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Abstract

This thesis includes two results about non-isolated complex surface singularities.
First, it was recently proved that for finitely determined germs Φ : (C2, 0) → (C3, 0),

the number C(Φ) of Whitney umbrella points and the number T (Φ) of triple values of a
stable deformation are topological invariants. The proof uses the fact that the combination
C(Φ)−3T (Φ) is topological since it equals the linking invariant of the associated immersion
S3 ↬ S5 introduced by Ekholm and Szűcs. We provide a new, direct proof for this
equality. We also clarify the relation between various definitions of the linking invariant.

Second, we know that the Milnor fibre boundary of an isolated complex surface
singularity has a graph manifold structure. We define a family of non-isolated toric surface
singularities by introducing gaps to the semigroups corresponding to cyclic quotient
singularites. Then we give a singular Milnor fibration for them via one-parameter toric
deformations. We describe the Milnor fibre boundaries as graph manifolds.

We also develop the theoretical background and language needed for these results
including theory of analytic singularities, deformations, map germs and affine toric
varieties.
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“Here, we need a bit of an aid. We agreed that what it all begins with, i.e. that
Something Is, is not two things but one. If it Is, then it is Something. And if it is
Something, then that already Is. The – we shall say – ‘existence’ and the ‘substance’ is
an unbroken unit. One. Instead of words, it is more appropriate to mark it with a single
letter. Let us call it epsilon. Lowercase handwritten Greek Epsilon: ε.

(We know that not only are words less than epsilon, such that they never cover it –
which is alright – but, which is worse, they are also more: they place it somewhere in
their arrangement of concepts, they endow it with an interpretation: they drown that
which exists in the swamp of their non-existence.

Yet you use language, that is the way you want to express your epsilon. Why? Firstly,
because there is nothing else, for now. Secondly, poets have long discovered ways, modes
of abuse, to at least approach epsilon. Of course, it would be yet better to try it with
pointing, miming, butt-kicking, screaming, patting. Soon. We will try differently once
we abolish all national languages. (Until then, we must have a go at using them for their
own abolition. It is rather like the case of Baron Münchausen. But it shall be done.)

Now, you would like an approximation of the (Something – Is) we just named epsilon
that is both accurate and certain. You observed with regret that these two wishes are
(partially) incompatible. For the epsilon it holds that ε:

The more certainly you have it, the more inaccurate it is.
The more accurate you try to make it, the less certainly you have it.
With the highest accuracy, its existence may vanish. (It becomes clear, but
there is no such thing.)
With the highest certainty of existence, we may lose what it is (this Something
that Is to such a high degree).
If we denote the accuracy of epsilon with (a variable) π, pi, and the certainty
of having it with (another variable) ρ, rho, then their product (sum, power)
cannot exceed a constant quantity. This illustrates the peculiar situation
above:

that they can only be increased at each other’s expense:

π · ρ ≤ ε”

Buda by Géza Ottlik
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Introduction

Singularities are present in many contexts in mathematics and beyond. They are exciting
points where something special or unusual happens. Secret truths are hidden in them,
this makes them so engaging.

In geometry, a singularity of a geometric space (curve or surface for example) is a point
where the space is not smooth. We can take an apple as an everyday example. A nice
apple’s surface is though curved, it is generally smooth: there is well defined tangent plane
at each point. On its two ends however, something unusual happens. If we move on the
surface, we have to turn abruptly when reaching these points. They are the singularities
of the surface of the apple.

Greek mathematicians already worked with singular curves in the Hellenistic period
(the first couple centuries B.C.). The first such curve may have been the cissoid (‘ivy-
shape’) of Diocles, a curve used to solve classical problem of duplicating the cube by
constructing two line segments from the curve with a ratio of 3

√
2 (cf. [BK13, §1.4]).

Then, in the 17th century, the Cartesian revolution connected algebra and geometry.
With analytic geometry, we can express geometric spaces in two different ways: with
equations and with parametrizations. Both methods are crucial in the current thesis.
This language also enables us to define singularities more properly. A singular point of a
geometric space X ⊂ Fn defined by the vanishing of some equations f1, . . . fk is a point
p ∈ X, where the rank of the Jacobian matrix

(
∂fi

∂xj

)
i,j

drops.
An example that plays an important role throughout the whole dissertation is the

Whitney umbrella. This is a singular surface in the 3-space defined by the equation
xy2 = z2. See its real picture in Figure 0.0.1. Its Jacobian rank is generically 1, but it
drops to 0 on the x-axis. These points are all considered singular, however the origin
appears to be the most special of them.

We study complex analytic singularities, which means that we work over C and our
functions and mappings are local, that is, given by convergent power series. This theory
establishes a bridge between local analytic geometry and topology. In his 1956 paper
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INTRODUCTION

Figure 0.0.1: The Whitney umbrella.

[Mil56], Milnor provides the first examples of exotic spheres. These are topological spaces
that are homeomorphic to the sphere – of dimension 7 in this case – but with a C∞-
structure that is not diffeomorphic to that of the sphere. It turns out that singularities are
a rich source of such interesting topological spaces [Hir86]. Given an isolated singularity
(X, p) – that is a singular point that only smooth points around it – we can surround the
point p with a small real ball of the ambient space. The intersection between the space X
and the boundary sphere of the ball is called the link of the singularity. This topological
object carries a lot of information about the singularity and vice versa. For example, the
singularity is topologically equivalent to the real cone over its link [BV72].

As singularities are unusual and rare phenomena, we can hope to smoothen them out
by perturbing the defining equations. For isolated singularities defined by a single equation
f = 0, called hypersurface singularities, Milnor created the theory of Milnor fibrations
to handle the smooth spaces defined by the deformed equations f = ε [Mil74]. Also,
the boundary of Milnor fibre is diffeomorphic to the link. For more general singularities,
deformations theory is needed to perturb the singularity in a meaningful way.

In this work, we restrict our attention to complex surface singularities. Isolated surface
singularities are well studied. For example, the link of a normal (thus isolated) surface
singularity is a real 3-dimensional manifold can be given a graph manifold structure
[Mum61]. This structure can be related to the resolution of the singularity, which means
that we ‘untangle’ the singularity replacing the set of singular points with something
‘bigger’ making the whole space smooth.

However, non-isolated surface singularities are much less known. For instance, their
link is not a manifold, their deformation theory is more complicated, and even when they
admit a Milnor fibration, its fibres are a mystery so far.

To tackle these challenges, we turn to two special classes of non-isolated surface
singularities, which have some additional structure on them as support.

2
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INTRODUCTION

First, we look at surfaces that can be parametrized by a mapping from the complex
2-space. Let Φ : (C2, 0) → (C3, 0) be a finitely determined (also called A -finite)
holomorphic germ. In this case A -finiteness means that Φ is a stable immersion off
the origin [Wal81; MN20]. For these germs the number of the complex Whitney umbrella
(cross cap) points C(Φ) and the triple values T (Φ) of a stable holomorphic deformation
are well-defined analytic invariants [Mon85; Mon87]. Recently in [FPS22] J. Fernández de
Bobadilla, G. Peñafort, and J. E. Sampaio proved that these invariants are topological,
moreover they are determined by the embedded topological type of the image of Φ. One
of the main ingredients of their proof is the formula

L(Φ|S) = C(Φ)− 3T (Φ) (1)

from [NP15], which expresses the naturally topological Ekholm–Szűcs invariant (also
called triple point invariant or linking invariant) L(Φ|S) of the associated stable immersion
Φ|S : S ≃ S3 ↬ S5 in terms of C and T . However, the formula (1) is proved in [NP15]
in a rather complicated way, by using two Smale invariant formulas. Our purpose is to
provide a new direct proof for this formula.

The Ekholm–Szűcs invariant L(f) of a stable immersion f : S3 ↬ R5 measures the
linking of the image with a copy of the double values, shifted slightly along a suitable
chosen normal vector field. In the literature, different versions of the definition of L
can be found (see [Ekh01a; Ekh01b; ES03; SST02]), whose relations are not completely
clarified. We verify their equivalence, i.e. L1(f) = −L2(f), based on their opposite
behavior through regular homotopies.

Although our proof of the main theorem (1) is self-contained, an independent
secondary is to clarify the enigmatic relation between several variants of the linking
invariant L and other related invariants, used in the study of generic C∞ real maps
and immersions.

Second, we study a family of non-normal toric surface singularities. Normal toric
surface singularities are cyclic quotients with a huge literature. Altmann in [Alt95b]
characterized the toric deformations – that is, deformations with a compatible toric total
space – of normal affine toric variety. Also, in [ACF22], the total spaces over the negative
degree components of the versal base of a normal toric singulity are constructed in a
combinatorial manner. These give inspiration and a model for creating deformations for
non-normal toric surfaces.

We define a family of non-normal toric surface singularities: one such singularity from
each cyclic quotient surface Xp,p−q introducing a ‘mod 2’ family of gaps to their defining
semigroup S ∈ M . Then we build 1-parameter toric deformations for them. This results
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INTRODUCTION

in a singular nearby fibration. We then describe the boundary of these nearby fibres as
graph manifolds with plumbing graph

−2

−2

−1 ⊖ −2 −b1 −b2 . . .
−br

(2)

where the self intersections bi are the coefficients in the negative continued fraction
corresponding to the parameters p

q
= b1 − 1

b2− 1
b3−...

= [b1, b2, . . . , br].

Structure of the thesis

In the Preliminaries (Chapter 1), we give a short introduction to the basics of complex
analytic singularities. We begin with the algebraic background in Section 1.1 then we
turn to spaces and germs (Sections 1.2, 1.3). After an overview on resolutions in Section
1.4, we turn to the topology of singularites (Section 1.5) and we introduce the theory of
Milnor fibration in Section 1.6 including a concise history. We end this chapter with a
short section on plane curves.

The second chapter is about singularities of map germs. Its first half gives an
introduction to the theory including unfoldings, the notion of A -equivalence (2.1.1) and
stability (2.1.2). We put special emphasis on the deformation theory in the two contexts
of mappings and space germs, including infinitesimal deformations (2.1.3) and versality
(2.1.5). Then we turn to the more specific aspects of the theory – to prepare for our
findings – with finitely determined germs (2.1.4) and germs C2 → C3 (2.1.6).

Section 2.2 is about an interplay between analytic and topological invariants corre-
sponding to a finitely determined map germ Φ : (C2, 0)→ (C3, 0). We recall the invariants
C and T and outline their invariance for analytic, C∞ and topological left-right equiva-
lence. We introduce the associated immersion and we describe the double point structure
of Φ.

In Section 2.2.3, we collect the different definitions of the Ekholm–Szűcs invariant L
of stable immersions S3 ↬ S5 from the literature. We show that they agree up to sign
and we clarify that sign. Then we define an invariant for finitely determined germs by
applying L to the associated immersions, and we prove its topological left-right invariance.

In Section 2.2.4, we provide a new, direct proof for the correspondence L = C − 3T .
We use local calculations near complex cross cap points and triple values.

4
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INTRODUCTION

We end the chapter with is a brief summary (2.2.5) of the applications of L and
another similar linking invariant in the study of generic real maps and immersion theory.
We collect the most relevant results and clear up the context of this article, including the
main steps of the original proof of (1). Then we compare the new local calculation for
the complex cross cap points with an older one from [NP15], and clarify its consequences
for the Ekholm–Szűcs Smale invariant formula.

The third chapter is about non-isolated toric surface singularities. Section 3.1 gives
a short introduction the deformation theory of space germs including their infinitesimal
deformations (3.1.3). Then we turn to toric geometry in Section 3.2. We describe how
the construction of affine non-normal toric varietes differ from the classical normal case
(3.2.1). After a short subsection dedicated to cyclic quotient surface singularities (3.2.2),
we give an overview of Altmann’s work on toric deformations (3.2.3).

Section 3.3 is about a family of non-normal toric singularities. After setting up the
context we state the result (3.3.2). Then we give a toric deformation (3.3.4), study the
nearby fibres (3.3.5) and build the boundary of the singular Milnor fibre (3.3.6).

The original results of the author are included in Sections 2.2, 3.3.
The dissertation is not self-contained in the sense that we regularly assume some

basics, omit proofs, but more importantly, sometimes foreshadow some results and
concepts in order to motivate definitions or establish connections. We aim the thesis
at mathematicians having some knowledge of commutative algebra, algebraic geometry
and differential topology.
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Chapter 1

Preliminaries

1.1 Algebraic foundations

. . . geometry provides intuition, while algebra provides rigour.
[GLS07]

Singularities are special points of geometric spaces and maps where they are not
smooth. At these points a lot of interesting geometry is entangled, hidden. It has been
the purpose of singularity theory to understand these enigmatic beings. In this section,
we walk through the basics of the theory that we need. We create a language to be able to
speak about singularities from different points of view. We follow [GLS07] as a guideline
and main source in this section.

Throughout this thesis, we will concentrate on complex singularities. There are two
possibilities for the class of functions we use: algebraic or analytic. We focus on the latter
one and only mention the former. We start by introducing analytic C-algebras that will
serve as local rings of functions.

Notation 1.1.1. We denote the ring of convergent power series in the variables
x = (x1, ..., xn) by C{x1, . . . , xn}.

Definition 1.1.2. A C-algebra is analytic if it is isomorphic to

C{x} /I

where I is an ideal of C{x}.

We think about such an analytic C-algebra as the set of functions on the analytic
space germ defined by I.

6
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Chapter 1. Preliminaries 1.1. Algebraic foundations

Definition 1.1.3. The category of analytic C-algebras is the set of analytic C-
algebras as objects with C-algebra morphisms between them.

Now we list some basic but crucial algebraic properties of analytic C-algebras.

Proposition 1.1.4 (Properties of analytic C-algebras).

(i) C{x} is a local ring with the unique maximal ideal consisting of the functions
vanishing at the origin:

mC{x} = (x1, . . . , xn) =
{
f ∈ C{x} : f(0) = 0

}
.

(ii) Any analytic C-algebra is also local with the unique maximal ideal being the image
of mC{x} under the factorization.

(iii) The units in C{x} are the power series with nonzero constant term, and their images
are the units in analytic C-algebras.

(iv) The ring C{x} is an integral domain, that is, there are no zero-divisors in – although
there may be in an analytic algebra.

(v) The order – defined by the order of the smallest degree nonzero term – is additive:

ord(fg) = ord(f) + ord(g).

Remark 1.1.5. These facts hold over the real numbers too.

From this point on, when we write analytic algebra, we mean analytic C-algebra.
The following statement has great significance for dimension theory and for analytic

geometry.

Theorem 1.1.6 (Noether property). Every analytic algebra A is Noetherian, that is,
each ideal in A is generated by finitely many elements.

In particular, each analytic algebra can be written as

C{x}
/

(f1, . . . , fs) .

We also need a few crucial notions describing analytic algebras. We present two notions
to describe dimensions. Both of them are defined algebraically.

Definition 1.1.7. Let A be an analytic algebra, and let mA be its maximal ideal.

7
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Chapter 1. Preliminaries 1.1. Algebraic foundations

(i) The (Krull) dimension of A is the supremum of the lengths of strictly increasing
chains of prime ideals in A

dimA = sup{k : p0 ⊊ p1 ⊊ · · · ⊊ pk, pi ◁ A prime }.

(ii) The cotangent space of A is
mA

/
m2
A
.

(iii) The embedding dimension of A is the dimension of the cotangent space

edimA = dimC
(
mA

/
m2
A

)
.

(iv) The Jacobian rank of an ideal I ◁ A

jrk(I) = dimC
(
I
/
I ∩m2

A

)
.

The geometric meaning of the Krull dimension is the following. Prime ideals
correspond to closed analytic subspaces. So, essentially, the dimension counts how many
times we can drop down to smaller and smaller analytic subsets from our space until we
hit a single point. On the other hand, the embedded dimension is the dimension of the
Zariski tangent space. In turn, it is the affine space of the lowest dimension to which our
germ can be embedded. The difference between the two dimensions indicates a singularity.

If we consider A = C{x1, ..., xn} with the ideal I = (f1, ..., fk), the Jacobian rank is
the rank of the Jacobian matrix

(
∂fi

∂xj

)
i,j

. This rank also detects singularities as it drops
at singular points. Moreover, it is related to the embedded dimension.

Proposition 1.1.8 (Jacobian rank lemma). In the above setup,

jrk(I) = edim(A)− edim
(
A /I

)
.

Let us show the proof, too, as it is quite simple.
Proof: Consider the short exact sequence of vector spaces.

0 (I + m2
A)
/
m2
A

mA

/
m2
A

mA

/
(I + m2

A) 0

I
/

(I ∩m2
A) mA/I

/
m2
A/I

∼= ∼=

Then take C-dimensions of the vector spaces obtaining the identity above. □

Let us see some simple examples involving convergent power series.
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Chapter 1. Preliminaries 1.2. Analytic spaces

Example 1.1.9. The Krull dimension of the power series ring equals the number of
variables: dim(C{x1, ..., xn}) = n. The cotangent space is the complex n-vector space:
m/m2 ∼= Cn ∼= C⟨x1, ..., xn⟩, hence the embedding dimension is also n.

A more interesting example where the dimensions do not match is the following.

Example 1.1.10. Consider A = C{x, y}/xy. Its Krull dimension is dimA = 1 as a
maximal prime chain is (x) ⊊ (x, y) – keeping in mind that the zero ideal is not prime. On
the other hand, the cotangent space is mA/m

2
A = (x, y)/(x, y)2 = C⟨x, y⟩, so edimA = 2.

It may also be interesting to mention that the Krull dimension gains another geometric
interpretation by the following statement.

Remark 1.1.11 (Noether normalization lemma). For an analytic algebra A, there
exists a subalgebra of the form A ⊃ B = C{y1, ..., yd}, such that A is a finitely generated
module over B, where d is the Krull dimension of A.

The inclusion B ↪→ A induces a surjective finite morphism (X, 0)→ (Cd, 0) that is a
branched covering.

The finiteness of a map is defined later in Definition 1.3.21. Also, one should not
confuse the Noether normalization with the normalization map, described in Definition
1.3.23.

Remark 1.1.12. Given a map of analytic algebras A → B, it induces a linear map of
the respective cotangent spaces. This is called the cotangent map.

1.2 Analytic spaces

The most elementary way to build complex spaces is to patch them together from pieces
of Cn. More precisely, we can define a reduced complex space as a Hausdorff topological
space with an analytic atlas, meaning that the charts are locally closed analytic subsets
of Cn and the transition maps are holomorphic maps.

However, we would like to define these spaces in a more modern way that is more
flexible and carry more geometric meaning. We use the language of sheaves. For the
minimal amount of sheaf theory needed here, consult Appendix A of [GLS07]. For a
more comprehensive introduction to sheaves, with the focus on algebraic geometry, we
recommend turning to [Vak23] and [EH00]. Here, we build on the basics. First, we give
an analytic flavour to sheaves.
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Chapter 1. Preliminaries 1.2. Analytic spaces

Definition 1.2.1.

(i) A ringed space (X,AX) is a topological space X together with a sheaf of rings AX
on X. The sheaf AX is called the structure sheaf of X.

(ii) A ringed space (X,AX) is called locally ringed space if each stalk Ap is a local
ring. We denote the maximal ideal of AX,p by mp.

(iii) A morphism of ringed spaces is a pair of maps

(φ, φ#) : (X,AX)→ (Y,AY )

where φ : X → Y is a continuous map of the underlying topological spaces and
φ# : AY → φ∗AX is a morphism of sheaves of local rings. (Or, equivalently, we
could view it as a morphism φ−1AY → AX .)

Being a morphism of sheaves means that φ# is a collection of ring homomorphisms

φ#
U : AY (U)→ AX(φ−1(U))

for each U ⊂ Y open that commutes with the restriction maps. In addition to that, being
a morphism of local rings means for φ# that for each p ∈ X the local ring homomorphism
φ#
p takes the maximal ideal mφ(p) into the maximal ideal mp.

Usually, instead of writing the pair (φ, φ#), we only write ϕ, but we always think the
sheaf morphisms as part of the data.

Example 1.2.2. For an open subset D ⊂ Cn, the pair (D,OD) is a locally ringed space
where OD denotes the sheaf of analytic (holomorphic) functions.

Definition 1.2.3.

(i) A C-analytic ringed space is the ringed space (X,AX), where the structure sheaf
AX is a sheaf of C-algebras and all the stalks AX,p are analytic C-algebras. (Note
that the latter condition implies that (X,AX) is a locally ringed space.)

(ii) A morphism of C-analytic ringed spaces is a morphism of ringed spaces where
the local morphisms are morphisms of C-algebras.

We are building complex spaces somewhat similarly to the mentioned manifold-like
patchwork process. However, our pieces will be analytic subsets and the gluing is done
via sheaves.
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Chapter 1. Preliminaries 1.2. Analytic spaces

Definition 1.2.4. Let D ⊂ Cn open. The ideal sheaf I ⊂ OD is said to be of finite type
if it is locally generated by finitely many analytic functions. Precisely, if for any p ∈ D
there is a smaller open neighbourhood p ∈ U ⊂ D where I|U = f1OU + ..+fkOU for some
fi ∈ O(U).

These functions locally define subsets of D that are significant from the analytic point
of view.

Definition 1.2.5. The analytic set defined by I, or the vanishing set of I, in D is

V (I) =
{
p ∈ D : OD,p

/
Ip ̸= 0

}
.

