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Abstract

In the first chapter I show how the generalized propensity score can be used to estimate

dynamic causal effects. This approach is flexible in the sense that the effect can depend

on the level of the policy variable and its change in any nonlinear way. Compared to the

local projection, the propensity score based estimator has much fewer parameters to be

estimated, which is a favourable property when the times series are short. A very general

Monte Carlo simulation reveals that it yields more precise impulse responses than the

VAR and the local projection when potential misspecification and low degrees of freedom

is an important issue.

In the second chapter I apply the propensity score based estimator to U.S. data to

investigate how the effect of the Fed’s interest rate changes depends on the initial level

of the interest rate and on the size of the change. Although exogenous shocks to the

interest rate are estimated with a linear SVAR model, the results display significant

nonlinearities. Most importantly, monetary policy decisions seem to exert faster and

larger impact on GDP and consumer prices when the interest rate is high. On the other

hand, dependence on the size and the direction of the interest rate change does not show

signs of nonlinearity.

In the third chapter a new instrument for monetary policy shocks is proposed. Exoge-

nous variation of the policy rate may come from frictions of collective decision-making.

Dissenting votes indicate how far the final decision of the decision making body is from

the mean of the members’ individually preferred interest rates and thus correlate with

the policy shocks caused by the decision-making frictions. Measures of dissent are used

as external instrument in a structural VAR. Results for the U.S. show significant effect
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of the Fed’s interest rate policy on real variables with the expected sign. On the other

hand, the estimated effect on nominal variables is reminiscent of the price puzzle. Usual

remedies, such as inclusion of commodity prices, inflation expectations or starting the

sample in the middle of the eighties do not change the qualitative results casting doubt

on the usual interpretation that the price puzzle is a statistical artifact.
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Chapter 1

Estimation of Dynamic Causal

Effects with the Generalized

Propensity Score

1.1 Introduction

Estimating the dynamic effects of macroeconomic shocks has been one of the most in-

tensively explored area in time series econometrics during the past several decades. The

most widely used tool for this purpose is the vector autoregressive model (VAR), ad-

vocated in the seminal paper of Sims (1980). VARs model the joint dynamics of the

endogenous variables in a linear way. In order to identify causal effects, one has to for-

mulate restrictions that may come from a formal theoretical model, or, as in most cases,

from informal economic intuition. An appealing feature of identified VARs (or structural

VARs, SVARs) is that the same model is used for identifying structural shocks as well

as for calculating their dynamic effect on the endogenous variables (impulse response

functions).

One of the drawbacks of SVARs is that they predict outcomes only one period ahead

directly. In order to forecast for longer horizons, either unconditionally or conditionally on

a structural shock, one has to iterate one-step-ahead predictions. During the iterations,
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prediction errors due to possible misspecification may be amplified resulting in imprecise

estimates at longer horizons. Another limitation is that VARs are linear, therefore not

capable of identifying nonlinear effects.

Alternatively, Jordà (2005) proposes direct regression to estimate the impulse response

function. The outcome variables at period t + h are regressed on variables at period

t, t−1, ..., thus no iteration is needed for making projections. Local projections made this

way are flexible in the sense that by including powers and interactions of the explanatory

variables nonlinear impulse responses can be estimated easily, which is not possible with

the linear VAR. Jordà (2005) also demonstrates that local projections are more robust

to misspecification than VARs.

In this chapter I propose another way to estimate possibly nonlinear effects. The

estimator is based on the concept of the propensity score, and makes use of its dimension

reducing property. Thus it offers a powerful alternative to local projection if the number

of observations is low, a typical problem when working with macroeconomic time series.

There are other approaches for estimating nonlinear impulse responses. Time varying

VARs, such as that of Cogley and Sargent (2003) or Primiceri (2005) allow the parameters

to change over time, thus, the impulse responses may differ across periods. However, for

a certain period, the impulse responses are linear in the sense that they depend on the

size (and sign) of the shock in a linear way. The nonlinearity is thus exogenously given,

there is no explicit dependence on observable variables.

State dependence can be captured with smooth transition models. The smooth tran-

sition VAR of Weise (1999) or Rahman and Serletis (2010) allows the coefficients to

depend on the level of endogenous variables. Using a smooth transition local projection

model, Tenreyro and Thwaites (2016) estimate the asymmetric effect of monetary policy.

The limitation of these models is that they suffer from the curse of dimensionality when

applied to short time series. Another limitation is that these models can handle only few

states, typically two. They are not appropriate for modelling state dependence with large

number of possible states.

A general problem with VARs and local projections is that one has to estimate a
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huge number of parameters, which is an effective constraint when working with short

time series or trying to identify nonlinearities. There are some very recent developments

in coping with the problem of low degrees of freedom. Barnichon and Matthes (2018)

propose a basis function approximation for estimating the moving average representation

of the VAR. Basis function approximation reduces the dimensionality, therefore, may be

useful for estimating nonlinearities even from short time series.

Angrist et al (2018) showed first how the propensity score can be adopted in a time

series framework. They investigate the effect of the Fed’s interest rate decisions on key

macroeconomic variables by estimating a policy reaction function at the first stage, and

then using the inverse probability weighting estimator for the outcomes. An important

limitation of their identification strategy is that it is specific to the Fed’s regular rate

setting schedule and exploits the discrete nature of policy rate changes. Their method

cannot be adopted when the policy variable can take many values.

My proposed approach is a generalization of the idea of Angrist et al (2018) to the

continuous case. First, I show how the generalized propensity score (GPS) introduced

in Hirano and Imbens (2004) can be used when the policy is described by a continuous

variable. It has the same advantage as the propensity score typically used for binary

treatment settings, namely that it can reduce the dimensionality substantially. The

estimator based on the GPS can thus be useful when working with small sample, especially

if we are interested in nonlinear effects.

Then I investigate the sampling properties of the proposed estimator. This is an

exercise missing from Angrist et al (2018). I compare the performance of the GPS-based

estimator to that of the most commonly used methods, namely, the VAR and the local

projection. Since I focus on estimating the dynamic effect of a shock, the shocks are

identified by the SVAR first, and then used by the other two approaches, too. In the

Monte Carlo simulation I use a huge number of data generating processes (DGPs), all

of them estimated from real data, in order to get a robust picture about the relative

preciseness of the three models.

I find that the GPS-based estimator performs significantly better than Jordà’s local
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projection and in most of the cases better than the VAR. Its advantage is more obvious

when the time series are short, which is typical in empirical studies using macro data.

When the DGP is linear and the VAR is correctly specified, the GPS-based estimator’s

prediction errors are comparable with that of the VAR in large samples, and within a

two year horizon, in small samples, too. When the VAR is misspecified, the GPS-based

estimator outperforms not only the VAR, but also the local projection. Finally, when

the DGP is a regime switching VAR, the GPS-based estimator is the best estimator for a

two-year horizon. Based on the simulation results, the estimator proposed in this chapter

seems to offer a better alternative to local projection, especially when the number of

observations is low.

The chapter is organized as follows. First, I sketch out the idea how the generalized

propensity score can be used for estimating impulse responses from time series data. Then

I show how the estimation is implemented. In section 1.4 the Monte Carlo simulation

results are presented. Section 1.5 concludes.

1.2 Theoretical background

In this section I first present the basic idea of the generalized propensity score based

estimator. Then I show how it relates to other widely used approaches such as the

structural vector autoregression and the local projection with the help of a particular

simple data generating process.

1.2.1 The basic concept

Let It denote the value of the policy variable at period t, Yt+h (h = 1, 2, ..., H) the

scalar outcome h period later we are interested in, and Xt = {Zt−1, Zt−2, ..., et} the set

of all relevant covariates, where Zt is the vector of observable variables and ets are the

unobserved non-policy shocks. Note that the vector Zt includes the policy (It) and the

outcome variable (Yt), too. We would like to estimate the effect of an exogenous change

in the policy variable on the outcome variable 1, 2, ..., H periods later, that is the impulse
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response function.

VARs capture the one-step-ahead dependence of endogenous variables on their past

values1. Let fV AR(Zt, Zt−1, ...) = E(Yt+1|Zt, Zt−1, ...) denote this (linear) relationship.

The underlying model behind the calculation of the impulse response function is the

following:

E(Yt+h|Zt, Zt−1, ...) = fYV AR(fV AR...(fV AR︸ ︷︷ ︸
h times

(Zt, Zt−1, ...))...)

where fYV AR denotes the element of the vector fV AR that corresponds to the outcome

variable Y . Since fV AR(Zt, Zt−1, ...) is a reduced form, it can be estimated by OLS.

Projections for any horizons can be made by iterating one-step-ahead forecasts.

With local projection introduced in Jordà (2005), calculating impulse response func-

tions for h periods ahead requires h separate estimations. For any horizon h, the relation-

ship between the outcome variable and the explanatory variables fLP,h(Zt, Zt−1, ...) can

be estimated by OLS. The impulse response function is constructed from the predictions

of those regressions based on the following model:

E(Yt+h|Zt, Zt−1, ...) = fLP,h(Zt, Zt−1, ...)

The estimator proposed in this chapter is based on Hirano and Imbens (2004), who

introduced the concept of the generalized propensity score (GPS), which is the analogue

of the propensity score for continuous treatments, and is used for estimating so-called

dose response functions2. In general, the GPS is the conditional density of a continuous

treatment variable given a set of covariates, denoted by r(i, x) = fI|X(i|x). In the present

context I define the GPS as the conditional density of the treatment (policy) variable

It given the vector of covariates Xt or, loosely speaking, the probability of a particular

policy given the state of the economy at period t. Note that this conditional density

depends on time only through the covariates. The GPS associated with the level of the

1And possibly on exogenous variables, but for the sake of simplicity, we ignore them here.
2A similar approach is presented in Imai and van Dyk (2004)
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policy variable in period t is then

Rt = r(It, Xt).

The key condition for removing the endogeneity bias is weak unconfoundedness, which

is formulated as follows with Yt+h(i) denoting the potential outcome after a policy i:

Yt+h(i) ⊥ It|Xt for all i (1.1)

Weak unconfoundedness means that once we control for all the relevant confounders,

potential outcomes h periods after a given policy are orthogonal to the actual policy

observed in period t, and this is true for all hypothetical policies i. The qualifier “weak”

stresses that we do not require the joint distribution of potential outcomes after all

potential policies to be independent of the actual policy.

Intuitively, weak unconfoundedness means that if we compare two periods in which

the economy in exactly the same state, the actual policy is independent of the future

potential outcomes, that is, differences in the observed policies can be treated as being

random. In practice the assumption essentially is that all relevant confounders are taken

into account during estimation.

As Hirano and Imbens (2004) show, weak unconfoundedness implies that it is enough

to control for the generalized propensity score to ensure that the probability distribution

of possible policies is (conditionally) independent of the potential outcomes related to

that policy, or formally

fI(i|r(i,Xt), Yt+h(i)) = fI(i|r(i,Xt))

for every i.

It follows from this result that instead of controlling for all the covariates that influence

both the policy response and the future path of the outcome variable, it is sufficient to

control only for the generalized propensity score in order to eliminate the endogeneity

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.04

bias, that is

Yt+h(i) ⊥ It|Rt for all i.

As a consequence, to estimate the effect of a policy change with the generalized

propensity score, the outcomes (Yt+h) have to be regressed only on the policy variable (I)

and the estimated propensity score associated with that policy (R). Obtaining the GPS

requires a first stage estimation, to be described later. The dependence of the outcome

on the policy variable and the GPS (fGPS,h) can be estimated by OLS, and similarly

to local projections, requires h separate estimations for each horizons of interest. The

projection for horizon h is then calculated directly from those regression estimates based

on the model:

E(Yt+h|Zt, Zt−1, ...) = fGPS,h(It, Rt)

The obvious advantage here is that one has to control only for two variables at t,

rather than for all confounders at t, t − 1, ... as in the other two cases. Any nonlinear

approximation can be made easily by including higher order terms without decreasing

the degrees of freedom substantially.

The cost of this reduction of dimensionality is the need of a first stage estimation

of the GPS which necessarily adds to the total estimation error. Moreover, estimating

the GPS itself may require a high-dimensional model to identify the policy shocks, thus,

seemingly we cannot get rid of the curse of dimensionality, but generally this is not true.

As long as the policy rule can be well approximated by a linear model, one can obtain

reasonably precise estimates of the policy shocks and, thus, the propensity score. For

example, a linear VAR fitted on a non-linear vector process can yield good estimates of

the one-step ahead forecast errors that are eventually used for estimating the structural

shocks. Indeed, this is confirmed by the simulation results to be shown later.C
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1.2.2 A simple model

To see how the GPS-based estimation relates to SVAR and local projection, consider the

following data generating process:

Yt = αIt−1 + et

It = βYt−1 + εt

where I is the policy variable, Y is the outcome, ε and e are exogenous, orthogonal, i.i.d.

shocks to the two variables. Note that this is a very special structural VAR model, in

which the two structural shocks enter the two equations separately, and ε is the exogenous

variation in the policy variable.

The impulse response of Y to one unit shock to I at period 0 is shown in Table 1.1.

time 0 1 2 3 4 5 6
Y 0 α 0 α2β 0 α3β2 0

Table 1.1: Impulse response of Y to one unit shock to I at period 0

Within the VAR framework, one estimates the following model with OLS:

Zt = AZt−1 + vt,

where Zt = (Yt, It)
′, vt = (et, εt). Since the VAR is correctly specified, the estimator is

consistent, and thus asymptotically

Â =

(
0 α
β 0

)
.

The VAR estimate of the impulse response function as well as that of the policy

shocks will be consistent, too. The first one is the upper right element of Âh, the latter

is ε̂t = It − β̂Yt−1.

