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Secondary Supervisor: Máté Lengyel
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Abstract

From a young age, humans efficiently utilize sparse observable samples to make reliable in-

ferences about a highly complex, stochastic and ever-changing world. Undoubtedly, the social

grounding of human inductive learning, especially through teaching by more knowledgeable

and helpful others, contributes greatly to the success of human learners. However, while there

is tremendous interest in the development of intelligent tutoring systems for educational appli-

cations, and significant theoretical and applied advancements have been made in the burgeoning

field of machine teaching, experimental work in cognitive science has focused almost exclu-

sively on investigating the behaviors of learners, largely overlooking teachers.

This thesis investigated one of the main ways in which humans teach, both in formal and

informal settings: by offering examples. Since explicitly generating samples for the purpose

of teaching others is undeniably a normatively hard problem, we explored possible limitations

faced by teachers due to the abstraction and complexity of the task (Chapter 2) and having a

good model of the learner (Chapter 3). From the learner’s perspective, we examined whether

learners could effectively learn from sampled data (Chapter 2) and assess imperfect teachers

(Chapter 4).

In Chapter 2, replications and extensions of two teaching games (prototype and category

boundary teaching) lead to diverging results in terms of the optimality of teachers, which we

attributed to differences in the level of abstraction of the task and the complexity of the stimuli.

In turn, learners were also limited in their ability to effectively adapt to the data generative pro-

cess, specifically when producing estimates based on autocorrelated samples, a known feature

of samples produced by humans.

In Chapter 3, we proposed that teachers can overcome one of the more challenging aspects

of teaching - building an adequate model of how learners make inferences - by engaging in

the experience of learning, and especially active learning (given the computational similarity).

We present evidence that prior active learning facilitates teaching from two different category

teaching experiments.

Lastly, in Chapter 4, we proposed that confidence may be a useful pedagogical signal. For
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instance, explicit confidence statements could allow teachers to monitor the progress of their

students, and help learners to choose better teachers. Focusing on the learners’ perspective, a

first experiment found, in agreement with previous work, that humans preferred more infor-

mative and better calibrated advisers as future collaborators (even when compared with over-

confident advisers). Interestingly, a second experiment showed a dissociation between partner

preferences and decision making. Specifically, learners did not optimally use information about

the relative metacognitive skills of informants to improve their decision making.

In light of the results presented, we suggest that while rational pedagogical models can be a

useful computational-level description of teaching solutions in some limited domains, they are

unlikely to provide a close account of flexible, on the fly teaching behaviors without significant

modifications that account for the important limitations facing teachers.
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Chapter 1: Introduction

1.1 Brief overview: How teachers help learners

It has been proposed that humans have an innate sensitivity to pedagogical guidance and that

a propensity for teaching others is at the core of human cumulative culture (Csibra & Gergely,

2011; Csibra & Gergely, 2006, 2009). According to this account, pedagogy is both human-

specific and universal among human cultures. Whether or not this is the case1, from a norma-

tive standpoint, learning from teachers who are knowledgeable, well intentioned, and attuned

to the learner should be vastly more efficient than individual self-guided learning or purely

observational social learning.

An immediate reason for this benefit is that good teachers foster good circumstances for

learning. Empirical developmental work demonstrated that humans scaffold the individual

learning of children (Wood et al., 1976) by modifying the learning environment in a way that

supports the young learner and is tailored to their current level of understanding.

More interestingly, beyond scaffolding, the teacher and the learner’s recognition of being in

a pedagogical context can further facilitate learning. In line with this, even infants are sensitive

to which acts are communicative and relevant for them through monitoring of ostensive signals

such as pointing or the use of ‘motherese’ (Csibra, 2010). The first proposal for how pedagog-

ical contexts influence learning is that it constrains, or, in other words, sets a prior on the kinds

of things that learners expect to be taught. Specifically, pedagogical cues cause learners to
1It should be noted that there are multiple definitions and operationalizations of teaching in the literature.

We direct readers to Kline (2015) (and multiple subsequent comments) for a useful classification of mentalis-
tic (Tomasello et al., 1993), cultural (Paradise & Rogoff, 2009) and functionalist (Thornton & Raihani, 2008)
teaching definitions, as well a discussion of findings in an evolutionary framework.
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Figure 1.1: Schematic representation of pedagogical reasoning from Shafto et al. (2014).

automatically infer that they are being taught something relevant that is useful and generalizes

beyond the current interaction. For instance, in studies of communication about or interaction

with a referent object, the prediction is that ostension leads young children to infer that they

should learn something about the referent (as opposed to something about the teacher’s mental

state in relation to the referent) and that they are taught an essential property about the referent

that will generalize to the object class. This allows learners to make interpretations that go

beyond observed data (e.g. Futó et al., 2010; Gergely et al., 2002) and learn about latents that

map onto “generic and shared knowledge” (Csibra & Gergely, 2011).

The second proposal is that pedagogical contexts influence how teaching actions are pro-

duced and interpreted by teacher-learner dyads. Shafto et al. (2014) drew on the rational agent

framework (Anderson, 1990) to provide a normative computational-level Bayesian model for

teaching. The ‘rational pedagogy’ formalism is very closely related to rational approaches to

pragmatic reasoning in communication (Frank & Goodman, 2012)2 and similarly presupposes

a representation of the mental states of the other member of the dyad (following Tomasello

et al., 1993 and unlike Csibra and Gergely, 2009). Under this account, both learners and teach-

ers reason about how pedagogical evidence is generated and about each other’s pedagogical

sampling expectations (see an illustration in Figure 1.1). The learner makes inferences assum-

ing that the most informative evidence was presented to them and the teacher generates the

2The only difference is that in the RSA model, the depth of Sinkhorn scaling is 1-2, whereas for the rational
pedagogy model, iteration is performed until convergence.

2

C
E

U
eT

D
C

ol
le

ct
io

n



most informative data in light of the learner’s expectation of informativeness (Shafto et al.,

2014). Thus, the teaching-learning solution is found through a recursive reasoning process. If

a fixed point is found in this iterative process, a pedagogical solution is reached. It should be

noted, however, that this is a computational-level account that is agnostic about algorithmic

implementations.

Experimental evidence is also accumulating to support the rational pedagogy account,

at least in adult-to-adult teaching games, where the behavior of both teachers and learners

matched the qualitative predictions of the normative model (Shafto et al., 2014).

From a Bayesian lens, these two lines of research have focused on how pedagogical con-

texts influence learners’ priors and the likelihood of pedagogical actions. Therefore, the two

proposals outlined above are easy to integrate into a common probabilistic framework of ped-

agogy, and their relative influence remains to be determined empirically.

1.2 Motivation

There are myriad ways in which more knowledgeable and helpful others, teachers, can assist

learners in making better inferences - they can demonstrate novel actions, highlight the relevant

features that should be tracked by learners for generalization, provide certain examples instead

of others, give positive or negative feedback for learner actions. This thesis focused on the

human ability to teach by providing (pedagogically sampled) examples. However, the rational

pedagogy framework used here is very general as it can formalize cooperative information

sharing by any means and apply to a wide range of teaching actions.

Not only is example giving an important means of teaching both in formal and informal

pedagogical settings, but it is also an understudied behavior and a complex problem to solve

from a normative perspective.

There is a considerable gap in the research devoted to teaching compared to learning and

associated inductive biases. Despite the existence of relatively full-fledged normative accounts

of what constitutes a good teaching set in the machine learning literature (e.g. P. Wang et al.,
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2020) and a long-standing interest in the design of intelligent tutoring systems in education

research (e.g. Smith and Sherwood, 1976), we still know little about the behavior of human

teachers and how it affects learners. While we can expect humans to be keen teachers, there are

potentially meaningful ways in which they will depart from the normative predictions given the

complexity of the task and the demands placed on human teachers. The potential deviations

from normative accounts will be summarized later in the chapter, and briefly discussed here.

Future work may propose teaching models accounting for such deviations within the bounded

rationality and computational rationality framework (Gershman et al., 2015), or perhaps it may

be necessary to step out of the rational pedagogy framework altogether to characterize human

teaching behaviors.

To begin with, little is known about how people explicitly sample from their representa-

tions. Explicit sampling for example giving is different from, but can be related to work over

the past decade on mental sampling for approximate Bayesian inference making (e.g. Lieder

et al., 2012; A. N. Sanborn and Chater, 2016; Vul et al., 2014; J. Zhu et al., 2018) and the expla-

nations it offers for apparently suboptimal behaviors such as probability matching, anchoring,

and various reasoning fallacies. It is likely that example generation, much like memory re-

call or estimation, is subject to consequences of algorithmic implementations of sampling (and

the nature of distributions that need to be sampled) such as stochasticity and autocorrelation.

Therefore, explicit sampling will result in a combination of unintentional and intentional (ped-

agogical) modulations, which may subsequently impact the extent to which learners can benefit

from pedagogically sampled information.

More importantly, to be effective in their pedagogical sampling, teachers must fulfill a tall

order. They need to acquire the true generative model of the task (or a close enough approxima-

tion thereof) and decide on the relevant teaching goals since a perfect transmission of informa-

tion from the teacher to the learner is not feasible in practice. Moreover, teachers need to build

a model of the learner and their understanding of the task to tailor teaching to what the learner

already knows and how they integrate the evidence they receive in their existing representation.

For instance, even in the seemingly simple case of teaching a categorization boundary which
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will be used in experiments presented in the thesis, the teacher needs to have a näive theory of

category acquisition which includes assumptions about the prior of the learner over the kind of

boundaries and their location.

In a subset of pedagogical situations, both the learner and the teacher independently con-

verge to the correct model of the task. Teaching is then easy (or easier at least) because a model

of the learner is not required to be effective - the teacher can substitute it for their own task

model. This is a scenario of common ground that is rarely encountered in practice, but was

generally the setup of most of the experiments testing the rational pedagogy predictions which

relied on highly constrained abstract teaching games with adults. Further, it is clear that the

pedagogical sampling model provides a principled way to pinpoint optimal teaching solutions

for a range of well-defined problems, and may provide a good account for a range of automatic

teaching behaviors in humans. However, it is unclear whether pedagogical sampling underlies

on-the-fly ecological teaching or whether in practice teaching is enabled by shared commu-

nicative conventions based on general principles independent of the learner’s mental state or

alternative hypotheses, for instance, matching sufficient statistics of example sets to those of

the distribution to be taught.

In what follows, ways to formalize teaching will be described, alongside with relevant

experimental evidence and potential challenges.

1.3 Are teachers optimal? Setting the problem

As artificial intelligence is proliferating, it is attempting to solve the sort of complex induction

problems that characterize real-world tasks, and thus facing similar challenges as human learn-

ers. For instance, while there is now wide access to large image datasets to provide to object

classification algorithms, labeled data is costly as it is reliant on tedious human annotation la-

bor so it must be used wisely. This has given rise to the sub-field of machine teaching, which

is dedicated to solving the inverse problem of machine learning: finding an optimal learning

sequence.
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Therefore, there is fertile ground for asking questions about what scaffolds the remarkable

success of human learners and teachers, and whether substantial analogies can be drawn to the

work in machine teaching that seeks to formalize this problem. Machine learning work in areas

such as the explore-exploit dilemma has often informed cognitive theories and behavioural

experiments and proposals have even been made for neural mechanisms involved (Cohen et al.,

2007). In contrast, while machine teaching has been studied in the machine learning community

for quite some time (Goldman & Mathias, 1996; Hegedus, 1995), only recently have there been

a number of limited attempts to compare the predictions of these models to human teachers

(Khan et al., 2011) or to harness insights from human teaching such as problem decomposition

to facilitate the complexity of speed achievable with machine training (Simard et al., 2017).

Coming from a different perspective, the cognitive science literature has been more suc-

cessfully (cross-)fertilized by emerging computational work in hierarchical Bayesian inference.

There are suggestions as to how induction learning could be made tractable and indeed some

models nearly reach human-level performance in specific tasks targeting, most notably one-

shot learning (Lake et al., 2015), structure discovery (Kemp & Tenenbaum, 2008) and theory

of mind (Baker et al., 2017). Stemming from this tradition, Bayesian computational level mod-

els have also been used to discuss how induction could be made more effective and efficient

by manipulating different aspects of the data which are presented to the learning algorithm.

Most pertinent for the current topic, research has focused on the stronger inferences afforded

by placing assumptions on the way teachers generate data (Shafto, Goodman, & Frank, 2012).

It is worth considering the differences and commonalities between the classical machine

learning literature and the recent Bayesian modeling in cognitive science on how they frame

the optimal teaching problem. In the Bayesian inference framework (Shafto et al., 2014), the

task of teachers in induction learning problems can be loosely formalized as drawing samples

from their internal probabilistic representations such that when observed by the learners, these

samples will bring the learners’ representations as close as possible in all the relevant dimen-

sions to those of the teachers.

At the core of this formalism is the idea that the most representative set of examples are
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those that maximize the posterior probability of the target model and that the work of finding

representative data boils down to matching sufficient statistics (Tenenbaum & Griffiths, 2001).

Of course, this inevitably couples the teacher’s likelihood and the learner’s posterior, but they

can be solved by fixed-point iteration (sequentially evaluating the likelihood and posterior un-

til convergence) starting from an initial likelihood. 3 Figure 1.1 illustrates the pedagogical

process. Shafto and Goodman (2008) start from the assumption that the teacher and learner

share the (static) hypothesis space and the prior over hypotheses. The learner acts rationally

and changes their beliefs in light of new evidence according to Bayesian updating:

p(h|d)learner ∝ p(d|h)teacher · p(h) (1.1)

The rational teacher assumption states that teachers will select examples that would in-

crease the learner’s belief in the correct hypothesis (i.e. the teacher’s hypothesis). Shafto and

Goodman (2008) specify this through soft maximization (the Luce decision rule;Luce (1959))

since choosing only data that maximize p(h|d)learner is not a robust strategy:

p(d|h)teacher ∝ (p(h|d)learner)
α (1.2)

In the Shafto model, α is a constant (known to both learner and teacher), rather than a

parameter to be estimated. As α increases, the likelihood is sampled according to sharper

distributions. In particular, when α → ínf , the data maximizing the posterior are selected,

and when α → 0, data are selected uniformly from all examples that are consistent with the

hypothesis (weak sampling). In this sense, they interpret the α parameter as the greediness of

the teacher, with the best examples being chosen for larger values of α . On the other hand, if

the teacher is very greedy, this can foster very efficient learning of the hypothesis, but it narrows

the space of hypotheses considered by the learner.

It becomes apparent that solutions for optimal teaching depend on learning behavior and

vice versa. Thus, in order for an event to be optimal, the learner and teacher equations need to

3Note that multiple solutions are possible
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be jointly solved. Intuitively, the solution for this system of equations can be found iteratively.

Starting from weak sampling (α = 0) or probability matching (α = 1), the likelihood of the

teacher and the posterior of the learner can be recursively estimated until the estimates become

stationary, having iterated to a fixed point.

The setups in which these models are tested generally involve a simple and highly con-

strained learning problem presented in the form of a non-interactive game because this is the

only regime in which they are tractable. However, in essence, they provide a blueprint for how

an optimal teacher ought to behave given the specific task constraints and allow for experimen-

tal testing of model predictions against human performance.

The machine learning literature has predominantly formalized teaching as a problem of

efficient communication4. This has been largely applied to concept learning problems where

the goal is mapping objects to binary labels in order to identify a target concept given a class

of possible target concepts (a concept space). In contrast to the standard approach under which

the labels given to learners are drawn independently at random (or independently from the

positive extent of the concept), in machine teaching, the evidence is sampled for learners with

the goal of minimizing the number of examples needed to perfectly identify a concept. The

perfect identification of the target is achieved when a set of examples is consistent with the

target concept but inconsistent with all other concepts in the class5. The smallest such sample

is referred to as the teaching dimension of the concept given the concept class, and the teaching

dimension of the class is the maximal teaching dimension of all the concepts included in it.

Intuitively, we can think of the average teaching dimension of a class as quantifying the data

size necessary to achieve a given level of effectiveness (Goldman & Kearns, 1995). There are

many variants and useful extensions of this to cooperative settings, most notably the recursive

teaching dimension which exploits the hierarchical structure of the concept class Zilles et al.

(2011). The advantage of the algorithmic teaching approach is the possibility of deriving proofs

4This is the most prominent direction of research, although work relevant to teaching has been presented in
various areas from model compression, curriculum learning, knowledge distillation, human-machine interaction
or adversarial ‘teaching’ in cybersecurity.

5Note the direct connection to the weak versus strong sampling in the experimental literature on induction
Navarro et al. (2012).
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of learnability. On the other hand, tractability is brought about by assumptions of deterministic

settings which are of limited interest for applications to behavioural models. Yang, Yu, et al.

(2018) more recently proposed an extension towards probabilistic models of learning and an

associated index, the Transmission index, that measures the communication effectiveness of a

pair of probabilistic inference and data selection process. Further, this index has been applied to

cooperative inference where both teacher and learner can exploit the knowledge that the other

is cooperative (i.e. the data selection and the inference process are intertwined as described

above) resulting in a Cooperative Transmission Index. This index can reveal for what forms of

the likelihood it is possible to achieve optimal cooperative transmission, which could be used

in the future to what problem sets can be effectively addressed by teaching.

It is encouraging to see converging solutions emerging from the two communities; how-

ever, what both these approaches have in common is that they proposals for optimal teaching

behavior do not take into consideration the limitations of human teachers and learners. While

the optimal strategies seem intuitive and would guarantee marked improvements in learning,

they are at best not an easy feat and at worst intractable for human teachers and learners. In

what follows, I will elaborate on the difficulties associated with providing a satisfactory solu-

tion for optimal teaching considering the constraints of real-life tasks. Furthermore, informed

by the constraints bounding rationality, I will review the limited behavioral evidence for the

optimality of human teachers.

1.4 Optimal teachers in the real world

1.4.1 Learning about others

If the teacher’s goal is to transfer a representation (or key elements of a representation that are

crucial to solve a task) to a naive learner by providing carefully selected examples, s/he must

also have a model of how the learner incorporates the new evidence and what is their starting

representation. Conversely, the learner needs to be aware of the teacher’s knowledgeability and

intentions, and exploit this when making inferences about the information conveyed. There-
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fore, based on the data made available, they also need to make inferences about the intentions

of the teachers and assess their knowledgeability in order to avoid being deceived. Epistemic

vigilance plays a crucial part in social cooperation as agents need to generalize from the behav-

ior of others to decide whether they are honest and reliable partners. This is a heavy inferential

burden since all these tasks must be performed simultaneously, that is, learning about others

while learning from them (Landrum, Eaves, et al., 2015) or teaching to them, respectively. A

way to mitigate this is by sequentially performing inference about the data when we are certain

about teacher’s intent and making inferences about the teacher when the information is familiar.

However, this is possible only in a very small subset of situations and it eschews the issue of

how the initial assessments can be performed (other than via inbuilt biases).

While a full blown theory of mind might indeed not be required for pedagogical learning

to be possible, the two clearly have a tangled trajectory (Bass, Bonawitz, et al., 2017). To

account for this circularity, simplifying assumptions have been proposed, most notably the ra-

tionality assumption (Shafto, Goodman, & Frank, 2012; Shafto et al., 2014). The complication

of inferring the other’s model of the task and how they incorporate evidence is cast aside as

it is assumed that the learner will perform Bayes-optimal inference over predefined common-

ground data and hypothesis space. The teacher will present the samples that (soft-)maximize

the learner’s posterior probability for the hypothesis to be taught. Conversely, the learner will

assume that the teacher is well-meaning, informed, and Bayes-rational in producing samples.

The first of the two assumptions, the rational learner hypothesis, has gained support in the

developmental literature, as evidence amounts to suggest that even infants possess the building

blocks to infer the relative probability of generative models from the observed data (Gopnik &

Bonawitz, 2015). Further, even young children are sensitive to sampling assumptions (Gweon

et al., 2010; Xu & Tenenbaum, 2007), making it plausible that learners can use statistical or

pragmatic information about how the data were generated, such as the presence of a teacher, to

decide on the appropriate likelihood function. This could mean that given the same evidence,

a learner could reach different inferences when s/he assumes a teacher is present or not. And

crucially, making the pedagogical assumption should lead to stronger inferences given a fixed
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number of teaching samples. A simple example to illustrate the difference between purposeful

pedagogical sampling and random sampling is the rectangle game Shafto and Goodman (2008)

where the learner must guess the location of a rectangle on a game board based on being

presented with two dots that are included in the rectangle. Teachers were shown the rectangle

and asked to choose two examples for a learner. The pedagogical expectation, matched by

behavioural data (Shafto & Goodman, 2008), is that teachers provide two opposite corners

of the rectangle as positive examples, and that learners infer that the target is the smallest

rectangle that includes both of the provided dots if they are told that someone else has chosen

the examples (but not if they are told they they were randomly chosen).

It should be noted that in the simple pedagogical games used by (Shafto, Goodman, &

Frank, 2012; Shafto et al., 2014), the learners had the same ability level as the teacher and could

easily put themselves in the teacher’s shoes and consider what would be the optimal teaching

strategy. However, most teaching occurs in scenarios of imbalance between the ability and

knowledge of the teacher and learner, where the optimal strategy is possibly opaque for the

learner. On the other hand, it is worth mentioning that even four-five year old children were

shown to be able to choose evidence in accordance with a cooperative or competitive goal

(Rhodes et al., 2015) so it is possible that the predictions hold even situations of knowledge

imbalance.

In situations of common ground violations, there might still be a benefit of pedagogical

sampling due to the statistical structure of the examples provided and the inferences they can

lead to, but this would be potentially greatly reduced if the sampling assumption is mismatched

(i.e. the teacher is sampling from a different type of distribution or over a different set of distri-

butions). One example is the case of the prototype teaching game where a univariate Gaussian

distribution describing a new concept is taught by providing a limited number of examples.

Based on seeing these positive instances of the concept, the learners need to rate the likeli-

hood of other examples belonging to the concept. If the teacher is constrained to use three

examples, the best examples that result of the rational pedagogy formalism are the mean and

two (symmetric) extremes showing the range of the concept. If one is looking for a Gaussian
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distribution, this is an intuitive strategy, but one could also think that these examples could be

optimally chosen to teach a distribution with three modes.

As mentioned above, learners must be epistemically vigilant, but what are the cues to trust-

worthiness, what is the developmental trajectory of this ability and the computations underly-

ing it? The developmental literature has shown that 3-year-old children prefer familiar teachers

even if they provide incorrect evidence (Corriveau & Harris, 2009), perhaps because of a long-

term track record of providing accurate information, but this trend is reversed by age four when

accuracy trumps familiarity. Shafto, Eaves, et al. (2012) can explain this developmental pattern

by extending their previous model by assuming that an unhelpful (cf misleading) teacher would

seek to minimize the learner’s posterior probability for the hypothesis-to-be transferred. Rather

than incorporate a truth heuristic (whereby children assume others are trustworthy), they use fa-

miliarity as a prior over the teacher’s knowledgeability and helpfulness. Through lesioning the

model and eliminating the ability of learners to rely on helpfulness (knowledge-only model),

they can account for the modulations in preference based on familiarity and accuracy found em-

pirically. This model has been further tested with adult participants using rating of informants

as opposed to relative preference for an informant (Warner et al., 2011), showing that partic-

ipants could infer intent spontaneously. While this is a simple scenario which teachers being

either helpful or not, knowledgeable or not, it makes an important point about the explanatory

power of the joint inference framework. Extending this work, Landrum, Cloudy, et al. (2015)

show that as children grow older, they start to use the graded quality of the evidence (beyond

the dichotomous classification as misleading/ helpful), defined as the typicality of an example

and diversity, in their evaluation of teacher credibility. Of course, other cues can be useful for

establishing trust in a teacher, such as their associated confidence and how it relates to their

accuracy.

Another interesting factor that has been shown to influence the rating of informant helpful-

ness is whether s/he conveys information in the most effective and efficient way. At the worst

data offered by teachers ought to be inductively sufficient, enough to make reliable inference

but not more. Shafto, Gweon, Fargen, and Schulz (2012) argue that learners should penalize
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teachers who provide exhaustive evidence that only marginally serves to reduce uncertainty,

due to the cost of demonstration. They incorporate a prior on the data in the model which is

an exponential parametrized by the number of demonstrations and the cost of each individual

data point. They fitted this model to participant data in an informant helpfulness rating task,

revealing that the estimated parameters corresponded to an learner expectation of sufficient for

accurate performance.Learners did not apply a penalty for additional data, but also did not pre-

fer maximal data. It is very likely that the data cost insensitivity stems from the design of the

task which does not explicitly penalize for longer response times. Indeed, it is unclear what

is the origin of this cost and why it affects learners (as opposed to just teachers) unless it is

conceptualized as computational cost of information transfer. In line with this, when children

are asked to teacher another person, they modulate the amount of information they provide

depending on the knowledge level of the learner (Gweon, Shafto, et al., 2014) or their goals

(Gweon, Chu, et al., 2014) by omitting unnecessary information, and irrelevant information

respectively. Further, they act according to a naive utility calculus, whereby they try to max-

imize the utility of the learner by balancing the costs and benefits of a teaching plan. In their

experiment, this translates into preferentially teaching how to manipulate a toy the learner finds

more interesting and that would be more difficult for the learner to figure out on their own.

There are other ways in which teachers could come to learn what their students believe that

rely on different assumptions. Rafferty et al. (2015) propose a inverse reinforcement learning

framework, whereby teachers observe learners’ actions as they try to achieve a goal transparent

to the teacher from a given starting state. By formalizing action planning as a partially observ-

able Markov decision process, the teacher can compute a posterior probability distribution over

the learners transition model. In other words, teachers will gain knowledge about the learner’s

subjective beliefs about how their actions will alter the state of the world. Such a model can

then be used by teachers to guide feedback and correct potential mispecifications of the tran-

sition model. In the context of a simple game (learning how to fly an alien spaceship using

button presses), the authors show that their model can infer learner beliefs nearly as accurately

as humans. Further, automated feedback informed by the model (feedback that targets the but-

13

C
E

U
eT

D
C

ol
le

ct
io

n



ton about whose function the learners were most likely to be wrong) lead to better performance

than uninformative feedback (random feedback that does not take into account the learners’

current beliefs). However, Rafferty et al. (2015) did not then also compare the feedback of-

fered by human teachers with that produced based on the model. Clearly, this goes beyond

teacher models that only monitor learner success or failure, and do not consider the sequence

of actions leading to that result. On the other hand, it suffers from the same limitations as the

Shafto, Goodman, and Frank (2012) proposal: the action, state, hypothesis space as well as

the goal are shared by teacher and learner and the knowledge state of the learner is stable. If

this later constraint is to be removed, a probabilistic learning model would be needed. Lastly,

it is important to note the differences between this approach that proposed by Shafto and col-

laborators. Here, the teacher makes inferences solely through observation and the learner’s

performance is enhanced due to the targeted feedback provided, orthogonal to what the learner

believes about the teacher’s knowledgeability or helpfulness.

1.4.2 Representation of the task environment and hypothesis generation

While the Shafto, Goodman, and Frank (2012) proposal for optimal teaching is expressed at

the computational level, there are objections that can be brought about from the algorithmic

level. Namely, another feature of optimal teaching (e.g. the pedagogical sampling account) is

that inference is performed over a pre-established hypothesis and data space which is common

ground for teacher and learner, they also share a prior, and the inference must be performed on

all hypotheses and datapoints simultaneously.

However, a crucial and nontrivial aspect of learning is the generation of appropriate hy-

potheses which is influenced by the representation of the task environment. Moreover, it is un-

likely all hypotheses are considered simultaneously. A widely accepted proposal is that learners

engage in a stochastic search through a space constructed by applying random modifications to

the originally entertained hypothesis when it no longer fits the observed data Goodman et al.

(2011) and Markant and Gureckis (2014). The learner then needs to check if this new hypoth-

esis is consistent with the currently available data.
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Indeed, part and parcel of the teaching process is guiding the search for a suitable hypothesis

that may not even have been considered initially. Even when they have a superior representa-

tion of the task environment, teachers additionally need the ability to monitor the hypotheses

currently entertained by learners and have a grasp of the dynamics of sequential hypothesis

generation.

1.4.3 Teaching is extended in time

Teaching is a process that extends over time, with examples presented sequentially leading

learners to update their representations gradually. Moreover, teaching goals themselves are not

immediate, requiring planning to reach a long-term objective that can be served by a wider

repertoire of teaching actions than just providing data. To complicate matters further, this long-

term objective is generally vague - we prize teaching that enables students to generalize their

knowledge to novel problems that we cannot fully anticipate.

Traditionally, both in machine learning and cognitive science, learners have been thought

of as batch inference makers with little attention being paid to the dependence of samples

or their order. In fact, using the same pedagogical assumptions as in batch presentation, but

updating the learner’s posterior after each sample and solving for this new chained posterior

and likelihood after each subsequent sample leads to completely different predictions as well

as strong serial dependencies.

Sequentiality is starting to be addressed in interactive machine teaching. For instance, us-

ing naturalistic egocentric video of infants playing with toys in a word learning experiment

(Yurovsky et al., 2013), an omniscient interactive machine teacher with sequential data presen-

tation (Liu et al., 2017; Yurovsky et al., 2013) managed to generate a similar temporal structure

of the frames as observed naturally (e.g. continuous bouts of the same object instance), and

unsurprisingly the learners converge much faster than when the (standard stochastic gradient

descent) learner receives random inputs.
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1.4.4 Learners are active

Learners are not passive receptacles of knowledge; they interact with their teachers (and their

environment) and direct the learning process by requesting more information or specific types

of evidence that they believe is most diagnostic. The benefits of learner-centered exploration

have long been extolled (Gureckis & Markant, 2012), and we know that exploration is reduced

after instruction (E. Bonawitz et al., 2011a) due to the expectation that the teacher has conveyed

all relevant information.

In light of this trade-off, are there circumstances should we do away with teachers and let

learners explore? Yang and Shafto (2017b) addressed this issue in a computational analysis

which pitted optimal active learning (here, choosing a query to maximize expected information

gain) against optimal teaching across a range of scenarios. When the teacher and student are

aligned (the learner bias is known, rational inference is performed over a fixed hypothesis

and data space), teaching will be at least as good as active learning. When the concepts are

ambiguous (overlapping), teaching maintains an advantage. Further, similar performance was

achieved with exploring and teaching under learner misconception, meaning that the learners

concept space does not match that of the teacher, which is also normatively correct. When

the teacher was misaligned, teaching lead to poorer performance. In essence the take home

message is that teaching is likely going to benefit learners (or at least not harm them) unless

there is a fair degree of misalignment. However, one should keep in mind that the relative

effectiveness of these methods will depend on the concept size and complexity.

1.4.5 Redundancies can be optimal for bounded learners

While we have emphasized the need for plausibly bounded teachers, the reverse of the coin

should be considered. Namely, that optimal teachers ought to take into account that even

resource rational learners are bounded cognitively. Learners could be bounded in terms of

memory capacity for the retrieval of exemplars during decision-making, noisy perception, and

compressed representation. For instance, while you might intuitively think that in a categori-
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sation task you should present labeled examples as close as possible to the boundary, however

if the learner is limited in its capacity to retrieve exemplars at test this could lead to higher

erroneous classification (Patil et al., 2014).

It can be that teaching strategies which appear to be subpar with respect to the informa-

tiveness principle alone (i.e. give only the minimally sufficient information) are more useful

in practice to learners. In this sense, the problem of efficient teaching mirrors that of effi-

cient communication, where there is a larger body of work departing from traditional Gricean

pragmatics, to recast, for example, referent identification tasks, as collaborative tasks (e.g.

Rubio-Fernandez, 2019) in which redundancies actually facilitate discriminability.

Another example is curriculum learning. For example, in a simple one-dimensional bi-

nary classification problem, an interesting effect is that it is sometimes more helpful to forgo

the optimal teaching dimension strategy (offering only examples close to the boundary) and

start by giving examples at the end of the continuum and then move to increasingly harder

to classify examples. This method received experimental support in phoneme discrimination

(McCandliss et al., 2002) where second-language speakers could learn much better after initial

overarticulation.

Interestingly, a recent study by Khan et al. (2011) in which participants were asked to teach

a one dimensional classification task based on a continuous subjective feature (their own rating

of the ‘graspability’ of objects and chosen boundary location) to a humanoid robot showed that

curriculum teaching is among the preferred teaching strategies. In fact, none of the teachers

used the optimal boundary strategy even when explicitly instructed to use as few examples as

possible and under no time pressure to make the decision. The authors suggest that in fact

curriculum learning is a good heuristic in optimization to avoid poor local optima (Bengio et

al., 2009). An idea that needs to be explored further is that the curriculum learning is optimal if

the learning progress is to be maximized (i.e. expected error is minimized) after every iteration.

This corresponds to a “win stay, lose shift” (Gibbs) strategy where a new hypothesis is chosen

randomly from consistent hypotheses when the current one is no longer consistent with the

teaching set. Given the psychological plausibility of this strategy, a direct experimental test of
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their predictions would be particularly informative.

Related to this, for higher dimensional/ hierarchical concepts, it is meaningful to consider

not just how the examples presented are useful, but also how the (cooperative) omission of

information shapes inference (Searcy & Shafto, 2016). This can aid in deriving an inten-

sional concept from an extensional definition which scales down the complexity of teaching

(specifically, it scales according to the complexity of the concept and not the concept space).

Generalization to the narrowest level that includes all examples (Xu & Tenenbaum, 2007) and

sensitivity to sample diversity in learning and teaching (Rhodes et al., 2008; Xu & Tenenbaum,

2007) support this account. However, partially inconsistent results have also been presented.

In a teaching task (Cakmak & Thomaz, 2010) using concepts defined as conjunctions of com-

pound tangram feature values in which some features are relevant and others not, teachers failed

to achieve exact object identification (although as mentioned in a previous section, learners ex-

hibit a preference for such teachers). This means that participants stopped teaching before

sufficiently pruning the concept space to only one consistent concept (the target). While teach-

ers introduced variability in the irrelevant features, they did so less than expected based on

optimality. The rate of concept pruning was also suboptimal as teachers used about 3-5 times

more examples than needed. Further, even when the optimal strategies (start with positive ex-

ample, vary as many irrelevant features as possible in a positive example, vary relevant features

one at a time) were described to the participants, they failed to teach efficiently.

Moreover, while the strong assumption thus far has been that teachers are maximally helpful

and well-meaning, it is worth relaxing this assumption by considering the gains of the learner

and the effort incurred by the teaching action. A starting point is that effort ought to be propor-

tional to the number of examples a teacher needs to provide, although realistically it is going

to depend on the teaching goal and the problem to be solved. An interesting development in

that direction generalizes the teaching dimension to probabilistic, noisy learners that have po-

tentially infinite hypothesis spaces (Zhu, 2013). Crucially, the loss function is arbitrary and

effort, as a function of the teaching dataset, is added to the loss that needs to be minimized.

They solve the optimization problem (over teaching examples) for Bayesian learner models in
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the exponential family and exemplify teaching one dimensional classifiers, a Gaussian mean,

multinomial distributions, multivariate Gaussians, and model selection.

1.5 Conclusions and further directions

We reviewed a small and concentrated experimental literature on teaching. At the moment the

evidence in favour of the optimally of teachers relies on test scenarios that are over simplified

and abstract, but there is a promising future in this line of inquiry. A first issue to clarify

though is whether the results of Khan et al. (2011) and Cakmak and Thomaz (2010), with more

complex stimuli and ecological settings, are replicable and can be reconciled with the teaching

games conducted by Shafto et al. (2014). This will be addressed in Chapter 2.

Different possible reasons for departures from the predictions of rational agent models were

enumerated, primarily the need for teachers to solve additional problems such as: making

inferences about the social partner, the lack of common ground, need for long term planning and

for balancing the relative costs of teaching. There are also likely limitations at the algorhythmic

level as not all hypotheses will be considered or evaluated simultaneously.

We welcome interest from computational fields in formalizing more realistic, resource-

rational standards for optimal teaching that exploit inferential assumptions of learners and

teachers. Perhaps one of the most important contributions of the computational approaches

is to fully specify all the interacting conditions that affect (or need to be met for) teaching to

be successful and teasing them apart: the (different) model, representation, starting conditions,

learning algorithm, loss function corresponding to the teacher and learner, plus the goal and

intent of the teacher, available action space for both actors, and ability to track the learner’s

behaviour and/or knowledge state. While this may seem overwhelming, there are now some

sufficiently sophisticated proposals for what optimal behavior should be given these constraints

(e.g. Zhu, 2013) and so there is a window of opportunity for experimental work that tests the

predictions of these models.