This definition fits our intuition as away from its vanishing set, I contains units hence
the quotient becomes 0.

Definition 1.2.6 (Complex spaces).

(i) Let I ⊂ OD of finite type. Let Y = V (I) be the corresponding analytic set and
OY = (OD/I)|Y be its structure sheaf. We call (Y,OY ) the complex model space
defined by I.

(ii) A C-analytic ringed space is a complex space if X is Hausdorff and the structure
sheaf is locally like a model space. The latter means that for each p ∈ X there exists
an open neighbourhood U ∋ p such that (U,OU) is isomorphic to a complex model
space as a C-analytic ringed space.

(iii) Holomorphic functions on U appear as sections of the above sheaf f ∈ Γ(U,OX).
Holomorphic or analytic maps are the morphisms of complex spaces. They are
morphisms of C-analytic ringed spaces (φ, φ#) : (X,OX) → (Y,OY ). An
isomorphism of complex spaces is called a biholomorphism.

Remark 1.2.7. When it leads to no confusion, we only write φ : X → Y for a
holomorphic map, omitting the sheaves whatsoever, but we always mean both parts.

A stalk OX,p of a complex space – defined as the direct limit limU∋pOX(U) – is always
an analytic algebra of finite type, meaning, it is isomorphic to C{x}/(f1, ..., fk). In this
case, {xi} is a set of local coordinates of Cn, in turn, {fi} are the local equations that
define the structure sheaf of X at p in those coordinates.
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Chapter 1. Preliminaries 1.2. Analytic spaces

On the other hand, every analytic algebra of finite type C{x}/(f1, ..., fk) appears as a
stalk of a complex space. For this, we find an open neighbourhood U of 0 ∈ Cn where all
the fi are holomorphic. Then we define I = f1OU + ...+ fkOU and the complex space

(X,OX) =
(
V (I), (OU/I)|V (I)

)
.

The stalk of the latter at 0 is isomorphic to the given analytic algebra C{x}/(f1, ..., fk).
Definition 1.2.5 showed how ideals yield analytic sets. Now we see how we can go from

sets to ideals.

Definition 1.2.8. Given any subset S ⊂ X of a complex space (X,OX), the vanishing
ideal sheaf of S is defined as

I(S)(U) =
{
f ∈ OX(U) : V (f) ⊃ S ∩ U

}
.

This construction works for any subset of X not only the analytic ones. Of course, we
only have nice properties in those cases.

Remark 1.2.9. For an analytic set S ⊂ D ⊂ Cn,

S = V (I(S)).

Note that each stalk I(S)p is a radical ideal of OX,p by construction. Moreover, the Hilbert-
Rückert Nullstellensatz tells us that for a coherent ideal sheaf J ⊂ OD the following holds

I(V (J )) =
√
J

where
√
J is the radical of J .

Next, we define how complex subspaces are contained in a complex space.

Definition 1.2.10. A closed complex analytic subspace of a complex space (X,OX)
is a C-analytic ringed space (Y,OY ) that is defined by an ideal sheaf IY ⊂ OX the
following way. The underlying topological space is Y = V (I) and the structure sheaf
is OY = (OX/IY )|Y .
An open complex subspace (U,OU) is just an open subspace U ⊂ X with the restricted
sheaf OU = OX |U .

We can also say which subsets of the topological space X are analytic.
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Chapter 1. Preliminaries 1.2. Analytic spaces

Definition 1.2.11. A subset S ⊂ X is a (closed) analytic set in the complex space
(X,OX) if it can be given a structure sheaf OS (for example OS = OX/I(S)) that makes
it a closed complex subspace.
An equivalent local description is the following. The subset S ⊂ X is an analytic set in
X if each point p ∈ X has an open neighbourhood U such that

S ∩ U = V (f1, . . . , fk)

for some fi ∈ OX(U).

It is important to note that a a closed analytic set can be given different structure
sheaves that make it a complex subspace. The minimal one OX/I(S) makes it a so-called
reduced space.

Definition 1.2.12. A complex space (X,OX) is reduced if each stalk OX,p (p ∈ X) has
no nilpotent elements – or in other words, is a reduced ring.

We want to make sense of the natural geometric intuitions regarding dimensions. The
notions at hand are the algebraic ones we have given in Definition 1.1.7. We apply them
to complex spaces.

Definition 1.2.13. The (Krull) dimension of the complex space X at p ∈ X is the
Krull dimension of the local ring

dimpX = dimOX,p.

On the other hand, the embedding dimension at p is, again, the dimension of the
cotangent space

edimpX = dimC mp

/
m2
p
.

If we look at a complex space X around a point p, it will be isomorphic to an analytic
subset of some CN – a complex model space. Precisely, there is an N , an open subset
D ⊂ CN and an ideal sheaf of the form

I = f1OD + . . . fkOD ⊂ OD

such that (
U,OX

∣∣∣
U

) ∼= (
V (I),OD /I

)
for some p ∈ U ⊂ X. We can see that the sheaf OD/I only depends on the choice of
the neighbourhood U , but otherwise is encoded in OX . In particular, we do not know

13

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 1. Preliminaries 1.3. Germs

anything about N a priori. In fact, there is a smallest complex affine space where we can
embed some neighbourhood of p. This minimal dimension is the embedding dimension.

These notions of dimension allow us to grasp the phenomenon of singularity.

Definition 1.2.14. A complex space X is regular (or, equivalently smooth or non-
singular) at p if the two concepts of dimension match:

dimpX = edimpX.

Otherwise, we say it is singular at p.

Note that the embedded dimension is always greater or equal to the Krull dimension by
Krull’s principal ideal theorem ([Eis95, Section 8.2.2.]).

Remark 1.2.15. We also want to mention that there is a natural way to define the
analytic fibre products X ×

T
Y given three complex spaces X, Y, T with morphisms

X → T, Y → T between them. The situation can be summed up in the following
commutative diagram.

X ×
T
Y

X Y

T

πX πY

φ ψ

Moreover, this satisfies the expected universal property that for any complex space Z

with morphsisms ζX : Z → X and ζY : Z → Y there exists a unique morphism
ζX×Y : Z → X ×

T
Y satisfying ζX = πX ◦ ζX×Y and ζY = πY ◦ ζX×Y .

1.3 Germs

When we see a singular point in a complex space, we are interested in the geometry hidden
in that point, we want to concentrate our attention to that point as closely as possible,
forgetting about everything that happens further away from the singularity. The way to
do this is by the notion of a germ.

Definition 1.3.1. A complex space germ or a singularity (X, p), for a complex
space X with a distinguished point p ∈ X, is the complex space (U,OX |U), where U ⊂ X

is an arbitrarily small neighbourhood of p.
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Chapter 1. Preliminaries 1.3. Germs

Similarly, a holomorphic map germ φ : (X, p)→ (Y, q) is a morphism of complex
spaces respecting the distinguished point φ(p) = q, considering two morphisms equivalent
if they agree in some neighbourhood of the distinguished point.

They form a category.

Remark 1.3.2. We can define multi-germs in similar fashion. We only need to replace
p and q with some larger sets: f : (X,S) → (Y, T ) is a multi-germ. In this case, for the
equivalence, we need to look at the map in small neighbourhoods of S ⊂ X, and T ⊃ f(S)
is also needed. In the current thesis, we will see finite multi-germs, such as the triple
point. However, one can also consider a germ ‘along’ a subspace S ⊂ X.

When talking about germs, we usually take a representative (space or morphism)
from the given equivalence class. The local ring O(X,p) of a germ is the stalk OX,p of a
representative (X,OX). We use these two notatitions for the stalk interchangeably, which
is a slight abuse of notation as the latter requires the choice of a representative.

A holomorphic map germ (X, p) → (Y, q) induces a pair (φp, φ#
p ), that consists of a

continuous map germ φtop and a morphism φ#
p : OY,q → OX,p of analytic C-algebras.

On the relationship between the topological part (the underlying space) and the
algebraic part (the structure sheaf) of the data carried by a germ, we can say the following.

Proposition 1.3.3.

(i) The underlying topological space does not determine its local algebra. An analytic
set X ⊂ CN can be given different structure sheaves. Also, the continuous map germ
φ : X → Y (with φ(p) = q) does not determine the morphism φ#

p : OY,q → OX,p
between the stalks.

(ii) The algebra determines the underlying topology. For pointed complex spaces (X, p)
and (Y, q), a morphism µ : OY,q → OX,p of analytic C-algebras determines a unique
holomorphic map germ (φ, φ#) : (X, p)→ (Y, q) that satisfies φ#

p = µ.

The discrepancy in (i) motivates talking about reduced germs: in that case, the
topological data above determines the algebra.

Definition 1.3.4. The complex space germ (X, p) is reduced if the local ring OX,p is
reduced.
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Chapter 1. Preliminaries 1.3. Germs

Example 1.3.5. A most simple but extremely important example of a nonreduced space
germ is the fat point of order two or double point:

D =
(
{pt},C[ε]/ε2

)
.

Topologically, this is only a point, but it has a richer, two dimensional local ring. Vaguely
speaking, it sees the first derivatives of functions at this point besides their value.

A nonreduced space has a well-defined reduction.

Definition 1.3.6. The reduction of a complex space (X,OX) is

Xred = (X,OredX ) =
(
X,OX/I(X)

)
,

where I(X) is the vanishing ideal sheaf of X.

That is, we obtain the reduced structure sheaf by factoring out by I(X) (see Definition
1.2.8) for X ⊂ X, removing the ‘nilpotency’ from its stalks.

The important geometric concepts that we introduced for complex spaces in the
previous section are defined the following way.

Definition 1.3.7. An analytic subgerm of (X, p) is defined by, first, choosing an ideal
I ⊂ OX,p in the local ring – that is always finitely generated I = (f1, ..., fk). Then we take
its vanishing set in a suitable neighbourhood U ∋ p as a representative(

V (I), p
)

=
(
V
(∑

fiOU
)
, p
)
⊂ (X, p).

Definition 1.3.8.

(i) The dimension of a germ is defined as the dimension of a representative at
the distinguished point dim(X, p) = dimpX. So is the embedded dimension:
edim(X, p) = edimpX.

(ii) When dim(X, p) = 1, we call it a curve singularity. In case of dim(X, p) = 2, it
is a surface singularity. When a space germ can be embedded into a complex affine
space one dimension greater, we call it a hypersurface singularity; in this case it can
be described with one equation too.

Note that a singularity or space germ in the sense of Definition 1.3.1 is not necessarily
singular in the sense of Definition 1.2.14. In fact, regularity of germs can be described in
different ways.
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Chapter 1. Preliminaries 1.3. Germs

Proposition 1.3.9. The following are equivalent.

(i) (X, p) is regular with dim(X, p) = n.

(ii) A small open neighbourhood of p is a smooth complex manifold of dimension n.

(iii) Given that O(X,p) ∼= C{x1, ...xN}/(fi, ..., fk), the rank of the Jacobian at every point
q in a small neighbourhood is constant

rk
(
∂fi
∂xj

(q)
)
i,j

= N − n.

(iv) O(X,p) ∼= C{x1, . . . , xn}.

We remark that the Jacobian rank of (iii) is lower semicontinuous. This means that
for any p ∈ X there is an open neighbourhood U ⊂ X such that, for any q ∈ U ,
rk
(
∂fi

∂xj
(q) ≥

(
∂fi

∂xj
(p).

The complex space X is singular at p if the above equivalent conditions are not
satisfied. We focus our attention to the set of singular points.

Definition 1.3.10. The singular locus of a complex space X is

Sing(X) = {p ∈ X : X is singular at p}.

Let us look at a plane curve example to see the above notions in play.

Example 1.3.11. Consider the crunode X = {y2 − x2(x + 1) = 0} ⊂ C2. As a complex
subspace, it is irreducible. However, as a germ at (0, 0), it is equivalent to two intersecting
lines (X, 0) ∼= ({y2 − x2 = 0}, 0) = ({(y − x)(y + x) = 0}, 0) through a local analytic
coordinate change.

Definition 1.3.12 (Irreduciblity of spaces).

(i) A complex space germ (X, p) is irreducible if the local ring OX,p is an integral
domain.

(ii) Accordingly, an analytic subset Y ⊂ X is irreducible at p if the vanishing ideal
I(Y )p ⊂ OX,p is prime. Indeed, this makes the quotient OX,p/I(Y )p an integral
domain.

When the vanishing ideal is not prime, it has a minimal prime decomposition as it is
a radical ideal. This leads to the following in geometry.
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Chapter 1. Preliminaries 1.3. Germs

Proposition 1.3.13. Let (Y, p) ⊂ (X, p) be an analytic subgerm. There is an irre-
ducible decomposition

(Y, p) = (Y1, p) ∪ . . . (Yl, p)

where each germ (Yi, p) is irreducible and they do not contain each other. They are called
irreducible components.
The decomposition is unique up to permutation.

For global complex spaces, a similar characterization, that uses the structure sheaf as
in Definition 1.3.12, is problematic. If we required the ring of global sections to be an
integral domain, we would fail as there may be too few global sections – take projective
spaces for instance. As a concrete example, consider two lines on the projective plane
X = P1 ∪ P1 ⊂ P2. The space X is clearly reducible but the global sections are only
the constant functions OX(X) ∼= C that is obviously an integral domain. On the other
hand, requiring all rings OX(U) to be integral domains is a too much. For the crudnode
of Example 1.3.11, we can choose a small enough neighbourhood U around 0 for which
OX(U) has zero-divisors.

Instead, irreducibility of a complex space X is defined simply as not being decompos-
able to closed analytic subspaces X = X1∪X2 nontrivially. Although, the concept can be
characterized using meromorphic functions instead. The complex space X is irreducible
if and only if the global sections of the sheaf of meromorphic functions on X form a field.

Proposition 1.3.14. An irreducible reduced complex space X is of pure dimension,
that is the dimension is the same at each point of X.

Proposition 1.3.15. The singular locus Sing(X) of a complex space X is a closed
analytic subset of X.

Proof: It is enough to show it locally, so we can assume that X is a complex model
space and let us treat irreducible components separately. Let the irreducible component
Xi be defined by I = (f1, ..., fk) ·OD inside some open D ⊂ CN . According to Proposition
1.3.14, Xi is of pure dimension n. Then (iii) of Proposition 1.3.9 and the semicontinuity
of the Jacobian rank tells us that the singular locus of Xi can be described using the
Jacobian criterion:

Sing(Xi) =
{
p ∈ Xi : rk

(
∂fi

∂xj
(p)
)
< N − n

}
.

Hence, with the assumptions above, the singular locus is a closed analytic subset.
In case of a reducible space, we just need to take the union of the singular loci of the
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Chapter 1. Preliminaries 1.3. Germs

components and the intersection sets of the components {Xi}. This altogether is a union
of closed analytic sets, thus closed analytic itself. □

Note that if X is of pure dimension, then in the rank condition, we do not have to
bother with the irreducible components separately. If it is of mixed dimension, however,
then it is, indeed, necessary. Consider X = V (xy, xz) ⊂ C3. The space X is reducible
as its vanishing ideal decomposes into (xy, xz) = (x) · (y, z) resulting the decomposition
X = V (x) ∪ V (y, z) = X1 ∪ X2. Note that X1 and X2 are of dimensions 2 and 1,
respectively. This leads to the Jacobian having different ranks on the components

rk
(
∂fi

∂xj
(p)
)

=


0 if p = 0
1 if p ∈ X1 \ 0
2 if p ∈ X2 \ 0

Remark 1.3.16. We can collect all the data above – the local Jacobi matrix and the local
equations – into a sheaf that defines the singular locus. This is denoted by ISing(X) and
we have V (ISing(X)) = Sing(X).

Next, we discuss the regularity of maps.

Definition 1.3.17. A map germ φ : (X, p) → (Y, q) is regular (or smooth or
nonsingular) if it fits into the commutative diagram

(X, p) (Y, q)× (S, 0)

(Y, q).

φ

∼=

πY

where (S, 0) is a regular space germ and πY is the projection. A holomorphic map is
smooth if it is smooth at all points.

Geometrically, regularity means that the map is a submersion. Regular maps have an
equivalent algebraic description.

Proposition 1.3.18. The map germ φ : (X, p)→ (Y, q) is regular if and only if OX,p is
a free power series algebra over OY,q.

Regularity is an open condition, more precisely, those points p ∈ X where φ is regular
form an open subset of X.

Also, regularity of a space X is equivalent to the regularity of the map X → pt.
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Chapter 1. Preliminaries 1.3. Germs

1.3.1 Normality

The next property of spaces that has an important effect on singularities is normality.
This, too, is defined stalkwise.

Definition 1.3.19. The complex space X is normal at p ∈ X, or the complex space
germ (X, p) is normal if the local ring OX,p is integrally closed in its total ring of fractions
Frac(OX,p).

(We get the total ring of fractions if we localize our ring by the set S of non-zero-
divisors: Frac(OX,p) = S−1OX,p. If X is irreducible at p, then OX,p is an integral domain,
hence Frac(OX,p) is its field of fractions.)

Note that normality implies reducedness. Let us see an example.

Example 1.3.20. The cusp C = {x3 = y2} ⊂ C2 is not normal at the origin. Indeed, the
local ring at (0, 0) is OC,(0,0) = C{x, y}/(x3− y2) and the fraction y

x
∈ Frac(OC,(0,0)) is not

in the local ring but is in the integral closure of it as it solves the equation Z2 = x in Z.

We can ‘correct’ non-normal spaces by normalizing them. But first, we need the notion
of finiteness of maps in order to describe normalizations.

Definition 1.3.21. A morphism φ : X → Y is finite at p ∈ X if there are open
neighbourhoods U ∋ p, V ∋ φ(p) with φ(U) ⊂ V such that φ|U has finite fibres.

We could ask why we do not choose smaller neighbourhoods where the fibres consist
of single points. However, the map C → C, x 7→ xk clearly satisfies the definition above
and at any points around 0, it is an n-fold cover.

An important result concerning finite maps is that they take analytic subsets to
analytic subsets.

Theorem 1.3.22. Consider a finite morphism φ : X → Y of complex spaces. Then the
image φ(Z) of any closed complex subspace Z ⊂ X is an analytic subset in Y .

Back to normalization.

Definition 1.3.23. Let X be a reduced complex space. The normalization is a
morphism n : Xnorm → X, from a normal space Xnorm, such that

(i) the map n is finite and surjective,

(ii) the preimage of the non-normal locus is nowhere dense,
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Chapter 1. Preliminaries 1.3. Germs

(iii) on the normal locus, n is a biholomorphism.

The normalization satisfies the universal property that any morphism from a normal
space to X factors through n : Xnorm → X. In this sense, it is unique up to isomorphism
of complex spaces.

The normalization of the above cusp singularity is the following. First, we normalize
the local ring: n# : C[x, y]/x3 − y2 → C[t], x 7→ t2, y 7→ t3. This implies the map of
spaces n : C→ X, t 7→ (t2, t3).

We mention two important consequence of normality on singularities.

Theorem 1.3.24. For a normal complex space X, the dimension of the singular locus is
at least two less than that of X

dim
(
Sing(X)

)
≤ dim(X)− 2.

The next theorem states that on a normal space, the values of a function outside of
the singular locus determine its values on the singular locus.

Theorem 1.3.25. Let X be a normal complex space. For every open subset U ⊂ X the
restriction

Γ(U,OX)→ Γ
(
U \ Sing(X),OX

)
is bijective.

For reduced complex spaces this condition is an equivalent description of normality.
This is a good moment to clarify the relation between the properties of space germs

introduced in this section.

Remark 1.3.26. Regularity implies both normality and irreducibility. In turn, normality
and irreducibility separately imply reducedness.

In this thesis, we focus our attention to analytic spaces, germs and mappings. However
the analogous notions in the algebraic category are similarly interesting. We say a few
words about the difference between the two situations.

Remark 1.3.27. Consider an algebraic variety X of finite type. We can naturally assign
an associated complex space Xan in the following way. The variety X is covered by dense
open charts that are isomorphic (in both the algebraic and the analytic sense) to subsets
of some Cn defined by finitely many polynomial equations. These equations can be treated
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Chapter 1. Preliminaries 1.4. Resolution

as analytic equations, so can be the gluing maps of X giving a collection of complex model
spaces for Xan.

On the other hand, complex spaces have ‘finer’ structure on them. First, the topology
is finer, there are more open subsets. Second, there are more analytic functions than
algebraic ones on a space, and, in turn, more analytic sets. Hence, for a complex
space X, there might not exist an algebraic variety whose associated complex space is X.
Similarly, given two algebraic varieties X ,X ′ with (analytically) isomorphic associated
complex spaces Xan ∼= X ′

an, the varieties might not be isomorphic in the algebraic sense.
However, if we restrict our attention to projective varieties, the two categories become

equivalent. Chow proved in [Cho49] that for any closed analytic subset X ⊂ Pn of a
projective space, there exists a projective variety X ⊂ Pn such that Xan ∼= X as complex
spaces. Later, in [Ser56], Serre showed that for projective varieties the associated complex
space functor is an equivalence of categories, including coherent sheaves, and implying
an isomorphism on the respective sheaf cohomologies. Furthermore, in dimension 1, the
statement is true for any compact complex space. That is, any compact Riemann surface is
projective algebraic. However, in higher dimensions, it is no longer true that any compact
complex space is algebraic and no condition is known that is necessary and sufficient.