With local projection, the regression model for the response h period ahead is the

following:

Yt+h = ahyYt + ahi It + wht .
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By iteration, the true relationships are

Yt+1 = αIt + et+1

Yt+2 = αβYt + αεt+1 + et+2

Yt+3 = α2βIt + αβet+1 + αεt+2 + et+3

...,

and since the linear combinations of future realizations of the structural shocks are in-

dependent of Yt and It, the regression models used for local projection are also correctly

specified3, and thus the impulse response function, which is the sequence {â1i , â2i , â3i , ...}

is consistently estimated.

To see how GPS-based estimation is carried out, let r(x|Zt−1) be the conditional

density function of It and g(x) the density function of εt. Note that in this very simple

example the mean of It depends only on Yt−1, but generally all the other endogenous

variables and more lags should be included, too. Then the generalized propensity score

of observation t is

Rt = r(It|Zt−1) = g(It − βYt−1) = g(εt).

Consistent estimates of εt and β can be obtained, for example, from the VAR. There-

fore, the GPS can be derived for each observation as R̂t = g(It − β̂Yt−1). To calcu-

late the impulse response function for horizon h, one has to regress Yt+h on It, g(It −

β̂Yt−1), I
2
t , Itg(It − β̂Yt−1), g(It − β̂Yt−1)2, .... At this stage an approximation of fGPS,h is

needed.4

It is also worth seeing what the weak unconfoundedness assumption’s implications

are. Let us focus on the one period ahead forecast, that is on

Yt+1 = αIt + et+1.

3Of course, the residual term wh
t may now be autocorrelated.

4More details about the implementation are given in the next section.
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For any hypothetical interest rate i at period t, the conditional covariance between

the potential outcomes one period later (Yt+1(i)) and the actual interest rate at t is

Cov(Yt+1(i), It|Yt−1) = Cov(αi+ et+1, βYt−1 + εt|Yt−1) =

= Cov(et+1, εt|Yt−1) = Cov(et+1, εt),

which is zero because of the orthogonality assumptions for the structural shocks, that is,

weak unconfoundedness is true for one period ahead. The same can also be shown for

longer horizons similarly.

Obviously, in this example the proposed estimator has no expected advantage over

VAR or local projection, because they capture the data generating process correctly.

Here I only wanted to demonstrate through a simple example how estimating an impulse

response with the generalized propensity score relates to the benchmark approaches.

Interestingly, as shown in Section 1.4, the estimation with the GPS performs almost as

well as the correctly specified linear models even in this case.

Generally, the estimation of the policy shocks is not as straightforward as in this

example and involves the imposition of identifying restrictions. But once the necessary

restriction are imposed, the SVAR estimates of the coefficient matrix and the impact

response matrix can be used to calculate the historical policy shocks that are a linear

function of the observed variables. This linear relationship is essentially determined

by the systematic behaviour of the policy-maker. The main advantage of the GPS-

based estimator over local projection is that lagged endogenous variables appear in the

final regressions only in a fixed linear combination through the density function (in the

previous example as g(It − β̂Yt−1)) that determines the propensity score. This property

helps save degrees of freedom when estimating the dynamic effect of policy changes on

future outcomes.
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1.3 Estimation strategy

First I show how dynamic causal effects can be generally identified by using the general-

ized propensity score. Then I describe the main steps of the estimation procedure.

1.3.1 Identification

Let the law of motion be

Zt = Γ1(Zt−1, Zt−2, ..., et, εt). (1.2)

where εt is the policy shock, or the exogenous variation of the treatment, and et is the

vector of the other structural shocks. (1.2) can be regarded as a generalized form of a

(S)VAR, that is the endogenous variables depend on their past values and contempora-

neous exogenous shocks, but Γ1 is not necessarily linear. The shocks are assumed to be

serially and mutually independent.

If the policy rule5 is

It = Φ(Zt−1, Zt−2, ..., et, εt), (1.3)

the weak unconfoundedness assumption (1.1) can be written as

Yt+h(i) ⊥ εt|Zt−1, Zt−2, ..., et for all i and h = 1, 2, ..., H (1.4)

which means that once we control for the past state of the economy and current shocks

not related to the policy, the actual realization of the current policy shock is independent

of what the effects of a particular policy can be. Note that {Zt−1, Zt−2, ..., et} is the

collection of all potential confounders, denoted earlier by Xt.

Similarly to Jordà’s (2005) local projection, the estimator I propose in this chapter is

not capable of identifying the policy shocks in itself, only their dynamic effect. There are

several ways to identify exogenous variation of the policy variable. If additive separability

5Note that (1.3) is one equation of the system (1.2).
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of the policy shock in the reaction function (1.3) is a reasonable assumption, that is

It = Φ′(Zt−1, Zt−2, ..., et) + εt,

one can estimate Φ′, and derive the policy shocks as regression residuals. The problem

is that in most cases this is infeasible because et-s are unobserved.

The other way is to use identifying restrictions within a VAR framework, that is a

structural VAR. In particular, if Φ is linear, (1.3) is equivalent to the structural decom-

position of the corresponding equation of a VAR. The advantage of using SVARs for

identification is that there is a huge literature on how to estimate idiosyncratic shocks of

monetary, fiscal and other policies within that framework. Since in the simulation exer-

cise I will estimate the policy shocks by a SVAR, it is useful to see how its assumptions

relate to those of the propensity score based identification.

It follows from (1.4) that to achieve unconfoundedness, the VAR should contain all the

relevant confounders, and the identifying restrictions should separate the (unobserved)

policy shocks from the (unobserved) other shocks. To see how unconfoundedness can

be provided, let us write the vector of the observable variables at t + h as a function of

observable variables up to t and structural shocks thereafter, using (1.2):

Zt+h = Γh(Zt, Zt−1, ..., et+1, ..., et+h, εt+1, ..., εt+h)

The potential outcomes associated with policy i are then

Zt+h(i) = Γh({i,Xt(i)}, Zt−1, Zt−2, ..., et+1, ..., et+h, εt+1, ..., εt+h),

and since Xt(i) is a function of Zt−1, Zt−2, ..., et, i, which follows from (1.3) and (1.2), we

have

Zt+h(i) = Γ′h(i, Zt−1, Zt−2, ..., et, et+1, ..., et+h, εt+1, ..., εt+h),

Thus, for any policy i, once we keep all confounders Zt−1, Zt−2, ..., et fixed, the poten-

tial outcomes are a function of future shocks et+1, ..., et+h, εt+1, ..., εt+h, while the actual
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policy is a function of only εt, according to (1.3). Weak unconfoundedness is now equiva-

lent to the independence of current policy shocks from all future structural shocks which

is typically provided by definition, in the SVAR framework, too.

Of course, to meet the weak unconfoundedness assumption, large number of controls

might be needed when identifying exogenous variation of the policy variable. But, as

mentioned earlier, if at this stage a linear approximation is good enough to characterize

the reaction function, the GPS-based approach requires much fewer parameters to be

estimated.

It is worth noting that this approach can be used to estimate the effect of any macroe-

conomic shock such as aggregate demand, technology etc., not only that of a policy shock,

even if there is no obvious ”treatment” variable, there is no policy-maker. Let us consider

the example of aggregate demand. Shocks to aggregate demand move the price level and

output in the same direction, according to conventional macro theories. Of course, prices

and output are determined not only by demand, but also by supply, for instance. Still, if

we have good estimates of exogenous, idiosyncratic shocks to demand expressed in terms

of either prices or output, any of these variables can be treated as the ”policy” variable

governed by a rule similar to (1.3) with εt being the demand shock.

1.3.2 Implementation

The estimation procedure consists of three steps. First, the history of policy shocks is

to be estimated. In this chapter I use identified VAR for this purpose for the reasons

mentioned earlier.

The next step is to fit a density function g(x) on the estimated policy shocks. It is

assumed that they are drawn from the same (zero mean) distribution in each period.

Fitting density function can be done either in a parametric or in a nonparametric way.

During the simulations I used kernel density estimator with Gaussian kernel and the

rule-of-thumb bandwidth proposed by Fan and Gijbels (1996). With the fitted density

function one can easily calculate the GPS of any level of the policy variable for any state

of the system, because It = Φ′(Zt−1, Zt−2, ..., et) + εt, and since the variables in Φ′ are
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independent of the current policy shock, r(It, Xt) = r(It, {Zt−1, Zt−2, ..., et}) = g(εt).

The final step is estimating the relationship between the outcome and the policy. The

explanatory variables are the policy variable and the GPS estimated in the previous two

steps. The main advantage of this approach becomes clear at this point: we do not

have to control for all the confounders, only for the treatment (policy) and the GPS, and

no lags are needed. This is why the GPS-based approach is more promising to identify

nonlinear relationship of any form even from few number of observations than the local

projection.

The estimation at the third stage follows Hirano and Imbens (2004). With our time

series setting, the dependent variable of the regression is the variable of interest (Y ) h

periods after the observed policy. The explanatory variables are the policy variable (I)

and its associated GPS (R). Thus, one have to estimate the following specification by

OLS:

Yt+h = βh00 + βh10It + βh01R̂t + βh20I
2
t + βh11ItR̂t + βh02R̂

2
t + ...+ uht (1.5)

Following Hirano and Imbens (2004) I used only second order terms to capture non-

linearities. One can, however, include higher orders terms as well. My experience was

that higher order terms did not help achieve a better fit.

One issue may emerge when working with macroeconomic variables if the outcome

variable is trending while the policy variable not, or vica versa. One example is the

estimation of the effect of the central bank’s interest rate on GDP. In this case the left

hand side variable contains trend, but the right hand side variables not (assuming that

the interest rate is stationary). In order to prevent the residual term from absorbing the

trend, one can include Yt as an additional regressor, or to replace Yt+h with Yt+h − Yt.

The latter is equivalent to restricting the coefficient of Yt to be unity in the former.

Our estimate of the average effect of any hypothetical policy i on the outcome can be

derived with the following formula (using the second order approximation):

Ê[Yh(i)] =
1

T

T∑
t=1

(
β̂h00 + β̂h10i+ β̂h01R̂(i)t + β̂h20i

2 + β̂h11iR̂(i)t + β̂h02R̂(i)2t

)
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where R̂(i)t is the GPS evaluated at the hypothetical policy using covariates at time t.

Finally, the estimated impulse response to a shock sized ∆i is

{Ŷ1(i+ ∆i)− Ŷ1(i), Ŷ2(i+ ∆i)− Ŷ2(i), ...}.

1.4 Monte Carlo experiment

Monte Carlo simulations are widely used to compare the sampling properties of various

estimators. A common problem is that the choice of the data generating process is nec-

essarily arbitrary to some extent. In the following, I am going to describe my simulation

design which aims at delivering a general enough framework in order to obtain robust

simulation results. Then the results are shown for three methods, namely, the SVAR, the

local projection and the GPS-based approach.

1.4.1 Simulation design

A common practice for making the data generating process realistic is to use a model

that is estimated from real data. This is, for example, the approach of Jordà’s (2005)

first Monte Carlo simulation. This process guarantees that the joint moments of the

variables are similar to what is observed in the data, contrary to those simulations gen-

erated by a hypothetical model. However, since there are many possible combinations of

observable data, the choice of the variables used for the estimation will still contain some

arbitrariness.

Instead of relying only on one single data generating process, I will use many, but

all based on real data. For this purpose, I collected 22 macro time series for the United

States, typically used in empirical studies.6 All the data are quarterly and cover the

period between 1960Q1 and 2006Q4, thus containing 188 observations.7 In the case of

6These are: GDP, consumption, investments, exports, imports, government budget balance, inflation,
commodity price index, employment, unemployment rate, hours worked, wage, credit to firms, credit to
households, fed funds rate, government bond yields, nominal exchange rate, real exchange rate, stock
index, M3, non-borrowed reserves, total reserves. For further details see the appendix.

7The only exceptions were exports and imports, with the first observation of the transformed time
series being for 1964Q2.
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obviously trending variables, such as real GDP, I transformed the time series by taking

the first difference of its logarithm. Then I standardized all of them.

The simulation procedure was the following. First, I randomly chose n time series

out of the 22, estimated a VAR with a constant, and used these estimates in the data

generating process. The number of variables (n) in the VAR was fixed during the whole

simulation exercise. The time series of the structural shocks (et) were drawn from the

standard normal distribution. The elements of the contemporaneous impact matrix (A),

which is the collection of the contemporaneous effects of each shock on each variables

were also drawn from the standard normal distribution, but n(n − 1)/2 of them were

replaced by zeros. The reason for this is that for estimating A I used the algorithm

of Rubio-Ramirez et al (2010), which works only with zero restrictions. Then the time

series of VAR residuals (εt) were generated according to the relationship εt = Aet. Finally,

simulated series of the n variables were generated using the estimated VAR coefficient

matrix and the εt-s. The policy variable was also selected randomly out of the n variables

with each variable being equally likely chosen.

In the next round I not only drew new random shocks, but I changed the data gen-

erating process as well, by fitting a VAR on a new set of n randomly chosen variables

and generating a new A matrix, as described above. Thus each simulation was based on

a different VAR (each estimated from real data), a different A matrix and different time

series of structural shocks.

I conducted three different exercises. In the first one the data generating process

was linear, and the SVAR was correctly specified. Naturally, one expects under this

environment that the SVAR performs well, but it is still informative to see how the

alternative estimators compare to it. The number of lags in the DGP was two, as well as

in the SVAR. The local projection was estimated only with linear terms because including

higher order terms made the estimates less precise, presumably because of overfitting.

In the second exercise the SVAR model was misspecified. The number of lags in the

DGP was based on the Akaike information criterion, but the SVAR model used one lag

less. Note that this rule favors the local projection compared to the SVAR, because
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the latter is forced to be misspecified, while the number lags in the LP regressions were

selected by minimizing the Akaike information criterion. Note also that the GPS-based

estimator does not contain lags at the final stage (equation (2.3)), thus no lag selection

procedure is needed, and thus it cannot be misspecified in this sense.

In the third exercise the DGPs were nonlinear processes. Nonlinearity was modelled

as endogenous regime switching. The system had two states, both being a linear SVAR.

