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Chapter 1

Introduction

1.1 Preserver problems

The general theme of this dissertation revolves around Preserver Problems. In loose
terms, preserver problems concern the study of transformations (which are called
preservers) of a structure which leave invariant a given mathematical object. These
kind of transformations are found everywhere in mathematics. Just to mention
some basic examples: homomorphisms on algebraic structures which are pre-
servers of the operations; isometries on metric spaces, which are distance pre-
servers; monotone maps, which are order preservers. A comprehensive account
of the prevailing preserver problems can be found in Molnár’s book: Selected Pre-
server Problems on Algebraic Structures of Linear Operators and on Function Spaces
[18].

In general, the goal of a preserver problem is to give a complete, concrete, and
explicit form of the preservers in question. Let us illustrate this with the following
theorem, due to Frobenius. It concerns the transformations on the matrices which
preserve the determinant function. It is generally regarded as the first result about
preserver problems.

1.1.1 Theorem (Frobenius, 1897). Let n ≥ 2 be a positive integer and denote by Mn

the vector space of all complex n × n matrices. If a bijective linear map φ : Mn −→ Mn

preserves the determinant, i.e., it satisfies detφ(A) = detA, for all A ∈ Mn, then φ is of
the form

φ(A) = MAN, A ∈Mn;

or
φ(A) = MATN, A ∈Mn;
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where M,N are invertible matrices with det(MN) = 1 and AT denotes the transpose of
the matrix A.

Here the goal is to give an explicit description of the determinant preservers,
more precisely, the linear determinant preservers. We have known examples of
linear preservers of the determinant function: the transposition operation and
multiplication by matrices with determinant 1. The essence of the theorem is that
all linear determinant preservers are obtained from these two transformations.

Despite the presence of preserver problems in many areas of mathematics, sys-
tematic studies of those problems only appear in linear algebra and functional
analysis: namely in matrix theory and operator theory. This is not surprising
given that the spaces of matrices and operators in general carry very rich mathe-
matical structures. On the one hand, they are algebraic structures which serve as
interesting examples for non commutative algebra. On the other hand, they are
geometrical structures too, they can carry several different metrics. These spaces
also carry important order structures. All these make the spaces of matrices and
operators a very suitable and interesting ground for investigating preserver prob-
lems.

Besides their predominance in mathematics, there are also preserver problems
that originated from physics. Operator theory serves as a mathematical language
in which quantum theory were formulated. In the von Neumann formalism of
quantum mechanics, any given physical system is associated with a Hilbert space
H and others physical objects are represented by operators (or subset of opera-
tors) on H . The concept of symmetry is very important in physics, a symmetry
is a transformation that leaves invariant some property of the physical system.
This leads to interesting preserver problems on different subsets of the algebra of
operators on the Hilbert space H of the system. To illustrate this, we present the
celebrated Wigner’s theorem.

In a physical system whose associated Hilbert space is H , the (pure) states of
the system are represented by rank one projections, and the trace of the product of
two rank one projections P,Q, that we denote by Tr(PQ), is what is called the tran-
sition probability. This is a very important quantity in quantum mechanics and
a bijective map φ on the set of rank one projections which preserves this quan-
tity is called a quantum mechanical symmetry transformation. Wigner’s theorem
describes the form of all such maps.

1.1.2 Theorem (Wigner’s theorem). Let H be a Hilbert space, and P1(H) be the set of
rank one projections on H . Let φ : P1(H) −→ P1(H) be a bijective map such that

Tr(φ(P )φ(Q)) = Tr(PQ), P,Q ∈ P1(H),

2
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where Tr is the trace function. Then there exists a unitary or anti-unitary operator U :
H −→ H such that

φ(P ) = UPU∗, P ∈ P1(H).

It is easy to see that the maps of the form P 7−→ UPU∗, where U is unitary or
anti-unitary operator, preserve the transition probability, so this theorem is actu-
ally an ”if and only if” statement. Looking at the end result, this theorem can also
be construed as characterisation of the unitary/anti-unitary transformation on the
underlying Hilbert space.These maps are of highest importance in preserver prob-
lems. In fact these maps are involved in the solutions to several preserver prob-
lems (see for example Chapter 2 and Section 3 in the Introduction of [18]).

Whether it is considered in a purely mathematical context, or as a represen-
tation of a physical observable (as in quantum mechanics), operators on Hilbert
spaces are one of the richest and most interesting objects to study. The set of
selfadjoint operators and its subsets come with several functions or operations or
relations that may or may not have some physical significance, but even without
direct physical meaning, it is an important task in mathematics to study these ob-
jects and describe the transformations that leave them invariant. In this thesis, we
present our contributions on the study of selfadjoint operators, and more precisely
positive operators. Our results are presented in Chapter 2 and 3. The results con-
tribute mainly to the study of two important order relations on the set of positive
operators and operator means which are binary operations closely related to the
orders.

1.2 Orders on positive operators and their preservers

We are interested in two partial orders on selfadjoint operators, that we present
now. We begin with the necessary definitions and notation. In what follows, H
is a complex Hilbert space, the inner product on H is denoted by 〈., .〉 and the
corresponding norm is denoted by ‖.‖. The unit sphere in H with respect to the
Hilbert space norm is denoted by SH , the kernel and the range of an operator
A is denoted by kerA and rngA respectively. The symbol B(H) stands for the
algebra of all bounded linear operators on H , we also use the following notation
for subsets of B(H):

• Bsa(H) stands for the space of all selfadjoint elements of B(H);

• B(H)+ stands for the set of selfadjoint operators whose spectra are contained
in [0,+∞[;
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• B(H)++ is the set of invertible elements in B(H)+;

• E(H) is the effect algebra, it is the subset of Bsa(H) which consists of the
selfadjoint operators whose spectrum are contained in the positive real unit
interval [0, 1];

• the symbol P (H) stands for the set of projection operators on H and P1(H)
stands for the set of all rank-one projections. We denote by Px the rank one
projection on the one dimensional subspace generated by x ∈ SH , we may
also use the notation x⊗x. There is a natural order on P (H) which is induced
by the inclusion of the ranges of the projections: P ≤ Q when rngP ⊂ rngQ.

LetA be a selfadjoint operator onH . ThenA is uniquely defined by its spectral
measure EA. The correspondence between A and its spectral measure is given by
the following equation

〈Ax, x〉 =

∫
R
td〈EA(]−∞, t])x, x〉, x ∈ H.

The map t ∈ R 7−→ EA(]−∞, t]) is known to have the following properties:

• it is monotone increasing with respect to the natural order on the projection
operators,

• it is strongly right-continuous,

• for small enough real numbers it is 0 and for large enough real numbers it is
the identity operator I .

A map t ∈ R −→ Et ∈ P (H) from the set of real numbers into the set of projection
operators on H with these properties is called a resolution of the identity and it is a
folklore result in operator theory that there is a bijective correspondence between
selfadjoint operators and resolutions of identity. The map t ∈ R 7−→ EA(]−∞, t])
is referred to as the resolution of the identity of A (or the spectral resolution of A)
and we use the notation EA

t = EA(]−∞, t]).
A selfadjoint operator can be thought of as a non commutative random vari-

able, where EA is the corresponding non commutative probability distribution
(measure), the spectral resolution EA

t is the corresponding non commutative dis-
tribution function, and 〈Ax, x〉 is the expectation value of A in the state repre-
sented by the vector x ∈ SH . Therefore selfadjoint operators can be compared
by means of the expectation values or the distribution functions. These yield the

4

C
E

U
eT

D
C

ol
le

ct
io

n



partial orders on the set of selfadjoint operators in which we are interested, respec-
tively: the Löwner order or usual order, and the Olson order which is commonly
called the spectral order [26]. Precisely, these two orders are defined as follows:

1. A is less than B in the usual order, A ≤ B, when 〈Ax, x〉 ≤ 〈Bx, x〉 for all
x ∈ H ;

2. A is less than B in the spectral order, A 4 B, when EB
t ≤ EA

t for all t ∈ R.

We first note that the usual order coincide with the range inclusion order on
the set of projection operators, so the notation here is consistent. Secondly, an
operator A ∈ B(H) belongs to B(H)+ if and only if 〈Ax, x〉 ≥ 0 holds for all
x ∈ H , in this case we say that A is positive or positive semidefinite. If A is also
invertible, this means that A is positive invertible i.e. A ∈ B(H)++, then we say
that A is positive definite.

The set B(H)+ of positive operators is in fact a convex cone in B(H) and the
order induce by B(H)+ is the usual order. On the other hand, the spectral order
is not a linear order in the sense that it does not respect the translations. There
are several other substantial differences among the properties of those two partial
orders. For example, by a famous observation due to Kadison which was made in
Theorem 6 in [12], the supremum or infimum of two self-adjoint operators with
respect to that order exists only in the most trivial case, if the two operators are
in fact comparable. This means that the Lwner order makes the set of all self-
adjoint operators an anti-lattice. In certain respects, this is a quite inconvenient
property. Olson [26] on the other hand proved that the spectral order makes the
set of selfadjoint operators a conditionally complete lattice. An other important
and big difference is the following. Let us call a monotone increasing real function
f operator monotone with respect to some given partial orderR on Bsa(H) if, for
any A,B ∈ Bsa(H),

ARB =⇒ f(A)Rf(B).

The operator monotone functions with respect to the Lwner order ≤ are very spe-
cial, they have a well-known and deep theory essentially due to Lwner. On the
other hand, it is easy to see that every monotone increasing function is operator
monotone with respect to the spectral order 4. In fact, one can easily prove that
the spectral order is the finest partial order among the ones coarser than the Lwner
order with respect to which all monotone increasing real functions are operator
monotone.

Now let us come back to the topic of preservers. Preservers of these two orders
on several subsets of the set of selfadjoint operators have been investigated. We
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define an order isomorphism between two subsets S1, S2 ⊂ Bsa(H) as a bijective
map which preserves the order in both direction, i.e., φ : S1 −→ S2 is such that

A ≤ B ⇐⇒ φ(A) ≤ φ(B), A,B ∈ S1.

In a natural way, we define an order anti-isomorphism as a bijective map which
reverses the order in both direction.

The structure of the order isomorphisms of the usual order on B(H)+ and
Bsa(H) were first studied and described by Molnár [16]. Šemrl [30] also deter-
mined the the order isomorphisms of E(H) and B(H)++, and more general oper-
ator intervals. An operator interval is a set

[A,B] := {X ∈ Bsa(H); A ≤ X ≤ B},

[A,B) := {X ∈ Bsa(H); A ≤ X ≤ B,B −X ∈ B(H)++},
where A,B ∈ Bsa(H) such that B − A ∈ B(H)++. Similarly, an operator interval
open from the right and open from both sides are defined, and the operator in-
tervals which are unbounded are naturally defined. In this interval notation we
have

E(H) = [0, I]; ]−∞,+∞[:= Bsa(H); [0,+∞[:= B(H)+; (0,+∞[:= B(H)++.

None of the these four operator intervals is isomorphic or anti-isomorphic to an-
other, notice that the non existence of order isomorphism between Bsa(H) and
B(H)++ is non trivial, it was proved in [21]. It is also easy to see that any operator
interval is isomorphic or anti-isomorphic to one of the above four operator inter-
vals. We gather the results describing the order isomorphisms of the four basic
operator intervals in the following theorem, the proofs can be found in Molnár’s
papers [16, 17, 21] and Šerml’s paper [30].

1.2.1 Theorem. Let H be a complex Hilbert space with dimH ≥ 2. We have the follow-
ing.

(1) If φ : Bsa(H) −→ Bsa(H) is an order isomorphism, then there exist a linear or
conjugate-linear bounded invertible operator T : H −→ H and T0 ∈ Bsa(H) such
that

φ(A) = TAT ∗ + T0, A ∈ Bsa(H).

(2) If φ : B(H)+ −→ B(H)+ is an order isomorphism, then there exist a linear or
conjugate-linear bounded invertible operator T : H −→ H such that

φ(A) = TAT ∗, A ∈ B(H)+.
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(3) If φ : B(H)++ −→ B(H)++ is an order isomorphism, then there exist a linear or
conjugate-linear bounded invertible operator T : H −→ H such that

φ(A) = TAT ∗, A ∈ B(H)++.

(4) If φ : E(H) −→ E(H) is an order isomorphism, then there exist a linear or conjugate-
linear bounded invertible operator T : H −→ H , with norm not exceeding 1, and
two real numbers p ∈ (0, 1); q ∈]−∞, 1) such that

φ(A) = fq
(
fp(TT

∗)−1/2fp(TAT
∗)fp(TT

∗)−1/2
)
, A ∈ E(H),

where the function ft is defined on [0, 1] by ft(x) = x(tx+ (1− t))−1.

We see that the form of the order isomorphisms of the effect algebra is rather
complicated compared to that of the other four intervals, but with the additional
constraint that φ

(
1
2
I
)

= 1
2
I then φ has the form φ(A) = TAT ∗, A ∈ E(H) (see for

example Corollary 4 in [17]).
We point out that a description of the order isomorphisms of the set of selfad-

joint operators in a C∗-algebra was done by Kadison in [13], with the additional
hypothesis of linearity and preservation of the identity operator. The impressive
feature of Molnár’s result about the order isomorphisms of Bsa(H) is the removal
of the linearity assumption. Molnár and Šemrl’s result presented in the above the-
orem have been generalised to the more general setting of von Neumann algebra
by Mori [25].

The isomorphisms of the spectral order were studied by Molnár and Šemrl in
[24] and Bohata [4]. Their description involves a family of highly non-trivial maps
that we explain now. A map S : H → H is said to be semilinear if it is additive and
there exists a field isomorphism ρ of C such that S(ζh) = ρ(ζ)S(h) for ζ ∈ C and
h ∈ H . A linear map is obviously semilinear, so is a conjugate linear map. Now
let S : h −→ H be a bijective bounded linear or conjugate linear operator if H is
infinite dimensional, or a bijective semilinear operator if H is finite dimensional.
For any A ∈ Bsa(H) with spectral measure EA, the map

t 7−→ I − PS(rngEA(]t,∞[)), t ∈ R

is a resolution of the identity. Denote the corresponding spectral measure by ES
A.

Define

ψS(A) =

∫ +∞

−∞
t dES

A(]−∞, t]), A ∈ Bsa(H).
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It was proved in Proposition 1 in [24] that ψS : Bsa(H)→ Bsa(H) is a spectral order
isomorphism. Since ψS fixes 0 and I , ψS : E(H)→ E(H) and ψS : B(H)+ → B(H)+

are also spectral order isomorphisms. Notice also that if f : [0, 1] −→ [0, 1] is
bijective increasing then the map A 7−→ f(A) is a spectral order isomorphisms
of E(H). These two maps make up all the spectral order isomorphisms of E(H),
and the description of the spectral order isomorphisms of B(H)+ and Bsa(H) was
deduced from that, as it is shown in the following theorem.

1.2.2 Theorem (Molnár-Šemrl[24], Bohata [4]). Let H be a complex Hilbert space with
dimH ≥ 3. We have the following.

(1) If φ : Bsa(H) −→ Bsa(H) is a spectral order isomorphism, then there exists a bijec-
tive increasing function f : R −→ R, and a bijective operator S : H −→ H , which
is semilinear in the case where 3 ≤ dimH < ∞ and bounded linear or conjugate
linear in the case where H is infinite dimensional, such that

φ(A) = ψS(f(A)), A ∈ Bsa(H).