On further details of this correspondence between the algebraic and analytic worlds,
and on how this connection is used in algebraic geometry, see [Har77, Appendix B].

1.4 Resolution

One approach to ‘smoothen’ a singularity is resolution. This means that we replace the
singular locus with something ‘bigger’, giving room to the enclosed geometry to ‘set free’,
while we do not change the geometry of the smooth locus. We mostly follow [Ném22,
Chapter 2.], however we also recommend the great book [Kol07] of Kollár on the topic
that gives a much more extensive account for the topic showing how it has developed
historically.

Definition 1.4.1 (Modification, resolution, good resolution). Let (X, 0) be a space
germ. A local modification (or partial resolution) of (X, 0) is a proper analytic map
ρ : X̂ → X from a normal space X̂ to a sufficiently small representative X, satisfying the
conditions

(i) the preimage X̂ \ ρ−1(Sing(X)) of the smooth locus is dense in X̂;
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Chapter 1. Preliminaries 1.4. Resolution

(ii) the map ρ is an isomorphism over X \ A for an analytic subset X ⊃ A ⊃ Sing(X)
that does not contain any irreducible components of X.

A modification is a local resolution if, in addition,

(iii) X̂ is smooth.

A resolution is good if the following conditions also hold

(iv) the map ρ is an isomorphism over the whole smooth locus X \ Sing(X) (that is
A = Sing(X) in the condition (ii));

(v) the preimage ρ−1(Sing(X)) of the singular locus is a normal crossing divisor in X̂;

(vi) each irreducible component of ρ−1(Sing(X)) is smooth.

Notation 1.4.2. The primage of the singular locus is denoted by E = ρ−1(Sing(X)) ⊂ X̂.
Its irreducible components are usually numbered E = ⋃

Ei.

Definition 1.4.3. We say that a modification ρ : X̂ → X dominates another
modification ρ′ : X ′ → X, if the former factors through the latter, that is (maybe after
taking smaller representatives) there exists an analytic map φ : X̂ → X ′ such that

ρ = ρ′ ◦ φ.

A resolution is called minimal (or minimal good) if it does not dominate any other (good)
resolution with a non-isomorphism.

Remark 1.4.4. The normalization map n : Xnorm → X is a modification. For curves,
the normalization is already a resolution. In the case of surfaces, the normalization Xnorm

can only have isolated singularities.
Moreover, every resolution dominates the normalization.

The primary and motivating example of resolutions is the blowup.

Example 1.4.5 (Blowup of a point). Let (X, 0) ⊂ (Cn, 0) be an isolated singularity.
We take the projective space of lines through the origin in Cn and consider the space of
pairs of a point and a line where the line goes through the point:

B = {(p, ℓ) ∈ Cn × Pn−1 : p ∈ ℓ}.
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Chapter 1. Preliminaries 1.4. Resolution

The blowup of Cn at the origin is the map

π : B → Cn, (p, ℓ) 7→ p.

This is a modification of Cn that is an isomorphism over Cn \ 0. The preimage of 0 is
E = π−1(0) = 0× Pn−1, the exceptional divisor.

The preimage π−1(X) of a small representative X of the singularity is the total
transform of the singularity:

{(p, ℓ) ∈ X × Pn−1 : p ∈ ℓ}.

Note that this contains the whole exceptional divisor as an irreducible component. We can
remove this by looking at the preimage of X outside of 0 and then taking its closure in B,
obtaining the so-called strict transform of X:

X̂ = {(p, ℓ) ∈ X × Pn−1 : p ∈ ℓ, p ̸= 0}.

The map π|
X̂

: X̂ → X is the blowup of X at 0.

Example 1.4.6. Instead of a (singular) point we can also blow up an analytic subspace.
Consider the complex model space defined by some equations Z = V (f1, . . . , fk) ⊂ Cn,
and let {y1, . . . , yk} be projective coordinates on Pk−1. Then the blowup of Cn at Z is

Ĉn =
{(
p, [y1 : · · · : yk]

)
∈ Cn × Pk−1 : yifj(p) = yjfi(p) ∀1 ≥ i, j ≤ k

}
.

The map Ĉn → Cn, (p, [y])→ p is a modification that is an isomorphism over Cn \ Z.

Let (X, 0) be a normal surface singularity with a modification φ : X ′ → X. Normality
makes (X, 0) an isolated singularity, furthermore, it implies that the modification is an
isomorphism outside of the origin.

Theorem 1.4.7 (Zariski’s main theorem). In case of a modification of a normal
surface singularity, the exceptional divisor E = φ−1(0) is a connected, compact curve.

Remark 1.4.8. If X is contractible to 0, then the space X̂ is retractable to E, hence they
have the same homotopy type. Also, X̂ can be taken to be a closed complex space with
boundary smoothly isomorphic to that of X: ∂X̂ ∼= ∂X.

The way the components of the exceptional divisor intersect each other carries
important information about the singularity.
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Chapter 1. Preliminaries 1.4. Resolution

Definition 1.4.9. The intersection matrix of a resolution is the matrix (Ei, Ej)i,j.
For two different components, the intersection number is the number of intersection points
counted with multiplicity. For the self-intersection number (Ei, Ei), we consider a slightly
C∞-shifted copy E ′

i of Ei representing the same homology class [E ′
i] = [Ei] ∈ H2(X̂,Z),

and take the intersection number (Ei, E ′
i). Note that the latter is independent of the choice

of E ′
i.

Theorem 1.4.10. A resolution ρ : X̂ → X of a normal surface singularity (X, 0) has
negative definite intersection matrix.

Proof: We want to prove that, for any divisor Z = ∑
v αvEv with αv ∈ Q and

nonnegative self-intersection Z2 ≥ 0, we have Z = 0. For this, we use principal divisors.
Let f : (X, 0) → (C, 0) be a holomorphic function. We now that the corresponding

principal divisor div(f◦ρ) = divE(f◦ρ)+st(f) (where st is the strict transform) represents
the class 0 in the relative homology group H2(X̂, ∂X̂,Z). Let us simplify notation by
introducing D = divE(f ◦ ρ). Note that D is effective. The vanishing in homology means
that (D + st(f), Ev) = 0 for each v. Firstly, this implies

(D,Z ′) ≤ 0 (1.1)

for any effective divisor |Z ′| ⊂ E, and, secondly, that

D2 < 0 (1.2)

as (st(f), D) > 0 making D2 < D2 + (st(f), D) = (D + st(f), D) = 0. These two
inequalities hold for any restriction D|E′ = divE′(f ◦ ρ) of D.

Returning to the divisor Z, we can assume that it is effective, otherwise there is unique
way to split it to Z = Z+−Z− where both Z+ and Z− and are effective and their supports
are disjoint. At least one of the two parts have Z2

± ≥ 0 as

0 ≤ Z2 = (Z+ − Z−)2 = Z2
+ + Z2

− − 2Z+Z− ≤ Z2
+ + Z2

−.

(The last inequality is due to the disjoint supports.)
Let us assume that we have the statement for smaller support |Z| ⊊ E and now let

|Z| = E. In this case, there exists a small positive λ ∈ Q such that Z − λD is still
effective. This way, we did not decrease the self-intersection:

(Z − λD)2 = (Z,Z − λD)− λ(D,Z − λD) ≥ (Z,Z − λD) = Z2 − λ(Z,D) ≥ Z2

using (1.1) twice.
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Chapter 1. Preliminaries 1.4. Resolution

Choosing the maximal λ with the above property, we decreased the support: |Z −
λD| ⊊ E. The inductive statement implies that Z − λD = 0, thus Z2 = λ2D2 holds.
However, Z2 ≥ 0 according to the initial assumption and D2 < 0 due to (1.2), hence
λ = 0, which is a contradiction. □

Grauert [Gra62] proved the converse of this statement in the following sense: any
smooth surface, with a given collection of curves inside it satisfying the above conditions,
can be realized locally and analytically as the resolution of a surface singularity. More
precisely:

Theorem 1.4.11. Let X be a smooth complex space. Consider a collection {Ci}s1 of
irreducible analytic curves such that ⋃s1 Ci is connected and the intersection matrix (Ci, Cj)
is negative definite. Then there exists a normal surface Y with a singularity at 0, and
open neighbourhoods 0 ∈ V ⊂ Y and ⋃Ci ⊂ U ⊂ X, such that there is an analytic map
ρ : U → V that is the resolution of the singularity (Y, 0) with the exceptional divisor
ρ−1(0) = ⋃

Ci.

One beauty of normal surface singularities is that not only they have resolutions –
that also holds for more general singularities – but they have minimal resolutions, too.

Theorem 1.4.12. Every normal surface singularity has a good resolution. Moreover,
there exist a unique minimal resolution and a unique minimal good resolution.

One can check minimality with the following condition.

Proposition 1.4.13. A resolution is minimal if and only if none of the rational smooth
components Ev have −1 self-intersection. A resolution is minimal good if and only if each
such rational (−1)-curve intersects at least 3 other components.

Definition 1.4.14. Let ρ : X̂ → X be a good resolution of a normal surface singularity
(X, 0). We define the resolution graph

ΓX = (V , E)

of the singularity as the following undirected but not necessarily simple graph. For each
irreducible component Ev of the exceptional divisor we assign a vertex v ∈ V. If two
components, Ev and Ew, intersect each other at k points, we connect the corresponding
vertices v, w with k edges. We also introduce decorations on the vertices. For each vertex
v, we mark the self-intersection number ev = E2

v and the genus [gv] of the curve Ev. We
usually omit the genus if it is 0.
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Chapter 1. Preliminaries 1.5. Topological structure and the link

The resolution graph ΓX of a normal surface singularity is a connected graph as E
itself is a connected topological space.

The resolution graph is associated to a particular resolution, however we can ask which
graphs belong to the same singularity. For instance, blowing up a point of an exceptional
component Ev gives another resolution graph, associated to the same singularity, with
a new (−1)-vertex (of genus 0). In fact, two resolution graphs corresponding to a given
normal surface singularity can always be connected with a sequence of such (−1)-blowups
and (−1)-blow-downs.

Note that we can read off the intersection matrix from the resolution graph.

1.5 Topological structure and the link

If we concentrate to a small enough neighbourhood of the singularity, all topological data
is encoded in the boundary, that is called the link.

In most cases from now on, when we talk about a singularity (X, p), we assume that
p is the origin, and – abusing notation – we will denote it by 0 = 0 ∈ X.

In a general setup, we need a notion of ball around the singularity. For a complex
space germ (X, 0) let us consider a ‘distance’, a real analytic function |.| : X → R≥0 such
that it only takes the value 0 at the origin. We should imagine this ‘distance’ as one
inherited from the ambient CN of one of its complex model spaces, but keep in mind that
we are free to choose any other ‘distance’ meeting the conditions. We denote balls and
spheres accordingly:

Bε = BX,ε(0) = {p ∈ X : |p| ≤ ε},

Sε = SX,ε(0) = {p ∈ X : |p| = ε}.

According to [BV72] we can take a small enough neighbourhood of 0, such that the
singularity is topologically a real cone over its link. The precise statement is the following.

Proposition 1.5.1. For a complex space germ (X, 0), we can pick a small enough ε > 0
real number such that

(i) for each ε′ < ε, SX,ε′ is smoothly isomorphic to SX,ε, and

(ii) BX,ε is homeomorphic to the real cone over SX,ε.

Moreover, having a complex subgerm (Y, 0) ⊂ (X, 0) and a respectively small ε > 0,
the following holds, too. (In case of non-isolated singularities, a stratified versions of the
following statements hold, see [BV72] for the statements and [Mat12].)
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Chapter 1. Preliminaries 1.5. Topological structure and the link

(iii) For each ε′ ≤ ε, the intersection Sε′ ∩ Y is transverse.

(iv) The embedded topology is also cone-like: the pair (BX,ε, BX,ε ∩ Y ) is homeomorphic
to the real cone over (SX,ε, SX,ε ∩ Y ). ([BV72, Lemma 3.2])

Finally, these homeomorphism types are independent of the choice of |.|.

Definition 1.5.2. We call SX,ε (respectively SX,ε ∩ Y ) the link of (X, 0) (resp. (Y, 0))
for such an ε and we denote it by LX (resp. LY ).

For such a pair of isolated singularities (Y, 0) ⊂ (X, 0), we have an embedding of
links: LY ↪→ LX . If Y = V (f) defined by an equation, the above embedding is of real
codimension 2 with a complex line bundle structure on the normal bundle of LY ⊂ LX .

Proposition 1.5.3. The link LX of a complex hypersurface germ (X, 0) ⊂ (Cn+1) of
dimension n is (n− 2)-connected.

For hypersurface singularities of dimension 2, this means that their links are connected.
If (X, 0) is smooth and of complex dimension n, then the link is a real sphere

LX ∼= S2n−1.
In the case of an isolated singularity, the link is a smooth manifold that yields nice

topology. If Y is a curve in X of dimension 2, LY ↪→ LX is a knot or more generally a link.
If we consider a normal surface singularity, we can consider a resolution of it – that exists
by Theorem 1.4.12, then we can recognise that the boundary of a tubular neighbourhood
of the resolution is diffeomorphic to the link. Therefore Theorems 1.4.10 and 1.4.11 imply
the following.

Corollary 1.5.4. The link of a normal surface singularity is homeomorphic to a
connected graph 3-manifold with negative definite plumbing graph. Moreover, all such
graph manifolds appear as links of such a singularity.

In the case of an isolated but non-normal singularity, the above statement still holds
as the reslution of the singularity factors through the normalization.

If X is a non-isolated singulartiy, the link LX is not a smooth manifold. However,
we can still tell that the number of connected components of LX equals the number of
irreducible components of (X, 0).
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Chapter 1. Preliminaries 1.6. The Milnor fibration

1.6 The Milnor fibration

The Milnor fibration, or the local Milnor package, is created to grasp the structure of one-
parameter smoothings of singularities. It is a way to ‘smoothen’ the singularity and detect
some additional information about it. In this section, we define the Milnor fibration in a
more general setup that we need, mention some crucial properties and give an overview
of the state of the art. We refer to [Ném22] for the details, especially for the isolated case.
At the end of this section, we give an overview of the development of this area.

The Milnor fibration is primarily defined for isolated hypersurface singularities. We
begin with this case.

Regarding the fibration, we have the following result by Hamm ([Ham71, Satz 1.6])
and Lê ([Lê77, Theorem 1.1]).

Theorem 1.6.1. Let (X, 0) be a reduced complex space germ. Also, let f : (X, 0)→ (C, 0)
be a (nontrivial) holomorphic function germ such that V (f) ⊃ Sing(X), in other words
X \ V (f) is smooth. Then if ε ∈ R>0 is small enough and 0 < δ ≪ ε, we have two
diffeomorphic smooth fibrations:

(i) f
|f | : Sε \ V (f)→ S1

(ii) f : Bε ∩ {f = δ} → δ · S1

The former, (i), is called the Milnor fibration. The latter, (ii) is the nearby
fibration or the Milnor-Lê fibration. Conceptually the two are very different: (i) provides
a fibration of the small sphere around the singularity using the argument of the function,
whereas (ii) gives a fibration closely around the zero locus of f . By Milnor fibre, we
mean the closure of the fibres – that are diffeomorphic to each other – of the nearby
fibration:

F ∼= Fθ = {f = θ} ∩Bε.

In case of an isolated singularity (X, 0), the boundary of the Milnor fibre is
diffeomorphic the link:

∂F ∼= L.

Also, the fibration (i) yields an open book decomposition of the sphere, where the pages
are the fibres and the binding is the link.

Remark 1.6.2. If the defining function f does not vanish on the whole singular locus in
Theorem 1.6.1, the map (ii) is, again, a locally trivial fibration. However, in this case,
the nearby fibres are singular. We call this a singular nearby fibration.
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Chapter 1. Preliminaries 1.6. The Milnor fibration

Figure 1.6.1: Milnor and nearby fibrations with their different kinds of fibres.

As we aim for a a more general application of this theory, we explore the possible
generalizations. In case of higher codimension – that is when the singularity is defined by
more equations – there is no given way to perturb the equations. Naturally, in case of a
complete intersection singularity, we have independent perturbations for each equation,
but we are interested in the case when this is not true, when the equations satisfy some
nontrivial relations (or syzygies). There, we need a consistent way of perturbation. This
is a highly nontrivial problem of deformation theory, and we will discuss it in Section 3.1.
Here, we only show results informally to paint the picture.

To mimic the hypersurface case, we want a 1-parameter deformation with smooth
fibres, or a smoothing. In other words, we want a space germ (X̃n+1, 0) of one dimension
higher than X with a map s making the following diagram commute.

(X, 0) (X̃, 0)

0 (C, 0)

π

We also want the fibres π−1(t) to be smooth for t ̸= 0 and a technical condition of flatness
to be satisfied by π that actually makes it a deformation, that is a ‘nice’ and ‘meaningful’
perturbation.
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Chapter 1. Preliminaries 1.6. The Milnor fibration

All in all, provided such a smoothing, we ended up with an isolated hyperplane
singularity (X, 0) ⊂ (X̃, 0).

On the other hand, in case of a non-isolated singularity, the boundary of a desired
Milnor fibre would be smooth hence it cannot be isomorphic to the link that is singular.
The two homeomorphic fibrations of Theorem 1.6.1 will have different boundaries. The
open book decomposition of the sphere is problematic, too, with the binding being
singular. For different versions of fibration theorem for non-isolated singularities and
a nice description of the Whitney straitification needed, see [Lê16].

For an isolated surface singularity (X, 0), resolutions help us describing the topology
mentioned in this section.

Theorem 1.6.3. Let (X, 0) be an isolated surface singularity with a resolution graph
ΓX . Then the link LX (and the boundary of the Milnor fibre ∂F when we have one) is
homeomorphic to the graph (or plumbed) 3-manifold associated to ΓX .

In case of a non-isolated surface singuarity, we do not have such direct way to recover
LX . However, the following result by Curmi [Cur20] still holds.

Theorem 1.6.4. Let (X , 0) be a 3-dimensional analytic space germ, and f : (X, 0) →
(C, 0) a reduced holomorphic germ, such that V (f) contains the singular locus of (X, 0).
Then the boundary of the Milnor fibre ∂F of f is homeomorphic to an oriented plumbed
3-manifold.

However, in contrast to the isolated case, we do not know how to construct the
corresponding graph in general. This is why our result in Section 3.3 describing the
graph associated to the Milnor fibre boundary of certain non-isolated surface singularities
is relevant.

Going back to the case of isolated singularities, we can say a lot about the whole
Milnor fibre.

Theorem 1.6.5. Let (X, 0) be an isolated singularity of dimension n+1 and f : (X, 0)→
(C, 0) a holomorphic germ on it. Let F be its Milnor fibre as defined in Theorem 1.6.1.
Then the following hold true for F .

(i) The Milnor fibre is a complex n-dimensional Stein manifold – that is a complex
submanifold of a complex vector space.

(ii) It is homotopy equivalent to a real n-dimensional CW complex, see [AF59].

(iii) If, in addition, (X, 0) is smooth, then F is (n− 1)-connected, see [Mil74].
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Chapter 1. Preliminaries 1.6. The Milnor fibration

Hence, we can deduce the following.

Theorem 1.6.6. Consider an isolated hypersurface germ V (f) ⊂ Cn+1 corresponding to
the holomorphic germ f : (Cn+1, 0) → (C, 0). Its Milnor fibre F is homotopy equivalent
to a bouquet of spheres of real dimension n

F ≃
µ∨
Sn.

The latter still holds for isolated complete intersection singularities (see [Ham71]).
The number of spheres appearing in the homotopy type is called the Milnor number,

and it has an analytic description, too. This is a beautiful connection between the
topological and analytic sides of singularities.

Definition 1.6.7. Let f : (Cn+1, 0)→ (C, 0) be an analytic germ. Its Milnor number
is the codimension of its Jacobian ideal in the local ring at 0:

µ = dimC

(
OCn+1,0

/(
∂f
∂x1
, . . . , ∂f

∂xn+1

))
.

In [Mil74], Milnor defined the ‘multiplicity’ µ for isolated singularities defined by
f : (Cn+1, 0)→ (C, 0) as the degree of the mapping

S2n+1
ε → S2n+1

1 , x 7→ f(x)
|f(x)| .

Accordingly, the Milnor number also agrees with the maximal number of critical points
in a small deformation of the holomorphic function.

Definition 1.6.8 (Signature). According to the theorem above, all the homological data
concentrates in Hn. As that is exactly half the real dimension of F , we have the
intersection form

∩ : H2(F,Z)×H2(F,Z) ∼= Zµ × Zµ → Z

that is a (−1)n-symmetric bilinear form.
For n even, we can define the signature

σf = µ+ − µ−

where µ+, µ0, µ− are Sylvester’s indexes of inertia, that is the number of +1, 0 and −1
diagonal elements in the diagonal matrix corresponding to the form.
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Chapter 1. Preliminaries 1.6. The Milnor fibration

1.6.1 History

We summarize some of the most relevant results in the study of the Milnor fibre mostly
following the great historical account in [Cur20].

