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Abstract

This thesis consists of three chapters on economic forecasting under general loss functions.

The first two chapters make contributions to the theory of econometric forecasting, while

the third one presents new evidence that stock analyst forecasts are biased. In the first

chapter, I use a regime switching framework and assume asymmetric loss functions when

deriving optimal forecast combination weights. In the second chapter, co-authored with

Róbert Lieli and Maxwell Stinchcombe, we explore a serious identification problem in the

estimation of the asymmetry parameter in the seminal 2005 paper of Elliott, Komunjer and

Timmermann. In the third chapter, I estimate an asymmetry parameter capturing stock

analyst’s relative cost from overpredicting versus underpredicting the stock performance

and present new evidence on analysts’ bias.

Chapter 1: Optimal forecast combination under asymmetric loss

and regime-switching

Forecast combinations have been repeatedly shown to outperform individual professional

forecasts and complicated time series models in accuracy. While simple combinations work

remarkably well in some situations, time-varying combinations can be even more accu-

rate in other real-life scenarios involving economic forecasts. This paper uses a regime

switching framework to model the time-variation in forecast combination weights. I use

an optimization problem based on asymmetric loss functions in deriving optimal forecast

combination weights. The switching framework is based on the work of Elliott and Tim-

mermann (2005), however I extend their setup by using asymmetric quadratic loss in the

optimization problem. This is an important extension, since with my setup it is possible

to quantify and analyze optimal forecast biases for different directions and levels of asym-

metry in the loss function, contributing to the vast literature on forecast bias. I interpret

the equations for the optimal weights through analytical examples and examine how the

weights depend on the model parameters, the level of asymmetry of the loss function and

the transition probabilities and starting state.
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Chapter 2: Problems in Identifying Loss Functions

(joint with Róbert Lieli and Maxwell Stinchcombe)

The seminal paper by Elliott, Komunjer and Timmermann (2005; henceforth EKT)

proposes a method for estimating a forecaster’s loss function based on a moment condi-

tion derived from the first order condition of the forecaster’s expected loss minimization

problem. This chapter demonstrates that the moment condition used for identification is

fundamentally non-unique; that is, a very diverse class of loss functions can give rise to

the same moment condition. More specifically, if one estimates the asymmetry parameter

of a lin-lin or quad-quad loss function, there exist other loss functions with completely

different asymmetry properties that are observationally equivalent. In EKT this serious

identification problem remains hidden by the fact that they only consider loss functions

that depend purely on the forecast error and not separately on the level of the forecast

or the realization. However, once such level effects are allowed, identification completely

breaks down. Hence, it is critical for any practical application of EKT to provide the-

oretical justification for why the assumption of a purely error-dependent loss function is

appropriate in the situation at hand. Nevertheless, this discussion is usually missing. A

version of this chapter has already been published as Section 5.2 of the paper by Lieli,

Stinchcombe and Grolmusz (2019, International Journal of Forecasting), which deals with

several technical issues in identifying loss functions.

Chapter 3: Recovering Stock Analysts’ Loss Functions from Buy/Sell

Recommendations

I carry out an empirical analysis to recover stock analysts’ loss functions from observations

on forecasts, actual realizations and a proxy for the publicly observed part of the analyst’s

information set. The forecasts I use are analyst stock (buy/hold/sell) recommendations

for two Blue Chip stocks. I estimate an asymmetry parameter that captures the analyst’s

relative cost from overpredicting versus underpredicting the stock performance. I find that

the results are sensitive to the categorization of ‘hold’ recommendations. When substitut-

ing ‘holds’ with the recommendation from the previous period, in most cases the estimated

bounds for the asymmetry parameter suggest that analysts are more likely to issue a ‘false

buy’ than a ‘false sell’ recommendation. This is in line with the frequent statement from the

analyst recommendations literature, that optimism relative to the consensus is rewarded

in analyst recommendations.
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for their continuous and kind help.

Last but not least, I am thankful to my family and friends for believing in me. I am

especially grateful to my husband for always supporting me in pursuing my dreams and

to my children for their patience, understanding and love throughout the long years of my

PhD studies.

v

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

Table of Contents

List of Tables vii

List of Figures x

1 Optimal forecast combination under asymmetric loss and regime-switching 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 The expected loss function and the forecaster’s problem . . . . . . . 7

1.2.3 Expected loss minimization in the general case . . . . . . . . . . . . 9

1.3 Numerical procedure for computing the weights . . . . . . . . . . . . . . . 11

1.4 Analytical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Scenario 1: one biased forecast . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Scenario 2: different variances of individual forecasts . . . . . . . . 18

1.4.3 Scenario 3: correlated forecasts . . . . . . . . . . . . . . . . . . . . 19

1.4.4 Scenario 4: common factor . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Problems in Identifying Loss Functions 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 The Identification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Implications of Osband’s principle for moment based loss function

estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 The ambiguity of the EKT moment conditions . . . . . . . . . . . . 32

2.4 Empirical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Empirical example: generalized piecewise-linear losses, different pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Systematic replication of EKT with various loss functions . . . . . . 36

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vi

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

3 Recovering Stock Analysts’ Loss Functions from Buy/Sell Recommenda-

tions 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Preference Recovery in a Binary Forecasting

Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Expected Loss Minimization Problem . . . . . . . . . . . . . . . . . 45

3.2.2 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Empirical Strategy and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.1 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A Appendix for Chapter 1 69

B Appendix for Chapter 2 83

C Appendix for Chapter 3 95

vii

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

List of Tables

1.1 Scenario 1: one biased forecast . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Optimal weights from case 1, symmetric transition probabilities . . . . . . 15

1.3 Optimal weights from case 1, asymmetric transition probabilities . . . . . . 15

1.4 Scenario 2: one forecast has higher variance in state 1 . . . . . . . . . . . . 18

1.5 Optimal weights from case 2, symmetric transition probabilities . . . . . . 19

1.6 Optimal weights from case 2, asymmetric transition probabilities . . . . . . 19

1.7 Scenario 3: correlated forecasts . . . . . . . . . . . . . . . . . . . . . . . . 20

1.8 Optimal weights from case 3, only one state (s1) . . . . . . . . . . . . . . . 21

1.9 Optimal weights from case 3, symmetric transition probabilities . . . . . . 22

1.10 Optimal weights from case 3, asymmetric transition probabilities . . . . . 22

1.11 Scenario 4: common factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.12 Optimal weights from case 4, only one state (s1) . . . . . . . . . . . . . . 24

1.13 Optimal weights from case 4, symmetric transition probabilities . . . . . . 25

1.14 Optimal weights from case 4, asymmetric transition probabilities . . . . . 25

2.1 Estimated α parameters for various values of b . . . . . . . . . . . . . . . . 35

2.2 Estimated α parameters for b = 1 . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Rejection rates across b-s and forecast subgroups . . . . . . . . . . . . . . . 38

3.1 Bounds for the asymmetry parameter, Goldman Sachs stocks . . . . . . . . 55

3.2 Bounds for the asymmetry parameter, 3M Co. stocks . . . . . . . . . . . . 61

3.3 Optimal weights from case 4, only one state (s1) . . . . . . . . . . . . . . . 82

3.4 Optimal weights from case 4, symmetric transition probabilities . . . . . . 82

3.5 Optimal weights from case 4, asymmetric transition probabilities . . . . . . 82

3.6 EKT’s Estimated α parameters for b = 1 . . . . . . . . . . . . . . . . . . . 85

3.7 Estimated α parameters for b = 0.25 . . . . . . . . . . . . . . . . . . . . . 86

3.8 Estimated α parameters for b = 0.5 . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Estimated α parameters for b = 2 . . . . . . . . . . . . . . . . . . . . . . . 88

3.10 Estimated α parameters for b = 3 . . . . . . . . . . . . . . . . . . . . . . . 89

3.11 Estimated α parameters for w(t) = |t| . . . . . . . . . . . . . . . . . . . . . 93

3.12 Rejection rates across different functional forms and forecast subgroups . . 94

viii

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

3.13 Estimated α parameters for Canada’s IMF forecasts using different func-

tional forms and instruments . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ix

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

List of Figures

1.1 Systematic survey forecast errors by horizon . . . . . . . . . . . . . . . . . 5

1.2 Asymmetric qaudratic losses as a function of alpha based on parametrization

with one biased forecast (s1); P=[0.5 0.5; 0.5 0.5] . . . . . . . . . . . . . . 16

1.3 Asymmetric qaudratic losses as a function of alpha based on parametrization

with one biased forecast (s1); P=[0.9 0.1; 0.1 0.9] . . . . . . . . . . . . . . 17

2.1 Loss functions for different values of b and α = 1/2 . . . . . . . . . . . . . 34

2.2 Loss functions asymmetric in either direction depending on b . . . . . . . . 40

(a) US, instrument 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

(b) Germany, instrument 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

(c) France, instrument 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

(d) Canada, instrument 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Bounds for c based on conditional probability estimates, UBS analyst rec-

ommendation for Goldman stocks . . . . . . . . . . . . . . . . . . . . . . . 56

(a) hold=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

(b) hold=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

(c) hold=previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Bounds for c based on conditional probability estimates, Morgan Stanley

analyst recommendation for Goldman stocks . . . . . . . . . . . . . . . . . 57

(a) hold=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

(b) hold=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

(c) hold=previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Bounds for c based on conditional probability estimates, JMP analyst rec-

ommendation for Goldman stocks . . . . . . . . . . . . . . . . . . . . . . . 58

(a) hold=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

(b) hold=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

(c) hold=previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Bounds for c based on conditional probability estimates,Credit Suisse ana-

lyst recommendation for Goldman stocks . . . . . . . . . . . . . . . . . . . 59

(a) hold=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

x

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

(b) hold=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

(c) hold=previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
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Chapter 1

Optimal forecast combination under

asymmetric loss and regime-switching

1.1. Introduction

Forecast combinations have been repeatedly shown to outperform individual professional

forecasts and complicated time series models in accuracy. Since the seminal paper of

Bates and Granger (1969) that introduced optimal forecast combinations, many works

have shown the theoretical and empirical benefits of using combined forecasts (see, among

others the papers by Clemen (1989), Diebold and Lopez (1996), Chan et al. (1999), Dunis

et al. (2000), Stock and Watson (1998, 1999), Timmermann (2006), Diebold-Shin (2019)).

These benefits include diversification gains from combining forecasts whose forecast errors

are not perfectly correlated with one another, approximating reality with many models

of different nature that are not encompassed by one complicated model and the ease of

combination versus using a highly complex forecasting model (Elliott and Timmermann

(2005)).

While simple combinations work remarkably well in some situations, time-varying com-

binations can be even more accurate in other real-life scenarios involving economic fore-

casts. The ranking of individual models according to accuracy is likely to change over time,

as shown by Stock and Watson (2003) and Aiolfi and Timmermann (2004), among others.

One forecast might be the most accurate in a period of high economic growth, but be out-

performed by another forecast in times of recession. Then a combination framework with
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time-varying weights would work better at forecasting throughout the business cycle than

one with stable weights. The idea of using time-varying forecast combination weights was

first introduced by Granger and Newbold (1973), and extended to a regression framework

by Diebold and Pauly (1987).

This paper uses a regime switching framework to derive optimal combination weights.

I use an optimization problem based on asymmetric loss functions in deriving optimal

forecast combination weights. The switching framework is based on the work of Elliott

and Timmermann (2005) however, I extend their setup by using asymmetric quadratic loss

in the optimization problem. This is an important extension, since with my setup it is

possible to quantify and analyze optimal forecast biases for different directions and levels

of asymmetry in the loss function. At the same time, this chapter also extends the findings

of Elliott and Timmermann (2004). In this paper, the authors characterize the optimal

combination weights for the most commonly used alternatives to mean squared error loss,

but do not include state-dependence. Thus, my main contribution is the combination of

state dependence with an asymmetric loss function, which, to my knowledge, has not been

addressed in the literature.

In this paper I study a forecaster’s problem who has access to a set of individual

forecasts and wants to combine them optimally in a regime switching environment under

asymmetric loss. I derive the first order conditions for an optimal linear combination and

provide a numerical procedure (akin to GMM) for computing them. I interpret the optimal

weights through analytical examples and examine how the weights depend on the model

parameters, the level of asymmetry of the loss function and the transition probabilities

and starting state. I quantify the optimal forecast bias as a function of the asymmetry

parameter of the forecaster’s loss function, adding to the literature on forecast bias (see

Mincer and Zarnowitz (1969), Holden and Peel (1990), Batchelor (2007), Elliott et al.

(2008), Dovern and Janssen (2017)). In the following paragraphs, I motivate my choices

for using a Markov-switching framework, asymmetric losses, and I give context on optimal

biases in forecasts.

There are different methods of using time-varying weights in forecast combinations.

Using rolling window regressions to determine the combination weights for every forecast

period is a popular and methodologically straightforward choice. Time-varying parameter

models could also be estimated using the Kalman filter. A third choice, proposed by

Deutch et al. (1994) is to determine weights based on a regime-switching model with an

observable state variable. Elliott and Timmermann (2005) compare these three methods

2
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in creating combination forecasts from surveys and time series models. The authors find

that the last method is the most accurate in terms of mean squared forecast error. Using

the regime-switching model also enables the researcher to analyze the optimal weights and

forecast errors assuming different starting regimes and different transition probabilities

between regimes. This makes it possible to draw conclusions on optimal forecast biases for

different economic states.

Elliott and Timmermann (2005) derives optimal combination weights in a latent state

regime switching environment. The authors illustrate the result with an empirical applica-

tion combining survey and time series forecasts and comparing the accuracy of combination

forecasts based on different time-varying weighting methods. In the derivation of the op-

timal switching weights, the authors assume mean squared (MSE) loss.

Mean squared loss is widely used in the literature due to the ease of computation, ana-

lytical convenience and its favorable statistical properties1. However, its use is difficult to

justify on economic grounds and likely does not capture the true behavior of forecasters.

The arguments against the use of symmetric loss functions go back to Granger and New-

bold (1986) and are developed in more recent works such as Christoffersen and Diebold

(1996, 1997), Granger and Pesaran (2000), Elliott et al (2005) and (2008), Patton and

Timmermann (2007), Wang and Lee (2014). The use of asymmetric loss functions is based

on the idea that forecasters could be averse to ‘bad’ outcomes: low real GDP growth, high

inflation, etc., and they could incorporate this asymmetry into their forecasts. In another

forecasting situation there might be different costs in overprediction versus underprediction

of sales: overprediction can lead to higher inventory holding costs, while underprediction

can lead to stockout costs, loss of reputation and revenues when the demand is too high

(Elliott et al. 2008). The relative costs of overprediction versus underprediction depend on

the preferences of the firm, and it is reasonable to believe that the preferences are asym-

metric. The forecaster is likely to be aware of the asymmetric preferences (their salary

could even depend on using the right - asymmetric - loss function and producing accu-

rate forecasts as a result), and would therefore use an asymmetric loss function in their

forecasts.

1When assuming MSE loss, the rational forecasts are unbiased and the forecast errors are uncorre-
lated with all variables in the current information set. Therefore, rationality testing is straightforward if
quadratic loss is assumed. However, as Elliott et al. (2005, 2008) point out, testing rationality this way
assumes a joint hypothesis of rationality and quadratic loss. The latter might not hold in many cases; the
results of such rationality tests are not valid for forecasts constructed using asymmetric losses.
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Biases in economic forecasts could also be related to asymmetric loss functions. It

is well documented that survey forecasts are frequently biased (Mincer and Zarnowitz

(1969), Holden and Peel (1990), Batchelor (2007), Elliott et al. (2008), Dovern and Janssen

(2017)). The size and direction of the bias can depend on the affiliation of the professional

forecaster, as well as on the current state of the business cycle. Elliott et al. (2008)

examine US Survey of Professional Forecasters (SPF) and Livingston survey data on output

growth and find that close to 30 percent of individual forecasts are biased at a 5 percent

significance level. The authors also find that on average, forecasters are more likely to

underpredict growth (suggesting that the cost of overprediction is higher than the cost

of underprediction). The biases vary by the affiliation of the forecaster: academics have

almost symmetric loss functions, while banking and industry economists rely on more

asymmetric loss functions (Elliott et al. (2008)).

Recent research suggest that state dependence and asymmetric loss are potentially

both at play in some economic forecasts. Dovern and Janssen (2017) examine systematic

forecast biases over the business cycle. On a panel of forecasts for the annual real GDP

growth rate in 19 advanced economies2 (1990-2013), they find that on average, forecasters

overestimate GDP growth. However, there is a substantial difference between forecasts for

different business cycle states. Forecasts made for recession periods exhibit large negative

forecast errors (in advance, forecasters overestimate the growth for these periods). By

contrast, forecasts for recoveries show small positive errors, while forecasts for expansions

are unbiased.

As an illustration, I have reproduced Figure 1. from the paper of Dovern and Janssen

(2017) using a different data set. I have used Consensus Economics surveys for annual real

GDP growth for 11 Easters European countries3, for the period between 2007 and 2019.

The forecast horizons used range from 3 months to 24 months.

The figure for Eastern European economies confirms the same results as Dovern and

Janssen’s example of 19 advanced countries: forecasts made for recessions exhibit large

negative biases, forecasts for recoveries often underpredict growth, while forecasts for ex-

2Dovern and Janssen (2017) use Consensus Economics surveys for the following countries: Austria,
Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland, France, Greece, Ireland, Italy, Japan,
the Netherlands, Norway, Portugal, Sweden, the United Kingdom, and the United States.

3Bulgaria, Czech Republic, Estonia, Croatia, Hungary, Latvia, Lithuania, Poland, Romania, Slovenia,
Slovakia

4
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Figure 1.1: Systematic survey forecast errors by horizon

Notes: The figure shows estimates of the systematic forecast errors (in percentage points) as a function of
the forecast horizon. The lines represent point estimates from regressions of the forecast errors on a set of
24 dummy variables (one for each forecast horizon).

pansions are on average unbiased (Figure 1.1). The differences between forecast biases

made for different periods are large and significant (see Batchelor (2007) and Dovern and

Janssen (2017)). Time series forecasts also frequently exhibit biases, especially around busi-

ness cycle turning points. When constructing forecast combinations, it would be beneficent

to let the weights depend on the state of the economy, as well as allow the loss function

to be asymmetric. This chapter introduces an optimal combination weighting scheme that

meets these criteria.

The rest of this chapter is organized as follows. Section 1.2 shows the theoretical

setup and outlines the expected loss minimization problem in the general case. Section 1.3

describes the procedure used for deriving the optimal weights numerically. Section 2.4

analyzes how the optimal bias and the combination weights depend on the parameters

through four analytical examples with different parametrizations. Section 1.5 assembles

general observations from the results that could be formalized as theorems and also outlines

some possible extensions. The last section concludes.

1.2. Theory

In the introduction, I have already argued for the high importance of allowing for asym-

metric loss functions when combining forecasts. In this section, I introduce the theoretical
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setup and solve the expected loss minimization problem in the general case.

1.2.1 Setup

We would like to forecast yt+1 on the basis of It = {ŷτ+1, yτ}tτ=1, where

ŷτ+1 = (ŷ1τ+1, . . . ŷmτ+1)
′ (1.1)

is the vector of m individual forecasts. The information set includes the realized values

of the target variable yt up until the current period when the forecast is made, together

with the past and current values of the m individual one-step-ahead forecasts. The last

available individual forecasts in the forecaster’s information set in t are the forecasts made

in t for the t+ 1 horizon.

The equation for the linear combination of forecasts is the following:

yt+1 = ω0 + ω′ŷt+1 + et+1, (1.2)

where ω0 : is a constant, and ω′ : is an m-vector of weights. The forecaster’s goal is to

optimally combine the individual forecasts in order to minimize her expected loss from the

combined forecast. She can do this by optimizing the combination weights ω0 and ω′ based

on her specific loss function.