Regime switching occurred when the sign of the policy variable changed. The contem-

poraneous impact matrix A did not change across regimes. The impulse responses to

be estimated were conditioned on the policy variable being one standard deviation away

from its mean8. Since the SVAR is linear, its impulse responses cannot be conditioned,

thus the unconditional estimates were used. The nonlinear local projection estimator

has to be conditioned on all variables, therefore I also calculated the conditional means

of all other variables. The size of the shock was 0.25, that is the policy measure un-

der investigation is increasing the policy variable from 1 to 1.25. VAR lag length was

selected using the Akaike information criterion, thus, even if the VAR was misspecified

due to nonlinearities, the number of lags were determined optimally. The ”true” impulse

responses were calculated as follows: first a random sample of 10000 observations was

generated, then the effect of increasing the policy variable by 0.25 was calculated for

each period separately. Finally, the impulse responses starting from observations with

the policy variable being between 0.95 and 1.05 were averaged.

In order to obtain pronounced nonlinearities in the third exercise, some model se-

lection were applied. For each draw the mean of the squared differences between the

unconditional and the conditional impulse responses were taken across variables in the

second quarter. This squared difference is zero for a linear DGP and can be considered

as a measure of nonlinearity. At the final stage only the most nonlinear 20 percent of the

draws were kept.

In each exercise the SVAR model was estimated first for each simulation using the

information about the location of the zero elements in the contemporaneous impact ma-

8With standardized variables it practically meant that the policy variable took value of one in the
condition.
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trix A. This step followed the algorithm of Rubiro-Ramirez et al (2010). This estimate

was used to generate the SVAR impulse responses, but also to deliver an estimate of the

contemporaneous effect of the policy shock (the appropriate column of Â) for the other

two estimators. Moreover, the time series of the policy shocks estimated by the SVAR

was also used by the GPS-based estimator. The impulse responses for h = 1, 2, ... were

then calculated by the local projection and the GPS-based methods. Since I focus on the

point estimates, confidence bands were not calculated.

In the second and third exercises the set of the regressors in the local projection

contained squares and cubes of the explanatory variables, as in Jordà (2005). The number

of lags were selected by the Akaike information criterion. The GPS-based estimator used

only first and second order terms in (2.3), following Hirano and Imbens (2004). Since the

local projection and the GPS-based estimator use separate regressions for each horizon

h, the estimated impulse responses are typically less smooth than that of the SVAR. This

is a strength of the latter. To compensate for that, I considered the smoothed impulse

responses of the formers obtained with a nonparametric method: the impulse responses

were calculated for 5 quarters longer, and then regressed on the number of quarters of the

forecast horizons with Gaussian kernel and the bandwidth selected by the rule-of-thumb

approach of Fan and Gijbels (1996). I also experimented with other reasonable kernels

and bandwidths, but the qualitative results remained unchanged.

I worked with two sample sizes. The ”small sample” consisted of 100 periods. With

quarterly data it corresponds to 25 years. The ”large sample” consisted of 1000 observa-

tions, corresponding to 250 years with quarterly data. In the real life, the small sample is

the more relevant case. However, to get an impression about the consistency properties,

the large sample results are presented, too.

Figure 1.1 shows an example of estimated impulse responses from one particular data

generating process, which is linear, the VAR is correctly specified, and the sample size is

100. On the first three graphs 20 impulse responses from different simulations with the

same DGP are presented. The fourth graph shows the means across simulations.

Some features that proved to be quite typical during the simulation can be observed
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Figure 1.1: Estimated impulse responses from different simulations with the same linear
data generating process. Sample size is 100. The VAR is correctly specified.

here. Most importantly, the SVAR estimates are smooth at longer horizons which is

a consequence of the iterative way the forecast is made with an autoregressive model.

In contrast, the other two estimators give very noisy estimates even beyond 2-3 years.

Nevertheless, the mean responses track the true one reasonably well in this particular

example.

1.4.2 Results

I evaluated the performance of the three approaches using the root mean squared error.

The error was defined as the difference between the true and the estimated impulse

response function. The mean of the squared errors was taken not only across simulations,

but across the variables as well9. Moreover, the quarterly squared errors were transformed

to annual mean squared errors by taking simple averages within each year. Thus, for

9Recall that all variables were standardized.
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example, the overall RMSE for the second year was calculated as the square root of

8∑
h=5

n∑
j=1

(ÎRF j,h − IRFj,h)2,

where IRFj,h is the true, ÎRF j,h is the estimated impulse response for the jth variable

h periods ahead. Since the impulse responses were originally calculated for 16 quarters,

the charts show 4 data points (yearly averages) for each estimator.
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Figure 1.2: Root mean squared errors. 3-variable linear DGP, correctly specified VAR.
Left panel: T = 100. Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the
three estimation methods. Extension “sm” denotes nonparametrically smoothed impulse
responses.

For each exercise, results are shown for both sample sizes (100 and 1000), and two

different VAR sizes (3 and 6 variables). In the first two exercises 1000 simulations were

run to calculate the RMSEs. In the third exercise 10000 simulations were made first.

In some cases, especially with T = 100, the estimated VAR was exploding, or fitted

the data very poorly. Since the other two methods use outputs of the VAR, their RMSEs

became extremely high, too. To ensure that the total RMSE is not dominated by these

extreme estimates, I dropped ten percent of the simulations with the highest RMSE for

each estimator.

Figure 1.2 shows the RMSEs when the DGP is linear, and the VAR is correctly

specified, that is, contains exactly as many lags as were used in the DGP. With a small

sample, the SVAR approach outperforms the other two, which is not surprising, because

it is a correctly specified model. For one year horizon the other two methods’ error is
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comparable to that of the SVAR, but for longer horizon they yield poorer estimates. The

local projection is slightly more precise than the GPS-based estimator for the first two

years. When the sample size is increased to 1000, the difference between the SVAR and

the other two approaches almost disappears.
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Figure 1.3: Root mean squared errors. 6-variable linear DGP, correctly specified VAR.
Left panel: T = 100. Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the
three estimation methods. Extension “sm” denotes nonparametrically smoothed impulse
responses.

With six variables in the data generating process, the overall picture slightly changes

as the GPS-based estimator becomes roughly as precise as the SVAR, rendering the

local projection the worst estimator (Figure 1.3, left panel). With larger sample size the

performances of the three methods are virtually the same, similarly to the 3-variable case

(Figure 1.3, right panel).
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Figure 1.4: Root mean squared errors. 3-variable linear DGP, misspecified VAR. Left
panel: T = 100. Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the
three estimation methods. Extension “sm” denotes nonparametrically smoothed impulse
responses.
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The lesson from this exercise is that although the performance of the SVAR is obvi-

ously the best, using the GPS-based estimator is a better option than the local projection,

and in most cases is almost as good as using the SVAR, with the only exception of the

3-variable DGP and small sample.

In the second exercise the VAR is misspecified in the sense that it contains less lags

than the DGP. This kind of misspecification may seem to be artificial, because in reality

the way people select lag length does not necessarily lead to systematic truncation. On

the other hand, there are several algorithms to select the number of lags, therefore, mis-

specification is very likely. Note also that the other two estimators rely partially on the

SVAR estimates, and thus are affected by the same misspecification, even if indirectly.

This exercise is informative, because it compares how the competing methods can esti-

mate the impulse response functions when the underlying exogenous shocks come from

the same misspecified model.
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Figure 1.5: Root mean squared errors. 6-variable linear DGP, misspecified VAR. Left
panel: T = 100. Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the
three estimation methods. Extension “sm” denotes nonparametrically smoothed impulse
responses.

Figure 1.4 presents the results for the 3-variable case. With a small sample, the GPS-

based estimator unambiguously outperforms the SVAR and the local projection at each

horizon. The latter is better than the SVAR only with smoothing. The superiority of

the GPS-based approach is due to its ability to reduce dimensionality. This seems to

be confirmed by the large sample results: while the SVAR remains the worst perform-

ing method, the difference between the local projection and the GPS-based estimation
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disappears.

The ranking of the three methods remains the same when working with 6-variable

GPS (Figure 1.5). With the small sample size, the GPS-based method is significantly

better than the local projection, again. The only difference compared to the three-variable

case is that the relative performance of the SVAR is much worse. The same is true for

the large sample case: as previously, the local projection and the GPS-based estimator

perform similarly well, while the SVAR produces much larger errors.

Based on the results of the second exercise we can conclude that using the GPS-

based method seems to be a very attractive choice when the underlying SVAR model is

misspecified.
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Figure 1.6: Root mean squared errors. 3-variable nonlinear DGP. Left panel: T = 100.
Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the three estimation meth-
ods. Extension “sm” denotes nonparametrically smoothed impulse responses.

Finally, we compare the performance of our competing methods when the DGP is

nonlinear. The SVAR has no chance to capture the nonlinearity, but the other two do

have. It should be stressed again that the performance of our nonlinear estimators is

influenced negatively by the fact that they use inputs from a misspecified SVAR.

With three variables and a small sample the (smoothed) GPS-based estimator has

the smallest RMSE in the first two years (Figure 1.6, left panel). Quite surprisingly, the

SVAR does not perform much worse, and for years 3-4 it is the best estimator, despite

the fact that it is a linear model. This result can be rationalized by looking at Figure

1.1, because due to the stationarity of the time series, at longer horizons the true impulse

response converge to zero, and nonlinearities play negligible role. The local projection

produces higher errors than the GPS-approach at each horizon which confirms prior
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expectations. Interestingly, with larger sample, there is virtually no difference between

the three estimators (Figure 1.6, right panel).
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Figure 1.7: Root mean squared errors. 6-variable nonlinear DGP. Left panel: T = 100.
Right panel: T = 1000. “SVAR”, “LP” and “GPS” stand for the three estimation meth-
ods. Extension “sm” denotes nonparametrically smoothed impulse responses.

With the 6-variable data generating processes, the relative performance of the GPS

method improves further as it is clearly the best in the first two years when the sample is

small (Figure 1.7). At longer horizons, where the true impulse responses are close to zero

and nonlinearities are small, the SVAR performs similarly well. The local projection is the

noisiest estimator at each horizon. Increasing the sample size to 1000 the local projection

improves a lot, but is still not better than the SVAR. The GPS-based estimator produces

the most precise estimates for each horizon considered here.

In sum, the third exercise confirmed that due to its dimensionality reducing property,

the propensity score based method performs better than the local projection and, in the

first two years, the SVAR. An interesting result is that its advantage does not seem to

disappear entirely despite the fact, that the degrees of freedom constraint is less binding.

Based on the results from the three different experiments, one can conclude that the

estimator proposed in this chapter is more robust than the SVAR and the local projection,

particularly when the sample size is small and the data generating process includes more

variables. When the SVAR used for estimating the shocks is correctly specified, it yields

almost as good estimates as the two benchmark models. When there is misspecification,

the GPS-based estimator’s performance is significantly the best, particularly for the first

two years.
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1.5 Conclusion

In this chapter I proposed the use of the generalized propensity score for estimating dy-

namic causal effect of macroeconomic policy shocks. The GPS is the continuous analogue

of the propensity score widely used to estimate treatment effect when the treatment is

binary. Allowing treatments to take continuous values is important for macroeconomic

policy analysis since most policies can be described properly only by a continuous variable.

Available macro time series are typically short, with low number of observations,

making it difficult to identify causal effects, especially when it is nonlinear. Widely used

empirical models, such as the SVARs and Jordà’s local projection suffer from curse of

dimensionality. The generalized propensity score reduces the dimensionality substantially.

Once the exogenous shocks to the policy variable are known, the number of parameters to

be estimated is much less than with the local projection, which is otherwise flexible enough

to capture nonlinearities. This can be very useful when complex dynamic relationship in

the data is likely to be present.

A very general Monte Carlo experiment demonstrates that the GPS-based estimator

has all the beneficial properties that local projection has, especially its flexibility and ro-

bustness to specification choices, contrary to SVARs. Moreover, it performs significantly

better than the local projection when the true process is nonlinear and the number of

observations is low. In light of the simulation results, the estimator based on the general-

ized propensity score seems to be the best choice out of the three approaches when there

is high uncertainty about the data generating process and the number of observations is

low.
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Chapter 2

Nonlinear Effects of the Fed’s

Monetary Policy: Estimation with

the Generalized Propensity Score

2.1 Introduction

The causal effect of monetary policy on main macroeconomic variables, such as GDP and

inflation has been receiving a distinguished research interest for several decades. The

most common approach to estimating this relationship is to use the vector autoregression

model (VAR). Exogenous variation in the central bank’s interest rate is usually identified

with restrictions imposed on the structural decomposition of the VAR residuals, like in

Sims (1992), Bernanke and Mihov (1998) or Uhlig (2005). More recently, identification

with the help of external instruments has been used (Gertler and Karádi, 2015, Caldara

and Herbst, 2019), typically with high-frequency financial data. Although identified or

structural VARs (SVARs) have become a convenient tool for such purposes, the linear

structure prevents them from estimating nonlinear effects.

Nonlinearity may, however, be an important feature of the monetary transmission

mechanism. One argument is that the Phillips-curve is convex, and thus, firms react to

increasing demand by raising prices more than they increase output during expansions

26
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due to capacity constraints (for example Clark et al, 1996, Boehm and Pandalai-Nayar,

2020). Convexity can be caused by asymmetric price rigidity, too, as in Ball and Mankiw

(1994). Schaling (2004) and Dolado et al (2005) discuss the consequences for designing

optimal monetary policy.

Another source of nonlinearity can be the financial accelerator, as described in Bernanke

and Gertler (1989). During economic downturns firms are more dependent on external

financing, the cost of which contains a pro-cyclical premium over the risk-free rate. Since

monetary policy affects this external finance premium via its effect on a firm’s balance

sheet, when the economy is contracting, interest rate changes may have larger impact on

financing costs. According to this theory, monetary policy is more powerful during bad

times than during expansions.

