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Abstract

The overarching theme of the thesis is the investigation of Turan-type problems in graphs.
A big part of it is focused on studying Turdn number of square of path, disjoint union
of wheels, and short cycles in complete 3-partite graphs. In addition, we study the anti-
Ramsey number for short cycles in complete 3-partite graphs and also show that for an
n-vertex graph G with L"IZJ + 1 edges, the number of triangles is more when they have
no common vertex.

The thesis consists of 5 chapters. The first chapter gives a summary of the history as
well as the relevant background of Turan type problem and anti-Ramsey number.

In the second chapter, we study the exact value of Turan number for P? and P?. Let
Py be the path with k vertices, the square P? of P is obtained by joining the pairs of
vertices with distance one or two in Py. ex(n, P?) and ex(n, P}) were solved by Mantel
and Dirac, respectively. In order to determine ex(n, P?), we also determine the exact
value of ex(n,T) where T" denotes the flattened tetrahedron. Even more, we characterize
the extremal graphs for P?, B? and T. These results are based on the paper “The Turdn
number of the square of a path” which is co-authored with Gyula O. H. Katona, Jimeng
Xiao and Oscar Zamora.

In Chapter 3, we study the problem concerning Turan number of disjoint union of
wheels. Recently, Longtu Yuan determined ex(n, Woi11) of the odd wheel when n is
sufficiently large. We generalize his result, determine the Turan number and characterize
all extremal graphs for disjoint union of odd wheels. This result is based on the paper “A
note on the Turan number of disjoint union of wheels” which is co-authored with Oscar
Zamora.

In Chapter 4, we consider the Turdn numbers and anti-Ramsey numbers for short
cycles in complete 3-partite graphs. We call a 4-cycle in K, ,, », multipartite, denoted

by Cultiif it contains at least one vertex in each part of K, ,,n,. We prove that
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exX( Ky nymg, CFM) = nyng + 2n3 and ar(Kp, nyngs CF) = ex(Kopy ng sy {C3, CFM}) +
1 =nyny+n3+ 1, where ny > ny > ng > 1. These results are based on the paper “Turan
numbers and anti-Ramsey numbers for short cycles in complete 3-partite graphs” which
is co-authored with Chunqiu Fang, Ervin Gyéri and Jimeng Xiao.

In Chapter 5, we show that for an n-vertex graph G with L%Zj + 1 edges, if there is no
vertex contained by all triangles then there are at least n —2 triangles in G. Erd&s proved
something stronger that if G is an n-vertex graph with L”{J +t edges, t < 3, n > 2t,
then every GG contains at least ¢ L%J triangles. Our result give a further improvement of
Erdés theorem in the case of ¢ = 1. This result is based on the paper “The number of
triangles is more when they have no common vertex” which is co-authored with Gyula

0. H. Katona.

11
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Chapter 1

Introduction

1.1 Basic notations and definitions

A graph G is a pair of sets V(G) and E(G), where V(G) denotes the set of vertices
and F(G) denotes the set of edges where the edges are sets of two distinct vertices. We
denote the size of these sets by v(G) = |[V(G)| and e(G) = |E(G)|. Except when stated
otherwise, we will only allow a pair of vertices to occur as an edge once. Usually an edge
will be written as uv where u and v are vertices. We say that two vertices are adjacent
if they form an edge and that a vertex and an edge are incident if the vertex is in the
edge. Two edges that share a vertex will also be called incident. Given a set S C V and
an edge e, we say that e is incident with S if e is incident with at least one of the vertices
in S.

We define the neighborhood of v in G to be the set Ng(v) := {u € V(G) : vu € E(G)},
and we define the degree of a vertex v in G by dg(v) = |Ng(v)|. When the base graph is
clear we simply denote the neighborhood of v as N(v) and the degree of v as d(v). The
mazximum degree, denoted by A(G), in a graph G is the largest degree among all of the
vertices. The minimum degree, denoted by 0(G), is the smallest possible value of d(v)
among the vertices of V(G).

A graph F' is called a subgraph of G if V(F) C V(G) and E(F) C E(G). We use
notation F' C G to denote that F' is a subgraph of G. Given a set S C V(G), let G[S]
denote the subgraph of GG induced on set S. A set S is called independent if the graph
induced by S has no edge. The independence number a(G) is the maximum size of an

independent set in G.
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Definition 1.1. A path in a graph is a sequence of distinct vertices vy, vs, ..., V411 Such
that v; and v;11 are adjacent for everyi =1,2,...,t. The vertices x1 and x;11 are referred

to as terminal vertices, and the remaining vertices are referred to as internal vertices.

Definition 1.2. A graph is connected if for every pair of vertices u,v there is a path

starting from u and ending in v.

Definition 1.3. A biconnected graph is a connected and "nonseparable” graph, mean-

ing that if any one vertex were to be removed, the graph will remain connected.
Definition 1.4. A matching in a graph is a set of disjoint edges.
Definition 1.5. A block is a mazimal biconnected subgraph of a given graph G.

Definition 1.6. A cycle is a sequence vy, vy, ...,V 1,0 = v; where v; and vy, are

adjacent for 1 =1,2,...,k —1 and v; is distinct from v; for any 1 <i<j <k —1.
Definition 1.7. A connected graph that does not contain cycles is called a tree.

The k-vertex cycle is denoted C} and the k-vertex path is denoted Pj. The length of
a path Py is k— 1, the number of edges in it. The complete graph (or clique)on r vertices,

that is, K, is a graph on r vertices such that every pair of vertices is adjacent, is denoted

by K.

Definition 1.8. A graph G is a bipartite graph if V(G) can be partitioned into two
color classes X and Y such that every edge of G contains precisely one vertexr of each

class.

We denote by K, the complete bipartite graph with color classes of X and Y, with

| X | =s, |Y|=tand z is adjacent to y for every pair of vertices z € X,y € Y.

1.2 Turan-type problems

Turan-type problems are generally formulated in the following way: one fixes some graph
properties and tries to determine the maximum number of edges in an n-vertex graph
with the prescribed properties. These kinds of extremal problems have a rich history in
combinatorics. Investigation of this type of problems dates back to 1907, when Mantel

[43] determined the maximum possible number of edges in a triangle free graph.

2
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Theorem 1.9 (Mantel [43]). The maximum number of edges in an n-vertex triangle-free
graph is ["IZJ
Years later, Turan [51] initated systematic studying of these problems and generalized

Mantel’s result to arbitrary complete graphs.

Definition 1.10. The Turdn graph T'(n,p) is a complete multipartite graph formed by
partitioning a set of n vertices into p subsets, with sizes as equal as possible, and con-
necting two vertices by an edge if and only if they belong to different subsets. Denote its

size by t(n,p).

Theorem 1.11 (Turén [51]). The mazimum number of edges in an n-vertex K, ,-free

graph is at most t(n,p). Furthermore, T (n,p) is the unique extremal graph.

For simple graphs G and F', we say that G is F'-free if G does not contain F' as a
subgraph.

Definition 1.12. Given G and a set of graphs F, the Turdn number of F is the maximum
number of edges among all F-free subgraphs of a host graph G, that is

eX(G,f):maX{|E(H)|: H C G, H is F-free for every F € f}.
In particular, we write ex(n, F) rather than ex(K,,F) when the host graph is K,.

The chromatic number of a graph G, denoted by x(G), is the minimum integer k such
that we can assign colors 1,2, ...,k to the vertices of G and have no edge with the same
color on each vertex. Erdds, Stone and Simonovits showed that the asymptotic behavior

of the Turan number of a non-bipartite graph H is determined by y(H).

Theorem 1.13 (Erddgs-Stone-Simonovits |21, 19]). For a graph H with x(H) > 3, we

ex(n, H) = <1 - ﬁ) (Z) + o(n?).

It is fascinating that this one theorem asymptotically takes care of the huge class of

have

Turan problems. Since then, the study has been mainly directed to the cases: (i) the
forbidden graph is bipartite and (i) the exact value of ex(n, H) when H is non-bipartite.
Kovari, S6s and Turan [33] considered the case when the forbidden graph is the com-

plete bipartite graph K.
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Theorem 1.14 (Kévari-Sos-Turan [33]). Let K, denote the complete bipartite graph

with a and b vertices in its color-classes. Then

ab—l 2_;+a—1
n a
2 2

ex(n, Kqp) < n.

In the bipartite case, another natural problem is to estimate the Turdn number for

even cycles.
Theorem 1.15 (Bondy, Simonovits [9]). For any k > 2, we have
ex(n, Cy) = O(n' i),

For k = 2,3 and 5, it is proved that the order of magnitude can not be improved. But
generally, whether this bound gives us the correct order of magnitude is still one of the
most intriguing open questions in extremal graph theory.

For a path Py, Erdés and Gallai [I8] proved the following result,

Theorem 1.16 (Erdss-Gallai [18]). For alln > k,

k—1
ex(n, Pep1) < %
Moreover, equality holds if and only if k divides n and G is the disjoint union of cliques

of size k.

In their paper, the case when all cycles longer than a given length are forbidden, was

also considered.

Theorem 1.17 (Erdés—-Gallai [I8]). For any n, let Csy (k > 2) denote the family of

cycles of length more than k, then we have

k(n—1)

ex(n,Csy) < 5

Moreover, equality holds if and only if when k — 1 divides n — 1 and G is a connected

graph such that each block of G is a clique of size k.

Recent studies of extremal numbers consider the case when the forbidden graph H is

made up of several vertex-disjoint copies of some smaller graph.
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Theorem 1.18 (Gorgol [27]). Let G be an arbitrary connected graph on € vertices, m be

an arbitrary positive integer and n be an integer such that n > mt. Then

ml — 1 m

max{ex(n—m€+1,G)+< 5 ),ex(n—m—i—l,G)—i—(m—l)n— (2)} < ex(n,mG)
< ex (n— (m—w,G) + ((m;w) —i—(m—l)f(n—(m—l)f).

Definition 1.19. A linear forest (star forest) is a forest whose connected components

are paths (stars).

Bernard Lidicky, Hong Liu and Cory Palmer studied the Turan number of linear

forests and star forests for sufficiently large n.

Theorem 1.20 (Lidicky-Liu-Palmer [38]). Let F' be a linear forest with components of

order vy, Vs, ..., V. If at least one v; is not 3, then for n sufficiently large,

ex(n, ) = (iz'“;gJ_1)(71_;’1%1%(EL%;J”)H_

where ¢ = 1 if all v; are odd and ¢ = 0 otherwise. Moreover, the extremal graph is

unique.

k
Theorem 1.21 (Lidicky, Liu, Palmer [38]). Let F = |J S* be a star forest where d; is
i=1

the mazimum degree of S* and dy > dy > ... > dj. For n sufficiently large,

ex(n, F) = max{(i—l)(n—i+1)+(i;1)+ Vi;(n—z'—mJ}.

1<i<k

Another most well-studied host graph has been the complete multi-partite graph. An
old result of Bollobas, Erdds and Szemerédi [8] (also see [7, 5l 47]) showed that

Theorem 1.22 (Bollobas, Erdds and Szemerédi [§]). ex(Ky, nymy, C3) = ning + ning,

formy >ng >n3 > 1.

More recently, extremal problems have been considered where the host graph is taken
to be a planar graph. For a given set of graphs F, let us denote the maximum number
of edges in an n-vertex F-free planar graph by exp(n, F). This topic was initiated by
Dowden in [I1] who determined exp(n,Cy) and exp(n,Cs). A variety of other forbidden

graphs F' including stars, wheels and fans were considered by Lan, Shi and Song [36].

5
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The case of theta graphs was considered in Lan, Shi and Song [37|, and the case of short
paths was considered by Lan and Shi in [35]. Very recently, Ghosh, Gy6ri, Martin, Paulos
and Xiao [26] solved the case for 6-cycle.

1.3 Anti-Ramsey number

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.
For graphs G and H, the anti-Ramsey number ar(G, H) is the maximum number of colors
in an edge-colored G with no rainbow copy of H. Similarly, when the host graph G is
K, we write ar(n, H) rather than ar(K,, H).

The study of anti-Ramsey theory was initiated by Erdds, Simonovits and Sos [20], they
considered the classical case when the host graph G is K,,. Let H ={H —e,e € E(H)},
in [20] they showed that

Theorem 1.23 (Erddés-Simonovits-Sos [20]).
ar(n, H) — ex(n, H) = o(n?), as n — oo.

If d = min{x(G) : G € H} > 3, then by Theorem 1.13 [21], we have ex(n,H) =
2 (1) + o(n?), and Theorem m yields ar(n, H) = 22(}) + o(n?). This determines
ar(n, H) asymptotically. If d < 2, however, we have ex(n, H) = o(n?), and Theorem [1.23]
says little about ar(n, H). Therefore, they proposed studying ar(n, H) for graph H that

contains an edge whose deletion creates a bipartite subgraph, and they put forward two

conjectures about ar(n, H) when H is a path or a cycle.

Conjecture 1.24 (Erdés-Simonovits-Sos [20]).

ar(n, Cy,) = (? 7 L 1)n+ 0(1).

Conjecture 1.25 (Erdés-Simonovits-Sos [20]). Let t be a given integer, ¢ = 0,1, and
k=2t+3+¢€. Then

tn — (t;l) + 1 + €, /lf n Z 5t+§+4€’

P,) =
ar(n, 1) {(’“22) +1, if k<n < S

Further, the only extremal colorings corresponding to the first case are the following ones:

t vertices x1,%a,...,x¢ € V(K,) can be choosen so that all the edges of form (z;,v),

6
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j=1,2,...,t,y € V(K,), have different colors and the edges of K, —{x1, 22, ..., 2} are
colored by one or two (more exactly, by 1+ ¢€) further colors. The only extremal colorings
corresponding to the second case are the following ones: k — 2 vertices {x1, %, ..., Tk 2}
can be chosen in K, so that all the edges (x;,x;) have different colors and all the other

edges have the same extra color.

For cycles, Erdés, Simonovits and Sos [20] showed that ar(n,C3) = n — 1. Alon [I]
proved Conjecture for k = 4 by showing that ar(n,Cy) = L%"J — 1. Jiang and West
[31] proved for general k that, ar(n, Cy) < k—;l — ﬁ n—(k—2). For even n, they proved
that ar(n, Cy) < %n — (k—2). It is worth to mention that in this paper, they also proved
that ar (n, {Ck, Cri1, Ck+2}> < k—gz + ﬁ)n — 1. Finally, Montellano-Ballesteros and

Neumann-Lara [45] completely proved Conjecture [1.24]

Theorem 1.26 (Ballesteros-Lara [45]). For alln > k > 3, where n =1y (mod (k — 1)),

0<r, <k-—2, we have

=[] (5) () el

Simonovits and So6s [50] partially proved the conjecture for paths, showing that

Theorem 1.27 (Simonovits-Sos [50]). There exists a constant ¢ such that if t > 5,
n > ct?, then for e = 0,1

t+1

1+e.
2)—!— + €

ar(n, Py y31c) = tn — (

Axenovich and Jiang [2] initiated the study of the anti-Ramsey numbers for complete
bipartite graphs. They showed for all ¢ > 3 that ar(n, Ky;) = ViE—2n2 + O(n3) by
proving that ar(n, Ks;) —ex(n, Ka:—1) = O(n). Later on, Axenovich, Jiang and Kiindgen
[3] considered the anti-Ramsey numbers of even cycles in complete bipartite graphs and

proved the following result.