The pertinent question then becomes how these departures will affect learners in practice?
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The education literature offers some clues to that as teaching behaviors were generally analysed

not in relation to normative predictions, but in terms of concrete effects on actual learners. The

findings supported the fact that real-world formal teaching is good, but far from ideal. Teachers

were shown to tailor their behavior based on the structure of the problem to be taught (e.g.

increasing the level of difficulty), but to rarely seek to understand the subjective model of the

learner (e.g. by asking how they arrive at their incorrect solutions) and rather provide feedback

based solely on whether the learner is objectively correct (Chi et al., 2004). In line with this,

human teachers were found to be about as effective as simple natural-language-based computer

tutoring VanLehn et al. (2007). Against all expectations, an extensive metareview failed to

find a meaningful advantage of human tutors in STEM (teaching one student synchronously)

over intelligent tutoring systems (Kurt, 2011) in terms of learning gains. These automated

systems provided feedback to students on their correctness, divided the problems to be solved

in preset substeps and provided a printed explanation for each step if the student’s response

contained errors - by no means reaching the level of sophistication implied by formal teaching

accounts proposed here. There was also no evidence of a difference between expert and novice

human tutors, or an effect of constraining the interactivity between tutors and learners. This

is good news for students given the recent proliferation of online teaching, but it underscores

the potential limitations of human teachers in complex tasks. These results may also speak

to differences between teaching behaviors in formal settings and teaching in informal settings

(cooperative learning).

In the following experimental work, we will focus on ways in which human teachers may

potentially alleviate the burden of this complex task, specifically the teacher’s challenge of

building an adequate model for the learner (Chapter 3) and the additional cues that learners

may use to make decisions about which teachers to rely on (Chapter 4).

This also should inform questions abut whether it is possible to teach the teachers to com-

pensate for their limitations. The answer seems to be trivially yes since we already spend

considerable resources training educators in formal settings, but in the only two experiments

presented in this review where this was attempted, the results were not encouraging.
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Chapter 2: Sampling for teaching and learn-

ing

2.1 Introduction

Exceedingly little is known about how humans explicitly sample information from their repre-

sentations with the intent to teach, despite the fact that a lot of teaching taking place through

the offering of examples and demonstrations.

The Introduction outlined both a normative model for how teachers can explicitly and pur-

posefully produce examples (Shafto & Goodman, 2008), concerns that the assumption of ratio-

nality does not do sufficient work to address all challenges of identifying good teaching sets, as

well as mixed experimental evidence on the optimality of human teachers. A straightforward

first step taken in Study 1 was to replicate key previous findings with the aim of clarifying

disagreeing findings.

The corresponding and equally challenging problem facing learners is adequately incorpo-

rating the complex process that generated the data received from teachers in their inference

making. Learners must form expectations for pedagogical sampling based on the communica-

tive context. Additionally, learners need to find ways to cope with the unintended features of

samples generated by another person.

There is evidence that humans are sensitive to differences in the sampling processes in-

volved where evidence is gathered from other humans as opposed to the environment. Children

and adults in Xu and Tenenbaum (2007) generalized differently as a function of whether they
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acquired information from pedagogical compared to random sampling. Meng Yuan and Fei

(2017) have shown that perceptions of agency are positively correlated to perceptions of non-

randomness in binary sequences. Furthermore, Gweon et al. (2010) have shown that children

as young as 15 months can distinguish weak from strong sampling.

Here, we focused on one feature of pedagogically sampled sequential data and, generally,

of samples produced by humans (Gilden et al., 1995; Lieder et al., 2012) and many Bayesian

samplers, but which is also ubiquitous in the environment - autocorrelation. Study 2 tested

whether humans optimally estimated the means of sequentially presented series of stimuli as a

function of the underlying generating process: i.i.d. or strong temporal autocorrelation.

2.2 Study 1: Teachers

We replicated two tasks that involved pedagogical example giving to teach prototype concepts

(Experiment 2 of Shafto et al., 2014) and rule-based concepts (Khan et al., 2011). These simple

tasks were chosen since they both have theoretically optimal teaching solutions and have also

been studied with human participants, with different conclusions.

Shafto et al. (2014) found that human teachers were able to successfully convey both two-

dimensional rule-based concepts and univariate prototype concepts. In the rectangle game,

participants could choose two labeled examples (where the label was inside or outside the

rectangle) to convey the location of a rectangle in a larger grid. Teachers predominantly chose

the optimal solution, closely marking the opposite corners of the rectangle. In the prototype

game, participants acting as teachers were presented with a series of one-dimensional stimuli

drawn from a Gaussian distribution that they were told defined a novel concept and they had to

choose a batch of three of stimuli to teach the concept to an imagined learner. Here, the optimal

solution is to mark the central tendency of the distribution alongside two extreme symmetric

stimuli1.

However, Khan et al. (2011) have instead found human teachers used various suboptimal

1This is optimal when the hypothesis to be taught is at the center of the hypothesis space.
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strategies and greatly overestimated the number of examples needed to teach a rule-based con-

cept. In the Khan et al. (2011) experiment, participants were asked to teach a one dimensional

binary classification task based on a continuous subjective feature (the participants’ own rat-

ing of the ‘graspability’ of objects) to a humanoid robot (see Figure 2.3). This is perhaps the

simplest task on which human teaching has been tested, and yet it produced surprising results.

Conceptually, this teaching problem is equivalent to teaching the ends of a line segment, a

simpler task than teaching the location of a rectangle, so the results are at odds with previous

findings of Shafto et al. (2014).

It is unclear what the source of this discrepancy is. First, it could be that the more ecolog-

ical setting of the Khan et al. (2011) task, teaching a robot with no common ground about a

real (though abstract) concept may be different from engaging in a reasoning game about an

imaginary concept. Related to this, it is possible that when attempting to perform pedagog-

ical sampling of multivariate objects, participants intentionally or unintentionally considered

irrelevant features of these objects. For instance, participants may have wanted to highlight

features that make an item ungraspable (e.g. being voluminous, heavy, or difficult/dangerous to

approach).

Second, results could also be an artifact of participants aiming to teach the underlying

ranking of stimuli on the graspable-ungraspable continuum rather than a binary classification.

This could be an explanation for the use of a linear strategy according to which participants

labeled many or most of the stimuli, moving left-to-right or right-to-left through the stimulus

array.

On the other hand, some of the participants in Khan et al. (2011) were clearly engaging in

a curriculum teaching strategy. That is, they started by providing extreme examples on either

side of the stimulus space and then gradually offered examples closer to the boundary. While

this strategy is suboptimal for an optimal learner observing the data in batch mode, it is optimal

if the teaching objective is to minimize expected error at every time step (with no planning).

Further, as mentioned in the introduction, curriculum learning is widely observed in human

teaching and is sometimes necessary to achieve learning.
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Lastly, all teaching games showing optimal teaching decisions have constrained the exam-

ple set size cardinality to the minimally sufficient number. It is possible that when constrained

to a given number of examples, participants would be prompted to make the optimal choice on

the one-dimensional teaching task as well.

Therefore, in order to reconcile the findings in the literature, we set out to replicate the

experiment of Khan et al. (2011) in a more controlled setting with a computerized format,

using several categorization dimensions besides graspability. Furthermore, to assess whether

constraining the example set size is the crucial factor behind inconsistencies in the literature,

participants were asked to generate teaching examples both in an unconstrained manner (as

many as they sought necessary) and constrained to two examples.

2.2.1 Replication of Shafto et al. (2014): Prototype teaching

Methods

Participants

Twenty participants (aged 20-26 years old, 14 female), all Hungarian native speakers who

were fluent in English, were recruited through a local student organization (MADS) and paid

for their participation (1200HUF). Subsequently, all participants participated in an unrelated

experiment on statistical learning. Given the size of the observed effect, a smaller sample size

than in the original experiment (n = 28) was deemed sufficient.

Procedure

Participants were first shown a set of 27 stimuli: heavy black lines of various lengths drawn

inside a thin black circle (instead of a rectangle as in the original experiment), on a white

background. Stimuli were individually printed on paper cards that were randomly placed in a

3x9 grid on a table. The positioning of the cards differed for each participant.

Written instructions (identical to the original experiment) were translated for the partici-
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pants in Hungarian (and were also available in English):

”In this experiment, you will see a random assortment of “widgets”—objects consisting of a

circle with a line inside it. The circle is always the same size and the line always starts at the

same point, but the line varies in length. If you look closely, you can probably see that wid-

gets are more likely to have lines of some lengths than others. Imagine that you had to teach

somebody about the distribution of line lengths that one sees on widgets, but could only do so

by showing them three of the widgets in front of you. Which three widgets would you choose?”

(Shafto et al. (2014), p. 16).

The experimenter summarized the instructions verbally (in English) and checked compre-

hension. Following this, participants chose a set of 3 cards to show as examples to an (imag-

ined) future participant in the experiment by putting them in a specially marked area of the

table. Participants were allowed to change their mind about their card choices as many times

as they wanted.

On average, the entire task took approximately 10 minutes.

Stimuli

The 27 line lengths were sampled (in Matlab R2012b) from a Gaussian distribution with a

mean of 14.5 mm and a standard deviation of 3.5 mm.

Each card,90 mm wide and 50 mm high, contained a black line stimulus (1.5mm thick),

enclosed in a circle with a radius of 31 mm. The lines started 1 mm from the left-hand side of

the circle and were vertically centered.

Data Analysis

To quantitatively test whether data were best fit by strong sampling or pedagogical sam-

pling, the probability for triplet exampled to be generated from the two models was calculated

as described below, and a likelihood ratio test was applied to determine if the observed distri-

bution of triplets was more likely to be generated from the multinomial distribution resulting
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Figure 2.1: Empirical results of Shafto et al. (2014) (Fig. 7) along with model predictions.

from pedagogical or strong sampling.

In both sampling implementations, the possible teaching example sets consisted of all pos-

sible order-invariant triplets out of the 27 stimuli (in total 3,654 sets).2

Under strong sampling, which also provided the starting likelihood for the data for the

pedagogical model, the probability of each triplet set under the true sample parameters was

calculated by factorization assuming that example choices were independent.

The hypothesis space for pedagogical reasoning consisted in all the distributions defined

by the mean and standard deviation of these triplet sets. Null standard deviations were set to

.01 and other standard deviations were halved3. A uniform prior was used and the likelihood

was a discretized Gaussian (probabilities of the 9 values were renormalized to sum to 1). Ini-

2In the original experiment model implementation, a smaller model of the task was used which started with
only 9 possible examples, evenly spaced through the stimulus range. Examples were binned into small (smallest
2), medium (middle 5), and large (largest 2) to compute triplet probabilities. Predictions were closely matched.

3The standard deviations were halved in order to obtain values in a similar range to the variance of the hy-
pothesis to-be-taught. Without halving the SD, the probability of choosing SML triplets decreases, but qualita-
tive differences between pedagogical and strong sampling remain.
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Figure 2.2: Triplets of examples chosen by the teachers. L: large, M: medium, S: small.

tial triplet likelihoods were calculated, for every hypothesis, by factorization assuming that the

choices were independent. The α parameter was set to 1. Lastly, examples were binned in the

same way as for the behavioral analysis into small (smallest 6), medium (middle 15), and large

(largest 6), and probabilities were summed to compute probabilities for the ten possible triplets

(e.g. SML, SMM, SSS). Resulting likelihoods for hypotheses with means within .5mm distance

from the stimulus mean and standard deviation within .25mm from the experiment value were

pulled together.

Results

The chosen examples were classified as small (smallest 6), medium (middle 15) or large (largest

6). Figure 2.2 shows the distribution of the example choices. Similar to the original results (see

Figure 2.1), roughly half of the participants chose triplets composed of one small, one medium,

and one large example. This is qualitatively consistent with previous results, as well as with

the predictions of the rational pedagogy model.

Triples chosen by participants were more likely to come from pedagogical sampling than

strong sampling, Bayes Factor (BFalt) = 2.55e+14, χ2(1) = 66.34, p < .001.
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Figure 2.3: Example stimulus array from the Khan et al. (2011) teaching task. Participants
ranked images as a function of ‘graspability’ and then chose a boundary between graspable
and non-graspable items. The image was reproduced from Khan et al. (2011).

2.2.2 Replication of Khan et al. (2011): Boundary teaching

Figure 2.4: The trajectory of the examples chosen by participants conforming to the curricu-
lum learning strategy. The image was reproduced from Khan et al. (2011).

Figure 2.5: The trajectory of the examples chosen by participants. Circles represented ex-
ample choices in the Unconstrained condition (the order of choice is down-up). Diamonds
represent the examples selected in the Constrained condition.

Methods

Participants
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Figure 2.6: Example image array from the teaching task. In this trial, images were sorted ac-
cording to loudness. The gray dot marks the boundary chosen by the participant. In order
to select examples for teaching, the participant had to drag either the red (not loud) or blue
(loud) circles across an image, which will automatically mark it as an example by drawing a
square of the corresponding color around it.

Twenty five native Hungarian speakers, also fluent in English, aged 18-25 years old, were

recruited through a Hungarian student employment association (MADS) and were paid for their

participation (1200 HUF/hour). One participant was excluded from the experiment because

they did not comply with instructions (choosing the first two stimuli in all trials).

Design

A computerized, Hungarian language version of Khan et al. (2011) was implemented in

PsychoPy2. In addition to graspability, five additional dimensions were used to categorize the

objects in the images: price (for demonstration), speed, loudness, numerosity, color, and size.

The last three dimensions were added to test whether (suboptimal) choices were previously

induced by the multivariate and/or abstract nature of the images, the identity of which was

irrelevant to the categorization. Half of these dimensions relate to concrete, perceptual quanti-

ties, whereas the other half refers to abstract classification rules and realistic, multidimensional

objects.

The images were presented in random order in a horizontal line spanning the entire length

of the screen, and participants first ranked the items by dragging them into slots in the desired

order. The participants then decided where they wanted to place the boundary between the
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two categories before teaching. A slider marking all the possible boundaries was drawn on the

screen to visually display the potential boundaries.

There were two parts to the experiment. In the first, participants were asked to teach the

boundary they saw on the screen to another participant using only as few examples as they

thought necessary in order for the other participant to know its location (Unconstrained Con-

dition). In the second part of the study, the trials (and boundaries) were presented once more,

and participants were asked to choose only two examples to teach the location of the boundary

(Constrained Condition).

Procedure

The experiment started with a demonstration trial in order to familiarize participants with

the experimental setup. The first test trial classified the items according to graspability. The

presentation order of the graspability trial was fixed in order to avoid any interference from

the other trials for the purpose of the replication. The order of the following trials, asking for

judgments based on speed, loudness, and numerosity, size, and color was randomized.

In each trial, 26 images4 were presented on a 27-inch screen, and were ranked by par-

ticipants from left to right according to the key dimension. The participants then chose the

boundary, which remained visible on the screen until participants finished selecting the teach-

ing examples by dragging category labels to the images. A screen shot of an example selection

trial is presented in Figure 2.6.

The task was unspeeded and lasted around 30 minutes in total.

Materials

All images used in the demonstration, graspability, speed and loudness trials were selected

from the same dataset of black and white photos of objects (Salmon et al., 2010) used in the

original study. Overlap between images used across the trials was avoided as much as possible,

with only a handful of images repeating at most once.

The stimuli for the numerosity trial were constructed by drawing varying numbers of small

red circles displayed within a larger gray circle (positioned uniformly at random). The stimuli

4The original study had 27 images.
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were equidistant on the log-linear scale. The corresponding cover story was that the boundary

was the a given number of bacteria in a Petri dish required to meet a infection diagnostic. In

the color trial, colored circles ranging from blue to red, implemented through a perceptually

uniform matplotlib colormap, and participants were asked to find the boundary between what

they thought was blue and red. In the size trial, the stimuli were vertical black lines uniformly

increasing in length, and the boundary was the size of a battery.

Results

In the Unconstrained condition, participants chose nearly twice the number of examples needed

to teach the boundary, although considerably fewer than in the original study, M = 3.84,SD =

1.95, see Figure 2.7a. Only 7 participants (out of 24, 29.17%) managed to find the optimal

solution with the minimal example set cardinality in at least one trial in the Unconstrained

Condition. In the Constrained condition, the number of participants increased to 11, 45.83%.

Overall, teachers provided example sets that were consistent with a unique boundary in approx-

imately 57% of the trials.

Figure 2.7c shows the remaining uncertainty after teaching in the two conditions, that is,

the number of boundaries that are consistent with the teaching set provided. The few trials (n =

16) in which teachers chose labels inconsistent with the boundary were removed. Uncertainty

was lower on average in the Unconstrained Condition compared to the Constrained Condition,

as the mean of possible boundaries compatible with the labeled teaching set was 2.06 relative to

5.23. This was also the case within participant (and within trial), as can be seen in Figure 2.7b.

There were no stark differences between trials as a function of order in the task or classification

dimension. The number of examples chosen in the Unconstrained condition not significantly

relate to the remaining uncertainty around the boundary, τ =−.08, p = .31.

Participants did not exhibit the clear qualitative patterns observed originally, that is, clear

cut instances of the curriculum or linear teaching strategies. Some sample trajectories of exam-

ple selections are presented in Figure 2.5.

In order to quantitatively test predictions, the remaining number of compatible boundaries

31

C
E

U
eT

D
C

ol
le

ct
io

n



in every trial was regressed to the manipulated within-participant variables: Condition (Con-

strained/Unconstrained)5, Trial type (Abstract/Perceptual), and the order of the trial. Given the

structure of the experiment, a mixed effects model on the trial-level data was deemed most

appropriate, with participants as the random intercept and the above mentioned predictors as

fixed effects. Further, due to the large proportion of trials with a unique compatible boundary,

a zero-inflated Poisson model was used. The model was fitted with the GLMMadaptive library

in R, using a log link for the non-zero part and the logit link for the zero part. The random

intercept structure improved model fit, LRT χ2(2) = 38.89, p < 0.001.

First, whether the choice of examples was constrained or not, had a significant effect both on

the zero and non-zero processes: βunconstrained = 1.51,z = 3.52, p < .001, and βunconstrained =

−.47,z = −5.61, p < .001, respectively. This mirrored the descriptive results, namely, the

lower number of compatible boundaries for the Unconstrained Condition.

The type of trial, perceptual or abstract, had no significant effect for either component,β =

.67,z = 1.63, p = .10,and β =−.01,z =−.02, p = .98.

The order effect was significant only for the non-zero component, β =−0.05,z=−2.08, p=

0.04, suggesting that the number of compatible boundaries decreased with increasing trial or-

der, as expected.

2.2.3 Conclusion

The original results of the prototype game Shafto et al. (2014) have been successfully replicated

(in a different culture, but also with young university students), as half of the participants ex-

hibited the optimal teaching pattern. This corresponds to the proportion expected if participants

are drawing samples by probability matching from the pedagogical distribution.

The results of Khan et al. (2011) were broadly replicated, but some significant departures

were also observed. We also found considerable inefficiency and diversity in teaching patterns,

such as continuing to label data after the boundary was uniquely identified. However, in gen-

eral, our participants used fewer examples than in the original study (4 vs. 8) and we did not

5The number of examples was not included as a covariate given its relation this the manipulation.
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find clear patterns of curriculum or linear teaching. Moreover, while they chose fewer exam-

ples, our participants did not maintain the same level of effectiveness. Indeed, one benefit of

exhaustive sampling strategies such as curriculum or linear teaching is that the effectiveness of

teaching is guaranteed.

The crucial manipulation revealed the opposite pattern to the one expected, as participants

reduced less uncertainty about the boundary location when the example set cardinality was

fixed as can be seen in Figure 2.7c. Even when prompted with the minimally sufficient teaching

set cardinality, participants failed to reach the optimal solution. This suggests that original

findings were not due simply to lack of awareness or insensity to the costs of teaching (the only

cost was spending more time in the lab), but rather participants failed to grasp what would be

most helpful to a learner.

Lastly, our manipulation of the complexity of the stimuli that served as the basis for the clas-

sification task did not produce significant differences. This was surprising and underscores the

fact that inefficiencies occur even when eliminating uncertainty about what makes a stimulus

belong to one category or another, or how it ranks relative to other category members.
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(a) Number of examples chosen in the Uncon-
strained condition.

(b) Remaining uncertainty as a function of condition.
Each dot represents one trial from one participant.

(c) Uncertainty remaining after teaching by
condition.

(d) Uncertainty remaining after teaching by
trial type.

Figure 2.7: Teaching performance in replication of Khan et al. (2011).
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2.3 Study 2: Learners

Serial order effects widely permeate cognitive tasks, from the primacy and recency effects ob-

served in memory recall (Ebbinghaus, 1850-1909) to anchoring in decision making tasks (Tver-

sky & Kahneman, 1974). The cognitive processes and underlying mechanisms driving these

effects are as varied as their instantiations. Here, we focus on a potentially novel source of serial

effects, evident in estimation tasks which require participants to provide an estimate of a sum-

mary statistic describing a sequentially presented stream of data or of a generative parameter

governing it. Further, we propose a computational rationale for why such a serial effect leads

to efficient performance and inquire whether it can offer a unifying explanation for the prepon-

derance of overreliance on early and late information. In estimation tasks, the optimal strategy

for weighting samples at different serial positions depends greatly on the statistical structure

of the input. Crucially, when inputs are serially dependent, the optimal weighting pattern ex-

hibits symmetric primacy (overweighting of early information) and recency (overweighting of

recent evidence) effects, which increase in magnitude with the degree of dependence between

samples. Given the fact that most if not all sequential samples from the natural environment

will contain certain degree of dependence, there is a strong motivation for flexible adaptation to

the temporal statistical structure. Although recency effects can be easily obtained with optimal

models that take into account a changing environment, primacy effects are otherwise difficult

to justify on the basis of optimal models.

Lastly, if such serial effects are indeed present in estimation tasks, then it is interesting to

inquire whether these effects are related to or orthogonal to the primacy and recency effects

observed in memory recall. For instance, it might be possible to modulate memory recall by

changing the underlying statistical structure of the inputs.

2.3.1 Overview of experiments

The goal of the following series of experiments was to assess whether, in the context of an

estimation task with sequentially presented data, humans are sensitive to the statistical structure
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of the inputs they observe and adjust their behavior accordingly. To test this, the strength of

temporal dependence in the input was manipulated experimentally and the participants’ reliance

on samples at different serial positions was estimated.

Moreover, if indeed the observed serial dependence effects are modulated by the covariance

structure of the inputs, we expect the effect to follow the direction predicted by the optimal

strategy. In the case of estimation tasks which require participants to provide a summary statis-

tic, here the mean, optimal performance is defined in terms of producing an unbiased estimator

with the minimum variance. For a given covariance structure of the inputs, it is possible to

theoretically derive the weights needed to achieve optimal performance as shown in the section

below. The covariance structure used in all the experiments is the first-order autoregressive

(AR(1)) which dictates that samples closer in time are more correlated than samples farther in

time. Thus, while a clear oversimplification of the sorts of statistical structures observed in the

visual environment, this structure encapsulates the key feature of temporal correlations. For

the AR(1), as the amount of dependence increases, optimality dictates that there should be a

symmetric increase in the relative weighting of the first and last samples of the series. Thus,

the general experimental prediction is that when presented with strong dependence between

samples, participants will overweight early and late samples relative to the other samples. It

is unclear what to expect in the situation when the presented samples are independent. It is

possible that in the absence of corrective feedback, and given the ubiquity of correlations in the

surrounding environment, which should create a strong prior for dependence of observations,

participants will not show the optimal uniform weighting pattern.

In what follows I will briefly outline the experiments conducted with a more detailed de-

scription following bellow. In all experiments, the stimuli within in a sequence, corresponding

to a trial, differed in their location on a computer screen which was determined by the AR(1)

process as described above. The participants’ task was to provide an estimate of the center of

mass of each sequence.

In Experiment 1, dots were presented on the screen sequentially, at various locations, and

participants estimated the center of mass of the series. Given the heterogenous response pat-
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terns, we repeated the experiment with simpler, univariate stimuli, and longer presentation

times, manipulating only the dot position along one axis. The variability in the weighting

patterns raised the question of whether it is possible to relate the use of optimal weighting

strategies with having a better (more accurate/ precise) estimate of the dependence structure in

the inputs or where more likely to use that information in order tasks such as prediction. There-

fore,a follow-up tested the estimation task alongside a prediction task, which was similar to the

estimation task in all respects except the response that was required of participants. The results

of the prediction task would provide an additional (perhaps more direct) measure of whether

participants were using the correlation structure and at the same time test whether weighting

patterns for the estimation task were consistent with prediction performance. However, behav-

ioral results were indicative of over-estimation of correlation in the prediction task evidenced

by complete reliance on the last sample and this did not translate into the estimation task.

Experiment 2 presented data generated in the exact same way as in the previous exper-

iment, but using stimuli which had an identity dimension orthogonal from the task at hand,

prefacing an experiment investigating memory and estimation links for which a notion of stim-

ulus identity is needed. Again, large heterogeneity was observed in the weighting patterns used

by participants. In the follow-up memory task, participants were presented the same stimuli

(same location, serial position and shape identity) in separate estimation and memory recall

tasks conducted a couple of days apart.

Before delving into the details of the experiments, I address some preliminary theoretical

concerns about the validation of the data generation procedure, how to definite (near-) optimal

performance and how to estimate the benefit conferred by the optimal strategy.

2.3.2 Defining optimal performance

Given a timeseries X generated from a first-order stationary autoregressive process, such that

each element i is computed as:
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Xi = c+ γ ·Xi−1 + εi, (2.1)

where ε
iid∼ N(0,σ2

innovation) and c is a constant, γ is the correlation coefficient. Its resulting

auto-covariance matrix is C:

C = σ
2 ·



1 γ γ2 ... γk−1

γ 1 γ ... γk−2

γ2 γ 1. γk−3

. . . . .

. . . . .

. . . . .

γk−1 γk−2 . . 1


The minimum variance estimator for the mean of the series is given by:

µ̂ = (W TC−1W )−1(W TC−1X)), (2.2)

where W is the design matrix for the weights and C−1 is the inverse of the covariance

matrix. Figure 2.8 shows the resulting optimal weights.
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Figure 2.8: Optimal weighting for a series of length ten as a function of the γ parameter
which quantifies dependence.

2.3.3 Validation of data generation

The first check performed prior to conducting the experiments is that the parameters used to

generate the sequences, in this case the constant c, the correlation parameter γ , and the standard

deviation of the error term σinnovation, can be retrieved from the data samples. This is required to

demonstrate that it would be at least theoretically possible for the participants, if they behaved

optimally, to get an unbiased estimate of the strength of dependence given the limited time

series length and the number of trials used in the experiment. 100 samples were generated

using the same parameter values as in the experiment and the same number of trials (300 trials

and series of length 8). For each sample, the posteriors over the estimates were calculated using

all trials simultaneously and assuming their independence conditional on the parameters. First,

the estimation was performed assuming that the generative process is known, that is knowing

that each trial utilizes the covariance structure of the AR(1) process. This means that it was not

necessary to estimate the entire covariance matrix since it can be generated from the standard

deviation of the error term and the correlation coefficient. Since this might be unrealistic, a full

estimation of the covariance matrix releasing this assumption was performed with very similar

results. The Bayesian estimation was performed in STAN (Team, 2016) with MCMC sampling
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(NUTS), using vague priors were chosen for all the parameters, namely a uniform over the

[-1,1] interval for the correlation coefficient γ , and a vague inverse gamma (with shape = rate

= .001) for the variance of the error term σinnovation. The posteriors of the parameters based

on ten randomly chosen simulations are plotted in Figure 2.9 for the parameters of interest

together with the true generative parameters. The posteriors are narrowly distributed around

the true value, indicating that it is possible to retrieve an unbiased estimate of the generative

parameters. Of course, this does not mean that the participants will be able to retrieve the exact

value of the parameters, particularly since they need to jointly infer the statistical structure and

the values of the parameters and surely this will take a fair amount of trials that will be used to

sequentially update estimates, rather than use all the trials in batch mode. Moreover, each stage

of this process can be noisy.

2.3.4 Defining near-optimal performance

Given a given estimate for the correlation coefficient, it is possible to derive the theoretically

optimal weights. However, the estimate inferred by the participant may be biased as well as

uncertain due to suboptimality in estimation and/or the differences between the statistics of the

sample and the true parameter values (variability due to the sampling process). Therefore, it

might be unfair to compare behavioral performance directly with the theoretical optimum which

assumes participants have access to the true value of the correlation coefficient as manipulated

by the experimenter. While addressing the concern of participant suboptimality in estimation

strategy is difficult in the absence of a model of the task, it is perhaps possible to address the

second concern. Namely, a more appropriate benchmark for optimality could be one that uses

the exact covariance matrix of the data sample observed by the participants. Again, this has the

caveat of assuming all trials are treated as independent (given the generative parameters) and

used simultaneously to inform the estimation. Figure 2.10 presents such ‘empirically optimal

weights’ for the simulated datasets with different numbers of trials. As expected, the average

of these weights over multiple samples will match the theoretical optimal weights, but there is

quite a lot of variability between samples. Moreover, as the number of trials used increases, the
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estimated empirical weights are closer to the theoretical weights.

An alternative way to think about this is to use the credible interval around the estimate of

the correlation coefficient inferred from the data (assuming the data structure is un-/known),

and based on those values calculate an interval containing the likely optimal weights.
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Figure 2.9: The histograms of posterior samples over the correlation coefficient (upper) or
standard deviation of the innovation (lower). Each subplot corresponds to one stimulated
dataset of 300 trials, where each trial is a series of length 8. The red vertical lines correspond
to the true value of the parameter.
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Figure 2.10: Optimal weights derived using the observed covariance structure (‘Empirically
optimal’ weights) of 1000 simulated datasets with sequences of length 8 and using 300 trials
(upper) and 1200 trials (lower).
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2.3.5 Performance improvement conferred by the optimal strategy

The extent to which humans will comply with an optimal strategy depends on the benefits it

confers relative to a competing suboptimal strategy, which may potentially incur a lower cost.

While here the notion of a cost is not applicable since all the experiments involve unsupervised

learning, it is still possible to make an informed guess about the expected effect based on the

relative improvement that could be offered by the optimal strategy relative to a particular sub-

optimal one. For instance, given a particular value for the correlation coefficient, it is possible

to calculate the variance in the optimal mean estimator which uses non-uniform weights and

compare it compared to that of the estimator that uses uniform weights. In other words, this

quantifies the relative efficiency of using a strategy adapted to the actual dependence present

in the data compared to using a strategy suitable for independent data. Additionally, it is pos-

sible to calculate the difference in the expected mean when using the optimal compared to the

uniform weighting as a function of the correlation coefficient and the strength of dependence.

The ratio of the variances of the two estimators are plotted below (Figure 2.11a) as a func-

tion of sample size and strength of correlation present in the data. As expected, the more cor-

related the samples, the more advantageous it is to use the appropriate weighting. As expected,

this advantage disappears asymptotically, as the number of samples increases.

The bias emerging from using a different weighting strategy than the one used to generate

the data, overlooking the presence of sequential dependencies is illustrated in Figure 2.11b.

The mean is underestimated by the uniform weighting strategy in proportion to the strength of

the dependence.
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(a) Ratio of variance of the mean assuming the uniform compared to the optimal weighting.

(b) Bias due to using a suboptimal weighting strategy. This assumed the process constant is 1. The
actual difference depends on c multiplicatively.

Figure 2.11: Comparison of uniform and optimal weighting strategies.
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2.3.6 Experiment 1

Methods

Participants

42 participants, all Hungarian university students with normal or corrected-to-normal vi-

sion, aged between 19 – 26 years6, were recruited through a Hungarian student association

(MADS) and took part in the experiment in exchange for monetary compensation (rate of 1,200

HUF/hour).

The planned sample size was 40 participants per condition, and was conservatively based

on simulation results such that t-tests conducted for every serial position would have ade-

quate power to compare weights corresponding to noisy near-optimal performance to uniform

weights7. Three participants did not return to finish the experiment on the second day and were

replaced.

Ethical approval for the experiment was granted by the Ethics Committee for Hungarian

Psychological Research.

Design

Participants judged the center of mass for rapidly presented sequences of dots. Across two

within-participant conditions (320 trials), which were completed by participants on different

days in counterbalanced order, the generative model for the location of the dots was manipu-

lated.

Each trial consisted in the rapid sequential presentation of 10 dots at various locations on

the screen. Grey widely-spaced out vertical and horizontal grid lines were presented on the

black background at all times in order to provide a better sense of spatial location, while the

dots were white and .32◦ in diameter. Each trial started with the brief presentation of fixation

point (250ms). Each dot was presented for 150ms before it disappeared and was followed by

a 50ms inter-stimulus-interval (ISI). Following the last dot in the sequence, there was a 500ms

6The gender of the participants was not recorded.
7The number of trials was also chosen based on simulation.
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pause until the participant could respond. At that point a cross marking the cursor appeared

in the center of the screen and participants could move it freely and unspeeded to mark their

estimate of the mean position of the series. Once they lifted the pen from the trackpad, the

position was considered final and recorded. After the response, there was 1500ms pause until

the next trial started.

In one condition, dot locations within a trial were independent and in the other condition,

they were strongly dependent. To generate the dot locations, independently for each trial,

the centers of mass of the sequence were drawn uniformly from a square uniform probability

distribution centered on the middle of the screen (and encompassing 70% of the vertical length

of the screen). In the independent condition, 10 dots were then selected from an uncorrelated

bivariate distribution with a standard deviation of 2.2 cm, which was kept constant across all

trials. In the correlation condition, the dots’ positions in vertical dimension were sampled from

a univariate Gaussian distribution with the sampled position as the mean and the same standard

deviation as above. However, the positions on the horizontal dimension were generated by

taking the sampled x position as the starting value of an AR(1) series with γ = .7. The standard

deviation for the error in the AR(1) process was adjusted so that the resulting standard deviation

of the samples matched that used to generate the samples in the independent condition. This just

involved using a higher standard deviation in the process since the variance of the stationary

process is given by σinnovation/ (1 – γ2). If a generated position was within three standard

deviations of the edge of the screen, a new position would be generated until the requirement

was satisfied.

Procedure

The experiment was carried out over two consecutive days, with each condition presented

on a separate day in counterbalanced order. On the first day, after giving written consent,

the session started with a trackpad familiarization task to ensure that the participants were

comfortable with the experimental setup and were sufficiently precise in pointing to a target

location on the screen using the trackpad pen.

A short demonstration of the task (10 trials) was provided each day which was meant to
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Figure 2.12: Sample end frame from the experiment demonstration.

illustrate the concept of the center of mass as no cover story was used in this experiment. The

demonstration data were generated in the same way as the test data, so that the appropriate

condition demonstration preceded the test phase. However, the presentation speed was slower

to allow the participants to get acquainted with the task.

Within a trial, the ten dots appeared on the screen sequentially but remained visible through-

out the trial. After the sequence was complete, the true center of the sample (not the sampling

center) was presented on the screen as red dot and the entire scene remained on the screen for

300ms (see Figure 2.12).

Throughout the experiment, the participants were seated about 50 cm in front of an LCD

monitor in a dark room. All in all, the experimental sessions lasted 55-60 minutes, including a

break half-way through the experiment.

This experiment and all subsequent variations were coded with the Psychophysics Tool-

box 3 extension (Brainard, 1997) for Matlab R2015a. The experiment code and data are now

archived but can be available upon request.

Data analysis

Given that our manipulation only affected the horizontal location of the dots, we analyzed

the vertical and horizontal estimation separately. For each participant, the distance between the

true dot locations and a reference were used as the independent variables on which the distance

between the estimate and the same reference was regressed using least squares (no constraints
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were enforced).

Given the possibility of aggregation effects, we tested whether every participant’s behavior

matched predictions. We fit several regression models to the data under different assumptions:

symmetric overweighting of the first and last samples, asymmetric overweighting of the first

and last samples, overweighting only of the first/ last sample, and uniform weighting. The

negative log-likelihoods of these models were then compared for each participant in order to

choose the best fitting constrained model for a given participant. We used the Aikaike Informa-

tion Criterion and the Bayesian Information Criterion to choose, for each participant, the most

parsimonious model.