Non-standard consumer preferences can also lead to nonlinear responses to changes

in monetary policy. Santoro et al (2014) presents a model in which households are loss-

averse, that is they value the same change in consumption differently depending on its

direction with losses having bigger effect on utility than gains. They show that in this

case the intertemporal substitution is higher during bad times and, consequently, interest

rate changes influence consumption more.

Finally, the role of the zero (or effective) lower bound should be mentioned. The

basic idea is that the behaviour of the monetary policy changes when the interest rate is

close to zero, which induces nonlinearities in the behaviour of economic agents, too. A

straightforward example is that an interest rate cut cannot indicate many further cuts in

the future. The nonlinear effects caused by the zero lower bound are analyzed extensively

with a New-Keynesian model in Fernández-Villaverde et al. (2015).

In this chapter I investigate whether there are significant nonlinear effects of the Fed’s

monetary policy on the economy. To address the problem of low degrees of freedom, I use

an estimator which is based on the general propensity score (GPS). I adopt the concept of

the GPS of Hirano and Imbens (2004) and estimate the response of key macroeconomic

variables to an an exogenous monetary policy shock. In the first chapter I demonstrated

via Monte Carlo experiments that the GPS-based estimator performs better in small
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samples than the VAR and Jordà’s (2005) local projection in predicting dynamic causal

effects when the data generating process exhibits nonlinearities or the VAR is exposed to

the risk of misspecification of other form.

Applying the GPS-based estimator to U.S. data, I find that the transmission of the

Fed’s interest rate decisions depends on the level of the interest rate. When the interest

rate is high, GDP and consumer prices react faster and to a greater extent to monetary

policy shocks. I find, however, no significant difference between the effect of easing and

tightening shocks in absolute terms.

An earlier example for estimating nonlinearities in the monetary transmission mech-

anism is Weise (1999), who estimated a smooth transition VAR model for the U.S.. He

found that monetary shocks have stronger impact on industrial production and weaker

on prices when output growth is lower. Moreover, he did not find asymmetry regarding

positive and negative shocks.

Tenreyro and Thwaites (2016) estimate a smooth transition local projection model.

Local projection has several advantages over VARs, as argued in Jordà (2005), mainly

because the joint dynamics of all endogenous variables need not to be modelled in order

to estimate the impulse responses. Non-linear effects can also be captured easily even

without the smooth transition. According to their results, monetary policy is more pow-

erful during high growth periods. Furthermore, contractionary shocks are found to be

more effective than expansionary ones.

Gross and Semmler (2018) investigate how the slope of the Phillips-curve and the

effect of monetary policy change with the business cycle in Europe. To estimate the

latter, they use a regime switching VAR with the regime changes being driven by the

output gap. In line with Tenreyro and Thwaites (2016), they find that the effect of

monetary policy shocks is stronger during expansions.

Primiceri (2005) estimates a time-varying VAR for the U.S. economy. Although the

results point to significant change in the Fed’s reaction function, he estimates no signifi-

cant change in the propagation of monetary policy shocks.

All the aforementioned approaches suffer from the problem of low degrees of freedom
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to some extent. Smooth transition models try to reduce the dimensionality by assuming

that the nonlinearity is in the form of switching between two regimes. Time varying

VARs allow for infinitely many regimes but are unable to say anything about what drives

regime changes. Even with the restrictions, these models have at least twice as many

parameters to be estimated than the corresponding linear models. Bayesian inference

may help in identification, but at the price of further restrictions in the form of priors.

More recently, some new approaches have been proposed to circumvent the problem of

low degrees of freedom efficiently. Barnichon and Matthes (2018) employ a basis function

approximation of the moving average representation of a VAR. In this way they reduce

the number of parameters to be estimated while still being able to identify nonlinear

effects. In the empirical application of their study they find that expansionary monetary

shocks affect prices more and unemployment less than contractionary ones in the U.S..

Angrist et al (2018) use the concept of the propensity score to estimate dynamic effects

of the Fed’s interest rate changes. The treatment is the decision of the FOMC at the rate

setting meetings. They estimate first a parametric policy reaction function which is used

later to derive the propensity score. The average treatment effects are then calculated

by inverse probability weighting. Their results show significant differences between the

effect of contractionary and expansionary shocks, the former being more powerful with

respect to all variables under investigation.

Direct comparison of my findings to those of the above-mentioned papers that investi-

gate how the monetary transmission mechanism is influenced by the cyclical state of the

economy, is not possible, because my state variable is the interest rate. However, since

the interest rate is typically higher when the economy is in an expansionary phase, my

finding, namely, that interest rate changes exert faster and stronger effect on the GDP

and prices when the level of interest rate is higher, seems to confirm that of Tenreyro

and Thwaites (2016) and Gross and Semmler (2018). Another important result in this

chapter is that the sign of the interest rate shock does not cause any nonlinear effects,

that is the economy reacts to contractionary and expansionary monetary surprises in the

same way in absolute terms. This is in contrast with the findings of Angrist et al (2018)
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and Barnichon and Matthes (2018).

Being based on the propensity score, the approach employed in this chapter can be

considered as a generalization of Angrist et al (2018). Whereas the latter is specific to

the discrete nature of the Fed’s rate setting decisions, with the use of the generalized

propensity score it becomes possible to estimate the effect of policy interventions even in

cases when the policy instrument is modelled as a continuous variable.

There are further important differences between the two estimation strategies. The

first one is rather technical, namely, the proposed estimator based on the GPS is not

a generalization of the inverse probability weighting to the continuous case, but follows

Hirano and Imbens’ (2004) strategy to estimate dose response functions. The second one

is that while with the model of Angrist et al (2018) one can identify only the effect of an

interest rate change of a certain magnitude, with the GPS-based approach it is possible

to estimate the effect of changing the interest rate from a certain value to another one.

That is, the approach in this chapter yields level-dependent estimates by construction. It

is a very useful feature if we want to test the hypothesis, for instance, that the monetary

transmission becomes weaker above or below a certain threshold level of the interest rate.

The use of the generalized propensity score offers an advantage in the case of small

samples over other nonlinear estimators, such as Jordà’s (2005) flexible local projection.

When estimating the impulse response function, Jordà (2005) includes all the confounders

and their lags in the regression. With a nonlinear specification, powers and interactions

also appear on the right hand side, and the number of free parameters soon becomes

comparable to the number of observations. With the propensity score approach, the full

set of controls used only at the first stage, when the policy shocks are estimated by,

for instance, a VAR. If the linear approximation is precise enough, there is no need for

including higher order terms. At the second stage, when the relationship between the

policy and the outcome variables is estimated, the set of regressors collapses to the policy

variable, the GPS and their powers and interactions - no lags or other controls are needed

to estimate nonlinear effects. Neither the assumption of small number of distinct regimes

is necessary.
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The chapter is structured as follows. Section 2.2 introduces the theoretical back-

ground of the propensity score based approach. In section 2.3, the estimation algorithm

is described. Section 2.4 presents the result. The final section concludes.

2.2 Estimation based on the GPS

The estimation of the impulse response functions is based on Hirano and Imbens’ (2004)

concept of the generalized propensity score (GPS), which is the analogue of the propensity

score for continuous treatments. They use GPS to identify dose response function from

cross-section. In the first chapter I showed how their approach can be adopted to a time

series setting. Throughout this chapter I identify the treatment with the level of the

central bank’s policy rate It.

The GPS associated with the treatment status at time t is defined as

Rt = fi|x(It|Xt), (2.1)

where fi|x(It|Xt) denotes the conditional density of the interest rate, given the set of

covariates Xt. The covariates include lagged values of relevant macro variables and un-

observed nonmonetary shocks at period t.

Let us assume an interest rate rule in the following form:

It = Φ(Xt) + εt (2.2)

where Φ(Xt) is the expected value of the interest rate, conditioned on the same set

of covariates as in (2.1), that is on lagged values of all observed variables, including

the interest rate itself, and the (unobserved) contemporaneous shocks other than the

monetary policy shock εt. If we further assume that the idiosyncratic policy shocks are

drawn from the same zero mean distribution in each period, the GPS is simply the density

function of this distribution evaluated at εt.

Note that contemporaneous observable variables, like GDP, prices etc. are not in-
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cluded in the reaction function in (2.2), which is in contrast with popular interest rate

rules, like the Taylor rule (Taylor, 1993). This is because some covariates may react to the

interest rate within the same period and thus may not be independent of εt. Xt, however,

contains only lagged values of observable variables and contemporaneous nonmonetary

shocks, that are all independent of the contemporaneous policy shock.

The main challenge in estimating the causal effect of monetary policy is that the

central bank sets its interest rate partly in response to the state of the economy, captured

by Φ. Thus, macro variables observed at period t and earlier affect not only the outcome

(the economy at period t+ 1, t+ 2, ...), but also the interest rate at period t resulting in

biased estimates if the former is directly regressed on the latter. The key condition for

removing the endogeneity bias is weak unconfoundedness, which is formulated by Hirano

and Imbens (2004) as follows:

Yt+h(i) ⊥ It|Xt for all i,

that is, once we control for all the relevant confounders, potential outcomes (Yt+h(i);h =

1, 2, ..., H) after any hypothetical interest rate (i) are orthogonal to the actual interest

rate at period t. It does not mean that the actual outcomes Yt+h are independent from

the actual policy at period t, it only says that in the same situation same policies would

have had the same effect on the economy, independently of what the actual policy was.

As Hirano and Imbens (2004) show, weak unconfoundedness imply that it is enough

to control for the generalized propensity score instead of the full set of confounders to

eliminate the endogeneity bias.

Macro models usually make the assumption that conditioned on the current state

of the economy, the evolution of the endogenous variables in the future is governed by

realization of structural shocks in the future. Structural shocks in the future are assumed

to be orthogonal to the current state of the economy, including the interest rate at period t,

and to have time invariant distribution. All this implies weak unconfoundedness, because

once we control for the current state of the economy, future values of the endogenous

variables depend only on random variables that are orthogonal to any variable at time t
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and earlier, and have a time-invariant joint probability distribution.

As a consequence, the expected outcome will be a function of the policy variable at

period t and the associated GPS (Rt):

Et(Yt+h) = fGPSh (It, Rt).

Thus, the number of parameters to be estimated is much less than in other models,

like Jordà’s (2005) local projection, which uses the following model:

Et(Yt+h) = fLPh (Zt, Zt−1, ...).

where Zt is the vector of observable confounders, including the policy variable, too. With

6 endogenous variables and 4 lags, for instance, one has to estimate 25 parameters in the

linear case, and much more with a nonlinear specification.

Of course, when estimating the policy shocks, that are needed to calculate the propen-

sity score, controlling for many covariates may be needed, because monetary policy reacts

to a wide set of information. But this is something that is common with other models

that identify the causal effect of the shocks. For modelling the relationship between the

policy and the outcomes, only a few number of parameters are to be estimated even

with a nonlinear specification. The advantage of using the generalized propensity score

materializes at this stage, which is confirmed by Monte Carlo simulations in the first

chapter.

2.3 Inference

The estimation procedure consists of three steps (see Chapter 1). First, the history of

policy shocks is estimated. Then a probability density function is fitted on the shocks

and the generalized propensity scores are derived. Finally, the outcomes are regressed on

the policy variable and the GPS, which allows to calculate the effect of any hypothetical

policy. Details on the implementation can be found in the appendix.

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.04

2.3.1 Data and identification of monetary policy shocks

The exogenous variation of the Fed’s target interest rate were estimated with a sign re-

stricted VAR based on Uhlig (2005) for several reasons. First, this is a widely referred

study in the topic of estimating the effect of monetary policy. Second, with sign restric-

tions one obtains more robust results than with just- or overidentified VARs. Finally, the

Bayesian framework he used can be easily extended to the GPS-based impulse response

analysis, which otherwise would need bootstrapping.

It should be noted that since the monetary shocks are estimated with a SVAR, we

approximate the possible nonlinear reaction function Φ in (2.2) with a linear model. It

does not mean at all that we assume a completely linear data generating process, because

the VAR is not used to estimate the impulse responses. The only assumption is that with

the linear approximation of (2.2), we obtain precise enough estimates of the monetary

shocks.

Similarly to Uhlig (2005), my sample starts in 1965Q1, but I use ten years more data

ending in the last quarter of 2006. The choice of the variables more or less follows the

referred paper, too, by using time series of U.S. GDP, GDP deflator, commodity price

index, fed funds rate, total reserves and non-borrowed reserves. These time series were

taken from the database used for Monte Carlo simulation in the first chapter.1

In contrast with Uhlig (2005), I use quarterly data. The advantage of the lower

frequency is that the GDP data can be used directly, without interpolation. Another

departure from the referred paper is that with the exception of the fed funds rate, I took

the first difference of the logarithm of the variables, because the favourable small sample

properties of the GPS-based estimator are demonstrated for stationary time series in the

first chapter.

The identifying restrictions I used were also different to those imposed in Uhlig (2005)

because of the different focus of the study. My aim is to start from a SVAR estimates that

produces impulse responses that are common in the literature, first of all a drop in GDP

and a gradual decline in consumer prices after an unexpected tightening. Uhlig’s (2005)

1For further details see the appendix for chapter 1.
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main question was whether there is a significant effect of monetary policy on output and

his finding was rather mixed. I take the above-mentioned consensus results as given and

adjust the identifying restrictions accordingly to investigate whether there is significant

deviation from the average effect when different levels of the interest rate are considered.

I assumed that the GDP and the consumer prices do not react to monetary policy

shocks within one quarter. I also assumed that tightening shocks have negative effect on

the consumer prices one quarter later, and on the non-borrowed reserves within the same

and the next quarter. Uhlig (2005) did not imposed zero contemporaneous restrictions

on GDP and consumer prices, but assumed negative effect on the latter as well on non-

borrowed reserves. In the absence of these zero restrictions, GDP and inflation would

jump immediately, which is not consistent with the most typical finding in the literature.

