-
tion, so these classes have a much smaller role in driving the bias, result-
ing in a much faster bias reduction. Furthermore, increasing the number of
choices decreases the bias further. The standard errors, however, are slightly
larger than in the benchmark case. The absolute bias is decreasing in N, M
and S as well. Overall, without complete mapping of the probability mass, with
steep curvature distribution, increasing both S and M will significantly reduce the
bias.

• Comparison of the Magnifying and Shifting methods

– Exp(0.5; ·): In the truncated case the performances are very similar. In the
censored case, the bias is smaller for the magnifying method when S/N <

0.01%. In all other cases, the shifting method outperforms the magnifying
one. This is due to the fact that the magnifying method drops many more
observations by construction.

– N (0, 0.2; ·): In the truncated case, the magnifying method decreases the bias
much more efficiently than the shifting method. For the censored case, the
results are very similar to the exponential distribution if M is small. How-
ever, the shifting method becomes better if we use larger M.
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• Survey design implications

– When some features of the underlying distribution are known or some as-
sumptions about them can be made (about the curvature and the probability
mass’s distribution), then the most suitable method, split sample size, etc.
can be picked for a given application:

* With steep curvature you should use larger M.

* When only a small fraction of probability mass is covered by the sur-
veys, you must choose your main aim. If you intend to minimize the
absolute bias, use shifting; if you prefer a small bias but are not worried
about a more noisy estimator, then use the magnifying method.

– In the case of shifting and/or censoring, extra choices on the boundaries can
help to improve the performance of the methods:

* In the case of shifting, you may add an extra small class in the bound-
aries, which will result in a faster bias reduction.

* In the case of censoring, there is a clear cut from where to drop the ob-
servations, which enables us to control the censoring and thus reduce
the number of dropped observations.

2.5 Extensions

2.5.1 Perception Effect
There is some evidence in the behavioural literature that the answers to a question may
depend on the way the question is asked (see, e.g., Diamond and Hausman (1994),
Haisley et al. (2008) and Fox and Rottenstreich (2003)). Let us call this the perception
effect. The presence of this effect is independent of the implementation of the two split
sampling methods. However, with split sampling, there is a way to tackle this issue,
much akin to a familiar approach in the panel data literature.

More specifically, the definition of classes may affect participants’ responses to the
survey question. A way to formalize such effects is by redefining the discretization of
xi as follows

x∗∗i =


z1 if c0 < xi + Bs < c1

...

zm if cm−1 < xi + Bs < cM,

(2.16)

where Bs denotes the perception effect for split sample s, s = 1, . . . , S. Let x̃∗i and x̃∗∗i
denote the observations in the working sample that derived from x∗i and x∗∗i , respec-
tively. Following the derivation of the working sample from the methods above, all
observations in the working samples can be expressed as

x̃∗∗i = x̃∗i + Bs (2.17)
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given the corresponding x∗i and x∗∗i came from the split sample s. Thus, the regression

yi = βx̃∗∗i + ui (2.18)

is equivalent to
yi = βx̃∗i + Bsβ + ui. (2.19)

Rewrite the above in matrix form using standard definitions gives

y = x̃∗β + DBβ + u, (2.20)

where B = (B1, . . . , BS)
′ and D is a N× S zero-one matrix that extracts the appropriate

elements from B. Thus, the estimation of β can be done in the spirit of a fixed effect
estimator. Define the usual residual maker, MD = IN −D (D′D)−1 D′, then

β̂ =
(

x̃∗
′
MDx̃∗

)−1
x̃∗
′
MDy (2.21)

is a consistent estimator of β following the similar argument for the standard fixed
effect estimator in the panel data literature.
We also need to slightly modify the replacement estimator in order for the above to
hold. The main problem is to keep track of the perception effects. This means we need
to keep track of which split sample each observation comes from when estimating the
conditional averages. This means

π̂χ,s =

(
N

∑
i=1

1{x̃∗∗i ∈Cχ,x̃∗∗i ∈Ss}

)−1 N

∑
i=1

1{x̃∗∗i ∈Cχ,x̃∗∗i ∈Ss} x̃
∗∗
i (2.22)

and as N → ∞
π̂χ,s = E(xi|xi ∈ Cχ) + Bs + op(1).

This shows that equation (2.21) provides a valid replacement estimator in the presence
of perception effects.
While the discussion above focuses on the case with one regressor, the generalisation
to K regressors is straightforward. Perhaps a more interesting question is the presence
of perception effects over different m. In principle, this can also be incorporated by re-
placing Bs with Bsm for s = 1, . . . , S and m = 1, . . . , M. Therefore, this particular setup
does not just allow for perception effects due to different split samples, but rather, it
provides a framework to investigate different types of perception effects. This would
be an interesting avenue of future research in this area.

2.5.2 Non-linear Models
Another possible extension is to consider the application of the proposed methods in
the context of non-linear models. So far the discussion has focused on the linear model
as defined in equation (2.2). Given the presented methods focus on data collection,
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they could also be applied for non-linear model. To see this, consider

yi = g(xi; β) + ui (2.23)

where g(·) denotes a continuous function. Let x be the data matrix of xi and β̂(x) de-

notes a consistent estimator of β with ρ(x) =
√

N
[
β̂(x)− β

]
such that ρ(x) d→ D(0, Ω).

Under the assumptions made earlier, x∗i
d→ xi and therefore ρ(x∗) d→ ρ(x) by the con-

tinuous mapping theorem under appropriate regularity conditions. The technical de-
tails of these conditions, however, could be an interesting subject of future research.

2.6 Conclusion
This paper has investigated the effects of using interval data as covariates in a linear re-
gression model when the underlying discretized continuous variable is not observed.
This situation often arises in survey data when such variables – like income – are not
captured directly, but rather, are replaced by a set of m choices. Unlike other studies
in the literature, our approach has considered the more realistic case when the under-
lying distribution of the unobserved explanatory variables is unknown and the values
of each choice can be arbitrarily assigned. With fixed m, the results show that using
the discretized ordered choices as explanatory variables in a linear regression will lead
to biased and inconsistent parameter estimates. The well-known techniques to cre-
ate consistent estimators require information from the distributions of the underlying
explanatory variables, which are presumed to be unknown, and therefore cannot be
applied here.

This paper proposes a novel data gathering method that we called split sampling.
Using the fact that the discretized variables approach their unobserved continuous
counterparts when m grows, the proposed approach essentially replaces the require-
ment of m being sufficiently large with the more standard scenario where the number
of individuals, N is very large, utilizing different questionnaires for each split sam-
ple. Theoretical results show that these techniques will lead to a proper mapping of
the true underlying distribution. Monte Carlo simulations show that the proposed
methods work reasonably well, and may have significant implications for the future of
survey design.
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Chapter 3

Modelling with Discretized Continuous
Depedent Variable

joint with Felix Chan and László Mátyás

3.1 Introduction
Recently, there has been increasing use of econometric models where the dependent
variable is continuous but cannot be observed directly. Instead, it is observed through
a discretization process. Paper or internet-based survey questions are common exam-
ples for such discretizations. These questions are usually asked in the following way
e.g., ‘Is your weekly personal income below 100$, between 100 and 400$ or above 400$, where
specific intervals are given for each option. This discretization leads to interval data,
where respondents typically need to pick one option from a pre-set list, creating dis-
crete ordinal observations from an underlying continuous variable. These responses
are qualitative values, but the choices are ordered, and this order is the only quantita-
tive information available in the resulting variable.

In the empirical literature, income is a typical example for interval data. Income is
usually discretized in surveys because it dramatically improves response rate when the
question is asked in the form of income categories rather than as an exact amount. An-
other related reason for discretization is data confidentiality: e.g., statistical offices are
not allowed to give exact information on personal income. (For more details on these
practices, see e.g., Duncan et al. (2001)) Just to give a few examples, Bhat (1994) shows
the effects of age, employment and other socio-economic variables on income where in-
come is observed through three different categories; Micklewright and Schnepf (2010)
compare individual and household income distributions controlling for age, gender,
and employment. The income is discretized and observed through single question
surveys.

Modelling the conditional expectation for such a discretized dependent variable
with interpretable parameters is challenging as the regression parameters are gener-
ally not point-identifiable. Here we depart from the classical econometric approach
to identification. That is, we do not assume that the sample is given and the outcome
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variable is observed as interval values, but we propose a new sampling method, which
we called split sampling1 that estimates the distribution of the continuous unobserved
outcome rather than its discretized version. In other words, we investigate how to
gather the data in order to point-identify and estimate the conditional expectation by
using simple least squares regression techniques.

This paper deals with linear regression models where the dependent variable is ob-
served through a discretization process, resulting in an interval variable. Here, let
us note that there is a substantial difference between interval and ordinal variables.
Interval variables have known lower and upper boundaries for each choice interval,
and numeric intervals can be assigned for each observation. In principle, an interval
variable has a (conditional) expectation, but it cannot be directly estimated using dis-
cretized data. The only information provided by this type of data is the lower and
upper bounds of each of the categories and their frequencies. An ordinal variable
embodies an even more severe information loss relative to the underlying continuous
variable. The observed values have only a relational connection to each other (e.g.,
they are higher or lower), they are sorted into classes, and numerical values cannot be
assigned to the observations. Data from these qualitative variables cannot be used to
estimate any conditional moments of the underlying random variables and can only
be used to obtain the frequencies of each class. In this paper we only deal with interval
variables.

Manski and Tamer (2002) show that the parameters of a regression model cannot be
point-identified without any further restrictive assumption, when an interval variable
is used as the dependent variable. To circumvent this identification problem, there are
two known solutions in the literature, both taking the discretization process as given.
This paper adds a third possible solution by revisiting the discretization process itself.

The first and more popular solution in applied papers relies on the so-called or-
dered discrete choice models (Greene and Hensher, 2010), such as the ordered logit
or probit. These models can handle the interval and ordinal variables and they aim
for prediction or categorisation instead of (parameter) interpretation. The key to these
models is that instead of modelling the conditional expectation, they focus on the con-
ditional probabilities for each interval or class (e.g., the probability for an observation
to fall into a certain class given a set of covariates). Ordinal choice models use a pri-
ori distributional assumptions to create the mapping between the outcome variable
and the explanatory variables. This can be a strong assumption, especially in the ab-
sence of any probabilistic justification. These models tend to have their names based
on the assumed distribution (e.g., ordered logit uses a (standardized) logistic, while
ordered probit uses (standard) normal distribution). Under the assumed distribution
along with some mild conditions, the parameters are generally point-identifiable up
to scaling. The main disadvantage of this approach is that it does not directly model

1The term split sampling in this paper is not related to the technique occasionally used in chromatog-
raphy (Schomburg et al., 1977, Schomburg et al., 1981) or methods in machine learning, which splits the
initial sample into folds.
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the conditional mean, but rather, it provides the conditional probabilities. Therefore,
the interpretation of the estimated parameters is markedly different than in a (linear)
regression model. Generally, ‘neither the sign nor the magnitude of the coefficient is informa-
tive [...], so the direct interpretation of the coefficients is fundamentally ambiguous.’ (Greene
and Hensher, 2010, p. 142). To get meaningful interpretations, one can calculate the
partial effects on the probabilities with the use of the assumed distribution. Greene
and Hensher (2010) give a thorough overview of ordered choice models estimated via
maximum likelihood. We should also note the case when ordered choice models are
augmented with the information on the observed interval boundaries. In practice, it is
common to use this additional information and incorporate it into the model, but the
rather strong distributional assumption remains for point-identification. The difficul-
ties and drawbacks of this approach are nicely summarized by Greene and Hensher
(2010, p. 133).

The second solution comes from the literature of partially identified parameters (see
e.g., Manski and Tamer, 2002, Manski, 2003, Tamer, 2010). This approach focuses on
interval data and assigns numerical intervals for each observation. The main advantage
of this method is that it does not require any distributional assumptions and still allows
valid statistical inference on the conditional expectation. The magnitudes and the signs
of the estimated parameter vector can be interpreted in the same way as the classical
regression coefficients. The drawback is that the estimated parameters are not point-
identified, but rather, a set is identified in which the parameter vector may belong. In
other words, it only obtains a lower and upper bound for each of the unidentified point
estimates. Empirical applications are rare because the estimation method is complex
and, in our experience, the estimated parameter intervals are too wide for them to be
empirically useful.

This paper adopts the framework of Manski and Tamer (2002) and proposes a new
solution for the point identification of the parameters of a linear regression model
where the dependent variable is discretized into interval data. By revisiting the dis-
cretization process, a (survey) method is put forward that collects enough information
for the point-identification without any additional (e.g., distributional) assumption.
Intuitively, the parameters can be point-identified when the discretization process is
designed in such a way that the lower and upper bounds for each interval converge.
In this case, any linear regression models can be estimated in the usual way, e.g., by
least squares (LS). The resulting point-estimates are then consistent and can be inter-
preted as in the classical regression framework.

The above discretization does not deviate substantially from the typical methods,
but it allows to obtain additional information on the distribution of the dependent
variable with the use of split sampling. In the context of surveys, this means using
multiple questionnaires. These questionnaires have the same set of questions but the
choices (possible answers) of each questions are different. The term split sample refers
to the fact that the sample is split between these questionnaires. In general, the idea
is to collect the data for the same set of questions with each question containing het-
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erogenous sets of possible outcomes in different split samples.
Furthermore, the perception effect or survey heterogeneity – due to the use of mul-

tiple surveys – can also be estimated through fixed effects type estimator. Another
useful property of the proposed approach is that it maintains the privacy consider-
ations through the discretization process; therefore, the data provider can safely use
this method as the individuals behind the answers cannot be identified.

The paper is organized as follows: Section 3.2 introduces the identification problem
and justifies the proposed split sampling approach. Section 3.3 revisits two the split
sampling approach, the magnifying and shifting methods, when the discretized vari-
able is the outcome. Section 3.3.3 derives consistent estimates via least squares, while
Section 3.3.4 presents some Monte Carlo simulations. Section 3.4 extends the simple
framework in two ways. First, it proposes a method to estimate and test perception
effects. Second, it looks at non-linear models. Section 3.5 concludes.

3.2 Identification Problem
This section discusses the identification problems associated with the discretization of
the data and justifies the split sampling approach by using the results from Manski and
Tamer (2002).

Consider yi ∼ f (al, au) an i.i.d. random variable, where f (al, au) denotes the parent
probability density function (pdf) with support [al, au], where al, au ∈ R, al < au and
i = 1, . . . , N. We assume that f (·) is unknown and can be continuous, discrete or
mixed. Instead of observing the outcomes of yi, we observe y∗i through a discretization
process:

y∗i =



z1 if c0 ≤ yi < c1 or yi ∈ C1 = [c0, c1) 1st choice

z2 if c1 ≤ yi < c2 or yi ∈ C2 = [c1, c2)
...

...

zm if cm−1 ≤ yi < cm or yi ∈ Cm = [cm−1, cm)
...

...

zM if cM−1 ≤ yi < cM or yi ∈ CM = [cM−1, cM)

last choice,

(3.1)

where, zm ∈ Cm, m = 1, . . . , M is the assigned value for each choice. It can be a measure
of centrality (e.g., mid-point), or an arbitrarily assigned value within its interval. M
denotes the number of choices, which is known. For simplicity, we refer to each choice
or choice interval as a class.
We examine identification of E [y|x] when

E [y|x] = g(x; β), (3.2)

where g(·) is a known function, β is a parameter vector belonging to a subset of a

70

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

compact finite-dimensional space (B), and x denotes the vector of covariates.
Observing y∗i instead of yi leads to an identification problem. Following Manski

and Tamer (2002) and Lewbel (2019), we show the conditions for the partial or set
identification of β, which then point to the cases when point-identification is possible.
Let y∗i and ȳ∗i denote the random variables that take the lower and upper bounds as the
choice value in a given interval, respectively. In other words, zm = cm−1, m = 1, . . . , M
for y∗i and zm = cm, m = 1, . . . , M for ȳ∗i . By the design of the discretization, the unob-
served values lie between these lower and upper bounds, y∗i ≤ yi ≤ ȳ∗i , ∀i. Further-
more, as these refer to the same random variable, the unknown conditional probabilities
are the same Pr

[
y∗ ∈ Cm|x

]
= Pr [y ∈ Cm|x] = Pr [ȳ∗ ∈ Cm|x] , ∀m. Using the law of

total expectation, it is easy to show that

E [y|x] = ∑
m

[∫ cm

cm−1

y Pr [y|x] dy
]

Pr [y ∈ Cm|x] , (3.3)

where E(y ∈ Cm|x) =
∫ cm

cm−1
y Pr [y|x] dy, and by design cm−1 ≤ E(y ∈ Cm|x) ≤

cm , ∀m. Now, for the conditional expectations we get,2

E
[
y∗|x

]
≤ E [y|x] ≤ E [ȳ∗|x] . (3.4)

This bound reduces to a point in the limit when yi is measured (or observed) precisely.
However if yi is only observed through an interval, we have a set of conditional ex-
pectations, which leads to the set identification for β. That is, under Equation 3.2, any
b ∈ B that satisfies E

[
y∗|x

]
≤ g(x; b) ≤ E [ȳ∗|x] is said to be observationally equiva-

lent to β.3

Remark 1: β cannot be point-identified when E
[
y∗|x

]
< E [ȳ∗|x] or Pr [y|x] is un-

known.
Remark 2: If the density of the conditional probability (Pr [y|x]) is known, β is point-
identified, which leads to the special cases of ordered choice models.

Following Manski and Tamer (2002), point identification of β can be achieved by
using the equality condition in Equation (3.4) and by reconstructing the conditional
probability of yi. We maintain the assumption that yi cannot be directly observed only
through a limited number of choices/classes and we are not making any further (dis-
tributional) assumptions. The key to our approach is the use of split sampling, which
uses different thresholds for the choices in each split sample. As we increase the num-
ber of split samples we achieve point-identification of E [y|x], and thus β. This split
sampling method can be viewed as a non-parametric estimator on Pr [y|x].
Split sampling method works in two ways:

2The same result can be found in Manski (1989) or Manski and Tamer (2002).
3See more on the terminology of observational equivalence in Chesher and Rosen (2017) or Lewbel

(2019).
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1. The bounds are made narrower as we increase the number of split samples (cm−
cm−1) → 0. This leads to E

[
y∗i |x

]
→ E [yi|x] and E

[
ȳ∗i |x

]
→ E [yi|x], without

the need of y∗i → yi and ȳ∗i → yi.

2. It gives a better mapping of Pr [y|x] as we increase the number of different ques-
tions, therefore provides additional knowledge on E [y|x]

Let us mention the implementations of the two other possible solutions. In set iden-
tification, Manski and Tamer (2002) propose a modified minimum-distance estimator,
where the lower and upper bounds on the conditional expectation are also estimated
along with the parameter set. Moment (in)equality models generalize Manski and
Tamer (2002) for cases where there are multiple equations and/or inequalities (i.e.,
Chernozhukov et al. (2007) or Andrews and Soares (2010)). Beresteanu and Molinari
(2008) shows asymptotic properties of such partially identified parameters. Imbens
and Manski (2004), Chernozhukov et al. (2007) and Kaido et al. (2019), among others,
derive confidence intervals for these set identified parameters. These methods are fea-
sible ways to estimate parameter sets for a given conditional expectation function with-
out any further assumption. However, these methods do not produce point-estimates
for β, only estimated lower and upper bounds.
On the other hand, ordered choice models point-identifies β up to a scale, by a par-
ticular distributional assumption on F(cm − β′x) = Pr

[
y∗i ≤ m | x

]
. Here F(·) is the

assumed cumulative distribution function, usually Gaussian or logit and m is the m’th
interval value (mid point or arbitrarily chosen ordinal value). β is identified through
the assumption on F(·), which creates the mapping between the conditional probabil-
ities and x. Point-identification of β up to a scale means that sample estimator(s) for β

is dependent on the distributional assumption, yielding different values for different
distributions.
Ordered choice models aims to produce conditional probabilities rather than a proper
interpretation for coefficients. Although there are many papers which tries to interpret
the resulting parameters, which encourages us to emphasise the following properties
of these models:

1. The interpretation of the parameters in an ordered choice model are different
from the models where identification is based on the conditional expectation
function.

