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Abstract

This thesis applies micro-econometric methods to macroeconomic ques-
tions. The first two chapters use country-level data to estimate the effect
of distancing policy interventions on the effective reproduction number
of COVID-19 and a set of economic outcomes. The third chapter iden-
tifies the average time it takes for an industry-level shock for getting
transmitted to customer industries in the US economy.

Chapter 1

Distancing policies became the primary preventive intervention during
the COVID-19 pandemic. This paper estimates the effect of such inter-
ventions on the effective reproduction number (Rt) of this virus on a
daily panel of 109 countries. Distancing interventions affect COVID in-
fections indirectly through the regulation of social behaviors, which are
also a function of voluntary decisions. The main contribution of this
paper is the separation of policy-compliant and voluntary distancing ef-
fects. I identify the policy-compliant component of distancing behav-
ior as rapid changes in social activity immediately after an intervention.
This allows me to isolate the voluntary component as residual changes
in activity. I use the isolated voluntary component as a control in the
main estimation of distancing policy effects on Rt. I distinguish between
(i) place restrictions: restricting destinations and (ii) mobility restric-
tions: regulations on inland movements. I find strong and permanent
effects for both types of restrictions. Place restrictions that target specific
destinations are found to be less effective than general mobility restric-
tions. The effect of voluntary distancing is also significantly negative but
weaker than that of policy restrictions. These results suggest that gov-
ernments can use distancing restrictions effectively in pushing the effec-
tive reproduction number below the containment threshold: Rt = 1.

Chapter 2

Distancing policy interventions (DPIs) were aimed at containing the COVID-
19 pandemic, but they also had severe effects on economic activity. This
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paper estimates the effects of DPIs on selected indicators of monthly eco-
nomic activity, such as industrial and manufacturing production, con-
struction output, retail trade, inflation, and unemployment. The main
contribution of this paper is the isolation of the causal effects of distanc-
ing interventions from the effects of voluntary distancing. I use mobil-
ity data as a measure of distancing to identify DPI effects as immediate
changes in distancing shortly after the first intervention. I then use resid-
ual changes in distancing as a control in the estimation of the economic
effects of DPIs. I find significant output losses due to DPIs, but no evi-
dence for inflationary or unemployment effects. Results also show that
although voluntary distancing caused significant output losses, their ef-
fect was an order of magnitude smaller than that of DPIs.

Chapter 3

While there is growing evidence for the network origins of aggregate
volatility, this paper investigates the potential for the network origins
of aggregate dynamics. This paper builds on the predictions of the pro-
duction network model of Long and Plosser (1983). In this model, the
average propagation time – the time a shock needs to get transmitted
between producers – is undefined in calendar units. This paper identi-
fies the average propagation time of the US economy using annual data
series of 66 industries. I find that it was between 4 and 8 months in past
decades. That means the effect of a TFP shock propagates through the
production network beyond the time horizon of a year, generating auto-
correlated economic aggregates even without the help of auto-correlated
shocks. This finding provides evidence for the network origins of aggre-
gate dynamics at annual frequencies.
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Chapter 1

The Effect of Distancing Policies on the
Reproduction Number of COVID-19

1.1 Introduction

Distancing policies, such as school closures, gathering limits, or stay-at-
home orders were the primary preventive interventions in essentially
all countries during the COVID-19 pandemic of 2020–2021. The logic
behind these policies is to reduce the chances of already infected people
infecting others. The number of new infections an infected person is ex-
pected to cause during her illness is the effective reproduction number,
Rt.

The main objective of this paper is to quantify the effect of distancing
policies on the effective reproduction number of COVID-19.1 The main
contribution of this paper is the separation of policy-induced and vol-
untary distancing effects. I identify the policy-induced component of
distancing behavior as rapid changes in social activity immediately af-
ter an intervention. This allows me to isolate the voluntary component
as residual changes in activity. I use this isolated voluntary component
as a control in the main estimation of distancing policy effects on Rt.
Because holding voluntary distancing effects fixed allows for the iden-
tification of unbiased policy effects in a comparison of countries with
different policy interventions.

1COVID-19, officially known as SARS-CoV-2, is a virus spread by human droplets like the regular flu.
It has a higher basic reproduction number and mortality rate than the regular flu, according to Petersen
et al. (2020). Neither vaccines nor designated medical treatments were available until the end of 2020.
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In Section 2 I start with the description of the data. I use four datasets: (i)
daily preventive policy interventions from Hale et al. (2020), (ii) reported
COVID cases, deaths, recoveries, and (iii) Google’s publicly available
mobility reports from Wahltinez et al. (2020), and (iv) Google’s COVID-
19 Aggregated Mobility Research Dataset, which is available with per-
mission from Google. I build a daily frequency cross-country panel
database covering 109 countries and spanning calendar days between
February 2020 and April 2021. The population of the countries involved
in the sample is 5.4 billion, representing 70 percent of the world’s popu-
lation in 2020.

After the data description, I define the most important variables in this
paper: distancing policies, reproduction numbers, social activity, and
imported cases. This study focuses on the effects of two different dis-
tancing policy types: place and mobility restrictions. A place restriction
targets specific destinations or events where people are not allowed to
go. These are school and workplace closures; cancellations of public
events; and gathering limits. A mobility restriction controls how and
when people are allowed to move around within their countries, regard-
less of their destination. These are restrictions on public transportation,
stay-at-home orders, and within-country travel restrictions.

Because of its policy relevance, I chose the effective reproduction num-
ber Rt as the outcome variable of this study. All preventive measures
aim to achieve Rt ≤ 1, which defines the containment of an epidemic.
Knowing the effects of distancing interventions in terms of Rt is there-
fore useful information for decision-makers. I proxy Rt by the instanta-
neous reproduction number RI

t . The advantage of using RI
t is that it is

much easier to calculate and proportional to Rt. Therefore, any propor-
tional effects measured on RI

t can be interpreted as effects on Rt.

Social activity proxies distancing behaviors. It is an indicator derived
from Google mobility indicators, which measure the frequency of Google
users in public spaces relative to pre-COVID levels. I use this indicator
to isolate its voluntary component, which is the most important control
in the main estimation. Finally, imported cases are proxied by an indi-
cator that I created using the proprietary Google COVID-19 Aggregated
Mobility Research Dataset2.

2This dataset is only available with permission from Google LLC.
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In Section 3, I present my empirical strategy. I carry out my estima-
tion in a two-stage design. The first stage is the separation of the vol-
untary and policy-compliant components of social activity. The second
stage is the main estimation of distancing policy effects on the effective
reproduction number. In the first stage, I identify the policy-compliant
component of distancing behavior as rapid changes in social activity im-
mediately after an intervention. I isolate the voluntary component as
residual changes in activity. This allows me to identify policy-compliant
and voluntary distancing effects separately in the second stage by using
this isolated voluntary activity component as a control variable. In the
second stage, the effects of distancing policies are identified from a com-
parison of countries that have introduced a particular restriction to those
that have not, holding voluntary activity, other preventive policies, and
covariates fixed.

At the end of this Section, I discuss possible threats to the identification.
A policy intervention can work as a signal, inducing voluntary distanc-
ing. This kind of voluntary distancing does not harm identification be-
cause it is a direct consequence of the interventions.3 Countries differ
in demographics, population density, and the quality of political and
healthcare institutions, which are likely to correlate with interventions,
social activity, and reproduction numbers. I address these differences by
including country-fixed effects in both stages, assuming the invariability
of these factors on daily frequencies. Countries also differ in the timing
of their interventions, which is addressed by the inclusion of time-fixed
effects.

Different countries provided different levels of economic support, which
might have worked as incentives to leave workplaces for sick people. I
address these differences by controlling for all available information on
economic support. I control for daily weather conditions to address the
effects of the climate on the reproduction numbers of the virus. Finally,
I control for weekly seasonality in both stages of my design.

I present all results in Section 4. I find that place restrictions reduce Rt

by 29 percent and mobility restrictions by 61 percent on average. These
are strong effects on the reduction of the effective reproduction number,

3It has to be noted, though, that this kind of induced voluntary distancing is also accounted for in
policy effects in this study.

3
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suggesting that distancing policies were an effective tool for reducing
the impact of the pandemic. Place restrictions that target specific desti-
nations are found to be less effective than general mobility restrictions.
A one standard deviation drop in voluntary social activity is found to
decrease Rt by 17 percent. The effect of voluntary distancing is also sig-
nificantly negative but weaker than that of policy restrictions. Based on
these results, I calculate the contribution of distancing policies and vol-
untary distancing to the average decline of Rt observed in the first wave.
I find that distancing policies contributed 6.5 times more than voluntary
distancing to the decline in reproduction numbers.

These findings suggest that although voluntary distancing behaviors
help to slow down the reproduction of the virus, any kind of distanc-
ing policy measures are much more effective in stopping a pandemic. In
the second part of Section 4, I investigate heterogeneous policy effects.
The first of these exercises analyse the strength of the policy effects on
different time horizons. I am interested in how long the effects identified
in the main design last. I do that because it is useful to know how long
a government can rely on a place or a mobility restriction. To do that,
I modified my second stage design into an event study design, allow-
ing for heterogeneous effects on different time horizons. I find similarly
strong effects on shorter and longer horizons for both restriction types.
These results suggest that governments can rely on these distancing re-
strictions on longer horizons when fighting longer waves of infections.

In the second exercise, I break down the larger restriction categories into
their components: place and mobility restrictions. I also allow for het-
erogeneity in the different stringency levels of these policies. I do this
to provide comparative results for more delicate policy interventions. I
found that school and workplace closures, gathering limits, and stay-at-
home orders were effective restrictions in the reduction of reproduction
numbers. I cannot find supporting evidence, however, for the effective-
ness of the cancellation of public events, restrictions on public trans-
portation, and inland travel restrictions.

School closures are found to be effective only if they are mandated.
Workplace closures are found to be effective already when they were
only a recommendation. Their efficiency only marginally increases with
stringency. Gathering limits become effective at the 100+ limit and gain
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effectiveness at more restrictive limits. Stay-home orders are found to
be effective when they are just recommended. They also gain effective-
ness as they become more stringent. Overall, these findings suggest that
there was heterogeneity between the effectiveness of different policies,
implying that different policy mixes could have led to very different out-
comes.

Conclusions are discussed in the final section of this study. Based on
my results, I conclude that governments can use distancing restrictions
effectively to push the effective reproduction number below the contain-
ment threshold of Rt ≤ 1. They can rely on these effects for as long as
these measures are in place. Considering the heterogeneous effects of
particular distancing policies suggests that a careful selection of these
policies and their stringency levels is recommended before their imple-
mentation.

Literature

This paper belongs to the empirical evaluation of non-pharmaceutical
interventions (NPI) during the COVID-19 pandemic, surveyed exhaus-
tively by Perra (2021). This literature already provides strong qualitative
evidence for the effectiveness of NPIs. The quantitative comparison of
these papers is difficult, however, because of the high variability in the
chosen outcomes and treatments.

Within this literature, this paper is a contribution to cross-regional stud-
ies. These studies encompass a set of countries or states within a fed-
eration such as the US or Germany. Islam et al. (2020) study the effect
of five physical distancing interventions on a sample of 149 countries
and regions on estimated incidence rate ratios. They found that any
physical distancing intervention reduced COVID-19 incidence by 13%.
This finding is qualitatively in line with the findings of this study, as
I also find significantly negative effects of distancing policies on case
reproduction. It is much more difficult to contrast these results quanti-
tatively because the outcome variable chosen for this study is new in-
cidence per total number of active infections. Askitas et al. (2021) esti-
mates the effect of different NPIs non-parametrically in an event study
design controlling for overlapping interventions. They found that clos-
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ing schools and workplaces had significant effects on reducing COVID-
19 infections, while later installed restrictions on inland travel and pub-
lic transport had no effects. When comparing different NPIs I find that
school and workplace closures were much more effective in the reduc-
tion of the reproduction number than restrictions on inland travel and
public transportation. As lower reproduction implies lower incidence,
these findings are in line. This paper considers other NPIs as well, find-
ing that stay-at-home orders and gathering limits set at 100+ people are
found to be similarly effective to school and workplace closures. Ullah
and Ajala (2020) contrasts the effects of distancing measures on testing
policies on a very similar sample. They find that a unit change in their
lockdown index decreases the total number of confirmed cases by 0.19
percent, which becomes significant after 7 days of its implementation
and stays intact even after 21 days. This study takes into account testing
policies, but the outcome variable is so different I dispense a compari-
son.

There are papers that choose the effective reproduction number as their
outcome variable, just like this paper. Haug et al. (2020) rank 46 differ-
ent NPIs by their impact on Rt on a sample of 79 territories. Overall
they find that less stringent NPIs are just as effective as more drastic
ones. They find that the most effective NPI is a small gathering limit,
which reduces Rt by about 9 % on average.4 They found the impact of
school closure on Rt at about 7.5%. These results are about 1/3 of the
effects found in this study. They find weaker, but significantly negative
effects for individual movement restrictions, lockdowns. These findings
are qualitatively comparable to stay-at-home orders of this study. They
evaluate many other NPIs that are not directly comparable NPIs studied
in this paper.

Koh et al. (2020) confirms that all forms of lockdown interventions ef-
fectively reduce average Rt regardless of stringency levels, adding that
earlier implementations are associated with stronger results. They dis-
cover that, depending on the timing of the intervention, the gathering
limits reduce Rt by 15 to 41%. This interval contains the results found in

4They report their main results in absolute reductions in Rt, whereas this study estimates percentage
reductions; thus, their results can be directly compared to those found in this study by assuming some
basic reproduction number, R0. Liu et al. (2020) estimates COVID-19’s basic reproduction number to be
between 3 and 5. I translate their findings on absolute reductions to percentage reductions by taking the
middle point of this range at 4.
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this paper for the effect of gathering limits.5 They find that ”lock-down-
type” measures to reduce Rt between 14 and 44 %. These numbers are
almost the same in size as the findings of this paper: the slackest stay-at-
home order is found to significantly reduce Rt by 18.5 %, while the most
restrictive type by 35.6 %. Castex et al. (2021) find that the effectiveness
of NPIs is negatively correlated with population density, country sur-
face area, employment rate, and proportion of elderly in the population,
and positively correlated with GDP per capita and health expenditure.

There are papers that estimate the effect of NPIs on the mobility of peo-
ple similarly to the first stage estimation of this study. Gupta et al.
(2020a) and Gupta et al. (2020b) are focused on the mobility effects of
NPIs, while Castex et al. (2021) and Askitas et al. (2021) use their similar
estimations as supporting evidence for their main conclusions.

A common limitation of these works is that they do not address the con-
foundedness of policy-compliant and voluntary distancing effects. This
is where the main contribution of my paper lies relative to this strand
of the literature. I address this problem by separating voluntary and
policy-compliant distancing behaviors in a first-stage estimation and us-
ing the voluntary component as a control in my main specification that
estimates the effects of distancing policies on the reproduction number
of COVID-19.

The only paper I am aware of that addresses this confoundedness prob-
lem is Chernozhukov et al. (2021). They estimate the effect of NPIs on
the growth rate of COVID cases and related deaths on a daily panel
of US states by instrumenting NPIs and observing distancing behavior
with the past history of their outcome variables. They find evidence
for both policies and information on transmission risks having a signif-
icant influence on COVID-19 cases and deaths and show that policies
explain a large fraction of social distancing behaviors. They exploit the
homogeneity of past cases and deaths in the separation of voluntary and
policy-compliant effects. This study leverages the discontinuity in dis-
tancing behaviors after intervention in contrast.

5Except for the slackest type of a gathering limit of above 1000 people, which was found to be inef-
fective in this paper.
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Figure 1.1: Geographical Coverage of the Sample

Notes: One observation per country is a daily observation. Countries are colored if included. Brighter
colors show more observations.

1.2 Data and Variable Definitions

In this section, I start with a brief description of data sources and the
estimation sample. Then I present the definitions of the most important
variables of this study: distancing policies, reproduction numbers, social
activity, and imported infections.

I use four datasets: (i) daily preventive policy interventions from Hale et
al. (2020), (ii) reported COVID cases, deaths, and recoveries, (iii) Google’s
publicly available mobility reports from Wahltinez et al. (2020), and (iv)
Google’s COVID-19 Aggregated Mobility Research Dataset, which is
available with permission from Google.

I build a country-day panel dataset covering 109 countries and span-
ning every calendar day between the 15th of February 2020 and the 3rd
of April 2021. The sample covers 5.4 billion people, representing 70 per-
cent of the world’s population in 2020. Figure 1.1 shows the geograph-
ical coverage of the sample on a world map. Countries are colored if
they are included. More intensive colors show more observations. The
sample includes countries from all populated continents cover most of
Europe Australia and both Americas. China is excluded, where the first
outbreak preceded the beginning of my sample.

My primary data source is Google’s COVID-19 Open-Data platform by
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Wahltinez et al. (2020), which is a ”repository attempting to assemble
the largest COVID-19 epidemiological database in addition to a power-
ful set of expansive covariates. It includes open, publicly sourced, li-
censed data relating to demographics, economy, epidemiology, geogra-
phy, health, hospitalizations, mobility, government response, weather,
and more.” I extend this data by daily country-level reports of the Johns
Hopkins University about recoveries from COVID infections.6 I em-
ploy the Google COVID-19 Aggregated Mobility Research Dataset to
calculate a proxy of imported COVID infections for each country. This
database is available with permission from Google LLC.

1.2.1 Distancing Policies

This study focuses on the effects of distancing interventions implemented
during the COVID-19 pandemic. These interventions are collected and
reported in a daily regional dataset by Hale et al. (2020) called the Gov-
ernment Response Tracker. They cover all sorts of government interven-
tions related to the COVID-19 pandemic including distancing measures,
e.g. gathering limits, other types of preventive policies, e.g. mask wear-
ing mandates, and different kinds of economic support, e.g. debt reliefs.

I form two groups from the seven different distancing interventions and
label them as place and mobility restrictions:7

• Place Restriction: lock-down of schools, workplaces, cancellation
of public events, plus gathering limits,

• Mobility Restriction: restrictions on public transportation, inland
travel restrictions and stay-at-home orders.

The primary reason for this grouping is statistical. Many governments
introduced these measures in bundles reducing the likelihood to identify

6The reliability of these reports was questioned in the Summer of 2021. Therefore, these figures are no
longer reported in the Johns Hopkins dataset. I use these numbers for the calculation of instantaneous
reproduction numbers (RI

t ), my primary outcome variable. I provide some country-level validity checks
of RI

t in the Appendix.
7My interests are limited to inland restrictions. Therefore, I exclude international travel controls from

distancing policies.
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the effect of each distancing indicator in isolation. Collecting these mea-
sures into groups might allow for more powerful estimates. My group-
ing is based on the pairwise time distance between the introductions of
a pair of policies. Table 1.1 reports the fraction of countries that had in-
troduced a pair of policies within at most seven days and highlights the
shares that are greater than 50 or 66,7 percent.8 The larger fractions con-
centrate in two different groups which give the basis for my grouping.

Table 1.1: Percent of Countries Implementing a Policy Pair within 7 Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

School Closure 76.15 67.59 71.56 50.00 53.70 39.00
Events Cancelled 76.15 70.37 55.96 44.44 49.07 29.00
Gathering Limit 67.59 70.37 65.74 57.94 58.88 44.00
Workplace Closure 71.56 55.96 65.74 62.96 60.19 54.00
Stay Home Order 50.00 44.44 57.94 62.96 67.29 58.59
Movement Restricted 53.70 49.07 58.88 60.19 67.29 64.65
Public Transport Closed 39.00 29.00 44.00 54.00 58.59 64.65

Notes: highlight: ≥ 50%, strong highlight: ≥ 66.7%

These two types of policies have a qualitative difference as well that mo-
tivated their labels. Places restrictions are targeted interventions. They
define specific locations or events where people are not allowed to go.
Mobility restrictions on the other hand control when and how people
are allowed to go regardless of where they are headed to.

Governments implemented these distancing orders with different levels
of stringency and generality. A school closure can be a recommendation
or a strict mandate, and it can cover different levels of education or ge-
ographic locations. Hale et al. (2020) define several stringency levels for
each distancing intervention and flag if the intervention was country-
level or regional.9 To retain estimation power I use the following defini-

8The same grouping can be confirmed by setting different thresholds on day distance. Find similar
tables for 3,5 and 9 days in the Appendix.

9A state-level intervention is flagged as regional in a federal state such as Germany or the US, which
is treated as a single unit in this estimation.
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tion for my policy indicators:

Pp
it = min

[
1, ∑

j∈type
Dj

itF
j
it

]
, p ∈ {place, mobility} (1.1)

where Dj
it is the category variable for distancing policy j, e.g. school clo-

sures, which is Dj
it = 0 if restriction j is not in action in country i on day

t, and Dj
it > 0 codes the level of stringency in country i on day t using

consecutive integer values starting from 1. Type can be either place or
mobility restrictions. Fj

it is a binary indicator of a distancing measure j
being a country level order in country i on day t or only regional. This
formula defines a binary variable, therefore, for each distancing policy
type. Pplaceit takes the value 1 if there was at least one country-wide
place type restriction in action in country i on the day t, and 0 if there
was none. Pmobilityit defines another binary variable on the same grounds
for mobility restrictions.

These definitions of policy indicators have the benefit of a binary treat-
ment: their coefficients are easy to interpret. This advantage, however,
comes at a cost: Pplace

it and Pmobility
it indicate the first-ever countrywide

distancing interventions, thus stay blind to later changes in those in-
terventions. They also overlook the cross-country heterogeneity in the
stringency and the number of interventions of these first interventions,
as they are normalized to 1 from day 0. That means these heterogeneities
and later changes are absorbed by other variables or the error terms un-
less they are controlled for. The current version of this paper lacks this
control, which is a serious limitation.

An important limitation of the data sources is that they only provide
information about the implementation of distancing restrictions but not
on their announcements. There is anecdotal evidence that some of these
restrictions were announced earlier in some countries, allowing people
to adjust their behaviors beforehand. Panic shopping for basic goods
could be a good example of such anticipatory responses. The effects of
earlier announcements are discussed in the Results section.
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1.2.2 Reproduction Numbers

The effective reproduction number Rt is the chosen outcome of this study.
It is the number of new cases a single infection is expected to cause.
When Rt > 1 the number of infections grows exponentially, which is the
definition of an epidemic. But, when Rt ≤ 1, the growth is linear and
the contagion is considered to be contained. It is, therefore, the most
useful indicator to judge the efficiency of any preventive interventions:
prevention is successful if it is able to push Rt below 1.

Rt can be decomposed the following way:

Rt = RI
t · Et[duration of infection], (1.2)

where RI
t is the number of new infections an infected individual is ex-

pected to cause within a day and is usually referred to as the instanta-
neous reproduction number.10 Albeit simple this decomposition is use-
ful for two reasons.

First, in contrast to Rt, the calculation of RI
t from daily COVID incidences

is feasible. RI
t can be calculated by dividing the number of new infec-

tions discovered on the day t by the number of known infections from
the previous day:

RI
t = New Infectionst/Infectedt−1 (1.3)

where New Infectionst are reported, thus can be observed. The number
of infected individuals cannot be directly observed, but can be calculated
from reported figures: Infectedt−1 = Total Casest−1 − Total Deathst−1 −
Total Recoveriest−1.

Second, this decomposition allows me to identify the effect of distancing
policies on Rt even if I use RI

t as the outcome, because I assume that
distancing policies cannot affect Et[duration of infection] only RI

t . The
intuition is that once one has the virus its duration is independent of the
frequencies at she meets other people. This strategy also requires me to
estimate proportional effects, because of Rt ∝ RI

t .

Figure 1.2 shows the evolution of RI
t around the days of place and mo-

10All the formulas presented here are consistent with and can be derived from the commonly used
compartment models of epidemics, e.g. SIR models.
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bility restrictions smoothed by a seven days backward-looking moving
average. A turn in the trend of Rt is apparent on both graphs. Rt is
in a decline after both place and mobility restrictions, which suggests a
strong effect of distancing policies.

Figure 1.2: Instantaneous Reproduction Numbers Around Distancing Interventions
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t - instantaneous reproduction number, solid line: 7 days backward-looking

moving average of cross-country mean of RI
it , dotted lines:7 days backward-looking

moving averages of the 5th and 95th percentiles of the cross-country distribution of
RI

it.

Looking at the 90 percent boundaries we can see a rather wide distri-
bution of Rt across countries ranging from 0 to 1.5 new infections by
a single infected individual every day during her infection. This upper
bound is huge considering the expected length of the infection is around
10 days according to Liu et al. (2020), suggesting an effective reproduc-
tion number close to 15 in some countries on some days.
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1.2.3 Social Activity

The main contribution of this paper is the separation of policy compli-
ance and voluntary distancing effects. To be able to do that I need an
indicator that measures overall distancing behaviors. I call this indica-
tor social activity and use the notation ait.

I define ait as the first principal component of Google’s six mobility indi-
cators. These are publicly available daily indicators published for coun-
tries and sub-regions from February 15, 2021. A mobility indicator is
recording differences in the frequency of Google users relative to a five-
week period from before the pandemic in a specific location category,
which are:

• groceries: grocery markets, food warehouses, farmers markets, spe-
cialty food shops, drug stores, and pharmacies,

• retail: restaurants, cafes, shopping centers, theme parks, museums,
libraries, and movie theaters,

• parks: local parks, national parks, public beaches, marinas, dog
parks, plazas, and public gardens.

• transit stations: public transport hubs such as subway, bus, and
train stations,

• workplaces: places of work,

• residential: places of residence.