In order to decrease the residual autocorrelation, I included 5 lags in the VAR which

is more than what Akaike’s and Schwartz’s information criteria suggest. According to

the multivariate LM-test, even with 5 lags there remained some autocorrelation in the

residuals, but increasing the number of lags further did not improve the test result.
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Figure 2.1: Effect of an unexpected 25 basis-point interest rate hike. Estimates with the
Uhlig-type SVAR. Solid line is the median, dotted lines are the boundaries of the middle
68 percent of the posterior distribution.

Figure 2.1 shows the estimates of the effect of an unexpected 25 basis-point interest

rate hike. The responses are in line with conventional economic thinking and are close

to the results of Uhlig (2005). The typical monetary policy shock takes the form of a
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rather temporary increase in the fed funds rate, lasting only for one year. GDP drops in

the first year after the shock, but rebounds in the second. Consumer prices decrease, but

very gradually, consistently with rigid price setting. The commodity price index, total

and non-borrowed reserves fall permanently.

2.3.2 Deriving the propensity score

The next step is fitting a density function on the estimated policy shocks (εt). As men-

tioned above, it is assumed that they are drawn from the same distribution. I adopted

a parametric approach in order to facilitate the Bayesian inference. I assumed normal

distribution with zero mean and unknown variance (σ2
ε). Using the uninformative prior

p(σ2
ε) ∝ 1/σ2

ε , the posterior distribution is inverse gamma:

σ2
ε ∼ IG

(
T

2
,
ε′ε

2

)
,

where T is the number of observations. The GPS for each observation is then computed

from the normal density function with zero mean and variance drawn from the distribution

above.

2.3.3 Calculating the impulse response functions

The final step is estimating the relationship between the outcome and the treatment.

The explanatory variables are the policy variable and the GPS estimated in the previous

step. As mentioned earlier, the main advantage of this approach becomes obvious at

this point: once we have a good approximation of the policy shocks, we do not have to

control for all the confounders, only for the level of the policy variable (treatment) and

the GPS, and no lags are needed. This is why this approach may be more capable to

identify nonlinear relationship of any form even from few number of observations than,

for example, the local projection.

The estimation at the third stage follows Hirano and Imbens (2004). With our time

series setting, the dependent variable of the regression (Y ) is the variable of interest
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(GDP, consumer price index etc.) h periods after the shock. The explanatory variables

are the policy variable (I) and its associated GPS (R) at period t. I also included Yt as

a regressor, because some of the outcome variables were highly persistent. The outcome

variable Yt+h was approximated with the following model:

Yt+h = αhYt + βh00 + βh10It + βh01R̂t + βh20I
2
t + βh11ItR̂t + βh02R̂

2
t + ...+ uht , (2.3)

where It is the interest rate at period t and R̂t is the associated GPS, the latter calculated

in the previous step. I assume that the residual term has a normal distribution with zero

mean and variance σ2
h. Working with the uninformative reference prior again, which is

flat for the coefficients and similar to that of the previous step for the variance, the joint

posterior distribution of β = (αh, βh00, β
h
10, β

h
01, ...)

′ and σ2
h will be a normal-inverse-gamma

distribution, that is

σ2
h ∼ IG

(
T − p

2
,
û′û

2

)
,

where p is the length of the vector β, û is the residuals estimated by OLS, and conditioned

on σ2
h, the posterior of β is multivariate normal:

β ∼ N((X ′X)−1X ′yh, (X ′X)−1σ2
h),

where X is the T × p matrix of the regressors in (2.3).

Finally, our estimate of the average effect of any hypothetical policy (i) on the outcome

can be derived by the following formula (using second order approximation):

Ŷh(i) =
1

T

T∑
t=1

(
α̂hYt + β̂h00 + β̂h10i+ β̂h01R̂(i)t + β̂h20i

2 + β̂h11iR̂(i)t + β̂h02R̂(i)2t

)
,

where R̂(i)t is the GPS evaluated at the hypothetical policy using covariates at time t.

The estimated impulse response function is then:

{Ŷ1(i+ ∆i)− Ŷ1(i), Ŷ2(i+ ∆i)− Ŷ2(i), ...}.
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The posterior distribution of the impulse responses and, thus, the reported error

bands reflect both the model uncertainty, stemming from the sign restrictions, and the

parameter uncertainty. The latter consists of three components from each stage of the

estimation: estimation of the policy shocks, fitting a density function and estimating the

relationship between the outcomes and the policy variable. A detailed description of how

the posterior distribution of the impulse responses were simulated, see the appendix.

2.4 Results

Figure 2.2 compares the estimated impulse responses of the SVAR model with the uncon-

ditional estimates of the GPS-based approach. The shock is a 25 basis-point unexpected

rate hike. Since the GPS-based impulse responses depend on the initial level of the in-

terest rate as well as on the size of the shock, I calculated the unconditional effect as

the average of the impulse responses conditioned on each interest rate contained by my

sample.
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Figure 2.2: Effect of an unexpected 25 basis-point interest rate hike. SVAR model me-
dian estimates (solid blue line) and unconditional median estimates with the GPS-based
approach (dashed red line). Dotted lines are the boundaries of the middle 68 percent of
the posterior distribution.

The point estimates of the contemporaneous effects are the same for both approaches

by construction. The GPS-based estimation produces more persistent responses than the

SVAR. Nevertheless, the main characteristics are similar. GDP and consumer prices fall
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after the shock. The same is true for the commodity price index after the initial drop.

Figure 2.3 shows how the effect of the monetary contraction depends on the initial

level of the interest rate. I compare the high interest regime with the low one. The high

and low interest rates were selected to be the 90 and the 10 percentile of the sample

distribution, corresponding to 10.06 and 2.46 percent.
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Figure 2.3: Effect of an unexpected 25 basis-point interest rate hike. GPS-based condi-
tional estimates. Solid red line denotes the median of the response when the initial level of
the fed funds rate was low, blue circles when it was high. Dotted lines are the boundaries
of the middle 68 percent of the posterior distribution.

The most pronounced nonlinearity can be found in the case of the GDP and the

consumer prices. Starting from a 10 percent interest rate, a 25 basis-point increase has a

faster and stronger effect on both variables, even though the effect on the fed fund rate is

roughly the same. This result suggests that monetary policy is more effective when the

interest rate is high.

Normally, such periods coincide with high growth periods, and thus, these results

seem to confirm those of Tenreyro and Thwaites (2016) and Gross and Semmler (2018),

who found that monetary shocks have larger effect during economic expansions. How-

ever, the correspondence is limited. In my sample, that is between 1965 and 2006 the

correlation between the interest rate and the growth rate of GDP is low, due to the Vol-

cker disinflation period, when the high interest rate were coupled with low growth for

a protracted period. Therefore we cannot interpret the results as a direct evidence for

a business cycle dependent monetary transmission mechanism. It is true, nevertheless,
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that the GPS-based estimates would predict more efficient monetary policy for periods

characterized by high inflation, high growth and high interest rate.

Regarding the possible nonlinearities with respect to the direction of the interest rate

change, Angrist et al (2018) and Tenreyro and Thwaites (2016) found that rate hikes have

larger impact on the economy than rate cuts. The results shown in Figure 2.3 cannot

be directly related to them, as the correlation between the level and the first difference

of the interest rate is virtually zero in my sample. Still, we can say that the GPS-based

estimates suggest that if the economy is in an expansionary phase and the interest rate

is higher than average, monetary tightening is a powerful countercyclical measure, and,

similarly, when the economy is in depression (and the interest rate is low), interest rate

cuts are less effective.

0 5 10 15 20
-1

-0.5

0

0.5

1
10-3 GDP

0 5 10 15 20
-4

-3

-2

-1

0

1
10-3Consumer price index

25 basis-point rate hike

25 basis-point rate cut (mirrored) 0 5 10 15 20
-0.04

-0.03

-0.02

-0.01

0
Commodity price index

0 5 10 15 20
0

1

2

3

4
10-3 Fed Funds Rate

0 5 10 15 20
-0.04

-0.03

-0.02

-0.01

0

0.01
Nonborrowed reserves

0 5 10 15 20
-0.1

-0.05

0

0.05
Total reserves

Figure 2.4: Effect of an unexpected 25 basis-point interest rate change. GPS-based esti-
mates conditioned only on the size of the shock. Solid red line denotes the median of the
response to a rate hike, blue circles to a rate cut, multiplied by minus one. Dotted lines
are the boundaries of the middle 68 percent of the posterior distribution.

However, the possibly asymmetric effect of monetary tightening and easing can be

estimated directly with the generalized propensity score. Since it is the change of the

interest rate we are interested in, the estimates are unconditional with respect to the level

of the interest rate and are calculated in a similar manner as described in the beginning

of this section. Figure 2.4 compares the effect of a 25 basis-point rate hike and a rate

cut of the same magnitude, with the responses to the latter being multiplied by minus
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one. Clearly, there is no significant difference, which is in contrast with the corresponding

findings of Angrist et al (2018), Barnichon and Matthes (2018) and Tenreyro and Thwaites

(2016), but in line with that of Weise (1999).

2.5 Conclusion

In this chapter the estimator proposed in the previous chapter was applied to U.S. data

in order to investigate whether the effect of the Fed’s interest rate decisions depend

on the initial level of the interest rate or on the size of the rate change. In Chapter 1 I

demonstrated that estimation based on the generalized propensity score may give reliable

estimates of possibly nonlinear, dynamic causal effects even if the number of observation

is low.

Although the exogenous variation in the interest rate were estimated with a linear

SVAR model, the results displayed significant nonlinearities. Most importantly, interest

rate decisions seem to exert faster and larger impact on GDP and consumer prices when

the interest rate is high. This is more or less in line with earlier findings, although only

with the additional assumptions that the interest rate is positively correlated with the

business cycle.

On the other hand, dependence on the size and the direction of the interest rate

change does not show signs of nonlinearity. This finding is in contrast with those of

earlier estimates in the literature.
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Chapter 3

Estimating the Effect of Monetary

Policy with Dissenting Votes as

Instrument

3.1 Introduction

There is a large body of empirical literature on the effect of monetary policy. Most of

the studies use identified or structural VAR to estimate this effect. The main challenge

is to circumvent the endogeneity problem, namely that the economy and the monetary

policy may react to the same shock rendering causal interpretation of impulse responses

impossible. The most common approach is to take the linear combination of the VAR

residuals that meets some predefined identifying restrictions, and to call this time series

exogenous policy shocks, that is the source of the exogenous changes in the policy variable.

Recently, Stock and Watson (2012) proposed using external instruments for identifying

exogenous shocks. External here means that the exogenous variation of the policy variable

does not come from the VAR residuals, but from an additional variable not included in

the VAR. Mertens and O. Ravn (2013) used external instrument in a SVAR to estimate

the effect of tax changes. Gertler and Karádi (2015) estimated the effect of monetary

policy using the surprise content of the interest rate decisions as external instrument.

42
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In this chapter I use voting records of the Fed for constructing an instrument for the

policy rate. There are two features of central banks’ decision making process that may

generate exogenous variation in monetary policy. The first is rounding: the policy rates

are in most cases multiples of one quarter of a percentage point. The second feature is the

consensus-seeking principle, that is the interest rate supported by as many members as

possible is chosen as the decision of the committee. Riboni and Ruge-Murcia (2014) call

the these features ”size friction” and ”decision-making friction”, respectively. In another

study (Riboni and Ruge-Murcia, 2010) they consider different voting protocols and find

that the consensus model fits major central banks’ interest rate decisions best. Due to

the above-mentioned frictions, the decision outcome may differ from its expected value,

and part of this difference can be regarded as an exogenous policy shock.

A simple example could be the case when roughly half of the decision making body

finds current level of interest rate appropriate, and the other half would like to cut it by

25 basis points. If individual members’ preferences are more or less (but not perfectly)

known by the public, the expected value of the decision will be a 12.5 basis point cut.

The final decision may depend on one or two votes in an almost random way. Either

holding the policy rate or cutting by 25 basis points would hit the market as a surprise

(either 12.5 or -12.5 basis points) and can be considered as exogenous variation in the

sense that it is not correlated with economic variables that influence both the policy rate

and the future path of the economy.

Dissenting votes indicate the direction of the surprise. If the final decision is a cut,

but dissenting members would have held the interest rate, the policy shock is an easing

shock. In the opposite case when the decision making body does not change the policy

rate but several members would have done it, the outcome is a tighter than expected

monetary policy.

In line with the tendency to make monetary policy more transparent, many central

banks publish voting records of committee members. I use the history of FOMC members’

dissent record collected by Thornton and Wheelock (2014). I create an index of dissent

from this dataset to approximate the sign and size of the monetary policy shock for each
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rate setting decision. Then I estimate a VAR from data on the main U.S. macroeconomic

variables and instrument the policy rate residual of the VAR by the index.

Within the same proxy-SVAR framework, Gertler and Karádi (2015) build on the

surprise movements in Fed funds futures around the announcements of FOMC decisions.

As emphasised in Jarociński and Karádi (2020), this instrument contains not only policy

shocks, but information shocks, too. The latter comes from the Fed’s assessment of the

state of the economy which may differ from market participants’ view. If the central bank

has more precise information on trends in the economy, the surprises in the interest rates

may be dominated by that knowledge, which is correlated with state of the economy.

Consequently, the estimated effects are biased. Jarociński and Karádi (2020) disentangle

information shocks from monetary shocks by imposing additional identifying assumptions,

and show that the effect of monetary policy estimated by them is different from what

Gertler and Karádi (2015) found.

The same problem is less likely to arise with the dissent instrument proposed in this

chapter. Although the distribution of votes indicate where the interest rate would be in

the absence of decision-making frictions, and this depends on the central bank’s assess-

ment of the state of the economy, both the actual and the ”frictionless” rate reflect the

same assessment, and thus their difference is not much related to the possible information

asymmetry between the central bank and the public. The proposed measure of dissent is

a proxy for that difference, therefore, when using as external instrument in a SVAR, no

additional identifying restrictions are necessary to eliminate the information shocks.