Results

As a first sanity check, to confirm that participants were reasonably accurate in their estimation,

estimation error was calculated for every participant and compared to a trial-shuffled to ensure

that participants were performing the task as instructed (see Appendix Figure 2.24). For the

dependent condition, the estimated means were compared with the expected estimates based

on uniform weights, the optimal weighting strategy, and the ground truth (Figure 2.25).

Further, we report very high levels of variance explained of the unconstrained model, mean

93.25%, for both conditions (see Figure 2.26). The intercept was not significant for any of the

participants, showing no location biases.

Aggregate weights are presented in Figure 2.13 and generally qualitatively match the pre-

dictions. As expected, the vertical location estimate was not affected by the experimental

manipulation. Furthermore, across all independent conditions, primacy was observed as in

previous work.

For the manipulated horizontal location, in the independent condition, the mean weight as-

signed to the first sample was .134, significantly different from uniform expectation (.1),t(39)=

3.56, p= .001,BFalt = 30.35. The second sample was also overweighted, .126, t(39)= 3.78, p<

.001,BFalt = 53.04, but none of the other weights differed from the uniform (p > .05).

Primacy was also observed in the the dependent condition, the average weight for the first
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Figure 2.13: Average weights.

sample was .14, t(40) = 3.39, p = .002,BFalt = 20.19. Additionally, we observed a small re-

cency effect, .121, t(40) = 1.99, p = .05,BFalt = 1.01. Average results conformed qualitatively

to the expected pattern of lower weights for samples that were not in the beginning or end

of the sequence (4th,5th,6th,7th samples differed significantly from .1). However, there was

an unexpected overweighting of the sixth sample, .123, but this was not significantly different

from .1, t(40) = 1.88, p = .07,BFalt = 1.01.

Within-participant, there was no statistical difference in the weight of the first sample, diff

=.005 , t(38) = .41, p = .69,BFnull = 5.38. On the other hand, weights for the last sample were

higher in the correlation condition, diff =.031 , t(38) = 2.92, p = .006,BFalt = 6.46 .

However, there was considerable inter-individual variability in the relative weights. This

was true in both conditions, as illustrated in Figure 2.14 and Figure 2.15. Weight profiles were

sometimes similar, but that was not generally true.
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Figure 2.14: Individual weights for the horizontal (manipulated) location alongside the sam-
ple average.

In the independent condition, 33 out of 39 participants (∼85%) were better fit by the uni-

form weights model, while only 5 were better fit by the primacy model and 1 by the recency

model. Since the primacy model is conservative as it assumes only the first weights is higher

than the rest, we also fitted a model in which the weights changed linearly or quadratically.

In the AIC comparison, 8 participants were better fit by the linear model (7 with decreasing

weights and 1 with increasing weights, from the remaining participants 27 better fit by the

uniform model and 4 by the strict primacy).

In the dependent condition, 15 participants were fit by the uniform model, 13 by a primacy

only model, 2 by the recency only model, 2 by the asymmetric primacy and recency model,

7 by the linear weights model. As in the independent condition, no participants were better

fit by the quadratic weights model. AIC values for all participants are presented in Appendix

Figure 2.28.
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Figure 2.15: Examples of participant weights.

2.3.7 Follow-up: Univariate stimuli

A follow-up smaller study tested whether participants would exhibit behavior closer to the

predicted optimal when the task was simpler, location only varied across one axis. The pre-

sentation duration was also manipulated to verify whether the overweighting in the dependent

condition, would be affected in the same way as for the independent condition. Each dot was

presented for 500ms before it disappeared and was followed by a 500ms inter-stimulus-interval

(ISI). Due to the increased amount of time needed for each trial, only 250 trials were shown to

participants to keep the expected experiment duration within an hour. Results (N=10) showed

that while the primacy effect was eliminated for the independent condition, it was still present

for correlated samples (see Figure 2.16).

2.3.8 Follow-up: Prediction task

In order to ensure that participants were sensitive to the difference in the statistical structure, a

within-participant prediction task was conducted. The presentation of the stimuli was the same

as for the previous follow-up, but participants were asked to predict the location of the next dot

in the sequence.

Ten participants (9 across both experiment days, 7 females, aged between 21-27 years old)

completed the task. Prediction weighting was consistent with the expectation that in the inde-
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Figure 2.16: Average weights for estimation of the sequence center.

pendence condition samples should be weighted uniformly, and in the high dependence condi-

tion considerably more weight should be placed on the last sample/s. For all participants, the

recency only model was the best fit in the dependent condition, as participants only relied on

the last one or two stimuli in the sequence to make predictions (Figure 2.17). This reinforcing

the fact that participants are sensitive to the change in dependence structure, and in anything,

over-estimated the amount of dependence in the data. Therefore, a lack of sensitivity to the

generative process is not the source of the heterogeneity observed in the estimation task.

Figure 2.17: Average prediction weights.
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2.3.9 Experiment 2

Methods

Participants

In total, 35 participants took part, 27 females, ages 19-25. Out of these, 32 returned to the

lab to complete the experiment and were included in the analysis.

Design and materials

The task design closely matches that of Experiment 1. However, abstract shapes (covering

a 1cm area) were used instead of the dots as stimuli. For each trial, 8 shapes were randomly

selected (without replacement) from a pool of 26 shapes. Figure 2.18 provides some examples

of shapes.

Figure 2.18: Sample stimuli for the estimation task.

Given the increase in stimulus complexity, the presentation time and ISI were both de-

creased to 150 ms. Each session contained 300 trials.

The procedure and data analysis methods remained the same.

Results

The averaged weights for each condition (Figure 2.19) did not conform to the expected pattern

of results, as both conditions show a profile consisted with uniform weighting. However, there

was a large amount of heterogeneity across participants (Figure 2.20). The regression model

fits the data reasonably well, with mean R2 values of .72 (SD = .19). However, the estimated

weights were fairly imprecise. In the independent condition, 24 out of 32 participants (75%)

were best fit by the uniform weights model, 4 by the recency model and the remaining 4 were
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best accounted for by the full weights model. In the dependent condition, 17 participants were

described best by uniform weights, 3 by recency, 2 by primacy and 10 by the full weights

model.

Figure 2.19: Estimated weights.

Figure 2.20: Estimated weights.

2.3.10 Follow-up: Memory task

Participants

Fifteen participants took part in the experiment, but only 11 completed all the four sessions
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and are therefore included in the results. The age range of the group was 20-24 and 10 were

female.

Design

Participants completed both the estimation task as well as a memory task. The estimation

task was the same as presented above.

The memory task differed from the estimation task only at the response stage as within a

trial they saw the exact same shapes identities, at the same locations as in the estimation task.

Further, stimulus presentation times in the memory task coincided with those in the estimation

task (Experiment 1). At the end of each trial, participants viewed 16 shapes presented centrally,

half of which had been presented in the series, half of which were sampled randomly without

replacement from a remaining pool of 18 shapes. They then judged whether they had seen them

in the trial or not and responded by dragging the cursor to / clicking on a button which read

yes/no. The trackpad was used for compatibility with the estimation task. Unfortunately, given

the longer time needed to respond in the memory task, only 100 trials could be used per session

to avoid fatigue. A full session of 250 trials was completed for the estimation task.

Procedure

There were four sessions in total, with the sessions of the same task scheduled on consecu-

tive days. The order of the task and condition was fully counterbalanced.

Data analysis

Analysis for the estimation task was conducted as described above, but using only the first

100 trials shared with the memory task for task comparisons.

For the memory recall task, percent of shapes correctly remembered (hits) was calculated

for every serial position and the percent of false alarms. The estimation weights and hits within

a condition were then correlated for all participants.

Results

The U-shape serial order curve typical in recall tasks was observed for both conditions as

can be seen in Figure 2.21. In a 2x2 repeated ANOVA with serial position and condition as

factors, the interaction between the two factors was non-significant, F(7, 160) = .07, p = .99.
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, but the main effect of condition was significant, F(1, 160) = 4.28, p=.04, as performance in

the independent condition was marginally better. For both conditions, primacy and recency

were observed, pooled across conditions the first sample was significantly different from .5,

t(21) = 6.48, p < .001, as well as the last one, t(21) = 13.85, p < .001.

The estimation performance matched the results of Experiment 1 (see Figure 2.22), and,

as previously, was characterized by large inter-individual differences. There was also little

convergence between estimation weights and memory weights as can be seen in Figure 2.23

which illustrate the relationship between them for two example participants. The correlation

was low in both the independent, .03, p = .82, as well as dependent condition, .08, p = .45.

Figure 2.21: Mean recall performance by condition. Vertical segments mark SEs.

2.3.11 Conclusion

Optimal estimation from sequentially dependent, as opposed to independent samples, requires

different strategies. Given the ubiquity and relevance of temporal correlations in the visual

environment, if humans are to make decisions efficiently, they should exploit information about

the correlational structure of sensory samples. We predicted that if adaptation to stimulus

statistics is fast and flexible, people will be near-optimal in the estimation of summary statistics

even in an unsupervised task. In this setting, the optimal incorporation of correlated samples

should exhibit order effects - a symmetric overweighing of the first and last samples that is
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Figure 2.22: Average estimation weights.

increases with the correlation in the data.

The multiple estimation experiments using stimuli characterized by one-dimensional or

two-dimensional position and varying in stimulus identity have failed to demonstrate that hu-

mans exhibit a (near)-optimal, flexibly adaptive strategy in estimation. While aggregate results

seemed promising, a very small number of participants showed both recency and primacy in

the dependent condition, with the majority following a primacy only or a recency only weight-

ing pattern. This pattern cannot be explained by noisy perception of the sample correlation, as

participants were able to utilize the correlation structure when making predictions for future

samples.

The results support for previous findings that early i.i.d. samples are more influential in

mean estimation (Juni et al., 2010; Wallander & Boynton, 2013). However, based on the

individual-level analysis, the group-level effects effects were also very likely driven by only

a subset of participants. A large percentage of participants (around to 75% in our experiments)

were following a uniform strategy even at short stimulus presentation times. Interestingly,

while increasing the presentation time levelled out the weights in the independent condition as

expected, this did not occur in the dependent condition. Further, while Wallander and Boynton

(2013) found that predictability of the sequence decreased the early overweighting of evidence,
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(a) Spearman correlation between estimation weights and memory recall within every participant.

(b) Relationship between the estimation weights and proportion of hits (hits at serial position out of to-
tal hits). Color corresponds to the serial position in the sequence and each dot represents a participant.

Figure 2.23: Relationship between serial effects in estimation weights and memory perfor-
mance.
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we found that early overweighting is more robust for structured sequences.

Lastly, we found that variability in estimation weights across serial positions was not related

to memory recall. However, we unexpectedly found that recall for the independent condition

was better than for the dependent condition. However, the effect size was very small.

It is possible that given the relatively small expected effect size, the task used was not sen-

sitive enough to pick out crucial differences or sufficiently engaging for participants. Perhaps a

semi-supervised task which in the loss accrued with sub-optimality is emphasized would lend

itself better to the task.

2.4 General Discussion

Across the teaching and learning studies presented in this chapter, we found that participants

are sensitive to sampling demands both when teaching and when learning. This was evidenced

in the fact that teachers did not select examples according to random or strong sampling, and

learners clearly distinguished autocorrelated from i.i.d. sequences. At the same time, at the

individual level, learning was not optimal and neither was the teaching.

The first study replicated a task requiring the teaching of prototype and a rule-based con-

cepts. Results were mixed. Findings were consistent with the predictions of Shafto et al. (2014)

in the prototype teaching game. In our extension of rule-based teaching, participants did not

attempt curriculum teaching as previously shown, and only few participants (about a third)

were able to reach the optimal solution efficiently. Moreover, while the participants improved

over time, we found no graded association between the number of examples used and the final

teaching outcome (although participants in the unconstrained condition were more likely to

reach the optimal solution due to choosing more examples).

Making the number of examples needed to teach the boundary explicit to the participants

did not aid participants, contrary to our predictions. This is surprising particularly because

the Constrained condition followed the Unconstrained condition, which should have provided

participants with experience on the task and made it more likely for them to gain insight about
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the optimal solution structure. While the current dataset was not collected for this purpose, we

can speculate that the prospects of explicit training to improve teaching performance might not

be particularly high.

It also stands to weaken alternative explanations for the original results in Khan et al. (2011)

on ’over-teaching’, that is choosing more examples when the teaching goal has already been

achieved, such as insensitivity to teaching costs or a desire to show willingness to teach by the

amount of effort put in. It seems plausible that teachers did not identify the minimally sufficient

teaching set easily.

Simplifying the stimuli by using only one dimension, with easy to perceive differences

and straightforward ranking did not lead to improvements in teaching performance. This is

potentially indicative of the fact that an understanding of what makes a teaching set useful for

a learner was the underlying difficulty during this task.

Lastly, how can we relate the findings of the two replications? Arguably, the task in Khan

et al. (2011) was a simpler task in that the pedagogical sampling solution is deterministic and

does not require making any pragmatic inferences about the learner. In other words, even a

learner that does not know that they are being taught will succeed in the learning task if the

optimal teaching set is provided.

It can be argued, however, that the results of Shafto et al. (2014) can be an effect of how the

original information has been encoded (rather than of inference based on a learner’s ability to

exclude alternative hypotheses). The visual system is particularly adept at extracting summary

statistics from stimulus ensembles (especially homogeneous ones), with the central tendency

(mean) and range being pivotal, and there is evidence that identification of set members is

heavily modulated by these summary statistics, as well as outliers. It would be, therefore,

very useful to further corroborate the fact that participants are able to randomly and explicitly

sample from the same distribution. This is a complicated experimental challenge since most

requests for explicit information from participants could be regarded as communicative and

perhaps pedagogical. The fact that repeated human 2AFC choices can be used to sample inter-

nal representations (analogous to Markov Chain Monte Carlo sampling) has been shown before
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(A. Sanborn & Griffiths, 2007), but there is little work on explicit distributional expectations.

Other promising avenues are explicitly establishing within the experimental context the

number of hypotheses and their relative location in the stimulus space and checking whether

predictions based on these modulations closely follow experimental data.

Overall, these preliminary results warrant questions about the abilities to teach when more

realistic demands are added such as producing the samples versus choosing samples from a

predefined array, uncertainty about the boundaries, etc.

In the second study, learners did not aggregate information as a function of the serial auto-

correlation to produce optimal estimates for the mean of the series. This was surprising given

the clear need to adapt to correlated inputs generated by environment sampling or by other peo-

ple. However, the possible improvement associated with the optimal strategy were potentially

too low, so we suggest that current prediction might be more adequately tested by applying

explicit costs or implicit ones (e.g., motor costs).

We know every little about learning adaptations to the kinds of structures and statistical

patterns generated (intentionally but also unintentionally) by other humans when collaborating

and teaching. Experimental work has uncovered expectations that others are rational (here,

maximally informative) and violate strong sampling, but this research project is still in its

infancy. It is still an open question how much of the range of human behavior these assumptions

can explain.
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2.5 Supplementary Information

2.5.1 Study 2: Additional figures

Figure 2.24: Estimation performance of Participant 1. The observed signed distances from
arithmetic means of trials and the participant’s estimates (red) against the distances between
estimates and shuffled trial means.
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Figure 2.25: True center for trials agaist means computed using the optimal strategy and uni-
form weights.
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Figure 2.26: Variance explained (R2)

Figure 2.27: Predictions based on optimal and uniform weighting (Left); Ground truth relative
to optimal and uniform weighting (Right).
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Figure 2.28: AIC values for the models fit in Experiment 1. Each row corresponds to a partic-
ipant.
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Chapter 3: Actively Learning How to Teach

3.1 Introduction

Perhaps the most enduring debate in the education literature, as well as in kindergartens and

classrooms, concerns the virtues of exploratory play in contrast to the canonical, largely passive

mode of teacher-led instruction (Bruner, 1961; Mayer, 2004; Montessori & Gutek, 2004). The

discussion has been naturally phrased in terms of the relative benefits and disadvantages that

usually young learners incur when learning from self-guided discovery compared to direct

instruction. However, the complementary link between efficient self-guided learning and good

teaching has not been explored thus far.

As outlined in the Introduction, teaching is difficult because it requires not just having a

good grasp of the concept to be taught but also knowing the utility of the information that can

be transmitted from the perspective of a potential learner. In the specific case of teaching by

offering examples, there are general principles that ought to guarantee, in theory, the informa-

tiveness of a given set of examples for any possible learner: removing redundancies from the

information provided, making sure that examples are not ambiguous with respect to the hypoth-

esis to be taught. However, in addition to this, the usefulness of a piece of information depends

on a myriad of interacting factors that govern how a learner would make use of the information

provided: the context in which it is acquired (i.e. social cooperative context or not), when it is

received, the learner’s prior knowledge, and idiosyncrasies in how the learner makes inferences

based on new data. Therefore, what example is most useful needs to be redefined in terms of

the extended learning model.
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The easiest way to build naı̈ve models for learning on specific tasks (e.g. learning how to

categorize items), or models of individual learners for the purpose of teaching, is to simulate or

actually engage in the experience of being a learner.

Intuitively, taking the perspective of the learner prior to teaching should be a useful experi-

ence. It could allow the teacher to better understand, implicitly and/or explicitly, how a learner

makes inferences to solve the task at hand based on the data provided, i.e. which data points

were informative and which were not. For instance, it would allow the teacher to become aware

of what kinds of hypotheses are warranted by specific data sets and perhaps partially eliminate

‘the curse of knowledge’. Instances of this effect are well-documented and widely spread, from

failures to use sufficiently disambiguating language (Keysar & Henly, 2002) when addressing

others who are less informed to failures to see how the same data visualization may be inter-

preted differently by others (Xiong et al., 2020).

Related to this, following learning, a teacher might more likely take into account the multi-

ple hypotheses considered throughout the learning task, as opposed to just generating examples

from the hypothesis they wish to teach, which although consistent with the data, would not nec-

essarily disambiguate the hypothesis-to-be-taught from others.

Having the experience of being an active learner prior to teaching should generate particu-

larly robust insights about how to select good examples for teaching, beyond what experience

being a passive learner could offer. The commonalities between teaching and active learning

are easy to identify when comparing their formal descriptions. Recent rational-agent models

have conceptualized teaching as a recursive process in which the teacher and the learner reason

about each other. Specifically, the teacher selects training samples for the learner such that,

given the learner’s prior knowledge and inference making mechanisms, these samples would

lead the learner to the desired conclusion efficiently, i.e. by requiring the smallest number of

samples (Shafto et al., 2014). Conversely, the learner interprets the observed samples assuming

they were generated by this pedagogical process (as opposed to randomly). Similarly, an ideal

active learner will also sample the environment strategically. However, they will sample by

directing their information gathering (e.g. by moving their eyes to explore a visual scene or
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choosing interventions on the environment) in order to maximize their expected information

gain (Yang, Wolpert, et al., 2018). There are two ways in which active learning can be ad-

vantageous. First, observations collected in a strategic way will be more informative for any

learner (not just the one sampling information); for instance, by avoiding irrelevant or redun-

dant evidence. Second, and more importantly, there is an added advantage specific to the active

learner stemming from the fact that they sample information in light of their prior knowledge

and the hypotheses that they wish to test. This effect was demonstrated in experiments where

the data selected by an active learner were also presented to a yoked ”passive” learner, and, de-

spite the observations being matched, active learners performed better than their yoked passive

counterparts (Markant & Gureckis, 2014).

Thus, both being a good teacher and being a good active learner rest on the same general

ability to evaluate the potential value of a new piece of evidence relative to a current state of

knowledge and a task. Nonetheless, there is an important difference. The active learner does

not have access to the target hypothesis and thus can only select data that minimize uncertainty.

However, Yang et al. (2019) more recently proposed a re-conceptualization of active learning

as self-teaching by envisioning a learner who simulates an uninformed teacher whose task is

limited to providing queries. In this framework, the self-teacher does not optimize for expected

information gain, although this will often be the collateral result.

Another important caveat is that the teaching problem as stated is highly reliant on The-

ory of Mind (ToM) abilities, dynamically considering the belief states of another person. In

line with this, Bass, Shafto, et al. (2017) have linked Theory of Mind (ToM) development to

children’s pedagogical sampling ability. While taking the role of the learner would encourage

perspective taking, it might still only allow learners-as-teachers to imagine learners who have

very similar learning trajectories to themselves.

Alternatively, if teaching strategies are highly automatic and follow stereotyped solutions

derived from rational (pragmatic) accounts of teaching, it is possible that the mode of learning

does not influence teaching performance.

While it is more immediate to consider if active learning could improve teaching, this rea-
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soning can also be applied in the opposite direction to explain the protégé effect - improved

learning through teaching. For instance, Bargh and Schul (1980) have shown that merely being

told that one needs to learn to teach (as opposed to learning to sit a test) leads to better learning

outcomes. The protégé effect motivates the use of peer-to-peer instruction and small unit work

groups in classrooms, as children tend to enhance their own learning through mentoring oth-

ers. A leading cause of this effect is undoubtedly increased engagement in the learning process

and more emotional involvement. While difficult to test experimentally, it is likely that bene-

fits of teaching for learning supersede the improved engagement. Particularly, it is likely that

peer teachers are forced to be reflexive about their reasoning by deciding which information

to present and they are likely to become more aware of any knowledge gaps due to having

to answer their mentees’ questions. In a series of classroom studies, Leelawong and Biswas

(2008) tested differences in learning between school children who, over an extended period of

time: were taught, learned by teaching a virtual Teachable Agent simulating a passive tutee,

and a virtual agent that self-regulated (simulating an active peer). Students who taught over-

performed those who were taught, and the students paired with Teachable Agents prompting

metacognitive assessments were best, but benefits of teaching dwindled for a novel transfer task

(students did not develop long lasting learning behaviors). Lastly, Shafto et al. (2014) found

that learners were more likely to conform to the predictions of the rational teaching model if

they first had teaching experience.

There are further interesting and ecologically relevant questions about the interplay between

active learning and teaching, particularly as current best practices in education emphasize the

use of student-centered approaches (EHEA, 2020; Klemencic et al., 2020) for learning and

assessment. The student-centered approach translates into a form of semi-supervised learning

blending active learning with tailored guidance from teachers. While the ability of children to

engage in exploration is undoubtedly a primary contributor to the benefits of such modes of

education, it would be interesting to quantify the role of teaching in these settings. Specifically,

the amount of information that a teacher can glean about a learner should differ as a function

of whether their student is learning actively or passively. Specifically, active learning settings
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should allow teachers to infer the uncertainty of the learner more reliably which can in turn help

them tailor the information they provide. Therefore, it is possible that a considerable boost to

the performance of learners in such environments is actually driven by the better instruction

stemming from teachers having a better model of their active students.

Further, while there is ample evidence of the benefits of active exploration relative to pas-

sive learning, there are tasks for which active learning does not supersede supervised learning

in terms of speed of acquisition. For instance, Markant and Gureckis (2014) found poor active

learning performance for a categorization task in which the boundary depended on two per-

ceptual features, on par with unsupervised learning. However, using the same categorization

task with supervised (feedback) learning, Ashby et al. (1999) found that all their participants

were able to learn the integration based boundary. These results highlight the existence of

an significant potential bottleneck for active learning. Markant and Gureckis (2014) explain

the performance of active learners through a sequential hypothesis dependent testing model

according to which participants sample examples close to their current subjective boundaries,

which, in this case, are predominantly unidimensional, leading to the observed pattern of poor

performance. This highlights the fact that active learning alone is not sufficient in situations in

which the hyperpriors dictating the hypotheses entertained by the learner are not aligned to the

true structure of the stimuli. One of the important roles of teaching in this situation could be to

guide the hypothesis generation process of learners.

To summarize, there are clear theoretical parallels between active learning and teaching, and

very ecologically relevant questions about the dynamics between active learners and teachers

which are currently unexplored through controlled empirical studies. In the following section,

we propose two experiments that begin to explore this direction and we propose further exten-

sions.
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3.2 Study motivation

Given the computational similarity of teaching and active learning, is it possible that they are

also integrated through linked processes in human behavior? In other words, would it be possi-

ble to hone teaching skills through active learning? If both tasks rely on a core ability to sample

environmental data efficiently, the transfer could occur automatically during learning, without

the knowledge or expectation that the acquired information will need to be used for teaching in

the future. Furthermore, active learning should improve teaching performance beyond passive

learning (even when the same information content is acquired) if the active selection of data is

the crucial driver of the learning effect, rather than the benefit of familiarity with the teaching

task or taking the perspective of a learner.

Both Experiment 1 and 2 directly tested the hypothesis that active learning experience im-

proves teaching. In Experiment 1, the teaching performance of participants who first had active

learning experience on the same task was compared to the teaching performance of partici-

pants who were yoked passive learners or had no learning experience. Similarly, in Experiment

2, teachers who were active learners were compared with teachers who were yoked passive

learners.

Across both experiments, we tested whether the observed differences could be confounded

by differences in accuracy on the learning tasks. Further, the extent to which active learning

performance was (directly) predictive of teaching performance was investigated.

The tasks used in the two experiments were conceptually similar as they involved the teach-

ing of a categorization boundary. While certainly, there are far more ecologically relevant tasks

for the problems of everyday teaching, categorization was used because it has a well established

tradition of study, specifically of allowing for precise quantification of learning as a function of

the way in which stimuli are presented and the (potential) supervision is offered.

In Experiment 1, participants were tasked with teaching an arbitrary deterministic one-

dimensional boundary. All possible stimuli (for active learning and teaching) were already

ordered and continually visible to the participant. This task has a straightforward optimal so-
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lution for teaching and active learning. Despite the conceptual simplicity of the problem and

the scaffolding offered by its visual presentation, previous work has provided mixed evidence

about participants’ ability to reach an optimal solution in tasks with a similar structure. While

Shafto et al. (2014) found evidence consistent with optimal behavior, Khan et al. (2011) found

that participants use a variety of strategies and often do not discover the optimal teaching strat-

egy in a more ecological setting. While a task similar to the ones previously used in teaching

experiments was chosen to be able to relate our results directly to previous findings, it has one

considerable limitation for testing the current hypothesis. Namely, this since the task can be

thought of as an insight problem and the optimal solution is easily verbalizable, it is highly

likely that any transfers between active learning and teaching were explicit.

Experiment 2 aimed to replicate the findings of Experiment 1 using a task that was richer

and more fit for purpose. Participants were still required to teach a deterministic categorization

boundary, but this time it was defined in a perceptual (bivariate) stimulus space. The critical

difference is that the task required teachers to first learn across time the perceptual categories

to be taught, either actively or passively. This is a meaningful departure in several regards that

more closely resemble real-life teaching: the teaching strategy is very difficult to verbalize and

transfer explicitly, the teacher may hold uncertainty in their beliefs about the hypothesis-to-be-

taught and potential learners’ representation is noisy. To our knowledge, this is the first teaching

task used in which the learning of the material to be taught was done over an extended period

of time (largely, previous experiments use simultaneous presentation of entire stimulus space).

Further, participants designed their own stimuli to offer as examples, rather than selecting them

from a preset array.

Beyond providing a replication to Experiment 1, the second task was intended to be a good

testbed for future investigations of the adaptability of teaching behavior as it would allows for

tracking changing representations across time, and well as manipulation of the structure of the

categories to be learned which could result in different priors over potential hypotheses consid-

ered and different optimal teaching sequences. The specific learning task has been taken from

Markant and Gureckis (2014) who exploited a well studied distinction in the categorization lit-
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erature between rule-based and information integration based categories1, which are thought to

be situated on different sides of the explicit-implicit learning divide, to reveal the use of sequen-

tial hypothesis generation as the basis of query generation during active learning. The category

structure distinction is also interesting from the perspective of teaching. At a basic level, we

can inquire whether the category structure modulates teaching behaviour as predicted by the

rational pedagogical model or whether a general heuristic is used for all teaching problems in

this stimulus space. Further, since Markant and Gureckis (2014) revealed that participants had

an early (and protracted) predisposition for generating queries that tested rule-based hypotheses

during active learning of both categories. Given this, we can ask whether teachers attempting to

teach a rule-based category provided examples in light of considering only rule-based bound-

aries as potential hypotheses or whether they still took into account the wider range of possible

category structures (that were not encountered in their direct learning experience). Of course,

in case they do not consider the full range of possible hypotheses it could be either because

they failed to generate the full space of hypotheses or it could be that their experience makes

them believe that they are unlikely to be entertained by another learner.

Despite the increased complexity, the second task is also amenable to predictions based on

the rational pedagogy model. This model makes qualitatively different predictions for the best

teaching sets based on the category structure, but also based on the teacher’s uncertainty about

the true hypothesis. Specifically, during the categorization task following learning, participants

exhibited various levels of stochasticity in their responses in relation to the boundary. Teaching

of a boundary needs to balance two conflicting goals: offering examples as close enough to

the boundary to be able to maximally constrain the set of possible boundaries for the learner to

infer, and not providing examples that are so close that the teacher, due to imperfect knowledge,

accidentally mislabels the examples and misleads the learner. To the extent that the teacher’s

estimate of the boundary is more uncertain, if they are aware of this, they should be more

cautious and provide teaching sets further away from the subjective boundary.

1The boundaries were deterministic for both the rule-based and information integration structures. Here,
rule-based denotes unidimensional rules (generally, rules that can be described in Boolean algebra) and
integration-based denotes two-dimensional rules (cannot be described in Boolean algebra, categories are learned
implicitly by participants and they cannot verbalize their strategies.)
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Lastly, while in the current design teachers were choosing examples for an imagined learner,

the task presented here could be used, with minor modifications, for closed loop experiments

in which learners and teachers interact. In such a setup, experiments could test the extent to

which teachers who are allowed to observe a specific learner are able to tailor the teaching sets

to the idiosyncrasies of the learner and the extent to which the learners benefit from tailored

real-time feedback versus a generic presentation of idealized teaching sequences.

3.3 Experiment 1

3.3.1 Introduction

In order to test the hypothesis that active learning improves teaching performance, we designed

a simple task in which participants were required to both learn a one-dimensional categorization

boundary over sets of objects, and teach it, in counterbalanced order. Crucially, different items

and boundaries were used for the learning and teaching phases.

There were two independent groups of participants in our design, those who learned actively

first and then taught, and those who first taught and then performed active learning. In addition,

to probe whether the effect learning on teaching performance was specific to active learning, a

yoked control group performed the same teaching task after learning passively from watching

the active learners’ labeled queries. We contrasted the teaching performance of these three

groups in terms of the expected performance of a learner based on their teaching set.

3.3.2 Methods

Participants

Eighty-eight participants2 (54 female, Mage = 24 years, range = 18 - 42 years old) were recruited

from the local population through the university online research participation system and the

2A sample of 30 participants was planned per condition. A participant and their assigned dyad pair were
excluded from the experiment due to poor English language comprehension.
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local student union. Fluency in English was a precondition for participation and Hungarian

speaking participants were additionally provided with Hungarian translations of the instruc-

tions. Participants were remunerated either in cash or supermarket vouchers to the value of

1,500 HUF (approximately e5 at the time). Ethical approval for the experiment was obtained

from the United Ethical Review Committee for Research in Psychology (EPKEB) in Hungary.

Tasks

All tasks (active learning, passive learning, and teaching) consisted of three trials. In each

trial, participants were shown eight images in a horizontal array such as the one displayed

in Figure 3.1. Participants were told that the images were sorted left-to-right according to a

given ”key” feature. For instance, animals were sorted according to their speed relative to

body size or the average amount of time they sleep, or foods were sorted by their carbon

footprint or their vitamin content. Images belonged to one of two categories (which were

clearly marked at the extremes of the image array) according to whether their key feature was

below or above a “boundary” (threshold value) which lied between two adjacent images (i.e.

at one of seven possible locations). Unknown to the participants, the true boundary locations

which dictated the category membership of the images were uniformly sampled in each trial

from all the possible locations. Participants were provided with a description of a seemingly

objective classification boundary (e.g. that slow and fast animals were separated by the speed

of the average human scaled by size). These descriptions were intentionally chosen such that

the participants were unlikely to have any strong priors about the location of the boundary (see

Supplementary Information subsection 3.6.1 on Piloting Priors about the boundary location).

Knowing the participants’ prior was essential because it determined the optimal query choice

in active learning.

The categories used for the learning and teaching tasks were randomly selected for each

participant. Images and category cover stories were only presented once throughout the entire

experiment.

In active learning trials, participants first saw the image array alongside the description
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Figure 3.1: Example image array from the teaching task. In this trial, food items were sorted
from left to right in ascending order of their vitamin B content. The black vertical bar repre-
sents the daily recommended dose of vitamin B, which is the boundary the participant had to
teach. In this case, the participant clicked on the two images closest to the boundary, which
were automatically labelled.

of the categories and the boundary, following which they were told that their task was to find

the boundary by querying two images. An image could be queried by clicking on it, which

immediately revealed its category membership through the color of the frame drawn around it.

After the second query, participants were asked to pinpoint where they thought the boundary

was located, again by clicking on one of the seven possible boundaries. Participants received

feedback on whether they were correct, unlucky (they selected a boundary compatible with the

labelled images that was not the true boundary) or incorrect (selected an incompatible bound-

ary).

The passive learning trials had the same structure, except that the labels of two images

were sequentially revealed to the participants before they had to make their decision about the

location of the boundary. Crucially, for each passive learning participant, the images labelled

corresponded to the queries of a previous active learning participant.

In teaching trials (see Figure 3.1), participants were shown the boundary separating the

two categories and were asked to teach it to another participant who they were told would take

part in the experiment at a later time. It was made explicit that the other participant would

be presented with the same set of sorted images. The participant only needed to click on an

image to mark it as an example, and it was automatically labelled. Mirroring the learning tasks,

participants were only allowed to provide two examples, which is the number of examples

sufficient to fully specify the correct boundary. Intuitively, selecting two adjacent images with

different labels is sufficient to identify the boundary in this task.
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Materials

All the images were selected from the MultiPic databank of standardized color drawings of

concrete concepts (Duñabeitia et al., 2018).

Procedure

Participants were randomly assigned to one of three groups: active learning followed by teach-

ing (N = 29), passive learning followed by teaching (N = 29), and teaching followed by active

learning (N = 30). The experiment was presented on a 27inch screen in a quiet room and lasted

for an average of 20 minutes (unspeeded). Following the experiment, participants completed

an open-ended questionnaire about the strategies that they used to solve the tasks.

Quantifying performance

Teaching performance was measured by the information gain, IGteach, which is the amount of

entropy by which the teacher reduced the imagined learner’s prior entropy H(b) by labelling

two images:

IGteach =H(b)−H(b|s1,s2, l1, l2) (3.1)

where s, l, and b respectively denote image stimuli, category labels, and potential bound-

ary locations. H is the Shannon entropy over the possible hypotheses, the prior entropy is

H(b) = −∑b∈B P(b) log2
1

P(b) , where P(b), the learner’s prior over the boundary locations, is

assumed to be uniform. The optimal teaching strategy is to label the examples immediately

preceding and following the boundary as this will eliminate any uncertainty about the location

of the boundary, thus reducing all of the original entropy. On the other hand, selecting an ex-

ample set that will leave the learner uncertain about the true hypothesis because many potential

boundaries compatible with the example set will translate into a lower information gain.

Using the observed information gain to evaluate active learning performance would intro-
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duce arbitrariness since it cannot distinguish a learner’s well-planned query from a lucky one.

An ideal learner should choose a query in light of their uncertainty about the labels that will

be observed. First, learners should compute the expected information gain of the queries by

weighing the posterior entropy by the probability of observing the given labels for the query

made and then choose the query that maximizes the expected gain. Therefore, EIGlearn, the sum

of the expected information gain of the first and second queries, was used instead of observed

information gain. The expected information gain of the first query is:

EIGlearn(s1) =H(b)− ∑
l1∈L

H(b|s1, l1) · ∑
b∈B

P(l1|s1,b)P(b) (3.2)

After observing the first label, the prior over the boundary locations is updated, and the

expected information gain is computed again relative to the entropy remaining after the first

labelled sample:

EIGlearn(s2|s1) =H(b|s1, l1)− ∑
l2∈L

H(b|s2, l2,s1, l1) · ∑
b∈B

P(l2|s2,s1, l1,b)P(b) (3.3)

Unless otherwise specified, statistical analyses of participants’ responses were performed

based on the average measures of IGteach and EIGlearn in the three trials of each task.