The first spark to start this filed was Milnor’s examples of exotic spheres [Mil56].
This result is relevant because links of singularities turned out to be an important source
of exotic spheres. A couple of years later Mumford proved that, in case of a complex
surface, being a topological manifold implies regularity [Mum61]. In fact, he proves that
a surface germ is regular if and only if its link is simply connected. Later, Neumann
showed that the link of a surface singularity can be recovered from its fundamental group
except for the well-known families of cyclic quotients and cusps [Neu81]. However, shortly
after that Brieskorn showed that this fails in higher dimensions, giving counterexamples
[Bri66b]. Milnor, in 1968, published his book on isolated hypersurface singularities in
Cn, where he introduced the Milnor fibration [Mil74]. Later, Lê generalized this concept
to any hypersurface singularities in complex spaces [Lê77]. Hamm proved in [Ham71]
that for an equidimentional complex space germ (X, 0) and a holomorphic function
f : (X, 0)→ (C, 0) with V (f) ⊃ Sing(X), the Milnor fibration is a smoothing.

Assigning Milnor fibres to singularities is an extremely difficult task in general. Usually
there is more than one possible smoothings, sometimes there is none of them. In case of an
isolated surface singularity, there are important specific results. Brieskorn proved that for
A,D,E singularities, the Milnor fibre is unique and diffeomorphic to the corresponding
minimal resolution [Bri66a]. We have complete descriptions of the Milnor fibre in a few
other cases: normal toric surface singularities by Lisca [Lis07] and Némethi and Popescu-
Pampu [NP10]; sandwich singularities by de Jong and van Straten [JS90]. Finally, a non-
isolated surface singularity whose Milnor fibre we know is the hypersurface singularity of
the form {f(x, y) + z · g(x, y) = 0} ⊂ C3 studied by Sigurðsson in [Sig16].

Studying the boundary ∂F of the Milnor fibre, however, appears to be a slightly less
difficult question. Mumford [Mum61] and Grauert [Gra62] proved the two directions
of Theorem 1.5.4 characterizing the links of normal surface singularities. However, the
language of graph manifolds that we use was only introduced later by Waldhausen
[Wal67b; Wal67a].

Although we aim for a similar classification in the case of non-isolated surface
singularities, proving that the boundary of the Milnor fibre is a graph manifold is already
challenging. Siersma [Sie91; Sie01] computed the homology of ∂F in certain cases and
characterized when ∂F is a rational homology sphere. Michel, Pichon and Weber gave
the plumbing graphs of ∂F for Hirzebruch surface singularities (that are of the form
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Chapter 1. Preliminaries 1.7. Plane curve singularities

xkyl − zm = 0 with gcd(k, l,m) = 1) [MPW07] and for suspensions (g(x, y) − zm = 0)
[MPW09]. Michel and Pichon also showed that, in the case when the total space of the
smoothing is smooth and the equation defining the singularity inside it is reduced, ∂F is a
graph-manifold [MP03; MP16]. Fernández de Bobadilla and Menegon Neto extended this
result to a wider context [FM14]. However, these proofs were not constructive. Némethi
and Szilárd gave an algorithm for constructing the plumbing graph of ∂F in the case
of reduced holomorphic functions f : (C3, 0) → (C, 0) [NS12]. Curmi developed their
strategy further for the case f : (X, 0)→ (C, 0) with V (f) ⊃ Sing(X) [Cur20].

1.7 Plane curve singularities

The simplest setup where we can find singularities, is the case of plane curves. Let us
consider a reduced power convergent series f ∈ m ⊂ C{x, y}. This defines an isolated
hypersurface singularity on the plane (C, 0) = (V (f), 0) ⊂ (C2, 0). We can look at the
irreducible decomposition of the defining equation f = f1 · · · · · fk – where each factor is
reduced, which leads to a decomposition of the curve: (C, 0) = (C1, 0) ∪ · · · ∪ (Ck, 0). We
call the components branches.

If we normalize an irreducible plane curve, we obtain a parametrization of the curve:
φ : (C, 0) → (C, 0). The parametrization is usually described with two power series:
φ(t) = (x(t), y(t)), x, y ∈ C{t} with f(x(t), y(t)) = 0.

As this is one of the most studied subfields of singularity theory, there are beautiful
facts and puzzling open questions about plane curve germs. However, we restrict our
attention to those concepts that we need later.

For a pair of plane curve singularities, we can assign a numerical invariant.

Definition 1.7.1. Let f, g ∈ C{x, y} be irreducible plane curve singularities. Their
intersection multiplicity is

i(f, g) = ordt g(x(t), y(t))

where (x(t), y(t)) is a parametrization of f . If the germs are not irreducible, then the
intersection multiplicity is that of the pairs of the respective branches summed up.

Proposition 1.7.2.

(i) The intersection multiplicity is independent of the parametrization.

(ii) The intersection multiplicity is symmetric: i(f, g) = i(g, f).
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Chapter 1. Preliminaries 1.7. Plane curve singularities

(iii) i(f, g) = dimC
(
C{x, y}

/
(f, g)

)
When i(f, g) = 1, we say that the two germs intersect each other transversely. This

fits the notion of transversality in differential topology.

Remark 1.7.3. If we take small enough generic perturbations of two plane curves f, g
with no common factor, they will have i(f, g)-many transverse intersection points – in a
previously chosen – small neighbourhood of 0.

The parametrization (C, 0)→ (C, 0) of an irreducible curve germ (C, 0) = V (f) yields
an embedding morphism of the local rings

n∗ : C{x, y}/(f) ∼= OC,0 ↪→ OC,0 ∼= C{t}.

When f is reducible, the embedding has the target O⋃(C,0)i

∼=
⊕k

1 C{ti}.
More generally, for any singularity (X, 0), normalization n : (X̂, 0)→ (X, 0) yields an

embedding n∗ : OX,0 ↪→ OX̂,0 of local algebras.

Definition 1.7.4. The δ-invariant is the codimension of the embedding n∗:

δ(f) = dimC

(
OX,0

/
O
X̂,0

)
,

if it is finite.

The δ-invariant behaves nicely if we take the union of two curve germs.

Proposition 1.7.5. If f, g ∈ C{x, y} are reduced power series with no common factor,
then

δ(f, g) = δ(f) + δ(g) + i(f, g).

It is also related to the Milnor number.

Theorem 1.7.6. Let f ∈ m ⊂ C{x, y} be a reduced plane curve singularity. Then

µ(f) = 2δ(f)− k + 1,

where µ(f) is the Milnor number of the singularity and k denotes the number of irreducible
components of f .
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Chapter 2

Maps and invariants

Holomorphic map germs Φ : (Cn, 0) → (Cp, 0) can have different kinds of isolated
singularities that are stable under perturbation, as opposed to the case of hypersurface
singularities (Cn → C), where there is only one kind: the Morse singularity, x2

1 + ...+ x2
n.

However, the number of points of each type of isolated stable singularitie in a ‘stabilization’
of a given singularity does not depend on the stabilization. We will study the respective
invariants in the case of C2 → C3 maps after establishing the notions needed.

In her paper [Rua22], Ruas tells the origins of this field – called Thom–Mather theory
– in the following way:

“In 1944, Whitney [Whi44] studied the first pair of dimensions not covered by his
immersion theorem. For mappings f from Rn to R2n−1 Whitney proved that singularities
cannot be avoided (with perturbations) in general. He introduced the semi regular mappings
as proper mappings f : Rn → R2n−1 whose only singularities are the generalized cross-
caps (Whitney umbrellas) points. Away from singular points, f is an immersion with
transverse double points, and when n = 2 a finite number of triple points may also appear
in the image of f . These are the only stable singularities in these dimensions. However,
only later, Whitney introduced the notion of stable mappings.”

Though we study complex mappings, the leading questions and results of this chapter
resonates very well with Whitney’s endeavours mentioned above.

2.1 Map germs

In this section the great book [MN20] of Mond and Nuño-Ballesteros is closely followed
and we include several examples from there.
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Chapter 2. Maps and invariants 2.1. Map germs

2.1.1 Mappings up to A -equivalence

Singularity theory begins where f is neither a submersion nor an immersion though it is
also concerned with the way that multiple immersions can interact.

[MN20]

Consider an analytic map Φ : Cn → Cp. We want to define the ‘regularity’ of this
map. However, it turns out that depending on the dimensions, there are two ‘regular’
behaviours.

(i) If n ≥ p, a regular mapping is a submersion. That is, when the differential is
surjective. This matches the definition 1.3.17 we gave earlier. This is also how we
define singularities of a subspace defined by an equation f : X → C.

(ii) If n ≤ p, a regular mapping is an immersion. That is, when the differential is
injective. This is the dual of submersion in a sense.

We can summarize this phenomenon saying that a mapping is regular at a point x ∈ Cn

if the rank of the Jacobian at x is the possible maximum (that is, min(n, p)). Otherwise
Φ has a singularity at x. Note that there is the following discrepancy between this notion
of singularity and the singularity of spaces described in Definition 1.2.14.

Remark 2.1.1. A prominent example of singularities of C2 → C3 maps is the Whitney
umbrella (or cross-cap):

Φ : C2 → C3, (s, t) 7→ (s2, st, t).

This map is not an immersion at (0, 0), hence we say it has a singularity there, and at all
the other points it is regular in the above sense. On the other hand, the image of Φ is an
analytic subspace X ⊂ C3. As a space, it, indeed, has a singularity at Φ(0, 0) = (0, 0, 0),
but the singular locus Sing(X) is the whole line Φ(s, 0) = (s2, 0, 0).

In this section, we would like to handle both complex and real mappings. For this, we
introduce the following notations.

Notation 2.1.2.

(i) F denotes C and R.

(ii) When we talk about a smooth map germ Φ : (Fn, 0) → (Fp, 0), we mean either
complex analytic map germs or real C∞ mappings.

37

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 2. Maps and invariants 2.1. Map germs

(iii) In this context, a diffeomorphism means biholomorphism for F = C. In turn, a
‘smooth space’ means a regular analytic space in the complex case and a manifold in
the real case.

Definition 2.1.3. Let F : Fn → Fp be a smooth map.

(i) The map F is a submersion at x ∈ Fn if its differential

dFx : TxFn → TF (x)Fp

is a surjective linear map.

(ii) It is a immersion at x if the differential dFx is injective.

(iii) A critical point is a point in the source where the map is not a submersion. The
set of critical points of F is denoted by Crit(F ).

(iv) A critical value of F is the image of a critical point. The set of critical values is
called the discriminant of F and is denoted by ∆(F ) = F (Crit(F )).

Definition 2.1.4. Two smooth map germs Φ : (Fn, 0)→ (Fp, 0) and Ψ : (Fn, 0)→ (Fp, 0)
between smooth space germs are left-right equivalent (or A -equivalent) if there exist
germs of diffeomorphisms F : (Fn, 0)→ (Fn, 0), G : (Fp, 0)→ (Fp, 0) such that

Ψ = G ◦ Φ ◦ F−1.

This condition can be expressed with the commutative diagram

(Fn, 0) (Fp, 0)

(Fn, 0) (Fp, 0).

Φ

F G

Ψ

Note that the notions of left (L -)equivalence and right (R-)equivalence can be defined
in similar manner. However, we want to concentrate on left-right equivalence in this thesis.

The name A -equivalence refers to the following. Let

A = An,p = Diff(Fn, 0)×Diff(Fp, 0).

the set of pairs of diffeomorphisms. This is, in fact, a group with respect to composition.
This acts on the set of map germs Φ : (Fn, 0)→ (Fp, 0) accordingly:

(F,G)(Φ) = G ◦ Φ ◦ F−1.
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Chapter 2. Maps and invariants 2.1. Map germs

Two map germs are A -equivalent if they are in the same orbit of this action.
An important project in Thom–Mather theory is the classification of them up to

different equivalences – left-right equivalence in our case. An important notion in the
topic is finite determinacy, for which we need the definition of jets.

Definition 2.1.5. The k-jet of a map germ f : (Fn, 0) → (Fp, 0) is the degree k Taylor
polynomial of f .

For complex analytic germs, we can obtain their jets by cutting their power series at the
given degree. However, it depends on the local coordinates we choose.

One can also define the k-jet bundle Jk(X, Y ) for a pair of smooth spaces X, Y . Its
fibre Jk(X, Y )(x,y) is the set of k-jets of map germs (X, x) → (Y, y). This is a locally
trivial fibre bundle over X × Y .

Definition 2.1.6. The smooth germ Φ : (Fn, 0) → (Fp, 0) is k-determined for A -
equivalence if given any Ψ with the same k-jet as Φ, the germs Ψ and Φ are A -
equivalent. A smooth germ is finitely determined if it is finitely l-determined for some
k.

2.1.2 Stable perturbations

Definition 2.1.7 (Unfolding).

(i) A d-parameter unfolding of a holomorphic map germ Φ : (Fn, 0) → (Fp, 0) is a
smooth map germ

Φ̃ : (Fn × Fd, 0)→ (Fp × Fd, 0)

of the form
Φ̃(x, t) = (Φt(x), t)

such that Φ0(x) = Φ(x).

Equivalently, we require Φ̃ to fit into the following commutative diagram.
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Chapter 2. Maps and invariants 2.1. Map germs

(Fn, 0) (Fp, 0)

0

(Fn × Fd, 0) (Fp × Fd, 0)

(Fd, 0)

Φ

Φ̃

π
π

(ii) Two unfoldings Ψ̃1 and Ψ̃2 of Φ are equivalent as unfoldings if there are germs
of diffeomorphisms

F : (Fn × Fd, 0)→ (Fn × Fd, 0) and G : (Fp × Fd, 0)→ (Fp × Fd, 0)

that are d-parameter unfoldings of the respective identity mappings:

F (x, t) = (Ft(x), t), G(y, t) = (Gt(y), t) with F0(x) = x,G0(y) = y;

and satisfy
Φ̃2 = G ◦ Φ̃1 ◦ F−1.

The latter relation can be phrased in terms of the following commutative diagram,
too.

(Fn × Fd, 0) (Fp × Fd, 0)

(Fn × Fd, 0) (Fp × Fd, 0)

Φ̃1

F G

Φ̃2

(iii) We call an unfolding trivial if it is equivalent to the constant unfolding

Φ× id : (x, t) 7→ (Φ(x), t).

Definition 2.1.8. A map germ Φ : (Fn, 0)→ (Fp, 0) is stable if all of its unfoldings are
trivial.

Stability also means that the germ cannot be changed up to A -equivalence with
perturbations.

Let us see some examples.
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Chapter 2. Maps and invariants 2.1. Map germs

Example 2.1.9. Consider the germ f : (F, 0) → (F, 0), f(x) = x2 and its unfolding
f̃ : (F × F) → (F × F), f̃(x, t) = (x2 + tx, t). This unfolding is, in fact, trivial. For
example, the diffeomorphism germs g(x, t) = (x+ 1

2t, t) and h(x, s) = (x− 1
4s

2, s) trivialize
it.

(F× F, 0) (F× F, 0)

(F× F, 0) (F× F, 0)

f̃

g h

triv.

Indeed, the composition is the trivial unfolding:

h ◦ f̃ ◦ g−1(x, u) = h
(
f̃(x− 1

2u, u)
)

= h
(
(x− 1

2u)2 + ux, u
)

= h(x2 − ux+ 1
4u

2 + ux, u)
= h(x2 + 1

4u
2, u)

= (x2, u).

Example 2.1.10. On the other hand, the unfolding g̃(x3 + tx, t) of the germ g(x) = x3 is
nontrivial. We can prove this by noticing that gt has two critical points for t ̸= 0 whereas
g has only one and showing that this makes it impossible to trivialize g̃.

We can compare unfoldings of the same map in the following way. Let Φ̃ :
(Fn × Fd, 0) → (Fp × Fd, 0) be an unfolding of Φ : (Fn, 0) → (Fp, 0). Furthermore,
let g : (Fk, 0) → (Fd, 0) be a smooth map germ – we call this a base change. Then the
pull-back of Φ̃ by g, or the unfolding induced from Φ̃ by g is

g∗Φ̃ : (Fn × Fk, 0)→ (Fp × Fk, 0), g∗Φ̃(x, s) =
(
Φg(s)(x), s

)
.

Definition 2.1.11. An unfolding Φ̃ of Φ (as above) is versal if, for any unfolding
Φ̃′ : (Fn × Fk, 0) → (Fp × Fk, 0), there exists a base change g : (Fk, 0) → (Fd, 0) such
that the pull-back g∗Φ̃ is equivalent as unfolding to Φ̃′.

Unfortunately, the base change map and the equivalence of unfoldings in the definition
are usually not unique. This is why we call this notion ‘versal’ instead of ‘universal’.
However, we can define a notion of minimality.

Definition 2.1.12. An unfolding Φ̃ is miniversal if it is versal and its paremeter space
is of minimal dimension among the versal unfoldings.
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Chapter 2. Maps and invariants 2.1. Map germs

2.1.3 Infinitesimal deformations and Ae-codimension

The ‘space’ of all unfoldings is unmanageably large as we can perturb our map germ in any
way – while paying attention to keeping it analytic. This makes it extremely hard to study
unfoldings, for example showing that an unfolding is nontrivial (without tricks such as in
Example 2.1.10), checking stability, or proving the existence of versal deformations. For
this reason, we introduce infinitesimal deformations. Essentially, we are only interested
in very small perturbations of maps.

Let Φ : (Fn, 0)→ (Fp, 0) be a smooth germ.

Definition 2.1.13. The space of infinitesimal deformations is

ID(Φ) =
{

dΦt

dt

∣∣∣∣∣
t=0

: Φ̃(x, t) = (Φt(x), t) is a 1-parameter unfolding of Φ
}
.

This is an F-vector space with respect to the following operations. The identity element
is given by the trivial deformation Φ0×1. The addition dΦt

dt |t=0 + dΨt

dt |t=0 = d(Φt+Ψt−Φ0)
dt |t=0

uses the unfolding Φt + Ψt −Φ0. The scalar multiple by α ∈ C is defined as α · dΦt

dt |t=0 =
dΦαt

dt |t=0. These operations do not depend on the representative we take for the elements,
and they satisfy the relations required.

However, at this point we do not even know whether this vector space is of finite
dimension, let alone any finer structure on it.

Note that an unfolding does not need to respect the base point, meaning Φt(0) = 0
might not hold for t ̸= 0. It makes sense to require this, too, which leads to analogue
notions, see Remark 2.1.21.

We can ask which infinitesimal unfoldings are trivial in the left-right sense. Trivial-
izations G ◦ Φ̃ ◦ F−1 = Φ× id are used in the following definition.

Definition 2.1.14. The extended tangent space of Φ is

TAeΦ =
{

d
dt(G

−1
t ◦ Φ ◦ Ft)

∣∣∣∣∣
t=0

: F0 = id, G0 = id
}
.

This is a subspace of ID(Φ). The word ‘extended’ stands for not respecting the base point.
Taking the quotient of the two spaces above, we get the classes of nontrivial unfoldings.

Definition 2.1.15.
T 1

Ae
Φ = ID(Φ)

/
TAeΦ

Indeed, this is isomorphic to the tangent space at 0 to the base space of a miniversal
deformation. As the notion of flatness is not relevant in case of our unfoldings, there will
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Chapter 2. Maps and invariants 2.1. Map germs

be no obstruction space T 2 (see Section 3.1). The dimension of this tangent space will be
extremely important.

There is another way to look at infinitesimal deformations. The elements of the
above spaces can be interpreted as germs of vector fields. First, consider an infitesimal
deformation dΦt

dt

∣∣∣
t=0

and fix a point x ∈ Fn in the source. The image Φt(x) is a curve
through Φ0(x) = Φ(x). Hence the infinitesimal deformation at x results in a tangent
vector in TΦ(x)Fp. Therefore, in this sense, dΦt

dt

∣∣∣
t=0

is a vector field making the diagram

TFp

Fn Fp
π

dΦt
dt |t=0

Φ

(2.1)

commute, where π is the natural projection of the tangent bundle. On the other hand, any
vector field ζ fitting into the diagram (2.1) defines an infinitesimal deformation through
the unfolding Φ̃(x, t) = (Φ(x) + ζ̂x(t), t) where ζ̂x is a flow of ζ: a smooth x-family of
curves with ζ̂x(0) = x.

We introduce notations for vector fields.

Definition 2.1.16.

(i) We denote the space of vector fields on Fk by θk.

(ii) Let Φ : Fn → Fp be a smooth map. The space θ(Φ) of vector fields along Φ
consists of smooth maps ζ : Fn → TFp such that π ◦ ζ = Φ. The latter condition is
equivalent to fitting into the commutative diagram (2.1).

We can create vector fields along Φ from vector fields on the source and the target.

(iii) A vector field ξ ∈ θn can be pushed forward by dΦ yielding a vector field along Φ.
We denote this by tΦ(ξ) = dΦ ◦ ξ.

(iv) Similarly, let η ∈ θp be a vector field over the target Fp. This, we can pull back to
get ωΦ(η) := η ◦ Φ that is, again, a vector field along Φ.

The latter two constructions can be summed up in the following diagram.

TFn TFp

Fn Fp

dΦ

Φ

ξ
tΦ(ξ)

ωΦ(ξ)
η
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Chapter 2. Maps and invariants 2.1. Map germs

With these notations, we can say that ID(Φ) = θ(Φ).
Moreover, the elements of the extended tangent space of Φ can also be interpreted as

vector fields along Φ – as TAeΦ ⊂ ID(Φ). Using the chain rule,

d
dt(G

−1
t ◦ Φ ◦ Ft)

∣∣∣∣∣
t=0

= dΦ ◦
(

dFt
dt

∣∣∣∣∣
t=0

)
+
(

dG−1
t

dt

∣∣∣∣∣
t=0

)
◦ Φ.