2. This approach can be used to deal with interval and ordered variables as well,
however these models (by default) handle the interval data as ordinal data.

3. If F(·) is wrongly assumed, parameter estimates will not provide consistent esti-
mators of β.

4. In the case of the interval variable, it is possible to use the information on the
intervals and fix the cm parameters in the model. If one is interested in the condi-
tional expectation, it is possible to use an EM algorithm to compute the maximum
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likelihood estimator for β along with estimators for the expected values based on
the assumed distribution. (Greene and Hensher, 2010, p. 133) We are going to
refer to this method as ‘interval regression’ in our comparison study.

3.3 The Split Sampling Approach
The split sampling approach investigates useful discretization processes so that the
data collected can be used to estimate the conditional expectation by using simple least
squares regression techniques. The main idea is to create different questionnaires by
using choices with different boundaries in each question, while fixing the number of
choices (M). The term ‘split sample’ is referred to the fact that while the questions
in each of these questionnaires are the same, the boundaries on their choices are dif-
ferent and therefore each questionnaire will have its own split sample. Due to human
cognitive capacities, usually, a very limited number of choices is the only feasible way
to construct such questionnaires.4 The use of S split samples enables us to collect the
answer of the same question in S different ways, which eliminates the discretization
problem. We achieve this through changing the class boundaries (cm) between each
split sample.

The intuition behind the approach is that this leads to a better mapping of the un-
known distribution of y and, in principle, to a complete mapping of the focus model.
By merging the different split samples into one data set, calls working sample, we get
b = 1, . . . , B overall number of choice classes across the merged split samples, where
B is much larger than M. In a given split sample, each respondent (i) is given one
questionnaire. The set of respondents who fill in a questionnaire with the same class
boundaries defines a split sample. Each split sample has N(s) number of observations
(s = 1, . . . , S and ∑s N(s) = N). In this setup, the discretization of a split sample looks
exactly as the problem introduced above in Equation (3.1). The only difference across
split samples is that the class boundaries are different. Note that the number of ob-
servations across split samples can be the same or, more likely, different. Now a split
sample is as follows,

y(s)i =



z(s)1 if yi ∈ C(s)
1 = [c(s)0 , c(s)1 ),

1st choice for split sample s,

z(s)2 if yi ∈ C(s)
2 = [c(s)1 , c(s)2 ),

...
...

z(s)m if yi ∈ C(s)
m = [c(s)m−1, c(s)m ),

...
...

z(s)M if yi ∈ C(s)
M = [c(s)M−1, c(s)M ],

last choice for split sample s.

(3.5)

4Typically, the optimal number of choices for a survey is relatively small, M = 3, 5, 7 or at most
M = 10. There is a large literature about the optimal number of choices (or ‘scale points’) in a survey,
see e.g., Givon and Shapira (1984), Srinivasan and Basu (1989) or Alwin (1992).
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The observed values z(s)m are set to a numeric value between c(s)m−1 and c(s)m , typically to
the mid-point. In the second step, we merge all the split samples and create a ‘working-
sample’ used to estimate the parameter(s) of interest. The working-sample is an artifi-
cial construction created in such a way that the working class boundaries (cWS

b ) are the
union of the class boundaries of split samples.5

B⋃
b=0

cWS
b =

S⋃
s=1

M⋃
m=0

c(s)m . (3.6)

With proper re-distribution of the observations to the working sample, we can recon-
struct the underlying unobserved continuous variable’s distribution.

Apart from the specifics of discretized outcomes, here we only present the main
ideas, assumptions and the main theoretical results for two split sampling methods:
the magnifying and shifting.

3.3.1 The Magnifying Method
The magnifying method magnifies parts of the domain in each questionnaire by one
equally sized choice class. The size of classes depends on the number of split samples
(S) and number of choices (M). As the number of split samples increases, class sizes
decrease, which uncovers the unknown underlying distribution. Figure 3.1 shows the
main idea of the magnifying method with the individual questionnaires for the case
M = 3 and S = 4. The last line shows the working sample.

0

0

0

0

6

6

6

6

1

2

3

4

2

3

4

5

split samples
S = 4, M = 3

0 1 2 3 4 5 6
working sample

B = S(M− 2) + 2

Figure 3.1: The magnifying method

The first and last split samples are slightly different from the split samples in-between.
They have one extra class with the same class width, while split samples in-between

5Here, we discuss the cases where the domain (al , au) for yi is known and the working sample’s
class boundaries maps the domain of yi, cWS

0 = al , cWS
B = au. Our proof holds for cases where (al , au) are

unknown and cWS
0 6= al and/or cWS

B 6= au. In these cases, one might drop observations which are outside
the domain of the survey(s) e.g., al < cWS

0 , or there is a known censoring in the survey, al = −∞ and/or
au = ∞. Note that in these cases the sample properties (e.g., speed of convergence) can be different.
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have M − 2 classes with the same class width. Observations which fall into these
classes are called directly transferable observations (DTOs). The connection between the
number of magnified classes in the working sample (B), and the number of split sam-
ples (S) and choices (M) is given by

B = S(M− 2) + 2 .

Given the fact that there are B classes in the working sample, we get the widths of these
classes,

h =
au − al

S(M− 2) + 2
.

Fixing the upper and lower bounds on the domain6 for the split samples (al = cWS
0 =

c(s)0 ; au = cWS
B = c(s)M , ∀s), we can reduce the class size h→ 0 as S→ ∞, which enables

us to ensure convergence in distribution. This can also be seen through the working
sample’s boundary points, which have the following simple form

cWS
b = al + bh .

With the magnifying method we can separate two types of observations. The first is
the already mentioned directly transferable observations. Formally, y(s)i ∈ ζ, where ζ

is the set of choice intervals of ζ = C(s)
m , ∀ pair of (1 < s < S, 1 < m < M), and (s =

1, m = 1), (s = S, m = M). Here, limS→∞ ||C
(s)
m || = 0, which means that at the limit we

observe responses without any discretization. Moreover, these observations have the
same class width as the working sample’s classes and each can be directly linked to a
certain working sample class, by design, hence the name ‘directly transferable observa-
tions’. These observations are denoted by yWS

i,DTO, with i = 1, . . . , NWS
DTO.

To achieve point-identification of β, the first step is to have a consistent mapping of
the unconditional distribution of the unknown y variable by using yWS

i,DTO. To show
limS→∞ Pr

(
yWS

DTO
)
= Pr(y), we consider the following assumptions.

Assumption 2. Let y be a continuous random variable with probability density function f (y)
with S, N and C(s)

m follow the definitions above then

a. S
N → c with c ∈ (0, 1) as N → ∞.

b. All split samples will have non-zero respondents.

c.
∫ b

a f (y)dy > 0 for any (a, b) ⊂ [al, au].

Assumption 2a. ensures that the number of respondents will always be higher than
the number of split samples. Assumption 2b. provides utilisation of all split samples,
i.e. each split sample will have non-zero respondents. Assumption 2c. imposes a mild

6In case of infinite support for the domain, one needs to set cWS
1 and/or cWS

B−1 into a reasonable value
on the support. We discuss later the these truncated cases.
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assumption on the underlying distribution. That is, the support of the random variable

is not disjoint, which implies
∫ cWS

b
cWS

b−1
f (y)dy > 0.

Remarks: we can decrease c as close to 0 as we would like to. This means that there
is an equal or higher number of observations than split samples. On the other hand,
we exclude by assumption the case when c ≥ 1, which means that there is an equal
or higher number of split samples than observations. In this case, we most certainly
would not observe values for each working sample class.
These assumptions allow us to claim the following proposition,

Proposition 3. Under Assumptions 1.a - c,

Pr
(

yWS
DTO < a

)
= Pr (y < a) for any a ∈ [al, au]

.

Proof of Proposition 3. is the same as the proof of Proposition 1. in Chapter 2. (See
the complete proof in Appendix B.3.1.). The proposition establishes convergence in
distribution which allows point-identification for the parameter of interest, discussed
at Section 3.3.3.

Next, let us consider the second type of observations, which are all the other ob-
servations which fall into choice classes at the boundaries. We call them ‘non–directly
transferable observations’ (NDTOs) as for these observations limS→∞ ||C

(s)
m || = au − al

for split sample and choice value pairs of 1 < s < S, m = {1, M} or s = 1, m = M or
s = S, m = 1. This means that there is no systematic reduction in the measurement er-
ror for these responses. One way to proceed is to drop them completely so they would
not appear in the working sample (thus, only using yWS

i,DTO for estimation purposes).
However, in practice it seems that too many could fall into this category, resulting in a
large efficiency loss during the estimation.
Another approach is to use DTOs to proxy the measurement error for the NDTOs. We
can utilise the information from yWS

DTO to calculate specific interval means for the under-
lying distribution and use these to replace the non–directly transferable observations.
The simplest way to get the estimators for these conditional means is to regress the
directly transferable observations on a vector of indicator variables referring to the
NDTOs’ intervals. The resulting ‘replacement estimators’ are constructed similarly as
in Chapter 2. Section 2.3.3 and has the same asymptotic properties.

The magnifying method can be seen as the simplest theoretical design for split sam-
pling, which shows how the method works, but its use is limited in practice. It is
mostly applicable when the survey design deal with small number of S, while with
large number of split samples, the creation of the questions are infeasible. At last, let
us remark this method does not preserve data confidentiality. It uses the fact that some
individuals are correctly observed and y is i.i.d., therefore the generalization of those
observations is correct.
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3.3.2 The Shifting Method
The shifting method is an alternative to the magnifying method. It takes the original
class width as given, with fixed class widths, and shifts the boundaries of each choice
with a given fixed value. Increasing the split sample size does not affect the boundary
widths in-between the domain, only the size of the shift. As we shift the boundaries,
we add an extra class7 for each split sample at the boundary where, due to the shift,
the class width has increased. Figure 3.2 shows the split samples in this approach with
S = 4 and with M = 4 classes.

0 6

0 6

0 6

0 6

2 4

0.5 2.5 4.5

1.0 3.0 5.0

1.5 3.5 5.5

split samples
S = 4, M = 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
working sample
B = (M− 1)× S

Figure 3.2: The shifting method

As Figure 3.2 shows, there is one split sample (the benchmark s = 1) where there is one
class less, otherwise everywhere there is always M classes. The number of intervals in
the working sample is

B = S× (M− 1)

The boundary points for each split sample are

c(s)m =


al or −∞, if m = 0,

al + (s− 1) au−al
S(M−1) + (m− 1) au−al

M−1 if 0 < m < (M− 1),

au or ∞, if m = M.

For the working sample, we get cWS
b = al + b au−al

S(M−1) . Intuitively, we achieve complete
mapping by reducing the shifting size to 0, thus we are be able to identify observations
which lie in these small intervals, using the information available in all the other split
samples.
Merging the split samples into the working sample is somewhat cumbersome, but
works efficiently. The main idea is to uniformly assign each split sample’s observa-
tions to the working sample’s choice values, whose intervals are congruent with the
split sample’s class interval, creating an artificial variable y†

i , similarly as in Chapter 2.

7To be more specific, we in fact reveal a hidden class.
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Section 2.3.4. The shifting method works similarly as the proposed artificial variable
y† converges in distribution to the underlying continuous variable with the following
mild assumptions:

Proposition 4. Under Assumptions 2a, 2c and that the split samples are equally distributed
among respondents, i.e. the probability of an respondent responds to a particular split sample
is 1/S then

lim
S→∞

Pr(y† < a) = Pr(y < a) ∀a ∈ (al, au)

Proof of Proposition 4. is the same as the proof of Proposition 2. in Chapter 2.
In addition, with shifting method we can investigate the speed of convergence, as we
increase the number of split samples (S). The main result from the exercise is that on
the boundaries of the support8, the method converges slower, with log S

S , while for the
rest it converges with 1/S.

A caveat is we cannot directly use y†
i for estimation, while by design each in-

dividual observation only represents the conditional mean for the given split sam-
ple’s class, and not the underlying variable’s conditional expectation. However, while
limS→∞ FS(y†) = F(y), we can use these values to calculate the specific conditional
means. Here, we departure from methods used in Chapter 2, and tailor the condition-
ing set specific to our problem.

Let π̂τ be the estimator vector for each conditional mean dependent on the parti-
tions Dl with l = 1, . . . , L mutually exclusive partitions of the conditioning variable(s)
xi’s.9

Let us define

π̂τ :=

(
N

∑
i=1

1′{xi∈Dl}

)−1 N

∑
i=1

1′{xi∈Dl}y
†
i .

By the weak law of large numbers, π̂τ is converging to the true underlying distribu-
tion’s conditional expectations,

π̂τ → E(y|x ∈ Dl)

as N, S → ∞ under the same assumptions as before. Next, let us use a simple regres-
sion specification, which helps us to show the asymptotic properties of the estimator.

y†
i = πππτ1{xi∈Dl} + ηi,

8Which is given by the maximum distance from the support given by the split samples. For the lower
bound: c(1)1 + (c(S)2 − c(1)1 ) and for the higher bound: c(1)M + (c(1)M−1 − c(1)M ).

9Note that L is a fixed number by the researcher, asymptotically L
N → 0 is always true, thus the

number of observations in these partitions are asymptotically increasing as well. However in finite
samples L should be chosen such that there are enough observations in each conditional set.
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where πππτ denotes the vector of πτ, ∀τ. Using the standard LS technique we can derive

π̂ππτ =
(

1′{xi∈Dl}1{xi∈Dl}

)−1
1′{xi∈Dl}y

†
i .

Under the standard LS assumptions, we can write

√
NWS (π̂ππτ −E [πππτ])

a∼ N (0, ΩΩΩτ) ,

where E (πππτ) = E(y|x ∈ Dl) ∀τ and NWS is the number of observations in the working
sample. Furthermore, the variance of the LS estimator is given by

ΩΩΩτ = V (ηi)
(

1′{xi∈Dl}1{xi∈Dl}

)−1

Algorithm 7 describes how to create the a working sample with the shifting method,
from the artificial variable y†

i

Algorithm 7 The shifting method – creation of working sample

1: Set s := 1, m := 1, yWS
i = ∅ .

2: Calculate the sample conditional mean π̂τ using y†
i conditioning on Dl class. Dl

denotes a set containing L mutually exclusive partitions of the domain of xi’s.
3: Add the conditional mean π̂τ and the observed values to the working sample,

yWS
i :=

yWS
i ,

N⋃
j=1

π̂τ


4: If s < S, then s := s + 1 and go to Step 2.
5: If s = S, then s := 1 and set m = m + 1 and go to Step 2.

We need to track the individual observations to be able to pair them with the right-
hand side variables. Note that this pairing only applies to the conditional expected
values not to the actual (un)observed value.
Some remarks: 1) The shifting method enables a more flexible survey design in practice,
while the choice class widths are approximately the same. 2) The shifting method
ensures data privacy considerations: creating artificial observations, and calculating
their conditional averages given the covariates will make the individuals’ real value
intractable.10

10One needs to pay special attention to the responses near the support (C(s)
1 , C(s)

M ) of the questionnaire

as those can reveal some information about the respondent. In the limit S → ∞ C(1)
2 and C(S)

M identifies
the respondents, however this is rather a theoretical case. This problem does not emerges if the support
of y is infinite or these observations are dropped.

79

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

3.3.3 OLS Estimation
The proposed split sampling methods lead to two possible ways to obtain a consistent
estimate of β via the least squares estimator. The first approach uses only the DTOs,
while the second relies on all observations.

LS Estimation Based on DTOs

Let ND denote the number of DTOs and let

y =Xβββ + εεε, εεε ∼ iid
(

0, σ2
ε I
)

, (3.7)

=ŷ + εεε, (3.8)

where εεε = (ε1, . . . , εND)
′. We make the following assumptions:

Assumption 3. Let the data generating process follows equation (3.7)

a. E [|y|] exists and E [X εεε] = 0.

b. There exists a bounded matrix Q such that X′X
ND −Q = op(1).

c. ∀ξ > 0 ∃S such that Pr (|εi| > ||Cm||) = 1− ξ given ŷi ∈ Cm.

The first two assumptions are common for LS estimator. Assumption 3c implies that ξ

can be made arbitrarily small by choosing an appropriate S. This is due to the fact that
||Cm|| → 0 as S→ ∞.

Consider that the discretized version of y denotes y∗ and write y∗ = y + u, where
u represents the ‘measurement errors’ due to discretization. Consider the set

A = {i : |εi| > ||Cm|| ∧ ŷi ∈ Cm}. (3.9)

Set A allows us to distinguish between two sets of DTOs. Those belonging to A when
the unobserved value, yi, is in a different class than its corresponding ŷi. In this case,
|εi| > ||Cm|| given ŷi ∈ Cm, which implies xi ⊥ ui. Those not belonging to A when both
yi and ŷi belong to the same class, and therefore Cov(xi, ui) 6= 0. As we shall demon-
strate below, these two sets of observations affect the properties of OLS differently.
Partition X = (X1, X2) such that X1 contains those observations whose indexes belong
to A and X2 contains observations whose indexes do not belong to A.

β̂ββ =
(
X′X

)−1 X′y∗

=
(
X′X

)−1 X′y +
(
X′X

)−1 X′1u +
(
X′X

)−1 X′2u

=βββ + op(1) + ξ

(
X′X
ND

)−1 X′2u
ξND (3.10)

=βββ + op(1) + ξOp(1). (3.11)
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The second last line follows from the fact that X1 ⊥ u. Under Assumption 3c, as
||Cm|| → 0 for all m, ξ → 0 and β̂ββ = βββ + op(1).
The argument above relies on the assumption that the number of DTOs approaches
infinity. In order to show that this can be the case, at least theoretically, we need to
derive the relation between S and ND. Let B denote the set of DTOs. From the proof
of Proposition 3 we have,

Pr (y ∈ B) =
1
S

[
M

∑
m=2

Pr(y ∈ C(S)
m ) +

M−1

∑
m=1

Pr(y ∈ C(1)
m ) +

M−1

∑
m=2

S−1

∑
s=2

Pr(y ∈ C(s)
m )

]

≤ 1
S

.

Since y can only belong to one and only one class, all the events on the right-hand
side are mutually exclusive and their sum must be less than or equal to 1. Note that
ND = N Pr(y ∈ B), and hence

ND = Op(
S
N
). (3.12)

β̂ββ from the Conditional Expectation

The method above relies only on the DTOs. However, it is also possible to use all
observations for the purpose of estimation. Consider the following standard regression
model:

y = Xβββ + εεε εεε ∼ iid
(

0, σ2
ε I
)

, (3.13)

where y = (y1, . . . , yN)
′, X = (x1, . . . , xk) with xi = (xi1, . . . , xiN)

′, i = 1, . . . , k and
βββ = (β1, . . . , βk)

′. Let D = {D1, . . . , DL} denote a set containing L mutually exclusive
partitions of the domain of X. Then

E (y|X ∈ Dl) = E (X|X ∈ Dl) βββ l = 1, . . . , L. (3.14)

Let ỹl and X̃l denote consistent estimates of E (y|X ∈ Dl) and E (X|X ∈ Dl), respec-
tively, l = 1, . . . , L. Following from equation (3.14), we get

ỹ = X̃βββ + u, (3.15)

where ỹ = (ỹ1. . . . , ỹL), X̃ =
(
X̃′1, . . . , X̃′L

)′ and u = (u1, . . . , uL)
′. Note that E(ul) = 0

for all l since ỹl and X̃ are consistent estimates. Moreover, E(ulug) = 0 for l 6= g
due to Dl are mutually exclusive ∀l and E(ul|X̃l) = 0 since the partition does not
affect the sampling error. Furthermore, assume E [ỹ] exists and E

[
X̃u
]
= 0. Let β̂ββ =(

X̃′X̃
)−1 X̃′ỹ, then under the usual argument of the classical OLS, β̂ββ− βββ = op(1).