(2) If φ : B(H)+ −→ B(H)+ is a spectral order isomorphism, then there exists a
bijective increasing function f : [0,+∞[−→ [0,+∞, and a bijective operator
S : H −→ H , which is semilinear in the case where 3 ≤ dimH <∞ and bounded
linear or conjugate linear in the case where H is infinite dimensional, such that

φ(A) = ψS(f(A)), A ∈ B(H)+.

(3) If φ : E(H) −→ E(H) is a spectral order isomorphism, then there exists a bijective
increasing function f : [0, 1] −→ [0, 1], and a bijective operator S : H −→ H ,
which is semilinear in the case where 3 ≤ dimH < ∞ and bounded linear or
conjugate linear in the case where H is infinite dimensional, such that

φ(A) = ψS(f(A)), A ∈ E(H).

Compared to Theorem 1.2.1, we see that a description of the spectral order
isomorphisms ofB(H)++ is still missing. This is one of the contributions we make
in this thesis, that we present in Chapter 2.

1.3 Outline of the dissertation

The main idea we explore in this thesis is the representation of positive operators
as real valued functions, defined on the unit sphere of the underlying Hilbert
space. We have several motivations for this investigation.
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Firstly, real valued functions inherits the order structure from the real num-
bers. Given any set of real valued functions, needless any additional data, a partial
order can be defined on the set which is just the pointwise order. So on one side,
we have the orders between bounded linear operators on a complex Hilbert space
which are quite complicated objects, and on the other side, we have the natural
order between real valued functions which is easier to handle. Therefore, it is a
natural idea to try to represent the latter objects by the help of the former ones in a
sufficiently faithful way. In fact this is not a completely new idea, one trivial pos-
sibility is to represent the selfadjoint operators by their quadratic forms. Clearly,
that is a really faithful representation, the restriction of the quadratic form of an
operator on the unit sphere completely determines the operator and, moreover,
the usual Lwner order between selfadjoint operators is then transformed into the
pointwise order between quadratic forms.

Secondly, this investigation is motivated by another functional representation
of positive operators, which was introduced by Busch and Gudder in [5], the so-
called the strength function, following an idea of Ludwig given in his fundamental
treatise [15] on the foundations of quantum mechanics (see the proof of Theorem
5.22, especially, the first sentence on page 228). It was shown in [5] that strength
functions faithfully represent effects and respect order in the sense that the Lwner
order between positive operators is transformed to the pointwise order between
the representing strength functions. It was initially defined for Hilbert space ef-
fects in [5], but the definition and the results trivially extends for positive Hilbert
space operators.

These lead us to introduce two numerical functions on the unit sphere of a
Hilbert space that we associate to positive operators, these functions are a spectral
order analogue of the aforementioned two types of numerical functions (quadratic
forms and strength functions). In fact, the first one, what we will consider as an
analogue of the quadratic form is the local spectral radius of a positive operator.
The other one, which we call spectral strength function, is the very natural adap-
tation of Busch and Gudder’s strength function for the case of the spectral order
in the place of the Lwner order.

In Chapter 2, we study the four functions mentioned above from various points
of view. Namely, we show that the two new functional representations are also
faithful representations of positive operators transforming the spectral order be-
tween operators to the pointwise order between the representing functions. We
investigate which algebraic operations those four representations respect and then
obtain that the collections of the representing functions have certain algebraic
structures. Furthermore, we give some formulas for the representing functions
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and explore some of their properties (continuity and range). We point out that
there are simple inequalities among those functions and study what their possible
equality means for the corresponding operator. We will use the new representa-
tions studied in the first part of Chapter 2 to describe the spectral order isomor-
phisms of B(H)++, this is the only result missing in Theorem 1.2.2 on the spectral
order isomorphisms of the four basic operator intervals. The contents of Chapter
2 are already published in [31].

In Chapter 3, we use the representing functions to characterise the lattice op-
erations with respect to the spectral order in B(H)+. This characterisation is
based on a generalisation of the properties of the so called Kubo-Ando means
[14] (which are binary operations closely related to the usual order) to the setting
of the spectral order. Namely, the Kubo-Ando means are essentially the binary
operations which are monotone and satisfy a very important inequality called
transformer inequality, we derive a spectral analogues of the transformer inequal-
ity and prove that this inequality essentially characterises the lattice operations.
The contents of Chapter 3 are from the paper [32].

10

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 2

Functional representations of positive
operators

In this chapter, we consider some faithful representations of positive Hilbert space
operators on structures of nonnegative real functions defined on the unit sphere
of the Hilbert space in question. Those representations turn order relations be-
tween positive operators to order relations between real functions. Two of them
turn the usual Lwner order between operators to the pointwise order between
functions, another two turn the spectral order between operators to the same,
pointwise order between functions. We investigate which algebraic operations
those representations preserve, hence which kind of algebraic structure the repre-
senting functions have. We study the differences among the different representing
functions of the same positive operator.

2.1 Representing functions

Let us introduce the four nonnegative real valued functions on the unit sphere in
H , which we associate to an arbitrary positive operator and study in this paper.
For any A ∈ B(H)+ we define

w(A, x) = 〈Ax, x〉, x ∈ SH ; (2.1)

λ(A, x) = sup{t ≥ 0 : tPx ≤ A}, x ∈ SH ; (2.2)

r(A, x) = lim
n
‖Anx‖1/n, x ∈ SH ; (2.3)
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ν(A,P ) = sup{t ≥ 0 : tPx 4 A}, x ∈ SH . (2.4)

The function w(A, .) is the quadratic form corresponding to A ∈ B(H)+ re-
stricted to the unit sphere. The function λ(A, .) in (2.2) is called the strength func-
tion of A, the quantity λ(A, x) is said to be the strength of A along the ray repre-
sented by the vector x ∈ SH . In a quite similar way, we can introduce the function
ν(A, .) in (2.4) which we call the spectral strength function of A. Finally, the quan-
tity r(A, x) in (2.3) is called the local spectral radius of A at x ∈ SH . The function
r(A, .) is related to the spectral strength function ν(A, .) in a way very similar to
the function w(A, .) in (2.1) is related to the original strength function λ(A, .). We
will see this later on.

Let us make some introductory comments on the quantities/functions defined
in (2.1) - (2.4). Firstly, it is clear that the sup in (2.2) can be replaced by max. The
same holds for (2.4), too. Indeed, it follows, for example, by using the fact that for
positive operators A,B ∈ B(H)+, we have A � B if and only if An ≤ Bn holds
for all n ∈ N. This was shown in Theorem 3 in [26], in the next section we will
present an alternative proof of that fact. It is an apparent question why the limit
in (2.3) exists. The answer is given in the next proposition. Recall that EA denotes
the spectral measure of A.

2.1.1 Proposition. Let A ∈ B(H)+ and pick x ∈ SH . We have

r(A, x) = lim
n
‖Anx‖1/n = min{t ≥ 0 : Px ≤ EA([0, t])}. (2.5)

Proof. Obviously, for any A ∈ B(H)+ and x ∈ SH we have

‖Anx‖1/n = 〈A2nx, x〉1/(2n) (2.6)

and here the latter quantity is the 2n-norm of the identity function on the non-
negative reals with respect to the probability measure 〈EA(.)x, x〉. As p → ∞, the
p-norm of an essentially bounded measurable function with respect to any prob-
ability measure is well-known to converge monotone increasingly to its∞-norm,
i.e., to the essential supremum of the function in question. Therefore, we have
that the limit of the sequence in (2.6) exists and equals to

inf{t ≥ 0 : 〈EA(]t,∞[)x, x〉 = 0} = min{t ≥ 0 : 〈EA(]t,∞[)x, x〉 = 0}

which is the minimum of all such nonnegative real numbers t for which x is in
the orthogonal complement of the range of EA(]t,∞[), or equivalently, for which
Px ≤ EA([0, t]) holds. This completes the proof. �
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Observe that from (2.5) it follows that rngEA([0, t]) equals the set of all scalar
multiples of the unit vectors x ∈ SH for which r(A, x) ≤ t. So by definition of
r(A, x), we then have that x ∈ H belongs to rngEA[0, t] if and only if

‖Anx‖1/n ≤ t‖x‖1/n, n = 1, 2, 3...,

and x ∈ H does not belong to rngEA[0, t] if and only if

lim sup
n

1

tn
‖Anx‖ =∞.

These observations will be useful to us in the next chapter.

2.2 Orders among positive operators and their repre-
senting functions

In this section we show that the representations

A 7→ w(A, .), A 7→ λ(A, .), A 7→ r(A, .), A 7→ ν(A, .), (2.7)

are transformations from the set B(H)+ of all positive operators on H to the set
RSH

+ of all nonnegative real valued functions on SH which preserve order in both
directions, and hence they are all faithful (i.e., injective). Here we consider either
the usual Lwner order or the spectral order on B(H)+ on the one hand and the
pointwise order among functions on the other hand. The main results of this
section is summarized in the following theorem.

2.2.1 Theorem. Let A,B ∈ B(H)+. The transformations w and λ determine the usual
order, i.e., the following are equivalent:

(1) A ≤ B;

(2) w(A, x) ≤ w(B, x) for all x ∈ SH ;

(3) λ(A, x) ≤ λ(B, x) for all x ∈ SH .

The transformations r and ν determine the spectral order, i.e., the following are equivalent:

(1) A 4 B;

(2) r(A, x) ≤ r(B, x) for all x ∈ SH ;
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(3) ν(A, x) ≤ ν(B, x) for all x ∈ SH .

Before proving the theorem we present the following consequence. Clearly, as
we have already referred to it, A 4 B implies that f(A) ≤ f(B) holds for any
monotone increasing real function f (here f(A) is defined by the Borel function
calculus corresponding to A). So in particular, it implies that An ≤ Bn for positive
integers n. As an easy corollary of the previous theorem, we can easily prove the
following known fact (see Theorem 3 in [26]).

2.2.2 Corollary. For any A,B ∈ B(H)+ we have A 4 B if and only if An ≤ Bn for all
n.

Proof. Indeed, as for the sufficiency, assuming An ≤ Bn for every positive integer
n, we immediately get r(A, x) ≤ r(B, x) for every vector x ∈ SH and then using
the above theorem we can conclude that A 4 B. �

Now we prove Theorem 2.2.1, the proof will be split in several propositions.
We start with the quadratic form, it is obvious that for any A,B ∈ B(H)+ we

have A ≤ B if and only if w(A, x) ≤ w(B, x) holds for all x ∈ SH . The fact that
the same equivalence is true in relation with the strength functions was proved
in Theorem 1 in [5]. Let us present an argument which is different from the one
given in [5].

2.2.3 Proposition. For any A,B ∈ B(H)+ we have A ≤ B if and only if λ(A, x) ≤
λ(B, x) holds for all x ∈ SH .

Proof. The necessity part of the statement is clear. As for the sufficiency, observe
that what we need to prove can be formulated in the following way: if tPx ≤ A
implies tPx ≤ B for any nonnegative real number t, then we have A ≤ B. Adding
arbitrary small positive scalar multiple of the identity to B, we can assume that
B is invertible. Multiplying by the inverse of the square root of B from both
sides, we can further assume that B = I . So, we reduce the problem to show the
following: if tPx ≤ A holds only for t ≤ 1, then we necessarily have A ≤ I , or
equivalently, ‖A‖ ≤ 1. But this is easy since if ‖A‖ > 1, then there is an element
of the spectrum of A which is greater than 1 implying that there is a nonzero
spectral projection P of A and a real number t greater than 1 such that tP ≤ A, a
contradiction. �

As for the characterization of the spectral order by the local numerical radius,
we have the following result.

14

C
E

U
eT

D
C

ol
le

ct
io

n



2.2.4 Proposition. For any two positive operators A,B ∈ B(H)+, we have A 4 B if
and only if r(A, x) ≤ r(B, x) holds for every x ∈ SH .

Proof. Assume that limn ‖Anx‖1/n ≤ limn ‖Bnx‖1/n holds for every x ∈ SH . By
(2.5), for any x ∈ SH we have

min{s ≥ 0 : Px ≤ EA([0, s])} ≤ min{s ≥ 0 : Px ≤ EB([0, s])}.

This implies that for each t ≥ 0, selecting any rank-one subprojection Px ofEB([0, t]),
we obtain that Px is a subprojection of EA([0, t]). Therefore, we have EA([0, t]) ≥
EB([0, t]) for all t ≥ 0. This gives us that A 4 B. The converse statement can also
be proved easily by employing the formula (2.5) again. �

The characterization of the spectral order by the spectral strength function is
now easy.

2.2.5 Proposition. For any A,B ∈ B(H)+ we have A 4 B if and only if ν(A, x) ≤
ν(B, x) holds for every x ∈ SH .

Proof. The necessity is obvious. Observe that for any A ∈ B(H)+, nonnegative
real number t and vector x ∈ SH , by the definition of the spectral order we have

tPx 4 A⇐⇒ Px ≤ EA([t,∞[) (2.8)

which gives us that

ν(A, x) = max{t ≥ 0 : Px ≤ EA([t,∞[)}. (2.9)

Assuming now that ν(A, x) ≤ ν(B, x) holds for every x ∈ SH , we easily obtain
that every rank-one subprojection of EA([t,∞[) is a subprojection of EB([t,∞[).
This implies that EA([t,∞[) ≤ EB([t,∞[) holds for any nonnegative real number t
which gives A 4 B. �

This completes the proof of Theorem 2.2.1.

2.3 Formulae for the strength functions

The numerical range function and the local spectral radius functions are already
explicitely defined. In this section we derive formulae for our two types of strength
functions.
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The formula for the strength functions in equation (2.11) was given by Busch
and Gudder in Theorem 4 in [5]. Here we present a much shorter proof using
the famous Douglas majorization and factorization lemma. First observe that for
invertibleA ∈ B(H)+, nonnegative real number t and unit vector x ∈ SH , we have
tPx ≤ A if and only if tA−1/2x⊗A−1/2x ≤ I which is equivalent to t‖A−1/2x‖2 ≤ 1.
Hence

λ(A,Px) = ‖A−1/2x‖−2 =
1

w(A−1, x)
. (2.10)

We also recall the following observation which follows directly from Douglas’
result in [6]. Assume A,B ∈ B(H)+. If A ≤ B, then one can easily define a linear
operator C on H by C(B1/2x) = A1/2x for any x ∈ H . This gives a bounded linear
operator of norm not greater than 1 on the range of B1/2 which can be extended
to the closure of this range and then it can be defined zero on the orthogonal
complement of that subspace. Hence, we obtain a bounded linear operator C
on H with ‖C‖ ≤ 1 such that CB1/2 = A1/2. Conversely, for such an operator
C ∈ B(H) we have A = (CB1/2)∗CB1/2 ≤ B1/2IB1/2 = B. It follows that for an
A ∈ B(H)+ and unit vector x ∈ SH if we have a positive real number t such that
tPx ≤ A, then Px = CA1/2 = A1/2C∗ for some operator C ∈ B(H) which implies
that x ∈ rngA1/2. Conversely, if x ∈ SH and x = A1/2y for some 0 6= y ∈ H , then
we have Px = A1/2(y ⊗ y)A1/2 = ‖y‖2A1/2Py/‖y‖A

1/2 ≤ ‖y‖2A. After these simple
facts we can prove the following.