Decisions about the boundary location

In learning trials, after observing two labelled stimuli, participants marked the location of the

categorization boundary. Their choice could be assessed based on whether or not the selected

boundary was compatible with the labelled images they had seen. However, simply using the

proportion of compatible answers (across the three trials) to assess their performance ignores

the fact that trials differed in the number of remaining compatible boundaries. To control for

this and characterize performance appropriately, we fitted a model that captured the intuition

that participants behaved optimally and selected (randomly) from among the remaining com-

patible boundary locations in some r fraction of trials, while in the rest of the trials they “lapsed”
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and selected a boundary randomly among all locations:

P(choice = bi|s1,s2, l1, l2) = r ·1{bi ∈B
(i)
compatible} ·

1∣∣∣B(i)
compatible

∣∣∣ +(1− r) · 1
|B|

(3.4)

Thus, r = 1 indicates optimal behavior, while r = 0 indicates chance performance. We

estimated r for each participant by maximum likelihood (under the assumption that trials were

i.i.d). Plots presenting the relationship between the different measures of decision performance

are presented in Supplementary Information 3.6.2.

Data analysis

Predictions were directly tested using planned independent t-tests to compare the teaching in-

formation gain in the teaching first and learning first conditions. Paired comparisons were used

for the two groups who experienced being learners first, the active learners and passive learners.

Correlations were calculated between learning and teaching performance.

Post-hoc analyses were conducted to ensure that variables extraneous to the predictions

(e.g. stimuli) did not have a meaningful impact on performance or modulate the reported ef-

fects. The design of the experiment lends itself naturally to mixed model analysis, since it

allows fitting trial level data (without aggregation) and can describe variation arising from the

experimental design. Starting from a baseline fixed effects only model with the experimental

condition as a predictor of teaching performance, we sequentially fitted and compared models

using two additional fixed factors, learning performance and trial number (and their interactions

with the condition), as well as random intercepts for participant and trial identity (i.e. dimen-

sion used for classification of the objects). Fixed effects were tested using log-likelihood ratio

tests for nested models with the same random effects structure. Non-nested models were com-

pared using the Bayesian Information Criterion (BIC) and Aikaike Information Criterion (AIC).

Similarly, random effects (fitted via maximum likelihood) were tested using log-likelihood ra-

tio tests while keeping the fixed effects model identical. Given that the mixed-effects analysis

confirmed the results of the planned comparisons on the aggregated trial data, we will focus on
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these comparisons in the Results section for brevity and clarity.

3.3.3 Results

Descriptives

Despite the surface level simplicity of the teaching task, a large proportion of participants

(≈ 60 %) did not perform it optimally (i.e. did not choose the two images on either side of

the boundary as the teaching samples). However, prior active learning made it easier to gain

insight into the optimal solution for teaching. More than half of active learners, 17 out of 29

participants, performed at ceiling level by consistently (across the 3 trials) providing example

sets compatible with only one categorization boundary. In contrast, only 11 of 29 participants

in the yoked passive learning group, and 7 out of 30 of the participants who did not complete

a learning task before teaching managed to select the optimal example sets. The optimality of

active learning performance is discussed in Supplementary Information 3.6.2.

Teaching performance across conditions

Confirming the main prediction, participants who were active learners before being teachers

outperformed those who started directly with teaching, on average providing .63 bits, 95% CI

[.22, 1.05], of additional information to their (fictitious) learners (see Figure 3.2). The group

difference was highly significant in an independent t-test, t(57) = 3.04, p = .01, Bayes Factor

(BF) 3 = 10.81 in favor of the alternative hypothesis.

Learning passively before teaching conferred a smaller, but still significant, benefit relative

to foregoing learning. Passive learning increased teaching information gain by an average of

.45 bits, 95% CI [.05, .85], t(57) = 2.26, p = .03, BF = 2.16 in favor of the alternative.

While we found strong evidence in support of the differences between the groups complet-

ing the learning and teaching tasks in different orders, a possible concern was that these differ-

ences were not induced by the experimental manipulation per se. Specifically, if there are prior

3Bayes Factors were calculated for a null model that assumes a zero standardized difference between groups,
and a Cauchy alternative with a prior scaled to an effect size of .7, following Rouder et al. (2009).
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Figure 3.2: Teaching and learning performance across the three conditions. Each dot repre-
sents the information gain for one participant, averaged across the three trials of each task.
Crosses represent the 95% confidence intervals for the group means. Dotted lines represent
the expected mean information gain from teaching as a function of expected information gain.
Gray lines mark chance performance (see Supplementary Information for details). The maxi-
mum information gain for the task is 2.81 bits. The asterisks mark significance levels in inde-
pendent t-tests (* p <.05, ** p <.01).
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group differences in learning performance favoring the group that completed the active learning

task first, and learning performance is correlated with teaching performance, then the condition

effect could be just an artifact. In order to eliminate this possibility, a regression was performed

on teaching performance with both the group (active learning before / after teaching4), learning

performance, and their interaction as predictors. The group difference remained significant, β

= .62, p = .01, when controlling for expected information gain in learning, which was not a sig-

nificant predictor of teaching ability, β = .08, p = .81, nor did it interact with the group effect,

β = .68, p =.3. Figure 3.2 shows, for each condition, the estimated (non-significant) slopes for

information gain from teaching as predicted by expected information gain for learning. Cou-

pled with the fact that the difference in active learning performance between the two groups

was not significant, t(57) = 1.77, p = .08, BF = 1.28 in favor of the null hypothesis, this sug-

gests that the effect of the manipulation was not mediated by prior differences in active learning

performance. To investigate this issue further, the two groups were repeatedly resampled with

replacement such that the learning performance between groups could be matched and fixed at

different levels. Comparing the teaching performance across these resampled groups confirmed

the advantage of those who completed the learning tasks prior to the teaching task (the 95% CI

of the mean of the resampled groups’ differences did not include a null effect).

The second prediction of the study was that active learners would gain a larger benefit from

learning before teaching than the yoked passive controls. Active learners fared on average only

slightly better in the teaching task than their passive learning counterparts who were shown

the same labelled data, with an average difference of .18 bits, 95% CI [-.11,.47]. The dyads’

performance is illustrated in Figure 3.3. The difference was not significant in a paired t-test,

t(28) = 1.29 , p = .21, BF = 2.39 in favor of the null. It should be noted though that the paired

comparison was underpowered (post-hoc power = .24) given the magnitude of the observed

effect size. Further, this is possible that the relatively high rates of ceiling performance masked

the within dyad effect.

As stated above, there was no significant correlation between learning and teaching per-

4The same pattern of results was found for the difference between the group learning passively and then
teaching, and the one teaching before active learning.
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Figure 3.3: Teaching performance for the active-passive learning dyads. Each dot represents
the information gain from teaching for one dyad. In dyads situated under the diagonal identity
line, the active learner was the better teacher. A small Gaussian scatter was applied to make
overlapping dots visible.

formance. However, we observed a trend of increased within-dyad differences in teaching

performance for poorer active learning performance (Figure 3.4). This observation remains

purely exploratory as this was not a planned analysis and, moreover, the current design lacks

power for such a post-hoc test.

Mixed effects analysis

The best-fitting model contained the condition, F(2,85) = 4.30, p = .02, and trial number,

F(2,174) = 6.93, p = .01, as fixed effects, alongside a participant level random intercept (SD =

.70). The addition of the random intercept was judged meaningful based on the magnitude of

the variance at the participant level (SD =.70). It also led to a reduction in BIC, from 796.6 for

the fixed effects only model to 749.7.

The previous results regarding the condition effect hold, with a significant estimated differ-

ence of .63 bits, se = .22, t(85) = 2.94, p = .01, between the active learning first and teaching first

conditions. Similarly, no significant difference was found between active and passive learners,

estimated difference of .32 bits, se = .22, t(85) = 2.94, p = .01. Additionally, teaching per-
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Figure 3.4: The difference in teaching information gain within dyads of active and passive
learners as a function of the expected information gain for (active) learning. The fitted OLS
regression line is shown alongside its 95% confidence bound. Learning performance was not
a significant regressor of the difference in teaching, β = -.86, p = .07. The predicted within-
dyad teaching difference was .60 bits, p=.03, at a one bit expected learning entropy and de-
creased to zero for dyads with high expected information gain.

formance improved from the first to the third trial by an estimated .38 bits, se = .11, t(174) =

3.30, p = .01. However, performance improvement from the first to the second trial was not

significant, .02 bits, se = .11, t(174) = .17, p= .87.

Figure 3.5 illustrates the temporal changes in teaching and learning performance aggregated

by condition. While the interaction between the condition and the trial order was not statisti-

cally significant, it would appear that teachers who were passive learners first did not improve

their performance across trials, through repetition of the task, unlike the teachers from the other

two groups.

Decisions about the boundary location

In the active learning first condition, the mean of the best-fit individual r values was .79 (SD =

.35), whereas for those completing the active learning following teaching it was lower, .58 (SD

= .42). Yoked controls had the smallest average r, .51 (SD = .38). Active learners made better

inferences about the boundary location than their matched controls as the average within-dyad
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(a) Teaching performance (b) Active Learning Performance

Figure 3.5: Average group task performance (+/- SEM) broken down by trial number.

difference in estimated probability r was .28, t(28) = 2.99 , p = .01, BF = 7.29. The order of

the active learning task led to marginally significant differences in an independent t-test, t(57)

= 2, p = .05, BF = 1.37 in favour of the alternative.

The difference in r within active-passive learning pairs did not correlate significantly with

differences in teaching performance, r(26) = -.28, p = .13 (see Supplementary Information 3.6.2

for illustrations).

3.3.4 Conclusion

An improvement in teaching performance was observed for participants who engaged in active

learning prior to teaching. Three active learning trials, using different stimulus sets than those

used for teaching, were sufficient for the majority of participants to gain insight into the optimal

solution of the teaching problem on the first attempt. Furthermore, they were able to draw on

their experience as learners even though at the time of learning they had not been aware that

the teaching task would follow.

The poor performance of participants with no learning experience resonates with previous

findings of (Khan et al., 2011), who used a boundary teaching task as well, but did not constrain

the example set size by their design. It seems that simply asking teachers to generate the

minimally sufficient number of examples for optimal teaching was not enough to solicit the
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optimal solution.

The fact that the active learning benefit, relative to teaching first, was not modulated by the

initial active learning performance suggests that active learning can improve teaching across

the board, for poor and good active learners alike. However, prior active learning performance

may play a role in differentiating teachers in a more complex teaching scenarios. Indeed, the

surprising lack of a significant correlation between active learning performance and subsequent

teaching performance can be explained by ceiling effects.

The impact of passive learning on teaching, relative to the baseline teaching first group, was

smaller than that observed for active learning. However, we did not find a significant effect in

the matched comparison between active and yoked passive learners. It is important to note here

that the current task can be thought of as an insight problem, which means that there was less

scope for observing gradual differences in performance. Further, once insight was achieved

in the learning task, the solution was easy to verbalize, allowing the optimal strategy to be

explicitly transferred to the teaching task.

On the other hand, for poor performing learning dyads, we observed a difference in the

predicted direction. This suggests that in a more complex and ecological task in which the

learning is more gradual, and the optimal solution is explicitly unknown to participants, ac-

tive and yoked passive learners are likely to diverge more in terms of teaching performance.

This would provide evidence for a more automatic, implicit link between active learning and

teaching. In such a future teaching task it would also be interesting to examine whether the dif-

ferences between active and passive learners, matched for information content, are moderated

by the quality of the queries they both observe. Specifically, it should be tested whether the

negative linear trend we observed generalizes to non-insight tasks.

Lastly, it is surprising that those who performed the teaching task prior to the active learning

task did not differ in their expected information gain in the learning task, and, if anything, per-

formed poorer than their counterparts who started by active learning. This resonates with pre-

vious experimental evidence from the developmental literature that has also highlighted more

subtle ways in which being taught can hinder learning, for instance by limiting subsequent
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exploration (E. Bonawitz et al., 2011b). It is an intriguing idea that, perhaps, not just the expe-

rience of being taught, but also teaching itself, can have an effect on exploration. Alternatively,

if we assume that the teaching task is more cognitively demanding as it has a meta-cognitive

component engaged in reasoning about the learner’s knowledge and inference making, results

can be explained by the known effect that an easier-to-harder progression of tasks is beneficial

for learning, while the opposite order does not provide an appropriate stepping stone for active

learning. On the other hand, Yang et al. (2019) argue that active learning can be re-formalized

to also include a meta-cognitive aspect, reasoning that is applied reflexively to one’s own rea-

soning.

To conclude, active learning proved to be a reliable intervention to improve teaching per-

formance, but we did not find conclusive quantitative evidence for a benefit of active learning

above and beyond passive (yoked) learning. It is important to investigate if the effect of ac-

tive learning generalizes to more complex and more ecologically valid tasks, or even between

more dissimilar learning and teaching tasks. If it does, it will open the way for quantitative

inquires about whether successful teaching benefits from the ability of taking the perspective

of an active learner and as such can be improved by prior active learning.

3.4 Experiment 2

3.4.1 Introduction

Experiment 2 was designed to conceptually replicate as well as extend the findings of Exper-

iment 1. As previously, dyads of active and yoked learners were contrasted in their ability to

subsequently teach others how to categorize stimuli. However, the classification learning task

employed two dimensional perceptual stimuli and was extended in time. These changes were

were made in order to address several limitations of Experiment 1.

First, the use of a perceptual learning task with continuous-values stimuli makes it less

likely for any strategies acquired in the learning phase to be transferred to the teaching task in

an explicit manner. Second, the task of Experiment 2 was expected to result in larger interindi-
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vidual differences in both learning and teaching performance to enable testing the relationship

between active learning and teaching performance. Across two conditions, participants learned

different category structures. This allowed for titration of task difficulty to avoid prior ceiling

effects.

In the Rule Based condition (RB), the two categories were defined based on a one-dimensional

boundary applied to the two dimensional stimuli, making one feature irrelevant to the task. In

contrast, both features were relevant for Information Integration (II) categories. Aside from

the RB category structure leading to faster learning than the II condition, it has previously

argued that learning of the II category structure is procedural or implicit and relies on predeci-

sional integration of features (Maddox & Ashby, 2004), whereas participants test explicit and

verbalizable hypotheses to learn RB categories. Active learners have been shown to engage in

protracted use (incorrect) unidimensional rules when attempting to learn II categories (Markant

& Gureckis, 2014) on this task.

The teaching task conceptually matched that of Experiment 1: selecting a predefined num-

ber of examples to an imagined learner. However, teachers had to sample the examples from

learned representations that varied in associated uncertainty (corresponding to how well they

had learned the categories themselves). Further, teachers designed the stimuli themselves,

rather than making forced choices from a predefined array of possible examples. Previous

work has found that people are optimal in choosing the most informative question from a given

set of possible questions, and yet they do not manage to generate the most informative questions

themselves (Rothe et al., 2018). We predict a similar pattern occurs in the case of teaching. In

light of the increased difficulty of the teaching task, we will primarily qualitatively compare

performance to the predictions of the rational pedagogical model, but also use metric for teach-

ing that relate to the performance of a näive learner. To that end, we will compute a metric akin

to the number of compatible hypotheses consistent with the teaching set (like in Experiment

1) as well as the area inscribed by the teaching sets as a measure of how much of the stimu-

lus space will be familiar to the learner, and how close are the chosen examples to the taught

boundary.
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Given that the stimuli used were two dimensional, but category structures could be one or

two-dimensional, teachers had to chose strategies to emphasize to their learners whether just

one or both features were relevant for distinguishing the two categories. Specifically, since

active learners in the II condition tend to choose queries consistent with RB category struc-

tures, teachers should use examples that signal that both features are involved in the category

definition. However, in the RB condition, it is unclear whether teachers will design examples

to rule out possible II category structures, either because they failed they realize these kinds of

hypotheses are possible or because they believe they learners, much like themselves, will not

consider II category boundaries.

Based on performance during the learning task, and subsequent testing of the inferred cat-

egorization, it is possible to measure how effective participants were as active learners, their

subjective boundary (the hypothesis to be taught) and how uncertain they were in their final

subjective classification boundary. As mentioned in the study motivation, the intuition (which

matches predictions of the rational pedagogical model) is that teachers who are more uncertain

about their own classification boundary, should provide more extreme examples that will avoid

potentially misleading the learner.

A last goal was to explore the order of the teaching examples. Teachers were told ahead

of time how many examples they could provide to learners, so we expect that they engaged in

planning, as opposed to making a decision about the best example at every time step. However,

it is still likely that order effects will be found. Active learners on the task are expected to follow

a strategy of first exploring the extremes of the stimulus space and then narrowing their queries

towards the location of the inferred boundary. Given that teachers know learners will visualize

the taught examples sequentially, we expect teachers to follow a corresponding curriculum

teaching approach. Thus, unlike previous instances of batch example teaching, manipulating

the order of the teaching examples could be highly relevant for successful teaching on this task.

The learning task was closely adapted from Markant and Gureckis (2014), who in turn

adapted it from Ashby et al. (2002) for use with active learning using the (Nosofsky, 1989)

(circle and radial line) stimuli. The original Markant and Gureckis (2014) study varied the
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learning method in four conditions: active learning, yoked passive learning, aware yoked pas-

sive learning (learners were told they were yoked to another participant), and reception learning

(no-feedback supervised learning). Due to the limited participant pool available for lab-based

experiments, only the two conditions directly relevant for the current hypothesis were used,

although all four conditions would present interesting additions to Experiment 2.

3.4.2 Methods

Participants

81 participants5 (61 female, Mage = 26.67 years, range = 18 - 50 years old) were recruited

for a lab-based experiment from multiple of participant pools: the university online research

participation system, the student union of a local university, first year undergraduate students

enrolled in a Psychology course, and personal contacts naive to the purpose of the experiment.

As a function of the recruitment platform, participants volunteered their time in return for

course credits, received monetary compensation or vouchers worth 1,500 HUF (approximately

e4 at the time of participation).

Sample sizes were calculated based on effect sizes estimated from Markant and Gureckis

(2014) results. The sample size was reduced from 30 participants/ condition in the original

experiment to 20 participants/ condition. This ensured a power of approximately .6 for the

main comparison of the categorization performance between active and yoked learners.

Ethical approval for the experiment was obtained from the United Ethical Review Commit-

tee for Research in Psychology (EPKEB) in Hungary.

Procedure

All participants completed the learning task first and the teaching task second. Participants

were not informed that they will be completing a teaching task before starting the learning

5One participant from the active learning condition was excluded from the analysis and replaced as data
inspection revealed they did not comply with task instructions and queried the same edge of the stimulus space
throughout the entire task.
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task. At the end of the learning task, participants were prompted to inform the experimenter,

who then explained the teaching task.

The same cover story was used during learning as in Markant and Gureckis (2014). Briefly,

participants were told that they would see depictions of loop antennas that received one of two

television channels. Which channel was received depended on how the antennas looked and

their task was to distinguish Channel 1 receiving antennas from Channel 2 receiving antennas.

As a function of the learning condition to which they were assigned, participants were then told

that they would learn about antennas either by designing their own and checking which channel

they receive, or by being shown antennas together with the channel they received.

Following the instruction presentation, the average experiment duration was 44 minutes for

participants assigned to the active learning condition and 21 minutes for participants assigned

to the yoked condition.

Active learning

At the start of each active learning trial, a randomly generated stimulus was presented on

the screen. The participant then modified the size of the circle and/or the orientation of the

diameter line by moving the mouse horizontally while pressing one of two keyboard keys (‘X’

or ‘Z’). Once the participant was satisfied with the designed stimulus, they could check the

label by making a mouse click. The stimulus features could only be changed one at a time.

Participants were required to make manipulate at least one dimension of the stimulus to be able

to see the category label. There was no time limit for making alterations to the stimuli. The

stimulus and category label were then presented together for 1,500ms.

Yoked passive learning

Each trial started with the brief presentation of a fixation cross (250ms). Then, the stimulus

was shown for 250ms on its own before the channel label was added. The stimulus and label

were jointly presented until the participant pressed a button corresponding to the label shown

on the screen. Participants could only advance to the next trial if their answer was correct.

Responses were elicited from participants to ensure that they attended the stimuli during the

otherwise passive learning phase.
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Crucially, the stimuli shown to yoked learners were the stimuli designed their paired active

learner, and were presented in the exact same order.

Test

Test trials were identical for the two conditions. A stimulus was presented on the screen

and the participant had to press one of two buttons corresponding to its category (i.e. whether

they thought the “antenna” was more likely to receive Channel 1 or Channel 2). Participants

were not provided with trial-by-trial feedback, and were only shown the percentage of correct

answers at the end of every block. Unlike in Markant and Gureckis (2014), participants were

not asked to provide a confidence judgement after every categorization choice. This decision

was made in order to shorten the length of the experiment (which was increased by the addition

of the teaching phase), given the fact that it was not directly relevant for the current hypothesis.

Test stimuli were sampled uniformly for the quadrants of the stimulus space to ensure that

the test phase did not bias participants’ representation of the two categories and to ensure that

across all conditions chance performance was 50%.

Teaching task

The teaching task required participants to design stimuli using the same procedure that

active learners had previously used to generate queries. However, this procedure was new

to the yoked learners. In order to ensure that passive learners had a comparable mastery of

how to produce the examples, participants were allowed to first explore the setup for as long

as they wanted and then they performed an additional practice task. Participants were shown

two antennas on the screen in two different colors: a fixed target blue antenna and a randomly

generated black antenna that they could modify. Their task was to manipulate the black antenna

until it perfectly matched the target antenna. All participants performed at least 4 trials of the

practice task in the presence of the experimenter. Participants were given additional practice

trials if they were not sufficiently competent at designing the antennas.

Participants were told they are going to teach another participant who is yet to take part in

our experiment which antennas receive Channel 1 and Channel 2. It was stressed that these

participants were naı̈ve about the stimuli and that they too will be performing a categorization
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test like the one that the participant just completed. Participants were then told that the only

constraint for the teaching task was that they can only provide a maximum of 6 antenna ex-

amples. They were encouraged to give examples that would be as helpful as possible to the

learner.

Participants first had to choose the channel their example antenna received by clicking

on one of two buttons. Then, a randomly generated antenna was drawn on the screen and

they could manipulate it to design their intended example. An example counter was always

presented in the bottom corner of the screen to ensure participants knew how many examples

they had selected so far. Example selection was unspeeded.

Following the example selection, participants were prompted to type answers to an open-

ended questionnaire about their teaching strategies, if any, and how they would have taught

another participant if they could verbally communicate to them.

Design

The learning task was closely adapted from Markant and Gureckis (2014). A 2 (learning type)

by 2 (category structure) between participants design was used. Participants were randomly

assigned to one of the two category structures (RB or II). Each yoked participant was paired to

an active learner.

All features governing the presentation of the stimuli were counterbalanced: the feature

relevant for classification in condition RB (orientation or circle radius), the diagonal (fist or

second) used for the II categorization, the mapping between the two keyboard buttons and the

features, the mapping between the mouse direction of movement and the relative direction of

changes in the stimuli presented on the screen.

The learning tasks consisted of eight blocks. Each block contained 16 training trials fol-

lowed by 32 test trials.

The number of teaching examples was constrained to a predetermined value to ensure a

fair comparison between participants on the teaching task. A fairly low number of teaching

examples was preferred in order to both stress to participants the importance of selecting good
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examples and to result in well powered comparisons against predictions based on random sam-

pling (as pedagogical sampling and random sampling become indistinguishable with larger

numbers of samples). Further, 6 examples would be sufficient to optimally describe the two

categories. The exact number of teaching examples was determined based on a small pilot (5

participants6 who were learners in the RB condition) using the same active task and in which

participants were allowed to choose up to 12 teaching examples. The pilot was primarily used

to check if the active learning stimulus selection procedure was implemented correctly and that

participants found it easy to use.

Stimuli

The stimuli were circles defined by the size of the radius and the orientation of the diameter.

These stimuli are widely studied in the categorization literature. The two features that define

the stimuli have been shown to be perceived as independent by Nosofsky (1989).

Minimum, maximum and range values of the radius of the circles were determined in re-

lation to the computer screen size (27inch) and sitting distance. The same range was used for

every participant, but the minimum value was pseudo-randomly sampled given the maximum

possible stimulus constraint. For the orientation, a range of 90 degrees was used. This avoided

the use of circular variables (150 degrees in the original design), and the value of the minimal

angle was pseudo-randomized for every participant.

The deterministic boundary between the two categories in the rule based condition was

always midway through the stimulus space and in the II condition it was either the first or

the second diagonal. Since every participant had a different boundary in perceptual space, we

rescale stimuli to an abstract stimulus space for all analyses and illustrations (although arbitrary,

the Markant and Gureckis (2014) ranges are used for ease of comparison).

The task was coded in PsychoPy3 and the anonymized data are available at tinyurl.com/

27em6ajf.

6At the time of the pilot, we were not aware of the Avrahami et al. (1997) experiment. They found that par-
ticipants chose on average 7 examples, confirming with a much larger sample that this is a range comparable to
what teachers would have done naturally.
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Data analysis for the learning task

The main data analysis used by Markant and Gureckis (2014) was replicated for the learning

task. Active and yoked participants were compared in terms of their test performance across

blocks7. We show both ANOVA between group comparisons as in Markant and Gureckis

(2014), as well as within-dyad comparisons for categorization accuracy.

The performance of the active learners was quantified by the distance from their queries to

the true boundary, as well as to their subjective boundaries. Individual subjective boundaries

were fitted for every categorization test block to allow tracking of how participant’s boundaries

changed with learning and to provide a more suitable metric for the sampling behaviour of

active learners. This is especially relevant in the II conditions where a lot of participants did

not converge to the true boundary by the end of the experiment.

The subjective boundaries were fitted using a decision-bound model. Participants were

assumed to provide probabilistic category membership responses for a stimulus as a function

of its location relative to a linear boundary traversing the two-dimensional stimulus space. The

likelihood of one stimulus being categorized as ‘Channel 1’ is given by Equation 3.5 where

x is the stimulus as defined by the two perceptual dimensions, θ is the angle of the linear

boundary, b is the orthogonal distance from the center of the space to the boundary, and σ is

the determinism of the boundary.

P(xtrial = CH1|θ ,b,σ) =
1

1+ exp(−σ(xtrial
1 · cos(θ)+ xtrial

2 · sin(θ)−b))
(3.5)

The interpretation of the fitted parameters (θ ,σ ,b) is visually illustrated in Supplementary

Information Figure 3.31. For every decision-bound model, a random-response model was fitted

accordign to which participants choose a category according to a given probability without us-

ing the location of the stimulus in the stimulus space. Comparisons were performed between the

random and decision-bound models using the Aikaike Information Criterion (AIC). Figure 3.35

7Response times were collected for trials/decisions in all tasks, but are not presented in the data analysis.
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in the Supplementary Information shows the AIC values for the random and decision-boundary

model for every participant. Participants who were not better fit by the decision-bound model

were eliminated from the analysis.

Figure 3.6: Random sampling of stimuli to offer as examples for the four boundaries used
in the task. The farther from the boundary an example is, the more likely to be chosen as a
category example.

Teaching task quantification and predictions

As a first check, we test whether the samples pooled across participants in the different condi-

tions significantly departed from random uniform sampling across the stimulus space. Specif-

ically, the empirically observed distribution of samples in the stimulus space was compared to

uniform sampling using the Kolmogorov-Smirnoff test (KS). The KS test computes the distance

between two empirical cumulative distributions of two samples to assess whether the samples

likely came from the same distribution.

Given that the participants’ behavior in the categorization test is well captured by the

decision-bound model, it can be used to compute the likelihood of examples under random

sampling. This intuitively predicts that an example is more likely to be selected if its orthogo-

nal distance to the category boundary is larger (see Figure 3.6). This leads to a large number of
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(a) Large σ - Boundary is highly deterministic

equiprobable teaching tests.

Predictions were also generated from an iterative pedagogical sampling model (Shafto et

al., 2014). To make the computation of the likelihood and posterior tractable, the stimulus space

was discretized into a 6x6 grid, and the probability of a stimulus being selected as a teaching

example was calculated only for the resulting 36 locations. The set of possible hypotheses

considered was the set of lines defined by combinations of θ values of 0◦,45◦,90◦,135◦ (corre-

sponding to the orientations of the true boundaries used in the task) and center biases of -1, 1,

and 0. This resulted in 12 possible hypotheses. The teaching sets were all the possible (order

invariant) sets of six examples with all permutations of category labels such that three examples

belong to one category and three to the other (C36
6 ·

6!
3!3! example sets). The α parameter was

set to 1 and the starting probability of choosing an example was proportional to the factorized
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(b) Small σ - Responses are stochastic around the boundary

Figure 3.7: Predictions from the pedagogical model for the likelihood of choosing examples
at different locations in the stimulus space. The most probable example sets are overlaid in
red and the hypotheses are drawn in black.
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Figure 3.8: Predictions of the pedagogical model for teaching only RB categories. Red dots
represent the most likely example set under pedagogical sampling.

probability of the stimuli belonging to a given category.

Given the fact that each participant had a different subjective boundary and associated

boundary determinism, we tried to extrapolate general predictions from the pedagogical model

to test on the current sample rather than perform a direct model fit to the behavioral data.8

Figure 3.7 shows the predictions for a case in which high and low values of σ . When the

boundary is highly deterministic, the most likely pedagogical examples are situated in close

proximity of the boundary. Note that these examples do not necessarily uniquely define the hy-

pothesized boundary. For instance, in Figure 3.7, most likely examples for the vertical boundary

running through the middle of the stimulus space are also compatible with a horizontal bound-

ary. However, examples vary maximally in the categorization irrelevant dimension, and vary

minimally in the relevant dimension. In this case, the use of very low or very high variability

is intended to highlight a the saliency of features. In order to explore whether participants used

this strategy, we computed for every participant the ratio of variance in stimulus distances from

the categorization dimension to the variance in distances to the categorization irrelevant di-

8We did calculate the probability of each participants’ teaching set based on a strong sampling model on the
discretized 6x6 grid and using their individual inferred parameters. We found the sets for most participants to
be highly consistent with strong sampling. Unfortunately, it was not possible to do the same for the pedagogical
sampling assumptions to then apply a LRT due to computational demands.
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mension (orthogonal to the boundary). Another intuitive pattern for examples compatible with

multiple boundaries is that the to-be-taught boundary is the ones that ensures minimal separa-

tion between the examples from the two categories (Figure 3.7 subfigure on row one, columns

1 and 3). In order to check for this in the behavioral data, we computed the orthogonal distance

between examples closest to the boundary on opposite categories (detailed below).

Lastly, predictions were made for teaching RB categories assuming a strong prior for axis-

orthogonal boundaries (see Figure 3.8) for comparison with the teaching samples for the RB

category structure. Here all possible vertical and horizontal boundaries were used as hypotheses

(10 boundaries on the 6x6 grid). The pattern of results was the same as described above.

(a) Example set that demonstrates the possible strategies of a fictitious learner. There are multiple
boundaries that perfectly separate the examples (but the green line does not). The black line minimizes
the orthogonal distance between the 2 closest examples. The gray line is the maximum-margin dis-
tance boundary which maximizes the orthogonal distance between the two closest examples of differ-
ent class. If these samples would be randomly generated, a learner would not have any reason to prefer
one boundary over another (absent any priors about the category structure. Learners who receive ped-
agogically sampled examples may believe that the black boundary is more likely because it minimizes
the distance between classes.

(b) Participant using the maxi-
mum area strategy.

(c) Participant minimizing the
set of consistent boundaries.

(d) Participant who scores low
on both metrics.

Figure 3.9: Teaching samples (dots in the two dimensional stimulus space) offered by two
experiment participants in the RB condition. Purple lines represent their subjective boundary
inferred based on the last test block. Dot colors represent the category labels chosen by the
participant and area colors represent the ground truth.

In addition to predictions that take into account learners who make pedagogical sampling
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assumptions, we quantified teaching performance with reference to näive learners. Thus, or

every teacher’s set of samples, we determined the subset of linear boundaries that were com-

patible with the spread of examples in the stimulus space. The reasoning is that a good set of

examples should result in only a limited set of probably hypotheses (with the hypothesis to be

taught being among them), and thus decreasing a náive learner’s uncertainty about the correct

boundary. A boundary was deemed consistent with an experiment set if it perfectly (linearly)

separated examples from the two conditions, and the resulting labeling of items left or right

of the boundary matched the actual category choices. The space of possible boundaries was

determined by the bivariate space of all θ and b values such that the line they defined crossed

the stimulus square. The number of boundaries consistent with an example was then divided

by the total number of boundaries considered (a fine uniform grid over the boundary space).

This metric assumed that learners would treat the task as a linear classification task. Al-

though this seems like a likely assumption, this may not necessarily be the case when receiving

such a small number of examples, and learners might not generalize the two categories beyond

the examples they had been shown. In this case, to cover the entire variety of exemplars con-

tained within a category, an intuitive strategy is to show learners the examples that inscribe the

largest possible stimulus area. This strategy has considerable overlap with the minimum con-

sistent set strategy described above, but the two can be dissociated. Figure 3.9 shows individual

participant data that illustrates these strategies. While the orthogonal distances of the examples

to the subjective boundaries in both cases are very small, a naive participant seeing the labeled

examples in (b) might draw a diagonal boundary leading them to wrongly classify a large area

of the stimulus space. However, in panel (c) all consistent boundaries are very similar and the

potential for misclassification is low.

The area of the polygons9 inscribed by the examples given by the participant for each

category was calculated separately. The polygon areas corresponding to each category were

summed up after removing the intersecting areas. The larger the area provided by the teacher,

9The majority of participants chose to give three examples for each category, meaning that a triangle is de-
fined for each half of the stimulus space. For the few participants who decided to use an asymmetric number
of examples across the two categories, we could not calculate an area for one of the categories, so only the area
corresponding to examples from one category is used.
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the more uncertainty is removed for a potential learner about how the stimulus space is divided

into the two categories, under the assumption that learners believe there is continuity in the

feature space occupied by a category. This metric is an analogue in perceptual space for the one

used by Shafto et al. (2014) in the rectangle game. As before, this metric can be compared with

the distribution of areas produced under random sampling of examples from the two categories.

Determining which boundaries are and are not compatible with an imagined example set

is in all likelihood a very taxing strategy for teachers. It is a difficult task not just because of

the infinite hypothesis space, but also because it requires anticipating that another participant

(without a similar learning experience) may form hypotheses about the boundary consistent

with a different category structure. To measure this, the ‘boundary distance’ was computed as

the minimal orthogonal distance of the closest examples on either side of the subjective bound-

ary of the teacher.1011 Moreover, this measure captures the intuition behind the pedagogically

generated examples, that learners who view examples generated pedagogically will choose a

boundary that minimizes the separation of the examples from the two categories. Figure 3.9a

provides an illustration of the learner’s inference problem.

It can be expected that poor learners, who were still uncertain about the location of the

boundary at the end of the training, would choose examples fairly far apart to avoid mislabeling

them, and therefore, misguiding the learner. To that end, if learners are aware of their own

limitations as learners, there should be a negative correlation between the σ parameter fitted in

the last test block of the experiment and the boundary distance measure described above (as well

as average distance from boundary). One concern regarding this metric is that since it inherently

relies on the subjective boundaries of the participants, noise due to not just the participant’s

inherent uncertainty in the boundary influences the distances, but also the estimation noise.

Thus, it is possible that this measure is not very robust.

Lastly, as the pedagogical model predicts, examples vary considerably along on a dimension

parallel with the decision boundary while keeping the distance to the boundary relatively fixed.

10For one-dimensional stimuli, the distance metric is the continuous equivalent of the number of consistent
boundaries (hypotheses) used in Experiment 1.

11This approach is in direct contrast with the canonical solution for classifying linearly separable datasets
using SVMs, namely choosing the maximal separation boundary.
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Therefore, we checked the distribution of distances from the boundary, but also from the line

orthogonal to the boundary to check if participants were using variability as a cue to the relevant

classification dimension.

The main hypothesis of the experiment concerned significant differences in the pedagogical

sampling efficacy of the active and yoked learners. Paired t-tests were conducted within dyads

on the metrics described above. The subjective teacher boundaries, where used, were the ones

inferred from the last teaching block. Since it would not be meaningful to investigate the

teaching behaviour of participants who did not learn any boundary by the end of the task,

participants whose test responses in the last block were better fitted by the random response

model were excluded from the experiment.

Further, the data will be visually inspected for any example order effects consistent with

curriculum teaching (examples initially further away from the boundary). To test whether there

were any consistent strategies within participants, examples will be labelled as extreme, central

or close to the boundary and the distribution of example types (in order) across participants will

be compared to chance.