I assume that the joint distribution of the target yt+1 and the vector of individual

forecasts ŷt+1 is driven by an unobserved state variable, St ∈ (1, . . . , k) that is not part of

the information set; St /∈ It. Conditional on the information set It and the underlying state

St+1 = st+1, assume that the joint distribution of the target and the vector of individual

forecasts is Gaussian: (
yt+1

ŷt+1

)
∼ N

((
µyst+1

µŷst+1

)
,

(
σ2
yst+1

σ′
yŷst+1

σyŷst+1 Σŷst+1

))
(1.3)

Given equation (1.2), assumption (1.3) implies that the corresponding conditional distri-

bution of the error et+1 is also Gaussian with some mean µest+1
and standard deviation

σest+1
.

Finally, I also assume (following Hamilton (1989) and Elliott and Timmermann (2005))

that the states are generated by a first order Markov chain with the following transition

probability matrix, where πij denotes the transition probability of arriving at state j when

starting from state i:
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
π11 π12 . . . π1k

π21 π22 . . . π2k
...

...
. . . πk−1k

πk1 . . . πkk−1 πkk

 (1.4)

Furthermore, if at time t the state of the process is st, then the probability that the process

will transition to state st+1 in period t+ 1 will be denoted as

P (st+1|st) = πst+1,t

Hence, πst+1,t is the element of the matrix (1.4) that corresponds to row st and column

st+1.

1.2.2 The expected loss function and the forecaster’s problem

Deviating from the setup of Elliott and Timmermann (2005), I choose the more flexible

asymmetric quadratic (or quad-quad4) loss function in the forecaster’s optimization prob-

lem, instead of the symmetry-assuming MSE loss5. The loss function takes the following

form:

L(e) =

 (1− α)e2, if e > 0

αe2, if e ≤ 0
(1.5)

where 0 < α < 1. The parameter alpha in the loss function captures the asymmetry

preferences of the forecaster. For alpha values lower than 1
2
, negative forecast errors entail

a smaller cost for the forecaster as opposed to positive forecast errors, overprediction is

preferred. For α > 1
2
, positive errors entail smaller costs than negative errors, thus under-

prediction is preferred. α = 1
2
is the symmetric case, the loss function reduces to the same

form as the mean squared error loss.

4The double quadratic term refers to the type of the loss function for both negative and positive
forecast errors.

5The asymmetric quadratic loss function I use in this chapter has been studied by other authors as
well. It is a special case of the family of loss functions studied by Elliott, Komunjer and Timmermann
(2005, 2008). In another paper, Elliott and Timmermann (2004) derive the optimal forecast combination
in a permanent-state environment assuming the same loss function.
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Assuming the loss function takes the form expressed in equation 1.5, the posited ob-

jective is to minimize the following expected loss formula:

E{L(et+1)|It, st} =
k∑

st+1=1

πst+1,tE
{
[α− (2α− 1)1est+1>0]e

2
st+1

∣∣∣It, st+1

}
, (1.6)

where 1est+1>0 denotes the indicator function, i.e.,

1est+1>0 =

 1, if est+1 > 0

0, if est+1 ≤ 0

and est+1 is the (still random) value of the error et+1 in state st+1.

Let us interpret the objective function in equation 1.6. The expectation on the left

hand side is taken with respect to the conditional distribution of et+1 given the forecaster’s

information set It and the current state st. This is then expanded as an iterated expectation

on the right hand side. For any possible value st+1 of the future state, the inner expectation

is with respect to the conditional distribution of est+1 given It and st+1. This expectation

is, by assumption, no longer dependent on st, i.e., it does not matter how the process

arrives at the state st+1. The outer expectation then averages over all possible future

states, using the transition probabilities corresponding to the current state st as weights

(these are contained in the corresponding row of the transition matrix). This expectation,

by contrast, is no longer dependent on It, as the Markov property implies that transition

probabilities depend solely on the current state.6

To evaluate the expected loss (1.6) in practice, one needs to assume specific values for

the transition probabilities πst+1,t or estimate them based on an auxiliary model. There

is a set of transition probabilities πst+1,t corresponding to each possible current state st.

However, st is not directly observed by the econometrician, which means that the evaluation

of (1.6) also requires an assumption about the current state st or an estimate of it.

I now turn to the forecaster’s problem. The forecaster’s goal is to choose the combina-

tion weights ω0 and ω in equation (1.2) in a way that minimizes her expected loss (1.6). To

6We can summarize this discussion more formally as follows. Using the law of iterated expecta-
tions, we can write the left hand side of equation 1.6 as E{L(et+1)|It, st} = E

{
E[L|It, st, st+1]

∣∣It, st} =

E
{
E[L|It, st+1]

∣∣st}, where the last equality follows from the conditional independence conditions discussed
above.
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this end, I write the value of the forecast error in state st+1 as est+1 = µest+1
+ σest+1

zst+1 ,

where µest+1
and σest+1

are the state-specific mean and standard deviation, respectively,

and zst+1 is a standard normal random variable. Using equation (1.2) and assumption

(1.3), these moments are given by

µest+1
= µyst+1

− ω0 − ω′µŷst+1

σ2
est+1

= σ2
yst+1

+ ω′Σŷst+1
ω − 2ω′σyŷst+1

.

Substituting est+1 = µest+1
+σest+1

zst+1 into (1.6) and making the corresponding change

of variables in the integral yields the following expression:7

E{L(et+1)|It, st} =
k∑

st+1=1

πst+1,tE{(α− (2α− 1)1est+1>0)e
2
st+1

|It, st} =

= α
k∑

st+1=1

πst+1,t[µ
2
e + σ2

e ]− (2α− 1)
k∑

st+1=1

πst+1,t

∞∫
−µe

σe

(µe + σezst+1)
2dF (zst+1), (1.7)

where µe and σe are shorthand for µest+1
and σest+1

, respectively, and F (·) is the stan-

dard normal cumulative distribution function.

The goal is to minimize (1.7) with respect to the constant ω0 and the slope coefficients

(or weights) ω, where these parameters are implicit in the definition of µe and σe. However,

as discussed above, the expected loss objective (1.6) has several ‘versions’ depending on

the initial state st; there is, therefore, a corresponding set of minimizers for each possible

current state. To emphasize this dependence, I will denote the optimal weights as ω∗
0t and

ω∗
t . Thus, if the econometrician’s assessment of the current state evolves from period to

period, so do the optimal weights.

I will now characterize ω∗
0t and ω∗

t as the solutions to the first order condition of the

expected loss minimization problem outlined above.

1.2.3 Expected loss minimization in the general case

Let us minimize the expected loss function in the general case (1.7) by deriving the corre-

sponding first order conditions (FOCs).

7See the detailed derivations in appendix 1, equation 3.2.
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Taking the partial derivative with respect to the constant ω0t yields:

∂E{L(et+1)|st, It}
∂ω0t

= 0 :

α
k∑

st+1=1

πst+1,t (µe)− (2α− 1)
k∑

st+1=1

πst+1,t

 ∞∫
−µe

σe

(µe + σe zst+1)dF (zst+1)

 = 0
(1.8)

Substituting µe and σe with their definitions (and omitting the state and time subscripts

for clarity), we can write the FOC in the following form:

∂E{L(e)|s, I}
∂ω0t

= 0 :

α
∑
s

πs (µys − ω0t − ω′
tµŷs)−

(2α− 1)
∑
s

πs


∞∫

−µy+ω0+ω′
tµŷs√

σ2
y+ω′

tΣŷωt−2ω′
tσyŷ

(µys − ω0t − ω′
tµŷs + (σ2

y + ω′
tΣŷωt − 2ω′

tσyŷ) z)dF (z)

 = 0

(1.9)

The optimal weights ω∗
0t and ω∗

t must then satisfy equation (1.9).

There are m more first order conditions corresponding to the partial derivatives with

respect to the individual weights ωt. These are given by:

∂E{L(e)|s, I}
∂ω

= 0 :

α
∑
s

πs (−µŷµe +Σŷω − σyŷ)−

− (2α− 1)
∑
s

πs

 ∞∫
−µe

σe

(µe + σe z)

(
−µŷ +

1

σe
(Σŷω − σyŷ) z

)
dF (z)

 = 0

(1.10)

The optimal weights ω∗
0t and ω∗

t must also satisfy equation (1.10).

Due to the complexity of these equations, the solutions for the optimal weights cannot

be given in closed form. However, it is possible to solve these equations numerically, adopt-

ing the idea behind the well-known generalized method of moments (GMM) estimator. I

will describe this the general procedure in the next subsection. In Section 4 I will compute

the optimal weights and consequent average losses in three specific scenarios and analyze

the results in detail.
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1.3. Numerical procedure for computing the weights

Suppose that all the parameters in equations (1.9) and (1.10) are given except for the

weights ω0 and ω. The main difficulty in solving the first order conditions lies in the

evaluation of the integrals with respect to dF (z), especially given that the integration

limits are also dependent on the unknown weights. Let me generically represent these

integrals as ∫ b

a

g(z;θ)dF (z), (1.11)

where θ = (ω0,ω
′)′ stands for the vector of unknown weights and a and b may also depend

on ω.

I then evaluate the first order conditions in the following way. First, I formally elim-

inate the integration limits by using indicator functions; that is, I represent the integrals∫ b

a
g(z;θ)dF (z) as

∫
g(z;θ)1[a,b](z)dF (z), where the latter integral is taken over the entire

real line (i.e., from minus infinity to infinity). The two integrals are equal because the

function 1[a,b](z) is one if z falls into the interval [a, b] and is zero otherwise.

Second, as F stands for the standard normal cdf, I can again regard these integrals as

expectations over a standard normal random variable; that is,∫
g(z;θ)1[a,b](z)dF (z) = E{g(Z;θ)1[a,b](Z)}, Z ∼ N(0, 1). (1.12)

Using this representation of the integrals with respect to dF (z), the first order conditions

(1.9) and (1.10) can be thought of as a set of moment conditions

E[mj(Z;θ)] = 0, j = 0, . . . ,m, (1.13)

where, for example,

m0(Z,θ) = α
∑
s

πs (µys − ω0 − ω′µŷs)

− (2α− 1)
∑
s

πs

{ [
µys − ω0 − ω′µŷs + (σ2

ys + ω′Σŷsω − 2ω′σyŷs) Z
]
· 1[as,∞)(Z)

}
(1.14)

with

as =
−µys + ω0 + ω′µŷs√

σ2
ys + ω′Σŷsω − 2ω′σyŷs

. (1.15)

Equations (1.9) and (1.10) can be written this way because the linearity of the expectations
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allows it to be pulled ’outside’ of all the other operations.

Third, I replace the moment conditions with their ’empirical’ counterparts using a large

sample of artificial observations Z1, . . . , Zn drawn from the standard normal distribution.

That is, instead of expectations, I work with averages of the form

1

n

n∑
i=1

mj(Zi,θ) = 0, j = 0, . . . ,m. (1.16)

For large n, the law of large numbers guarantees 1
n

∑n
i=1mj(Zi,θ) ≈ E[mj(Z,θ)], and I

can make this approximation precise by choosing n as large as computationally feasible.

Thus, in the three steps outlined above, I have reduced the computation of the optimal

weights to a standard generalized method of moments (GMM) estimation problem, where

the parameter vector θ = (ω0,ω
′)′ is just-identified. This means that one can use well-

developed numerical procedures and readily available routines to compute the optimal

forecast combination weights for any given parametrization of the forecaster’s problem.

1.4. Analytical examples

In this section, I estimate and interpret the optimal weights and average losses in four

different parametrizations. The simulations were carried out in order to better understand

the differences between the asymmetry-allowing optimal combination weights and the ET

combination weights that are based on MSE loss. For ease of interpretation, I consider

only 2 states and 2 forecasts in all cases, and a one-period forecast horizon. State 1

parameters are different in the four cases, while they are always compared to the baseline

parametrization in state 2 (state 2: unbiased forecasts, both variances are 1, forecasts are

uncorrelated).

1.4.1 Scenario 1: one biased forecast

Let us assume a simple data generating process of the following form:

yt+1 = βst
1 xt + βst

2 wt + ϵt+1 = f1t + f2t + ϵt+1 (1.17)

Where ϵt+1 is a standard normal error term, ϵs1∼N(0, 1); ϵs2∼N(0, 1). The two individual

forecasts that we would like to combine are the following:
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s1 s2
βs1
1 1 βs2

1 1
βs1
2 1 βs2

2 1
µs1
x 0.1 µs2

x 0
σs1
x 1 σs2

x 1
µs1
w 0 µs2

w 0
σs1
w 1 σs2

w 1
µs1
y 0 µs2

y 0

σs1
y

√
2 σs2

y

√
2

Cov(x,w)s1 0 Cov(x,w)s2 0

Table 1.1: Scenario 1: one biased forecast

f1t = βst
1 xt

f2t = βst
2 wt

(1.18)

The linear combination of the two forecasts gives the combined forecast:

ŷt+1|t = ω0t + ω1tf1t + ω2tf2t (1.19)

In the first parametrization, asymmetry is introduced by a small positive bias of forecast

1 in state 1 (see table 1.1 for the full parametrization). The other forecast stays unbiased

throughout (µf2,s1 = µf2,s2 = 0). The variances of the forecasts are equal in both states

and the two individual forecasts are uncorrelated E(xtwt) = 0,∀t. The optimal weights

are derived using the numerical procedure introduced in section 3.

I specialize the general expected loss function from equation 6 by substituting in the

adoquate forms of µe and σe.

µe,s1 = −ω0,s1 − ω1,s1 µf1,s1 = −ω0,s1 − ω1,s1 0.1

µe,s2 = −ω0,s1

σ2
e,s1 = σ2

e,s2 = 2 + (ω2
1,s1 + ω2

2,s1)− 2(ω1,s1 + ω2,s1);

As the variances of the individual forecasts are unity and the forecasts are uncorrelated,

the expected loss function and first order conditions are not overly complicated (see ap-

pendix 2). The variance-covariance matrix of the two forecasts and the covariances between

the target and the individual forecasts take the following forms:
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Σŷ =

[
1 0

0 1

]
σyŷ =

[
1

1

]

When there are two possible Markov states, then we get two sets of optimal weights, each

referring to the starting state that is assumed to be known when making the forecast. The

equation for the expected loss function and the first order conditions are stated in appendix

2. Applying the GMM-based numerical procedure to these analytical results, we get the

optimal combination weights outlined in table 2 and 3. For deriving the results in table 2,

the symmetric transition probabilities from the matrix P1 were used, while for the results

in table 3, the asymmetric transition probabilities from P2 were used.

P1 =

[
0.5 0.5

0.5 0.5

]
P2 =

[
0.9 0.1

0.1 0.9

]

First, let us interpret the results of table 2. The transition probability does not depend

on the starting state in this scenario, therefore, the optimal weights are the same for

each starting state. The optimal weights of the two individual forecasts, ω1t and ω2t are

essentially 1 (minor estimation errors occur from the GMM procedure). This is the same

as their true values, β1 and β2 from the DGP. The optimal bias is captured in ω0, whose

value changes as the asymmetry parameter α increases.

At α = 0.5, the loss function is symmetric and coincides with the MSE loss. Therefore,

we see that the estimated optimal weights are exactly the same in the asymmetry-allowing

case and the MSE loss-based combination (ET). ω0 takes the value that offsets the bias

competely, resulting in an unbiased forecast:

ω0 = −(forecast bias× Pr(arriving in biased state)) (1.20)

For lower α-s, overprediction is preferred. This is achieved in the combination forecast,

by only sligthly offsetting the bias from f1; ω0 is close to zero. As α increases toward

0.5, the preference for overprediction is weaker, therefore, ω0 increases in absolute value,

resulting in a less biased optimal combination forecast. For α-s above 0.5, underprediction

is preferred, ω0 offsets the bias coming from µf1, and produces an overall positive forecast

error.

Figure 2 and 3 shows the average asymmetric quadratic losses for the transition prob-

ability matrices P1 and P2. The figures depict the result of a thought experiment where a

one-period forecast is made and we would like to know the expected loss for the next pe-

riod. In figure 1.2, the transition probability matrix P1 results in a symmetric loss function
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optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 -0.010 1.000 1.000 -0.010 0.999 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000
0.3 -0.030 0.998 1.000 -0.030 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000
0.5 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000
0.7 -0.070 0.997 1.000 -0.070 0.998 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000
0.9 -0.090 1.000 1.000 -0.090 1.000 1.000 -0.050 0.998 1.000 -0.050 0.998 1.000

Table 1.2: Optimal weights from case 1, symmetric transition probabilities

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 -0.050 0.998 1.000 -0.001 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
0.3 -0.079 0.998 1.000 -0.005 1.000 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
0.5 -0.090 0.999 1.000 -0.010 0.999 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
0.7 -0.095 0.999 1.000 -0.021 0.998 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000
0.9 -0.104 0.997 0.998 -0.050 0.993 1.000 -0.090 0.999 1.000 -0.010 0.999 1.000

Table 1.3: Optimal weights from case 1, asymmetric transition probabilities

that is always lower than the constant loss resulting from the ET optimal combination.

The loss is lower for more extreme asymmetry preferences (α-s close to 0 and 1). Again,

the starting state does not influence the results.

When the transition probability matrix takes the from of P2, two different sets of

optimal weights are calculated based on the starting state. Now, the system is likely to

stay in the starting state (with probability 0.9). When this is the biased state 1, ω0 needs

to be higher in absolute value to offset the bias. The relation in equation 1.20 stays true;

for instance when α = 0.5, the constant from the optimal combination needs to be −0.09 to

yield an unbiased forecast (this is also the optimal ω0 for the ET loss). As the asymmetry

parameter changes, we can see a similar dynamic in the change of ω0 as in table 2: for

lower α-s, the preferred overprediction of the target variable is achieved by only partly

offsetting the bias from f1, while for α-s higher than 0.5, an ω0 higher in absolute value

is needed to produce an optimally biased combination forecast. The coefficients of f1 and

f2 are 1 throughout, hitting the true β coefficients from the DGP.
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Figure 1.2: Asymmetric qaudratic losses as a function of alpha based on parametrization
with one biased forecast (s1); P=[0.5 0.5; 0.5 0.5]

quad-quad losses, starting state: s1

quad-quad losses, starting state: s2
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Figure 1.3: Asymmetric qaudratic losses as a function of alpha based on parametrization
with one biased forecast (s1); P=[0.9 0.1; 0.1 0.9]

quad-quad losses, starting state: s1

quad-quad losses, starting state: s2
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1.4.2 Scenario 2: different variances of individual forecasts

In this scenario, both forecasts are unbiased throughout. The difference in the forecasts

stems from the second forecast having a higher variance in state 1 (see table 4 for full

parametrization). The two individual forecasts are uncorrelated. Again, state 2 is charac-

terized by the baseline parametrization of equal variances and no bias. The state-dependent

means and variances of the forecast error are the following:

µe,s1 = µe,s2 = −ω0,s1

σ2
e,s1 = 3 + (2ω2

1,s1 + ω2
2,s1)− 2(2ω1,s1 + ω2,s1);

σ2
e,s2 = 2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1);

In this parametrization, the variance-covariance matrix of the two forecasts and the

covariances between the target and the individual forecasts are changed from the baseline

to the following forms. The resulting expected loss function and first order conditions are

detailed in appendix 3.

Σŷ =

[
2 0

0 1

]
σyŷ =

[
2

1

]

s1 s2
βs1
1 1 βs2

1 1
βs1
2 1 βs2

2 1
µs1
x 0 µs2

x 0

σs1
x

√
2 σs2

x 1
µs1
w 0 µs2

w 0
σs1
w 1 σs2

w 1
µs1
y 0 µs2

y 0

σs1
y

√
3 σs2

y

√
2

Cov(x,w)s1 0 Cov(x,w)s2 0

Table 1.4: Scenario 2: one forecast has higher variance in state 1
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optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 0.000 1.000 1.000 0.003 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000
0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.9 0.000 1.000 1.000 -0.004 1.000 0.999 0.000 1.000 1.000 0.000 1.000 1.000

Table 1.5: Optimal weights from case 2, symmetric transition probabilities

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.3 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.5 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.7 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000
0.9 -0.008 1.002 1.002 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 1.000

Table 1.6: Optimal weights from case 2, asymmetric transition probabilities

The optimal combination weights are shown in tables 5 (symmetric transition probabil-

ities characterized by P1) and 6 (asymmetric transition probabilities characterized by P2).

