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Abstract

The overarching theme of the thesis is the investigation of Turán-type problems in graphs.

A big part of it is focused on studying Turán number of square of path, disjoint union

of wheels, and short cycles in complete 3-partite graphs. In addition, we study the anti-

Ramsey number for short cycles in complete 3-partite graphs and also show that for an

n-vertex graph G with bn2

4
c + 1 edges, the number of triangles is more when they have

no common vertex.

The thesis consists of 5 chapters. The first chapter gives a summary of the history as

well as the relevant background of Turán type problem and anti-Ramsey number.

In the second chapter, we study the exact value of Turán number for P 2
5 and P 2

6 . Let

Pk be the path with k vertices, the square P 2
k of Pk is obtained by joining the pairs of

vertices with distance one or two in Pk. ex(n, P 2
3 ) and ex(n, P 2

4 ) were solved by Mantel

and Dirac, respectively. In order to determine ex(n, P 2
6 ), we also determine the exact

value of ex(n, T ) where T denotes the flattened tetrahedron. Even more, we characterize

the extremal graphs for P 2
5 , P 2

6 and T . These results are based on the paper “The Turán

number of the square of a path” which is co-authored with Gyula O. H. Katona, Jimeng

Xiao and Oscar Zamora.

In Chapter 3, we study the problem concerning Turán number of disjoint union of

wheels. Recently, Longtu Yuan determined ex(n,W2k+1) of the odd wheel when n is

sufficiently large. We generalize his result, determine the Turán number and characterize

all extremal graphs for disjoint union of odd wheels. This result is based on the paper “A

note on the Turán number of disjoint union of wheels” which is co-authored with Oscar

Zamora.

In Chapter 4, we consider the Turán numbers and anti-Ramsey numbers for short

cycles in complete 3-partite graphs. We call a 4-cycle in Kn1,n2,n3 multipartite, denoted

by Cmulti
4 , if it contains at least one vertex in each part of Kn1,n2,n3 . We prove that
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ex(Kn1,n2,n3 , C
multi
4 ) = n1n2 + 2n3 and ar(Kn1,n2,n3 , C

multi
4 ) = ex(Kn1,n2,n3 , {C3, C

multi
4 }) +

1 = n1n2 +n3 + 1, where n1 ≥ n2 ≥ n3 ≥ 1. These results are based on the paper “Turán

numbers and anti-Ramsey numbers for short cycles in complete 3-partite graphs” which

is co-authored with Chunqiu Fang, Ervin Győri and Jimeng Xiao.

In Chapter 5, we show that for an n-vertex graph G with bn2

4
c+ 1 edges, if there is no

vertex contained by all triangles then there are at least n−2 triangles in G. Erdős proved

something stronger that if G is an n-vertex graph with
⌊
n2

4

⌋
+ t edges, t ≤ 3, n > 2t,

then every G contains at least t
⌊
n
2

⌋
triangles. Our result give a further improvement of

Erdős theorem in the case of t = 1. This result is based on the paper “The number of

triangles is more when they have no common vertex” which is co-authored with Gyula

O. H. Katona.
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Chapter 1

Introduction

1.1 Basic notations and definitions

A graph G is a pair of sets V (G) and E(G), where V (G) denotes the set of vertices

and E(G) denotes the set of edges where the edges are sets of two distinct vertices. We

denote the size of these sets by v(G) = |V (G)| and e(G) = |E(G)|. Except when stated

otherwise, we will only allow a pair of vertices to occur as an edge once. Usually an edge

will be written as uv where u and v are vertices. We say that two vertices are adjacent

if they form an edge and that a vertex and an edge are incident if the vertex is in the

edge. Two edges that share a vertex will also be called incident. Given a set S ⊆ V and

an edge e, we say that e is incident with S if e is incident with at least one of the vertices

in S.

We define the neighborhood of v in G to be the set NG(v) := {u ∈ V (G) : vu ∈ E(G)},

and we define the degree of a vertex v in G by dG(v) = |NG(v)|. When the base graph is

clear we simply denote the neighborhood of v as N(v) and the degree of v as d(v). The

maximum degree, denoted by ∆(G), in a graph G is the largest degree among all of the

vertices. The minimum degree, denoted by δ(G), is the smallest possible value of d(v)

among the vertices of V (G).

A graph F is called a subgraph of G if V (F ) ⊆ V (G) and E(F ) ⊆ E(G). We use

notation F ⊂ G to denote that F is a subgraph of G. Given a set S ⊆ V (G), let G[S]

denote the subgraph of G induced on set S. A set S is called independent if the graph

induced by S has no edge. The independence number α(G) is the maximum size of an

independent set in G.

1
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Definition 1.1. A path in a graph is a sequence of distinct vertices v1, v2, . . . , vt+1 such

that vi and vi+1 are adjacent for every i = 1, 2, . . . , t. The vertices x1 and xt+1 are referred

to as terminal vertices, and the remaining vertices are referred to as internal vertices.

Definition 1.2. A graph is connected if for every pair of vertices u, v there is a path

starting from u and ending in v.

Definition 1.3. A biconnected graph is a connected and "nonseparable" graph, mean-

ing that if any one vertex were to be removed, the graph will remain connected.

Definition 1.4. A matching in a graph is a set of disjoint edges.

Definition 1.5. A block is a maximal biconnected subgraph of a given graph G.

Definition 1.6. A cycle is a sequence v1, v2, . . . , vk−1, vk = v1 where vi and vi+1 are

adjacent for i = 1, 2, . . . , k − 1 and vi is distinct from vj for any 1 ≤ i < j ≤ k − 1.

Definition 1.7. A connected graph that does not contain cycles is called a tree.

The k-vertex cycle is denoted Ck and the k-vertex path is denoted Pk. The length of

a path Pk is k−1, the number of edges in it. The complete graph (or clique)on r vertices,

that is, Kr is a graph on r vertices such that every pair of vertices is adjacent, is denoted

by Kr.

Definition 1.8. A graph G is a bipartite graph if V (G) can be partitioned into two

color classes X and Y such that every edge of G contains precisely one vertex of each

class.

We denote by Ks,t the complete bipartite graph with color classes of X and Y , with

|X| = s, |Y | = t and x is adjacent to y for every pair of vertices x ∈ X, y ∈ Y .

1.2 Turán-type problems

Turán-type problems are generally formulated in the following way: one fixes some graph

properties and tries to determine the maximum number of edges in an n-vertex graph

with the prescribed properties. These kinds of extremal problems have a rich history in

combinatorics. Investigation of this type of problems dates back to 1907, when Mantel

[43] determined the maximum possible number of edges in a triangle free graph.

2
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Theorem 1.9 (Mantel [43]). The maximum number of edges in an n-vertex triangle-free

graph is bn2

4
c.

Years later, Turán [51] initated systematic studying of these problems and generalized

Mantel’s result to arbitrary complete graphs.

Definition 1.10. The Turán graph T (n, p) is a complete multipartite graph formed by

partitioning a set of n vertices into p subsets, with sizes as equal as possible, and con-

necting two vertices by an edge if and only if they belong to different subsets. Denote its

size by t(n, p).

Theorem 1.11 (Turán [51]). The maximum number of edges in an n-vertex Kp+1-free

graph is at most t(n, p). Furthermore, T (n, p) is the unique extremal graph.

For simple graphs G and F , we say that G is F -free if G does not contain F as a

subgraph.

Definition 1.12. Given G and a set of graphs F , the Turán number of F is the maximum

number of edges among all F-free subgraphs of a host graph G, that is

ex(G,F):=max

{
|E(H)|: H ⊆ G, H is F -free for every F ∈ F

}
.

In particular, we write ex(n,F) rather than ex(Kn,F) when the host graph is Kn.

The chromatic number of a graph G, denoted by χ(G), is the minimum integer k such

that we can assign colors 1, 2, . . . , k to the vertices of G and have no edge with the same

color on each vertex. Erdős, Stone and Simonovits showed that the asymptotic behavior

of the Turán number of a non-bipartite graph H is determined by χ(H).

Theorem 1.13 (Erdős-Stone-Simonovits [21, 19]). For a graph H with χ(H) ≥ 3, we

have

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).

It is fascinating that this one theorem asymptotically takes care of the huge class of

Turán problems. Since then, the study has been mainly directed to the cases: (i) the

forbidden graph is bipartite and (ii) the exact value of ex(n,H) when H is non-bipartite.

Kővári, Sós and Turán [33] considered the case when the forbidden graph is the com-

plete bipartite graph Ka,b.

3
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Theorem 1.14 (Kővári-Sós-Turán [33]). Let Ka,b denote the complete bipartite graph

with a and b vertices in its color-classes. Then

ex(n,Ka,b) ≤
a
√
b− 1

2
n2− 1

a +
a− 1

2
n.

In the bipartite case, another natural problem is to estimate the Turán number for

even cycles.

Theorem 1.15 (Bondy, Simonovits [9]). For any k ≥ 2, we have

ex(n,C2k) = O(n1+ 1
k ).

For k = 2, 3 and 5, it is proved that the order of magnitude can not be improved. But

generally, whether this bound gives us the correct order of magnitude is still one of the

most intriguing open questions in extremal graph theory.

For a path Pk, Erdős and Gallai [18] proved the following result,

Theorem 1.16 (Erdős-Gallai [18]). For all n ≥ k,

ex(n, Pk+1) ≤
(k − 1)n

2
.

Moreover, equality holds if and only if k divides n and G is the disjoint union of cliques

of size k.

In their paper, the case when all cycles longer than a given length are forbidden, was

also considered.

Theorem 1.17 (Erdős–Gallai [18]). For any n, let C>k (k ≥ 2) denote the family of

cycles of length more than k, then we have

ex(n,C>k) ≤
k(n− 1)

2
.

Moreover, equality holds if and only if when k − 1 divides n − 1 and G is a connected

graph such that each block of G is a clique of size k.

Recent studies of extremal numbers consider the case when the forbidden graph H is

made up of several vertex-disjoint copies of some smaller graph.

4
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Theorem 1.18 (Gorgol [27]). Let G be an arbitrary connected graph on ` vertices, m be

an arbitrary positive integer and n be an integer such that n ≥ m`. Then

max

{
ex(n−m`+ 1, G) +

(
m`− 1

2

)
, ex(n−m+ 1, G) + (m− 1)n−

(
m

2

)}
≤ ex(n,mG)

≤ ex

(
n− (m− 1)`,G

)
+

(
(m− 1)`

2

)
+ (m− 1)`

(
n− (m− 1)`

)
.

Definition 1.19. A linear forest (star forest) is a forest whose connected components

are paths (stars).

Bernard Lidický, Hong Liu and Cory Palmer studied the Turán number of linear

forests and star forests for sufficiently large n.

Theorem 1.20 (Lidický-Liu-Palmer [38]). Let F be a linear forest with components of

order v1, v2, . . . , vk. If at least one vi is not 3, then for n sufficiently large,

ex(n, F ) =

( k∑
i=1

⌊vi
2

⌋
− 1

)(
n−

k∑
i=1

⌊vi
2

⌋
+ 1

)
+

( k∑
i=1

⌊
vi
2

⌋
− 1

2

)
+ c.

where c = 1 if all vi are odd and c = 0 otherwise. Moreover, the extremal graph is

unique.

Theorem 1.21 (Lidický, Liu, Palmer [38]). Let F =
k⋃
i=1

Si be a star forest where di is

the maximum degree of Si and d1 ≥ d2 ≥ . . . ≥ dk. For n sufficiently large,

ex(n, F ) = max
1≤i≤k

{
(i− 1)(n− i+ 1) +

(
i− 1

2

)
+

⌊
di − 1

2
(n− i− 1)

⌋}
.

Another most well-studied host graph has been the complete multi-partite graph. An

old result of Bollobás, Erdős and Szemerédi [8] (also see [7, 5, 47]) showed that

Theorem 1.22 (Bollobás, Erdős and Szemerédi [8]). ex(Kn1,n2,n3 , C3) = n1n2 + n1n3,

for n1 ≥ n2 ≥ n3 ≥ 1.

More recently, extremal problems have been considered where the host graph is taken

to be a planar graph. For a given set of graphs F , let us denote the maximum number

of edges in an n-vertex F -free planar graph by exP(n,F). This topic was initiated by

Dowden in [11] who determined exP(n,C4) and exP(n,C5). A variety of other forbidden

graphs F including stars, wheels and fans were considered by Lan, Shi and Song [36].

5
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The case of theta graphs was considered in Lan, Shi and Song [37], and the case of short

paths was considered by Lan and Shi in [35]. Very recently, Ghosh, Győri, Martin, Paulos

and Xiao [26] solved the case for 6-cycle.

1.3 Anti-Ramsey number

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.

For graphs G and H, the anti-Ramsey number ar(G,H) is the maximum number of colors

in an edge-colored G with no rainbow copy of H. Similarly, when the host graph G is

Kn, we write ar(n,H) rather than ar(Kn, H).

The study of anti-Ramsey theory was initiated by Erdős, Simonovits and Sós [20], they

considered the classical case when the host graph G is Kn. Let H = {H − e, e ∈ E(H)},

in [20] they showed that

Theorem 1.23 (Erdős-Simonovits-Sós [20]).

ar(n,H)− ex(n,H) = o(n2), as n −→∞.

If d = min{χ(G) : G ∈ H} ≥ 3, then by Theorem 1.13 [21], we have ex(n,H) =

d−2
d−1

(
n
2

)
+ o(n2), and Theorem 1.23 yields ar(n,H) = d−2

d−1

(
n
2

)
+ o(n2). This determines

ar(n,H) asymptotically. If d ≤ 2, however, we have ex(n,H) = o(n2), and Theorem 1.23

says little about ar(n,H). Therefore, they proposed studying ar(n,H) for graph H that

contains an edge whose deletion creates a bipartite subgraph, and they put forward two

conjectures about ar(n,H) when H is a path or a cycle.

Conjecture 1.24 (Erdős-Simonovits-Sós [20]).

ar(n,Ck) =

(
k − 2

2
+

1

k − 1

)
n+O(1).

Conjecture 1.25 (Erdős-Simonovits-Sós [20]). Let t be a given integer, ε = 0, 1, and

k = 2t+ 3 + ε. Then

ar(n, Pk) =

{
tn−

(
t+1
2

)
+ 1 + ε, if n ≥ 5t+3+4ε

2
,(

k−2
2

)
+ 1, if k ≤ n ≤ 5t+3+4ε

2
.

Further, the only extremal colorings corresponding to the first case are the following ones:

t vertices x1, x2, . . . , xt ∈ V (Kn) can be choosen so that all the edges of form (xj, y),

6
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j = 1, 2, . . . , t, y ∈ V (Kn), have different colors and the edges of Kn−{x1, x2, . . . , xt} are

colored by one or two (more exactly, by 1 + ε) further colors. The only extremal colorings

corresponding to the second case are the following ones: k − 2 vertices {x1, x2, . . . , xk−2}

can be chosen in Kn so that all the edges (xi, xj) have different colors and all the other

edges have the same extra color.

For cycles, Erdős, Simonovits and Sós [20] showed that ar(n,C3) = n − 1. Alon [1]

proved Conjecture 1.24 for k = 4 by showing that ar(n,C4) =
⌊
4n
3

⌋
− 1. Jiang and West

[31] proved for general k that, ar(n,Ck) ≤
(
k+1
2
− 2
k−1

)
n−(k−2). For even n, they proved

that ar(n,Ck) ≤ k
2
n− (k− 2). It is worth to mention that in this paper, they also proved

that ar

(
n, {Ck, Ck+1, Ck+2}

)
≤
(
k−2
2

+ 1
k−1

)
n− 1. Finally, Montellano-Ballesteros and

Neumann-Lara [45] completely proved Conjecture 1.24.

Theorem 1.26 (Ballesteros-Lara [45]). For all n ≥ k ≥ 3, where n ≡ rk (mod (k − 1)),

0 ≤ rk ≤ k − 2, we have

ar(n,Ck) =

⌊
n

k − 1

⌋(
k − 1

2

)
+

(
rk
2

)
+

⌈
n

k − 1

⌉
− 1.

Simonovits and Sós [50] partially proved the conjecture for paths, showing that

Theorem 1.27 (Simonovits-Sós [50]). There exists a constant c such that if t ≥ 5,

n ≥ ct2, then for ε = 0, 1

ar(n, P2t+3+ε) = tn−
(
t+ 1

2

)
+ 1 + ε.

Axenovich and Jiang [2] initiated the study of the anti-Ramsey numbers for complete

bipartite graphs. They showed for all t ≥ 3 that ar(n,K2,t) =
√
t− 2n

3
2 + O(n

4
3 ) by

proving that ar(n,K2,t)−ex(n,K2,t−1) = O(n). Later on, Axenovich, Jiang and Kündgen

[3] considered the anti-Ramsey numbers of even cycles in complete bipartite graphs and

proved the following result.

Theorem 1.28 (Axenovich- Jiang-Kündgen [3]). For n ≥ m ≥ 1 and k ≥ 2,

ar(Km,n, C2k) =


(k − 1)(m+ n)− 2(k − 1)2 + 1, m ≥ 2k − 1,

(k − 1)n+m− (k − 1), k − 1 ≤ m ≤ 2k − 1,

mn, m ≤ k − 1.

7
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Recently, Fang, Győri, Li and J. Xiao [22] determined the anti-Ramsey number of C3

and C4 in complete r-partite graphs,

Theorem 1.29 (Fang-Győri-Li-J. Xiao [22]). For r ≥ 3 and n1 ≥ n2 ≥ . . . ≥ nr ≥ 1, we

have

ar(Kn1,n2,...,nr , {C3, C4}) = n1 + n2 + · · ·+ nr − 1.

ar(Kn1,n2,...,nr , C3) =

{
n1n2 + n3n4 + · · ·+ nr−2nr−1 + nr + r−1

2
− 1, r is odd;

n1n2 + n3n4 + · · ·+ nr−1nr + r
2
− 1, r is even.

ar(Kn1,n2,...,nr , C4) = n1 + n2 + · · ·+ nr + t− 1, where t = min

{⌊∑r
i=1 ni
3

⌋
,

⌊∑r
i=2 ni
2

⌋
,

r∑
i=3

ni

}
is the maximum number of independent triangles in Kn1,n2,...,nr .

8
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Chapter 2

The Turán number of the square of a
path

2.1 Introduction

Recall that the square P 2
k of Pk is obtained by joining the pairs of vertices with distance

one or two in Pk, see Figure 2.1. The Turán number of a graph H, ex(n,H), is the

maximum number of edges in a graph on n vertices which does not have H as a subgraph.

Denote by EX(n,H) the set of H-free graphs on n vertices with ex(n,H) edges and call

a graph in EX(n,H) an extremal graph for H.

v1 v2 v3 v4 v5 vk−2 vk−1 vk

Figure 2.1: Graph P 2
k .

In this chapter, we focus on calculating the exact values of ex(n, P 2
5 ), ex(n, P 2

6 ) and

determine the structures of the extremal graph for P 2
5 and P 2

6 .