The basic idea here is to obtain the averages of yi conditional on different ranges of xi.
Such partitions preserve the correlation structure between yi and xi, as demonstrated
above.
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As we have shown that split sampling lead to y†
i

d→ yi. Thus,

N−1
l ∑

xi∈Dl

y†
i −E (yi|X ∈ Dl) = op(1). (3.16)

Given this is a consistent estimator of E (yi|X ∈ Dl), the above result holds and the
consistency based on conditional expectation follows. It is worthwhile to point out that
the above argument applies to any split sampling method that leads to convergence in
distribution to the underlying dependent variable. Thus, its applicability goes beyond
the shifting and magnifying methods.

3.3.4 Monte Carlo Evidence
For the simulation experiments, we consider the following data generating process

yi = x′i β + εi

and set β = 0.5. We focus on the case where the support of yi is known, thus any error
(bias) may come only from the discretization. We set the lower bound as al = −2, and
the upper bound as au = 4. (We have experimented with different boundaries; the
details are in the Appendix C.1.) The exogenous variable xi is generated by a normal
distribution, and to ensure the support of yi, it is truncated at−1 and 1, with a variance
of 0.25.11 Our main concern is the disturbance term (εi), therefore we have visited
several common types of distributions. To ensure the support of yi is being met, we
truncated/set εi such that it lies between −1 ≤ εi ≤ 3.12 We experiment with the
following distributions:

• Normal: Standard normal distribution truncated at −1 and 3.

• Logistic: Standard logistic distribution truncated at −1 and 3.

• Log-Normal: Standard log-normal distribution truncated at 4 and subtracted 1
(in order to adjust the mean).

• Uniform: Uniform distribution between −1 and 3.

• Exponential: Exponential distribution with rate parameter 0.5, truncated at 4 and
subtracted 1.

• Weibull: Weibull distribution with shape parameter 1.5 and scale parameter 1,
truncated at 4 and subtracted 1.

11This choice of variance ensures that even without truncation, 95% of the probability mass lies be-
tween −1 and 1.

12This creates an asymmetric distribution for εi in several cases, which favours distribution indepen-
dent estimation methods rather than the maximum likelihood. In the online appendix, we show results
with boundaries where εi was truncated in a symmetric way. The results and conclusions remain un-
changed.
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In the event that the distributions do not have a zero mean, we specified the conditional
mean as yi = α + x′i β + ηi, where εi = α + ηi with E(εi) = α.

For the discretization of yi we use M = 5, c0 = al = −2, cM = au = 4 and equal
distances for the thresholds between the boundaries.
To estimate β, we have used the following methods:

• Set identification: Estimates the lower and upper boundaries of the parameter set
for β using y∗i as interval data. Estimation is based on Beresteanu and Molinari
(2008) and their published Stata package (Beresteanu et al., 2010)13. This method
does not produces point-estimates for β, only lower and upper boundaries.

• Ordered probit and logit: Ordered choice models, where y∗i values are ordinal data,
and the model assumes a gaussian or logistic distribution (Greene and Hensher,
2010). The estimated maximum likelihood ‘naive’ parameters reported here are
not designed to recover β and to be interpreted in the linear regression sense.
Therefore, we call the difference from β distortion instead of bias. However, we
find it important to report these values as (unfortunately) they are the most used
and (mis-)interpreted estimates in applied work.

• Interval regression: A modification of the ordered choice model, where y∗i values
are interval data and the model assumes gaussian distribution in order to model
the linear regression model. The maximum likelihood parameter estimates aim
to recover β through the distributional assumption. For a detailed description,
see Cameron and Trivedi (2010, p. 548-550) or Greene and Hensher (2010, p.
133).

• Midpoint regression: A simple linear regression using midpoints for y∗i and OLS
for estimation.

• Magnifying: The magnifying method with S = 10 split samples. We use only
DTO observations.14

• Shifting: The shifting method with S = 10, all outcome observations are used and
created as described in Algorithm 7.14

We have included an intercept wherever possible.15 Finally, we used N = 10, 000 ob-
servations and 1, 000 Monte Carlo repetitions. We report the Monte Carlo average bias
or distortion from the true parameter along with the Monte Carlo standard deviation.

13https://molinari.economics.cornell.edu/programs.html
14 We used mid-values as observations for the split samples’ (y(s)i ) and working sample’s choice value.

L is set to 50 equal distance partitions for xi, where the conditioning was needed.
15Ordered choice models’ implementation in Stata remove (restricts to zero) the intercept parameter

to identify β.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.1, 1.15] [−1.09, 1.15] [−1.09, 1.16] [−1.07, 1.17] [−1.06, 1.19] [−1.09, 1.15]
(0.02),(0.02) (0.03),(0.03) (0.02),(0.02) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)

Ordered probit∗
0.1971 0.0688 0.2085 0.0158 0.0986 0.4461

(0.0256) (0.0253) (0.0262) (0.0234) (0.0241) (0.0295)

Ordered logit∗
0.6509 0.3814 0.6862 0.2379 0.4338 1.2085

(0.0464) (0.0455) (0.0499) (0.0422) (0.044) (0.0546)

Interval regression
0.0268 0.0332 0.0371 0.0491 0.0663 0.0397

(0.0198) (0.0249) (0.0221) (0.0271) (0.0249) (0.0166)

Midpoint regression
0.0253 0.0322 0.0362 0.0490 0.2077 0.0314

(0.0195) (0.0236) (0.0216) (0.0273) (0.0128) (0.0157)

Magnifying (S = 10)
-0.0060 -0.0205 -0.0072 -0.0332 0.0213 0.0066
(0.0515) (0.0674) (0.0616) (0.0781) (0.0333) (0.0417)

Shifting (S = 10)
-0.0017 0.0004 -0.0012 0.0010 -0.0001 -0.0001
(0.0204) (0.0243) (0.0215) (0.0269) (0.0127) (0.0149)

†: Set identification gives the lower and upper boundaries for the valid parameter set. We report these bounds subtracted with
the true parameter, therefore it should give a (close) interval around zero.
∗: Distortion from the true β is reported. Ordered probit and logit models’ maximum likelihood parameters do not aim to recover
the true β parameter, therefore it is not appropriate to call it bias.

Table 3.1: Monte Carlo average bias and standard deviation

Table 3.1 shows the results. The shifting method consistently provides the smallest
average bias, while the magnifying method also outperforms the other procedures in
general. Set identification gives such large intervals for the parameter set that it is un-
likely to be useful in practice. Distortions of ordered probit and logit models are rather
large. Interval regression and midpoint regressions perform poorly in the sense that
both methods result in large biases. The Monte Carlo standard deviation is similar
for all cases except for the magnifying method. This is due to the fact that the mag-
nifying ‘only DTO’ method uses fewer observations, for the estimation, in our case
N/S ≈ 1, 000 observations.

We have run several other Monte Carlo experiments to investigate the finite sam-
ple properties of our methods. With moderate sample size (N = 1, 000), the results are
similar: the shifting and magnifying methods outperform all alternatives. The mag-
nifying method performs slightly more poorly in smaller samples, while the effective
number of observations in this case is only around 100. Interestingly, in both the expo-
nential and weibull setups, the magnifying method gives similar results as those from
the interval and midpoint regressions. Naturally, if the distribution is well specified,
methods with maximum likelihood estimation (ordered probit, logit or interval regres-
sion methods) produce even smaller biases. However, for the other (miss-specified)
cases our split sampling methods work much better. For a smaller number of choices,
M = 3, the biases are generally worse but the differences between the methods are
similar. The shifting method still performs better, while the magnifying method still
outperforms the alternatives in most cases. This suggests that our methods are robust
to the underlying distributions.
Finally, we chose εi as a truncated standard normal and checked what happens if we
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increase the number of observations and the number of split samples. The simulation
results – see Appendix C.1 – give evidence on the consistency of the estimator based on
our split sampling approach. By contrast, for all the other alternative methods the same
magnitude of bias remained as we increased the number of observations. This suggests
that alternative methods provide not only biased but also inconsistent estimates for β

in N. For a detailed discussion of these results see the Appendix C.1.

3.4 Extensions

3.4.1 Perception Effect
There is some evidence in the behavioural literature that the answers to a question may
depend on the way the question is asked (see, e.g., Diamond and Hausman (1994),
Haisley et al. (2008) and Fox and Rottenstreich (2003)).16 Let us call this the perception
effect. This is present regardless whether split sampling has been performed or not.
However, with split sampling there is a way to tackle this issue, much akin to the
approach a similar problem has been dealt with in the panel data literature.

Let S be the total number of split samples and define two sets of discretization of yi

namely,

y∗i =


z1 if c0 < yi < cm

...

zm if cm−1 < yi < cM

(3.17)

and

y∗∗ =


z1 if c0 < yi + Bs < c1

...

zm if cm−1 < yi + Bs < cM,

(3.18)

where Bs denotes the perception effect for split sample s, s = 1, . . . , S. Let ỹ∗i and ỹ∗∗i
denote the observations in the working sample that derived from y∗i and y∗∗i , respec-
tively. Following the construction of the working sample, it is straightforward to show
that

ỹ∗∗ = ỹ∗i + Bs (3.19)

given the corresponding y∗i and y∗∗i came from the split sample s. Thus, the regression

ỹ∗∗i = βxi + ui (3.20)

is equivalent to
ỹ∗i + Bs = βxi + ui. (3.21)

16Comments by Botond Kőszegi on this section are highly appreciated.
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Writing the above in matrix form using the normal definition gives

ỹ∗ + DB = xβ + u, (3.22)

where B = (B1, . . . , BS)
′ and D is a N× S zero-one matrix that extracts the appropriate

elements from B. So the estimation of β can be done in the spirit of a fixed effect
estimator. Define the usual residual maker, MD = IN −D (D′D)−1 D′, then

β̂ =
(
x′MDx

)−1 x′MDỹ∗∗ (3.23)

is a consistent estimator of β given the results presented in this paper and the simi-
lar argument for the consistency of standard fixed effect estimator in the panel data
literature.
We also need to modify the estimator for E (yi|X ∈ Dl) slightly in order for the above
to hold for the β̂ based on conditional expectation. The main problem is to keep track
of the perception effect. This means we need to keep track of which split sample each
observation comes from when estimating the conditional averages. Specifically,

N−1
l ∑

xi∈Dl ,xi∈s
ỹ∗∗i −E (yi|X ∈ Dl) + Bs = op(1). (3.24)

While the above discussion focuses on one regressor, extension to K regressors is
straightforward and requires no additional assumptions on Bs. This approach can
also be extended to include interacting class and split sample effects, such as Bsm for
s = 1, . . . , S and m = 1, . . . , M, which hopefully would take care of all likely perception
effects.

It is theoretically possible to test the impacts of the perception effects on the esti-
mator. Since β̂ as defined in equation (3.23) is consistent regardless of the presence of
perception effects and

β̃ =
(
x′x
)−1 x′ỹ∗∗ (3.25)

is consistent only in the absence of the perception effects or if the effects are uncorre-
lated with x, then under the usual regularity conditions, the test statistic is

(
β̂− β̃

)′ [
Var

(
β̂− β̃

)]−1 (
β̂− β̃

) a∼ χ2(K). (3.26)

The exact regularity conditions and the construction of the test statistic would depend
on the nature of the perception effect. For example, the case where B is fixed would
be different to the case where B is a random vector. It would also appear that some
assumptions on B are required in order to compute the test statistics. This is another
interesting avenue for future research.
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3.4.2 Non-linear Models
Another possible extension is to consider the application of the proposed methods in
the context of non-linear models. Given the presented methods focus on data collec-
tion, they could also be applied to non-linear models. To see this, consider

yi = g(xi; β) + ui (3.27)

where g(·) denotes a continuous function. Let y, yWS and x be the data matrix of yi (if
we do observe it), yWS

i (observations from the working sample, and xi, respectively).
Let β̂(y, x) denotes a consistent estimator of β with ρ(x) =

√
N
[
β̂(y, x)− β

]
such that

ρ(y, x) d→ f (0, Ω). Under the assumptions made earlier, yWS
i

d→ yi, and therefore

ρ(yWS, x) d→ ρ(y, x) by the continuous mapping theorem under appropriate regularity
conditions. The technical details of these conditions, however, could be an interesting
subject of future research.

3.5 Conclusion
This paper deals with econometric models where the dependent variable is continuous
but observed through a discretization process that results in interval data. When such
a variable is modelled in a (linear) regression framework, the regression parameter(s)
cannot be point-identified.

Ordered choice models – which are most commonly used to treat such outcome
variables – rely on distributional assumptions for point-identification. Alternatively,
Manski and Tamer (2002) offer set identifying conditions, which results in large ranges
of estimated parameter intervals.

Our proposed split sampling approach does not rely on any distributional assump-
tion and does not restrict the validity to set-identification. Instead, we propose changes
in the data gathering process (the way data is collected). We show that parameters can
be point-identified and estimated consistently in a regression model. The split sam-
pling approach put forward ensures that the least squares estimator is unbiased and
consistent, and it also works well in moderate sample sizes.

The two split sampling methods put forward – magnifying and shifting methods
– may guide survey designers and researchers who deal with questionnaires, as well
as data providers. With the shifting method, data providers can also take into account
data privacy considerations: individuals are not identifiable from the data, however,
the data can still be used to simply estimate the parameters of interest.
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Appendix A

Appendix for Chapter 1

A.1 Decomposition of EMSE criterion
Here I provide the decomposition of EMSEτ(Π) criterion.

EMSEτ(Π) = ES te,S est
[
MSEτ(S te,S est, Π)

]
= EXi,Zi,S est

{[
τ(Zi)− τ̂(Zi; Π,S est)

]2 − τ2(Zi)
}

= EXi,Zi,S est

{
τ̂2(Zi; Π,S est)− 2τ̂(Zi; Π,S est)τ(Zi)

}
using law of iterated expectations

= EXi,Zi,S est

{
E
[
τ̂2(Zi; Π,S est)− 2τ̂(Zi; Π,S est)τ(Zi)

∣∣ Xi = c,1`1(Zi), . . . ,1`#Π(Zi)
]}

= EXi,Zi,S est

{
τ̂2(Zi; Π,S est)− 2τ̂(Zi; Π,S est)E

[
τ(Zi)

∣∣ Xi = c,1`1(Zi), . . . ,1`#Π(Zi)
]}

as E
[
τ(Zi)

∣∣ Xi = c,1`1(Zi), . . . ,1`#Π(Zi)
]
= τ(Zi; Π)

= EZi,S est

{
τ̂2(Zi; Π,S est)− 2τ̂(Zi; Π,S est)τ(Zi; Π)

}
= EZi,S est

{[
τ(Zi; Π)− τ̂(Zi; Π,S est)

]2 − τ2(Zi; Π)
}

using Zi ⊥⊥ S est

= EZi,S est

{[
τ(Zi; Π)− τ̂(Zi; Π,S est)

]2}−EZi

{
τ2(Zi; Π)

}
using law of iterated expectations and Zi ⊥⊥ S est

= EZi

{
ES est

[(
τ(Zi; Π)− τ̂(Zi; Π,S est)

)2 ∣∣ Zi

]}
−EZi

{
τ2(Zi; Π)

}
Note: ES est

[
τ̂(z; Π,S est)

]
= τ(z; Π) where z is fixed, thus

τ(Zi; Π) = ES est
[
τ̂(z; Π,S est)

] ∣∣
z=Zi

Zi⊥⊥S est

= ES est
[
τ̂(Zi; Π,S est)

∣∣ Zi
]

= EZi

{
ES est

[(
ES est

[
τ̂(Zi; Π,S est)

∣∣ Zi
]
− τ̂(Zi; Π,S est)

)2 ∣∣ Zi

]}
−EZi

{
τ2(Zi; Π)

}
= EZi

{
VS est

[
τ̂(Zi; Π,S est)

∣∣ Zi
]}
−EZi

{
τ2(Zi; Π)

}
= EZi

{
VS est

[
τ̂(z; Π,S est)

] ∣∣
z=Zi

}
−EZi

{
τ2(Zi; Π)

}
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A.2 Derivation of honest sharp RDD criterion
In the following I derive the estimators for the EMSE function for regression disconti-
nuity tree.

EMSEτ(Π) = EZi

{
VS est

[
τ̂(z; Π,S est)

] ∣∣
z=Zi

}
−EZi

[
τ2(Zi; Π)

]
Let me consider the two parts separately, starting with the expected variance, then the
expected square term and finally I put them together.

A.2.1 Expected variance of CATE
Let start with the expected variance part and focus on the variance itself. Here z is
fixed, thus

VS est
[
τ̂(z; Π,S est)

]
= VS est

[
µ̂+(c, z; Π,S est)

]
+ VS est

[
µ̂−(c, z; Π,S est)

]
= VS est

[
e′1

#Π

∑
j=1
1`j(z; Π) δ̂+,est

j

]
+ VS est

[
e′1

#Π

∑
j=1
1`j(z; Π) δ̂−,est

j

]

=
#Π

∑
j=1
1`j(z; Π)VS est

[
e′1δ̂+,est

j

]
+

#Π

∑
j=1
1`j(z; Π)VS est

[
e′1δ̂−,est

j

]
=

#Π

∑
j=1
1`j(z; Π)

(
e′1VS est

[
δ̂+,est

j

]
e1

)
+

#Π

∑
j=1
1`j(z; Π)

(
e′1VS est

[
δ̂−,est

j

]
e1

)
=

#Π

∑
j=1
1`j(z; Π) e′1

(
VS est

[
δ̂+,est

j

]
+ VS est

[
δ̂−,est

j

])
e1

where e1 = [1, 0 . . . , 0] is still a 1 × (p + 1) selector-vector. Because S est ⊥⊥ S te,
VS est

[
δ̂+,est

j

]
and VS est

[
δ̂−,est

j

]
can be estimated using the test sample and the addi-

tional knowledge for the number of observations in the estimation sample to adjust for
sample size. In case of homoscedastic disturbance term within each leaf the estimator
for the variances are

V̂S est

[
δ̂+,est

j

]
=

σ̂2
+,jM̂

−1
+,j

Nest
+,j

, V̂S est

[
δ̂−,est

j

]
=

σ̂2
−,jM̂

−1
−,j

Nest
−,j

where

Nest
+,j = ∑

i∈S est

1`j(Zi; Π)1c(Xi) , Nte
+,j = ∑

i∈S te

1`j(Zi; Π)1c(Xi)

M̂+,j =
1

Nte
+,j

∑
i∈S te

XiX ′i1`j(Zi; Π)1c(Xi)

σ̂2
+,j =

1
Nte
+,j − q− 1 ∑

i∈S te

(
Yi − X ′i δ̂

+,te
j

)2
1`j(Zi; Π)1c(Xi) ,

j = 1, 2, . . . , #Π .
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Same applies for the components of V̂S est

[
δ̂−,est

j

]
, but using observations, below the

threshold, selected by 1− 1c(Xi) instead of 1c(Xi).
Using these estimates, leads to the following expression for the variance, with scalar z,

V̂S est
[
τ̂(z; Π,S est)

]
=

#Π

∑
j=1

{
1`j(z; Π) e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

}]
e1

Now, I can express the expected value of this expression over the features in the test
sample. A natural estimator is the mean of the variances, using Zi values from the test
sample,

ÊZi

{
V̂S est

[
τ̂(z; Π,S est)

] ∣∣
z=Zi

}
=

1
Nte ∑

i∈S te

{
#Π

∑
j=1
1`j(Zi; Π)e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

]
e1

}

=
#Π

∑
j=1

{(
∑i∈S te 1`j(Zi; Π)

Nte

)
e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

]
e1

}

=
#Π

∑
j=1

{
Nte

j

Nte e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

]
e1

}

=
1

Nest

#Π

∑
j=1

{
Nest

Nte
j

Nte e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

]
e1

}

=
1

Nest

#Π

∑
j=1

{(
Nte

j

Nte Nest
Nest

j

Nest
j

)
e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j

+
σ̂2
−,jM̂

−1
−,j

Nest
−,j

]
e1

}

=
1

Nest

#Π

∑
j=1

{(
Nte

j

Nte
Nest

Nest
j

)
e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j/Nest

j
+

σ̂2
−,jM̂

−1
−,j

Nest
−,j/Nest

j

]
e1

}

using assumption for same leaf shares:
Nte

j

Nte ≈
Nest

j

Nest

≈ 1
Nest

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

Nest
+,j/Nest

j
+

σ̂2
−,jM̂

−1
−,j

Nest
−,j/Nest

j

]
e1

}

=
1

Nest

#Π

∑
j=1

{[
e′1

σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}

where, Nte
j , Nest

j are the number of observations within leaf j for the test sample and
estimation sample, respectively and pest

±,j is the share of units above (+) and below (-)
the threshold. This derivation uses the fact that observations are randomly assigned
to the test sample and to the estimation sample, thus the leaf shares in the test sample
(Nte

j /Nte) is approximately the same as in the estimation sample, (Nest
j /Nest).
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A.2.2 Expected square of CATE
The second part of the EMSE criterion is the estimator for the expected squared of
the true CATE, EZi

[
τ2(Zi; Π)

]
over the test sample’s features. Using, τ(z; Π) =

ES te
[
τ̂(z; Π,S te)

]
, where z is fixed, therefore τ(Zi; Π) = ES te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi

.
Based on this fact, it follows:

EZi

[
τ2(Zi; Π)

]
= EZi

{
ES te

[
τ̂2(z; Π,S te)

] ∣∣
z=Zi

}
using variance decomposition

= EZi

{
E2
S te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi
−VS te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi

}
= EZi

{
E2
S te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi

}
−EZi

{
VS te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi

}
The two parts can be estimated by two natural candidates. The expected square CATE
is just the average of the squared CATE estimator given by the test sample. The ex-
pected variance term is similar to the previous, but note that the variance is estimated
purely on the test sample. This means that the scaling factor for number of observa-
tions are coming only from the test sample.