It is appearent that the higher variance of f1 in s1 does not change the optimal weights,

thus the true parameters stemming from the data generating proccess, [ω0, ω1, ω2] = [0, 1, 1]

are found. At extreme asymmetry parameters, the minor differences are due to calculation

errors from the GMM procedure. When a bias is introduced to forecast 1 in state 1 in ad-

dition to the higher variance, the optimal combination weights are the same as in scenario

1.

1.4.3 Scenario 3: correlated forecasts

Let us examine a parametrization with correlated individual forecasts in state 1. In state

1, f1 has an indirect effect on y, through its correlation with f2. Similarly to the other

specifications, state 2 is characterized by the baseline DGP and forecasts.
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ys1t+1 = f2t + ϵt+1

ys2t+1 = f1t + f2t + ϵt+1

Where ϵt+1 is a standard normal error term, ϵs1∼N(0, 1), ϵs2∼N(0, 1).

In state 1, each individual forecast consists of a common part, f, and an additional error

term:

f1s1t = ft + ζt

f2s1t = ft + ηt

where ζt∼N(0, 1) and ηt∼N(0, 0.2)

The forecast is the linear combination of the individual forecasts.

ŷt+1|t = ω0t + ω1tf1t + ω2tf2t

s1 s2
βs1
1 1 βs2

1 1
βs1
2 1 βs2

2 1
µs1
x 0 µs2

x 0

σs1
x

√
2 σs2

x 1
µs1
w 0 µs2

w 0
σs1
w 1 σs2

w 1
µs1
y 0 µs2

y 0

σs1
y

√
3 σs2

y

√
2

Cov(x,w)s1 0 Cov(x,w)s2 0

Table 1.7: Scenario 3: correlated forecasts

Σŷ =

[
2 1

1 1.2

]
σyŷ =

[
1

1.2

]

µe,s1 = µe,s2 = −ω0,s1
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optimal weights

α
starting state: s1

ω0t ω1t ω2t

0.1 0.000 0.000 1.000
0.3 0.000 0.000 1.000
0.5 0.000 0.000 1.000
0.7 0.000 0.000 1.000
0.9 -0.052 -0.226 1.379

Table 1.8: Optimal weights from case 3, only one state (s1)

σ2
e,s1 = 1.2 + 2ω2

1,s1 + 1.2ω2
2,s1 + 2(ω1,s1ω2,s1)− 2(ω1,s1 + 1.2ω2,s1);

σ2
e,s2 = 2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1);

To better understand the results, assume first that there was no switching and the

system stayed in s1. As f1 does not appear in the DGP, and has a higher variance than

f2, we would expect the optimal combination weights to be [ω0, ω1, ω2] = [0, 0, 1]. In the

simulation of such a case, whose results are presented in table 1.8, these weights are indeed

found (at very high α-s we can see some estimation errors).

Returning to the original switching framework, let us first assume equal transition

probabilities (transition probability matrix is P1). Then the estimated optimal combination

weights are those shown in table 1.9. As both forecasts are unbiased in both states, the

weights do not change with the asymmetry parameter, similarly to scenario 2. ω0 is zero

throughout as there is no bias to offset coming from the individual forecasts. However, the

optimal weights of the two forecasts differ in this case: the coefficient of f1 is lower (0.39)

than that of f2 (0.82). The weights take values between their optimal values if the system

always stayed in state 1; [ω0, ω1, ω2] = [0, 0, 1], and their optimal values if the system

always stayed in state 2; [ω0, ω1, ω2] = [0, 1, 1]. The estimated ω∗
1t and ω

∗
2t are lower than

the simple average of the above two sets of weights [0.5, 1]. This is due to the variance-

minimizing objective of the forecast: the forecast with higher variance, f1, is assigned a

lower combination weight. Since f2 is positively correlated to f1, it is also intuitive in light

of the variance-minimizing objective that ω∗
2t is lower than 1.

Assuming a more persistent transition probability matrix, P2, we can see from table 1.10

that the starting state matters for the optimal weights. When the starting state is s1, where

the forecasts are correlated, f1 is assigned a low weight of 0.82 that is even lower than the

probability of leaving the starting state (P12 = 0.1). ω∗
2t is slightly higher (0.92) than the

probability of staying in state 1 (P11 = 0.9).
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optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 -0.010 0.392 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821
0.3 -0.002 0.393 0.821 0.001 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821
0.5 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821
0.7 -0.001 0.393 0.821 -0.006 0.393 0.821 0.000 0.393 0.821 0.000 0.393 0.821
0.9 -0.007 0.393 0.821 -0.017 0.395 0.821 0.000 0.393 0.821 0.000 0.393 0.821

Table 1.9: Optimal weights from case 3, symmetric transition probabilities

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 0.001 0.083 0.937 0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919
0.3 0.001 0.083 0.937 -0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919
0.5 0.000 0.082 0.937 0.000 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919
0.7 0.000 0.082 0.937 0.001 0.826 0.919 0.000 0.082 0.937 0.000 0.826 0.919
0.9 -0.079 0.115 0.929 -0.005 0.824 0.918 0.000 0.082 0.937 0.000 0.826 0.919

Table 1.10: Optimal weights from case 3, asymmetric transition probabilities

When the starting state is s2, the optimal weights are close to (0, 1, 1), (optimal weights

for a system that always stays in s2) as the probability of arriving at state 1 is low.

1.4.4 Scenario 4: common factor

In this scenario, the combination forecast in state 1 is again characterized by two correlated

individual forecasts. In addition to these two forecasts, the data generating process includes

a third forecast, f3, that is the common factor responsible for the correlation between f1

and f2. As in the other examples, state 2 is the baseline parametrization (two uncorrelated,

unbiased forecasts with equal coefficients in the DGP):

ys1t+1 = f1t + f2t + f3t + υt+1

ys2t+1 = f1t + f2t + ϵt+1

Where ϵt+1 is an i.i.d. error, ϵs2∼N(0, 1). υ is the idiosynchratic error from the state 1

DGP with correlated variables, υs1∼N(0, 1).
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s1 s2
βs1
1 1 βs2

1 1
βs1
2 1 βs2

2 1
βs1
3 0 βs2

3 0
µs1
f1 0 µs2

f1 0

σs1
f1

√
1.1 σs2

f1 1
µs1
f2 0 µs2

f2 0

σs1
f2

√
10 σs2

f2 1
µs1
f3 0 µs2

f3 0
σs1
f3 1 σs2

f3 1
µs1
y 0 µs2

y 0

σs1
y

√
16.1 σs2

y

√
2

Cov(x,w)s1 0 Cov(x,w)s2 0

Table 1.11: Scenario 4: common factor

In state 1, f1 and f2 consists of a common factor, f3, and an additional error term with

different variances:

f1s1t = f3t + ζt

f2s1t = f3t + ηt

where ζt∼N(0, 0.1) and ηt∼N(0, 9)

The forecast is the linear combination of forecasts f1 and f2.

ŷt+1|t = ω0t + ω1tf1t + ω2tf2t

Let us first examine the optimal weights in a constant-state system to better understand

the results from the switching simulation. Assume that there is no switching and the

prevailing state is always s1. Then, we would expect the optimization procedure to assign

f2 lower weights than f1, due to the variance-minimizing objective.

Σŷ =

[
1.1 1

1 10

]
σyŷ =

[
3.1

12

]

µe,s1 = µe,s2 = −ω0,s1
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optimal weights

α
starting state: s1

ω0t ω1t ω2t

0.3 0.000 1.900 1.010
0.5 0.000 1.900 1.010
0.7 0.000 1.900 1.010

Table 1.12: Optimal weights from case 4, only one state (s1)

σ2
e,s1 = 16.1 + 1.1ω2

1,s1 + 10ω2
2,s1 + 2(ω1,s1ω2,s1)− 2(3.1ω1,s1 + 12ω2,s1);

σ2
e,s2 = 2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1);

Table 1.12 shows the optimal weights from the no-switching exercise8. The results are

intuitive: ω0 is zero similarly to the other cases where the forecasts are unbiased, and

the optimal weights do not change with α. This is also likely due to the unbiasedness

of the forecasts (this conjecture and some other general observations from the results are

summarized in section 1.5). As expected, f2 is assigned lower weights than f1, due to its

higher variance. Still assuming a no-switching environment, if the system stayed in state

2 throughout, the optimal weights would be [ω0, ω1, ω2] = [0, 1, 1], as we have seen in the

previous examples.

Returning to the regime-switching environment, let us first examine the optimal weights

under symmmetric transition probabilities between states (P2 transition probability ma-

trix), shown in table 1.139. ω0 is zero since the forecasts are unbiased. Also likely due to

unbiasedness, the optimal weights are constant for different asymmetry parameter values.

The optimal weight of f2, the forecast with the higher variance is lower than that of the

other forecast. The optimal combination weights in table 1.13 are very close to the arith-

metic means of the optimal weights from the previous no-switching exercises (s1: [0, 1.9,

0.01]; s2: [0, 1, 1]).

Table 1.14 shows the optimal weights assuming asymmetric transition probabilities

8Results for α-s lower than 0.3 and higher than 0.7 are truncated from table 1.12, since the numerical
procedure produced large estimation errors. The full table can be found in appendix 6.

9Results for α-s lower than 0.3 are truncated from table 1.13 due to estimation errors at these extreme
values. The full table can be found in appendix 6. At α = 0.7 the outlier values are also likely due to
estimation error.
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optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050
0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050
0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050
0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 1.13: Optimal weights from case 4, symmetric transition probabilities

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048

Table 1.14: Optimal weights from case 4, asymmetric transition probabilities

(P2)
10. When the starting state is s1, the system is expected to stay in this state with a

probability of 0.9, therefore, the optimal weights are close to the results from table 1.12.

Conversely, when the starting state is s2, the optimal weights are close to [0,1,1], as in the

scenario where the system stayed in s2 throughout.

1.5. Conjectures

In this section I assemble general observations from section 2.4 that could be formalized

as theorems given further evidence.

1. If the individual forecasts are unbiased, the optimal combination weights do not

depend on the loss function’s asymmetry parameter. In case 1, we have seen that

the constant term in the forecast combination, ω0 changed as α increased. However,

in the other three scenarios, the optimal weights were constant despite changing

asymmetry preferences. In scenarios 2 through 4, both forecasts were unbiased, only

10Again, the results for α = 0.1 are truncated due to estimation errors, see the full table in appendix 6.
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their variances and covariance changed. When cases 1 and 2 were combined (f1 was

biased and had higher variance in s1), the resulting optimal weights were identical

to the results from case 1; again, the optimal bias captured by ω0 was different for

different α-s.

2. If one of the individual forecasts are biased, the bias is adjusted for through ω0,

the constant in the combination. The optimal combination weight of the biased

individual forecast is its true weight from the data generating process (conjecture

from scenario 1).

3. If the individual forecasts are uncorrelated and unbiased, the difference in their vari-

ances does not lead to differences in their optimal combination weights. In case 2,

we have seen that for such parametrization, the forecasts were assigned their true

coefficients from the DGP as combination weights.

4. If f1 and f2 are correlated and have different variances, then the variance-minimization

objective is taken into account in estimating their optimal weights. The individual

forecast with higher variance is assigned a lower weight.

1.6. Conclusion

This paper uses a regime switching framework and assumes asymmetric quadratic loss

function to derive the optimal combination weights of individual forecasts. The switching

framework is based on the paper of Elliott and Timmermann (2005), however I extend their

setup by using asymmetric quadratic loss in the optimization problem. This is an important

extension, since with my setup it is possible to quantify and analyze optimal forecast biases

for different directions and levels of asymmetry in the loss function, contributing to the

literature on rational forecast bias.

After introducing the expected loss function and first order conditions in the general

case, I present the numerical procedure used to calculate the optimal weights in specific

parametrizations. The optimal forecast combination weights are calculated in four sce-

narios exhibiting different bias, variance and covariance properties between the individual

forecasts. The general observations from these examples are summerized in section 1.5.

The most important conjecture is that assuming an asymmetric quadratic loss function and

regime switching, the optimal combination weights depend on the asymmetry parameter
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only in the case when one of the forecasts are biased. In this case, for asymmetric prefer-

ences, the average loss based on the asymmetric quadratic loss function strongly dominates

the MSE-based average loss.

If the individual forecasts are unbiased and only their variances differ (in both uncor-

related and correlated scenarios), then the optimal weights resulting from the asymmetric

loss function are the same as those resulting from the mean squared loss. The optimal

weights are independent from the asymmetry parameter.

In future work, conducting simulations calibrated to the real economy and analyzing the

performance of the optimal forecast combinations introduced here might prove important.
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Chapter 2

Problems in Identifying Loss

Functions1

2.1. Introduction

A biased forecast (a systematic underprediction or overprediction of the target) is often

interpreted as evidence of the forecaster’s irrationality (Mishkin (1981), Zarnowitz (1985),

Davies and Lahiri (1995), de Mendonca et al. (2021)). However, the property that the

optimal forecast should be unbiased is based on a very specific assumption — that the

forecaster’s loss function is quadratic. Under more general, possibly asymmetric, loss

functions the optimal forecast involves a bias term (Granger 1969, Patton and Timmerman

2007, Capistrán and Timmermann (2009), Franses (2021)). In general, there is no reason

to assume that economic forecasts are made under conditions that are well captured by a

symmetric loss function such as quadratic loss (Granger 1969, Granger and Newbold (1986),

Christoffersen and Diebold (1997), Döpke et al. (2010)). For example, a central bank may

face very different costs if it underpredicts inflation or overpredicts it. Thus, when seeing

biased forecasts in the data, an alternative interpretation is that it was produced by a

rational forecaster possessing an asymmetric loss function.

Starting from this last observation, Elliott, Komunjer and Timmermann (2005) propose

a method for estimating a forecaster’s loss function using observations on the forecasts, the

corresponding realizations, and possibly some of the predictors in the forecaster’s informa-

tion set. They model the candidate loss functions as a parametric class, which includes
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lin-lin and quad-quad as special cases. Importantly, all members of this class depend on

the forecast error only, i.e., the difference between the realization and the forecast. The

proposed estimation procedure is based on the first order condition for the forecaster’s

expected loss minimization problem. For example, if the forecaster has quadratic loss, the

first order condition states that the forecast error is uncorrelated with all variables in the

forecaster’s information set. For general loss functions the analogous condition is that the

first derivative of the loss function with respect to the forecast, evaluated at the observed

forecast-realization pair, is uncorrelated with the predictors. These moment conditions

can then be used to derive a standard GMM estimator for the unknown loss function

parameters.

The EKT method has been applied in a number of contexts to recover forecasters’

preferences. For example, Capistrán (2008) uses the EKT estimator to estimate the loss

function of the Federal Reserve before and during the Volcker era. Capistrán finds that

under the chairmanship of Volcker, having inflation above the target was costlier than

having inflation below the target. Before Volcker, the loss suggests an asymmetry of the

opposite direction. Döpke et al. apply the EKT method to German annual inflation and

output growth forecasts covering the 1970-2007 period. The authors find limited evidence

of asymmetric loss for the economic forecasts analyzed; only pooled forecasts proved to be

asymmetric, but not individual ones. When quad-quad functional form was assumed, the

authors have found a tendency of forecasters to produce overly optimistic GDP forecasts.

Pierdzioch et al. (2012) also use EKT’s estimator to analyze the asymmetry of inflation

and output growth forecasts issued by the Bank of Canada. The authors find evidence for

asymmetry only for the next-year forecasts, but not for the forecasts made for the end of

the current year. Overestimating next-year inflation was associated with a higher loss than

that implied by underestimation. The asymmetry of output growth forecasts pointed into

the other direction (Pierdzioch, et al. (2012)).

The contribution of this paper is to demonstrate that the EKT loss function estimation

method depends critically on some implicit identifying assumptions — a fact that is not

recognized in the literature. In particular, the results obtained by the EKT estimator are

very sensitive to the assumption that the posited parametric loss functions depend on the

forecast error only. More generally, however, the forecaster’s loss may also depend on the

level of the target variable and/or the forecast. (We will say that such loss functions are

endowed with “level effects.”) For example, in the context of central bank inflation fore-

casts, it is not only reasonable to entertain the possibility that the pertinent loss function
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is asymmetric, but also that a 1 percentage point forecast error has different implications

when average inflation is at 3 percent and when it is at, say, 9 percent.

If loss functions with level effects are not ruled out, one can use a transformation

called “Osband’s principle” (after Osband (1985)) to show that the first order conditions

described above do not uniquely determine the underlying loss function. To outline Os-

band’s principle, I have to define elicitability first. Let us consider a loss function and

a statistical functional (e.g. mean, median). If the correct forecast uniquely minimizes

the functional, we call the functional elicitable (Fissler and Ziegel (2016)). Osband’s prin-

ciple shows that a functional that is not elicitable can be a component of an elicitable

vector-valued functional (Fissler and Ziegel (2016), Gneiting (2011), Osband (1985)).

The key observation that allows the application of the transformation based on Os-

band’s principle is that any given forecast is naturally a function of the information that

was available to the forecaster at the time. Hence, any function of the forecast must be

uncorrelated with the first derivative of the loss function with respect to the forecast. As I

will show, the generality of this condition permits substantial ambiguity about the under-

lying loss function. I also use concrete examples to demonstrate that loss functions with

completely different directions of asymmetry may generate the same first order conditions

and are hence observationally equivalent.

For example, I embed the standard asymmetric lin-lin loss function with asymmetry

parameter α into a larger class that has an additional shape parameter b. A change in

b causes an economically meaningful change in the loss function and yet the first order

condition that defines the optimal forecast is invariant to the value of b. Hence, this

parameter is unidentified from any data on observed forecasts and realizations. This is

very problematic because for b = b1 the forecaster may prefer negative forecast errors

when, say, the realization is y = 1 whereas a positive forecast error would be preferred

when b = b2 and y = 1. Thus, nothing can be inferred from the data about the direction

of asymmetry of the underlying loss function (at least in the presence of level effects). I

present a similar embedding for quad-quad loss functions.

While the identification problem exposed in this paper is fundamental, it does not

mean that the EKT approach to loss function estimation should be abandoned altogether.

Rather, it clarifies what additional arguments are needed for the application of the method

in practice. In particular, a careful theoretical argument should be made that level effects

are not relevant in the situation at hand, and hence restricting attention to the error-

dependent loss functions posited by EKT is appropriate. In this situation the asymmetry

30

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

parameter α is identified and meaningful both in the lin-lin and quad-quad cases. Never-

theless, we note that such a discussion is lacking in the empirical papers reviewed above.

The rest of the paper is organized as follows. Section 2.2 describes the forecaster’s

expected loss minimization problem. Section 2.3 introduces the identification problem of

EKT’s approach, and section 2.4 illustrates the identification problem by showing examples

of how small changes in the assumed loss give rise to vastly different asymmetry parameter

estimates. The last section concludes.

2.2. Setup

Let Ŷt+1 denote the forecast of the target variable Yt+1 made by the forecaster at time t.

The information set available to the forecaster on which the forecast is based is denoted

as Ωt; the predictive distribution pt is the conditional distribution of Yt+1 given Ωt. The

loss function possessed by the forecaster is modeled by the econometrician as ℓ(ŷ, y; θ),

where θ is a finite dimensional vector of parameters. If the model for the loss function

is correctly specified, there exists some value θ0 of the parameters such that the observed

forecast Ŷt+1 minimizes the expectation of ℓ(ŷ, y; θ0) with respect to pt, and hence satisfies

the corresponding FOC:

d

dŷ

∫
ℓ(Ŷt+1, y; θ0)dpt(y) =

∫
ℓŷ(Ŷt+1, y; θ0)dpt(y) = 0. (2.1)

While pt itself is unobserved by the econometrician, (2.1) and the law of iterated expecta-

tions imply

E[Wtℓŷ(Ŷt+1, Yt+1; θ0)] = 0, (2.2)

where Wt is any random vector measurable with respect to Ωt for which the expectation is

well defined. Thus, as put forward by EKT, one can estimate the loss function parameters

θ0 using moment conditions of the form (2.2) without full knowledge of Ωt. All that is

required is some instrument vector Wt that is plausibly available to the forecaster at time

t.