2.3.1 Theorem. For any A ∈ B(H)+ and x ∈ SH , the equality

λ(A, x) =

{
‖A−1/2x‖−2, if x ∈ rngA1/2

0, otherwise
(2.11)

holds. Here A−1/2 means the inverse of the operator

A1/2
∣∣
(kerA1/2)

⊥

from its range rngA1/2 onto (kerA1/2)
⊥

= rngA1/2.

Proof. We have already clarified that λ(A, x) > 0 holds if and only if x ∈ rngA1/2.
Let now x ∈ rngA1/2. We have seen above that for a positive real number t, the
inequality tPx ≤ A is equivalent to the existence of a bounded linear operator C
onH whose norm is not greater than 1 such thatCA1/2 = t1/2Px andC vanishes on
(rngA1/2)⊥ = kerA1/2 = kerA. Clearly, such a C has rank one with range included
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in the subspace generated by x. Therefore, C is necessarily of the form C = x⊗ y,
where y ∈ (kerA1/2)⊥. From

x⊗ A1/2y = CA1/2 = t1/2Px

we infer A1/2y = t1/2x which is equivalent to y = t1/2A−1/2x. Consequently, we
have tPx ≤ A if and only if ‖t1/2A−1/2x‖ = ‖C‖ ≤ 1. The largest such t is obviously
‖A−1/2x‖−2. This completes the proof. �

To obtain an explicit formula for the spectral strength function ν(A, .), we first
consider the case of an invertible positive operator A like we did in relation with
the usual strength function λ(A, .) above.

2.3.2 Proposition. For any invertible A ∈ B(H)+ and unit vector x ∈ SH , we have

ν(A, x) =
1

limn ‖A−nx‖1/n
=

1

r(A−1, x)
. (2.12)

Proof. Indeed, by (2.5) and (2.9) we have

1

limn ‖A−nx‖1/n
=

1

r(A−1, x)
= max

{
1

t
> 0 : Px ≤ EA−1([0, t])

}
= max

{
1

t
> 0 : Px ≤ EA([1/t,∞[)

}
= max{s > 0 : Px ≤ EA([s,∞[))} = ν(A, x).

�

Observe that by the formulae (2.10) and (2.12), the function r(A−1, .) plays a
role in relation with the spectral strength function similar to the role the function
w(A−1, .) plays in relation with the usual strength function.

Now, the result concerning the formula for ν(A, .) in the case of general A ∈
B(H)+ reads as follows.

2.3.3 Theorem. For any A ∈ B(H)+ and unit vector x ∈ SH , we have that ν(A, x) > 0
if and only if x belongs to a closed invariant subspace M of A on which A is invertible and
in that case we have

ν(A, x) = r(A
∣∣−1
M
, x)−1. (2.13)

Proof. Assume that ν(A, x) > 0. By (2.8) it follows that Px ≤ EA([t,∞[) holds for
some positive real number t. Obviously, EA([t,∞[)AEA([t,∞[) = AEA([t,∞[). For
the range M of the spectral projection EA([t,∞[), it follows that it is an invariant
subspace of A which contains x. Since AEA([t,∞[) ≥ tEA([t,∞[), we infer that
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A
∣∣
M

is an invertible operator on M . We apply Proposition 2.3.2 to obtain (2.13).
Conversely, if the unit vector x belongs to a closed invariant subspace M of A on
which A is invertible, then we have that EA|M ([t,∞[) is the identity on M for some
positive real number t implying that Px

∣∣
M
≤ EA|M ([t,∞[). The projection Px is

zero on M⊥, hence we obtain Px ≤ EA([t,∞[), i.e., by (2.8), ν(A, x) ≥ t > 0 and
this finishes the proof of the theorem. �

2.4 Algebraic structures of representing functions

We have seen above that the functional representations in (2.7) are all order iso-
morphisms (the first two with respect to the Lwner order, the second two with
respect to the spectral order) from B(H)+ into the set of all bounded nonnegative
real functions on SH . Moreover, we know that B(H)+ is a semigroup with respect
to addition and the representationA 7−→ w(A, .) is additive, therefore on top of be-
ing an order isomorphism, this representation is also a semigroup isomorphism.
It is natural to ask whether any of the other three representations is an isomor-
phism with respect to some algebraic operations too. So we are investigating any
type of algebraic structures of the collections of functions appearing in the four
functional representations that we are considering.

To begin with, recall that the transformation A 7→ w(A, .) is additive and pos-
itive homogeneous. Therefore, the collection of all functions w(A, .), A ∈ B(H)+

(with the usual pointwise operations) is a cone.
As for the map A 7→ λ(A, .), it is clearly not additive. In fact, it was proved in

Proposition 2 in [22] that the sum of the strength functions of A and B is again a
strength function if and only if A,B ∈ B(H)+ are linearly dependent. However,
we will show that the representation A 7→ λ(A, .) preserves the parallel sum and
any weighted harmonic mean, it is an isomorphism under each of those opera-
tions.

Before formulating our result, we need to clarify the corresponding notions.
For nonnegative real numbers t, s, their parallel sum t : s is defined by 0 if one of
t, s is zero, otherwise it is defined by

t : s =

(
1

t
+

1

s

)−1
.

Furthermore, if α is a given real number satisfying 0 < α < 1, then the weighted
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harmonic mean t!αs is defined by 0 if one of t, s is zero, otherwise it is defined by

t!αs =

(
(1− α)

1

t
+ α

1

s

)−1
.

Naturally, those concepts for nonnegative real functions are defined pointwise.
Weighted harmonic means can also be defined very naturally for positive in-

vertible operators. For A,B ∈ B(H)++ we define A!αB by

A!αB =
(
(1− α)A−1 + αB−1

)−1
.

But what about non invertible operators? We can follow the Kubo-Ando theory
of operator means, see [14]. We elaborate more on the Kubo-Ando means in the
next chapter, for now, since we are only concerned with the harmonic mean, we
do not judge it necessary to expand about the theory of means here. Instead, to
avoid technicalities we do the following. In the general (noninvertible) case, we
choose monotone decreasing sequences (An), (Bn) of invertible positive operators
such that An → A and Bn → B in the strong operator topology and define A!αB
as the strong limit of the (monotone decreasing) sequence (An!αBn). Of course,
it is not trivial at all to see that this definition is correct, the limit exists, it is a
positive operator which does not depend on the particular choice of the sequences
(An), (Bn). Those properties come from the general theory in [14].

After this we mention that there is a different, quite special way to define the
harmonic mean which is due to Ando and can be found in [3]. Namely, for any
A,B ∈ B(H)+, the harmonic mean A!B = A!1/2B can also be defined by

A!B = max

{
X ∈ B(H)+ :

[
2A 0
0 2B

]
≥
[
X X
X X

]}
. (2.14)

Indeed, it can be shown that the maximum above exists in the Lwner order. Next,
the parallel sum A : B of A,B ∈ B(H)+ can be defined as the half of the harmonic
mean A!B. It is well-known that there is a formula for the quadratic form of A : B
which reads

〈(A : B)z, z〉 = inf{〈Ax, x〉+ 〈By, y〉 : x+ y = z}, z ∈ H

and was proved by Anderson and Trapp in [2].
At this point, let us mention that we will also need the following properties

of the weighted harmonic means (which are also satisfied by any Kubo-Ando
means): those means are monotone (with respect to the Lwner order) in both
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of their variables and satisfy the so-called transfer property which tells that the
congruence transformations implemented by invertible operators preserve any of
those means. Observe that there is in fact no explicit formula for the harmonic
mean of two general positive operators.

In what follows we prove the remarkable facts that the transformation A 7→
λ(A, .) respects the operations of parallel sum (which, anyway, is known to make
B(H)+ a commutative semigroup) and all weighted harmonic means.

2.4.1 Theorem. Let A,B ∈ B(H)+. We have

λ(A : B, .) = λ(A, .) : λ(B, .).

Furthermore, for any real number 0 < α < 1, we have

λ(A!αB, .) = λ(A, .)!αλ(B, .).

Before presenting the proof of this theorem we make a few comments. Firstly,
since λ(tA, x) = tλ(A, x) holds for any nonnegative real number t, A ∈ B(H)+,
x ∈ SH , it is easy to see that the equality above for the parallel sum or, equivalently,
for the harmonic mean implies the equality for any weighted harmonic mean.
Indeed, let 0 < α < 1 be any real number and let c = (2(1 − α))−1, d = (2α)−1.
For any A,B ∈ B(H)+, we have A!αB = (cA)!(dB). Indeed, this can be checked
easily for invertible A,B and then, for general A,B ∈ B(H)+, one can consider
monotone decreasing sequences (An), (Bn) of invertible positive operators such
that An → A,Bn → B in the strong operator topology. In a similar fashion, for
arbitrary nonnegative real numbers t, s, we have t!αs = (ct)!(ds). We conclude, on
the one hand, that

λ(A!αB, x) = λ((cA)!(dB), x), x ∈ SH ,

and, on the other hand, that

λ(A, x)!αλ(B, x) = (cλ(A, x))!(dλ(B, x)) = λ(cA, x)!λ(dB, x)), x ∈ SH .

Therefore, it is really sufficient to check that the transformation A 7→ λ(A, .) re-
spects the harmonic mean.

Next, recall Theorem 4.2 in [7] which says that for any A,B ∈ B(H)+, we have

rng(A!B)1/2 = rngA1/2 ∩ rngB1/2. (2.15)

Let us give a short proof here utilizing ideas behind strength functions and some
elements of Kubo-Ando theory. If x ∈ rngA1/2 ∩ rngB1/2 is a unit vector, then we
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have that tPx ≤ A, sPx ≤ B holds for some positive real numbers t, s. Then for
r = min{t, s} we have rPx = rPx!rPx ≤ tPx!sPx ≤ A!B implying x ∈ rng(A!B)1/2.
Conversely, if x ∈ rng(A!B)1/2 is a unit vector, then we infer that rPx ≤ A!B holds
for some positive real number r. It is easy to see that A!B ≤ 2A, 2B. (Indeed, this
is obviously true for invertible A,B and then, for general A,B ∈ B(H)+, one can
again consider monotone decreasing sequences (An), (Bn) of invertible positive
operators such that An → A,Bn → B in the strong operator topology.) Therefore,
we obtain x ∈ rngA1/2, rngB1/2 finishing the proof of (2.15).

It then follows from the equality (2.15) that the quantities λ(A:B, .), λ(A!B, .),
λ(A, .):λ(B, .), λ(A, .)!λ(B, .) vanish at exactly the same elements of SH .

To prove the identity

λ(A!B, x) = λ(A, x)!λ(B, x), x ∈ SH (2.16)

we will need two additional observations. The first one is the very useful identity

A!Px =
2λ(A, x)

1 + λ(A, x)
Px (2.17)

which holds for any A ∈ B(H)+ and x ∈ SH . It was proved in Lemma 2 in [19].
The second observation is the content of the following simple lemma.

2.4.2 Lemma. Let A ∈ B(H)+ and x ∈ rngA. For the operator A−1 : rngA −→ kerA⊥

which is the inverse of the restriction of A to kerA⊥ mapping onto rngA we have A−1x is
the shortest element in the preimage of x under A.

Proof. Notice that the preimage of x is a closed convex set, hence the element of
shortest length exists and is unique. Let u be an arbitrary element in the preimage
of x, i.e., assume that Au = x. We have A(u − A−1x) = Au − AA−1x = x − x = 0,
hence u − A−1x ∈ kerA. It follows that u = (u − A−1x) + A−1x and (u − A−1x)
and A−1x are orthogonal, consequently we have ‖u‖2 = ‖u−A−1x‖2 + ‖A−1x‖2 ≥
‖A−1x‖2, showing that A−1x is the shortest element in the preimage of x under
A. �

We are now in a position to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. By the discussion above, it is sufficient to prove only the
equality (2.16) for any A,B ∈ B(H)+ and x ∈ SH . Moreover, it is enough to verify
that equality for vectors x ∈ SH at which no one of the two sides of (2.16) vanishes.

So, for given A,B ∈ B(H)+, pick a unit vector x from the set rng(A!B)1/2 =
rngA1/2 ∩ rngB1/2. We have 0 < λ(A, x)Px ≤ A and 0 < λ(B, x)Px ≤ B. Denote
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T = (λ(A, x)Px)!(λ(B, x)Px) and s = λ(A, x)/λ(B, x). By the transfer property of
means and the formula (2.17), we compute

T = λ(B, x)

((
λ(A, x)

λ(B, x)
Px

)
!Px

)
= λ(B, x)((sPx)!Px) = λ(B, x)

2s

1 + s
Px

and this yields

λ(T, x) = λ(B, x)
2s

1 + s
= λ(A, x)!λ(B, x).

Since, by the monotonicity of means in their variables, we have T ≤ A!B, it then
follows that

λ(A, x)!λ(B, x) ≤ λ(A!B, x).

We need to prove the converse inequality. For this we introduce the following
notation. Given a closed subspace K ⊂ H , we denote

∆(K ⊕K) = {(u, v) ∈ K ⊕K : u = v} = {(u, u) ∈ H ⊕H : u ∈ K} .

Next, notice that

rng

[
2A 0
0 2B

]1/2
= rngA1/2 ⊕ rngB1/2 ⊃ rng(A!B)1/2 ⊕ rng(A!B)1/2

⊃ ∆(rng(A!B)1/2 ⊕ rng(A!B)1/2).

Since x ∈ rng(A!B)1/2, it follows that[
x
x

]
∈ rng

[
2A 0
0 2B

]1/2
.

Therefore, we have

0 < λ

([
2A 0
0 2B

]
,

√
2

2

[
x
x

])
and, by (2.11), we infer

λ

([
2A 0
0 2B

]
,

√
2

2

[
x
x

])
=

∥∥∥∥∥
[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]∥∥∥∥∥
−2

.

We assert that∥∥∥∥∥
[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]∥∥∥∥∥
2

=
1

4
(‖A−1/2x‖2 + ‖B−1/2x‖2) (2.18)

22

C
E

U
eT

D
C

ol
le

ct
io

n



or, equivalently,

λ

([
2A 0
0 2B

]
,

√
2

2

[
x
x

])
= 2(λ(A, x)!λ(B, x)). (2.19)

To show (2.18), let u, v ∈ H be such that[
u
v

]
= 2

[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]
.

Then we have
√

2

2

[
x
x

]
=

1

2

[
2A 0
0 2B

]1/2 [
u
v

]
=

√
2

2

[
A1/2u
B1/2v

]
.

It follows that A1/2u = x = B1/2v. By Lemma 2.4.2, ‖u‖2 ≥ ‖A−1/2x‖2 and ‖v‖2 ≥
‖B−1/2x‖2. We then have∥∥∥∥∥
[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]∥∥∥∥∥
2

=

∥∥∥∥1

2

[
u
v

]∥∥∥∥2 =
1

4
(‖u‖2+‖v‖2) ≥ 1

4
(‖A−1/2x‖2+‖B−1/2x‖2).

On the other hand, the vector[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]
is the element of minimal norm in

the preimage of
√

2

2

[
x
x

]
under

[
2A 0
0 2B

]1/2
and the vector

1

2

[
A−1/2x
B−1/2x

]
is also in this preimage. Therefore,

1

4
(‖A−1/2x‖2 + ‖B−1/2x‖2) =

∥∥∥∥1

2

[
A−1/2x
B−1/2x

]∥∥∥∥2 ≥
∥∥∥∥∥
[
2A 0
0 2B

]−1/2 √
2

2

[
x
x

]∥∥∥∥∥
2

.