ÊZi

{
VS te

[
τ̂(z; Π,S te)

] ∣∣
z=Zi

}
=

1
Nte

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pte
+,j

+
σ̂2
−,jM̂

−1
−,j

pte
−,j

]
e1

}
using assumption for same obs. shares within each leaf:

pte
+,j ≈ pest

+,j, pte
−,j ≈ pest

−,j, ∀j

=
1

Nte

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}

This expression is the same as the the expected variance using the test sample, the only
difference is the scalar Nte is used instead of Nest. Assumption for same observation
shares is used here in order to make the weights the same for the variance estimators.
The estimator for expected value of the true squared CATE function over the test sam-
ple is given by,

ÊZi

[
τ2(Zi; Π)

]
=

1
Nte ∑

i∈S te

τ̂2(Zi; Π,S te)− 1
Nte

#Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}
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A.2.3 Estimator for EMSE
Plugging the two parts together yields an estimator for the EMSE criterion,

ÊMSEτ(S te,S est, Π) =− 1
Nte ∑

i∈S te

τ̂2(Zi; Π,S te)

+

(
1

Nte +
1

Nest

) #Π

∑
j=1

{
e′1

[
σ̂2
+,jM̂

−1
+,j

pest
+,j

+
σ̂2
−,jM̂

−1
−,j

pest
−,j

]
e1

}

A.3 Derivation of honest fuzzy RDD leaf-by-leaf LS cri-
terion

Let assume, that there is a sample S , i = 1, . . . , N with identically and independently
distributed observations of (Yi, Xi, Ti, Zi). For leaf-by-leaf estimation, I use the fact,
1`j(z; Π) creates disjoint sets, and one can estimate the parameters and their variances
consistently in each leaf separately. The conditional mean estimator is given by

µ̂t
+(x, z; Π,S) = X ′

#Π

∑
j=1
1`j(z; Π)δ+,t

j , µ̂t
−(x, z; Π,S) = X ′

#Π

∑
j=1
1`j(z; Π)δ−,t

j

µ̂
y
+(x, z; Π,S) = X ′

#Π

∑
j=1
1`j(z; Π)δ

+,y
j , µ̂

y
−(x, z; Π,S) = X ′

#Π

∑
j=1
1`j(z; Π)δ

−,y
j

where δ+,t
j , δ−,t

j , δ
+,y
j and δ

−,y
j estimated by OLS:

δ̂+,t
j = arg min

δ+,t
j

∑
i∈S
1c(x)1`j(z; Π)

(
Ti − X ′i δ

+,t
j

)2

δ̂−,t
j = arg min

δ−,t
j

∑
i∈S

(1− 1c(x))1`j(z; Π)
(

Ti − X ′i δ
−,t
j

)2

δ̂
+,y
j = arg min

δ
+,y
j

∑
i∈S
1c(x)1`j(z; Π)

(
Yi − X ′i δ

+,y
j

)2

δ̂
−,y
j = arg min

δ
−,y
j

∑
i∈S

(1− 1c(x))1`j(z; Π)
(

Yi − X ′i δ
−,y
j

)2

Estimator for CLATE parameter based on these polynomial functions is given by

τ̂FRD(z; Π,S) =
µ̂

y
+(c, z; Π,S)− µ̂

y
−(c, z; Π,S)

µ̂t
+(c, z; Π,S)− µ̂t

−(c, z; Π,S)
=

τ̂y(z; Π,S)
τ̂t(z; Π,S) =

#Π

∑
j=1
1`j(z; Π)

α̂
y
+,j − α̂

y
−,j

α̂t
+,j − α̂t

−,j
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and its variance:

VS est [τ̂FRD(z; Π,S)] = 1
τ̂t(z; Π,S)2 VS est [τ̂y(z; Π,S)]

+
τ̂y(z; Π,S)2

τ̂t(z; Π,S)4 VS est
[
τ̂t(z; Π,S)

]
− 2

τ̂y(z; Π,S)
τ̂t(z; Π,S)3 CS est

[
τ̂y(z; Π,S), τ̂t(z; Π,S)

]
where CS est [·, ·] is the covariance of two random variable. Each part can be decom-
posed one step further,

VS est [τ̂y(z; Π,S)] = VS est
[
µ̂

y
+(c, z; Π,S)

]
+ VS est

[
µ̂

y
−(c, z; Π,S)

]
VS est

[
τ̂t(z; Π,S)

]
= VS est

[
µ̂t
+(c, z; Π,S)

]
+ VS est

[
µ̂t
+(c, z; Π,S)

]
CS est

[
τ̂y(z; Π,S), τ̂t(z; Π,S)

]
= CS est

[
µ̂

y
+(c, z; Π,S), µ̂t

+(c, z; Π,S)
]

+ CS est
[
µ̂

y
−(c, z; Π,S), µ̂t

−(c, z; Π,S)
]

I use the same expected MSE criterion for fuzzy design as well. After the same manip-
ulations as in Section A.1, one gets:

EMSEτ(Π) = EZi

{
VS est

[
τ̂FRD(z; Π,S est)

] ∣∣
z=Zi

}
−EZi

[
τ2

FRD(Zi; Π)
]

One can construct estimators for these two terms. The variance part from the expected
variance is

VS est
[
τ̂(z; Π,S est)

]
=

1
τ̂t(z; Π,S est)2

(
VS est

[
µ̂

y
+(c, z; Π,S est)

]
+ VS est

[
µ̂

y
−(c, z; Π,S est)

])
+

τ̂y(z; Π,S est)2

τ̂t(z; Π,S est)4

(
VS est

[
µ̂t
+(c, z; Π,S est)

]
+ VS est

[
µ̂t
−(c, z; Π,S est)

])
− 2

τ̂y(z; Π,S est)

τ̂t(z; Π,S est)3 (CS est
[
µ̂

y
+(c, z; Π,S est), µ̂t

+(c, z; Π,S est)
]

+ CS est
[
µ̂

y
−(c, z; Π,S est), µ̂t

−(c, z; Π,S est)
]
)

Decomposing VS est
[
µ̂

y
+(c, z; Π,S est)

]
:

VS est
[
µ̂

y
+(c, z; Π,S est)

]
= VS est

[
e′1

#Π

∑
j=1
1`j(z; Π)(z)δ̂+,y,est

j

]

=
#Π

∑
j=1
1`j(z; Π)(z)VS est

[
e′1δ̂

+,y,est
j

]
=

#Π

∑
j=1
1`j(z; Π)(z)e′1VS est

[
δ̂
+,y,est
j

]
e1
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and CS est
[
µ̂

y
+(c, z; Π,S est), µ̂t

+(c, z; Π,S est)
]
:

CS est
[
µ̂

y
+(c, z; Π,S est), µ̂t

+(c, z; Π,S est)
]
= CS est

[
e′1

#Π

∑
j=1
1`j(z; Π)(z)δ̂+,y,est

j , e′1
#Π

∑
j=1
1`j(z; Π)(z)δ̂+,t,est

j

]

=
#Π

∑
j=1
1`j(z; Π)(z)CS est

[
e′1δ̂

+,y,est
j , e′1δ̂+,t,est

j

]
=

#Π

∑
j=1
1`j(z; Π)(z)e′1CS est

[
δ̂
+,y,est
j , δ̂+,t,est

j

]
e1

All the other variances/covariance have the same form with the appropriate parameter
vector.
Because S est ⊥⊥ S te, one can estimate all the variances and covariances using the ob-
servations from the test sample and use only the additional knowledge on the number
of observations in the estimation sample. In the simplest – finite variances of the error
terms within each leaf – one can write the following sample analogues (below thresh-
old units it is similar).

V̂S est

[
δ̂
+,y,est
j

]
=

σ̂
2,y
+,jM̂

−1
+,j

Nest
+,j

, V̂S est

[
δ̂+,t,est

j

]
=

σ̂2,t
+,jM̂

−1
+,j

Nest
+,j

, ĈS est

[
δ̂
+,y,est
j , δ̂+,t,est

j

]
=

Ĉy,t
+,jM̂

−1
+,j

Nest
+,j

where

Nest
+,j = ∑

i∈S est

1`j(Zi; Π)1c(Xi) , Nte
+,j = ∑

i∈S te

1`j(Zi; Π)1c(Xi)

M̂+,j =
1

Nte
+,j

∑
i∈S te

XiX ′i1`j(Zi; Π)1c(Xi)

σ̂
2,y
+,j =

1
Nte
+,j − p− 1 ∑

i∈S te

[(
ε

y
i
)2
1`j(Zi; Π)1c(Xi)

]
, ε

y
i = Yi − X ′i δ̂

+,y,te
j

σ̂2,t
+,j =

1
Nte
+,j − p− 1 ∑

i∈S te

[
(εt

i)
21`j(Zi; Π)1c(Xi)

]
, εt

i = Ti − X ′i δ̂
+,t,te
j

Ĉy,t
+,j =

1
Nte
+,j − p− 1 ∑

i∈S te

(
ε

y
i εt

i1`j(Zi; Π)1c(Xi)
)

, j = 1, 2, . . . , #Π

Remark: the number of observations and the inverse of the running variable’s prod-
uct is the same for both treatment and outcome equation. It is also easy to use other
variance estimators (e.g., heteroscedastic-robust versions or clustered), see Appendix
A.4.
Putting together the variances, in the homoscedastic case I have the following expres-
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sion,

V̂S est
[
τ̂FRD(z; Π,S est)

]
=

1
τ̂t(z; Π,S est)2

#Π

∑
j=1
1`j(z; Π)(z)

 e′1
(

σ̂
2,y
+,jM̂

−1
+,j

)
e1

Nest
+,j

+
e′1
(

σ̂
2,y
−,jM̂

−1
−,j

)
e1

Nest
−,j


+

τ̂y(z; Π,S est)2

τ̂t(z; Π,S est)4

#Π

∑
j=1
1`j(z; Π)(z)

 e′1
(

σ̂2,t
+,jM̂

−1
+,j

)
e1

Nest
+,j

+
e′1
(

σ̂2,t
−,jM̂

−1
−,j

)
e1

Nest
−,j


− 2

τ̂y(z; Π,S est)

τ̂t(z; Π,S est)3

#Π

∑
j=1
1`j(z; Π)(z)

 e′1
(

Ĉy,t
+,jM̂

−1
+,j

)
e1

Nest
+,j

+
e′1
(

Ĉy,t
−,jM̂

−1
−,j

)
e1

Nest
−,j


=

#Π

∑
j=1
1`j(z; Π)(z)e′1

 1
τ̂t(z; Π,S est)2


(

σ̂
2,y
+,jM̂

−1
+,j

)
Nest
+,j

+

(
σ̂

2,y
−,jM̂

−1
−,j

)
Nest
−,j


+

τ̂y(z; Π,S est)2

τ̂t(z; Π,S est)4


(

σ̂2,t
+,jM̂

−1
+,j

)
Nest
+,j

+

(
σ̂2,t
−,jM̂

−1
−,j

)
Nest
−,j


− 2

τ̂y(z; Π,S est)

τ̂t(z; Π,S est)3


(

Ĉy,t
+,jM̂

−1
+,j

)
Nest
+,j

+

(
Ĉy,t
−,jM̂

−1
−,j

)
Nest
−,j

 e1

=
#Π

∑
j=1
1`j(z; Π)(z)e′1

(
V+,j

Nest
+,j

+
V−,j

Nest
−,j

)
e1

where

V+,j =
M̂−1

+,j

τ̂t(z; Π,S est)2

(
σ̂

2,y
+,j +

τ̂y(z; Π,S est)2

τ̂t(z; Π,S est)2 σ̂2,t
+,j +

τ̂y(z; Π,S est)

τ̂t(z; Π,S est)
Ĉy,t
+,j

)
V−,j =

M̂−1
−,j

τ̂t(z; Π,S est)2

(
σ̂

2,y
−,j +

τ̂y(z; Π,S est)2

τ̂t(z; Π,S est)2 σ̂2,t
−,j +

τ̂y(z; Π,S est)

τ̂t(z; Π,S est)
Ĉy,t
−,j

)
The expected value of this variance over Zi from the test sample, can be calculated
similarly as in the sharp RDD case.

ÊZi

{
V̂S est

[
τ̂FRD(z; Π,S est)

] ∣∣
z=Zi

}
=

1
Nte ∑

i∈S te

{
#Π

∑
j=1
1`j(z; Π)(z)e′1

(
V+,j

Nest
+,j

+
V−,j

Nest
−,j

)
e1

}

≈ 1
Nest

#Π

∑
j=1

{
e′1

(
V+,j

pest
+,j

+
V−,j

pest
−,j

)
e1

}

The second part of the EMSE criterion is the estimator for the expected squared
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τ2
FRD(Zi; Π). Similarly to sharp RD, one can construct the following estimator,

ÊZi

[
τ2

FRD(Zi; Π)
]
=

1
Nte ∑

i∈S te

τ̂2
FRD(Zi; Π,S te)− 1

Nte

#Π

∑
j=1

e′1

(
V+,j

pest
+,j

+
V−,j

pest
−,j

)
e1

Note, here everything is estimated on the test sample and I used the assumption, that
the number of unit shares for below and above the threshold – for all leaf – are ap-
proximately the same in the estimation and test sample (pte

+,j ≈ pest
+,j, pte

−,j ≈ pest
−,j). The

feasible criteria for fuzzy design for EMSE:

ÊMSEτFRD(S te,S est, Π) =− 1
Nte ∑

i∈S te

τ̂2
FRD(Zi; Π,S te)

+

(
1

Nte +
1

Nest

) #Π

∑
j=1

e′1

(
V+,j

pest
+,j

+
V−,j

pest
−,j

)
e1

A.4 Derivation of variances for leaf-by-leaf LS criterion
Homoscedastic error assumption is rather a strong assumption in RD context, thus use
of different heteroscedastic consistent estimators are favourable. First, I show deriva-
tion of V̂S est

[
δ̂
+,y,est
j

]
– the other parts can be calculated similarly – then I put together

with the other parts.
General case:

V̂S est

[
δ̂
+,y,est
j

]
=

1
Nest
+,j

(
1

Nte
+,j

∑
i∈S te

XiX ′i1`j(Zi; Π)1c(Xi)

)−1 [
1

Nte
+,j

∑
i∈S te

X ′i Ω̂Xi1`j(Zi; Π)1c(Xi)

]
(

1
Nte
+,j

∑
i∈S te

XiX ′i1`j(Zi; Π)1c(Xi)

)−1

=
1

Nest
+,j

M̂−1
+,j

[
1

Nte
+,j

∑
i∈S te

X ′i Ω̂Xi1`j(Zi; Π)1c(Xi)

]
M̂−1

+,j

=
1

Nest
+,j

M̂−1
+,jΣ̂+,jM̂−1

+,j

Estimators are different in how to calculate Σ̂+,j:
White’s estimator (‘HCE0’):

Σ̂HCE0
+,j =

1
Nte
+,j

∑
i∈S te

X ′i Xi(ε
y
i )

21`j(Zi; Π)1c(Xi)

Adjusted ‘HCE1’:

Σ̂HCE1
+,j =

1
Nte
+,j − p− 1 ∑

i∈S te

X ′i Xi(ε
y
i )

21`j(Zi; Π)1c(Xi)
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In case of clustered SE, with HC1

Σ̂C
+,j =

Nte
+,j − 1

(Nte
+,j − p− 1)2

Gte
+,j

Gte
+,j − 1 ∑

i∈S te

Gte
+,j

∑
c=1

X ′i,cXi,c(ε
y
i,c)

2

1`j(Zi; Π)1c(Xi)

where Gte
+,j is the number of clusters in leaf j above the threshold in the test sample.

The variance estimators are similarly constructed for parameters below the threshold.