While the estimation strategy described above cleverly handles the problem that pt

is not observed by the econometrician, Osband’s principle implies that strong additional

assumptions are needed to identify the forecaster’s loss function. The identification problem

is detailed further in the next section.
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2.3. The Identification Problem

2.3.1 Implications of Osband’s principle for moment based loss

function estimation2

To illustrate the practical relevance of the abstract identification problems addressed in

this paper, we draw out the consequences of Osband’s principle for the moment based

loss function estimation method proposed by Elliott, Timmermann and Komunjer (2005;

henceforth, EKT)3. In EKT’s framework identification is achieved by assuming very specific

classes of loss functions: asymmetric absolute loss (lin-lin) or asymmetric quadratic loss

(quad-quad) with the asymmetry parameter α to be estimated. Nevertheless, Osband’s

principle implies that given α, there is a multitude of other losses that explain the data

equally well (e.g., other generalized α-piecewise linear (α-GPL)4 losses in case of lin-lin).

Thus, any conclusion drawn about the shape of the underlying loss from the estimate of α is

extremely sensitive to the specific parametrization used. We will now make this argument

formal and provide a partly empirical example.

2.3.2 The ambiguity of the EKT moment conditions5

The estimation strategy described in the setup cleverly handles the problem that pt is

not observed by the econometrician, Osband’s principle implies that strong additional

assumptions are needed to identify the forecaster’s loss function. In particular, equation

(17) in Lieli at al. (2019) shows that given a suitable weight function w(·), the loss function

2This subsection was published as section 5. in Lieli et al (2019).

3Appendix 1 gives a more detailed description of Osband’s principle.

4α-GPL loss functions are defined in the following way. For each α ∈ (0, 1), the loss functions in Lα
GPL

are those of the form
ℓ(ŷ, y) = [1(y < ŷ)− α][ψ(ŷ)− ψ(y)], (2.3)

where ψ(·) is any continuous, strictly increasing function and 1(·) denotes the indicator function.

5This subsection was published as section 5.1. in Lieli et al (2019).
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ℓ†(ŷ, y; θ0) =
∫ ŷ

−∞w(t)ℓŷ(t, y; θ0)dt satisfies

d

dŷ

∫
ℓ†(Ŷt+1, y; θ0)dpt(y) =

∫
w(Ŷt+1)ℓŷ(Ŷt+1, y; θ0)dpt(y) = 0.

Again, for any Ωt-measurable random vector Wt this implies

E[Wtℓ
†
ŷ(Ŷt+1, Yt+1; θ0)] = E[Wtw(Ŷt+1)ℓŷ(Ŷt+1, Yt+1; θ0)] = 0, (2.4)

provided that the expectations exist. The identification problem arises because Wtw(Ŷt+1)

is also Ωt-measurable, since Ŷt+1 is, of necessity, a function of information available at

time t. Hence, the moment condition (2.4) has two equally valid interpretations: it can

either be regarded as a consequence of the forecaster’s FOC under the loss ℓ(ŷ, y; θ0) and

instrument choice Wtw(Ŷt+1) or, alternatively, the loss ℓ†(ŷ, y; θ0) and instrument choice

Wt. Even if these moment conditions point-identify θ0, the loss functions ℓ and ℓ† may

look very different. Knowledge of θ0 alone says very little, if anything, about the shape of

the underlying loss.

2.4. Empirical examples

2.4.1 Empirical example: generalized piecewise-linear losses, dif-

ferent parameters6

An example will help reinforce the argument. Let us embed lin-lin losses into a larger

class of generalized piecewise-linear (GPL) loss functions, introduced by Patton (2016).

Let y denote the target variable and ŷ denote the forecast and let 1(·) denote the indicator
function. For b > 0 the function ψ(t) = sgn(t)|t|b is strictly increasing, so

ℓ(ŷ, y;α) = [1(y − ŷ < 0)− α] · [sgn(ŷ)|ŷ|b − sgn(y)|y|b], α ∈ (0, 1) (2.5)

is indeed a collection of GPL losses for any b > 0. Setting b = 1 corresponds to lin-lin

loss, but other values of b give rise to very differently shaped loss functions asymmetric in

either direction; see Figure 2.1 for an illustration with α fixed at 0.5.

6This subsection was published as section 5.2. in Lieli et al (2019).
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Figure 2.1: The loss functions (2.5) for different values of b and α = 1/2. The realization
y is fixed at -2.5 and the forecast ŷ varies.

While each loss function exhibited on Figure 2.1 has the property that the median of

pt is the optimal point forecast for any distribution pt, these losses are not economically

equivalent. For example, suppose that the forecaster is presented with the following ques-

tion: “If Yt+1 = 1, how much would you be willing to pay to avoid a forecast error of size

+1 versus size −1?” Clearly, a forecaster whose loss is given by the dashed line would

respond differently than a forecaster whose loss is given by the dotted line.

Let us turn to the moment conditions for estimating α that result from specification

(2.5). In this case equation (2.2) takes the form

E
{
Wt|Ŷt+1|b−1 ×

[
− α1(Yt+1 > Ŷt+1) + (1− α)1(Yt+1 < Ŷt+1)

]}
= 0. (2.6)

For any given b > 0 the generalized method of moments estimator of α derived from

the sample analog of (2.6) is isomorphic to EKT’s estimator with the instrument choice

Wt|Ŷt+1|b−1 (in EKT’s setting b = 1). To highlight the ambiguity in interpreting estimates

of α, we revisit one of EKT’s original applications involving annual budget deficit forecasts
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b = 0.25 b = 0.5 b = 1 b = 2 b = 3
α̂ 0.46 0.46 0.45 0.40 0.33
s.e. (0.11) (0.11) (0.11) (0.11) (0.11)
p-value (α = .5) [0.36] [0.35] [0.32] [0.18] [0.07]

Note: Based on the IMF’s current year budget deficit forecasts for France. Sample period: 1980-2017; Wt

= constant, lagged budget deficit (EKT’s instrument 3). The GMM weighting matrix Ŝ is specified as in

EKT. The case b = 1 corresponds to the original EKT estimator (their estimate of α is 0.54).

Table 2.1: Estimated α parameters for various values of b

published by the IMF for various countries. Using (2.6), we re-estimate the α parameter

for different values of b, while settingWt equal to one of the original instruments considered

by EKT.7

An important argument should be taken into consideration when interpreting the results

from Table 2.1 and comparing them to the results from EKT8. If there are differences

between the point estimates that go beyond small sample variation, a plausible explanation

is that the family of losses (2.6) is misspecified in the broader sense that the point forecasts

reported by the forecaster do not correspond to a fixed quantile of the underlying predictive

distributions. Other possible interpretations include instrument invalidity (Wt is not in the

forecaster’s information set) or forecaster irrationality.

A small set of results is shown in Table 2.1. While α̂ varies somewhat as a function of b,

the null hypothesis that α = 0.5 cannot formally be rejected at the 5% level in any of the

cases (albeit the conclusion is borderline for b = 3). If, as in EKT, one takes lin-lin as the

underlying loss, these estimates suggest no significant deviation from symmetry—the dif-

ferent values of b correspond simply to different instruments. Nevertheless, an alternative,

and a priori equally plausible interpretation of (2.6) is that the underlying losses belong

to the set (2.5) with some value of b different from 1. Plotting the loss functions corre-

sponding to different (b, α̂) pairs in Table 2.1 would yield a picture similar to Figure 2.1

— the observed budget forecasts and realizations can also be rationalized by loss functions

7As we do not have access to EKT’s original data set, we collected our own data for the sample period
1980-2017. Note that this is not perfectly aligned with EKT’s original sample (1975-2001 for OECD data
and 1976-2000 for IMF data). We did not find the IMF and OECD forecasts made before 1980 and we
included data made after 2000 in order to provide a larger sample.

8To ease comparison, the results of Table 2 in EKT (2005) are included in appendix 2, table 4

35

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

asymmetric in either direction (see figure 2.2 in the next section)!

The conservative interpretation of the α estimates reported in EKT’s Table 2 (and our

Table 2.1) is that they simply approximate which quantile of the forecaster’s predictive

distribution is used as the point forecast. There are then a diverse class of α-GPL losses

that can potentially rationalize this behavior. Hence, any conclusions drawn by EKT

about the (a)symmetry of the underlying loss9 is conditional on complete trust in the lin-

lin specification. However, our results in Section 3 of Lieli et al. (2019) show that different

α-GPL losses are observationally equivalent even in controlled environments, so it requires

strong theoretical arguments to single out any particular subclass as the appropriate model

of forecaster behavior.

A property that makes lin-lin losses special among GPL losses is that the forecaster’s

loss is a function of the forecast error y − ŷ only, independently of the level of ŷ or y. All

of EKT’s statements about symmetry are critically dependent on this implicit identifying

assumption. In general, any loss function estimation exercise that uses the lin-lin (or

quad-quad) specification should argue the point that a loss function solely dependent on

the forecast error is appropriate for the situation at hand.

2.4.2 Systematic replication of EKT with various loss functions

In this subsection I conduct a systematic replication of the EKT results and present a

broader set of results compared to subsection 2.4.1. My sample period (1980-2017) is not

perfectly aligned with EKT’s original sample (1975-2001 for OECD data and 1976-2000

for IMF data), so this might explain in part the different estimates. The reason why the

sample periods differ from those of EKT is that I did not have access to their original

dataset. I did not find the IMF and OECD forecasts made before 1980 and I included data

made after 2000 in order to provide a larger sample.

I follow the same methodology as in subsection 2.4.1, and re-estimate the α parame-

ter for annual budget deficit forecasts published by the IMF and the OECD for various

countries for different values of b, while settingWt equal to the original instrument sets con-

sidered by EKT. Setting b = 1 corresponds to lin-lin loss, but other values of b give rise to

9One example: “[T]he point estimates of α suggest strong asymmetries in the loss function... For some
countries they indicate that underpredictions of budget deficits are viewed as up to three times costlier
than overpredictions.” (EKT, p. 1117)
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IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.47 0.43 0.43 0.43 0.38 0.38 0.29 0.41 0.38 0.33 0.35 0.41

s.e 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.09 0.10 0.09 0.09 0.09
p-value 0,81 0,51 0,51 0,51 0,26 0,26 0,06 0,33 0,23 0,07 0,10 0,33

Inst=2 alpha 0.43 0.44 0.40 0.45 0.28 0.35 0.31 0.42 0.40 0.30 0.36 0.42
s.e 0.12 0.11 0.11 0.11 0.10 0.11 0.12 0.10 0.10 0.09 0.10 0.10
p-value 0,55 0,61 0,35 0,62 0,03 0,15 0,10 0,42 0,30 0,03 0,14 0,43

Inst=3 alpha 0.43 0.45 0.40 0.45 0.30 0.35 0.27 0.40 0.39 0.26 0.36 0.42
s.e 0.12 0.11 0.11 0.11 0.10 0.11 0.11 0.10 0.10 0.09 0.10 0.10
p-value 0,57 0,64 0,36 0,65 0,05 0,15 0,04 0,32 0,25 0,00 0,14 0,42

Inst=4 alpha 0.43 0.44 0.39 0.44 0.20 0.34 0.23 0.40 0.37 0.26 0.36 0.42
s.e 0.12 0.11 0.11 0.11 0.09 0.11 0.11 0.10 0.10 0.09 0.10 0.10
p-value 0,54 0,61 0,33 0,62 0,00 0,13 0,01 0,32 0,19 0,00 0,14 0,42

1-year ahead
Inst=1 alpha 0.40 0.33 0.40 0.47 0.67 0.40 0.40 0.42 0.40 0.42 0.54 0.50

s.e 0.13 0.12 0.13 0.13 0.12 0.13 0.13 0.10 0.10 0.10 0.10 0.10
p-value 0,43 0,17 0,43 0,80 0,17 0,43 0,43 0,43 0,31 0,43 0,68 1,00

Inst=2 alpha 0.33 0.35 0.38 0.50 0.96 0.39 0.41 0.44 0.37 0.44 0.52 0.54
s.e 0.13 0.13 0.13 0.13 0.05 0.13 0.13 0.10 0.10 0.10 0.10 0.10
p-value 0,19 0,25 0,33 1,00 0,00 0,40 0,50 0,53 0,20 0,55 0,83 0,70

Inst=3 alpha 0.33 0.36 0.42 0.50 0.94 0.42 0.41 0.43 0.34 0.44 0.53 0.52
s.e 0.13 0.13 0.13 0.13 0.06 0.13 0.13 0.10 0.10 0.10 0.10 0.10
p-value 0,18 0,26 0,54 1,00 0,00 0,52 0,50 0,50 0,11 0,52 0,81 0,83

Inst=4 alpha 0.31 0.35 0.30 0.50 1.00 0.35 0.39 0.43 0.34 0.44 0.53 0.54
s.e 0.12 0.13 0.12 0.13 0.00 0.13 0.13 0.10 0.10 0.10 0.10 0.10
p-value 0,12 0,25 0,11 0,99 0,00 0,24 0,40 0,48 0,10 0,52 0,80 0,68

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. The GMM weighting matrix Ŝ is specified

as in EKT. The case b = 1 corresponds to the original EKT estimator. p values refer to the null

hypothesis of α = 0.5.

Table 2.2: Estimated α parameters for b = 1
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very differently shaped loss functions asymmetric in either direction. To ease comparison,

the results of Table 2 in EKT (2005) are included in appendix 2, table 3.6.

The results for the b=1 case are shown in Table 2.2. Starting with the end-of-year

IMF budget deficit forecasts using only the constant as instrument (Inst=1), we see no

significant rejection of symmetry out of seven countries (at 5% significance level). The

original lin-lin loss based estimates of EKT show four rejections as opposed to my results

(see Table 3.6 in the appendix). The pattern of low rejection rates is prevalent under the

other instrument sets as well: 1/7 when using the constant and a lagged forecast error

as instruments (Inst=2), also 1/7 when using lagged budget deficit alongside the constant

(Inst=3), and 2/7 in the fourth case, where both lagged forecast error and lagged budget

deficit are used as instruments alongside the constant. These rates can be compared to

the much higher rates of the original EKT estimates, 4/7 in all four cases. Symmetry was

rejected by EKT’s results for Italy, Japan, the UK and the US no matter which instrument

set was used.

The rejection rates are similar for the end-of-year OECD forecasts: using only the

constant as instrument, symmetry of the α−estimates is not rejected for either country.

When using the other instrument sets, only Germany’s estimated α was significantly dif-

ferent from 1/2, while EKT estimated asymmetric α’s for Germany, France and Italy in

all four cases.

My estimates for the symmetry parameter concerning IMF’s next-year budget deficit

forecasts differed significantly from 1/2 only in the case of Japan, for the instrument sets

2 to 4. For OECD’s next-year budget deficit forecasts, I estimated no significant deviation

from symmetry for either country’s estimated α parameter.This is in contrast to the EKT

estimates; while there are only two out of 16 rejections in the OECD estimates (Germany

for the third and fourth instrument set), symmetry of α’s are rejected for half of EKT’s

IMF estimates.

b=0.25 b=0.5 b=1 b=2 b=3
∑

IMF end-of-year 0.32 0.29 0.14 0.32 0.43 0.30
IMF 1-year ahead 0.25 0.21 0.11 0.43 0.54 0.31
IMF

∑
0.29 0.25 0.13 0.38 0.48 0.30

OECD end-of-year 0.25 0.10 0.15 0.20 0.25 0.19
OECD 1-year ahead 0.00 0.00 0.00 0.25 0.60 0.17
OECD

∑
0.13 0.05 0.08 0.23 0.43 0.18∑
0.22 0.17 0.10 0.31 0.46 0.25

Table 2.3: Rejection rates across b-s and forecast subgroups
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I have included the tables of detailed results for b = [0.25; 0.5; 2; 3] in the appendix

(tables 3.7 through 3.10). In table 2.3, rejection rates are summerized for different b’s,

forecasters and horizons (cases for different instruments are pooled). The results show

higher rejection rates for the symmetry of estimated α’s for b = 2 and b = 3 compared to

the estimates for lower b’s. Rejection rates do not differ much depending on the forecast

horizon for either institution. However, the forecasting institution does seem to make a

difference as on average, rejection rates for IMF forecasts are higher (0.3 averaged over

the two horizons) than rejection rates for OECD (0.18 averaged over the two horizons)

forecasts.

Overall, we can conclude that my estimated rejection rates of the hypothesis α = 0.5

are much lower than EKT’s estimated rejection rates (an average of 0.25 as opposed to

EKT’s 0.46). If, following EKT, one takes lin-lin as the underlying loss, these estimates

suggest few significant deviations from symmetry, with the different values of b simply

corresponding to different instruments. Nevertheless, an alternative, and a priori equally

plausible interpretation of Eq. 2.6 is that the underlying losses belong to the set in Eq. 2.5,

with some value of b being different from 1. To illustrate this, I plot four loss functions

corresponding to different (b, α̂) pairs in Figure 2.2. Depending on b, the observed budget

forecasts and realizations can also be rationalized by loss functions asymmetric in either

direction!

Appendix 7 includes further examples using losses of different parametric families that

are forecast equivalent to quad-quad.
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Figure 2.2: Loss functions asymmetric in either direction depending on b. The realization
y is fixed at -2.5 and the forecast ŷ varies.

(a) US, instrument 1 (b) Germany, instrument 2

(c) France, instrument 3 (d) Canada, instrument 4

2.5. Conclusion

The seminal paper by Elliott, Komunjer and Timmermann (2005) proposes a method for

estimating a forecaster’s loss function based on a moment condition derived from the first

order condition of the forecaster’s expected loss minimization problem. The contribution

of this paper is to demonstrate that the EKT loss function estimation method depends

critically on some implicit identifying assumptions — a fact that is not recognized in the
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literature.

In particular, the results obtained by the EKT estimator are very sensitive to the

assumption that the posited parametric loss functions depend on the forecast error only.

More generally, however, the forecaster’s loss may also depend on the level of the target

variable and/or the forecast. (Such loss functions are endowed with “level effects.”) For

example, in the context of central bank inflation forecasts, it is not only reasonable to

entertain the possibility that the pertinent loss function is asymmetric, but also that a

1 percentage point forecast error has different implications when average inflation is at 3

percent and when it is at, say, 9 percent.

If loss functions with level effects are not ruled out, one can use a transformation

called “Osband’s principle” to show that the first order conditions described above do

not uniquely determine the underlying loss function. The key observation that allows the

application of this transformation is that any given forecast is naturally a function of the

information that was available to the forecaster at the time. Hence, any function of the

forecast must be uncorrelated with the first derivative of the loss function with respect

to the forecast. As I show, the generality of this condition permits substantial ambiguity

about the underlying loss function. I also use concrete examples to demonstrate that loss

functions with completely different directions of asymmetry may generate the same first

order conditions and are hence observationally equivalent.