When k = 3, P 2
3 = K3, Mantel Theorem provides the result for ex(n, P 2

3 ).

Theorem 2.1 (Mantel [43]). The maximum number of edges in an n-vertex triangle-free

graph is bn2

4
c, that is ex(n, P 2

3 ) = bn2

4
c. Furthermore, the only triangle-free graph with

bn2

4
c edges is the complete bipartite graph Kbn

2
c,dn

2
e.

The case k = 4 was solved by Dirac in a more general context.

Theorem 2.2 (Dirac [10]). The maximum number of edges in an n-vertex P 2
4 -free graph

is bn2

4
c, that is ex(n, P 2

4 ) = bn2

4
c, (n ≥ 4). Furthermore, when n ≥ 5, the only extremal

9
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graph is the complete bipartite graph Kbn
2
c,dn

2
e.

For k = 5, our results are given in the next two theorems, where we separate the

result for the Turán number and the extremal graphs for P 2
5 .

Theorem 2.3 (Xiao, Katona, Xiao, Zamora [53]). The maximum number of edges in an

n-vertex P 2
5 -free graph is ex(n, P 2

5 ) = bn2+n
4
c, (n ≥ 5).

Definition 2.4. Let Ei
n denote a graph obtained from a complete bipartite graph Ki,n−i

and a maximum matching in the class which has i vertices, see Figure 2.2.

. . .

. . . Y

i

n− i

Ki,n−i

X

Figure 2.2: Graph Ei
n.

Theorem 2.5 (Xiao, Katona, Xiao, Zamora [53]). Let n be a natural number. When

n = 5, the extremal graphs for P 2
5 are E2

5 , E3
5 and K4 with a pendent edge. When

n ≥ 6, if n ≡ 1, 2 (mod 4), the extremal graphs for P 2
5 are Ed

n
2
e

n and Eb
n
2
c

n , otherwise,

the extremal graph for P 2
5 is Ed

n
2
e

n .

Definition 2.6. Let T denote the flattened tetrahedron, see T in Figure 2.3.

Although the determination of ex(n, T ) is not within the main lines of the thesis, we

need the exact value of ex(n, T ) in order to determine ex(n, P 2
6 ).

Theorem 2.7 (Xiao, Katona, Xiao, Zamora [53]). The maximum number of edges in an

n-vertex T -free graph (n 6= 5) is

ex(n, T ) =


⌊
n2

4

⌋
+
⌊n

2

⌋
, n 6≡ 2 (mod 4),

n2

4
+
n

2
− 1, n ≡ 2 (mod 4).
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a

fd e

cb

T

· · ·

· · · Y

i

n− i

Ki,n−i

X

T in

. . .

. . . Y

Ki,n−i

i

n− i

X

Sin

Figure 2.3: Graphs T , T in and Sin.

Definition 2.8. Let T in denote a graph obtained from a complete bipartite graph Ki,n−i

plus a maximum matching in the class X which has i vertices and a maximum matching

in the class Y which has n − i vertices, see Figure 2.3. Let Sin denote a graph obtained

from Ki,n−i plus an i-vertex star in the class X, see Figure 2.3.

Theorem 2.9 (Xiao, Katona, Xiao, Zamora [53]). Let n (n 6= 5, 6) be a natural number,

when n ≡ 0 (mod 4), the extremal graph for T is T
n
2
n ,

when n ≡ 1 (mod 4), the extremal graphs for T are T d
n
2
e

n and Sd
n
2
e

n ,

when n ≡ 2 (mod 4), the extremal graphs for T are T
n
2
n , T

n
2
+1

n and S
n
2
n ,

when n ≡ 3 (mod 4), the extremal graphs for T are T d
n
2
e

n and Sd
n
2
e

n .

Theorems 2.7 and 2.9 were known for sufficiently large n′s [39], here we are able to

determine the value for small n′s.

Using Theorems 2.7 and 2.9, we are able to prove the next two results for P 2
6 .

Theorem 2.10 (Xiao, Katona, Xiao, Zamora [53]). The maximum number of edges in

an n-vertex P 2
6 -free graph (n 6= 5) is:

ex(n, P 2
6 ) =


⌊
n2

4

⌋
+

⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈n

2

⌉
, otherwise .

Definition 2.11. Suppose 3 - n, and 1 ≤ j ≤ i. Let F i,j
n be the graph obtained by adding

vertex disjoint triangles (possibly 0) and one star with j vertices in the class X of size i

of Ki,n−i, see Figure 2.4 (of course, 3 | (i − j) is supposed). On the other hand, if 3 | i

then add i
3
vertex disjoint triangles in the class X of size i. The so obtained graph is

denoted by H i
n, see Figure 2.4.

11

C
E

U
eT

D
C

ol
le

ct
io

n



· · ·· · ·

. . . Y

i

n− i

Ki,n−i

X

F i,j
n

· · ·

· · · Yn− i

i

Ki,n−i

X

H i
n

Figure 2.4: Graphs F i,j
n and H i

n.

Theorem 2.12 (Xiao, Katona, Xiao, Zamora [53]). Let n ≥ 6 be a natural number. The

extremal graphs for P 2
6 are the following ones.

When n ≡ 1 (mod 6) then F d
n
2
e,j

n and Hb
n
2
c

n ,

when n ≡ 2 (mod 6) then F
n
2
,j

n and F
n
2
+1,j

n ,

when n ≡ 3 (mod 6) then F d
n
2
e,j

n and Hd
n
2
e+1

n ,

when n ≡ 0, 4, 5 (mod 6) then H
n
2
n , H

n
2
+1

n and Hd
n
2
e

n , respectively. (j can have all the

values satisfying the conditions j ≤ i and 3 | (i− j)).

The rest of this section is organized as follows: In Section 2.2, we give a short proof of

Theorems 2.3 and 2.5. In Section 2.3, we give a short proof of Theorems 2.7 and 2.9. In

Section 2.4, we give the proofs of Theorems 2.10 and 2.12 based on the results in Section

2.3.

2.2 The Turán number and the extremal graphs for P 2
5

The following proof appears in our paper [53] that is co-authored with Katona, Xiao and

Zamora.

Proof of Theorem 2.3. The fact that ex(n, P 2
5 ) ≥

⌊
n2+n

4

⌋
follows from the construction

E
dn2 e
n .

We prove the inequality

ex(n, P 2
5 ) ≤

⌊
n2 + n

4

⌋
(n ≥ 5) (2.1)

by induction on n.

We check the base cases first. Since our induction step will go from n − 4 to n, we

have to find a base case in each residue class mod 4.
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Let G be an n-vertex P 2
5 -free graph. When n ≤ 3, Kn is the graph with the most

number of edges and does not contain P 2
5 , e(Kn) ≤

⌊
n2+n

4

⌋
. This settles the cases

n = 1, 2, 3. However, when n = 4, e(K4) = 6 > b42+4
4
c, the statement is not true. Then

we prove that the statement is true for n = 8. If P 2
4 * G, e(G) ≤ b82

4
c. If P 2

4 ⊆ G

and K4 * G, each vertex v ∈ V (G − P 2
4 ) can be adjacent to at most 2 vertices of the

copy of P 2
4 , since e(G − P 2

4 ) ≤ 5, we have e(G) ≤ 5 + 8 + 5 ≤ 18 = b82+8
4
c. If K4 ⊆ G,

then each vertex v ∈ V (G−K4) can be adjacent to at most one vertex of the K4, since

e(G− P 2
4 ) ≤ 6, we have e(G) ≤ 16.

Suppose (2.1) holds for all k ≤ n− 1, the proof is divided into 3 parts,

Case 1. If P 2
4 * G, then by Theorem 2.2, e(G) ≤ bn2

4
c.

Case 2. If P 2
4 ⊆ G and K4 * G, then each vertex v ∈ V (G−P 2

4 ) can be adjacent to

at most 2 vertices of the copy of P 2
4 , otherwise, P 2

5 ⊆ G. Since G−P 2
4 is an (n−4)-vertex

P 2
5 -free graph, we have

e(G) ≤ 5 + 2(n− 4) + e(G− P 2
4 ) ≤ 2n− 3 + ex(n− 4, P 2

5 ).

By the induction hypothesis, ex(n− 4, P 2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
then

e(G) ≤ 2n− 3 + ex(n− 4, P 2
5 ) ≤ 2n− 3 +

⌊
(n− 4)2 + n− 4

4

⌋
=

⌊
n2 + n

4

⌋
(n ≥ 5).(2.2)

Case 3. If K4 ⊆ G, then each vertex v ∈ V (G−K4) can be adjacent to at most one

vertex of the K4, otherwise, P 2
5 ⊆ G. Since G −K4 is an (n − 4)-vertex P 2

5 -free graph,

we have

e(G) ≤ 6 + (n− 4) + e(G−K4) ≤ n+ 2 + ex(n− 4, P 2
5 ).

By the induction hypothesis, ex(n− 4, P 2
5 ) ≤

⌊
(n−4)2+n−4

4

⌋
, thus

e(G) ≤ n+ 2 +

⌊
(n− 4)2 + n− 4

4

⌋
= 5 +

⌊
n2 − 3n

4

⌋
≤
⌊
n2 + n

4

⌋
(n ≥ 5). (2.3)

Proof of Theorem 2.5. We determine the extremal graphs for P 2
5 by induction on n. Let

G be an n-vertex P 2
5 -free graph satisfying (2.1) with equality. It is easy to check, when

n = 5, that the extremal graphs for P 2
5 are K4 with a pendent edge, E2

5 and E3
5 . When

n = 6, 7, 8, the extremal graphs for P 2
5 are E3

6 and E4
6 , E4

7 , E4
8 , respectively.

Suppose Theorem 2.5 is true for k ≤ n− 1, when n ≥ 9. The proof is divided into 3

parts.
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Case 1. If P 2
4 * G, the equality in (2.1) cannot hold, then we cannot find any

extremal graph for P 2
5 in this case.

Case 2. If P 2
4 ⊆ G and K4 * G, the equality holds in inequality (2.2) if and only if

each vertex v ∈ V (G−P 2
4 ) is adjacent to 2 vertices of the P 2

4 and G−P 2
4 is an extremal

graph on n − 4 vertices for P 2
5 . Let a, b, c and d be four vertices of a copy of P 2

4 ,

dP 2
4
(b) = dP 2

4
(c) = 3. By the induction hypothesis, G − P 2

4 is obtained from a complete

bipartite graph Ki,n−4−i plus a maximum matching in X ′ , where X ′ is the class of G−P 2
4

with size i. It is easy to check that every vertex v ∈ V (G−P 2
4 ) can be adjacent to either

a and d or b and c.

Since |V (G − P 2
4 )|≥ 5, we have |V (X ′)|≥ 2. The endpoints of an edge in G − P 2

4

cannot be both adjacent to b and c, otherwise, they form a K4. Also, the endpoints of an

edge in G−P 2
4 which have one end vertex as a matched vertex in X ′ and one end vertex

in Y ′ can be both adjacent to none of {a, b, c} and d, otherwise, these would create a P 2
5 .

If there exists a matched vertex v ∈ X ′ which is adjacent to b and c, then all vertices

w ∈ N(v) should be adjacent to a and d, these form a P 2
5 . Hence, it is only possible that

all matched vertices in X ′ are adjacent to both a and d, all vertices in Y ′ are adjacent

to b and c. When there exists an unmatched vertex v0 ∈ X
′ , since N(v0) = Y

′ , if v0 is

adjacent to b and c, we have P 2
5 ⊆ G. Thus G is obtained from a complete bipartite graph

Ki+2,n−i−2 plus a maximum matching in X, where X = X
′ ∪ {b, c} and Y = Y

′ ∪ a ∪ d.

Therefore, if G− P 2
4 is Ed

n−4
2
e

n−4 then G is Ed
n
2
e

n , if Eb
n−4
2
c

n−4 then G is Eb
n
2
c

n .

Case 3. If K4 ⊆ G, the inequality in (2.3) can be equality only when n = 5 and the

vertex v ∈ V (G−K4) is adjacent to one vertex of the K4, then G is K4 with a pendent

edge.

2.3 The Turán number and the extremal graphs for T

To prove Theorem 2.7, we need the following lemmas.

Lemma 2.13 (Xiao, Katona, Xiao, Zamora [53]). Let G be an n-vertex T -free nonempty

graph such that for each edge {x, y} ∈ E(G), d(x) + d(y) ≥ n + 2 holds, then we have

K4 ⊆ G.

Proof. From the condition we know that each edge belongs to at least two triangles. Let
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abc and bcd be two triangles, if a is adjacent to d then a, b, c and d induce a K4, if not,

since edge {b, d} is contained in at least two triangles, there exists at least one vertex e

such that bde is a triangle. Similarly, edge {c, d} is also contained in at least two triangles,

then, either there exists a vertex f which is adjacent to c and d, this implies that vertices

a, b, c, d, e and f induce a T , or c is adjacent to e, this implies that vertices b, c, d and e

induce a K4.

Lemma 2.14 (Xiao, Katona, Xiao, Zamora [53]). Let G be an n-vertex (n ≥ 7) T -free

graph and K4 ⊆ G, then e(G) ≤ 2n− 2 + ex(n− 4, T ). For n ≥ 8, the equality might hold

only if each vertex v ∈ V (G−K4) is adjacent to 2 vertices of the K4.

Proof. If there exists vertex v ∈ V (G−K4), such that v is adjacent to at least 3 vertices

of the K4, it is simple to check that every other vertex u ∈ V (G−K4) can be adjacent to

at most one vertex of the K4, otherwise T ⊆ G, then e(G) ≤ 6+4+(n−5)+e(G−K4) ≤

n + 5 + ex(n − 4, T ). If not, each vertex in G −K4 is adjacent to at most 2 vertices of

the K4, then e(G) ≤ 6 + 2(n − 4) + e(G −K4) ≤ 2n − 2 + ex(n − 4, T ). When n ≥ 8,

e(G) ≤ 2n − 2 + ex(n − 4, T ), the equality holds only if each vertex v ∈ V (G − K4) is

adjacent to 2 vertices of the K4.

Proof of Theorem 2.7. Let

fT (n) =


⌊
n2

4

⌋
+
⌊n

2

⌋
, n 6≡ 2 (mod 4),

n2

4
+
n

2
− 1, n ≡ 2 (mod 4).

The fact that ex(n, T ) ≥ fT (n) follows from the construction T d
n
2 e

n . Next, we prove

the inequality

ex(n, T ) ≤ fT (n) (2.4)

by induction on n.

Let G be an n-vertex T -free graph. First, we prove the induction steps. Second, we

will prove the base cases which are needed to complete the induction.

Suppose (2.4) holds for all l ≤ n − 1. The proof is divided into 4 cases where we

assume k ≥ 2.
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Case 1. When n = 4k, we divide the proof of ex(4k, T ) ≤ fT (4k) = 4k2 + 2k into 2

subcases. Let G be a 4k-vertex T -free graph.

(i) If δ(G) ≤ 2k + 1, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k − 1, T ) = 4k2 − 1, we get

e(G) ≤ ex(4k − 1, T ) + 2k + 1 ≤ 4k2 − 1 + 2k + 1 = fT (4k). (2.5)

(ii) If δ(G) ≥ 2k+2, then for each edge {u, v} ∈ E(G), d(u)+d(v) ≥ 4k+4. By Lemmas

2.13 and 2.14 and the induction hypothesis ex(4k − 4, T ) = 4(k − 1)2 + 2(k − 1), we get

e(G) ≤ 2n− 2 + ex(4k − 4, T ) = 8k − 2 + 4(k − 1)2 + 2(k − 1) = fT (4k). (2.6)

Therefore, ex(4k, T ) ≤ fT (4k).

Case 2. When n = 4k+1, we divide the proof of ex(4k+1, T ) ≤ fT (4k+1) = 4k2+4k

into 3 subcases. Let G be a (4k + 1)-vertex T -free graph.

(i) If δ(G) ≤ 2k, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k, T ) = 4k2 + 2k, we have

e(G) ≤ ex(4k, T ) + 2k ≤ fT (4k + 1). (2.7)

Now, we assume that in the following two cases δ(G) ≥ 2k + 1. Then for any pair of

vertices {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 2 holds.

(ii) Suppose that there exists an edge {u, v} ∈ E(G), such that d(u) + d(v) = 4k + 2.

This implies that u and v have at least one common neighbor. Deleting {u, v} we can

use the induction hypothesis ex(4k − 1, T ) = 4k2 − 1. Then

e(G) ≤ 4k + 1 + ex(4k − 1, T ) = fT (4k + 1). (2.8)

(iii) For each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k+ 3 holds. By Lemmas 2.13 and 2.14

and the induction hypothesis ex(4k − 3, T ) = 4(k − 1)2 + 4(k − 1) we get

e(G) ≤ 2n− 2 + ex(4k − 3, T ) = 8k + 4(k − 1)2 + 4(k − 1) = fT (4k + 1). (2.9)

Therefore, ex(4k + 1, T ) ≤ fT (4k + 1).

Case 3. When n = 4k + 2, we divide the proof of ex(4k + 2, T ) ≤ fT (4k + 2) =

4k2 + 6k + 1 into 2 subcases. Let G be a (4k + 2)-vertex T -free graph.

(i) If δ(G) ≤ 2k + 1, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k + 1, T ) = 4k2 + 4k, we get
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e(G) ≤ ex(4k + 1, T ) + 2k + 1 ≤ 4k2 + 6k + 1 = fT (4k + 2). (2.10)

(ii) If δ(G) ≥ 2k+2, then for each edge {u, v} ∈ E(G), d(u)+d(v) ≥ 4k+4. By Lemmas

2.13 and 2.14 and the induction hypothesis ex(4k − 2, T ) = 4(k − 1)2 + 6(k − 1) + 1, we

get

e(G) ≤ 2n− 2 + ex(4k − 2, T ) = 8k + 2 + 4(k − 1)2 + 6(k − 1) + 1 = fT (4k + 2).(2.11)

Therefore, ex(4k + 2, T ) ≤ fT (4k + 2).

Case 4. When n = 4k + 3, we divide the proof of ex(4k + 3, T ) ≤ fT (4k + 3) =

4k2 + 8k + 3 into 2 subcases. Let G be a (4k + 3)-vertex T -free graph.

(i) If δ(G) ≤ 2k + 2, after removing a vertex of minimum degree and by the induction

hypothesis ex(4k + 2, T ) = 4k2 + 6k + 1, we get

e(G) ≤ ex(4k + 2, T ) + 2k + 2 ≤ 4k2 + 8k + 3 = fT (4k + 3). (2.12)

(ii). If δ(G) ≥ 2k+3, then for each edge {u, v} ∈ E(G), d(u)+d(v) ≥ 4k+6. By Lemmas

2.13 and 2.14 and the induction hypothesis ex(4k − 1, T ) = 4(k − 1)2 + 8(k − 1) + 3, we

get

e(G) ≤ 2n− 2 + ex(4k − 1, T ) = 8k + 4 + 4(k − 1)2 + 8(k − 1) + 3 = fT (4k + 3).(2.13)

Therefore, ex(4k + 3, T ) ≤ fT (4k + 3).