In sharp RD, one gets the variance estimator as,

VS est
[
τ̂SRD(z; Π,S est)

]
=

#Π

∑
j=1
1`j(Zi; Π)e′1

{
M̂−1

+,jΣ̂+M̂−1
+,j

Nest
+,j

+
M̂−1
−,jΣ̂−M̂−1

−,j

Nest
−,j

}
e1

In fuzzy RD, let A1 = 1
τ̂t(z;Π,S est)2 , A2 = τ̂y(z;Π,S est)2

τ̂t(z;Π,S est)4 and A3 = τ̂y(z;Π,S est)
τ̂t(z;Π,S est)3 . Putting
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together the variance for CLATE parameters,

VS est
[
τ̂F(z; Π,S est)

]
=
(
VS est

[
µ̂

y
+(c, z; Π,S est)

]
+ VS est

[
µ̂

y
−(c, z; Π,S est)

])
+ A2

(
VS est

[
µ̂t
+(c, z; Π,S est)

]
+ VS est

[
µ̂t
−(c, z; Π,S est)

])
− 2A3(CS est

[
µ̂

y
+(c, z; Π,S est), µ̂t

+(c, z; Π,S est)
]

+ CS est
[
µ̂

y
−(c, z; Π,S est), µ̂t

−(c, z; Π,S est)
]
)

= A1

(
#Π

∑
j=1

1`j(z; Π)e′1VS est

[
δ̂
+,y,est
j

]
e1 +

#Π

∑
j=1

1`j(z; Π)e′1VS est

[
δ̂
−,y,est
j

]
e1

)

+ A2

(
#Π

∑
j=1

1`j(z; Π)e′1VS est

[
δ̂+,t,est

j

]
e1 +

#Π

∑
j=1

1`j(z; Π)e′1VS est

[
δ̂−,t,est

j

]
e1

)

− 2A3

(
#Π

∑
j=1

1`j(z; Π)e′1CS est

[
δ̂
+,y,est
j , δ̂+,t,est

j

]
e1

+
#Π

∑
j=1

1`j(z; Π)e′1CS est

[
δ̂
−,y,est
j , δ̂−,t,est

j

]
e1

)

=
#Π

∑
j=1

1`j(z; Π)e′1
{

A1

(
VS est

[
δ̂
+,y,est
j

]
+ VS est

[
δ̂
−,y,est
j

])
+ A2

(
VS est

[
δ̂+,t,est

j

]
+ VS est

[
δ̂−,t,est

j

])
−2A3

(
CS est

[
δ̂
+,y,est
j , δ̂+,t,est

j

]
+ CS est

[
δ̂
−,y,est
j , δ̂−,t,est

j

])}
e1

=
#Π

∑
j=1

1`j(z; Π)e′1
{

A1VS est

[
δ̂
+,y,est
j

]
+ A2VS est

[
δ̂+,t,est

j

]
− 2A3CS est

[
δ̂
+,y,est
j , δ̂+,t,est

j

]
+A1VS est

[
δ̂
−,y,est
j

]
+ A2 + VS est

[
δ̂−,t,est

j

]
− 2A3CS est

[
δ̂
−,y,est
j , δ̂−,t,est

j

]}
e1

=
#Π

∑
j=1

1`j(z; Π)e′1

{
1

Nest
+,j

M̂−1
+,j

(
A1Σ̂y

+,j + A2Σ̂t
+,j − 2A3Ĉ+,j

)
M̂−1

+,j

+
1

Nest
−,j

M̂−1
−,j

(
A1Σ̂y

−,j + A2Σ̂t
−,j − 2A3Ĉ−,j

)
M̂−1
−,j

}
e1

=
#Π

∑
j=1

1`j(z; Π)e′1

{
1

Nest
+,j

M̂−1
+,jΣ̂

∗
+M̂−1

+,j +
1

Nest
−,j

M̂−1
−,jΣ̂

∗
−M̂−1

−,j

}
e1

This result is quite useful: there is no need to calculate and multiply with M̂−1
±,j multiple

times during calculating the variances, but they can be ‘added up’, using only the test
sample.

A.5 Monte Carlo simulation setup
For Monte Carlo simulations, I use a general formulation for the DGPs and change the
appropriate parts for each specific setup.

Yi = η(Xi, Zi,k) + 1c(Xi)× κ(Zi,k) + εi
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where η(Xi, Zi,k) is the conditional expectation function, which is depending on the
running variable (Xi) and can be a function of the features (Zi,k) as well. The dis-
turbance term is generated from a normal distribution ε ∼ N (0, σ2

ε ). I generate
k = 1, . . . , K features such that Zi,k is independent across k and independent from
εi, Xi. The source of variation comes from εi during the simulations, thus Xi, Zi,k are
the same across the Monte Carlo samples. All the other terms are dependent on the
setup.
I report three Monte Carlo average statistics to evaluate the performance of the algo-
rithm:

1. Average of the infeasible MSE: MSE = 1
Neval ∑Neval

i=1 (κ(Zi,k)− τ̂(Zi; Π̂(S tr),S est))2

2. Average number of leaves in the final tree.

3. DGP found: this is only feasible for DGPs, where the DGP itself has a tree struc-
ture. The DGP is said to be found if the used features for the final tree is exactly
the same as for the DGP. 1

For DGP 1 and 2, I use linear in Xi DGPs with Xi ∼ U [−1, 1] where the threshold value
is c = 0. For the features, I use four variables, two binary (Zi,1−2) with 0.5 probability
of being 1. For DGP-2 I add two uniformly distributed continuous variables: Zi,3−4 ∼
U[−5, 5].

DGP 1: Two treatment effect and homogeneous η(·). Zi = [Zi,1, Zi,2], where Zi,1 is
relevant for CATE, the other is irrelevant.

η(Xi) = 2× Xi

κ(Zi,1) = Z1,i − (1− Z1,i)

DGP 2: Continuous treatment effect and heterogeneous η(·). Zi = [Zi,1, Zi,2, Zi,3, Zi,4], Zi,3 is
relevant for CATE, Zi,2 has an effect on η(·), the others are irrelevant.

η(Xi, Zi,2) = 2× Zi,2 × Xi − 2× (1− Zi,2)× Xi

κ(Zi,3) = 2× Zi,3

DGP 3-5 uses nonlinear specification for Xi. I follow (Calonico et al., 2014) Monte Carlo se-
tups, where η(·) is nonlinear in Xi and supplement with heterogeneous treatment effects.
(Calonico et al., 2014) imitate two empirical applications and add one extra setup to investi-
gate the effect of excess curvature. For all three designs the running variable is generated by
Xi ∼ (2B(2, 4)− 1), where B denotes a beta distribution and the disturbance term has the
variance of σ2

ε = 0.05. The threshold value is the same as in DGP-1 and 2.

1I allow the splitting value for each feature to be within 0.5 threshold to accept the split to be similar
as the DGP’s. Also note that growing smaller or larger trees has different types of errors.
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DGP 3: Imitating (Lee, 2008) vote-shares. I assume two treatment effects and heterogeneous
η(·). I use 52 dummy variables representing political parties and states. Political party dummy
(Xi,1) is relevant and has an effect on both treatment and functional form. States are irrelevant.
For Zi,1 = 1, I set the functional form as in (Calonico et al., 2014) first setup.

η(Xi, Zi,1) =



0.48 + 1.27Xi + 7.18X2
i + 20.21X3

i + 21.54X4
i + 7.33X5

i , if Xi < 0, Zi,1 = 1

0.48 + 2.35Xi + 8.18X2
i + 22.21X3

i + 24.14X4
i + 8.33X5

i , if Xi < 0, Zi,1 = 0

0.48 + 0.84Xi − 3.00X2
i + 7.99X3

i − 9.01X4
i + 3.56X5

i , if Xi ≥ 0, Zi,1 = 1

0.48 + 1.21Xi − 2.90X2
i + 6.99X3

i − 10.01X4
i + 4.56X5

i , if Xi ≥ 0, Zi,1 = 0

κ(Zi,1) = 0.02× Z1,i + 0.07× (1− Z1,i)

DGP 4: (Ludwig and Miller, 2007) studied the effect of Head Start funding to identify the
program’s effects on health and schooling. I assume continuous treatment effect based on the
age of participants. Age is assumed to be uniformly distributed: Zi,1 ∼ U [5, 9] and I add
dummies representing different continents involved in the analysis.

η(Xi, Zi,1) =

3.71 + 2.30Xi + 3.28X2
i + 1.45X3

i + 0.23X4
i + 0.03X5

i , if Xi < 0

3.71 + 18.49Xi − 54.81X2
i + 74.30X3

i − 45.02X4
i + 9.83X5

i , if Xi < 0

κ(Zi,1) =− 5.45− (Z1,i − 5);

DGP 5: ‘An Alternative DGP’ by (Calonico et al., 2014) adds extra curvature to the functional
form. This design is exactly the same as in (Calonico et al., 2014), thus it has homogeneous
treatment effect. The features are the same as in DGP 4 and they are all set to be irrelevant.
Treatment effect and η(·) is homogeneous.

η(Xi, Zi,1) =



0.48 + 1.27Xi − 0.5× 7.18X2
i + 0.7× 20.21X3

i

+1.1× 21.54X4
i + 1.5× 7.33X5

i , if Xi < 0

0.48 + 0.84Xi − 0.1× 3.00X2
i − 0.3× 7.99X3

i

−0.1× 9.01X4
i + 3.56X5

i , if Xi < 0

κ = 0.04
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A.6 Monte Carlo simulation for fuzzy design
For fuzzy designs, I use the same functional forms and setups for the DGPs, but add a homo-
geneous first-stage for getting the treatment:

Ti =

1 (0.5 + 0.8Xi + νi > 0) , if Xi ≥ 0

0 if Xi < 0

where νi ∼ N (0, 1). For simplicity I use ‘DGP-x-f’ expression for referring these fuzzy setups.
Table A.1 and A.2 show the same algorithm performance measures and the evidence on valid
inference similarly to the sharp design. The results are aligned with the conclusion reported in
Section 1.4, but the fuzzy design is even more data intensive.

DGP N inf. MSE #Π̂ DGP found (%)

DGP-f-1
N = 1, 000 1.1129 1.00 0%
N = 5, 000 0.0267 2.04 96%
N = 10, 000 0.0126 2.03 97%

DGP-f-2
N = 1, 000 13.1595 2.00 -
N = 5, 000 4.6662 5.83 -
N = 10, 000 3.3652 8.99 -

DGP-f-3
N = 1, 000 0.0012 1.00 0%
N = 5, 000 0.0003 1.99 99%
N = 10, 000 0.0001 2.00 100%

DGP-f-4
N = 1, 000 1.6566 1.00 -
N = 5, 000 0.2255 3.00 -
N = 10, 000 0.1351 3.69 -

DGP-f-5
N = 1, 000 0.0006 1.00 100%
N = 5, 000 0.0001 1.03 97%
N = 10, 000 0.0001 1.02 98%

Table A.1: Monte Carlo averages for performance measures in fuzzy designs
Number of true leaves: #ΠDGP−1 = 2, #ΠDGP−3 = 2, #ΠDGP−5 = 1

Algorithm setup: using the smallest cross-validation value to select γ∗,
q = 1 for DGP 1 and 2 and q = 5 for DGP 3,4 and 5.
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DGP 1

Leaf `1 : τ1(Z1 = 1) = 1 `2 : τ1(Z1 = 0) = −1

Estimates
average actual 95% CI average actual 95% CI

bias coverage bias coverage
N = 1, 000 - - - -
N = 5, 000 -0.0147 0.95 -0.0037 0.95
N = 10, 000 -0.0038 0.95 0.0020 0.96

DGP 3

Leaf `1 : τ1(Z1 = 0) = 0.07 `2 : τ1(Z1 = 1) = 0.02

Estimates
average actual 95% CI average actual 95% CI

bias coverage bias coverage
N = 1, 000 - - - -
N = 5, 000 -0.0002 0.96 0.0004 0.96
N = 10, 000 -0.0003 0.95 -0.0003 0.94

DGP 5

Leaf Homogeneous Treatment, τ = 0.04

Estimates avgerage bias actual 95% CI coverage
N = 1, 000 -0.0000 0.95
N = 5, 000 0.0001 0.96
N = 10, 000 -0.0003 0.95

Table A.2: Estimated Monte Carlo average for bias and actual 95% confidence intervals
coverage for each leaf for tree structured DGPs, conditional on DGP is found - fuzzy
design

Note: For DGP-f-1 and DGP-f-3, with N = 1, 000, there is no case when the true DGP is found, thus no values are reported.
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A.7 Additional results on the empirical exercise
This part adds additional information on the empirical analysis. Table A.3 shows the descrip-
tives for the used variables in the heterogeneity analysis. Here, I only present the variables
used for revisiting the heterogeneity analysis by (Pop-Eleches and Urquiola, 2013).

School level average Baccalaureate Baccalaureate Scaled School number of schools
transition score taken grade admission score in town

Mean 7.65 0.74 8.12 0.10 17.50
Median 7.55 1.00 8.15 0.15 17.00
Std deviation 0.75 0.44 0.90 0.55 7.49
Min 5.78 0.00 5.19 -1.00 2.00
Max 9.63 1.00 10.00 1.00 29.00
N 1,857,376 1,857,376 1,256,038 1,857,376 1,857,376

Table A.3: Descriptive statistics of the variables used in heterogeneity analysis of (Pop-
Eleches and Urquiola, 2013)

Table A.4 restates the main findings of (Pop-Eleches and Urquiola, 2013) on the heterogeneity
exercise.
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School level average Baccalaureate Baccalaureate
transition score taken grade

Full sample
τ0 0.107∗∗∗ 0.000 0.018∗∗∗

SE(τ0) (0.001) (0.001) (0.002)
N 1,857,376 1,857,376 1,256,038

Top tercile
τ1 0.158∗∗∗ 0.003 0.048∗∗∗

SE(τ1) (0.002) (0.002) (0.003)
N1 756,141 756,141 579,566

Bottom tercile
τ2 0.099∗∗∗ −0.008∗ −0.005
SE(τ2) (0.003) (0.004) (0.009)
N2 392,475 392,475 212,282

Towns with four or more schools
τ1 0.097∗∗∗ 0.000 0.016∗∗∗

SE(τ1) (0.001) (0.001) (0.002)
N1 1,806,411 1,806,411 1,223,341

Towns with three schools
τ2 0.333∗∗∗ −0.007 0.028∗

SE(τ2) (0.007) (0.009) (0.016)
N2 31,149 31,149 19,877

Towns with two schools
τ3 0.697∗∗∗ 0.020 0.179∗∗∗

SE(τ3) (0.010) (0.013) (0.023)
N3 19,816 19,816 12,820
Notes: All regressions are clustered at the student level and
include cutoff fixed effects. Standard errors are in parentheses.
All estimates present reduced form specifications where the
key independent variable is a dummy for whether a student’s
transition score is greater than or equal to the cutoff.
∗∗∗ Significant at the 1 percent level.
∗∗ Significant at the 5 percent level.
∗ Significant at the 10 percent level.

Table A.4: Heterogeneity in Baccalaureate Effects - (Pop-Eleches and Urquiola, 2013),
Table 5

Table A.5 summarize the different treatment effects estimated by (Pop-Eleches and Urquiola,
2013) and by the algorithm for Baccalaureate exam grade. Note that for RD tree: only number
of schools, I only used number of schools only as features. RD tree: all variables are using both
average transition score for the class and number of schools as features, but finds only average
transition score variable as relevant.

110

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

Avg. transition score for the class Number of schools
Pop-Eleches and Top tercile Bottom tercile 2 3 4-27
Urquiola (2013) 0.048∗∗∗ −0.005 0.179∗∗∗ 0.028∗ 0.016∗∗∗

RD tree: all variables
Below median† Above median† -

0.015∗∗ 0.028∗∗∗ -

RD tree: only no. schools
- 2 3-24 and 26-27 25
- 0.152∗∗∗ 0.021∗∗∗ −0.013

Regressions are clustered at the student level and include cutoff FE.
∗∗∗: significant at 1%, ∗∗: significant at 5%, ∗: significant at 10%.
†: the algorithm splits at 44th percentile.

Table A.5: Heterogeneity in treatment effects for Baccalaureate grade
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Mean Median Std. dev. Min Max N

Outcome and running variables
School level average transition score 8.20 8.29 0.60 6.53 9.41 11,931
Scaled Admission score 0.85 0.82 0.97 -2.07 3.91 11,931

Socioeconomic characteristics of households
Female head of household (d) 0.89 1 0.32 0 1 11,931
Age of head of household 46.75 45 7.15 13 97 11,843
Romanian (d) 0.94 1 0.24 0 1 11,931
Hungarian (d) 0.05 0 0.22 0 1 11,931
Gypsy (d) 0.01 0 0.06 0 1 11,931
Other Ethnicity (d) 0.01 0 0.09 0 1 11,931
HH’s Primary education (d) 0.66 1 0.47 0 1 11,840
HH’s Secondary education (d) 0.20 0 0.40 0 1 11,840
HH’s Tertiary education (d) 0.13 0 0.34 0 1 11,840

Socioeconomic characteristics of students
Gender of student (d) 0.42 1 0.49 0 1 11,931
Age of student 18.08 18 0.94 14 23 11,866

Accessibility of households to goods
Car (d) 0.57 1 0.49 0 1 11,820
Internet (d) 0.73 1 0.44 0 1 11,829
Phone (d) 0.47 0 0.50 0 1 11,807
Computer (d) 0.87 1 0.34 0 1 11,851

Parental and Child responses to survey questions
Parent volunteered (d) 0.11 0 0.31 0 1 11,868
Parent paid tutoring (d) 0.24 0 0.42 0 1 11,931
Parent helps HW (d) 0.20 0 0.40 0 1 11,815
Child does HW every day - Parent (d) 0.75 1 0.43 0 1 11,779
Negative interactions with peers 0.12 0 0.37 0 5 11,838
Child does HW every day - Child (d) 0.63 1 0.48 0 1 11,908
HW percieved easy 5.45 5.60 1.02 1 7 9,628

Characteristics of schools
No. schools 2.33 2 0.50 2 4 11,931
2 schools (d) 0.69 1 0.46 0 1 11,931
3 schools (d) 0.29 0 0.45 0 1 11,931
4 schools (d) 0.02 0 0.13 0 1 11,931
Highest certification teacher in school (d) 0.61 1 0.49 0 1 11,169
Novice teacher in school (d) 0.06 0 0.24 0 1 11,169
(d) indicates it is a dummy variable. ‘HH’ stands for household, ‘HW’ for homework.

Table A.6: Descriptive statistics of the used variables for exploring heterogeneity in a
survey-based dataset

Table A.6 shows the descriptives for the candidate features used to find the tree shown by
Figure 1.8.
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Appendix B

Appendix for Chapter 2

The structure of the Appendix B is the following: Section B.1 contains detailed research of
the Monte Carlo experiments. Section B.2 provides theoretical exposition of the simple Least
Squares (LS) estimator on model with discretized data. The discussion covers cross section and
panel data. Section B.3 contains technical proofs of all the Propositions in the paper. Section
B.4 provides a list of notations used in the paper.

B.1 Monte Carlo Simulation Results on the Bias
This section contains detailed results from all the Monte Carlo experiments. Recall the basic
setup of the Monte Carlo experiment is,

yi = 0.5xi + ε i ε i ∼ N (0, σ2).