For example, I embed the standard asymmetric lin-lin loss function with asymmetry

parameter α into a larger class that has an additional shape parameter b. A change in

b causes an economically meaningful change in the loss function and yet the first order

condition that defines the optimal forecast is invariant to the value of b. Hence, this

parameter is unidentified from any data on observed forecasts and realizations. This is

very problematic because for b = b1 the forecaster may prefer negative forecast errors

when, say, the realization is y = 1 whereas a positive forecast error would be preferred

when b = b2 and y = 1. Thus, nothing can be inferred from the data about the direction

of asymmetry of the underlying loss function (at least in the presence of level effects). I

present a similar embedding for quad-quad loss functions, and additional functional forms

as well.
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Chapter 3

Recovering Stock Analysts’ Loss

Functions from Buy/Sell

Recommendations

3.1. Introduction

In this paper, I estimate bounds for the parameter characterizing analysts’ loss functions

in making stock recommendations. In a binary variable forecasting environment, it is

possible to set-identify the parameter that accounts for the forecaster’s relative cost for

overestimating versus underestimating the target even if the stock analyst’s information

set is not fully observed (Lieli and Stinchcombe (2013)). In this empirical application

of the Lieli and Stinchcombe result, I use binarized stock recommendations as forecasts:

buy recommendations account for positive, while hold or sell recommendations account for

negative forecasts. The forecast is compared to the one-month-ahead price performance

of the stock relative to the market. In the estimation, I also use a proxy for the publicly

observed part of the forecaster’s information set. The proxy I use is the smooth price per

equity ratio. I have chosen this proxy by following Campbell and Thompson (2008), who

show that the smooth P/E ratio could be used to predict excess stock returns once weak
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restrictions hold for the signs of coefficients1.

My empirical results show high sensitivity to the categorization of hold recommenda-

tions. When I assume that ‘hold’ means ‘sell’, the estimated asymmetry parameters are

relatively high. This suggests that we can rule out analysts’ extreme reluctance to propose

a ‘sell’; they are more likely to issue ‘false sells’ than ‘false buys’. However, when cate-

gorizing ‘hold’ into the buy category, the reverse is found: in almost all cases the highest

possible values for the asymmetry parameter are ruled out. When imputing ‘hold’ with

the previous recommendation, again the highest values are ruled out in more than half of

the cases.

While financial professionals do not all agree on the information content of analyst

stock recommendations, their widespread use and several pieces of evidence from the liter-

ature confirm that they are in fact relevant and useful forecasts for the future performance

of stocks. It has been shown that analysts’ earnings forecasts are superior to mechanical

time series models (Brown and Rozeff (1978), Bradshaw et al. (2012)). Empirical evidence

also shows that recommendations have some investment value, as they are successful in

predicting short-run stock returns (Womack (1996), Loh and Mian (2006)). In their 1998

paper, Barber et al. document that an investment strategy based on the consensus recom-

mendations of security analysts earns positive returns. For the analyzed period between

1986 and 1996, purchasing stocks most highly recommended and selling short those with

the worst recommendations yielded a return of 102 basis points a month (Barber et al

(1998)). The statement from Barber et al. is confirmed by more recent findings as well:

see Jegadeesh et al. (2004) and Green (2006).

Another straightforward argument on the relevance of analyst recommendations is that

brokerage houses produce and sell them for millions of dollars every year2. If they were in

fact useless, why would so much money be spent on their production and sale?

We can see that analyst stock recommendations are in fact relevant. This is also

confirmed if we look at the massive attention analyst recommendations get in the academic

literature (for a comprehensive picture, see the review on the financial analyst forecasting

literature by Ramnath et al. (2008)).

1An earlier version of this paper appeared in the Spring Wind 2016 conference volume (Grolmusz
(2016)).

2A first year equity analyst earned a yearly base salary of $68,200 plus a bonus of $48,100 on average
in 2013, as reported by the Wall Street Oasis 2013 Compensation Report (Rapoza (2013).
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We can deduct some important inference from this large body of academic literature

on what characteristics of analysts’ recommendations are rewarded. First, unsurprisingly,

evidence suggests that forecast accuracy is important for an analyst’s prestige and career

prospects. In their 2003 paper, Hong and Kubik relate earnings forecasts made by security

analysts to job separations. They find that forecast accuracy is indeed a substantial factor

in an analyst’s career outcomes, such as how prestigious is her employer brokerage house,

or what kind of stocks is she assigned to cover (Hong and Kubik (2003)). Forecasts are not

directly evaluated on their accuracy, but for building reputation and influence among the

buy side, it is substantial for the analyst to make the right calls (Hong and Kubik (2003)).

Although accuracy is important, evidence suggests that it is not everything: for the best

career perspectives, an analyst also has to publish relatively optimistic recommendations.

Controlling for accuracy, analysts who issue a large fraction of forecasts that are more

optimistic than the consensus are much more likely to move up the career hierarchy ladder

(Hong and Kubik (2003)). This observation is confirmed by Lim (2001), among others.

Lim argues that incorporating positive bias in earnings forecasts is a rational action.

Anecdotal evidence also supports the above statement. Lim argues that it is widely

known throughout the financial analyst profession that a negative report on a company

might result in the involved company’s management limiting or eliminating the pessimistic

analyst’s information flow (Lim (2001)). Other pieces of anecdotal evidence emphasize that

analysts need to go along with the management’s optimistic projections, or if they do not,

they risk being passed over for more loyal analysts (Hong and Kubik (2003), Lim(2001)).

The importance of following the management’s guidelines is even higher for young and

inexperienced analysts, as their risk of unfavorable job separation is much higher than it

is for their older colleagues (Hong et al. (2000)). This is the reason why younger analysts

tend to avoid making bold forecasts and are more likely to herd (Hong et al. (2000)).

Different theories on the driving forces behind creating analyst recommendations sug-

gest different implications for the direction of bias in the observed recommendations. The

above arguments support low risk aversion in analysts for making buy-side recommen-

dations: as analysts are rewarded for issuing relatively optimistic recommendations, they

tend to incorporate a positive bias into their recommendations. However, sound arguments

for the reverse can also be found. Consider that if an analyst issues a buy recommenda-

tion, then in the case of underperformance of the stock, her client will lose money for sure.

However, if the analyst recommendation is ‘sell’, then the client can still lose in the sense

of opportunity cost, but it might not be as painful for her (due to loss aversion), and the
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client might not even observe the performance of the stock as it is not anymore in her

portfolio. This argument suggests that a risk-averse analyst should only issue a ‘buy’, if

the probability of the stock outperforming the market is very high. Thus, analysts should

be motivated to avoid making overly optimistic recommendations.

The contribution of this paper to the literature is twofold. First, I derive confidence

intervals for the bounds of the loss function asymmetry parameter introduced by Lieli and

Stinchcombe (2013), and second, I develop an empirical application of their theoretical

result in a binary forecasting setting. More concretely, I inspect stock analysts’ relative

costs for overprediting versus underpredicting the stock’s performance, by using a flexible

and general method that has not been used up to now. By doing this, I am able to draw

conclusions on the relative empirical relevance of the above two channels.

The remainder of the paper is organized as follows. In section 3.2, I outline the theo-

retical background for preference recovery in a binary forecasting environment, relying on

the results from Lieli and Stinchcombe (2013). In section 3.3, I introduce the methodology

and the data used in the empirical application. Section 3.4 presents and interprets the

results, while the last section concludes.

3.2. Preference Recovery in a Binary Forecasting

Environment

The theoretical background for the empirical investigation used in this paper comes from

the 2013 paper of Lieli and Stinchcombe. In a binary variable forecasting environment, Lieli

and Stinchcombe’s paper provides a set identifiction result for the parameter characterizing

the forecaster’s loss function. In this section, I summarize this theoretical result.

3.2.1 Expected Loss Minimization Problem

Let Yt be the time series of binary values, and Ŷt be the time series of Yt’s forecasts made in

the previous period (Ŷt = Ŷt|t−1); t = 1, 2, . . . , T ; T < ∞. In a binary variable forecasting

setting, Yt, Ŷt ∈ {0, 1}, and a loss function can be represented in the following way:

Yt = 1 Yt = 0

Ŷt = 1 0 ℓ(1,0)

Ŷt = 0 ℓ(0,1) 0
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Where ℓ(Ŷt, Yt) is the loss from forecasting Ŷt when the realization will be Yt. We assume

that ℓ(1,0) ≥ 0 and ℓ(0,1) ≥ 0. For expected loss minimizing forecasters, assuming that the

loss is zero when the forecaster hits the target (Yt = Ŷt) is true without loss of generality
3.

We assume that forecasters produce their forecasts by minimizing expected loss. Let

It denote the information set of the forecaster. Then the forecaster solves the following

problem:

minŶt∈{0,1}ℓ(Ŷt, 0)P (Yt = 0 | It) + ℓ(Ŷt, 1)P (Yt = 1 | It)

The solution to this problem is to predict one if P (Yt = 1 | It) > c, where c = 1

1+
ℓ(0,1)
ℓ(1,0)

,

c ∈ [0, 1]. Let us denote c as the asymmetry parameter. The asymmetry parameter depends

on the forecaster’s relative loss from overpredicting versus underpredicting the target. It

is the parameter I would like to estimate.

The key identification problem is that the econometrician does not observe the whole

information set on which the forecast is based, but only the public part of it. Following Lieli

and Stinchcombe (2013), let us partition the information set It into two subsets: the part

that the econometrician also observes, Zt, and the private information of the forecaster,

Z ′
t. The forecast is based on the whole information set that is only partly observed by

the econometrician, that is, the forecaster predicts one if pZt,Z′
t
≡ P (Yt = 1 | Zt, Z

′
t) > c.

Therefore, the econometrician cannot identify the asymmetry parameter exactly, she can

only estimate a set in which the parameter lies (Lieli and Stinchcombe (2013)).

Let us define the unconditional and sample probabilities of Yt and Ŷt in the following

way:

p = P (Yt = 1)

q = P (Ŷt = 1)

p̂T =
1

T

T∑
t=1

Yt

q̂T =
1

T

T∑
t=1

Ŷt

3This fact is due to the following standardization: ℓc(Ŷt, Yt) = ℓ(Ŷt, Yt) − ℓ(Yt, Yt), where ℓ
c is the

canonical form of the loss function (Lieli and Stinchcombe (2013)).
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Then, we can define pZt and qZt as probabilities conditional on Zt; the part of the

forecaster’s information set that the econometrician also observes:

pZt = P (Yt = 1 | Zt)

qZt = P (Ŷt = 1 | Zt) = P (pZt,Z′
t
> c | Zt),

where qZt is the proportion of times Ŷt = 1 is observed conditional on Zt. It is true by the

law of iterated expectations4, that E[pZt,Z′
t
| Zt] = pZt .

Using this relationship, Lieli and Stinchcombe (2013) derive the following bounds for

the asymmetry parameter:

pZt−qZt

1−qZt
≤ c ≤ pZt

qZt
.

Let us denote the lower bound as Lt, and the upper bound as Ut: Lt =
pZt−qZt

1−qZt
, Ut =

pZt

qZt
.

It is easy to show that Lt ≤ Ut. It can happen that Ut ≥ 1 or Lt ≤ 0, in these cases

the bound is not informative. pZt and qZt could be estimated from the data using logit

regressions, and using these estimates, we can give lower and upper bounds Lt and Ut for

c.

Lieli and Stinchcombe highlight that their result is very general, as there are no as-

sumptions about the number of omitted variables Z ′
t, nor about their distributions. This

makes loss function parameter identification possible in a general framework.

3.2.2 Confidence Intervals

To check the statistical significance of the estimates, we need to derive confidence inter-

vals. I do this by setting up a central limit theorem for the averages p̂T and q̂T , and derive

the variances for the estimated upper and lower bounds that are approximated as linear

combinations of p̂T and q̂T .

Definition:

4pZt = E[Yt | Zt]
LIE
= E[E(Yt | Zt, Z

′
t) | Zt] = E[pZt,Z′

t
| Zt]
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Let Γh be the following:

Γh = E

[(
Yt − p

Ŷt − q

)(
Yt−h − p Ŷt−h − q

)]
, h = 0,±1,±2, ...

L and U are the lower and upper bounds for the asymmetry parameter c:

L =
p− q

1− q
≤ c ≤ p

q
= U ;

L̂T =
p̂T − q̂T
1− q̂T

, ÛT =
p̂T
q̂T

Assumptions:

� Yt and Ŷt are weakly stationary,

� Yt and Ŷt have absolutely summable covariances:
∑∞

h=0 Γh <∞.

Theorem 1 Distribution of ÛT and L̂T

1.
√
T (ÛT − U)

d→ N(0, λ′UV λU),

where V =
∑∞

h=−∞ Γh, and λU =

(
1
q

− p
q2

)

2.
√
T (L̂T − L)

d→ N(0, λ′LV λL),

where λL =

(
1

p−1
(1−q)2

)

Theorem 2 Distribution of ÛT and L̂T

1.
√
T (ÛT − U)

d→ N(0, λ′UV λU),

where V =
∑∞

h=−∞ Γh, and λU =

(
1
q

− p
q2

)
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2.
√
T (L̂T − L)

d→ N(0, λ′LV λL),

where λL =

(
1

p−1
(1−q)2

)

The proof is based on the central limit theorem. Appendix 1 contains the sketch of the

proof.

3.3. Empirical Strategy and Data

In this section, I show the empirical strategy based on the theory outlined in section

3.2 that I use for the set-identification of the asymmetry parameter from analyst stock

recommendations.

3.3.1 Empirical Strategy

To estimate the bounds given in section 3.2, we need to estimate pZt and qZt . If Zt is

an empty set, p̂T and q̂T are used to give the unconditional bounds for the asymmetry

parameter.

If Zt is non-empty, then pZt and qZt could be estimated using fitted values from the

following logit regressions, using observations collected over time:

p̂Zt = logit(Z ′
tβ̂p) =

1

1+e−Z′
tβ̂p

q̂Zt = logit(Z ′
tβ̂q) =

1

1+e−Z′
tβ̂q

,

One can use the time series p̂Zt and q̂Zt (t=1, 2, . . . , T) to derive Lt and Ut for every t.

We could use different definitions for the overall bounds for c. We can either take max Lt

and min Ut to be lower and upper bounds, respectively, or we could choose the minimum

range min (Ut − Lt) and denote its bounds as the overall highest and lowest bound. I use

the latter method in the empirical exercise.

3.3.2 Data

As forecast data, Ŷt, I use monthly analyst stock recommendations for shares of Goldman

Sachs and 3M Company. I have chosen these Blue Chip stocks because they are highly
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liquid and I have access to many individual analyst recommendations on them5. Analyst

stock recommendations are usually published using similar rating scales, categorized into

three to five levels. I standardize the different scales and binarize the recommendations in

the following way: take Ŷt = 1 if the recommendation is strong buy, buy, or equivalent,

and take Ŷt = 0 for sell, and strong sell recommendations. I impute missing observations

with the previous recommendation. The categorization of hold recommendations is not

straightforward, I use three different ways for treating these observations: imputing by

zero (equivalent to sell), imputing by one (equivalent to buy), and imputing with the

recommendation from the previous period. Imputing with the previous recommendation

can be argued for if we treat ’holds’ similarly to missing observations; I assume that

an analyst issues a hold recommendation if she does not have any new information or

expectation on the future behavior of stock price.

The time series I compare the forecasts to is Yt, called the actual or realized series. I

define Yt to be one if the price growth6 of Goldman or 3M Co. is positive and higher than

the growth of the Dow Jones Industrial Average in one months from making the forecast:

Yt = 1 if
PD,t+1

PD,t
<

PG,t+1

PG,t
and

PG,t+1

PG,t
> 1

Yt = 0 if
PD,t+1

PD,t
≥ PG,t+1

PG,t
or

PG,t+1

PG,t
< 1

where G: Goldman or 3M co., D: Dow Jones index

I compare the two stocks to the Dow Jones index, as Goldman Sachs and 3M Co. stocks

are classic Blue Chip stocks. The length of the time series varies from analyst to analyst:

it starts in 2003 the earliest (but in most cases, only after 2009), end ends in November

2016.

I present unconditional results along with conditional bounds, for which I include ex-

planatory variables in the logit regressions. The included variable is a proxy for the public

part of the analyst’s information set used to make the recommendation. I follow Camp-

bell and Thompson (2008), and use the smooth P/E ratio as a proxy for the analyst’s

5I use a Bloomberg terminal and Reuters Eikon for data collection.

6Price is taken to be the end-of-month closing price of Goldman and 3M Co. stocks. Analyst recom-
mendations are also published at the end of each month.
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information set. The data I use was accessed using Bloomberg7 and Reuters Eikon.

7I have access to Bloomberg Terminals in Corvinus University of Budapest’s Financial Laboratory.
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3.4. Empirical Results

In this section, I show and interpret the results from the empirical analysis. The estimation

gives an upper and a lower bound for the asymmetry parameter of each analyst. The

unconditional bounds are the estimates based on the sample averages p̂T and q̂T . In the

conditional case, upper and lower bounds are estimated based on the logit regression for

every period t. Then, the largest lower bound Lt and smallest upper bound Ut are presented

as the conditional bounds for the sample period.

3.4.1 Interpretation

How could we interpret the results; e.g. what does a [0, 0.25] result mean? Ruling out

the highest values for the asymmetry parameter means that the representative analyst is

not extremely risk-averse in proposing a buy strategy. In this case, let us assume that the

asymmetry parameter takes its highest estimated value, 0.25. Then, by writing up the

definition for c:

0 ≤ 1

1 + ℓ(0,1)
ℓ(1,0)

≤ 0.25

↓

3 ≤ ℓ(0, 1)

ℓ(1, 0)

↓

3× ℓ(1, 0) ≤ ℓ(0, 1),

This means that a ‘false sell’ is at least three times as costly as ‘false buy’. This would

make the analyst reluctant to propose a sell strategy. If the upper bound is below 0.5,

the analyst has asymmetric loss: she is more inclined to overpredict the target than to

underpredict it. On the other hand, when the lower bound is above 0.5, the analyst is

more likely to issue more pessimistic recommendations than overly optimistic ones.

It is important to analyze the relationship between the variation in the time series and

their consequences on c in more detail. Let me show the consequences on c, when there

is absolutely no variation in the recommendation series. If the analyst recommends to sell

the stock and the recommendation stays the same (Ŷt = 0) throughout the entire time

series, then p ∈]0, 1[ and q = 0. We assume that there is some variation in the binarized
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actual series.

L̂T = p

ÛT =
p

0
→ ∞

Similarly, if the analyst recommends to ’buy’ the stock and the recommendation stays

the same (Ŷt = 1) throughout the entire time series, then p ∈]0, 1[ and q = 0. We assume

that there is some variation in the binarized actual series.

L̂T =
p− 1

0
→ −∞

ÛT = p

3.4.2 Results

Table 1 shows the results for Goldman Sachs stocks, analyzed by fifteen brokerage houses

in the sample. When we categorize hold as zero (hold is the same as a sell), we see that

in eight cases, the lowest c’s are ruled out. This suggests that for these eight analysts, a

‘false buy’ is likely costlier than a ‘false sell’. We cannot conclude that these analysts have

undoubtedly asymmetric loss functions, as the lower bonds are below 0.5. These results are

in line with the argument for high risk aversion in making buy side recommendations: it is

less costly for the analyst to suggest a sell (or hold), as he expects the client not to observe

the stock’s price performance after taking it out from the portfolio. If there are many hold

recommendations in the time series, observing high asymmetry parameters might be due

to the categorization of ‘holds’ as ‘sells’.

The unconditional bounds for Oppenheimer’s analyst are uninformative. This is be-

cause there are exactly as many ones in the binary actual series than in the binary recom-

mendation series. Therefore, p̂T = q̂T , and hence L̂T = 0 and ÛT = 1. For the rest of the

sample (six analysts out of the fifteen), the highest c’s are ruled out: a ‘false sell’ is likely

to be costlier than a ‘false buy’.

The conditional bound intervals are narrower in all cases for hold=0 (column 2). This

suggests that the smooth P/E ratio bears some forecasting power for stock price perfor-

mance. In three cases (Wells Fargo, Macquarie and Oppenheimer) the estimated upper

bound is lower than the estimated lower bound. In these cases, the estimated bounds are

not informative.

When categorizing ‘holds’ as 1 (buy), the results change significantly. In all but one
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case, the highest asymmetry parameters are ruled out, suggesting that a ‘false sell’ is

costlier than a ‘false buy’8. This is in line with the argument for low risk aversion in

making buy side recommendations: analysts might be biased towards optimistic recom-

mendations. Analysts who are relatively more optimistic in their stock recommendations

than the consensus can expect better career prospects, as it was shown by Hong and Kubik

(2003).