Lastly, differences were expected in the final categorization performance of active and

yoked learners. This raises the concern that any within-dyad differences in teaching perfor-

mance stem solely from yoked learners have a more uncertain/poor representation of the two

categories. In order to check for differences independent of the accuracy at test, groups of ac-

tive and passive learners were subsampled with replacement such that they had roughly equal

performance at test, and compared in their teaching performance.

3.4.3 Results

Categorization Performance

Overall, results were highly consistent with the findings of Markant and Gureckis (2014). Par-

ticipants in the RB condition outperformed participants in the II condition at test (see Fig-

ure 3.10). Further, active learners, regardless of condition, were more likely to be correct in
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Figure 3.10: Overall accuracy in categorization. Bars represent standard error of the mean.

the categorization test than yoked learners. A 2x2 between participants ANOVA resulted in

significant main effects of learning mode, F(1,77) = 14.40, p < .001, and category structure,

F(1,77) = 37.65, p < .001, without a significant interaction. These differences remained sig-

nificant in the last test block of the experiment.

The overall categorization accuracy of active learners was directly compared with that of

the passive learners they were paired with in Figure 3.11. The vast majority of active learners

surpassed their paired yoked learner. Within-dyad differences were statistically significant in

paired t-tests, t(19) = 3.04, p = .01,BFalt = 7.13, for the RB structure, and, t(19) = 2.82, p =

.01,BFalt = 4.75, for the II structure.

Figure 3.11 shows how average categorization performance changes across the eight experi-

mental blocks and Figure 3.32 illustrates each individual’s learning trajectory. The performance

of RB active learners reached almost ceiling levels half way throughout the task, while II active

learners barely surpassed 80% accuracy. The performance of passive learners was consistently

lower and plateaued earlier. Note that applying a one-dimensional rule in the II condition would

result in around 75% accuracy.

The subjective boundaries fit to every test block are shown in Figure 3.12. For the RB cate-

gory structure, subjective boundaries converged by the end of the task to the true boundary, for

both active and yoked participants. In the II structure, subjective boundaries tended to be axis-

aligned, especially in the early blocks. For yoked participants learning the II structure, there
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Figure 3.11: Average categorization accuracy by experimental condition and block order (Up-
per panel). Vertical lines represent the standard error of the mean. Using a unidimensional
rule in the II condition would result in about 75% average accuracy. Lower panel shows
within dyad categorization performance differences. Each dot represents a dyad. All axes dis-
play the proportion of correct responses.

was no discernible convergence pattern by the end of the task, but a large proportion of active

learners in the II condition were fitted by boundaries that were not axis-aligned and relatively

close to the true boundary. While overall the participants’ categorization was better fitted by

the decision-bound model, there were participants whose behaviour was better described by

the random response model, when adjusting for the number of parameters used by the model.

This differed across the two category structures as only 84.37% of test blocks in the II condi-

tion were better fitted by the decision-bound model than a random response model (according

to the AIC criterion), compared to 93.44% in the RB condition. Further, the final test block

responses of 10 (out of 20) yoked learners in the II condition were fit equally well by strict one-
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dimensional boundaries, while the same was true for only 3 (out of 20) of the active learners in

the II condition. Supplementary Information 3.33 shows individual boundary fits overlaid on

participants’ choices.

(a) RB category structure - Active Learners

(b) RB category structure - Yoked learners

(c) II category structure - Active Learners

(d) II category structure - Yoked Learners

Figure 3.12: Fitted boundaries for all participants (purple) against true boundaries (black).
Stimulus spaces were rotated in order to be able to overlay boundaries of all participants.

Active learning performance

All active learners started by making average queries that were farther away from the boundary

than can be expected based on a random sampling strategy. This pattern is consistent with

an early exploration of the extremes of the stimulus space. The oversampling of extremes

can be seen in Figure 3.14 which shows all the stimuli designed by participants across the

eight learning blocks (see individual plots of the queries in Supplementary Information 3.34 ).

Figure 3.13 illustrates the gradual decrease in the average distance of queries to the boundary,
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for both the RB and the II condition. While participants in the RB condition made average

queries that were lower than the random-sampling expectation starting roughly from the middle

of the task, this never happened for participants in the II condition. In the final block of the task,

RB participants made queries well below chance level, t(19) =−3.90, p < .001,BFalt = 37.80

(2-tailed), but not II participants, t(19) =−1.56, p = .13,BFnull = 1.52.

There was a strong relationship between the average query distance and the average ac-

curacy at test for active learners (Figure 3.15). Active learners who chose samples closer to

the boundary performed better at test, both in the RB (r(18) = −.57, p < .01) and II (r(18) =

−.64, p < .01) conditions. On the other hand, there was no significant correlation between

the test accuracy of passive learners and the distance from boundary of the stimuli they saw

(RB : r(18) = −.08, p = .72;II : r(18) = −.20, p = .39). This lends support to the idea that

the quality of the observed data did not impact the performance of yoked learners, confirming

Markant and Gureckis (2014) predictions.

Figure 3.13: Average query distance to boundary for the group (black) and individual par-
ticipants (gray). Bars represent standard errors of the mean. The dashed line is the expected
query distance under random sampling for each corresponding category structure. Asterisks
are displayed above blocks where the average query distance differed from the chance signifi-
cantly in a one-sample two-tailed t-test (α < .05).
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(a) RB category structure

(b) II category structure

Figure 3.14: Queries made by all participants across the 8 active learning blocks. Each dot
corresponds to the angle and radius size that defined a stimulus. Stimuli have been rotated
such that the true boundaries are aligned for all participants.

Figure 3.15: Scatterplot of the average query distance from the true boundary against overall
categorization performance (of active learners or paired yoked learners). Each dot is a partic-
ipant. Correlations are significant for active learners (upper plots), but not between an active
learner’s categorization accuracy and their paired active learner’s query distance (lower plots).
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Teaching Performance

Participants had high levels of accuracy when offering examples, that is, the examples they

gave for a particular category actually belonged to that category 90% of the time. Figure

3.37 shows all examples offered alongside the chosen categories. Participants overwhelmingly

chose to give an equal number of examples from the two categories (77.50%). Supplementary

Information 3.38 plots the teaching examples separately for each participant.

Distribution of examples (group level)

Figure 3.16: Frequency of teaching examples across the stimulus space (pooled across all par-
ticipants). Color intensity corresponds to the number of examples in each bin. Each cell con-
tains about 3% of samples under uniform sampling of the stimulus space.

Figure 3.16 shows the spread of all teaching samples across the stimulus space. Qualita-

tively, at the group level, example selection is compatible with pedagogical sampling assuming

very low boundary determinism, which predicts oversampling of extreme stimulus values. This

was expected, at least for the II category structure, given the variability in boundaries intended

for teaching, but was surprising for the RB category where participants were generally very pre-

cise in the last categorization test. The distribution of examples under both category structures
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was different from uniform sampling. However, for RB categories, the variation along the clas-

sification irrelevant feature was indistinguishable from uniform sampling for yoked learners.

Figure 3.6.3 details the statistical test results.

Visual inspection suggested that participants oversampled the corners of the stimulus space.

This can also be seen in Figure 3.17 which presents distances from the categorization bound-

ary (relevant dimension) and distances from the line orthogonal to the categorization bound-

ary (irrelevant dimension). Maximal distances from the boundaries were over-represented for

both category structures. In the II condition, the distribution of examples was at least bimodal

(Hartigans’ dip test for multimodality: D = 0.04, p = 0.02). This was not the case in the RB

condition, as there was one clear peak corresponding to maximal distances.

Further, as predicted based on the pedagogical sampling model that participants would

choose values that vary more along the dimension orthogonal to the categorization bound-

ary. At the sample level, teachers in the RB condition who were active learners oversampled

both extremes of the stimulus space when choosing the value of the irrelevant feature (Fig-

ure 3.17,D = .085, p < .001). This pattern was consistent with flagging corners of the stimulus

space. However, as a group, teachers who were previously yoked learners uniformly sampled

values for the irrelevant feature (D = .04, p = 0.13). The same applied for II category teachers,

both active and yoked.

Differences between active and yoked learners

The primary metric for the quality of teaching was the proportion of boundaries compati-

ble with the examples, the smaller the better. As seen in Figure 3.19, active learners surpassed

passive learners in the II condition, t(15) =−2.26, p= .04,BFalt = 1.82, but not in the RB con-

dition, t(15) = −.72, p = .48,BFnull = 3.12. Four participants (2 yoked and 2 active learners)

who produced example sets that were not linearly separable, and they were excluded from all

the paired tests presented along with their dyad partners. There was no difference in the number

of consistent boundaries between the two category structures, t(62) = −.36, p = .72,BFnull =

3.70.

For every participant, the area of the polygons inscribed by examples from each category
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Figure 3.17: Left: Histogram of the orthogonal distances between the chosen teaching exam-
ples and the boundary. Right: Histogram of the distances between teaching samples and a line
orthogonal to the boundary (corresponding to the irrelevant feature in the RB condition or the
opposite diagonal in the II category). The values presented were rescaled to maximum possi-
ble distance from the subjective boundary.

Figure 3.18: Ratio of standard deviations. Numerator: orthogonal distances of teaching exam-
ples to the subjective categorization boundary. Denominator: orthogonal distances of teaching
examples to the line orthogonal to the subjective categorization boundary. Pedagogical pre-
diction is that the ratio should be smaller than 1.
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Figure 3.19: Proportion of boundaries compatible with the teaching examples. Each dot is
a dyad. Crosses mark the sample means. Grey dots correspond to dyads in which one of the
participants did not choose a linearly separable example set and were not included in the anal-
ysis.

was calculated, subtracting any potential overlaps between the areas corresponding to the two

categories. Overwhelmingly, participants chose three examples in each category, so this corre-

sponded to the area of two triangles. Intersections occurred for only 10% of participants and

were generally small. Active learners outperformed their yoked dyad counterparts according

to the area teaching metric (see Figure 3.20), selecting examples that inscribed a significantly

larger area of the stimulus space in the II condition, t(17) = 3.66, p < .001,BFalt = 21.13, but

not in the RB condition, t(17) = 1.87, p = .08,BFalt = 1.02.

Figure 3.20 shows the distribution of areas that can be expected from random sampling

from the two categories calculated based on large simulations (n = 106). The expected mean

area of a random triangle inscribed in a unit square and the area distribution function can also be

computed analytically (µ =≈ .072, Weisstein (n.d.)). The mean areas produced by participants

were larger than the the mean expected by random sampling for active learners, but was roughly

the same for yoked learners. For each condition, a two-sample KS test was run to test if the

distribution of areas produced by participants significantly differed from the random sampling

(simulated) distribution. The KS tests in the active groups found significant differences, RB:

D = .44, p = .001, II: D = .56, p < .001. However, the null was not rejected for the yoked
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learner groups: RB: D = .17, p = .62, II: D = .22, p = .31.

Figure 3.20: Upper panel: Area of polygons inscribed by the teaching examples, summed
over the two categories (excluding overlap). Areas are scaled by the total stimulus space size.
Each dot is a dyad. The black cross represents the observed sample means, and the purple
cross represents the mean expected from random sampling. Given the structure of the II cat-
egory, 6 examples can be sufficient to cover the entire stimulus space (for each category).
However, the maximum area that can be covered in the RB condition with 6 examples and
labels consistent with the true category is 50% of the total area. Lower panel: Distribution of
area for random sampling of two triangles from the corresponding categories. Experimental
data are overlaid in black (each dot is a participant; vertical jitter added for visualization).

Based on a pedagogical teaching intuition, we expected that there would be more variation

in the feature irrelevant for categorization, than in the relevant one. At the individual level, the

ratio of the variance of the orthogonal distances of examples to the boundary to variance to the

orthogonal dimension was not significantly different than 1 in any of the groups Figure 3.18,

all ps>.5. The mean value was consistent with the predicted direction.

The second measure considering a pedagogical learner as the reference, the smallest bound-

ary distance, is presented in Figure 3.21. This metric computed the summed orthogonal dis-

tance from the subjective boundary (inferred in the last test block) for the example closest

114

C
E

U
eT

D
C

ol
le

ct
io

n



to the boundary from each category. Data from participants who only selected examples

from one category was not included (n=2). The mean distance was smaller than expected

by random sampling for both active and passive learners. However, there were no signif-

icant within-dyad differences in either condition, RB: t(17) = −.72, p = .48,BFnull = 3.11,

II:t(15) = .02, p = .98,BFnull = 3.91.

The estimated σ correlated negatively with the average distance from the examples to

the boundary for teachers who were active learners, but it was not significant, RB : r(16) =

−.44, p = .07,BFalt = 1.79; II : r(16) = −.12, p = .62,BFnull = 1.85. The correlation in the

yoked groups was RB : r(16)= .02, p= .95,BFalt = 2.01; II : r(16)= .05, p= .85,BFalt = 1.99.

Figure 3.21: Upper panel: Distance to boundary of the two closest examples labelled assigned
to different categories. Measurements were scaled to the unit square. Each dot is a dyad.
Black crosses mark the observed sample means, and purple crosses represent the mean ex-
pected from random sampling. Lower panel: Distribution of metric under random sampling of
three examples in each category.

Given that there significant within-dyad differences were found in categorization perfor-

mance even in the last test block, it can be argued that the observed teaching differences were

only an indirect effect of the active learners having a more accurate representation of the two

categories. If categorization performance drives the results, we would expect that dyads that
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have larger differences in terms of classification performance would also be the ones in which

the largest differences are observed in teaching performance. The extent to which the active

learner outperformed their yoked learner was correlated with each of the teaching metrics.

The difference in the number of consistent boundaries for dyad members correlated nega-

tively (as predicted), but not significantly, with accuracy differences in the II condition, r(14) =

−.46, p= .07. There was no correlation in the RB category, r(14)= .16, p= .55. Differences in

the area inscribed by examples did not correlate significantly in either condition with accuracy

differences, RB : r(16) = .37, p = .12; II : r(16) = −.15, p = .54, and followed the expected

direction only in the RB condition.

The correlations in the II conditions were of medium magnitude, so underpowered accord-

ing to post-hoc calculations. Therefore, a resampling test was performed to test whether the

observed difference in the number of consistent hypotheses observed between II active and

passive learners was entirely explainable by accuracy. 500 groups of 10 active learners and 10

passive learners were randomly sampled with replacement from the participant pool and were

kept in the analysis only if their average accuracy differed by maximum 1%. For these sets

of participants matched in accuracy, the mean difference in the number of consistent samples

was computed. The mean difference observed across these samples was -.86, and the interval

including 95% of the values was [-.89, -.81], excluding zero.

Inter-individual differences in active learning and teaching performance

To test whether better active learners were also better teachers, the average query distance of

active learners was correlated with the subsequent teaching performance. There was a moderate

significant correlation between query distance and the number of compatible boundaries after

teaching in the II condition, II : r(15) = .47; p = .05,BFalt = 2.03, as participants who made

queries further from their subjective boundary, tended to be worse teachers. There was only

a small, non-significant correlation (RB : r(15) = −.16; p > .05), for the query distance and

teaching in the RB condition.

Figure 3.22 illustrates the relationship between accuracy, active learning performance, and

the number of consistent boundaries after teaching. Accuracy correlated positively with teach-
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ing performance, but did not reach the significance level (RB : r(15) = −.39, p = .10; II :

r(15) =−.44, p = .07).

The partial correlation between teaching and active learning performance, controlling for

accuracy at the end of the task, was r(15) = .32, p = .22, also non-significant.

Figure 3.22: Upper panel: Relationship between active learning and teaching performance.
Active learning is measured by the average distance of the queries to the subjective bound-
aries across blocks. Lower panel: Relationship between classification accuracy in the final
block and teaching performance. Each dot is an active learner. Only teachers who provided
linearly separable teaching sets were included. None of the correlations were significant.

Example order

Participants showed relatively agreement in choosing opposite corners of the stimulus space

as the first two examples. Specifically, participants started by choosing two samples that maxi-

mally differed in both features. Colormaps of example choice frequencies, presented for every

example order, are shown in Figure 3.39.

In order to quantify potential order effects, the distance to the subjective boundary was

computed for each of the six teaching samples as a function of the sample order. Since the
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maximum distance that could be produced by a participant differed as a function of the bound-

ary they tried to teach, the distances were rescaled for each participant to the [0,1] interval, such

that 0 corresponded to the sample closest to the boundary and 1 to the sample farthest away

from the boundary.

The participant pool was then split according to how they chose to order examples from

different categories by calculating the number of category switches for every participant. The

minimum is 0, which occurs when participants only chose examples from one category, and

the maximum is 5, when participants alternated each subsequent category assignment.

Five category switches should be easily amenable to a curriculum learning strategy, first

presenting examples on both edges of the space that are unambiguous and easy to categorize

and then narrowing into the region surrounding the boundary. Figure 3.23 suggests that cur-

riculum teaching is compatible with the distribution of examples in II structure, but there is no

(visually) discernible pattern in condition RB.

Further, participants who made only one category switches seemed to follow a linear strat-

egy in the II condition (Figure 3.23), traversing the stimulus space from one edge to the other.

Again, the pattern for the RB category shows less consistency.

Given the small subsample size, we did not perform any statistical tests and the observations

are purely descriptive.

Qualitative data

We do not present an analysis of the open ended answers of the participants about the teach-

ing phase since very few of them wrote down meaningful explanations for their choices that

could be coded for analysis. Anecdotally, the majority of explanations for example choices

were consistent with an attempt to provide exemplars covering the entire stimulus space (e.g.

”I wanted to select all of the possible kinds of antennas that receive each channel”). Some

participants in the RB condition explicitly pointed out the perceptual feature that the categori-

sation was about, while others in the II condition said they would have mentioned to the learner

that both features matter. Some participants in the II condition mentioned avoiding offering as

examples antennas that they were uncertain about themselves to avoid confusing the learner.
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(a) Subset of participants who consecutively chose three examples of the same category followed by
three examples of the opposite category. Very few participants chose this strategy: n=4 for the RB
structure and n=5 for the II structure.

(b) Subset of participants who alternated the category of each successive example. This was the most
common strategy (but still accounting for only 27.50% of the full sample), n=12 RB structure and
n=10 II structure participants fell in this category.

Figure 3.23: Violin plots showing the distance to the subjective boundary as a function of ex-
ample order. Distances have been scaled to the 0-1 range for every participant. Vertical lines
mark medians. Active and yoked learners are pooled together within a category structure.

3.4.4 Conclusion

We closely replicated the results of Markant and Gureckis (2014): all active learners were able

to learn the RB category structure, whereas many active learners failed to learn the II structure.

The accuracy of II active learners was higher than in Markant and Gureckis (2014), as about

65% of participants scored higher than expected based on the use of only one classification fea-

ture in the final training block. However, on average, the queries made by II category learners

failed to converge around the true boundary. In line with previous results, yoked passive learn-
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ers had lower classification accuracy in both conditions and they did not benefit from being

yoked to better active learners.

In order to assess teaching performance we computed two metrics for teaching which

should rate the usefulness of teaching examples to a näive learner, who does not know they

are being taught and who has little perceptual noise. The first quantifies the amount of uncer-

tainty that this learner will be left with about the boundary separating categories, after excluding

boundaries incompatible with the teaching set presented. The second computes the area of the

stimulus space inscribed by examples. Learners exposed to teaching examples that span a larger

area will be familiar with the more exemplars from the categories.

Further, based on simulations from the rational pedagogy model, we created two more met-

rics capturing potential intuitions of learners who know they are in a pedagogical context. First,

we calculated the variability in examples across the dimension relevant for categorization and

contrasted it to variability in the dimension irrelevant for categorization. This metric is also sup-

ported empirically by findings that increased variability in the irrelevant dimension improves

learning outcomes in RB categories (Rosedahl & Ashby, 2021). Very interestingly, the irrel-

evant variability dissociates RB and II categories in terms of learning outcomes as Rosedahl

and Ashby (2021) recently showed that it impairs the learning of II categories. Second, we

calculated, for each category, the orthogonal distances from the closest examples to the sub-

jective boundary. Here the intuition was that learners faced with teaching sets that are linearly

separable with respect to several boundaries, will assume that the boundary intended is the one

that minimally separates the two categories.

The results supported the main hypothesis of differences in teaching performance as a func-

tion of having active vs. passive learning experience. Active learners provided examples for

teaching that more narrowly constrained the set of possible hypotheses in the II condition,

but not in the RB condition. This is in line with the expectation that differences between the

active and yoked teachers would be higher for the II structure which was generally more dif-

ficult. Similarly, differences active learners inscribed a wider area of the stimulus space with

their examples than the yoked controls. We found no siginificant difference for RB learners.
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This is likely due to the fact that yoked RB learners likely randomly sampled the values of the

categorization-irrelevant feature of the stimuli from the category range.

Moving on to the pedagogical teaching measures, we found no difference in terms of the use

of irrelevant variability in either condition. In fact, variability across the relevant and irrelevant

features was comparable.

There was no significant within-dyad difference in how close participants placed examples

to their subjective boundaries. One potential concern with this metric is that it relies on hav-

ing a good estimate for the subjective boundary used by teachers. It is important to show that

the subjective boundary of participants modulates the chosen teaching examples, however, the

downside is that any bias in the estimation of the boundary will be translated into this teaching

metric. However, we found no significant differences on this distance metric in the RB con-

dition where the determinism of the boundary was high and boundaries were stable over the

last blocks and, as a consequence, we can be fairly certain that the boundary estimated was

unbiased.

The secondary aim of the experiment was to control whether the benefits of active learning

on subsequent teaching were fully mediated by having higher accuracy in the categorization

task before teaching. There was a medium strength (but statistically non-significant) positive

correlation between differences in categorization accuracy within a dyad and differences in

teaching performance. However, across resampled groups of active and yoked learners matched

for accuracy, we still found significant differences in teaching performance. While this is not a

within-dyad analysis, it suggests that the mode of learning influenced also learning directly and

not just indirectly through categorization accuracy. In line with this, we found that the partial

correlation between query distance during active learning and teaching performance (quantified

through the number of compatible boundaries), given accuracy in categorization, was again of

medium magnitude and in the predicted direction (though non-significant) for the II condition.

Third, we found a medium (statistically non-significant) correlation in the predicted direc-

tion for the determinism of the boundary during categorization and the distance of examples to

the boundary for active learners. Given the lack of statistical significance, we cannot draw any
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conclusions currently, but given the effect size, further investigation is warranted. It is certainly

encouraging that even in such a complex perceptual task, teachers were able to take their own

uncertainty into account. In general, teachers were very conservative in terms of the distance

of the samples to the boundary, beyond what would be warranted by the noise in their catego-

rization decisions. It is possible that alongside their own uncertainty, teachers additionally took

into account the potential perceptual uncertainty of the learner, thus further increasing the need

for distinctive teaching examples.

It would be particularly interesting to test, in the context of an interactive teacher-learner

experiment using a similar paradigm, whether teachers can additionally modulate example set

selection based on the inferred uncertainty of their learner, or whether they are only influenced

by their own uncertainty.

While teachers converged on choosing corners of the stimulus space as the first two ex-

amples, there was no strong agreement on continued curriculum teaching, that is, starting with

examples that are easier to categorize and gradually providing examples closer to the boundary,

whose category membership is more uncertain. This is surprising especially for active learners

who themselves started by querying the limits of the stimulus space.

A limitation of the current experiment is that the utility of the examples provided by teachers

was quantified by metrics that should in principle guarantee better performance for learners, but

that certainly do not map one to one to the practical benefits derived by actual learners.

One of the very few experiments on teaching can shed some light on this issue. Inter-

estingly, in reverse logic to the current experiment, Avrahami et al. (1997) used teaching by

example giving as a paradigm to uncover people’s intuitions about category learning under the

assumption that teachers were giving the best possible examples for learning. Participants in

their study learned categories based on a small set of the (Nosofsky, 1989) stimuli (20/36 stim-

uli) drawn together on a piece of paper. They were only allowed to start teaching once they

had perfectly mastered the category to be taught. Teachers could select examples only for one

category from the same preset list, but were allowed to give as many examples as they wished.

Avrahami et al. (1997) found high consistency between the examples offered by participants,
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but no effects of the way in which the participants had learned the category (by verbal descrip-

tion, by having them marked, but asking about the category) or the mode of teaching (to an

imagined student or to a real passive student). The lack of differences as a function of the mode

of learning are not surprising in this context given that the ‘selected exemplars’ learning mode

entailed participants asking about the membership of all items presented, rather than actually

engaging in self-directed learning. Avrahami et al. (1997) computed the most common teaching

sequence (choosing the most common example at each time step, conditional on the previously

chosen example) and presented this sequence to new participants (n=10/condition) who acted

as learners and then were tested on 8 new stimuli. It is unclear whether these participants were

aware of the way in which the data were produced or not. In addition to the observed teaching

sequence, Avrahami et al. (1997) also showed participants examples that came from two strate-

gies: ”separate dimension strategy” (examples should have the same value on the classification

dimension and span maximally on the irrelevant dimension) and ”borderline strategy” (chose

examples closest to the boundary on either side and vary location along boundary in irrelevant

direction). The borderline strategy corresponds to the pedagogical strategy we also outlined.

Learners who were shown the teacher’s examples performed somewhat better on average than

the participants shown examples conforming to the two strategies.

Given that these benefits exist, there are multiple possible explanations. First, it is possible

that, as a function of the pedagogical assumptions of learners, some of the samples deemed

less useful by the formal analysis are actually sufficient to convey the two categories. On the

other hand, we could not show that teachers successfully applied the two intuitive pedagogical

strategies that took into account the recursive aspect of teaching. Further, it is not immedi-

ately obvious that learners would be able to to utilize information about the way in which

examples were sampled since the informed yoked learners (who knew they were yoked to an

active learner) in Markant and Gureckis (2014) did not perform any differently than the náive

yoked learners. Either way, to determine how learners make inferences based on pedagogically

sampled data in this task, an experiment would need to be conducted in which the examples

generated by teachers are shown to learners who are told that samples come from a random
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(strong sampling) generation process or a teacher.

Second, potential learners may learn better than expected from the teaching examples pro-

duced by teachers due to a shared bias in category learning. Primarily, while we considered

only whether a boundary is compatible or not with the dataset, it is likely that participants do

not consider a wide range of possible boundaries and have priors about the types of category

structures they expect. This is indeed what can be concluded based on the queries selected

by active learners. Based on this, one can predict higher rates of success for learners on RB

category structures, whom will have hypothesis spaces more closely aligned to those of their

teachers.

In summary, we found evidence that active learning improves teaching in a complex task

in which the category structure was not immediately apparent to participants (II condition),

but failed to find any statistically significant differences in a task that was easier and in which

the category structure was easily verbalizable (RB condition). We cautiously argue that the

contribution of active learning, while mediated to some extend by final accuracy performance,

had an independent contribution to the observed effect.

3.5 General Discussion

Across two experiments which shared a conceptual task, but differ greatly both in difficulty

level as well as methods, we show that teachers benefit from active learning experience.

In Experiment 1, as well as in the RB condition of Experiment 2, we did not find a sig-

nificant effect of active learning experience on teaching performance within dyads of active

and yoked passive learners. In both situations, the effect observed was in the predicted di-

rection, but was very small. On the other hand, we did find a significant effect of learning

mode in condition II of Experiment 2. This difference maps to an important distinction in the

experiments, namely that in both Experiments 1 and condition RB of Experiment 2, the cate-

gorization boundary that participants taught was verbalizable, and strategies for teaching could

be explicitly transferred from the learning task. This resonates with the idea that active learning
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is particularly useful, beyond passive learning, when the structure of the generating model for

the stimuli is not immediately available.

Related to this, in a recent paper, Rosedahl et al. (2021) found that explicit written and

verbal instruction did not improve performance in the II category learning task, but did so

for RB category structures. It is surprising that explicit knowledge about the structure of the

hypothesis space of II categories, specifically the fact that both stimulus features are required

for categorization, did not help participants. Rosedahl et al. (2021) fit their results within the

COVIS (COmpetition between Verbal and Implicit Systems, Ashby and Maddox (2005)) model

for categorization. Since RB category learning according to COVIS relies on an explicit rule-

discovery process, it is easy to see how explicit instruction about the relevant rule is useful.

On the other hand, if II category learning relies on procedural learning that is not conscious,

knowledge about the rule is not going to be as applicable during learning. In light of this

result, it would particularly interesting to check whether instruction by curated examples would

improve the performance of learners in the II condition. If that is the case, it would be a good

argument for the relevance of teaching-by-induction in ecological settings.

Indeed, the participants in Experiment 2 found it impossible to verbalize their teaching

strategies, despite the fact that some of them near followed near optimal teaching strategies in

the perceptual space. It would have been interesting to ask these participants to perform the

exact same task in a conceptual space to check whether they would have the same intuitions for

solving the teaching task.

Shafto et al. (2014) found that, if learners were first teachers, their behavior was better

accounted for by the rational pedagogy model. To explain this, they speculate about a process-

level account according to which the large recursive inference demands are side-stepped by

using pre-computed values from teaching in the learning.

To our knowledge, Experiment 2 is the only lab based study of teaching-by-example where

learning is extended in time and, therefore, teachers have imperfect knowledge of the teaching

material. This departs for the teaching games framework used previously by Shafto et al.

(2014) in which the teacher can easily imagine their reasoning process had they been a taught
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learner, making the solution to the recursive problem easier to find. This should explain why

we found teaching behavior consistent with generic principles of good teaching (e.g. providing

unambiguous examples), but not with specific rational-pedagogical predictions. However, it is

possible that with more training, and less noisy boundaries, the predictions of rational pedagogy

will pan out.

The next questions in this line of research should target the flexibility of teaching strategies.

Particularly, the correlation between the teacher’s subjective uncertainty and sampling behavior

should be confirmed. Further, in an interactive design, where the teacher is allowed to observe

the learner, it would be possible to ask the extent to which the teacher flexibly adapts to the

uncertainty of the learners and their current state of knowledge.
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3.6 Supplementary Information

3.6.1 Pilot: Priors about boundary locations

In our computation of expected information gain, which determined the optimal query choice

during active learning, we assumed boundaries are equally likely a priori. However, it is possi-

ble that, even for intentionally arbitrarily designed cover stories, participants might have non-

uniform priors over the locations of the boundary between the two categories is located.

There are two potential solutions to this problem. The first is to try to estimate the partici-

pants’ prior over the potential boundary locations. However, this can be challenging. First, it is

possible that explicitly asking a participant questions about the probability associated with each

boundary location is going to interfere with performance in the following learning and teaching

tasks. On the other hand, using priors inferred by aggregation from one group of participants

and extrapolating them to the participants completing the experiment is also unsatisfactory as

there might be significant inter-individual differences.

We opted for the second solution which is to select stimuli and classification dimensions

such that participants are likely to have a uniform prior over the possible boundary locations. A

small pilot experiment was used to test whether the stimuli/categorization dimensions consid-

ered for inclusion in the experiment indeed elicited uniform priors over the possible boundary

locations.

Dimension Boundary (less or more than...)

speed of animals relative to their body size speed of the average human
loudness of musical instruments 85dB (threshold for hearing damage)
date of domestication of plants orange tree domestication
carbon footprint of food items 15minute car ride
average sleep time per day average human sleep time
vitamin B content daily recommended dose
color red/blue
price cheap/expensive
shape morph square/circle

Table 3.1: Dimensions and boundaries used in pilot for Experiment 1
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Methods

A list of nine classification dimensions and associated sets of 8 images each were compiled.

The image sets were selected, without any overlap, from MultiPic databank of standardized

color drawings of concrete concepts (Duñabeitia et al., 2018). Classification dimensions were

associated with a seemingly objective boundary (see Table 3.6.1).

Participants were asked to choose where they thought the boundary between the categories

lies based solely on their prior knowledge. At the end, participants also were asked to verbally

explain their choices.

Twenty-one participants with native or good English proficiency were recruited through the

CEU Research Participation System and were rewarded for performance with vouchers.

Results

Figure 3.24 illustrates the participants’ aggregate intuitions about the boundary locations, and

how they differ from the uniform baseline. A chi-square goodness of fit test for the uniform

distribution was used to determine dimensions that needed to be discarded or modified. Some

dimensions were excluded outright (price, color, and shape), and for other dimensions, stimulus

substitutions were made (loudness, vitamin, domestication) based on the open-ended reports of

the participants.
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(a) Dimensions selected for inclusion in the experi-
ment.

(b) Dimensions discarded in future experiment.

Figure 3.24: Inferred participants priors over the possible boundary locations.
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3.6.2 Experiment 1: Additional analyses and figures

Optimality in active learning

Performance in active learning was contrasted to optimal behavior, choosing a query that max-

imizes information gain. Participants appeared to be near-optimal in the selection of the first

query. Conditional on the first query, little more than a third of participants selected the max-

imally informative query. A large proportion of choices were close to the optimal solution

(Figure 3.25), but another third made a completely uninformative query.

Figure 3.25: Expected information gain from the second active learning query against the
maximal information gain given the first query. Each dot is a query selection. Colors denote
conditions.
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Contrasting teaching performance to chance

Figure 3.26: Chance level for entropy reduction during teaching as a function of boundary
location (blue line) against observed performance(gray line) and performance broken down by
group, with prior active learning in red and without prior active learning in black.
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Decisions about boundary location

Figure 3.27: Estimated r against proportion of decisions compatible with the labelled data
(left) and against normalized proportion of decisions compatible with the labelled data (right).
Each cross represents a participant and conditions are denoted by colors.

We considered three possible ways of quantifying the performance of decisions about the

boundary location: the proportion of selections (out of 3) that were compatible with the labelled

data observed, the same proportion normalized by the number of compatible boundaries, and

the estimated r parameter described in the main body. Figure 3.27 shows how these measures

relate to each other. The proportion of compatible boundaries is too liberal and the normalized

version too conservative, with the estimated r lying inbetween.

There were significant differences within dyads in decisions about the boundary locations

according to all measures (see Figure 3.28). However, the performance on boundary selection

was not correlated with teaching performance (see Figure 3.30), and any differences observed

between groups cannot explain the teaching differences between groups.
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Figure 3.28: Within dyad performance differences. Each cross represents a participant.

Figure 3.29: Estimated r against proportion of decisions compatible with the labelled data
(left) and against normalized proportion of decisions compatible with the labelled data (right).
Each cross represents a participant and conditions are denoted by colors.
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Figure 3.30: Teaching information gain as a function of the r parameter. The fitted OLS re-
gression line for each condition.
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3.6.3 Experiment 2: Additional analyses and figures

Figure 3.31: Visual illustration of the decision-bound model used to fit the participants’ sub-
jective boundaries (shown in purple) from their category choices.
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Figure 3.32: Categorization accuracy across participants and blocks.
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(a) RB - Active learners
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(b) RB - Yoked learners
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(c) II - Active learners
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(d) II - Yoked learners

Figure 3.33: Categorization. Each row is a participant.
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(a) RB - Active learners
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(b) II - Active learners

Figure 3.34: Active learning. Each row is a participant.
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Figure 3.35: AIC values for a strong sampling response model (fiting just the probability of
responding with a certain category) and the decision-boundary model used in the analysis.
Each dot is a participant. Black dots represent active learners and grey dots represent yoked
learners.

Figure 3.36: Average query distance to (individual) subjective boundaries. Bars represent
standard errors of the mean. The dashed line is the expected query distance under strong sam-
pling for each corresponding category structure. Asterisks are displayed for blocks where the
average query distance differs from the dashed line significantly in a one-sample two-tailed
t-test.
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Figure 3.37: All examples chosen by participants. Colors denote the categories chosen by the
participants before designing the example.
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(a) RB - Active learners (b) RB - Yoked learners (c) II - Active learners (d) II - Yoked learners

Figure 3.38: Teaching. Each row is a participant. Area colors mark the correct category. Dots
are stimuli offered as examples. The black lines are the true boundaries and purple lines are
the subjective boundaries inferred from the last test block.
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Figure 3.39: Frequency of teaching examples across the stimulus space (pooled across all par-
ticipants). Color intensity corresponds to the number of examples in each bin. Each bin con-
tains about 3% of samples under uniform sampling.
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Comparing distribution of teaching examples to the uniform

To determine whether the distribution of examples was significantly different from random

uniform sampling of the stimulus space, the one-sample Kolmogorov-Smirnov (KS) distance

(the largest distance between the cumulative distributions of the observed data and a reference

distribution) was computed between the observed distribution and the uniform. Distances were

highly significant for both active (RB: D = .92, p¡.001; II: D = .81, p¡.001) and yoked learners

(RB: D = .97, p¡.001; II: .92, p¡.001)12.