The explanatory variable, x, is generated as Uniform, Normal, Exponential, and Weibull dis-
tributions with several different parameter setups. One thousand Monte Carlo experiments
(mc = 1, . . . , 1000) were run for each setup, for sample sizes (N =) 10,000; 100,000 and 500,000
and different σ2

ε variances. When generating x∗, observation outside the support, whenever
relevant, would be discarded (truncated approach), or assigned to the limit of the class (cen-
sored approach). We report the average bias (bias: ∑mc(β̂mc − β)/1000), the average absolute bias
(abs-bias: ∑mc |β̂mc − β|/1000), and the standard deviation of the β̂ estimated parameter (SD:√

∑mc(β̂mc − β̄mc)2/999). The Kullback–Leibler proximity/discrepancy index (Kullback and
Leibler, 1951, Kullback, 1959, Kullback, 1987) has also been calculated to appreciate how differ-
ent a given distribution is from the uniform:

KL =
∫

p(x) log
p(x)
f (x)

dx,

where p(x) is the uniform distribution and f (x) is the relevant truncated or censored normal
distribution.
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B.1.1 Uniform Distribution

Uniform[-1,1]
M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0005 -0.0005 -0.0005 -0.0005 -0.0006
N=100,000 -0.0008 -0.0010 -0.0008 -0.0008 -0.0008
N=500,000 -0.0008 -0.0010 -0.0010 -0.0010 -0.0010

|β̂− β|
N=10,000 0.0322 0.0307 0.0303 0.0302 0.0300
N=100,000 0.0103 0.0100 0.0098 0.0097 0.0097
N=500,000 0.0049 0.0049 0.0049 0.0048 0.0048

SD
[
β̂
] N=10,000 0.0406 0.0390 0.0384 0.0382 0.0380

N=100,000 0.0129 0.0124 0.0123 0.0122 0.0122
N=500,000 0.0060 0.0059 0.0058 0.0058 0.0058

Uniform[0,1]
M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0008 -0.0008 -0.0008 -0.0008 -0.0008
N=100,000 -0.0006 -0.0007 -0.0006 -0.0006 -0.0006
N=500,000 -0.0010 -0.0012 -0.0012 -0.0011 -0.0012

|β̂− β|
N=10,000 0.0298 0.0295 0.0293 0.0292 0.0292
N=100,000 0.0100 0.0098 0.0098 0.0098 0.0098
N=500,000 0.0044 0.0044 0.0044 0.0044 0.0044

SD
[
β̂
] N=10,000 0.0375 0.0372 0.0369 0.0369 0.0369

N=100,000 0.0126 0.0123 0.0123 0.0123 0.0123
N=500,000 0.0054 0.0054 0.0054 0.0054 0.0054

Uniform[0,10]
M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
N=100,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001
N=500,000 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

|β̂− β|
N=10,000 0.0031 0.0030 0.0029 0.0029 0.0029
N=100,000 0.0010 0.0010 0.0010 0.0010 0.0010
N=500,000 0.0005 0.0004 0.0004 0.0004 0.0004

SD
[
β̂
] N=10,000 0.0038 0.0037 0.0037 0.0037 0.0037

N=100,000 0.0013 0.0012 0.0012 0.0012 0.0012
N=500,000 0.0006 0.0005 0.0005 0.0005 0.0005

Table B.1: Uniform distribution: β = 0.5, σ2
ε = 5

From Table B.1 the unbiasedness and consistency (in sample size) of the LS estimator can clearly
be seen in the case of the uniform distribution, similarly to the, somewhat slower, convergence
in M. We have also done simulations with different σ2

ε and β, where the same results hold. For
smaller σ2

ε , the bias is smaller, for different β the results are almost exactly the same. Next, let
us turn our attention to some other distributions.
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B.1.2 Other distributions
In this subsection we investigate the normal distribution alng with the exponential and Weibull
distributions.
First let us note that the Kullback-Liebler index gives a good indication of the bias. The bias
tends to be smaller where this index is small, and vice versa. Table B.2 shows simulation results
with a normal distribution.

Truncated Censored
σ2

x = 0.1 0.7396 0.7407
σ2

x = 0.2 0.2287 0.2536
σ2

x = 0.3 0.1091 0.1783
σ2

x = 0.4 0.0634 0.1829
σ2

x = 0.5 0.0414 0.2109
σ2

x = 0.6 0.0291 0.2463
σ2

x = 0.7 0.0216 0.2835
σ2

x = 0.8 0.0167 0.3203
σ2

x = 0.9 0.0132 0.3558
σ2

x = 1 0.0197 0.3899

Table B.2: Kullback-Leibler ratio: Uniform vs. Truncated/Censored Normal with dif-
ferent σ2

x values, a = −1, b = 1

Similarly, with a normal distribution, Table B.3 shows that the LS estimator is biased and
inconsistent, with a negative bias, as predicted by the theory, both in the case of truncation and
censoring. Although the theory suggests that intercept picks up some of the bias, in practice
the difference between with and without intercept – in this case – is small, approximately 3-5%.
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β̂− β

Truncated Censored
N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000

σ2
x = 0.1 -0.0593 -0.0603 -0.0607 -0.0582 -0.0567 -0.0575

σ2
x = 0.2 -0.0320 -0.0323 -0.0329 -0.0110 -0.0101 -0.0103

σ2
x = 0.3 -0.0224 -0.0223 -0.0226 0.0272 0.0283 0.0280

σ2
x = 0.4 -0.0176 -0.0171 -0.0173 0.0619 0.0630 0.0628

σ2
x = 0.5 -0.0142 -0.0139 -0.0141 0.0938 0.0950 0.0948

σ2
x = 0.6 -0.0118 -0.0118 -0.0120 0.1239 0.1248 0.1245

σ2
x = 0.7 -0.0102 -0.0103 -0.0105 0.1517 0.1527 0.1524

σ2
x = 0.8 -0.0092 -0.0091 -0.0093 0.1783 0.1791 0.1788

σ2
x = 0.9 -0.0082 -0.0082 -0.0084 0.2032 0.2042 0.2039

σ2
x = 1 -0.0074 -0.0075 -0.0077 0.2271 0.2280 0.2278

|β̂− β|
Truncated Censored

N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000
σ2

x = 0.1 0.0730 0.0603 0.0607 0.0710 0.0568 0.0575
σ2

x = 0.2 0.0485 0.0326 0.0329 0.0417 0.0151 0.0106
σ2

x = 0.3 0.0416 0.0233 0.0226 0.0435 0.0285 0.0280
σ2

x = 0.4 0.0382 0.0188 0.0173 0.0651 0.0630 0.0628
σ2

x = 0.5 0.0363 0.0162 0.0141 0.0941 0.0950 0.0948
σ2

x = 0.6 0.0350 0.0147 0.0121 0.1239 0.1248 0.1245
σ2

x = 0.7 0.0339 0.0136 0.0107 0.1517 0.1527 0.1524
σ2

x = 0.8 0.0335 0.0129 0.0097 0.1783 0.1791 0.1788
σ2

x = 0.9 0.0331 0.0125 0.0089 0.2032 0.2042 0.2039
σ2

x = 1 0.0326 0.0121 0.0084 0.2271 0.2280 0.2278
SD
[
β̂
]

Truncated Censored
N=10,000 N=100,000 N=500,000 N=10,000 N=100,000 N=500,000

σ2
x = 0.1 0.0661 0.0212 0.0098 0.0662 0.0210 0.0088

σ2
x = 0.2 0.0520 0.0165 0.0079 0.0518 0.0156 0.0068

σ2
x = 0.3 0.0473 0.0150 0.0072 0.0457 0.0137 0.0059

σ2
x = 0.4 0.0451 0.0144 0.0068 0.0421 0.0128 0.0055

σ2
x = 0.5 0.0436 0.0139 0.0067 0.0403 0.0124 0.0053

σ2
x = 0.6 0.0428 0.0136 0.0065 0.0387 0.0120 0.0051

σ2
x = 0.7 0.0419 0.0134 0.0064 0.0379 0.0117 0.0050

σ2
x = 0.8 0.0415 0.0132 0.0064 0.0368 0.0115 0.0049

σ2
x = 0.9 0.0412 0.0132 0.0063 0.0360 0.0114 0.0047

σ2
x = 1 0.0408 0.0131 0.0063 0.0356 0.0113 0.0047

Table B.3: Truncated and Censored Normal Distributions, estimated without intercept,
M = 5, β = 0.5, σ2

ε = 5, Supp = [−1, 1]
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We carried out a large number of simulations with different parametrisations for both distri-
butions. In Table B.4 we report the bias from the exponential distribution, which highlights the
effect of censoring. Although we do no observe large bias with truncation, when the choices
are censored the bias increases dramatically. Table B.5 shows results on normal distribution,
while Table B.6 uses a weibull distribution.
From Table B.4-B.6, the main takeaway is that, as expected, there is no convergence in the sam-
ple size, while the convergence speed in M is ‘slow’ and depends heavily on the shape of the
distribution. Also, the results about the Kullback-Liebler index (not reported here) are very
similar to those obtained for the normal distribution, i.e., a larger index implies systematically
a larger bias.
We have also tried several different distributions and parameterisation, and the main take away
is very similar.

Exp [λ] , Supp = [0, 1]
Truncated Censored

M=3 M=5 M=10 M=20 M=50 M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0182 -0.0074 -0.0027 -0.0015 -0.0011 0.1341 0.1304 0.1235 0.1190 0.1160
N=100,000 -0.0185 -0.0072 -0.0025 -0.0014 -0.0011 0.1342 0.1307 0.1239 0.1193 0.1163
N=500,000 -0.0190 -0.0078 -0.0032 -0.0020 -0.0017 0.1339 0.1303 0.1235 0.1190 0.1160

|β̂− β|
N=10,000 0.0415 0.0394 0.0388 0.0388 0.0388 0.1342 0.1305 0.1237 0.1191 0.1162
N=100,000 0.0208 0.0145 0.0133 0.0131 0.0131 0.1342 0.1307 0.1239 0.1193 0.1163
N=500,000 0.0191 0.0090 0.0064 0.0060 0.0059 0.1339 0.1303 0.1235 0.1190 0.1160

SD
[
β̂
] N=10,000 0.0489 0.0489 0.0489 0.0490 0.0490 0.0445 0.0437 0.0427 0.0422 0.0419

N=100,000 0.0163 0.0165 0.0164 0.0164 0.0164 0.0137 0.0135 0.0131 0.0130 0.0129
N=500,000 0.0073 0.0073 0.0073 0.0073 0.0073 0.0061 0.0059 0.0058 0.0057 0.0057

Table B.4: Exponential distribution: β = 0.5, σ2
ε = 5, λ = 0.5

N
(
µx , σ2

x
)

, Supp = [−1, 1]
Truncated Censored

M=3 M=5 M=10 M=20 M=50 M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0798 -0.0311 -0.0078 -0.0017 0.0000 -0.0552 -0.0097 0.0088 0.0120 0.0120
N=100,000 -0.0800 -0.0313 -0.0079 -0.0017 0.0000 -0.0552 -0.0099 0.0084 0.0115 0.0114
N=500,000 -0.0803 -0.0315 -0.0081 -0.0020 -0.0003 -0.0554 -0.0100 0.0082 0.0113 0.0112

|β̂− β|
N=10,000 0.0798 0.0328 0.0198 0.0188 0.0187 0.0553 0.0195 0.0198 0.0209 0.0209
N=100,000 0.0800 0.0313 0.0092 0.0066 0.0064 0.0552 0.0106 0.0092 0.0117 0.0117
N=500,000 0.0803 0.0315 0.0081 0.0032 0.0028 0.0554 0.0100 0.0082 0.0113 0.0112

SD
[
β̂
] N=10,000 0.0224 0.0226 0.0234 0.0234 0.0234 0.0220 0.0228 0.0230 0.0229 0.0228

N=100,000 0.0074 0.0078 0.0080 0.0080 0.0080 0.0074 0.0074 0.0074 0.0074 0.0074
N=500,000 0.0033 0.0033 0.0034 0.0034 0.0034 0.0031 0.0033 0.0033 0.0033 0.0032

Table B.5: Normal distribution: β = 0.5, σ2
ε = 1, µx = 0, σ2

x = 0.2
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Weibull [b, c] , Supp = [0, 1]
Truncated Censored

M=3 M=5 M=10 M=20 M=50 M=3 M=5 M=10 M=20 M=50

β̂− β

N=10,000 -0.0369 -0.0128 -0.0031 -0.0010 -0.0004 1.8197 1.7475 1.6828 1.6486 1.6278
N=100,000 -0.0369 -0.0130 -0.0033 -0.0011 -0.0005 1.8209 1.7487 1.6840 1.6498 1.6289
N=500,000 -0.0371 -0.0131 -0.0035 -0.0013 -0.0007 1.8197 1.7475 1.6828 1.6486 1.6278

|β̂− β|
N=10,000 0.0371 0.0178 0.0144 0.0142 0.0141 1.8197 1.7475 1.6828 1.6486 1.6278
N=100,000 0.0369 0.0131 0.0056 0.0049 0.0048 1.8209 1.7487 1.6840 1.6498 1.6289
N=500,000 0.0371 0.0131 0.0038 0.0024 0.0022 1.8197 1.7475 1.6828 1.6486 1.6278

SD
[
β̂
] N=10,000 0.0174 0.0179 0.0179 0.0179 0.0179 0.0492 0.0474 0.0458 0.0450 0.0445

N=100,000 0.0058 0.0060 0.0060 0.0060 0.0060 0.0154 0.0148 0.0144 0.0141 0.0140
N=500,000 0.0026 0.0027 0.0027 0.0027 0.0027 0.0071 0.0069 0.0066 0.0065 0.0064

Table B.6: Weibull distribution: β = 0.5, σ2
ε = 0.5, b = 1, c = 0.5

B.2 Properties of LS using Discretized Data
Recall the data generating process is assumed to be

yi = w′iγ + x′i β + ui (B.1)

with the linear regression model using the discretized version of xi namely,

yi = w′iγ + x∗
′

i β + ui (B.2)

Let us assume for the sake of simplicity that there is only one explanatory variable in the model
which is observed through discretized choices. It is also assumed, as said earlier, that it has a
known support [al , au] with known boundaries (Cm), and let zm be the class midpoint.1

The classes are now the following with their respective class values:

C1 =

[
al , al +

au − al

M

)
z1 = al +

au − al

2M
,

...

Cm =

[
al + (m− 1)

(au − al)

M
, al + m

au − al

M

)
zm = al + (2m− 1)

au − al

2M
,

... (B.3)

CM =

[
al + (M− 1)

(au − al)

M
, al + M

au − al

M

]
zM = al + (2M− 1)

au − al

2M
.

Let Nm be the number of observations in each class Cm, that is Nm = ∑N
i=1 1{xi∈Cm}, where 1{x∈C}

denotes the indicator function defined as

1{x∈C} :=

1, if x ∈ C,

0, if x 6∈ C.

1In the special case of the uniform distribution, the midpoints coincide with the conditional expecta-
tion of the uniformly distributed explanatory variable x in that class.
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When x has a cumulative distribution cdf F(·),

E(Nm) = E

(
N

∑
i=1

1{xi∈Cm}

)
= N

∫
Cm

f (x)dx

= N Pr(cm−1 < x ≤ cm),

using the independence assumption. When, for example, x has a uniform distribution, we have
E(Nm) = N/M for all m = 1, . . . , M.

β̂∗LS = (x∗
′
x∗)
−1
(x∗

′
y)

=
z1

(
∑N1

i=1 yi

)
+ z2

(
∑N1+N2

i=N1+1 yi

)
+ · · ·+ zM

(
∑NM

i=N−NM+1 yi

)
N1z2

1 + N2z2
2 + · · ·+ NMz2

M

=
z1

(
∑N1

i=1 βxi + ui

)
+ · · ·+ zM

(
∑NM

i=N−NM+1 βxi + ui

)
N1z2

1 + · · ·+ NMz2
M

=
z1

[
∑N

i=1 1{xi∈C1}(βxi + ui)
]
+ · · ·+ zM

[
∑N

i=1 1{xi∈CM}(βxi + ui)
]

N1z2
1 + · · ·+ NMz2

1

=
∑M

m=1 zm

[
∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑M
m=1 Nmz2

m

=
∑M

m=1
[
al + (2m− 1) au−al

2M

] [
∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑M
m=1 Nm

[
al + (2m− 1) au−al

2M

]2 .

Using the result above, we can get the following general formula for the expected value of the
LS estimator,

E
(

β̂∗LS
)
= E

∑M
m=1 zm

[
∑N

i=1 1{xi∈Cm} (β(x∗i + ξi) + ui)
]

∑M
m=1 Nmz2

m


= E

∑M
m=1 zm

[
β
(

∑N
i=1 1{xi∈Cm}x

∗
i + ∑N

i=1 1{xi∈Cm}ξi

)
+ ∑N

i=1 1{xi∈Cm}ui

]
∑M

m=1 Nmz2
m


= βE

{
∑M

m=1 zm ∑N
i=1 1{xi∈Cm}x

∗
i

∑M
m=1 Nmz2

m

}
+ βE

{
∑M

m=1 zm ∑N
i=1 1{xi∈Cm}ξi

∑M
m=1 Nmz2

m

}

+ E

{
∑M

m=1 zm ∑N
i=1 1{xi∈Cm}ui

∑M
m=1 Nmz2

m

}

= β + βE

{
∑M

m=1 zm ∑N
i=1 1{xi∈Cm}ξi

∑M
m=1 Nmz2

m

}

= β + βE

{
∑M

m=1 zmNmυm

∑M
m=1 Nmz2

m

}
. (B.4)
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C1 C2

z1 z2

E(x|C1) E(x|C2)

E(ξ1) = 0 E(ξ2) = 0

xi

C1 C2

z1 z2

E(x|C1) E(x|C2)

E(ξ1) 6= 0 E(ξ2) 6= 0

xi

Figure B.1: The difference between uniform (left panel) and general distributions (right
panel)

where a respondent makes an error ξi = xi− x∗i for each observation by setting the possible an-
swer values at x∗i . The derivation above is based on the disturbance term ui being independent
of regressor xi and E(ui) = 0 for all i = 1, . . . , N. The last inference uses the fact that the errors

ξi have the same conditional distribution over the class Cm, υm d
= ξi|Cm for all m = 1, . . . , M and

i = 1, . . . , N. Importantly, the second term in Equation (B.4) does not vanish in general, since
υm|Cm is not independent of Nm|Cm, υm|Cm 6⊥⊥ Nm|Cm nor E(ξi|Cm) = E(υm) = 0 (see Figure
B.1, right panel). These would be sufficient assumptions for the LS to be unbiased. The for-
mer issue can be eliminated by conditioning on the underlying distribution of xi. Conditional
on the distribution xi and the class Cm, the number of observations in the class and assuming
that the errors are independent of each other, Nm|xi, Cm ⊥⊥ υm|xi, Cm, but knowing the underly-
ing distribution makes the problem trivial. Nonetheless, because of both issues, the ‘naive’ LS
estimator is biased.

The uniform distribution, however, turns out to be a special case. Let us assume that xi ∼
U(al , au) for all i = 1, . . . , N, then both of the above disappear (see the left panel in Figure B.1)
if we are using the class mid points. The first problem is resolved, because in the case of the
uniform distribution, both the number of observations Nm in each class Cm and the error term
υm are independent of the regressor’s xi distribution, while the second problem does not appear
trivially, since now the class midpoints are proper estimates of the regressor’s xi expected value
in the class Cm. From Equation (B.4), we obtain that

E
(

β̂∗LS
)
= β + βE

{
∑M

m=1 zmNmυm

∑M
m=1 Nmz2

m

}
= β,

where υm is a uniformly distributed random variable with zero expected value, E(υm) = 0 for
all m = 1, . . . , M. Hence, in the case of uniform distribution, unlike for other distributions, the
LS is unbiased.
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B.2.1 N (in)consistency
This subsection considers the large sample properties of the estimator. First, assume that
plimN→∞ ∑N

i=1 1{xi∈Cm}ui = 0, in other words that the choice set selection is independent of
the disturbance terms, and also that with sample size N the number of classes M is fixed. Then

plim
N→∞

β̂∗LS = plim
N→∞

∑M
m=1 zm

[
∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑M
m=1 Nmz2

m

=
∑M

m=1 zm

[
plimN→∞ ∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑M
m=1 z2

m plimN→∞ Nm

=
∑M

m=1 zm

[
plimN→∞ β ∑N

i=1 1{xi∈Cm}xi

]
∑M

m=1 z2
m plimN→∞ Nm

=
β ∑M

m=1 zm

[
plimN→∞ ∑N

i=1 1{xi∈Cm}xi

]
∑M

m=1 z2
m plimN→∞ Nm

. (B.5)

Define xm = ∑N
i=1 1{xi∈Cm}xi, then xm sums the truncated version of the original random vari-

ables xi on the class Cm, xm
d
= xi|Cm, for all m = 1, . . . , M, therefore its asymptotic distribution

can be calculated by applying the Lindeberg-Levy Central Limit Theorem,

xm/Nm
a∼ N

(
E(xm), V(xm)/Nm

)
.