Now we prove the base cases which are needed to complete the induction steps. Since

our induction steps will go from n− 1 to n, n− 2 to n and n− 4 to n, we will require to

show the statement is true for cases when n = 3, 4, 6 and 9.

When n ≤ 4, Kn is the graph with the most number of edges, and e(Kn) = fT (n).

When n = 5, e(K5) = 10 > fT (5), the statement is not true, but we will see that the

statement is true for n = 9.

When n = 6, let v be a vertex with minimum degree. If δ(G) = 1, since e(G−v) ≤ 10,

we get e(G) ≤ 11. If δ(G) = 2 and e(G) = 12, then the only possibility is that G − v

is K5, but then T ⊆ G, and we have e(G) ≤ 11. Suppose now δ(G) ≥ 3. If K4 ⊆ G

and there exists a vertex u ∈ V (G −K4) which is adjacent to at least 3 vertices of the

copy of K4, then w ∈ V (G −K4 − u) can be adjacent to at most one vertex of the K4,

otherwise, T ⊆ G. This contradicts δ(G) ≥ 3. Then in this case it is only possible that
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{u,w} ∈ E(G) and both u and w are adjacent to 2 vertices of the K4 which implies that

e(G) ≤ 11. If K4 * G, then by Turán’s Theorem, we have e(G) ≤ 12 and the Turán

graph T (6, 3) is the unique K4-free graph which has 12 edges, however, T ⊆ T (6, 3), then

e(G) ≤ 11 = fT (6). Summarizing: e(G) ≤ 11 ≤ fT (6).

When n = 9, suppose first that there exists a pair of vertices {u, v} ∈ E(G), such that

d(u) + d(v) ≤ 10. Deleting {u, v} and using ex(7, T ) = 15, we get e(G) ≤ 9 + 15 = 24 =

fT (9). If for each pair of vertices {u, v} ∈ E(G), d(u) + d(v) ≥ 11 holds, by Lemma 2.13,

we obtain K4 ⊆ G. Let G′ denote the graph G −K4. If e(G′) ≤ 8, since the number of

edges between K4 and G′ is at most 10, we have e(G) ≤ 6 + 10 + 8 = 24. If e(G′) ≥ 9,

then K4 ⊆ G
′ and the vertex w ∈ G′ −K4 is adjacent to at least 3 vertices of the copy

of K4 in G
′ . This implies that each vertex from G − G′ can be adjacent to at most 1

vertex of G′ − w, then the number of edges between G−G′ and G′ is at most 8, we can

conclude that, e(G) ≤ 6 + 8 + 10 = 24, e(G) ≤ 24 = fT (9).

It is easy to see that the case n = 7 can be proved using n = 3 and n = 6 (Case

4). Similarly, the case n = 8 follows by n = 7 and n = 4 (Case 1). Hence the cases

n = 6, 7, 8, 9 are settled forming a good basis for the induction.

Now, we determine the extremal graphs for T .

Proof of Theorem 2.9. Similarly to the proof of Theorem 2.7, we prove first the induction

steps and in the end we will prove the base cases which are needed to complete the

induction.

Suppose that the extremal graphs for T are as shown in Theorem 2.7 for l ≤ n − 1.

In the following cases, we will assume that k ≥ 2.

Let G be an n-vertex T -free graph with e(G) = fT (n). The proof is divided into 4

cases following the steps of the proof of Theorem 2.7.

Case 1. When n = 4k, fT (n) = 4k2 + 2k.

(i) If δ(G) ≤ 2k + 1, the equality in (2.5) holds only when there exists a v ∈ V (G),

such that d(v) = δ(G) = 2k+ 1 and G− v is an extremal graph for T on 4k− 1 vertices.

By the induction hypothesis, G − v can be either T 2k
4k−1 or S2k

4k−1. Let X ′ and Y ′ be the

classes in G− v with size 2k and 2k − 1, respectively.

When G − v is T 2k
4k−1, it can be easily checked that v cannot be adjacent to the
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two endpoints of an edge which have two matched vertices located in different classes,

otherwise, T ⊆ G, see Figure 2.5. Let w be the unmatched vertex in Y ′ . Since d(v) =

2k + 1, N(v) must contain the unmatched vertex w ∈ Y
′ , then the only way to avoid

T ⊆ G is choosing N(v) = w ∪X ′ . Consequently, G = T 2k
4k holds.

x3 x2 x1

y2 y1 v

· · ·

· · ·

X ′

K2k,2k−1

Y ′

x2

vx3 y1

x1y2

Figure 2.5

When G − v is S2k
4k−1, let x1 denote the center of the star in X ′ . If v is adjacent to

the two endpoints of the edge {xi, yj} (xi ∈ X ′, yi ∈ Y ′, 2 ≤ i ≤ 2k, 1 ≤ j ≤ 2k − 1),

then T ⊆ G (see Figure 2.6). We obtained a contradiction. But d(v) = 2k + 1 implies

that this is always the case.

x2k x3 x2

x1

vy2 y1

· · ·

· · ·

X ′

K2k,2k−1

Y ′

v

x3y2 x1

y1x2

Figure 2.6

(ii) If δ(G) ≥ 2k + 2, this implies that e(G) ≥ 2k(2k + 2) = 4k2 + 4k, which

contradicts the fact that ex(4k, T ) = 4k2 + 2k.

That is, G can only be T
n
2
n .

Case 2. When n = 4k + 1, fT (n) = 4k2 + 4k.

(i) If δ(G) ≤ 2k, the equality in (2.7) holds only if there exists v ∈ V (G), such that

d(v) = δ(G) = 2k and G− v is an extremal graph for T on 4k vertices. By the induction

hypothesis, G−v is T 2k
4k . All neighbors of v should be located in the same class, otherwise,

T ⊆ G, we get that G is T 2k+1
4k+1 , that is T

dn
2
e

n .
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If δ(G) ≥ 2k + 1, then for any pair of vertices {u, v} ∈ V (G), d(u) + d(v) ≥ 4k + 2.

Here we distinguishing two subcases.

(ii) Suppose that there exists an edge {u, v} ∈ E(G) such that d(u) + d(v) = 4k+ 2.

The equality in (2.8) holds only if when d(u) = d(v) = 2k+1 and G−u−v is an extremal

graph for T on 4k−1 vertices. By the induction hypothesis, G−u−v can be either T 2k
4k−1

or S2k
4k−1. Let X

′ and Y ′ be the classes in G−u− v with size 2k and 2k− 1, respectively.

When G− u− v is T 2k
4k−1, as in the previous case, neither u nor v can be adjacent to

the two endpoints of an edge which have two matched vertices located in different classes,

see Figure 2.5. If N(u)−v 6= X
′ , then u is adjacent to the unmatched vertex w in Y ′ and

the other 2k− 1 neighbors of u are all located in X ′ , say, N(u)− v−w = {x1, . . . x2k−1}

and {x2k−1, x2k} ∈ E(X ′), otherwise, T ⊆ G. Since |X ′|≥ 4, in this case, v cannot be

adjacent to xi (1 ≤ i ≤ 2k − 2), otherwise, T ⊆ G, see Figure 2.7. Now v should choose

2k neighbors among the rest 2k + 1 vertices in V (G − u − v −
2k−2⋃
i=1

xi), which implies

that v is adjacent to the two endpoints of an edge which have two matched vertices

locate in different classes as endpoints, then T ⊆ G. Hence, N(u) − v = X
′ , similarly,

N(v)− u = X
′ . Thus, G is T 2k+1

4k+1 = T 2k
4k+1, that is T

dn
2
e

n .

x2k

x2k−1
x2 x1

w u

v

· · ·

· · ·

X ′

K2k,2k−1

Y ′

x2k−1

vx2 x1

uw

Figure 2.7

Let us now consider the case when G − u − v is S2k
4k−1. Let x1 denote the center

of the star in X
′ . If u is adjacent to the two endpoints of the edge {xi, yj} (2 ≤ i ≤

2k, 1 ≤ j ≤ 2k − 1), then T ⊆ G. Thus, there are only two possibilities for T * G:

N(u)− v = X
′ or N(u)− v = Y

′ ∪ x1. The same holds for v and it is easy to check that

if N(u)− v = N(v)− u, then T ⊆ G. From the above, the only possibility for T * G is

that when N(u)− v = X
′ and N(v)− u = Y

′ ∪ x1 or in the another way around, which

implies that G is S2k+1
4k+1 , that is S

dn
2
e

n .

(iii) Suppose that for each edge {u, v} ∈ E(G), d(u) + d(v) ≥ 4k + 3 holds. Let
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d(v) = δ(G), then either d(v) = 2k+ 1 or d(v) ≥ 2k+ 2, but in both cases, each neighbor

of v has degree at least 2k + 2. Then all 4k + 1 vertices have degree at least 2k + 1,

but 2k + 1 of them, which are the neighbors of v, have degree at least one larger. This

implies that e(G) ≥ (4k+1)(2k+1)+2k+1
2

= 4k2 + 4k + 1, which contradicts the fact that

ex(4k + 1, T ) = 4k2 + 4k.

That is, G can be either T d
n
2
e

n or Sd
n
2
e

n .

Case 3. When n = 4k + 2 we have fT (n) = 4k2 + 6k + 1.

(i) If δ(G) ≤ 2k + 1, the equality holds in (2.10) only if there exists v ∈ V (G), such

that d(v) = δ(G) = 2k + 1 and G− v is an extremal graph for T on 4k + 1 vertices. By

the induction hypothesis, G− v can be either T 2k+1
4k+1 or S2k+1

4k+1 .

Suppose first that G − v is T 2k+1
4k+1 . Let X ′ any Y ′ be the classes in G − v with size

2k+ 1 and 2k, w be the unmatched vertex in X ′ . The vertex v cannot be adjacent to the

two endpoints of an edge which have two matched vertices located in different classes.

Since d(v) = 2k+ 1, there are two possibilities to avoid T : N(v) = X
′ or N(v) = Y

′ ∪w,

which implies that G is either T 2k+1
4k+2 or T 2k+2

4k+2 , that is T
n
2
n or T

n
2
+1

n .

When G − v is S2k+1
4k+1 . Let X ′ be the class in G − v which contains a star and Y

′

be the other class of the G − v. Also, let x1 denote the center of the star in X ′ . Since,

d(v) = 2k + 1 and v cannot be adjacent to the two endpoints of an edge which is not

incident with x1, we get either N(v) = Y
′ ∪ x1 or N(v) = X

′ . If N(v) = X
′ , G is S2k+1

4k+2 ,

that is S
n
2
n . If N(v) = Y

′ ∪ x1, G is S2k+2
4k+2 , that is S

n
2
+1

n . It is easy to see that S
n
2
+1

n is

isomorphic to S
n
2
n .

(ii) If δ(G) ≥ 2k + 2, then e(G) ≥ (k + 1)(4k + 2) = 4k2 + 6k + 2, which contradicts

the fact that ex(4k + 2, T ) = 4k2 + 6k + 1.

Therefore, G can be T
n
2
n , T

n
2
+1

n or S
n
2
n .

Case 4. When n = 4k + 3 we have fT (n) = 4k2 + 8k + 3.

(i) If δ(G) ≤ 2k + 2, the equality holds in (2.12) only if there exists v ∈ V (G), such

that d(v) = δ(G) = 2k + 2 and G− v is an extremal graph for T on 4k + 2 vertices. By

the induction hypothesis, G− v can be T 2k+1
4k+2 , T

2k+2
4k+2 or S2k+1

4k+2 .

When G−v is T 2k+1
4k+2 or T 2k+2

4k+2 , similarly to Case 1 (i), G can only be T 2k+2
4k+3 , that is T

dn2 e
n .

When G− v is S2k+1
4k+2 , similarly to Case 2 (ii), G can only be S2k+2

4k+3 , that is S
dn2 e
n .

(ii) If δ(G) ≥ 2k + 3, then e(G) ≥ (2k+3)(4k+3)
2

> 4k2 + 9k + 4 > 4k2 + 8k + 3, which
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contradicts the fact that ex(4k + 3, T ) = 4k2 + 8k + 3.

Therefore, in this case, G is either T d
n
2 e

n or Sd
n
2 e

n .

Now we check the base cases which are needed to complete the induction.

When n = 4, ex(4, T ) = 6, K4 is the extremal graph which has the maximum number

of edges on 4 vertices that does not contain T as a subgraph.

Although the Theorem does not hold for n = 6, we determine the extremal graphs in

this case because it will help us to determine them for some other n’s.

When n = 6, ex(6, T ) = 11. It follows from the proof of Theorem 2.7, when δ(G) = 1,

the only extremal graph for T is as shown in Figure 2.8(a). When δ(G) = 2, the only

extremal graph for T is as shown in Figure 2.8(b). Since δ(G) ≥ 4 implies e(G) ≥ 12,

this is not possible. The only remaining case is δ(G) = 3. When δ(G) = 3 and K4 ⊆ G,

by case analysis we obtain that the extremal graphs for T can be Figure 2.8(c) and

Figure 2.8(d), which are T 3
6 and T 4

6 . Suppose now that δ(G) = 3 and K4 * G. Let

d(v) = δ(G) = 3, then e(G − v) = 8, the only possibility is that G − v is T (5, 3). It is

easy to check that G can only be S3
6 , see Figure 2.8(e).

(a) (b) (c) (d) (e)

Figure 2.8: Extremal graphs for T when n = 6.

T 3
6 (a) T 4

6 (a)

S3
6 (b)

Figure 2.9: Extremal graphs for T when n = 7.
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Suppose now that n = 7, ex(7, T ) = 15. It is not possible that δ(G) ≤ 3, otherwise,

e(G) ≤ 3 + ex(6, T ) = 14. Also, it is not possible that δ(G) ≥ 5, otherwise, e(G) > 17.

Both are contradict with e(G) = 15. Let d(v) = δ(G), the only possibility is that δ(G) = 4

and G−v is a 6-vertex T -free graph. Since d(v) = 4, we have δ(G−v) ≥ 3, which implies

that structures (a) and (b) in Figure 2.8 are not possible. If G − v is T 3
6 or T 4

6 , then G

can only be (a) in Figure 2.9, that is T 4
7 . If G− v is S3

6 , then G can only be (b) in Figure

2.9, that is S4
7 .

Because case n = 8 needs only the case n = 7 (Case 1), case n = 9 needs cases n = 7

and n = 8 (Case 2). These base cases complete the proof.

We will need the following statement later. It shows that the "second best" graphs

can be also well described if 4|n.

Proposition 2.15 (Xiao, Katona, Xiao, Zamora [53]). Let n (n ≥ 8) be a natural number

such that 4|n and G be an n-vertex T -free graph with n2

4
+ n

2
− 1 edges, then G can only

be T
n
2
n minus an edge, S

n
2
n or S

n
2
+1

n .

Proof. We can suppose that δ(G) ≤ n
2
, otherwise, e(G) ≥ n2

4
+ n

2
. Let v ∈ V (G) and

d(v) = δ(G), then e(G) ≤ d(v) + ex(n − 1, T ) ≤ n2

4
+ n

2
− 1, the equality holds only

if d(v) = n
2
and G − v is either T d

n−1
2 e

n−1 or Sd
n−1
2 e

n−1 . When G − v is T d
n−1
2 e

n−1 , let w be

the unmatched vertex in Y
′ and X

′
= {x1, . . . , xdn−1

2 e}, X
′ and Y

′ be the classes of

G− v with size
⌈
n−1
2

⌉
and

⌊
n−1
2

⌋
, respectively. Since d(v) = n

2
and v cannot be adjacent

to the two endpoints of an edge which have two matched vertices located in different

classes, no matter N(v) = X
′ or N(v) = X

′ − xi ∪ w (1 ≤ i ≤
⌈
n−1
2

⌉
), G is T

n
2
n minus

an edge in both cases. When G − v is Sd
n−1
2 e

n−1 , let x1 be the center of the star in X ′,

X
′
= {x1, . . . , xdn−1

2 e} and Y
′
= {y1, . . . , ybn−1

2 c} be the classes of G− v with size
⌈
n−1
2

⌉
and

⌊
n−1
2

⌋
, respectively. Since v cannot be adjacent to the two endpoints of the edge

{xi, yi} (2 ≤ i ≤
⌈
n−1
2

⌉
, 1 ≤ j ≤

⌊
n−1
2

⌋
) and d(v) = n

2
, which implies that N(v) = x1∪Y

′

or N(v) = X
′ . Therefore, G can be either S

n
2
n or S

n
2
+1

n .

23

C
E

U
eT

D
C

ol
le

ct
io

n



2.4 The Turán number and the extremal graphs for P 2
6

Proof of Theorem 2.10. Let

fP 2
6
(n) =


⌊
n2

4

⌋
+

⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈n

2

⌉
, otherwise.

The fact that ex(n, P 2
6 ) ≥

⌊
n2

4

⌋
+
⌈
n
2

⌉
, when n ≡ 0, 4, 5 (mod 6), follows from the con-

structions H
n
2
n , H

n
2
+1

n and H
dn
2
e

n , respectively. The fact that ex(n, P 2
6 ) ≥

⌊
n2

4

⌋
+
⌊
n−1
2

⌋
,

when n ≡ 1, 2, 3 (mod 6), follows from the constructions F d
n
2
e,j

n .

It remains to prove the inequality

ex(n, P 2
6 ) ≤ fP 2

6
(n) (2.14)

by induction on n.

Let G be an n-vertex P 2
6 -free graph. Since our induction step will go from n− 6 to n,

we have to find a base case in each residue class mod 6.

When n ≤ 4, Kn is the graph with the most number of edges and e(Kn) = fP 2
6
(n).

When n = 6, if P 2
5 * G, by Theorem 2.3, e(G) ≤

⌊
52+5
4

⌋
= 7 < fP 2

6
(6). If P 2

5 ⊆ G,

K5 * G and e(G) ≥ 13, it can be checked that the vertex v ∈ V (G−P 2
5 ) can be adjacent

to at most 3 vertices of the copy of P 2
5 , otherwise P 2

6 ⊆ G, in this case, d(v) ≥ 13− 9 = 4

then P 2
6 ⊆ G. If K5 ⊆ G, the vertex v ∈ V (G−K5) is adjacent to at most one vertex of

the K5, otherwise, P 2
6 ⊆ G. Therefore, e(G) ≤ 11 < fP 2

6
(6).

When n = 5, since e(K5) = 10 > fP 2
6
(5), the statement is not true, then we prove that

the statement is true for n = 11. If P 2
5 * G, by Theorem 2.3, e(G) ≤

⌊
112+11

4

⌋
< fP 2

6
(11).