Theorem 1.28 (Axenovich- Jiang-Kiindgen [3]). Forn >m >1 and k > 2,

(k—1)(m+n)—2k—1)2?+1, m>2k—1,
ar(Kpn, Cox) = S (k—1)n+m — (k—1), Ek—1<m<2k—1,

mn, m<k-—1.
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Recently, Fang, Gy6ri, Li and J. Xiao [22] determined the anti-Ramsey number of Cj

and C in complete r-partite graphs,

Theorem 1.29 (Fang-Gyéri-Li-J. Xiao [22]). Forr >3 andn; >ne > ... >n, > 1, we
have
ar(KnLnQ,...,nra {037 04}) =ni+no+---+Mn, — 1.

ning +nsng + -+ np_on,_y +n,. + 5 — 1, 1 is odd;
ning + nang + -+ nping + 5 — 1, r is even.

ar(Kony ny,omys Ca) = ny+ng + -+, +t — 1L, where t = mm{ {Z’? nlJ , LZZ? an ,

ar<Kn1,n2,...,nr7 03) - {

T
> nz}z’s the maximum number of independent triangles in Ky, ny. . n,-
i=3
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Chapter 2

The Turan number of the square of a
path

2.1 Introduction

Recall that the square P? of P is obtained by joining the pairs of vertices with distance
one or two in Py, see Figure 2.1l The Turdn number of a graph H, ex(n,H), is the
maximum number of edges in a graph on n vertices which does not have H as a subgraph.
Denote by EX(n, H) the set of H-free graphs on n vertices with ex(n, H) edges and call
a graph in EX(n, H) an extremal graph for H.

COONAN LN

Vg—2 Ug—1

Figure 2.1: Graph P?.

In this chapter, we focus on calculating the exact values of ex(n, P?), ex(n, P?) and
determine the structures of the extremal graph for P? and PZ.

When k = 3, P{ = K3, Mantel Theorem provides the result for ex(n, P?).

Theorem 2.1 (Mantel [43]). The mazimum number of edges in an n-vertex triangle-free
graph is L"%J, that is ex(n, P}) = LZ—QJ Furthermore, the only triangle-free graph with

L"%J edges is the complete bipartite graph Kn) rny.
The case k = 4 was solved by Dirac in a more general context.

Theorem 2.2 (Dirac [10]). The mazimum number of edges in an n-vertex Pi-free graph

is L%QJ, that is ex(n, P}) = L"Izj, (n > 4). Furthermore, when n > 5, the only extremal

9
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graph is the complete bipartite graph K|z m.

For k = 5, our results are given in the next two theorems, where we separate the

result for the Turdan number and the extremal graphs for PZ2.

Theorem 2.3 (Xiao, Katona, Xiao, Zamora [53|). The mazimum number of edges in an

n-vertex PZ-free graph is ex(n, P?) = L#J, (n > 5).

Definition 2.4. Let E' denote a graph obtained from a complete bipartite graph K, ;

and a mazimum matching in the class which has i vertices, see Figure[2.3.

Ki,n—i

Figure 2.2: Graph E.

Theorem 2.5 (Xiao, Katona, Xiao, Zamora [53|). Let n be a natural number. When

n = 5, the extremal graphs for P? are EZ, E3 and K, with a pendent edge. When

]

n > 6, if n = 1,2 (mod 4), the extremal graphs for P? are E,L% and EﬁJ, otherwise,

the extremal graph for P? is E,EE1
Definition 2.6. Let T' denote the flattened tetrahedron, see T in Figure 2.5,

Although the determination of ex(n,7T’) is not within the main lines of the thesis, we

need the exact value of ex(n,T) in order to determine ex(n, P?).

Theorem 2.7 (Xiao, Katona, Xiao, Zamora [53|). The mazimum number of edges in an

n-vertex T-free graph (n #5) is

2
V—J + 5], n#2 (mod 9),
ex(n,T) = 4 2
Ly =2 (mod 4)
713 , n=2(m )

10
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T T

Figure 2.3: Graphs T, T and S¢.

Definition 2.8. Let T! denote a graph obtained from a complete bipartite graph K, ;
plus a maximum matching in the class X which has 1 vertices and a maximum matching
in the class Y which has n — 1 vertices, see Figure . Let S! denote a graph obtained
from K, _; plus an i-vertex star in the class X, see Figure .

Theorem 2.9 (Xiao, Katona, Xiao, Zamora [53]). Let n (n # 5,6) be a natural number,
when n =0 (mod 4), the extremal graph for T is Tn%,
when n =1 (mod 4), the extremal graphs for T are Tr[%1 and STE%W,
when n = 2 (mod 4), the extremal graphs for T are Tng, Tng+1 and Sn%,
when n = 3 (mod 4), the extremal graphs for T are Tr[%1 and STE%W.

Theorems 2.7 and 2.9 were known for sufficiently large n's [39], here we are able to

determine the value for small n's.

Using Theorems and we are able to prove the next two results for P?.

Theorem 2.10 (Xiao, Katona, Xiao, Zamora [53]). The mazimum number of edges in

an n-vertex PZ-free graph (n #5) is:

n? n—1
{ZJ + { 5 J, n=1,2,3 (mod 6),

n? +[nw therwi
— - rwise .
I 5| otherwise

Definition 2.11. Suppose 31 n, and 1 < j <i. Let FJ be the graph obtained by adding

ex(n, P3) =

vertex disjoint triangles (possibly 0) and one star with j vertices in the class X of size i
of Kin—;, see Figure (of course, 3 | (i — j) is supposed). On the other hand, if 3 | i
then add % vertex disjoint triangles in the class X of size i. The so obtained graph is

denoted by H', see Figure|2./)

11
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Figure 2.4: Graphs F/ and H'.

Theorem 2.12 (Xiao, Katona, Xiao, Zamora [53]). Let n > 6 be a natural number. The

extremal graphs for PZ are the following ones.

Whenn =1 (mod 6) then F,*' and Hy*,

when n =2 (mod 6) then Fn%’j and Fn%“vj’

when n = 3 (mod 6) then F,[gw and HL%]H}

when n = 0,4,5 (mod 6) then Hn%, H:™ and HTE%W, respectively. (j can have all the

values satisfying the conditions j <i and 3| (i — 7)).

The rest of this section is organized as follows: In Section 2.2, we give a short proof of
Theorems 2.3 and 2.5 In Section 2.3, we give a short proof of Theorems [2.7 and 2.9 In
Section 2.4, we give the proofs of Theorems [2.10] and [2.12| based on the results in Section
2.3.

2.2 The Turan number and the extremal graphs for P?

The following proof appears in our paper [53] that is co-authored with Katona, Xiao and

Zamora.

Proof of Theorem [2.3. The fact that ex(n, P?) > L#J follows from the construction
Bl

We prove the inequality

n®+n

ex(n, P?) < { J (n>5) (2.1)

by induction on n.
We check the base cases first. Since our induction step will go from n — 4 to n, we

have to find a base case in each residue class mod 4.

12
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Let G be an n-vertex P?-free graph. When n < 3, K,, is the graph with the most
number of edges and does not contain P?, e(K,) < {#J This settles the cases
n = 1,2,3. However, when n =4, e(K,) =6 > L‘liTHJ, the statement is not true. Then
we prove that the statement is true for n = 8. If P} ¢ G, ¢(G) < L%J. If P} C @G
and Ky ¢ G, each vertex v € V(G — P}) can be adjacent to at most 2 vertices of the
copy of P}, since e(G — P?) <5, we have e(G) < 5+8+5< 18 = L?TJFSJ. If K, CG,
then each vertex v € V(G — K4) can be adjacent to at most one vertex of the K, since
e(G — P}) < 6, we have e(G) < 16.

Suppose holds for all £ < n — 1, the proof is divided into 3 parts,

Case 1. If P} ¢ G, then by Theorem , e(G) < L”IZJ

Case 2. If P} C G and K4 € G, then each vertex v € V(G — P}) can be adjacent to
at most 2 vertices of the copy of P}, otherwise, P? C G. Since G — P} is an (n—4)-vertex
P2-free graph, we have

e(G) <5+2(n—4)+e(G— P}) <2n—3+ex(n—4,P2).
By the induction hypothesis, ex(n — 4, P?) < {W#J then

L(n—4)24+n—4J _ Vﬁzn

e(G)<2n—3+ex(n—4,P}) <2n—3+

J (n > 5)(2.2)
Case 3. If K; C G, then each vertex v € V(G — K,) can be adjacent to at most one
vertex of the Ky, otherwise, P? C G. Since G — K, is an (n — 4)-vertex P2-free graph,
we have
e(G) <6+ (n—4)+e(G—Ky) <n+2+ex(n—4,P2).
By the induction hypothesis, ex(n — 4, P?) < {W#J , thus

e(G) <n+2+ L(n_zl)?;”_ﬂ — 5+ VB;%J < {”QZ”J (n>5). (2.3)

]

Proof of Theorem [2.5. We determine the extremal graphs for P? by induction on n. Let
G be an n-vertex P2-free graph satisfying with equality. It is easy to check, when
n = 5, that the extremal graphs for P2 are K, with a pendent edge, E2 and E2. When
n = 6,7,8, the extremal graphs for P? are Eg and Ej, E7, EJ, respectively.

Suppose Theorem is true for £ < n — 1, when n > 9. The proof is divided into 3

parts.

13
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Case 1. If P} ¢ G, the equality in (2.1)) cannot hold, then we cannot find any
extremal graph for P? in this case.

Case 2. If P} C G and K4 ¢ G, the equality holds in inequality if and only if
each vertex v € V(G — P}) is adjacent to 2 vertices of the P} and G — P} is an extremal
graph on n — 4 vertices for P?. Let a, b, ¢ and d be four vertices of a copy of PZ,
dpz(b) = dpz(c) = 3. By the induction hypothesis, G — P{ is obtained from a complete
bipartite graph K;,_4_; plus a maximum matching in X ', where X' is the class of G — P}
with size 7. It is easy to check that every vertex v € V(G — P?) can be adjacent to either
a and d or b and c.

Since |V(G — P})|> 5, we have |[V(X’)|> 2. The endpoints of an edge in G — P}
cannot be both adjacent to b and ¢, otherwise, they form a K. Also, the endpoints of an
edge in G — P} which have one end vertex as a matched vertex in X’ and one end vertex
in Y’ can be both adjacent to none of {a,b,c} and d, otherwise, these would create a PZ.
If there exists a matched vertex v € X’ which is adjacent to b and ¢, then all vertices
w € N(v) should be adjacent to a and d, these form a P?. Hence, it is only possible that
all matched vertices in X are adjacent to both @ and d, all vertices in Y are adjacent
to b and ¢. When there exists an unmatched vertex vy € X', since N(vg) = Y, if vy is
adjacent to b and ¢, we have P? C . Thus G is obtained from a complete bipartite graph
Kiion—i—2 plus a maximum matching in X, where X = X' U{bclandY =Y UaUd.
Therefore, if G — P} is E,[?ﬁ then G is ETE%], if E,L:Trj then G is ETLL%J.

Case 3. If K4 C G, the inequality in (2.3]) can be equality only when n = 5 and the
vertex v € V(G — Ky) is adjacent to one vertex of the Ky, then G is K, with a pendent
edge. O

2.3 The Turan number and the extremal graphs for T

To prove Theorem 2.7, we need the following lemmas.

Lemma 2.13 (Xiao, Katona, Xiao, Zamora [53]). Let G be an n-vertex T-free nonempty
graph such that for each edge {x,y} € E(G), d(z) + d(y) > n + 2 holds, then we have
K, CQ@q.

Proof. From the condition we know that each edge belongs to at least two triangles. Let

14
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abc and bed be two triangles, if a is adjacent to d then a, b, c and d induce a Ky, if not,
since edge {b,d} is contained in at least two triangles, there exists at least one vertex e
such that bde is a triangle. Similarly, edge {c, d} is also contained in at least two triangles,
then, either there exists a vertex f which is adjacent to ¢ and d, this implies that vertices
a,b,c,d,e and f induce a T, or ¢ is adjacent to e, this implies that vertices b, c,d and e

induce a Kj. O

Lemma 2.14 (Xiao, Katona, Xiao, Zamora [53|). Let G be an n-vertex (n > 7) T-free
graph and K, C G, then e(G) < 2n—2+ex(n—4,T). Forn > 8, the equality might hold
only if each vertex v € V(G — Ky) is adjacent to 2 vertices of the Kj.

Proof. If there exists vertex v € V(G — K4), such that v is adjacent to at least 3 vertices
of the Ky, it is simple to check that every other vertex u € V(G — K}) can be adjacent to
at most one vertex of the Ky, otherwise 7' C G, then e(G) < 6+4+(n—>5)+e(G—Ky) <
n+5+ex(n —4,T). If not, each vertex in G — K4 is adjacent to at most 2 vertices of
the Ky, then e(G) < 6+2(n—4)+e(G—Ky) <2n—2+ex(n—4,T). When n > 8§,
e(G) < 2n — 2+ ex(n —4,T), the equality holds only if each vertex v € V(G — Kj) is
adjacent to 2 vertices of the Kjy. O

Proof of Theorem [2.7. Let

%]

The fact that ex(n,T") > fr(n) follows from the construction 7, *'. Next, we prove

the inequality
ex(n,T) < fr(n) (2.4)

by induction on n.
Let G be an n-vertex T-free graph. First, we prove the induction steps. Second, we
will prove the base cases which are needed to complete the induction.

Suppose (2.4) holds for all [ < n — 1. The proof is divided into 4 cases where we

assume k > 2.

15
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Case 1. When n = 4k, we divide the proof of ex(4k,T) < fr(4k) = 4k* + 2k into 2
subcases. Let G be a 4k-vertex T-free graph.
(7) If 0(G) < 2k + 1, after removing a vertex of minimum degree and by the induction
hypothesis ex(4k — 1,T) = 4k* — 1, we get

e(G) < ex(dk — 1,T) + 2k +1 < 4k* — 1+ 2k + 1 = fr(4k). (2.5)

(1) If 6(G) > 2k+2, then for each edge {u,v} € E(G), d(u)+d(v) > 4k+4. By Lemmas
and and the induction hypothesis ex(4k —4,T) = 4(k — 1)2 + 2(k — 1), we get

e(G) <2n—2+ex(dk —4,T) =8k —2+4(k — 1)* +2(k — 1) = fr(4k).  (2.6)

Therefore, ex(4k,T) < fr(4k).

Case 2. When n = 4k+1, we divide the proof of ex(4k+1,T) < fr(4k+1) = 4k*+4k
into 3 subcases. Let G be a (4k + 1)-vertex T-free graph.
(?) If 0(G) < 2k, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k, T) = 4k* + 2k, we have

e(G) < ex(4k,T) + 2k < fr(4k +1). (2.7)

Now, we assume that in the following two cases 6(G) > 2k + 1. Then for any pair of
vertices {u,v} € E(G), d(u) + d(v) > 4k + 2 holds.

(i1) Suppose that there exists an edge {u,v} € F(G), such that d(u) + d(v) = 4k + 2.
This implies that v and v have at least one common neighbor. Deleting {u,v} we can

use the induction hypothesis ex(4k — 1,T) = 4k* — 1. Then
e(G) <4k +1+ex(4k —1,T) = fr(dk +1). (2.8)
(#i7) For each edge {u,v} € E(G), d(u)+d(v) > 4k + 3 holds. By Lemmas and
and the induction hypothesis ex(4k — 3,T) = 4(k — 1)® + 4(k — 1) we get
e(G) <2n—2+ex(4k —3,T) =8k +4(k — 1) +4(k—1) = fr(4k+1).  (2.9)
Therefore, ex(4k + 1,T) < fr(4k +1).
Case 3. When n = 4k + 2, we divide the proof of ex(4k + 2,7) < fr(4k +2) =
4k* + 6k + 1 into 2 subcases. Let G be a (4k + 2)-vertex T-free graph.

(2) If 5(G) < 2k + 1, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k + 1,T) = 4k* + 4k, we get
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e(G) < ex(dk +1,T) + 2k + 1 < 4k* + 6k + 1 = fr(4k +2). (2.10)

(1) If 6(G) > 2k + 2, then for each edge {u,v} € E(G), d(u)+d(v) > 4k+4. By Lemmas
and and the induction hypothesis ex(4k —2,T) = 4(k — 1)> +6(k — 1) + 1, we
get

e(G)<2n—2+ex(4k —2,T) =8k +2+ 4k — 124+ 6(k — 1) + 1 = fr(4k + 2).(2.11)

Therefore, ex(4k +2,T) < fr(4k + 2).