Table 1.2 shows the results of the principal component analysis. The
first principal component captures 86 percent of the total variance of the
six mobility measures. It is loaded almost equally by all indicators with
the same signs except for residential locations. This pattern parallels
the intuition that social distancing resulted in fewer people in public
spaces and more people at their homes relative to pre-COVID levels. The
rest of the components are all dominated by one or two of the mobility
indicators supporting the choice of the first component as my proxy for
social activity.
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Table 1.2: Principal Components of Google’s Mobility Indicators

Component 1st 2nd 3rd 4th 5th 6th

Groceries 0.4029 0.0491 0.9006 -0.1201 -0.0518 0.0837
Retail 0.4295 -0.0846 -0.0387 0.5563 0.2122 -0.6726
Parks 0.3439 0.8916 -0.2172 -0.1330 0.1379 0.0534
Transport Stations 0.4275 -0.1375 -0.1886 0.5227 -0.2263 0.6621
Workplaces 0.4140 -0.3844 -0.2010 -0.4402 0.6478 0.1645
Residential Areas -0.4252 0.1697 0.2534 0.4375 0.6800 0.2690

Share in Total Variance 0.8596 0.0793 0.0328 0.0151 0.0077 0.0055

1.2.4 Imported Infections

Imported infections are an important control variable of this study. I cre-
ate a proxy for imported infections using the proprietary Google COVID-
19 Aggregated Mobility Research Dataset, which is only available with
permission from Google LLC. It contains anatomized mobility flows ag-
gregated over users who have turned on the Location History setting,
which is off by default. This is similar to the data used to show how busy
certain types of places are in Google Maps — helping identify when a
local business tends to be the most crowded. The dataset aggregates the
flow of people from region to region, which is here further aggregated
at the level of NUTS3 areas, weekly.

First, I keep only the flows that connect cells from different countries.11

Second, I aggregate these flows by countries and match the epidemi-
ological indicators by departure countries. Third, I take cross-country
flows and multiply them by the number of infected individuals per 1000
citizens in departure countries. This yields me the expected flows of
COVID infections by source and receiver country pairs.12 Finally, I ag-
gregate these expected infection flows by the receiver country to get the
expected number of imported infections.13

This process has some minor limitations, as it is based on google user
accounts, Therefore, it might be less accurate or totally missing for un-

11I geolocate all cells using Picard (2015).
12I shift back infection data by 14 days to account for the presumed delay in epidemiological reports.
13It is weekly frequency information. I use the first day of the week as its time index and date back

by 6 days. Therefore, it codes the expected inflow of infections into a country in the past calendar week.
Then I interpolate missing data points within a week by a quadratic spline developed using the csipolate
Stata module developed by Cox (2009).
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Figure 1.3: Causality Map

Distancing Policiest Social Activityt

Other Preventive Policiest

Reproduction Numbert+l

Newst

Foreign Infectionst−1

Notes: Arrows point in the direction of causality. Solid line: observed, dashed: unobserved effect. Bold
font: focus variables, thick arrows: the path to be identified, ∆t is one day.

derdeveloped nations. And flows are missing for some microstates, such
as Lichtenstein or Andorra.

1.3 Empirical Strategy

In this section, I develop a two-stage empirical design to identify the
effect of distancing policies on the reproduction number of COVID-19.
Identification relies on a comparison of countries that have introduced
a particular restriction to those that have not. The central question here
is: which are those factors that have to be held fixed to make sure this
comparison is a valid identification of the effect of that policy? In this
Section, I am working towards an empirical design that takes into ac-
count all these factors and is feasible to implement.

A good way to start is to map out all the relevant causal links connect-
ing distancing policies to reproduction numbers on a graph. Figure 1.3
shows this causality map, where each arrow shows a causal link point-
ing in the direction of causality. The main path connecting distancing
policies to reproduction numbers is drawn by thick arrows. The first
thing that meets the eye is that distancing policies are not connected to
reproduction numbers directly. The reason is that a distancing order can
only reduce social activity directly. This reduction in social activity is
what governments expect to reduce the reproduction number by dimin-
ishing the number of new infections.
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I added time indexes to explicitly show that these effects can only be
observed with a significant delay l on daily frequencies. This delay hap-
pens, because it takes time (typically 10-14 days) for an infected individ-
ual to start producing symptoms, get tested, and end up reported.14

This causality map is not only helpful in showing a clear and compre-
hensive picture of all relevant causal relations, but it also informs iden-
tification. This method is known as the directed acyclic graph (DAG)
method and is described in detail in Cunningham (2021). What is suf-
ficient to know about the DAG method here is that any backdoor paths
connecting policies with reproduction numbers are signaling possible
omitted variable bias.

I recognize three such backdoor paths in this context. The first one con-
nects distancing policies with social activity through news, which is a
set containing any bits of information about COVID-19 that has the po-
tential to alter government and individual decisions about distancing.15

For example, a discovery of a large number of infections raises the prob-
ability of a distancing intervention and it can also make people decrease
their social activity voluntarily. I will refer to the latter channel as vol-
untary distancing in this paper onward.

The second backdoor path is the channel of other preventive policies,
such as mask-wearing mandates, contact tracing, testing, or vaccina-
tion. These policies have an effect on reproduction numbers and their
implementation was also likely to be influenced by news. Their effect
on reproduction number can be direct, e.g. mask wearing reduces the
transmission probability of the virus, while it might also lead to greater
distancing according to Seres et al. (2021).

The third path is the channel of imported cases. It is the number of infec-
tions in neighboring countries affecting interventions indirectly through
news and domestic reproduction numbers directly. For example, if the

14This delay mechanism is different for traced contact persons, however, most countries did not
choose to do any contact tracing or only tested the contact persons who were showing symptoms. I
have information about whether a country is practicing and what kind of contact tracing, which I con-
trol for in the second stage. It is also known that a large fraction of COVID cases never gets tested, thus
reported, which surely has an effect on the outcome. This effect can be addressed by fixed effects and
controls for testing, which are elaborated on in the subsection. All these issues are addressed in Section
1.3.2.

15The arrow connecting News to Distancing Policy and Preventive Policy acknowledges the fact of
endogenous selection of the treatment of this study: distancing policies. Closing backdoor paths con-
taining this link simultaneously eliminates the endogenous selection bias.
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number of new infections shoots up in a neighboring country, that might
influence more restrictive policies and also increases the likelihood that
new infections will or are already arriving from that neighbor by in-
fected travelers.

Fortunately, all backdoor paths go through news, it would be sufficient
therefore to control only for news to eliminate the omitted variable bi-
ases caused by them. That means that comparing countries with the
same news components but different policies identifies the effect of those
policies.16 This observation is captured by the following design:

Ri,t+l = βPit + η′Nit + µ + ε it, (1.4)

where i indicates a country, t a day. R is the reproduction number, P
is the distancing policy, and N is a set of news components containing
reported infections and deaths from t − 1. Assuming that a distancing
policy is a binary treatment, this design identifies β by comparing R in
countries that have introduced policy P to those that have not, but were
otherwise identical in all components of N, i.e. received the same news.

The simple design in equation (1.4) is not feasible, however, because N
is not completely observable. For example, I have no information about
local media influencers or politicians informing the public about COVID
developments. Neither about country-specific behavioral reactions to
the news, such as compliance with government policies. These factors
are also correlated with distancing policies and virus reproduction. I
address this problem by closing the three backdoor paths separately.17

Controlling for the channels of other preventive measures and foreign
infections is simple because these are observable factors. Closing the
voluntary distancing backdoor path is challenging because I can only
observe social activity ait, which pools policy compliant and voluntary
distancing motives.

16Holding news fixed implies that the effects of voluntary distancing, other preventive interventions,
and imported cases are the same.

17Alternatively, I could close all three backdoor paths by modeling the endogenous selection of poli-
cies based on Heckman and Sedlacek (1985). That would require the credible exclusion of exogenous
variables, for which the share of distancing policies in neighboring countries up today t − 1 could be a
valid candidate. The exploration of this possibility however is beyond the limits of this paper. Another
alternative approach is of Chernozhukov et al. (2021), which uses the observable components of N as an
instrument for both policies and social activity.

18

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

1.3.1 Voluntary Distancing

Here I present the first stage of my estimation, which identifies the policy-
compliant component of social activity ait in a regression discontinuity
in time (RDiT) design. The voluntary component, called voluntary ac-
tivity vit is then defined as the residual of the first stage regression.18

The effects of a distancing intervention are identified as sudden changes
in ait after the intervention. The key identifying assumption is that changes
in social activity due to voluntary distancing are slow, while the re-
sponse to a distancing intervention is quick, on daily frequencies. Dis-
tancing interventions, e.g. lockdowns, prescribe a coordinated and sud-
den reduction in social activities after an intervention. Voluntary dis-
tancing responses on the other hand are likely to be much less coordi-
nated considering the heterogeneous attitudes towards COVID infection
risks, e.g. virus skeptics and overly cautious people. Changes in social
activity due to voluntary motives are presumably much smoother and
slower, therefore, on daily frequencies when aggregated to the level of a
country.

Figure 1.4 provides visual motivation for the RDiT strategy. It shows
the deviation of the social activity indicator from its within-country pre-
intervention mean and normalized by the full sample standard devia-
tion in the close neighborhood for the two types of distancing interven-
tions defined in Section 1.2.1. Darker regions show more observations.

It looks like both types of policies reduced social activity by between 1
and 3 standard deviations in most countries just within 10 days. These
changes seem to be more rapid in the case of mobility restrictions. It is
also apparent that social activity remained constant in most countries be-
fore the interventions. Overall the rapid drop and negligible pre-trends
observed on in social activity in the close neighborhood of distancing
interventions supports the identification strategy of the first stage esti-
mation.

18RDiT is described in detail in Hausman and Rapson (2018). A regular RD exploits a discontinuous
change in the close neighborhood of a border separating the treated and untreated samples. RDiT is a
special case when the running variable is time, which is usually a discrete variable in empirical exercises.
This discreteness allows us to identify the effect by event time dummies rather than a discontinuity in a
continuous polynomial like in regular RD designs. This design is related to event study designs, but it
lacks a control group.
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Figure 1.4: Social Activity in the Neighborhood of Distancing Policy Interventions
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Notes: cloud: country-day observations of social activity ait in the neighborhood of distancing interven-
tions, darker regions show overlapping observations. Solid line: within day averages. Left: place re-
strictions, right: mobility restrictions. All figures are cleaned from their within-country pre-intervention
means and normalized by the full sample standard deviation of social activity.
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1.3.2 Second Stage

The second stage estimates the effect of distancing policies Pp
it , of type

p ∈ {place, mobility} on the reproduction number Rit. Identification is
based on the comparison of countries that have introduced a distancing
policy Pp

it = 1 to those that have not Pp
it = 0, holding voluntary activity

vit, other preventive policies, imported infections, and other covariates
fixed.

1.3.3 Threaths to Identification

In this subsection, I review the possible threats to the identification. The
effect of distancing interventions is conveyed by two channels: policy-
compliant and policy-induced voluntary distancing. People might in-
crease their distancing after the implementation of a restriction because
of compliance, but might also because they perceive it as a signal of a
worsening epidemic. This kind of voluntary distancing does not harm
the separation of unconditional voluntary distancing effects, because it
is a direct consequence of the interventions.

Countries differ in demographics, population density, and the quality
of political and healthcare institutions, which are likely to correlate with
interventions, social activity, and reproduction numbers. I address these
differences by including country-fixed effects in both stages assuming
the invariance of these factors on daily frequencies. Countries also dif-
fer in the timing of their interventions, which is addressed by the in-
clusion of time-fixed effects absorbing a common trend that tracks the
days after the first reported infection within a country. Different coun-
tries provided different levels of economic support, which might work
as incentives to leave workplaces for sick people. I address this by con-
trolling for all available information on economic support.

I control for daily weather conditions to address the effects of the cli-
mate on the reproduction rate of the virus. Finally, I control for weekly
seasonality in both stages of my estimations.
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1.4 Results

In the first part of this Section, I specify the empirical designs and present
estimation results. I start the first stage. From the results of that, I cal-
culate and analyze voluntary activity vit. I then continue with the sec-
ond stage of estimation. In the second part of this Section, I investigate
heterogeneous distancing policy effects by a simple modification to the
second stage design.

1.4.1 First Stage

In the first stage I model social activity ait as a function of event time
indicators δ

p
t−d(i,p) centered around the last day before a distancing inter-

vention d(i, p) of type p ∈ {place, mobility} in each country i:

ait = δ
place
t−d(i,place) + δ

mobility
t−d(i,mobility) + ζ ′Xit + µi + γt + νit, (1.5)

where Xit are different covariates. The first components of Xit are ob-
servable news components covering four sets of variables. The first set
contain reported domestic COVID cases and COVID-related deaths per
population from 1, 2-7, and 8-14 days before. The second set includes
the average of the same per capita reports with the same time lags in
neighboring countries. The third set is the share of neighboring coun-
tries that had already implemented a place or a mobility restriction in
the past 1, 2-7 or 8-14 days.19 The final set are two indicators indicating
if there was ad hoc public urging or an organized public information
campaign about COVID-19 in place on day t. Table A.6 in Appendix A.5
shows the estimation results for this set of variables.

Xit includes also other preventive policies, such as the level of interna-
tional travel controls, testing policies, quantities and share of positive
tests, level of contact tracing, debt reliefs, fiscal aids, and if there were
income supports as an incentive for staying home when someone was
sick, mask-wearing mandates, vaccination share, and different indica-
tors of daily weather conditions (temperature, rainfall, snowfall, dew-
point, humidity) plus weekly seasonality.

19Neighbors are defined by land borders.
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I allow for country-fixed effects µi to capture country fixed (e.g. cultural,
demographic) differences that possibly affect social activities. I include
time-fixed effects γt setting t = 0 to the day the first COVID case was
reported in a country to absorb a global trend of distancing response to
the evolution of the epidemic that was common across countries.

Event time indicators δ
p
t−d(i,p) are included to capture the common trend

in social activity around the days of a type p intervention. Because they
are intended to capture the effects of the intervention relative to the pre-
vious day, δ

p
−1 is omitted for both policy types, as δ

p
0 represents day 0 of

intervention. Figure 1.5 show the estimation results for the event time
coefficients δ

place
t−d(i,place) and δ

mobility
t−d(i,mobility) of the first stage equation (1.5).

Circles represent the point estimates in case of place, and squares for mo-
bility restrictions. Both sets of estimates are graphed with 99 percent er-
ror bands. I pool periods more than one week distant from the interven-
tion into three categories, i.e. δ

p
t−d(i,p) is a single dummy if t ∈ (−∞,−8],

or [7, 20], or [21, ∞), keeping the focus in the close neighborhood of the
intervention.

It is apparent that social activity ait decreases significantly in the first
seven days of distancing interventions, while there are only weak and
marginally significant trends in ait preceding the interventions.20 The
rapid response after interventions and negligible pre-trends before is
consistent with the main identification assumption of the first stage es-
timation, i.e. interventions caused sudden changes in distancing behav-
iors.

A place restriction reduces activity by almost half, and a mobility restric-
tion by close to one standard deviation on day 6. It stays low on longer
horizons suggesting a long-lasting effect of both policies. Both restric-
tion types decrease social activity by roughly 1 standard deviation after
one week. The effects of both restrictions are gradual in the first seven
days. People seem to react to a mobility restriction already on day 0,
while significant responses to a place restriction come with a roughly 4
days delay.

20One possible explanation for pre-trends is the anticipatory effects of earlier announced restrictions.
These early announcements are not observed in Hale et al. (2020) only on the day of implementation for
each distancing restriction.
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Figure 1.5: Effects of a Place (•) and a Mobility (■) Restriction on ait
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Notes: ait - social activity. Point estimates of δ
place
t−d(i,place) and δ

mobility
t−d(i,mobility) coefficients of equation (1.5)

with 99% confidence intervals. Standard errors are allowed to cluster within countries. Reference pe-
riod: last day before the intervention. 50,070 daily observations within 120 countries.
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1.4.2 Voluntary Activity

The goal of the first stage estimation is the isolation of the voluntary
component of social activity. I use the results of the first stage estima-
tion, therefore, to break down social activity ait into three components:
the effect of distancing policies p̂D

it , the effect of other policies p̂O
it , and

voluntary activity v̂it. Distancing policy effects are defined as changes
in ait from day 0 to 6 after intervention and fixed for later days as the ef-
fect on day 6. Consistently with the identifying assumption that changes
only shortly after an intervention are attributed to that intervention. It
is set the same way for both place and mobility restrictions.

The effect of other preventive policies is defined as changes in ait due to
other policies. Voluntary activity v̂it is then defined as residual changes
in ait that are not attributed to either distancing or any other policy inter-
ventions. These definitions are summarized in the following equations:

p̂D
it = ∑

p∈{place,mobility}

[
∑6

j=0 δ̂
p
j + δ̂

p
6 Ip

t−d(i,p)>6

]
(1.6)

p̂O
it = θ′PO

it (1.7)
v̂it = ait − p̂D

it − p̂O
it (1.8)

where PO
it is a set of binary indicators indicating if a particular policy

with a specific stringency level is in place in country i on the day t.
By this definition, in equation (1.8) the error term of the first stage es-
timation of equation (1.5) is attributed to voluntary activity. This way
it might be a more powerful control, than a standard instrumental vari-
able, because that error term contains the effects of all the unobserved
factors that might induce changes in voluntary distancing behaviors.21

Figure 1.6 shows cross-country averages of social activity with its three
components. The time axis is adjusted, such that day 0 is the day when
the first COVID case was reported within a country. The solid line is a
social activity. Voluntary activity is pictured by a dashed line, the effect
of other policies by the dotted dashed line, and the effect of distancing
policies by a dotted line. The social activity started to drop soon after
day 0 and leveled out roughly on day 20 approximately 2 standard de-
votions below its pre-COVID levels.

21One could interpret v̂it as counterfactual social activity ait of a no-intervention scenario.
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Figure 1.6: Decomposition of Social Activity at the beginning of the Pandemic
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Notes: cross-country averages of social activity and its three components.

All three components are in a decline in the same period between days
0 and 20. Distancing policies dropped the most, with more than one
standard deviation, and it kept on declining in the following days. Vol-
untary distancing dropped almost on standard deviations as well, but it
started to rise again after day 30. Other preventive policies had a much
smaller effect on social activity.

This decomposition suggests that distancing interventions and volun-
tary distancing both had a major role in the global reduction of social
activities. On longer horizons policies seems to have a more prolonged
effect, while voluntary distancing was less permanent. This suggests
that distancing interventions might have a more important role in the
containment of the epidemic. Investigating this possibility is the pri-
mary purpose of the second stage estimation, which is presented in the
next Section.
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1.4.3 The Effect of Distancing Policies on the Effective Reproduction
Number of COVID-19

In this subsection I develop the empirical design of the second stage
first, then I analyze its results. The second stage of estimation aims to
identify the effect of distancing policies on the reproduction number of
COVID-19 controlling for the effects of voluntary distancing, other pre-
ventive policies, and covariates. I model the effective reproduction num-
ber Ri,t+h as a function of distancing policies, voluntary activity v̂it, other
preventive policies and covariates:

Ri,t+l = exp
[

βpPplace
i,t−4 + βmPmobility

it + βvv̂it + ξ ′Xit + µi + κt

]
+ ε i,t+l,

(1.9)

where Ri,t+l is proxied by the instantaneous reproduction number in
country i observed on day t + l. Pp

it is an indicator of a distancing policy
intervention being 1 on days when any components of that policy type
were in action in the country i. Based on the first stage results in Sec-
tion 1.4.1 place restrictions started to affect social activity after 4 days.
Therefore, I include place restrictions in the second stage with a four-
day delay: Pplace

i,t−4 .

By setting the functional form to exponential, this model is a Poisson
regression identifying proportional effects. Identifying proportional ef-
fects allows me to use the easily calculable instantaneous reproduction
number RI

t instead of Rt and get equivalent results because RI
t ∝ Rt as

it has been shown in Section 2. It is less restrictive than a log transfor-
mation because it allows for zero observations in the outcome. This is
useful because RI

t is zero each day when there are 0 new infections are
reported.22 I use v̂it that resulted from the first stage estimation as a con-
trol to eliminate the effect of voluntary distancing.

I allow for country fixed effects µi to capture time-invariant differences
among countries, e.g. population density, demographics, and the qual-
ity of the healthcare system, which possibly affect the reproduction num-
ber of the virus. I include also a time-fixed effect κt setting t = 0 to
the day the first COVID case was reported in a country to absorb a

22This is a Poisson model on non-integer outcomes. For details see for example Silva and Tenreyro
(2006).
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global trend in the evolution of reproduction numbers that were com-
mon across countries.

Covariates Xit include other preventive policies, addressing the third
backdoor path. These preventive policies are the level of international
travel controls, type of testing policies, testing quantities and share of
positive tests, level of contact tracing, debt reliefs, fiscal aids, and if there
are income supports as an incentive for staying home when someone
is sick, mask-wearing mandates, vaccination share. Xit contains also
different indicators of daily weather conditions (temperature, rainfall,
snowfall, dewpoint, humidity) to capture the patterns of infections in
different weathers. It contain also controls for weekly seasonality. Fi-
nally, I include the expected number of imported infections and their
interaction with international travel controls into Xit to control for the
channel of imported infections.

Table 1.3 shows the main results of this paper. These are the results
of different specifications of the second stage equation (1.9) setting the
latency parameter l = 10 days.23 The table starts with the most ba-
sic specification that includes only distancing policy interventions be-
sides controls for weather conditions, weekly seasonality, and country
and time-fixed effects. The next columns add important omitted factors:
voluntary activity, other preventive policies, and imported cases one by
one. This way one can judge the relevance of these omitted factors by
comparing the point estimates for place and mobility restrictions across
columns.

Column (1) shows strong correlations for both policy types with Ri,t+l.
Based on Column (1) place restrictions reduce the reproduction num-
ber by 33 percent, while a mobility restriction by 74 percent. This is a
misspecified specification however, only included as a benchmark for
the better-specified models that control for different sources of omitted
variable biases: voluntary distancing, other preventive policies, and im-
ported cases.

In the second column, I add the voluntary activity indicator that has
been isolated in the first stage. Controlling for this factor reduces the
coefficients of both interventions substantially. This finding confirms

23A sensitivity analysis of l can be found in the Appendix. Results show little sensitivity to the choices
of l ∈ {7, 9, 11, 13}
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Table 1.3: Effect of Distancing Policies on Reproduction Numbers 10 days later.

(1) (2) (3) (4)

Place Restrictions t−4 -0.415*** -0.331** -0.287** -0.287**
(0.155) (0.142) (0.142) (0.139)

Mobility Restrictions t -0.737*** -0.690*** -0.621*** -0.610***
(0.163) (0.139) (0.123) (0.118)

Voluntary Activity t 0.154*** 0.165*** 0.167***
(0.041) (0.040) (0.040)

Imported cases t 0.310***
(0.105)

Import × Screening t 2.067
(9.768)

Import × Quarantine t -1.952*
(1.100)

Import × Selective Ban t 1.080
(2.119)

Import × Total Ban t -1.670***
(0.553)

Observations 26,566 26,566 26,566 26,566
Countries 109 109 109 109
Other Preventiv Pol’s ◦ ◦ • •
Country and Day FE’s • • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, • = included ◦ = excluded. Standard errors in parenthesis allow
for within-country clustering. The dependent variable is the instantaneous reproduction number 10
days forward: RI

i,t+10. Controlled for daily weather conditions and weekly seasonality.
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the importance of controlling for this factor. This result is consistent with
first-stage results, which already suggest an important role for voluntary
distancing in observed distancing behaviors.

In the third specification, I add other preventive policies to the set of
controls. These are included as a set of different variables for which the
parameter estimates are not shown in the table. The effect of distancing
policies is marginally smaller compared to specification (2) suggesting
that another preventive policies are also important controls to include
similarly to voluntary activity. Finally, in column (4) I add imported
cases and their interaction with different levels of international travel
controls. The difference in the parameter estimates of place and mobility
restrictions is negligible between columns (4) and (3) suggesting that
international travels were not strongly correlated with distancing policy
interventions.

Column (4) is my most complete specification, therefore, I refer to it as
my main result. In column (4) I find that place restrictions reduce the
effective reproduction number of COVID-19 by 29 percent, while mo-
bility restrictions by 62 percent. These are strong effects suggesting that
distancing policies were an effective tool for reducing the impact of the
pandemic. Place restrictions that are targeting specific destinations are
found to be roughly half as effective as general mobility restrictions.
This finding suggests that there was much heterogeneity between the
effectiveness of different policies, implying that different policy mixes
could have led to very different outcomes

Now let us turn to the estimation results for the other important factors,
voluntary distancing and imported cases in this most complete specifi-
cation of column (4). In the case of voluntary activity, I find that a one
standard deviation drop in voluntary social activity decreases Rt by 17
percent. The effect of voluntary distancing is also significantly negative
but weaker than those of the policy restrictions. This finding suggests
that, although voluntary distancing behaviors help to slow down the
reproduction of the virus, any kind of distancing policy measures are
much more effective in stopping a pandemic.

In the case of imported cases, I find that a one standard deviation rise
in imported cases significantly increases Rt by 31 percent. This effect is
more than offset by travel restrictions if it takes the form of quarantines
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or a total ban. Although this offsetting effect is only marginally signif-
icant for quarantines. I have found no evidence for the effectiveness of
screening and selective travel bans in the reduction of Rt via imported
cases.