The β̂∗LS estimator is consistent if and only if the probability limit in Equation (B.5) equals β.
To give a condition for consistency, first we rewrite the previous Equation (B.5) in terms of the
error terms ξi,

plim
N→∞

(
β̂∗LS − β

)
=

β
(

∑M
m=1 zm

[
plimN→∞ ∑N

i=1 1{xi∈Cm}xi

]
−∑M

m=1 z2
m plimN→∞ Nm

)
∑M

m=1 z2
m plimN→∞ Nm

=
β ∑M

m=1 zm

[
plimN→∞ ∑N

i=1 1{xi∈Cm}(xi − x∗i )
]

∑M
m=1 z2

m plimN→∞ Nm

=
β ∑M

m=1 zm

[
plimN→∞ ∑N

i=1 1{xi∈Cm}ξi

]
∑M

m=1 z2
m plimN→∞ Nm

,

where the asymptotic distribution of the sum of errors in class Cm, ξm = ∑N
i=1 1{xi∈Cm}ξi, m =

1, . . . , M, can be given by

ξm/Nm
d
= xm/Nm − zm

a∼ N
(
E(xm)− zm, V(xm)/Nm

)
.
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C1 C2

z1 < 0 z2 > 0

E(x|C1) E(x|C2)

E(ξ1) > 0 E(ξ2) < 0

xi

Figure B.2: The estimator is inconsistent even in case of symmetric distributions.

plim
N→∞

(
β̂∗LS − β

)
=

plimN→∞ β ∑M
m=1 zmξm

plimN→∞ ∑M
m=1 z2

mNm

=
plimN→∞ O(N)β ∑M

m=1 zmξm/Nm

plimN→∞ O(N)∑M
m=1 z2

m

=
β ∑M

m=1 zm plimN→∞ ξm/Nm

∑M
m=1 z2

m
O(N)

=
β ∑M

m=1 zm {E(xm)− zm}
∑M

m=1 z2
m

O(N). (B.6)

The last step in the above derivation can simply be obtained from the definition of the plim
operator, i.e., for any ε > 0 given Therefore, to obtain the (in)consistency of the LS estimator β̂∗LS

in the number of observations N, we only need to calculate the expected value of the truncated
random variable xm, m = 1, . . . , M and check whether the expression (B.6) equals 0 to satisfy a
sufficient condition.

Let us apply these results to the uniform distribution. In this case, there is no consistency
issue because the class midpoints coincide with the expected value of the truncated uniform
random variable in each class, making the expression (B.6) zero, hence the LS estimator is
consistent.

Note that the consistency of the LS estimator is not guaranteed even in the case of symmet-
ric distributions and symmetric class boundaries. After appropriate transformations (e.g., de-
meaning), it can be seen that the sign of the differences between the expectation of the truncated
random variables xm and the class midpoints is opposite to the sign of the class midpoints on
either side of the distribution, which implies negative overall asymptotic bias in N (see Figure
B.2).

In the case of a (truncated) normal variable, for example, we need to substitute the expected
value of the truncated normal random variable xm for each m = 1, . . . , M in the consistency
formula (B.6). As a result, the difference between the expectation and the class midpoints in
general is not zero for all m, hence the formula cannot be made arbitrarily small. Therefore, the
LS estimator becomes inconsistent in N (see Table B.3. on the size of the bias).

So far we have focused on the estimation of β in Equation (B.2). But how about γ? It
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can be shown that the bias and inconsistency presented above is contagious. Estimation of all
parameters of a model is going to be biased and inconsistent unless the measurement error
and x are orthogonal (independent), which is quite unlikely in practice. This is important to
emphasize: a single choice type variable in a model is going to infect the estimation of all
variables of the model.

B.2.2 M Consistency
Let us see next the case when N is fixed but M → ∞. Now, we may have some classes
that do not contain any observations, while others still do. Omitting, however, empty classes
does not cause any bias because of our iid assumption. Furthermore, while we increase the
number of classes, the size of the classes itself is likely to shrink and become so narrow
that only one observation can fall into each. In the limit we are going to hit the observa-
tions with the class boundaries. To see that, we derive the consistency formula in the num-
ber of classes M assuming that plimM→∞ ∑{m:Cm 6=∅,m=1,...,M} zmuim = 0, or with re-indexation
plimM→∞ ∑N

i=1 zmi ui = ∑N
i=1 xiui = 0, which should hold in the sample and is a stronger as-

sumption than the usual plimN→∞ ∑N
i=1 xiui = 0:

plim
M→∞

(
β̂∗LS − β

)
= plim

M→∞

∑M
m=1 zm

[
∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑M
m=1 Nmz2

m
− β

= plim
M→∞

∑{m:Cm 6=∅,m=1,...,M} zm

[
∑N

i=1 1{xi∈Cm}(βxi + ui)
]

∑{m:Cm 6=∅,m=1,...,M} Nmz2
m

− β

= plim
M→∞

∑{m:Cm 6=∅,m=1,...,M} zm(βxim + uim)

∑{m:Cm 6=∅,m=1,...,M} z2
m

− β

= plim
M→∞

β

{
∑{m:Cm 6=∅,m=1,...,M} zmxim

∑{m:Cm 6=∅,m=1,...,M} z2
m
− 1

}

= plim
M→∞

β

{
∑N

i=1 zmi xi

∑N
i=1 z2

mi

− 1

}

= β

{
∑N

i=1 plimM→∞ zmi xi

∑N
i=1 plimM→∞ z2

mi

− 1

}

= β

{
∑N

i=1 xixi

∑N
i=1 xi

2
− 1

}
= 0,

where the index im ∈ {1, . . . , N} denotes observation i in class m (at the beginning there might
be several observations that belong to the same class m), and index mi ∈ {1, . . . , M} denotes
the class m that contains observation i (at the and of the derivation one class m includes only
one observation i). Note that the derivation does not depend on the distribution of the explana-
tory variable x, so consistency in the number of classes M holds in general. Let us also note,
however, that this convergence in M is slow. Also, as M → ∞, the class sizes go to zero, and
the smaller the class sizes the smaller the bias. Of course, in practice, the number of classes M
cannot be too large due to the limits of our cognitive capacities. Typically, the optimal number
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of choices for a survey is relatively small, M = 3, 5, 7 or at most M = 10.2

B.2.3 Some Remarks
The above results hold for much simpler cases as well. If instead of model (B.2) we just take
the simple sample average of x, x̄ = ∑i xi/N, then x̄∗ = ∑i x∗i /N is going to be a biased and
inconsistent estimator of x̄.

The measurement error due to discretized choice variables, however, not only induces cor-
relation between the error terms and the observed variables, but it also induces a non-zero
expected value for the disturbance terms of the regression in (B.2). Consider a simple example
where there is an unobserved variable xi with an observed discretized choice version:

x∗i =

z1 if c0 ≤ xi < c1,

z2 if c1 ≤ xi < c2,
(B.7)

and
yi = xiβ + ε i. (B.8)

Using the discretized choice variable means:

yi = x∗i β + (xi − x∗i )β + ui (B.9)

and E [xi − x∗i ] is

E [xi − x∗i ] =E(xi)−E(x∗i )

=E(xi)−E [z11(c0 ≤ xi < c1) + z21(c1 ≤ xi < c2)]

=E(xi)− z1 Pr(c0 ≤ xi < c1)− z2 Pr(c1 ≤ xi < c2).

The last line above is not zero in general. Thus, it would induce a bias in the estimator if
the regression did not include an intercept. This result generalizes naturally to variables with
multiple choice values.

B.2.4 Estimation Reconsidered
Let us generalise the problem and re-write it in matrix form. Consider the following linear
regression model:

y = Xβββ + Wγγγ + εεε , (B.10)

where X and W are N × K and N × J data matrices of the explanatory variables, y is a N × 1
vector containing the data of the dependent variable, εεε is a N × 1 vector of disturbance terms,
and finally βββ and γγγ are K × 1 and J × 1 parameter vectors. X is not observed, only its

2There is an abundant literature about the optimal number of choices (or ‘scale points’) in a survey,
see e.g., (Givon and Shapira, 1984), (Srinivasan and Basu, 1989) or (Alwin, 1992).
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discretized ordered choice version X∗ is. Define the MK× K matrix as

Z =


z1 0 . . . . . .
0 z2 0 0
... . . .

. . .
...

. . . . . . 0 zK

 ,

where zi = (zi1, . . . , ziM)′ contains the choice values for variable i. Let E = {eki}, where k =

1, . . . K and i = 1, . . . , N such that

eki =


1(ck0 ≤ xki < ck1)

1(ck1 ≤ xki < ck2)
...

1(ckM−1 ≤ xki < ckM)

 ,

where xki denotes the value of the ith observation from the explanatory variable xk.
This implies E is a MK × N matrix since each entry eki is a M × 1 vector. Following the

definition of x∗i in the paper, we can rewrite X∗ = E′Z.

The LS Estimator

From Equation (B.10), consider the regression based on the observed data:

y = X∗βββ + Wγγγ + (X− X∗) βββ + εεε , (B.11)

then the LS estimator for βββ is

β̂ββ =
(
X∗′MWX∗

)−1 X∗′MWy ,

where MW = I −W(W′W)−1W′ defines the usual residual maker. The standard derivation
shows that

β̂ββ =
(
Z′EMWE′Z

)−1 Z′EMWXβββ +
(
Z′EMWE′Z

)−1 Z′EMWεεε. (B.12)

This implies LS is unbiased if and only if (Z′EMWE′Z)−1 Z′EMWX = I. This allows us to
investigate the bias analytically by examining the elements in Z′EMWE′Z and Z′EMWX.

To simplify the analysis, we assume for the time being the following:

MWX =X (B.13)

MWX∗ =X∗. (B.14)

In other words, we assume independence between W and X, as well as its discretized choice
version. This may appear to be a strong assumption but it does allow us to see what is happen-
ing somewhat better. We relax this at a latter stage.

The LS estimator in this case becomes:

β̂ββ =
(
Z′EE′Z

)−1 Z′EXβββ +
(
Z′EE′Z

)−1 Z′Eεεε.
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The LS is unbiased if (Z′EE′Z)−1 Z′EX = I. Note that Z′ and E are of size K ×MK and MK ×
N, respectively. This means Z′EE′Z are invertible as long as N > K, which is a standard
assumption in classical regression analysis. Let us consider a typical element in Z′EE′Z first.
Since Z is non-stochastic as it contains only all the pre-defined choice values, it is sufficient to
examine EE′:

EE′ =



e11 . . . e1i . . . e1N
... . . .

... . . .
...

ek1 . . . eki . . . ekN
... . . .

... . . .
...

eK1 . . . eKi . . . eKN





e′11 . . . e′k1 . . . e′K1
... . . .

... . . .
...

e′1i . . . e′ki . . . e′ki
... . . .

... . . .
...

e′1N . . . e′kN . . . e′KN


.

Note that each entry in E is a vector, so EE′ will result in a partition matrix whose elements are
the sums of the outer products of eki and el j for k, l = 1, . . . , K and i, j = 1, . . . , N. Specifically,
let qkl be a typical block element in EE′, then

qkl =
N

∑
i=1

ekie′li.

Let 1ki
m = 1 (ckm−1 ≤ xki < ckm), then the (m, n) element in qkl , qmn is

N

∑
i=1

1ki
m1li

n for m, n =

1, . . . , M. Thus, E (EE′) exists if E
(
1ki

m1li
n
)

exists,

E
(

1ki
m1li

n

)
=
∫
Ω

f (xk, xl)dxkdxl , (B.15)

where f (xk, xl) denotes the joint distribution of xk and xl and Ω = [ckm−1, ckm] × [cln−1, cln]

defines the region for integration. Thus, N−1bmn should converge into Equation (B.15) under
the usual WLLN.

Following a similar method, let akl be the (k, l) element in Z′EX, then

akl =
N

∑
i=1

M

∑
m=1

zkm1ki
mxli.

Now,

E

[
M

∑
m=1

zkm1ki
mxli

]
=

M

∑
m=1

zkmE
[
1ki

mxli

]
=

M

∑
m=1

zkm

∫
Ω1

xl f (xk, xl)dxkdxl ,

(B.16)

where Ω1 = [ckm−1, ckm] ×ΩX with ΩX denotes the sample space of xk and xl . Thus, N−1akl

should converge into Equation (B.16) under the usual WLLN.
In the case when Equations (B.13) and (B.14) do not hold, the analysis becomes more tedious

algebraically, but it does not affect the result that LS is biased. Recall Equation (B.12), and let ωij
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be the (i, j) element in MW for i = 1, . . . , N and j = 1, . . . , J, then following the same argument
as above, EMWE′ can be expressed as a M×M block partition matrix with each entry a K× K
matrix. The typical (m, n) element in the (k, l) block is

gkl =
N

∑
j=1

N

∑
i=1

ωij1ki
m1li

n (B.17)

with its expected value being

N

∑
i=1

N

∑
j=1

∫
Ω

ωij f (xk, xl , w) dxkdxkdw, (B.18)

where w = (w1, . . . , wJ), dw =
J

∏
i=1

dwi and Ω = [ckm−1, ckm] × [cln−1, cln] × Ωw where Ωw

denotes the sample space of w. Note that ωij is a nonlinear function of w, and so the con-
dition of existence for Equation (B.18) is complicated. However, under the assumption that
the integral in Equation (B.18) exits, then N−1gkl should converge to Equation (B.18) un-
der the usual WLLN. It is also worth noting that E [MWX] = E [MW]E [X] = E [X] and
E [MWX∗] = E [MW]E [X∗] = E [X∗] under the assumption of independence, which reduces
Equation (B.18) to Equation (B.15).
Again, following the same derivation as above, a typical element in Z′EMWX is

hkl =
M

∑
m=1

N

∑
i=1

zkm1ki
muli, (B.19)

where uli =
N

∑
υ=1

ωiυXlυ. Note that uli is the ith residual of the regression of Xl on W. The

expected value of hkl can be expressed as

M

∑
m=1

zkm

∫
Ωm

ul f (xk, xl , w)dxkdxldw, (B.20)

where ul denotes the random variable corresponding to the ith column of MWX and Ωm =

[ckm−1, ckm]×ΩX ×Ωw with Ωw denotes the sample space of W. Note that ul = xl under the
assumption of independence, which reduces Equation (B.20) to Equation (B.16).

B.2.5 Extension to Panel Data
So far, we have dealt with cross-sectional data. Next, let us see what changes if we have panel
data at hand, which is closer to the reality of data gathering through surveys. We can extend
our basic model using Equation (B.2) to

yit = w′itγ + x∗
′

it β + ε it, (B.21)

and adjust the DGP, based on Equation (B.1)

yit = w′itγ + x′itβ + uit, (B.22)

127

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

where xit ∼ fi(al , au) denotes an individual distribution with mean µi for i = 1, . . . , N. Here
we need to assume that fi(·) is stationary, so the distribution may change over individual i but
not over time, t.

Now, the most important problem is identification. If the choice of an individual does not
change over the time periods covered, the individual effects in the panel and the parameter
associated with the choice variable cannot be identified separately. The within transformation
would wipe out the choice variable as well. When the choice does change over time, but not
much, then we are facing weak identification, i.e., in fact very little information is available
for identification, so the parameter estimates are going to be highly unreliable. This is a likely
scenario when M is small, for example M = 3 or M = 5.

The bias of the panel data within estimator can be easily shown. Let us re-write Equation
(B.11) in a panel data context

y = DNααα + X∗βββ + [(X− X∗)βββ + εεε] ,

where ααα = (α1, . . . , αN)
′ and DN is a NT × N zero-one matrix that appropriately selects the

corresponding fixed effect elements form ααα. The Within estimator is

β̂ββ
∗
W = (X∗′MDN X∗)−1X∗′MDN y ,

or equivalently

β̂ββ
∗
W = (Z′EMDN E′Z)−1Z′EMDN Xβββ + (Z′EMDN E′Z)−1Z′EMDNεεε ,

where
MDN y = MDN X∗βββ + MDN [(X− X∗)βββ + εεε].

The Within estimator is biased as E(β̂ββ
∗
W) 6= βββ, because MDN E′Z = MDN X∗ 6= MDN X.

plim
N→∞

ξm = E(Xm)− zm

⇐⇒ lim
N→∞

Pr (|ξm − {E(Xm)− zm}| > ε)

= lim
N→∞

Fξm (−ε + E(Xm)− zm)
[
1− Fξm (ε + E(Xm)− zm)

]
= 0.

The convergence holds, because for any given δ > 0, there is a threshold N0 for which the
term in the limit becomes less than δ. This can be seen from Fξm(·) being close to a degenerate
distribution above a threshold number of observations N0, or intuitively, since the variance of
the sequence of random variables ξm collapses in N, its probability limit equals its expected
value.
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B.3 Technical Proofs

B.3.1 Proof of Proposition 1
Recall

E(NWS
b ) = E

(
N

∑
i=1

1{xi∈CWS
b }

)

= N Pr(x ∈ Ss)
∫ cWS

b

cWS
b−1

f (x)dx.

(B.23)

We can reformulate Equation (B.23) by considering the number of observations up to a certain
boundary point, rather than the number of observations in a particular class. That is checking
for

Pr

(
E

[
b

∑
i=1

NWS
i

]
> 0

)
→ 1 .

This gives the possibility to replace
∫ cWS

b
cWS

b−1
f (x)dx with

∫ cWS
b

cWS
0

f (x)dx. Since this is a CDF, and

hence a non-decreasing function, which is effectively showing that each class has non-empty
observations, we can write the following:

E

(
b

∑
i=1

NWS
i

)
=E

(
N

∑
i=1

1{xi<cWS
b }

)

=N Pr(x ∈ Ss)
∫ cWS

b

cWS
0

f (x)dx.

Next, we need to show that this is an increasing function in CWS
b . Now as N → ∞, under the

assumption that Pr(x ∈ Ss) = 1/S and S/N → c with c ∈ (0, 1) (this is satisfied when S = cN)

lim
n→∞

E

(
b

∑
i=1

NWS
i

)
=N Pr(xi < CWS

b )

=
1
c

∫ CWS
b

CWS
0

f (x)dx.

Note that the derivative with respect to CWS
b is 1

c f
(
CWS

b

)
> 0, so the expected number of

observations in each class is not 0. This completes our proof.

B.3.2 Proof of Proposition 2
Recall

Pr
(

x ∈ CWS
b

)
=

S

∑
s=1

Pr(x ∈ Ss)
M

∑
m=1

Pr
(

x ∈ CWS
b | x ∈ C(s)

m

) ∫ c(s)m

c(s)m−1

f (x)dx . (B.24)

As S→ ∞, ∃cWS
b = c for any c ∈ (al , au), by construction. Furthermore, for any cWS

b , ∃l ∈ [1, S],
m ∈ [1, M] such that cWS

b = c(l)m . Also note that as S → ∞, we need N → ∞ as well. Now
consider Pr(x† < cWS

b ) = Pr(x† < c(l)m ), given Pr(x ∈ Ss) = 1/S and using equation (B.24)

129

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.06

gives

Pr(x† < c(l)m ) =
1
S

S

∑
s=1

Pr(x < c(l)m |x < c(s)m )Pr(x < c(s)m ).

Note that the summation over the different classes in Equation (B.24) is being replaced as we
are considering the cumulative probability and that no value greater than c(l)m will be used as a
candidate in the working sample for cWS

b . Under the shifting method, c(s)m ≤ c(l)m for s < l and
using the definition of conditional probability gives

Pr(x† < c(l)m ) =
1
S

S

∑
s=1

Pr(x < c(l)m , x < c(s)m )

=
1
S

l

∑
s=1

Pr(x < c(l)m , x < c(s)m ) +
1
S

S

∑
s=l+1

Pr(x < c(l)m , x < c(s)m )

=
1
S

l

∑
s=1

Pr(x < c(s)m ) +
1
S

S

∑
s=l+1

Pr(x < c(l)m ).

The last line follows from the fact that Pr(x < a, x < b) = Pr(x < a) if a < b, and the
construction of the shifting method allows us to always disentangle the two cases. Since l is
fixed

Pr(x† < c(l)m ) =
S− l − 1

S
Pr(x < c(l)m ) +

1
S

l

∑
s=1

Pr(x < c(s)m )

lim
S→∞

Pr(x† < c(l)m ) =Pr(x < c(l)m ).

This completes the proof.