This verifies (2.18).
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We also notice that the operators[
A!B A!B
A!B A!B

]
and

[
2(A!B) 0

0 2(A!B)

]
coincide on the common invariant subspace ∆(H ⊕H). It easily follows that their
strengths along any unit vector from that subspace are the same. Consequently,
applying (2.19) for A!B in the place of both A and B, we have

λ

([
A!B A!B
A!B A!B

]
,

√
2

2

[
x
x

])
= λ

([
2(A!B) 0

0 2(A!B)

]
,

√
2

2

[
x
x

])
= 2(λ(A!B, x)!λ(A!B, x)) = 2λ(A!B, x).

(2.20)

Since [
A!B A!B
A!B A!B

]
≤
[
2A 0
0 2B

]
,

see (2.14), we obtain from (2.19) and (2.20) that

2λ(A!B, x) ≤ 2(λ(A, x)!λ(B, x))

and this finishes the proof. �

Above we have seen that the map A 7→ w(A, .) preserves the operation of
addition and all weighted arithmetic means while the map A 7→ λ(A, .) preserves
the parallel addition and all weighted harmonic means. As for the functional
representations

A 7→ r(A, .), A 7→ ν(A, .),

we can prove that they are isomorphisms under the lattice operations ∨ and ∧,
respectively. (For positive operators they mean sup and inf with respect to the
spectral order, while for real functions they mean the pointwise maximum and
minimum, respectively.)

2.4.3 Proposition. Let A,B ∈ B(H)+ and x ∈ SH . We have the following equalities
and inequalities:

r(A ∨B, x) = r(A, x) ∨ r(B, x), r(A ∧B, x) ≤ r(A, x) ∧ r(B, x)

and
ν(A ∧B, x) = ν(A, x) ∧ ν(B, x), ν(A ∨B, x) ≥ ν(A, x) ∨ ν(B, x).
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Proof. Recall that, by the results in [26], for the spectral resolutions of A ∨ B and
A ∧B we have

EA∨B([0, t]) = EA([0, t]) ∧ EB([0, t])

EA∧B([0, t]) =
∧
ε>0

EA([0, t+ ε]) ∨ EB([0, t+ ε])

for all real numbers t ≥ 0. Now, use the equality (2.5). For any nonnegative
real number s, we have r(A ∨B, x) ≤ s if and only if Px ≤ EA∨B([0, s]) which
is equivalent to Px ≤ EA([0, s]) and Px ≤ EB([0, s]). This holds if and only if
r(A, x), r(B, x) ≤ s which is equivalent to r(A, x) ∨ r(B, x) ≤ s. This gives us the
first equality. The first inequality follows from Proposition 2.2.4.

The proofs of the second equality and second inequality are similar, one can
use the equality (2.9) and Proposition 2.2.5 there. �

It follows from the results of this section that the collection of all functions
w(A, .) is closed under addition, the collection of all functions λ(A, .) is closed un-
der parallel sum, the collection of all functions r(A, .) is closed under the operation
∨, and the collection of all functions ν(A, .) is closed under the operation ∧.

2.5 Continuity of the representing functions

One may like to represent continuous operators by continuous functions. There-
fore, in this section we investigate the question when the four different types of
representing functions are continuous. Obviously, as for the functions w(A, .),
A ∈ B(H)+, they are all continuous. The situation is very different with strength
functions λ(A, .).

2.5.1 Proposition. For any A ∈ B(H)+, we have that λ(A, .) is continuous if and only
if A is invertible.

Proof. The sufficiency is obvious, see the formula (2.11). Assume now thatA is not
invertible. Then A1/2 is also not invertible. It follows that A1/2 is not surjective.
At the elements of SH ∩ rngA1/2, the function λ(A, .) takes positive values while
at the elements of SH which do not belong to rngA1/2, this value is zero. Since
every former element can be approximated by a sequence of the latter elements,
we obtain that λ(A, .) is not continuous. This proves the proposition. �
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As for the spectral strength functions ν(A, .), the situation is even more ex-
treme. In fact, let A ∈ B(H)+ have finite spectrum s1 < s2 < ... < sn with
corresponding spectral projections Es1 , ..., Esn (i.e., Esk = EA({sk}), k = 1, ..., n).
Then the spectral strength function of A is easily seen to be the following:

ν(A, x) = sk if x ∈ rng(Esk + Esk+1
+ ...+ Esn) \ rng(Esk+1

+ ...+ Esn),

where k = 1, ..., n. Clearly, this function is non-continuous, hence ν(A, .) can be
quite discontinuous even for invertible A. Indeed, we have the following result.

2.5.2 Proposition. Let A ∈ B(H)+. We have that ν(A, .) is continuous if and only if A
is a scalar multiple of the identity.

Proof. Assume that the spectrum of A has at least two elements 0 ≤ s1 < s2.
Select any numbers r, r′ such that s1 < r < r′ < s2. Then the range of EA([r,∞[)
is a proper subspace of H . Choosing a unit vector x from the complement of
rngEA([r,∞[), which is a dense subset inH , we have that ν(A, x) < r. On the other
hand, for any unit vector x from the closed nonzero subspace rngEA([r′,∞[) of H
we have ν(A, x) ≥ r′. Now, we can easily deduce that ν(A, .) is not continuous.
Therefore, only the scalar multiples of the identity may have continuous spectral
strength functions which obviously really do. �

Applying very similar reasoning and using the formula (2.5) we have the fol-
lowing.

2.5.3 Proposition. Let A ∈ B(H)+. The function r(A, .) is continuous if and only if A
is a scalar multiple of the identity.

2.6 The ranges of the representing functions

In this section we investigate the ranges of the functions w(A, .), λ(A, .), r(A, .),
ν(A, .) and, especially, explore their relation to the spectrum of A.

For the first function w(A, .), its range is clearly the numerical range W (A) of
the operator A ∈ B(H)+. Let the convex hull of the spectrum σ(A) of A be the
interval with end points α ≤ β, i.e.,

conv(σ(A)) = [α, β].

Clearly, α is the smallest elements of the spectrum ofA and β is its largest element.
The closure of the numerical range of a normal operator equals the convex hull of
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its spectrum. Therefore, we have that W (A) contains the open interval ]α, β[ and
is contained in the closed interval [α, β]. We further have that β belongs to W (A)
if and only if it is an eigenvalue of A and similar holds for α. This is what we can
say about the range of w(A, .).

The relationship between the range Λ(A) of the second function λ(A., ) above
and the numerical range (and the spectrum) of the operator A in question was
investigated by Busch and Gudder in [5] (see Theorem 5). They proved the fol-
lowing:

(a) if α > 0, then α ∈ Λ(A) if and only if α is an eigenvalue of A;

(b) β ∈ Λ(A) if and only if β is an eigenvalue of A;

(c) if α > 0, then ]α, β[⊂ Λ(A) = W (A) ⊂ [α, β];

(d) if α = 0 is an isolated eigenvalue of A, then {0}∪]α0, β[⊂ Λ(A) ⊂ {0}∪ [α0, β]
where α0 = min(σ(A) \ {0});

(e) if α = 0 is an accumulation point of σ(A), then [0, β[⊂ Λ(A) ⊂ [0, β].

As we have seen above, the ranges of w(A, .) and λ(A, .) are connected to the
convex hull of the spectrum of A. The situation is different with the ranges of the
other two functions r(A, .) and ν(A, .), which are closely connected to the spec-
trum itself.

2.6.1 Proposition. Let A ∈ B(H)+. A real number t belongs to the range of ν(A, .) if
and only if it is an element of σ(A) which is either not isolated from the right, or it is
isolated from the right and E({t}) 6= 0.

Proof. Assume t is not in the spectrum ofA. Then there is a positive number ε such
that EA([t, t + ε[) = 0. For any rank-one projection P we have that P ≤ EA([t,∞[)
implies that P ≤ EA([t + ε,∞[). This means that t does not belong to the range of
ν(A, .).

Assume next that t is an element of the spectrum σ(A) which is isolated from
the right. We have a positive number ε such that the intersection of [t, t + ε[
with σ(A) is the singleton {t}. If EA({t}) 6= 0, then for any unit vector x in
the nonempty set rngEA([t,∞[) \ rngEA([t + ε,∞[) we have ν(A, x) = t. In the
case where EA({t}) = 0, for every unit vector x in rngEA([t,∞[), we have that
ν(A, x) ≥ t+ ε > t meaning that t does not belong to the range of ν(A, .).

Finally, assume that t is an element of the spectrum of A which is not isolated
from the right. In that case we can find a sequence (rn) of elements of the spectrum
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which is strictly monotone decreasing and converges to t such that the sequence
(EA([rn,∞[)) is strictly increasingly converging to EA(]t,∞[). We can pick a unit
vector x from the range of this latter projection which is not in the range of any
element of the sequence (EA([rn,∞[)). We have t ≤ ν(A, x) ≤ rn for every positive
integer n and it implies that ν(A, x) = t. �

From the above proposition we immediately have the following.

2.6.2 Corollary. If A ∈ B(H)+ has finite spectrum or if A is compact, then the range of
ν(A, .) is exactly the spectrum of A.

Using the formula (2.5), an argument similar to what we have presented in
Proposition 2.6.1 can be applied to obtain the next statement.

2.6.3 Proposition. Let A ∈ B(H)+. A real number t belongs to the range of r(A, .) if
and only if t is an element of σ(A) which is either not isolated from the left, or it is isolated
from the left and E({t}) 6= 0.

From this we obtain the following.

2.6.4 Corollary. If A ∈ B(H)+ has finite spectrum or if A is compact and noninjective,
then the range of r(A, .) is exactly the spectrum of A.

To conclude the section, we can tell that the ranges of r(A, .) and ν(A, .) provide
more information about the spectrum of an operator A ∈ B(H)+ than the other
two functions w(A, .) and λ(A, .) do.

2.7 Equality among the various representing functions

Let A ∈ B(H)+. By the definition of the functions w(, .), λ(A, .), r(A, .), ν(A, .), for
any unit vector x ∈ H we have the following inequalities

ν(A, x) ≤ λ(A, x) ≤ w(A, x) ≤ r(A, x). (2.21)

Indeed, the first inequality follows from the fact that the spectral order is a coarser
relation than the Lwner order. To the second one, observe that tPx ≤ A for a
rank-one projection Px and nonnegative real number t implies that tPx ≤ PxAPx
and taking trace we have t ≤ w(A, x). The last inequality is a consequence of the
following:

w(A, x) ≤ ‖Ax‖ ≤ sup
n
‖Anx‖1/n = r(A, x).

In this section we investigate when, for a given positive operator A, a pair of
the above four functions coincide.
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2.7.1 Proposition. Let A ∈ B(H)+. Then ν(A, x) = λ(A, x) holds for every x ∈ SH if
and only if A is a positive scalar multiple of a projection.

Proof. The sufficiency part is easy. To the necessity, we first show that the problem
can be reduced to the case of invertible operators. So, let A ∈ B(H)+ and assume
that ν(A, .) = λ(A, .). Then it follows that for any x ∈ rngA1/2, meaning that
λ(A, x) > 0, we have that ν(A, x) > 0, i.e., there is a positive real number t such
that x ∈ rngEA([t,∞[), see (2.9). We claim that if 0 ∈ σ(A), then 0 is an isolated
point of the spectrum of A. Indeed, otherwise we would have pairwise disjoint
open sets Un =]αn, βn[ in ]0,∞[ such that βn+1 < αn and βn ≤ 1/n4 and for which
the projections EA(Un) are all nonzero. For any positive integer n, select a unit
vector en from rngEA(Un). Then the sequence (en) is an orthonormal sequence in
H . Define z =

∑
nAen. The vectors Aen are mutually orthogonal, and we have

‖Aen‖2 ≤ β2
n. Therefore, z ∈ H is well-defined.

By Shmul’yan’s characterization of the ranges of bounded linear operators
(see, e.g., Corollary 2 in [7]) we have that y ∈ rngA1/2 if and only if there is a
positive constant K such that |〈y, x〉|2 ≤ K〈Ax, x〉 holds for all x ∈ H . Let us
consider our z defined above. We compute

|〈z, x〉|2 = |
∑
n

〈Aen, x〉|2 ≤

(∑
n

|〈Aen, x〉|

)2

≤

(∑
n

‖A1/2en‖‖A1/2x‖

)2

≤

(∑
n

‖A1/2en‖

)2

‖A1/2x‖2.

We have ‖A1/2en‖2 = 〈Aen, en〉 ≤ βn ≤ 1/n4 which implies that ‖A1/2en‖ ≤ 1/n2.
It follows that

∑
n ‖A1/2en‖ is convergent and we deduce that z ∈ rngA1/2. On the

other hand, it is clear that z is not in the range of any spectral projectionEA([t,∞[),
t > 0 and this is a contradiction.

Consequently, we obtain that 0 is an isolated point of the spectrum of A. For
anyA ∈ B(H)+, we have kerA = rngEA({0}). We obtain that kerA⊥ = rngEA([t,∞[)
for some positive real number t, on which subspace A is bounded from below, i.e.,
invertible. Therefore, we have that A can be written as A = 0 ⊕ A

∣∣
kerA⊥

where
the latter operator is invertible. We see that both ν(A, .) and λ(A, .) are zero on the
complement of the set kerA⊥.

The above way we can reduce the problem to the case of an invertible operator
A. In order to complete the proof, we show that for such an A we necessarily have
that A a positive scalar multiple of the identity. To verify this, by (2.10) and (2.12),
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it is sufficient to consider the case where for a given T ∈ B(H)+ we have

r(T, x) = ‖T 1/2x‖2, x ∈ SH . (2.22)

As we have already mentioned in the proof of Proposition 2.1.1, the sequence
(‖T nx‖1/n) (whose limit is r(T, x)) is monotone increasing in n and its elements are
clearly greater than or equal to ‖T 1/2x‖2. So, from (2.22) we obtain that ‖Tx‖ =
〈Tx, x〉, x ∈ SH which, by the equality case in the Cauchy-Schwarz inequality,
implies that Tx is a scalar multiple of x. This implies that every nonzero vector is
an eigenvector of T which gives us that T is a scalar multiple of the identity. The
proof is complete. �

The remaining equality cases in our inequalities (2.21) are more easy to handle.

2.7.2 Proposition. Let A ∈ B(H)+. Then λ(A, x) = w(A, x) holds for every x ∈ SH if
and only if A is a scalar multiple of the identity.

Proof. We consider only the necessity part of the statement, the sufficiency is ob-
vious. Assume λ(A, x) = w(A, x) holds for every unit vector x ∈ H . Then we
have that λ(A, .) is continuous and hence, by Proposition 2.5.1, A is invertible.
Moreover, using the formula (2.10), we have

1 = ‖A−1/2x‖2‖A1/2x‖2

for all unit vectors x ∈ H . This means that

‖x‖2 = ‖A−1/2x‖‖A1/2x‖, x ∈ H.

Replacing x by A1/2x, we have

〈Ax, x〉 = ‖x‖‖Ax‖, x ∈ H.

Since this means that there is equality in the Cauchy-Schwarz inequality, we ob-
tain just as in the proof the previous proposition that Ax is a scalar multiple of x
for any x ∈ H and then conclude that A is a scalar multiple of the identity. �

2.7.3 Proposition. Let A ∈ B(H)+. Then we have w(A, x) = r(A, x) for every x ∈ SH
if and only if A is a scalar multiple of the identity.