If P 2
5 ⊆ G, first suppose that the graph spanned by the vertices of the copy of P 2

5 have at

most 8 edges. It can be checked that every triangle can be adjacent to at most 7 edges of

the P 2
5 , otherwise, P 2

6 ⊆ G. When there exists a triangle as subgraph in G− V (P 2
5 ), we

get e(G) ≤ 8 + 7 + 9 + ex(6, P 2
6 ) = 36 = fP 2

6
(6). If not, e(G) ≤ 8 + 18 + 9 = 35 < fP 2

6
(6).

If K−5 ⊆ G (K5 minus an edge) then each vertex v ∈ V (G−K−5 ) is adjacent to at most

2 vertices of K−5 . We get e(G) ≤ 9 + 12 + ex(6, P 2
6 ) = 33 < fP 2

6
(6). If K5 ⊆ G then each

vertex v ∈ V (G − P 2
5 ) is adjacent to at most one vertex of K5. Altogether we have at

most 10 + 6 + ex(6, P 2
6 ) = 28 edges. From the above, e(G) ≤ 36 = fP 2

6
(11).
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Suppose (2.14) holds for all l ≤ n − 1 (l 6= 5). The following proof is divided into 2

parts.

Case 1. If T ⊆ G, then each vertex v ∈ V (G − T ) is adjacent to at most 3 vertices of

the copy of T , otherwise, P 2
6 ⊆ G. The graph spanned by the vertices of the copy of T

cannot have more than ex(6, P 2
6 ) = 12 edges. Since G − T is an (n − 6)-vertex P 2

6 -free

graph and ex(6, T ) = 12, we have

e(G) ≤ 12 + 3(n− 6) + e(G− T ) ≤ 3n− 6 + ex(n− 6, P 2
6 ). (2.15)

By the induction hypothesis,

ex(n− 6, P 2
6 ) ≤ fP 2

6
(n− 6) =


⌊

(n− 6)2

4

⌋
+

⌊
n− 7

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

(n− 6)2

4

⌋
+

⌈
n− 6

2

⌉
, otherwise.

We get

ex(n, P 2
6 ) ≤


3n− 6 +

⌊
(n− 6)2

4

⌋
+

⌊
n− 7

2

⌋
=

⌊
n2

4

⌋
+

⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),

3n− 6 +

⌊
(n− 6)2

4

⌋
+

⌈
n− 6

2

⌉
=

⌊
n2

4

⌋
+
⌈n

2

⌉
, otherwise.

Case 2. If T * G, by Theorem 2.7, e(G) ≤ ex(n, T ) ≤ fP 2
6
(n) holds unless n ≡

8 (mod 12). When n ≡ 8 (mod 12), then e(G) ≤ ex(n, T ) = fP 2
6
(n) + 1. However, by

Theorem 2.9, the equality holds only if G is T
n
2
n , but P 2

6 ⊆ T
n
2
n (n ≥ 8), which implies

that e(G) ≤ ex(n, T )− 1 = fP 2
6
(n).

Summarizing, we obtain

ex(n, P 2
6 ) = fP 2

6
(n) =


⌊
n2

4

⌋
+

⌊
n− 1

2

⌋
, n ≡ 1, 2, 3 (mod 6),⌊

n2

4

⌋
+
⌈n

2

⌉
, otherwise .

Proof of Theorem 2.12. It is obvious that

ex(n, T ) ≤ ex(n, P 2
6 ), except when n ≡ 8 (mod 12), (2.16)

with strict inequality only when

n ≡ 5, 6, 7, or 11 (mod 12). (2.17)
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We want to determine the n-vertex graphs G containing no copy of P 2
6 as a subgraph and

satisfying e(G) = ex(n, P 2
6 ). Therefore, suppose that G possesses these properties. We

claim that G either contains a copy of T as a subgraph or it is either F d
n
2
e,dn

2
e

n or F
n
2
+1,n

2
+1

n .

If n belongs to the set of integers given in (2.17) then this is obvious, since we have a

strict inequality in (2.16). On the other hand, for the other values of n (except n ≡ 8

(mod 12)) we obtain ex(n, P 2
6 ) = ex(n, T ) = e(G). Theorem 2.9 describes these graphs.

However, G cannot be T d
n
2
e

n or T
n
2
+1

n , because these graphs contain P 2
6 as a subgraph if

n ≥ 7. (In the case of n = 6 we had strict inequality in (2.16). The other possibility by

Theorem 2.9 is that G = S
dn
2
e

n = F
dn
2
e,dn

2
e

n . In the exceptional case we can use Proposition

2.15. According to this, G could be T
n
2
n , S

n
2
n or S

n
2
+1

n . The first of them is excluded since

P 2
6 ⊂ T

n
2
n the second and third ones can be written in the form F

n
2
,n
2

n and F
n
2
+1,n

2
+1

n .

From now on we suppose that e(G) = ex(n, P 2
6 ), the graph G contains a copy of T

and no copy of P 2
6 , and prove by induction that G is a graph given in the theorem.

Let us list some graphs L (coming up in the forthcoming proofs) containing P 2
6 as a

subgraph:

(α) L is obtained by adding any edge to T different from {a, e}, {d, c} and {b, f} on

Figure 2.3.

(β) Add the edges {a, e}, {d, c}, {b, f} to T resulting in T ′. The graph L is obtained

by adding a new vertex u to T ′ which is adjacent to three vertices of T ′ different from

the sets {b, c, e} and {a, d, f}.

(γ) L is obtained by adding two new adjacent vertices u and v to T ′, which are both

adjacent to b, c and e. Then e.g. the square of the path {u, v, c, e, b, d} is in L.

(δ) L is obtained by adding 4 new vertices u, v, w, x, forming a complete graph, to T ′,

all of them adjacent to a, d and f . Then e.g. the square of the path {a, u, v, w, x, d} is in

L.

(ε) L consists of a complete graph on 5 vertices and a 6th vertex adjacent to two of

them.

(ζ) The vertices of L are pi(1 ≤ i ≤ 4) and qj(1 ≤ j ≤ 2) where p1, p2, p3, p4 span a

path and all pairs (pi, qj) are adjacent. Then the square of the path {p1, q1, p2, p3, q2, p4}

is L.

Let us start with the base cases. Let n = 6 and suppose T ⊂ G. By (α) only the
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edges {a, e}, {d, c} and {b, f} can be added to T . To obtain ex(6, P 2
6 ) = 12 edges all three

of them should be added. The so obtained graph T ′ is really H3
6 .

Consider now the case n = 7. It is clear that (2.15) holds with equality only when

the subgraph spanned by T contains 12 edges and the vertex u not in T is adjacent with

exactly 3 vertices of T . Hence the subgraph spanned by T is really T ′. By (β) u can be

adjacent to either b, c, e or a, d, f . In the first case G = H3
7 , in the second one G = F 4,1

7 ,

as desired.

If n = 8, e(G) = ex(8, P 2
6 ) = 19 and the equality in (2.15) implies, again, that T must

span T ′ and the remaining two vertices u and v are adjacent to exactly 3 vertices of T ′:

either to the set {b, c, e} or to {a, d, f} and {u, v} is an edge. If both u and v are adjacent

to {b, c, e} then (γ) leads to a contradiction. If one of u and v is adjacent to {b, c, e}, the

other one to {a, d, f}, then G = F 4,1
8 . Finally if both of them are adjacent to {a, d, f},

then G = F 5,2
8 .

Suppose now that n = 9, when e(G) = ex(9, P 2
6 ) = 24 and (2.15) implies that the three

vertices u, v, w not in T ′ form a triangle and all three possess the properties mentioned in

the previous case. If two of them are adjacent to {b, c, e} then (γ) gives the contradiction.

If one of the them is adjacent to {b, c, e}, the two other ones are adjacent to {a, d, f},

then G = F 5,2
9 . Finally if all three are adjacent to {a, d, f}, then G = H6

9 .

The case n = 10 and e(G) = ex(10, P 2
6 ) = 30 is very similar to the previous ones.

If one of the new vertices, u, v, w, x is adjacent to {b, c, e} and the other 3 are adjacent

to {a, d, f}, then G = H6
10. Here it cannot happen, by (δ), that all 4 are adjacent to

{a, d, f}.

Finally let n = 11 where e(G) = ex(11, P 2
6 ) = 36. This case is different from the

previous ones, since we cannot have all the potential edges (12 in the graph spanned

by T , 10 among the other 5 vertices u, v, w, x, y, and 15 between the two parts) one is

missing. We distinguish 3 cases according the place of the missing edge.

(i) T ′ ⊂ G, {u, v, w, x, y} spans a copy of K5, but there are only 14 edges between

the two parts. Then T ′ has one vertex z ∈ {a, b, c, d, e, f} incident to at least two of the

14 edges. Then (ε) leads to a contradiction.

(ii) T ′ ⊂ G, {u, v, w, x, y} spans a copy of K5 minus one edge, say {x, y}, and all 15

edges between the two parts are in G.
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If two adjacent vertices from the set {u, v, w, x, y} are both adjacent to {b, c, e} then

(γ) gives the contradiction. Therefore, if x is adjacent to {b, c, e} then u, v and w must

be adjacent to {a, d, f}. If y is also adjacent to {a, d, f} then we have 4 vertices spanning

a K4 and all adjacent to {a, d, f}. Then we obtain a contradiction by (δ). Otherwise y

is adjacent to {b, c, e} and G = H6
11.

Suppose now that x is adjacent to {a, d, f}. If u, v, w are all adjacent to {a, d, f} then

(δ) leads to a contradiction. Hence, at least one of them, say u is adjacent to {b, c, e}. But

(γ) implies that two adjacent ones from from the set {u, v, w, x, y} cannot be adjacent

to {b, c, e}. Hence, v, w, x, y are all adjacent to {a, d, f} giving a contradiction again, by

(δ).

(iii) T spans only 11 edges, {u, v, w, x, y} determines a K5 and all 15 edges are

connecting the two parts. Then T must have a vertex incident to two edges connecting

T with {u, v, w, x, y}. Here (ε) gives a contradiction.

Now we are ready to start the inductional step. Suppose that the statement is true

for n − 6 where n ≥ 12. We will prove it for n. Let e(G) = ex(n, P 2
6 ) and suppose

that T ⊂ G. We have to prove that G is of the form described in the theorem. By

(2.15) we know that the equality implies that T must span the the subgraph T ′ with

12 edges, every vertex of G′ = G − T ′ is adjacent either to the vertices b, c, e or the

vertices a, d, f and G′ is an extremal graph for n − 6. That is, G′ is one the following

graphs: F d
n−6
2
e,j

n , F
n−6
2

+1,j
n , H

bn−6
2
c

n , H
dn−6

2
e

n , H
dn−6

2
e+1

n . All these graphs have n−6 vertices,

their vertex sets are divided into two parts, X ′ and Y ′ where |X ′| is either bn−6
2
c or

dn−6
2
e or dn−6

2
e + 1, there is a bipartite graph between X ′ and Y ′ and X ′ is covered by

vertex-disjoint triangles and at most one star.

Color a vertex of G′ by red if it is adjacent to the vertices b, c, e and blue otherwise.

By (γ) two red vertices cannot be adjacent. On the other hand, 4 blue vertices cannot

span a path by (ζ). Suppose that there is a red vertex in X ′. Then all vertices of Y ′

are colored blue. (It is easy to check that n ≥ 12 implies |Y ′|≥ 2.) If there are two blue

vertices also in X ′ then they span a path of length 4 that is a contradiction. We can have

one blue vertex in X ′ only when it contains no triangle and the center s of the star is

blue, the other vertices are all red. This is called the first coloring. It is easy to see that

the choice X = {b, c, e, s} ∪ Y ′, Y = {a, d, f} ∪ (X ′ − {s}) defines a graph possessing the

28

C
E

U
eT

D
C

ol
le

ct
io

n



properties of the expected extremal graphs: X and Y span a complete bipartite graph,

there are no edges within Y , and X is covered by one triangle and one star which are

vertex disjoint.

The other case is when all vertices of X ′ are blue. In this case, no vertex of Y ′ can be

blue, otherwise this vertex and the 3 vertices of a triangle or the center of the star with

two other vertices would span a path of length 4. That is, all vertices of Y ′ are red. This

is the second coloring. Then the choice X = {b, c, e} ∪ X ′, Y = {a, d, f} ∪ Y ′ defines a

graph possessing the properties of the expected extremal graphs.

We have seen that G has the expected structure in both cases. We only have to check

the parameters. If n ≡ 0, 4, 5 (mod 6) then X ′ contains no star, the first coloring cannot

occur, in the case of the second coloring 3-3 vertices (3 vertices to each part) are added

to both parts, containing a triangle ({b, c, e}) in the X-part. The upper index increases

by 3 in all cases when moving from n− 6 to n.

Consider now the case n ≡ 1 (mod 6). If G′ = H
bn−6

2
c

n−6 then we can proceed like in the

previous cases, and G = H
bn
2
c

n is obtained. Suppose that G′ = F
dn−6

2
e,j

n−6 . If j < dn−6
2
e then,

again, the second coloring applies and we obtain G = F
dn
2
e,j

n . If, however, j = dn−6
2
e then

both colorings result in G = F
dn
2
e,dn

2
e−3

n . Let us recall that G = F
dn
2
e,dn

2
e

n was obtained in

the case when T 6⊂ G.

The cases n ≡ 2, 3 (mod 6) can be checked similarly.

2.5 Open problems

On the basis of these results we pose a conjecture for the general case.

Conjecture 2.16 (Xiao, Katona, Xiao, Zamora [53]).

ex(n, P 2
k ) ≤ max

i

{
i
(⌊

2k
3

⌋
− 2
)

2
+ i(n− i)

}
.

If
⌊
2k
3

⌋
− 1 divides the optimal i then the following graph gives equality here. Take a

complete bipartite graph with parts of size i and n− i, add vertex disjoint complete graphs

on
⌊
2k
3

⌋
− 1 vertices to the part with i elements.

Observe that Theorems 2.1, 2.2, 2.3 and 2.10 justify our conjecture for the cases when

k = 3, 4, 5, 6. A weaker form of this conjecture is the following one.
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Conjecture 2.17 (Xiao, Katona, Xiao, Zamora [53]).

ex(n, P 2
k ) =

n2

4
+

(⌊
k
3

⌋
− 1
)
n

2
+Ok(1)

where Ok(1) depends only on k.

The following paragraphs show why we think that Conjecture 2.16 is true.

Lemma 2.18 (Xiao, Katona, Xiao, Zamora [53]). If the graph G is obtained by adding

a path of r vertices to one of the classes of the complete bipartite graph Kn,n(n ≥ r) then

G contains the square of a path containing b3r
2
c+ 1 vertices.

Proof. Suppose first that r = 2s is even. Let X and Y be the two parts, where

|X|= |Y |= n all edges {x, y}(x ∈ X, y ∈ Y ) are in G. Moreover, X contains the path

{x1, x2, . . . , x2s}. Then the square of the path {y1, x1, x2, y2, x3, x4, y3, . . . , x2s−1, x2s, ys+1}

is in G for an arbitrary set of distinct vertices y1, y2, . . . , ys+1 ∈ Y . The number of vertices

of this path is really 3s+ 1.

If k = 2s + 1 is an odd number then the desired path is {y1, x1, x2, y2, x3, x4, y3, . . . ,

x2s−1, x2s, ys+1, x2s+1}.

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4

P6

y1 x2 x3 y3 x6

y2 x4x1 x5 y4

P 2
10

Figure 2.10

It is easy to see, on the basis of Lemma 2.18 that if this graph does not contain P 2
k

then X cannot contain a path of length b2k
3
c. Now the obvious question is that at most

how many edges can be chosen in X without having a path of given length. As one of

the earliest results in extremal Graph Theory Erdős and Gallai [18] proved the following

result on the maximal size of a Pl-free graph.
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Theorem 2.19 (Erdős and Gallai[18]). The maximum number of edges in an n-vertex

Pl-free graph is n(l−2)
2

, that is ex(n, Pl) ≤ n(l−2)
2

with equality if and only if (l − 1)|n and

the graph is a vertex disjoint union of n
l−1 complete graphs on l − 1 vertices.

Faudree and Schelp[24] and independently Kopylov [32] improved this result deter-

mining ex(n, Pl) for every n > l > 0 as well as the corresponding extremal graphs.

Theorem 2.20 (Faudree and Schelp[24] and independently Kopylov [32]). Let

n ≡ r (mod l − 1), 0 ≤ r ≤ l − 1, l ≥ 2. Then

ex(n, Pl) =
1

2
(l − 2)n− 1

2
r(l − 1− r).

Faudree and Schelp also described the extremal graphs which are either

(a) vertex disjoint union of m (n = m(l − 1) + r) complete graphs Kl−1 and a Kr or

(b) l is even and r = l
2
or l

2
− 1 then another extremal graph can be obtained

by taking a vertex disjoint union of t copies of Kl−1 (0 ≤ t ≤ m) and a copy of

K l
2
−1
⊗

Kn−(t+ 1
2
)(l−1)+ 1

2
. Where G denotes the edge complement of the graph G, and

G
⊗

H is defined as the graph obtained from the vertex disjoint union of G and H

together with all edges between G and H.

We believe that the extremal graph for ex(n, P 2
k ) is a complete bipartite graph plus

one of the constructions above in the larger class. Check now the cases solved.

If k = 4, by Lemma 2.18 we cannot have a path of length 2 (that is an edge) in one

side.

If k = 5 then l = 3, a path of length 3 is forbidden in one side. According to statements

above we can have only vertex disjoint edges.

If k = 6 then l = 4 and a path of length 4 is forbidden in one side. Now the extremal

constructions for Pl are either (a) triangles plus eventually one edge or (b) t triangles plus

a star with n− 3t vertices.

These are in accordance with our results. Note that in the case of k = 7, the value

l = 4 obtained again. The expected maximum value is the same as in the case of k = 6,

but the assumptions are weaker!

Remark 2.21. Recently, Long-Tu Yuan proved Conjectures 2.16 and 2.17 and charac-

terize the extremal graphs of the k-th power of paths in [55].
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Chapter 3

The Turán number of disjoint union of
wheels

3.1 Introduction

A wheel Wn is a graph on n (n ≥ 4) vertices obtained from a Cn−1 by adding one vertex

v0 and joining v0 to all vertices of the Cn−1. We call a wheel on an even (odd) number of

vertices an even (odd) wheel .

Denote by mH the graph of the vertex-disjoint union of m copies of the graph H.

Two disjoint vertex sets U and W are completely joined in G if uw ∈ E(G) for all u ∈ U ,

w ∈ W . Given graphs G1 and G2, where G1 and G2 with disjoint vertex sets V (G1)

and V (G2) and edge sets E(G1) and E(G2). The union G = G1 ∪ G2 is the graph with

V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). Denote by G1

⊗
G2 the graph

obtained from G1 ∪G2 by adding all edges between V (G1) and V (G2). Let F be a graph

family, denote by G
⊗
F the graph family obtained from G

⊗
H, for all H ∈ F .