B.3.3 Speed of Convergence for the Shifting Method
Recall

Pr
(

x†
i ∈ CWS

b

)
=



0, if s = 1 and m = 1,
1
S ∑S

s=2
1

s−1

∫
C(s)

1 |CWS
b ∈C(s)

1
f (x)dx, if s 6= 1 and m = 1,

1
S2 ∑S

s=1
∫

C(s)
m |CWS

b ∈C(s)
m

f (x)dx, if 1 < m < M,

1
S ∑S

s=1
1

S−s+1

∫
C(s)

M |CWS
b ∈C(s)

M
f (x)dx, if m = M .

(B.25)

For each of the conditions in Equation (B.25), the corresponding expression is o(1). To see this,
note that f (x) is a density, so the integral is less than 1. First, consider the case of s 6= 1 and
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m = 1,

1
S

S

∑
s=2

1
s− 1

∫
C(s)

1 |CWS
b ∈C(s)

1

f (x)dx, ≤ 1
S

S

∑
s=2

1
s− 1

=
1
S

S

∑
s=1

1
s

=
1
S

∫ S

1

1
s

ds

=
log S

S
.

As S→ ∞, the ratio in the last line goes to 0. This is expected if the widths of the classes in the
working sample go to zero. This is straightforward, while the probability that an observation
belongs to a point is 0. The same derivations applies to the case when m = M. Now, consider
the case of 1 < m < M,

1
S2

S

∑
s=1

∫
C(s)

m |CWS
b ∈C(s)

m

f (x)dx ≤ 1
S2

S

∑
s=1

1

=
1
S

,

which also converges to 0 as S→ ∞, but at a faster rate than in the previous cases.

B.4 Summary of the Notation Used in the Paper
Scalars:
N – number of individuals
T – number of time period (panel case)
al – lower boundary point for distribution’s ( f (·)) support
au – upper boundary point for distribution’s ( f (·)) support
µ or µi – first moment for distribution f (·) or fi(·)
M – number of possible choice values for a questionnaire
zm – choice value of class m
cm – m’th class’s lower boundary point
β – parameter for DOC (x) variable
γ– parameter for control (w) variables
K – number of DOC (x) variables (matrix notations)
J – number of control variables (matrix notations)
B – number of working sample classes
S – number of split samples
N(s) – number of observations in split sample s
z(s)m – choice value of class m in split sample s
c(s)m – s’th split sample, m’th class’s lower boundary point
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cWS
b – working sample b’th class’s lower boundary point

h – working sample’s class widths
∆ – size of shift for the shifting method

Running indexes
i – refers to individual i = 1, . . . , N, and in some places it is a running index.
t – refers to time t = 1, . . . , T
m – refers to class m = 1, . . . , M
k – refers to a DOC variables in matrix formulation, k = 1, . . . , K
j – refers to a control variables in matrix notation, j = 1, . . . , J, and in some places it is a
running index.
b – working sample classes, b = 1, . . . , B
s – split sample index
im – running index, where m is the indication in which class that observation is (M consistency)
mi – i-th observation in the m-th class (M consistency)

Random variables
X or x – true, but unobserved variable with distribution f (·) (unknown)
X∗ – discretized choice (DOC), with distribution ψ(X) (observed)
β̂ – parameter estimate for β with LS (estimate)
γ̂ – parameter estimate for γ with LS (estimate)
x̄ – sample average of the underlying variable x (not observed)
x̄∗ – sample average of the observed discretized variable x∗ (estimate)
xWS – working sample (concept)
π̂χ – replacement estimator for non-directly transferable observations (estimate)
ytr, xtr – artificially truncated variables of the original r.v. (concept)
π̂τ – replacement estimator for shifting method (estimate)

Individual observations of random variables
xi – true choice values for individual i (not observed)
x∗i – discretized choice values (DOC) for individual i (observed)
yi – outcome variable’s values for individual i (observed)
wi – control variable’s values for individual i (observed)
εi – model disturbance term
ui – idiosyncratic disturbance term for DGP (not observed)
Nm – number of observations in class m (observed)
ξi – error due to discretization ξi = xi − x∗i (not observed)

υm – conditional distribution for errors of class m, formally: υm d
= ξi|Cm (not observed)

xm – conditional distribution for xi within class m, formally: xm
d
= xi|Cm (not observed)

xm – sum of the true observed values in class m, formally: xm = ∑N
i=1 1{xi∈Cm}xi

(not observed)
ξm – sum of the errors in class m, formally: ξm = ∑N

i=1 1{ξi∈Cm}ξi
(not observed)

x(s)i – discretized choice values (DOC) for individual i in split sample s (observed)
NWS – number of observations in the working-sample (observed)
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N(s)
m – number of observations in split sample s in class C(s)

m (observed)
xWS

i – working-samples DOC observations (observed)
xWS

i,DTO – magnifying method’s working sample, constructed by only the directly transferable
observations (observed)
NWS

DTO – number of observations in the magnifying method’s ‘DTO’ working sample. (ob-
served)
xWS

i,NDTO – magnifying method’s working sample, constructed by only the directly transferable
observations (observed)
ηi – error component from models to get π̂χ or π̂τ (observed)
x†

i – artificial variable created during the shifting method (constructed)
xWS

i,Shi f ting – shifting method’s working sample (constructed)

Functions
f (·) – probability distribution function
ψ(·) – discretization function ψ(xi) = x∗i
1{·} – indicator function, which takes 1 if the condition in the subscript is true, otherwise 0
F(·) – cdf of x
U(·) – Uniform distribution
ψ(s)(·) – discretization function for split sample s
Ψ(·) – merging function
|| · || – width of a class (or euclidean distance)
Z(s, m) – set ‘creator’ function: given a split sample class, creates a set of choice values, which
lies in the interval of the working-sample
F † – assign choice values from Z(s, m) to each observation x(s)i ∈ C(s)

m , with a given (uniform)
probability
FWS – assign estimated values π̂τ to each observation x(s)i ∈ C(s)

m

Intervals
Cm – m’th class
C(s)

m – s split sample’s, m’th class
CWS

b – working sample’s, b’th class

Sets
Ss – s’th split sample
ζ – set of classes, which contains the directly transferable observations
Cχ – set of classes, which contains the non-directly transferable observations
ζtr – ζ without the first and last class
A(s)

m – set for observations x(s)i which are in class C(s)
m

Matrix notations
y – yi, N × 1
X – (x1,i, . . . , xk,i, . . . , xK,i), N × K
W – (w1,i, . . . , wj,i, . . . , wK,i), N × J
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εεε – εi, N × 1
βββ – βk, K× 1
γγγ – γj, J × 1
zk – (z1,i, . . . , zm,i, . . . , zM,i), 1×M
Z – diag(z1,i, . . . , zk,i, . . . , zK,i), MK× K)
eki – is the indicator vector for k’th DOC variable
E – matrices for the indicator vectors, MK× N
X∗ = E′Z
MW – residual maker
qkl – typical block element in EE′

Ω – region for integration [ckm−1, ckm]× [cln−1, cln]

akl – auxiliary variable for Z′EX
ΩX – sample space of xk and xl

ωij – (i, j) element in MW

gkl – auxiliary variable for proof Eq. 26
hkl – auxiliary variable for proof Eq. 28
uli – auxiliary variable for proof Eq. 28
Panel
βββW – within estimator for panel
DN – individual fixed effect
MDN – panel projection matrix
split sampling
π̂ππχ – vector of replacement estimator for magnifying method
ΩΩΩχ – asymptotic standard errors for π̂ππχ

π̂ππτ – vector of replacement estimator for shifting method
ΩΩΩτ – asymptotic standard errors for π̂ππτ
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Appendix C

Appendix for Chapter 3

C.1 Additional Monte Carlo simulations
We extend the Monte Carlo simulations in five different ways. The basic setup is the same as in
Section 3.4, but we change each time one parameter. All the following tables shows the Monte
Carlo average bias (or distortion) of β̂ from β = 0.5. In parenthesis we report the Monte Carlo
standard deviation of the estimated parameter.
Remark: In case of ‘Set identification’, † shows that we can only estimate the lower and upper
boundaries for the valid parameter set. We report these bounds subtracted with the true pa-
rameter, therefore it should give a (close) interval around zero. For ordered choice model, ∗

shows we report the distortion from the true β is reported. Ordered probit and logit models’
maximum likelihood parameters do not aim to recover the true β parameter, therefore it is not
appropriate to call it bias.

C.1.1 Moderate sample size
First, we investigate the magnitude of the bias, when the sample size is moderate, namely
N = 1, 000.1 Table C.1 shows the results which is similar to the results with N = 10, 000 as
reported in the paper.

1We have not decreased our sample size further while for magnifying method in case of N = 100 it
would mean 10 number effective observations on average.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.1, 1.15] [−1.09, 1.15] [−1.09, 1.16] [−1.07, 1.17] [−1.06, 1.18] [−1.09, 1.15]
(0.06),(0.07) (0.08),(0.08) (0.07),(0.07) (0.09),(0.09) (0.08),(0.09) (0.05),(0.06)

Ordered probit∗
0.1978 0.0690 0.2138 0.0181 0.0965 0.4484

(0.0810) (0.0797) (0.0827) (0.0763) (0.0795) (0.0908)

Ordered logit∗
0.6523 0.3828 0.6967 0.2419 0.4309 1.2109

(0.1479) (0.1431) (0.1561) (0.1364) (0.1455) (0.1682)

Interval regression
0.0254 0.0329 0.0398 0.0512 0.0638 0.0396

(0.0618) (0.0784) (0.0694) (0.0882) (0.0825) (0.0505)

Midpoint regression
0.0209 0.0293 0.0310 0.0453 0.2029 0.0275

(0.0643) (0.0786) (0.0733) (0.0895) (0.0426) (0.0526)

Magnifying (S = 10)
0.0145 0.0117 0.0127 -0.0184 0.0757 0.0330

(0.1781) (0.2222) (0.1988) (0.2538) (0.1023) (0.1358)

Shifting (S = 10)
0.0016 -0.0026 -0.0031 -0.0053 0.0050 -0.0010

(0.0682) (0.0771) (0.0696) (0.0872) (0.0441) (0.0498)

Table C.1: Monte Carlo average bias and standard deviation with moderate sample
size, N = 1, 000

Shifting method always outperforms the alternatives. Magnifying method gives better results,
except in the exponential and weibull cases where it has similar magnitude of bias as the inter-
val regression (exponential case) or the midpoint regression (weibull case). Note that in these
cases interval regression and midpoint regression are not superior to the magnifying method.
They only outperform magnifying method ‘at random’. As we will show in Table C.4 these
methods are inconsistent in N, however magnifying method does converge to the true param-
eter value.

C.1.2 Symmetric boundaries
Next, we investigate symmetric boundary cases. We set the domain for yi to al = −3, au = 3
and keep xi generated in the same way. εi is generated/truncated such that its lower and
upper bound is −2 and 2. In the normal, logistic and uniform cases it means the lower and
upper bounds are −2 and 2. For the log-normal, exponential and weibull cases we truncate at
4 and subtract 2 from the generated distribution.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.11, 1.13] [−1.15, 1.10] [−1.09, 1.16] [−1.07, 1.17] [−1.06, 1.19] [−1.09, 1.15]
(0.02),(0.02) (0.02),(0.02) (0.02),(0.02) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)

Ordered probit∗
0.0890 0.0029 0.2085 0.0158 0.0986 0.4461

(0.0252) (0.0243) (0.0262) (0.0234) (0.0241) (0.0295)

Ordered logit∗
0.4513 0.3198 0.6862 0.2379 0.4338 1.2085

(0.0446) (0.0427) (0.0499) (0.0422) (0.044) (0.0546)

Interval regression
0.0085 -0.0267 0.0371 0.0491 0.0663 0.0397
(0.022) (0.0234) (0.0221) (0.0271) (0.0249) (0.0166)

Midpoint regression
0.0070 0.0240 0.0362 0.0490 0.2077 0.0314

(0.0211) (0.0242) (0.0216) (0.0273) (0.0128) (0.0157)

Magnifying (S = 10)
-0.0323 -0.0336 -0.0072 -0.0332 0.0213 0.0066
(0.0606) (0.0694) (0.0616) (0.0781) (0.0333) (0.0417)

Shifting (S = 10)
-0.0028 0.0002 -0.0004 -0.0023 -0.0034 -0.0008
(0.0222) (0.0234) (0.0209) (0.0278) (0.0131) (0.0153)

Table C.2: Monte Carlo average bias and standard deviation with symmetric boundary
points: al = −3, au = 3

As we expected the maximum likelihood methods, where they have a closer fit to the assumed
distribution the distortion is somewhat smaller in case of ordered probit model2. This is the case
with the normal and logistic distributions for the disturbance term. However the distortion
remains with the same magnitude for all the other mis-specified cases. Magnifying method
gives slightly worse results in the normal and logistic cases, but the shifting method performs
similarly good.

C.1.3 Number of choices
Another question is how the number of choices (M) effect the bias. We investigated M = 3 case,
where questionnaire only defines (known) low-mid-high ranges. In general, the bias increases
for the methods. Interesting exceptions are interval regression and midpoint regression, where
the results become more volatile: in some cases they give better results, while in other even
worse. Shifting method gives fairly accurate estimates.

2Note that ordered probit and logit uses different scaling (depending on the assumed distribution),
which results in different parameter estimates. In our case it means ordered logit has higher average
distortions than ordered probit, but this is only matter of scaling. One can map one to the other with the
scaling factor, β̂ML

probit ≈ β̂ML
logit × 0.25/0.3989. This is why we use the term distortion rather than bias for

these methods.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.83, 1.90] [−1.85, 1.88] [−1.85, 1.89] [−1.87, 1.87] [−1.89, 1.85] [−1.81, 1.93]
(0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)

Ordered probit∗
0.1062 -0.0220 0.0197 -0.1028 -0.0752 0.2347

(0.0272) (0.0266) (0.0278) (0.0250) (0.0253) (0.0302)

Ordered logit∗
0.5193 0.3220 0.3916 0.1700 0.2169 0.7246

(0.0462) (0.0457) (0.0472) (0.0423) (0.0428) (0.0509)

Interval regression
0.0124 0.0124 0.0122 -0.0044 -0.0243 -0.0061

(0.0224) (0.0281) (0.0268) (0.0306) (0.0280) (0.0200)

Midpoint regression
0.0336 0.0168 0.0229 -0.0011 -0.2026 0.0647

(0.0233) (0.0274) (0.0267) (0.0307) (0.0170) (0.0216)

Magnifying (S = 10)
0.0138 0.0022 0.0179 -0.0101 0.0397 0.0299

(0.0534) (0.0676) (0.0606) (0.0813) (0.0341) (0.0418)

Shifting (S = 10)
-0.0234 -0.0015 0.0003 -0.0094 -0.0128 -0.0019
(0.0247) (0.0236) (0.0213) (0.0292) (0.0154) (0.0166)

Table C.3: Monte Carlo average bias and standard deviation with small number of
choice options, M = 3

Also note that with split sampling methods the average bias is within 1 standard deviation,
which is not true for the other methods, especially when the underlying distribution is expo-
nential or weibull.

C.1.4 Convergence in N
Table C.4 shows the (asymptotic) reduction in the bias with the split sampling methods. We
use now only normal distribution’s setup for εi. Here we added ‘Magnifying with replacement’
method, which uses the magnifying method to get the DTOs, then it uses these DTO values to
calculate conditional averages to replace the NDTO values.
As the table suggests, as we increase the number of observations the bias vanishes for the split
sampling methods. Also if we increase the number of split samples the bias tend to decrease.
It is important to highlight that in the magnifying case the effective number of observation is
decreasing in S, therefore if we do not increase N the variance of the estimator is increasing.
This shows the trade-off between small sample bias and observing the values more precisely.
Based on this table we suggest, in case of magnifying method to use only a moderate number of
split samples (3− 10) in case of moderate sample size. For the shifting method there is no such
trade-off, however the results are not much better as we increase the number of split samples.
It is important to highlight the other methods bias/distortion remains the same as we increase
the number of observations, therefore they give inconsistent estimates.
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N = 1, 000 N = 10, 000 N = 100, 000

Set identification† [−1.1, 1.15] [−1.1, 1.15] [−1.1, 1.15]
((0.06),(0.07)) ((0.02),(0.02)) ((0.01),(0.01))

Ordered probit∗
0.1978 0.1971 0.1968

(0.0810) (0.0256) (0.0080)

Ordered logit∗
0.6523 0.6509 0.6502

(0.1479) (0.0464) (0.0146)

Interval regression
0.0254 0.0268 0.0266

(0.0618) (0.0198) (0.0062)

Midpoint regression
0.0257 0.0251 0.0251

(0.0635) (0.0195) (0.0061)

Magnifying
only DTO

S = 3
-0.0526 -0.0070 0.0003
(0.0916) (0.0275) (0.0086)

S = 5
0.0116 0.0379 -0.0045

(0.1226) (0.0363) (0.0115)

S = 10
0.0217 -0.0110 0.0069

(0.1694) (0.0545) (0.0165)

S = 25
0.0939 -0.0196 -0.0074

(0.2522) (0.0835) (0.0276)

S = 50
-0.0761 -0.0050 0.0075
(0.4768) (0.1233) (0.0392)

S = 100
0.0382 0.0175 -0.0033

(0.6889) (0.1781) (0.0557)

Magnifying
with replacement

S = 3
-0.0597 -0.0060 0.0004
(0.0986) (0.0279) (0.0086)

S = 5
-0.0065 0.0373 -0.0040
(0.1385) (0.0374) (0.0115)

S = 10
0.0534 -0.0103 0.0066

(0.1988) (0.0575) (0.0165)

S = 25
0.1100 -0.0165 -0.0075

(0.3004) (0.0947) (0.0280)

S = 50
-0.1135 -0.0098 0.0079
(0.5403) (0.1381) (0.0402)

S = 100
0.0918 0.0189 -0.0033

(0.8123) (0.2061) (0.0585)

Shifting

S = 3
-0.0038 -0.0018 -0.0008
(0.0629) (0.0198) (0.0061)

S = 5
-0.0002 -0.0024 -0.0001
(0.0621) (0.0194) (0.0059)

S = 10
0.0024 -0.0016 -0.0008

(0.0603) (0.0189) (0.0058)

S = 25
0.0013 -0.0016 -0.0007

(0.0592) (0.0186) (0.0058)

S = 50
0.0004 0.0000 0.0001

(0.0587) (0.0185) (0.0058)

S = 100
0.0004 -0.0002 -0.0003

(0.0596) (0.0183) (0.0056)

Table C.4: Bias reduction for split sampling methods: different sample sizes and num-
ber of split samples
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C.1.5 Magnifying method with replacement
Finally we report our Monte Carlo experiment with magnifying method using all observations
using replacement technique based on DTO. These results are slightly worse than using only
DTOs with magnifying method.

Normal Logistic Log-Normal Uniform Exponential Weibull

Base
-0.0043 0.0719 0.0645 0.0813 0.0345 0.0433
(0.0551) (0.0719) (0.0645) (0.0813) (0.0345) (0.0433)

N = 1000
0.0476 0.0342 0.0445 -0.0021 0.0868 0.0648

(0.2043) (0.2552) (0.2241) (0.2895) (0.1223) (0.1565)

Symmetric
-0.0323 -0.0328 -0.0081 -0.0317 0.0176 0.0053
(0.0639) (0.0720) (0.0645) (0.0813) (0.0345) (0.0433)

M = 3
0.0164 0.0026 0.0181 -0.0093 0.0394 0.0290
(0.056) (0.0713) (0.0638) (0.0850) (0.0354) (0.0434)

Table C.5: Magnifying all observation with replacement using DTOs

Note that this method can be easily computed with the already collected data to check the
‘robustness’ of the magnifying method.
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