Proof. Assume that w(A, x) = r(A, x) holds for every x ∈ SH . We have w(A, x) ≤
‖Ax‖ ≤ r(A, x), x ∈ SH and it then follows that

〈Ax, x〉 = ‖Ax‖‖x‖, x ∈ H.

We can complete the proof just as in the case of the previous proposition. �
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2.8 Spectral order isomorphisms of the positive defi-
nite cone

In this section we use the properties of the local spectral radius function to prove
a characterization of the scalar elements of B(H)+. This will allow us to give a
proof of another characterization of the same type of operators expressed by the
spectral order. We will apply that characterization to determine the structure of
all spectral order isomorphisms of the positive definite coneB(H)++ ofB(H) (i.e.,
the set of all invertible positive operators on H).

In Proposition 2.4.3, we have proved the inequality

r(A ∧B, x) ≤ r(A, x) ∧ r(B, x),

for all A,B ∈ B(H)+ and x ∈ SH . Here we do not have equality in general. To
see this, consider, for example, two nonzero projections P,Q on H whose ranges
have trivial intersection. Then we have r(P ∧ Q, x) = 0 and r(P, x) ∧ r(Q, x) = 1
for every x ∈ SH which is neither in the kernel of P , nor in the kernel of Q.

Interestingly, as we show below, for a givenA ∈ B(H)+, the equality r(A ∧B, x) =
r(A, x) ∧ r(B, x) holds for all B ∈ B(H)+ and x ∈ SH if and only if A is a scalar
multiple of the identity.

2.8.1 Lemma. Let A ∈ B(H)+. Then A = aI holds with some real number a ≥ 0 if and
only if for every B ∈ B(H)+ and x ∈ SH we have r(A ∧B, x) = r(A, x) ∧ r(B, x).

Proof. If A = aI , then r(A, x) = a for any x ∈ SH . The spectral resolutions of A
and A ∧B are the following

EA([0, t]) =

{
0, 0 ≤ t < a
I, a ≤ t,

EA∧B([0, t]) = EA([0, t]) ∨ EB([0, t]) =

{
EB([0, t]), 0 ≤ t < a

I, a ≤ t,

and we see that r(A ∧B, x) = min{t ≥ 0 : Px ≤ EA∧B([0, t])} equals the minimum
of r(B, x) and λ = r(A, x).

Assume now that A ∈ B(H)+ is not scalar and, without loss of generality,
assume further that ‖A‖ = 1. For a unit vector x ∈ SH , we have r(A, x) = 1 if and
only if x does not belong to the range of EA([0, 1− 1/n]), n ∈ N. This is equivalent
to the fact that x is in the complement of the union of the ranges ofEA([0, 1−1/n]),
n ∈ N. Clearly, these ranges are nowhere dense sets, hence their union is of first
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category. Therefore, the set of all x ∈ SH for which r(A, x) = 1 holds is of second
category. Let B be any nonzero subprojection of a nonzero spectral projection
EA([0, s]), where s < 1 (the existence of such a spectral projection follows from
the assumption that A 6= I). Then we have ‖A ∧ B‖ ≤ s. Since the orthogonal
complement of the range of B is of first category, we have an x ∈ SH which is
not in this orthogonal complement (and hence r(B, x) = 1 holds) and satisfies
r(A, x) = 1. We have r(A ∧ B, x) ≤ ‖A ∧ B‖ ≤ s < 1 = r(A, x) ∧ r(B, x). This
completes the proof of the statement. �

In the paper [4], Bohata gave a very nice characterization of central elements in
AW ∗ algebras, see Proposition 3.8 [4]. In what follows we present a proof of that
characterization in the setting ofB(H) using the local spectral radius function and
the previous lemma.

2.8.2 Theorem. For an operator T ∈ Bsa(H) we have that T∧(A∨B) = (T∧A)∨(T∧B)
holds for any A,B ∈ Bsa(H) if and only if T is a scalar multiple of the identity.

Proof. Assume that T ∈ Bsa(H) is a scalar multiple of the identity and let A,B ∈
Bsa(H) be arbitrary. For a large enough µ ∈ R, the operators T ′ = T + µI,A′ =
A+µI,B′ = B+µI all belong toB(H)+. Since translation by µI is a spectral order
isomorphism of Bsa(H), for L = T ∧ (A ∨ B) and R = (T ∧ A) ∨ (T ∧ B) we have
L + µI = T ′ ∧ (A′ ∨ B′) and R + µI = (T ′ ∧ A′) ∨ (T ′ ∧ B′). Applying the trivial
part of the previous lemma and Proposition 2.4.3, for any x ∈ SH we have

r(L+ µI, x) = min{r(T ′, x), r(A′ ∨B′, x)}
= min{r(T ′, x), max{r(A′, x), r(B′, x)}}
= max{min{r(T ′, x), r(A′, x)}, min{r(T ′, x), r(B′, x)}}
= max{r(T ′ ∧ A′, x), r(T ′ ∧B′, x)}}
= r(R + µI, x).

By Proposition 2.2.4, we obtain that L+ µI = R + µI , i.e., that L = R.
Assume now that T ∈ Bsa(H) is not scalar. Again, using a translation and

maybe also a positive scalar multiplication (both of those transformations are
spectral order isomorphisms of Bsa(H)), we can assume that T is positive with
norm ‖T‖ = 1. Similarly to the proof of the previous lemma, we choose a projec-
tion B = Py and select a vector x ∈ SH not orthogonal to y such that r(T ∧B, x) <
1 = r(T, x). Setting A = I − Px, we have A ∨ B = I . Clearly, T 4 I = A ∨ B and
we have L = T ∧ (A∨B) = T . On the other hand, the spectral resolution of T ∧A
is

ET∧A([0, t]) = ET ([0, t]) ∨ EA([0, t]), t ≥ 0.
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We have EA([0, t]) = Px for any 0 ≤ t < 1. By (2.5), it follows that r(T ∧ A, x) = 0
and hence we obtain that

r(R, x) = max{r(T ∧B, x), r(T ∧ A, x)} = r(T ∧B, x) < 1 = r(T, x).

This means that R 6= T = L and the proof of the theorem is complete. �

We remark that employing translations, one can see that the arguments above
can easily be modified to yield the same sort of characterization of scalar multiples
of the identity in the case where the collection Bsa(H) in Theorem 2.8.2 is replaced
by the positive semidefinite cone B(H)+ or the positive definite cone B(H)++.

The above characterization in the setting of AW ∗-algebras played an impor-
tant role in [4] in the descriptions of spectral order isomorphisms between the
selfadjoint parts, the positive semidefinite cones, and the effect algebras of AW ∗-
factors of Type I . As we already mentioned in the Introduction, Molnár and Šemrl
[24] and Bohata [4] gave the structure of spectral order isomorphisms of the effect
algebra E(H), the spectral order isomorphisms of the positive semidifinite cone
B(H)+ and the spectral order isomorphisms of the whole space Bsa(H). It is a re-
markable fact about these spectral order isomorphisms that they all have the same
form (in contrast with the isomorphisms of with the respect to the usual order).
Below we point out that similar result holds also for the positive definite cone
B(H)++ which observation we will need in the last section of this chapter.

Before the formulation of our result let us recall the different maps that are
going to be involved. For an operator S : H → H which is bijective bounded
linear or conjugate linear if H is infinite dimensional, or bijective semilinear if H
is finite dimensional, recall the definition of ψS : given A ∈ Bsa(H) with spectral
measure EA, the map

t 7−→ I − PS(rngEA(]t,∞[)), t ∈ R

is a resolution of the identity that we denote by ES
A, and we define

ψS(A) =

∫ +∞

−∞
λ dES

A(λ), A ∈ Bsa(H). (2.23)

It was proved in Proposition 1 in [24] that ψS : Bsa(H) → Bsa(H) is a spectral
order isomorphism, i.e., a bijective map such that

A 4 B ⇐⇒ ψS(A) 4 ψS(B), A,B ∈ Bsa(H).
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We also have that ψS([0, I]) = [0, I], ψS(B(H)+) = B(H)+, ψS(B(H)++) = B(H)++.
As shown in Theorem 1.2.2 in Chapter 1, we know that all the spectral order iso-
morphisms of [0, I], B(H)+, Bsa(H) are of the form A 7→ ψS(f(A)), where S is an
operator as above and f is a strictly increasing bijective function of the intervals
[0, 1], [0,∞[, ]−∞,∞[ in the respective cases.

As a contribution to this line of research we prove that the same structural re-
sult holds for the spectral order isomorphisms of the positive definite coneB(H)++,
too. This is the content of the following result.

2.8.3 Theorem. Let φ : B(H)++ → B(H)++ be a spectral order isomorphism. Then
there is a strictly increasing bijective continuous function f :]0,∞[→]0,∞[ and an addi-
tive bijection S : H → H which is semilinear in the case where 3 ≤ dimH <∞ and it is
bounded linear or conjugate linear in the case where H is infinite dimensional such that

φ(A) = ψS(f(A)), A ∈ B(H)++. (2.24)

Proof. By the remark after the proof of Theorem 2.8.2, φ maps scalar operators to
scalar operators and hence it gives a strictly monotone increasing bijection f of the
set of positive real numbers such that φ(tI) = f(t)I holds for all positive number
t. The map φ(f−1(.)) is clearly a spectral order isomorphism of B(H)++ which
fixes the scalar multiples of the identity. Therefore, we can assume that already
the original isomorphism φ has this property.

We can follow the idea of reducing the problem to the case of the effect alge-
bra just as in the proof of Theorem 4 in [24] (see also Section 4 in [4]). Pick any
two positive numbers, α < β. Restricting φ to the interval [αI, βI], we obtain
a spectral order isomorphism of this interval. But using the bijective increasing
affine function gα,β : [α, β]→ [0, 1], we have that gα,β(φ(g−1α,β(.))) is a spectral order
isomorphism of the effect algebra [0, I]. From the structure of the spectral order
isomorphisms of [0, I] presented in Theorem 1.2.2, we have a corresponding op-
erator Sα,β (bijective semilinear in the finite dimensional case, bijective bounded
linear or conjugate linear in the infinite dimensional case) such that

g−1α,β(ψSα,β(gα,β(A))) = φ(A), A ∈ [αI, βI].

But it can easily be verified that all the maps ψS commute with strictly increasing
affine functions, hence we in fact have ψSα,β

∣∣
[αI,βI]

= φ
∣∣
[αI,βI]

. Letting α decrease
and β increase, one can see that ψSα,β are all necessarily equal. This completes the
proof. �

Let us point out an interesting fact. As we see above, the forms of the spectral
order isomorphisms of the effect algebra, the positive definite and semidefinite
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cones, and the whole space of self-adjoint operators are all the same. This is dif-
ferent with the usual Lwner order. There is an other difference related to the order
isomorphisms that we should point out. For the usual order, there are only five
non-order isomorphic classes of operator intervals which are represented by the
particular intervals

[0, I], [0,∞[, ]−∞, 0], ]0,∞[, ]−∞,∞[. (2.25)

The order isomorphisms of these special intervals are given in Theorem 1.2.1 in
Chapter 1. As for the operator intervals and their isomorphisms with respect to
the spectral order, we believe that the situation is much more complicated, we
have plenty of isomorphism classes. This is definitely an interesting question that
deserves to be investigated further.

We conclude this section with the next simple result which describes the in-
tersection of the isomorphism groups of the two different orders (usual order and
spectral order) for the case of the positive definite cone. Similar assertion holds
for the positive semidefinite cone, the effect algebra and also the space of all self-
adjoint operators. In the case of the positive definite cone, it says that the in-
tersection of those two groups consists exactly of the positive scalar multiples of
unitary-antiunitary congruence transformations.

2.8.4 Proposition. Assume T is a bounded invertible linear or conjugate linear operator
on H . The transformation A 7→ TAT ∗ is a spectral order isomorphism of B(H)++ if and
only if T is a scalar multiple of a unitary or antinuitary operator.

Proof. We deal only with the linear case. Consider the polar decomposition T =
U |T | of T . Clearly, unitary congruence transformations are spectral order isomor-
phisms, hence it follows that we can assume that T is positive and we claim to
prove that then T is necessarily a positive scalar multiple of the identity.

For every rank-one projection Px onH and for arbitrary small positive number
ε, we have Px+εI 4 (1+ε)I implying that T (Px+εI)T 4 (1+ε)T 2. It follows easily
from Corollary 2.2.2 and then letting ε tend to 0 that (TPxT )2 ≤ T 4. Multiplying by
the inverse of T from both sides, we have PxT 2Px ≤ T 2. We deduce that ‖Tx‖2x⊗
x ≤ T 2 for every unit vector x ∈ H which yields that w(T 2, x) ≤ λ(T 2, x). Since the
converse inequality always holds (see (2.21)), applying Proposition 2.7.2 we have
that T 2 is a scalar multiple of the identity. This immediately gives the statement.

�
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2.9 Metrics corresponding to representing functions
and their isometries

In this last section we discuss the relations of our functions in (2.7) to certain met-
rics on the positive semidefinite or definite cone in B(H).

The most natural metric on spaces of bounded real or complex valued func-
tions is the one which comes from supremum norm. Let us denote it by ‖.‖ and
hope it does not cause confusion with the notation of the operator norm. It is clear
that

‖w(A, .)− w(B, .)‖ = ‖A−B‖, A,B ∈ B(H)+.

Hence, the supremum norm distance for the functions w(A, .), A ∈ B(H)+ repro-
duces the operator norm distance on B(H)+. Clearly, with this metric, B(H)+ is a
complete metric space.

In [22], Molnár introduced the Busch-Gudder metric dBG on B(H)+ which he
defined as the metric induced by the supremum norm distance of the strength
functions

dBG(A,B) = ‖λ(A, .)− λ(B, .)‖, A,B ∈ B(H)+.

In [22], Molnár proved the completeness of dBG in the finite dimensional case (and
left the infinite dimensional case as an open problem). In the same paper we de-
termined the surjective isometries of B(H)+ with respect to dBG and obtained that
they are exactly the unitary or antiunitary congruence transformations implying
that the isometry groups of B(H)+ with respect to the operator norm metric and
the Busch-Gudder metric coincide.

Let us now consider the positive definite coneB(H)++ and recall the important
metric on it called the Thompson metric (or Thompson part metric). In fact, this
sort of distance can be defined in a more general setting. If A is a C∗-algebra, the
definition of the Thompson metric dT on its positive definite cone A++ reads as
follows

dT (A,B) = log max{M(A/B),M(B/A)}, A,B ∈ A++,

where M(X/Y ) = inf{t > 0 : X ≤ tY } for any X, Y ∈ A++. It is easy to see that
dT can also be rewritten as

dT (A,B) =
∥∥log

(
A−1/2BA−1/2

)∥∥ , A,B ∈ A++. (2.26)

Here ‖.‖ denotes the C∗-norm on A. The most important property of this metric
which makes it so useful is completeness. Hence, such important tools as Banach
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fixed point theorem can be used. This has deep applications e.g., in the theory of
operator means.

Observe the following. For any A,B ∈ B(H)++ and positive real number t, the
inequality A ≤ tB is equivalent to w(A, .) ≤ tw(B, .) and also to λ(A, .) ≤ tλ(B, .).
It follows easily that we have

dT (A,B) = ‖ logw(A, .)− logw(B, .)‖ = ‖ log λ(A, .)− log λ(B, .)‖.