1.4.4 Comparing Compliant and Voluntary Distancing Effects

It is crucial to compare the consequences of voluntary and distancing
policy-induced distancing when forming policy conclusions about the
relative efficiency of policies. Voluntary mobility and distancing policy-
induced components are measured in different units, so Table 1.3 coef-
ficients are not directly comparable between rows. One possible way to
address this issue would be to use the first-stage estimates for place and
mobility with their coefficients from equation (1.5) directly on the right-
hand side of equation (1.9), instead of the policy variables. Although
this strategy appears simple and straightforward, it is impossible to im-
plement because policy variables, Pplace

it and Pmobility
it , are not included

in the first-stage equation. The reason they are not included is that the
effect of the policies is captured by the RDiT design that builds on the
key identifying assumption of sudden responses to policy changes. Giv-
ing this design up is considered to be a greater cost than the gain of the
comparison that would emerge from a different design would provide.

I work around this problem by picking a different strategy to make the
effects of distancing policies and voluntary distancing comparable. It
is a decomposition of the changes in reproduction numbers around the
time of the first global wave. I start that by taking the cross-country av-
erages of Rit in the estimation sample. Reproduction numbers peaked
in late February and declined until the summer. Assuming an average
duration for an infection to be 12 days, the seven-day backward-looking
average of the effective reproduction number peaked at 6.32 on Febru-
ary 26 in 2020, and fell below 1 for the first time on April 11. This was
an 85 percent drop in Rit on average across countries in the first wave.
I decompose this decline into four suggested factors by calculating the
changes in the cross-country averages of distancing policies and the vol-
untary activity indicator in the same time period and then multiplying
them by their coefficients of the most complete specification in Table 1.3.
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Table 1.4: Comparing Compliant and Voluntary Distancing Effects

Change (%) Contribution

Effective Repr’ Number Rt -0.85 100%

Place Restrictions -0.25 29.4 %
(0.102)

Mobility Restrictions -0.59 69.4 %
(0.088)

Distancing Policies -0.84 98.8%

Voluntary Distancing -0.13 15.3 %
(0.032)

Other Factors 0.12 -14.1 %

Notes: Effects are calculated as the change in cross-country averages multiplied by the coefficients of
column (3) of Table 1.3. Standard errors in parenthesis are calculated similarly, using the s.e. of the
corresponding coefficient.

I proceed similarly with standard errors.

Taking cross-country averages of binary policy indicators gives the share
of countries that are introducing that policy on that day, therefore its
change in the period shows the change in the sample coverage of these
policies. This change in coverage for place and mobility restrictions were
84 and 95 percent in this period. That means most countries in the sam-
ple implemented these types of distancing interventions within these
roughly two-month periods. In the same period, voluntary activity de-
clined by 0.8 standard deviations.

The results of these calculations are summarized in table 3. It shows
that the drop in Rit was mostly due to restrictions, which all together
contributed almost 100 percent of the total decline in reproduction num-
bers. It was mostly mobility restrictions that were responsible for this
effect. Their sole contribution was nearly 70 percent. This suggests that
mobility restrictions were much more effective than place restrictions.
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Voluntary distancing on the other hand contributed only a little more
than 15 percent, which was counteracted almost completely by other
unexplained factors. This result suggests that voluntary distancing had
only a marginal role in the containment of the COVID pandemic in the
first wave.

1.4.5 Heterogeneous Effects

In this section, I investigate heterogeneous policy effects. The first of
these exercises analyse the strength of the policy effects on different time
horizons. I am interested in how long the effects identified in the main
design last. In the second exercise, I break down the larger restriction
categories: place and mobility restrictions, into their components. I also
allow for heterogeneity in the different stringency levels in this exercise.
I do this to provide comparative results for more specific policy inter-
ventions.

Heterogeneous Dynamics

Here I investigate how long the effects found in the main specification
lasted. It is useful to know how long a government can rely on a place or
a mobility restriction when they are fighting more and more waves of an
epidemic. To address this question I modify equation (1.9) by allowing
for time heterogeneity in the policy effects by the following modification
to the main estimation equation (1.9):

Ri,t+10 = exp
[

β
place
t−w(i) + β

mobility
t−w(i) + βvv̂it + ξ ′Xit + µi + κt

]
+ ε i,t+l, (1.10)

where β
place
t−w(i) and β

mobility
t−w(i) are event time dummies indicating seven day

periods and relating the effect of a type of intervention to the last seven
day period (w(i) = −1) before the intervention. This equation is other
than this modification is equivalent to equation (1.9).
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Figure 1.7: Effects of Distancing Policies on the Reproduction Number 10 days later
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Notes: point estimates of β
place
t−w(i) and β

mobility
t−w(i) coefficients and 95% confidence intervals of equation

1.10. Standard errors are allowed to cluster within countries. Reference period: last 7 days before the
intervention. 26,566 daily observations within 109 countries.
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Figure 1.7 shows the results for the β coefficients of equation (1.10). It
looks like both policies produce a significant drop in Rit already in the
first seven days after their implementation. These effects get somewhat
stronger in later weeks. In the case of a mobility restriction, these ef-
fects stay significant throughout the entire horizon. In the case of place
restrictions, some longer-horizon effects are only marginally significant.
Overall these results suggest that both policy types have a significant
long-lasting effect on the reproduction number. Governments can rely
on these distancing restrictions on longer horizons when fighting longer
waves of infections based on these results.

Heterogeneous Policies

In this section, I estimate another variant of the second stage, where I
break down the comprehensive place and mobility restriction indicators
into their components, and estimate the effect of those components and
their stringency levels separately. I do this to provide comparative re-
sults for more delicate policy interventions.

I estimate the following variant to equation (1.9), where I include all
the different distancing interventions with all their different stringency
levels reported by Hale et al. (2020):

Ri,t+l = exp
[

β jkDjk
it + βvv̂it + ξ ′Xit + µi + κt

]
+ ε i,t+l, (1.11)

where Dj,k
it is an indicator indicating if a distancing policy j at stringency

level k was in action in country i on day t. For example j = workplace
closures, which are k = recommended. All other parts of the equation
are equivalent to equation (1.9).

The results for equation (1.11) are reported in Table 1.5. Results show
that four of these restriction types were found to be generally effective
in my global estimation sample. For the effectiveness of cancellation
of public events, restrictions on public transportation, and inland travel
restrictions on the other hand I found no evidence.

Looking at policies one by one I find that school closures seem to be ef-
fective only if they are mandatory even if they are partial in terms of
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education levels. A required school closure reduces the effective repro-
duction number by between 17.6 to 24.1 percent on average depending
on the coverage. Closing workplaces seems to reduce Rit significantly,
no matter if it is recommended. The effect becomes 1.5 times stronger:
-31 percent when it is required. There is no significant difference though
between a partial requirement and if it includes all non-essential busi-
nesses.
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Table 1.5: Effect of All the Different Distancing Policies on Ri,t+10

School Closures:
Recommended -0.160

(0.109)
Required Partial -0.241**

(0.104)
Required All Levels -0.176*

(0.100)
Workplace Closures:

Recommended -0.209**
(0.093)

Required Partial -0.310***
(0.080)

All Non-essential B’s -0.265***
(0.092)

Public Events Cancellations:
Recommended 0.102

(0.111)
Required 0.015

(0.096)
Gathering Limits:

1000+ -0.073
(0.133)

100+ -0.268**
(0.112)

Public Transport Restrictions:
Recommended 0.021

(0.061)
Required 0.029

(0.081)
Stay At Home Orders:

Recommended -0.185***
(0.059)

Required with exceptions -0.149**
(0.070)

Minimal exceptions 0.356*
(0.205)

Inland Travel Restrictions:
Recommended -0.067

(0.072)
Required 0.093

(0.077)

10+ -0.331***
(0.112)

1+ -0.345***
(0.124)

Observations 38,704
Countries 111
All Controls •
Country and Day FE’s •

Notes: *** p<0.01, ** p<0.05, * p<0.1, • = included ◦ = excluded. Standard errors in parenthesis allow
for within-country clustering. The dependent variable is the instantaneous reproduction number 10
days forward: RI

i,t+10. Controlled for daily weather conditions and weekly seasonality.

Gathering limits show strong effects when the limit is at most 100 per-
sons. The introduction of a 100+ limit reduces Rit by 26.8 percent. A
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less stringent 1000+ limit shows no effects, while the more stringent 10+
or 1+ limits seem to have stronger effects but with strongly diminishing
gains. Stay-at-home orders, i.e. curfews are also found to be effective al-
ready if they are recommended. A recommended home staying reduces
Rit by 18.5 percent. When it is mandatory with minimal exceptions by
35. percent, which is the strongest effect among all policies, but only
weakly significant however only at 10 percent. Overall these findings
suggest that there was much heterogeneity between the effectiveness of
different policies, implying that different policy mixes could have led to
very different outcomes.

1.5 Conclusions

In this study, I estimated the effect of distancing interventions on the
effective reproduction number Rt of COVID-19. I was focusing on the
effects of two types of such policies, place restrictions, that target specific
destinations, and mobility restrictions which are general restrictions on
inland movements. The main contribution of this study is the separa-
tion of voluntary and policy-induced distancing. I have found that dis-
tancing interventions had a strong and permanent effect on Rt. General
mobility restrictions are found to be roughly two times more effective
than targeted place restrictions. These policy effects were found to be
much more dominant than the effects of voluntary distancing. These re-
sults suggest that governments can use distancing restrictions effectively
in pushing down the effective reproduction number below the contain-
ment threshold of Rt ≤ 1. Although these policies need time to exert
their effects on reported case numbers, governments can rely on their
effects for as long as these measures are in place.

Comparing specific interventions I have found significant differences.
Based on these results school closures are better if they are mandated,
in contrast with workplace closures, which were found to be effective
already, when they are just a recommendation. Stay-at-home orders are
similarly effective already, when they are only recommended, but more
effective when mandated with only minimal exceptions. Gathering lim-
its become effective below 100 people and only get marginally more ef-
fective at more restrictive limits. I have found no supporting evidence
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for the effectiveness of cancellation of public events, restrictions on pub-
lic transportation, and inland travel restrictions. These results suggest,
therefore, that a careful selection of particular distancing policies and
their stringency levels is recommended before their implementation.
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Chapter 2

Economic Costs of Distancing Policy
Interventions

2.1 Introduction

When a new virus bursts into an epidemic and no vaccines are avail-
able, the primary containment strategy is distancing policy interven-
tions (DPIs). COVID-19 was no exception. DPIs limit social interactions
in order to prevent virus transmission, but they also impose significant
costs on economic activity. This paper quantifies the economic costs in
terms of sector output losses, inflationary effects, and unemployment re-
sponses caused by DPIs during the COVID-19 pandemic on a country-
level weekly panel dataset.

Distancing happens not only in compliance with DPIs but also as a vol-
untary response to threatening news about the new virus. The disen-
tanglement of the effects of policy-induced and voluntary distancing
behaviors is the main contribution of this paper. The main empirical
challenge of the paper is that these two effects are strongly correlated. I
tackle this challenge by observing that, although an overall downward
trend in social interactions started after COVID hit a country, there was
also a sudden and substantial drop in social interactions right after DPIs
were implemented. I leverage this stark salience of behavioral responses
to DPIs to separate the policy-induced and voluntary distancing compo-
nents of overall distancing behaviors. This separation is accomplished
through the use of a regression discontinuity in time design, which iden-
tifies the policy-induced component as the discontinuity and the volun-
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tary component as the residual. Once I have this voluntary distancing
component, I can use it as a control in the main estimation of DPI ef-
fects on economic activity. These effects are identified from the change
in seven selected economic outcomes after DPI interventions compared
to their changes from the same months of five pre-COVID years holding
other correlated factors, such as voluntary distancing, fixed. Having this
voluntary distancing component identified allows me to hold that fac-
tor fixed in the main estimation of DPI effects on economic activity. This
empirical strategy has been developed in an earlier paper by the author:
Rácz (2022).

The next section of the paper describes data sources and their transfor-
mation into two estimation samples. This study uses three main data
sources: (i) one for economic outcomes, (ii) another for distancing pol-
icy interventions and other COVID-related interventions, (iii) and the
third one for social mobility proxying social distancing behaviors. This
third data source is Google’s COVID-19 Aggregated Mobility Research
Dataset.1 The estimation samples cover 44 countries. The first sample
used in the identification of voluntary distancing patterns is a weekly-
country level panel dataset spanning every week between November
2019 and December 2020. The second sample used in the identification
of the economic effects of DPIs covers every month between Novem-
ber 2015 and October 2020. The second sample contains seven selected
economic indicators, such as industrial and manufacturing production,
construction output, retail trade, consumer prices, producer prices in
manufacturing, and the unemployment rate. Intuitively, service sectors,
such as personal services, accommodation, food and drink services, or
the entertainment sectors, must have suffered the most losses under DPI
restrictions. These sectors are omitted because of a lack of data availabil-
ity in the current version of this paper. The omission of these specific
service sectors is a clear limitation of the paper, and it suggests the un-
derestimation of the output effects of DPIs.

I define three different DPI indicators using data from Hale et al. (2020):
DPI treatment, DPI intensity, and DPI extensity. The DPI treatment cap-
tures the average level of the first DPIs within each country. Treatment is
held constant until the end of the sample as if these interventions were

1For details, see Section B.1 of the Appendix.
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kept on all along, even if they were not. This way, DPI treatment re-
sembles a more conventional treatment, making it easier to interpret its
effects. Later changes in DPIs are absorbed into two other indicators:
DPI extensity and intensity. Because of how DPI treatment is designed,
these two indicators capture deviations of DPIs relative to the original
interventions. DPI intensity measures deviations in stringency levels,
and DPI extensity in DPI types, such as school closures or stay-at-home
orders.

In Section 3, I present the empirical strategy. I carry out my estimation in
a two-stage design. The first stage is the separation of the voluntary and
policy-compliant components of social mobility. The second stage is the
estimation of the economic effects of DPIs. The first stage identifies DPI
effects on a social mobility indicator calculated from mobility data from
carry-on devices. It is carried out in a regression-discontinuity-in-time
design. The main identifying assumption is that DPI effects must appear
suddenly as they impose restrictions on the whole society from one day
to the other, while voluntary distancing effects are realized much slower
as voluntary decisions are heterogeneous within a society. Patterns ob-
served in raw mobility data give visual support for the discontinuity de-
sign. I define a voluntary mobility indicator by residualizing social mo-
bility to first-stage predicted DPI effects. The second stage estimates the
economic effect of DPIs, controlling for the first stage’s predicted volun-
tary mobility, other COVID-related policy interventions, and other fac-
tors. The second stage design includes controls for distancing patterns at
trading partners, anticipating the possibility of international spillovers
of economic effects.

Section 4 presents the main results. It starts with first-stage results, then
it describes the identification of the voluntary mobility indicator. Sec-
ond stage results about the economic effects of DPIs are presented after
that. Second-stage results are presented in three separate subsections for
output losses, inflationary costs, and unemployment effects.

I find that distancing behaviors that were either voluntary or DPI-compliant
generated substantial output losses. I found significant output losses
due to DPIs, but no evidence for inflationary and unemployment ef-
fects. Findings suggest that DPIs caused substantial output losses. Re-
sults also show that although voluntary distancing caused significant
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losses to sector outputs, its effect was an order of magnitude smaller
than that of DPIs. Only 70% of total losses in industry and manufactur-
ing is explained by either voluntary or DPI-induced distancing, imply-
ing that other factors, such as other COVID-related interventions con-
tributed substantially to output losses in these sectors. In construction
and retail trade, on the other hand, distancing factors altogether pre-
dicted more losses than was observed. This finding suggests that other
factors, such as fiscal and monetary support programs, could mitigate
the short-term costs of distancing in these two sectors.

I find no evidence of significant economic costs resulting from the in-
troduction of new types of DPIs or from mobility spillovers from trade
partners.2 Changes in the intensity of distancing interventions, such as
decreasing the limit for allowed gathering sizes, were found to increase
the output costs of the first interventions.

These findings provide evidence that, while DPIs were implemented
to contain COVID infections, they imposed substantial costs on eco-
nomic activity in terms of output loss in industrial production and retail
trade. Voluntary distancing induced an order of magnitude lower out-
put losses than DPIs did. Inflationary and unemployment effects were
not detected. These results provide both qualitative and quantitative
guidance for governments to consider when implementing distancing
interventions in times of an epidemic. These findings also contribute to
a more complete cost-benefit analysis of distancing policy interventions
on the cost side.

Literature

This paper belongs to the literature on empirical evaluations of non-
pharmaceutical interventions (NPI) during the COVID-19 pandemic, sur-
veyed exhaustively by Perra (2021). Within this literature, this paper is
a contribution to the assessment of the economic costs of NPIs. There
are papers that provide correlative evidence between such interventions
and economic outcomes. Chen et al. (2020) find that European countries
and U.S. states that experienced larger outbreaks also suffered larger

2Except in construction.
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economic losses. They find no evidence of NPIs making significant con-
tributions to these losses. Carvalho et al. (2020) consider billions of
transactions from Spanish card data and find strong consumption re-
sponses to business closures, but smaller effects for capacity restrictions;
a steeper decline in spending in rich neighborhoods. Arnon et al. (2020)
find that NPIs explain nearly 15 percent of the decline in employment
around 3 million jobs over the first three months of the pandemic. Bo-
denstein et al. (2021) finds that distancing being it either voluntary or
policy-compliant had significant economic effects. The main contribu-
tion of this study relative to these papers is the identification of the
causal effects of NPIs.

There are studies that identify causal effects of NPIs similarly to the aim
of this paper. There are papers that find strong voluntary effects. Deb
et al. (2021) find that containment measures had a significant impact on
economic activity for example. Their findings suggest that industrial
production losses were around 10% in the 30 days following their imple-
mentation, which is very close to the findings of this paper. Berry et al.
(2021) find minor but negative economic effects of NPIs. They also stress
the importance of voluntary distancing behaviors, when they claim that
”Many people had already changed their behaviors before the introduc-
tion of shelter-in-place orders.” The contribution of this study relative to
these papers is the separation of NPI-induced and independent volun-
tary distancing effects.

An earlier study of the author of this paper is Rácz (2022). In this paper,
I employ the empirical strategy used in this paper as well to estimate
the causal effects of distancing policy interventions on the effective re-
production number of COVID-19.

Goolsbee and Syverson (2021) Compare ”consumer behavior over the
crisis within the same commuting zones but across state and county
boundaries with different policy regimes.” They find that NPIs account
for only a modest share of the documented consumption decline. This
comparison, however, identifies the effect of NPIs decoupled from NPI-
induced voluntary effects, which this study considers as relevant con-
sequences of NPIs. Kong and Prinz (2020) find no evidence of unem-
ployment effects of NPIs in line with this study but in a sample of US
states.
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Bodenstein et al. (2021), and Goolsbee and Syverson (2021) stress the im-
portance of voluntary distancing in US states. This study finds that vol-
untary distancing effects were less important in a global sample. This
comparative assessment of the role of voluntary distancing effects is
supported by Maloney and Taskin (2020), who use mobility data to iden-
tify the effects of NPIs.

This study takes into account international spillovers of distancing ef-
fects as a confounding factor of NPIs and economic outcomes. There
are studies that document such spillovers. For example, Boranova et al.
(2022) provides evidence of international spillovers of distancing effects
on car manufacturers. Barrot et al. (2021) find GDP responses to distanc-
ing through supply chains.

2.2 Data

There are three main sets of variables that are used in this study: (i) eco-
nomic outcomes, (ii) distancing policy interventions and other COVID-
related interventions, and (iii) social mobility. These sets of variables are
derived from their own three different data sources. These three sets
of variables are presented in more detail in the following subsections of
this section. Besides these datasets, I also use two more auxiliary data
sources. First, I used international trade data from the OECD in 2019 to
calculate export and import shares by country pairs. Second, I calculate
country-week level averages of various weather indicators using data
from the National Oceanic and Atmospheric Administration (NOAA).
I merge all this data into two estimation samples: a weekly frequency
country-level panel used in the identification of DPIs on social mobility
and a monthly frequency country-level panel used in the estimations of
the economic effects of DPIs. This section describes data sources and
how they are transformed into estimation samples.

The estimation samples cover the following 44 economies:

1. Argentina

2. Australia

3. Austria

4. Belgium

5. Brazil

6. Canada

7. Chile

8. China
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9. Colombia

10. Costa Rica

11. Czechia

12. Denmark

13. Estonia

14. Finland

15. France

16. Germany

17. Greece

18. Hungary

19. Indonesia

20. India

21. Ireland

22. Israel

23. Italy

24. Japan

25. Lithuania

26. Luxembourg

27. Latvia

28. Mexico

29. Netherlands

30. Norway

31. Poland

32. Portugal

33. Russia

34. Saudi Arabia

35. Slovakia

36. Slovenia

37. South Africa

38. South Korea

39. Spain

40. Sweden

41. Switzerland

42. Turkey

43. UK

44. USA

The second-stage sample spans every month between November 2015
and October 2020, while the first-stage sample starts from the first week
of November 2019 and covers every week until December 2020.

2.2.1 Economic Outcomes

I estimate the effects of distancing policy interventions on the following
seven monthly economic indicators:

• industrial production,

• manufacturing production,

• construction output,

• retail trade,

• consumer price index (CPI),

• producer price index (PPI) in
manufacturing, and

• unemployment rate.

The first four of these are measuring the output of different sectors: in-
dustrial, and manufacturing production, construction output, and re-
tail trade. Using these as outcome variables in the main estimation ad-
dresses the question of output losses due to distancing policy interven-
tions. Intuitively, service sectors, such as personal services, accommo-
dation, food and drink services, or the entertainment sectors, must have
suffered the most losses under DPI restrictions. These sectors are omit-
ted because of a lack of data availability in the current version of this
paper. The omission of these specific service sectors is a clear limitation
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of the paper, and it suggests the underestimation of the output effects of
DPIs.

The next two outcome variables are price indexes addressing inflation-
ary costs resulting from DPIs. Finally, the unemployment rate indirectly
addresses job losses as a result of DPIs.

I normalize all seven indicators by their values from the latest Novem-
ber in order to get numbers that are comparable across years.3 Fig-
ure 2.1 shows the seven economic outcomes in each country and each
month around the first DPI by circle marks. X marks show their cross-
country means, highlighting general tendencies. These observations are
contrasted with a 5-year benchmark from the pre-COVID years of the
same indicator, indicated by a thick orange line. Observations stay close
to this benchmark before the first intervention in all seven graphs sup-
porting the choice.

The figures also reveal that all four sector output indicators declined
substantially from their benchmarks after the first DPI in almost all coun-
tries. In the first month following the first intervention, the average de-
cline is around 20%, and it is consistent across all four output indicators.
Even though this decline was temporary, as all four indicators converge
to their benchmarks after roughly 6 months, they do not rise above them,
meaning that this decline represents a permanent output loss in these
sectors. The main scope of this paper is to quantify what share of this
output loss can be causally linked to distancing policy interventions.

The two price variables show a much greater heterogeneity across coun-
tries in their price responses to DPIs compared to sector outputs. This
observation is not too surprising as distancing disrupts both supply and
demand, which have opposite effects on prices. Therefore, the overall ef-
fect of DPIs on prices can have varying signs across countries depending
on the relative strength of demand and supply disruptions. Although
there is this considerable heterogeneity across countries, both price in-
dicators show a slightly negative and permanent deviation from their
benchmarks, which is a little more pronounced in manufacturing PPI
than in CPI. This suggests that distancing was relatively more demand-
disruptive, especially for products of the manufacturing industries.

3Original data is seasonally adjusted for all indicators and is fixed price volume indices in the case of
sector outputs.
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Figure 2.1: Seven Economic Indicators around DPIs
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Unemployment first increased after the first DPI in general, but it con-
verged back to its benchmark levels 9 months later. Unemployment
rates were on average 2 percentage points higher than their 5-year bench-
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marks throughout months 3-6, suggesting a substantial loss of jobs after
DPIs were introduced. The question is, how much of this excess unem-
ployment can be attributed directly to DPIs?

2.2.2 Distancing Policy Interventions (DPIs)

The primary data source for distancing policy interventions and other
COVID-related interventions is Hale et al. (2020). It is a constantly up-
dated dataset covering almost every country in the world. It reports
several different COVID-related interventions on daily frequencies.

Distancing policy interventions, abbreviated as DPIs, are the main fo-
cus of this study. A DPI of type j is reported as a categorical variable
Dj

it ∈ {0, 1, . . . k j}, such that 0 signals no intervention and greater in-
tegers signal more and more stringent interventions, k j being the most
stringent type j intervention possible. One example is school closures,
for which value 1 codes a recommendation, 2 a partial mandate, and 3 a
mandate for all levels of education.4

I observe seven different DPIs:

• school closures,

• workplace closures,

• gathering limits,

• stay-at-home orders,

• within country travel restric-
tions, and

• cancellation of public events.

Considering the small sample size plus the fact that most countries in
the sample started to intervene in the same month, in March 2020, it is
very unlikely that the effects of these seven different interventions can
be identified separately. Therefore, I first calculate their sum as Dit =

∑j Dj
it. This variable takes the value of 3, for example, if there was a

level 1 school closure and a level 2 gathering limit in place in country i
during the entire week t. It can also be non-integer when the number
or the stringency of DPIs changes within a week. For example, if the
level 1 school closure and the level 2 gathering limit was introduced as

4They also report a binary indicator for each DPI that indicates if a policy was countrywide or only
local. In all my calculations presented here, I deduce 0.5 from a DPI categorical variable if it was only
local, meaning a level 3 school closure gets a value of 2.5 if it was only regional.
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the first interventions on a Wednesday, that would aggregate to a value
of Dit = 3 × 5/7 = 2.143, because the aggregate value of 3 was only in
place 5 days in that week.5

I decompose Dit into three distinct components, each of which is de-
fined to be disjoint. The first component I name as the treatment (Tit). It
captures the first DPIs within a country, with its magnitude remaining
constant throughout the sample. Tit is defined as:

Tit =

{
Dit = 0 if t ≤ 1

Dit
∣∣

t=1 if t > 1
, (2.1)

that means treatment is 0 before the first ever DPI, which happens by
construction. It then takes and keeps the retains of Dit of week 1 from
the first-ever intervention throughout the sample. On week 0, Tit takes a
value between 0 and the week 1 value of Dit depending on the number
of days the first ever DPIs were in place on week 0. For example, if the
first ever DPIs were introduced on a Monday, the week 0 and week 1
values are the same, but if they were introduced on Friday of week 0, it
takes only 3/7 of its week 1 value given it was in place for only 3/7 of
the week.