I find that monetary policy shocks have significant effect on real variables with the

expected sign, especially in the long run. An unexpected tightening lowers GDP, indus-

trial production and employment. On the other hand, the response of nominal variables

are insignificant, and their sign contradicts to the conventional views of the transmission

of monetary policy and is reminiscent of the ”price puzzle” phenomenon.

These qualitative results remain robust when I change the variables in the VAR, the

frequency of the time series and the sample. The conventional explanation of the price

puzzle (Sims, 1992) is based on the argument that central banks look at expected future
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inflation when setting interest rates and use information not included in the econometri-

cian’s data. Castelnuovo and Surico (2010) argues that the omission of forward-looking

variables generates price puzzle especially when the monetary policy does not respond

strongly enough to inflation, just as in the pre-Volcker era. With the dissent-based iden-

tification, however, changing the sample period or including variables such as inflation

expectations and commodity prices does not alter the big picture. Therefore, as long as

the dissent index is a valid instrument, the price puzzle seems to be a feature rather than

an artifact.

The chapter is structured as follows. First, I present simulations with a stylized model

of collective decision making and demonstrate that dissents can be a valid instrument for

identifying exogenous variation in the policy variable. Then I introduce an index of

dissents created from FOMC members voting record. In section 3.4 the methodology of

the estimation is described. In section 3.5 the proxy-SVAR results are discussed. Section

3.6 concludes.

3.2 Simulation with a stylized model of collective de-

cision making with dissent

Making group decision is a more complex procedure than individual decision-making if

there are diverse views on the optimal outcome. Monetary policy committees typically

make strong effort to reconcile views of its members in order to arrive at a decision that

has strong enough support to convince the public that the policy change will be persistent.

The consequence of this effort is that the final outcome will almost never coincide with

any member’s most preferred policy.

Riboni and Ruge-Murcia (2014) call the desire to reconcile different views on the

optimal interest rate ”decision-making friction”. One tool to decrease diversity among

members is to restrict the available options, which typically means considering only in-

terest rate changes that are multiple of 25 basis points. Riboni and Ruge-Murcia (2014)

call this ”size-friction”.

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.04

Gerlach-Kristen (2004) finds that dissenting votes can help predict future interest rate

decisions of the Bank of England. Riboni and Ruge-Murcia (2014) demonstrates that this

result is due to the two aforementioned frictions. In an earlier paper (Riboni and Ruge-

Murcia, 2014) they show that major central banks make interest rate decisions in a way

that is observationally equivalently to the consensus-seeking model, which implies these

frictions.

In the following I will demonstrate how information on dissenting votes may help solve

the endogeneity problem. First, I highlight the main intuition with the help of some very

simple examples. Then I present simulations with a stylized model of collective decision-

making characterised by frictions to show that the measure of dissent can be a valid

instrument.

3.2.1 The main intuition

First consider a simple example, in which the decision making body consists of a single

member. Of course, in this case there is no friction due to consensus-seeking, but it

can shed light on how the ”optimal” decision is distorted by the size-friction, that is by

restricting the set of options to some discrete values.

Let us assume that the decision maker can choose only 0 or 1. Also assume that the

optimal value of the policy instrument is a random number j drawn from the U(0, 1)

uniform distribution. As she cannot choose numbers between 0 and 1, the policy maker

rounds the optimal value to the nearest integer J . Clearly, the expected value of J is

0.5, and thus the surprise component of the decision is J − 0.5, which is positively and

strongly correlated with the distortion, that is with J − j, because they always have the

same sign.

Now let us add another ”friction” to the decision making procedure, and consider the

case when the decision making body consists of three members. Each member’s preferred

value is drawn from the same U(0, 1) distribution, independently from each other. Then

they all choose either 0 or 1 depending on which one is closer to the individually preferred

policy. The final decision is 0 when at least two members chose it, and 1 otherwise. Due
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to symmetry, the expected value of the decision-making body’s choice is 0.5 again. Thus,

the surprise is -0.5 with probability 0.5, and 0.5 with the same probability.

With more than one member dissent can occur. In this example there are dissenting

votes if two members vote for 0 and one for 1, or two votes for 1 and one for 0. One

measure of dissent can be the number of dissenting votes for lower value minus the number

of dissenting votes for higher value divided by the number of total votes. In our case this

measure can take the values of −1/3, 0 or 1/3.

Since our measure of dissent is either zero (unanimous voting) or has the same sign

as the surprise component of the decision, there is positive comovement between the two.

It is very straightforward to derive that the standard deviation of the dissent variable

and the surprise is 1/(2
√

3) and 1/2, respectively, their covariance is 1/8, and thus their

correlation is
√

3/2 = 0.866.

These very simple examples showed the main intuition behind looking at dissenting

votes as a potential proxy for shocks generated by the decision-making frictions. In real

life monetary policy decisions are related to the underlying economic developments that

can influence disagreement in a systematic way. If this is the case, a measure of dissenting

votes may not be valid instrument and cause bias in estimation.

To see how the state of the economy may interfere with collective monetary policy

decision-making, let us suppose that individual preferences regarding the policy instru-

ment are formed by not only pure random shocks but they are state-dependent, too. Let

the individually preferred policies be

ji = x+ wi

where x is either 0.25 or 0.75 (”low” or ”high” states) with 0.5-0.5 probabilities, and the

idiosyncratic policy shock wi is drawn from the uniform distribution U(−0.5, 0.5) for each

member independently. Otherwise the model is the same as previously. Consequently, in

the low state the distribution of the individually preferred value of the policy variable is

U(−0.25, 0.75), while it is U(0.25, 1.25) in the high state. The possible policy outcomes

are still 0 or 1, but their conditional probabilities are different, as Table 3.1 shows. Note
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that the expected value of the decision is 5/32 in the low state and 27/32 in the high

state.

x = 0.25 x = 0.75
outcome dissent surprise cond. prob. outcome dissent surprise cond. prob.

0 0 -10/64 27/64 0 0 -54/64 1/64
0 1/3 -10/64 27/64 0 1/3 -54/64 9/64
1 -1/3 54/64 9/64 1 -1/3 10/64 27/64
1 0 54/64 1/64 1 0 10/64 27/64

Table 3.1: Possible outcomes, the corresponding surprises and conditional probabilities in
the two states.

In the low state, the probability that the dissenting vote is higher than the common

decision (second row of Table 3.1) is higher (27/64) than the opposite case (9/64), in

which the dissenting member votes for a lower rate (third row of Table 3.1). In the

high state the opposite is true. This implies correlation between the direction of dissent

and the economic shock. Indeed, it can be shown that the correlation between the

measure of dissent (defined as previously) and the state of the economy is now 0.375.

Nevertheless, the dissent still exhibits stronger comovement with the shocks not related

to the underlying economic developments. Assuming that the expectations are formed

conditionally on the state of the economy, the correlation between the surprise caused by

the decision and the measure of dissent is 0.678.

Although the information content of the vote distribution may be partly driven by

the underlying economic shocks, this is not necessarily true always. To see this, consider

a modification of the previous example. The only change is that the state variable x

can now take the values of 0.5 and 1.5 with the same probabilities. It implies that the

distribution of the member specific preferences is U(0, 1) in the low state and U(1, 2) in

the high state. The possible outcomes are 0 or 1 in the low state and 1 or 2 in the high

state with each conditional probability being 0.5.

Note, that in this case the conditional distribution of the dissent measure is completely

the same in the two states (and the same as in the second example), therefore, there is

no comovement between the state and our measure of dissent at all, while the correlation

between the latter and the surprise is 0.866, again. The explanation of this is that now the
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effect of the economy on the decision is large enough compared to the distance between

the available options.

Based on these simple examples we can conclude that the distribution of dissenting

votes is generally correlated with the difference between the expectations and the final

outcome. Whether it is correlated with potential confounders depends on the relative

size of the shocks and the distance between the potential outcomes of the decision. To

give an impression about these dependencies, a simulation with a more detailed model is

shown in the next subsection.

3.2.2 The model

In this model1 the state of the economy is captured by an autoregressive process, and

the policy makers vote according to a time-varying rule which is heterogeneous across

them. Since we are only interested in whether a proper measure of dissent can be a proxy

of exogenous shocks to the policy, there is no feedback from the policy variable to the

economy.

The state variable xt follows an AR(1) process with mean 0:

xt = ρxxt−1 + uxt

The decision making body consists of n members. They make decision on the policy

variable j in each period. Member i’s preferred level of the policy variable is described

by the policy rule:

jit = φitxt + vt + wit

where wit is a white noise idiosyncratic shock to member i’s (i = 1, ..., n) decision at

period t, vt is a white noise common policy shock. Idiosyncratic shocks capture unpre-

dictable deviation by a member from her policy rule that are unrelated to others’ decision.

Common shocks can occur, for example, because the committee’s decision is based partly

1The model shares many features with those presented in Riboni and Ruge-Murcia (2014) and Gerlach-
Kristen (2008), but there are also important differences due to the different purpose.
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on the staff’s economic analysis, and thus any mistake made by the staff can result in

unexpected synchronized deviations from the individual policy rules.

The time-varying member-specific reaction coefficient φit is another AR(1) process

with mean 1:

φit = 1 + ρφ(φi,t−1 − 1) + uφti.

The innovations (uxt , u
φ
ti, vt, wit) are white noise processes uncorrelated with each other.

The collective decision is based on individually preferred outcomes according to the

following rule: first, each member rounds her preferred level of the policy variable to the

nearest integer (Jit). Second, the integer number Jt receiving the most votes is chosen

as the body’s decision. If the mode is not unique, one of the most popular outcomes is

picked randomly with equal probabilities for each.2

Clearly, the difference between the final decision and the mean of individual prefer-

ences comes from two sources: rounding and the collective decision rule, namely that the

mode, not the mean of the individual votes is the collective choice. Each of these effects

can be considered random as long as the variance of xt and/or of the policy shocks is

large enough to generate many potential decision outcomes.

To evaluate the validity of a potential instrument, we need a definition of the policy

shock, which is not straightforward. Generally, the deviation of the policy variable from

the policy rule is meant by it. In our model the systematic behaviour of the decision

making body cannot be easily captured by a single feedback rule.

Another approach identifies policy shocks with the difference between the actual de-

cision and the decision expected by economic agents. The two approaches are identical

if the public is aware of both the common policy rule and the state of the economy, and

forms expectations rationally.

Throughout the chapter I define the policy shock as the difference between the body’s

2In real life the last round of the procedure is more complex, since the final outcome typically has
to enjoy the support of the (qualified) majority of the members. If the mode has no majority, further
rounds of voting take place until a (qualified) majority is formed. In the simulation we consider a simpler
decision rule by taking the mode as the final decision. However, the same intuition behind the proposed
instrumental variable remains valid even if a majority rule is applied, as in Riboni and Ruge-Murcia
(2014).
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final decision and its expected value,

ujt = Jt − E(Jt), (3.1)

where E denotes the model consistent expectation with the information set including the

state of the economy (xt) and the policy rule of each member (the φits), but not the

common and the individual policy shocks.

Let us denote the mean of the expected values of the individually preferred policy by

Ẽ(Jt), that is

Ẽ(Jt) =
1

n

n∑
i=1

E(jit) = xt
1

n

n∑
i=1

φit.

The policy shock then can be decomposed into five terms as follows:

ujt = Jt − Ẽ(Jt)−
(
Ẽ(Jt)− E(Jt)

)
= Jt −

1

n

n∑
i=1

φitxt −
(
Ẽ(Jt)− E(Jt)

)
=

= Jt −
1

n

n∑
i=1

(jit − vt − wit)−
(
Ẽ(Jt)− E(Jt)

)
=

= Jt −
1

n

n∑
i=1

jit +
1

n

n∑
i=1

wit + vt −
(
Ẽ(Jt)− E(Jt)

)
=

=

[
Jt −

1

n

n∑
i=1

Jit

]
+

1

n

n∑
i=1

(Jit − jit) +
1

n

n∑
i=1

wit + vt −
(
Ẽ(Jt)− E(Jt)

)
Each component has an intuitive interpretation: the first one is the distortion caused

by the aggregation rule (picking the mode instead of mean), the second is the distortion

caused by rounding, the third is the average of the idiosyncratic shocks, the fourth is the

common decision shock. The last term is the difference between the model consistent

expected value and the mean of the individual expected values, which is, according to

the simulation results, small in magnitude3. Consequently, the final outcome differs from

the expectations not only because of the unexpected decision shocks, but also due to the

3To highlight the difference between the two ”expected values”, consider a simple example with a
three-member decision making body. Each member votes for 0 with 1/3, and for 1 with 2/3 probability.
Clearly, the mean of the individual expected values is 2/3. The model consistent expected value which
takes the decision making mechanism into account is 3∗ (2/3)2 ∗ (1/3)+(2/3)3 = 20/27, which is slightly
more than 2/3.
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nature of the decision making mechanism, namely, rounding and selecting the mode.

It should be noted that this is not an orthogonal decomposition. While the third and

fourth terms are orthogonal to each other by construction, the same is not necessarily

true for the first two and for their relationships with the decision shocks.

The first term, the deviation of the collective decision from the mean of the individual

votes can be observed as long as the individual votes are disclosed. My proposed proxy

for the monetary policy shock is thus the average magnitude of dissents made public by

several central banks. To be a valid instrument, it should be correlated with the policy

outcome (Jt), but uncorrelated with other shocks in the economy, which is uxt in our

model. The first condition is likely to be met as long as the other four terms do not

completely offset its correlation with the policy shock. The second condition can be met

if there is enough variation in the shocks (at least in their effect on the policy variable)

compared to the distance between possible outcomes, which is typically 25 basis point in

the case of central banks’ policy rate.