Denote by Kn1,n2(F ;H) (n1 ≥ n2) the class of graphs obtained by taking a complete

bipartite graphKn1,n2 and embedding a graph from the graph set F into the larger partite

set and embedding a graph from the graph set H into the smaller partite set. A nearly

k-regular graph is a graph such that each vertex has degree k but one vertex has degree

k− 1. Let Uk−1n (P2k−1) be the class of P2k−1-free, (k− 1)-regular or nearly (k− 1)-regular

graphs on n vertices.

Definition 3.1. Let Ktn1,n2

(
Uk−1n1

(P2k−1);P2

)
= Kt

⊗
Kn1,n2

(
Uk−1n1

(P2k−1);P2

)
, n1 ≥

n2 ≥ 2 and n1 + n2 = n − t, where Kn1,n2

(
Uk−1n1

(P2k−1);P2

)
denotes the class of graphs

obtained from a Kn1,n2 by embedding the larger partite set a graph from Uk−1n1
(P2k−1) and

32

C
E

U
eT

D
C

ol
le

ct
io

n



embedding an edge in the smaller partite set.

Since W3 = C3 and W4 = K4, we can easily see the results of ex(n,W3) and ex(n,W4)

by famous Mantel’s theorem [43] and Turán’s theorem [51]. In 1964 Erdős proved the

following theorem.

Theorem 3.2 (Erdős [17]). Let G be any graph such that e(G) ≥
⌊
n2

4

⌋
+
⌊
n
4

⌋
+
⌊
n+1
4

⌋
+1.

Then G contains a W5.

Years later, in [12], Dzido determined for k ≥ 3 and n ≥ 6k − 10, ex(n,W2k) =⌊
n3

3

⌋
. Later on, Dzido and Jastrzȩbski [13] obtained two exact values for small wheels

ex(n,W5) =
⌊
n2

4

⌋
+
⌊
n
4

⌋
+
⌊
n+1
4

⌋
and ex(n,W7) =

⌊
n2

4
+ n

2
+ 1
⌋
. Recently, Yuan [56]

determined the Turán number ex(n,W2k+1) of the odd wheel when n is sufficiently large.

In this chapter, we determine the Turán number and characterize all extremal graphs for

disjoint union of odd wheels.

Theorem 3.3 (Yuan [56]). Let k ≥ 2 and W2k+1 be a wheel on 2k+ 1 vertices. Then for

n sufficiently large,

ex(n,W2k+1) =


⌊
n2

4

⌋
+
⌊
n
4

⌋
+
⌊
n+1
4

⌋
, k = 2,

max
{
n1n2 +

⌊
(k−1)n1

2

⌋
: n1 + n2 = n

}
+ 1, k ≥ 3,

and EX(n,W2k+1) ⊆ K0
n1,n2

(
Uk−1n1

(P2k−1);P2

)
, when k ≥ 3.

We generalized Yuan’s result in the following way.

Theorem 3.4 (Xiao, Zamora [54]). Let mW2k+1 (k ≥ 3) denote the graph defined by

taking m vertex- disjoint copies of W2k+1. For n sufficiently large,

ex(n,mW2k+1) = max

{(
m− 1

2

)
+

⌊
(k − 1)n1

2

⌋
+ (n1 +m− 1)(n−m+ 1)− n2

1 + 1

}
,

where the maximum is taken for n1 ∈ {1, . . . , n−m+ 1}, moreover,

EX(n,mW2k+1) ⊆ Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
, (n1 + n2 = n−m+ 1).

Clearly, the graphs in Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
are mW2k+1-free. Yuan [56] proved the

case when m = 1 and k ≥ 3.
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3.2 Progressive induction

To prove Theorem 3.4, we use the technique of progressive induction, which was first

introduced by Simonovits in [48]. Essentially, the technique is as follows. For a given

problem one can prove the inductive step under the assumptions of the inductive hypoth-

esis. However, it is not possible to prove the base case (this could be because the base

case is not true for small values). It also can happen that the proof of the base case is as

difficult as a direct proof of the result. Formally the statement we use is the following:

Proposition 3.5 (Simonovits [48]). Let N be the set of all natural numbers, Z be the set

of all integers. Let c ∈ N and ϕ : N → Z be a function such that ϕ(n) < max{ϕ(n −

1), ϕ(n− c)}, then there exists n0 ∈ N such that ϕ(n) < 0 for every n > n0.

Let Hn be an extremal graph for mW2k+1 and

f(n, t) = max
n1+n2=n−t

{e(G) : G ∈ Ktn1,n2
(Uk−1n1

(P2k−1);P2)}. To establish the result, in this

paper, we define a function ϕ(n), used to measure the “distance between our knowledge

e(Hn) and the conjecture f(n,m−1)”, that is ϕ(n) = e(Hn)−f(n,m−1). Clearly, ϕ(n) is

non-negative. We then attempt to show that there exists n0, when n > n0, either ϕ(n) <

ϕ(n− 1), ϕ(n) < ϕ(n− c) (for some c chosen later) or Hn ∈ Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
.

3.3 Proof of Theorem 3.4

We need the following theorem and key lemma to proof Theorem 3.4.

Theorem 3.6 (Kővári-Sós-Turán [33]). Let Ka,b denote the complete bipartite graph with

a and b vertices in its color-classes. Then

ex(n,Ka,b) ≤
a
√
b− 1

2
n2− 1

a +
a− 1

2
n.

Lemma 3.7 (Xiao, Zamora [54]). Let G be an mW2k+1-free graph with a partition of the

vertices into two nonempty parts V (G) = V1∪V2 with sizes n1 and n2 respectively such that

n1 ≥ n2 and n2 is sufficiently large. Suppose G is such that, for each i if S ⊆ Vi has size at

most m(k+1) then all vertices in S have at least m(2k+1) common neighbors in the other

class. Then, for n1 sufficiently large, e(G) ≤ g(n1, n2,m), where g(n1, n2,m) is defined

as g(n1, n2,m) = max
n1+n2=n−m+1

{e(H), H ∈ Km−1n1−j,n2−(m−1−j)
(
Uk−1n1−j(P2k−1);P2

)
: j = 0, 1,
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. . . ,m− 1}. Moreover, for m > 1 equality can only hold if G contains a vertex of degree

n1 + n2 − 1.

Proof. The proof will follow by induction on m, the case where m = 1 is done by [56].

Clearly, for n2 ≥ m − 1 we have that g(n1, n2,m) ≤ f(n,m − 1). Now suppose that

m > 1, note that by the definition of Ktn1,n2

(
Uk−1n1

(P2k−1);P2

)
we have

e
(
Km−1n1−j,n2−(m−1−j)(U

k−1
n1−j(P2k−1);P2)

)
= e

(
Km−2n1−j,n2−(m−1−j)(U

k−1
n1−j(P2k−1);P2)

)
+(n1 + n2 − 1).

It follows from the definition that both g(n1 − 1, n2,m− 1) and g(n1, n2 − 1,m− 1)

are bounded above by g(n1, n2,m)− (n1 + n2 − 1).

Let Sn denote the star on n vertices and Gi denote the subgraph of G induced by the

vertex set Vi. For a graph H, let sk+1(H) denote the maximum number of disjoint Sk+1

in H. From the conditions of G we have that sk+1(G1) + sk+1(G2) ≤ m− 1. We separate

the proof into 2 cases.

Case 1. For some i there exists a vertex u ∈ Vi such that dGi
(u) ≥ m(2k + 1).

Let G′ be the graph obtained from G by removing u, then the vertex set of G′ can be

decomposed into graphs V ′1∪V ′2 of sizes n′1 and n′2. We have that G′ must be (m−1)W2k+1-

free, otherwise we may find another wheel with center u which is disjoint from the previous

(m− 1)W2k+1. Hence, by the induction hypothesis we have e(G′) ≤ g(n′1, n
′
2,m− 1) and

so

e(G) ≤ dG(u) + g(n′1, n
′
2,m− 1) ≤ n1 + n2 − 1 + g(n′1, n

′
2,m− 1) ≤ g(n1, n2,m− 1),

where equality holds only when dG(u) = n1 + n2 − 1.

Case 2. For each vertex v ∈ Vi (i = 1, 2), dGi
(v) < m(2k + 1).

Then we have that d(v) < n2 + m(2k + 1) for v ∈ V1 while d(v) < n1 + m(2k + 1)

for v ∈ V2. We may assume by induction that G contains at least one wheel W , say with

vertices a1, a2, . . . , as in V1 and b1, . . . , bt in V2, where s+ t = 2k+ 1. Then G′, is defined

as the graph obtained by G by removing W , can be decomposed in components V ′1 and

V ′2 of sizes n1 − s, n2 − t respectively, then

e(G) ≤ sn2 + tn1 + (2k + 1)2m+ g(n1 − s, n2 − t,m− 1). (3.1)
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Note that by the construction of G we have the following bounds

g(x, y,m) ≥ g(x, y,m− 1) + min{y, x− k} −m ≥ g(x, y,m− 1) + y − k −m,

g(x, y,m) ≥ g(x− 1, y,m) + y,

g(x, y,m) ≥ g(x, y − 1,m) + x.

The first bound is obtained by the difference between the number of edges of the graphs

in the definition of g, that is comparing the number of edges ofKm−1n1−j,n2−(m−1−j)(U
k−1
n1−j(P2k−1);

P2) with Km−2n1−j+1,n2−(m−1−j)
(
Uk−1n1−j(P2k−1);P2

)
(when j ≥ 1) or

Km−2n1−j,n2+1−(m−1−j)(U
k−1
n1−j(P2k−1);P2) (when j ≤ m− 2).

As a consequence of these bounds it follows that

g(n1 − s, n2 − t,m− 1) ≤ g(n1, n2,m)− sn2 − tn1 − (n2 − k −m) + (2k + 1)2.

Hence together with equation (3.1) it follows that

e(G) ≤ g(n1, n2,m) + (2k + 1)2(m+ 1)− (n2 − k −m).

Therefore, when

n2 > (2k + 1)2(m+ 1) +m+ k,

e(G) < g(n1, n2,m) holds.

Lemma 3.8 (Yuan [56]). Let n ≥ 2k, then ex(n, {Sk+1, P2k+1}) =
⌊
(k−1)n

2

⌋
.

Proof of Theorem 3.4. We prove Theorem 3.4 using the progressive induction. Let n be

large enough and Hn be an n-vertex mW2k+1-free graph with maximal number of edges.

We will also assume by induction that Theorem 3.4 holds for m− 1, the base case m = 1

is done by [56]. The following proof is based on Yuan’s result.

Fix N ∈ N an even number, which will be picked large enough. Since e(Hn) >
⌊
n2

4

⌋
,

by Theorem 3.6, there exists n1 such that when n > n1, Hn contains KN,N as a subgraph.

Let B1 and B2 be the bipartite classes of KN,N . Let Ĥ2N be the graph induced on the

vertex set B1 ∪B2, H̃n−2N be the graph induced on the vertex set V (Hn) \ (B1 ∪B2) and

eH be the number of edges between Ĥ2N and H̃n−2N . Thus,

e(Hn) = e(Ĥ2N) + eH + e(H̃n−2N).

36

C
E

U
eT

D
C

ol
le

ct
io

n



Let H ′n be a graph in Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
, by Lemma 3.8, there exists K∗N,N such

that K∗N,N ⊆ H
′
n, for some K∗N,N ∈ KN,N

(
Uk−1N (P2k−1); ∅

)
. Let H ′n−2N be the graph

induced by the vertex set V (H
′
n) \ V

(
K∗N,N

)
and eH′ be the number of edges joining

K∗N,N and H ′n−2N . Thus,

e(H
′

n) = e
(
K∗N,N

)
+ eH′ + e(H

′

n−2N).

Clearly, eH′ = (n− 2N)N + (m− 1)N = (n− 2N +m− 1)N .

By Lemma 3.7, we observe e(Ĥ2N) ≤ g(N,N,m). Therefore, we have

ϕ(n) = e(Hn)− e(H ′n)

= e(Ĥ2N)− e
(
K∗N,N

)
+ eH − eH′ + e(H̃n−2N)− e(H ′n−2N)

≤ g(N,N,m)−N2 − N(k − 1)

2
+ (eH − eH′ ) + ϕ(n− 2N)

≤ mN + (eH − eH′ ) + ϕ(n− 2N). (3.2)

Note that from (3.2) we have that if ϕ(n) ≥ ϕ(n− 2N) then mN ≥ eH′ − eH .

To complete the progressive induction, we are going to show that for n large enough,

either ϕ(n) < ϕ(n− 2N) or ϕ(n) < ϕ(n− 1) or Hn ∈ Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
.

Case 1. There exists a vertex v ∈ Hn with dHn(v) < n
2
.

Recall the defition that f(n, t) = max{e(G) : G ∈ Ktn1,n2

(
Uk−1n1

(P2k−1);P2

)
, n1 +

n2 + t = n}. Since e(H ′n) = f(n,m − 1) = max{
(
m−1
2

)
+
⌊
(k−1)n0

2

⌋
+ (n0 + m − 1)(n −

m + 1) − n2
0 + 1} where n0 = 1

2

(⌊
k−1
2

⌋
+ n−m+ 1

)
or n0 = 1

2

(⌈
k−1
2

⌉
+ n−m+ 1

)
,

we get e(H ′n) − e(H
′
n−1) = f(n,m − 1) − f(n − 1,m − 1) ≥ n

2
. Clearly, Hn − v is an

(n− 1)-vertex mW2k+1-free graph which implies that e(Hn)− dHn(v) ≤ e(Hn−1). Hence,

e(Hn)−e(Hn−1) ≤ dHn(v) < n
2
and we get ϕ(n) = e(Hn)−e(H ′n) < e(Hn−1)−e(H

′
n−1) =

ϕ(n− 1).

In Case 2 we will assume that neither ϕ(n) < ϕ(n− 2N) nor ϕ(n) < ϕ(n− 1) hold.

Case 2. δ(Hn) ≥ n
2
and ϕ(n) ≥ ϕ(n − 2N). With the following claims we are able

to show that Hn ∈ Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
in this case.

Claim 3.9. Let x be a vertex in Hn such that Km(2k+1),m(2k+1) is contained in the neigh-

borhood of x, then G′, the graph induced by V (Hn) \ {v}, is (m− 1)W2k+1-free.

Proof. Suppose by contradiction that G′ is not (m− 1)W2k+1-free, since a copy of (m−

1)W2k+1 contains (m− 1)(2k + 1) vertices in G′, then we may find a copy of Kk,k in the
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neighborhood of x which does not contain any vertex of the given (m − 1)W2k+1 copy,

then v together with the copy of Kk,k contains another copy of W2k+1 which contradicts

the fact that Hn is mW2k+1-free.

Hence we may assume that for any vertex v ∈ V (Hn), there is an index i(v) ∈ {1, 2}

such that v has fewer than m(2k+1) neighbors in Bi(v), since otherwise we would be able

to find a copy of Km(2k+1),m(2k+1) in the neighborhood of v, and then by Claim 3.9 and

induction on m, we would have that

e(Hn) ≤ (n− 1) + e(G[V (Hn) \ {v}]) ≤ (n− 1) + f(n− 1,m− 2) = f(n,m− 1).

where the equality holds only if dHn(v) = n − 1 and the graph induced by V (Hn) \ {v}

is in Km−2n′1,n
′
2

(
Uk−1n1

(P2k−1);P2

)
for some n′1 + n′2 = n − 1. Therefore, by adding a full

degree vertex to the previous graph we have that the equality holds only when Hn ∈

Km−1n1,n2

(
Uk−1n1

(P2k−1);P2

)
for some n1 and n2 with n1 + n2 = n which maximizes the

number of edges.

We partition the vertices of H̃n−2N into classes C1, C2 and D where: Ci is the set

of vertices v such that v is adjacent to fewer than m(2k + 1) vertices in Bi and more

than N − 2m(2k + 1) vertices of B3−i for i = 1, 2. v ∈ D if v is adjacent to at most

N − 2m(2k + 1) vertices of both B1 and B2.

By the definition of Ci and since KN,N ⊆ G[B1 ∪B2], we have that any m(2k+ 1) + 1

vertices of Bi ∪ Ci have more than
(
N − 2m(2k + 1)

)(
m(2k + 1) + 1

)
≥ m(2k + 1)

neighbors in B3−i, hence we may assume that every vertex x ∈ Bi ∪ Ci has fewer than

m(2k + 1) neighbors in Bi ∪ Ci or we would be done by Claim 3.9.

Claim 3.10. There exists a constant N1 such that |D|< N1.

Proof. Recall that by definition every vertex in Ci is adjacent to fewer than m(2k + 1)

vertices of Bi and for each vertex v ∈ D, there exists an i(v) such that v is joined to

fewer than m(2k + 1) vertices of Bi(v), we get that v is joined to fewer than m(2k + 1) +

(N − 2m(2k + 1)) ≤ N −m(2k + 1) vertices of Ĥ2N . Therefore,

eH = e(B1, C1) + e(B2, C2) + e(B1, C2) + e(B2, C1) + e(B1 ∪B2, D)

≤ 2Nm(2k + 1) +N(n− 2N)−m(2k + 1)|D|

= 4Nmk +N(m+ 1) +N(n− 2N +m− 1)−m(2k + 1)|D|.
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Since eH′ = N(n−2N+m−1), we have that eH ≤ 4Nmk+N(m+1)+eH′−m(2k+1)|D|.

From inequality (3.2) we have

mN ≥ eH′ − eH ≥ mk|D|−4Nmk −N(m+ 1),

hence |D|< N 4k+3
k

= N1.

Claim 3.11. |Bi ∪ Ci|= n
2

+O(
√
n).

Proof. Since there exists an integer N1 such that |D|≤ N1, then the number of edges

incidence with D is O(n). Since ∆(G[Bi ∪ Ci]) < m(2k + 1), we get e(G[B1 ∪ C1]) +

e(G[B2∪C2]) = O(n). Hence, after removing the edges in G[B1∪C1], G[B2∪C2] and the

edges incident with D, we obtain a bipartite graph on
⌊
n2

4

⌋
−O(n) edges. Therefore, there

exists a constant N2 such that
∣∣|Bi ∪ Ci|−n

2

∣∣ ≤ N2

√
n, hence, |Bi ∪Ci|= n

2
+O(

√
n).

Claim 3.12. D = D1 ∪ D2, where vertices in Di is adjacent to fewer than m(2k + 1)

vertices of Bi ∪ Ci.

Proof. Let v ∈ D, then there exists an j(v) such that v is adjacent to at least n
6
vertices

in Bj(v) ∪Cj(v). Otherwise, dHn(v) < N1− 1 + 2n
6
< n

2
, which contradicts to the fact that

δ(Hn) ≥ n
2
. Hence, since each vertex u ∈ Bi ∪ Ci has more than n

2
− O(n) neighbors in

B3−i∪C3−i, if a vertex v0 ∈ D is adjacent to at leastm(2k+1) vertices in B3−j(v0)∪C3−j(v0)

we may find a copy of Km(2k+1),m(2k+1) and we would be able to apply Claim 3.9. Let

Di ⊆ D, be such that each vertex v ∈ Di is adjacent to fewer than m(2k + 1) vertices in

Bi ∪ Ci, then D is the disjoint union of D1 and D2.