Figure 2.2 shows the evolution of the treatment (Tit) components on
weekly frequencies. Squares indicate country-week observations, such
that darker regions show overlapping observations. It shows a substan-
tial heterogeneity across countries in the magnitude of their first inter-
ventions. Crosses indicate cross-country averages highlighting the gen-
eral pattern across countries, which is around 8, revealing that many
countries introduced their first DPIs in bundles and started some on
higher than level 1. This figure also confirms the concept of this com-
ponent as it is defined to be fixed throughout the sample after week 1.
Any further alterations in the number or the level of restrictions are ab-
sorbed in the other two components.

The two other components I define are referred to as extensity (Eit) and
intensity (Iit). Extensity captures any further changes in the number, and
intensity of the level of DPIs after the first intervention. For the formal
definition of Eit and Iit the definition of following two numbers is help-

5And the sum of all DPIs was 0 in the first two days of that week.
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Figure 2.2: Treatment: Tit
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Squares: country-week observations, darker regions show overlapping observations. +: within week
averages. vertical line: shows last week before the first intervention.

ful:

Nit = ∑j I (Dj
it > 0) Lit = Dit − Nit,

where I (. . .) is an indicator function. Nit is the sum of the number of
DPIs, while Lit sums the level of DPIs above 1. For example, if there were
only a level 3 school closure and a level 2 gathering limit in a country i
on week t, Nit = 2, because there are only 2 types of DPIs in place, and
Lit = 3, because these DPIs are 3 levels above level 1 in total. Eit and Iit

are formally defined as:

Eit =

{
Nit − Nit|t=1 if t > 1

0 otherwise
Iit =

{
Lit − Lit|t=1 if t > 1

0 otherwise
(2.2)

This way Dit = Tit + Eit + Iit, that is they are disjoint and contain all the
information coded in Dj

it’s.
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Figure 2.3: Treatment Dynamics: Extensity and Intensity of DPIs
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The two panels of Figure 2.3 show the evolution of Eit and Iit. Squares
indicate country-week observations spreading out considerably in both
figures showing substantial heterogeneity across countries in both the
extensity and intensity of DPIs. Crosses show cross-country averages
highlighting the general pattern, which is growing in the first couple
of weeks and starts to decline between weeks 10 and 20. This pattern
shows that after the first interventions countries tended to increase both
the number and the level of DPIs in the first couple of weeks and started
to slacken up restrictions only after 10 weeks.

Frequency conversion. Interventions are all reported on daily frequen-
cies, which I convert to weekly and monthly frequencies in my estima-
tion samples. I take the weekly (monthly) averages for all of these vari-
ables at weekly (monthly) conversions. In the case of categorical vari-
ables, this means if that categorical variable switches from category 0 to
1 on a Wednesday of a given week, the weekly conversion of that vari-
able is 5/7=0.714 for that week. Conversion of within-month changes
happens the same way. I can do that, because categorical variables are
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ordinal, meaning that if for example, an intervention switches from a
value of 1 to 2, that means that intervention becomes more restrictive.

2.2.3 Social Mobility Index

The main contribution of this paper is the identification of the causal ef-
fects of DPIs on distancing in isolation from voluntary distancing effects.
To track distancing patterns, I create a weekly index of social mobility
(mit) using Google’s COVID-19 Aggregated Mobility Research Dataset.
This dataset provides anonymized records of weekly flows of Google
users6 between NUTS3 areas. This data is available from the first week
of November 2019, for every consecutive week until today. Any further
details regarding this dataset can be found in the Appendix.

I calculate the social mobility index, mit in two steps. First, I take only in-
flows into NUTS3 areas and normalize them by their average values for
a 4-week period between November 3 and November 30, 2019, because
this is the first available month-long period, which is as far from the time
of the COVID pandemic as possible. This gives mit a unit of percentage
deviation from November 2019, similar to economic outcomes. In the
second step, I aggregate these normalized NUTS3 level inflows country
level by taking their arithmetic mean within a country-week cell. Based
on this definition less social mobility (lower mit) means more distancing.

Figure 2.4 shows the social mobility index mit around the time of the
first DPI. One circle is a single country-week observation, starker regions
show overlapping observations. For this figure, I normalized mit by its
pre-intervention mean within each country. mit fell by between 10 to
80 percent relative to the pre-intervention period within 2 weeks after
the first DPI in almost every country according to the figure. This sharp
decline in social mobility right after the first DPI gives a rationale for
a discontinuity design in the identification of DPI-induced distancing,
which is elaborated on in the next Section.

6Only of users who have turned on the Location History setting, which is off by default. This is
similar to the data used to show how busy certain types of places are in Google Maps – helping identify
when a local business tends to be the most crowded.
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Figure 2.4: Social Mobility Index: mit
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Squares: country-week observations, darker regions show overlapping observations. +: within week
averages. vertical line: shows last week before the first intervention.

2.3 Empirical Strategy

The main scope of this paper is to identify the causal effects of distanc-
ing policy interventions on selected economic outcomes. An empirical
strategy that leads to the identification of these effects is presented in
this section. The primary empirical challenge is telling apart the eco-
nomic effects of DPI-induced and voluntary distancing effects. I use a
two-stage empirical strategy in which the first stage identifies voluntary
distancing effects by separating social mobility mit into a voluntary and
a policy-induced component. I use the voluntary mobility component
in the second stage as a control to be able to identify the causal effects
of DPIs in isolation from voluntary distancing effects. I start with the
discussion of the main identification strategy in the second stage. I then
elaborate on the identification of voluntary distancing effects on social
mobility in the first stage. The empirical strategy outlined in this section
has been developed in an earlier paper of the author: Rácz (2022).
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2.3.1 Economic Effects of DPIs

The identification of the economic effects of DPIs is based on a difference-
in-differences approach. They are identified as changes in economic out-
comes after the implementation of the first DPI compared to a COVID-
free control period and holding other confounding factors fixed.7 This
control period is chosen to be the five years that preceded the COVID
pandemic: 2015-2019, such that observations are matched by month.
This strategy can be formalized by the following equation:

∆̃yit = βTTit + βEEit + βI Iit︸ ︷︷ ︸
DPI effects

+ξ ′Xit + ε it, (2.3)

where yit is an economic outcome, and ∆̃ indicates difference from con-
trol period values. Tit, Eit, and Iit are capturing the first DPI intervention
and further changes in the extensity and intensity of DPIs.8

Xit is a set of covariates that includes all relevant confounders that must
be held constant in order to identify the effect of DPIs (beta). One way
to find these confounders is to map out all the relevant causal links
connecting distancing policy interventions to the economy.9 Figure 2.5
shows the causality map of this paper. Each arrow represents a causal
link, with thick arrows emphasizing the link to be identified. Solid lines
indicate observed links; dashed lines indicate unobserved links.

The causality shows that DPIs only indirectly affect the economy through
the reduction of social mobility, which has a potentially disruptive effect
both on aggregate demand and supply. The effects of DPIs are conveyed
by two channels: policy compliant and policy-induced voluntary dis-
tancing. People might increase their distancing after the implementation
of a restriction because of compliance, but might also because they per-
ceive it as a signal of a worsening epidemic. The primary motivation for
this paper is to inform policymakers about the total effect of DPIs. These
are realized through both of these channels, I do not aim to identify them
separately, therefore, in this paper.

7The validity of this choice is supported by Figure 2.1 as it has been discussed in Section 2.2.1. The
main observation there was that treatment period observations concentrate in the close neighborhood
of the average of the control period values before the first DPI treatment.

8For details see Section 2.2.2.
9This technique is referred to as the DAG method by Cunningham (2021).
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Figure 2.5: Causality Map

DPI mobility
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Notes: Arrows point in the direction of causality. Thick arrows: the path to be identified Solid line:
observed, dashed: unobserved effect.

This map reveals three other paths through which DPIs and economic
activities are also connected. First, DPIs are confounded with social mo-
bility by news, which is a set containing any bits of information about
COVID-19 that has the potential to alter government and individual
distancing decisions simultaneously.10 For example, the discovery of
a large number of COVID infections raises the probability of a DPI and
is also likely to discourage people from social activities. Throughout
this paper, I am going to refer to this discouragement effect as voluntary
distancing.

Second, governments implemented other COVID-related interventions
that likely affected both social and economic activities. For example, in-
come support programs aimed to prevent mass layoffs, but they might
as well have encouraged people to stay home when they had COVID
symptoms, decreasing social activities. Third, economies are intercon-
nected through international trade links. Distancing in a country thus
not only impacts domestic markets but can also have an influence on
trading partners. For example, declining supplies increase import prices.
Finally, economic shocks might also have contributed to news. For ex-
ample, a negative shock to an economy could deter the government

10The arrow connecting news to DPI and other interventions acknowledges the fact of endogenous
selection of the treatment of this study: DPIs. By closing all backdoor paths that contain this link, I
simultaneously eliminate this selection bias.
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from the most stringent DPIs.

The easiest way to eliminate the effects of these alternative paths would
be to control for news and other interventions. Holding them fixed
would identify the economic effect of DPIs. Unfortunately, this strategy
is not feasible as news contains unobservable components. For example
news about the risk of COVID is not observable in my data sources.

To overcome this difficulty, I instead construct a two-stage empirical de-
sign in which I estimate voluntary distancing in the first stage because
it is unobserved. I do that by taking the mobility indicator mit, and sep-
arating it into a voluntary and a policy-induced component using a re-
gression discontinuity design.11 For more details, see Section 2.3.2. I
then estimate the economic effects of DPIs in the second stage, in which
I control for other interventions, distancing at trading partners, and vol-
untary distancing. This design eliminates all alternative paths, including
the reverse causality path of economic outcomes, because it is contained
by the other three channels through news based on the causality map
in Figure 2.5. I control for voluntary distancing by voluntary mobility
predicted by the first stage. I measure distancing at trading partners by
averaging social mobility index mit using export and import shares.

Rácz (2022)

Second Stage: Empirical Design

This strategy is formulated by the following equation:

∆̃yit = βTTit + βEEit + βI Iit︸ ︷︷ ︸
DPI effects

+ βVm̂V
it︸ ︷︷ ︸

voluntary mobility

+ η′PO
it︸︷︷︸

other interventions

+ λX ∑j wX
ij mj,t−1 + λM ∑j wM

ij mk,t−1︸ ︷︷ ︸
distancing at trading partners

+ ξ ′Xit + FEi︸ ︷︷ ︸
covariates and FEs

+ε it, (2.4)

where i is a country, and t is a month. Tit, Eit, and Iit are capturing the
first DPI intervention and further changes in the extensity and intensity
of DPIs. Part A. of Table 2.1 shows descriptive statistics of these indi-
cators. m̂V

it is predicted voluntary mobility resulting from the first stage
estimation.

11mit is derived from Google user mobility data. For details, see Section 2.2.3.
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PO
it is a set of other COVID interventions, such as COVID-related fiscal

spending, investment in vaccines and healthcare, income support pro-
grams, debt relief programs, international travel controls, and public in-
formation campaigns.12 Part B. of Table 2.1 shows descriptive statistics
of these interventions.

Information on fiscal and monetary policy interventions that are not di-
rectly COVID-related, such as tax or interest rate cuts, is not included
among controls. The omission of such controls is a clear limitation of
the current version of this paper because such conventional policy steps
were likely to be used to mitigate inflationary and unemployment effects
in many countries. Moreover, governments and central banks anticipat-
ing higher unemployment or inflationary risks were likely to intervene
more strongly. This presumed correlation between conventional policy
interventions and outcomes is more likely to be absorbed by COVID-
related policy interventions that are controlled for but has the potential
to cause omitted variable bias in the coefficients of DPI interventions.

wX
i jand wM

i jare export and import shares from 2019 between countries i
and j, which sum to 1 across partner countries denoted by j. The terms
with summations, therefore, measure the average changes in mobility
at trading partners, capturing the effects of distancing at trading part-
ners. Part D of Table 2.1 contains descriptive statistics for average social
mobility at export and import partners.

12Source: Hale et al. (2020).
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Table 2.1: Descriptive Statistics, Second Stage

Covariate mean st.dev. max. min. unit

A. Distancing Policy Interventions (DPIs)

Treatment 11.19 5.14 18.00 0.00 no. + lvl of DPIs
Extensity -0.56 1.29 2.97 -4.52 no. of DPIs
Intensity -1.71 3.12 7.18 -9.00 lvl of DPIs

B. Mobility at Trading Partners

at Export Partners 19.50 24.41 99.98 2.87 Nov ’19=100
at Import Partners 25.20 22.48 100.00 4.02 Nov ’19=100

C. Other COVID Interventions

Fiscal Spending 18.65 138.22 2151.20 0.00 billion USD
Investment in Vaccines 0.06 0.34 4.02 0.00 billion USD
Healthcare Investment 1.87 19.36 306.56 0.00 billion USD
Income Support 1.36 0.78 2.00 0.00 categorical
Debt Relief 1.15 0.79 2.00 0.00 categorical
Internat’l Travel Restr’s 2.61 1.15 4.00 0.00 categorical
Information Campaigns 1.86 0.47 2.00 0.00 categorical

D. Other Covariates

Covid Cases 178.60 335.85 2820.71 0.00 per 105 citizen
Covid Deaths 3.94 6.90 55.39 0.00 per 105 citizen
Covid Cases at Neighbors 4.64 6.70 40.80 0.00 per 105 citizen
Covid Deaths at Neighbors 0.13 0.19 1.21 0.00 per 105 citizen

Notes: 288 country-month observations of 32 countries.

Xit contains reported COVID cases and related deaths in population
shares both domestic and from neighboring countries. These are in-
cluded to address the direct and spill-over effects of COVID infections
on economic activity. Part D of Table 2.1 presents descriptive statistics
of these covariates. Finally, country-fixed effects are included to absorb
the effects of time-invariant differences among countries, such as levels
of economic development, degree of openness, or demographics, that
are probably correlated with both government decisions on DPIs and
changes in economic outcomes.
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2.3.2 Voluntary Distancing

The first stage estimation identifies the policy-compliant component mV
it

of social mobility mit in a regression discontinuity in time (RDiT) de-
sign.13 The voluntary component, called voluntary mobility, is then de-
fined as the residual of the first-stage regression.

The DPI-induced component of mobility is identified as sudden changes
in mit after the first DPI. The identifying assumption is that changes in
social mobility due to voluntary distancing are slow, while the response
to a distancing intervention is quick, at weekly frequencies. Distancing
interventions prescribe a coordinated and sudden reduction in social ac-
tivities after an intervention. Similarly, coordinated and sudden volun-
tary responses could only happen if the risk assessment of COVID news
were homogeneous within countries. There is anecdotal evidence to as-
sume that nations are much more heterogeneous in this respect, consid-
ering the simultaneous presence of virus skeptics and overly cautious
people in many countries. It is more likely, therefore, that aggregate
voluntary mobility responses are smooth and gradual because different
fractions of society respond with different time lags and with different
intensities based on their different risk assessments of the news.14

2.3.3 First Stage: Empirical Design

Based on these assumptions, social mobility mit is modeled by the fol-
lowing equation:

mit = δt + γEEit + γI Iit + θPO
it + ζ ′Zit + FEi + νit (2.5)

where δt is an event-time coefficient indicating week t after the first DPI
was implemented in each country i. δt is included to capture the com-
mon trend in social mobility around the weeks of a type p intervention.

13A regular RD exploits a discontinuous change in the close neighborhood of a border separating
the treated and untreated samples. RDiT is a special case when the running variable is time, which is
usually a discrete variable in empirical exercises. This discreteness allows us to identify the effect by
event time dummies rather than a discontinuity in a continuous polynomial like in regular RD designs.
This design is related to event study designs, but it lacks a control group. For more detail see Hausman
and Rapson (2018).

14Figure 2.4, presented in Section 2.2.3, supports this assumption, as it shows a sudden drop in social
mobility at the time of the first intervention, but smooth changes in other periods.

60

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

Because they are intended to capture the effects of the intervention rela-
tive to the previous week, δ−1 is omitted, as δ

p
0 represents week 0 of the

first-ever DPIs. The treatment effects of DPIs are identified by δ0 and δ1,
because of the main identifying assumption that the first DPIs impact
mobility suddenly after their implementation. The rest of the event time
dummies are, therefore, assumed to absorb the common trend in volun-
tary mobility changes in earlier and later weeks relative to the treatment
weeks.

Eit, and Iit are capturing further changes in the extensity and intensity of
DPIs after the first DPI. PO are other interventions that may affect social
mobility, such as fiscal spending, population share of vaccinated people,
international travel controls, income support, and debt relief programs,
public information campaigns, testing, contact tracing, mask-wearing
and vaccination policies, and protection strategies for the elderly popu-
lation. Parts A and B of Table 2.2 show the summary statistics of these
factors.
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Table 2.2: Descriptive Statistics of Covariates, First Stage

Covariate mean st.dev. max. min. unit

A. Distancing Policy Interventions (DPIs)

Extensity 1.04 2.03 6.50 -5.00 no. of DPIs
Intensity 1.39 3.11 12.00 -8.71 lvl of DPIs

B. Other COVID interventions

Fiscal Spending 4.01 62.61 1957.60 0.00 billion USD
Share of Vaccinated 0.00 0.02 0.53 0.00 per citizen
Internat’l Travel Restr’s 2.25 1.42 4.00 0.00 categorical
Income Support 1.09 0.87 2.00 0.00 categorical
Debt Relief 0.99 0.84 2.00 0.00 categorical

Public Info’ Campaign 1.59 0.79 2.00 0.00 categorical
Testing Policy 1.63 1.03 3.00 0.00 categorical
Contact Tracing 1.24 0.80 2.00 0.00 categorical
Mask Wearing Policy 1.76 1.52 4.00 0.00 categorical
Vaccination Policy 0.32 0.83 5.00 0.00 categorical
Protection of the Elderly 1.53 1.16 3.00 0.00 categorical

C. Covariates of Voluntary Mobility

Average Temperature 11.45 10.81 39.60 -41.89 Celsius degree
Average Humidity 70.43 16.13 97.08 12.52 percentage
Average Rainfall 14.11 18.50 209.38 0.00 mm
Average Snowfall 0.33 1.18 13.24 0.00 m
Covid Cases 0.68 1.23 9.32 0.00 per 105 citizen
Covid Deaths 0.01 0.02 0.20 0.00 per 105 citizen
Covid Cases at Neighbors 0.07 0.12 1.33 0.00 per 105 citizen
Covid Deaths at Neighbors 0.00 0.00 0.02 0.00 per 105 citizen

Zit contains four weekly weather indicators, such as average tempera-
ture, humidity, snowfall, and rainfall, to absorb the effects of weather
changes on social mobility. It also contains reported COVID cases and
related deaths in population shares, both domestic and from neighbor-
ing countries. These are included to capture their possibly deterring ef-
fects on social mobility, which is a possible con-founder of government
and individual decisions on distancing. Part D of Table 2.2 presents de-
scriptive statistics of these covariates.

Countries differ in demographics, population density, and the quality
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of political and healthcare institutions, which are likely correlated with
interventions, social activity, and reproduction numbers. I address these
differences by including country-fixed effects, assuming the invariance
of these factors on weekly frequencies.

2.4 Results

This section presents the results of the first and the second stage esti-
mations. I start with the presentation and discussion of the first stage
results. I then continue with a decomposition of social mobility into
policy-induced and voluntary components based on first-stage predic-
tions. Finally, I present and discuss the main results about the economic
effects of DPIs.

2.4.1 First Stage

Figure 2.6 depicts predicted values for δt of equation (2.5), which mea-
sures the deviation of the social mobility index mit from its final pre-
intervention week values within countries. I interpret the results on this
figure from left to right. Effects more than five weeks distant from the in-
tervention are grouped, giving two coefficients: one for the distant past,
and one for the distant future of interventions. Results show a slight
pre-intervention adjustment in social mobility as the effects from more
than five weeks before the first intervention are positive and statistically
significant at a 1% level. This effect is most likely attributed to voluntary
distancing motives.

In the close neighborhood of the first DPI, pre-intervention coefficients
are statistically indistinguishable from zero, while post-intervention co-
efficients indicate strong mobility-reducing effects of the first DPI. This
discontinuity in the results supports the choice of the RD strategy. Most
of the post-treatment effects happen within the first two weeks, of which
week 0 is a mixed week allowed to contain days both from before and
after the day of the first DPI. These are the effects that are identified as
the treatment effects of the first DPI. Results predict that the first DPI
treatment is expected to reduce social mobility by nearly 20 percentage
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points in November 2019 levels. Finally, looking at effects more than five
weeks after the first DPI shows a slight reversal of social mobility. This
reversal is again attributed to changes in voluntary distancing motives.

Figure 2.6: Week-Fixed Effects of Social Mobility around the First DPI
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Notes: Point estimates of δt of equation (2.5) with 99% confidence intervals. Standard errors are allowed
to cluster within weeks. Reference period: last week before the intervention. 2 870 country-week obser-
vations of 41 countries, R-squared = 0.7543.

Quantitative results for DPI effects are presented in Table 2.3.15 Re-
sults are presented for three specifications, the first one excluding fur-
ther changes in the extensity (number of) and intensity of DPIs after the
first intervention. The second and third specifications include these two
factors gradually. The top two rows show point estimates for δ0 and δ1

with their standard errors in parentheses. These two coefficients capture
the effect of the first DPI. The mobility effects of the first DPI treatment
were found to be robust to specifications. Based on specification 3, the
first DPIs reduced social mobility index mit by 17.8 percentage points
measured in November 2019 levels. The magnitude of this coefficient
is roughly 1.5 of the standard deviation of mit in the pre-treatment sam-
ple: 12.0. Given that the average magnitude (number plus level) of the

15For the estimation results for other covariates see Section B.2 in the Appendix.
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first DPIs was roughly 8, this result also suggests that introducing a sin-
gle DPI as a first intervention reduces mit by 2.2 percentage points in
November 2019 levels.

Table 2.3: Effect of DPIs on Social Mobility

(1) (2) (3)

Week 0 -3.285*** -3.947*** -3.786***
(1.170) (1.113) (1.186)

Week 1 -14.791*** -17.013*** -17.872***
(3.172) (2.890) (2.875)

Extensity -1.615*** 0.545
(0.359) (0.490)

Intensity -2.098***
(0.320)

Observations 2,870 2,870 2,870
R-squared 0.716 0.728 0.754
Country FE’s • • •
Countries 41 41 41
Controls • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within weeks. •
– included, ◦ – excluded.

Specification 3 provides no statistical evidence for the effects of changes
in the extensity of DPIs. However, it is found to significantly reduce mo-
bility significantly in specification 2, where it has been included without
the intensity indicator. A possible explanation for the extensity changes
losing their significance when controlled for intensity changes is that
these two factors are strongly correlated. The correlation between inten-
sity and extensity is 0.79.

Based on specification 3, changing intensities of already introduced DPIs
had a significant mobility-reducing effect. Increasing the intensity (total
stringency level) of DPIs after the first treatment by 1 was found to de-
crease mit by 2.1 percentage points measured in November 2019 levels.
This result suggests that, although the first interventions were found to
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be the most effective, governments could significantly increase the dis-
tancing effects of DPIs by increasing their stringency levels. The intro-
duction of new types of restrictions, however, was found to be ineffec-
tive in the further enhancement of social distancing.

These results suggest that the first-ever distancing interventions have
on average a strong and significant effect on social mobility. This ef-
fect is possible to be fine-tuned by changes in the intensity of but not by
changes in the extensity of DPIs. The desired reduction of social mobil-
ity depends on how strongly these DPI-induced reductions affected the
spreading of COVID, which question is outside of the scope of this pa-
per.16 This paper continues toward its goal of measuring the economic
effects of such mobility reductions due to DPIs.

2.4.2 Voluntary Social Mobility

The goal of the first stage estimation was to realize a prediction on vol-
untary distancing because that is a key control for the identification of
the economic effects of DPIs. Voluntary mobility is obtained by resid-
ualizing social mobility (mit) by first-stage predictions for each policy-
related covariate.

Predictions for the treatment effect of DPIs is defined as the event-time
effects (δt) of equation (2.5) from week 0 and 1, such that it is fixed at the
value of δ1 for t > 1:

m̂T
it =


δt if t ∈ {0, 1}
δ1 if t > 1

0 otherwise

Predictions for further changes in the extensity (m̂E
it), and the intensity

(m̂I
it) of DPIs, and other interventions (PO

it )are simply the product of these
variables with their coefficients:

m̂E
it = γEEit, m̂I

it = γI Iit, m̂O
it = θPO

it

16See Perra (2021) for a summary of the related literature.
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A prediction for voluntary mobility (m̂V
it ) is then obtained as the follow-

ing residual:

m̂V
it = mobilityit − m̂T

it − m̂E
it − m̂I

it − m̂O
it .

Figure 2.7 depict cross-country averages for the predicted voluntary mo-
bility component (m̂V

it ), the effect of other interventions (m̂O
it ) and the

sum of the DPI related components: m̂T
it, m̂E

it, and m̂I
it in calendar time.