To compare the relative extent to which uniform sampling can approximate the observed

pattern of results in the two category structures, we also computed the Kullbach-Leibler diver-

gence between the samples. The KL divergence measures the amount of entropy remaining in

a probability distribution when approximated by another one. While the measure is not sym-

metric, it has the useful property that it only takes the value of zero if the two distributions are

equivalent. The KL divergence was larger for active learners (RB: KL = .40; II: KL = .57 nats)

than for passive learners (RB: KL = .25; II: KL = .35 nats) in both conditions. The distribution

of the test statistic under the null was computed by sampling 13. The interval containing 95%

of values was [.09, .24], and excluded all observed KL values.

The difference between conditions may be explained by the fact that participants in the RB

condition were (intentionally or unintentionally) randomizing values sampled for the irrelevant

stimulus feature. To test for this, two-sample KS distances were computed between the ob-

served distribution and a distribution that preserves the marginal distribution across the relevant

feature, but uniformly samples the value of the irrelevant feature. The KS test suggested that

the irrelevant feature was not sampled uniformly at random by active learners, D= .36, p= .02,

but no significant difference was found for yoked learners, D = .22, p = .34. The same pattern

was found with the KL divergence in the active group, KL = .26 nats (sampled null 95% inter-

val:[.08, .21 nats] ), and for the yoked group, KL = .11 nats (sampled null 95% interval: [.08,

12It should be noted that the fact that a given distribution at the level of the participant pool does not differ
from uniform sampling does not necessarily mean that individual participants sampled randomly. This can also
occur, although it is less likely, if participants each were sampling non-uniformly, but were not in agreement.

13104 draws of 6x20 examples, the same size as recorded during the experiment
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.22 nats]).
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Chapter 4: Tracking others’ confidence to

select who to learn from

4.1 Introduction

Learning from (or with) others can accelerate the acquisition of knowledge by leaps and bounds,

but it also raises a host of novel problems for the learner. In situations of knowledge asymmetry

with unknown intent, learners are susceptible to being misinformed by others, and, therefore,

have an incentive to develop epistemic vigilance (Sperber et al., 2010). Even in collaborative

settings, collaborators will need to decide whether to heed a partner’s suggestion, and if so, how

much it should be relied upon as a function of the inferred relative expertise. Lastly, in peda-

gogical settings where the intent is clear but there is inherent knowledge asymmetry, the teacher

must assess the reliability of the learner’s knowledge to redress departures from the intended

teaching goal. Learners may also be faced with the daunting task of choosing a teacher, with

sometimes little ability to objectively evaluate teachers given the learner’s limited knowledge.

Naturally, a track record of efficacy on the task at hand is of primary importance both

for establishing the merits of an advisor/collaborator and monitoring learner achievement. A

secondary source of information that can be exploited in addition to accuracy information, or

in its absence, is the learner/collaborator’s explicit metacognitive judgments or implicit cues to

the learner’s metacognitive state such as response times, exploration patterns, body language,

or speech patterns. This chapter focuses on self-reported metacognitive judgments as they are

meaningful and widely used in formal pedagogical and collaborative contexts to which we
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would like to generalize, as well as fairly well studied in laboratory settings. However, we

acknowledge that there are multiple, more ecological measures that relate to how people report

their uncertainty and the cues that people think (rightly or not) that are related to someone’s

metacognitive state.

On an intuitive level, reported confidence and its covariation with accuracy should be es-

pecially useful in predicting the future performance of an agent when a long history of perfor-

mance on the task is not available or is difficult to surmise and when the subjective difficulty

of the task is unknown. Moreover, trial-to-trial variations in confidence can serve as an in-

dicator of accuracy that can improve predictions beyond information about a person’s global

accuracy level. This leads to the main question of this chapter: If a partner’s confidence is

communicated, are humans able to exploit it effectively as a proxy of their competence?

It is not trivial that humans can and do optimally aggregate their knowledge with that of

others in order to improve their own performance. First, an implicit assumption in this line

of thought is the broad fidelity of metacognitive expressions since communicated confidence

is only useful if it is predictive of performance. Second, since statistically optimal integration

entails knowing another person’s uncertainty, the question is whether people can, and in fact,

do spontaneously monitor cues diagnostic of other people’s uncertainty. This can vary from

relatively simple tracking of explicit confidence statements or implicit markers (e.g., average

reaction times) to more complex monitoring of covariation patterns between accuracy and con-

fidence markers. Third, people would need to aggregate the evidence provided by other agents

in proportion to their reliability, forgoing potential egocentric or egalitarian biases. One step

further, one of the most compelling questions from our perspective is whether people operate

under the previously described fidelity assumption and, therefore, always integrate evidence by

weighing it with the expressed confidence, or whether the integration is contingent on inferred

(latent) fidelity. While this form of meta-vigilance would have clear benefits for performance,

it is unclear whether it is possible to achieve on the fly. In what follows, I will review the

pertinent literature for each of these claims.

Before we delve into the first question, it is useful to clearly articulate the quantities that
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metacognitive judgments are thought to reflect. A formal distinction has been made in the

probabilistic decision making framework between confidence and certainty as different statis-

tical quantities that can be produced on the basis of a decision model. Confidence is computed

as the conditional probability of being correct given a specific decision, while uncertainty rep-

resents the width of the posterior distribution over the decision variable (Pouget et al., 2016).

There is an ongoing debate in the metacognitive literature as to what is being communicated

by human participants through experimental self-report secondary judgments (Aitchison et al.,

2015; Bahrami et al., 2010a): certainty, confidence, or perhaps a heuristic quantity (vs. an

optimally derived quantity on the basis of a decision model). Which quantity is reflected in

behavioral measurements is relevant because the upper threshold for the additional benefit that

can be derived from receiving a partner’s secondary judgments ultimately depends on whether

this quantity is an uncorrupted, independent information channel (from the primary decision) or

not. In other words, monitoring uncertainty markers in another person is only useful to the ex-

tent that those cues are predictive of the internal state of the agent who produced them. Ideally,

under the Bayes rational agent assumption, subjective reports of confidence are a function of

the objective posterior probability of being correct1. However, even if the reported confidence

only reflects a heuristic (e.g., the magnitude of the sensory stimulus), it can still be useful to an

external observer to the extent to which it tracks the internal model of the observed agent.

The assumption of metacognitive sensitivity bore out in perceptual decision making ex-

periments as people reported second-order judgments that were well calibrated to performance

and objective uncertainty, and correlated with stimulus difficulty and reaction time ( Barthelmé

and Mamassian, 2009, Kiani et al., 2014, Rahnev et al., 2020). Second-order judgments have

also been shown to conform to the predictions of formal models of confidence (Sanders et al.,

2016) and potential neural implementations have been proposed (Fiser et al., 2010, Pouget et

al., 2016). On the other hand, it appears that changes in the way confidence reports are elicited,

such as the simultaneous or sequential nature of first- and second-order decisions, can change

whether heuristic or Bayes-optimal computations are used (Aitchison et al., 2015). Further,

1See Adler and Ma (2017) for a discussion of the expected signatures of Bayesian confidence.
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metacognitive abilities (quantified by the type II area under the ROC curve) were shown to be

stable within individuals across two perceptual tasks (Song et al., 2011), whereas the same was

not true for objective performance. The existence of significant variability in metacognitive

abilities within a task, coupled with the consistency of inter-individual differences in metacog-

nition across tasks is a good argument for the usefulness of tracking another’s metacognitive

judgments as they have generalization potential at least within a restricted task domain (here,

2IFC visual judgments based on orientation vs. contrast).

On the other hand, in more abstract reasoning tasks, there is evidence of the miscalibration

of metacognition. Famously, Kruger and Dunning (1999) found overestimation of performance

among poor performers and underestimation in high performers, relative to peers. However, the

original results of Kruger and Dunning (1999) can be explained without resorting to differences

in metacognitive abilities that are performance dependent. Burson et al. (2006) showed that the

Dunning-Krueger effect is eliminated by titrating task difficulty and can be best described by

a noise-plus-bias model according to which participants are equally poor (noisy) at making

metacognitive judgments, and susceptible to task-induced biases: overestimating performance

on easy tasks and underestimating it on difficult tasks.

Martı́ et al. (2018) found that confidence judgments in a Boolean concept learning task (with

a very large hypothesis space) were best predicted by local or global accuracy rather than any

quantity derived from an ideal learner model (e.g., model uncertainty over the hypotheses, the

probability of the best hypothesis), which added little additional value in terms of predictability.

However, it is not surprising that, in the presence of feedback, local accuracy would serve as

an effective and salient cue for confidence judgments. The differences in variance explained

(R2) between the models using model-based vs. behavioral-based predictors were not large,

but meaningful (maximum 5-10%). The ideal model explained somewhere around 50% in

the variability in accuracy, so a potential counterargument is that the participants might have

followed a different (perhaps resource-rational or heuristic) model to solve the task (and thus

the original comparison is not useful).

More convincingly, in a follow-up experiment in which feedback was removed (and pre-
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senting only one trial of the task), the variance accounted for by model-derived quantifies did

not increase. It should be noted that the Martı́ et al. (2018) model did not fit the accuracy of

the participants for this follow-up experiment, either due to participants not actually learning

the task or due to data sparsity. Assuming that the model accurately characterizes performance

in this second experiment, the result implies that model-derived measures were not used or

computed to provide certainty judgments, despite the fact that participants had the quantities

needed and the ability to do so. In essence, the study suggests a dissociation of the factors that

drive learning decision-making from those that determine certainty, which could significantly

limit the usefulness of metacognitive judgments for inferring another person’s uncertainty.

To sum up, while there are clear instances where metacognitive assessments faithfully con-

vey model-based quantities that would be highly informative, changes in the way in which

confidence reports are elicited, as well as the nature and complexity of the task, can easily re-

sult in a switch towards a heuristic strategy. In cases where the reported confidence does not

reflect a model-based quantity, it is at worst redundant (still correlates well with accuracy and

difficulty, as is the case in theMartı́ et al. (2018) study), and therefore, there are smaller gains

and losses to be made from additionally monitoring another’s confidence. It remains unclear,

however, in cases where trial-by-trial confidence reports are optimally derived, how much they

would empirically benefit a potential observer who is attempting to make inferences about the

internal model of another. This would be an interesting theoretical and empirical direction of

study.

The second claim to be assessed is that humans spontaneously monitor cues to another’s

certainty: explicitly communicated confidence or implicit cues such as response times and

non-verbal communication2. Sensitivity to others’ metacognitive states would be evidenced

by explicit differential inferences about the competence or trustworthiness of social partners

who are matched for accuracy, but diverge in their confidence. In fact, even young children

are sensitive to the confidence of others, as shown by their increased willingness to learn from

confident informants (Birch et al., 2010). In addition, we can ask whether humans track (and

2The list is not exhaustive. For instance, Pulford et al. (2018) found a good signal for who is more confident
in a dyad was who spoke first.
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expect) that the confidence of others positively correlates with their accuracy and negatively

relates to task difficulty.

The main line of inquiry in this direction tackled the undue influence of confidence on

the perceived credibility of a witness (Cutler et al., 1988) or financial advisor (Price & Stone,

2004), both situations of clear ecological relevance. Results have been explained within the

game-theoretic framework through the use of the confidence heuristic (Pulford et al., 2018;

Thomas & McFadyen, 1995), whereby people assume that the stated confidence is a stand-in

for the informational reliability of a source. Naturally, this opens the door to strategic manip-

ulations of confidence, as overstating confidence can benefit agents by making them appear

more competent and accrue more influence and social status 3. On the flip side, this means that

people also need to develop mechanisms for epistemic vigilance to defend themselves from

such bad faith actors (Sperber et al., 2010).

Subsequent experimental work has shown that while people are sometimes vulnerable to the

(intentional or unintentional) overconfidence of others, with additional explicit evidence as to

the unreliability of the overconfident agent, people can overcome biases favoring overconfident

others. For instance, in the context of a mock trial with participants acting as jurors, Tenney

et al. (2007) manipulated the perceived accuracy and confidence of eyewitnesses in collateral

statements that were peripheral to the central issues of the court trial. Results revealed an in-

teraction between the accuracy and confidence of eyewitnesses as participants perceived highly

confident witnesses as more credible than unconfident ones when they were correct (or in the

absence of knowledge about the veridity of their testimony), while the opposite pattern was ob-

served for inaccurate eyewitnesses. Inaccurate but overconfident eyewitnesses were especially

penalized for their miscalibration, underscoring the importance of competency information.

Based on their findings, Tenney et al. (2007) proposed an extension to the confidence heuristic,

arguing that there is a default assumption that stated confidence is a good predictor for accu-

3Johnson and Fowler (2011) have gone so far as to argue that overconfidence, even just as poor metacogni-
tion, so self-deception cf. as strategic deception of others, is optimal (maximizes individual fitness) given com-
petition under uncertain and asymmetric payoff structures. They use a restricted model of decision making in the
competition over resources in which agents decide whether to claim a resource only as a function of their and
their competitor’s perceived likelihood of winning a potential fight. Simulation studies of this model showed that
a stable bias toward overconfidence emerges at the population level.
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racy only in the absence of external evidence to the contrary. That is, unless proven otherwise,

people will believe a confident informant is an accurate one.

Similar findings come from a study by Sah et al. (2013) in which they directly tested the

calibration assumption by modulating the availability of accuracy information. Participants

were asked to guess the weight of a person based on a photograph of their face by assigning

probabilities to several possible weight ranges. The participant then received advice from one

of four advisors in the form of an estimate and an associated continuous confidence rating.

Participants were then allowed to adjust their initial rating. The four advisors were generated

using a between-participants 2 x 2 factorial design corresponding to low and high accuracy

and confidence. Accuracy was manipulated by showing feedback according to which the ad-

visor was consistently correct or incorrect (100% vs 0% accuracy) in five successive trials at

the beginning of the task. Confident advisors had confidence ratings of 95% on average, and

unconfident advisors had ratings of 30% on average (the confidence scale is not restricted to

50-100 because participants stated confidence in one of several weight ranges).

Sah et al. (2013) found the expected interaction between these factors on explicit questions

about advisor credibility at the end of the task. Namely, among the two accurate advisors, the

more confident one was more credible, whereas the unconfident inaccurate advisor was deemed

more credible than the confident inaccurate advisor. As predicted by the calibration hypothesis,

in a follow-up where there was no feedback, participants’ credibility judgments were driven

solely by the confidence of advisors. Interestingly, the results did not show an effect of the

calibration profile on how much participants relied on the advice they received, even when

performance-based monetary incentives were added. The null results may be explained by

the fact that there was no (or very limited) exposure to the covariance of advisers’ confidence

and accuracy. Intuitively, if an advisor is 100% correct (or incorrect), there is no benefit in

tracking confidence or modulating decisions based on it in a trial-by-trial fashion. Similarly,

participants could have assumed that advisers’ confidence was not modulated by accuracy but

instead reflected something akin to a ‘personality trait’, so there was little scope for relying on

it to improve performance. The less likely (and disquieting) alternative explanation would be
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that miscalibration affects the credibility of informants, without any consequences in terms of

discounting their advice in future interactions.

The match between confidence and accuracy certainly influences the perceived credibility

of others. However, based on the literature presented thus far, it is not clear how refined this

ability is beyond cases of flagrant misrepresentation of one’s knowledge. In the studies dis-

cussed so far, the agents judged by participants were either entirely accurate or inaccurate in

their largely one-shot advice, and their confidence was also discretized or at least highly con-

trasting as in the case of Sah et al. (2013). This made the calibration profile a clear-cut, binary

dimension. A more substantial test for calibration would assess whether human preferences for

calibrated others develop across repeated experiences with others, and are quantitatively related

to the statistical relationship between confidence and accuracy. To this end, it is important to

be more explicit about what calibration entails statistically.

Yates et al. (1996) discuss calibration within the more general context of what makes a

good probabilistic forecaster. Specifically, they are interested in preferences for advisers who

make repeated continuous probability predictions for the occurrence of a binary target event4.

There are two statistical properties of probabilistic predictions that are often confounded. The

first is the discriminability, namely, whether predictions or, in our case, confidence ratings are

different for correct versus incorrect decisions. Second, judgments are calibrated if there is a

close to one-to-one match (high correlation) between the binned, properly scaled confidence

ratings and the probabilities of being correct. In the context of forecasting, it is possible to have

two agents with the same predictive error, but different trade-offs between discriminability and

calibration. Discriminability is certainly a primary prerequisite for confidence to be a useful

signal for partners and supersedes calibration. It is possible to re-calibrate the advice received,

but an unpredictive signal is useless. For example, once you learn that a cooperative partner is

only 70% accurate when they state they are maximally confident, you can redress your expecta-

tions of their performance accordingly. If, on the other hand, there is no statistical dependency

4While these are not traditional, explicit post-hoc confidence judgments, it is possible to translate such
probabilistic forecasts into traditional confidence statements by first computing binary decisions (depending
on whether the estimated probability was below or above 50%) and expressing the probability of that decision
being correct (within the .5 - 1 range).
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between confidence and accuracy, there is no information to gain. Yates et al. (1996) designed

forecasters who had equal quadratic error, but one was better calibrated, the other was more

discriminative (see Figure 4.17 in the Supplementary Information to visualize forecaster dif-

ferences). Results showed a preference for the forecaster with the higher discriminability, who

was preferred over the more calibrated one. However, the more discriminative agent was also

by design more extreme in their probability judgments, which was a potential confounder.

Following the conceptual approach of Yates et al. (1996), Price and Stone (2004) set out

to specifically test whether people prefer advisors who produce more extreme judgments of

confidence, particularly overconfidence, when discriminability and overall accuracy are con-

trolled for. In the Price and Stone (2004) design, two financial advisors produced multiple

sequential binary decisions about whether different stocks would increase or decrease in value

alongside an estimated likelihood of that event expressed in percentage points. At the same

time, participants were told whether the stock’s value had increased or not. The two financial

advisers made 24 such forecasts each (separately), following which the participants were asked

whom they would choose to hire. The agents were equally accurate (75%) in predicting the in-

crease/decrease of stock prices. However, the likelihood ratings of the extreme agent were ex-

actly 15 points more extreme than those of the calibrated agent (average likelihood judgments:

71.67% and 86.67%). Importantly, since judgments above 50% in likelihood are interpreted as

categorical judgments that the target event will occur, the binary predictions of the two agents

were equivalent and, therefore, the ability of the likelihood ratings to discriminate correct pre-

dictions was matched. 5. The results supported the confidence heuristic as more participants

preferred an overconfident advisor in lieu of a more calibrated advisor with the same accuracy

(moderate effects replicated across three experiments). Moreover, participants also viewed the

advisor with more extreme confidence judgments as more knowledgeable (but not more honest

or optimistic). In a further replication experiment, the accuracy of the overconfident forecaster

5The discriminability of the likelihoods for the two target events (the slope dimension as described by Yates
et al. (1996)) was steeper for the more extreme agent. This is an unavoidable confound given the current de-
sign, but one that was eliminated in the third experiment of Price and Stone (2004) in which participants ex-
pressed confidence for their binary decisions within the 50-100% interval. Results were replicated, although with
a smaller effect size (63% preference for the extreme advisor, BF10 calculated for this result 1.82 in favour of the
alternative).
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was overestimated while the moderate forecaster was considered less accurate6.

Although the Price and Stone (2004) design allowed the quantification of a learned re-

lationship between accuracy and confidence, it can be argued that in the case of continuous

confidence assessments for binary outcomes that are driven by a latent probability, confidence

is not strictly perceived as a second-order decision, such that being 90% confident in the correct

prediction of an event can be construed as being more correct than being 70% correct in that

decision. This could then lead participants to the heuristic of preferring the agent who is ”more

correct” more often. This would indeed be the overconfident agent. And, in fact, this is what

Price and Stone (2004) have found in the accuracy ratings of the participants. These ratings

were made after participants chose the adviser who they wished to hire, which could have also

led to a retrospective bias in an attempt to justify their choice (although the manipulation did

not affect the ratings of advisor honesty and optimism). The alternative explanation could be

that unlike in the Tenney et al. (2007) and Sah et al. (2013) experiments discussed above, here

the miscalibrated advisers did not clearly violate the a priori assumption that confidence is a

good proxy for accuracy and still benefited from the confidence heuristic.

Lastly, so far only monitoring of verbal or numerical confidence judgments was discussed,

but there is evidence that people will spontaneously monitor implicit cues to the confidence of

others. Notably, Patel et al. (2012) asked participants in turn to perform a contrast discrimina-

tion task requiring a motor response and an associated confidence judgement themselves, and

then to observe a demonstrator (one of two) perform the same task. Participants then made

predictions about the trial-by-trial confidence of the demonstrator without knowing the identity

of the stimulus they were responding to. They were able to make fairly accurate predictions

by using the trial-by-trial variations in response times (with shorter RTs being indicative of

higher confidence). Of course, this linear trend between RTs and confidence is present not just

within individuals, but also across individuals, so it would have been useful to replicate these

findings using two demonstrators (within participant) which would allow to test the quality of

individualized predictions against shuffled predictions to test the degree to which individuals’

6Price and Stone (2004) also showed that the preference for the overconfident agent was significantly posi-
tively related to right-wing authoritarianism beliefs.
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idiosyncrasies are captured. However, more interestingly, Patel et al. (2012) showed that the

linear relationship between RTs and predicted confidence of the demonstrator was modulated

by the participant’s (intra-individual) relationship between response time and confidence. Par-

ticularly, if they rated the demonstrator to be more confident on average than themselves, then

they were also more likely to be slower than the demonstrator. The slopes describing the rela-

tionship between participants’ own RT-confidence mappings correlated with those describing

the slopes of the predicted RT-confidence mapping for the demonstrator. Again, it would have

been interesting to see the extent to which one’s extemporaneous predictions for oneself differ

from predictions for another empirically. It is indeed unclear whether in artificial situations

where people have to make explicit predictions for behaviors that normally are considered au-

tomatic, they can use additional implicit self-knowledge or whether the same model would be

used for the self as for another person.

All in all, people monitor cues to informants’ confidence spontaneously, as well as the cal-

ibration of confidence to accuracy agents in situations where this is straightforward to do. It is

less clear what happens in situations where tracking the covariance of accuracy and confidence

across time has higher cognitive costs, which can prompt the use of the confidence heuristic.

Indeed, Tenney et al. (2011) have shown that children and adults who are cognitively taxed (by

performing a secondary task) do not make use of calibration information adequately.

Moving on, the final assumption is that people can incorporate information from others

appropriately as a function of their metacognitive judgments in order to improve decision

making. A burgeoning literature on perceptual decision making under uncertainty is showing

that humans can integrate different sources of environmental evidence near-optimally (e.g.,

Ernst and Banks, 2002). More recently, there has been considerable interest in extending this

framework to joint decision making, asking whether people can benefit from the knowledge of

their social partners in a similar manner by utilizing information about their uncertainty.

Notably, Sorkin et al. (2001) tackled the issue of information integration in groups of col-

laborating individuals by drawing direct parallels to the multisensory cue integration literature.

They proposed that what group members are communicating with each other is the distribution
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of the decision variable. To be more concrete, in a group signal detection task, individuals

would independently communicate the mean of the perceived Gaussian signal and its variance

(of course, not numerically, but implicitly by freely communicating with each other). Given

these two pieces of information, from a theoretical standpoint, the ideal group’s collective de-

cision making should always supersede the performance of any individual in the group. This

is precisely what the experiment showed, as the groups had higher detection performance (d’)

compared to any of the individuals constituting the groups, and performance was close to that

of their ideal model. Moreover, they showed that, as predicted, group performance increased

with group size, decreased with correlated judgments, and more competent group members

were more influential.

Bahrami et al. (2010b), however, proposed that what collaborators were expressing through

their confidence was the ratio of the mean signal to its standard deviation. This is a meaningful

deviation from the Sorkin et al. (2001) account, as it opens the door to explaining inefficien-

cies in group decision making on the basis of a formal model that departs from the Bayesian

optimal cue integration. While the two group decision models made similar predictions for

collaborators with similar sensitivities, they can be dissociated when their sensitivities diverge.

In particular, large differences in individual sensitivities would result in poorer group perfor-

mance, as the expected collective benefit is a linear function of the ratio of two partners’ sen-

sitivities. Across a series of experiments conceptually mirroring Sorkin et al. (2001), Bahrami

et al. (2010b) tested the predictions of their model (Weighted Confidence Sharing, WCS) with

a 2IFC perceptual discrimination task in which participants performed both individually and

in dyads. In the joint condition, collaborators first made individual judgments and, if there

was disagreement, they were allowed to communicate with their partner freely. One of the

participants were randomly chosen to make the joint decision. Feedback was then offered.

Experiment 1 replicated previous findings of a higher group sensitivity (quantified by a higher

psychometric slope) than that of the best individual performer. In Experiment 2, additional

noise was added on some trials for dyad members either symmetrically or asymmetrically in

other to experimentally introduce individual differences in sensitivity. In the unequal noise con-
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ditions, group performance dropped below that of the best individual member’s performance.

This is in direct disagreement with the original Sorkin et al. (2001) model prediction, but in

line with the predictions of the WCS model.

Bahrami et al. (2010b) further explored whether the success of the dyads is attributable to

the fact that they could communicate about their confidence or whether they relied on feedback.

One can imagine that, given enough time, participants could infer the average reliability of their

partner just based on observing the other’s decisions alongside the group feedback. To disso-

ciate these different explanations, two additional experiments were conducted: one in which

feedback was withdrawn, to test whether communication alone could produce the previously

observed effect, and one in which dyad members were not allowed to communicate, testing

whether feedback was sufficient to elicit the effect. Results indicated that feedback was not

necessary to obtain the superior group performance, but communication was. It is perhaps not

particularly surprising that participants were not able to capitalize on the presence of feedback

to estimate their partner’s reliability given the trial-by-trial random noise addition. Perhaps a

fairer test of this hypothesis would involve a global (or blocked) manipulation of the sensitivity

of the collaborative participant. Bahrami et al. (2012) used such a design to show that nonverbal

displays of confidence (numerical ratings) were less conducive to ”counterproductive collabo-

ration” than verbal communication. This indicates that participants were better able to make

inferences about reliability when confidence was unambiguously presented and thus avoided

the full integration that would lead to decrements in performance. However, confidence ratings

were always presented in this experiment.

Thus, there is clear evidence of incorporation of information from others on the basis of

uncertainty communication, even if sometimes it leads to deleterious outcomes. However, pre-

vious experiments relied on the assumption of good metacognitive calibration for both agents,

since the predictions were based only on type I performance (their psychometric curves), as-

suming that participants were able to perfectly communicate their uncertainty. This is problem-

atic, especially considering that people have been shown to vary greatly in their metacognitive

abilities (Fleming et al., 2010). In a follow-up experiment aimed at addressing this concern,
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Pescetelli et al. (2016) tried to disentangle the effects of sensory evidence and social factors on

the integration of information. They fixed the accuracy of dyad members by using a staircase

method to keep performance at threshold and ensure that global accuracy would not be diagnos-

tic of their partner’s reliability (first-order and second-order performance were independent).

The correlation between the mean metacognitive sensitivity of the dyad (measured by A′′ROC)

and the collective performance of the dyad (relative to individual performance) was positively

and significantly correlated. This shows not only that previous assumptions were flawed, but

that the participants were also operating under the same assumption of equal metacognitive

sensitivity. Indeed, while the trial-by-trial correlation between accuracy and confidence is re-

sponsible for the collective dyad benefit, participants were not able to go beyond assigning

higher influence to the most confident member, which resulted in poor performance when that

reported confidence was not well calibrated to accuracy (Pescetelli et al., 2016).

The Pescetelli et al. (2016) results resonate with Mahmoodi et al. (2015), who used a very

similar experimental design to show that (across cultures) people use more or less equal weight-

ing of group members’ decisions despite differences in competence. They implemented a

Bayesian reinforcement learning model (Behrens et al., 2008) that estimates the probability

of a correct decision for an agent given the history of their decision accuracy, and then weights

this probability by the agent’s reported confidence. The model assumes that an individual’s

choice for the dyad will then be a linear combination of these probabilities with a fitted weight.

The less sensitive member of the dyad, who was less metacognitively calibrated, tended to

underweight their more competent partner and the more sensitive member overweighted their

less competent partner, essentially falling into the trap of the Dunning-Kruger effect (although

also compatible with the Burson et al. (2006) interpretation of the effect). In a series of control

experiments, Mahmoodi et al. (2015) showed that this effect survives when larger, more salient

differences in sensitivity were introduced (by experimentally making the task harder for one of

the participants), when reminders of past performance were given (alleviating memory load),

and when adding monetary incentives.

Additional evidence has been consolidating to show that groups of participants are subop-
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timal when aggregating information under conditions of competence asymmetry. Bang et al.

(2017) explored whether group members can align their confidence expressions and recalibrate

them to a common metric, which would then assure the optimality of their joint decisions.

They propose that since inferring another agent’s function to link probability correct to their

reported confidence is computationally difficult, people use a heuristic strategy instead. Specif-

ically, they suggest that in social decision making, people will match their reported confidence

with each other (e.g., they will match mean confidence or the distribution of confidence). In-

tuitively, when collaborators have similar accuracy, confidence matching leads to optimal dyad

performance. On the other hand, when the two members differ in competence, there are two

opposing patterns. For calibrated dyads in which the more accurate collaborator is also the

more confident, confidence matching will lead to costs in dyad performance. For miscalibrated

dyads in which the less accurate member is the more confident one, confidence matching will

improve dyad performance. The results revealed markers of confidence matching: in the so-

cial group decision making condition, the differences in mean reported confidence between

partners were smaller, and the confidence of dyad members was significantly correlated only

when performing the task in a group. Furthermore, in line with predictions based on the heuris-

tic, dyads’ departure from optimality correlated positively with an increase in the dissimilarity

of the members. In dyads comprising one participant and one simulated collaborator used to

create calibrated and miscalibrated dyads, on average, dyad accuracy increased relative to the

initial individual accuracy for poorly calibrated dyads and decreased for calibrated ones.

As described above, a rich body of work bore out of the idea that human communication en-

ables cooperation by incorporating information optimally leading to both positive and negative

consequences for joint outcomes. Communication of confidence has been shown to boost dyad

performance (generating the wisdom of the crowd effect) even in the absence of feedback. At

the same time, participants were not able to adjust in situations with asymmetric competence

and miscalibration of confidence with accuracy. Such situations are by no means rare outside

of the lab. If anything, one would expect that more abstract cognitive tasks offer more chances

for miscalibration and asymmetric competence than highly controlled psychophysics tasks.
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The biases observed in these experiments were largely failures to either recognize correctly

or account for the relative abilities of a collaborator, assuming instead that they were more or

less equal. This can emerge either from not having an appropriate model of the other person

and bootstrapping from our own/using a heuristic, having a strong prior of equal ability, or it

can be an audience effect. Specifically, due to the social nature of the repeated collaboration

with a partner (no rewards and potential social costs), equal consideration of the partner’s input

is a sensible strategy. It would be interesting to check if the same effects are observed if the

joint choice made by the decision maker was not shown to the collaborator.

The following section will reiterate some of the gaps in the current literature and propose

how some of them can begin to be addressed.

4.2 Study motivation

As outlined in the previous section, the relationship between one’s confidence and accuracy

certainly influences one’s perceived credibility and sway on others(Tenney et al., 2007; Tenney

et al., 2008). However, based on the literature presented thus far, it is not clear how refined this

ability is beyond cases of flagrant misrepresentation of one’s knowledge.

The evidence for sensitivity towards the metacognitive skills of informants comes from ex-

periments that either test explicitly the assumption that a confident agent should also be correct

in a one-shot judgement, or compare informants who are perfectly calibrated with informants

who are particularly poorly calibrated. Specifically, in the Sah et al. (2013) experiment, across

several trials, an adviser was either always accurate or always inaccurate and used only the

extremes of the confidence scale (average of 30% confidence for the low confidence condition

and 95% for the high confidence condition respectively). There was a significant interaction

between accuracy and confidence in the explicit rating of advisor knowledgeability and trust-

worthiness, which is indicative of a calibration preference, and yet participants did not modulate

how they revised their judgments based on the calibration profile of the advisers. This is not

surprising given that the discrepancy between the calibrated and miscalibrated agents was easy

164

C
E

U
eT

D
C

ol
le

ct
io

n



to spot explicitly, but there was no extra benefit that calibration information could provide for

the integration of information. Regardless of the expressed confidence, participants ought to

use the advice of the always correct agent and discard the advice of the always incorrect agent.

On the other hand, in an experimental setup in which the discriminability of the informants

contrasted was matched and calibration differences were more graded and had to be learned

through repeated experience, Price and Stone (2004) instead found a preference for an over-

confident advisor over a more calibrated advisor with the same accuracy. There are several

potential reasons for the discrepancy in these results. First, it is possible that only very large

differences in calibration, such as those introduced by Sah et al. (2013), are perceptible. How-

ever, given the large body of evidence on human unsupervised statistical learning abilities (Fiser

& Aslin, 2001), this explanation seems unlikely.

Second, Price and Stone (2004)’s findings in support of the confidence heuristic could be

the result of the specific format of the forecasts which lead to the overconfident advisor being

(erroneously) judged as more accurate. For instance, a forecast that a stock price has a 90%

probability to increase can be judged as more accurate than a 70% forecast, even though both

forecasts make the same correct prediction (both are above 50%). Thus, if participants were

just counting who was more correct more often, rather than computing the average probability

score over all trials, they would end up with the conclusion that the overconfident forecaster

was more correct which could then influence preference judgments.

Lastly, the cover story employed by Price and Stone (2004), a comparison between two

male financial advisors competing for a job (depicted in business suits and briefcases), may

have elicited specific stereotyped expectations of people in such roles. Indeed, the authors

found that participants higher in personality measures of authoritarianism also showed higher

preferences for the overconfident adviser. Indeed, it would be interesting to check whether at

the population level, there is more vigilance about the overconfidence of financial forecasters

now, given the the financial crisis that occurred since the article was published.

In the proposed experiments, we aim to reconcile the literature and test the sensitivity to

(and preferences for) calibration using designs in which advisers exhibit graded, quantifiable
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differences in the statistical association across time between accuracy and confidence. We share

Yates et al. (1996)’s opinion that that a key basis for preference judgments about advisers is the

ability of confidence judgments to predict accuracy. Therefore, it is crucial to manipulate both

the discriminability of the advisers’ confidence and their calibration to be able to tease apart

their contributions.

First, in light of the results of Price and Stone (2004), the preference for a more discrimi-

native advisor in the original Yates et al. (1996) study needs to be further replicated to ensure

that they hold when the extremity of the forecasts is controlled for. Second, in the absence of

differences in predictability, as supported by previous experimental evidence, the confidence

heuristic could lead to a preference for overconfident agents. Alternatively, overconfidence

may be penalized given that overconfident agents can be perceived as using their confidence

judgments for deceptive purposes. A third option is that there is a general preference for cal-

ibrated collaborators, compared to both over- and under-confident others, even in a situation

of matched predictability. Calibration speaks to the self-awareness of others and could suggest

that they have a good understanding of the advice they are giving, which should increase prefer-

ence for a social partner generally (beyond evaluations of whether to trust specific assertions).

More cynically, it is less mentally effortful to interact with calibrated agents whose confidence

can be used at face value (i.e., to whom the confidence heuristic can be applied).

In light of this, we proposed a study with a series of experimental manipulations starting

from a conceptual replication and extension of the Price and Stone (2004) experiment. The

goal of the first experiment was to assess whether preferences for future collaborators depend

on previous inferences about the calibration profile of the agents who were equally accurate,

their confidence differences, as well as the extent to which their confidence judgments were

predictive of their accuracy, and dissociate between these three factors.

Price and Stone (2004) also found a tendency for men to prefer more extreme advisers to

a greater extent than women, so the experiment will fully counterbalance the gender of the

participants and that of the avatars.

The second study intended to go beyond testing general preferences for collaborating with
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one agent versus the other, which may be impacted by a multitude of intertwined factors (long

terms chances of gains through cooperation, perception of being honest or manipulative etc.)

to test how knowledge about the metacognitive skills of others could be leveraged in practice

to improve individual performance.

Specifically, we aimed to contrast participants’ adviser choices with optimal decisions as-

suming that participants monitored the functional mapping between confidence and accuracy.

Given sufficient experience with advisers, people should be able to build a simple model that

allows them to predict the probability of an adviser being correct given the stated confidence

of an agent and any other potentially relevant factors (e.g. task domain, audience). This pre-

diction would constitute an inferred, recalibrated confidence. Only a metacognitively sensitive,

calibrated agent would have equivalent explicit and recalibrated confidence.