In the empirical application to be presented later, I use the record of dissenting votes

of the Fed collected by Daniel L. Thornton and David C. Wheelock, in which only the

direction of the dissent, not the exact value of the alternative votes is indicated. Thus,

following Riboni and Ruge-Murcia (2014), I consider the net balance of dissenting votes

created as the proportion of votes for weaker action minus the proportion of votes for

stronger action, or equivalently

dt =
1

n

n∑
i=1

I(Jit < Jt)−
1

n

n∑
i=1

I(Jit > Jt), (3.2)

where I is the indicator function taking value of one when the expression in parenthesis

is true, and zero otherwise. Because of the signs in the definition, this proxy is expected

to be correlated positively with the policy shock.

It should be stressed that this measure of dissent captures the effect of decision-

making frictions on the collective decision rather than the degree of disagreement among

members. To see the difference, note that, for example, in a 9-member committee the

proxy is zero when there is no dissent, similarly to the case when two members voted for
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higher and two members for lower interest rate. Thus, it is not directly related to the

uncertainty, which influences the second moment of the voting distribution mainly, only

indirectly.

3.2.3 Simulation results

Since the relevance and the validity of the proposed instrument cannot be derived ana-

lytically, not even with this simple model, numerical simulations are needed to see the

statistical properties of voting balance and how it is related to the underlying shocks.

During the simulations I kept the autoregressive parameters fixed: ρx = ρφ = 0.9,

that is the shocks hitting the economy and the policy preferences have fairly persistent

effect. As for the other parameters, I experimented with numerous combinations. The

standard deviation of vt, wit, xt and φit changed independently from 0.05 to 0.25 with

0.05 steps. This means 625 combinations of the four parameters. The decision making

body consisted of 7 members (n = 7). For each parameter combination I made simulation

for 10,000 periods.

To calculate the model consistent expectations some approximation was needed, be-

cause the shocks are unbounded and, consequently, the number of possible individual

outcomes is infinite even after rounding. As a first step, I simulated the individual votes

for a given parameter combination for each period, and assumed that the public knows

the distribution of votes from this simulation and considers only potential decision out-

comes between the first percentile minus one and the 99th percentile plus one. The true

probabilities of the outcomes outside this range were added to those of the two extreme

outcomes. Since these probabilities are very small, this kind of truncation of the true

distribution results only in negligible distortion when calculating the model consistent

expected value.

The policy shock ujt is then calculated as the difference between the collective decision

and this expectation. It should be noted that this model consistent shock is not equal to

the one defined for illustration purpose in (3.1), but according to the simulation results,

they are very close to each other.
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The validity of the instrument requires zero correlation with uxt and non-zero cor-

relation with Jt. Figure 3.1 shows the joint empirical distribution of these correlation

coefficients.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 3.1: Simulated correlations of the dissent proxy with the policy variable (horizontal
axis) and the economic shocks (vertical axis).

With most parameter combinations the dissent index variable defined in (3.2) proved

to be valid with the exception of very few cases when the correlation with the economic

shocks was significantly nonzero (negative). It should be noted here that increasing

further (above 0.25) the standard deviation of the policy shocks, the preference shocks

and the economic shocks would result in even more valid instrument.4 In the very few

cases when either the correlation with policy shocks was low or the correlation with

economic shocks was far from zero, the variance of the shocks in the model were rather

low. It is thus worth further investigation, in what parameter regions will our proposed

instrument be invalid.

One benchmark for choosing the empirically relevant parameter combinations is the

variability of the dissent index. The standard deviation of the monthly instrumental

variable used in the empirical application was 0.087, and that of the quarterly one was

4For the same reason as explained in the previous footnote.
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0.155. Thus, I consider simulation parameters producing similar statistics, that is stan-

dard deviation of the proxy variable between 0.08 and 0.16.

Within the empirically relevant parameter region defined above, the correlation be-

tween the proxy and the policy outcome is still high. The mean is 0.46 and 90 percent

of the distribution is above 0.27. The correlations with the economic shocks are close to

zero but with a fat tale in the negative territory. The mean of the distribution is -0.083,

the 10th and 90th percentiles are -0.174 and -0.016, respectively. Thus, even if in most

cases the instrumental variable can be considered as valid, there is a non-negligible part

of the empirically relevant parameter region in which the instrument co-moves with the

economic shocks.

Figure 3.2: Histograms of simulated correlations with the policy variable (left panel) and
the economic shocks (right panel) when the standard deviation of the dissent proxy is in
the empirically relevant region.

Table 3.2 summarizes the main statistics of the two parts of the empirically relevant

parameter region, where in the second part the correlation between the dissent index

and the economic shock is less than -0.1, containing 36 percent of all empirically relevant

parameter combinations. Since the mean of the reaction coefficients (φ) is one, and both

the individual and the common policy shocks enter the reaction function directly, the

standard deviation of the economic shocks and the two types of policy shocks can be

compared directly in terms of their contribution to the variance of the policy variable.

The main difference between the two parameter regions is that in the first one, when

the instrument is valid as defined above, the variance of the common decision shocks

is significantly larger than that of the individual decision shocks. When the correlation
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standard deviation of correlation of dt with

xt vt wit φit Jt ujt uxt
valid 0.1622 0.186 0.116 0.15 0.442 0.484 -0.045
invalid 0.155 0.095 0.19 0.155 0.357 0.429 -0.153

Table 3.2: Means of standard deviations and correlations with the proxy variable in the
two parameter regions where the instrument can be considered valid (first row) and invalid
(second row). xt: state of the economy, vt: common decision shocks, wit: individual
decision shocks, φit: individual reaction function coefficients, Jt: policy variable, ujt : total
policy shocks, uxt : economic shocks.

between the instrument and the economic shocks is less than -0.1, this relation turns to

the opposite as the standard deviation of the individual shocks becomes twice as large

as that of the common ones. Nevertheless, the instrument seems to be relevant in each

case, as the average correlation with the policy variable is above 0.35.

Unfortunately, in real life we cannot directly observe the relative variances of all shocks

incorporated in this simple model. Thus, we cannot a priori decide whether the proposed

variable will be a valid instrument in empirical applications. All what we can conclude

from this simulation exercise is that it will less likely be valid when the common decision

shocks are significantly smaller than the individual ones. The main intuition behind this

result is that disagreement can generally be driven by the state of the economy, but with

large enough common decision shocks it becomes unpredictable in which direction the

final decision will be diverted from the optimal policy by the decision-making frictions.

3.3 The instrumental variable

To approximate the distance between the collective outcome and the mean of individually

preferred outcomes, I use the record of dissents on FOMC monetary policy votes, which

is an extended version of the database constructed by Daniel L. Thornton and David

C. Wheelock and used in their study, Thornton and Wheelock (2014). This database

contains the voting records with dissents for all FOMC meetings since 1936.

The information from this database I use is the number of members with dissenting

votes for tighter and easier policy actions. For the period when the FOMC targeted the

federal funds rate, the exact distance between the common decision and the average of
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individual targets would be a good proxy for the exogenous policy shock described above.

In the absence of numerical record of each member’s preferred interest rate, I use the net

balance of tighter and easier preferences, normalized by the total number of voters. That

is, my instrumental variable is

dt = −n
+
t − n−t
Nt

, (3.3)

where n+
t and n−t is the number of votes for tighter and easier policy action, Nt is the

number of total votes. The minus sign serves only normalization purposes, because in

this way we can expect the the instrument to have positive correlation with the policy

shock caused by the collective decision making mechanism. Dividing by the number of

votes is motivated by the time-varying size of the decision making body. Apart from the

minus sign at the beginning, this index is exactly the same as the first one Riboni and

Ruge-Murcia (2014) use for forecasting future interest rate decisions.

For the months without FOMC meeting, the value of this variable is set to zero. When

working with quarterly data, I aggregated the dissents by taking the sum of monthly data

in each quarter. The monthly evolution of the instrumental variable is presented in Figure

3.3.

Figure 3.3: Net balance of dissenting votes as a ratio of total votes.
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I also consider alternative proxies based on the assumption that the policy shocks can

be larger when the Fed’s interest rate target is changing, or when the previous decision

caused a big surprise. During prolonged periods of predictably unchanged interest rate,

the information content of dissenting votes can be smaller, since the alternative interest

rate target they suggest has smaller probability as an outcome. Conversely, when the Fed

surprises the market with an interest rate change, the length of the cycle and the level

of the fed funds rate in the medium term is more uncertain, thus the surprise content of

the next decisions can be larger. Accordingly, the distribution of votes can convey more

information about what other outcomes might have been plausible.

According to the argument above, I define alternative instruments, too. To overweight

dissents during times of rapidly changing interest rates, I multiply dt by the absolute

change of the effective fed funds rate in the previous period or by the absolute value of

the lagged residual of the VAR’s interest rate equation. As it turns out, the alternative

variables are significantly better instruments than the basic one introduced in (3.3).

3.4 Methodology

The proxy-SVAR estimation relies on the assumption that the instrumental variable is

correlated with the policy shock, but not with the other structural shocks. With a well

specified VAR model, the contemporaneous impact of the policy shock on the VAR’s

endogenous variables can be consistently estimated by regressing the VAR’s non-policy

residuals on the policy residuals with the proxy variable as an instrument.

Let x denote one non-policy variable, Y the vector of all endogenous variables. The

equation of the VAR corresponding to x can be written as (ignoring exogenous observables

and the intercept, and assuming only one lag)

xt = axYt−1 + εxt ,

where ax is the corresponding row of the coefficient matrix and εxt is the residual term.
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Similarly, the equation of the policy variable i is

it = aiYt−1 + εit.

The residuals are linear combinations of the unobservable structural shocks, with one

of them being the policy shock denoted by ept . Particularly, let

εxt = sxnpe
np
t + sxpe

p
t

and

εit = sinpe
np
t + sipe

p
t ,

where enpt is the vector of non-policy shocks, sxnp and sinp are the corresponding weight

vectors (the impact responses), sxp and sip are the contemporaneous effects of the policy

shock on x and i, respectively.

If dt is correlated with ept but not with the other structural shocks, then regressing εxt on

εit with the proxy variable dt as instrument, the regression coefficient will asymptotically

be equal to sxp/s
i
p. To calculate the contemporaneous effect on each variable, one has to

use the fact that E(SS ′) = Σ where S is the matrix of contemporaneous effect of all

structural shocks on all endogenous variables and Σ is the variance-covariance matrix of

reduced form residuals. For further details see footnote 4 in Gertler and Karádi (2015).

Because some of my instrumental variables are only weakly correlated with the resid-

uals of the interest rate equation, for inference I use the approach of Montiel Olea et al

(2020), which is robust to instrument weakness.

3.5 Results

My benchmark VAR consists of monthly observations of fed funds rate (as the policy

variable), employment, PCE deflator, commodity price index, non-borrowed reserves and
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M2 money aggregate, just as in Jordà (2005)5. The fed funds rate is monthly average, The

instrument is the interaction of the dissent index and the absolute value of the previous

period’s rate change, measured by the first difference of the fed funds rate variable. As

mentioned earlier, the interaction of the pure dissent index with some measure of previous

period’s interest rate surprise results in stronger correlation with the contemporaneous

interest rate.

The sample starts in January 1985 and ends in December 2006. All variables, except

from the fed funds rate, are log-differenced. The charts, however, present the impulse

responses in level. The lag length is 6.

The choice of this particular specification, sample and instrument was motivated by

the relatively low autocorrelation in the residuals according to the LM-test, significant

cross-variable effects according to the Wald-test, and high F-statistics in the first stage

regression. The latter was 7.64, which is still lower than the rule-of-thumb threshold of 10

recommended in Stock et al (2002). This is why the weak-instrument robust inference of

Montiel Olea et al (2020) was employed. It should be noted, however, that conventional

inference with the plug-in estimator and δ-method confidence sets would lead to the same

qualitative conclusions.

Figure 3.4 presents the impulse responses to a 25 basis point rate hike shock. The

higher interest rate prevails for a relatively long, more than one year period. Employ-

ment decreases, as expected, and reaches its trough four years after the shock. A bit

surprisingly, employment does not seem to recover: even 8 years after the shock it is still

half percent lower than initially, and this difference is statistically significant even at 5

percent.

The behavior of the PCE deflator is different from what standard theories of monetary

transmission mechanism predict, as prices rise gradually, despite the subdued activity of

5The data used in this chapter are from the same sources as those of the first chapter. Additional
monthly data used only in this chapter are from the FRED database: ”All Employees: Total Nonfarm
Payrolls, Thousands of Persons, Monthly, Seasonally Adjusted”, ”Private Consumption Expenditure
Deflator: All Items Non-Food Non-Energy for the United States (DISCONTINUED), Index 2010=1,
Monthly, Seasonally Adjusted”, ”M2 Money Stock, Billions of Dollars, Monthly, Seasonally Adjusted”,
”Industrial Production Index, Index 2012=100, Monthly, Seasonally Adjusted”, ”Consumer Price Index
for All Urban Consumers: All Items in U.S. City Average, Index 1982-1984=100, Monthly, Seasonally
Adjusted”.
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Figure 3.4: Effect of an unexpected 25 basis point interest rate hike. Estimation from
monthly data between January 1985 and December 2006. Point estimates as well as 68
percent and 95 percent confidence intervals are calculated with the code used in Montiel
Olea et al (2020).

the real economy. Nevertheless, the positive effect is not significant statistically at the

conventional levels. The same is true for commodity prices, but with an immediate jump.

Non-borrowed reserves drop immediately, M2 rises temporarily, with both responses being

statistically insignificant.

In the appendix results from alternative VARs are shown. The specification choices

were motivated by low residual autocorrelation, joint significance of the VAR coefficients

corresponding to variables other than own lags, and the F-test of instrument strength,

just as in the benchmark case. In each case the VAR consisted of one real variable

(employment, industrial production or GDP), one measure of overall price level (PCE

deflator or CPI), and some other controls (inflation expectations6, commodity price index,

M2, non-borrowed reserves, total reserved, and Dow Jones Industrial Average index).