Case 4. When n = 4k + 3, we divide the proof of ex(4k + 3,T) < fr(4dk +3) =
4k* + 8k + 3 into 2 subcases. Let G be a (4k + 3)-vertex T-free graph.
(7) If 0(G) < 2k + 2, after removing a vertex of minimum degree and by the induction
hypothesis ex(4k + 2,T) = 4k* + 6k + 1, we get

e(G) < ex(4k +2,T) + 2k + 2 < 4k* + 8k + 3 = fr(4k + 3). (2.12)

(17). If 6(G) > 2k+3, then for each edge {u,v} € E(G), d(u)+d(v) > 4k+6. By Lemmas
and and the induction hypothesis ex(4k — 1,T) = 4(k — 1)*> + 8(k — 1) + 3, we
get

e(G)<2n—2+ex(4k —1,T) =8k +4+4(k — 1)+ 8(k — 1) + 3 = fr(4k + 3).(2.13)

Therefore, ex(4k + 3,T) < fr(4k + 3).

Now we prove the base cases which are needed to complete the induction steps. Since
our induction steps will go from n — 1 to n, n — 2 to n and n — 4 to n, we will require to
show the statement is true for cases when n = 3,4,6 and 9.

When n < 4, K, is the graph with the most number of edges, and e(K,,) = fr(n).

When n =5, e(K5) = 10 > fr(5), the statement is not true, but we will see that the
statement is true for n = 9.

When n = 6, let v be a vertex with minimum degree. If §(G) = 1, since e(G —v) < 10,
we get e(G) < 11. If §(G) = 2 and e(G) = 12, then the only possibility is that G — v
is K5, but then " C G, and we have e(G) < 11. Suppose now §(G) > 3. If K, C G
and there exists a vertex u € V(G — K,) which is adjacent to at least 3 vertices of the
copy of Ky, then w € V(G — K4 — u) can be adjacent to at most one vertex of the Ky,
otherwise, T' C G. This contradicts 6(G) > 3. Then in this case it is only possible that
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{u,w} € E(G) and both u and w are adjacent to 2 vertices of the K, which implies that
e(G) < 11. If K4 € G, then by Turan’s Theorem, we have e(G) < 12 and the Turan
graph T'(6, 3) is the unique Ky-free graph which has 12 edges, however, ' C T'(6, 3), then
e(G) < 11 = fp(6). Summarizing: e(G) < 11 < f7(6).

When n = 9, suppose first that there exists a pair of vertices {u,v} € E(G), such that
d(u) + d(v) < 10. Deleting {u, v} and using ex(7,T) = 15, we get e(G) < 9+ 15 =24 =
fr(9). If for each pair of vertices {u,v} € E(G), d(u)+d(v) > 11 holds, by Lemma [2.13]
we obtain K; C G. Let G’ denote the graph G — K. If e(G/) < 8§, since the number of
edges between K, and G is at most 10, we have e(G) < 6 + 10 +8 = 24. If e(G") > 9,
then K, C G and the vertex w € G' — Ky is adjacent to at least 3 vertices of the copy
of K, in G'. This implies that each vertex from G — G’ can be adjacent to at most 1
vertex of G' — w, then the number of edges between G — G’ and G’ is at most 8, we can
conclude that, e(G) <6+ 8+ 10 = 24, e(G) < 24 = f(9).

It is easy to see that the case n = 7 can be proved using n = 3 and n = 6 (Case
4). Similarly, the case n = 8 follows by n = 7 and n = 4 (Case 1). Hence the cases
n=6,7,8,9 are settled forming a good basis for the induction. O

Now, we determine the extremal graphs for 7.

Proof of Theorem[2.9. Similarly to the proof of Theorem 2.7, we prove first the induction
steps and in the end we will prove the base cases which are needed to complete the
induction.

Suppose that the extremal graphs for T" are as shown in Theorem forl <n-—1.
In the following cases, we will assume that £ > 2.

Let G be an n-vertex T-free graph with e(G) = fr(n). The proof is divided into 4
cases following the steps of the proof of Theorem [2.7]

Case 1. When n = 4k, fr(n) = 4k* + 2k.

(i) If 0(G) < 2k + 1, the equality in holds only when there exists a v € V(G),
such that d(v) = 0(G) = 2k + 1 and G — v is an extremal graph for 7" on 4k — 1 vertices.
By the induction hypothesis, G — v can be either T2F | or S2¥_|. Let X' and Y be the
classes in G — v with size 2k and 2k — 1, respectively.

When G — v is T# |, it can be easily checked that v cannot be adjacent to the
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two endpoints of an edge which have two matched vertices located in different classes,
otherwise, T' C @, see Figure . Let w be the unmatched vertex in Y. Since d(v) =
2k 4+ 1, N(v) must contain the unmatched vertex w € Y’, then the only way to avoid

T C G is choosing N(v) = w U X . Consequently, G = T2 holds.

X' i)
KQk,Zk_l @
/

Figure 2.5

When G — v is S# |, let z; denote the center of the star in X'. If v is adjacent to
the two endpoints of the edge {x;,y;} (v; € X',y € V', 2 <i <2k, 1 <j<2k-1),
then 7' C G (see Figure 2.6). We obtained a contradiction. But d(v) = 2k + 1 implies

that this is always the case.

X' v
K2k,2k71 ﬂ
/

Figure 2.6

(ii) If 6(G) > 2k + 2, this implies that e(G) > 2k(2k + 2) = 4k* + 4k, which
contradicts the fact that ex(4k,T) = 4k* + 2k.

That is, G can only be Tng.
Case 2. When n =4k + 1, fr(n) = 4k* + 4k.

(i) If 6(G) < 2k, the equality in holds only if there exists v € V(G), such that
d(v) = §(G) = 2k and G — v is an extremal graph for 7" on 4k vertices. By the induction
hypothesis, G —v is TZ. All neighbors of v should be located in the same class, otherwise,

T C G, we get that G is Tg/'H!, that is 72!
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If 0(G) > 2k + 1, then for any pair of vertices {u,v} € V(G), d(u) + d(v) > 4k + 2.
Here we distinguishing two subcases.

(ii) Suppose that there exists an edge {u,v} € E(G) such that d(u) + d(v) = 4k + 2.
The equality in holds only if when d(u) = d(v) = 2k+1 and G—u—w is an extremal
graph for T on 4k — 1 vertices. By the induction hypothesis, G —u—v can be either T ,
or S2¢ . Let X' and Y’ be the classes in G —u — v with size 2k and 2k — 1, respectively.

When G —u — v is T# |, as in the previous case, neither u nor v can be adjacent to
the two endpoints of an edge which have two matched vertices located in different classes,
see Figure If N(u)—v # X', then u is adjacent to the unmatched vertex w in Y and
the other 2k — 1 neighbors of u are all located in X', say, N(u) —v —w = {z1, ... Top_1}
and {@or_1, 91} € E(X'), otherwise, T C G. Since |X'|> 4, in this case, v cannot be
adjacent to z; (1 <i < 2k — 2), otherwise, T' C G, see Figure . Now v should choose

2%k—2
2k neighbors among the rest 2k + 1 vertices in V(G —u — v — |J @;), which implies
i=1
that v is adjacent to the two endpoints of an edge which have two matched vertices
locate in different classes as endpoints, then " C G. Hence, N(u) —v = X ' similarly,

N(v) —u=X'. Thus, Gis Tfffff = Ti¥ ., that is Tﬁy

Figure 2.7

Let us now consider the case when G —u — v is S# . Let x; denote the center
of the star in X'. If u is adjacent to the two endpoints of the edge {z;,y;} (2 < i <
2k, 1 < j <2k —1), then T C G. Thus, there are only two possibilities for T ¢ G-
N(u) —v=X or N(u) —v =Y Uz;. The same holds for v and it is easy to check that
if N(u) —v = N(v) —u, then T C G. From the above, the only possibility for T ¢ G is
that when N(u) —v = X' and N(v) —u =Y Uz or in the another way around, which
implies that G is Sflljill, that is S,E%1.

(iit) Suppose that for each edge {u,v} € E(G), d(u) + d(v) > 4k + 3 holds. Let
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d(v) = §(G), then either d(v) = 2k + 1 or d(v) > 2k +2, but in both cases, each neighbor
of v has degree at least 2k + 2. Then all 4k + 1 vertices have degree at least 2k + 1,
but 2k + 1 of them, which are the neighbors of v, have degree at least one larger. This

implies that e(G) > (4k+1)(2k;1)+2k+1 = 4k? + 4k + 1, which contradicts the fact that
ex(4k +1,T) = 4k* + 4k.

That is, G can be either TT[%] or Sﬁw.

Case 3. When n = 4k + 2 we have fr(n) = 4k* + 6k + 1.

(i) If 6(G) < 2k + 1, the equality holds in only if there exists v € V(G), such
that d(v) = 0(G) =2k + 1 and G — v is an extremal graph for 7" on 4k + 1 vertices. By
the induction hypothesis, G — v can be either Tf,fjll or Sf,]jill

Suppose first that G — v is Tf,ffll. Let X' any Y be the classes in G — v with size
2k +1 and 2k, w be the unmatched vertex in X . The vertex v cannot be adjacent to the
two endpoints of an edge which have two matched vertices located in different classes.
Since d(v) = 2k + 1, there are two possibilities to avoid T: N(v) = X or N(v) =Y Uw,
which implies that G is either Tf,fjg or Tf,fig, that is Tn% or T, n% i

When G — v is Sf,]jill Let X' be the class in G — v which contains a star and Y’
be the other class of the G — v. Also, let z; denote the center of the star in X'. Since,
d(v) = 2k 4+ 1 and v cannot be adjacent to the two endpoints of an edge which is not
incident with z;, we get either N(v) =Y Uz or N(v) = X . If N(v) = X, G is S5,
that is S7. If N(v) =Y Uz, Gis Sy, that is S It is easy to see that St s
isomorphic to Sn% .

(it) If 6(G) > 2k + 2, then e(G) > (k + 1)(4k + 2) = 4k* + 6k + 2, which contradicts
the fact that ex(4k + 2,T) = 4k* + 6k + 1.

Therefore, G' can be Tn%, Tn%+1 or ST?.

Case 4. When n = 4k + 3 we have fr(n) = 4k* + 8k + 3.

(i) It 6(G) < 2k + 2, the equality holds in only if there exists v € V(G), such
that d(v) = 0(G) = 2k + 2 and G — v is an extremal graph for 7" on 4k + 2 vertices. By
the induction hypothesis, G — v can be Tf,fizl, Tf,fj; or Sffizl
When G—vis T, f,fi; or Tf,fi; , similarly to Case 1 (i), G can only be Tf,fig , that is T,I%w )
When G — v is SZ’,:]:QI, similarly to Case 2 (ii), G can only be Sf,ljﬁ, that is Sy[%w

(#) It §(G) > 2k + 3, then e(G) > G 412 1 9k 4 4 > 4k 4 8k + 3, which
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contradicts the fact that ex(4k + 3,T) = 4k* + 8k + 3.

Therefore, in this case, G is either Tn(%w or ST[%w :

Now we check the base cases which are needed to complete the induction.

When n =4, ex(4,T) = 6, K, is the extremal graph which has the maximum number
of edges on 4 vertices that does not contain 7" as a subgraph.

Although the Theorem does not hold for n = 6, we determine the extremal graphs in
this case because it will help us to determine them for some other n’s.

When n = 6, ex(6,T) = 11. It follows from the proof of Theorem [2.7, when §(G) = 1,
the only extremal graph for T is as shown in Figure 2.8(a). When 6(G) = 2, the only
extremal graph for T is as shown in Figure 2.§(b). Since 6(G) > 4 implies e(G) > 12,
this is not possible. The only remaining case is 6(G) = 3. When §(G) = 3 and K4 C G,
by case analysis we obtain that the extremal graphs for 7' can be Figure (c) and
Figure [2.8(d), which are T and Ty. Suppose now that 6(G) = 3 and K; ¢ G. Let
d(v) = 6(G) = 3, then e(G — v) = 8, the only possibility is that G — v is T'(5,3). It is
easy to check that G can only be S, see Figure (e).

(a) (b) (c) (d) (e)

Figure 2.8: Extremal graphs for T" when n = 6.

P

(a)

(a) T
S (b)

6

Figure 2.9: Extremal graphs for T" when n = 7.
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Suppose now that n = 7, ex(7,7) = 15. It is not possible that §(G) < 3, otherwise,
e(G) < 3+ ex(6,T) = 14. Also, it is not possible that 6(G) > 5, otherwise, e(G) > 17.
Both are contradict with e(G) = 15. Let d(v) = §(G), the only possibility is that §(G) = 4
and G —v is a 6-vertex T-free graph. Since d(v) = 4, we have §(G —v) > 3, which implies
that structures (a) and (b) in Figure are not possible. If G — v is T¢ or Ty, then G
can only be (a) in Figure[2.9) that is 7. If G — v is SZ, then G can only be (b) in Figure
2.9 that is S2.

Because case n = 8 needs only the case n =7 (Case 1), case n = 9 needs cases n =7

and n = 8 (Case 2). These base cases complete the proof. ]

We will need the following statement later. It shows that the "second best" graphs

can be also well described if 4|n.

Proposition 2.15 (Xiao, Katona, Xiao, Zamora [53]). Let n (n > 8) be a natural number

such that 4|n and G be an n-vertex T-free graph with %2 + 5 — 1 edges, then G can only
be Tn% minus an edge, Sy? or Sngﬂ.

2

Proof. We can suppose that 6(G) < %, otherwise, e(G) > %+ %. Let v € V(G) and
d(v) = 0(G), then e(G) < d(v) +ex(n —1,T) < % + § — 1, the equality holds only

if d(v) = % and G — v is either Tn[_nl%1 or Sn[?w When G — v is Tn(_n?w, let w be

the unmatched vertex in Y’ and X' = {z,,... ,:L’(L_q}, X' and Y’ be the classes of

G — v with size {”T_lw and L”T_lJ, respectively. Since d(v) = § and v cannot be adjacent

to the two endpoints of an edge which have two matched vertices located in different

classes, no matter N(v) = X or N(v) = X —z; Uw (1 <4 < [%1]), G is T, minus

n—1

an edge in both cases. When G — v is S[ ? 1, let z; be the center of the star in X',

n—

n—1

X' ={xy,... ,a:(nT_q} and Y’ = {y, ... ,yLnT_lJ} be the classes of G — v with size {Tw
and L"T_lJ, respectively. Since v cannot be adjacent to the two endpoints of the edge
{ziyi} (2<i< PT_W 1< < L”T_lj) and d(v) = %, which implies that N(v) = z, Uy’
or N(v) = X'. Therefore, G can be either S3 or S3* O
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2.4 The Turan number and the extremal graphs for P}

Proof of Theorem [2.10. Let

2

n n—1
ZJ —l—{ 5 J,n:1,2,3(mod 6),

fPG2 (n) = n2

_ +Wﬂ therwi
— — TWISE.
K 5|+ otherwise

The fact that ex(n, PZ) > L”—2 + ’_ﬂ-‘, when n = 0,4,5 (mod 6), follows from the con-

1 2
structions HT?, H,?H and HJL%W, respectively. The fact that ex(n, P?) > L”—ZJ + L”—_IJ,

1 2
when n = 1,2,3 (mod 6), follows from the constructions FT[%M.

It remains to prove the inequality
ex(n, P2) < fra(n) (2.14)

by induction on n.

Let G be an n-vertex P2-free graph. Since our induction step will go from n — 6 to n,
we have to find a base case in each residue class mod 6.

When n < 4, K, is the graph with the most number of edges and e(K,) = fpz(n).

When n = 6, if P2 ¢ G, by Theorem 7 e(G) < |[B52| =7 < f(6). W P2 C G,
K5 ¢ G and e(G) > 13, it can be checked that the vertex v € V(G — PZ) can be adjacent
to at most 3 vertices of the copy of P2, otherwise P? C G, in this case, d(v) > 13—9 =4
then P? C G. If K5 C G, the vertex v € V(G — Kj) is adjacent to at most one vertex of
the K, otherwise, Py C G. Therefore, e(G) <11 < fp2(6).