In turn, the two summands can be interpreted as a vector field dFt

dt

∣∣∣
t=0

= ξ on the source

pushed forward and one dG−1
t

dt

∣∣∣∣
t=0

= η on the target pulled back. This turns elements of
the extended tangent space into the form tΦ(ξ) + ωΦ(η) for vector fields ξ ∈ θn, η ∈ θp.
This argument can also be reversed: any pair of vector fields define an element in the
extended tangent space. To sum up, we can say the following.

Proposition 2.1.17. For a smooth map germ Φ : (Fn, 0)→ (Fp, 0),

T 1
Ae

Φ = ID(Φ)
TAeΦ

= θ(Φ)
tΦ(θn) + ωΦ(θp)

.

The dimension of this T 1-space is an important invariant of the germ Φ.

Definition 2.1.18. The Ae-codimension of Φ is

codimAe(Φ) = dimF T
1
Ae

Φ.

This codimension measures how unstable a germ is. In particular, it characterizes
stability. Roughly speaking, it gives us the minimal number of parameters of a family
where the particular map occurs ‘irremovably’ up to A -equivalence.

Theorem 2.1.19. [Mat69] A smooth germ Φ is stable if and only if

codimAe(Φ) = 0.

The latter condition is called infinitesimal stability. The theorem, thus, states that
infinitesimal stability is equivalent to stability for germs. The direction that stability
implies infinitesimal stability easily follows from the definition: we can see that any
infinitesimal deformation can be trivialized. The other direction is much more difficult
[Mat69].

Definition 2.1.20. The germ Φ is called A -finite if its Ae-codimension is finite:

codimAe(Φ) <∞.
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Chapter 2. Maps and invariants 2.1. Map germs

Remark 2.1.21 (On deformations respecting the base point). We can define base-
point-preserving versions of all the notions in this subsection, leading to a slightly dif-
ferent codimension. The infinitesimal deformations with this property form a subspace
ID0(Φ) ⊂ ID(Φ), as does the tangent space of Φ:

TA Φ =
{

d
dt(G

−1
t ◦ Φ ◦ Ft)

∣∣∣∣∣
t=0

: F0 = id, G0 = id, Ft(0) = 0, Gt(0) = 0 ∀t
}
⊂ TAeΦ.

The function (G−1
t ◦Φ◦Ft) of t can be regarded as a curve in the A -orbit of Φ. Informally,

TA Φ is the tangent space to the orbit.
The elements of these spaces can also be expressed as vector fields involving the

maximal ideal m that is responsible for fixing the base point: mnθn and mpθp are these
vector spaces on the source and the target, and mnθ(Φ) is the set of such vector fields
along Φ. This makes the A -codimension

codimA (Φ) = dimF T
1
A Φ = dimF

mnθ(Φ)
tΦ(mnθn) + ωΦ(mpθp)

.

The A -codimension is closely related to the Ae-codimension.

Proposition 2.1.22. [MN20, p. 65] Let Φ : (Fn, 0) → (Fp, 0) be a smooth germ. Then
the following hold true.

(i) codimA (Φ) <∞ ⇐⇒ codimAe(Φ) <∞

(ii) If 0 < codimAe(Φ) <∞, then codimA (Φ) = codimAe(Φ)− n+ 2p.

2.1.4 Finitely determined germs

The A -finiteness condition is equivalent to being finitely A -determined.

Theorem 2.1.23 (Mather’s finite determinacy). The following are equivalent for a
smooth map germ Φ : (Fp, 0)→ (Fp, 0):

(i) Φ is A -finite,

(ii) Φ is finitely A -determined,

(iii) mk
nθ(Φ) ⊂ TAe(Φ) for some k ∈ N.

For Mather’s original proof, see [Mat68b]. For another, more efficient proof, see [Wal81] or
[MN20, Section 6.1.]. From this point on, being finitely A -determined and A -finiteness
are synonyms and we will usually use the latter.

We want to characterize finitely A -determined – or equivalently A -finite – germs
geometrically.
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Chapter 2. Maps and invariants 2.1. Map germs

Definition 2.1.24. A smooth map Φ : Fn → Fp is locally stable if

(i) the restriction Φ|Crit(Φ) to the critical set is finite – a closed map with finite fibres,
and

(ii) for any critical value y ∈ ∆(Φ), the multi-germ Φ : (Fn,Φ−1(y))→ (Fp, y) is stable.

In condition (ii), we only care about the critical locus because regular germs are
inherently stable. On the other hand, we should note that for n < p, all points are
critical, that makes local stability simpler.

Remark 2.1.25. For a smooth map Φ : Fn → Fp, with p ≥ n, local stability is equivalent
to being finite and stable as a multi-germ at each value.

When we say that a map Φ : Fn → Fp is locally stable ‘over’ a set Y ⊂ Fp, we mean
that for any y ∈ Y , the multi-germ

Φ : (Fn,Crit(Φ) ∩ Φ−1(y))→ (Fp, y)

is locally stable.

Theorem 2.1.26 (Mather–Gaffney criterion). A holomorphic germ Φ : (Cn, 0) →
(Cp, 0) is A -finite if and only if it has a small representative Φ : U → V such that

(i) the only critical point in Φ|−1
U (0) is 0, and

(ii) the restriction Φ : U \ Φ−1(0)→ V is locally stable.

For the proof and for the real version, see [Wal71].
Again, if the source has smaller or equal dimension than the target, the criterion

simplifies significantly.

Corollary 2.1.27. A holomorphic germ Φ : (Cn, 0) → (Cp, 0) with p ≥ n is A -finite
if and only if there is a small enough neighbourhood 0 ∈ U ⊂ Cn such that only 0 gets
mapped to 0 (Φ|−1

U (0) = 0), and Φ|U is finite and stable outside the origin.

If Φ|−1
U (0) = 0, then finiteness in a small neighbourhood is provided in case of an analytic

map. In fact, the proof of Theorem 2.1.26 uses the following lemma, that will come in
handy for us later.

Lemma 2.1.1. An A -finite holomorphic germ Φ : (Cn, 0)→ (Cp, 0) has a small enough
representative for which 0 is the only possible critical point getting mapped to 0.

46

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 2. Maps and invariants 2.1. Map germs

2.1.5 Stabilizations and versal deformations

In principle, Ae-codimension measures how unstable the given germ is. Now, we want to
see, how we can stabilize A -finite germs with a small perturbation. We are looking for
unfoldings that are generically ‘stable’ except for the original singularity. We will express
this by avoiding ‘bifurcations’.

Consider an A -finite smooth germ Φ : (Cn, 0) → (Cp, 0) with an unfolding Φ̃ :
(Cn × Cd, 0) → (Cp × Cd, 0). Take a small ε > 0 such that Φ satisfies the Mather–
Gaffney criterion over Bε ⊂ Fp, in particular Φ is locally stable outside the origin over
this ε-ball. Then we look at the perturbations Φt in the unfolding Φ̃. As the sphere
Sε = ∂Bε is a compact set in Cp and disjoint from the origin, we can pick a small enough
radius η ≪ ε such that for all t ∈ C with |t| < η the mapping Φt is locally stable over Sε.
However, the perturbed mapping Φt might not be locally stable over the whole ε-ball.

Definition 2.1.28. The bifurcation set of the unfolding Φ̃ in the above setup is the set

B(Φ̃) =
{
t ∈ Bη ⊂ Cd : Φt is not locally stable over Bε ⊂ Cp

}
.

Proposition 2.1.29. For an A -finite mapping Φ, the bifurcation set germ (B(Φ̃), 0) of
any unfolding Φ̃ is an analytic space germ.

However, in the real case, the bifurcation set is not real analytic, only semianalytic.

Example 2.1.30. Consider the map germ f(x) = (x2, x5). Its versal unfolding is
f̃(x, s, t) = (x2, x5 + sx3 + tx). In the complex case, after a straightforward calculation,
we get that the bifurcation set is

BC(f̃) =
{
(s, t) ∈ C2 : t(s2 − 4t) = 0

}
,

that is an analytic subspace consisting of two components.

Furthermore, describing the bifurcation set explicitly is a difficult task in general. For
example, if we consider the germ f(x) = (x3, x4) instead – that looks just as simple as
the previous example, we find that the versal deformation has 3 parameters, and the
bifurcation set has three complicated components that are hard to compute.

Definition 2.1.31. A stabilization of a smooth mapping Φ is a one-parameter unfold-
ing Φ̃ with bifurcation germ

(B(Φ̃), 0) = (0, 0).

In other words, Φt is stable over a small ball for a small enough t ̸= 0.
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Chapter 2. Maps and invariants 2.1. Map germs

The bifurcation set is key for the existence of a stabilization.

Proposition 2.1.32. For an A -finite holomorphic germ Φ : (Cn, 0) → (Cp, 0) the
following are equivalent.

(i) The germ Φ has a stabilization.

(ii) There exists an unfolding Φ̃ of Φ such that the bifurcation germ (B(Φ̃, 0)) is a proper
subgerm in the parameter space.

(iii) For any versal unfolding, the bifurcation germ is a proper subgerm of the parameter
space.

2.1.6 Holomorphic germs C2 → C3

In this subsection, let Φ be a holomorphic mapping (C2, 0)→ (C3, 0).

Corollary 2.1.33 (Mather-Gaffney criterion for C2 → C3). An A -finite (C2, 0) →
(C3, 0) holomorphic germ has a small representative that only has regular points and
ordinary double points away from the origin.

This follows from Theorem 2.1.26.
For the converse statement, we need the additional condition that it is one-to-one over

the origin. Precisely, if a holomorphic germ (C2, 0) → (C3, 0) has a small representative
f : U → V with f−1(0) = {0} that has only regular points and ordinary double points
away from of 0, then the germ is A -finite.

About stable germs in this pair of dimensions, we know the following, see also in
[Mon87].

Proposition 2.1.34. The stable holomorphic (C2, S) → (C3, 0) multi-germs are the
following:

(i) Cross-cap or Whitney umbrella.

(ii) Triple point with regular intersection.

(iii) Transverse crossing of two branches.

(iv) Regular embedding.
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Chapter 2. Maps and invariants 2.1. Map germs

The first two are isolated (multi-)germs
In any given pair of dimensions, there is a list of possible isolated singularities that can

occur. The numbers of these points in the stabilization of a given A -finite map germ is
independent of the stabilization for the following reason. Consider a versal unfolding. The
bifurcation set is a proper subgerm – this is why A -finiteness is important (Proposition
2.1.29) – hence, we can connect any two deformations with a real curve avoiding B. Along
this curve, the above numbers remain unchanged.

The invariant counting cross-caps is the following.

Definition 2.1.35. For a holomorphic map germ Φ, let

C(Φ) = dimCOC2,0
/
R(Φ)

be the codimension of the ramification ideal R, where the latter is the ideal in OC2,0

generated by the three 2× 2 minors of the Jacobian of Φ at 0.

Theorem 2.1.36. [Mon87] The number of cross-cap points of the stabilization of the map
germ Φ in the above sense is C(Φ).

In case of a corank 1 mapping of the form Φ(x, y) = (x, f(x, y), g(x, y)), the invariant
can be computed slightly easier as

C(Φ) = dim
(
OC2,0

/
(∂f/∂y, ∂g/∂y)

)
.

The other invariant concerning triple points can be defined with fitting ideals, defined
usually for mappings (Cn, 0) → (Cn+1, 0). Take an A -finite mapping Φ between these
dimensions. Due to the Mather–Gaffney criterion (Corollary 2.1.27), such a mapping
is finite, thus Φ∗OCn,0 is a finitely generated OCn+1,0-module [Mat68a]. We have the
corresponding exact sequence

OsCn+1,0
λ−→ OqCn+1,0

g−→ Φ∗OCn,0 −→ 0,

called the presentation of Φ∗OCn,0.
The presentation matrix λ contains the relations between the generators gi of

Φ∗OCn,0 as columns. According to Teissier – see [Tei77] – the minimal presentation has a
square matrix, whose determinant is an equation for the image of Φ. Let us denote the
size of this minimal matrix by q.

Definition 2.1.37. The k-th fitting ideal

Fk(Φ) = FittOCn+1,0
k (Φ∗OCn,0)
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Chapter 2. Maps and invariants 2.2. Invariants

corresponding to Φ : (Cn, 0) → (Cn+1, 0) is the ideal generated by the (q − k) × (q − k)
minors of the minimal presentation matrix λ.

In general, the k-th fitting ideals describe the multiple-point loci in the target. That
is, Fk(Φ) vanishes exactly at those points that have at least k + 1 preimages – counted
with multiplicity. These points form complex space germs. We focus our attention to
triple points.

Definition 2.1.38. For a holomorphic map germ Φ, let

T (Φ) = dimCOC3,0
/
F2(Φ) .

Theorem 2.1.39. [MP89] The number of triple points of a stabilization of the A -finite
holomorphic germ Φ : (C2, 0)→ (C3, 0) is T (Φ).

Example 2.1.40. Consider the A2 surface singularity (X, 0) = (C2, 0)/Z2 as the image
of the mapping

Φ : (C2, 0)→ (C3, 0), (s, t) 7→ (s2, t2, st).

Its presentation matrix is

λ =


−z 0 0 xy

0 −z y 0
0 x −z 0
1 0 0 −z

 .

The determinant of λ is det(λ) = (z2 − xy)2. This defines the image of Φ, however it is
not reduced – due to the fact that Φ is a double cover over the regular values of its image.
The first fitting ideal F1(Φ) is the ideal generated by z2 − xy, that is the vanishing ideal
of the double values of Φ. The second fitting ideal is

F2(Φ) = (x, y, z) = m(C3,0),

that is a codimension-1 ideal in OC,0, which means that a stable deformation of Φ has a
single triple point.

2.2 Invariants

This section is an expanded version of our paper [PS23] with Gergő Pintér.
Let Φ : (C2, 0) → (C3, 0) be a finitely determined (also called A-finite) holomorphic

germ. In this case A-finiteness means that Φ is a stable immersion off the origin [Wal81;
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Chapter 2. Maps and invariants 2.2. Invariants

MN20]. For these germs the number of complex Whitney umbrella (cross cap) points
C(Φ) and the triple values T (Φ) of a stable holomorphic deformation are well-defined
analytic invariants. Recently in [FPS22] J. Fernández de Bobadilla, G. Peñafort, and J.
E. Sampaio proved that these invariants are topological, moreover they are determined
by the embedded topological type of the image of Φ. One of the main ingredients of their
proof is the formula

L(Φ|S) = C(Φ)− 3T (Φ) (2.2)

from [NP15], which expresses the naturally topological Ekholm–Szűcs invariant (also
called triple point invariant or linking invariant) L(Φ|S) of the associated stable immersion
Φ|S : S ≃ S3 ↬ S5 in terms of C and T . However, the formula (2.2) is proved in [NP15]
in a rather complicated way, by using two Smale invariant formulas. The main purpose
of this section is to provide a new direct proof for this formula.

The Ekholm–Szűcs invariant L(f) of a stable immersion f : S3 ↬ R5 measures the
linking of the image with a copy of the double values, shifted slightly along a suitable
chosen normal vector field. In the literature, different versions of the definition of L
can be found (see [Ekh01a; Ekh01b; ES03; SST02]), whose relation is not completely
clarified. We verify their equivalence, i.e. L1(f) = −L2(f), based on their opposite
behavior through regular homotopies.

Although our proof of the main theorem (2.2) is self-contained, an independent
secondary goal of this section is to clarify the enigmatic relation between several versions
of the linking invariant L and other related invariants, used in the study of generic C∞

real maps and immersions.

2.2.1 Invariants of a stabilization

By Mather–Gaffney criterion (Corollary 2.1.33), a finitely determined germ Φ : (C2, 0)→
(C3, 0) is finitely determined if and only if its restriction Φ|C2\{0} has a sufficiently small
representative that has only (1) regular simple points and (2) double values with transverse
intersection of the regular branches.

As said in Proposition 2.1.34, the only possible multi-germs of a stabilization (stable
deformation) of a holomorphic germ Φ : (C2, 0)→ (C3, 0) are regular simple points, double
values with transverse intersection of the regular branches, triple values with regular
intersection of the regular branches and simple Whitney umbrella (cross cap) points. The
Whitney umbrellas and the triple values are isolated points, up to analytic A -equivalence
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Chapter 2. Maps and invariants 2.2. Invariants

they have local normal forms

Whitney umbrella (cross cap): (s, t) 7→ (s2, st, t) (2.3)

Triple value:


(s1, t1) 7→ (0, s1, t1)
(s2, t2) 7→ (t2, 0, s2)
(s3, t3) 7→ (s3, t3, 0)

(2.4)

The numbers C(Φ) of the cross caps and T (Φ) of the triple values are independent of
the stabilization, they are analytic invariants of the finitely determined germs Φ. Both
invariants were introduced by Mond [Mon85; Mon87], they can be defined in algebraic
way as well, without referring to a stabilization, as follows.

Let Calg(Φ) be the codimension of the ramification ideal, which is the ideal in the
local ring O(C2,0) generated by the determinants of the 2 × 2 minors of the Jacobian
matrix of Φ : (C2, 0) → (C3, 0). Talg(Φ) is the codimension of the second Fitting ideal
associated with Φ in O(C3,0) [MP89]. If Φ is finitely determined, then both Calg(Φ) and
Talg(Φ) are finite, and any stabilization of Φ has C(Φ) = Calg(Φ) number of cross caps
and T (Φ) = Talg(Φ) number of triple values. The invariants T and C appear in several
different contexts, see for example [Mon91; MM89; MNP12; MN14; Pin19].

The analytic invariance of C and T means the following. Let Φ1 and Φ2 be finitely
determined germs, analytic A -equivalent to each other. That is, there exist germs of
biholomorphisms ϕ : (C2, 0)→ (C2, 0) and ψ : (C3, 0)→ (C3, 0) such that

Φ2 = ψ ◦ Φ1 ◦ ϕ (2.5)

holds, i.e. the diagram below commutes.

(C2, 0) (C3, 0)

(C2, 0) (C3, 0)

Φ1

ψ

Φ2

ϕ (2.6)

Then
C(Φ1) = C(Φ2) and T (Φ1) = T (Φ2). (2.7)

In [NP15] it is proved that C and T are C∞-invariants as well. That is, (2.7) holds
also for C∞ left-right equivalent germs, i.e. for two holomorphic finitely determined germs
for which (2.6) holds with some germs of C∞-diffeomorphisms ϕ : (R4, 0) → (R4, 0) and
ψ : (R6, 0)→ (R6, 0). (Here, Cn and R2n are naturally identified.)

The topological invariance of C and T would mean that (2.7) holds also for
topologically left-right equivalent germs, that is when we only require ϕ and ψ to be
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Chapter 2. Maps and invariants 2.2. Invariants

germs of homeomorphisms. This invariance was an open question for a long time. In
[NP15] Némethi and the Pintér proved that the linear combination C−3T is a topological
invariant. This follows from L = C − 3T (formula (2.2)) which expresses a topological
invariant (the Ekholm–Szűcs invariant) of the associated immersion, see the next sections.
In this section, we present a new direct proof of formula L = C − 3T . (We also prove the
topological invariance of the Ekholm–Szűcs invariant, see Proposition 2.2.5. This fact is
very natural and has been implicitly used previously, but according to the our knowledge,
it has not been published yet.)

In [FPS22] J. Fernández de Bobadilla, G. Peñafort, and J. E. Sampaio proved that
C and T are topological invariants, moreover they are determined by the embedded
topological type of the image of Φ. A key ingredient of their proof is the topological
invariance of C − 3T , which follows from the formula L = C − 3T .

2.2.2 The associated immersion and the double points

Let Φ : (C2, 0) → (C3, 0) be a finitely determined germ. Such a germ, on the level of
links of the spacegerms (C2, 0) and (C3, 0), provides a stable immersion Φ|S3 : S3 ↬ S5

as follows. The preimage S := Φ−1(S5
ε ) of the 5-sphere S5

ε ⊂ C3 around the origin, with
a sufficiently small radius ε, is diffeomorphic to S3. The restriction Φ|S : S ↬ S5

ε is the
immersion associated with Φ. The regular homotopy class of Φ|S is independent of all
the choices. The immersions obtained by different choices are regular homotopic to each
other through stable immersions. See [NP15, p. 2.1.] or [Pin19, Subsection 1.1.2.].

Write (X, 0) for (im(Φ), 0) and let f : (C3, 0) → (C, 0) be the reduced equation of
(X, 0). Note that (X, 0) is a non-isolated hypersurface singularity, except when Φ is a
regular map (see [NP15]). We denote by (Σ, 0) = (∂x1f, ∂x2f, ∂x3f)−1(0) ⊂ (C3, 0) the
reduced singular locus of (X, 0) – that is the closure of the set of double values of Φ.
Also, we denote by (D, 0) the reduced double point curve Φ−1(Σ) ⊂ (C2, 0). The reduced
equation of D is d : (C2, 0) → (C, 0). (In fact, the finite determinacy of the germ Φ is
equivalent with the fact that the double point curve D is reduced; see e.g. [MNP12].)

Let Υ ⊂ S5
ε be the link of Σ. It is exactly the set of double values of Φ|S. Let

γ = Φ−1(Υ) ⊂ S3 denote the set of double points of Φ|S, that is, γ ⊂ S is the link of D.
All link components are considered with their natural orientations.
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Chapter 2. Maps and invariants 2.2. Invariants

(C2, 0) → (C3, 0)
∪ ∪

(D, 0) → (Σ, 0)
∪ ∪

γ = D ∩S3 → Υ = Σ ∩ S5
ε

(2.8)

Figure 2.2.1: Notations of the various parts of the space germs.