The findings from benchmark estimation are quite robust to changing the specifica-

6I used the logarithm of the ratio of the mean level forecast for 5 and 4 quarters ahead from the
Survey of Professional Forecasters
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tion, including the variables in the VAR, lag length, sample period, data frequency and

instrument. The variable capturing the real activity drops gradually, but persistently

and quite significantly. The overall price level increases, but this increase is insignificant

in most cases.

This pattern is different from conventional view of the monetary transmission mech-

anism, which predicts falling prices and output (and employment) after a contractionary

shock. It is rather reminiscent of the price puzzle, found in many empirical studies

investigating the effect of monetary policy 7

There are several explanations for the price puzzle. One branch of the arguments

attributes it to identification failure. Sims (1992) argues that the Fed uses more infor-

mation than a typical VAR contains. He demonstrates that the inclusion of commodity

prices mitigates the puzzle, because it conveys extra information about future inflation.

Castelnuovo and Surico (2010) goes further in this direction and show that the omis-

sion of inflation expectation is a problem only in the pre-Volcker period, that is when

the estimation sample ends before 1979. Their explanation is that prior to Volcker’s

chairmanship, the Fed’s reaction to the inflation was weak, generating sunspot shocks to

inflation expectations. Without controlling for them, monetary policy shock estimates

may be distorted. They also show that widely used identification schemes do not produce

significant price puzzle for the post-Volcker period.

Another branch of the literature argues that increasing prices after a monetary con-

traction are not statistical artifact, but rather the genuine response of the economy. The

explanation of Barth and Ramey (2002) is based on the cost channel. When interest

rates are higher, financing working capital becomes more expensive, thus a monetary

contraction causes a negative supply side shock with falling output and increasing prices.

They emphasise, however, that this channel influences the total effect of monetary policy

only in the short run.

An entirely different explanation of the price puzzle is offered by the neo-Fisherian

theory (Uribe, 2018). It is based on the Fisher-equation which establishes a positive

7For a detailed literature survey see Rusnak et al (2013).
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relationship between inflation and interest rate. Because monetary policy cannot influence

the real interest rate in the long run, if the nominal interest rate is changed permanently,

it is the inflation rate that has to adjust in the same direction in the long run. This effect

exists even in New-Keynesian models (Gaŕın et al, 2018).

Finally, the Fiscal Theory of Price Level also predicts rising prices after a monetary

tightening in the case of active fiscal policy rule (Sims, 2011). The main intuition is that

after an interest rate hike, the present value of future budget surpluses, which determines

the real value of government bonds, decreases, and the equilibrium on the bond market

restores through increasing consumer prices.

The results presented in this chapter can be considered as another evidence for in-

creasing prices after a monetary contraction as long as the identifying restriction, namely,

that the distribution of dissenting votes are uncorrelated with economic shocks is rea-

sonable. An important feature of my results is that the price puzzle is present even if

inflation expectations or commodity prices are included, and also for the post-Volcker

period, as results from the alternative specifications show.

Uribe (2018) estimates the effect of short run and long run changes in the interest rate

separately. He finds that while a temporary rate hike decreases both output and inflation

(just as in the conventional view on the monetary transmission mechanism), permanent

rate hikes increase both inflation and output, consistently with the neo-Fisherian effect.

My results can be reconciled with Uribe’s (2018) result. Since I do not distinguish

between permanent and transition interest rate shocks, the monetary shocks identified

in this chapter are presumably a mixture of them. This is supported by the fact that

the fed funds rate’s reaction to the initial monetary shock is more persistent than in

Uribe (2018) after a temporary shock. If temporary shocks are frequent enough, linear

combination of output and price level responses of Uribe’s (2018) empirical model can

easily produce falling output and rising prices after a ”mixed” monetary shock, just as

the results presented here.
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3.6 Conclusion

In this chapter I presented a novel way to identify the effect of monetary policy on the

economy. I used record of dissenting votes on the FOMC rate setting meetings as an

instrument. Due to rounding and majority voting the final outcome is likely to differ

from the expected outcome. I used a stylized model to demonstrate that this difference

is generally unrelated to the underlying economic shocks.

With this instrumental variable, I estimated several proxy-SVARs for the U.S. A

very robust finding from the most relevant specifications is that monetary tightening

depress the real economy permanently. Another important finding is that consumer

prices increase after the monetary contraction, although the impulse responses are less

significant than those of the real variables.

The results presented in this chapter can be considered as another evidence for price

increase after a monetary contraction, a phenomenon known as price puzzle in the liter-

ature. Although there are some arguments that the puzzle is a statistical artifact due to

identification failure, my approach avoids these traps to some extent. A possible theo-

retical explanation for the puzzle found in this chapter is that unexpected interest rate

changes are sometimes permanent ones, that have the opposite effect on inflation, in line

with the neo-Fisherian theory.
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Appendix A

Appendix for chapter 1: Data

sources

Time series from the FRED database:

Short name Definition (long name) Transformation
CRDQUSAHABIS Total Credit to Households and

Non-Profit Institutions Serving
Households, Adjusted for Breaks,
for United States, Billions of US
Dollars, Quarterly, Not Season-
ally Adjusted

deflated by Consumer
Price Index: Total
All Items for the
United States, Index
2010=100, Quarterly,
Seasonally Adjusted
(CPALTT01USQ661S),
log difference

EXPGSC1 Real Exports of Goods and Ser-
vices, Billions of Chained 2012
Dollars, Quarterly, Seasonally
Adjusted Annual Rate

log difference

FEDFUNDS Effective Federal Funds Rate,
Percent, Monthly, Not Seasonally
Adjusted

quarterly average

FGOSNTQ027S Federal government; operating
surplus, net, Flow, Millions of
Dollars, Quarterly, Seasonally
Adjusted Annual Rate

deflated by Consumer
Price Index: Total
All Items for the
United States, Index
2010=100, Quarterly,
Seasonally Adjusted
(CPALTT01USQ661S)

65
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Short name Definition (long name) Transformation
GDPC1 Real Gross Domestic Product,

Billions of Chained 2012 Dollars,
Quarterly, Seasonally Adjusted
Annual Rate

log difference

GDPDEF Gross Domestic Product: Im-
plicit Price Deflator, Index
2012=100, Quarterly, Seasonally
Adjusted

log difference

GPDIC1 Real Gross Private Domestic In-
vestment, Billions of Chained
2012 Dollars, Quarterly, Season-
ally Adjusted Annual Rate

log difference

IMPGSC1 Real imports of goods and ser-
vices, Billions of Chained 2012
Dollars, Quarterly, Seasonally
Adjusted Annual Rate

log difference

IRLTLT01USQ156N Long-Term Government Bond
Yields: 10-year: Main (Includ-
ing Benchmark) for the United
States, Percent, Quarterly, Not
Seasonally Adjusted

none

LRHUTTTTUSQ
156S

Harmonized Unemployment
Rate: Total: All Persons for
the United States, Percent,
Quarterly, Seasonally Adjusted

none

MABMM301USQ
189S

M3 for the United States, Na-
tional Currency, Quarterly, Sea-
sonally Adjusted

deflated by Consumer
Price Index: Total
All Items for the
United States, Index
2010=100, Quarterly,
Seasonally Adjusted
(CPALTT01USQ661S),
log difference

NNUSBIS Narrow Effective Exchange
Rate for United States, In-
dex 2010=100, Monthly, Not
Seasonally Adjusted

first difference of quar-
terly average of logarithm

NONBORTAF Non-Borrowed Reserves of
Depository Institutions Plus
Term Auction Credit (DISCON-
TINUED), Billions of Dollars,
Monthly, Seasonally Adjusted

first difference of quar-
terly average of logarithmC
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Short name Definition (long name) Transformation
PCECC96 Real Personal Consumption Ex-

penditures, Billions of Chained
2012 Dollars, Quarterly, Season-
ally Adjusted Annual Rate

log difference

PRS85006013 Nonfarm Business Sector: Em-
ployment, Index 2012=100,
Quarterly, Seasonally Adjusted

log difference

PRS85006022 Nonfarm Business Sector: Av-
erage Weekly Hours, Percent
Change at Annual Rate, Quar-
terly, Seasonally Adjusted

none

QUSNAMUSDA Total Credit to Non-Financial
Corporations, Adjusted for
Breaks, for United States, Bil-
lions of US Dollars, Quarterly,
Not Seasonally Adjusted

deflated by Consumer
Price Index: Total
All Items for the
United States, Index
2010=100, Quarterly,
Seasonally Adjusted
(CPALTT01USQ661S),
log difference

RESBALNS Total Reserve Balances Main-
tained with Federal Reserve
Banks, Billions of Dollars,
Monthly, Not Seasonally Ad-
justed

first difference of quar-
terly average of logarithm

RNUSBIS Real Narrow Effective Exchange
Rate for United States, Index
2010=100, Monthly, Not Season-
ally Adjusted

first difference of quar-
terly average of logarithm

USAHOUREAQISM
EI

Hourly Earnings: Manufactur-
ing for the United States, Index
2010=100, Quarterly, Seasonally
Adjusted

log difference

Time series from other sources:

Name Transformation Source
CRB Commodity
Price Index

first difference of quarterly aver-
age of logarithm

Coibion (2012)

Dow Jones In-
dustrial Average,
monthly, end of
period close value

first difference of quarterly aver-
age of logarithm

S&P Dow Jones In-
dices LLC, a division
of S&P Global
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Appendix B

Appendix for chapter 2:

Implementation details

The calculation of the posterior distribution of the impulse response functions consisted

of the following steps.

1. Draw from the VAR parameters’ posterior, as in Uhlig (2005).

2. Generate a randomly drawn candidate shock vector, i.e. the vector of contempo-

raneous effect of the monetary policy shock on the six endogenous variables. This

step also follows Uhlig (2005), but with the first two entries, corresponding to GDP

and consumer prices, being zero, according to our identifying restriction.

3. Check, whether the sign restrictions are satisfied with the VAR parameter and

shock vector draws. If yes, draw 10 times from the posterior of the policy shocks’

variance.

4. For each shock variance draw, draw from the posterior of the parameters of regres-

sion (2.3).

5. Calculate the impulse response functions.

6. Repeat from step 2, but maximum 10 times.

7. Repeat from step 1, until 1000 draws collected.

68
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In the regression model (2.3) I used first and second order terms, similarly to Hirano

and Imbens (2004). Since the coefficient estimates of terms including the GPS were

often insignificant, but higher powers proved to be significant, I also experimented with

a version in which terms up to seven order were the regressors. The results became more

noisy, but did not affect the main findings qualitatively.

Unconditional impulse responses to a 25 basis-point rate hike were estimated in the

following way: the impulse response were calculated for 10 interest rate levels randomly

drawn from the sample with replacement in each round, and then the mean of these

impulses responses were taken. Unconditional here means that the expectation is not

conditioned on the interest rate, only on the size of the shock.
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Appendix C

Appendix for chapter 3: Results

from alternative VAR specifications
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Figure C.1: Effect of an unexpected 25 basis point interest rate hike. Estimation from
monthly data between January 1985 and December 2006. VAR includes 6 lags. The
instrument is the product of the dissent index and the fed funds rate’s change in the
previous month. The first stage F-statistics is 7.27. Point estimates as well as 68 percent
and 95 percent confidence intervals are calculated with the code used in Montiel Olea et
al. (2020).
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Figure C.2: Effect of an unexpected 25 basis point interest rate hike. Estimation from
monthly data between January 1971 and December 2006. VAR includes 12 lags. The
instrument is the product of the dissent index and the lagged estimated residual in the
interest rate equation of the VAR. The first stage F-statistics is 8.5. Point estimates as
well as 68 percent and 95 percent confidence intervals are calculated with the code used in
Montiel Olea et al. (2020).
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Figure C.3: Effect of an unexpected 25 basis point interest rate hike. Estimation from
monthly data between January 1968 and December 2006. VAR includes 12 lags. The
instrument is the product of the dissent index and the lagged estimated residual in the
interest rate equation of the VAR. The first stage F-statistics is 9.53. Point estimates as
well as 68 percent and 90 percent confidence intervals are calculated with the code used in
Montiel Olea et al. (2020). (95 percent confidence intervals are unbounded in this case)
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Figure C.4: Effect of an unexpected 25 basis point interest rate hike. Estimation from
quarterly data between 1985Q1 and 2006Q4. VAR includes 8 lags. The instrument is the
product of the dissent index and the lagged estimated residual in the interest rate equation
of the VAR. The first stage F-statistics is 6.73. Point estimates as well as 68 percent
and 95 percent confidence intervals are calculated with the code used in Montiel Olea et
al. (2020).

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2021.04

0 20 40

-5

0

5

10
10

-3Fed funds rate

0 20 40

-0.02

-0.01

0

0.01
GDP

0 20 40

0

0.05

0.1
Consumer price index

0 20 40

-0.05

0

0.05

0.1

0.15
Commodity prices

0 20 40

-0.05

0

0.05

0.1
M2 aggregate

Figure C.5: Effect of an unexpected 25 basis point interest rate hike. Estimation from
quarterly data between 1985Q1 and 2006Q4. VAR includes 5 lags. The instrument is
the product of the dissent index and the fed funds rate’s change in the previous quarter.
The first stage F-statistics is 7.31. Point estimates as well as 68 percent and 90 percent
confidence intervals are calculated with the code used in Montiel Olea et al. (2020). (95
percent confidence intervals are unbounded in this case)
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Figure C.6: Effect of an unexpected 25 basis point interest rate hike. Estimation from
quarterly data between 1985Q1 and 2006Q4. VAR includes 6 lags. The instrument is the
product of the dissent index and the lagged estimated residual in the interest rate equation
of the VAR. The first stage F-statistics is 7.79. Point estimates as well as 68 percent
and 95 percent confidence intervals are calculated with the code used in Montiel Olea et
al. (2020).
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