When n = 5, since e(K5) = 10 > fp2(5), the statement is not true, then we prove that
the statement is true for n = 11. If P? ¢ G, by Theorem , e(G) < {@T*HJ < fp2(11).
If P? C @G, first suppose that the graph spanned by the vertices of the copy of P? have at
most 8 edges. It can be checked that every triangle can be adjacent to at most 7 edges of
the P2, otherwise, P? C G. When there exists a triangle as subgraph in G — V(P2), we
get e(G) <84T+ 9+ex(6, Ff) = 36 = fp2(6). If not, e(G) <8+18+9 =35 < fp2(6).
If K; C G (K5 minus an edge) then each vertex v € V(G — K5 ) is adjacent to at most
2 vertices of K5 . We get e(G) <9+ 12+ ex(6, Fg) = 33 < fp2(6). If K5 C G then each
vertex v € V(G — P?) is adjacent to at most one vertex of K5. Altogether we have at

most 10 + 6 4 ex(6, P§) = 28 edges. From the above, e(G) < 36 = fpz(11).
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Suppose holds for all I <n —1 (I # 5). The following proof is divided into 2
parts.
Case 1. If T' C G, then each vertex v € V(G — T) is adjacent to at most 3 vertices of
the copy of T', otherwise, P? C G. The graph spanned by the vertices of the copy of T
cannot have more than ez(6, P?) = 12 edges. Since G — T is an (n — 6)-vertex Pg-free

graph and ex(6,7") = 12, we have
e(G) <12+ 3(n—6)+e(G—T) <3n—6+ex(n—6,F). (2.15)

By the induction hypothesis,

3
|
\]

L(n—ZLG)?J% . J,nz1,2,3(m0d6),

ex(n — 6, P2) < fpa(n — 6) = 2
{(n;(j) J + [n—6-‘ , otherwise.

2
We get
_ 2 _ 2 -1
3n—6+ {(n 46) J + Vé 7J = VLZJ + VLQ J , n=1,2,3 (mod 6),
ex(n, P3) < 2 2
3n —6+ (n—6) + n=6l_ | + [2—‘ otherwise
4 2 | L4 21’ '
Case 2. If T ¢ G, by Theorem , e(G) < ex(n,T) < fpz(n) holds unless n =
8 (mod 12). When n = 8 (mod 12), then e(G) < ex(n,T) = fpz(n) + 1. However, by
Theorem ﬂ the equality holds only if G is Tn% , but P? C Tn% (n > 8), which implies

that e(G) <ex(n,T) — 1 = fp2(n).

Summarizing, we obtain

_l_

n? n—1
{ZJ { 5 J, n=1,2,3 (mod 6),
n2

ex(n, PR) = frz(n) = i
{ZJ + {5-‘ , otherwise .

O
Proof of Theorem[2.13. Tt is obvious that
ex(n,T) < ex(n, P?), except when n = 8 (mod 12), (2.16)
with strict inequality only when
n= 5,6,7,or 11 (mod 12). (2.17)
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We want to determine the n-vertex graphs G containing no copy of P? as a subgraph and
satisfying e(G) = ex(n, P?). Therefore, suppose that G possesses these properties. We
claim that GG either contains a copy of T" as a subgraph or it is either FJ%H%] or anﬂ’%ﬂ.
If n belongs to the set of integers given in then this is obvious, since we have a
strict inequality in . On the other hand, for the other values of n (except n = 8
(mod 12)) we obtain ex(n, P7) = ex(n,T) = e(G). Theorem describes these graphs.

1 or T2 H, because these graphs contain P? as a subgraph if

However, G cannot be TT[%
n > 7. (In the case of n = 6 we had strict inequality in . The other possibility by
Theorem is that G = ST[,,%] = FJ%H%W. In the exceptional case we can use Proposition
. According to this, G could be Tn% , Sn% or Sn% ™ The first of them is excluded since
P; C T;? the second and third ones can be written in the form F,?'? and £ 27",

From now on we suppose that e¢(G) = ex(n, P?), the graph G contains a copy of T
and no copy of P?, and prove by induction that G is a graph given in the theorem.

Let us list some graphs L (coming up in the forthcoming proofs) containing P¢ as a
subgraph:

() L is obtained by adding any edge to T different from {a, e}, {d,c} and {b, f} on
Figure [2.3

(8) Add the edges {a,e},{d,c},{b, f} to T resulting in 7". The graph L is obtained
by adding a new vertex u to T” which is adjacent to three vertices of 1" different from
the sets {b,c,e} and {a,d, f}.

(7) L is obtained by adding two new adjacent vertices u and v to T”, which are both
adjacent to b,c and e. Then e.g. the square of the path {u,v,c,e,b,d} is in L.

(0) L is obtained by adding 4 new vertices u, v, w, z, forming a complete graph, to 7",
all of them adjacent to a,d and f. Then e.g. the square of the path {a,u,v,w,z,d} is in
L.

(¢) L consists of a complete graph on 5 vertices and a 6th vertex adjacent to two of
them.

(¢) The vertices of L are p;(1 <i <4) and ¢;(1 < j < 2) where p1, ps, p3, p4 span a
path and all pairs (p;, ¢;) are adjacent. Then the square of the path {p1, ¢1, p2, 3, g2, s}
is L.

Let us start with the base cases. Let n = 6 and suppose 7' C G. By («) only the
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edges {a, e}, {d,c} and {b, f} can be added to T. To obtain ex(6, P?) = 12 edges all three
of them should be added. The so obtained graph T” is really H_.

Consider now the case n = 7. It is clear that holds with equality only when
the subgraph spanned by 7' contains 12 edges and the vertex u not in 7T is adjacent with
exactly 3 vertices of T. Hence the subgraph spanned by T is really 7". By () u can be
adjacent to either b, c,e or a,d, f. In the first case G = H2, in the second one G = F74’1,
as desired.

Ifn =38, e(G) =ex(8, P?) = 19 and the equality in implies, again, that 7" must
span 7" and the remaining two vertices u and v are adjacent to exactly 3 vertices of T":
either to the set {b, ¢, e} or to {a,d, f} and {u, v} is an edge. If both v and v are adjacent
to {b,c, e} then () leads to a contradiction. If one of u and v is adjacent to {b, ¢, e}, the
other one to {a,d, f}, then G = F84’1. Finally if both of them are adjacent to {a,d, f},
then G = Fy°.

Suppose now that n = 9, when e(G) = ex(9, P?) = 24 and implies that the three
vertices u, v, w not in T” form a triangle and all three possess the properties mentioned in
the previous case. If two of them are adjacent to {b, ¢, e} then (7) gives the contradiction.
If one of the them is adjacent to {b,c, e}, the two other ones are adjacent to {a,d, f},
then G = Fy?. Finally if all three are adjacent to {a,d, f}, then G = HS.

The case n = 10 and e(G) = ex(10, P?) = 30 is very similar to the previous ones.
If one of the new vertices, u,v,w,z is adjacent to {b,c,e} and the other 3 are adjacent
to {a,d, f}, then G = HY,. Here it cannot happen, by (9), that all 4 are adjacent to
{a,d, f}.

Finally let n = 11 where e(G) = ex(11, P?) = 36. This case is different from the
previous ones, since we cannot have all the potential edges (12 in the graph spanned
by T, 10 among the other 5 vertices u, v, w,x,y, and 15 between the two parts) one is
missing. We distinguish 3 cases according the place of the missing edge.

(i) T' C G, {u,v,w,x,y} spans a copy of K5, but there are only 14 edges between
the two parts. Then T” has one vertex z € {a,b,c,d, e, f} incident to at least two of the
14 edges. Then (¢) leads to a contradiction.

(ii) T C G, {u,v,w,x,y} spans a copy of K5 minus one edge, say {z,y}, and all 15

edges between the two parts are in G.
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If two adjacent vertices from the set {u,v,w,z,y} are both adjacent to {b,c, e} then
() gives the contradiction. Therefore, if z is adjacent to {b, ¢, e} then u,v and w must
be adjacent to {a,d, f}. If y is also adjacent to {a,d, f} then we have 4 vertices spanning
a K, and all adjacent to {a,d, f}. Then we obtain a contradiction by (0). Otherwise y
is adjacent to {b,c,e} and G = HY,.

Suppose now that z is adjacent to {a, d, f}. If u, v, w are all adjacent to {a,d, f} then
(0) leads to a contradiction. Hence, at least one of them, say u is adjacent to {b, ¢, e}. But
() implies that two adjacent ones from from the set {u,v,w,z,y} cannot be adjacent
to {b,c,e}. Hence, v, w, x,y are all adjacent to {a,d, f} giving a contradiction again, by
(0).

(iit) T spans only 11 edges, {u,v,w,x,y} determines a Kj and all 15 edges are
connecting the two parts. Then T must have a vertex incident to two edges connecting
T with {u,v,w,z,y}. Here (¢) gives a contradiction.

Now we are ready to start the inductional step. Suppose that the statement is true
for n — 6 where n > 12. We will prove it for n. Let e(G) = ex(n, P?) and suppose
that T" C G. We have to prove that G is of the form described in the theorem. By
(2.15)) we know that the equality implies that 7" must span the the subgraph 7" with
12 edges, every vertex of G' = G — T is adjacent either to the vertices b,c,e or the
vertices a,d, f and G’ is an extremal graph for n — 6. That is, G’ is one the following
graphs: FTE%GM, F:%H’j, H}L%Gj, H,EnT%W , Hn%tﬂ)“l. All these graphs have n — 6 vertices,
their vertex sets are divided into two parts, X’ and Y’ where |X'| is either [%5°] or
[258] or [25%] + 1, there is a bipartite graph between X’ and Y’ and X’ is covered by
vertex-disjoint triangles and at most one star.

Color a vertex of G’ by red if it is adjacent to the vertices b, ¢, e and blue otherwise.
By (7) two red vertices cannot be adjacent. On the other hand, 4 blue vertices cannot
span a path by ({). Suppose that there is a red vertex in X’. Then all vertices of Y’
are colored blue. (It is easy to check that n > 12 implies |Y’|> 2.) If there are two blue
vertices also in X’ then they span a path of length 4 that is a contradiction. We can have
one blue vertex in X’ only when it contains no triangle and the center s of the star is

blue, the other vertices are all red. This is called the first coloring. It is easy to see that

the choice X = {b,c,e,s} UY" Y = {a,d, f} U (X' — {s}) defines a graph possessing the
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properties of the expected extremal graphs: X and Y span a complete bipartite graph,
there are no edges within Y, and X is covered by one triangle and one star which are
vertex disjoint.

The other case is when all vertices of X’ are blue. In this case, no vertex of Y’ can be
blue, otherwise this vertex and the 3 vertices of a triangle or the center of the star with
two other vertices would span a path of length 4. That is, all vertices of Y’ are red. This
is the second coloring. Then the choice X = {b,c,e} U XY = {a,d, f} UY’ defines a
graph possessing the properties of the expected extremal graphs.

We have seen that GG has the expected structure in both cases. We only have to check
the parameters. If n =0,4,5 (mod 6) then X’ contains no star, the first coloring cannot
occur, in the case of the second coloring 3-3 vertices (3 vertices to each part) are added
to both parts, containing a triangle ({b, ¢, e}) in the X-part. The upper index increases
by 3 in all cases when moving from n — 6 to n.

Consider now the case n =1 (mod 6). If G’ = H,EiT;J then we can proceed like in the
previous cases, and G = H,E%J is obtained. Suppose that G’ = Fn(fw’j. Iftj < [”7_61 then,
again, the second coloring applies and we obtain G' = FJ%H. If, however, j = f”7_6-| then
both colorings result in G = Fn(%]’[%]f?). Let us recall that G = FTE%H%] was obtained in
the case when T' Z G.

The cases n = 2,3 (mod 6) can be checked similarly. O

2.5 Open problems

On the basis of these results we pose a conjecture for the general case.

Conjecture 2.16 (Xiao, Katona, Xiao, Zamora [53]).

i (12k] —
ex(n, P?) < mgxx{w +Z(n—2)}

If L%J — 1 divides the optimal i then the following graph gives equality here. Take a
complete bipartite graph with parts of size i and n—1, add vertex disjoint complete graphs
2k

on L?J — 1 wvertices to the part with i elements.

Observe that Theorems [2.1] 2.2} 2.3 and justify our conjecture for the cases when

k=3,4,5,6. A weaker form of this conjecture is the following one.
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Conjecture 2.17 (Xiao, Katona, Xiao, Zamora [53]).

ex(n, P?) = nzz + MT_I)H + Ox(1)

where Og(1) depends only on k.
The following paragraphs show why we think that Conjecture [2.16|is true.

Lemma 2.18 (Xiao, Katona, Xiao, Zamora [53|). If the graph G is obtained by adding
a path of r vertices to one of the classes of the complete bipartite graph K, ,,(n > r) then

G contains the square of a path containing L?’—;J + 1 vertices.

Proof. Suppose first that r = 2s is even. Let X and Y be the two parts, where
| X |= |Y|= n all edges {z,y}(x € X,y € Y) are in G. Moreover, X contains the path
{1, x9,...,29:}. Then the square of the path {y1, x1, T2, Yo, T3, T4, Y3, . . ., Tas—1, T2s, Yst1}
is in G for an arbitrary set of distinct vertices y1, yo, . .., ys+1 € Y. The number of vertices
of this path is really 3s + 1.

If £k =2s+1is an odd number then the desired path is {y1, z1, x2, Yo, T3, T4, Y3, - - -,

Tos—1, Tass Yst1, L2541 }- [

NA N AT

It is easy to see, on the basis of Lemma that if this graph does not contain P?
then X cannot contain a path of length L%J Now the obvious question is that at most
how many edges can be chosen in X without having a path of given length. As one of
the earliest results in extremal Graph Theory Erdés and Gallai [18] proved the following

result on the maximal size of a P-free graph.
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Theorem 2.19 (Erdés and Gallai[l8|). The mazimum number of edges in an n-vertex

Py-free graph is "(12_2), that is ex(n, P)) < @ with equality if and only if (I — 1)|n and

the graph is a vertex disjoint union of "y complete graphs on [ — 1 vertices.

Faudree and Schelp|24] and independently Kopylov [32] improved this result deter-

mining ex(n, P) for every n > [ > 0 as well as the corresponding extremal graphs.

Theorem 2.20 (Faudree and Schelp|24] and independently Kopylov [32]). Let
n=r (modl—1),0<r<1l—-1,1>2. Then

1 1
ex(n,P)==-(l-2n—=r(l—1-r).
2 2
Faudree and Schelp also described the extremal graphs which are either
(a) vertex disjoint union of m (n = m(l — 1) + r) complete graphs K; ; and a K, or

or £ — 1 then another extremal graph can be obtained

(b) I is even and r = 1 5
by taking a vertex disjoint union of ¢ copies of K; 1 (0 < ¢t < m) and a copy of
K%_l ®Kn_(t+%)(l_1)+%. Where G denotes the edge complement of the graph G, and
G Q H is defined as the graph obtained from the vertex disjoint union of G and H
together with all edges between G and H.

We believe that the extremal graph for ex(n, P?) is a complete bipartite graph plus
one of the constructions above in the larger class. Check now the cases solved.

If kK =4, by Lemma we cannot have a path of length 2 (that is an edge) in one
side.

If £ = 5 then [ = 3, a path of length 3 is forbidden in one side. According to statements
above we can have only vertex disjoint edges.

If £ =6 then [ = 4 and a path of length 4 is forbidden in one side. Now the extremal
constructions for P, are either (a) triangles plus eventually one edge or (b) ¢ triangles plus
a star with n — 3¢ vertices.

These are in accordance with our results. Note that in the case of £ = 7, the value

[ = 4 obtained again. The expected maximum value is the same as in the case of k = 6,

but the assumptions are weaker!