The upper bounds are around 0.5 in most cases, suggesting certain asymmetry for

c9. The conditional logit regressions produce results where the intervals for c become

even narrower. E.g., we can conclude that Vining Sparks analysts are at least 5.25 times

more likely to produce a ‘false buy’ than a ‘false sell’, when making recommendations for

Goldman Sachs stocks.

In the last specification, we treat ‘holds’ similar to missing values and impute them

with the previous recommendation. Depending on the exact time series, i.e. the typical

recommendation and number of ‘holds’, this produces similar bounds as the hold=0 or the

hold=1 categorization: in ten cases, the bounds are the same as in columns 1-2 (hold=0),

and in five cases, they are equivalent to treating ‘hold’ as 1.

Figures 1, 2, 3 and 4 illustrate the sensitivity of the results on the categorization of

‘holds’. In Figure 1, in UBS’s case we see that the hold=previous specification gives the

same bounds as the hold=1 (buy) specification. However, for Morgan Stanley (Figure 2),

the bounds for hold=previous are the same as the bounds for hold=0 (sell). It can also

happen that all three specifications produce different bounds (see Figure 3 for JMP), or

in the absence of ‘holds’, all three pairs of estimates are the same (as for Credit Suisse,

Figure 4).

The estimates on the other Blue Chip stock, 3M Company are quite similar to the

results on Goldman Sachs. When hold is categorized as zero, c is relatively high in six

cases (meaning that analysts are not too reluctant to propose a sell strategy). The lower

bounds in the unconditional hold=sell case are on average lower than for Goldman Sachs

8The lower asymmetry parameters are ruled out in the estimated bounds for Societe Generale. This
time series does not contain any hold recommendations, only ‘sells’.

9I have not yet calculated the confidence intervals for the unconditional bounds. However, taking into
consideration that in most cases, the upper bound or the lower bound is uninformative (i.e. L̂T = 0 or
ÛT = 1) , it appears that the confidence intervals will be wide. This might change the interpretation of
the results.
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Figure 3.1: Bounds for c based on conditional probability estimates, UBS analyst recom-
mendation for Goldman stocks
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Bounds for c estimated using conditional logit regression. The forecast value is the binarized analyst
recommendation for Goldman stocks made in t (strong buy, buy: 1; sell, strong sell: 0). Hold recommen-
dations are categorized as 0 (a), 1 (b), and imputed by the previous value (c). The actual value is one if
price growth for Goldman stocks is positive and outperforms the DJI one month from making the forecast,
and zero otherwise. The explanatory variable Z is the smooth P/E ratio of Goldman Sachs in t.
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Figure 3.2: Bounds for c based on conditional probability estimates, Morgan Stanley ana-
lyst recommendation for Goldman stocks
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Bounds for c estimated using conditional logit regression. The forecast value is the binarized analyst
recommendation for Goldman stocks made in t (strong buy, buy: 1; sell, strong sell: 0). Hold recommen-
dations are categorized as 0 (a), 1 (b), and imputed by the previous value (c). The actual value is one if
price growth for Goldman stocks is positive and outperforms the DJI one month from making the forecast,
and zero otherwise. The explanatory variable Z is the smooth P/E ratio of Goldman Sachs in t.
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Figure 3.3: Bounds for c based on conditional probability estimates, JMP analyst recom-
mendation for Goldman stocks

(a) hold=0

0

0.2

0.4

0.6

0.8

1

2
0

1
3

1
1

2
0

1
4

0
1

2
0

1
4

0
3

2
0

1
4

0
5

2
0

1
4

0
7

2
0

1
4

0
9

2
0

1
4

1
1

2
0

1
5

0
1

2
0

1
5

0
3

2
0

1
5

0
5

2
0

1
5

0
7

2
0

1
5

0
9

2
0

1
5

1
1

2
0

1
6

0
1

2
0

1
6

0
3

2
0

1
6

0
5

2
0

1
6

0
7

2
0

1
6

0
9

2
0

1
6

1
1

JMP Securities

c_L c_U

(b) hold=1

0

0.1

0.2

0.3

0.4

0.5

2
0

1
3

1
1

2
0

1
4

0
1

2
0

1
4

0
3

2
0

1
4

0
5

2
0

1
4

0
7

2
0

1
4

0
9

2
0

1
4

1
1

2
0

1
5

0
1

2
0

1
5

0
3

2
0

1
5

0
5

2
0

1
5

0
7

2
0

1
5

0
9

2
0

1
5

1
1

2
0

1
6

0
1

2
0

1
6

0
3

2
0

1
6

0
5

2
0

1
6

0
7

2
0

1
6

0
9

2
0

1
6

1
1

JMP Securities

c_L c_U

(c) hold=previous

0

0.2

0.4

0.6

0.8

1

2
0

1
3

1
1

2
0

1
4

0
1

2
0

1
4

0
3

2
0

1
4

0
5

2
0

1
4

0
7

2
0

1
4

0
9

2
0

1
4

1
1

2
0

1
5

0
1

2
0

1
5

0
3

2
0

1
5

0
5

2
0

1
5

0
7

2
0

1
5

0
9

2
0

1
5

1
1

2
0

1
6

0
1

2
0

1
6

0
3

2
0

1
6

0
5

2
0

1
6

0
7

2
0

1
6

0
9

2
0

1
6

1
1

JMP Securities

c_L c_U

Bounds for c estimated using conditional logit regression. The forecast value is the binarized analyst
recommendation for Goldman stocks made in t (strong buy, buy: 1; sell, strong sell: 0). Hold recommen-
dations are categorized as 0 (a), 1 (b), and imputed by the previous value (c). The actual value is one if
price growth for Goldman stocks is positive and outperforms the DJI one month from making the forecast,
and zero otherwise. The explanatory variable Z is the smooth P/E ratio of Goldman Sachs in t.
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Figure 3.4: Bounds for c based on conditional probability estimates,Credit Suisse analyst
recommendation for Goldman stocks
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Bounds for c estimated using conditional logit regression. The forecast value is the binarized analyst
recommendation for Goldman stocks made in t (strong buy, buy: 1; sell, strong sell: 0). Hold recommen-
dations are categorized as 0 (a), 1 (b), and imputed by the previous value (c). The actual value is one if
price growth for Goldman stocks is positive and outperforms the DJI one month from making the forecast,
and zero otherwise. The explanatory variable Z is the smooth P/E ratio of Goldman Sachs in t.
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estimates, all six are under 0.5. Therefore, these estimates do not rule out symmetric

loss. The four remaining analyst have relatively low asymmetry parameters. For Jefferies

and Credit Suisse, we can rule out symmetric loss as the upper bound is below 0.5. The

conditional bound intervals become narrower than the unconditional intervals.

In columns 3 and 4 in Table 2, we see that apart from RBC, the highest values are

ruled out for c. This is similar to what I have found for Goldman stocks. The result is in

line with the argument for low risk aversion towards buy strategies. Column 5 and 6 show

the results for hold=previous. Here, in four of the cases the lowest values are ruled out,

while in the other six cases ĉ is relatively low.

We can see that the results are highly sensitive to the categorization of hold recom-

mendations. If we take the hold=previous specification as baseline, we find that in the

majority of cases, the highest values for c are ruled out.
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3.5. Conclusion

In a binary variable forecasting environment, I carry out an empirical analysis to estimate

bounds for the parameter characterizing the forecaster’s loss function. I use analyst stock

recommendations as forecast data, and compare it to the one-month-ahead relative price

performance of the analyzed stock. In the conditional logit regressions, I include a proxy

for the publicly observed part of the forecaster’s information set as an explanatory variable.

Using a theoretical result from Lieli and Stinchcombe (2013), I set-identify the parameter

that captures the analyst’s cost of over- versus underpredicting the target (asymmetry

parameter). Another novelty of this chapter is the derivation of confidence intervals for

the bounds of the loss function asymmetry parameter introduced by Lieli and Stinchcombe

(2013).

Previous research suggests that incorporating positive bias in stock analyst’s forecasts

is a rational action (Lim (2001)). It is also shown that controlling for accuracy, analysts

who frequently issue optimistic forecasts are rewarded: they are much more likely to be

offered higher prestige positions, with higher wages (Hong and Kubik (2003)). Therefore,

we can expect analysts to issue overly optimistic forecasts more easily than pessimistic

ones.

The reverse side of the argument can also be supported by intuitive claims. Consider

that if an analyst issues a buy recommendation, then in the case of underperformance of

the stock, her client will lose money for sure. However, if the analyst recommends a sell

strategy, then her client might not even observe if the stock indeed outperforms the market.

This suggests that analysts should avoid proposing overly optimistic recommendations.

I find that the results are highly sensitive to the categorization of hold recommenda-

tions. When we assume that ‘hold’ means ‘sell’, the estimated asymmetry parameters are

relatively high. This suggests that analysts are not very reluctant to propose a ‘sell’. How-

ever, when categorizing ‘hold’ into the buy category, the reverse is found: in almost all cases

the highest possible values for the asymmetry parameter are ruled out. When imputing

‘hold’ with the previous recommendation, again the highest values are ruled out in more

than half of the cases. Developing additional empirical applications (i.e. other binary fore-

casting problems) for the identification of the loss function’s asymmetry parameter would

be an interesting area for further research.
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A Appendix for Chapter 1

Appendix A.1: Derivation of the general expected loss

function using µe and σe

In this appendix, I show the derivation of the general expected loss function in equation

1.7 by substituting est+1 = µest+1
+ σest+1

zst+1 .

The forecaster needs to minimize the following expected loss:

E{L(et+1)|It, st+1} =
k∑

st+1=1

πst+1,tE{((α− (2α− 1)1est+1>0)(e
2
st+1

))|It} → min (3.1)

For simplifying notation, I am going to remove the st+1 subscripts from est+1 for the fol-

lowing equations: e.g. µe means µest+1
.

Note that zst+1 =
est+1−µest+1

σest+1

is the standardized forecast error. E[zst+1 ] = 0; E[z2st+1
] = 1

Taking the expected value into parts:

E{L(et+1)|It, st+1} =
k∑

st+1=1

πst+1,tE{(α− (2α− 1)1est+1>0)[e
2
st+1

]} = (3.2)

=
k∑

st+1=1

πst+1,t α E[µ2
e + σ2

ez
2
st+1

+ 2µeσezst+1 ]− (2α− 1)
k∑

st+1=1

πst+1,tE[1est+1>0 e
2
st+1

] =

E(z2st+1
)=1; E(zst+1 )=0

↓
=

k∑
st+1=1

πst+1,t α E[µ2
e + σ2

e ]− (2α− 1)
k∑

st+1=1

πst+1,t

∞∫
0

e2st+1
dF (est+1) =

changing variables in the integral

↓
= α

k∑
st+1=1

πst+1,t[µ
2
e + σ2

e ]− (2α− 1)
k∑

st+1=1

πst+1,t

∞∫
−µe

σe

(µe + σezst+1)
2dF (zst+1)
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Appendix A.2: Equations for Special Case 1

In this specification, f1 has an upward bias of 0.1 on state 1 (see table 1 and equations

10-12 for full specification). The expected loss takes the following form:

E{L(e)|I, s1} = α[P11(µ
2
e,s1 + σ2

e,s1) + P12(µ
2
e,s2 + σ2

e,s2)]−

− (2α− 1)

P1,1

∞∫
−

µe,s1
σe,s1

(µe,s1 + σe,s1z)
2dF (z) + P1,2

∞∫
−

µe,s2
σe,s2

(µe,s2 + σe,s2z)
2dF (z)

 =

= α
{
P11[(−ω0,s1 − ω1,s1 µf1,s1)

2 + (2 + (ω2
1,s1 + ω2

2,s1)− 2(ω1,s1 + ω2,s1))]+

+P12[(−ω0,s1)
2 + (2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1))]

}
−

− (2α− 1)

P11

∞∫
ω0,s1+ω1,s1 µf1,s1√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1)

(−ω0,s1 − ω1,s1 µf1,s1+

+
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)z

)2
dF (z)+

+P12

∞∫
ω0,s1√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1)

(−ω0,s1 +
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)z)

2dF (z)


(3.3)

When the starting state is assumed to be s2, we get a similar expected loss function to

equation 3.3, but the transition probailities P21 and P22 are used in place of P11 and P12.

When all elements of the transition probability matrix are 0.5, the two sets of weights are

equal.

Minimizing the expected loss in equation 3.3 yields the following first order conditions:
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∂E{L(e)|s,I}
∂ω0

=0:

α[P11(ω0,s1+ω1,s1µf1,s1)+P12(ω0,s1)]−

−(2α−1)


P11


∞∫

ω0,s1+ω1,s1 µf1,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

ω0,s1+ω1,s1 µf1,s1−
√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1) z dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

ω0,s1−
√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1) z dF (z)



(3.4)

The optimal weights for the two individual forecasts, ω1 and ω2 are determined by

solving first order conditions 3.5 and 3.6:

∂E{L(e)|s, I}
∂ω1,s1

= 0 :

α[P11[(ω0,s1+ω1,s1µf1,s1)µf1,s1+ω1,s1−1]+P12(ω1,s1−1)]−

−(2α−1)


P11


∞∫

ω0,s1+ω1,s1 µf1,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs1
(
−µf1,s1+z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω1,s1−1)

)
dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω1,s1−1)

)
dF (z)




(3.5)

where

cs1 = ω0,s1 + ω1,s1 µf1,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)

cs2 = ω0,s1 −
√

2 + (ω2
1,s1 + ω2

2,s1)− 2(ω1,s1 + ω2,s1)
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∂E{L(e)|s, I}
∂ω2,s1

= 0 :

α[P11(ω2,s1−1)+P12(ω2,s1−1)]−

−(2α−1)


P11


∞∫

ω0,s1+ω1,s1 µf1,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs1
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)



(3.6)

where

cs1 = ω0,s1 + ω1,s1 µf1,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)

cs2 = ω0,s1 −
√

2 + (ω2
1,s1 + ω2

2,s1)− 2(ω1,s1 + ω2,s1)

When starting from s2, the transition probabilities in the above equations change from

P(1,1) and P(1,2) to P(2,1) and P(2,2), respectively.
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Appendix A.3: Equations for Special Case 2

In this specification, f1 has an higher variance in state 1 (see table 4 and equations XX for

full specification). The expected loss takes the following form:

E{L(e)|I, s1} = α[P11(µ
2
e,s1 + σ2

e,s1) + P12(µ
2
e,s2 + σ2

e,s2)]−

− (2α− 1)

P1,1

∞∫
−

µe,s1
σe,s1

(µe,s1 + σe,s1z)
2dF (z) + P1,2

∞∫
−

µe,s2
σe,s2

(µe,s2 + σe,s2z)
2dF (z)

 =

= α
{
P11[(−ω0,s1)

2 + (3 + (2ω2
1,s1 + ω2

2,s1)− 2(2ω1,s1 + ω2,s1))]+

+P12[(−ω0,s1)
2 + (2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1))]

}
−

− (2α− 1)

P11

∞∫
ω0,s1√

3+(2ω2
1,s1+ω2

2,s1)−2(2ω1,s1+ω2,s1)

(−ω0,s1+

+
√
3 + (2ω2

1,s1 + ω2
2,s1)− 2(2ω1,s1 + ω2,s1)z

)2
dF (z)+

+P12

∞∫
ω0,s1√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1)

(−ω0,s1 +
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)z)

2dF (z)


(3.7)

When the starting state is assumed to be s2, we get a similar expected loss function to

equation 3.7, but the transition probailities P21 and P22 are used in place of P11 and P12.

When all elements of the transition probability matrix are 0.5, the two sets of weights are

equal.

Minimizing the expected loss in equation 3.7 yields the following first order conditions:

73

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2023.02

∂E{L(e)|s,I}
∂ω0

=0:

α[P11(ω0,s1)+P12(ω0,s1)]−

−(2α−1)

P11


∞∫

ω0,s1√
3+(2ω2

1,s1+ω2
2,s1)−2(2ω1,s1+ω2,s1)

ω0,s1−
√

3+(2ω2
1,s1+ω2

2,s1)−2(2ω1,s1+ω2,s1) z dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

ω0,s1−
√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1) z dF (z)




(3.8)

The optimal weights for the two individual forecasts, ω1 and ω2 are determined by

solving first order conditions 3.5 and 3.9:

∂E{L(e)|s, I}
∂ω1,s1

= 0 :

α[P11[2ω1,s1−2]+P12(ω1,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
3+(2ω2

1,s1+ω2
2,s1)−2(2ω1,s1+ω2,s1)

cs1
(
z(3+(2ω2

1,s1+ω2
2,s1)−2(2ω1,s1+ω2,s1))

−1
(2ω1,s1−2)

)
dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω1,s1−1)

)
dF (z)




(3.9)

where

cs1 = ω0,s1 −
√
3 + (2ω2

1,s1 + ω2
2,s1)− 2(2ω1,s1 + ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)
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∂E{L(e)|s, I}
∂ω2,s1

= 0 :

α[P11(ω2,s1−1)+P12(ω2,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
3+(2ω2

1,s1+ω2
2,s1)−2(2ω1,s1+ω2,s1)

cs1
(
z(3+(2ω2

1,s1+ω2
2,s1)−2(2ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)

+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)




(3.10)

where

cs1 = ω0,s1 −
√
3 + (2ω2

1,s1 + ω2
2,s1)− 2(2ω1,s1 + ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)

When starting from s2, the transition probabilities in the above equations change from

P(1,1) and P(1,2) to P(2,1) and P(2,2), respectively.
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Appendix A.4: Equations for Special Case 3

DGP:

y = f2 + e (3.11)

forecast:

ŷ = ω0 + ω1f1 + ω2f2 (3.12)

f1 = f + ϵf2 = f + ν (3.13)

Cov(f1, f2) = V ar(f) + Cov(ϵ, ν) = 1 (3.14)

The expected loss takes the following form:

E{L(e)|I, s1} = α[P11(µ
2
e,s1 + σ2

e,s1) + P12(µ
2
e,s2 + σ2

e,s2)]−

− (2α− 1)

P1,1

∞∫
−

µe,s1
σe,s1

(µe,s1 + σe,s1z)
2dF (z) + P1,2

∞∫
−

µe,s2
σe,s2

(µe,s2 + σe,s2z)
2dF (z)

 =

= α
{
P11[(−ω0,s1)

2 + 1.2 + 2ω2
1,s1 + 1.2ω2

2,s1 + 2ω1,s1ω2,s1 − 2(ω1,s1 + 1.2ω2,s1))]+

+P12[(−ω0,s1)
2 + (2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1))]

}
−

− (2α− 1)

P11

∞∫
ω0,s1√

1.2+2ω2
1,s1+1.2ω2

2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1

(−ω0,s1+

+
√
1.2 + 2ω2

1,s1 + 1.2ω2
2,s1 + 2ω1,s1ω2,s1 − 2(ω1,s1 + 1.2ω2,s1z

)2
dF (z)+

+P12

∞∫
ω0,s1√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1)

(
−ω0,s1 +

√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)z)

2dF (z)
]


(3.15)
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When the starting state is assumed to be s2, we get a similar expected loss function to

equation 3.15, but the transition probailities P21 and P22 are used in place of P11 and P12.

When all elements of the transition probability matrix are 0.5, the two sets of weights are

equal.