(Although the supremum norm distance for the functions w(A, .), A ∈ B(H)+

induces the usual operator norm distance on B(H)+ which is certainly different
from the metric what the supremum norm distance for the functions λ(A, .), A ∈
B(H)+ induces (namely, the Busch-Gudder metric), for the logarithms of those
functions the induced metrics are the same, the Thompson metric on B(H)++.)

We can define a spectral order variant of the Thompson metric by replacing
the usual Lwner order ≤ by 4 in the definition of M(X/Y ) above. What we get
we denote by dsT and call it the spectral Thompson metric. Apparently, by Propo-
sition 2.2.4 and Proposition 2.2.5 , for any positive number t, we have A 4 tB
exactly when r(A, .) ≤ tr(B, .) which is equivalent to ν(A, .) ≤ tν(B, .). Therefore,
we conclude

dsT (A,B) = ‖ log r(A, .)− log r(B, .)‖
= ‖ log ν(A, .)− log ν(B, .)‖, A,B ∈ B(H)++.

(2.27)

Since the spectral order as a relation is coarser than the usual Lwner order, it
follows that

dT (A,B) ≤ dsT (A,B), A,B ∈ B(H)++.

2.9.1 Proposition. The metric dsT is a complete metric on B(H)++.

Proof. Let (An) be a Cauchy sequence in B(H)++ with respect to the metric dsT .
Then, by (2.9), it is also a Cauchy sequence with respect to the Thompson metric.
Hence, it converges to some A ∈ B(H)++ with respect to that metric and, as an
easy consequence of the formula (2.26), also with respect to the operator norm
distance. On the other hand, for any ε > 0 we have a positive integer n0 such
that for all integers n,m ≥ n0 we have An 4 (1 + ε)Am. This implies that Akn ≤
(1 + ε)kAkm for all n,m ≥ n0 and positive integer k. It follows that Ak ≤ (1 + ε)kAkm,
Akn ≤ (1 + ε)kAk for all n,m ≥ n0 and positive integer k implying A 4 (1 + ε)Am,
An 4 (1 + ε)A for all n,m ≥ n0. Consequently, we have that (An) converges to A
in the metric dsT . �
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Therefore, the spectral Thompson metric also has the nice property that it
makes the positive definite cone B(H)++ a complete metric space (a property that
the metric of the operator norm lacks). We are curious if one can provide useful
applications of the spectral Thompson metric based on this property. Further-
more, let us point out a nice property what dsT has but dT does not. In Theorem
15 in [23] we proved that, in the setting of C∗-algebras, the Thompson metric has
nontrivial dilations (homotheties) only if the underlying algebra is commutative
which is a rather strange thing. With the spectral Thompson metric the situation
is more ”natural”, it has dilations with arbitrary ratios: dsT (Ap, Bp) = pdsT (A,B)
holds for all invertible positive elements A,B and any positive real number p.

Symmetries play an important role in most parts of mathematics. For that
general reason, when it comes to metric spaces, we are interested in the descrip-
tions of the corresponding isometry groups. In the paper [20], Molnár determined
the surjective Thompson isometries of B(H)++ (and in [11] we extended that re-
sult to the setting of positive definite cones in general C∗-algebras). The result
in [20] says that the surjective Thompson isometries of B(H)++ are exactly the
maps A 7→ TAT ∗, A 7→ TA−1T ∗, where T is an invertible bounded either linear
or conjugate linear operator on H . In other words, one can say that the group of
Thompson isometries of B(H)++ consists exactly of the homogeneous Lwner or-
der isomorphisms and the antihomogeneous Lwner order antiisomorphisms (see
the discussion after (2.25)). Antihomogeneity here means homogeneity of order
−1.

It would be interesting to know the structure of all surjective spectral Thomp-
son isometries of B(H)++. We leave this as an open problem and formulate the
conjecture that, in analogy with the case of the usual Thompson metric, the group
of the surjective spectral Thompson isometries consists exactly of the homoge-
neous spectral order isomorphisms and the antihomogeneous spectral order anti-
isomorphisms. To express this more explicitly, we conjecture that those isometries
are exactly the transformations ψS (see (2.23)) and their compositions with the in-
verse operation. Just as before, in the finite dimensional case, S is a bijective semi-
linear operator, while in the infinite dimensional case, it is an invertible bounded
either linear or conjugate linear operator on H .

Although we do not know the isometry group of the spectral Thompson metric
yet, still we know its intersection with the isometry group of the usual Thompson
metric. Indeed, we finish this section with the following analogue of Proposition
2.8.4.

2.9.2 Proposition. The intersection of the groups of all Thompson isometries and all
spectral Thompson isometries of B(H)++ consists exactly of the transformations A 7→
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cUAU∗ and A 7→ cUA−1U∗, where U is a unitary or antiunitary operator on H and c is
a positive real number.

Proof. We know the structure of all Thompson isometries of B(H)++. We also
know that the unitary or antiunitary congruence transformations as well as the
inverse operation are isometries with respect to both the usual Thompson metric
and the spectral Thompson metric. Therefore, as in the proof of Proposition 2.8.4,
we only need to show that if T is an invertible positive operator on H and the
transformation A 7→ TAT is a spectral Thompson isometry, then T is necessarily
a positive scalar multiple of the identity.

Pick any rank one projection Px on H , where x ∈ SH . Clearly, dsT (I + Px, I) =
log 2. Therefore, we have dsT (T (I + Px)T, T

2) = log 2. This implies that T (I +
Px)T 4 2T 2. In particular, we have (T (I + Px)T )2 ≤ 4T 4 from which we infer
(I + Px)T

2(I + Px) ≤ 4T 2. Multiplying this inequality by Px from both sides we
obtain the equality 4PxT

2Px = 4PxT
2Px. It is easy to see that this implies that

(I + Px)T
2(I + Px)x = 4T 2x which gives PxT 2x = T 2x, i.e., 〈T 2x, x〉x = T 2x. Since

this holds for all x ∈ SH , just as in the last part of the proof of Proposition 2.7.1,
we deduce that T 2 is a positive scalar multiple of the identity and then we arrive
at the desired conclusion. �
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Chapter 3

Means of Kubo-Ando type for
spectral order

We have already encoutered some examples of operator means earlier in this the-
sis. Means are very important objects in mathematics. Means of positive numbers
are of central importance in mathematics, and the theory of means have been long
studied. The three most fundamental means are the arithmetic, the harmonic and
the geometric means. The arithmetic and the harmonic means (see [1]) can be
naturally defined for positive operators, at least for positive definite operators.
Let H be a complex Hilbert space and A,B ∈ B(H)++ (the set of positive defi-
nite operators on H), the arithmetic mean and the harmonic mean of A and B are
respectively defined by

AOB =
1

2
(A+B), A!B = 2(A−1 +B−1)−1.

The definition of a geometric mean for positive definite operators is not as straight-
forward. Pusz and Woronowitz [29] introduced the following definition (see also
Ando [3]),

A#B = A1/2(A−1/2BA−1/2)1/2A1/2.

Ando proved in [3] Corollary I.2.1 and Corollary I.3.1 that the above harmonic
and geometric means for positive definite operators extend to positive operators
and they share the following properties, which are also obviously satisfied by the
arithmetic mean. If σ is the arithmetic mean O or the harmonic mean ! or the
geometric mean #, then
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(C0) IσI = I ;

(C1) if A ≤ C and B ≤ D, then AσB ≤ CσD;

(C2) S(AσB)S ≤ (SAS)σ(SBS);

(C3) if An ↓ A and Bn ↓ B, then we have AnσBn ↓ AσB (here, An ↓ A means that
An ≥ An+1, for n ≥ 0, and that An converges strongly to A),

whereA,B,C,D, S ∈ B(H)+(the set of positive operators on the Hilbert spaceH),
I is the identity operator, and ≤ denotes the usual order. Based on these common
properties of the three most fundamental means, Kubo and Ando developped a
theory of means for positive operators in [14], they did an axiomatic study of bi-
nary operations on positive operators which satisfy (C0) to (C3), these operations
are now well known as Kubo-Ando means.

The Kubo-Ando means are closely related to the usual order, we immediately
see that from (C1), (C2) and (C3) above. It turns out that Kubo-Ando means are
also preserved by the isomorphisms of B(H)+ with respect to the usual order. In
fact, if σ is such a mean and S is a bijective linear or conjugate linear operator on
H then we have

S(AσB)S∗ = (SAS∗)σ(SBS∗), (3.1)

for all A,B ∈ B(H)+ (See Theorem 3.5 in [14]). By the structure theorem for order
isomorphisms of the set of positive operators formulated in Theorem 1.2.1, the
maps A 7−→ SAS∗, where S is a bijective linear or conjugate linear operator on H ,
are exactly the isomorphisms of B(H)+ with respect to the usual order.

Perhaps the most important fact about Kubo-Ando means is the following. A
countinuous real valued function f is said to be operator monotone on [0,∞[ if

A ≤ B =⇒ f(A) ≤ f(B), A,B ∈ B(H)+, (3.2)

and Kubo and Ando proved that to each Kubo-Ando mean σ there is a operator
monotone function fσ associated (with fσ(1) = 1). This correspondence is bijec-
tive, and we have

AσB = A1/2fσ(A−1/2BA−1/2)A1/2, A,B ∈ B(H)++.

The arithmetic, the harmonic and the geometric mean correspond respectively to
the operator monotone functions
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1 + t

2
,

2t

1 + t
,
√
t, t ∈ [0,+∞[.

There are several authors who investigated generalisations and extensions of
the Kubo-Ando theory. For example, multivariable extensions are presented in
[27, 28], the notion of solidarity which generalises Kubo-Ando means is also stud-
ied in [8]. The present paper arose from the desire to investigate operator means
of Kubo-Ando type but in relation to the spectral order.

In this chapter, we will see that the lattice operations on B(H)+, that we will
denote by A ∨ B and A ∧ B (respectively, these are the supremum and the infini-
mum of the set {A,B} with respect to the spectral order, these are also called the
join and the meet of A and B), present similar behavours to the arithmetic and
harmonic means. We also prove that they satisfy a spectral order analogue of the
properties (C0) to (C3) (see Proposition 3.2.1). It is clear what are the spectral order
analogues of property (C0), (C1) and (C3), one only needs to put the spectral or-
der in the place of the usual order. As for (C2), we derive a transformer inequality
for the spectral order and prove that it is satisfied by the lattice operations. Then
lastly, we prove the main result Theorem 3.2.2, which gives a characterisation of
the lattice operations as the only operations, in regard of the spectral order, similar
to the original Kubo-Ando means.

3.1 Similarity between the lattice operations and the
arithmetic and harmonic means

Recall that the spectral order induces a lattice structure on B(H)+, we argue that
the join ∨ and meet ∧ operations present some interesting connections to the arith-
metic and harmonic means.

Firstly, in terms of formula, we know that the meet operation can be obtained
as limit of arithmetic means and the join operation as limit of harmonic means.
More precisely we have the following results (whose proofs can be found, for
example, in [9]). Consider A,B ∈ B(H)+, we have that

A ∧B = lim
p−→+∞

(Ap ! Bp)1/p, and , A ∨B = lim
p−→+∞

(Ap O Bp)1/p. (3.3)

The limits are taken with respect to the strong operator topology.
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Secondly, we have the following interesting similarity between the harmonic
mean and the join operation. Ando proved in [3] Theorem I.3 that

A ! B = max

{
X ≥ 0 :

[
2A 0
0 2B

]
≥
[
X X
X X

]}
. (3.4)

Since B(H)+ with the usual order is not a lattice (see [12]), even the existence of a
supremum here is not trivial. If we switch from the usual order in equation (3.4)
to the spectral order, then it is clear that the set{

X < 0 :

[
2A 0
0 2B

]
<

[
X X
X X

]}
is bounded from above, hence the corresponding supremum with respect to the
spectral order is guaranteed to exist. We prove that the supremum is actually a
maximum, and it yields something familiar which is A∧B. For positive operators
A,B ∈ B(H)+, let us denote

H∞(A,B) := sup

{
X < 0 :

[
2A 0
0 2B

]
<

[
X X
X X

]}
.

3.1.1 Proposition. For A,B ∈ B(H)+, H∞(A,B) is equal to A ∧ B, and it is indeed a
max, not just a sup, i.e.,

A ∧B = max

{
X < 0 :

[
2A 0
0 2B

]
<

[
X X
X X

]}
.

Proof. We first prove that [
2A 0
0 2B

]
<

[
A ∧B A ∧B
A ∧B A ∧B

]
, (3.5)

hence A∧B 4 H∞(A,B). From the remark following Proposition 2.1.1 in Chapter
2, recall that for a positive operator T ∈ B(H)+ and t ≥ 0, we have

rngET (]−∞, t]) = {x ∈ H : ‖T nx‖ ≤ tn‖x‖, n ≥ 1} .

If [
x
y

]
∈ rngE2A 0

0 2B

(]−∞, t])
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then x ∈ rngEA(]−∞, t/2]) and y ∈ rngEB(]−∞, t/2]), hence ‖Anx‖ ≤ (t/2)n‖x‖
and ‖Bny‖ ≤ (t/2)n‖y‖, for n ≥ 1. It follows that

∥∥∥∥[A ∧B A ∧B
A ∧B A ∧B

]n [
x
y

]∥∥∥∥2 = 2‖2n−1(A ∧B)n(x+ y)‖2

≤ 4‖2n−1(A ∧B)nx‖2 + 4‖2n−1(A ∧B)ny‖2

≤ 4‖2n−1Anx‖2 + 4‖2n−1Bny‖2

= ‖2nAnx‖2 + ‖2nBny‖2

≤ t2n(‖x‖2 + ‖y‖2) = t2n
∥∥∥∥[xy

]∥∥∥∥2 .
This shows that [

x
y

]
∈ rngEA ∧B A ∧B

A ∧B A ∧B

(]−∞, t]).

It follows that we have

rngE2A 0
0 2B

(]−∞, t]) ⊂ rngEA ∧B A ∧B
A ∧B A ∧B

(]−∞, t]),

for all t ≥ 0, which proves the inequality (3.5).
Now we prove that H∞(A,B) 4 A∧B. If X is not less that A∧B, say X is not

less thatA, then there exists t ≥ 0 and a unit vector x such that x ∈ rngEA(]−∞, t])
but x /∈ rngEX(]−∞, t]). According to the remark following Proposition 2.1.1, we
see that this is equivalent to

‖Anx‖ ≤ tn‖x‖, and , lim sup
n

1

tn
‖Xnx‖ =∞.

Now we compute ∥∥∥∥[2A 0
0 2B

]n [
x
0

]∥∥∥∥ = ‖2nAnx‖ ≤ (2t)n‖x‖,

showing that [
x
0

]
∈ rngE2A 0

0 2B

(]−∞, 2t]).
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But
1

2ntn

∥∥∥∥[X X
X X

]n [
x
0

]∥∥∥∥ =

√
2

2ntn
‖2n−1Xnx‖ =

√
2

2tn
‖Xnx‖,

so that

lim sup
n

1

2ntn

∥∥∥∥[X X
X X

]n [
x
0

]∥∥∥∥ =∞,

therefore [
x
0

]
/∈ rngEX X

X X

]−∞, 2t].