Remark 2.21. Recently, Long-Tu Yuan proved Conjectures and and charac-
terize the extremal graphs of the k-th power of paths in [55].
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Chapter 3

The Turan number of disjoint union of
wheels

3.1 Introduction

A wheel W, is a graph on n (n > 4) vertices obtained from a C,,_; by adding one vertex
vo and joining vy to all vertices of the C,,_;. We call a wheel on an even (odd) number of
vertices an even (odd) wheel.

Denote by mH the graph of the vertex-disjoint union of m copies of the graph H.
Two disjoint vertex sets U and W are completely joined in G if uw € E(G) for all u € U,
w € W. Given graphs G; and G,, where GG; and G5 with disjoint vertex sets V(G)
and V(G2) and edge sets E(G;) and E(G3). The union G = G; U Gy is the graph with
V(G) = V(G1) UV(Gs) and E(G) = E(G1) U E(Gz). Denote by G; @ G the graph
obtained from G UG3 by adding all edges between V(G;) and V(G2). Let F be a graph
family, denote by G Q) F the graph family obtained from G &) H, for all H € F.

Denote by KCp, n, (F; H) (n1 > no) the class of graphs obtained by taking a complete
bipartite graph K, ,, and embedding a graph from the graph set F into the larger partite
set and embedding a graph from the graph set H into the smaller partite set. A nearly
k-regular graph is a graph such that each vertex has degree k£ but one vertex has degree
k—1. Let U1 (Py_1) be the class of Py, _y-free, (k — 1)-regular or nearly (k — 1)-regular

graphs on n vertices.

Definition 3.1. Let K. . (U (Py-1); P2) = K@ Ky (U (Paior); Po), mq >

ni,n2 ni

ny > 2 and ny + ny = n —t, where Ky, p, (Z/{k_l(ng,l); Pg) denotes the class of graphs

ni

obtained from a K,, », by embedding the larger partite set a graph from L{,’fl_l(ng,l) and
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embedding an edge in the smaller partite set.

Since W3 = C3 and W, = K4, we can easily see the results of ex(n, W3) and ex(n, Wy)
by famous Mantel’s theorem [43] and Turan’s theorem [5I]. In 1964 Erdés proved the

following theorem.

Theorem 3.2 (Erdés [17]). Let G be any graph such that e(G) > L"{J + 2]+ |2 +1.
Then G contains a Wi.

Years later, in [12], Dzido determined for £ > 3 and n > 6k — 10, ex(n, W) =

{%J Later on, Dzido and Jastrzebski [I3] obtained two exact values for small wheels

ex(n, Ws) = L"%J + %] + |2 and ex(n, Wr) = VIQ + 5+ 1J. Recently, Yuan [56]
determined the Turan number ex(n, Wai1) of the odd wheel when n is sufficiently large.
In this chapter, we determine the Turan number and characterize all extremal graphs for

disjoint union of odd wheels.

Theorem 3.3 (Yuan [50]). Let k > 2 and Way1 be a wheel on 2k + 1 vertices. Then for

n sufficiently large,

2] + 2]+ |22 k=2

eX(”a W2k+1) =
max{nlng—l— {@J tn1 + No :n} + 1,k > 3,

and EX(?’L, W2k+1) g ICO

ni,n2

(U (Py—1); P2), when k > 3.
We generalized Yuan’s result in the following way.

Theorem 3.4 (Xiao, Zamora [54]). Let mWory (k > 3) denote the graph defined by
taking m vertex- disjoint copies of Wori1. For n sufficiently large,

m—l) ) L(k—l)nl

5 5 J+(n1+m—1)(n—m+1)—n%+1},

ex(n, mWog,1) = max { (

where the maximum is taken for ny € {1,...,n —m+ 1}, moreover,

EX(n, mWaos1) C KL (UK (Py—1); P2), (n4+ne =n—m+1).

ni,n2

Clearly, the graphs in K71 (Z/{T’fl_l(ng,l); Pz) are mWoy1-free. Yuan [50] proved the

ni,n2

case when m =1 and k > 3.
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3.2 Progressive induction

To prove Theorem [3.4] we use the technique of progressive induction, which was first
introduced by Simonovits in [48]. Essentially, the technique is as follows. For a given
problem one can prove the inductive step under the assumptions of the inductive hypoth-
esis. However, it is not possible to prove the base case (this could be because the base
case is not true for small values). It also can happen that the proof of the base case is as

difficult as a direct proof of the result. Formally the statement we use is the following;:

Proposition 3.5 (Simonovits [48]). Let N be the set of all natural numbers, Z be the set
of all integers. Let ¢ € N and ¢ : N — Z be a function such that ¢(n) < max{p(n —

1), o(n —c)}, then there exists ng € N such that ¢(n) < 0 for every n > ny.

Let H,, be an extremal graph for mWs;.; and

f(n,t) = mg&azxnit{e(G) :G e KL, (U (Py—1); P2)}. To establish the result, in this
paper, we define a function p(n), used to measure the “distance between our knowledge
e(H,) and the conjecture f(n,m—1)", that is ¢(n) = e(H,)— f(n,m—1). Clearly, p(n) is
non-negative. We then attempt to show that there exists ng, when n > nyg, either p(n) <

¢(n —1), p(n) < ¢(n — c) (for some ¢ chosen later) or H, € KL (UK (Poy—1); P»).

ni,n2

3.3 Proof of Theorem (3.4

We need the following theorem and key lemma to proof Theorem [3.4]

Theorem 3.6 (Kovari-Sos-Turan [33]). Let K, denote the complete bipartite graph with

a and b vertices in its color-classes. Then

ab—l 91 a—l
n" e 4 n.

K,,) <
ex(n, Kgp) < 5 5

Lemma 3.7 (Xiao, Zamora [54]). Let G be an mWoy1-free graph with a partition of the
vertices into two nonempty parts V(G) = ViUV, with sizes ny and ny respectively such that
ny > ny and ny 1s sufficiently large. Suppose G is such that, for eachi if S C V; has size at
most m(k+1) then all vertices in S have at least m(2k+1) common neighbors in the other
class. Then, for ny sufficiently large, e(G) < g(ni,nq, m), where g(ny,ny,m) is defined
as g(ny,ng, m) = max +1{€(H)’H c Kt (U (Poger); Po) 1 = 0,1,

n1+na=n—m ni—jne—(m-1-j) \"'ni—j
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..,m — 1}. Moreover, for m > 1 equality can only hold if G contains a vertex of degree

n1+n2—1.

Proof. The proof will follow by induction on m, the case where m = 1 is done by [56].
Clearly, for ny > m — 1 we have that g(ny,n2,m) < f(n,m — 1). Now suppose that

m > 1, note that by the definition of ! (Z/lr'fl_l(P%,l); Pz) we have

ni,mn2

e (/Cm_l (U (Pag—r); P2)> - <K;ri:2j‘,nr(mflfj)(ufljl_*lj(sz_l); P2)>

+(n1 +ng —1).

It follows from the definition that both g(n; — 1,n5,m — 1) and g(n;,ny — 1,m — 1)
are bounded above by g(nq,ng,m) — (ny +ny — 1).

Let S,, denote the star on n vertices and G; denote the subgraph of GG induced by the
vertex set V;. For a graph H, let si,1(H) denote the maximum number of disjoint S
in H. From the conditions of G we have that s;y1(G1) + sky1(G2) < m — 1. We separate
the proof into 2 cases.

Case 1. For some i there exists a vertex u € V; such that dg,(u) > m(2k + 1).

Let G’ be the graph obtained from G by removing u, then the vertex set of G’ can be
decomposed into graphs V/UVJ of sizes n| and n,. We have that G’ must be (m—1)Way1-
free, otherwise we may find another wheel with center u which is disjoint from the previous
(m — 1)Wai41. Hence, by the induction hypothesis we have e(G’) < g(n/,ny, m — 1) and

SO
e(G) < dg(u) + g(nf,ny,m —1) <ny+ny — 1+ g(ny,ny,m—1) < g(ny,ng,m — 1),

where equality holds only when dg(u) = ny + ny — 1.

Case 2. For each vertex v € V; (i = 1,2), dg,(v) < m(2k + 1).

Then we have that d(v) < ny +m(2k + 1) for v € V; while d(v) < ny + m(2k + 1)
for v € V5. We may assume by induction that G contains at least one wheel W, say with
vertices ay, ag, ...,a, in V4 and by, ...,b; in Vo, where s+t = 2k + 1. Then G’, is defined
as the graph obtained by G by removing W, can be decomposed in components V; and

Vy of sizes ny — s, ng — t respectively, then
e(G) < sng +tng + (2k + 1)*>m + g(ny — s,ny —t,m — 1). (3.1)
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Note that by the construction of G we have the following bounds

g(x,y,m) Zg(x,y,m—l)—l—mln{y,x—k}—mzg(x,y,m—1)+y—k—m,
g(:v,y,m) Z g(ilf— 17y7m) +y>

g(z,y,m) > g(z,y —1,m) + .

The first bound is obtained by the difference between the number of edges of the graphs
in the definition of g, that is comparing the number of edges of X" (Z/{Y]f;_lj (Pog—1);

Py) with K2 (U (Poy—1); P») (when j > 1) or

ni1—j+1,n2—(m—1—j5) ni—j

lCm72 (Ukil»(PQk,l); P2> (Whel’l ] § m — 2)

ni1—j,ne+1—(m—1—3)\""'n1—j
As a consequence of these bounds it follows that

g(ny —s,ng —t,m — 1) < g(ny,ng,m) — sng — tng — (ng — k —m) + (2k + 1)
Hence together with equation (|3.1)) it follows that

Therefore, when

ny > (2k+1)*(m +1) + m + k,

e(G) < g(ny,ng, m) holds. O

Lemma 3.8 (Yuan [56]). Let n > 2k, then ex(n, {Sk+1, Pag+1}) = L@J

Proof of Theorem[3.4 We prove Theorem [3.4] using the progressive induction. Let n be
large enough and H,, be an n-vertex mWsy,1-free graph with maximal number of edges.
We will also assume by induction that Theorem [3.4 holds for m — 1, the base case m =1

is done by [56]. The following proof is based on Yuan’s result.

n2

Fix N € N an even number, which will be picked large enough. Since e(H,,) > LIJ,
by Theorem [3.6], there exists n, such that when n > n,, H, contains Ky y as a subgraph.
Let By and B, be the bipartite classes of Ky y. Let fIQN be the graph induced on the

vertex set By U By, H, oy be the graph induced on the vertex set V(H,) \ (B; U Bs) and

ey be the number of edges between fIQN and ﬁn_QN. Thus,

e(H,) = e(Han) + em + e(H,_an).
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ni,n2
that Ky v C H, for some Kyy € Knn Uy (Pa-1);0) . Let H,_,\ be the graph
induced by the vertex set V(H,)\ V (K]*Q,7N) and e, be the number of edges joining
K} y and H' ,y. Thus,

Let H, be a graph in KI'>1 (U5~ (Pyy_1); P»), by Lemma , there exists K} y such

!

e(H,) =e (KXI,N) +ey + e(H;L—2N)'

Clearly, ey = (n —2N)N + (m — 1)N = (n — 2N +m — 1)N.
By Lemma we observe e(Hay) < g(N, N,m). Therefore, we have

p(n) = e(H,) — e(H,)

e(Hay) — e (Ki n) + e — ey + e(Hyan) — e(H, ,y)
Nk —1)
2
mN + (eg —ey) + ¢(n —2N). (3.2)

IA

g(N7N7m)_N2_ +(6H_6H/)+90<n_2N>

IN

Note that from (3.2)) we have that if p(n) > ¢(n — 2N) then mN > ey — ey.

To complete the progressive induction, we are going to show that for n large enough,
either p(n) < p(n —2N) or ¢(n) < ¢(n—1) or H, € KL (U (Pog—1); P2).

Case 1. There exists a vertex v € H, with dg, (v) < 5.

Recall the defition that f(n,t) = max{e(G) : G € Kf ,, (U (Pa-1); Po) ;i +
ny +t = n}. Since e(H,) = f(n,m — 1) = max{(",") + {@J + (ng+m—1)(n —
m+ 1) —nd + 1} where ng = 1 (|52 +n—m+1) or ng = 2 ([5L] +n—-m+1),

2
we get e(H,) — e(H, ) = f(n,m —1) — f(n —1,m — 1) > 2. Clearly, H, — v is an

(n — 1)-vertex mWoay1-free graph which implies that e(H,) — dg, (v) < e(H,-1). Hence,
e(H,)—e(Hu_1) < dr, (v) < 2 and we get p(n) = e(H,) —e(H,) < e(H,_1)—e(H,_;) =
p(n—1).
In Case 2 we will assume that neither p(n) < ¢(n —2N) nor ¢(n) < ¢(n — 1) hold.
Case 2. 0(H,) > % and p(n) > ¢(n —2N). With the following claims we are able

to show that H,, € KL (Ur~1(Pay_1); P») in this case.

ni,n2

Claim 3.9. Let x be a vertex in H, such that Ky, ar41),m(2k+1) 1S contained in the neigh-

borhood of x, then G', the graph induced by V(H,) \ {v}, is (m — 1)Wag11-free.

Proof. Suppose by contradiction that G’ is not (m — 1)Way1-free, since a copy of (m —

1)Wap41 contains (m — 1)(2k + 1) vertices in G’, then we may find a copy of Ky in the
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neighborhood of x which does not contain any vertex of the given (m — 1)W1 copy,
then v together with the copy of Kj j contains another copy of Wy which contradicts

the fact that H, is mWsi1-free. ]

Hence we may assume that for any vertex v € V(H,,), there is an index i(v) € {1,2}
such that v has fewer than m(2k 4 1) neighbors in B (), since otherwise we would be able

to find a copy of K, 2k+1)m(2k+1) in the neighborhood of v, and then by Claim and

induction on m, we would have that
e(Hy) < (n—1)+e(GV(H) \{v}]) < (n—1) + f(n—1,m —2) = f(n,m —1).

where the equality holds only if dy, (v) = n — 1 and the graph induced by V(H,) \ {v}
is in ICZZ’TE,Q (UF(Py,—1); P2) for some nj 4+ ny = n — 1. Therefore, by adding a full
degree vertex to the previous graph we have that the equality holds only when H, €
Ko (UF(Poy—1); P2) for some ny and ny with ny + ny = n which maximizes the
number of edges.

We partition the vertices of H, oy into classes C1, Cy and D where: ()} is the set
of vertices v such that v is adjacent to fewer than m(2k + 1) vertices in B; and more
than N — 2m(2k + 1) vertices of Bs_; for i = 1,2. v € D if v is adjacent to at most
N —2m(2k + 1) vertices of both B; and Bs.

By the definition of C; and since Ky y C G[B; U By|, we have that any m(2k+1) + 1
vertices of B; U C; have more than <N —2m(2k + 1)) (m(2k +1) + 1> > m(2k + 1)

neighbors in Bs_;, hence we may assume that every vertex = € B; U C; has fewer than

m(2k + 1) neighbors in B; U C; or we would be done by Claim [3.9]

Claim 3.10. There exists a constant Ny such that |D|< Nj.

Proof. Recall that by definition every vertex in C; is adjacent to fewer than m(2k + 1)
vertices of B; and for each vertex v € D, there exists an i(v) such that v is joined to
fewer than m(2k + 1) vertices of By(,), we get that v is joined to fewer than m(2k 4 1) +
(N —2m(2k + 1)) < N — m(2k + 1) vertices of Hyy. Therefore,
ey = e(By,C) + e(Bs, Cs) + e(By,Cy) + e(Bs, Cy) + e(By U By, D)
<2Nm(2k+ 1)+ N(n —2N) — m(2k + 1)| D]

=4Nmk+ N(m+ 1)+ N(n—2N +m — 1) —m(2k + 1)|D|.
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Since ey = N(n—2N+m—1), we have that ey < ANmk+N(m+1)+ey —m(2k+1)|D].
From inequality (3.2)) we have

mN > ey — ey > mk|D|—4Nmk — N(m + 1),
hence |D|< N4 = N;. O
Claim 3.11. |B; U Ci|= % + O(y/n).