2.2.3 The Ekholm–Szűcs linking invariant

The invariant L(f) of a stable immersion f : S3 ↬ R5 measures the linking of a shifted
copy of the double values with the whole image of f . Different versions of the definition
can be found in the literature, for references see below. In this paragraph, we review
these definitions and prove their equivalence via their behavior along regular homotopies.
We present the whole argument in the simplest case, for immersions S3 ↬ R5, although
originally they were introduced for different levels of generality (for other manifolds, higher
dimensions) in [Ekh01a; Ekh01b; ES03; SST02]. This discussion is an extended version
of the summery in [Pin19, p. 2.2.2.].

A stable immersion f : S3 ↬ R5 has only simple values and double values with
transverse intersection of the two branches. Let γ ⊂ S3 be the double point locus of f ,
that is γ = {p ∈ S3 | ∃p′ ∈ S3 : p ̸= p′ and f(p) = f(p′)}. The locus γ is a closed
1-manifold, i.e. a link in S3 with possibly more components. The map f |γ : γ → f(γ)
is a 2-fold covering. γ is endowed with an involution ι : γ → γ such that ι(p) ̸= p and
f(p) = f(ι(p)) hold for all p ∈ γ.
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Chapter 2. Maps and invariants 2.2. Invariants

The first definition of L(f) is from [Ekh01a, p. 6.2.]. Let v be a vector field along γ
tangent to S3 and nowhere tangent to γ, i.e. v represents a section of the normal bundle
TS3|γ/Tγ of γ ⊂ S3. We also require that [γ̃] is 0 in H1(S3 \ γ,Z), where γ̃ ⊂ S3 is the
result of pushing γ slightly along v. Such a vector field v is unique up to homotopy, and
for instance each of the two vectors of a Seifert framing provides such a vector field. If
v is such a vector field, then the linking number lkS3(γ, γ̃) equals to 0, but the reverse
is not true, since lkS3(γ, γ̃) is the sum of the components of [γ̃] ∈ H1(S3 \ γ,Z). (All
the linking numbers appearing are considered with respect to the natural orientation of
the curves and submanifolds involved.) Let q = f(p) = f(ι(p)) be a double value of f .
Then w(q) = dfp(v(p)) + dfι(p)(v(ι(p)) defines a vector field w along f(γ) that is nowhere
tangent to the branches of f . In this sense w is a normal vector field of f along f(γ).
Let f̃(γ) ⊂ R5 be the result of pushing f(γ) slightly along w, then f̃(γ) and f(S3) are
disjoint. The first invariant is the linking number

L1(f) := lkR5(f̃(γ), f(S3)) (2.9)

(or equivalently, L1(f) = [f̃(γ)] ∈ H1(R5 \ f(S3),Z) ∼= Z). Note that Ekholm used
an other notation: in [Ekh01a, pp. 2.2., 6.2.] our L1(f) is denoted by lk(f), and L(f) is
defined as ⌊lk(f)/3⌋.

The second definition is [ES03, Definition 11.], [SST02, Definition 2.2.]. It works
only with further assumptions, see Remark 2.2.1 below. The normal bundle ν(f) of f is
trivial, since the oriented rank–2 vector bundles over S3 are classified by π2(SO(2)) = 0.
Any two trivializations are homotopic, since their difference represents an element in
π3(SO(2)) = 0. Let (v1, v2) be the homotopically unique normal framing of f , and at a
double value q = f(p) = f(ι(p)) define u(q) = v1(p) + v1(ι(p)). u is a normal vector field
along f(γ), and let f(γ) ⊂ R5 be the result of pushing f(γ) slightly along u. Then f(γ)
and f(S3) are disjoint. The invariant is the linking number (or equivalently, the homology
class)

L2(f) := lkR5(f(γ), f(S3)) = [f(γ)] ∈ H1(R5 \ f(S3),Z) ∼= Z. (2.10)

Note that the framing (v1, v2) can be replaced by an arbitrary nonzero normal vector
field v of f , since it can be extended to a framing whose first component is v.

Remark 2.2.1. Without further assumptions it is possible that u(q) is tangent to one
of the branches of f , hence it can happen that f(γ) ∩ f(S3) ̸= ∅. To avoid this problem
one has to choose a unit normal vector field v or has to assume that the intersection of
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Chapter 2. Maps and invariants 2.2. Invariants

the branches is orthogonal, which can be reached by a regular homotopy through stable
immersions. In this paper all the calculations uses L1 and not L2.

The third definition is in [ES03, Definition 4.], see also [Ekh01b, pp. 4.5., 4.6.]. Let v be
a nonzero normal vector field of f along γ, that is, a nowhere zero section of ν(f)|γ. Let [v]
be the homology class represented by v in H1(E0(ν(f)),Z) ∼= Z, where E0(ν(f)) denotes
the total space of the bundle of nonzero normal vectors of f . Let uv(q) = v(p) + v(ι(p))
be the value of the vector field uv along f(γ) at the point q = f(p) = f(ι(p)). Let f(γ)(v)

be the result of pushing f(γ) slightly along uv, then f(γ)(v) and f(S3) are disjoint. The
invariant is

Lv(f) := lkR5(f(γ)(v)
, f(S3))− [v] = [f(γ)(v)]− [v], (2.11)

where [f(γ)(v)] ∈ H1(R5 \ f(S3),Z) ∼= Z.
By [Ekh01b, Lemma 4.15.] Lv(f) is well-defined, that is, Lv(f) does not depend on

the choice of the normal field v. Moreover, if v is the restriction of a (global) normal
vector field of f to γ, then [v] = 0. Indeed, the restriction of the normal field of f to a
Seifert surface H of γ results a surface H ⊂ E0(ν(f)), whose boundary is the image of
v : γ → E0(ν(f)). Hence Lv(f) = L2(f).

The invariants L1, L2 are equal to each other with opposite sign. This follows from
the fact that they behave in an inverse way along regular homotopies, i.e. they change
with the same number with opposite sign when a stable regular homotopy steps through
first order instabilities: immersions with (1) one triple value (‘triple point moves’) or (2) a
self-tangency (‘self-tangency moves’). For definitions we refer to [Ekh01a; Ekh01b]. The
proof of Proposition 2.2.2 is a result of a discussion with Tamás Terpai and András Szűcs.

Proposition 2.2.2. (a) L1(f) and L2(f) are invariants of stable immersions. They
change by ±3 under triple point moves and do not change under self tangency moves. In
other words: if f and g are regular homotopic stable immersions, h : S3 × [0, 1] → R5 is
a stable regular homotopy between them, then ±(Li(f) − Li(g)) is equal to three times
the algebraic number of the triple values of the map H : S3 × [0, 1] → R5 × [0, 1],
H(x, t) = (h(x, t), t).

(b) In the above setup L1(f)− L1(g) = −(L2(f)− L2(g)).
(c) The three definitions are equivalent:

L1(f) = −L2(f) = −Lv(f).

Proof: Part (a) is proved for L1 in [Ekh01a, Lemma 6.2.1.] and for L2 = Lv in
[Ekh01b, Theorem 1.].
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For part (b), we compare the change of L1 and L2 through a triple point move. In
the proof of [Ekh01a, Lemma 6.2.1.] Ekholm defines a local model of the triple point
move where L1 increases by 3. On the other hand, in the discussion preceding [Ekh01b,
Definition 6.3] he provides a convention to measure the change of L2. If we check this
convention on the previous local model, we obtain that L2 decreases by 3 through that
triple point move. Hence L1 and L2 changes in opposite ways at each triple point move.

Using part (a) and part (b), we prove part (c) as follows. Since L1 and L2 changes in
opposite way along a regular homotopy, L1+L2 is a regular homotopy invariant. Moreover
L1 and L2 are additive under connected sum, see [Ekh01b, Lemma 5.2., Proposition 5.4.],
[Ekh01a, p. 6.5.]. It follows that L1 + L2 defines a homomorphism from Imm(S3,R5) to
Z. If f : S3 ↪→ R5 is an embedding, then L1(f) = L2(f) = 0, hence L1 + L2 is 0 on the
24-index subgroup Emb(S3,R5) of Imm(S3,R5) ∼= Z. It follows that L1 +L2 is 0 for every
stable immersion, hence L1 = −L2. □

We fix the following convention.

Notation 2.2.3. L(f) := L1(f).

The definition of L1(f) and L2(f) of immersions f : S3 ↬ R5 cannot be applied
directly for Φ|S : S ↬ S5. In fact, the shifted copy of υ ∈ S5 by a normal vector field is
a curve in C3 = R6, but not exatly in S5. To solve this technical difficulty we recall one
of the definitions of the linking number.

Definition 2.2.4. Let Nn,Mm ⊂ Sk = ∂Bk+1 be two closed oriented submanifolds with
dimensions n + m + 1 = k. Choose any oriented homological membranes M̃, Ñ ⊂ Bk+1

for them, that is, M̃ and Ñ are singular chains in Bk+1 of dimensions n+ 1, respectively
m+ 1, with coefficients in Z, whose boundaries are ∂Ñ = N , ∂M̃ = M . Then the linking
number lkSk(N,M) of N and M in Sk is defined as the intersection number intBk+1(M̃, Ñ)
of M̃ and Ñ in Bk+1.

For the definition of L1(Φ|S) consider grad(d), the conjugate of the gradient vector
field of d defined on D. Its restriction to γ ⊂ S is a representative of the homotopically
unique Seifert framing of γ. Then the sum of the two copies of dΦ(grad(d)) is a nonzero
normal vector field along Σ \ {0}, which extends to the origin with 0. Let Σ̃ be a copy
of Σ shifted along this vector field. Define Υ̃ := Σ̃ ∩ S5 and L1(Φ|S) = lkS5(Υ̃,Φ(S)).
The invariant L1(Φ|S) is equal to the intersection number of any pair of membranes in B6

with boundaries Υ̃ and Φ|S. Especially, L1(Φ|S) is the intersection number of Σ̃ and X.
Unfortunately, however, they intersect each other only at the origin, which is a singular
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Chapter 2. Maps and invariants 2.2. Invariants

point of possibly both membranes, hence the intersection number cannot be calculated
directly. Instead, we will repeat the whole procedure with the analytic stabilization of Φ,
and that will lead to the formula L1(Φ|S) = C(Φ)− 3T (Φ).

L2(Φ|S) can be defined in a similar way, by using ∂sΦ× ∂tΦ as a representative of the
homotopically unique global normal field of Φ|S. We can define the shifted copy Σ̃(2) of
Σ, and Υ̃(2) := Σ̃(2) ∩ S5. However, by Remark 2.2.1, we cannot guarantee that Υ̃(2) and
Φ(S) are disjoint. Although the formula L2(Φ|S) = 3T (Φ)− C(Φ) can be supported by
local calculation, the precise proof in this way is technically complicated. On the other
hand, L2 can be computed directly for the Whitney umbrella to support that L1 = −L2

holds, see Subsection 2.2.5.
The topological invariance of L(Φ|S) = L1(Φ|S) is almost trivial, since the linking

number is a topological (homological) invariant. However, its proof has been nowhere
explained in detail.

Proposition 2.2.5. L(Φ|S) is a topological invariant of Φ. That is if Φ1 and Φ2 are
finitely determined germs topologically A -equivalent to each other (see Subsection 2.2.1),
then

L(Φ1|S1) = L(Φ2|S2). (2.12)

Proof: The topological equivalence of the germs means that there exist germs of
homeomorphisms ϕ : (C2, 0)→ (C2, 0) and ψ : (C3, 0)→ (C3, 0) such that Φ2 = ψ ◦Φ1 ◦ϕ
holds. The double point curves (D1, 0) = (d−1

1 (0), 0) of Φ1 and (D2, 0) = (d−1
2 (0), 0) of Φ2

are topologically equivalent germs of curves, in fact, D1 = ϕ(D2). Their links γ1, γ2 are
of the same type as links in S1 ∼= S2 ∼= S3.

Although the normal vector field grad(d2) along γ2 cannot be pushed forward by ϕ since
it is not necessarily differentiable, the slightly pushed out copy γ̃2 can be. The image ϕ(γ̃2)
determines a normal vector field denoted by ϕ∗(grad(d2)) along γ1, which is homotopic
to grad(d1) since both vector field represent the Seifert framing. Hence the sum of the
two copies of dΦ1(grad(d1)) and dΦ1(ϕ∗(grad(d2))) are homotopic normal fields along Υ1,
thus the pushed out copies Υ̃1 and Υ̃(2)

1 of Υ1 along these vector fields are homotopic
in S5 \ Φ1(S1) = S5 \ Φ1(ϕ(S2)). Therefore, lkS5(Φ1(S1), Υ̃1) = lkS5(Φ1(S1), Υ̃(2)

1 ).
Finally, applying ψ to the whole configuration does not change the linking numbers, and
ψ(Φ1(S1)) = Φ2(S2), ψ(Υ1) = Υ2, ψ(Υ̃(2)

1 ) = Υ̃2. □

Remark 2.2.6. L(f) can be defined for stable immersions f : M3 ↬ R5 of closed oriented
3-manifolds M3, with trivial normal bundle, see [SST02, Definition 2.5.]. Especially
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Chapter 2. Maps and invariants 2.2. Invariants

M3 can be a disjoint union of some copies of S3. In this way for multi-germs Φ =
(Φi) : ⊔(C2, 0)i → (C3, 0) the invariant L(Φ|M3) is defined, where M3 = ⊔Si with
Si = Φ−1

i (S5
ε ). We will use this extension of L for ordinary triple values.

Remark 2.2.7. Recall Remark 2.2.7 from [Pin19]. L can be defined also for nonstable
immersions which do not have triple values, by the following argument. Any immersion
f admits a small perturbation by regular homotopy to a stable immersion f̃ , and if f
does not have triple values, then any two stable perturbations can be joined with a regular
homotopy without stepping through a triple point. Thus L(f) can be defined as L(f̃) of
any small stable perturbation f̃ of f .

Consequently L(Φ|S) can be defined not only for finitely determined germs but for
germs with finite C and T , since for these germs Φ|S is not a stable immersion, but
it does not have triple points. Moreover the equation (2.2) holds for these germs too,
since the proof uses an analytic stabilization of Φ, not Φ itself. See also Corollary 3.6.3.,
Remark 3.6.4. in [Pin19] or [NP15]. An interesting example is Φ(s, t) = (s2, t2, st), which
is the double cover of the A1 singularity. See Subsection 3.7.2. of [Pin19].

However it is not clear for these germs, how can L(Φ|S) be computed directly from the
topology of Φ, without stabilizing it.

2.2.4 Agreeing invariants

Theorem 2.2.8. For a finitely determined holomorphic germ Φ : (C2, 0)→ (C3, 0)

L(Φ|S) = C(Φ)− 3T (Φ).

Proof: Let Φλ : Bλ → B6
ε be an analytic stabilization of Φ0 = Φ. Here, Bλ = Φ−1

λ (B6
ε )

with boundary ∂Bλ = Sλ = Φ−1
λ (S5

ε ).
Decreasing λ to 0 induces a diffeomorphism Bλ ≃ B, respectively Sλ ≃ S, and a

regular homotopy through stable immersions between Φλ|Sλ
and Φ|S. It implies – as

recognised in [NP15, Section 9.] – that

L(Φ|S) = L(Φλ|Sλ
). (2.13)

We denote the corresponding double point sets respectively by Dλ, Σλ, γλ, Υλ, as defined
in Subsection 2.2.3 . The reduced equation of Dλ is dλ : Bλ → C.

We are going to count L(Φλ) = L1(Φλ). According to definitions 2.9 and 2.2.4, we
want to construct membranes bounding Φλ(Sλ) and Υ̃λ, and count their intersection
number. The first membrane is simply the whole image Φλ(Bλ).
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Chapter 2. Maps and invariants 2.2. Invariants

For the second membrane, consider the normal vector field w = grad(dλ) on Dλ ⊂ Bλ,
its restriction represents the Seifert framing on γλ ⊂ Sλ. The pushforward dΦλ(w) gives
a double valued vector field at each point of Σλ. We add up the two vectors pointwise
and pushout Σλ slightly along the obtained vector field v to get Σ̃λ. (Notice that at triple
points the vector field v has three values, but they are all zeroes.)

By the construction in Subsection 2.2.3, the boundary is ∂Σ̃λ = Υ̃λ and

L(Φλ|Sλ
) = int(Φλ(Bλ), Σ̃λ). (2.14)

As the two components of v are tangent to the two branches of the image at a double
point, the pushout Σ̃λ has no intersection point with the whole image near an ordinary
double point.

Besides double points, the only two types of singular points that may occur in the
stabilized map Φλ are Whitney umbrella points and triple points. With the above remark,
it means that we only have to count the intersection points near these points.

Umbrella points and triple points are left-right equivalent to the standard copies of
them, see (2.3) and (2.4). In the following two lemmas, we calculate the intersection
numbers for these normal forms – which are, in fact, the Ekholm–Szűcs invariants of
these (multi)-germs. After stating the lemmas we will deduce the global invariant by
gluing these pieces together to complete the proof.

Lemma 2.2.1. The Ekholm–Szűcs invariant of the standard Whitney umbrella

Φ(s, t) = (s2, st, t)

is
L(Φ|S) = 1

where S = Φ−1(S5
ε ).

Lemma 2.2.2. The standard triple value is the regular intersection of three branches.
We parametrize it the following way

Φ


Φ1 : (s1, t1) 7→ (0, s1, t1)
Φ2 : (s2, t2) 7→ (t2, 0, s2)
Φ3 : (s3, t3) 7→ (s3, t3, 0)

(The pairs (si, ti) are local coordinates around the three preimages of the triple point.)
The Ekholm–Szűcs invariant of this multi-germ is

L(Φ|S) = −3.
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Chapter 2. Maps and invariants 2.2. Invariants

The above results suggest that each umbrella point and triple point contributes 1 and
respectively −3 to the global Ekholm–Szűcs invariant. This is, in fact, the case and the
brief argument is the following. The (multi)germs at the umbrella and triple points of
Φλ are left-right equivalent of their standard form, hence, by the left-right invariance of
L (see 2.2.5), the membrane of Φλ shall be replaced locally by the one coming from the
standard forms.

More precisely, let us take an umbrella point or a triple value pi in C3 and take
a small balls Ui ⊂ C3 around pi and Vi ⊂ C2 around Φ−1

λ (pi) and biholomorphisms
ϕi : (Ui, pi)→ (C3, 0) and ψi : (C2

r, 0r)→ (Vi,Φ−1
λ (pi)) so that

ϕi ◦ Φλ ◦ ψi : (C2
r, 0r)→ (C3, 0)

is a standard umbrella (respectively triple point) at 0r. (Here we use the notation for
multi germs: (C2

r, 0r) = ⊔r
i=1(C2, 0) with r = 1 for a Whitney umbrella point and r = 3

for a triple value pi.)
We pull back the two membranes of the standard Whitney umbrella (resp. triple

value) via ϕi to define new membranes inside Ui. On one hand we obtain another pushout
of Σλ instead of Σ̃λ, let us denote it by Mi ⊂ Ui. On the other hand, we get back a piece
of the other original membrane, Φλ(Bλ) ∩ Ui.

Taking a look at the boundary of Ui, we find that both Σ̃λ∩∂Ui and Mi∩∂Ui have the
same linking number with Φλ(Bλ) ∩ ∂Ui: that is the L1 invariant of the umbrella point
or the triple point. Therefore we can construct a collar Ni that connects Σ̃λ ∩ ∂Ui and
Mi ∩ ∂Ui in ∂Ui, in a way that Ni has an intersection number 0 with Φλ(Bλ) ∩ ∂Ui.

Gluing all these pieces together, we obtain a membrane replacing Σ̃λ:

M = (Σ̃λ \
⋃
i

Ui) ∪
⋃
i

(Ni ∪Mi). (2.15)

The intersection number int(Φλ(Bλ),Mi) equals 1 for an umbrella point and −3 for a
triple value, int(Φλ(Bλ), Ni) = 0 and int(Φλ(Bλ), (Σ̃λ \

⋃
i Ui)) = 0, hence

L(Φ|S) = int(Φλ(Bλ),M) = C(Φ)− 3T (Φ). (2.16)

□

Proof: [Proof of Lemma 2.2.1] Consider the standard Whitney umbrella Φ(s, t) =
(s2, st, t). The closure of the set of double values of Φ is

Σ = {y = z = 0} = {(x, 0, 0) : x ∈ C}.
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This is the image of the double point curve D = {t = 0} = {(s, 0) : s ∈ C}. The link
of D is γ and Φ(γ) = Υ. We compute the linking number lkS5(Υ̃,Φ(S)) by defining
membranes bounded by Υ̃ and Φ(S) and taking their intersection multiplicity.

Let the membrane of Υ̃ be the shifted copy of the curve of double values Σ̃. More
precisely, we push Σ out from X = im(Φ) along the pushforward dΦ(v) of the vector field
v(s, 0) = grad(t)(s, 0) = (0, 1) that is normal to D. The differential of our germ is

dΦ(s, t) =


2s 0
t s

0 1


making the pushforward of the normal vector field

dΦ(v(s, 0)) =


2s 0
0 s

0 1

 ·
0

1

 =


0
s

1

 .
At any double point (x, 0, 0) ∈ Σ, we have two preimages

Φ−1{(x, 0, 0)} = {(
√
x, 0), (−

√
x, 0)}.