It then follows thatX is not less that H∞(A,B). We then proved thatX 4 H∞(A,B)
implies that X 4 A ∧B so that H∞(A,B) 4 A ∧B. �

Let us also point out an other connection between ∨,∧ and the arithmetic and
harmonic means. We studied the following representations of positive operators
by positive real valued functions: for any A ∈ B(H)+ we define

w(A, x) = 〈Ax, x〉, x ∈ SH ;

λ(A, x) = sup{t ≥ 0 : tPx ≤ A}, x ∈ SH .

We considered the maps A 7−→ w(A, .) and A 7−→ λ(A, .). These are faithful rep-
resentations of B(H)+ into the set of nonnegative real valued function on SH , and
they determine the usual order onB(H)+ in the following way: forA,B ∈ B(H)+,
we have that A ≤ B if and only if w(A, .) ≤ w(B, .), if and only if λ(A, .) ≤ λ(B, .).
Besides the order determining property of these representations, we also proved
that w and λ preserve the arithmetic mean and the harmonic mean respectively,
i.e. for all A,B ∈ B(H)+, we have

w(AOB, ·) = w(A, ·)Ow(B, ·), and λ(A!B, ·) = λ(A, ·)!λ(B, ·). (3.6)

Then we also defined the following functions:

r(A, x) = lim
n
‖Anx‖1/n, x ∈ SH ;

ν(A,P ) = sup{t ≥ 0 : tPx 4 A}, x ∈ SH .

The function r(A, .) is the local spectral radius function of A, and the function
ν(A, .) is the spectral order analogue of the strength function, which we call the
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spectral strength function of A. We showed that the representations A 7−→ r(A, .)
and A 7−→ ν(A, .) are also faithful representations of B(H)+ into the set of non-
negative real valued functions on SH and they determine the spectral order in the
sense that A 4 B if and only if r(A, .) ≤ r(B, .), if and only if ν(A, .) ≤ ν(B, .).
Interestingly, in analogy with the previous case, the representations r and ν also
preserve the join and the meet operations, respectively, i.e. for all A,B ∈ B(H)+,
we have

r(A ∨B, .) = r(A, .) ∨ r(B, .), and ν(A ∧B, .) = ν(A, .) ∧ ν(B, .). (3.7)

We clearly see in equations (3.6) and (3.7) the analogy between the arithmetic
mean and the meet operation, the harmonic mean and the join operation. These
are more evidences supporting the claim that the meet and join operations play
analogous roles to the arithmetic and harmonic means.

3.2 Characterisation of the meet and join operations

In the first part of this section, we will prove that ∨ and ∧ satisfy a spectral order
version of the conditions (C0) to (C3). Looking at the conditions (C0) to (C3), we
see that conditions (C0),(C1) have natural analogues in the setting of the spectral
order. At this point it is not clear what should be the correct analogue of condition
(C2), the so called transformer inequality

(C2) S(AσB)S ≤ (SAS)σ(SBS); for all A,B, S ∈ B(H)+.

This inequality expresses the relationship of the given operation σ with the
order ≤ and the maps CS : A 7−→ SAS, where S ∈ B(H)+. We then need to
see what is the analogue of the maps CS for the spectral order. We observe that,
when S ∈ B(H)+ is invertible, the map CS is an isomorphism of B(H)+ with
respect to the usual order. In fact, as formulated in Theorem 1.2.1 in Chapter 1,
these are all the order isomorphisms of B(H)+ with respect to the usual order,
up to unitary or anti-unitary equivalence. So the maps CS can be construed as
weakened order isomorphisms, in the sense that their structure is similar to the
order isomorphisms, they are still monotone increasing, but they are no longer
required to be bijective. We then need to know the form of the spectral order
isomorphisms of B(H)+, and then, naturally we replace the congruence maps
with some kind of weakened order isomorphisms of B(H)+ with respect to the
spectral order. Molnár and Šemrl [24] and Bohata [4] gave the exact structure of a
spectral order isomorphism of B(H)+, that we presented in Theorem 1.2.2.
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Recall that the spectral order isomorphisms of B(H)+ are the maps A 7−→
ψS(f(A)) where S : H −→ H is a bounded bijective linear or conjugate linear
map if the dimension of H is infinite and a bijective semilinear map if the dimen-
sion of H is finite, and f is a nondecreasing continuous bijective map on [0,+∞[.
The operator ψS(A) is defined as the operator whose spectral resolution is given
by

t 7−→ I − PS(rngEA(]t,∞[)), t ∈ R,

When S ∈ B(H)++, it was proved in [24] Proposition 2, that the sequence (SAnS)
1/n
n≥1

is increasing with respect to the usual order and converges to ψS(A) in the strong
operator topology,

ψS(A) = lim
n−→+∞

(SAnS)1/n, A ∈ B(H)+. (3.8)

An examination of the proof reveals that S need not to be invertible for these to
hold. Therefore the equality in (3.8) is still true for all S ∈ B(H)+, and hence
ψS is also well defined for S ∈ B(H)+. This naturally suggests that in our quest
of a spectral order analogue of the transformer inequality, the congruence maps
should be replaced by the maps A 7−→ ψS(f(A)) = limn(Sf(A)nS)1/n, where we
no longer require S ∈ B(H)+ to be invertible and where f is no longer required to
be bijective but only continuous increasing with f(0) = 0.

3.2.1 Proposition. Let σ̂ be the join operation ∨ or the meet operation ∧ on B(H)+, then
σ̂ satisfies the following properties:

(C’0 ) normalisation: Iσ̂I = I .

(C’1 ) monotonicity: A 4 C and B 4 D implies that Aσ̂B 4 Cσ̂D,

(C’2 ) transformer inequality: ψS(f(Aσ̂B)) 4 ψS(f(A))σ̂ψS(f(B)) where S ∈ B(H)+

and f : [0,+∞[−→ [0,+∞[ is a continuous increasing function with f(0) = 0.

(C’3 ) upper continuity: if an and bn, n ∈ N, are decreasing positive numbers which
converges to a and b respectively, then (anI)σ̂(bnI) ↓ (aI)σ̂(bI).

Before presenting the proof of the Proposition, we make the following remark.
We know that for the arithmetic mean, we always have equality in the transformer
inequality. Interestingly, we also have the same behaviour of the join ∨ operation,
that is

ψS(f(A ∨B)) = ψS(f(A)) ∨ ψS(f(B)), (3.9)
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for all S ∈ B(H)+ and for all nondecreasing continuous function f : [0,+∞[−→
[0,+∞[ with f(0) = 0.

Proof. It is clear that the lattice operations satisfy the properties (C0’),(C1’) and
(C’3). We only need to prove (C’2). We start by recalling Hansen’s inequality from
[10], for A, S ∈ B(H)+ with ‖S‖ ≤ 1, and a function f operator monotone on
[0,+∞[, we have

Sf(A)S ≤ f(SAS). (3.10)

Now, let A,B, S ∈ B(H)+, with ‖S‖ ≤ 1 and f : [0,+∞[−→ [0,+∞[. We
have seen that the sequence (SAnS)1/n, n ≥ 1, is increasing and converges to
ψS(A) in the strong operator topology. Since multiplication is continuous with
respect to the strong operator topology on bounded subsets, given an integer
m ≥ 1 and taking into account equation (3.8), we have that (SAnS)m/n strongly
converges to ψS(A)m as n −→ ∞. Therefore if A 4 B, then SAnS ≤ SBnS
for all n ≥ 1, and for n ≥ m, the function f(t) = tm/n is operator monotone,
hence (SAnS)m/n ≤ (SBnS)m/n. This implies that ψS(A)m ≤ ψS(B)m, this holds
for arbitrary m ≥ 1, therefore ψS(A) 4 ψS(B). Recall also from [26] Corollary 1
that the map X ∈ B(H)+ 7−→ f(X) is monotone increasing (with respect to the
spectral order) when f is continuous increasing on [0,+∞[. Therefore, the map
B(H)+ 3 X 7−→ ψS(f(X)) is also monotone increasing. We then have

ψS(f(A ∧B)) 4 ψS(f(A)) ∧ ψS(f(B)),

and
ψS(f(A ∨B)) < ψS(f(A)) ∨ ψS(f(B)).

It now remains to prove that ψS(f(A ∨ B)) 4 ψS(f(A)) ∨ ψS(f(B)). Let R <
ψS(A), ψS(B), and let k ≤ l ≤ m ≤ n ∈ N, we have Rm ≥ ψS(A)m ≥ (SAnS)m/n.
Since the function t 7−→ f(t) = tm/n is operator monotone on [0,+∞[, by Hansen
inequality, (SAnS)m/n ≥ SAmS, the same holds for B. It follows that

Rm ≥ S
Am +Bm

2
S.

By operator monotonicity of the function t 7−→ tk/m, we have

Rk ≥
(
S
Am +Bm

2
S

)k/m
=

(
S
Am +Bm

2
S

)k/l×l/m
,
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and applying Hansen inequality to the operator monotone function t 7−→ tl/m, we
obtain

Rk ≥

(
S

(
Am +Bm

2

)l/m
S

)k/l

, k ≤ l ≤ m ∈ N.

The sequence

S

(
Am +Bm

2

)l/m
S

is known to converge to S(A ∨ B)lS as m −→ ∞, so that Rk ≥
(
S(A ∨B)lS

)k/l,
and the sequence

(
S(A ∨B)lS

)k/l converges to (ψS(A ∨B))k as l −→ ∞, we then
have Rk ≥ (ψS(A ∨B))k. This holds for arbitrary k therefore we conclude that
R < ψS(A ∨ B), which proves that ψS(A) ∨ ψS(B) < ψS(A ∨ B). Recall that ψS is
monotone (with respect to the spectral order) so we always have ψS(A)∨ψS(B) 4
ψS(A ∨B), therefore

ψS(A ∨B) = ψS(A) ∨ ψS(B). (3.11)

Next we prove that f(A ∨ B) = f(A) ∨ f(B). We can always consider f to be
defined on R, continuous and nondecreasing, by setting f(t) = 0 for t < 0. Define
the function

f ∗(s) = sup{t ∈ R; f(t) ≤ s}.

Given a positive operator T ∈ B(H)+, if f ∗(s) < +∞ then Ef(T )(] − ∞, s]) =
ET (]−∞, f ∗(s)]). In this case, we have successively

Ef(A∨B)(]−∞, s]) = EA∨B(]−∞, f ∗(s)])
= EA(]−∞, f ∗(s)]) ∧ EB(]−∞, f ∗(s)])
= Ef(A)(]−∞, s]) ∧ Ef(B)(]−∞, s])
= Ef(A)∨f(B)(]−∞, s]).

If f ∗(s) = +∞, this means that f(t) ≤ s for all t ∈ R, then ‖f(A ∨ B)‖, ‖f(A) ∨
f(B)‖ ≤ s so that Ef(A∨B)(]−∞, s]) = Ef(A)∨f(B)(]−∞, s]) = I . It then follows that

f(A ∨B) = f(A) ∨ f(B). (3.12)

Combining equations (3.11) and (3.12), we finally get (3.9). �
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Now our goal is to give a complete list of all the binary operations on B(H)+

which satisfy the same properties as the meet and the join operations given in
Proposition 3.2.1. We easily see that the left mean Aσ̂B = A and the right mean
Aσ̂B = B are examples of such operations, besides the meet and the join. Next,
we prove the following theorem which basically says that the conditions (C’0) to
(C’3) characterise the four binary operations mentioned above.

3.2.2 Theorem. Let σ̂ be a binary operation on B(H)+ that satisfies the conditions (C’0),
(C’1), (C’2) and (C’3) of Proposition 3.2.1. Then the operators 0σ̂I and Iσ̂0 can only
be 0 or I . We have the following cases:

1. if 0σ̂I = Iσ̂0 = I , then Aσ̂B = A ∨B for all A,B ∈ B(H)+.

2. if 0σ̂I = Iσ̂0 = 0, then Aσ̂B = A ∧B for all A,B ∈ B(H)+.

3. if 0σ̂I = I and Iσ̂0 = 0, then Aσ̂B = B for all A,B ∈ B(H)+.

4. if 0σ̂I = 0 and Iσ̂0 = I , then Aσ̂B = A for all A,B ∈ B(H)+.

We make some remarks before presenting the proof.
Firstly, the binary operations on B(H)+ which satisfy the conditions of Theo-

rem 3.2.2 are in some sense the ”Kubo-Ando means” with respect to the spectral
order. It is a desirable property for such an operation σ̂ to be positive homogenu-
ous, i.e.

α(Aσ̂B) = (αA)σ̂(αB), A,B ∈ B(H)+, α > 0. (3.13)

For the original Kubo-Ando means, the positive homogeneity follows from the
transformer inequality. This is also the case for the spectral order analogues. In
fact we have the stronger property that if h is a bijective increasing function on
[0,+∞[ then

h(Aσ̂B) = h(A)σ̂h(B), A,B ∈ B(H)+. (3.14)

Then the positive homogeneity property in equation (3.13) is obtained by taking
the function h(t) = αt. To prove the identity (3.14), consider a bijective increasing
function h on [0,+∞[, by the transformer inequality (C’2), we have

h(Aσ̂B) = ψI(h(Aσ̂B)) 4 ψI(h(A))σ̂ψI(h(B)) = h(A)σ̂h(B), A,B ∈ B(H)+.

Since the inverse h−1 of h is also bijective increasing on [0,+∞[, we can apply this
inequality where we replace h by h−1 and A,B by h(A), h(B), we then have

h−1(h(A)σ̂h(B)) 4 h−1(h(A))σ̂h−1(h(B)) = Aσ̂B = h−1(h(Aσ̂B)), A,B ∈ B(H)+.
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Given that the map X 7−→ h−1(X) is a spectral order isomorphism of B(H)+, we
have that h(A)σ̂h(B) 4 h(Aσ̂B), for all A,B ∈ B(H)+. Hence, given a bijective
increasing function h on [0,+∞[, we have (3.14).

Secondly, our proof makes heavy use of the properties of the spectral strength
function ν and the local spectral radius function r. Let us recall the properties that
will be useful for us.

Let us start with the representation ν. It has the order determining property,
i.e., for A,B ∈ B(H)+, we have A 4 B if and only if ν(A, x) ≤ ν(B, x) for all
x ∈ SH . We always have that ν(A, x)Px 4 A, in fact by definition, ν(A, x)Px 4 A
is a maximal rank one operator below A and A can be recovered from those rank
one operators. It is easy to prove that

A =
∨
x∈SH

ν(A, x)Px. (3.15)

Indeed, if ν(A, x)Px 4 B for all x ∈ SH then ν(A, x) ≤ ν(B, x) by definition, hence
A 4 B which shows that A is the least upper bound in the previous equation.

The representation r also has the order determining property, A 4 B if and
only if r(A, x) ≤ r(B, x) for all x ∈ SH . Although there is no direct way to recover
the operator from its local spectral radius function r(A, .) as it is the case for the
spectral strength function ν(A, .), there are useful information one can extract from
this function. For example, the kernel of A can be computed using r(A, .), it is
easy to see that x ∈ kerA ∩ SH if and only r(A, x) = 0. Indeed, if Ax = 0 then
‖Anx‖1/n = 0 for all n ≥ 1 hence r(A, x) = 0, and conversely if r(A, x) = 0 then
‖Ax‖ ≤ r(A, x) = 0 hence Ax = 0. We then see that

kerA = span {x ∈ SH : r(A, x) = 0} . (3.16)

In general, we have ν(A, x) ≤ r(A, x) for all x ∈ SH . The fact that we have the
reverse inequality for all x ∈ SH means that the operator A is a multiple of the
identity operator (see Section 2.7 in Chapter 2).