Hence, we may assume that every vertex x ∈ D has fewer than m(2k + 1) neighbors

in one of the classes B1 ∪ C1 or B2 ∪ C2, otherwise we would be done by induction.

Let V1 = B1 ∪C1 ∪D1 and V2 = B2 ∪C2 ∪D2, then V1 and V2 is a vertex partition of

Hn such that for any vertex set on m(k+ 1) vertices in Vi has at least m(2k+ 1) common

neighbors in V3−i. Then by Lemma 3.7, we get e(Hn) ≤ f(n,m− 1), equality holds only

when Hn contains a vertex v of degree n− 1. Therefore, v would have at least m(2k+ 1)

neighbors in both B1 and B2, which is a contradiction.
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3.4 Remarks and open problems

Remark 1: In [27], Gorgol gave the general upper and lower bounds on Turán numbers

of disjoint unions of arbitrary graph G.

Theorem 3.13 (Gorgol [27]). Let G be an arbitrary connected graph on ` vertices, m be

an arbitrary positive integer and n be an integer such that n ≥ m`. Then

max

{
ex(n−m`+ 1, G) +

(
m`− 1

2

)
, ex(n−m+ 1, G) + (m− 1)n−

(
m

2

)}
≤ ex(n,mG) ≤ ex

(
n− (m− 1)`,G

)
+

(
(m− 1)`

2

)
+ (m− 1)`

(
n− (m− 1)`

)
.

Note that Theorem 3.13 shows the following inequalities:

max

{
e

(
EX(n−m`+ 1, G) ∪Km`−1

)
, e

(
EX(n−m+ 1, G)

⊗
Km−1

)}
≤ ex(n,mG)

≤ e

(
EX(n− (m− 1)`,G)

⊗
K(m−1)`

)
.

In this paper, we proved that when G is W2k+1 (k ≥ 3), ex(n,mW2k+1) = e

(
EX(n−

m+ 1,W2k+1)
⊗

Km−1

)
.

We now consider the disjoint union of wheels of possibly distinct sizes. When there

is an even wheel the following result holds.

The Turán graph T (n, p) is a complete multipartite graph formed by partitioning a

set of n vertices into p subsets, with sizes as equal as possible, and connecting two vertices

by an edge if and only if they belong to different subsets. Denote its size by t(n, p).

Theorem 3.14 (Xiao, Zamora [54]). LetWh be the family of graphs obtain by the disjoint

union of a finite number of wheels, such that, the number of even wheels in the union

is h, (h ≥ 1). For any W ∈ Wh, if n is sufficiently large, we have that ex(n,W ) ={(
h−1
2

)
+ (h− 1)(n− h+ 1) + t(n− h+ 1, 3)

}
and EX(n,W ) = Kh−1

⊗
T (n− h+ 1, 3).

Theorem 3.14 is a consequence of the following result of Simonovits [49].

Theorem 3.15 (Simonovits[49]). Let L be the family of forbidden graphs and p =

p(L) = min
L∈L

χ(L) − 1. If by omitting any s − 1 vertices of any L ∈ L we obtain a graph

with chromatic number at least p+ 1, but by omitting s suitable edges of some L ∈ L we
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get a p-colorable graph, then Ks−1
⊗

T (n − s + 1, p) is the unique extremal graph for L

when n is sufficiently large.

Let k1 ≥ k2 ≥ . . . ≥ km be positive integers, it is easy to see that if the disjoint union

of stars
m⋃
i=1

Ski+1, is added to one class of Kn0,n1 , the we would obtain a copy of
m⋃
i=1

W2ki+1.

Based on the following theorem, we propose a conjecture on the extremal number for
m⋃
i=1

W2ki+1.

Theorem 3.16 (Lidický, Liu, Palmer [38]). Let F =
k⋃
i=1

Si be a star forest where di is

the maximum degree of Si and d1 ≥ d2 ≥ . . . ≥ dk. For n sufficiently large,

ex(n, F ) = max
1≤i≤k

{
(i− 1)(n− i+ 1) +

(
i− 1

2

)
+

⌊
di − 1

2
(n− i− 1)

⌋}
.

Conjecture 3.17 (Xiao, Zamora [54]). Let
m⋃
i=1

W2ki+1 be a disjoint union of odd wheels

with components of order 2k1 + 1, 2k2 + 1, . . . , 2km + 1 where k1 ≥ k2 ≥ . . . ≥ km. For n

sufficiently large,

ex(n,
m⋃
i=1

W2ki+1)

= max
1≤n0≤n

{
n0(n− n0) + ex(n0,

m⋃
i=1

Ski+1) + 1

}

= max
1≤i≤m
1≤n0≤n

{
n0(n− n0) + (i− 1)(n0 − i+ 1) +

(
i− 1

2

)
+

⌊
ki − 1

2
(n0 − i+ 1)

⌋
+ 1

}
,

and the number of edges of graph
(
Km−1

⊗ ⋃
n0−m+1

km

Kkm

)⊗(
P2∪Kn−n0−2

)
gives us the

lower bound of ex(n,
m⋃
i=1

W2ki+1). Here,
⋃

n0−m+1
km

Kkm denotes the union of n0−m+1
km

disjoint

copies of Kkm.
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Chapter 4

Turán numbers and anti-Ramsey
numbers for short cycles in complete
3-partite graphs

4.1 Introduction

We call a 4-cycle in Kn1,n2,n3 multipartite, denoted by Cmulti
4 , if it contains at least one

vertex in each part of Kn1,n2,n3 . We call an edge-colored Cmulti
4 rainbow if its all four

edges have different colors. The anti-Ramsey number ar(Kn1,n2,n3 , C
multi
4 ) is the maximum

number of colors in an edge-colored Kn1,n2,n3 with no rainbow Cmulti
4 .

An old result of Bollobás, Erdős and Szemerédi [7] proved that ex(Kn1,n2,n3 , C3) =

n1n2+n1n3 for n1 ≥ n2 ≥ n3 ≥ 1 (also see [8, 5, 47]). Lv, Lu and Fang [41, 42] constructed

balanced 3-partite graphs which are C4-free and {C3, C4}-free respectively and proved

that ex(Kn,n,n, C4) = ( 3√
2

+ o(1))n3/2 and ex(Kn,n,n, {C3, C4}) ≥ (
√

3 + o(1))n3/2. Since

then plentiful results were established for a variety of graphs H, we refer the reader to

[6, 25, 29, 28, 30, 44, 46].

For further discussion, we need the definitions of the multipartite subgraphs and a

function f(n1, n2, . . . , nr).

Definition 4.1. Let r ≥ 3 and G be an r-partite graph with vertex partition V1, V2, . . . , Vr,

we call a subgraph H of G multipartite, if there are at least three distinct parts Vi, Vj, Vk

such that V (H) ∩ Vi 6= ∅, V (H) ∩ Vj 6= ∅ and V (H) ∩ Vk 6= ∅. In particular, we denote a

multipartite H by Hmulti (see Figure 4.1 for an example of a Cmulti
4 in a 3-partite graph).
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Figure 4.1: A Cmulti
4 in a 3-partite graph.

For r ≥ 3 and n1 ≥ n2 ≥ · · · ≥ nr ≥ 1, let

f(n1, n2, . . . , nr) =

{
n1n2 + n3n4 + · · ·+ nr−2nr−1 + nr + r−1

2
− 1, r is odd;

n1n2 + n3n4 + · · ·+ nr−1nr + r
2
− 1, r is even.

Fang, Győri, Li and J. Xiao [22] recently showed that if G ⊆ Kn1,n2,...,nr and e(G) ≥

f(n1, n2, . . . , nr) + 1, then G contains a multipartite cycle. Furthermore, they proposed

the following conjecture.

Conjecture 4.2 (Fang, Győri, Li and J. Xiao [22]). For r ≥ 3 and n1 ≥ n2 ≥ · · · ≥ nr ≥

1, if G ⊂ Kn1,n2,...,nr and e(G) ≥ f(n1, n2, . . . , nr) + 1, then G contains a multipartite

cycle Cmulti of length at most 3
2
r.

In this chapter, we study the Turán numbers of Cmulti
4 and {C3, C

multi
4 } in the complete

3-partite graphs and obtain the following results.

Theorem 4.3 (Fang, Győri, Xiao and Xiao [23]). For n1 ≥ n2 ≥ n3 ≥ 1, ex(Kn1,n2,n3 , C
multi
4 )

= n1n2 + 2n3.

Theorem 4.4 (Fang, Győri, Xiao and Xiao [23]). For n1 ≥ n2 ≥ n3 ≥ 1, ex(Kn1,n2,n3 ,

{C3, C
multi
4 }) = n1n2 + n3.

Notice that Theorem 4.4 confirms Conjecture 4.2 for the case when r = 3.

A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.

For graphs G and H, the anti-Ramsey number ar(G,H) is the maximum number of colors

in an edge-colored G with no rainbow copy of H. Erdős, Simonovits and Sós [20] first

studied the anti-Ramsey number in the case when the host graph G is a complete graph

Kn and showed the close relationship between it and the Turán number. In this chapter,

we consider the anti-Ramsey number of Cmulti
4 in the complete 3-partite graphs.
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Theorem 4.5 (Fang, Győri, Xiao and Xiao [23]). For n1 ≥ n2 ≥ n3 ≥ 1, ar(Kn1,n2,n3 ,

Cmulti
4 ) = n1n2 + n3 + 1.

We prove Theorems 4.3 and 4.4 in Section 4.2 and Theorem 4.5 in Section 4.3, re-

spectively. We always denote the vertex partition of Kn1,n2,n3 by V1, V2 and V3, where

|Vi|= ni, 1 ≤ i ≤ 3.

4.2 The Turán numbers of Cmulti
4 and {C3, C

multi
4 }

In this section, we first give the following lemma which will play an important role in our

proof.

Lemma 4.6 (Fang, Győri, Xiao and Xiao [23]). Let G be a 3-partite graph with vertex

partition X, Y and Z, such that for all x ∈ X, N(x) ∩ Y 6= ∅ and N(x) ∩ Z 6= ∅.

(i) If G is Cmulti
4 -free, then e(G) ≤ |Y ||Z|+2|X|;

(ii) If G is {C3, C
multi
4 }-free, then e(G) ≤ |Y ||Z|+|X|.

Proof. (i) Since G is Cmulti
4 -free, G[N(x)] is K1,2-free for each x ∈ X. Therefore,

e(G[N(x)]) = e

(
N(x) ∩ Y,N(x) ∩ Z

)
≤ min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
. (4.1)

For x ∈ X, we let ex be the number of missing edges of G between N(x) ∩ Y and

N(x) ∩ Z. By (4.1), we have

ex = |N(x) ∩ Y |·|N(x) ∩ Z|−e
(
N(x) ∩ Y,N(x) ∩ Z

)
≥ |N(x) ∩ Y |·|N(x) ∩ Z|−min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
(4.2)

≥ |N(x) ∩ Y |+|N(x) ∩ Z|−2,

where the last inequality holds since |N(x) ∩ Y |≥ 1 and |N(x) ∩ Z|≥ 1 for all x ∈ X.

By (4.2), we get∑
x∈X

ex ≥
∑
x∈X

(
|N(x) ∩ Y |+|N(x) ∩ Z|−2

)
= e(X, Y ) + e(X,Z)− 2|X|. (4.3)

Notice that two distinct vertices x1, x2 ∈ X, cannot have common neighboors in both Y

and Z at the same time, otherwise we find a copy of Cmulti
4 in G. Thus, each missing
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edge between Y and Z is counted at most once in the sum
∑

x∈X ex. Hence, the number

of missing edges between Y and Z is at least
∑

x∈X ex. Then we have

e(Y, Z) ≤ |Y ||Z|−
∑
x∈X

ex ≤ |Y ||Z|−(e(X, Y ) + e(X,Z)− 2|X|). (4.4)

By (4.4), we get

e(G) = e(X, Y ) + e(X,Z) + e(Y, Z) ≤ |Y ||Z|+2|X|.

(ii) Since G is C3-free, for each x ∈ X,

e

(
N(x) ∩ Y,N(x) ∩ Z

)
= 0. (4.5)

Since for each x ∈ X, |N(x) ∩ Y |≥ 1 and |N(x) ∩ Z|≥ 1 hold, by (4.5), the number of

missing edges between N(x)∩Y and N(x)∩Z is |N(x)∩Y |·|N(x)∩Z|. Notice that two

distinct vertices x1, x2 ∈ X, cannot have common neighboors in both Y and Z at the

same time, otherwise we find a copy of Cmulti
4 in G. Hence, the number of missing edges

between Y and Z is at least
∑

x∈X |N(x) ∩ Y |·|N(x) ∩ Z|. Thus,

e(Y, Z) ≤ |Y ||Z|−
∑
x∈X

|N(x) ∩ Y |·|N(x) ∩ Z|

≤ |Y ||Z|−
∑
x∈X

(|N(x) ∩ Y |+|N(x) ∩ Z|−1) (4.6)

= |Y ||Z|+|X|−e(X, Y )− e(X,Z),

where the second inequality holds since |N(x) ∩ Y |≥ 1 and |N(x) ∩ Z|≥ 1 for x ∈ X.

By (4.6), we have e(G) = e(Y, Z) + e(X, Y ) + e(X,Z) ≤ |Y ||Z|+|X|.

Now we are ready to prove Theorems 4.3 and 4.4.

Proof of Theorem 4.3. Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely

joined, V1 (respectively, V2) and V3 are joined by an n3-matching, see Figure 4.2. Clearly,

G is Cmulti
4 -free and e(G) = n1n2 + 2n3. Therefore, ex(Kn1,n2,n3 , C

multi
4 ) ≥ n1n2 + 2n3.

Let G ⊆ Kn1,n2,n3 such that G is Cmulti
4 -free, now we are going to prove that e(G) ≤

n1n2 + 2n3 by induction on n1 + n2 + n3.

For the base case n3 = 1, V3 = {v}, we consider the following four subcases:

(i) N(v) ∩ V1 6= ∅ and N(v) ∩ V2 6= ∅, then by Lemma 4.6, we have e(G) ≤ n1n2 + 2.
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V1 V2

V3

Figure 4.2: An example of Cmulti
4 -free graph with n1n2 + 2n3 edges.

(ii) N(v) ∩ V1 6= ∅ and NG(v) ∩ V2 = ∅, then

e(G) = e(V3, N(v)) + e(V2, N(v)) + e(V1 \N(v), V2)

≤ d(v) + n2 +

(
n1 − d(v)

)
n2

≤ n1n2 + 1.

(iii) N(v) ∩ V1 = ∅ and N(v) ∩ V2 6= ∅, then

e(G) = e(V3, N(v)) + e(V1, N(v)) + e(V2 \N(v), V1)

≤ d(v) + n1 + (n2 − d(v))n1

≤ n1n2 + 1.

(iv) N(v) ∩ V1 = ∅ and N(v) ∩ V2 = ∅, then e(G) = e(V1, V2) ≤ n1n2.

Now let n3 ≥ 2, and assume that the statement is true for graphs of order less than

n1 + n2 + n3. We distinguish the three cases depending on the equality of the numbers

n1, n2, n3.

Case 1. n1 = n2 = n3 = n ≥ 2.

If there exists one part, say V1, such that N(v) ∩ V2 6= ∅ and N(v) ∩ V3 6= ∅, for all

v ∈ V1, then by Lemma 4.6, we have e(G) ≤ |V2||V3|+2|V1|= n2 + 2n.

Thus, we may assume that for all i ∈ [3] = {1, 2, 3}, there exist a vertex v ∈ Vi and

j ∈ [3] \ {i} such that N(v) ∩ Vj = ∅. We divide it into two subcases.

Case 1.1. There exist two parts, say V1 and V2, such that N(v1) ∩ V2 = ∅ and

N(v2) ∩ V1 = ∅ for some vertices v1 ∈ V1 and v2 ∈ V2.

Since G is Cmulti
4 -free, d(v1) + d(v2) ≤ |V3|+1 = n + 1. Without loss of generality, let

v3 ∈ V3 be the vertex such that N(v3) ∩ V1 = ∅. Then the number of edges incident

with {v1, v2, v3} in G is at most d(v1) + d(v2) + n− 1 ≤ 2n. By the induction hypothesis,

e(G−{v1, v2, v3}) ≤ (n−1)2 +2(n−1). Thus, e(G) ≤ (n−1)2 +2(n−1)+2n ≤ n2 +2n.
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Case 1.2. There exist vertices v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3 such that either N(v1) ∩

V2 = ∅, N(v2)∩ V3 = ∅, N(v3)∩ V1 = ∅ or N(v1)∩ V3 = ∅, N(v3)∩ V2 = ∅, N(v2)∩ V1 = ∅

holds.

Without loss of generality, we assume that N(v1)∩V2 = ∅, N(v2)∩V3 = ∅, N(v3)∩V1 =

∅. If d(v1) + d(v2) + d(v3) ≤ 2n+ 1, then by the induction hypothesis, we have

e(G) ≤ e(G− {v1, v2, v3}) + d(v1) + d(v2) + d(v3)

≤ (n− 1)2 + 2(n− 1) + 2n+ 1

≤ n2 + 2n.

Now we assume that d(v1)+d(v2)+d(v3) ≥ 2n+2, hence, d(v1) ≥ 1, d(v2) ≥ 1, d(v3) ≥ 1.

Since G is Cmulti
4 -free, each vertex in V1 \ {v1} can have at most one neighbour in N(v3),

we have e(V1 \ {v1}, N(v3)) ≤ n− 1. Similarly, we have e(V3 \ {v3}, N(v2)) ≤ n− 1 and

e(V2 \ {v2}, N(v1)) ≤ n− 1.

Therefore,

e(V1, V2) = e(V1 \ {v1}, V2 \N(v3)) + e(V1 \ {v1}, N(v3)) ≤ (n− d(v3))(n− 1) + (n− 1),

e(V1, V3) = e(V3 \ {v3}, V1 \N(v2)) + e(V3 \ {v3}, N(v2)) ≤ (n− d(v2))(n− 1) + (n− 1),

e(V2, V3) = e(V2 \ {v2}, V3 \N(v1)) + e(V2 \ {v2}, N(v1)) ≤ (n− d(v1))(n− 1) + (n− 1).

Thus,

e(G) = e(V1, V2) + e(V1, V3) + e(V2, V3)

≤
(

3n− (d(v1) + d(v2) + d(v3))

)
(n− 1) + 3(n− 1)

≤
(

3n− (2n+ 2)

)
(n− 1) + 3(n− 1)

≤ n2 − 1.

Case 2. n1 > n2 = n3 = n ≥ 2.