Proof. Since there exists an integer N; such that |D|< Nj, then the number of edges

incidence with D is O(n). Since A(G[B; U C;]) < m(2k + 1), we get e(G[B; U Cy]) +

e(G[B2UCs]) = O(n). Hence, after removing the edges in G[B; UC|, G[B2UC,] and the
TL2

edges incident with D, we obtain a bipartite graph on LIJ —O(n) edges. Therefore, there

exists a constant N, such that HBl U Ci]—g‘ < Niy/n, hence, |B;UC;|= 5 +0(y/n). O

Claim 3.12. D = D; U D, where vertices in D; is adjacent to fewer than m(2k + 1)
vertices of B; U C;.

Proof. Let v € D, then there exists an j(v) such that v is adjacent to at least § vertices
in Bj) UCj). Otherwise, dp, (v) < Ny — 1+ 2% < 3, which contradicts to the fact that

0(H,) > 5. Hence, since each vertex v € B; U C; has more than § — O(n) neighbors in

2
Bs_;UCs_;, if a vertex vy € D is adjacent to at least m(2k+1) vertices in Bz_j(vy)UC3—j(vy)
we may find a copy of Ky, 2k+1),m(2k+1) and we would be able to apply Claim . Let
D; C D, be such that each vertex v € D; is adjacent to fewer than m(2k + 1) vertices in

B; U}, then D is the disjoint union of D; and Ds. O

Hence, we may assume that every vertex x € D has fewer than m(2k + 1) neighbors
in one of the classes By U C or By U (5, otherwise we would be done by induction.

Let Vi = BiUC,UD; and Vo, = BoUCyU Ds, then V5 and V5 is a vertex partition of
H,, such that for any vertex set on m(k+ 1) vertices in V; has at least m(2k +1) common
neighbors in V3_;. Then by Lemma [3.7, we get e(H,) < f(n,m — 1), equality holds only
when H,, contains a vertex v of degree n — 1. Therefore, v would have at least m(2k + 1)

neighbors in both B; and Bs, which is a contradiction. O]
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3.4 Remarks and open problems

Remark 1: In [27]|, Gorgol gave the general upper and lower bounds on Turan numbers

of disjoint unions of arbitrary graph G.

Theorem 3.13 (Gorgol [27]). Let G be an arbitrary connected graph on € vertices, m be

an arbitrary positive integer and n be an integer such that n > mft. Then

ml —1

max{ex(n—m£+1,G)+( ) ),ex(n—m+1,G)+(m—1)n— (T;)}

< ex(n,mG) < ex (n ~ (m— 1)L, G> + <<m 5 W) +(m— 1)€<n ~(m— 1)£>.

Note that Theorem shows the following inequalities:
max {e(EX(n —ml+1,G)U ng_1> , e(EX(n —m+1,G) ®Km_1) } < ex(n,mQ)

< e(EX(n —(m—1)0,G)(X) K(mm> .

In this paper, we proved that when G is Woy1 (kK > 3), ex(n,mWor1) = e(EX(n —

m+1, Wai1) @ Km—l) :

We now consider the disjoint union of wheels of possibly distinct sizes. When there
is an even wheel the following result holds.

The Turan graph T'(n,p) is a complete multipartite graph formed by partitioning a
set of n vertices into p subsets, with sizes as equal as possible, and connecting two vertices

by an edge if and only if they belong to different subsets. Denote its size by t(n, p).

Theorem 3.14 (Xiao, Zamora [54]). Let W" be the family of graphs obtain by the disjoint
union of a finite number of wheels, such that, the number of even wheels in the union
is h, (h > 1). For any W € W" if n is sufficiently large, we have that ex(n, W) =
{("‘1) +(h— 1)(n—h—|—1)+t(n—h+1,3)} and EX(n, W) = K_1 @ T(n —h+1,3).

2

Theorem is a consequence of the following result of Simonovits [49)].

Theorem 3.15 (Simonovits[49]). Let L be the family of forbidden graphs and p =
p(L) = ILIIIE X(L) — 1. If by omitting any s — 1 vertices of any L € L we obtain a graph
S

with chromatic number at least p + 1, but by omitting s suitable edges of some L € L we
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get a p-colorable graph, then K, 1@ T(n — s+ 1,p) is the unique extremal graph for L

when n s sufficiently large.

Let ki > ko > ... > k,, be positive integers, it is easy to see that if the disjoint union
m m
of stars |J Sk,+1, is added to one class of K, »,, the we would obtain a copy of |J Wa,11.

=1 =1
Based on the following theorem, we propose a conjecture on the extremal number for

m
U Wak, 11
=1

k
Theorem 3.16 (Lidicky, Liu, Palmer [38]). Let F = |J S® be a star forest where d; is

) =1
the mazimum degree of S* and dy > dy > ... > d;. For n sufficiently large,

ex(n, F) = max{(¢—1)(n—i+1)+(i;1)+ {digl(n—i—l)J}.

1<i<k

Conjecture 3.17 (Xiao, Zamora [54]). Let |J Way, 11 be a disjoint union of odd wheels
i=1
with components of order 2k, + 1,2ky + 1,...,2k,, + 1 where ky > ko > ... > k,,,. Forn

sufficiently large,

m
ex(n, U Woag,+1)
i=1

= 12;11%);” {TLo(TL — no) + eX(no, L_JISkiJrl) —+ 1}
— 1 1 1—1 ki —1 - .
= pax no(n —ng) + (i —1)(ng —i+ 1) + s )t (no—i+1)| +1%,
1<np<n

and the number of edges of graph (Km1 X U Kkm) X (PQUKHHOQ) gives us the

ng—m+1
km,

lower bound of ex(n, !1 Wop,+1). Here, |J Ky, denotes the union of no;_zﬂ disjoint

ng—m+1
km

copies of Ky, .
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Chapter 4

Turan numbers and anti-Ramsey
numbers for short cycles in complete
3-partite graphs

4.1 Introduction

We call a 4-cycle in K, ,, n, multipartite, denoted by CP" if it contains at least one
vertex in each part of K, »,n,,. We call an edge-colored Ci”"l” rainbow if its all four
edges have different colors. The anti-Ramsey number ar(K,, n, ny, Ci™") is the maximum
number of colors in an edge-colored K, ,, », With no rainbow Cf‘“lti.

An old result of Bollobas, Erdés and Szemerédi [7] proved that ex(K,, nyng, Cs) =
ning+ning for ng > ny > ng > 1 (also see [8,5,47]). Lv, Lu and Fang [41], 42] constructed
balanced 3-partite graphs which are Cy-free and {Cj, Cy}-free respectively and proved
that ex(Knn, C4) = (\% +0(1))n%? and ex(K,, nn, {Cs, C4}) > (V3 + o(1))n?2. Since
then plentiful results were established for a variety of graphs H, we refer the reader to
[6, 25, 29, 28, 30, 44 [46).

For further discussion, we need the definitions of the multipartite subgraphs and a

function f(nq,n9,...,n,).

Definition 4.1. Letr > 3 and G be an r-partite graph with vertex partition Vi, Vo, ..., V.,
we call a subgraph H of G multipartite, if there are at least three distinct parts Vi, V;, Vi
such that V(H)NV; 0, V(H)NV; # 0 and V(H) NVi, # 0. In particular, we denote a
multipartite H by H™! (see Figure for an example of a CT* in a 3-partite graph,).
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Figure 4.1: A C™!" in a 3-partite graph.

Forr>3andn; >ny > --->n, > 1, let

NNy + N3Ny + -+ + Np_oNp_1 + 1, + T;—l —1, r isodd;
f(ni,ne,...,n,) =

ning +ngng + - +npn, + 5 — 1, r is even.
Fang, Gyori, Li and J. Xiao [22] recently showed that if G C K, 4, .. and e(G) >
f(n1,n2,...,n,.) + 1, then G contains a multipartite cycle. Furthermore, they proposed

the following conjecture.

Conjecture 4.2 (Fang, Gy6ri, Li and J. Xiao [22]). Forr >3 andny >ng > -+ >n, >
1, if G C Kpymy...m. and e(G) > f(ni,ng,...,n.) + 1, then G contains a multipartite

cycle C™ of length at most %7’.

In this chapter, we study the Turan numbers of C™!% and {C3, C™%} in the complete

3-partite graphs and obtain the following results.

Theorem 4.3 (Fang, Gy6ri, Xiao and Xiao [23]). Forny > ny > n3 > 1, ex(Kp, nyng, C70)

= NNy + 2713.

Theorem 4.4 (Fang, Gy6ri, Xiao and Xiao [23]). For ny > ny > ng > 1, ex(Ky, nyns»
{03, Cinultz}) = N1Ng + N3.

Notice that Theorem confirms Conjecture for the case when r = 3.

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.
For graphs G and H, the anti-Ramsey number ar(G, H) is the maximum number of colors
in an edge-colored G with no rainbow copy of H. Erdés, Simonovits and Sos [20] first
studied the anti-Ramsey number in the case when the host graph G is a complete graph
K,, and showed the close relationship between it and the Turan number. In this chapter,

we consider the anti-Ramsey number of C™" in the complete 3-partite graphs.
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Theorem 4.5 (Fang, Gyéri, Xiao and Xiao [23]). For ny > ny > n3 > 1, ar(K,, g,

Cinulti) = ning + N3 + 1.

We prove Theorems and in Section 4.2 and Theorem in Section 4.3, re-
spectively. We always denote the vertex partition of K, n, 0, by Vi, V2 and Vi, where

4.2 The Turdn numbers of C™ and {C5, Ot}

In this section, we first give the following lemma which will play an important role in our

proof.

Lemma 4.6 (Fang, Gyori, Xiao and Xiao [23|). Let G' be a 3-partite graph with vertex
partition X,Y and Z, such that for allx € X, N(z)NY # 0 and N(x) N Z # 0.

(i) If G is Cj™Wi_free, then e(G) < |Y||Z|+2|X]|;

(ii) If G is {C3, C™Y —free, then e(G) < |Y||Z|+]X]|.

Proof. (i) Since G is CP"-free, G[N(x)] is K o-free for each x € X. Therefore,
e(G[N(z)]) = e(N(m) NY,N(z)N Z) < min {|N(w) NY|,|N(z)N Z|} (4.1)

For x € X, we let e, be the number of missing edges of G between N(z) NY and
N(z)N Z. By (4.1), we have

e, =|N(x)NY]|N(z)N Z|—e(N(x) NY,N(xz)N Z)

> |N(z) N Y]-|N(2) N Z|— min {|N(x) AY|,|N(z)N Z|} (4.2)

> |N(x) Y |+|N(z)N Z|-2,

where the last inequality holds since |[N(z) NY|> 1 and |[N(z) N Z|> 1 for all z € X.

By (L2), we get

de=> (|N(x) NY|[+|N(z) N Z|—2) —e(X,Y) +e(X, Z) - 2|X]|. (4.3)

zeX zeX
Notice that two distinct vertices z1, x5 € X, cannot have common neighboors in both Y

and Z at the same time, otherwise we find a copy of CJ™* in G. Thus, each missing
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edge between Y and Z is counted at most once in the sum ) _ e,. Hence, the number
of missing edges between Y and Z is at least ) _ e,. Then we have

(Y, Z2) S Y[|Z]= ) e < [YI|Z]=(e(X,Y) + e(X, Z) = 2|X]). (4.4)

zeX

By , we get
e(G)=e(X,Y)+e(X,Z)+e(Y,Z) <|Y||Z]+2]|X].
(ii) Since G is Cs-free, for each z € X,
e(N(x) NY,N(z)N Z) = 0. (4.5)

Since for each z € X, [N(z) NY|> 1 and |[N(z) N Z|> 1 hold, by (4.5)), the number of
missing edges between N(z)NY and N(x)NZ is |[N(z)NY|-|N(x)NZ|. Notice that two
distinct vertices x1,x, € X, cannot have common neighboors in both Y and Z at the
same time, otherwise we find a copy of C7™ in (. Hence, the number of missing edges
between Y and Z is at least ) _|N(x) NY|-|N(x) N Z|. Thus,

e(Y,Z) < [Y||Z]= ) _IN(@@) nY[|N(x) N Z|

zeX

<Y|IZ|=) (IN(z) N Y|+|N(z) N Z|-1) (4.6)

= Y[|Z|+[X]|=e(X,Y) - e(X, 2),

where the second inequality holds since |[N(z) NY|> 1 and |[N(x) N Z|> 1 for z € X.
By (4.6), we have e(G) = e(Y, Z) + e(X,Y) +e(X, 2) < |Y||Z|+|X]. O

Now we are ready to prove Theorems and [4.4]

Proof of Theorem[{.3. Let G C K, n,ns be a graph, such that V; and V5 are completely
joined, Vi (respectively, V5) and Vj are joined by an ng-matching, see Figure . Clearly,
G is C™_free and e(G) = nyng + 2n3. Therefore, ex(K,, nyns, CF) > nyng + 2ns.
Let G C K, nyms such that G is CP¥-free, now we are going to prove that e(G) <
niny + 2n3 by induction on nq + no + ng.
For the base case n3 = 1, V3 = {v}, we consider the following four subcases:

(i) N(v) N'Vi # 0 and N(v) N'Va # 0, then by Lemma [4.6] we have e(G) < nins + 2.
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Figure 4.2: An example of C7"_free graph with nyny + 2n3 edges.

(ii) N(v) Vi # 0 and Ng(v) N Va =0, then
e(G) = e(Vs, N(v)) + e(Va, N(v)) +e(Vi \ N(v), V2)
<d(v) +ng+ (m - d(v))ng
<ning + 1.
(i71) N(v)NVy =0 and N(v) NV, # ), then
e(G) = e(Vs, N(v)) + e(Vi, N(v)) + (V2 \ N(v), 1)
< d(v) +n1 + (ne — d(v))m
< ning + 1.
(iv) N(v)NVy =0 and N(v) NV, = 0, then e(G) = e(V1, Va) < nyna.

Now let ng > 2, and assume that the statement is true for graphs of order less than
ny + ne + n3. We distinguish the three cases depending on the equality of the numbers
ni, N, N3.

Casel. ny=ny=ns=n> 2.

If there exists one part, say V;, such that N(v) NV, # 0 and N(v) N V3 # 0, for all
v € Vi, then by Lemma [4.6) we have e(G) < |Vo||V3|+2|Vi|= n? + 2n.

Thus, we may assume that for all ¢ € [3] = {1,2,3}, there exist a vertex v € V; and
J € [3]\ {i} such that N(v) NV; = (. We divide it into two subcases.

Case 1.1. There exist two parts, say V7 and Vs, such that N(v;) N V3 = 0 and
N(vy) N Vi = for some vertices v; € V; and vy € V.

Since G is C-free, d(v;) + d(v9) < |V3|+1 = n + 1. Without loss of generality, let
v3 € V3 be the vertex such that N(v3) N V; = (. Then the number of edges incident
with {v1,v9,v3} in G is at most d(v1) + d(ve) +n — 1 < 2n. By the induction hypothesis,
e(G—{vy,v,v3}) < (n—1)2+2(n—1). Thus, e(G) < (n—1)2+2(n—1)+2n < n?+2n.
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Case 1.2. There exist vertices v; € Vi, v9 € Vo and vz € V3 such that either N(vy) N
Vo=0,N(v)NVz=0,N(vs)NVi=0or N(v))NVz =0, N(vs) NV =0, N(vy) NVy =0
holds.

Without loss of generality, we assume that N(v;)NV, = 0, N(ve)NV3 = 0, N(v3)NV; =
(0. If d(v1) + d(v2) 4+ d(v3) < 2n + 1, then by the induction hypothesis, we have

e(G) < e(G — {v1,v9,v3}) + d(v1) + d(v2) + d(v3)
<(n—1724+2n—-1)+2n+1

< n?+ 2n.

Now we assume that d(vy)+d(ve) +d(vs) > 2n+2, hence, d(vy) > 1,d(vy) > 1,d(vs) > 1.
Since G is C7"ifree, each vertex in V; \ {v;} can have at most one neighbour in N (vs),
we have e(Vy \ {v1}, N(v3)) < n — 1. Similarly, we have e(V5 \ {vs}, N(v2)) <n —1 and
e(Va\ {va}, N(v1)) <m — 1.