Therefore, the second study directly tested whether participants were able to adjust, in other

words, to recalibrate, the confidence of advisers before using it to make individual decisions.

Previous results would cast doubt on this ability. The already discussed Sah et al. (2013) results

and (Mahmoodi et al., 2015) could be taken to suggests that miscalibration affects the credi-

bility of informants as explicitly reported, without any implicit consequences for behavior in

terms of discounting their advice in future interactions. We have already argued that in the case

of Sah et al. (2013), there was little benefit in using calibration when incorporating advice due

to the floor/ceiling accuracy of advisers. Moreover, we believe that metacognitive differences

may be exploited in a less cognitively demanding, but more abstract task (c.f. (Mahmoodi et

al., 2015)). It is possible that participants might have stronger priors of equal expertise and

metacognitve sensitivity in the case of perceptual decision making compared to tasks involv-

ing more abstract cognitive skills. Indeed, according to work discussed earlier (Martı́ et al.,

2018), this prior would track the ground truth. It would be informative to have measures of

for instance the the Dunning-Krueger effect across different task domains (and not just task

difficulty levels).

A further critical deviation in our proposed experiment is that participants will not be en-

gaged in a joint task, rather they will be tasked with the evaluation of two potential advisers.
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We wanted to explore whether the equality biases observed by (Mahmoodi et al., 2015) are

purely egocentric and relate to either the increased demands of closed loop interaction or social

norms around it, and whether they can be avoided when participants need to integrate evidence

coming from two other people.

4.3 Experiment 1

4.3.1 Introduction

The first experiment was a conceptual replication and extension of Price and Stone (2004),

aiming to test preferences for collaborating with advisors who differ in their discriminability

and/or calibration. Distinctly from Price and Stone (2004), the predictive ability of confidence

was manipulated alongside the marginal match between the probability of being correct and

the probability of being confident. Calibrated agents were be compared to both under- and

overconfident agents, to assess whether departures from calibration have a symmetric effect.

Participants observed two agents simultaneously performing a novel categorization task

which allowed them to monitor the covariation between the agents’ binary confidence expres-

sions and accuracy. Following this observation phase, participants chose one of the agents as a

future collaborator for a following task. Categorization was preferred to the financial advisor

task to remove any prior stereotyped expectations for the confidence of such agents. Crucially,

the agents were correct the same number of times, but their calibration and discriminability

ability was experimentally manipulated across eight between participants conditions (see Ma-

nipulation section below).

In planned follow-up control conditions, we assessed the perceived accuracy of the ob-

served advisors and no preference judgments were made by participants. This was necessary

to ensure that any above-chance preferences in the experimental conditions were due to the

experimental manipulations and not to the mistaken perception that one of the agents is more

accurate than the other7. A within-participant measure of the difference in perceived accuracy

7Another control was planned contingent on a null result in partner selection preferences to test whether
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(like in Price and Stone (2004)) could be biased by the preference decision as participants could

assign a higher accuracy to their preferred agent to justify their choice (since it is likely that the

calibration will not be an explicit, but that implicit, reason for their choice).

A second sanity check task was used to ensure that the statistics of the two advice sources

could be accurately perceived by participants. This control was run post-hoc to explain the

unexpected finding that the condition in which a calibrated agent was contrasted to an agent

whose confidence was independent (and therefore unpredictive) of confidence. In order to test

this, we explicitly asked participants to report back marginal and conditional probabilities in

the context of a task that was equivalent to the main experiment in all aspects except the cover

story. A non-social cover story was used to eliminate any effects due to prior expectations

about statistical associations between the variables presented. This control was applied to the

aforementioned conditions alongside a condition in which we observed the strongest preference

effects to check whether similar preferences would emerge.

Quantifying metacognitive performance on the experimental task

It is necessary to clarify at this point what is meant by calibration in the context of this task. A

calibrated agent has been canonically defined as being confident to the extent that they are ac-

curate. For the current task, this would entail making the same proportion of ’confident’ judg-

ments as correct decisions. Some conditions contrasted a calibrated agent with the marginal

probability of being confident equal to the probability of being correct, to another agent who

had a higher (overconfident) or lower (underconfident) probability of being confident. We will

use the terms over- and under-confident to refer to agents who have different marginal proba-

bilities of being correct relative to the probability of being correct.

We have argued that the predictive ability of confidence is a more relevant factor for partner

selection than a match in the marginal probabilities of being confident and correct. In or-

der to quantify the informativeness of the agents’ confidence, the mutual information between

participants accurately perceived the difference in the marginal probability of being confident. This control was
not conducted.
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confidence and accuracy was computed for every agent8. Mutual information (also known as

information gain) quantifies how much of the uncertainty about accuracy of the agent has been

reduced by knowing their confidence. The equation below describes the mutual information

between accuracy (Y) and confidence judgments (X), where H denotes entropy:

I(A;C) =H(A)−H(A|C) =H(A)− ∑
ci∈C

p(C = ci) ·H(A|C = ci). (4.1)

If confidence and accuracy are independent, the information gain is null. On the other hand,

if the two have a perfect one to one correspondence, the information gain is maximal. The

marginal level of confidence will constrain the extent to which the covariation of confidence to

accuracy can be used to increase the informativeness of confidence. Further, given a marginal

probability of being confident (and the fixed accuracy), it is possible to derive which conditional

probabilities will lead to the greatest accuracy level.

There are two possible ways in which agents who produce the same decisions can differ

in their binary confidence judgments. First, they can both produce the same Bayes-normative

continuous confidence judgments, and then set different thresholds to binarize continuous con-

fidence when reporting it. The agent who uses a lower threshold would be more confident

overall than their counterpart. That is, they will produce more ’high confidence’ judgments

in general, meaning that they will be relatively less likely to be correct when stating they are

confident, and also when they say they are not (but not necessarily to the same extent).

The other way in which two otherwise Bayes-rational agents can reach different confidence

levels for the same decisions is if they assume different generative models for the data they

observe. For instance, we can imagine a simple categorisation task where stimuli corrupted by

noise come from categories defined by two equal variance Gaussians symmetric around zero.

Decisions on the category of the stimuli are deterministic as a function of whether the perceived

stimulus is lower or higher than zero, so independent of the perceived spread of the two cat-

8Alternatively, a chi-square test of independence could have been used, but mutual information provided a
more intuitive interpretation.
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egories. However, if one of the agents computes the confidence judgments believing that the

variance of the two categories is larger, then they will produce comparatively underconfident

judgments. Similarly, if the agent believes in a very narrow category, their resulting confidence

judgments will be higher than those of their equally accurate counterpart. Supplementary In-

formation 4.6.1 details the generation of confidence judgments for different agent profiles by

showing simulated data.

4.3.2 Methods

Participants

759 participants (377 female, 376 male, 4 nonbinary) were recruited through the Prolific and

Testable Minds online testing platforms. The average age of the participants was 30.70 years

(SD = 10.88). All participants were fluent English speakers of various nationalities, predomi-

nantly located in Europe and North America.

Participants were paid 1.6$ for the completion of the study and were awarded a bonus of

.5$. The bonus was used to incentivize participants to pay attention to the observation phase of

the experiment as they were informed that the bonus would be performance-based. However,

all participants were awarded the bonus upon completion of the experiment.

The recruitment goal was 64 participants for each of the main experiment conditions and

the two nonsocial control conditions and 56 for the two planned accuracy perception control

conditions.

This sample size was determined such that an a preference of around .659 could be distin-

guished from chance with power .8 in three primary planned FWER corrected binomial tests

conducted on subsets of the conditions to test whether participants exhibited: a preference for

a more informative agent when calibration is controlled; there is a preference for a calibrated

agent when compared to an overconfident agent, and when compared to a underconfident agent.

In the case of a null result, this sample size would be sufficient to provide a moderate to strong

9The proportion of preferences for the more extreme agent varied across the Price and Stone (2004) experi-
ments from .63 to .71.
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Bayes Factor in favour of the null. Further, the sample size for the accuracy perception control

was planned to allow for one sample t-test per condition to uncover a difference of 3-5 points

(on the 0-100 scale) with a standard deviation of the sampled population around double the

difference.

One participant was excluded from the analysis for not meeting the required age of consent

(minor) and another participant was excluded for noncompliance with the experiment instruc-

tions.

Ethical approval was obtained from the United Ethical Review Committee for Research in

Psychology (EPKEB) in Hungary.

Tasks

Main task

The experiment started with an observation phase. Participants were introduced to avatars

representing two other participants and were told that these participants were previously taught

how to categorize four amorphous shapes in two distinct categories (e.g. ”wug” or ”dax”). The

participants’ task was to carefully observe as these participants were tested on the categoriza-

tion task that they would themselves have to perform later. It was stressed that the agents

were not communicating, did not see each other, and did not receive any feedback. The reason

for this was to prevent participants from forming the expectation that the agents’ performance

should improve with time, or that they were playing against each other.

In each trial, a shape first appeared on the screen for 1000 ms. The true category of the

shape, the two agents’ binary confidence (”High” or ”Low”), and their proposed categories

were revealed sequentially every 1750 ms. Each trial was followed by a 750 ms inter-trial-

interval. Each shape was presented 15 times, amounting to 60 observation trials in total.

The schematic avatars corresponding to the two agents could be distinguished by clothing

and hair color, but where identical in all other respects. Participants were always presented with

two avatars of the same gender to avoid any gender-based preferences. Within a condition,

a balanced factorized assignment was used for the the gender of the avatars and that of the
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participants. For some conditions, there are small departures from the gender balance since the

self-reported gender of the participants did not match that recorded by the online recruitment

platform. The self-reported gender is used for descriptives and all analyses.

The identity and positioning of avatars on either side of the screen was randomized. Cat-

egory names and shape sets were also randomly chosen from three possible options. Agents

responded with the two category labels an equal number of times and were matched in their

performance within each category.

Following the observation phase of the experiment, participants were asked to choose which

of the two agents they wished to collaborate with in the future on a similar categorization

task. They were reminded that the bonus was contingent on good performance on this coming

task. After the forced choice, participants could offer an open-ended justification for their

selection. Following this, they rated the accuracy of the selected agent on a scale from 0-100

(corresponding to never - always correct).

Lastly, the participants completed a short 12 trial version of the categorization task they

observed. Performance on this task was used as an attention check for the observation phase.

Participants were then debriefed before concluding the experiment.

The experiment was completed on average in 13 minutes and at most within of 45-50min,

which was the maximum completion time allowed by the recruitment platforms.
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Figure 4.1: Example trial from the observation phase.

Planned control conditions: Perception of relative accuracy

The observation phase of the experiment was identical to that in the main task. The key

difference was that the participants were asked immediately after the observation phase to rate

the accuracy of both agents on a 0-100 point scale. Then they answered the 2AFC preference

question as in the main task, followed by the open-ended question. Accuracy ratings were

performed first (unlike in the main task) to avoid the potential bias that could stem from a desire

to be self-consistent with a previously expressed preference or the halo effect. Participants

then rated the overall confidence of the two agents, also on a scale from 0-100. Lastly, they

completed the short categorization task.

Post hoc control conditions: Perceptibly of statistical differences

In the nonsocial control task, the statistical structure and procedure of the observation phase

was kept intact, but the cover story was replaced. Participants were told that they were going to

observe two translation apps (distinguished by the color of their logos) as they tried to translate

alien symbols, the novel amorphous shapes used in the main experiment. These symbols could

refer to either colors or sounds, equivalent to the category labels used in the main task, and

could come from one of two similar alien languages (Lapian or Sindarin), corresponding to the
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previous confidence judgments.

In the observation phase, the apps first detected which one of the two possible made-up

languages the symbols belonged to and then proposed a category for the meaning, maintaining

the structure of the main task. Participants were informed that the two languages used fairly

similar symbols and, therefore, it was possible that the apps could be mistaken both about the

language they belong to and their meaning.

At test, participants were first asked two questions about the apps’ probability of correct

categorization conditional on a given detected language. Specifically, participants were shown

a new symbol from the same language task and were shown that the apps had detected the same

language. They were then asked to make a forced choice between the two different possible

meaning categories. This was repeated for the two languages. Agents differed in who was more

likely to be correct across the two languages, so the expectation was that participants would

choose the meaning offered by the app more likely to be correct for the respective language.

Following the conditional test, participants stated their general app preference for future

translation tasks involving these languages in a 2AFC format and could explain their reasoning

in an open-question format.

Following the conditional test, participants were presented with a general app preference

2AFC. Participants were asked which apps they would choose to use for similar future transla-

tion tasks involving these languages. Like in the main task, they were also asked if they wanted

to explain their decision in an open-question format.

The perceived marginal probabilities of the apps being correct were reported on a 0-100

scale for both apps. Participants then reported on a 0-100 scale the frequency with which apps

detected the two languages, and made a 2AFC decision on the more common language for each

app.

Lastly, just as in the main experimental task, participants completed 12 trials of the transla-

tion task themselves.

The same counterbalancing and randomization as in the main experiment was applied

throughout.
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Experimental Manipulation

Main task

The accuracy of both observed agents was always 70%. A moderately high level of accu-

racy was chosen since it is unreasonable to expect good calibration with poor performance, and

it leaves enough variability in accuracy to warrant monitoring the confidence. The profile of

the agent pairs differed across seven between-participants conditions that manipulated: the dif-

ferences in marginal probability of being confident and the informativeness of their confidence.

The agents’ confidence could vary so that they were calibrated (as confident as s/he is

accurate; 70% confident), over (90% confidence) or underconfident (50%). Further, the infor-

mativeness of confidence (see equation 4.1) was either matched, or varied.

Table 4.1 shows the agent pairings for the eight experimental conditions. We will refer to

the agent who is more metacognitively attuned(confidence is more informative and/or better

calibrated), who we predict agents will choose to collaborate with, as the reference agent.

Across the first four conditions (A-D), the reference agent was confident 70% of the time

and had maximally informative confidence given the constraint of behaving in a Bayes-rational

manner (the probability of being correct given low confidence being at least 50% and lower than

the probability of being correct given high confidence). The comparison agents were matched

as closely as possible for informativeness in conditions A and B, but they were biased towards

underconfidence (A) or overconfidence (B). Relative to the calibrated agent, the overconfident

agent has a lower probability of being correct when confident, and the underconfident agent

had a higher probability of being correct when confident.

On the opposite, the comparison agent in condition C was unbiased, but their confidence

and accuracy were independent, their probability of being correct was the same for high and

low confidence. In condition D, the agent was underconfident and maximally uninformative

given their marginal confidence (so less informative than the underconfident agent in A).

Table 4.2 and Table 4.3 crosstabulate the raw accuracy and confidence judgments for the

agents used all conditions, alongside the associated probabilities, and type II hit and false alarm
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Figure 4.2: Mutual information of agents.

(a) Conditions A-D of the experiment. The intervals marked with horizontal lines
corresponding to the minimum and maximum MI that can be achieved with a
given marginal proportion of being confident. The minimum and maximum have
been computed only for plausible rational agents.

(b) Agents from conditions E-H (represented by star symbols) are added to the
previous plot for ease of comparison.

(c) Difference in MI within agent pairs across conditions.
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Table 4.1: The confidence and informativeness (mutual information, MI, in bits) of agents
across the experimental conditions. The maximal information gain achievable is .88. Larger
differences in MI are expected to result in more extreme preferences.

Condition Reference agent Comparison agent MIdi f f
P(conf) MI P(conf) MI

A .7 .06 .5 .06 .00
B .7 .06 .9 .01 .04
C .7 .06 .7 .00 .06
D .7 .06 .5 .00 .06
E .7 .88 .5 .40 .48
F .7 .88 .9 .19 .69
G .5 .40 .5 .01 .39
H .9 .19 .9 .01 .19

rates.

The rationality constraint greatly limits the differences in informativeness that can be achieved,

as can be seen in Figure 4.2. To exaggerate differences in informativeness between agents, two

additional conditions were constructed in which the reference agent was omniscient, that is, she

was always correct following high confidence and always incorrect following low confidence.

This agent was compared to an under (E) and overconfident (F) agent who had informative (but

not as informative) confidence judgments. These two uncalibrated agents were further used as

reference agents in two conditions in which they were contrasted with agents with the same

bias, but poorer informativeness (G and H respectively).

Planned control conditions: Perception of relative accuracy

The control was performed on conditions E and F to test whether, if at all, the perception of

accuracy is modified by over- and under confidence, respectively. These two conditions were

chosen since they are likely to provide the highest chance of observing differences in perceived

accuracy given that the agents differ in both marginal probability of being confident as well as

the informativeness of confidence.

Post hoc control conditions: Perceptibly of statistical differences

Conditions C and F were chosen for the sanity check on whether the statistical differences

between the two agents were large enough to be perceptible since we observed the largest and
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smallest effect in preferences for these two conditions, respectively.

Materials

The shapes were generated as combinations of integral dimensions based on code provided by

Op de Beeck et al. (2001) and are presented in Supplementary Information Figure A.4.18. The

avatars are shown in the Supplementary Information Figure 4.19.

A pilot version of the experiment can be viewed on Pavlovia, the service used to host the

experiment and data:

https://run.pavlovia.org/Oana/categorization. The data are downloadable from: tinyurl.com/

58jzwhe8.
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4.3.3 Predictions

Figure 4.3: Visualization of predictions for collaborator preferences. Absolute values are only
illustrative.

If the main driver of partner choices is the informativeness of conditions, the strength of the

preference for the better calibrated agent should follow the within agent pair mutual information

differences. Specifically, preferences for the reference agent should be observed across the

board, including in conditions C, G, and H. However, if participants prefer agents who are

more confident, then we should observe a preference for the reference agent in conditions A,

D, and E; a preference for the comparison agent in conditions B and F, and no difference across
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conditions G and H. Alternatively, if marginal confidence calibration is the basis of judgments,

then we expect to find preferences for the calibrated reference agent in conditions A,B,D, E, and

F but chance performance in conditions C, G and H. The different predictions are visualized in

Figure 4.3. Aggregate preferences across these three groups will be tested against chance.

4.3.4 Results

Main task

Figure 4.4: Collaborator choices across the conditions

(a) Proportion of times that the reference agent was preferred by participants. Lines denote +/-SE.

(b) Choices broken down by the participant’s performance on the categorization task. Percentages un-
der the conditions refer to the number of participants who scored above 75% correct (good performers)
on the categorization task.
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Overall, participants chose the agent who had better metacognition (referred to as the ref-

erence agent) 58.45% of the time, which was significantly above chance, z(514) = 3.89, p =

.001,BFalt = 87.50, Cohen’s h = .17. As illustrated in Figure 4.4a, across all conditions where

participants had a preference, the direction consistently favoured the reference agent as pre-

dicted. When the comparison agent was overconfident (conditions B and F), 63.57% of choices

favored the calibrated reference agent, z = 3.20, p = .001,BFalt = 12.94. The reference pref-

erence was also found when the biased agent was underconfident (conditions A, D, and E), al-

though it was not significantly different from chance, 55.21%,z = 1.45, p = .15,BFnull = 3.93.

Lastly, agent comparisons in which the calibration bias was matched and agents differed only

in the informativeness of confidence (conditions C, G, H) led to a preference for the reference

agent 58.25% of the time, z = 2.33, p = .02,BFalt = 1.28. Continuous differences in the infor-

mativeness of paired advisers significantly predicted choices for the reference agent in a logistic

regression, β = .79(95%CI : .046−1.53), p = .03.

When adjusting the multiple comparisons for FWER (α = .015), only the preference for

the calibrated over the overconfident agents remained significant. However, a χ2 test for ho-

mogeneity failed to find a difference between preferences across the three contrasts, χ2(2) =

2.22, p = .33,BFnull = 22.94, suggesting that preferences for the agent with better metacog-

nition were equally strong across all types of comparisons, whether they involved an un-

der/overconfidence bias or a loss of informativeness.

Moreover, preferences were more extreme for participants who were more attentive (or mo-

tivated) during the experiment. Figure 4.4b groups participants based on whether they scored

75% and higher10 on the final categorization task. Good performers chose the reference agent

62.12% of the time, and poor performers made the same choice only 52.08% of the time,

χ2(1) = 4.57, p = .03,BFalt = 1.87.

For good performers, the proportion of times the reference agent was chosen was above

chance when compared to underconfident agents (conditions A, D, and E, prop= .60,z(125) =

1075% corresponds to the performance that is statistically different from chance on this task. All analyses
were repeated including only participants who scored over 50% on this categorization task. The same qualitative
pattern of results was found.
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2.18, p = .03) and overconfident agents (conditions B and F, prop = .68,z(77) = 3.40, p <

.001). The proportion of reference partner choices was also above chance when marginal prob-

abilities were matched (conditions C, G, and H), prop = .61,z(117) = 2.45, p = .01. Lastly,

when (relatively) matched for informativeness (conditions A and B), there was also a preference

for a marginal match between accuracy and confidence, prop = .61,z(69) = 1.96, p = .05.

However, there are two notable departures from predictions based on informativeness in

conditions C and D, where there was no consensus on preferences, prop= .54,z(83) = .66, p=

.51,BFnull = 5.97. The results for condition D are extremely surprising given that this condi-

tion was predicted to elicit the largest effect as it pools together the effects of both marginal

proportions of being confident and informativeness. Further, results contradict the preferences

found in conditions G and H, where informativeness is the only explanation for the observed

effect. We explored two explanations for this result: either the statistical manipulation was not

sufficiently salient or preferences are modulated by another variable.

Visual exploration of the data indeed revealed considerable and unexpected differences

in performance as a function of the interaction of the experimental condition and the gender

of both the participant and the avatars. As illustrated in Figure 4.6.1, the small aggregated

preference effect was sometimes the result of averaging strong preferences (e.g., 87.50% of

men preferred the calibrated agent in condition F). We did not expect this interaction and did

not have specific a priori predictions for gender effects as a function of the condition or avatar,

so we will not perform statistical analysis on gender effects, an analysis that would also be

underpowered.

However, since these differences are sometimes large, and could be of interest for future

research, we graphically present the data in the Supplementary Information Figure 4.6.1. Over-

all, the strongest preferences for the reference agent were found for male participants judging

male avatars (69.53% in favor of the reference agent) compared to male participants choosing

between female avatars (55.12%) or female participants deciding between female (54.47%) and

male (54.20%) avatars.

The average performance on the categorization task was 76.55% (SD = 24.24,Median =

185

C
E

U
eT

D
C

ol
le

ct
io

n



83.33), slightly higher than that of the observed agents. The mean estimated accuracy of the

chosen agent was 72.11% (SD = 11.07,Median = 73.00), a fairly close group estimate that

showcases the wisdom of the crowd effect. Figure 4.5 illustrates pooled participant perfor-

mance on the estimation and categorization tasks.

Importantly, no gender effects, referring to either the avatars’ or participant’s gender, were

found in the categorization performance following the experimental task, nor in the estimated

accuracy of the selected agent (in order, for participant gender: t(512) = .59, p = .55,BFnull =

8.61; t(512)=−1.46, p= .14,BFnull = 3.62; for avatar gender: t(512)= 1.22, p= .22,BFnull =

4.95; t(512) = .53, p = .59,BFnull = 8.90; see Figure 4.6).

Figure 4.5: Estimates of the agent’s accuracy and performance on the categorization task.
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Figure 4.6: Violin plots showing the participant’s estimates for the agent’s accuracy and per-
formance on the categorization task by participant gender.

Planned control task

Figure 4.7: Participants’ estimates of the two agents’ accuracy in the control conditions (repli-
cating main task conditions E and F). Crosses denote sample means. In the rightmost plot of
within participant differences against zero, circles denote means and lines correspond to me-
dians.

Figure 4.7 contrasts the participants’ accuracy ratings for the reference calibrated agent and

the biased agents in conditions E and F. Across the two conditions, estimates for both agents

were centered around the ground truth value of 70%, although there was considerable variation

in estimates. The average within-participant difference in the estimated accuracy for the two

agents did not differ from zero in condition E, Mdi f f =−2.28,SD = 17.39, t(55) =−.97, p =

.33,BFnull = 4.35, or F, Mdi f f = 1.67,SD = 16.42, t(56) = .75, p = .45,BFnull = 5.24. The

same pattern of results was obtained using median tests.
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There was no significant difference between the relative accuracy ratings of men and women

in condition F, t(54) = .70, p = .49,BFnull = 2.99. However, a small, but significant difference

was found in condition E, t(53) = 2.05, p = .04,BFalt = 1.50, as women rated the calibrated

(more confident) agent as slightly more accurate (Mdi f f = 6.11,SDdi f f = 15.16), while men did

not (Mdi f f =−2.75,SDdi f f = 16.45), showing instead a small bias towards the underconfident

agent. However, when looking only at participants who performed well in the categorization

task, the bias observed in women disappeared. No significant differences were found as a

function of the gender of the avatars.

In the preference question following the estimation task, participants were more likely to

choose the agent whom they rated as more accurate, prop = .81,BFalt = 143.62. Overall pref-

erences within either condition were not different from chance, BFnull = 4.46. This result is to

be expected given that on average the agents were perceived as being equally accurate, and as-

suming that participants expressed preferences that were consistent with whom they explicitly

rated as more accurate. Thus, preferences for the more accurate agent would average to chance

if participants are trying to be self consistent.

Post-hoc control task

Participants completing condition C were at chance in the two questions testing the com-

prehension of conditional probabilities: 26.56% of participants responded correctly to both

questions relative to the 25% chance level for answering both questions, BFnull = 7.00. How-

ever, in condition C differences were observed between the two conditional questions. 64.06%

of participants got the right answer for the question conditioning on the less common language,

but only 45.31% of participants were correct for the remaining conditional, χ2(1) = 3.81, p =

.05,BFalt = 3.05. This finding is in line with the fact that the ground truth between-agent dif-

ference in the probability of being correct was larger within the rarely occurring language (.7

vs. .5) compared to the frequently occurring language (.79 vs. .69). If only this conditional dif-

ference was perceived, then preferences should favor the app perceived to improve in accuracy

given the low (rather than high) frequency language. In condition C, this would result in a pref-

erence for the comparison app. This prediction was borne out by the data, as the participants
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chose the less informative app in condition C 65.62% of the time, z = 2.63, p < .001,BFalt =

3.53. Moreover, participants who answered the conditional question correctly were more likely

to choose the comparison app (78.05% vs 43.48%), χ2(1) = 6.35, p = .01,BFalt = 17.68.

In condition F, participants performed above chance in the conditional probability test, .56,

BFalt = 5.49e4, and preferred the reference agent 59.37% of the time.

In the explicit ratings of the agent’s accuracy, there was no significant difference between

the estimated accuracy of the two agents, but, as before, the variability within the sample was

fairly large. In condition F, the mean difference was -.10 (SD = 16.97,Median = 0), t(4711) =

−.04, p = .97,BFnull = 4.99, and similar in condition C the observed difference was -3.77 in

favor of the reference (calibrated) agent (SD = 21.16,Median = −4.50), t(63) = −1.42, p =

1.60,BFnull = 2.81.

For both conditions, most participants correctly reported that the apps detected one lan-

guage more often than the other (corresponding to the confidence marginals in the main task),

71.87% of the time in condition F, and 67.18% in condition C, overall z= 4.80, p< .001,BFalt =

2303.39. Furthermore, in estimating the frequency with which apps detected the languages,

we found no differences for condition C in which the probabilities were equal by design,

Mdi f f =−4.66,SDdi f f = 26.77, t(63) =−1.38, p = .17,BFnull = 2.96. On the contrary, there

was a significant difference in condition F in line with the fact that one language was detected

20% more by one app than the other, Mdi f f = −7.67,SDdi f f = 19.84, t(47) = −2.65, p =

.01,BFalt = 3.54. Lastly, the agent preferred was perceived to be more accurate, but not more

confident.

4.3.5 Discussion

Descriptively and qualitatively, the pattern of results generally tracks predictions based on the

informativeness of the participants (see Figure 4.3). Moreover, participants’ preferences for

future collaborators were just as extreme in conditions in which the two agents were matched

11Unfortunately, we could not record the continuous measures for accuracy and marginal language detection
for the first 12 participants due to a technical error.
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for bias, suggesting that choices were modulated by differences in the informativeness value

of the confidence judgments. This could only be possible if participants were monitoring not

only the marginal probability that agents were correct or confident, but also the conditional

relationship between accuracy and confidence. However, effect sizes proved to be rather small,

suggesting that tracking informativeness across time is a difficult task, and one that people

could routinely fail at inside and outside the lab. On the other hand, participants in the current

study had no reason to believe that the potential informants had any interest in misleading

them given the collaborative cover story, so we expect the metacognitive abilities of informants

will be scrutinized more in settings where there is a potential for intentional manipulation of

confidence.

Contrary to the previous findings of Price and Stone (2004), and in accordance with the

proposals of Sah et al. (2013) and Tenney et al. (2011), we found that the participants were

consistent in their vigilance to expressions of overconfidence. There are several factors that

could have made it more likely to find this effect under the current design: higher ease of

tracking the covariance of binary expressions of confidence and accuracy across trials, larger

differences in the biases of agents, and perhaps the different cover story.

Since the preference for a better calibrated agent was present both for comparisons with an

underconfident and an overconfident agent, it does not reflect a preference for a more extreme,

more confident agent as suggested by previous studies. Second, the preference is stronger for

comparisons with the overconfident agent (prop = .63 vs. .51), which was predicted based on

the informativeness of confidence, since the overconfident agent had confidence judgments that

were less informative than those of the underconfident agent. Further, within the marginally

matched conditions, the preference for the calibrated agent survived and was stronger for the

comparison of the two underconfident agents (prop = .63) than for the comparison of the two

overconfident agents (prop = .56). This is again consistent with predictions on the basis of

confidence informativeness differences.

At the same time, when the contrasted potential advisers were equally informative, the one

who was confident to the extent that she was correct was preferred, suggesting that marginal
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probabilities of being confident are tracked as well. However, it is clear that there is not just a

blanket preference for more confident advisors, as the more calibrated agent was preferred to

an agent that was more likely to make highly confident judgments.

Furthermore, the preference for calibrated social partners was not accompanied by a group-

level difference in their perceived accuracy. However, we did find a self-consistency/halo effect

in the planned control task as participants preferred the agent whom they had previously rated

as more accurate. This led the aggregate preference judgments in the control condition to be

indistinguishable from chance, unlike in the main task. Based on this finding, it is likely that

the preference judgments in the main task were not mediated by a bias in the perception of the

accuracy of the observed agents.

It is true, however, that the control conditions comparing accuracy were not within-participant,

so we can only draw conclusions about group-level differences. However, as pointed out be-

fore, there are issues with a within-participant measurement as well, as they can lead to biasing

due to post-hoc justification. It seems very unlikely that small error in perceived accuracy could

then lead to preferences for calibrated agents that are this consistent across multiple manipula-

tions.

There was a surprising result as the more metacognitively sensitive agent was not preferred

when contrasted with an agent with confidence judgements independent of accuracy. A repli-

cation of the experiment with a nonsocial cover story offered a likely explanation. The findings

indicated that the participants did not detect one of the conditional differences. Their prefer-

ences were, however, fully consistent only with the partial evidence they obtained.

The effects of the gender of the participant and the avatar were surprising and warrant

further targeted investigation. Price and Stone (2004) found no differences between pairs of

male and female financial advisors in one experiment, but no analyses were presented that

included both the gender of the avatar and the participant’s. They also found a small difference

as a function of the gender of the participants, as more men preferred financial advisors with

more extreme confidence. This is partially consistent with current results, but does not explain

the gender effects across all conditions. The gender effects may partially explain the fairly small
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effect size observed. The fact that the current experiment found an effect of avatar gender is

surprising given that the avatars used here are highly schematic and their gender was not made

salient.

To conclude, confidence was shown to be a useful signal that informs partner choice for

cooperation tasks. However, the results need to be replicated and extended with other tasks in

order to argue that tracking of calibrations is implicit and spontaneous. Although participants

were not told to monitor the covariation of confidence and accuracy, they were also not engaged

in a secondary task and had little else to focus on in the display, which made it obvious that the

purpose of the observation phase was to remember the confidence and accuracy judgments of

the participants. On the other hand, in such a simple scenario, analysis of the open ended ques-

tions revealed that even for participants who justified their partner selections with reference to

extraneous facts (e.g. ‘I liked the person better’, ‘I like the color of their shirt’), the probabil-

ity of choosing the calibrated agent was above chance. It is intriguing whether monitoring of

confidence informativeness is an automatic and implicit process similar to statistical learning,

or whether it only occurs in a collaborative (or pedagogical) context or, generally, like here, in

a setting where several individuals are being contrasted.

4.4 Experiment 2

4.4.1 Introduction

Experiment 1 showed that participants can determine the relative metacognitive ability of two

potential collaborators in a categorization task, by tracking across time the statistical relation-

ship between their accuracy and confidence. In the current experiment, we test whether, in a

similar task, inferences about basic biases of confidence expressions (under and over estima-

tion relative to accuracy) lead not just to general collaborator preferences, but also extend to

differences in the willingness of accept the suggestions of competing advisers.

A substantive test of metacognitive monitoring should involve checking the extent to which

humans are making optimal adviser choices in light of their metacognitive abilities. Specif-
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ically, whether people leverage the functional mapping between accuracy and confidence in

order to determine, on every given encounter, the probability of advisers being correct given

their stated confidence (and any other potential contextual information). We refer to this quan-

tity as recalibrated confidence, in contrast to the explicitly stated confidence of advisers. The

explicit and recalibrated confidence are the same only for calibrated advisers.

We propose a simple experiment in the judge-adviser framework in which participants could

infer the relationship between the accuracy and confidence of two agents (manipulated across

conditions) by observing them repeatedly perform a novel task. Following this, participants

made multiple decisions relying solely on disagreeing advice from the potential advisers. We

hypothesized that trial-by-trial, participants will choose the suggestion of the adviser with the

highest recalibrated confidence as opposed to the highest stated confidence. In the current

experiment, the optimal recalibration strategy leads to sometimes selecting the advice of an

adviser who is explicitly less confident than their competitor independent of calibration. Thus,

current predictions sometimes disagree with both the confidence heuristic and the calibration

hypothesis.

A simple example can be used to motivate the experimental task. Imagine you are a student

struggling with solving an equation. You have two friends, Anna and Emma, who both scored

70% in the latest math test. Anna says she is 90% confident she can solve it, while Emma

rates her chances at 70%. They did equally well on the test, so who do you ask for help? At

face value, given an assumption that accuracy and confidence go hand in hand, you should ask

Anna to help. However, if you also know that after the last math test Anna thought she was

100% correct and Emma’s confidence was at 60%, you can factor in Anna’s overestimation and

Emma’s slight underestimation. Chances of Anna getting it right are likely around 60% and

Emma’s around 80% so in the end you are better off asking Emma for help.

Participants made such decisions in the experiment, comparing a calibrated agent to ei-

ther an underconfident or overconfident, but equally accurate, agent in between participants

conditions. Here, over and underconfidence are biases of estimation (vs. precision or relative

placement). Further, in within-participant control conditions, participants compared two ad-
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visers who had the same accuracy and confidence, and as well two agents who had the same

confidence, but differed in accuracy. These comparisons functioned as controls to establish the

internal validity of the task. Potential advisers only differed by a constant bias, as the sensitivity

of linear relationship between accuracy and confidence was kept constant, making it as easy as

possible to apply the recalibration.

A pilot study was conducted and is briefly presented in Supplementary Information subsec-

tion 4.6.3.

4.4.2 Methods

Participants

60 participants (29 female, 1 nonbinary, 30 male) were recruited online through the Prolific

online platform. Participants were evenly split across two between-participants conditions.

The mean age of participants was 33.27 years (SD = 11.31, range: 18 - 66 years old). English

was the first language of all participants and the majority resided in the UK.

Participation was rewarded with £6.5, including a participation reward of £5.5 and a performance-

based bonus of £1.

Ethical approval was obtained from the United Ethical Review Committee for Research in

Psychology (EPKEB) in Hungary.

Figure 4.8: Example trial from the observation phase.
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Task

At the start of the experiment, participants observed a pair of agents performing a simple novel

categorization task across several trials. Participants then engaged in a betting task in which

they had to make decisions based on the advice of these agents. Lastly, participants answered

questions about the performance of the two observed agents and stated their overall preference

for one of them.