Minimizing the expected loss in equation 3.15 yields the following first order conditions:

∂E{L(e)|s,I}
∂ω0

=0:

α[P11(ω0,s1)+P12(ω0,s1)]−

−(2α−1)

P11


∞∫

ω0,s1√
(1.2+2ω2

1,s1+1.2ω2
2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1)

ω0,s1−

−
√

1.2+2ω2
1,s1+1.2ω2

2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1) z dF (z)
]
+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

ω0,s1−
√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1) z dF (z)




(3.16)

The optimal weights for the two individual forecasts, ω1 and ω2 are determined by

solving first order conditions 3.17 and 3.18:

∂E{L(e)|s, I}
∂ω1,s1

= 0 :

α[P11(2ω1,s1+ω2,s1−1)+P12(ω1,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
1.2+2ω2

1,s1+1.2ω2
2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1)

cs1
(
z(1.2+2ω2

1,s1+1.2ω2
2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1))

−1
×

×(2ω1,s1+ω2,s1−1)) dF (z)] +

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω1,s1−1)

)
dF (z)




(3.17)

where

cs1 = ω0,s1 −
√

1.2 + 2ω2
1,s1 + 1.2ω2

2,s1 + 2ω1,s1ω2,s1 − 2(ω1,s1 + 1.2ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)
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∂E{L(e)|s, I}
∂ω2,s1

= 0 :

α[P11(ω1,s1+1.2ω2,s1−1.2)+P12(ω2,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
1.2+2ω2

1,s1+1.2ω2
2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1)

cs1
(
z(1.2+2ω2

1,s1+1.2ω2
2,s1+2ω1,s1ω2,s1−2(ω1,s1+1.2ω2,s1))

−1
×

×(ω1,s1+1.2ω2,s1−1.2)) dF (z)] +

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)




(3.18)

where

cs1 = ω0,s1 −
√

1.2 + 2ω2
1,s1 + 1.2ω2

2,s1 + 2ω1,s1ω2,s1 − 2(ω1,s1 + 1.2ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)

When starting from s2, the transition probabilities in the above equations change from

P(1,1) and P(1,2) to P(2,1) and P(2,2), respectively.
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Appendix A.5: Equations for Special Case 4

DGP:

y = f1 + f2 + f3 + e (3.19)

forecast:

ŷ = ω0 + ω1f1 + ω2f2 (3.20)

f1 = f3 + ϵ

f2 = f3 + ν
(3.21)

Cov(f1, f2) = V ar(f3) + Cov(ϵ, ν) = 1 (3.22)

Cov(y, f1) = V ar(f1) + Cov(f1, f2) + Cov(f1, f3) = 1.1 + 1 + 1 = 3.1

Cov(y, f2) = V ar(f1) + Cov(f1, f2) + Cov(f2, f3) = 10 + 1 + 1 = 12
(3.23)

The expected loss takes the following form:

E{L(e)|I, s1} = α[P11(µ
2
e,s1 + σ2

e,s1) + P12(µ
2
e,s2 + σ2

e,s2)]−

− (2α− 1)

P1,1

∞∫
−

µe,s1
σe,s1

(µe,s1 + σe,s1z)
2dF (z) + P1,2

∞∫
−

µe,s2
σe,s2

(µe,s2 + σe,s2z)
2dF (z)

 =

= α
{
P11[(−ω0,s1)

2 + (16.1 + (1.1ω2
1,s1 + 2ω1,s1ω2,s1 + 10ω2

2,s1)− 2(3.1ω1,s1 + 12ω2,s1))]+

+P12[(−ω0,s1)
2 + (2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1))]

}
−

− (2α− 1)

P11

∞∫
ω0,s1√

16.1+(1.1ω2
1,s1+2ω1,s1ω2,s1+10ω2

2,s1)−2(3.1ω1,s1+12ω2,s1)

(−ω0,s1+

+
√
16.1 + (1.1ω2

1,s1 + 2ω1,s1ω2,s1 + 10ω2
2,s1)− 2(3.1ω1,s1 + 12ω2,s1)z

)2
dF (z)+

+P12

∞∫
ω0,s1√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1)

(
−ω0,s1 +

√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)z)

2dF (z)
]

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(3.24)

When the starting state is assumed to be s2, we get a similar expected loss function to

equation 3.24, but the transition probailities P21 and P22 are used in place of P11 and P12.

When all elements of the transition probability matrix are 0.5, the two sets of weights are

equal.

Minimizing the expected loss in equation 3.24 yields the following first order conditions:

∂E{L(e)|s,I}
∂ω0

=0:

α[P11(ω0,s1)+P12(ω0,s1)]−

−(2α−1)

P11


∞∫

ω0,s1√
(16.1+(1.1ω2

1,s1+2ω1,s1ω2,s1+10ω2
2,s1)−2(3.1ω1,s1+12ω2,s1))

ω0,s1−

−
√

16.1+(1.1ω2
1,s1+2ω1,s1ω2,s1+10ω2

2,s1)−2(3.1ω1,s1+12ω2,s1) z dF (z)
]
+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

ω0,s1−
√

2+(ω2
1,s1+ω2

2,s1)−2(ω1,s1+ω2,s1) z dF (z)




(3.25)

The optimal weights for the two individual forecasts, ω1 and ω2 are determined by

solving first order conditions 3.26 and 3.27:

∂E{L(e)|s, I}
∂ω1,s1

= 0 :

α[P11(1.1ω1,s1+ω2,s1−3.1)+P12(ω1,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
16.1+(1.1ω2

1,s1+2ω1,s1ω2,s1+10ω2
2,s1)−2(3.1ω1,s1+12ω2,s1)

cs1(z(16.1+(1.1ω2
1,s1+2ω1,s1ω2,s1+10ω2

2,s1)−

−2(3.1ω1,s1+12ω2,s1))
−1

(1.1ω1,s1+ω2,s1−3.1)
)
dF (z)

]
+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω1,s1−1)

)
dF (z)




(3.26)

where

cs1 = ω0,s1 −
√
16.1 + (1.1ω2

1,s1 + 2ω1,s1ω2,s1 + 10ω2
2,s1)− 2(3.1ω1,s1 + 12ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)
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∂E{L(e)|s, I}
∂ω2,s1

= 0 :

α[P11(ω1,s1+10ω2,s1−12)+P12(ω2,s1−1)]−

−(2α−1)

P11


∞∫

ω0,s1√
16.1+(1.1ω2

1,s1+2ω1,s1ω2,s1+10ω2
2,s1)−2(3.1ω1,s1+12ω2,s1)

cs1(z(16.1+(1.1ω2
1,s1+2ω1,s1ω2,s1+10ω2

2,s1)−

−2(3.1ω1,s1+12ω2,s1))
−1

(ω1,s1+10ω2,s1−12)
)
dF (z)

]
+

P12


∞∫

ω0,s1√
2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1)

cs2
(
z(2+(ω2

1,s1+ω2
2,s1)−2(ω1,s1+ω2,s1))

−1
(ω2,s1−1)

)
dF (z)




(3.27)

where

cs1 = ω0,s1 −
√
16.1 + (1.1ω2

1,s1 + 2ω1,s1ω2,s1 + 10ω2
2,s1)− 2(3.1ω1,s1 + 12ω2,s1)

cs2 = ω0,s1 −
√
2 + (ω2

1,s1 + ω2
2,s1)− 2(ω1,s1 + ω2,s1)

When starting from s2, the transition probabilities in the above equations change from

P(1,1) and P(1,2) to P(2,1) and P(2,2), respectively.
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Appendix 6: Optimal weights from case 4: full tables

optimal weights

α
starting state: s1

ω0t ω1t ω2t

0.1 0.083 0.517 1.171
0.3 0.000 1.900 1.010
0.5 0.000 1.900 1.010
0.7 0.000 1.900 1.010
0.9 0.113 0.444 1.184

Table 3.3: Optimal weights from case 4, only one state (s1)

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 0.066 0.517 1.146 0.105 0.518 1.157 0.000 1.452 1.050 0.000 1.452 1.050
0.3 -0.001 1.452 1.050 -0.001 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050
0.5 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050 0.000 1.452 1.050
0.7 0.089 0.490 1.162 0.090 0.481 1.167 0.000 1.452 1.050 0.000 1.452 1.050
0.9 0.008 1.449 1.050 0.098 0.479 1.176 0.000 1.452 1.050 0.000 1.452 1.050

Table 3.4: Optimal weights from case 4, symmetric transition probabilities

optimal weights ET optimal weights

α
starting state: s1 starting state: s2 starting state: s1 starting state: s2

ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t ω0t ω1t ω2t

0.1 0.058 0.517 1.167 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.3 0.001 1.810 1.019 -0.001 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.5 0.000 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.7 0.001 1.810 1.019 0.000 1.094 1.048 0.000 1.810 1.019 0.000 1.094 1.048
0.9 0.000 1.810 1.019 -0.002 1.095 1.048 0.000 1.810 1.019 0.000 1.094 1.048

Table 3.5: Optimal weights from case 4, asymmetric transition probabilities
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B Appendix for Chapter 2

Appendix B.1. Generating observationally equivalent

losses

This section gives a more detailed definition of Osband’s principle (after Osband (1985)),

and outlines the method on generating losses that lead to observationally equivalent fore-

casts. The section is based on subsection 4.1. in Lieli et al. (2019).

It follows from Osband’s principle that it is not just scalar multiples of a loss function

that are forecast equivalent to it, but one can generate a set of loss functions that are

consistent for the same statistical functional as the original loss function, ℓ. Given an

initial loss function, ℓ(ŷ, y), the idea is to generate observationally equivalent losses via the

integral

ℓ†(ŷ, y) :=
∫ ŷ

a
ℓŷ(t, y)w(t)dt, (3.28)

where w(t) > 0 is a continuously differentiable weight function. When ℓ(·, y) is convex, so is∫
ℓ(·, y) dp(y), but ℓ†(·, y) is need not be, unless w(·) satisfies further conditions (c.f. Fissler

2017, Ch. 4). The next set of arguments show that for any w(·), the first order condition
d
dŷ

∫
ℓ†(·, y) dp(y) = 0 has the same unique solution as the corresponding condition for ℓ,

and the second order condition for a minimum is also satisfied at the unique solution.

� Integrating ℓ† with respect to a distribution p(y) and interchanging the order of

integration yields

∫
ℓ†(ŷ, y) dp(y) =

∫ ŷ

a

[∫
ℓŷ(t, y) dp(y)

]
w(t)dt, (3.29)

and, therefore,
d

dŷ

∫
ℓ†(ŷ, y) dp(y) = w(ŷ)

∫
ℓŷ(ŷ, y) dp(y). (3.30)

� Pulling the derivative out of the integral on the r.h.s. (see Lemma 2. in Appendix A

od Lieli et al. (2019)) gives, for all ŷ ∈ (a, b),

d
dŷ

∫
ℓ†(ŷ, y) dp(y) = w(ŷ) d

dŷ

∫
ℓ(ŷ, y) dp(y). (3.31)
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Equation (3.31) shows that the first order condition for the expected loss minimiza-

tion of ℓ† is uniquely satisfied at the unique solution to the first order condition for

the expected loss minimization of ℓ.

� To check that the second order condition holds, take the derivative in (3.31),

d
dŷ
w(ŷ)

∫
ℓŷ(ŷ, y) dp(y) = w′(ŷ)

∫
ℓŷ(ŷ, y) dp(y) + w(ŷ)

∫
ℓŷ,ŷ(ŷ, y) dp(y).

When the first order condition holds, the first term is zero, and the second term is

strictly positive.

By varying the weight function w(·), one can generate an entire class of forecast equiv-

alent loss functions to ℓ, a class in which the first order conditions uniquely determine the

unrestricted optimal forecast. For example, starting from square loss (ŷ − y)2, Bregman

losses can be generated by integrating 2w(t)(t − y). Working in a more general setting,

Steinwart et al. (2014) demonstrate that all order-sensitive unrestrictedly forecast equiva-

lent loss functions can actually be generated this way.
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Appendix B.2. Table 2 of EKT (2005), included for

comparison reasons

IMF OECD
Canada France Germany Italy Japan UK US France Germany Italy UK

Current year
Inst=1 alpha 0.60 0.52 0.40 0.16 0.24 0.24 0.20 0.27 0.22 0.29 0.48

s.e 0.10 0.10 0.10 0.07 0.09 0.09 0.08 0.09 0.08 0.09 0.10
p-value 0.31 0.84 0.31 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.85

Inst=2 alpha 0.58 0.54 0.40 0.14 19.00 0.20 0.18 0.28 0.22 0.28 0.50
s.e 0.10 0.10 0.10 0.07 0.08 0.08 0.08 0.09 0.08 0.09 0.10
p-value 0.39 0.67 0.33 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.98

Inst=3 alpha 0.59 0.54 0.42 0.15 0.24 0.24 0.19 0.13 0.12 0.29 0.50
s.e 0.10 0.10 0.10 0.07 0.09 0.09 0.08 0.07 0.06 0.09 0.10
p-value 0.39 0.68 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.99

Inst=4 alpha 0.59 0.54 0.40 0.13 0.20 0.19 0.17 0.11 0.11 0.26 0.49
s.e 0.10 0.10 0.10 0.07 0.08 0.08 0.08 0.06 0.06 0.09 0.10
p-value 0.39 0.67 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.92

1-year ahead
Inst=1 alpha 0.54 0.48 0.44 0.30 0.40 0.24 0.24 0.44 0.32 0.46 0.52

s.e 0.10 0.10 0.10 0.10 0.10 0.09 0.09 0.10 0.09 0.10 0.10
p-value 0.68 0.84 0.55 0.04 0.31 0.00 0.00 0.55 0.05 0.68 0.84

Inst=2 alpha 0.54 0.50 0.45 0.27 0.18 0.14 0.14 0.41 0.33 0.43 0.55
s.e 0.10 0.10 0.10 0.09 0.08 0.07 0.07 0.10 0.09 0.10 0.10
p-value 0.67 0.96 0.62 0.01 0.00 0.00 0.00 0.38 0.08 0.52 0.59

Inst=3 alpha 0.57 0.50 0.46 0.27 0.37 0.24 0.24 0.39 0.27 0.43 0.54
s.e 0.10 0.10 0.10 0.09 0.10 0.09 0.09 0.10 0.09 0.10 0.10
p-value 0.50 1.00 0.66 0.01 0.18 0.00 0.00 0.24 0.01 0.52 0.66

Inst=4 alpha 0.57 0.50 0.44 0.27 0.26 0.17 0.13 0.35 0.24 0.43 0.57
s.e 0.10 0.10 0.10 0.09 0.09 0.08 0.07 0.10 0.09 0.10 0.10
p-value 0.48 0.98 0.57 0.01 0.01 0.00 0.00 0.13 0.00 0.51 0.45

Note: Table 2 of EKT (2005), included for comparison reasons. Sample period: 1975-2001; The four

instrument sets are the following from inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error;

(iii) constant, lagged budget deficit; (iv) constant, lagged forecast error and lagged budget deficit.

Table 3.6: EKT’s Estimated α parameters for b = 1
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Appendix B.3. Estimated α parameters for b = 0.25

IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.34 0.47 0.51 0.38 0.37 0.22 0.24 0.31 0.47 0.40 0.38 0.35

s.e 0.14 0.12 0.13 0.12 0.12 0.09 0.13 0.11 0.11 0.11 0.12 0.11
p-value 0,23 0,77 0,95 0,34 0,26 0,00 0,04 0,09 0,76 0,35 0,32 0,19

Inst=2 alpha 0.35 0.49 0.51 0.37 0.20 0.20 0.30 0.35 0.49 0.37 0.36 0.39
s.e 0.13 0.12 0.12 0.12 0.09 0.09 0.13 0.11 0.11 0.11 0.12 0.11
p-value 0,28 0,92 0,94 0,27 0,00 0,00 0,12 0,17 0,94 0,25 0,21 0,32

Inst=3 alpha 0.35 0.46 0.41 0.43 0.28 0.22 0.26 0.30 0.39 0.28 0.34 0.34
s.e 0.14 0.11 0.12 0.11 0.10 0.09 0.12 0.10 0.10 0.10 0.09 0.10
p-value 0,26 0,71 0,44 0,54 0,03 0,00 0,05 0,05 0,29 0,02 0,10 0,11

Inst=4 alpha 0.36 0.46 0.41 0.42 0.18 0.22 0.27 0.29 0.33 0.28 0.34 0.35
s.e 0.13 0.11 0.12 0.11 0.08 0.09 0.12 0.10 0.10 0.10 0.09 0.10
p-value 0,29 0,71 0,44 0,49 0,00 0,00 0,06 0,04 0,10 0,02 0,10 0,12

1-year ahead
Inst=1 alpha 0.37 0.41 0.57 0.44 0.48 0.28 0.34 0.38 0.64 0.55 0.50 0.53

s.e 0.13 0.14 0.16 0.15 0.21 0.14 0.13 0.13 0.13 0.11 0.13 0.13
p-value 0,31 0,51 0,63 0,71 0,93 0,11 0,20 0,35 0,29 0,63 0,98 0,84

Inst=2 alpha 0.36 0.43 0.58 0.38 0.94 0.07 0.41 0.53 0.61 0.56 0.43 0.32
s.e 0.13 0.14 0.16 0.14 0.05 0.07 0.13 0.11 0.14 0.11 0.12 0.11
p-value 0,28 0,64 0,59 0,37 0,00 0,00 0,52 0,82 0,44 0,59 0,60 0,09

Inst=3 alpha 0.34 0.43 0.65 0.75 1.00 0.28 0.34 0.37 0.30 0.54 0.52 0.45
s.e 0.13 0.14 0.14 0.11 0.13 0.14 0.13 0.12 0.17 0.11 0.11 0.11
p-value 0,22 0,65 0,27 0,03 0,00 0,12 0,20 0,28 0,26 0,72 0,88 0,62

Inst=4 alpha 0.36 0.44 0.64 0.80 0.06 0.04 0.36 0.50 0.35 0.54 0.51 0.42
s.e 0.13 0.14 0.14 0.10 0.07 0.06 0.13 0.11 0.16 0.11 0.11 0.11
p-value 0,28 0,65 0,29 0,00 0,00 0,00 0,26 0,97 0,34 0,74 0,94 0,47

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. The GMM weighting matrix Ŝ is specified

as in EKT. p values refer to the null hypothesis of α = 0.5.

Table 3.7: Estimated α parameters for b = 0.25
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Appendix B.4. Estimated α parameters for b = 0.5

IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.39 0.45 0.48 0.40 0.37 0.28 0.28 0.36 0.43 0.38 0.36 0.38

s.e 0.13 0.11 0.12 0.11 0.11 0.10 0.12 0.10 0.10 0.10 0.10 0.10
p-value 0,41 0,68 0,86 0,39 0,26 0,03 0,07 0,18 0,52 0,22 0,19 0,25

Inst=2 alpha 0.39 0.47 0.47 0.40 0.24 0.26 0.31 0.38 0.46 0.35 0.37 0.40
s.e 0.13 0.11 0.12 0.11 0.10 0.10 0.12 0.10 0.11 0.10 0.10 0.10
p-value 0,37 0,71 0,45 0,57 0,05 0,02 0,06 0,10 0,25 0,01 0,12 0,21

Inst=3 alpha 0.39 0.46 0.41 0.44 0.29 0.27 0.28 0.34 0.39 0.27 0.35 0.38
s.e 0.13 0.11 0.11 0.11 0.10 0.10 0.12 0.10 0.10 0.09 0.10 0.10
p-value 0.19 0.35 0.22 0.29 0.02 0.01 0.03 0.05 0.13 0.01 0.06 0.10

Inst=4 alpha 0.39 0.46 0.41 0.43 0.19 0.27 0.27 0.34 0.36 0.27 0.35 0.38
s.e 0.13 0.11 0.11 0.11 0.09 0.10 0.12 0.10 0.10 0.09 0.10 0.10
p-value 0,39 0,70 0,43 0,53 0,00 0,01 0,05 0,10 0,14 0,01 0,12 0,20

1-year ahead
Inst=1 alpha 0.38 0.38 0.50 0.45 0.56 0.32 0.36 0.42 0.54 0.51 0.51 0.51

s.e 0.13 0.13 0.14 0.14 0.17 0.13 0.13 0.11 0.12 0.10 0.11 0.11
p-value 0,35 0,38 0,97 0,73 0,73 0,17 0,28 0,44 0,75 0,96 0,90 0,93

Inst=2 alpha 0.35 0.40 0.50 0.43 0.94 0.16 0.41 0.48 0.51 0.52 0.48 0.43
s.e 0.13 0.14 0.15 0.14 0.05 0.10 0.13 0.11 0.12 0.10 0.11 0.11
p-value 0,27 0,48 0,99 0,63 0,00 0,00 0,48 0,83 0,94 0,88 0,84 0,52

Inst=3 alpha 0.34 0.41 0.57 0.72 1.00 0.33 0.37 0.41 0.37 0.50 0.53 0.48
s.e 0.13 0.14 0.14 0.12 0.11 0.14 0.13 0.11 0.12 0.10 0.11 0.10
p-value 0,22 0,50 0,60 0,06 0,00 0,21 0,30 0,38 0,28 0,98 0,79 0,82

Inst=4 alpha 0.35 0.40 0.56 0.77 1.00 0.10 0.36 0.45 0.38 0.50 0.52 0.47
s.e 0.13 0.14 0.14 0.11 0.00 0.09 0.13 0.11 0.12 0.10 0.11 0.10
p-value 0,24 0,48 0,68 0,01 0,00 0,00 0,28 0,65 0,32 1,00 0,82 0,80

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. The GMM weighting matrix Ŝ is specified

as in EKT. p values refer to the null hypothesis of α = 0.5.