This is a stacked column graph, therefore the sum of the columns tracks
the social mobility indicator mit. Social mobility declines around mid-
March as most countries in the sample intervened for the first time in
March 2020. The dominant factor in this decline is found to be the effect
of DPIs, although voluntary mobility had a substantial contribution as
well. Figure 2.8 breaks down the effect of DPIs of Figure 2.7 into its three
components: m̂T

it, m̂E
it, and m̂I

it. This figure reveals that the effect of DPIs
was predominantly due to the first DPIs. This graph also gives visual
support for the conclusion that further changes in the intensity of DPIs
had a significant effect on mobility, while further changes in the number
of DPIs did not.

The aim of the first stage estimation is to create a proxy for voluntary
distancing, which is an important control in the estimation of the eco-
nomic effects of DPIs in the second stage. It is the predicted voluntary
mobility component m̂V

it . It is obtained as a residual, and therefore, it
is important to investigate which factors drive the variance of this vari-
able. The contribution of different covariates, country-fixed effects, and
the error term to the total variance of voluntary mobility, widehatmVit,
is shown in table ref: tab: variance. Covariates account for 28 percent
to the total variance of m̂V

it , with fixed effects accounting for another 12
percent. The unexplained component accounts for the remaining 60% of
its variance.

2.4.3 Economic Effects of Distancing Policy Interventions

In this subsection, I present the estimation results for equation (2.4) for
seven different economic outcomes. Economic outcomes are measured
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Figure 2.7: Historical Decomposition of Social Mobility Index in 42 OECD Economies
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as a percentage of their most recent November values. The average
values of 2015–2019, a COVID-free control period, are subtracted from
each indicator. I start with the presentation of three different specifi-
cations that include voluntary mobility, other interventions, and mobil-
ity at trading partners one-by-one to investigate omitted variable biases
caused by these factors. I present these specifications using industrial
production as the outcome. After that, I present results for the other six
economic outcomes using only the most complete specifications. I first
continue with the four sector outputs: industrial, and manufacturing
production, construction output, and retail trade. I then continue with
the two price indicators: CPI, and PPI in manufacturing. I conclude the
analysis with unemployment effects.
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Figure 2.8: Historical Decomposition of Predicted DPI effects in 42 OECD Economies
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Second Stage Results: Industrial Production

Results for industrial production are presented in Table 2.5.17 The first
specification includes only DPI factors along with country-fixed effects.
Treatment and intensity effects are already significant and strong in this
simple specification. The second specification includes voluntary social
mobility, which is found to be significant and positively correlated with
industrial production. The positive sign of this coefficient is in line with
the intuition that less mobility implies lower rates of economic activity.
The third specification includes other interventions. These turn out to
be important control factors, as their inclusion significantly decreases
the coefficients of DPI factors. The fourth specification includes mobil-
ity at export and import partners. The inclusion of these two indica-
tors decreases slightly further the coefficients of DPIs, revealing a mod-
est omitted variable bias in previous specifications due to international
spillovers. The coefficients of these two factors are statistically insignifi-

17For the estimation results for other covariates see Section B.3 in the Appendix.
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Table 2.4: Variance Decomposition of Voluntary Mobility

Covariate Variance Proportion (%)

Average Temperature 2.19 2.21
Average Humidity 1.01 1.03
Average Rainfall 0.14 0.14
Average Snowfall 0.00 0.00
Covid Cases t−1 0.03 0.03
Covid Cases t−2 0.05 0.05
Covid Deaths t−1 6.73 6.80
Covid Deaths t−2 2.65 2.67
Covid Cases t−1 at Neighbors 0.58 0.59
Covid Cases t−2 at Neighbors 3.96 4.00
Covid Deaths t−1 at Neighbors 9.58 9.68
Covid Deaths t−2 at Neighbors 0.42 0.42

Total of Covariates 27.34 27.62
FEi 12.21 12.33
Residual 59.43 60.05

Total 98.98 100.00

Notes: Using on results from specification (3) of Table 2.3. Covid cases and deaths are measured in
population shares both for domestic and neighboring countries.

cant, however.

The most complete specification shows that the first DPIs and further
changes in their intensity had a significant effect on industrial produc-
tion, while I found no evidence for the effects of changes in the extensity
of DPIs. When compared to its 2015-2019 averages in November val-
ues, a single level 1 DPI reduces industrial production by 0.8 percentage
points on average. A change in the intensity of DPIs reduces indus-
trial production by 1.15 percent. A one percentage point deviation of
voluntary mobility from its November 2019 levels is found to decrease
industrial production by .4 percent.
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Table 2.5: Effect of DPIs on Industrial Production

(1) (2) (3) (4)

Treatment -1.230*** -1.124*** -0.871*** -0.793***
(0.203) (0.132) (0.244) (0.231)

Extensity -0.687 -0.723 -0.628 -0.679
(0.524) (0.625) (0.533) (0.559)

Intensity -1.809*** -1.559*** -1.223*** -1.157***
(0.447) (0.282) (0.242) (0.217)

Voluntary Mobility 0.335** 0.397** 0.400**
(0.130) (0.131) (0.137)

Mobility t−1 at 0.411
Import Partners (0.702)

Mobility t−1 at -0.285
Export Partners (0.662)

Observations 288 288 288 288
R-squared 0.584 0.623 0.666 0.669
Country FE • • • •
Countries 32 32 32 32
Other Interventions ◦ ◦ • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within months.
• – included, ◦ – excluded.

Output Losses

Table 2.6 shows the results of specification 4 for the four different sector
outputs.18 Column 1 simply repeats the results for industrial production
in column 4 of table 2.5 for comparison. Column 2 is manufacturing,
which is a sub-sector of the wider industry sector, and as a consequence,
the results are very similar in the first two columns. The first DPI treat-
ment and further changes in DPI intensities had a significant negative
effect on manufacturing production, but there was no effect from the
changes in extensity. Voluntary mobility had a similar impact on man-
ufacturing as it did on the entire industry sector, and no evidence of

18For the estimation results for other covariates see Section B.3 in the Appendix.
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spillover effects from mobility changes at trading partners was found.

Table 2.6: Effect of DPIs on Sector Outputs

(1) (2) (3) (4)

Industrial Manuf’ing Constr’ Retail
Production Production Output Trade

Treatment -0.794*** -0.957*** -2.141** -1.234***
(0.233) (0.202) (0.753) (0.223)

Extensity -0.670 -0.302 3.039** 0.938
(0.557) (0.589) (0.941) (0.695)

Intensity -1.145*** -1.413*** -2.682*** -2.447***
(0.218) (0.202) (0.436) (0.473)

Voluntary Mobility 0.402** 0.454** 0.301 0.531***
(0.136) (0.143) (0.208) (0.112)

Mobility t−1 at 0.405 0.525 0.126 0.515
Import Partners (0.702) (0.758) (0.882) (0.416)

Mobility t−1 at -0.278 -0.388 -0.222 -0.552
Export Partners (0.663) (0.723) (0.947) (0.424)

Observations 288 288 189 270
R-squared 0.670 0.687 0.683 0.784
Country FE • • • •
Countries 32 32 21 30
Other Interventions • • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within months.
• – included, ◦ – excluded.

Results for construction output are presented in column 3. This indicator
is only available for a substantially smaller set of countries; therefore, its
results are not quantitatively comparable with other columns. The intro-
duction of a single level 1 DPI treatment decreases construction output
by 2.1 percentage points from November 2019 levels. A further change
in DPI intensity is found to decrease it by another 2.7 percentage points.
A unit increase in DPI extensity, which is the introduction of a new type
of DPI, had, however, a positive, albeit only marginally significant effect
on construction output. Without further investigation, a possible expla-
nation could be that when DPI restrictions extend to more and more
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building types, such as schools, office buildings, or concert halls, that
gives way to more and more reconstructions. A one percentage point
decline in mobility was found to decrease construction output by 0.3
percentage points. No evidence was found for the spillover effects of
mobility changes across trading partners.

Column 4 shows results for retail trade. Retail trade responded signifi-
cantly to the first DPI treatment, changes in DPI intensity, and voluntary
mobility. I found no evidence of significant responses to DPI extensity
and mobility spillovers from trade partners. A single level 1 DPI intro-
duced as a first treatment decreases retail trade by 1.2 percentage points,
while a unit change in the level of DPIs decreases retail trade by 2.4 per-
centage points from November 2019 levels. In November 2019 values, a
1% decrease in voluntary mobility reduces retail trade by 0.5 percentage
points.

Sector outputs were found to respond strongly to first DPI treatments,
changes in DPI intensities, and voluntary mobility. On the other hand, I
found no evidence of significant responses to DPI extensity and mobility
spillovers from trade partners, except in construction. These findings
altogether suggest that distancing behaviors that were either voluntary
or DPI-compliant generated substantial output losses.

It is crucial to compare the consequences of voluntary and DPI-induced
distancing when forming policy conclusions about DPI efficiency. Vol-
untary mobility and DPI components are measured in different units,
so Table 2.6 coefficients are not directly comparable between rows. One
possible way to address this issue would be to use the estimates for DPIs
of equation (2.5), for example, γ̂I Iit for intensity changes, directly on the
right-hand side of equation (2.4), instead of the policy variables. γ̂I Iit

contains the same information as the policy variable, Iit, as they differ
only in a constant multiplier γ̂I. But this multiplier translates the unit of
the policy variable into the unit of voluntary mobility changes, making
these two factors comparable. Although this strategy appears simple
and straightforward, it is impossible to implement because the most im-
portant policy variable, treatment (Tit), is not included in the first-stage
equation. The reason it is not included is that the effect of the DPI treat-
ment is captured by the RDiT design that builds on the key identifying
assumption of sudden responses to policy changes. Giving this design
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Table 2.7: Predicted Distancing Effects by Sectors in Month 2 of the First DPI

Industrial Manuf’ing Constr’ Retail
Production Production Output Trade

Treatment -10.17 -12.25 -27.41 -15.80
(2.99) (2.59) (9.64) (2.85)

Extensity -0.22 -0.10 1.01 0.31
(0.18) (0.19) (0.31) (0.23)

Intensity 0.16 0.20 0.38 0.35
(-0.03) (-0.03) (-0.06) (-0.07)

Voluntary Mobility -1.44 -1.62 -1.08 -1.90
(-0.48) (-0.51) (-0.74) (-0.40)

Total Change -16.15 -19.20 -19.52 -11.68

Explained by Distancing -11.67 -13.77 -27.10 -17.04
percent 72.26 71.72 138.83 145.89

Unexplained by Distancing -4.48 -5.43 7.58 5.36
percent 27.74 28.28 -38.83 -45.89

Notes: Predicted effects. Calculated as changes in cross-country averages between month -1 and month
2, and multiplied by the coefficients of column 4 of Table 2.6. Standard errors in parenthesis are calcu-
lated similarly, using the s.e. of the corresponding coefficient.

up is considered to be a greater cost than the gain of the comparison that
would emerge from a different design would provide.

I work around this problem by picking a different strategy to make the
effects of DPIs and voluntary distancing comparable. It is a decomposi-
tion of the changes in sector outputs around the months of the first DPI
interventions. I calculated predicted values of DPI and voluntary dis-
tancing effects by multiplying the changes of these factors from month -1
to month 2 for all factors with their coefficients.19 Table 2.7 shows these
predicted effects for all four sector outputs averaged across countries.
The bottom of the table contains the change of the explained sector out-
come and summary calculations about what fraction of this total change
could be explained by the predicted distancing effects. Figures show
that although voluntary distancing caused significant losses to sector

19I did the same multiplication with the standard errors.
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outputs, its effect was an order of magnitude smaller than that of DPIs
in the short run. For example, the first DPI treatment explains about 10
percentage points of the total industrial output loss relative to the last
month before the first DPI.20 Voluntary distancing, on the other hand,
explains only 1.4 percentage points.

The largest negative effect of the first DPI treatment was identified in
the construction sector, -27.4 percentage points. The effect of DPI exten-
sity was found to be significant only in the case of construction output,
where it contributed 1 percentage point, offsetting slightly the overall
19,5 percentage point decline observed in the sector. In month 2, the ef-
fect of DPI intensity changes was found to contribute the least to total
changes. Voluntary mobility was found to decrease retail trade the most,
by almost 2 percentage points.

Only 70% of the total losses in industry and manufacturing are explained
by distancing factors, implying that output losses in these sectors were
caused by other factors, such as other COVID-related interventions. In
construction and retail trade, on the other hand, distancing factors alto-
gether predicted more losses than was observed. This finding suggests
that other factors, such as fiscal and monetary support programs, could
mitigate the short-term costs of distancing in these two sectors.

Inflationary Effects

Table 2.8 contains results for consumer prices and producer prices of the
manufacturing industry.21 I found no evidence of inflationary effects
of DPIs except for DPI extensity. Results show that extending the set
of DPIs by a new intervention decreases consumer prices by 0.1 per-
cent. Column 6 shows results for producer prices in manufacturing,
providing no evidence of either voluntary or DPI-induced distancing ef-
fects from domestic markets. Distancing in export markets, on the other
hand, is marginally significant, with a one-point increase in social mo-
bility in export markets lowering domestic manufacturing prices by 0.27
percent. The sign of this effect is in contrast with the economic intuition
that falling demand reduces prices.

20As a comparison Deb et al. (2021) find that losses in industrial production were about 10 percent
over 30 days following the implementation of containment measures.

21For the estimation results for other covariates see Section B.3 in the Appendix.
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In summary, evidence for the inflationary effects of any kind of distanc-
ing could not be identified by this study. This suggests that neither DPIs
nor voluntary distancing brings on little to no inflationary costs. One
possible explanation for insignificant inflationary effects is the omission
of conventional monetary policy interventions, such as rate cuts. Coun-
tries anticipating stronger inflationary risks due to their specific mix of
DPIs might have cut their rates more strongly, mitigating the inflation-
ary effects of DPIs. Another possible explanation for insignificant infla-
tionary effects is that the typical shock response of prices tends to have a
several-quarter time lag. That might suggest that inflationary effects of
DPIs emerge on time horizons, for example, a year later, that are unable
to be captured with the current design.

Table 2.8: Effect of DPIs on Prices

(1) (2)

CPI PPI
manuf’ing

Treatment -0.009 -0.049
(0.009) (0.049)

Extensity -0.090** 0.178
(0.028) (0.157)

Intensity 0.016 -0.077
(0.015) (0.058)

Voluntary Mobility -0.005 -0.008
(0.003) (0.022)

Mobility t−1 at Export Partners -0.010 -0.275*
(0.023) (0.133)

Mobility t−1 at Import Partners 0.024 0.231
(0.025) (0.139)

Observations 288 252
R-squared 0.887 0.838
Country FE • •
Countries 32 28
Other Policies • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within months.
• – included, ◦ – excluded.
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Unemployment Effects

Table 2.9 presents second-stage results for the unemployment rate in the
same four specifications as Table 2.5 for industrial production.22 The
first specification reveals strong positive unemployment responses to
the first DPI treatment.23 When voluntary mobility is introduced as
a control, this strong response is maintained. However, when other
COVID interventions have been introduced the coefficient of DPIs col-
lapsed and lost its significance. This observation about coefficients is
maintained when mobility at trading partners is included in the final
specification. This finding suggests that the observed hike in unemploy-
ment on Figure 2.1 of Section 2.2 after the first DPI interventions are
explained by other COVID related interventions.24

There might be other explanations for the lack of unemployment effects
as well. For example, conventional or not COVID-focused fiscal pol-
icy interventions are not controlled for in the current version of this
paper. For example, governments anticipating higher unemployment
risks might choose to relax taxes more intensively compared to other
governments, offsetting the unemployment effects of their DPIs. An-
other possible explanation could be based on anecdotal evidence that
labor adjusted on the intensive margins first in the early months of the
COVID restrictions, such as lowering working hours, the extension of
sick leaves, or enforced holidays. Employers aimed to keep their em-
ployees as they expected the restrictions-induced production halt to be
temporary and considered the cost of rehiring to be higher than the cost
of labor intensity adjustments.

2.5 Conclusion

This paper identifies the causal effects of distancing policy interven-
tions (DPIs) on seven short-term economic indicators: industrial and
manufacturing production, construction output; retail trade; CPI; PPI
in manufacturing; and the unemployment rate. Effects are identified

22For the estimation results of other covariates from specification 4 see Section B.3 in the Appendix.
23And a slightly negative response to DPI intensity changes.
24For a similar result, see Kong and Prinz (2020).
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Table 2.9: Effect of DPIs on the Unemployment Rate

(1) (2) (3) (4)

Treatment 0.163*** 0.171*** 0.058 0.026
(0.031) (0.029) (0.069) (0.070)

Extensity -0.133* -0.133* -0.076 -0.043
(0.065) (0.061) (0.074) (0.060)

Intensity 0.059 0.073 0.019 -0.006
(0.100) (0.095) (0.090) (0.084)

Voluntary Mobility 0.017 -0.007 -0.013
(0.011) (0.009) (0.009)

Mobility t−1 at -0.108*
Export Partners (0.057)

Mobility t−1 at 0.008
Import Partners (0.065)

Observations 279 279 279 279
R-squared 0.745 0.747 0.788 0.810
Country FE • • • •
Countries 31 31 31 31
Other Interventions ◦ ◦ • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within months.
• – included, ◦ – excluded.

from within-country changes of these indicators from before and after
the first ever DPI treatment relative to the averages of a COVID-free
control period: 2015–2019. Causal effects are identified by controlling
for three important confounding factors: voluntary distancing, other
COVID-related interventions, and distancing at trading partners.

Among these confounders, voluntary distancing is an unobserved fac-
tor. Voluntary distancing is therefore estimated in a regression discon-
tinuity framework using mobility data. It is realized as a residual after
the identification of DPI-induced distancing effects as sudden changes
in mobility after the first DPI intervention. Results suggest that the first-
ever distancing intervention had, on average, a strong and significant
effect on social mobility. This effect was fine-tuned by changes in the
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intensity of DPIs. Voluntary motives were also found to contribute to a
significant portion of mobility patterns.

I found significant output losses due to DPIs, but no evidence for infla-
tionary and unemployment effects. Findings suggest that DPIs caused
substantial output losses. Results also show that although voluntary
distancing caused significant losses to sector outputs, its effect was an
order of magnitude smaller than that of DPIs. Only 70% of total losses
in industry and manufacturing are explained by either voluntary or DPI-
induced distancing, implying that other factors, such as other COVID-
related interventions contributed substantially to output losses in these
sectors. In construction and retail trade, on the other hand, distancing
factors altogether predicted more losses than was observed. This find-
ing suggests that other factors, such as fiscal and monetary support pro-
grams, could mitigate the short-term costs of distancing in these two
sectors.

This study did not identify any evidence for the inflationary effects of
any kind of distancing. This suggests that neither DPIs nor voluntary
distancing brings on little to no inflationary costs. Although a signif-
icant hike in unemployment rates can be observed after DPI interven-
tions took place, no evidence was found in support when controlling
for voluntary distancing, other COVID interventions, and distancing at
trading partners. Findings suggest that the observed hike in unemploy-
ment is related to other COVID-related interventions.

These findings provide evidence of the economic cost of DPIs to consider
for governments that are planning to implement such interventions dur-
ing an epidemic. These findings also contribute to a more complete cost-
benefit analysis of distancing policy interventions on the cost side. The
costs identified here are mainly output losses, while no evidence was
found for inflationary costs or unemployment responses.
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Chapter 3

Network Origins of Aggregate
Dynamics

3.1 Introduction

There is growing evidence of producer-level idiosyncratic shocks affect-
ing macroeconomic aggregates as they are propagated and amplified by
input-output linkages, i.e., the production network. For example, an oil
shortage affects oil refineries, the production of fertilizers, the energy
sector, plastic manufacturing, chemical production, and all other sectors
that directly or indirectly rely on crude oil as an input. In this paper, I
measure the speed of this propagation process by pinning down the av-
erage time it takes for the effect of a shock to propagate from an input
supplier to its direct customers.

Quantifying the average propagation time of an economy is the main
contribution of this paper. Most papers in the production networks liter-
ature, kicked off by Acemoglu et al. (2012), assume that this shock propa-
gation process is instantaneous, or at least goes through entirely1 within
a time period. The seminal model of this literature, Long and Plosser
(1983), however, was able to generate dynamic propagation. They as-
sumed that producers could only transmit the effect of a shock with a
one-period delay. Although their model is dynamic, they did not specify
the length of a time period. This paper applies their model predictions to
annual time series and input-output data of 66 private industries in the

1Including all direct and indirect customers of any distance.
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US economy from the past two decades to quantify the average prop-
agation time, which is equivalent to the delay of shock transmission in
Long and Plosser (1983).

Once quantitative results for the average propagation time are estab-
lished, it is possible to investigate how the staggered propagation of
producer-level shocks affects aggregate dynamics. Applying these new
results to the model, I predict a series of aggregate GDP and calculate
its auto-correlation function for the third degree. I then determine what
proportion of aggregate dynamics can be traced back to network prop-
agation by comparing the predicted auto-correlations to their observed
counterparts. This secondary result speaks to the network origins of ag-
gregate dynamics, which is another important contribution of this paper.

The rest of the paper is organized in the following way: Section 3.2 in-
troduces the model of Long and Plosser (1983) and presents the main
predictions that are employed in the empirical analysis. This model is
a real business cycle model with mostly standard assumptions: markets
are perfectly competitive, prices are fully flexible, and the demand side
is represented by a single utility-maximizing household. It has two al-
terations to the text-book type RBC model: It assumes (i) multi-sector
production with (ii) time-to-build friction.

The multi-sector nature of the model means the following: Each sector is
represented by a single profit-maximizing producer that uses labor and
intermediate goods as inputs to produce a single good. Each sector’s
output can be used either as a final consumption good or as an interme-
diate input. The web of intermediate input-output linkages defines the
production network.

The time-to-build friction is responsible for the dynamics of the model.
It assumes that inputs have to be purchased one period earlier than their
products can be sold on output markets.2 The only shocks the model in-
cludes are TFP shocks. The model assumes no savings, capital accumu-
lation, or any means of consumer-side dynamics. Therefore, dynamics
are solely driven by the network propagation of TFP shocks, which is
paced by the time-to-build friction.

2Intuition would suggest that this lagged sourcing of inputs is more plausible at higher time frequen-
cies, such as monthly or weekly compared to annual. Instead of inferring the validity of this assumption
from intuition, this paper pins down the average time delay of shock propagation, which is the conse-
quence of the time-to-build assumption in this model.
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The most important feature of the model is the staggered propagation
of TFP shocks through input-output linkages. This propagation pro-
cess unfolds the following way: Each industry responds to its own TFP
shocks by the adjustment of its output price and quantity within the time
period of the shocks. This way, the effect of the TFP shock is transmit-
ted to customer industries as they have to adjust their input demands
to these new input prices. They do not pass the effects of the orig-
inal shocks by adjusting their output prices in this period, however,
because of the time-to-build friction: inputs purchased in this period
produce output only a period later. Therefore, the effect of the origi-
nal TFP shocks appears in the prices of first-order customer industries
one period later. And the propagation does not stop at direct customers,
as now in the second period, the buyers of direct customers are faced
with adjusted input prices. They also have to adjust their own input de-
mands and wait one period before passing through the effects to their
customers because of time-to-build. For example, a negative TFP shock,
for example, workers’ strikes, in coal mining reduces the output of this
sector, which makes coal products more expensive. Industries that use
coal as an input, including the energy sector, respond by decreasing their
demand for coal, which reduces their own output and thus increases
their output price as well. This process spreads the effect of the coal
mining TFP shock to energy users, thus indirect customers of coal min-
ing. This process then goes on until it reaches the most distant indirect
customers of coal mining, thus diffusing to the whole economy through
the production network. But most importantly, the propagation process
takes one step in one time period when it walks down the production
network of input-output links.

The model summarizes this shock propagation process by a single equa-
tion that connects industry value-added growth rates to TFP shocks.
This equation predicts that value-added growth rates are the linear com-
bination of contemporaneous and lagged TFP shocks combined by the
production network. This combination captures the network propaga-
tion of shocks that have been described above: contemporaneous TFP
shocks have an effect on their own industries only. TFP shocks lagged
by one period are affecting direct customers of the shocked industries.
Similarly, the kth lag of TFP shocks is affecting the kth order customers.

The central problem of this paper is that the average propagation time,
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i.e. the time frequency of the model, is unknown. It is pinned down
using annual data, which is described in Section 3.3. This study obtains
annual value-added, TFP, and input-output data from the U.S. Bureau
of Economic Analysis (BEA). The estimation sample is a panel of the 66
private sector breakdown of the US economy. The sample spans each
year between 1997 and 2020.

The empirical strategy for the identification of the average propagation
time is presented in Section 3.4. The average propagation time is the
time unit of the model’s time frequency, which is assumed to be at most
one year and noted by δ. The main empirical challenge of the paper is
the identification of a time interval that is at most as long as the unit of
the frequency of the observations. I tackle this challenge with the follow-
ing strategy: I evaluate the model at sub-annual frequencies. I assume
that one of these sub-annual time frequencies is the true frequency of
the model. The primary goal of the empirical strategy is to find that
frequency. I predict the observed annual value-added growth rates us-
ing TFP shocks and input-output coefficients at each of these possible
sub-annual frequencies. The sub-annual frequency that minimizes the
sum of the squared errors between model-predicted and observed an-
nual value-added growth rates is identified as the most likely time fre-
quency of the model. The average propagation time δ is identified by
the unit time length of this error-minimizing time frequency.

This empirical strategy is evaluated in two different specifications. The
first one uses the model predictions faithfully. That means this specifi-
cation includes both contemporaneous and lagged TFP shocks when it
evaluates the model. Contemporaneous TFP shocks – predictions them-
selves – are likely to be strongly correlated with value-added growth
rates of their own sectors, raising a threat of endogeneity in the first
specification. In a second specification, I use only lagged TFP shocks
therefore in the identification of δ.