The pushforward of the normal vectors at these points are dΦ(v(±
√
x, 0)) = (0,±

√
x, 1),

hence the sum of the two vectors provides the vector field

w(x, 0, 0) =


0
√
x

1

+


0
−
√
x

1

 =


0
0
2


along Σ \ {0}. The vector field w can be extended continuously to the origin as
it is constant. Therefore, when we push the double point out by w, we obtain
(x, 0, 0) + δw(x, 0, 0) = (x, 0, 2δ) for a some δ ≪ ε.

Thus the resulting membrane is

Σ̃ = {(x, 0, 2δ) : x ∈ C} ∩Bε.

On the other hand, let the membrane of Φ(S) be simply the image of the ball
Φ(B) = X ∩Bε. That is

{(x, y, z) : xz2 = y2} ∩Bε.

The two membranes Σ̃ and X ∩B intersect transversely at (0, 0, 2δ). The sign of the
intersection is positive as the two membranes have the complex orientations. □
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Figure 2.2.2: Pushing out Σ with the sum of the two pushforward vector fields.

Proof: [Proof of Lemma 2.2.2] Consider the standard triple value

Φ


Φ1 : (s1, t1) 7→ (0, s1, t1)
Φ2 : (s2, t2) 7→ (t2, 0, s2)
Φ3 : (s3, t3) 7→ (s3, t3, 0)

In this case, the set of double values is

Σ = {(x, 0, 0)} ∪ {(0, y, 0)} ∪ {(0, 0, z)}

with x, y, z ∈ C. The curve Σ has three components meeting at the origin. Also, Σ has
preimages in each two-dimensional chart:

Di = {(si, 0)} ∪ {(0, ti)} = {siti = 0}

for i ∈ {1, 2, 3}.
The membrane we pull over X ∩S5 is again the whole of the image X ∩B6. Note that

X ∩ S5 is diffeomorphic to the disjoint union of three copies of S3. Thus the membrane
consists of three components Xx = {x = 0}∩B,Xy = {y = 0}∩B, and Xz = {z = 0}∩B,
meeting at the origin.

Now, we describe the membrane for Υ̃. Let us see what happens if we push out the
double values using the sum of the normal vector fields in the preimage – as before.

The normal vector fields corresponding to Di = {siti = 0} are vi(si, ti) = grad(siti) =
(ti, si). The differentials of the three map germs are

dΦ1(s1, t1) =


0 0
1 0
0 1

 , dΦ2(s2, t2) =


0 1
0 0
1 0

 , dΦ3(s3, t3) =


1 0
0 1
0 0

 .
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Let us show how our construction works on one component of Σ. We denote Xy ∩Xz =
{(x, 0, 0) : x ∈ C} by Σx. A point of Σx has, again, two preimages: Φ−1

2 (x, 0, 0) =
(0, x) ∈ Cs2,t2 and Φ−1

3 (x, 0, 0) = (x, 0) ∈ Cs3,t3 . The corresponding normal vectors are
v2(0, x) = (x, 0) and v3(x, 0) = (0, x). When we push these vectors forward with the
respective differentials, we obtain

dΦ2(v2(0, x)) =


0 1
0 0
1 0

 ·
x

0

 =


0
0
x


and similarly dΦ3(v3(0, x)) = (0, x, 0)T . Hence, by pushing the initial point (x, 0, 0) out
with the sum of these, we reach (x, 0, 0) + δ(0, 0, x) + δ(0, x, 0) = (x, δx, δx) ∈ Σ̃x.

Because of the cyclic symmetry of the presentation, the other two components behave
similarly, resulting in the membrane

Σ̃ = {(x, δx, δx)} ∪ {(δy, y, δy)} ∪ {(δz, δz, z)} =: Σ̃x ∪ Σ̃y ∪ Σ̃z

for some x, y, z ∈ C with Σ̃ being in B. One problem with this membrane is that each
vector field vanishes at the origin hence in the end we have not moved the point of Σ at the
origin. Thus Σ̃ meets X only at the origin but with some multiplicity that is somewhat
difficult to count. Fortunately, each pair of components (Xα, Σ̃β) intersect transversely.
We only need to compute the sign of each such intersection and sum them up.

Take Σ̃x = {(x, δx, δx)} first. It intersects Xx = {x = 0} with positive sign, and the
other two with negative – as the corresponding coordinate functions are antiholomorphic.
The membranes Σ̃y and Σ̃z behave similarly. We can summerize this in the formula

int0
(
Σ̃α, Xβ

)
=
 +1 if α = β

−1 if α ̸= β.

Therefore the total intersection number is

int0
(
Σ̃, X

)
=

∑
α,β∈{x,y,z}

int0
(
Σ̃α, Xβ

)
= 3 · 1 + 6 · (−1) = −3.

□

Remark 2.2.9. Note that we could also move the components of Σ̃ away from the origin
in order to see the nine points of intersection apart. A perturbation of the form

Σ′ = {(x− ε1, δ(x− ε2), δ(x− ε3))} ∪ ...

with |εi| ≪ ε would do so. In turn, these modifications would not change the topology of
the membrane on the boundary of B.
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2.2.5 A similar linking invariant

The aim of this section is to clarify the role of L and another related linking invariant
in the study of generic C∞ real maps and immersions, and clear up the context of our
result. We also clear up some sensitive sign ambiguities related to the Ekholm–Szűcs
Smale invariant formula.

The other linking invariant l is defined for real generic maps. While L measures the
linking of the double values of an immersion with the image of it, l measures the linking
of the set of singular points in the target of a generic map with the image of the map.

The Ekholm–Szűcs formula for the Smale invariant of an immersion uses both linking
invariant, L of the immersion and l of a singular Seifert surface of the immersion. The
original proof of our main formula (2.2) is based on the Ekholm–Szűcs Smale invariant
formula and the ‘holomorphic Smale invariant formula’ of Némethi and Pintér.

Invariants of
generic maps

Smale invariant
formula using

singular
Seifert surface

L of stable
immersions

L = C − 3T

Holomorphic
Smale invariant

formula

[Ekholm–Szűcs]

[Némethi, Pintér]

Figure 2.2.3: Mindmap for the original proof of (2.2).

The Z2 or integer valued invariant l(f) is defined for real generic maps f : M2k → R3k

of closed smooth manifolds M2k. It measures the linking of a pushout copy of the singular
values with the image of the map as follows. (See, for reference, [ES02; ES03; SST02].)

Such a map f has (1) regular simple points, (2) double values with transverse
intersection of the regular branches, (3) triple values with regular intersection of the
regular branches and (4) singular values. The dimension of the set of double values is k,
and the triple values are isolated. The set of singular values is a k− 1 dimensional family
of generalized real Whitney umbrella points, whose local form is

fwh : (R× Rk, 0)→ (R× Rk × Rk, 0), (2.17)
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fwh(s, t) = (s2, st, t). (2.18)

The closure ∆(f) of the set of double values of f is an immersed manifold with
boundary. ∆(f) has triple self intersection at the triple values of f and the boundary of
∆(f) is the set of the Whitney umbrella points (singular values) Σ(f) = ∂∆(f).

The invariant l(f) is defined as the linking number

l(f) = lkR3k(Σ′(f), f(M3k)) (2.19)

of the copy Σ′(f) of Σ(f) shifted slightly along the outward normal field of Σ(f) ⊂ ∆(f)
and the image f(M3k) of f .

In general l(f) and the number of triple values is defined only modulo 2 – because
the lack of orientation on ∆(f) – and these Z2 versions are denoted by l2(f) and t2(f)
respectively. If k is even and M2k is oriented, then l(f) is a well defined as an integer,
[ES02]. In these cases each triple value can be given a sign, and the sum of these signs is
the integer t(f).

Ekholm and Szűcs expressed some characteristic numbers of M2k in terms of l and t.
Namely, in [ES02] they proved the equality

l2(f) + t2(f) = w2
k[M ] + wk−1wk+1[M ] (2.20)

in Z2, where the terms on the right hand side are products of the normal Stiefel-Whitney
classes of M2k evaluated on the fundamental class [M ] of M2k.

For k = 2n and M2k oriented, the equation of integers

3t(f)− 3l(f) = pn[M ] (2.21)

is proved in [ES03], where pn[M ] is the n-th normal Pontryagin number of M4n. By using
Hirzebruch signature theorem, for k = 2 one can rewrite the formula (2.21) as

l(f)− t(f) = σ(M4), (2.22)

where σ(M4) is the signature of M4, see [ES03].
The proofs of these formulas use methods similar to that of our proof. Namely, each

of them considers a set of certain type singularities of a map, and deals with the pushout
copy of it along a suitably defined normal vector field, then counts the intersection point,
see for example [ES03, Lemma 3]. When proving the formula (2.20) in [ES02, Theorem
1], the set of double values of the map f : M2k → R3k is shifted slightly along a vector
field, which is defined as the sum of the two vectors coming from a suitable normal vector
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field of the double point set in the source. At this rate it is even more similar to the
method we use to prove equation (2.2).

Despite the similarity in methods, none of the equations (2.20), (2.21) and (2.22) can
be directly applied for the setup of this result, that is for holomorphic stabilizations Φλ of
holomorphic germs Φ : (C2, 0) → (C3, 0), for the following reasons. First, the domain of
Φλ is a 4-ball, which is not a closed manifold, moreover it is topologically trivial. Second,
the stabilization Φλ is stable as a holomorphic map, but it is not stable (not generic) in
the C∞-sense, considered as a map from R4 to R6. Indeed, each isolated complex cross cap
point can be further deformed to obtain a stable real C∞ map with a circle of generalized
real cross cap points, see [NP15]. Also, in contrast to the real case, the complex cross
cap points are not boundary points of the set of double values. Third, one could try to
relate the above results to the immersion on the boundary in our case. Then, however,
the dimensions do not match and these immersions do not have triple points or singular
points whatsoever. What is more, the Smale invariant formula (2.25) hints that t(f) and
l(f) should really be considered for the membranes and not the boundary.

Smale invariant formulas

If M4 is an oriented 4-manifold with boundary, the ‘defect’ of the equation (2.22) provides
information about the restriction of the map to the boundary. In the simplest case, the
manifold M4, with boundary ∂M4 diffeomorphic with S3, is mapped to the upper half
space R6

+ = {(x1, . . . , x6) ∈ R6 | x6 > 0} with a generic map

f̂ : M4 → R6
+, (2.23)

whose restriction is assumed to be a stable immersion

f := f̂ |∂M4 : S3 ↬ R5. (2.24)

In this case f̂ is referred as a singular Seifert surface of the immersion f .
Recall that the immersions of S3 to R5 are classified up to regular homotopy by an

integer valued invariant called Smale invariant and denoted by Ω. That is, two immersions
f1, f2 : S3 ↬ R5 are regular homotopic if and only if Ω(f1) = Ω(f2), and for every integer
n ∈ Z there is an immersion g : S3 ↬ R5 with Smale invariant Ω(g) = n. The Smale
invariant can be constructed in many different ways, see for example [Sma59; HM85;
NP15; Pin19]. Eventually the Smale invariant Ω(f) is constructed as an element of the
homotopy group π3(SO(5)), which is isomorphic with the infinite cyclic group (Z,+).
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Chapter 2. Maps and invariants 2.2. Invariants

Then by [ES03] the Smale invariant Ω(f) of a stable immersion f : S3 ↬ R5 can be
expressed with the invariants of a singular Seifert surface f̂ : M4 → R6

+ and L as

Ω(f) = 1
2(3σ(M4) + 3t(f̂)− 3l(f̂) + L(f)). (2.25)

Several variants and generalizations of the Ekholm–Szűcs formula (2.25) appeared in the
literature, see [HM85; SST02; Juh05; ES06] or the brief summary of these results in
[Pin19, Ch.2].

For immersions Φ|S : S ∼= S3 ↬ S5 associated with finitely determined holomorphic
germs Φ : (C2, 0) → (C3, 0) Némethi and Pintér [NP15] proved the ‘holomorphic Smale
invariant formula’

Ω(Φ|S) = −C(Φ). (2.26)

The proof of this formula is self-contained in the sense that it is independent of the above
results.

A singular Seifert surface for Φ|S can be constructed from a holomorphic stabilization
Φλ of Φ by a canonical C∞ stabilization of the complex Whitney umbrella points. In this
way the Ekholm–Szűcs formula (2.25) can be applied. By comparing it with the equation
(2.26) and using calculations on concrete examples, [NP15] proves the main theorem (2.2)
of this section, namely

L(Φ|S) = C(Φ)− 3T (Φ). (2.27)

The evolution of these results is summed up by Figure 2.2.3.
However, the proof of each Smale invariant formula is rather complicated, and the

identification of the signs of the terms are widely nontrivial (see the next paragraph).
Furthermore the correspondence (2.2) becomes important in the proof of the topological
invariance of C and T . This was the motivation to publish a new direct proof for (2.2),
which does not use any of the above results – although the techniques are similar to those
ones used in their proofs. An additional benefit of our proof is the simple identification of
the sign: (2.2) is sign correct with the L1 version of L. This fact has further consequences
for the singular Seifert surface formula (2.25) as explained in the next paragraph.

Remarks on sign and orientation

This paragraph is a brief summary of the issues related to the signs in the Smale invariant
formulas. We unravel an imprecision in [ES03] and [SST02]: although the linking invariant
L is defined in these articles using the construction denoted by L2 in Subsection 2.2.3,
the Smale invariant formula (2.25) is satisfied by using L = L1.
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Chapter 2. Maps and invariants 2.2. Invariants

The Smale invariant does not have a canonical sign, since by default it is an element of
the group π3(SO(5)) ∼= (Z,+). To identify this group with Z, one has to fix a generator
in π3(SO(5)) and declare it to be +1. That was done in [NP15], and the formula (2.26) is
sign-correct with that fixed generator. In other words it is proved that the Smale invariant
of the immersion associated with the complex Whitney umbrella is −1 times the fixed
generator.

The formula (2.25) is proved in [ES03] without considering the sign of the Smale
invariant. More precisely, they proved that the right hand side of the formula is a complete
regular homotopy invariant, therefore it must agree with the Smale invariant up to sign.
Nevertheless it is shown in [NP15] that the foruma (2.25) is correct with the fixed generator
of π3(SO(5)).

However the sign of L is not specified directly in [NP15; Pin19]. It is chosen to satisfy
the Ekholm–Szűcs formula (2.25) with this choice. For example, the invariant L(Φ|S) of
the complex Whitney umbrella Φ(s, t) = (s2, st, t) is computed in [NP15, p. 10.1.] up to
sign by using the ‘L2’ construction (see also [Pin19, p. 3.7.1]), resulting L(Φ|S) = ±1.
Using the sign convention adapted to the formula (2.25), L(Φ|S) of the complex Whitney
umbrella is declared to be +1, and L = C − 3T is concluded with this sign convention.

Now, from the proof of Lemma 2.2.1 it is clear that L1(Φ|S) = +1 for the Whitney
umbrella, hence L2(Φ|S) = −1 by part (c) of Proposition 2.2.2. Therefore to make
the Ekholm–Szűcs Smale invariant formula (2.25) correct, L has to defined to be L1, in
contrast to the definitions given in [ES03] and [SST02]. Note that by changing the sign of
L in the formula not only the sign of the right hand side changes, but the absolute value
changes as well.

On the other hand, in the calculation of L2(Φ|S) of the complex Whitney umbrella
in [NP15, p. 10.1.] the sign of the intersection point can be determined directly. Both
membranes (Φ(B) and H in [NP15] and [Pin19]) has complex (but not holomorphic)
parametrization. These parametrizations induce the correct orientations in the sense
that the induced orientation on the boundary agrees with the original orientation of the
boundary. A direct calculation of the determinant shows that the intersection point has
negative sign. Hence L2(Φ|S) = −1 can be discovered directly, which is equal to −L1(Φ|S)
according to Proposition 2.2.2.

Remark 2.2.10. By default, the orientation induced on the boundary of an oriented
manifold depends on a choice of a convention, called ‘boundary convention’, for example
‘outward normal first’. Although, at first sight, the boundary convention seems to play a
key role in the identification of the signs of the Smale invariant formulas and L, this is
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Chapter 2. Maps and invariants 2.2. Invariants

not the case.
The correct sign of the formulas (2.25) and (2.26) are independent of the choice of the

boundary convention. Briefly speaking its reason is that in the construction of the Smale
invariant S3 is considered as the boundary of the 4-ball in R4. By changing the boundary
convention, the orientation of the boundary of the singular Seifert surface changes, as
well as the orientation of S3 = ∂B4 in the construction of the Smale invariant, but the
value of the Smale invariant and the right hand side of the formulas remain the same.
See [NP15] or [Pin19, Ch.3] for details.

The invariant L of finitely determined holomorphic germs Φ is also independent of
the choice of the boundary convention. Recall that L(Φ|S) is defined as the intersection
number of two oriented ‘membranes’ in B6 whose boundaries are Φ(S) and Υ̃ = ∂Σ̃
respectively. Although Φ(S) and Υ̃ = ∂Σ̃ are originally oriented as the boundaries of
Φ(B) and Σ̃ after choosing a boundary convention, all in all, the correct orientations of
the membranes do not depend on the choice of the boundary convention. Indeed, the correct
orientation means that the membrane induces the same orientation on the boundary as
the original membrane, whichever boundary convention is used. Cf. [NP15; Pin19].
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Chapter 3

Non-isolated toric singularities

3.1 Deformation of singularities

“Knowing the existence of versal deformations of singularities we can go on and ask
questions about the structure of the base space (is it reduced, what is the number of
components?), or ask if for some t0 the fibre (F1(x, t0), . . . , Fk(x, t0)) is smooth. In general
these question cannot be answered, because the equations are just one enormous mess.”

[Ste03, Introduction]

This quote from Stevens hints the depth and difficulty of deformation theory and the
discrepancy between the beautiful results of abstract deformation theory and the concrete
computations.

In this section, we give a general introduction to the deformation theory of complex
space germs highlighting those concepts that we will need in the subsequent sections. As
a reference, we recommend [GLS07, Section II.1.] and the book [Ste03] of Stevens.

The purpose of deformation of singularities is to perturb our given germ to make it
simpler – less singular or completely smooth – without changing it too drastically. The
latter ensures that the perturbation can still tell us something meaningful about the
original singularity. Drastic change would mean, for example, a jump in the dimension of
the germ. Let us see an example of this.

Example 3.1.1. Consider the subspace X of C3 ∼= C⟨x, y, z⟩ consisting of the three
coordinate axes, defined by X = {xy = yz = zx = 0}. It is a natural idea to perturb
the defining equations letting Xt = {xy = yz = zx = t}. However, for t ̸= 0 the space
Xt only consists of two points: (±

√
t,±
√
t,±
√
t). We do not want to call this family a

deformation of X.
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

From a different perspective, it also makes sense to take a look at the whole family as
a single space defined by the perturbed equations. Let

X̃ = {(x, y, z, t) ∈ C4 : xy = yz = zx = t} ⊂ C⟨x, y, z, t⟩.

This is a one-dimensional subspace consisting of three lines and a curve, with the lines
being contained in the t = 0 fibre. This is the situation we would like to avoid when
constucting a deformation: having irreducible components of the ‘total space’ contained in
the original space.

However naive perturbations work nicely when the space X is defined by one equation,
or is a complete intersection, as we will see in Example 3.1.11.

Definition 3.1.2. A deformation of a complex singularity (X, 0) is a flat morphism of
complex space germs

π : (X̃, 0)→ (S, 0)

together with an isomorphism

i : (X, 0)
∼=→ (X0, 0) = (π−1(0), 0).

The germ (X̃, 0) is the total space, (S, 0) is the base space of the deformation, and
(X0, 0) is the special fibre.

The situation can also be summarized in the commutative diagram

(X, 0) (X̃, 0)

(0, 0) (S, 0)

i

π

In short, we refer to deformations by the pair of maps (i, π), or only by π when i is
clearly specified.

Definition 3.1.3.

(i) A morphism of deformations between (X, 0) i
↪→ (X̃, 0) π→ (S, 0) and (X, 0) i′

↪→
(X̃ ′, 0) π′

→ (S ′, 0) of the same singularity (X, 0) is a pair of map germs:

φ : (S, 0)→ (S ′, 0), φ̃ : (X̃, 0)→ (X̃ ′, 0)
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

making the following diagram commute:

(X, 0)

(X̃, 0) (X̃ ′, 0)

(S, 0) (S ′, 0)

i

i′

π

φ̃

π′

φ

(ii) Two deformations over the same base space (S, 0) are isomorphic if there is a
morphism of deformations (φ, φ̃) between them where φ is the identity of (S, 0) and
φ̃ is an isomorphism of complex spaces between the total spaces.

The technical condition of flatness is the key for the notion of deformation.

3.1.1 Flatness

“The concept of flatness is a riddle that comes out of algebra, but which is technically the
answer to many prayers.”