In the proof of Theorem 3.2.2, we will also need the following two Proposi-
tions.

3.2.3 Proposition. Let x ∈ SH and let A ∈ B(H)+, we have ψPx(A) = r(A, x)Px.
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Proof. We first compute PxA2kPxy for an arbitrary y ∈ H

PxA
2kPxy = 〈y, x〉PxA2kx

= 〈y, x〉
〈
A2kx, x

〉
x

= ‖Akx‖2 〈y, x〉x
= ‖Akx‖2Pxy.

We see that the subsequence (PxA
2kPx)

1/2k
k of the converging sequence (PxA

nPx)
1/n
n

is converging to lim ‖Akx‖1/kPx = r(A, x)Px. Hence (PxA
nPx)

1/n
n admits the same

limit and therefore ψPx(A) = limn (PxA
nPx)

1/n = r(A, x)Px, in the strong operator
topology. �

3.2.4 Proposition. Let σ̂ be a binary operation on B(H)+ which satisfies the conditions
(C’0), (C’1), (C’2) and (C’3) of Proposition 3.2.1 and let s, t ≥ 0. The operator (sI)σ̂(tI)
is a multiple of I , and for a rank one projection P ∈ P1(H), (sP )σ̂(tP ) is a multiple of P .
There is a function

fσ̂ : [0,+∞[×[0,+∞[−→ [0,+∞[,

such that, for s, t ≥ 0, we have sIσ̂tI = fσ̂(s, t)I and if P ∈ P1(H) then (sP )σ̂(tP ) =
fσ̂(s, t)P .

Proof. Let x ∈ SH , and r, s > 0, taking into account the above proposition and
using the transformer inequality, we have

r(sIσ̂tI, x)Px = ψPx(sIσ̂tI) 4 ψPx(sI)σ̂ψPx(tI) = r(sI, x)Pxσ̂r(tI, x)Px.

It is clear that r(sI, x)Pxσ̂r(tI, x)Px = sPxσ̂tPx, and by the monotonicity property,
we have sPxσ̂tPx 4 sIσ̂tI . Therefore we obtain that r(sIσ̂tI, x)Px 4 sIσ̂tI for all
x ∈ SH . This means that r(sIσ̂tI, x) ≤ ν(sIσ̂tI, x), for all x ∈ SH , which shows
that sIσ̂tI is a scalar multiple of the identity.

Now consider a rank one projection P = Px. By the transformer inequality, we
have

r(sP σ̂tP, y)Py = ψPy(sP σ̂tP ) 4 ψPy(sP )σ̂ψPy(tP ) = r(sP, y)Pyσ̂r(tP, y)Py.

Let y ∈ SH such that 〈y, x〉 = 0, then r(P, y) = 0 and from the above equation,
we conclude that r(sP σ̂tP, y) = 0. According to equation (3.16), this means that
the orthogonal complement of x is contained in ker(sP σ̂tP ) and hence the range
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of sP σ̂tP is a subspace of Cx = rngP . This shows that sP σ̂tP is an operator, with
rank at most one, whose range is contained in the range of P , it is then necessarily
a multiple of P .

Let fσ̂ and gσ̂ be the functions such that sIσ̂tI = fσ̂(s, t)I and sPxσ̂tPx =
gσ̂(s, t)Px. We want to prove that these functions are equal. On one hand, we
have

fσ̂(s, t)Px = r(sIσ̂tI, x)Px 4 r(sI, x)Pxσ̂r(tI, x)Px = sPxσ̂tPx = gσ̂(s, t)Px.

On the other hand we have

gσ̂(s, t)Px = sPxσ̂tPx 4 sIσ̂tI = fσ̂(s, t)I.

Taking the norms in these equalities gives fσ̂(s, t) = gσ̂(s, t). �

We will also need the following fact: for any A ∈ B(H)+, we have Aσ̂A = A,
as we now show. Recall that, since Iσ̂I = I , then fσ̂(1, 1) = 1 so we have Pxσ̂Px =
fσ̂(1, 1)Px = Px for all x ∈ SH . Given A ∈ B(H)+ and x ∈ SH , we have

ν(A, x)Px = ν(A, x)(Pxσ̂Px)

= ν(A, x)Pxσ̂ν(A, x)Px

4 Aσ̂A,

hence, by definition of the spectral strength function we have ν(A, x) ≤ ν(Aσ̂A, x).
By the transformer inequality, we also have

r(Aσ̂A, x)Px 4 r(A, x)Pxσ̂r(A, x)Px = r(A, x)(Pxσ̂Px) = r(A, x)Px.

Comparing the spectral strength functions of A and Aσ̂A we see that A 4 Aσ̂A
and comparing the local spectral radius functions we get that Aσ̂A 4 A. Hence
Aσ̂A = A. In particular, we have 0σ̂0 = 0.

Now we are ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2. Let fσ̂ be the function corresponding to σ̂ from Proposition
3.2.4, let j(t) = fσ̂(1, t) and b(t) = fσ̂(t, 1). We are going to prove that j(0) and
b(0) can only be equal to 0 or 1. This means that the operators 0σ̂I = b(0)I and
Iσ̂0 = j(0)I only take the value 0 or I .

We know from the upper continuity (C’3) of σ̂ that j and b are right continuous.
Thanks to the positive homogeneity of σ̂ (see equation (3.13)) we have that fσ̂ is
also positive homogenous so that we have for t > 0
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j(t) = fσ̂(1, t) = tfσ̂(1/t, 1) = tb(1/t),

and
b(t) = fσ̂(t, 1) = tfσ̂(1, 1/t) = tj(1/t).

From these identities and the right continuity of j and b, we see that j and b are
also left continuous on ]0,+∞[.

Now, let h be a bijective increasing function on [0,+∞[. From equation (3.14),
we have

h(b(0))I = h(b(0)I) = h(0σ̂I) = h(0)σ̂h(I) = 0σ̂h(1)I,

and by homogeneity of σ̂, we have

0σ̂h(1)I = h(1) (0σ̂I) = h(1) (b(0)I).

This means that h(b(0))
h(1)

= b(0), i.e., b(0) is a fixed point of the function t 7−→ h(t)
h(1)

.
And this is true for an arbitrary h so b(0) is a common fixed point to all functions
t 7−→ h(t)/h(1) where h is an increasing bijection on [0,+∞[. Therefore the only
possible values for b(0) are 0 or 1. Similarly, the only possible values for j(0) are 0
or 1.

Case 1: In case where j(0) = b(0) = 1, this means that 0σ̂I = Iσ̂0 = I , we have
that Aσ̂B = A ∨B, for all A,B ∈ B(H)+.

Let x ∈ SH , and A,B ∈ B(H)+. Since 0σ̂I = Iσ̂0 = I , from Proposition
3.2.4, we have that 0σ̂Px = Pxσ̂0 = Px. Multiplying by ν(A, x) and using the
homogeneity of σ̂, we get 0σ̂ν(A, x)Px = ν(A, x)Pxσ̂0 = ν(A, x)Px. We then have

A =
∨
x∈SH

ν(A, x)Px =
∨
x∈SH

(
ν(A, x)Pxσ̂0

)
4

( ∨
x∈SH

ν(A, x)Px

)
σ̂0 = Aσ̂0.

On the other hand, by monotonicity, we have Aσ̂0 4 Aσ̂A and per the remark
in the paragraph preceding this proof Aσ̂A = A, so that A = Aσ̂0. By a similar
argument, we can prove thatB = 0σ̂B. It then follows thatA∨B = (Aσ̂0)∨(0σ̂B),
as Aσ̂0 4 Aσ̂B and 0σ̂B 4 Aσ̂B we have (Aσ̂0)∨ (0σ̂B) 4 Aσ̂B, so A∨B 4 Aσ̂B.
On the other hand, it is clear that Aσ̂B 4 (A ∨ B)σ̂(A ∨ B) = A ∨ B, So finally we
proved that Aσ̂B = A ∨B.
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Case 2: In case where j(0) = b(0) = 0, this means that 0σ̂I = Iσ̂0 = 0, we
have that Aσ̂B = A ∧ B, for all A,B ∈ B(H)+. We only need to prove this for 0 4
A,B 4 I , and use the homogeneity property of σ̂ to extend it to all A,B ∈ B(H)+.

We begin by showing that the restriction of the functions b and j on the unit
interval [0, 1] is the identity function. To see this, let h be a bijective increasing
map on [0, 1]. Such function is the restriction of some bijective increasing function
on [0,+∞[, that we will again call h, with h(0) = 0 and h(1) = 1. We then have

b(h(t))I = (h(t)I)σ̂I = (h(t)I)σ̂(h(1)I) = h(tI)σ̂h(I),

using (3.14), we obtain

h(tI)σ̂h(I) = h(tIσ̂I) = h(b(t)I) = h(b(t))I.

Hence b(h(t)) = h(b(t)) for all t ∈ [0, 1], for all increasing bijection h on [0, 1].
There are only three possibilities, b is the constant function equal to 1 on the unit
interval, or b is the constant function 0, or b is the identity function. Since b(0) = 0
and b(1) = fσ̂(1, 1) = 1, b can only be the identity function. Similarly, j(t) = t for
all t ∈ [0, 1].

Next we prove that for A,B 4 I we have Aσ̂I = A and Iσ̂B = B. Let x ∈ SH ,
since A 4 I , we have 0 ≤ ν(A, x) ≤ 1 hence ν(A, x) = b(ν(A, x)), so we have

ν(A, x)Px = b(ν(A, x))Px = fσ̂(ν(A, x), 1)Px = ν(A, x)Pxσ̂Px.

By definition, ν(A, x)Px 4 A, so from the monotonicity of σ̂ we then have

ν(A, x)Px = ν(A, x)Pxσ̂Px 4 Aσ̂I.

Hence ν(A, x) ≤ ν(Aσ̂I, x). This holds for arbitrary x ∈ SH , therefore, it follows
from the order determining property of the representation ν thatA 4 Aσ̂I . On the
other hand, by virtue of Proposition 3.2.3 and the transformer inequality, we have
we

r(Aσ̂I, x)Px = ψPx(Aσ̂I)

4 ψPx(A)σ̂ψPx(I) = r(A, x)Pxσ̂r(I, x)Px = r(A, x)Pxσ̂Px.

We also have that 0 ≤ r(A, x) ≤ 1 hence r(A, x) = b(r(A, x)), so that we have
r(A, x)Pxσ̂Px = b(r(A, x))Px = r(A, x)Px. It then follows that r(Aσ̂I, x) ≤ r(A, x)
for all x ∈ SH , i.e. Aσ̂I 4 A. We then have the equality A = Aσ̂I and similarly
B = Iσ̂B.
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By monotony of σ̂, since A,B 4 I , we see that Aσ̂B 4 Aσ̂I and Aσ̂B 4 Iσ̂B so
that Aσ̂B 4 (Aσ̂I) ∧ (Iσ̂B). It follows that

A ∧B = (A ∧B)σ̂(A ∧B) 4 Aσ̂B 4 (Aσ̂I) ∧ (Iσ̂B) = A ∧B.

We then proved that for A,B 4 I , we have Aσ̂B = A ∧ B. Since both σ̂ and ∧
are homogeneous, by a scaling argument, we see that Aσ̂B = A ∧ B still holds in
general for A,B ∈ B(H)+.

Case 3: In case where b(0) = 1 and j(0) = 0, this means that 0σ̂I = I and
Iσ̂0 = 0, we have that Aσ̂B = B, for all A,B ∈ B(H)+. As in the previous case,
we only need to prove the equality Aσ̂B = B for 0 4 A,B 4 I , and use the
homogeneity property of σ̂ to extend it to all A,B ∈ B(H)+.

From the proof of the previous case, there are only three possibilities for the
restrictions of b and j on [0, 1]: the constant function equal to 1 , or the constant
function 0, or the identity function. Since b(0) = 1 and b(1) = fσ̂(1, 1) = 1, we
see that b(t) = 1 for all t ∈ [0, 1]. And since j(0) = 0 and j(1) = fσ̂(1, 1) = 1, we
see that j(t) = t for all t ∈ [0, 1]. Since j is the identity function on the [0, 1], we
can follow the argument in the previous case to show that if B 4 I then we have
Iσ̂B = B. We now show that we also have 0σ̂B = B. It is clear by monotonicity of
σ̂ that 0σ̂B 4 Bσ̂B = B, the converse inequality follows from the following. Let
x ∈ SH , notice that 0σ̂Px = fσ̂(0, 1)Px = b(0)Px = Px, we then have

ν(B, x)Px = ν(B, x)(0σ̂Px) = 0σ̂ν(B, x)Px 4 0σ̂B,

from which we conclude that ν(B, x) ≤ ν(0σ̂B, x) for all x ∈ SH and therefore
B 4 0σ̂B, so we get the desired equality. Therefore, for A,B 4 I we have

B = 0σ̂B 4 Aσ̂B 4 Iσ̂B = B,

so that Aσ̂B = B when 0 4 A,B 4 I , and again by scaling argument, this holds
for all A,B ∈ B(H)+.

Case 4: In case where b(0) = 0 and j(0) = 1, this means that 0σ̂I = 0 and
Iσ̂0 = I , we have that Aσ̂B = A, for all A,B ∈ B(H)+.

This case is proved by reasoning similar to Case 3.
This completes the proof of Theorem 3.2.2. �

We end this chapter with the following remark concerning the result we ob-
tain in Theorem 3.2.2. Certainly, one of the most fundamental result of the clas-
sical Kubo-Ando theory of mean is the bijective correspondence between means
and operator monotone functions. This suggest that the analogous theory in the
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setting of the spectral order would yield even more means, since there are more
operator monotone functions (every continuous increasing function on [0,+∞[ is
operator monotone with respect to the spectral order). Interestingly, the result we
proved here says the complete opposite. Mainly, this is due to the structure of the
spectral order isomorphisms, which contains the maps induced by functional cal-
culus with respect to bijective increasing functions. This rises the question about
the kind of operations one would get if the functional calculus maps in the new
transformer inequality (C’2) are removed. We leave this question for latter inves-
tigation.
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[24] L. Molnár and P. Šemrl, Spectral order automorphisms of the spaces of Hilbert
space effects and observables, Lett. Math. Phys. 80 (2007), 239–255.

[25] M. Mori, Order Isomorphisms of Operator Intervals in von Neumann Algebras,
Integral Equations Operator Theory 91, Article number: 11 (2019).

59

C
E

U
eT

D
C

ol
le

ct
io

n



[26] M.P. Olson, The selfadjoint operators of a von Neumann algebra form a condition-
ally complete lattice, Proc. Amer. Math. Soc. 28 (1971), 537–544.

[27] M. Pálfia and D. Petz, Weighted multivariable operator means of positive definite
operators, Linear Algebra Appl 463 (2014), 134–153.

[28] J. Pitrik and D. Virosztek, A divergence center interpretation of general symmet-
ric Kubo-Ando means, and related weighted multivariate operator means, Linear
Algebra Appl 609 (2021), 203–217.

[29] W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the
purification map, Rep. Math. Phys. 8(2) (1975), 159170.
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