The second part of this section discusses the empirical strategy for de-
termining what proportion of aggregate dynamics can be traced back to
network propagation. I take model predictions for GDP growth evalu-
ated at the previously pinned down value of propagation time δ. I then
compare the first, second, and third-order auto-correlation coefficients
of the predicted and actually observed GDP growth rates.
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Results are presented in Section 3.5 in three parts. The first part shows
results for the average propagation time, δ. I find that δ was most likely
between 4 and 8 months in the US in the past two decades.

This propagation time is sufficiently slow to consider the network prop-
agation of sector-level shocks a dynamic process even at annual frequen-
cies. In other words, it is likely that industry-level shocks exert their
impact on the economy much beyond the time horizon of a year. Conse-
quently, the network propagation of these socks themselves might gen-
erate persistent macroeconomic aggregates. Thus, the second section
predicts annual GDP growth rates, assuming the average propagation
time to be 6 months. I then compare the predicted and observed GDP
growth rate series using their first three auto-correlation coefficients. I
do this to calculate the proportion of GDP dynamics that can be traced
back to dynamic network propagation. I find that dynamic network
propagation can account for 82 percent of the first order auto-correlation
of annual GDP growth. This result provides evidence for the network
origins of aggregate dynamics.

This finding is reinforced when compared to predicted GDP auto-correla-
tions under the assumption of instantaneous network propagation, (δ =

0). Under that assumption, GDP growth rates are predicted to be only
weakly auto-correlated, if at all. This finding provides further evidence
for the network origins of GDP dynamics. In the third part of this sec-
tion I estimate δ separately for pre- and post-2008 sub-samples. I find
that the network propagation of TFP shocks has likely accelerated after
the Great Recession. I conclude my findings in the final Section.

Literature

This paper primarily contributes to the literature on production net-
works. Following the study of Acemoglu et al. (2012), there is a renewed
interest in this research topic. Since then, many papers have investigated
the relevance and consequences of the network propagation of micro-
level shocks. The paper of Acemoglu et al. (2012) shows that producer
level shocks are amplified and propagated into macroeconomic aggre-
gates, explaining a significant portion of aggregate volatility. This hap-
pens because of the particularly unbalanced structure of the production
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network, in which there exist a few disproportionately influential input
supplier sectors, such as the oil sector, that are important direct or indi-
rect suppliers to most of the producers in an economy. Shocks to these
sectors therefore have a large effect on the economy proportional to the
relative size of these sectors in terms of output.

The model of Acemoglu et al. (2012) is generalized to imperfect compe-
tition by baqaee2018cascading, allowing for firm entry and exit. Ace-
moglu et al. (2010) generalizes the model of Acemoglu et al. (2012) be-
yond first-order approximations, finding that idiosyncratic producer-
level shocks might trigger a cascade of failures of businesses. Accord-
ing to Baqaee and Farhi (2019), producer level shocks account for much
higher levels of aggregate volatility than was found with a linear ap-
proximation and account for a 20% reduction in TFP growth rates in the
second half of the last century.

Carvalho and Gabaix (2013) shows that the Great Moderation period
between 1984 and 2007 that was named after the characteristically low
levels of aggregate volatility could be explained by the diversification of
production technologies that led to the shrinkage of the influence of the
previously most influential suppliers. They also show that the buildup
in the influence of the financial sector contributed substantially to the
high volatility time period that started with the Great Recession in 2008.
This is an incomplete list of the theoretical research done in the field of
production networks, which has been extended by many others in recent
years. A good summary of further studies can be found in Carvalho
(2014). This paper investigates empirically if this network propagation
process has a time dimension to it. Allowing for dynamic propagation
lets me address whether aggregate dynamics have network origins.

Empirical evidence for the relevance of production networks was pro-
vided by several papers. For example, Carvalho et al. (2021) finds sig-
nificant network propagation effects using the natural experiment of an
earthquake in Japan in 2011. Acemoglu et al. (2016) shows that supply-
side shocks, such as TFP shocks, propagate downstream through the
production network, whereas demand-side shocks, such as external de-
mand shocks, propagate upstream through the production network. This
finding is in line with the predictions of the seminal model. Barrot and
Sauvagnat (2016) shows that input specificity is ”an important deter-
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minant of the propagation of idiosyncratic shocks in the economy.” The
model in this paper retains all the features of the original timeless model
that explain these findings because the propagation process is based on
the same principles. It, however, stretches this propagation process out
in the time dimension, making the propagation staggered. This paper
contributes to these empirical results with a quantitative measurement
of the time step of this network propagation process.

There are other papers that study the dynamic effects of network prop-
agation of producer-level shocks. Carvalho and Grassi (2019) model an
economy in which large firm dynamics propagate through input-output
links, generating aggregate dynamics. A major difference from their ap-
proach is that in this paper, the sole source of dynamics is the result of
the staggered transmission of shocks through the links of input supply.
In this setup, even shocks with zero auto-correlations generate aggre-
gate dynamics. Another example is the recent work of Liu and Tsyvinski
(2020). Their model contains a continuous version of Long and Plosser
(1983), which model is employed in this paper. Consequently, their
model can also predict similar results to those that this paper uses in the
empirical analysis. This paper contributes to their findings by taking the
first step towards empirical evidence for dynamic network propagation
and the network origins of aggregate dynamics.

This paper quantifies the average propagation time of the US economy,
which is the average time it takes for the effect of a cost side shock to
appear in the output prices of a sector. Therefore, this paper

This is related to the literature on the frequency of price changes and
on the pricing responses to shocks. Papers find that most firms change
their prices at least once a year. These figures are found to be similar in
most advanced economies, based mostly on survey-level evidence. See,
for example Kwapil et al. (2010) for Austria, Hoeberichts and Stokman
(2010) for the Netherlands, Martins (2010) for Portugal, or Fabiani et al.
(2005) or Druant et al. (2012) for the EU. Kwapil et al. (2010) also finds
that Austrian firms respond to cost-side shocks with an average time
lag of 3 to 6 months. These findings are in the same ballpark as the main
finding of this paper on the average propagation time being 6 months in
the US. It also has to be mentioned that this propagation time could be
dependent on the level of aggregation, as it might take several firm-to-
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firm propagation steps before the effect of a shock crosses the boundaries
of a sector.

Replicating persistent macroeconomic series is an ongoing challenge for
macroeconomic models, as it was emphasized by Cogley and Nason
(1995), who showed that the main reason for insufficient persistence is
the weak internal propagation of these models. Chari et al. (2000) shows
that assuming sticky prices does not solve this persistence puzzle. This
paper shows that the staggered propagation of shocks in the produc-
tion network, as suggested by Long and Plosser (1983) can account for a
large portion of the observed persistence in macroeconomic series with
an average propagation time of 6 months.

Finally, my findings provide the basis for new opportunities in economic
policy. Grassi and Sauvagnat (2019) shows how to use input-output
data and production network models to draw predictions for different
domains of policy, including industrial or fiscal policies. The primary
policy gain from these models is the opportunity for better-targeted in-
terventions. This paper provides evidence for the dynamic propagation
of sector-level shocks. This finding extends the targeting opportunities
of policy interventions in the time dimension. This extension is partic-
ularly important in the prevention of welfare-discounting consequences
of economic shocks.

3.2 Model

The first part of this Section presents the model setup. In the second part,
I present two model predictions. The first one relates industry output to
sector-level TFP shocks. This equation summarizes shock propagation
and is therefore utilized in the empirical identification of the average
propagation time. The second prediction shows how GDP aggregates
from the industry-level output. This enables the model to predict the
GDP series, which can be used to measure the GDP auto-correlation re-
sulting from the dynamic propagation of sector-level TFP shocks. These
auto-correlations can then be compared to actual GDP auto-correlations
to determine the empirical significance of dynamic network propaga-
tion.
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In the model notation, I use τ for time indexes to save t for annual ob-
servations. The unknown parameter in this paper is the time unit of
the discrete-time scale indexed by τ. I assume that τ is a discrete divi-
sor of a year, for example, quarterly to retain a tractable correspondence
between τ and t. This is a strong assumption that constrains the empir-
ical investigation into the domain of the following possibilities: annual,
semi-annual, three periods a year, quarterly, and so on until, for exam-
ple, the 365th of a year, i.e., daily. This domain has a low resolution at its
early end, which is a limitation of the current version of this paper. This
limitation is especially problematic considering the result is expected to
be in the ballpark of a few months. As a result, in a future version of
the paper, this restriction will be relaxed by allowing the unknown time
scale τ to have any possible frequency.

3.2.1 Setup

This paper builds on the model of Long and Plosser (1983), which is
presented in the following. Consider an economy of an infinitely lived
representative consumer and n industries. Each industry is represented
by a producer of a single good. These products are sold in competitive
markets with flexible prices. Each product is allowed to be used two
ways, either as a final consumption good or as an intermediate input by
any producers.3

A production side time-to-build friction constrains producers to source
their inputs one period ahead of production. This friction is responsible
for the dynamic propagation of sector-level shocks. Because when an
input supplier is hit by a shock, its customer industries need to adjust
their output and prices to this shock when their production is ready,
which happens one period later then their input purchases. A crucial
unknown factor in this process is how long is one period in this model?
This is the quantitative question this paper is focused on.

3Including the producer of this input itself.
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Preferences

The representative consumer derives its period utility from the consump-
tion of a variety of n products in each time period τ. It has Cobb-Douglas
preferences over this variety of goods:

Cτ =
n

∏
i=1

cγi
iτ (3.1)

where ciτ is consumption of product i in time-period τ. γi ∈ [0, 1) is the
corresponding preference parameter, such that ∑i γi = 1, which implies
that γi equals the consumption share of product i. It is assumed that the
consumer has no means of savings or investments, which rules out any
sort of consumer-side dynamics. This way, the only source of dynamics
is the result of the dynamic propagation of supply-side shocks. Without
savings or investment possibilities, the consumer consumes the entirety
of their income each time period. The consumer earns its income by
providing its unit labor endowment to producers.

Production

Each product is produced by a separate industry. Because each industry
is represented by a single producer i, the terms ”industry,” ”sector,” and
”producer” are used interchangeably throughout this text. Each product
is either purchased by the consumer or used as an intermediate input
by another producer, or the producer itself. This web of input-output
linkages defines the production network of the economy. Each producer
i combines its labor and intermediate inputs using the following Cobb-
Douglas technology:

yiτ = eziτ lλi
iτ−1

n

∏
j=1

x
aij
ij,τ−1 (3.2)

where yiτ is the total output of sector i, eziτ is a Hicks-neutral total fac-
tor productivity shock, liτ−1 is the labor input, and xij,τ is intermediate
input produced by sector j. Assuming constant returns-to-scale, the co-
efficients λi and aij represent expenditure shares of the respective input,
and λi + Σj = 1nai j = 1. The collection of ai j coefficients represents the
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production network of this economy, which is defined in the following
definition:

Definition 3.1. Production Network. The production network of the economy
is defined as the directed graph of links aij connecting each industry j to i. The
strength of an edge aij represents the share of intermediate input j in the total
expenditure of industry i. The production network is fully characterized by its
adjacency matrix A, which is the matrix of aij coefficients:

A = [aij]ij. (3.3)

Producer i sells its output either as final consumption ciτ or as an inter-
mediate input to another producer j as xijτ.4 Profits are realized from
these sources of revenues after the deduction of input costs. Producers
maximize these profits.

TFP shocks

Producers are prone to TFP shocks, which they realize and adjust to be-
fore going to the output markets. TFP shocks eziτ are assumed to be ran-
dom walks in logarithms, therefore TFP growth rates ∆ziτ are assumed
to be mean zero i.i.d. processes for each industry i. These shocks are the
only source of stochastics in this model.

Time-to-Build Friction

A crucial feature of the production technology is that the output yiτ

of time period τ is produced by inputs purchased a period earlier: in
τ − 1. This assumption covers all inputs, including labor.5 This friction
is referred to as the time-to-build assumption following Kydland and
Prescott (1982). This friction is stated formally in the following assump-
tion:

4or to itself as j = i is allowed.
5Changing the model to contemporaneous labor sourcing would have no effect on the predictions

used in this paper. In this model, there is a single labor market for all producers each period. The
chosen numeraire is the period real wage wt−1, which is set to 1 and thus drops from log forms. With
contemporaneous sourcing of labor, wt = 1 could be set, resulting in the same equilibrium conditions.
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Assumption 3.1. Time-to-build. Inputs purchased in time period t produce
output in t + 1. Formally, yiτ+1 is produced by liτ and xijτ for ∀ i = 1 . . . n.

Labor input is sourced with a one-period lag similarly to intermediate
inputs.6 This is assumed in Long and Plosser (1983) and followed here.
The intuitive interpretation of this production structure is that once each
input is purchased (including the hiring of labor) the production process
is ready to start, but it takes time before it is finished and ready for sales.

Equilibrium

There are n markets for goods and one for labor per time period τ. Prices
are flexible; competition is perfect in all markets. General equilibrium
is defined by the set of prices, final consumption, intermediate input
purchases, wages, and employment that clear each and every market.

The shock propagation process unfolds in equilibrium in the following
way. Each industry adjusts its output price and quantity in response to
its own TFP shocks. It does not adjust its input demand because the
time-to-build friction means its inputs were already purchased in the
preceding period.7 Thus, the effects of TFP shocks appear only on out-
put markets; hence, they propagate only downstream. The propagation
unfolds in consecutive periods. Input users of each industry i adjust
their input demand by the new price of good i that was adjusted for the
TFP shock in i. The production of these industries is thus affected by
the shock of i. This effect appears in output markets in the next period,
when these customer industries are ready to sell their output. This is the
time when the second-order customers of i adjust their input demands
to the shock of i from two periods before. And this step-by-step adjust-
ment to shock i propagates through all indirect customers of i taking
one step down the supply chain each period. This dynamic propagation
process is formalized and analyzed in detail in the next section.

6This assumption could be modified to contemporaneous labor sourcing without doing any harm to
the main predictions used in the empirical part of this paper. The reason is that the equilibrium wage
rate wt−1 is set to be the numeraire in each period τ. Setting the numeraire to be wτ would offset the
effect of switching from lagged sourcing of labor to contemporaneous sourcing of labor.

7It is true even without the time-to-build friction, because of the constant returns to scale in the
Cobb-Douglas production function. With such a production technology, the optimal output price and
quantity are set such that the product, therefore the nominal revenues, stay constant. And because
inputs are purchased as constant fractions of total revenues, their demand is unchanged by shocks.
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The model provides a definition for GDP. ciτ denotes consumption from
good i in period τ. Because consumption is the only type of final use, ag-
gregate consumption Cτ, defined by equation (3.1), is equivalent to GDP
in this economy. Mostly, for this reason, ciτ is proxied by sector value-
added in the empirical part of this paper, even though value-added is
not exactly equivalent to ciτ in this economy. This choice, therefore, is a
limitation of the current version of this paper.8

3.2.2 Dynamic Propagation

In general equilibrium, industry value-added is a linear combination of
contemporaneous and lagged TFP shocks in logarithms combined by
the production network A. This prediction is formalized by equation
(3.4):

cτ =
∞

∑
h=0

Ahzτ−h + κ, (3.4)

where cτ = [ln ciτ]i and zτ = [ziτ]i are n-long vectors of real value-added
and TFP shocks.9 κ is a vector of constants consisting only of model pa-
rameters. This formula reveals that a TFP shock of any sector can affect
any other sectors through the production network, represented by the
matrix A. This happens because the vector of the shocks zτ is multiplied
by matrix A. Moreover higher order lags of zτ (older vintages of TFP
shocks) are multiplied by higher powers of A. Because A is the adja-
cency matrix of the production network, Ak is a matrix of walk counts
of k-long walks from industry j to industry i. In this context, that means
any aij element of matrix A represents the direct supplier relations ships
from j to i, and any a2

ij element of A2 represents a two-step indirect sup-
plier relationship from j to i. For example, A contains the link of coal
mining → steel production, while A2 contains coal mining → energy
production → steel production. Similarly at higher powers, Ak traces
kth step indirect supplier relationships, such as coal mining → ...(k − 2
intermediate sectors)...→ housing for example.

8The difference between ciτ and real value-added can be seen from the market clearing condition:
yτ = cτ + Axτ , where yτ is real gross output by industry, and xτ is real intermediate use by industry, and
the definition of real value-added: RVAτ = yτ − Axτ−1, which is real gross output less real intermediate
use that produced the given output.

9Derivation of this prediction is included in the Appendix.
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The property that higher powers of matrix A are combining older shocks
captures the idea of dynamic propagation. For example, a shock to coal
mining in τ affects only the value-added of coal mining itself in τ, be-
cause it appears only in coal prices in τ. Although customers of coal,
such as power plants have to accommodate this higher coal price into
their coal demands, they do not pass this cost shock forward into their
output prices and supplied quantities until the next time period τ + 1,
because of the time-to-build friction. This friction ties inputs purchased
in τ to output sold in τ + 1. Therefore the effect of this shock is transmit-
ted to customers one step at a time period. This staggered propagation
of TFP shocks is referred to as ”dynamic propagation” in this paper.

The propagation described here is the same downstream propagation
that happens in other production network models, such as in Acemoglu
et al. (2012). The main difference is that in this economy the propagation
is stretched out in time, taking only one step at a time period. This hap-
pens because of the time-to-build friction. Papers following up on Ace-
moglu et al. (2012), which are most papers in the production networks
literature, are omitting the time-to-build friction, therefore predicting an
instantaneous shock propagation.

This paper aims to measure the length of this time delay, for which I
introduce the notation δ. δ represents ”average propagation time.” It is
called propagation time because it measures the time delay with which
an industry passes through the effects of a TFP shock to its direct cus-
tomers. It is average because it is plausible to assume that there is some
heterogeneity across sectors in propagation times. It is the limitation of
the model, that it assumes a uniform propagation time for each sector.

δ is bounded to be non-negative. One extreme case is, when δ = 0. In
this case, propagation is instantaneous. Consequently, network prop-
agation loses its time dimension, and the model becomes equivalent to
the model of Acemoglu et al. (2012). In the other extreme case, if 1/δ = 0
there is no propagation at all, and equation (3.4) reduces to cτ = zτ.
Thus, if δ is sufficiently large, that provides evidence for the dynamic
propagation of TFP shocks in the production network on annual time
frequencies. On the other hand, if δ is found to be a small number, that
would mean most of the propagation happens within a year. There-
fore, the network propagation of sector-level shocks has little relevance
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to annual frequencies. Therefore, if δ is found to be sufficiently large,
it provides evidence for the dynamic propagation of TFP shocks in the
production network on annual time frequencies. On the other hand, if δ

is found to be a small number, that would mean most of the propagation
happen within a year, therefore the network propagation of sector-level
shocks has little relevance on annual frequencies.

3.2.3 Relevance of Production Network Dynamics

The secondary objective of this paper is to quantify the fraction of aggre-
gate dynamics originating from network propagation of sector shocks.
The macroeconomic aggregate this paper focuses on is GDP, which is
equivalent to total consumption Cτ in the model. It is an aggregate of
industry value-added series defined by equation (3.1): ln Cτ = γ′cτ.
Different industries respond to the same TFP shock with different time
delays depending on how far they are situated in the supply chains of
the shocked sector. In general, the more distant an industry is from the
source of the shock, the later it responds.10 These delayed responses
make the aggregate effect of a sector-level shock fold out over time gen-
erating auto-correlation in GDP. These GDP dynamics can be captured
by the substitution of equation (3.4) into (3.1) that results in the follow-
ing equation:

ln Cτ = γ′
∞

∑
h=0

Ahzτ−h + γ′κ. (3.5)

This equation shows that GDP is also the function of TFP shocks from
different time periods, which implies serial dependence of GDP obser-
vations from different time periods. If the propagation time δ was found
to be comparable in magnitude to the length of a year that would predict
that GDP is correlated with TFP shocks from multiple years. This pre-
diction of GDP auto-correlations is the implication of the dynamic prop-
agation of shocks in the production network. Calculating the fraction

10An industry can be a customer of another industry at multiple orders. For example, the manu-
facturing of chemical products might use oil as a direct input, and also as an indirect input through
energy production, or through even longer chains, when it sources plastic materials. This multiplicity,
however, does not harm conclusions, because all these possibly complex effects of TFP shocks arriving
through different branches of the production networks are all summarized by input prices at each stage
of propagation.
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of observed GDP auto-correlation that can be explained by this network
propagation effect determines the relevance of this propagation process.

3.3 Data

I use three data sets from the U.S. Bureau of Economic Analysis (BEA) in
my empirical analysis. Industry value-added and industry GDP shares
are obtained from the annual GDP by Industry dataset. Industry TFP
data is obtained from the Integrated BEA GDP-BLS11 Productivity Ac-
count. Production network coefficients are derived from Input-Output
Accounts. The estimation sample is annual. It covers the 66 private
industries out of the 71 sector breakdown of the US economy.12 The
sample includes years from 1997 to 2020. Sector TFPs are observable
from 1987. These extra 10 years turn out to be helpful as identification
leverages on lagged values of TFP shocks.13

TFP series are observed as unitless volume indexes. Therefore I trans-
form both value-added and TFP series to growth rates. That transforma-
tion is consistent with the first differences of equations (3.4) and (3.5):

∆cτ =
∞

∑
h=0

Ah∆zτ−h, (3.6)

∆ ln Cτ = γ′∆cτ (3.7)

Input-output coefficients of matrix A are calculated from the industry-
by-industry indirect requirements tables of the annual input-output ta-
bles of the BEA. The 66 × 66 matrix of indirect requirements correspond
to the Leontief-inverse of an economy, which is defined as Γt = (I −
At)−1, such that I is a 66×66 identity matrix. At is referred to as the
industry-by-industry direct requirements table, which can be obtained
by expressing At as a function of the reported Γt matrix using this for-
mula: At = Γ−1

t − I. Finally, I define matrix A as the full sample average
of the annual At matrices, such that: A = 1/T ∑T

t=1 At.
11U.S. Bureau of Labor Statistics.
12A list of the 66 sectors is included in Appendix C.1.
13See Appendix C.2 for details on TFP.
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I need to calculate GDP shares (γi) to be able to empirically evaluate
equation (3.1). I identify γi as the long-term average of the GDP shares of
every industry i. I obtain nominal GDP shares from the GDP by Industry
dataset of the BEA.

3.4 Empirical Strategy

The empirical strategy for determining average propagation time δ is
presented in the first part of this section. The second part discusses the
empirical strategy of the determination of what fraction of the annual
auto-correlation of GDP can be attributed to the network propagation of
sector shocks.

I define δ as the time unit of an unknown time-frequency that divides
a year without a remainder.14 I define a set of sub-annual time periods
by splitting up a year into 1, 2, ... 365 equal parts, which would define
annual, semi-annual, ... daily frequencies. These sub-annual frequencies
define a set of possible values for δ as 12 × {1, 1/2, 1/3 . . . 1/365}. The
multiplier 12 sets the unit of δ in months.

The main empirical challenge of the paper is the identification of a time
interval that is shorter than the unit of the frequency of the observations.
I tackle this challenge with the following strategy: I evaluate the model
at each of these frequencies. I assume that one of these sub-annual time
frequencies is the true frequency of the model, and the primary goal
of the paper is to find that frequency. I predict the observed annual
value-added growth rates using TFP shocks and input-output coeffi-
cients at each of these possible sub-annual frequencies. The sub-annual
frequency that minimizes the sum of the squared errors between model-
predicted and observed annual value-added growth rates is identified
as the most likely time frequency of the model. The unit time length of
this error minimizing time-frequency identifies δ, the average propaga-
tion time.

The key difference between model evaluations at different sub-annual
frequencies is the number of steps the shock propagation process takes

14The reason for the strong assumption that I consider only whole divisors of a year is that the prop-
agation process is discrete, and it is difficult to handle if a propagation step is split by the end of a
year.
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within a year. In the semi-annual setup, it takes two steps, while in the
monthly setup, it makes twelve steps in a year. At each step, the effect
of a shock propagates from suppliers to their direct customers. A two-
step propagation, therefore, spreads the effects of a shock to first and
second-order customers, while a twelve-step propagation reaches first,
second, ... twelfth-order customers within a year. The variation caused
by the different evaluations, therefore, appears in the predicted annual
value-added growth rates. In a semi-annual setup, value-added growth
rates of year t are affected by year t TFP shocks from first and second-
order suppliers. In a monthly setup however value-added growth rates
of year t are affected by year t TFP shocks from first, second ... twelfth-
order suppliers. This difference is reflected in the formulas as different
powers of matrix A, as the ijth element of Ak represents the link from
supplier j to customer i as its kth order customer.

The following paragraphs formalize this idea.

3.4.1 Average Propagation Time

Although δ is the parameter in focus, and it has a meaningful interpreta-
tion as average propagation time, working with δ in the formulas of this
section is inefficient and needlessly complicated at particular points. The
formulas in this section are derived from model equation (3.6) and use
the powers of the network matrix A to track the steps of the dynamic
propagation process. It is more useful to switch from the average prop-
agation time to the number of steps the propagation makes in a year
because that number directly enters the power of A.

Let me define, therefore, average propagation frequency φ = 12/δ, which
is in a reciprocal relationship with δ. φ is counting the number of sub-
annual periods (indexed by τ) within a year.15 For example, if the av-
erage propagation time δ = 2 months, the propagation process takes 4
steps within a year, therefore its average propagation frequency φ = 4.