If there exists one vertex v0 ∈ V1 such that d(v0) ≤ n, then by the induction hypoth-

esis, we have e(G) = e(G− v0) + d(v0) ≤ (n1 − 1)n+ 2n+ n ≤ n1n+ 2n. Otherwise, we

have d(v) ≥ n + 1 for all vertices v ∈ V1. Hence, N(v) ∩ V2 6= ∅ and N(v) ∩ V3 6= ∅ hold

for all v ∈ V1. By Lemma 4.6, we get e(G) ≤ n2 + 2n1 ≤ n1n+ 2n.

Case 3. n1 ≥ n2 > n3 ≥ 2.
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If there exists one vertex v0 ∈ V2 such that d(v0) ≤ n1, by the induction hypothesis,

we have e(G) = e(G− v0) + d(v0) ≤ n1(n2 − 1) + 2n3 + n1 ≤ n1n2 + 2n3. Otherwise, we

have d(v) ≥ n1 + 1 for all vertices v ∈ V2. Hence, N(v) ∩ V1 6= ∅ and N(v) ∩ V3 6= ∅ for

all v ∈ V2. By Lemma 4.6, we get e(G) ≤ n1n3 + 2n2 ≤ n1n2 + 2n3.

Proof of Theorem 4.4. Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely

joined, V1 and V3 are joined by an n3-matching and there is no edge between V2 and

V3, see Figure 4.3. Clearly, G is {C3, C
multi
4 }-free and e(G) = n1n2 + n3. Therefore,

ex(Kn1,n2,n3 , {C3, C
multi
4 }) ≥ n1n2 + n3.

V1 V2

V3

Figure 4.3: An example of {C3, C
multi
4 }-free graph with n1n2 + n3 edges.

Let G ⊆ Kn1,n2,n3 be such that G is {C3, C
multi
4 }-free, now we can prove e(G) ≤

n1n2 +n3 by induction on n1 +n2 +n3 in the same way as we did in the proof of Theorem

4.3, just the coefficients in the computation change a bit. For sake of brevity, we skip the

details of the proof.

4.3 The anti-Ramsey number of Cmulti
4

In this section, we study the anti-Ramsey number of Cmulti
4 in the complete 3-partite

graphs. Given an edge-coloring c of G, we denote the color of an edge e by c(e). For a

subgraph H of G, we denote C(H) = {c(e)|e ∈ E(H)}. We call a spanning subgraph

of an edge-colored graph representing subgraph, if it contains exactly one edge of each

color.

Given graphs G1 and G2, we use G1 ∧ G2 to denote graphs consisting of G1 and G2

sharing exactly one common vertex. We call a multipartite C6 in a 3-partite graph non-

cyclic if there exists a vertex v in C6 such that the two neighbors in C6 of v belong to the

same part. Let F be a graph family which consists of Cmulti
4 (see graph G1 in Figure 4.4),

C3 ∧ C3 (see graph G2 in Figure 4.4), the non-cyclic Cmulti
6 (see graphs G3, G4 in Figure
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4.4) and C3 ∧ C5 (see graphs G5, G6, G7 in Figure 4.4) and the Cmulti
8 which contains at

least two vertex-disjoint non-multipartite P3 (see graph G8 in Figure 4.4).

G1 G2

G3 G4 G5

G6 G7 G8

Figure 4.4: F = {G1} ∪ {G2} ∪ {G3, G4} ∪ {G5, G6, G7} ∪ {G8}.

To find a rainbow Cmulti
4 in the edge-colored complete 3-partite graphs, we follow the

idea of Alon [1] and prove the lemma as follows..

Lemma 4.7 (Fang, Győri, Xiao and Xiao [23]). Let n1 ≥ n2 ≥ n3 ≥ 1. For an edge-

colored Kn1,n2,n3, if there is a rainbow copy of some graph in F , then there is a rainbow

copy of Cmulti
4 .

Proof. We separate the proof into three cases.

Case 1. An edge-colored Kn1,n2,n3 contains a rainbow copy of G2, G3 or G4.

Suppose there is a rainbow copy of G2 in Kn1,n2,n3 , See Figure 4.5, then whatever the

color of v1w2 is, at least one of v1uv2w2v1 and v1w2uw1v1 is a rainbow Cmulti
4 . Similarly,

with the help of the red edge that showed in G3 and G4, see Figure 4.5, one can easily

find a rainbow copy of Cmulti
4 if there is a rainbow copy of G3 or G4.

Case 2. An edge-colored Kn1,n2,n3 contains a rainbow copy of G5.
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w1

w2
v1
v2

u

G2 G3 G4

Figure 4.5

Suppose there is a rainbow copy of G5 in Kn1,n2,n3 , see Figure 4.6. If v3w3uw2v3 is

not rainbow, then uw3 shares the same color with one of v3w3, v3w2 and uw2. Hence,

uv2w3u ∪ uv1w2u is a rainbow copy of G2, and by Case 1, we can find a rainbow copy of

Cmulti
4 .

v1
v2
v3 w3

w2
w1

u

G5

Figure 4.6

Case 3. An edge-colored Kn1,n2,n3 contains a rainbow copy of G6, G7 or G8.

v1

v3
v2

w1

w2

u2u1

G6 G7 G8

Figure 4.7

Suppose there is a rainbow copy of G6 in Kn1,n2,n3 , see Figure 4.7. If v2u1w1u2v2 is

not rainbow, then u2w1 shares the same color with one of v2u1, u1w1 and u2v2. Hence,

v1u1v3w2u2w1v1 is a rainbow copy of G4, and by Case 1, we can find a rainbow copy of

Cmulti
4 . Similarly, with the help of the red edge showed in G7 and G8, see Figure 4.7, one

can always find a rainbow copy of Cmulti
4 if there is a rainbow copy of G7 or G8.

Now we are able to prove Theorem 4.5.
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Proof of Theorem 4.5. Lower bound: We color the edges of Kn1,n2,n3 as follows. First,

color all edges between V1 and V2 rainbow. Second, for each vertex v ∈ V3, color all the

edges between v and V1 with one new distinct color. Finally, we assign a new color to all

edges between V2 and V3. In such way, we use exactly n1n2 + n3 + 1 colors, and there is

no rainbow Cmulti
4 .

Upper bound: We prove the upper bound by induction on n1+n2+n3. By Theorem

4.3, we have ar(Kn1,n2,1, C
multi
4 ) ≤ ex(Kn1,n2,1, C

multi
4 ) = n1n2 + 2, the conclusion holds for

n3 = 1. Let n3 ≥ 2, suppose the conclusion holds for all integers less than n1 + n2 + n3.

We suppose there exists an (n1n2 + n3 + 2)-edge-coloring c of Kn1,n2,n3 such that there is

no rainbow Cmulti
4 in it. We take a representing subgraph G.

Claim 4.8. G contains two vertex-disjoint triangles.

Proof. By Theorem 4.4, ex(Kn1,n2,n3 , {C3, C
multi
4 }) = n1n2+n3. Since e(G) = n1n2+n3+2

and G contains no Cmulti
4 , G contains at least two triangles T1 and T2. If |V (T1)∩V (T2)|=

2, then T1 ∪ T2 contains a Cmulti
4 , a contradiction. If |V (T1) ∩ V (T2)|= 1, then T1 ∪ T2 is

a copy of C3 ∧ C3. By Lemma 4.7, we can find a rainbow Cmulti
4 , a contradiction. Thus,

T1 and T2 are vertex-disjoint.

Let the two vertex-disjoint triangles be T1 = x1y1z1x1 and T2 = x2y2z2x2, where

{x1, x2} ⊆ V1, {y1, y2} ⊆ V2 and {z1, z2} ⊆ V3. Denote V0 = {x1, x2, y1, y2, z1, z2} and

U = (V1 ∪ V2 ∪ V3) \ V0.

Claim 4.9. e(G[V0]) ≤ 7.

Proof. If e(G[V0]) ≥ 8, then e(V (T1), V (T2)) ≥ 2. Without loss of generality, assume

that x1y2 ∈ E(G), we claim that x1z2, x2z1, y1z2, y2z1 /∈ E(G), otherwise x1y2x2z2x1,

x1y2x2z1x1, x1y2z2y1x1 or x1y2z1y1x1 would be a rainbow Cmulti
4 . Thus, we have x2y1 ∈

E(G). We claim that c(y1z2) = c(y2z2), otherwise at least one of {x1y1z2y2x1, x2y1z2y2x2}

is a rainbow Cmulti
4 . Thus, G[V0] − y2z2 + y1z2 is rainbow and contains a C3 ∧ C3. By

Lemma 4.7, we find a rainbow Cmulti
4 , a contradiction.

If U = ∅, that is n1 = n2 = n3 = 2, then 8 = e(G) = e(G[V0]) ≤ 7, by Claim 4.9, a

contradiction. Thus we may assume that U 6= ∅.

Claim 4.10. For all v ∈ U , e(v, V0) ≤ 2.
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Proof. If there is a vertex v ∈ U , such that eG(v, V0) ≥ 3, then G[V0 ∪ {v}] contains a

Cmulti
4 , a contradiction.

Claim 4.11. n3 ≥ 3.

Proof. Suppose n3 = 2. Since U 6= ∅, we have n1 ≥ 3 = n3 + 1. If there is a vertex v ∈ V1
such that d(v) ≤ n2, then e(G− v) = n1n2 + n3 + 2− d(v) ≥ (n1− 1)n2 + n3 + 2. By the

induction hypothesis, we have

|C(Kn1,n2,n3 − v)|≥ e(G− v) ≥ (n1 − 1)n2 + n3 + 2 = ar(Kn1−1,n2,n3 , C
multi
4 ) + 1,

thus Kn1,n2,n3 − v contains a rainbow Cmulti
4 , a contradiction. Thus we assume that

d(v) ≥ n2 + 1 for all v ∈ V1. By Claim 4.8, we have e(V2, V3) ≥ 2. Hence, we have

e(G) = e(V1, V2 ∪ V3) + e(V2, V3) =
∑
v∈V1

d(v) + e(V2, V3) ≥ n1(n2 + 1) + 2 = n1n2 + n1 + 2,

and this contradicts to the fact that e(G) = n1n2 + n3 + 2.

Claim 4.12. e(G[V0]) + e(V0, U) ≥ 2n1 + 2n2 − 1.

Proof. If e(G[V0]) + e(V0, U) ≤ 2n1 + 2n2 − 2, then

e(G[U ]) = e(G)−(e(G[V0])+e(V0, U)) ≥ n1n2+n3+2−(2n1+2n2−2) = (n1−2)(n2−2)

+(n3 − 2) + 2. By the induction hypothesis, we have

|C(Kn1,n2,n3−V0)|≥ e(G[U ]) ≥ (n1−2)(n2−2)+(n3−2)+2 = ar(Kn1−2,n2−2,n3−2, C
multi
4 )+1,

thus Kn1,n2,n3 − V0 contains a rainbow Cmulti
4 , a contradiction.

Denote U0 = {v ∈ U : e(v, V0) = 2}. By Claim 4.10, we have e(U, V0) ≤ |U0|+|U |. By

Claim 4.9, we just need to consider the following two cases.

Case 1. e(G[V0]) = 7.

By Claim 4.12, we have e(U, V0) ≥ 2n1 + 2n2 − 1 − e(G[V0]) = 2n1 + 2n2 − 8. Since

|U |= n1 + n2 + n3 − 6 and e(U, V0) ≤ |U0|+|U |, we have |U0|≥ n1 + n2 − n3 − 2 ≥ 1. Let

v ∈ U0, then the orange edges in G[V0 ∪ {v}] (see Figure 4.8) forms one subgraph in F

(see Figure 4.4). By Lemma 4.7, there is a rainbow Cmulti
4 , a contradiction.

Case 2. e(G[V0]) = 6.
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v v v v

v

v v v v v

Figure 4.8: Illustration of G[V0 ∪ {v}].

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

Figure 4.9: Illustration of G[V0 ∪ {v1, v2}].

By Claim 4.12, we have e(U, V0) ≥ 2n1 + 2n2 − 1 − e(G[V0]) = 2n1 + 2n2 − 7. Since

|U |= n1 +n2 +n3−6 and e(U, V0) ≤ |U0|+|U |, we have |U0|≥ n1 +n2−n3−1 ≥ n1−1 >

n1− 2. Thus, U0 contains at least two vertices v1 and v2 which come from distinct parts.

Then the orange edges in G[V0 ∪ {v1, v2}] (see Figure 4.9) form one subgraph in F (see

Figure 4.4). By Lemma 4.7, there exists a rainbow Cmulti
4 , a contradiction.
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Chapter 5

There are more triangles when they
have no common vertex

5.1 Introduction

We denote the number of triangles in G by T (G). A triangle covering set in V (G)

is a vertex set that contains at least one vertex of every triangle in G. The triangle

covering number, denoted by τ4(G), is the size of the smallest triangle covering set.

Mantel [43] proved that an n-vertex graph with
⌊
n2

4

⌋
+ t (t ≥ 1) edges must contain a

triangle. In 1941, Rademacher (unpublished, see [14]) showed that for even n, every graph

G on n vertices and n2

4
+ 1 edges contains at least n

2
triangles and n

2
is the best possible.

Later on, the problem was revived by Erdős, see [14], which is now known as the Erdős-

Rademacher problem, Erdős simplified this statement and proved more generally when

t ≤ 3 and n > 2t. Seven years later, he [15] conjectured that a graph with
⌊
n2

4

⌋
+ t edges

contains at least t
⌊
n
2

⌋
triangles if t < n

2
, which was proved by Lovász and Simonovits

[40]. Motivated by earlier results, we give a further improvement for the case t = 1: if

there is no vertex contained by all triangles then there are at least n− 2 of them in G.

Theorem 5.1 (Mantel [43]). The maximum number of edges in an n-vertex triangle-free

graph is bn2

4
c. Furthermore, the only triangle-free graph with bn2

4
c edges is the complete

bipartite graph Kbn
2
c,dn

2
e.

Theorem 5.2 (Erdős [14]). Let G be a graph on n vertices and
⌊
n2

4

⌋
+ t edges, t ≤ 3,

n > 2t, then G contains at least t
⌊
n
2

⌋
triangles.

Theorem 5.3 (Erdős [15]). Let G be a graph on n vertices and
⌊
n2

4

⌋
+ t edges, there

exists a constant c1 > 0, such that for t < c1n
2
, every G contains at least t

⌊
n
2

⌋
triangles.
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Theorem 5.4 (Lovász and Simonovits [40]). Let G be a graph on n vertices and
⌊
n2

4

⌋
+ t

edges, t < n
2
, then G contains at least t

⌊
n
2

⌋
triangles.

Before presenting the main result of this chapter, the following definitions, a theorem

and a lemma are needed.

Definition 5.5. Let Ki,n−i denote the complete bipartite graph on the vertex classes

|X|= i, |Y |= n− i.

· · ·

· · · Y

i

n− i

Ki,n−i

X

K−i,n−i

· · ·

· · · Y

z

w

i

n− i

Ki,n−i \ zw

X

KT
i,n−i

Figure 5.1: Graphs K−i,n−i and KT
i,n−i.

Definition 5.6. Let K−i,n−i denote a graph obtained from a complete bipartite graph Ki,n−i

plus an edge in the class X with i vertices, see Figure 5.1.

Definition 5.7. Let KT
i,n−i denote a graph obtained from a complete bipartite graph Ki,n−i

minus an edge plus two adjacent edges in the class X with i vertices, one end point of the

missing edge is the shared vertex of these two adjacent edges and the other one is in the

class Y , see Figure 5.1.

Lemma 5.8 (Xiao and Katona [52]). Let G be a graph with n vertices and
⌊
n2

4

⌋
+ 1

edges, such that τ4(G) = 1 and T (G) ≤ n − 3. Then G is one of the following graphs:

K−n
2
,n
2
, K−n−1

2
,n+1

2

, K−n+1
2
,n−1

2

or KT
n+1
2
,n−1

2

.

Theorem 5.9 (Xiao and Katona [52]). Let G be a graph with n vertices and
⌊
n2

4

⌋
+ 1

edges, then either τ4(G) = 1 or T (G) ≥ n− 2.
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5.2 Proofs of the main results

Proof of Lemma 5.8. Let v0 be such a vertex that G \ v0 contains no triangle. We distin-

guish two cases.

Case 1. G \ v0 contains at least one odd cycle. Let C2k+1 (k ≥ 2) be the shortest

odd cycle in G \ v0 and G
′ be the graph obtained from G by removing the vertices of

C2k+1 and v0, so v(G
′
) = n − 2k − 2. Since C2k+1 is the shortest cycle in G \ v0, each

vertex in G′ can be adjacent to at most 2 vertices in the C2k+1, otherwise, we can find

a shorter odd cycle. Since G′ is an (n − 2k − 2)-vertex triangle-free graph, by Theorem

5.1, e(G′) ≤

⌊(
n−2k−2

2

)2
⌋
. Obviously, any two vertices of C2k+1 which are not an edge

of C2k+1 are not adjacent, therefore

e(G \ v0) ≤ 2k + 1 + 2(n− 2k − 2) +

⌊(
n− 2k − 2

2

)2
⌋

= k2 − nk +

⌊
n2

4

⌋
+ n− 2

≤
⌊
n2

4

⌋
− n+ 2 (k ≥ 2).

Since e(G) = d(v0) + e(G \ v0) ≤ (n− 1) + (
⌊
n2

4

⌋
−n+ 2) =

⌊
n2

4

⌋
+ 1, the only possibility

for e(G) =
⌊
n2

4

⌋
+ 1 is that d(v0) = n− 1 and e(G \ v0) =

⌊
n2

4

⌋
− n+ 2. In this case, we

get T (G) =
⌊
n2

4

⌋
− n+ 2, which contradicts T (G) ≤ n− 3.

Case 2. G \ v0 has no odd cycles, then G \ v0 is a bipartite graph and e(G \ v0) ≤⌊
n−1
2

⌋ ⌈
n−1
2

⌉
. There are two subcases.

Case 2.1. e(G \ v0) =
⌊
n−1
2

⌋ ⌈
n−1
2

⌉
. Then G \ v0 is Kbn−1

2 c,dn−1
2 e and d(v0) =

e(G) − e(G \ v0) =
⌊
n
2

⌋
+1. Let d1 and d2 be the numbers of neighbors of v0 in classes

X and Y of Kbn−1
2 c,dn−1

2 e, respectively, then d(v0) = d1 + d2 and T (G) = d1d2. So we

need d1 + d2 =
⌊
n
2

⌋
+ 1 and d1d2 ≤ n− 3 hold at the same time. When n is even, we can

see that the only solution is when d1 = 1 and d2 = n
2
. The symmetric solution, d1 = n

2
,

d2 = 1 is not possible, since d1 ≤ n
2
− 1 in this case. Therefore, we get that G is K−n

2
,n
2
.