Therefore,
e(Vi, V) = e(Vi \{v1}, V2 \ N(v3)) + e(Vi \ {v1}, N(v3)) < (n —d(vs))(n — 1) + (n — 1),

e(V1,Va) = e(Vs \ {vs}, Vi \ N(v2)) + e(Vs \ {vs}, N(v2)) < (n — d(v2))(n — 1) + (n — 1),
e(Va, Va) = e(Va \ {v2}, Vs \ N(v1)) + e(Va \ {va}, N(v1)) < (n —d(v1))(n — 1) + (n = 1).
Thus,
e(G) = e(V1, Vo) + e(V1, V3) + e(V2, Vs)
3n — (d(vr) + d(ve) + d(Ug))) (n—1)+3(n—-1)

(
< <3n—(2n+2))(n—1)+3(n—1)

Case 2. ny >ny=ns=n > 2.

If there exists one vertex vy € V; such that d(vy) < n, then by the induction hypoth-
esis, we have e(G) = e(G — vg) + d(vg) < (ny — 1)n + 2n +n < nyn + 2n. Otherwise, we
have d(v) > n + 1 for all vertices v € V;. Hence, N(v) N Va # () and N(v) N'V3 # () hold
for all v € V4. By Lemma , we get e(G) < n?+2n; < nin + 2n.

Case 3. ny > Ng > Ny > 2.
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If there exists one vertex vy € V5 such that d(vy) < ny, by the induction hypothesis,
we have e(G) = e(G — vg) + d(vg) < ni(ny — 1) 4+ 2n3 + ny < nyng + 2n3. Otherwise, we
have d(v) > ny + 1 for all vertices v € V5. Hence, N(v) N'V; # () and N(v) N V3 # ) for
all v € V5. By Lemma , we get e(G) < ning + 2ny < nyng + 2ng. O

Proof of Theorem[{.4. Let G C K, n,ns be a graph, such that V; and V5 are completely
joined, V7 and V3 are joined by an ns-matching and there is no edge between V5 and
Vi, see Figure 1.3 Clearly, G is {C3, CJ""}-free and e(G) = ning + nz. Therefore,

eX(Km,m,nga {037 Czinum}) Z ning + ns.

Vi Va

V3

Figure 4.3: An example of {C3, O} free graph with nyny + n3 edges.

Let G C K, nyms be such that G is {C3, Ci}-free, now we can prove e(G) <
ning +n3 by induction on nq +ns +ns3 in the same way as we did in the proof of Theorem
[4.3], just the coefficients in the computation change a bit. For sake of brevity, we skip the
details of the proof. O

Cmulti

4.3 The anti-Ramsey number of (]

In this section, we study the anti-Ramsey number of C™ % in the complete 3-partite
graphs. Given an edge-coloring ¢ of G, we denote the color of an edge e by c(e). For a
subgraph H of G, we denote C(H) = {c(e)le € E(H)}. We call a spanning subgraph
of an edge-colored graph representing subgraph, if it contains exactly one edge of each
color.

Given graphs G; and G5, we use G A G5 to denote graphs consisting of G; and Gs
sharing exactly one common vertex. We call a multipartite Cy in a 3-partite graph non-
cyclic if there exists a vertex v in Cg such that the two neighbors in Cj of v belong to the
same part. Let F be a graph family which consists of C¥W% (see graph G in Figure ,
C3 N C5 (see graph Gy in Figure , the non-cyclic C§*t (see graphs G, G4 in Figure
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' and C3 A C5 (see graphs G5, Gg, G7 in Figure and the C’mu1ti which contains at

least two vertex-disjoint non-multipartite Ps (see graph Gg in Flgure 4 4)).

Gy
Ge
Figure 4.4. F = {Gl} U {Gg} U {G3, G4} U {G5, G6, G7} @) {Gg}

To find a rainbow C%% in the edge-colored complete 3-partite graphs, we follow the

idea of Alon [I] and prove the lemma as follows..

Lemma 4.7 (Fang, Gyo6ri, Xiao and Xiao [23]). Let ny > ny > ng > 1. For an edge-
colored Ky, nyns, if there is a rainbow copy of some graph in F, then there is a rainbow

copy of Ctti,

Proof. We separate the proof into three cases.
Case 1. An edge-colored K, 5, n, contains a rainbow copy of Ga, Gg or Gy.
Suppose there is a rainbow copy of Gy in Ky, ny ny, See Figure .5, then whatever the
color of vyws is, at least one of viuvswav; and viwouw vy is a rainbow Cf‘“m. Similarly,
with the help of the red edge that showed in G5 and G4, see Figure 4.5 one can easily
find a rainbow copy of C if there is a rainbow copy of G5 or Gy.

Case 2. An edge-colored K, ,,n, contains a rainbow copy of Gs.
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Gg G4

Figure 4.5

Suppose there is a rainbow copy of G5 in Ky, nyn,, see Figure [£.6] If vswsuw,vs is
not rainbow, then wws shares the same color with one of v3ws, vswy and uw,. Hence,

uvowsu U uvjwsu is a rainbow copy of Gy, and by Case 1, we can find a rainbow copy of

multi
Gl

Figure 4.6

Case 3. An edge-colored K, ,,n, contains a rainbow copy of Gg, G7 or Gs.

G7 GB

Figure 4.7

Suppose there is a rainbow copy of G in K, n,n,, see Figure @ If vouwiugvy 1s
not rainbow, then usw; shares the same color with one of vyuq, ujw; and usvy. Hence,
VUL V3Wo U w1 vy 1S a rainbow copy of G4, and by Case 1, we can find a rainbow copy of
C - Similarly, with the help of the red edge showed in G and G, see Figure 4.7, one

can always find a rainbow copy of ™ if there is a rainbow copy of G or Gg. O

Now we are able to prove Theorem [4.5]

20



CEU eTD Collection

Proof of Theorem [{.5, Lower bound: We color the edges of K, n,n, as follows. First,
color all edges between V; and V5 rainbow. Second, for each vertex v € V3, color all the
edges between v and V; with one new distinct color. Finally, we assign a new color to all
edges between V5 and V3. In such way, we use exactly nins + nz + 1 colors, and there is
no rainbow Cjlt,

Upper bound: We prove the upper bound by induction on n; +ns+ns. By Theorem
E, we have ar(K,, n, 1, CP"") < ex(Kp, ny.1, CPM) = nyny + 2, the conclusion holds for
nz = 1. Let ng > 2, suppose the conclusion holds for all integers less than n; + ns + ns.
We suppose there exists an (n;ns + ns + 2)-edge-coloring ¢ of K, ,, n, such that there is

no rainbow C in it. We take a representing subgraph G.

Claim 4.8. G contains two vertex-disjoint triangles.

Proof. By Theorem .4} ex(Ky, nynss {C3, CU}) = nyng+ns. Since e(G) = nyng+nz+2
and G contains no C™% G contains at least two triangles T} and Ty. If |[V(T1) NV (T3)|=
2, then T U Ty contains a C a contradiction. If |V (T1) NV (Ty)|= 1, then T} U T, is
a copy of C3 A C5. By Lemma we can find a rainbow C™% a contradiction. Thus,

Ty and T, are vertex-disjoint. O

Let the two vertex-disjoint triangles be T} = x1y1z121 and Ty = x9ys229T9, Where
{1, 22} C© Vi, {y1, 92} € Vo and {21, 22} C V5. Denote Vo = {x1, 22,41, 42, 21, 22} and
U= ViuVuV;\ .

Claim 4.9. e(G[Vp]) < 7.

Proof. If e(G[Vp]) > 8, then e(V(T1),V(Ty)) > 2. Without loss of generality, assume
that x1y2 € E(G), we claim that x129, X921, y122, 9221 ¢ E(G), otherwise x1yswozoxy,
T1Y2X2121, T1Y222Y1X1 OF XT1Y221y1x1 would be a rainbow C’}fmlti. Thus, we have xoy, €
E(G). We claim that ¢(y;22) = ¢(y222), otherwise at least one of {111 20y2x1, Toy1 22y2x2 }

is a rainbow CI™4. Thus, G[Vy] — 9220 + Y122 is rainbow and contains a C5 A C3. By

Lemma [4.7, we find a rainbow CJ™ a contradiction. O

If U = 0, that is ny = ny = ng = 2, then 8 = ¢(G) = ¢(G[Vy]) < 7, by Claim [1.9] a

contradiction. Thus we may assume that U # ().

Claim 4.10. For allv e U, e(v, V) < 2.
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Proof. 1f there is a vertex v € U, such that eg(v,Vy) > 3, then G[Vy U {v}] contains a

Clti - a contradiction. O
Claim 4.11. nz > 3.

Proof. Suppose n3 = 2. Since U # (), we have ny > 3 = nz+ 1. If there is a vertex v € V;
such that d(v) < ng, then e(G —v) = nyng +n3+2 —d(v) > (n; — 1)ng + n3 + 2. By the

induction hypothesis, we have
|C(Kn17n2,n3 - ’U)‘Z e(G - U) > (nl - 1)TL2 +ng+2= ar(Kmenz,ns? Cinum) + 17

thus K, ,ns — v contains a rainbow C}fmm, a contradiction. Thus we assume that

d(v) > ng + 1 for all v € V4. By Claim , we have e(V5, V3) > 2. Hence, we have
e(G) = e(Vi, VoUuVs) +e(Vo, V3) = Zd +e(Vo,V3) > ni(ne+1)+2 =nins +ny + 2,
veEV]

and this contradicts to the fact that e(G) = ning + ns + 2. O
Claim 4.12. ¢(G[Vy]) + e(Vo,U) > 2ny + 2ny — 1.

Proof. 1f e(G[Vy]) + e(Vo,U) < 2nq + 2ny — 2, then
e(GIU]) = e(G) = (e(G[Vo]) +e(Vo, U)) = nang+ns+2—(2n1+2n3 —2) = (n1 —2)(n2 —2)
+(n3 — 2) 4+ 2. By the induction hypothesis, we have

|C<Km,n27n3_%)|2 6(G[U]) > (n1_2)(n2_2)+(n3_2)+2 - ar(Km—?,nz—?,m—?? Czllnulti)_’_l?

thus K, n,n. — Vo contains a rainbow C™ o contradiction. O
1,m2,n3 0 4 )

Denote Uy = {v € U : e(v, Vy) = 2}. By Claim [4.10] we have e(U, Vp) < |Us|+|U|. By
Claim 4.9, we just need to consider the following two cases.

Case 1. e(G[Vp]) =T7.

By Claim , we have e(U, Vy) > 2ny + 2ny — 1 — e(G[Vp]) = 2ny + 2ny — 8. Since
|U|=n1 4+ ng +mn3 —6 and e(U, V) < |Up|+|U|, we have |Uy|> ny +mns —ng — 2 > 1. Let
v € Uy, then the orange edges in G[Vj U {v}] (see Figure forms one subgraph in F
(see Figure . By Lemma , there is a rainbow C" a contradiction.

Case 2. e(G[Vp]) = 6.
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asﬁ%

Figure 4.8: Illustration of G[V, U {v}].

Figure 4.9: Illustration of G[Vy U {vy, va}].

By Claim [£1.12] we have e(U, Vp) > 2ny + 2ny — 1 — e(G[Vp]) = 2ny + 2ny — 7. Since
|U|=n1+mns+n3—6and e(U, Vy) < |Up|+|U|, we have |Ug|> ny+ns—nz—1>n;—1 >
ny — 2. Thus, U contains at least two vertices v; and v, which come from distinct parts.
Then the orange edges in G[Vy U {v1,v2}] (see Figure form one subgraph in F (see
Figure . By Lemma there exists a rainbow C a contradiction. ]
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Chapter 5

There are more triangles when they
have no common vertex

5.1 Introduction

We denote the number of triangles in G by T'(G). A triangle covering set in V(G)
is a vertex set that contains at least one vertex of every triangle in G. The triangle
covering number, denoted by 7o (G), is the size of the smallest triangle covering set.
Mantel [43] proved that an n-vertex graph with L”{J +1t (t > 1) edges must contain a
triangle. In 1941, Rademacher (unpublished, see [14]) showed that for even n, every graph
G on n vertices and %2 + 1 edges contains at least § triangles and % is the best possible.
Later on, the problem was revived by Erdés, see [14], which is now known as the Erdds-
Rademacher problem, Erdds simplified this statement and proved more generally when
t <3 and n > 2t. Seven years later, he [I5] conjectured that a graph with L”ZQJ +t edges
contains at least ¢ ng triangles if ¢ < %, which was proved by Lovasz and Simonovits
[40]. Motivated by earlier results, we give a further improvement for the case ¢t = 1: if

there is no vertex contained by all triangles then there are at least n — 2 of them in G.
Theorem 5.1 (Mantel [43]). The mazimum number of edges in an n-vertez triangle-free
graph is L”;J Furthermore, the only triangle-free graph with L”IQJ edges is the complete
bipartite graph K|z rny.

Theorem 5.2 (Erdds [14]). Let G be a graph on n wvertices and L”{J +t edges, t < 3,

n > 2t, then G contains at least t L%J triangles.

Theorem 5.3 (Erdds [15]). Let G be a graph on n vertices and {%J +t edges, there

exists a constant ¢y > 0, such that for t < <%, every G contains at least t L%J triangles.
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Theorem 5.4 (Lovéasz and Simonovits [40]). Let G be a graph on n vertices and L”{J +t

edges, t < %, then G contains at least t L%J triangles.

Before presenting the main result of this chapter, the following definitions, a theorem

and a lemma are needed.

Definition 5.5. Let K,,_; denote the complete bipartite graph on the vertex classes

IX|=1i, |YV]=n—i.

Figure 5.1: Graphs K;, ; and K]

,n—i*

Definition 5.6. Let K, ; denote a graph obtained from a complete bipartite graph K ,,—;
plus an edge in the class X with i vertices, see Figure|s. 1.

Definition 5.7. Let Kgnﬂ- denote a graph obtained from a complete bipartite graph K; ,,—;
minus an edge plus two adjacent edges in the class X with i vertices, one end point of the
missing edge is the shared vertex of these two adjacent edges and the other one is in the

class 'Y, see Figure|5.1)

Lemma 5.8 (Xiao and Katona [52]). Let G be a graph with n vertices and {”TQJ +1

edges, such that TA(G) =1 and T(G) < n — 3. Then G is one of the following graphs:

Kin, Ky, Knpywa or Ky o
2 2 72 2

n
2 2 2 02

Theorem 5.9 (Xiao and Katona [52]). Let G be a graph with n vertices and L”IQJ +1
edges, then either TA(G) =1 or T(G) > n — 2.
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5.2 Proofs of the main results

Proof of Lemma[5.8 Let vy be such a vertex that G\ vy contains no triangle. We distin-
guish two cases.

Case 1. G\ vy contains at least one odd cycle. Let Coriq (k> 2) be the shortest
odd cycle in G\ vy and G be the graph obtained from G by removing the vertices of
Cory1 and vy, 50 v(G') = n — 2k — 2. Since Cyyy is the shortest cycle in G\ vy, each
vertex in G can be adjacent to at most 2 vertices in the Uy, otherwise, we can find

a shorter odd cycle. Since G’ is an (n — 2k — 2)-vertex triangle-free graph, by Theorem
2
, e(G) < (%’“_2) . Obviously, any two vertices of Cy;1 which are not an edge

of (541 are not adjacent, therefore

e(G\vg) <2k +1+2(n—2k—2)+ \‘(%H)ZJ

2

Since e( ) =d(vg) +e(G\vg) < (n—1)+( VIJ —n+2)= V;J + 1, the only possibility

2 2

for e(G VTJ + 1 is that d(vg) =n — 1 and e(G \ vy) = {TJ —n+ 2. In this case, we

2

get T'(G) = L%J — n + 2, which contradicts T'(G) < n — 3.

Case 2. G\ vy has no odd cycles, then G \ vy is a bipartite graph and e(G \ vg) <

L”T*lj (”T*q There are two subcases.