The following aggregation rules are defined to connect theoretical quan-
15 φ is not simply 1/δ, because δ is defined to be measured in months, while the unit of φ is 1/year.
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tities labeled by asterisks to annual observations indexed by t:

∆ct =
φ−1

∑
s=0

∆c∗φt+s (3.8)

∆zt−⌈h/φ⌉ =
φ−1

∑
s=0

∆z∗
φt+s−h, (3.9)

where ⌈. . .⌉ is the ceiling function.16

The first rule connects observed value-added growth rates ct to their
unobserved theoretical counterparts c∗τ. c∗τ has an unknown time fre-
quency, which can be any whole divisor of a year, as φ ∈ {1, 2, . . . 365}.
By this formula, I assume that sub-annual growth rates sum up to the an-
nually observed growth rates. This assumption is captured by the sum-
mation on the right-hand side. This summation has exactly φ terms, thus
if the model time is quarterly, the summation index s ∈ {0, 1, 2, 3}. Each
sub-annual growth rate has a time index φt + s, because the sub-annual
time indices have to cover φT numbers. For example, if the model time
is quarterly, and the sample ends at year T = 2, the largest index for the
quarterly series is 7, given the two-time scales meet at 0.

The second rule assumes that the annual TFP shocks are representative,
therefore they are imputed for each sub-annual time period within a
year. TFP shocks are defined as the growth rates of observed annual TFP
series.17 The left-hand side of equation (3.9) is a definition of the annual
lags of the TFP shocks using model frequency lag noted by h. For exam-
ple, if the model is quarterly, the unit of h is a quarter. This translation
of sub-annual lags into annual series is formalized by the ceiling func-
tion. The left-hand side states that a TFP shock ∆zt with a sub-annual
frequency time-lag h is equivalent to its annual time-lag from the year
that would contain the sub-annual lag h. A time-lag h = 3, for exam-
ple, points 3 quarters back, for which period the annual observation of
∆zt − 1 is imputed. The right-hand side defines the annual TFP shocks
as the sum of their unobserved sub-annual period components in the
same way as equation (3.8) does for value-added growth rates.

The additivity of growth rates is an approximation that is more accu-
16Rounds a number to the smallest integer that is greater than the number. For example ⌈1.2⌉ = 2.
17The observed TFP process is assumed to be a random walk in logarithms, therefore its growth rates

series is the shock process itself.
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rate for single-digit growth rates. Figure 3.1 shows the value-added
growth rates for the 66 private industries in the US between 1998 and
2020. Each line represents a single industry. Figure 3.2 is the same fig-
ure for TFP growth rates. These figures demonstrate that the majority
of sector growth rates stayed within the single-digit boundaries (shaded
area).

Figure 3.1: Annual Growth Rates of Real value-added by Private Industries.
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Notes: Each line represents one of the 66 industries. Single digit interval [-0.1,0.1] is highlighted by the
shaded area.

Using aggregation rules (3.8), and (3.9) the following proposition con-
verts equation 3.6 to an annual frequency empirical model:

Proposition 3.1. empirical specification 1.

∆ct =
∞

∑
k=0

Bk(A, δ)∆zt−k + ut, (3.10)

such that Bk(A, δ) = Akφ(I − Aφ)(I − A)−1, and δ = 12/φ.

Proof. See Appendix C.4 ■

Here Bk(A, δ) is a series of n × n matrices by each annual time-lag k.

99

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

Figure 3.2: Annual Growth Rates of Total Factor Productivity by Private Industries
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Notes: Each line represents one of the 66 industries. Single digit interval [-0.1,0.1] is highlighted by the
shaded area.

Each of these matrices is a function of the production network A and
the average propagation time δ. I is an n × n identity matrix.

ut is the vector of the estimation errors in year t. It may consist of mea-
surement errors in sector value-added ct, zt−k TFP shocks, or the input-
output coefficients contained in A. It may absorb the possible sector
heterogeneity of propagation time. It can also reflect misspecifications
of the theoretical model. Each of these might be a potential threat to the
identification.

The most concerning is the possible correlation between contemporane-
ous TFP shocks and the error term as a result of measurement error in
TFP. To address this threat, I propose a second empirical specification:

Proposition 3.2. empirical specification 2.

∆ct = βzt +
∞

∑
k=1

Bk(A, δ)∆zt−k + ut. (3.11)

This specification assumes that time lags of TFP shocks are uncorrelated
with the error term. This identifying assumption is formalized by the
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following equation:

Cov [∆zt−k, ut|k > 0] = 0 (3.12)

Identification

δ is identified by non-linear least squares (NLLS) in both of these speci-
fications. It is carried out by pooling the whole sample. These empirical
models are only defined for discrete values of δ putting a constraint on
NLLS. The constrained NLLS estimator of δ is summarized by the fol-
lowing equation:

δ̂NLLS = argmin
1

NT

N,T

∑
i,t=1

u2
it (3.13)

such that δ ∈ [12/1, 12/2, 12/3, . . .]

There are two sources of identifying variation in these empirical designs.
One is the different powers of A at the different sub-annual frequencies.
The other is that at lower frequencies, such as semi-annual, older vin-
tages of annual TFP shocks have more influence on current value-added
because they are multiplied by lower powers of A compared to a higher
frequency setup. Lower powers of matrix A have larger coefficients be-
cause any element ai j of matrix A has a maximum value of 1 and is
non-negative.

3.4.2 Predicted Auto-Correlation of GDP

To determine the aggregate relevance of dynamic network propagation
I calculate predict GDP growth series by the following application of
equation (3.7):

∆ ln Ĉt = γ′∆ĉt(δ̂NLLS), (3.14)

where ĉt(δ̂) are predictions of equation (3.11) evaluated at δ̂. I then cal-
culate the first three auto-correlation coefficients of ∆ ln Ĉt and compare
them to the actually observed auto-correlations of annual GDP growth
within the same time frame as the estimation sample.
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As a benchmark, I also predict GDP growth ∆ ln Ĉt assuming instanta-
neous propagation, δ = 0. Auto-correlation of GDP in this benchmark
is not necessarily zero, because it is also based on actual annual TFP
shocks. Thus, it retains any possible auto-correlation of aggregate TFP
shocks.

3.5 Results

In this section, I present the results in three parts. The first part presents
the results for average propagation time δ. The second part uses the re-
sults for δ to predict annual GDP growth from sector TFP shocks, input-
output coefficients, and industry GDP shares. I compare the first three
auto-correlation coefficients of this predicted GDP growth series to the
same moments of observed GDP growth rates from the same time pe-
riod. I do this to determine the relevance of the dynamic propagation of
sector shocks that is predicted by the model of Long and Plosser (1983).
In the third part, I split the sample into two sub-samples in 2008 and es-
timate the average propagation time for both sub-samples. I do that to
investigate if the average propagation time has changed after the Great
Recession of 2008.

3.5.1 Propagation Time

Table 3.1 shows the results for the propagation time parameter δ in two
specifications. The first specification is based on equation (3.10). It iden-
tifies δ by utilizing both contemporaneous TFP shocks and its lags. This
specification identifies the average propagation time to be 6 months.
This value is the result of a constrained NLLS estimation that allows
only integer numbers as the number of occurrences of propagation peri-
ods within a year. It is difficult to generate meaningful confidence inter-
vals under this integer constraint. As a result, the unconstrained NLLS
results for δ are in brackets, and the standard errors are in parenthesis.
The unconstrained NLLS finds a δ of 6.1 months, which is almost equiv-
alent to the constrained NLLS result. With a 2 standard error interval
around the constrained result of 6 month, the average propagation time
is between 4.6 and 7.4 months.
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The second specification is based on equation (3.11). Only the lagged
values of the TFP shocks are used to identify δ in this model. The con-
temporaneous TFP shock is included with a second parameter, β, which
is identified by OLS. Similarly to the first specification, this specifica-
tion identifies δ as 6. The unconstrained NLLS, however, finds it to be
roughly one month longer: 7.6. This difference between the two speci-
fications might suggest that the bias caused by the inclusion of contem-
poraneous TFP shocks in the first specification introduces a considerable
bias. Considering the constrained result of 6 months, the two-standard
deviation interval for the average propagation time is found to be be-
tween 4.6 and 7.4 months. This is a slight slacker interval, suggesting
a trade-off between the bias of specification 1 and the efficiency cost of
specification 2.

Table 3.1: Propagation Frequency

(1) (2)

δ 6*** 6***
[6.114] [7.607]
(0.702) (0.964)

β 1.728***
(0.109)

VA Observations 1518 1518
TFP Observations 2178 2178
R-squared 0.478 0.580

Notes: *** p<0.01, ** p<0.05, * p<0.1. NLLS point estimates for δ constrained to discrete values of 12 ×
{1, 1/2 . . . 1/365}. Unconstrained NLLS estimates are shown in brackets, and standard errors estimated
by 1000 bootstrap repetitions are shown in parenthesis. OLS estimates for β with robust standard errors
in parenthesis.

These findings suggest that the average propagation time was roughly
half a year in the US economy in the past two and a half decades. This
propagation time is sufficiently slow to consider the network propaga-
tion of sector-level shocks a dynamic process even at annual frequencies.
In other words, it is likely that industry-level shocks exert their impact
on the economy much beyond the time horizon of a year. Consequently,
the network propagation of these socks themselves might generate per-
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sistent macroeconomic aggregates. The next section quantifies the effect
of this aggregate persistence resulting from network propagation.

3.5.2 Network Origins of Aggregate Dynamics

In this section, I take the result of δ̂ = 6 and evaluate equation (3.7)
to predict GDP growth. I then calculate its first three auto-correlation
coefficients to compare them to the same statistics of actually observed
GDP growth rates for the same sample period.

Table 3.2 shows the results for these auto-correlations. The first two
columns show coefficients for actual GDP growth data. The first column
shows results for total GDP, which covers the entirety of the economy,
including all private and public sectors. The first-order auto-correlation
is found to be about 0.32. The second-order coefficient is about -0.03,
which I consider being negligible. The third coefficient, that is the cor-
relation of GDP growth in 3 years’ distance, is -0.167. The small sample
size of only 23 time-series observations between 1998 and 2020 does not
allow for testing if these coefficients are significantly different from 0,
as their standard errors are about 0.2. This is a clear limitation of the
current version of this paper.18

Because the model considers only private sectors, I calculate a private
sector GDP series as a more fitting benchmark. I define private GDP by
subtracting the value-added by public sectors from total GDP. Column
(2) shows auto-correlations of private GDP growth rates. Figures show
that private and total GDP dynamics are very similar.

Columns (3) and (4) show model predictions for δ = 6 and δ = 0. The
model evaluated at δ = 6 replicates auto-correlation patterns of annual
GDP growth rather well. I find that dynamic network propagation with
an average propagation time of 6 months predicts a first-order auto-
correlation of annual GDP growth rates of 0.27. This figure is roughly
80This result provides evidence for the network origins of aggregate dy-
namics.

This conclusion is strengthened by the numbers in column (4). The fi-
nal column shows the auto-correlation coefficients for a model predic-

18For higher order auto-correlations the sample is even smaller because two components of the corre-
lation coefficients have shrinking overlaps.
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tion that assumes δ = 0, which is the instantaneous propagation case.
The only source of GDP dynamics in this model is auto-correlated TFP
shocks. Results show that this model variation produces very few first
and second-order GDP auto-correlations at annual frequencies. This re-
sult confirms that the strong first-order auto-correlation of column (3) is
the result of dynamic network propagation.

The model has, on the other hand, a hard time matching higher-order
auto-correlations. Although the second-order auto-correlations seem
to be indistinguishable from zero, their signs are consistently negative
for observations while positive for model predictions. The third-order
auto-correlations are found to be negative for both of the models, consis-
tent with observations. Their magnitude, however, is better matched by
the instantaneous propagation model than the dynamics. These higher-
order auto-correlations of annual time series connect two and three-year
distant observations. These might be relevant for business cycle frequen-
cies, as they are usually defined as 2–10 year cycles. It is difficult to find
references to studies of such low-frequency auto-correlations.

Table 3.2: Actual and Model Predicted GDP Auto-Correlations

Actual GDP Model Prediction

(1) (2) (3) (4)

Time-lag Total Private Dynamic Instantaneous
(Years) Sectors Propagation Propagation

1 0.319 0.332 0.273 0.009
(0.212) (0.211) (0.215) (0.224)

2 -0.027 -0.008 0.050 0.014
(0.224) (0.224) (0.224) (0.224)

3 -0.167 -0.150 -0.052 -0.207
(0.236) (0.236) (0.235) (0.236)

Notes: Annual auto-correlation coefficients. *** p<0.01, ** p<0.05, * p<0.1, standard errors in parenthe-
sis. Number of observations = 23.
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3.5.3 The Great Recession

The Great Recession of 2008–2009 was the ”most devastating global eco-
nomic crisis since the Great Depression,” according to Grusky et al. (2011).
This brings up the question of whether the Great Recession altered the
average propagation frequency of the US economy. 2008 sits almost ex-
actly in the middle of my sample. This makes me able to split my sample
into two sub-samples that are comparable in size and estimate propaga-
tion frequency separately on both samples.

Results for this comparative exercise are presented in Table 3.3. The first
column shows results for the pre-crisis period of 1998–2007. The average
propagation time is found to be 6 months. This result is equivalent to
the full sample result. The unconstrained NLLS point estimate for δ is
8.4 with a standard error of 1.2. These figures suggest that the average
propagation time before the Great Recession was between 3.6 and 8.4
months.

The second column shows results for the post-2008 period. In this sub-
sample, I find the average propagation time to be 4 months. Column 3
shows the difference between the point estimates of the two sub-samples.
This difference is found to be statistically significant based on the stan-
dard error of this difference. This result suggests that the network prop-
agation of TFP shocks has accelerated after the Great Recession.

Table 3.3: Propagation Frequency Before and After 2008

1998-2007 2008-2019 Difference

δ 6*** 4*** -2***
[8.513] [5.931] [-2.582]
(1.354) (1.055) (0.249)

Observations 726 792 1518
R-squared 0.570 0.608

Notes: *** p<0.01, ** p<0.05, * p<0.1. NLLS point estimates for δ constrained to discrete values of
12×{1, 1/2 . . . 1/365}. Unconstrained NLLS estimates are shown in brackets, standard errors estimated
by 1000 bootstrap repetitions are shown in parenthesis.

106

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

3.6 Conclusion

In this paper, I estimate the average propagation time of the US econ-
omy. The average propagation time is the average time it takes for the
effects of a producer-level shock to get transmitted from one industry
to the other through input-output links. Using annual value-added and
TFP data from a sample of 66 private sectors between 1998 and 2020,
I find that the average propagation time was between 4 and 8 months.
When I split the sample in 2008, the time of the Great Recession, I find
that the average propagation time accelerated to between 2.4 and 5.6
months. These results suggest that the average propagation time was
about a one-half year in the US economy in the past two and a half
decades. This propagation time is sufficiently slow to consider the net-
work propagation of sector-level shocks a dynamic process even at an-
nual frequencies. In other words, TFP shocks exert their effect on the
economy beyond the time horizon of one year. I find that network prop-
agation produces persistent macroeconomic aggregates, accounting for
82% of the first-order auto-correlation of annual GDP growth.

These results provide evidence for the network origins of aggregate dy-
namics. That suggests there is more to be found in the direction of dy-
namic network propagation models within this literature. One possible
extension could be to relax the assumption of a uniform propagation
time. Another possible extension could be the investigation of continu-
ous time models or other types of supplier link level frictions that might
predict similar dynamic patterns as the theory that provides the basis
for this paper.

This finding also suggests that there is more to be explored empirically
about dynamic network propagation. One might be interested in esti-
mating the average propagation time in other economies as well. Or to
extend the exploration to other aggregates or dynamic moments as well.

My findings provide the basis for new opportunities in economic policy.
Grassi and Sauvagnat (2019) shows how to use input-output data and
production network models to draw predictions for different domains
of policy including industrial or fiscal policies. The primary policy gain
from these models is the opportunity for better-targeted interventions.
This paper provides evidence for the dynamic propagation of sector-
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level shocks. This finding extends the targeting opportunities of policy
interventions in the time dimension. This extension is prominently im-
portant in the prevention of welfare-diminishing consequences of eco-
nomic shocks.
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Roberto Sabbatini, Harald Stahl et al., “THE PRICING BEHAVIOUR
OF FIRMS IN THE EURO AREA: NEW SURVEY EVIDENCE,” Work-
ing Paper, 2005.

111

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

Goolsbee, Austan and Chad Syverson, “Fear, lockdown, and diver-
sion: Comparing drivers of pandemic economic decline 2020,” Journal
of public economics, 2021, 193, 104311.

Grassi, Basile and Julien Sauvagnat, “Production networks and eco-
nomic policy,” Oxford Review of Economic Policy, 12 2019, 35 (4), 638–
677.

Grusky, David B, Bruce Western, and Christopher Wimer, The great
recession, Russell Sage Foundation, 2011.

Gupta, Sumedha, Kosali I Simon, and Coady Wing, “Mandated and
voluntary social distancing during the covid-19 epidemic: A review,”
2020.

, Thuy D Nguyen, Felipe Lozano Rojas, Shyam Raman, Byungkyu
Lee, Ana Bento, Kosali I Simon, and Coady Wing, “Tracking Public
and Private Response to the COVID-19 Epidemic: Evidence from State
and Local Government Actions,” Technical Report, National Bureau of
Economic Research 2020.

Hale, Thomas, Sam Webster, Anna Petherick, Toby Phillips, and Beat-
riz Kira, “Oxford COVID-19 Government Response Tracker,” 2020.

Haug, Nils, Lukas Geyrhofer, Alessandro Londei, Elma Dervic,
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Appendix A

Appendix for Chapter 1

A.1 Policy Pairs

Table A.1: Percent of Countries Implementing a Policy Pair within 3 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 43.12 44.44 38.53 23.15 24.07 10.00
Events 43.12 53.70 26.61 15.74 21.30 10.00
Gatherings 44.44 53.70 38.89 29.91 27.10 24.00
Workplaces 38.53 26.61 38.89 40.74 37.96 40.00
Stay Home 23.15 15.74 29.91 40.74 48.60 42.42
Movement 24.07 21.30 27.10 37.96 48.60 43.43
Transport 10.00 10.00 24.00 40.00 42.42 43.43

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.
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Table A.2: Percent of Countries Implementing a Policy Pair within 5 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 66.97 58.33 57.80 39.81 41.67 26.00
Events 66.97 64.81 44.95 34.26 34.26 23.00
Gatherings 58.33 64.81 52.78 44.86 44.86 35.00
Workplaces 57.80 44.95 52.78 52.78 50.00 48.00
Stay Home 39.81 34.26 44.86 52.78 60.75 51.52
Movement 41.67 34.26 44.86 50.00 60.75 56.57
Transport 26.00 23.00 35.00 48.00 51.52 56.57

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.

Table A.3: Percent of Countries Implementing a Policy Pair within 7 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

School Closure 76.15 67.59 71.56 50.00 53.70 39.00
Events Cancelled 76.15 70.37 55.96 44.44 49.07 29.00
Gathering Limit 67.59 70.37 65.74 57.94 58.88 44.00
Workplace Closure 71.56 55.96 65.74 62.96 60.19 54.00
Stay Home Order 50.00 44.44 57.94 62.96 67.29 58.59
Movement Restricted 53.70 49.07 58.88 60.19 67.29 64.65
Public Transport Closed 39.00 29.00 44.00 54.00 58.59 64.65

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.

Table A.4: Percent of Countries Implementing a Policy Pair within 9 or Less Days.

Place Restriction Mobility Restriction

School Event Gather Work Stay H Move Transp’t

Schools 85.32 75.93 77.98 55.56 60.19 49.00
Events 85.32 74.07 66.06 52.78 56.48 41.00
Gatherings 75.93 74.07 72.22 65.42 63.55 53.00
Workplaces 77.98 66.06 72.22 70.37 68.52 65.00
Stay Home 55.56 52.78 65.42 70.37 70.09 64.65
Movement 60.19 56.48 63.55 68.52 70.09 70.71
Transport 49.00 41.00 53.00 65.00 64.65 70.71

Coloring: Dark yellow ≥ 66.7%, light yellow ≥ 50%.
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Table A.5: Number of Countries Implementing both Policies of a Policy Pair.

School Event Gather Work Transp’t Stay H Move

Schools 109 108 109 100 108 108
Events 109 108 109 100 108 108
Gatherings 108 108 108 100 107 107
Workplaces 109 109 108 100 108 108
Transport 100 100 100 100 99 99
Stay Home 108 108 107 108 99 107
Movement 108 108 107 108 99 107

Notes

A.2 Timing of Distancing Policy Interventions by Coun-
try

Figures A.1 and A.2 show the time of the first distancing interventions
relative to the day of the first reported COVID-19 case. These figures
demonstrate that there is a sufficiently large variation in the adoption
times of distancing interventions to make their effects feasible to identify
with panel econometric methods. It is also apparent from the figures that
many countries implemented their first distancing interventions before
they even had a confirmed COVID case within their borders.
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Figure A.1: First Place Restrictions by Countries

Early Adopters Late Adopters
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Figure A.2: First Mobility Restrictions by Countries

Early Adopters Late Adopters

A.3 Validation of the Calculation of Reproduction Num-
bers

Here I compare my definition for Rt to an estimation of Rt using the
methodology of Cori et al. (2013). It is a parametric calculation for which
I use the following parameters: mean SI = 6, standard deviation of SI =
3, aimed posterior CV = .3, length of time-steps = 7, number of steps
estimated = 1, posterior mean=5, posterior st.d. = 5. I input new case
incidence data for each country from Wahltinez et al. (2020). For my
definition of Rt I calculate RI

t first, than normalize it by its within country
mean and multiply it by the within country mean of Cori et al. (2013).1

1This renormalization does not harm my conclusions as it is based on Rt ∝ RI
t .
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Figure A.3: Validation of Rt by Cori et al. (2013) – Germany
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Figure A.4: Validation of Rt by Cori et al. (2013) – Italy
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Figure A.5: Validation of Rt by Cori et al. (2013) – France

23
/0

2

04
/0

3

14
/0

3

24
/0

3

03
/0

4

13
/0

4

23
/0

4

0
1

3

5

7

9

11

13

15
R

t

this study
Cori et al. (2013)
95% interval

Figure A.6: Validation of Rt by Cori et al. (2013) – Spain
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Figure A.7: Validation of Rt by Cori et al. (2013) – UK
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A.4 COVID-19 Aggregated Mobility Research Dataset

Description The Google COVID-19 Aggregated Mobility Research Dataset
contains anonymized mobility flows aggregated over users who have
turned on the Location History setting, which is off by default. This is
similar to the data used to show how busy certain types of places are
in Google Maps — helping identify when a local business tends to be
the most crowded. The dataset aggregates flows of people from region
to region, which is here further aggregated at the level of NUTS3 areas,
weekly.

To produce this dataset, machine learning is applied to logs data to auto-
matically segment it into semantic trips https://www.nature.com/articles/s41467-
019-12809-y. To provide strong privacy guarantees, all trips were anonymized
and aggregated using a differentially private mechanism https://research.google/pubs/pub48778/
to aggregate flows over time (see https://policies.google.com/technologies/anonymization).
This research is done on the resulting heavily aggregated and differ-
entially private data. No individual user data was ever manually in-
spected, only heavily aggregated flows of large populations were han-
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dled.

All anonymized trips are processed in aggregate to extract their origin
and destination location and time. For example, if users traveled from
location a to location b within time interval t, the corresponding cell
(a, b, t) in the tensor would be n ± err, where err is Laplacian noise. The
automated Laplace mechanism adds random noise drawn from a zero
mean Laplace distribution and yields (ϵ, δ)-differential privacy guar-
antee of ϵ = 0.66 and δ = 2.1 × 10 − 29 per metric. Specifically, for
each week W and each location pair (A, B), we compute the number
of unique users who took a trip from location A to location B during
week W. To each of these metrics, we add Laplace noise from a zero-
mean distribution of scale 1/0.66. We then remove all metrics for which
the noisy number of users is lower than 100, following the process de-
scribed in https://research.google/pubs/pub48778/, and publish the
rest. This yields that each metric we publish satisfies (ϵ, δ)-differential
privacy with values defined above. The parameter ϵ controls the noise
intensity in terms of its variance, while δ represents the deviation from
pure ϵ-privacy. The closer they are to zero, the stronger the privacy guar-
antees.

Limitations These results should be interpreted in light of several im-
portant limitations. First, the Google mobility data is limited to smart-
phone users who have opted in to Google’s Location History feature,
which is off by default. These data may not be representative of the pop-
ulation as whole, and furthermore their representativeness may vary by
location. Importantly, these limited data are only viewed through the
lens of differential privacy algorithms, specifically designed to protect
user anonymity and obscure fine detail. Moreover, comparisons across
rather than within locations are only descriptive since these regions can
differ in substantial ways.

Data Availability The Google COVID-19 Aggregated Mobility Research
Dataset used for this study is available with permission from Google
LLC.
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A.5 Covariates of the First Stage

Table A.6: Effect of News Components in the First Stage

Cases t−1 -0.005
(0.003)

∑7
s=2Cases t−s -0.070***

(0.016)
∑14

s=8Cases t−s -0.067***
(0.023)

Deaths t−1 -0.266
(0.183)

∑7
s=2Deaths t−s -2.000**

(0.811)
∑14

s=8Deaths t−s -3.029***
(0.885)

Neighbors’ Cases t−1 0.015
(0.016)

∑7
s=2N’s’ Cases t−s -0.055*

(0.032)
∑14

s=8N’s’ Cases t−s 0.180***
(0.054)

Neighbors’ Deaths t−1 -0.895*
(0.457)

∑7
s=2N’s’ Deaths t−s -3.400**

(1.441)
∑14

s=8N’s’ Deaths t−s -3.117*
(1.844)

Neighbors’ Place R’s t−1 0.343***
(0.102)

∑7
s=2N’s’ Place R’s t−s -0.278

(0.199)
∑14

s=8N’s’ Place R’s t−s -0.046
(0.241)

Neighbors’ Mobility R’s t−1 -0.130
(0.083)

∑7
s=2N’s’ Mobility R’s t−s -0.598***

(0.108)
∑14

s=8N’s’ Mobility R’s t−s 0.435**
(0.167)

Observations 50,036
R-squared 0.685

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors clustered at country level in parenthesis. Depen-
dent variable is changes in activity relative to a five week benchmark period from before the epidemic.
Homeland Cases and Deaths are reports from day t − 1 published on day t in country i, Neighbors’
Cases and Deaths are sum of reports from countries sharing a land border with i. All reports measured
in case per 10 000 citizens.
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A.6 Second Stage Daily Event Study

Figure A.8: Effects of Distancing Policies on the Reproduction Number on the Same
Day
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0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

days relative to intervention

θ̂
co

ef
fic

ie
nt

s

earlier
days

-1
w.

later
days

Mobility Restriction

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

days relative to intervention

θ̂
co

ef
fic

ie
nt

s

earlier
days

-1
w.

later
days

126

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

A.7 Sensitivity to latency parameter

Table A.7: Effect of Distancing Policies on Reproduction Number l days later.