During the observation phase, participants saw two other fictitious participants get tested

on a binary categorization task while stating their confidence in the correctness of their response

on a continuous scale. Specifically, the agents were betting one virtual coin every trial on

whether a “Modi alien” was depicted in the image on the left or on the right side of the screen.

It was stressed that these two agents were not communicating and could not see each other, but

where performing the task individually on the Prolific platform. .

The agents expressed their answer and confidence simultaneously: the direction of the slider

position relative to the center of the scale marked their decision (alien is left or right) and the

distance from the center of the slider marked how confident the participant was (see Figure 1).

Only verbal labels were presented on the scale such that the center was “I don’t know” and

the extremes were marked with “Definitely right!” or “Definitely left!”. Further, a grayscale

gradient was used to mark the increase in confidence. Following the agents’ decisions, the true

location of the alien was presented on the screen. Figure 4.8 illustrates a training trial.

The observation phases consisted of 120 trials. Randomly interleaved attention checks

were presented following 10% of trials. Participants were asked to make a 2AFC choice about

whether a given agent was correct in their answer. Feedback was offered.

After every 30 trials, participants were shown the number of correct answers and the av-

erage confidence for the two agents thus far. Both accuracy and confidence were presented

on verbally labelled continuously scales (see Figure 4.9). This means that participants were

reminded of the summary statistics at the end of the observation phase.

Decisions were presented alone on the screen for 2,500 ms, the true location was then added
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Figure 4.9: Slide summarizing the performance of the two agents so far. These summaries
were presented to participants every 30 trials.

and presented on screen for 2,000 ms and the intertrial interval was 1,500 ms. The answer to the

check was not speeded, and the feedback was presented for 500ms. Participants were allowed

to consult the summary boards for as along as they wanted.

Figure 4.10: Example trial from the Betting phase. Here, the participant chose the advice of
the agent represented by the green avatar.

In the betting phase, participants were instructed that it was their turn to perform the cate-

gorization task. To incentivize performance, participants were told that on each trial they would

have to bet one virtual coin on their answer, and as a function of that number of coins they won

by the end of the task, they could receive a monetary bonus. Participants were only informed

how many coins they earned at the end of the experiment. In total, participants made 60 bets.

As before, participants could see the decisions and associated confidence of the two agents

from the observation phase. Importantly, participants were not shown the two images in which
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the “Modi alien” could be depicted so they had no way of knowing the location of the alien by

themselves. Thus, to make a ‘blind’ forced decision, participants could only rely on the deci-

sion made by the two agents and their associated decision confidence. Participants responses

were made on a scale identical to the one used by the two agents (see Figure 4.10). As such,

participants simultaneously made a decision and expressed their level of confidence in that

decision. Answers were unspeeded and no feedback was provided.

In the post-test phase, participants were asked to estimate the accuracy and confidence of

the two agents on continuous scale. Participants then made a 2AFC decision on their partner

preference for a future similar collaborative task.

Figure 4.11: Task design. Test and Control blocks were run within-participant. Conditions A
and B were between participant conditions. Numerical differences presented here were scaled
for visual presentation in the experiment (50% confidence corresponding to the center of the
scale, and 100% to the extremes).

Design

Each participant completed the task described above twice, with two different pairs of (fic-

tional) advisers, the order of which was counterbalanced. In addition to this within-participant

manipulation, there was also a between participant manipulation of the agent pairings. Fig-

ure 4.11 illustrates the design of the experiment.

We refer to one of the within-participant tasks as the Test block and one as the Control
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block. Control blocks were used as sanity checks of the design, and provided a measure of the

minimum and maximum effects that can be expected. The control block of condition A used

two agents matched for accuracy and confidence. The same agent was presented twice, with

shuffled trial order. Any differences observed in this block can only be attributed to perceptual

noise. In the control block of condition B, the two agents had the same confidence, but one

of them was more accurate. This modulation should induce strong preferences, so a failure to

elicit a statistically significant effect would mean that participants did not learn the statistics of

the task.

In in the test block of condition A, participants observed an underconfident agent paired

with a calibrated one. In the test block of condition B, an overconfident agent was displayed

alongside a calibrated one. Importantly, in both test blocks, the two agents had the same overall

accuracy and the same approximately linear relationship between accuracy and confidence (see

Figure 4.12).

The confidence values of the agents in betting phase trials were selected to make it possible

to distinguish whether participants chose trial-by-trial the agent with the highest recalibrated

or explicit confidence. First, in all betting trials, the two agents disagreed about the location

of the alien. Participants were explicitly informed that only trials with disagreements will be

shown, since their decision would be obvious when the two agents agree12. Second, we ensured

that there were sufficient numbers of trials ( 33%) in which decisions based on explicit con-

fidence differences were different than decisions based on recalibrated confidence, but shy of

making decisions based on recalibration overwhelmingly favour one agent. Lastly, the average

confidence of the agents was roughly equal in the betting trials.

The choices made by the agents throughout (left or right) were also randomized, with the

constraint that an equal number of ‘Left’ and ’Right’ decisions were made to avoid participants

developing a location bias. The four fictitious agents were represented by abstract avatars that

only differed in color, the assignment of which was counterbalanced across participants.

12Two well-performing agents, such as the ones presented in the experiment, by chance will have a high over-
lap of decisions, so the lack of agreement needed to be explained

198

C
E

U
eT

D
C

ol
le

ct
io

n



Procedure

The experiment took on average 55minutes (maximum 132 minutes), including a 5-10 minute

break half way through the experiment. The break was used to decrease the likelihood that

participants would carry over inferences about avatars previously seen at a given position over

to the new avatars at the same position. As such, a minimum 3 minute break was enforced, but

participants were allowed to take as long as 30minutes.

Materials

The alien images presented during the betting phase were taken from different families of the

symmetric Greebles dataset designed by Scott Yu. Images are presented courtesy of Michael J.

Tarr, Carnegie Mellon University, http://www.tarrlab.org/

The experiment can be viewed here: https://run.pavlovia.org/Oana/categorization2 and the

data are available at tinyurl.com/58jzwhe8.

Figure 4.12: Left: Relationship between confidence and probability of being correct for
agents with the same accuracy, but different marginal confidence. Right: Predictions for de-
cisions as a function of confidence differences between advisers and condition.
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Predictions

The main prediction concerned the binary decisions of participants, namely how their choices

should vary as a function of the confidence difference between the two advisers’ confidence.

The null hypothesis was that agents rely solely on explicit differences in confidence when

choosing advisers, specifically, on a trial-by-trial basis choosing the answer proposed by the

adviser who had a higher level of stated confidence on that trial. Alternatively, agents could

make decisions based on differences in the agents’ probability of being correct given their stated

confidence (recalibrated confidence). For the conditions in which agents had equal accuracy,

this results in the predictions in Figure 4. An underconfident agent is more likely to be accu-

rate in our design (and therefore should be chosen) even when they are slightly less confident

(>15%) than the calibrated agent (Condition A). To the contrary, an overconfident agent should

not be chosen when they are sightly more confident (<15%) than a calibrated agent (Condition

B). Figure 4.12 illustrates the predictions for the participants’ decisions based on advice.

Further, continuous confidence judgments were expected to mirror effects observed for the

binary choices, assuming that participants compute their own confidence in each of the two

possible answers and choose the one with the highest confidence.

Given that the estimation task and the overall preference test were presented following the

betting phase, high consistency is expected, and as such it is possible that preference judgments

would depart from those observed in Experiment 1. The intuition is that if participants, follow-

ing our prediction, more often choose the advice of an underconfident agent, this may also bias

them to prefer them. However, rationally speaking, participants should continue to prefer the

calibrated agent for a future task, given that the ground truth accuracy might not be known in

this task.

Data analysis

Participants were removed from the analysis based on two preset criteria. First, participants

kept in the analysis had to respond above chance in the memory test. Second, for the main
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analysis, only participants whose decisions varied with the confidence of the two advisers were

included (there was strong consistency between exclusions based on these two criteria). In

order to determine this, a logistic regression was fitted for every participant’s bets using the

bets and confidence of the two agents as predictors. AIC was used to compare this model

to a random response model. While participants better fitted by the random model were not

included in the analysis, we report their choices descriptively, as, for instance, it is potentially

meaningful if they chose the same adviser consistently and ignored trial-by-trial variability.

A Bayesian generalized mixed effects logistic model was fit to the choice data using the

pyMC3 package, (Salvatier et al., 2016), using the agent confidence difference as a fixed pre-

dictor and participants as a random intercept. The intercept and slope of each participant were

assumed to be sampled from Gaussian distributions with unknown mean and standard devi-

ation. The hyperpriors on the population mean and standard deviation were generic weakly

informative priors following Gelman et al. (2003). The means were assumed to come from a

Student’s t distribution and standard deviations were sampled from the Half-normal distribu-

tion. Three chains with dispersed initialization were used for estimation, with 104 iterations

each. Gelman-Rubin and Geweke diagnostic tests were used to check for convergence of the

model. Posterior predictive checks were used to asses goodness of fit.

A model was fit separately for every condition, resulting in a posterior distribution for the

categorization boundary.

As a sanity check that participant choices were indeed driven by the difference in the con-

fidence of the two agents, and were not dominated just by just one of the agent’s choices, the

same logistic model was fitted using both agent’s judgments as predictors. The relative weights

assigned to the two agents were compared for statistical differences. Participants’ decisions

varied as a function of the difference in the confidence judgments of the two agents, as the

weights used for the two agents were equal(see HDIs for population parameters, and individ-

ual weights in Figure 4.24), therefore, we present boundaries calculated based on regressing

decision to explicit confidence differences.

Visual exploration of the data revealed that continuous (absolute) confidence judgments
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were in fact mostly driven by the confidence of the chosen agent. A priori the expectation

is that the confidence of the participant should be influenced by both the confidence of the

agent whose advice was taken as well as by the confidence of the other adviser. Intuitively,

the higher the confidence of the adviser whose answer was chosen, the higher the confidence

of the participant in her answer. Conversely, due to the inherent disagreement in the adviser

recommendations, the higher the confidence of the not chosen agent (in the opposite answer),

the less confident should the participant be in their selected answer.

To explore the influence of the confidence of the chosen adviser and that of the other adviser

on the participants’ continuous confidence ratings, we regressed participants’ confidence rat-

ings on those of the agents and statistically compared the resulting weights, and tested whether

the addition of both advisers’ suggestions improved the variance explained.

Lastly, preference judgments and estimation of accuracy and confidence across the condi-

tions were compared to chance and the ground truth, respectively.

4.4.3 Results

Eight participants were excluded from the experiment based on the low attention check per-

formance and random response pattern (the two generally went hand in hand). A further 9

participants had only one condition included in the final analysis. Supplementary Figure 4.22

presents the AIC comparison of the random and informed response model. For the purpose

of visualizing individual variability in behavior, we present categorization boundaries from lo-

gistic regression fits for every participant. For each participant, a logistic regression was fitted

separately on their decisions in the Test and Control betting trials with the explicit confidence

difference between the agents as the predictor. This was equivalent to using the difference in

the probability of being correct since the relationship between confidence and accuracy was

approximately linear for the range of values used.
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Figure 4.13: Fitted curves from each participant’s logistic model on decisions. Dashed ver-
tical lines represent predictions for the boundary based on recalibration and bold lines are
group averages.

Adviser choices: Control Blocks

The most likely boundary for the control block of condition A, when the two presented agents

were in fact identical, was -.08, 95% Highest density interval (HDI):[-2.82, 2.69], see Fig-

ure 4.14. As seen in Figure 4.13, there was very little variability in the individual bound-

aries of participants, which closely clustered around zero, Mboundary = 1.34, t(18) = .58, p =

.57,BFnull = 3.62.

In the control pair of condition B, when the two agents had the same confidence, but dif-

fered in accuracy, participants’ boundaries shifted, as the more accurate agent was chosen be-
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yond what would be expected from explicit confidence differences. The maximum a posteriori

estimate (MAP) for the boundaries was -13.16, 95% HDI [-17.38,-9.55]. The predicted dif-

ference (15) was included in the HDI, but zero was not. Individual boundaries showed high

consistency, Mboundary =−14.73, t(21) =−8.97, p < .001,BFalt > 105.

Adviser choices: Test Blocks

Results did not follow predictions in the test blocks. In condition A, the boundary MAP es-

timate was negative, -3.77, 95% HDI [-6.83, -.85], suggesting that the more confident (and

calibrated) agent’s advice was used even when they were somewhat less confident than the

underconfident agent. Individual boundaries were also predominantly negative, Mboundary =

−4.48, t(23) =−2.92, p < .01,BFalt = 6.09.

There was no discernible pattern at the group level in condition B, as individual boundaries

varied widely around zero Mboundary = −.16, t(25) = −.09, p = .93,BFnull = 4.81. The MAP

estimate for the boundary was -.43, 95% HDI [-3.22, 2.29].

Figure 4.14: Posteriors distribution for the categorization boundary. Vertical lines represent
the MAP and horizontal intervals include the 95% HDI.

204

C
E

U
eT

D
C

ol
le

ct
io

n



Continuous confidence judgments

Contrary to predictions, the continuous confidence judgments produced by participants over-

whelmingly depended on the confidence of the agent whose advice was taken, and the confi-

dence of the other agent was not meaningfully incorporated in their stated confidence. This is

evident from the fact that adding the confidence of the agent whose advice was not taken to the

model did not increase the amount of explained variance for the vast majority of participants

(Figure 4.15 and Figure 4.15 broken down by condition).

Figure 4.16 shows the relationship between the advice of the two agents and the continu-

ous confidence judgments of the participants. Figure 4.23 shows the fitted weights for every

participant, computed by regressing their absolute confidence on the absolute confidence of the

two agents. In line with the R2 values, the weights for the agent whose advice was disregarded

were near zero.

Figure 4.15: R2 for predicting individual confidence judgments from the confidence of the
potential advisers. Each dot is a participant, all conditions are overlaid (red: cond A test; blue:
cond B test; gray: cond A control; black: cond B control).

Future collaborator preferences

When the two agents were identical, preferences for a future collaborator were at chance,

prop = .47,z = −.36, p = .71,BFnull = 2.30. Participants preferred to collaborate with the
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Figure 4.16: Relationship between confidence of chosen adviser and average confidence of
participants.

more accurate agent of equal confidence, prop = .90,z = 7.30, p < .001,BFalt = 3279.49.

In the test block of condition A, when deciding between an underconfident agent and a cal-

ibrated one with equal accuracy, the majority of the participants chose the more confident (and

calibrated) agent, prop = .77,z = 3.45, p < .001,BFalt = 16.56. In condition B, participants

had a very slight nonsignificant preference for the overconfident (miscalibrated) agent over the

calibrated one, prop = .60,z = 1.12, p = .26,BFnull = 1.48.

Participants’ estimates for the accuracy and average confidence of the two agents are pre-

sented in Figure 4.27. Estimates were very similar for both advisers across all conditions,

suggesting that they were strongly influenced by the betting phase statistics.

4.4.4 Discussion

Contrary to our predictions, participants did not make fine-grained optimal decisions about

whose advice to take based on differences in the advisers’ true probability of being correct on a

given trial. This was not due to a failure to understand the task since performance in the control

blocks conformed to predictions.

The failure to adapt decisions to the adviser profile is notable given that recalibration in this

case was particularly easy (only a constant bias adjustment). Based on this, it is unlikely that

more sophisticated recalibration could succeed, such as a difference in sensitivity. This is in
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line with the findings of Pescetelli et al. (2016).

When comparing advisers who only differed in their confidence, participants were signif-

icantly more heavily influenced by the more confident adviser in condition A. This happened

even though participants had observed the potential advisers over an extended number of trials

and were presented with summary statistics to ensure that differences would be salient.

Results from condition A alone would lend support to the confidence heuristic. However,

based on the lack of a similar pattern in condition B, we suggest that calibration was a medi-

ating factor. Specifically, a more confident agent held more sway on participants when it was

calibrated, but not when it was overconfident. It should be noted that this modulation of cali-

bration was not actually beneficial in our task. The differential outcomes in the two conditions

also suggest that the magnitude of the confidence manipulation was sufficient for participants

to pick up on calibration differences, although, further confirmation with larger differences is

needed.

However, we need to exert caution in the interpretation of the condition A and B differences

given the null pattern in condition B was generated by very large inter-individual variability

(that we could not explain based on the measure of task attentiveness). The source of the inter-

individual variability is an interesting further direction. Here, differences were not linked to

performance on the attention check task or the estimation task assessing learning.

Importantly, there was no indication in our experiment that either of the advisers had a

motive to (or would incur any benefit from) strategic manipulations of their confidence. It is

possible that in situations where the two advisers are competing (with each other or for the

influence of the participant), people would exert more vigilance and results would more closely

match our predictions.

The dissociation between the way in which participants made decisions about whose advice

to take and how they computed their confidence in their judgments merits further attention. In

the current design, there is some ambiguity between participants truly reporting confidence in

their decision or confidence in the adviser. If it is indeed the case that confidence of advice tak-

ers is entirely determined by the confidence of the person whose advice was selected, and more
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confident advisers are generally preferred (unless they are blatantly wrong), this can further

amplify overconfidence as information is being circulated in social networks.

4.5 General Discussion

The first experiment showed that people have a preference for collaborating with others whose

confidence is informative and commensurate with their accuracy. Findings disagreed with the

confidence heuristic (Price & Stone, 2004) and support the calibration hypothesis (Pulford et

al., 2018; Tenney et al., 2007).

In the second experiment, we asked whether participants act on the inferences about the

metacognitive skills of advisers in an optimal way. We did not find evidence of recalibration,

to the contrary, participants were more likely to choose a confident (and overall calibrated)

adviser on trials where they were less likely to be correct than an overall underconfident adviser.

Consistent with the calibration hypothesis, participants did not extend this undue influence to

an overconfident adviser.

General preferences for collaborators in Experiment 2 matched the implicit decisions. Re-

sults converged with results of Experiment 1 in terms of a preference for a calibrated adviser

over an underconfident one, but, in disagreement, there was no preference was found for the

calibrated adviser when compared to an overconfident adviser. It seems likely that, like in Sah

et al. (2013), there is a difference between explicitly verbalized preferences and actual implicit

behavior.

A clear direction forward is to replicate the experiment with larger differences in confi-

dence, to test the extent to which people will continue to take confidence statements at face

value. Further, another replication can test if a cover story suggesting advisers may be attempt-

ing to exert influence over their audience may make participants more vigilant. Recent work

casts down on the ability of humans to resist the strategic manipulations of advisers (Kurvers

et al., 2021). Another factor that intuitively could be thought to have affected results is that

it was conducted online and not in person, in a social context. However, Bower and Pulford
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(2013) have found no differences between face-to-face and online advice utilization. Further,

even the way in which confidence is presented, verbally or nonverbally, may impact results,

for instance by varying the degree of plausible deniability associated with the communication

channel (Tenney et al., 2019).

A further interesting direction is studying the inter-individual differences observed on this

task. Previous work has already found that gender (Lee, 2005) is liked to adviser preferences,

but there was little effect of personality differences (Pulford et al., 2018). A potential correlate

for recalibration in the current design could be statistical learning.

More pertinently, we can ask what the present results entail for the original question -

the ability of learners to choose reliable teachers and the extent to which teachers may use

confidence to asses the progress of their learners. Results can be interpreted to mean that there

is initial vigilance about who to learn from, but once an informant is deemed reliable, no further

scrutiny is applied.
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4.6 Supplementary Information

4.6.1 Experiment 1: Supplementary figures

Figure 4.17: Figure extracted from Yates et al. (1996): Calibration graphs of the forecast-
outcome data used in the experiments

Stimuli

Figure 4.18: Example of a stimulus set used in Experiment 1 generated using code from Op
de Beeck et al. (2001).
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Figure 4.19: Avatars used in Experiment 1

Generation of confidence profiles

Figure 4.20: Origins of different confidence profiles

Experiment 1: Gender effects
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Figure 4.21: The effect of gender on collaborator preferences.

(a) Preferences for the calibrated agent as a function of the gender of the participant.

(b) Preferences for the calibrated agent as a function of the gender of the avatars.

(c) Preferences for the calibrated agent as a function of the gender of the avatar pair and the gender of
the participant.
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4.6.2 Experiment 2: Supplementary figures

(a) Condition A

(b) Condition B

Figure 4.22: AIC comparison used for participant exclusions.
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Figure 4.23: Regression weights for predicting participants’ confidence based on the confi-
dence of advisers. Each dot is a participant.
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Figure 4.24: Fitted weights from logistic regression of participant decisions on the two advis-
ers’ continuous judgments (signed confidence). Each dot is a participant.
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Figure 4.25: Variance explained(R2) for models of participants’ confidence. Each dot repre-
sents a participant.
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Figure 4.26: Participants’ judgments as a function of adviser’s judgments. Each line corre-
sponds to a participant.
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Figure 4.27: Participant estimates for the two advisers’ accuracy and confidence. Participants
did not see numerical values on the scales, the half slider length was rescaled for plotting to
the 50-100 range. Each dot is a participant. Crosses represent sample averages. Vertical and
horizontal lines are the ground truth values.
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4.6.3 Experiment 2: Pilot

Figure 4.28: Observation phase of pilot.

The pilot experiment had the same structure as Experiment 2, with some differences in the

visual presentation (see Figure 4.28) of the observation trials and the way in which participant

responses were made. During observation, the choices of the advisers and their confidence were

presented separately. Scales showed confidence ratings from 50% to 100%, marking every 10

point increment and had no verbal labels (although the scale was extensively explained at the

beginning of the experiment). Second, no additional information was provided to reinforce the

accuracy and confidence levels of the advisers. During the betting phase, participants first made

a 2AFC about which adviser’s suggestion to take, and subsequently stated their confidence

in their decision. Both test conditions were piloted, but only one of the control conditions,

specifically the one comparing two identical advisers.

32 participants (16 per condition) took part in the pilot. Main results are presented in Fig-

ure 4.29. There was considerable inter-individual variability in boundaries, including in the

control condition. This is indicative of the fact that perception of the differences between

agents was very noisy and lead to the simplification of the visual presentation of the advisers

during observation and the addition of the summary presentation. While there is a high vari-

ability, qualitatively results were taken to support the recalibration prediction as boundaries

were biased in the predicted direction.

219

C
E

U
eT

D
C

ol
le

ct
io

n



In light of the results of Experiment 2, it worth considering what is responsible for the

apparent differences in outcomes. The changes made were intended to make the task easier

to follow and more intuitive for participants. The changes had the intended outcome as they

reduced the noise in the control conditions. At the same time, the also lead to a change in

direction in condition A. We speculate that the use of verbal labels instead of a numbered scale

was responsible for this differences, by driving home the meaning of the values presented on

the scale, as opposed to treating accuracy and confidence like any other variables that may be

statistically associated.

Figure 4.29: Participants’ individual boundaries, inferred by regressing binary choices on the
difference in adviser confidence. Dashed horizontal lines represent the predictions based on
recalibration of confidence.
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Chapter 5: General Discussion

5.1 Conclusions

A large part of human learning occurs in explicitly pedagogical settings or in what can be

broadly construed as communicative events which entail purposeful information transmission.

The prevalence of such settings can be explained by the fact that they tend to be conducive

to more efficient learning. In fact, it has been proposed that part of the puzzle of how young

children learn so much so quickly lies in their ability to capitalize on pedagogical situations

(Gergely et al., 2002).

The behavioral literature to date has been heavily unbalanced, focusing more on learning

compared to teaching. Investigating teaching behaviors is crucial given both the practical con-

sequences for parents and educators, and the theoretical implications regarding the explanatory

power of teaching for the incredible induction abilities of humans.

An important way in which people teach is by choosing good examples that would enable

learners to make more robust inferences faster. This is also an interesting task to study because

of its inherent complexity. To be (near-)optimal, teachers need to have a good approximation

of the generative model of the task and, additionally, an accurate model of the learner (i.e.,

what the learners know and how new information changes their beliefs). Further, teachers must

implement a data sampling algorithm (e.g, rational pedagogical sampling) that produces the

example set leading to the best learning outcome in light of this knowledge, and, in doing so,

must overcome any implicit sampling biases along the way.

In Chapter 2 we found that humans are able to perform contextually dependent purpose-
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ful sampling, which could be distinguished from generating data through an uninformative

(random) process. The results followed the predictions of a normative model Shafto et al.

(2014), which can be used to describe the optimal outcome of collaboration in teacher-learner

dyads. Results were also consistent with reliance on simpler strategies such as summary statis-

tics matching or conveying exemplars as varied as possible. These strategies could be useful

approximations to the optimal solutions. We argue that the main benefit of the Shafto et al.

(2014) pedagogical sampling model is that it offers a way to derive predictions about outcome

optimality; instead of providing a psychologically realistic account of human teaching.

However, we also observed suboptimal performance on a conceptually simple task (one-

dimensional boundary teaching), which highlights the fact that the assumption of rationality

does not do enough work in practical pedagogy. This result is meaningful especially since on

this task it was sufficient to teach a ‘literal learner’. That is, no additional assumptions were

required or would aid the learner to identify the hypothesis to be taught based on the examples

provided.

Therefore, we suggest that teaching-by-examples breaks down in various circumstances:

when the level of abstraction of the task is low, when more complex representations of the task

are built (even if they are extraneous to the teaching problem), and when there is uncertainty

about how a potential learner would reason about the evidence.

Focusing on the matching learning process, we found that learners were sensitive to the

generative process of sequentially presented data, a finding that resonates with the rich literature

on perceptual learning. Our specific goal was to contrast how humans produce estimates based

on i.i.d. sequentially presented series with strongly autocorrelated series. We were interested

in autocorrelation since it is ubiquitous in serial inputs that originate both from the natural

environment and from other humans. Given the prevalence of correlations, we had a strong

expectation that participants would be able to adapt to the statistical structure to improve their

performance in an estimation task. In fact, it has been shown that even in i.i.d. series, illusory

positive serial correlations are detected. This leads to a hot-hand bias (Blanchard et al., 2014),

which is potentially the result of an ecologically rational adaptation.
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In the case of autocorrelated inputs, the optimal pattern for computing the mean of the

series entails symmetric overweighting of the first and last samples in the series, a ‘primacy

and recency’ effect. This would have provided a novel normative explanation for serial effects

(especially for early sample overweighting). However, we did not find convincing evidence in

favor of this pattern at the individual level. It is possible that the current task did not sufficiently

incentivize the use of the optimal strategy (e.g., by imposing a cost function), and further

experiments may provide evidence to support our prediction.

At a glance, the results presented in this chapter paint a pessimistic picture about the feasi-

bility of optimal teaching and learning from teaching. However, we propose that in real world

scenarios teachers can rely on varied sources of information to boost their performance.

Therefore, in Chapter 3 we asked how teachers may bypass one of the most difficult chal-

lenges of teaching, inferring a model of their learner, by building such a model based on their

own learning experience. We found support for the fact that learning experience improves

subsequent teaching-by-examples performance in two different experiments. Moreover, we

showed that active learning is more useful than passive learning by using yoked designs in

which active learners were paired with passive learners. Why does active learning help? The

teaching task shares considerable similarity with active learning - a sample needs to be pro-

duced and evaluated by some criterion: expected utility for learning (e.g. uncertainty reduc-

tion) in the case of active learning and in the case of teaching, magnitude of learning achieved

towards ground truth.

The first experiment used a simple one dimensional boundary teaching task, with few stim-

uli, where the boundary was explicitly known and visually present throughout the entire ex-

periment. Arguably, this was an insight task, as the optimal strategy, once discovered, was

easy to describe verbally (’choose stimuli directly on either side of the boundary’) and transfer

explicitly. However, in the second experiment, a controlled setup was used in which learning

was implicit and the change in representation could be quantified. The category learning task,

adapted from Markant and Gureckis (2014), was extended in time and implicit, as participants

generally could not report back the structure of the categories they had learned. This is the first
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teaching experiment, to our knowledge, where the teacher has to first acquire a novel concept

by learning that is extended in time, and allows for studying the relationship between latents

describing the representation extracted and subsequent teaching.

The improvements from prior learning experience occurred when the categorization task

was more difficult, for information-integration categories as opposed to rule-based ones. This

is in line with predictions, as the hypothesis space for the two-dimensional classification task

does not match participants’ expectations. Overall, we found that participants were overly cau-

tious in their example generation - even participants who had acquired precise knowledge of

the location of the boundary were not offering examples close to the boundary that would re-

duce most uncertainty for the learner. However, this is in line with aiming to reduce mistakes

for highly noisy learners. Moreover, while active learning did improve teacher performance

according to objective learning metrics, we found that the examples provided by teachers were

consistent with strong sampling. We would like to confirm in the future whether the exam-

ples chosen by teachers indeed lead to improved performance for náive learners on this task

compared to strong sampling.

The results of Chapter 3 were robust, and replicated, but the magnitude of the improvement

in teaching from active learning experience was small. In other words, there is scope for train-

ing teachers, but it is possible that teaching the teacher will not yield the sizable effects that are

needed to make a real difference for learners.

In Chapter 4, we focused on one way in which learners may cope with suboptimal teachers.

Specifically, we proposed that learners may use confidence to distinguish reliable teachers from

teachers who are manipulative or have no self-knowledge. Further, teachers may use confidence

to asses the progress of their learners.

The first experiment revealed that participants were able to spot informants who were under

or over-estimating their chances of success and preferred calibrated and informative advisers

as future collaborators. However, it should be noted that effect sizes were modest, presumably

due to the general difficulty level of the task which required extended passive observation to

determine quantitative differences in the calibration profiles based on conditional probabilities
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of being correct given being confident or not. It would be particularly interesting to test whether

if a competitive scenario between the two advisers is introduced to participants, they would

increase their vigilance and show more extreme preferences. Lastly, we (unexpectedly) found

a host of gender effects that warrant further exploration with a targeted design in light of their

magnitude relative to the magnitude of the predicted effects.

Despite the pattern observed above for collaborator preferences, in a subsequent experi-

ment, participants could not leverage that information in order to make optimal choices about

who to learn from on a trial-by-trial basis. The prediction of the experiment was that par-

ticipants who learned the functional mapping between confidence and accuracy would make

predictions for the expected accuracy of an adviser when only their confidence judgements are

shown. Thus, we predicted that a recalibrated confidence would be used trial-by-trial when

choosing between two known advisers, as opposed to explicit confidence judgements.

Reassuringly, selective learning decisions were optimal when differences in competence

were introduced between advisers. A more confident agent, when calibrated, held undue in-

fluence on participant decisions. However, a more confident but overconfident agent did not.

This is an interesting result, in line with previous work highlighting the use of calibration as a

credibility signal (Tenney et al., 2011). We speculate that results are indicative of the fact that

instead of using the relationship between the confidence and accuracy of an adviser to make

detailed predictions about individual learning instances, which is cognitively very taxing, hu-

mans make use of calibration information to formulate priors about who is credible that are

subsequently used to inform decision making.

What can we conclude based on the cumulative results presented here? As expected, teach-

ing by giving examples was a hard problem even in well-defined and low-complexity tasks,

and even after prior experience with it. Namely, in our experiments teachers struggled to create

learning sets which eliminated sufficient amounts of uncertainty for the learner. However, we

speculate that the strategies used by teachers were adapted to learners who are themselves lim-

ited. For instance, relying on teaching of extreme examples from two categories, that teachers

were very confident about, reduces the risk that a particularly noisy learner would accidentally
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mislabel samples in its vicinity. On flip side, avoiding misleading learners is also critical if

teachers want to assure that learners continue to follow their advice. This has been shown in

Chapter 4 where correct and confident informants were preferred as collaborators.

In general, it appears that the future steps for understanding learning should include building

theoretical models and experimental paradigms which have an increased degree of psycholog-

ical realism and address how plausibly constrained learners and teachers can interact.

5.2 General limitations and further directions

The main limitation of the work presented and that we intend to pursue in the future is that

studying if and how teachers adapt on the fly to the learner in closed-loop experiments. There

are several ways in which current experiments can be modified for interactive settings. The

second experiment of Chapter 3 was designed specifically as a precursor of a closed-loop ex-

periment in which the teacher observes a learner in real time and is sporadically allowed to

offer examples to the learner. Teaching sets in this case are not expected to converge across

the entire sample, as teachers ought to flexibly adapt to the idiosyncrasies of their learners.

An interesting question to explore in this setup is whether teachers are adapting the number of

interventions and distance to the boundaries of the examples to the (inferred) uncertainty of the

learner around the boundary.

Further, we plan to conduct a manipulation of the mode of learning (active or passive) to test

whether teachers who observe active learners are able to make more precise inferences about

the learner’s current state of knowledge and are, therefore, better able to target their teaching

examples. In other words, do learners indirectly benefit from active exploration by making their

mental states easier to read? This rests on an implicit assumption on the part of the teachers that

active learners are trying to minimize their uncertainty with respect to the boundary location.

This assumption seems plausible as form of informational náive utility calculus(Jara-Ettinger

et al., 2016).

It is also interesting to explore whether closed-loop dynamics would improve teacher per-
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formance. On the one hand, access to immediate feedback from the learner in the form of

questions or checks of their comprehension, would facilitate teaching by making salient which

aspects of the teaching were successful or not. One direction that we believe to be particu-

larly promising for both theoretical and empricial exploration is the use of learners’ confidence

judgments to fine tune teaching. Work in education has shown that often students can answer

difficult questions correctly without having a deep understanding of the justifications behind

it. Confidence judgments have the potential to distinguish lucky correct answers from justified

correct answers. Further, confident wrong answers might suggest an improper understanding

of the answer and the need for extra clarification.

Second, human teaching takes multiple forms, from physical demonstrations to aid motor

skill acquisition or tool use, to complex verbal instruction such as seen in formal education.

What is the place of teaching-by-example in this ecology?

While in the current studies we looked only at example generation, the computational

framework is general and can apply to any task for which a hypothesis space and a set of actions

can be defined. For instance, the same principles have been used to show how teachers should

choose an intervention to identify a causal net or or to which verbal labels to use to identify

a referent. It remains an open question whether there are meaningful differences in the ability

to apply the iterated reasoning of pedagogical sampling to these different domains. Alternative

computational frameworks can potentially be used to explain different aspects of teaching. For

instance, partially observable Markov decision processes are more suited to model teaching as

a planning problem Rafferty et al. (2011) and F. Wang (2014).

Related this point, there is a strong reliance on categorizations tasks throughout the chap-

ters of the thesis. These were preferred as they are a natural match for studying teaching

through example giving and make it easier to quantify behavior. Categorization also has a long

tradition in the cognitive science literature and is, therefore, fairly well understood both be-

haviorally and computationally. However, a valid critique can be brought about the ecological

validity of such tasks to assess teaching. Categorization, understood as a means of structuring

the world in meaningful ways and solidifying representations, is a core ability and forms the
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basis for generalization.

However, it is likely the case that a large amount of human teaching of categorization is

not done by example giving (while this undoubtedly is part and parcel of it), but by verbally

providing a categorization rule or describing relevant features. On the other hand, there is

certainly a very large proportion of categorization structures that cannot be described effectively

through comprehensible rules (as opposed to mathematical descriptions) that would facilitate

learning. For example, a recent study by Rosedahl et al. (2021) has shown that for information-

integration category structures, explicit verbal instruction does not aid learning.

Third, while teaching is a continuous part of the human experience and adult-to-adult teach-

ing is common, the paradigmatic setting to study teaching is set early in development, where

the knowledge asymmetry between the teacher and the learner is the largest. Unfortunately,

this is also the situation in which the rational pedagogy model fairs the worst as a consequence

of the common ground violation (Yang & Shafto, 2017a).

The teaching goals in all the tasks examined were well defined, but this may not be the

case in real-life situations. We need to start asking questions about how effective teaching is

beyond generalization in classifications tasks, moving into more ecological transfer situations.

For example, is it possible to teach students how to generate ‘better’ hypotheses on their own

or a sense for what makes a new hypothesis ‘good’? Another important skill to be transmitted

is how to structure the learning problems into (ordered) subtasks in a way that is conducive to

finding a solution. There are countless further goals that teachers can have in mind for their

learners: how to stay motivated, estimate which learning challenges are too easy or too difficult

to attempt.

Moreover, an important part of learning is to gain an understanding of what strategies are

most successful in solving particular types of problems. This can be thought of as a metarea-

soning problem where a learner needs to choose the best algorithm in terms of effectiveness but

also efficiency given the data it needs to be applied to, time and computational costs (Lieder

et al., 2014). Certainly this is what most teachers aim to achieve, namely transmitting a toolbox

of cognitive strategies that can be deployed adaptively.
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