Table 3.8: Estimated α parameters for b = 0.5
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Appendix B.5. Estimated α parameters for b = 2

IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.53 0.39 0.36 0.44 0.36 0.39 0.21 0.39 0.35 0.27 0.34 0.38

s.e 0.13 0.11 0.11 0.12 0.12 0.13 0.10 0.10 0.11 0.09 0.10 0.11
p-value 0.81 0.32 0.23 0.58 0.24 0.37 0.00 0.28 0.18 0.02 0.11 0.25

Inst=2 alpha 0.44 0.41 0.30 0.47 0.26 0.36 0.22 0.43 0.31 0.21 0.35 0.42
s.e 0.13 0.12 0.11 0.12 0.10 0.12 0.10 0.11 0.10 0.08 0.10 0.11
p-value 0.67 0.43 0.07 0.80 0.02 0.26 0.00 0.52 0.07 0.00 0.15 0.47

Inst=3 alpha 0.46 0.40 0.28 0.48 0.21 0.39 0.13 0.45 0.37 0.21 0.34 0.44
s.e 0.13 0.11 0.10 0.12 0.09 0.13 0.08 0.11 0.10 0.08 0.10 0.11
p-value 0.74 0.36 0.03 0.89 0.00 0.37 0.00 0.66 0.19 0.00 0.10 0.54

Inst=4 alpha 0.45 0.40 0.27 0.48 0.11 0.41 0.07 0.45 0.33 0.21 0.34 0.44
s.e 0.13 0.11 0.10 0.12 0.07 0.12 0.06 0.11 0.09 0.08 0.10 0.11
p-value 0.68 0.38 0.02 0.85 0.00 0.45 0.00 0.66 0.07 0.00 0.10 0.56

1-year ahead
Inst=1 alpha 0.40 0.26 0.29 0.47 0.79 0.48 0.40 0.32 0.27 0.30 0.56 0.48

s.e 0.14 0.12 0.12 0.14 0.10 0.17 0.13 0.10 0.09 0.09 0.11 0.12
p-value 0.47 0.05 0.08 0.83 0.00 0.90 0.46 0.07 0.02 0.03 0.59 0.83

Inst=2 alpha 0.27 0.28 0.20 0.54 0.98 0.50 0.44 0.36 0.26 0.33 0.55 0.49
s.e 0.12 0.13 0.11 0.14 0.03 0.17 0.14 0.10 0.09 0.10 0.11 0.11
p-value 0.04 0.09 0.01 0.78 0.00 0.98 0.65 0.18 0.01 0.08 0.68 0.96

Inst=3 alpha 0.06 0.28 0.21 0.86 0.97 0.50 0.41 0.34 0.27 0.33 0.53 0.57
s.e 0.06 0.13 0.10 0.11 0.04 0.17 0.14 0.10 0.09 0.10 0.11 0.11
p-value 0.00 0.08 0.00 0.00 0.00 0.99 0.53 0.12 0.02 0.09 0.82 0.54

Inst=4 alpha 0.06 0.28 0.07 0.46 1.00 0.44 0.43 0.35 0.27 0.34 0.53 0.52
s.e 0.06 0.13 0.05 0.14 0.00 0.16 0.14 0.10 0.09 0.10 0.11 0.11
p-value 0.00 0.09 0.00 0.80 0.00 0.70 0.61 0.13 0.01 0.09 0.80 0.88

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. The GMM weighting matrix Ŝ is specified

as in EKT. p values refer to the null hypothesis of α = 0.5.

Table 3.9: Estimated α parameters for b = 2
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Appendix B.6. Estimated α parameters for b = 3

IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.55 0.35 0.32 0.42 0.32 0.29 0.13 0.34 0.40 0.26 0.34 0.32

s.e 0.14 0.13 0.12 0.12 0.15 0.14 0.08 0.12 0.15 0.12 0.11 0.13
p-value 0.71 0.25 0.14 0.52 0.22 0.13 0.00 0.17 0.49 0.04 0.14 0.15

Inst=2 alpha 0.44 0.36 0.25 0.46 0.17 0.27 0.12 0.41 0.31 0.15 0.35 0.39
s.e 0.14 0.14 0.11 0.13 0.08 0.13 0.06 0.12 0.14 0.07 0.11 0.14
p-value 0.65 0.31 0.02 0.77 0.00 0.09 0.00 0.45 0.16 0.00 0.17 0.43

Inst=3 alpha 0.47 0.33 0.18 0.49 0.07 0.17 0.02 0.43 0.36 0.16 0.33 0.40
s.e 0.14 0.11 0.09 0.12 0.05 0.11 0.05 0.12 0.12 0.07 0.10 0.12
p-value 0.85 0.14 0.00 0.94 0.00 0.00 0.00 0.59 0.25 0.00 0.10 0.42

Inst=4 alpha 0.46 0.36 0.18 0.49 0.03 0.04 0.02 0.43 0.26 0.16 0.33 0.41
s.e 0.14 0.11 0.09 0.12 0.04 0.07 0.03 0.12 0.09 0.07 0.10 0.12
p-value 0.75 0.23 0.00 0.92 0.00 0.00 0.00 0.59 0.01 0.00 0.10 0.47

1-year ahead
Inst=1 alpha 0.37 0.22 0.22 0.44 0.89 0.49 0.36 0.21 0.21 0.21 0.54 0.42

s.e 0.15 0.15 0.12 0.15 0.07 0.22 0.14 0.09 0.10 0.09 0.12 0.15
p-value 0.39 0.06 0.02 0.69 0.00 0.95 0.31 0.00 0.00 0.00 0.74 0.58

Inst=2 alpha 0.20 0.15 0.11 0.56 0.99 0.50 0.42 0.26 0.21 0.26 0.53 0.43
s.e 0.10 0.12 0.08 0.15 0.02 0.21 0.14 0.10 0.10 0.09 0.12 0.14
p-value 0.00 0.00 0.00 0.68 0.00 1.00 0.60 0.01 0.00 0.01 0.81 0.62

Inst=3 alpha 0.02 0.24 0.12 0.89 0.99 0.52 0.31 0.21 0.22 0.26 0.52 0.58
s.e 0.04 0.14 0.08 0.11 0.02 0.23 0.14 0.09 0.09 0.10 0.12 0.15
p-value 0.00 0.07 0.00 0.00 0.00 0.93 0.18 0.00 0.00 0.01 0.87 0.59

Inst=4 alpha 0.03 0.20 0.03 0.89 1.00 0.43 0.39 0.21 0.22 0.26 0.52 0.46
s.e 0.04 0.13 0.03 0.11 0.00 0.19 0.14 0.09 0.09 0.09 0.12 0.13
p-value 0.00 0.03 0.00 0.00 0.00 0.69 0.42 0.00 0.00 0.01 0.85 0.76

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. The GMM weighting matrix Ŝ is specified

as in EKT. p values refer to the null hypothesis of α = 0.5.

Table 3.10: Estimated α parameters for b = 3

Appendix B.7. Further empirical examples: losses of

different parametric families forecast equivalent to quad-

quad

In this section, I am conducting a similar empirical exercise to that in subsection 2.4.1

and 2.4.2, however I am using different functional forms for the loss function. The loss

functions and adherent moment conditions are the following:
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1. w(t) = |t|:

i y < ŷ

2(1−α)
∫ ŷ

y

|t|(t−y) dt = 2(1−α)

[
1

6
t2sgn(t)(2t−3y)

]ŷ
y

=
1

3
(1−α)

[
ŷ2sgn(ŷ)(2ŷ−3y)+y3sgn(y)

]

ii y ≥ ŷ

−2α

∫ ŷ

y

|t|(t− y) dt =
α

3

[
ŷ2sgn(ŷ)(2ŷ − 3y) + y3sgn(y)

]

2. w(t) = t2:

i y < ŷ

2(1− α)

∫ ŷ

y

t2(t− y) dt = 2(1− α)

[
t4

4
− t3y

3

]ŷ
y

= 2(1− α)

[
1

4
(ŷ4 − y4)− y

3
(ŷ3 − y3)

]

ii y ≥ ŷ

−2α

∫ ŷ

y

t2(t− y) dt = −2α

[
t4

4
− t3y

3

]y
ŷ

= −2α

[
1

4
(y4 − ŷ4)− ŷ

3
(y3 − ŷ3)

]

3. w(t) = |t|3:

i y < ŷ

2(1−α)
∫ ŷ

y

|t|3(t−y) dt = 2(1−α)

[
1

20
t4sgn(t)(4t−5y)

]ŷ
y

=
1

10
(1−α)

[
ŷ4sgn(ŷ)(4ŷ−5y)+y5sgn(y)

]

ii y ≥ ŷ

−2α

∫ ŷ

y

|t|3(t−y) dt = (−2α)

[
1

20
t4sgn(t)(4t−5y)

]y
ŷ

=
α

10

[
ŷ4sgn(ŷ)(4ŷ−5y)+y5sgn(y)

]
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4. w(t) = t4:

i y < ŷ

2(1− α)

∫ ŷ

y

t4(t− y) dt = 2(1− α)

[
t6

6
− t5y

5

]ŷ
y

= 2(1− α)

[
1

6
(ŷ6 − y6)− y

5
(ŷ5 − y5)

]

ii y ≥ ŷ

−2α

∫ ŷ

y

t4(t− y) dt = −2α

[
t4

4
− t3y

3

]y
ŷ

= −2α

[
1

6
(y6 − ŷ6)− y

5
(y5 − ŷ5)

]

5. w(t) = et:

i y < ŷ

2(1− α)

∫ ŷ

y

et(t− y) dt = 2(1− α)

[
et(t− y − 1)

]ŷ
y

= 2(1− α)

[
eŷ(ŷ − y − 1) + ey

]

ii y ≥ ŷ

−2α

∫ ŷ

y

et(t− y) dt = −2α

[
et(t− y − 1)

]y
ŷ

= 2α

[
eŷ(ŷ − y − 1) + ey

]
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Figure 3.5: Loss function of y and ŷ, w(t) = |t|, alpha=0.5

Using different functional forms for the loss function results in a diverse set of estimated

α parameters. Table 3.11 includes the results for the loss function where w(t) = |t|. As an
illustration, this loss function is plotted in figure 3.5. The results show a limited rejection

rate of the symmetry of α̂. For the end-of-year IMF forecasts, symmetry can be rejected for

Japan’s (Inst=2; 3; 4) and the United States’ (Inst=3;4) estimates. This is in line with the

results from the GLS loss functions under different b’s (see tables 2.2 and 3.7 through 3.10),

where symmetry was also rejected in many cases for Japan’s and the United States’ end-

of-year IMF estimates. In the OECD end-of-year results, we can reject the symmetry of α̂

for Germany regardless of the instrument set used. For the next-year forecasts, rejection

rates of the w(t) = |t| case are similar to the GLS-results for the b = 0.25 case in table 3.7.

Different functional forms result in different rejection rates: while setting the weight

function to |t| and t2 gives lower average rejection rates (0.16 and 0.22, respectively),

choosing a higher order for t (t3 and t4) or the exponential function (w(t) = exp(t)) as
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IMF OECD
Canada France Germany Italy Japan UK US US France Germany Italy UK

Current year
Inst=1 alpha 0.65 0.45 0.37 0.34 0.27 0.51 0.22 0.46 0.31 0.18 0.31 0.38

s.e 0.45 1.56 0.47 0.50 0.25 5.38 0.21 1.65 0.33 0.13 0.37 0.59
p-value 0.74 0.98 0.79 0.76 0.36 1.00 0.18 0.98 0.57 0.01 0.61 0.84

Inst=2 alpha 0.60 0.52 0.32 0.25 0.12 0.48 0.23 0.50 0.26 0.12 0.29 0.47
s.e 0.23 0.90 0.32 0.23 0.10 1.51 0.21 0.48 0.20 0.09 0.27 1.77
p-value 0.67 0.98 0.57 0.28 0.00 0.99 0.19 0.99 0.24 0.00 0.43 0.99

Inst=3 alpha 0.58 0.48 0.30 0.42 0.13 0.50 0.15 0.46 0.30 0.11 0.31 0.45
s.e 0.30 0.83 0.25 0.63 0.11 0.93 0.14 0.33 0.26 0.08 0.35 0.50
p-value 0.78 0.98 0.42 0.89 0.00 1.00 0.01 0.91 0.42 0.00 0.59 0.93

Inst=4 alpha 0.59 0.51 0.29 0.22 0.02 0.50 0.06 0.46 0.20 0.11 0.25 0.45
s.e 0.24 0.61 0.25 0.17 0.04 0.89 0.06 0.33 0.14 0.08 0.20 0.50
p-value 0.70 0.99 0.42 0.11 0.00 1.00 0.00 0.91 0.04 0.00 0.22 0.92

1-year ahead
Inst=1 alpha 0.59 0.63 0.38 0.24 0.82 0.56 0.51 0.38 0.45 0.17 0.45 0.32

s.e 0.14 0.46 0.16 0.18 1.86 0.61 0.17 0.15 0.27 0.11 0.50 0.24
p-value 0.51 0.77 0.47 0.16 0.86 0.92 0.96 0.39 0.84 0.00 0.92 0.46

Inst=2 alpha 0.28 0.71 0.49 0.41 0.99 0.87 0.44 0.49 0.62 0.26 0.39 0.40
s.e 0.23 0.26 2.02 0.19 0.04 0.23 0.24 0.37 0.30 0.22 0.34 0.31
p-value 0.33 0.41 1.00 0.64 0.00 0.11 0.81 0.98 0.69 0.26 0.76 0.74

Inst=3 alpha 0.57 0.57 0.29 0.25 0.98 0.53 0.46 0.56 0.48 0.17 0.40 0.54
s.e 0.19 0.26 0.42 0.19 0.05 0.25 0.24 0.25 0.31 0.20 0.54 0.23
p-value 0.71 0.78 0.62 0.21 0.00 0.91 0.86 0.81 0.96 0.10 0.85 0.86

Inst=4 alpha 0.24 0.49 0.49 0.25 1.00 0.46 0.38 0.60 0.58 0.20 0.41 0.48
s.e 0.11 0.28 0.42 0.17 0.00 0.26 0.23 0.26 0.23 0.20 0.25 0.25
p-value 0.02 0.96 0.97 0.14 0.00 0.88 0.61 0.72 0.72 0.13 0.72 0.94

Note: Sample period: 1980-2017; The four instrument sets are based on EKT and are the following from

inst=1 to inst=4: (i) constant; (ii) constant, lagged forecast error; (iii) constant, lagged budget deficit;

(iv) constant, lagged forecast error and lagged budget deficit. w(t) = |t|

Table 3.11: Estimated α parameters for w(t) = |t|

weight functions yields higher rejection rates (see table 3.12).

For some countries, the estimated symmetry parameters are quite robust to the change

in the loss’ functional form. Canada is such a country: we can see from table 3.13 that

the end-of-year α-estimates are close to 0.6 for all, except for the exponential, weighting

functions.
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w(t) |t| t2 t3 t4 exp(t)
∑

IMF end-of-year 0.18 0.25 0.43 0.46 0.36 0.34
IMF 1-year ahead 0.14 0.21 0.39 0.43 0.46 0.33
IMF

∑
0.16 0.23 0.41 0.45 0.41 0.33

OECD end-of-year 0.25 0.20 0.30 0.40 0.15 0.26
OECD 1-year ahead 0.05 0.20 0.30 0.30 0.35 0.24
OECD

∑
0.15 0.20 0.30 0.35 0.25 0.25∑
0.16 0.22 0.36 0.41 0.34 0.30

Table 3.12: Rejection rates across different functional forms and forecast subgroups

Canada, IMF forecast
w(t) |t| t2 t3 t4 exp(t)

current year
Inst=1 alpha 0.65 0.68 0.68 0.67 0.65

s.e 0.45 0.39 0.42 0.51 0.02
p-value 0.74 0.65 0.67 0.73 0.00

Inst=2 alpha 0.60 0.64 0.62 0.59 0.08
s.e 0.23 0.25 0.29 0.33 0.01
p-value 0.67 0.58 0.67 0.78 0.00

Inst=3 alpha 0.58 0.60 0.61 0.62 0.06
s.e 0.30 0.39 0.54 0.64 0.00
p-value 0.78 0.80 0.83 0.85 0.00

Inst=4 alpha 0.59 0.69 0.93 0.98 0.00
s.e 0.24 0.21 0.08 0.05 0.00
p-value 0.70 0.38 0.00 0.00 0.00

1-year ahead
Inst=1 alpha 0.59 0.64 0.63 0.61 0.59

s.e 0.14 0.55 0.61 0.84 0.42
p-value 0.51 0.80 0.83 0.90 0.83

Inst=2 alpha 0.28 0.31 0.30 0.25 0.07
s.e 0.23 0.17 0.15 0.13 0.06
p-value 0.33 0.26 0.18 0.05 0.00

Inst=3 alpha 0.57 0.86 1.05 1.12 0.00
s.e 0.19 0.20 0.18 0.23 0.02
p-value 0.71 0.06 0.00 0.01 0.00

Inst=4 alpha 0.24 0.73 0.94 0.99 0.00
s.e 0.11 0.20 0.09 0.05 0.01
p-value 0.02 0.25 0.00 0.00 0.00

Table 3.13: Estimated α parameters for Canada’s IMF forecasts using different functional
forms and instruments
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C Appendix for Chapter 3

Appendix C.1: Sketch of Proof of Theorem 1.

1. Using the delta-method, we can write Ût in the following linear form (assuming that

the second and higher order parts of the Taylor-expansion are zero):√
T (ÛT − U) ≈ 1

q

√
T (p̂T − p)− p

q2

√
T (q̂T − q).

The central limit theorems for the univariate iid series p̂t and q̂t are the following:

E(p̂t) = p V ar(p̂t) = p(1− p) <∞, then
√
T (p̂t − p)

d→ N(0, p(1− p))

E(q̂t) = q V ar(q̂t) = q(1− q) <∞, then
√
T (q̂t − q)

d→ N(0, q(1− q)).

The Cramer-Wold theorem states that Xn
d→ X if and only if a′Xn

d→ a′X for all

a ∈ Rk. Let

(
p

q

)
d→ Nk(0,Σ) then we can take any vector a ∈ Rk;(k=2 in this case)

and show: a′

[
√
T

(
p̂t

q̂t

)
−

(
p

q

)]
d→ a′

(
p

q

)
. In the case of the upper bound, a),

a = λU .

2. Using the delta-method, we can write L̂t in the following linear form (assuming that

the second and higher order parts of the Taylor-expansion are zero):√
T (L̂T − L) ≈

√
T (p̂T − p)− p−1

(1−q)2

√
T (q̂T − q).

Then, we use the Cramer-Wold device as in point a) for the upper bound, but now

a = λL.
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