Assume now that n is odd, there are two possibilities,

(i) d1 = 1 and d2 = n−1
2
, in the same way as in the case of even n, we get T (G) = n−1

2

and G is K−n+1
2
,n−1

2

. When d1 = n−1
2

and d2 = 1, we also get T (G) = n−1
2

and G is

K−n+1
2
,n−1

2

.
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(ii) d1 = 2 and d2 = n−3
2
, then T (G) = 2(n−3

2
) = n− 3 and G is KT

n+1
2
,n−1

2

. Similarly,

when d1 = n−3
2

and d2 = 2, we get the same result.

Case 2.2 . e(G \ v0) =
⌊
n−1
2

⌋ ⌈
n−1
2

⌉
− t. Then d(v0) =

⌊
n
2

⌋
+1+t, 1 ≤ t ≤

⌈
n
2

⌉
− 2.

Let G\v0 be the bipartite graph with partitions X ′ and Y ′ , where |X ′ |= i
′ , then we have

i
′
(n− 1− i′) ≥

⌊
n− 1

2

⌋⌈
n− 1

2

⌉
− t

⇒


n− 1−

√
4t+ 1

2
≤ i

′ ≤ n− 1 +
√

4t+ 1

2
, n is even,

n− 1− 2
√
t

2
≤ i

′ ≤ n− 1 + 2
√
t

2
, n is odd.

(5.1)

We may assume that v0 has d1 (≥ 1) neighbors in X ′ and d2 (≥ 1) neighbors in Y ′ ,

since G \ v0 is bipartite, if d1d2 = 0, then G contains no triangle which contradicts the

fact that τ4(G) = 1. In this situation, d1d2 ≥ T (G) ≥ d1d2−t = d1(
⌊
n
2

⌋
+1+t−d1)−t =

−d21 + (
⌊
n
2

⌋
+ 1 + t)d1 − t ≥ −d21 + (

⌊
n
2

⌋
+ 1)d1.

When n is even, we know that the solutions of n − 3 ≥ T (G) = d1(
n
2

+ 1 − d1) is

exactly one of d1 = 1 or d2 = 1 holds like in Case 2.1. However, when d2 = 1, since

d1 + d2 = n
2

+ 1 + t, we have d1 = n
2

+ t, which contradicts (5.1) namely i′ ≤ n−1+
√
4t+1

2

(1 ≤ t ≤ n
2
− 2) because d1 ≤ i

′ . The case d1 = 1 and d2 = n
2

+ t can be settled in the

same way.

When n is odd, n− 3 ≥ T (G) = d1(
⌊
n
2

⌋
+ 1− d1) implies that one of d1 = 1, d2 = 1,

d1 = 2 or d2 = 2 holds. By symmetry we can consider the cases d1 = 1 and d1 = 2. We

check the details of the following 3 subcases.

(i) t = 1 and d1 = 1. We get d2 = n+1
2

because d1 + d2 = n−1
2

+ 1 + t. Since

d2 ≤ |Y
′|= n − 1 − i′ ≤ n−1+2

√
t

2
= n+1

2
, we get |Y ′|= n+1

2
and |X ′ |= n−3

2
. Since

e(G \ v0) = n−1
2

n−1
2
− 1, we see that G \ v0 is Kn−3

2
,n+1

2
. Thus, G is K−n−1

2
,n+1

2

and

T (G) ≤ d1d2 = n+1
2
.

(ii) t ≥ 2 and d1 = 1. By d1 + d2 = n−1
2

+ 1 + t, we have d2 = n−1
2

+ t > n−1+2
√
t

2
,

which contradicts d2 ≤ |Y
′ |= n− 1− i′ ≤ n−1+2

√
t

2
.

(iii) t ≥ 1 and d1 = 2. By d1 + d2 = n−1
2

+ 1 + t, we have d2 = n−1
2

+ t− 1. However,

T (G) ≥ d1d2 − t = 2(n−1
2

+ t− 1)− t ≥ n− 2, which contradicts T (G) ≤ n− 3.

In conclusion, when n is even, G is K−n
2
,n
2
. When n is odd, G is either K−n−1

2
,n+1

2

or

K−n+1
2
,n−1

2

or KT
n+1
2
,n−1

2

.
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Using Lemma 5.8, we are able to give the proof of Theorem 5.9.

Proof of Theorem 5.9. We prove our result by induction on n. The induction step will go

from n−2 to n, so we check the bases when n = 3 and n = 4, obviously, our statement is

true for these two cases. Suppose Theorem 5.9 holds for k = n− 2 (n ≥ 5), we separate

the rest of the proof into 2 cases.

Case 1. Every edge in G is contained in at least one triangle. Then T (G) ≥⌈⌊
n2

4

⌋
+1

3

⌉
≥ n− 2.

Case 2. There exists at least one edge uv which is not contained in any triangle. Then

u and v cannot have common neighbor in G \ {u, v}, which implies that e
(
{u, v}, V (G \

{u, v})
)
≤ n− 2. Therefore, e(G \{u, v}) ≥

⌊
n2

4

⌋
− (n− 2) =

⌊
(n−2)2

4

⌋
+ 1. In this point,

we split the rest of the proof into 3 subcases.

Case 2.1 e(G\{u, v}) ≥
⌊
(n−2)2

4

⌋
+3. By Theorem 5.2, we get T (G\{u, v}) ≥ 3

⌊
n−2
2

⌋
,

which implies that T (G) ≥ 3
⌊
n−2
2

⌋
≥ n− 2.

Case 2.2. e(G \ {u, v}) =
⌊
(n−2)2

4

⌋
+ 2. When n is even, by Theorem 5.2, we get

T (G \ {u, v}) ≥ n− 2, since T (G) ≥ T (G \ {u, v}), we are done. When n is odd, we have

e

(
{u, v}, V (G \ {u, v})

)
= n − 3, then there exists w ∈ V (G \ {u, v}) such that edges

vw, uw /∈ E(G). If e(G[N(u) \ v]) + e(G[N(v) \ u]) ≥ 1, then the number of triangles

which contains u or v is at least 1. By Theorem 5.2, T (G \ {u, v}) ≥ n − 3 holds, thus,

T (G) ≥ n − 2. Otherwise, G \ {u, v, w} is bipartite and all triangles in G \ {u, v} are

adjacent to w. Since e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, no triangle contains u or v.

Therefore, τ4(G) = τ4(G \ {u, v}) = 1 and all triangles in G are adjacent to w.

Case 2.3. e(G \ {u, v}) =
⌊
(n−2)2

4

⌋
+ 1, then e({u, v}, G \ {u, v}) = n − 2. When

e(G[N(u) \ v]) + e(G[N(v) \ u]) = 0, G \ {u, v} is bipartite, so it has at most
⌊
(n−2)2

4

⌋
edges, contradicting the assumption of the case.

Suppose e(G[N(u)\v])+e(G[N(v)\u]) = 1. Since |(N(u)\v) ∪ (N(v)\u)|= n−2, we

have e([N(u) \ v], [N(v) \ u]) ≤
⌊
(n−2)2

4

⌋
. Thus, e(G \ {u, v}) =

⌊
(n−2)2

4

⌋
+ 1 implies that

G\{u, v} is obtained from Kbn−2
2 c,dn−2

2 e plus an edge, say {j, k}, in one class. Therefore,

all triangles in G contain {j, k} and hence τ4(G) = 1 follows.

Now we assume that e(G[N(u) \ v]) + e(G[N(v) \ u]) ≥ 2, then the number of the

triangles containing u or v is at least 2. It is easy to check that if v(G) = 5 then G\{u, v}
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is a triangle and either τ4(G) = 1 or T (G) = 4. Therefore, we may assume n ≥ 6. Since

e(G \ {u, v}) =
⌊
(n−2)2

4

⌋
+ 1, by the induction hypothesis, either τ4(G \ {u, v}) = 1 or

T (G \ {u, v}) ≥ n− 4. When T (G \ {u, v}) ≥ n− 4, we have T (G) ≥ T (G \ {u, v}) + 2 ≥

n − 2. Otherwise, τ4(G \ {u, v}) = 1 and T (G \ {u, v}) ≤ n − 5 hold. By Lemma 5.8,

we see that when n is even, G \ {u, v} is K−n
2
−1,n

2
−1, when n is odd, G \ {u, v} is either

K−n−3
2
,n−1

2

or K−n−1
2
,n−3

2

or KT
n−1
2
,n−3

2

. Let us check what will happen in these cases.

· · ·

· · · Y

j k

l

u

v

X

K−|X|,|Y |

· · ·

· · · Y

j z k

w

u

v

Kn−1
2
,n−3

2
\ {z, w}

X

KT
n−1
2
,n−3

2

Figure 5.2

We first give the following technical lemma:

Lemma 5.10 (Xiao and Katona [52]). Let f(a, b) = ab + (A − a)(B − b), where A and

B are integers, 1 ≤ a ≤ A, 1 ≤ b ≤ B, then f(a, b) ≥ min{A,B}.

Proof of Lemma 5.10. Obviously, when AB = max{A,B}, f(a, b) ≥ 1 = min{A,B}.

Otherwise, we have A,B ≥ 2. Without loss of generality, fix b, then f(a, b) is a linear

function of variable a. Since ∂f
∂a

= b − (B − b), f(a, b) is decreasing when b < B
2
and

f(a, b) is increasing when b > B
2
. Therefore,

f(a, b) ≥

{
f(A, b) = Ab, b ≤ B

2
,

f(1, b) = b+ (A− 1)(B − b), b > B
2
.

It is easy to check that Ab ≥ A, when b ≤ B
2
, and b+(A−1)(B−b) = B(A−1)+b(2−A) ≥

B when b > B
2
. Hence, we get f(a, b) ≥ min{A,B}. Obviously, if min{A,B} = A, the

equality holds only when a = A and b = 1, if min{A,B} = B, the equality holds only

when a = 1 and b = B.

Case 2.3.1. G\{u, v} is K−bn2 c−1,dn2 e−1
, which implies that when n is even, G\{u, v}

is K−n
2
−1,n

2
−1 and when n is odd, G \ {u, v} is K−n−3

2
,n−1

2

. Let X and Y be the two classes
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of K−bn2 c−1,dn2 e−1
and {j, k} be the extra edge in X, where |X|=

⌊
n
2

⌋
− 1, see Figure

5.2. Since e(G[N(u) \ v]) + e(G[N(v) \ u]) ≥ 2, | (N(u) \ v) ∪ (N(v) \ u) |= n − 2 and

(N(u) \ v)∩ (N(v) \ u) = ∅, we see that either N(u) \ v or N(v) \ u contains at least one

vertex in both classes X and Y . Without loss of generality, say at least N(u) \ v has this

property.

Let |(N(u) \ v)∩X|= a and |(N(u) \ v)∩ Y |= b, where 1 ≤ a ≤
⌊
n
2

⌋
− 1 and 1 ≤ b ≤⌈

n
2

⌉
− 1. Then the number of triangles which are adjacent to u, containing one vertex in

X and one in Y is ab while the number of triangles which are adjacent to v, containing

one vertex in X and one in Y is (A− a)(B− b). Hence, we get T (G) ≥ ab+

(⌊
n
2

⌋
− 1−

a

)(⌈
n
2

⌉
− 1− b

)
+
⌈
n
2

⌉
− 1. By Lemma 5.10, we see T (G) ≥

⌊
n
2

⌋
− 1 +

⌈
n
2

⌉
− 1 = n− 2.

Case 2.3.2. n is odd and G \ {u, v} is K−n−1
2
,n−3

2

. Let X and Y be the two classes of

K−n−1
2
,n−3

2

and {j, k} be the extra edge in X, where |X|= n−1
2
. Similarly as in the previous

case, either N(u) \ v or N(v) \ u contains at least one vertex in both classes X and Y .

Without loss of generality, say at least N(u) \ v has this property.

Let |(N(u)\v) ∩X|= a and |(N(u)\v) ∩Y |= b, where 1 ≤ a ≤ n−1
2

and 1 ≤ b ≤ n−3
2
,

then T (G) ≥ ab+

(
n−1
2
−a
)(

n−3
2
−b
)

+ n−3
2
. By Lemma 5.10, we get T (G) ≥ n−3

2
+ n−3

2
≥

n− 3, the equality holds only if a = 1 and b = n−3
2
. Let s ∈ X and {u, s} ∈ E(G), a = 1

and b = n−3
2

implies that either s ∈ {j, k} then τ4(G) = 1, or s /∈ {j, k} then there exists

one more triangle {v, j, k}, thus T (G) ≥ n− 3 + 1 = n− 2.

Case 2.3.3. n is odd and G \ {u, v} is KT
n−1
2
,n−3

2

. Since n−1
2
≥ 3, we get n ≥ 7. Let

X and Y be the classes of KT
n−1
2
,n−3

2

, {j, z} and {z, k} be the two extra edges in X and

{z, w} be the missing edge in Kn−1
2
,n−3

2
, see Figure 5.2.

Let |(N(u) \ v) ∩X|= a and |(N(u) \ v) ∩ Y |= b. Since | (N(u) \ v) ∪ (N(v) \ u) |=

n − 2 and (N(u) \ v) ∩ (N(v) \ u) = ∅, when a = 0, we have X ⊆ (N(v) \ u). If

N(v) \ u = X, clearly, all triangles in G contain z and hence τ4(G) = 1. Otherwise,

|(N(v) \ u) ∩ Y |≥ 1. It is easy to check that T (KT
n−1
2
,n−3

2

) = n− 5, therefore, in this case

we get T (G) ≥ n − 5 + 2 + n−1
2
− 1 ≥ n − 1 (n ≥ 7). When b = 0, then Y ⊆ N(v) \ u.

If N(v) \ u = Y then N(u) \ v = X, we see that all triangles in G contain z and

hence τ4(G) = 1. Otherwise, |(N(v) \ u) ∩ X|≥ 1. When |(N(v) \ u) ∩ X|= 1, if

(N(v) \ u) ∩X = {z}, obviously, all triangles in G contain z, hence τ4(G) = 1. If not,
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then clearly T (G) ≥ n − 5 + 1 + n−3
2
≥ n − 2 (n ≥ 7). It is easy to check that T (G)

reaches the lower bound when |(N(v) \ u) ∩X|= 1 for n ≥ 9 and when n = 7, T (G) ≥ 5

holds in all cases. Therefore, we get either τ4(G) = 1 or T (G) ≥ n− 2.

Now suppose that, 1 ≤ a ≤ n−1
2

and 1 ≤ b ≤ n−3
2
. Then T (G) ≥ ab+ (n−1

2
− a)(n−3

2
−

b) + n− 5, by Lemma 5.10, we get T (G) ≥ n−3
2

+ n− 5 ≥ n− 2 (n ≥ 9). Since T (G) ≥ 5

when n = 7, we see that T (G) ≥ n− 2 holds in this case.

This completes the proof.

5.3 Remarks

Let V1, V2, . . . , Vr be pairwise disjoint sets where
⌈
n
2

⌉
≥ |V1|≥ |V2|≥ . . . ≥ |Vr|≥

⌊
n
2

⌋
and∑

i|Vi|= n hold. Define the graph Tr(n) with vertex set ∪Vi where uv is an edge if u ∈ Vi,

v ∈ Vj(i 6= j), but there is no edge within a Vi. The number of edges of the graph Tr(n)

is denoted by tr(n). The following fundamental theorem of Turán is a generalization of

Mantel’s theorem.

Theorem 5.11 (Turán [51]). If a graph on n vertices has more than tk−1(n) edges then

it contains a copy of the complete graph Kk as a subgraph.

The most natural construction is to add one edge to Tk−1(n) in the set V1. This graph

is denoted by T−k−1(n). It contains not only one copy of Kk but |V2|·|V3|· · · |Vk−1| of them.

[16] proved that this is the least number. Observe that the intersection of all of these

copies of Kk is a pair of vertices (in V1). If this is excluded, the number of copies probably

increases. This is expressed by the following conjecture. Take Tk−1(n), add an edge xy in

V1, an edge uv in V2 and delete the edge ux. This graph is denoted by T@
k−1. It contains

almost the double of the number of copies of Kk in T−k−1(n).

Conjecture 5.12. If a graph on n vertices has tk−1(n) + 1 edges and the copies of Kk

have an empty intersection then the number of copies of Kk is at least as many as in T@
k−1:

(|V2|−1)|V3|·|V4|· · · |Vk−1|+(|V1|−1)|V3|·|V4|· · · |Vk−1|= (|V1|+|V2|−2)|V3|·|V4|· · · |Vk−1|.

Of course this would be a generalization of our Theorem 5.9. Now we try to generalize

it in a different direction. What is the minimum number of triangles in an n-vertex graph

G containing
⌊
n2

4

⌋
+ t edges if τ4(G) ≥ s is also supposed. The problem is interesting
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only when 0 < t < s. Otherwise, if t ≥ s then τ4(G) = t is allowed. By Lovász-

Simonovits’ theorem [40], we know that the number of triangles is at least t
⌊
n
2

⌋
with

equality for the following graph. Take Kdn2 e,bn2 c where the two parts are V1(|V1|=
⌈
n
2

⌉
)

and V2(|V2|=
⌊
n
2

⌋
), respectively. Add t edges to V1. Here all triangles contain one of the

new added edges, therefore τ4(G) ≤ t and the extra condition on τ4(G) is not a real

restriction.

Hence we may suppose 0 < t < s. Choose 2(s−1) distinct vertices in V1 (ofKdn2 e,bn2 c):

x1, x2, . . . , xs−1, y1, y2, . . . , ys−1 and two distinct vertices in V2 : u1, u2. Add the edges x1y1,

x2y2, . . . , xs−1ys−1, u1u2 to Kdn2 e,bn2 c and delete the edges x1u1, . . . , xs−tu1. Let Ks,t

dn2 e,bn2 c
denote this graph. It is easy to see that it contains

⌊
n2

4

⌋
+ t edges. On the other hand

it contains s vertex disjoint triangles if
⌈
n
2

⌉
≥ 2(s − 1) + 1 and

⌊
n
2

⌋
≥ s + 1. Therefore,

τ4(Ks,t

dn2 e,bn2 c
) = s holds if n is large enough. We believe that this is the best possible

construction.

Conjecture 5.13. Suppose that the graph G has n vertices and
⌊
n2

4

⌋
+t edges, it satisfies

τ4(G) ≥ s and n ≥ n(t, s) is large. Then G contains at least as many triangles as

Ks,t

dn2 e,bn2 c
has, namely (s− 1)

⌊
n
2

⌋
+
⌈
n
2

⌉
− 2(s− t).

In the case t = 1, s = 2, our Theorem 5.9 is obtained. There is an obvious common

generalization of our two conjectures.

Remark 5.14. Conjecture 5.13 was corrected and Conjecture 5.12 was recently solved

and generalized by two groups of authors independently:

József Balogh and Felix Christian Clemen in [4], On stability of the Erdős-Rademacher

Problem, https://arxiv.org/abs/2003.12917.

Xizhi Liu and Dhruv Mubayi in [34], On a generalized Erdős-Rademacher problem,

https://arxiv.org/abs/2005.07224.
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