Case 2.1. e(G\ w) = |%5] [%5*]. Then G\ vy is KLn L 252 and d(vg) =

e(G) — e(G\ vo) = |%|+1. Let di and dp be the numbers of neighbors of vy in classes
X and Y of KLL_lj [a=1]s respectively, then d(vy) = dy + dp and T(G) = dids. So we
need dy +ds = [%J + 1 and dids < n — 3 hold at the same time. When n is even, we can

see that the only solution is when d; = 1 and dy = 4. The symmetric solution, d; = %,

dy = 1 is not possible, since d; < § — 1 in this case. Therefore, we get that G is K

wIE |
M\S

Assume now that n is odd, there are two possibilities,

(1) di = 1 and dp = %51, in the same way as in the case of even n, we get T(G) = 5%

and G is Ky oo When dy = 254 and dy = 1, we also get T(G) = 5% and G is
K;l n—1-

2 7 2
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(i) dy = 2 and dy = 252, then T(G) = 2(%52) =n — 3 and G is Kn+1 o1 Oimilarly,

2
n—3
2

Case 2.2 . e(G\vy) = |252] [%52] — ¢. Then d(vg) = [2]+1+t, 1 <t < [2] —2.

when d; = and ds = 2, we get the same result.

Let G'\ vg be the bipartite graph with partitions X" and Y, where |X/|: i’, then we have

i(n—1-17)> V;J [”;ﬂ ¢

n—l—\/4t+1< ,/<n—1—|—\/4t+1

5 St < 5 ,111s even,
N (5.1)
—1 -2t / — 14+ 2yt
n#\/— S 1 S %7 n is Odd

We may assume that vy has d; (> 1) neighbors in X" and dy (> 1) neighbors in Y,

since G \ vy is bipartite, if didy = 0, then G contains no triangle which contradicts the
fact that 7 (G) = 1. In this situation, didy > T(G) > didy —t = dy (| 2] + 1+t —dy) -
—di+ ([3] +1+0)dy —t > —di + (| 5] + 1)dy.

When n is even, we know that the solutions of n —3 > T(G) = di(5 +1 —dy) is
exactly one of d; = 1 or do = 1 holds like in Case 2.1. However, when dy = 1, since
dy +dy = % 4+ 1+t, we have d; = § +t, which contradicts (5.1)) namely i’ < = 1+\/W
(1<t < 3§ —2) because d; < i'. The case d; = 1 and dy = 5 4t can be settled in the
same way.

When n is odd, n — 3 > T(G) = di(| %] + 1 — d;) implies that one of d; =1, dy = 1,
di = 2 or dy = 2 holds. By symmetry we can consider the cases d; = 1 and d; = 2. We
check the details of the following 3 subcases.

(1)t = 1and d = 1. We get dy = "—H because dy + dy = ”T’l + 14 ¢. Since

dy < [V|=n—1—i < 220 — nbl e get |Y'|= 25 and [X'|= 252, Since

e(G\ vg) = %5221 — 1, we see that G\ v is Kuzs np. Thus, G is K%y%l and
T(G) < dydy = 4.

(1) t > 2 and dy = 1. Bydl—i-dg:"T’l—l—let, we have dy = "74+t> %%,
which contradicts dy < ]Y’|: n—1—4¢< #

(1ii) t > 1and dy = 2. By dy +dy = "T’l—i—l—i—t, we have dy = ”T’l—i—t—l. However,
T(G) > dydy —t = 2(%5* +t — 1) — t > n — 2, which contradicts T(G) < n — 3.
e When n is odd, G is either KQ’LH or
K, ,,or Kr, . o [

2 7 2 2 7 2

In conclusion, when n is even, G is Kn

el
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Using Lemma [5.8] we are able to give the proof of Theorem [5.9]

Proof of Theorem[5.9. We prove our result by induction on n. The induction step will go
from n — 2 to n, so we check the bases when n = 3 and n = 4, obviously, our statement is
true for these two cases. Suppose Theorem holds for k =n — 2 (n > 5), we separate
the rest of the proof into 2 cases.
gl‘ase 1. Every edge in G is contained in at least one triangle. Then T(G) >
@ >n—2.
Case 2. There exists at least one edge uv which is not contained in any triangle. Then

u and v cannot have common neighbor in G \ {u, v}, which implies that e ({u, vh V(G\

{u, v})) < n—2. Therefore, e(G\ {u,v}) > L”{J —(n—2)= L@J + 1. In this point,
we split the rest of the proof into 3 subcases.

Case 2.1 e¢(G\{u,v}) > { n—2)’ J—|—3 By Theorem. we get T(G\{u,v}) > 3| 52|,
which implies that T(G) >3 |%52| > n — 2.

Case 2.2. ¢(G\ {u,v}) = V” 2" J + 2. When n is even, by Theorem we get
T(G\{u,v}) >n—2,since T(G) > T(G\ {u,v}), we are done. When n is odd, we have
e({u,v}, V(G \ {u, v})) = n — 3, then there exists w € V(G \ {u,v}) such that edges
vw,uw ¢ E(GQ). If e(G[N(u) \ v]) + e(G[N(v) \ u]) > 1, then the number of triangles
which contains u or v is at least 1. By Theorem T(G\ {u,v}) > n — 3 holds, thus,
T(G) > n — 2. Otherwise, G \ {u,v,w} is bipartite and all triangles in G \ {u,v} are
adjacent to w. Since e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, no triangle contains u or v.
Therefore, TA(G) = 7A(G \ {u,v}) = 1 and all triangles in G are adjacent to w.

Case 2.3. ¢(G\ {u,v}) = L J + 1, then e({u,v}, G\ {u,v}) = n — 2. When
e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, G\ {u,v} is bipartite, so it has at most L@J
edges, contradicting the assumption of the case.

Suppose e(G[N(u)\v])+e(G[N(v)\u]) = 1. Since |(N(u)\v) U (N(v)\u)|=n—2, we
have e([N(u) \ v], [N(v) \ u]) < V” 2° J Thus, e(G \ {u,v}) = L 2" J + 1 implies that
G\ {u, v} is obtained from KL%J [252] plus an edge, say {j, k}, in one class. Therefore,
all triangles in G contain {j, k} and hence 7o (G) = 1 follows.

Now we assume that e(G[N(u) \ v]) + e(G[N(v) \ u]) > 2, then the number of the
triangles containing u or v is at least 2. It is easy to check that if v(G) = 5 then G\ {u, v}
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is a triangle and either 7o (G) =1 or T(G) = 4. Therefore, we may assume n > 6. Since
e(G\ {u,v}) = L@J + 1, by the induction hypothesis, either 7o (G \ {u,v}) =1 or
T(G\{u,v}) >n—4. When T'(G\ {u,v}) > n—4, we have T(G) > T(G\ {u,v}) +2 >
n — 2. Otherwise, 74 (G \ {u,v}) = 1 and T(G \ {u,v}) < n —5 hold. By Lemma [.§

we see that when n is even, G \ {u,v} is K» | » ,, when n is odd, G \ {u, v} is either
2 ’2

K,s,,0 K, ,5o0orKI,,, Letuscheck what will happen in these cases.
2 bl 2 bl

2 2 2 7 2

Figure 5.2

We first give the following technical lemma:

Lemma 5.10 (Xiao and Katona [52]). Let f(a,b) = ab+ (A — a)(B —b), where A and
B are integers, 1 <a < A, 1 <b< B, then f(a,b) > min{A, B}.

Proof of Lemma[5.10. Obviously, when AB = maxz{A, B}, f(a,b) > 1 = min{A, B}.
Otherwise, we have A, B > 2. Without loss of generality, fix b, then f(a,b) is a linear
function of variable a. Since % =b— (B —1b), f(a,b) is decreasing when b < £ and
f(a,b) is increasing when b > 2. Therefore,

f(Ab)=Ab, b<Z,
f(Ly)y=b+(A-1)(B-0b), b>

IS

v

It is easy to check that Ab > A, when b < £ and b+(A—1)(B—b) = B(A—1)+b(2—A) >
B when b > Z. Hence, we get f(a,b) > min{A, B}. Obviously, if min{A, B} = A, the
equality holds only when @ = A and b = 1, if min{A, B} = B, the equality holds only
when ¢ =1 and b = B. O

Case 2.3.1. G\{u,v}is K["j L[a]-1 which implies that when n is even, G\ {u, v}
B
is Ku | n_, and when n is odd, G \ {u,v} is K, 5 ,_,. Let X and Y be the two classes
2 "2 2 7 2
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of K[ 2 |-1[2]1 and {j, k} be the extra edge in X, where |X|= |2| — 1, see Figure
| Since ¢(GIN(u) \ o) + e(GIN(®) \ u]) > 2, | (N(u) \ v) U(N(1) \ u) |= n — 2 and
(N(u)\v)N(N(v)\u) =0, we see that either N(u) \ v or N(v) \ u contains at least one
vertex in both classes X and Y. Without loss of generality, say at least N(u) \ v has this
property.

Let |(N(u)\v) N X|=a and |(N(u)\v)NY|=b, where 1 <a < [2] —1land 1 <b <
’—g-‘ — 1. Then the number of triangles which are adjacent to u, containing one vertex in

X and one in Y is ab while the number of triangles which are adjacent to v, containing

one vertex in X and one in Y is (A —a)(B —b). Hence, we get T(G) > ab+ ( 2] -1-

a> ( (2] —1—b> + [2] — 1. By Lemmal|5.10, we see T(G) > | %] =1+ [2] —1=n—2.
Case 2.3.2. nis odd and G \ {u,v} is K;_l s Let X and Y be the two classes of

K, ns and {j, k} be the extra edge in X, where |X |= 2L, Similarly as in the previous
caszz, either N(u)\ v or N(v) \ u contains at least one vertex in both classes X and Y.
Without loss of generality, say at least N(u) \ v has this property.

Let [(N(u)\v) NX|=aand |[(N(u)\v) NY|=b, where1 <a < L and 1 <b < 252
then T'(G) > ab+ ("—l—a) ("—3—b) +2-8, By Lemmal5.10, we get T(G) >ndqnd >
n — 3, the equahty holds only if a =1 and b = 252, Let s € X and {u,s} € E(G),a=1

and b = =2 implies that either s € {4, k} then TA(G) =1, or s ¢ {j, k} then there exists
one more trlangle {v,j,k}, thus T(G) >n—-3+1=n—2.

Case 2.3.3. n is odd and G \ {u,v} 1sKn L a_s. Since %=1 > 3 we get n > 7. Let
X and Y be the classes of KLjn;g, {j, 2} and {zz, k} be the two extra edges in X and
{z,w} be the missing edge in .;('n;anz—S, see Figure

Let [(N(u)\v) NX|=a and |[(N(u) \v) NY|=0b. Since | (N(u) \v) U (N(v)\u) |=
n—2and (N(u) \ v) N (N(v) \ u) = 0, when a = 0, we have X C (N(v) \ w). If
N(v) \ u = X, clearly, all triangles in G contain z and hence 7o(G) = 1. Otherwise,
|(N(v) \u)NY|> 1. It is easy to check that T(K:f;%@) = n — b, therefore, in this case
we get T(G) >n—5+2+22—-1>n—1(n 227).2Whenb:0, then Y C N(v) \ w.
If N(v)\ v =Y then N(u) \ v = X, we see that all triangles in G contain z and
hence 7o(G) = 1. Otherwise, [(N(v) \ u) N X|> 1. When |(N(v) \ v) N X|= 1, if
(N(v) \ w) N X = {z}, obviously, all triangles in G contain z, hence 74o(G) = 1. If not,
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then clearly T(G) > n—5+1+ 22 >n—2 (n > 7). It is easy to check that T(G)
reaches the lower bound when |(N(v) \ v) N X|=1 for n > 9 and when n =7, T(G) > 5
holds in all cases. Therefore, we get either 7A(G) =1 or T(G) > n — 2.

Now suppose that, 1 < a < "T_l and 1 <b < ”T_S Then T(G) > ab+ (”T_l — a)(”T_?’ —
b) +n —5, by Lemma we get T(G) > "2 +n—5>n—-2(n>9). Since T(G) > 5
when n = 7, we see that T(G)) > n — 2 holds in this case.

This completes the proof. O

5.3 Remarks

Let Vi, Va,...,V, be pairwise disjoint sets where [2] > [Vi|> [Vo|> ... > |V,|> |2] and
> ;|Vil= n hold. Define the graph T, (n) with vertex set UV; where uv is an edge if u € V;,
v € V;(i # j), but there is no edge within a V;. The number of edges of the graph 7,.(n)
is denoted by t.(n). The following fundamental theorem of Turén is a generalization of

Mantel’s theorem.

Theorem 5.11 (Turan [51)). If a graph on n vertices has more than ty_1(n) edges then
it contains a copy of the complete graph Ky as a subgraph.

The most natural construction is to add one edge to Ty_1(n) in the set V. This graph
is denoted by 7, ;(n). It contains not only one copy of K}, but |V5|-|V5|- - - |Vj_1| of them.
[16] proved that this is the least number. Observe that the intersection of all of these
copies of K} is a pair of vertices (in V;). If this is excluded, the number of copies probably
increases. This is expressed by the following conjecture. Take Tj_1(n), add an edge zy in
Vi, an edge wv in V;, and delete the edge uxz. This graph is denoted by T}~ ;. It contains

almost the double of the number of copies of K in T, ,(n).

Conjecture 5.12. If a graph on n vertices has t;_1(n) + 1 edges and the copies of Ky
have an empty intersection then the number of copies of Ky, is at least as many as in T} ;:

(V2| =D)[V5[-[Va]- - [Vieoa [+ (VA | =1) V3 |- [Va]- - - [Viea|= (VA |Va ] =2)[V5[-[Va]- - - [Viea .

Of course this would be a generalization of our Theorem [5.9] Now we try to generalize
it in a different direction. What is the minimum number of triangles in an n-vertex graph

G containing L”{J + ¢ edges if 7A(G) > s is also supposed. The problem is interesting
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only when 0 < t < s. Otherwise, if £ > s then 7o(G) = t is allowed. By Lovasz-

Simonovits’ theorem [40], we know that the number of triangles is at least ¢ L%J with

2

equality for the following graph. Take K r=7, 2] where the two parts are V;(|Vi|= ’—%-‘)

%
and Vo(|Va|= |2]), respectively. Add ¢ edges to V. Here all triangles contain one of the
new added edges, therefore 7o(G) < t and the extra condition on 74 (G) is not a real
restriction.

Hence we may suppose 0 < t < s. Choose 2(s—1) distinct vertices in V; (of K(ﬂ B E
2 17L2
T1,T2, ..y Ts_1,Y1, Y2, ., Ys—1 and two distinct vertices in V5 : uq, us. Add the edges x1y;,
s,t

ToY2, -y Ts_1Ys_1, ULU tO K[QH_QJ and delete the edges xyuy, ..., xs_u;. Let K(21 2]
2 L2

2 2
denote this graph. It is easy to see that it contains VTQJ + t edges. On the other hand
it contains s vertex disjoint triangles if ’—gw >2(s—1)+1 and LgJ > s+ 1. Therefore,

Ks,t
=13

construction.

J) = s holds if n is large enough. We believe that this is the best possible

Conjecture 5.13. Suppose that the graph G has n vertices and L”{J +t edges, it satisfies
TA(G) > s and n > n(t,s) is large. Then G contains at least as many triangles as

KF%WL%J has, namely (s — 1) L%J + {%W —2(s —t).

In the case t = 1,s = 2, our Theorem is obtained. There is an obvious common

generalization of our two conjectures.

Remark 5.14. Conjecture 5.13 was corrected and Conjecture 5.12 was recently solved
and generalized by two groups of authors independently:

Jozsef Balogh and Feliz Christian Clemen in [{, On stability of the Erdds-Rademacher
Problem, hitps://arziv.org/abs/2005.12917.

Xizhi Liw and Dhruv Mubayi in [54[, On a generalized Erdds-Rademacher problem,
hitps://arziv.org/abs/2005.07224.
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