(1) (2) (3) (4)
latency parameter l 7 9 11 13

Place Restrictions t−4 -0.274* -0.315** -0.309** -0.271**
(0.149) (0.144) (0.149) (0.135)

Mobility Restriction t -0.568*** -0.556*** -0.552*** -0.580***
(0.128) (0.121) (0.127) (0.133)

Voluntary Activity t 0.138*** 0.143*** 0.142*** 0.144***
(0.042) (0.043) (0.047) (0.048)

Observations 26,151 26,151 26,151 26,151
Countries 109 109 109 109
Preventive Policies • • • •
Country and Day FE’s • • • •

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parenthesis allowing for country level clus-
tering. Dependent variable is instantaneous reproduction number RI

i,t+l . • = included ◦ = excluded.
Controlled for daily weather conditions and weekly seasonality.
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Appendix B

Appendix for Chapter 2

B.1 COVID-19 Aggregated Mobility Research Dataset

Description The Google COVID-19 Aggregated Mobility Research Dataset
contains anonymized mobility flows aggregated over users who have
turned on the Location History setting, which is off by default. This is
similar to the data used to show how busy certain types of places are
in Google Maps — helping identify when a local business tends to be
the most crowded. The dataset aggregates flows of people from region
to region, which is here further aggregated at the level of NUTS3 areas,
weekly.

To produce this dataset, machine learning is applied to logs data to au-
tomatically segment it into semantic trips

https://www.nature.com/articles/s41467-019-12809-y. To provide strong
privacy guarantees, all trips were anonymized and aggregated using a
differentially private mechanism https://research.google/pubs/pub48778/
to aggregate flows over time (see

https://policies.google.com/technologies/anonymization). This research
is done on the resulting heavily aggregated and differentially private
data. No individual user data was ever manually inspected, only heav-
ily aggregated flows of large populations were handled.

All anonymized trips are processed in aggregate to extract their origin
and destination location and time. For example, if users traveled from
location a to location b within time interval t, the corresponding cell
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(a, b, t) in the tensor would be n ± err, where err is Laplacian noise. The
automated Laplace mechanism adds random noise drawn from a zero
mean Laplace distribution and yields (ϵ, δ)-differential privacy guar-
antee of ϵ = 0.66 and δ = 2.1 × 10 − 29 per metric. Specifically, for
each week W and each location pair (A, B), we compute the number
of unique users who took a trip from location A to location B during
week W. To each of these metrics, we add Laplace noise from a zero-
mean distribution of scale 1/0.66. We then remove all metrics for which
the noisy number of users is lower than 100, following the process de-
scribed in https://research.google/pubs/pub48778/, and publish the
rest. This yields that each metric we publish satisfies (ϵ, δ)-differential
privacy with values defined above. The parameter ϵ controls the noise
intensity in terms of its variance, while δ represents the deviation from
pure ϵ-privacy. The closer they are to zero, the stronger the privacy guar-
antees.

Limitations These results should be interpreted in light of several im-
portant limitations. First, the Google mobility data is limited to smart-
phone users who have opted in to Google’s Location History feature,
which is off by default. These data may not be representative of the pop-
ulation as whole, and furthermore their representativeness may vary by
location. Importantly, these limited data are only viewed through the
lens of differential privacy algorithms, specifically designed to protect
user anonymity and obscure fine detail. Moreover, comparisons across
rather than within locations are only descriptive since these regions can
differ in substantial ways.

Data Availability The Google COVID-19 Aggregated Mobility Research
Dataset used for this study is available with permission from Google
LLC.
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B.2 First Stage Results for Covariates

Table B.1: First Stage Results for Covariates – 1

(1) (2) (3)
VARIABLES

Cases t−1 -0.119 -0.069 -0.224
(0.636) (0.596) (0.512)

Cases t−2 -0.416 -0.354 -0.051
(0.753) (0.717) (0.658)

Deaths t−1 -122.590** -125.633*** -108.987***
(45.508) (40.947) (37.613)

Deaths t−2 54.836 59.764* 61.981**
(34.975) (33.427) (27.370)

Cases t−1 at 1.966 2.044 5.517
Neighbors (4.821) (4.207) (4.573)

Cases t−2 at 25.366*** 24.222*** 17.958***
Neighbors (6.270) (6.260) (6.075)

Deaths t−1 at -1,625.307*** -1,538.692*** -1,175.645***
Neighbors (356.618) (346.804) (294.015)

Deaths t−2 at 203.146 201.314 214.978
Neighbors (315.422) (308.279) (269.606)

Fiscal spending -0.004* -0.003 -0.004
(0.002) (0.002) (0.002)

Share of vaccinated t−2 3.798 7.963 4.707
(14.339) (13.505) (14.963)

Travel Cont’s: Screening 6.730** 7.250*** 7.329***
(2.510) (2.299) (2.347)

Quarantine 0.005 0.901 0.914
(2.532) (2.392) (2.353)

Trageted Ban -0.957 0.139 0.611
(2.956) (2.785) (2.729)

Total Ban -9.701*** -7.600** -5.435*
(3.585) (3.210) (2.976)

Observations 2,870 2,870 2,870
R-squared 0.716 0.728 0.754
Country FE’s • • •
Extensity ◦ • •
Intensity ◦ ◦ •
Countries 41 41 41

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within weeks. •
– included, ◦ – excluded.
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Table B.2: First Stage Results for Covariates – 2

(1) (2) (3)
VARIABLES

Income Support (≤50%) -3.882 -3.449 -1.857
(3.023) (3.237) (2.846)

Income Support (¿50%) -2.302 -1.987 -0.869
(2.464) (2.582) (2.359)

Debt Reief: Narrow -1.628 -1.430 -2.346
(1.643) (1.691) (1.482)

Broad -2.197 -2.078 -2.544
(2.136) (2.133) (1.844)

Info’ Camp’n: Urging 1.371 1.243 0.942
(1.709) (1.580) (1.618)

Coordinated -0.435 1.318 1.719
(2.229) (1.893) (1.862)

Testing: Symptoms + else -0.200 0.056 -0.629
(1.275) (1.220) (1.281)

w/ Symptoms 3.681* 2.714 2.369
(1.896) (1.733) (1.864)

Open for All 7.147*** 6.017*** 5.739**
(2.169) (2.005) (2.169)

Contact Tracing: Limited -1.306 -1.038 -0.913
(1.598) (1.368) (1.201)

Comprehensive -0.649 -0.606 -1.731
(1.427) (1.240) (1.214)

Masks: recommended 1.094 1.531 1.843
(2.333) (2.430) (2.059)

specific places 3.231* 3.078* 3.197*
(1.759) (1.818) (1.588)

public places 4.680** 4.615** 4.840***
(1.953) (1.977) (1.744)

everywhere 3.760 5.029** 5.805**
(2.287) (2.451) (2.237)

Observations 2,870 2,870 2,870
R-squared 0.716 0.728 0.754
Country FE’s • • •
Extensity ◦ • •
Intensity ◦ ◦ •
Countries 41 41 41

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within weeks. •
– included, ◦ – excluded.
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Table B.3: First Stage Results for Covariates – 3

(1) (2) (3)
VARIABLES

Vaccination: 1 group -1.403 -1.466 -1.944
(1.838) (1.823) (1.518)

2 groups 1.216 1.561 1.725
(1.387) (1.295) (1.305)

3 groups 1.359 1.097 2.827*
(1.324) (1.297) (1.505)

3+ groups 5.635 3.814 7.857**
(3.833) (3.262) (3.810)

universal 7.104 4.828 5.007
(6.505) (6.063) (6.852)

Elderly Protection: Recomm’ -1.674 -1.403 -2.794
(1.842) (1.884) (1.730)

Narrow -6.189*** -4.772*** -4.987***
(1.961) (1.763) (1.495)

Extensive -8.027*** -5.987*** -4.297**
(2.183) (2.145) (1.699)

Mean Temperature -0.098 -0.106 -0.124**
(0.075) (0.065) (0.060)

Mean Humidity 0.089** 0.084** 0.079**
(0.035) (0.035) (0.038)

Total Rainfall -0.029 -0.028 -0.021
(0.018) (0.018) (0.017)

Total Snowfall -0.000 0.000 -0.000
(0.000) (0.000) (0.000)

Observations 2,870 2,870 2,870
R-squared 0.716 0.728 0.754
Country FE’s • • •
Extensity ◦ • •
Intensity ◦ ◦ •
Countries 41 41 41

Notes: *** p<0.01, ** p<0.05, * p<0.1, standard errors in parentheses allowed to cluster within weeks. •
– included, ◦ – excluded.

132

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

133

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

B
.3

Se
co

nd
St

ag
e

R
es

ul
ts

fo
r

C
ov

ar
ia

te
s

Ta
bl

e
B.

4:
Se

co
nd

St
ag

e
R

es
ul

ts
fo

r
C

ov
ar

ia
te

s
–

1

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

in
du

st
ri

al
m

an
uf

’in
g

co
ns

-
re

ta
il

C
PI

PP
I

un
em

pl
oy

m
en

t
pr

od
uc

ti
on

pr
od

uc
ti

on
tr

uc
ti

on
tr

ad
e

m
an

uf
’in

g
ra

te

C
as

es
t−

1
0.

00
7*

**
0.

00
7*

**
0.

00
3

0.
00

2
-0

.0
00

**
*

0.
00

2*
*

0.
00

1
(0

.0
02

)
(0

.0
02

)
(0

.0
05

)
(0

.0
03

)
(0

.0
00

)
(0

.0
01

)
(0

.0
01

)
D

ea
th

s
t−

1
-0

.0
29

-0
.0

57
-0

.0
83

0.
12

1*
0.

00
2

-0
.0

72
**

*
-0

.0
19

*
(0

.0
72

)
(0

.0
86

)
(0

.1
33

)
(0

.0
60

)
(0

.0
04

)
(0

.0
10

)
(0

.0
09

)
C

as
es

t−
1

at
0.

28
3*

*
0.

40
2*

**
0.

07
5

0.
25

9*
*

-0
.0

22
**

*
0.

00
6

0.
04

6
N

ei
gh

bo
rs

(0
.0

89
)

(0
.0

85
)

(0
.2

58
)

(0
.1

02
)

(0
.0

06
)

(0
.0

32
)

(0
.0

34
)

D
ea

th
s

t−
1

at
-5

.0
05

-6
.6

87
-3

.3
68

-5
.0

61
-0

.0
98

0.
79

2*
-1

.1
60

*
N

ei
gh

bo
rs

(3
.3

71
)

(3
.7

11
)

(6
.8

12
)

(2
.9

30
)

(0
.1

99
)

(0
.3

77
)

(0
.5

07
)

Fi
sc

al
Sp

en
di

ng
-0

.0
00

-0
.0

08
-0

.0
50

**
*

-0
.0

01
0.

00
0

0.
00

0
-0

.0
05

**
*

(0
.0

00
)

(0
.0

05
)

(0
.0

12
)

(0
.0

04
)

(0
.0

00
)

(0
.0

01
)

(0
.0

01
)

In
ve

st
m

en
ti

n
0.

35
0

0.
34

6
2.

25
6

1.
66

3
-0

.0
10

-0
.0

78
0.

24
1

V
ac

ci
ne

s
(0

.6
14

)
(0

.4
57

)
(1

.8
25

)
(1

.1
01

)
(0

.0
53

)
(0

.1
23

)
(0

.2
42

)
In

ve
st

m
en

ti
n

0.
07

6*
*

0.
06

6*
*

0.
33

2*
**

-0
.0

16
-0

.0
02

-0
.0

02
0.

02
5*

*
H

ea
lt

hc
ar

e
(0

.0
26

)
(0

.0
26

)
(0

.0
81

)
(0

.0
32

)
(0

.0
03

)
(0

.0
08

)
(0

.0
11

)
In

te
rn

at
io

na
lT

ra
ve

lC
on

tr
ol

s
Sc

re
en

in
g

6.
69

3*
*

6.
73

8*
*

4.
38

1
11

.7
43

**
-0

.1
07

-1
.9

45
**

-1
.0

73
**

*
(2

.1
79

)
(2

.4
46

)
(5

.3
29

)
(4

.8
65

)
(0

.1
37

)
(0

.6
85

)
(0

.2
11

)
Q

ua
ra

nt
in

e
1.

07
6

0.
84

2
7.

21
3

5.
26

9
-0

.2
46

**
-2

.4
79

**
*

-0
.3

43
(1

.7
38

)
(2

.0
97

)
(5

.7
03

)
(2

.9
38

)
(0

.0
86

)
(0

.7
35

)
(0

.1
89

)
Ta

rg
et

ed
Ba

n
-1

.2
26

-1
.8

90
14

.4
20

*
5.

68
1*

-0
.3

99
**

*
-3

.4
11

**
*

0.
30

2
(1

.2
62

)
(1

.4
36

)
(7

.2
38

)
(2

.9
22

)
(0

.1
02

)
(0

.7
51

)
(0

.3
38

)
To

ta
lB

an
-4

.8
82

**
-5

.7
19

**
19

.8
37

**
3.

21
1

-0
.3

75
**

-2
.9

55
**

*
0.

44
4

(2
.0

27
)

(2
.2

04
)

(7
.3

52
)

(3
.3

11
)

(0
.1

32
)

(0
.7

86
)

(0
.5

64
)

N
ot

es
:*

**
p
<

0.
01

,*
*

p
<

0.
05

,*
p
<

0.
1,

st
an

da
rd

er
ro

rs
in

pa
re

nt
he

se
s

al
lo

w
ed

to
cl

us
te

r
w

it
hi

n
m

on
th

s.
•

–
in

cl
ud

ed
,◦

–
ex

cl
ud

ed
.

134

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

Ta
bl

e
B.

5:
Se

co
nd

St
ag

e
R

es
ul

ts
fo

r
C

ov
ar

ia
te

s
–

2

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

in
du

st
ri

al
m

an
uf

’in
g

co
ns

-
re

ta
il

C
PI

PP
I

un
em

pl
oy

m
en

t
pr

od
uc

ti
on

pr
od

uc
ti

on
tr

uc
ti

on
tr

ad
e

m
an

uf
’in

g
ra

te

In
co

m
e

Su
pp

or
tP

ro
gr

am
s

≤
50

%
0.

48
6

0.
63

5
-0

.8
49

0.
96

5
-0

.2
85

**
0.

04
5

0.
44

9*
*

(3
.0

33
)

(2
.6

91
)

(2
.8

62
)

(2
.4

85
)

(0
.0

86
)

(0
.2

00
)

(0
.1

68
)

<
50

%
-0

.0
91

0.
27

7
-0

.3
40

4.
43

2
-0

.2
83

**
-0

.3
44

0.
52

2
(2

.4
13

)
(2

.0
32

)
(2

.5
44

)
(2

.4
32

)
(0

.1
06

)
(0

.3
92

)
(0

.2
95

)
D

eb
tR

el
ie

f
N

ar
ro

w
-0

.2
53

0.
27

1
1.

81
0

-0
.0

47
0.

11
6

0.
24

0
0.

59
0*

(0
.5

71
)

(0
.7

29
)

(2
.1

88
)

(1
.3

24
)

(0
.1

03
)

(0
.4

27
)

(0
.2

80
)

Br
oa

d
-1

.5
10

-1
.2

78
6.

13
7

0.
13

1
-0

.0
75

0.
20

8
0.

75
3*

(0
.9

93
)

(1
.2

17
)

(3
.6

14
)

(1
.8

90
)

(0
.1

47
)

(0
.3

83
)

(0
.3

36
)

Pu
bl

ic
In

fo
rm

at
io

n
C

am
pa

ig
ns

O
ffi

ci
al

s
U

rg
in

g
-2

.0
68

*
-2

.1
90

**
1.

54
7

-0
.1

75
-0

.0
79

1.
28

6*
*

0.
06

9
(1

.0
12

)
(0

.8
28

)
(2

.5
63

)
(0

.8
31

)
(0

.1
23

)
(0

.5
43

)
(0

.4
76

)
C

oo
rd

in
at

ed
1.

40
1

2.
21

3
-2

.1
26

-0
.0

98
-0

.1
09

0.
72

8
-0

.0
32

(2
.1

96
)

(2
.2

20
)

(3
.7

82
)

(0
.9

66
)

(0
.0

96
)

(0
.7

28
)

(0
.4

03
)

O
bs

er
va

ti
on

s
28

8
28

8
18

9
27

0
28

8
25

2
27

9
R

-s
qu

ar
ed

0.
67

0
0.

68
7

0.
68

3
0.

78
4

0.
88

7
0.

83
8

0.
81

0
C

ou
nt

ry
FE

•
•

•
•

•
•

•
C

ou
nt

ri
es

32
32

21
30

32
28

31

N
ot

es
:*

**
p
<

0.
01

,*
*

p
<

0.
05

,*
p
<

0.
1,

st
an

da
rd

er
ro

rs
in

pa
re

nt
he

se
s

al
lo

w
ed

to
cl

us
te

r
w

it
hi

n
m

on
th

s.
•

–
in

cl
ud

ed
,◦

–
ex

cl
ud

ed
.

135

C
E

U
eT

D
C

ol
le

ct
io

n



10.14754/CEU.2022.06

B.4 Historical Decompositions

Figure B.1: Historical Decomposition of Industrial Production
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Figure B.2: Historical Decomposition of Manufacturing Production
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Figure B.3: Historical Decomposition of Construction Output
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Figure B.4: Historical Decomposition of Retail Trade
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Appendix C

Appendix for Chapter 3

C.1 List of Industries

1. Farms

2. Forestry, fishing, and related activities

3. Oil and gas extraction

4. Mining, except oil and gas

5. Support activities for mining

6. Utilities

7. Construction

8. Wood products

9. Nonmetallic mineral products

10. Primary metals

11. Fabricated metal products

12. Machinery

13. Computer and electronic products

14. Electrical equipment, appliances, and com-
ponents

15. Motor vehicles, bodies and trailers, and
parts

16. Other transportation equipment

17. Furniture and related products

18. Miscellaneous manufacturing

19. Food and beverage and tobacco products

20. Textile mills and textile product mills

21. Apparel and leather and allied products

22. Paper products

23. Printing and related support activities

24. Petroleum and coal products

25. Chemical products

26. Plastics and rubber products

27. Wholesale trade

28. Motor vehicle and parts dealers

29. Food and beverage stores

30. General merchandise stores

31. Other retail

32. Air transportation

33. Rail transportation

34. Water transportation

35. Truck transportation

36. Transit and ground passenger transporta-
tion

37. Pipeline transportation

38. Other transportation and support activities

39. Warehousing and storage

40. Publishing industries, except internet (in-
cludes software)

41. Motion picture and sound recording indus-
tries

42. Broadcasting and telecommunications

43. Data processing, internet publishing, and
other information services

44. Federal Reserve banks, credit intermedia-
tion, and related activities

45. Securities, commodity contracts, and invest-
ments
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46. Insurance carriers and related activities

47. Funds, trusts, and other financial vehicles

48. Housing

49. Other real estate

50. Rental and leasing services and lessors of in-
tangible assets

51. Legal services

52. Computer systems design and related ser-
vices

53. Miscellaneous professional, scientific, and
technical services

54. Management of companies and enterprises

55. Administrative and support services

56. Waste management and remediation ser-
vices

57. Educational services

58. Ambulatory health care services

59. Hospitals

60. Nursing and residential care facilities

61. Social assistance

62. Performing arts, spectator sports, museums,
and related activities

63. Amusements, gambling, and recreation in-
dustries

64. Accommodation

65. Food services and drinking places

66. Other services, except government

C.2 TFP Data

TFP series are available for a slightly less refined breakdown of 61 pri-
vate sectors. For example, I observe TFP shocks for the real estate sector,
while value-added is observed separately for housing and other real es-
tate. I assume that the TFP shocks in the parent industry represent the
TFP shock of its sub-industries. That means I impute the TFP of the
higher-level aggregates to all of its breakdowns. The following table
lists these industries.

Table C.1: Correspondence of 61 and 66 Industry Breakdowns

61 industries 66 industries

Retail trade Motor vehicle and parts dealers
Food and beverage stores
General merchandise stores
Other retail

Real estate Housing
Other real estate

Hospitals, and nursing,... Hospitals
...and residential care facilities Nursing and residential care facilities
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C.3 Data Description

The U.S. Bureau of Labor Statistics produces the official industry-level
total factor productivity (TFP) measures for the United States
(www.bls.gov/productivity). The official TFP measures differ from the
integrated TFP measures due to differences in output concept and cov-
erage. The official TFP indexes are constructed using a sectoral output
concept rather than gross output. Sectoral output measures are calcu-
lated by subtracting from gross output those transactions that occur be-
tween establishments within the same industry, creating a measure of
the value of goods and services consumed outside the industry. The
official TFP indexes are not fully consistent with official GDP statistics;
however, by using the sectoral output approach they eliminate double
counting which reduces the influence of vertical integration on the in-
dustry estimates of TFP growth. The integrated TFP measures, on the
other hand, are fully consistent with official GDP statistics; however,
they are constructed using a gross rather than a sectoral output con-
cept. Additionally, GDP statistics that conform to international guide-
lines include measures of economic activities for which there are no
market prices. Such activities are excluded from official productivity
statistics because output is generally not measured independently from
inputs. There is an inherent tradeoff between having a set of accounts
that add up to the best estimate of GDP and a set of accounts that gen-
erate the best productivity measures by industry. For more detail on the
relative strengths and weaknesses of the official and integrated statis-
tics, see Fleck, S., Rosenthal, S., Russell, M., Strassner, E., & Usher, L.
(2012). A Prototype BEA/BLS Industry-Level Production Account for
the United States, which also appears in D. W. Jorgenson, J. S. Lande-
feld, & P. Schreyer, Measuring Economic Sustainability and Progress.

Complete information of the methods and data underlying these mea-
sures can be found be at the Productivity Handbook of Methods. Infor-
mation is also available on the BLS Productivity Website
(http://www.bls.gov/productivity). For further information, contact
the Division of Major Sector Productivity. Source: Bureau of Labor Statis-
tics, Office of Productivity and Technology.
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C.4 Proof of Proposition 3.1

Proof. Applying aggregation rules (3.8) and (3.9) to (3.6) yields:

∆ct =
∞

∑
k=0

[
(k+1)φ−1

∑
h=k/φ

Ah

]
∆zt−k

This can be simplified by the introduction of Bk(A, δ), such that δ =

12/φ:

Bk(A, δ) =
(k+1)φ−1

∑
h=k/φ

Ah =
(

Akφ − A(k+1)φ
)
(I − A)−1

= Akφ(I − Aφ)(I − A)−1.

■

C.5 Derivation of Model Predcitions

Each firm i equipped by production technology of equation (3.2) has the
following profit maximization exercise to solve in each period τ:

max
liτ ,xijτ

Profitiτ =
pi,τ+1

ρ
yi,τ+1 − wτliτ −

n

∑
j=1

pjτxijτ, (C.1)

where ρ is the period discount factor. Long and Plosser (1983) show that
this discount factor is a constant.

Assuming rational expectations, and E[ezi,τ+1] = 1, the following input
demand functions maximize the profit of producer i in τ:

liτ = pi,τ+1
λiyi,τ+1

ρwτ
, (C.2)

xijτ = pi,τ+1
aijyi,τ+1

ρpjτ
. (C.3)
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Plugging (C.2) and (C.3) into (3.2) yields the following supply equation
in logarithms after rearrangements:

ln pi,τ+1 = −zi,τ+1 + λi ln wτ

n

∑
j=1

aij ln pjτ + ln K−1
i (C.4)

Such that Ki ≡ λ
λi
i ∏n

j=1 a
aij
ij /ρ.

The representative consumer maximizes its utility for each period inde-
pendently because it has no means of wealth accumulation. Therefore it
spends all of its income earned as wages. Therefore its demand for each
good i is the following:

ciτ = γi
wτ

piτ
, (C.5)

given the labor endowment of the consumer is fixed, it is normalized to
1.

Taking logarithms of equation (C.5) and rearrangement to ln piτ yields:

ln piτ = ln γi + ln wτ − ln ciτ (C.6)

Market clearing sets prices of demand and supply equal, allowing the
substitution for ln piτ in the price equation (C.4) using equation (C.6).
This substitution yields the following equation in vector notation after
rearrangements and shifted backward one period:

cτ = Acτ−1 + zτ + k, (C.7)

where k is a function of model parameters, therefore a constant. This
equation shows that the vector of value-added series follows an AR(1)
process with the TFP process standing in as innovations. Using the lag
operator (L) equation (C.7) can be rewritten the following MA(∞) model:

cτ = (1 − L)−1zτ + κ, (C.8)

which is equivalent to equation (3.4) such that κ = (1 − L)−1k. ■
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