[Mum67]

We begin with an analytic definition by Stevens – originally by Grothendieck. Consider
a map of analytic germs π : (X̃, 0) → (S, 0). The special fibre (X0, 0) = (π−1(0), 0)
can be embedded into some (CN , 0) with a map f . According to Fischer ([Fis76, 0.35.
Proposition]), the embedding (X0, 0)→ (CN , 0) can be extended to a small neighbourhood
of 0 ∈ X̃. That is, we have an analytic map germ (X̃, 0) → (S × CN , 0) that is an
immersion at 0 and the diagram

(X0, 0) (X̃, 0)

(0× CN , 0) (S × CN , 0) (S, 0)

π

projS

commutes. Let (F1, . . . , Fk) be the vanishing ideal of the image of (X̃, 0) in OS,0 ⊗
C{z1, . . . , zN}. Then the equations fi(z) = Fi(0, z) ∈ C{z1, . . . , zN} define the image of
(X0, 0) in (CN , 0).

Definition 3.1.4. The above map germ π : (X̃, 0) → (S, 0) is flat if every relation
of the form ∑k

1 rifi = 0 with ri ∈ C{z1, . . . , zN} lifts to a relation ∑k
1 RiFi = 0 with

Ri ∈ OS,0 ⊗ C{z1, . . . , zN}, Ri(0, z) = ri(z).
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

This definition, however, heavily uses the representation (X̃, 0)→ (S × CN , 0) which
makes it a little clumsy to use. We want a more versatile definition, and for that, we need
to turn to algebra. The notion of flatness, there, involves the exactness of tensor product.
We recall some definitions and facts we need.

Let R be a commutative ring with identity. The tensor product ⊗R over R will be
denoted simply by ⊗ if there is no need to specify the ring.

Proposition 3.1.5. The tensor product of R-modules is right exact. That is, for every
R-module M and exact sequence N ′ → N → N” → 0 of R-modules, the sequence
M ⊗N ′ →M ⊗N →M ⊗N”→ 0 is also exact.

Definition 3.1.6. We say that M is a flat R-module if the functor M⊗ is exact. This
means that for every short exact sequence of R-modules 0 → N ′ → N → N” → 0, the
induced sequence

0→M ⊗N ′ →M ⊗N →M ⊗N”→ 0

is also exact.

According to the above proposition, the exactness of M is equivalent to the condition
that for every injective morphism N ′ → N , the induced morphism M ⊗N ′ → M ⊗N is
also injective.

Remark 3.1.7. Another equivalent condition of the R-flatness of M is that for each R-
module N the first Tor group of the pair is trivial: TorR1 (M,N) = 0. In fact, it is enough
to have TorR1 (M,R/I) = 0 for each finitely generated ideal I ⊂ R for M to be flat. Also,
the flatness of M implies the vanishing of all the TorRi groups (i ≥ 1). In principle, the
functors TorRi (M, ·) measure how far is M from being flat.

Let us quickly link the notions of flatness.

Proposition 3.1.8. A complex map germ π : (X̃, 0) → (S, 0) is flat if and only if O
X̃,0

is a flat OS,0-module via the induced morphism π#
0 of stalks.

Proof: (Sketch) For a local C-algebra, such as O
X̃,0, flatness is equivalent to

TorOS,0
1 (O

X̃,0,C) = 0. We can build a free OS,0-resolution of O
X̃,0 starting with the

equations {F1, . . . , Fk} and the relations between them. When we tensor the free
resolution with C, we obtain the analogous resolution of OX0,0. The vanishing of the
Tor1 group – that is the exactness of the latter sequence – and in turn the flatness of the
local ring of (X̃, 0), is equivalent to the lifting of the relations fi to Fi. (See [Ste03, p. 8.])
□
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Definition 3.1.9. A map π : X̃ → S of complex spaces is flat if its germ at each point
x ∈ X̃ is flat.

Revealing the geometric meaning of flatness is complicated. For instance, it is already
nontrivial to prove that, for two analytic spaces, X and S, the projection X × S → S is
flat (see [Dou68, Theorem 2.] or [GLS07, Corollary 1.88.]).

Let us see some basic geometric implications of flatness.

Theorem 3.1.10. Let φ : Y → S be a morphism of complex spaces.

(i) The flat locus of φ is analytically open. That is, the set of those points y ∈ Y where
φ is flat is the complement of a closed analytic subset of Y . (See [Fri67].)

(ii) If φ is flat, then it is an open map, meaning, it maps open subsets of Y to open
subsets of S. (See [Dou68].)

(iii) If φ is flat at y ∈ Y , then it is locally surjective onto some neighbourhood of φ(y) ∈ S.
(Corollary of (i) and (ii).)

(iv) For any points y ∈ Y and s = φ(y) ∈ S

dim(Y, y) ≤ dim(Ys, y) + dim(S, s)

with equality if φ is flat at y. (Follows from the algebraic property.)

Condition (iii) implies that a closed embedding of a proper subset is never flat. Let
us see some examples that are flat – besides the projections we mentioned above.

Example 3.1.11. [GLS07, p. 225]

(i) Let X ⊂ Cn be defined by a nonconstant holomorphic map f : Cn → C. Then the
map f is flat making

(X, 0) ↪→ (Cn, 0) f→ (C, 0)

a deformation of (X, 0).

(ii) Similarly, let X ⊂ Cn be a complete intersection defined by f1, . . . , fk. This, again,
gives a flat morphism (f1, . . . , fk) : (Cn, 0)→ (Ck, 0) and, in turn, a deformation of
(X, 0) over (Ck, 0).

(iii) If, however, (X, 0) = (V (f1, . . . , fk), 0) ⊂ (Cn, 0) is not a complete intersection, then
the corresponding morphism (Cn, 0)→ (Ck, 0) is not flat.
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Proposition 3.1.12. A one-parameter family φ : (X̃, 0) → (C, 0) is flat if and only if
no irreducible component of (X̃, 0) is contained in (X0, 0) = (φ−1(0), 0). Equivalently,
a C{s}-module M is flat if and only if s is not a zero-divisor in M . (See [GLS07,
Proposition 2.7.])

This statement means that, if we have a one-parameter family of germs that is non-flat,
there is always a component of the total space germ sitting inside the special fibre.

We have to be careful, though, because this is not true anymore over a base space of
higher dimensions. See the following example of Douady.

Example 3.1.13. Consider the space

Y = {xz − y} ⊂ C3

and the map
φ : Y → C2, (x, y, z) 7→ (x, y).

The fibre over (0, 0) is the whole z-axis in C3, but all the other fibres are finite. Precisely,
for x = 0, y ̸= 0, the fibres are empty, otherwise they consist of a single point each.
Therefore, φ is clearly not flat at (0, 0). However, there is no component inside the
special fibre that we could remove, no zero divisors in OY,0 = C{x, y, z}/(xz − y).

(The right way to generalize the condition in Proposition 3.1.12 to more parameters is
through regular sequences.)

Finally, let us see how we can deform the singularity of Example 3.1.1.

Example 3.1.14. Consider the morphism of complex space germs

π : (X̃, 0) ∼= (V (xy − xt, yz, zx), 0)→ (C, 0), (x, y, z, t) 7→ t.

We claim that this is a (one-parameter) deformation of (X0, 0) ∼= (V (xy, yz, zx), 0) ⊂
(C3, 0). The generic fibre π−1(t) for t ̸= 0 consists of two coordinate axes and a third line
moving away from the origin with t:

Xt = {x = y = 0} ∪ {x = z = 0} ∪ {z = 0, y = t}.

To show the flatness of π, we use Definition 3.1.4. To avoid confusion, let us introduce
the notations

f1 = xy, f2 = yz, f3 = zx, and F1 = xy − xt, F2 = yz, F3 = zx
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

We want to prove that all relations ∑
rifi = 0 lift to relations ∑

RiFi = 0 with
ri ∈ C{x, y, z}, Ri ∈ C{x, y, z, t}. We pick two relations:

zf1 − yf3 = 0, xf2 − yf3 = 0

that generate the whole C{x, y, z}-module of possible relations. As we can lift these to

zF1 − (y − t)F3 = z(xy − xt)− (y − t)zx = 0

and
xF2 − yF3 = xyz − yzx = 0,

we have proved the flatness of π.
As another strategy, we could show that t is not a zero-divisor in

C{x, y, z, t}/(xy − xt, yz, zx)

and use Proposition 3.1.12.

3.1.2 Versality

A versal deformation of a singularity is a deformation that essentially contains all possible
flat ways to perturb our space germ.

Definition 3.1.15. Let (i, π) : (X, 0) ↪→ (X̃, 0)→ (S, 0) be a deformation of the complex
space germ (X, 0). Consider a map germ φ : (T, 0)→ (S, 0). The deformation induced
by φ from π, or the pullback deformation, is the fibre product (X̃, 0)×(S,0) (T, 0) that
fits into the commutative diagram

(X, 0)

(X̃, 0)×(S,0) (T, 0) (X̃, 0)

(T, 0) (S, 0)

φ∗i

i

φ∗π

φ̃

π

φ

together with the induced map germs (φ∗i, φ∗π). The mappings φ̃ and φ∗π are the
projections of the fibre product (see Remark 1.2.15) and φ∗i is induced by the universal
property of the construction. The total space of the induced deformation is denoted by
φ∗(X̃, 0).
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Note that the induced map germ φ∗π is flat, hence this is, indeed, a deformation of (X, 0).
Such a mapping φ : (T, 0)→ (S, 0) is called a base change.

Definition 3.1.16. A deformation (X, 0) i
↪→ (X̃, 0) π→ (S, 0) is versal if it satisfies the

following conditions.

(i) Any other deformation can be pulled back from it. That is, given a deformation
(X, 0) j

↪→ (Ỹ , 0) τ→ (T, 0), there exists a morphism φ : (T, 0) → (S, 0) of complex
spaces such that the induced deformation (φ∗i, φ∗π) – with φ∗π : φ∗(X̃, 0) → (T, 0)
– is isomorphic to (j, τ).

(ii) Furthermore, we can prescribe the map φ on a closed analytic subgerm of (T, 0).
Precisely, given (j, τ) as above and a map germ φ′ : (T ′, 0) → (S, 0) from a closed
analytic subgerm (T ′, 0) ⊂ (T, 0) such that the pullback (φ′∗i, φ∗π) is isomorphic to
the restriction (j, τ |T ′), we can extend φ′ to a mapping φ : T → S as above. The
following commutative diagram sums up the second condition.

(X, 0)

(Ỹ , 0) (X̃, 0)

(T, 0) (S, 0)

(T ′, 0)

j

i

φ̃

τ π

φ

⊋
φ′

Moreover, the deformation (i, π) is semiuniversal or miniversal if, in addition to the
two conditions above, the following also holds.

(iii) In the above situation, the Zariski tangent map T (φ) : TT,0 → TS,0 is uniquely
determined by the deformations (i, π) and (j, τ).

It follows from the definition that, if a complex space germ (X, 0) admits a
semiuniversal deformation π, then π is uniquely determined up to isomorphism. Although,
this isomorphism is not unique in general. In particular, the dimension of the
semiuniversal base space is well-defined if it exists.

It is not true that all singularities have versal deformations. However, Tjurina in
[Tju69], and Grauert in [Gra71], showed that isolated singularities are special in this
sense.
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Theorem 3.1.17. Every isolated singularity (X, 0) has a semiuniversal deformation.

Unfortunately, constructing a semiuniversal deformation for a given isolated singularity
is a difficult task. Even the dimension of its base space is not known in general.

We continue with the notion parallel to stability of mappings.

Definition 3.1.18.

(i) A deformation π : (X̃, 0) → (S, 0) is trivial if it is isomorphic to the product
deformation proj(S,0) : (X, 0)× (S, 0)→ (S, 0).

(ii) A singularity (X, 0) is rigid if it only admits trivial deformations.

Smooth germs are rigid. On the other hand, non-smooth hypersurface singularities
and complete intersections are never rigid – the deformations shown in Example 3.1.11
are nontrivial. It is conjectured that there are no rigid reduced curve singularities and
rigid normal surface singularities.

3.1.3 Infinitesimal deformations: T 1, T 2

Definition 3.1.19.

(i) The category of deformations Def(X,0) of a complex space germ (X, 0) consists
of deformations (i, π) of (X, 0) as objects and morphism of deformations. Its (non-
full) subcategory Def(X,0)(S, 0) is the category of deformations over a fixed base (S, 0)
with those morphisms that are the identity on the base space.

(ii) The set of isomorphism classes of deformations of (X, 0) over (S, 0) is
denoted by Def (X,0)(S, 0). Its elements are denoted as [(i, π)].

A map germ φ : (T, 0)→ (S, 0) induces the pullback map

[φ∗] : Def (X,0)(S, 0)→ Def (X,0)(T, 0).

Definition 3.1.20. The (first order) infinitesimal deformations of a singularity
(X, 0) are deformations over the fat point of order two, that is, elements of Def(X,0)(D).
The isomorphism classes of infinitesimal deformations are denoted by

T 1
(X,0) = Def (X,0)(D).
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Let (X, 0) be a singularity defined by the ideal I = (f1, . . . , fk) inside (Cn, 0). Consider
an infinitesimal deformation of X̃ → D of (X, 0). By Definition 3.1.4, the total space
(X̃, 0) is defined by equations F1, . . . , Fk ∈ O(Cn,0)×D. As OD = C{ε}/ε2, these equations
are of the form Fi = fi + f ′

iε. Moreover, any relation ∑k
1 rifi = 0 lift to a relation∑k

1 RiFi = 0 with Ri = ri + r′
iε. After substitution,

0 =
k∑
1
RiFi =

k∑
1

(ri + r′
iε)(fi + f ′

iε) =
k∑
1
rifi + ε

k∑
1

(rif ′
i + r′

ifi) = ε
k∑
1

(rif ′
i + r′

ifi),

using ε2 = 0.
With these notations, we also have the resolution

Ol(Cn,0)×D
R−→ Ok(Cn,0)×D

F−→ O(Cn,0)×D −→ O(X̃,0) −→ 0,

where F = (F1, . . . , Fk) and R denote the vectors of lifted functions and relations,
respectively.

Proposition 3.1.21. The set of infinitesimal deformations Def(X,0)(D) carry an OX,0-
module structure.

Proof: The natural sum and scalar multiplication by OCn,0-elements are well behaved.
This means that if two deformations satisfy some relations (f + εf ′

j)(r + εr′
j) = 0 for

j = 1, 2, then their sum f + ε(f ′
1 + f ′

2) satisfies the respective relation

(f + ε(f ′
1 + f ′

2))(r + ε(r′
1 + r′

2)) = 0.

Similarly, for a scalar α ∈ OCn,0, the product f + αf ′ε also respects the given relation:

(f + αf ′ε)(r + αr′ε) = fr + εα(rf ′ + r′f) = 0.

The last thing to check is that the scalar multiplication is well-defined, that is,
multiplying by an scalar element α ∈ Ik – that vanish on (X, 0) – results in the trivial
deformation. The fact αf ′ ∈ Ik = (f1, . . . , fk)k implies that we can express the two
deformations in question with each other using a suitable k × k matrix M over OCn,0:

f + αf ′ε = f(id + εM)

and
f = f(id + εM)(id− εM) = (f + αf ′ε)(id− εM).

This means that the scalar multiple f + αf ′ε defines the same ideal in O(Cn,0)×D as f ,
hence they induce the same, trivial deformation of (X, 0). □
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Chapter 3. Non-isolated toric singularities 3.1. Deformation of singularities

Theorem 3.1.22. The OX,0-module of infinitesimal deformations is isomorphic to the
normal module of X at 0,

Def(X,0)(D) ∼= N(X,0) = HomOX,0(I/I2,OX,0)

as OX,0-modules.

Proof: First, we want a map Def(X,0)(D)→ HomOX,0(I/I2,OX,0) ∼= HomOC,0(I,OX,0).
Consider an infinitesimal deformation f + f ′ε. This defines such a map by fi 7→ f ′

i , I →
OX,0 that is well defined because rf ′ + r′f = 0 implies rf ′ ∈ I.

Similarly, given a homomorphism ρ ∈ HomOC,0(I,OX,0), it defines a map f + ερ(f).
We can find an r′ that makes the relation rρ(f) + r′f = 0 true. □

An infinitesimal deformation is trivial, if it defines the same ideal as f ◦ φ, where
φ(x, ε) = (x+ εψ(x), ε) is an automorphism of (Cn, 0)× D. Differentiating by ε gives

d
dεf ◦ φ(x, ε)|ε=0 = d

dεf(x+ εψ(x), ε)|ε=0 =
∑
i

∂f

∂xi
ψi(x).

If we denote the module of vector field germs at the origin by Θn, we have a natural map

Θn|(X,0) = Θn ⊗OX,0 → N(X,0) = HomOC,0(I,OX,0), υ 7→ (g 7→ υ(g)).

The computation above shows that trivial deformations are in the image of this map.

Corollary 3.1.23.

T 1
X,0 = N(X,0)

/
im
(
Θn|(X,0) → N(X,0)

)
= coker

(
Θn|(X,0) → N(X,0)

)
In particular, T 1

X is also an OX,0-module.
The dimension of T 1

(X,0) as a C-vector space is an important invariant.

Definition 3.1.24. The Tjurina number of a singularity (X, 0) is

τ(X, 0) = dimCT
1
(X,0).

Proposition 3.1.25. The Tjurina number of a hypersurface singularity (X, 0) = (V (f), 0) ⊂
(Cn, 0) equals

τ(V (f), 0) = dimC

(
OCn,0

/(
f, ∂f

∂x1
, . . . , ∂f

∂xn

))
.
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

Proof: The normal module N(X,0) = HomOX,0(I/I2,OX,0) is a free O(X,0)-module with
the homomorphism f 7→ 1 as generator. □

The Tjurina number can be regarded as the analytic sibling of the Milnor number (see
Definition 1.6.7), whereas the latter turns out to be more topological.

The following result is due to Grauert [Gra71].

Theorem 3.1.26. A singularity with finite Tjurina number has a semiuniversal defor-
mation.

The connection between T 1
X,0 and versality is even stronger. The module T 1

X,0 can also
be viewed as the Zariski tangent space to the semiuniversal base space of (X, 0) when
that exists.

Theorem 3.1.27. Consider a deformation π : (X̃, 0) → (S, 0) of the singularity (X, 0).
Then there is a linear map, the Kodaira–Spencer map:

KS : TS,0 → T 1
(X,0).

If π is versal, then the map is surjective; if π is semiuniversal, then KS is bijective.
Furthermore, if a smooth semiuniversal base exists, the bijectivity of KS implies
semiuniversality of (S, 0), too.

Remark 3.1.28. It is a natural question to ask whether an infinitesimal deformation can
be lifted to be a second order deformation, that is a deformation over the triple point with
local ring C{t}/t3. As it turns out, there is an obstruction map ob : T 1

X,0 → T 2
X,0, whose

vanishing means that the particular class of T 1 can be lifted. The module T 2 is a cokernel
of a more complicated map than T 1.

For a singularity with finite Tjurina number, this lifting is the first step towards
creating its formal versal base space. (See [Sch68] for details.)

3.2 Toric geometry

“Toric varieties provide a quite different yet elementary way to see many examples and
phenomena in algebraic geometry. In the general classification scheme, these varieties
are very special. . . . Nevertheless, toric varieties have provided a remarkably fertile testing
ground for general theories.”

[Ful93]
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

Toric geometry builds a bridge between the elementary combinatorial branch of
geometry and algebraic geometry. As a byproduct, it gives us examples that are
complicated enough to be worth studying, but also rather accessible and computable
due to their combinatorial nature. We refer to [Dan78] as the most classic introduction to
the subject along with [Ful93] and [Ewa96]. We also recommend [CLS11] as an extremely
detailed and extensive handbook of (normal) toric varieties.

Here, we only summarize shortly the basics of normal toric varieties before we turn to
the much less studied non-normal case.

A (normal) toric variety is a normal algebraic variety X that contains an algebraic
torus T ∼= (C∗)n as a dense open subset together with an action T ×X → X of the torus
on the variety that extends the natural action of the torus on itself. The torus action
induces a combinatorial structure on the algebraic structure sheaf OalgX – by introducing
weight constraints on the defining equations – involving semigroups, lattices and fans of
cones. Sumihiro’s theorem [Sum74] tells us that, for a (separated) normal variety, this
combinatorial description is equivalent to the definition above. As we are interested in
singularities, we concentrate on affine toric varieties – they serve as patches for the general
case in a manifold-like fashion.

Let M ∼= Zn be an integer lattice and σ ⊂MR ∼= M ⊗R a convex rational polyhedral
cone – that is, a convex cone generated by finitely many lattice vectors – with apex at the
origin inside the real vector space corresponding to the lattice. (From now on, by ‘cone’
we will always mean such a cone). The lattice points inside the cone form a semigroup:
Sσ = M ∩σ. The corresponding semigroup algebra C[Sσ] is generated by the elements xa

for a ∈ Sσ as a vector space and the multiplication rule is xa · xb = xa+b. In fact, C[Sσ] is
a subalgebra of the ring of algebraic functions C[x±

1 , . . . , x
±
n ] ∼= C[M ] on the torus TM .

The toric variety defined by M and σ is the spectrum of the semigroup algebra
generated by Sσ:

TV (σ) = Xσ = Spec C[Sσ].

The lattice M is the character lattice of the torus TM or it can also be viewed as
the lattice of monomials on Xσ. Its dual lattice N = HomZ(M,Z) is the lattice of
one-parameter subgroups. The latter lattice is essential when we construct non-affine
toric varieties from affine pieces.

We can obtain algebraic tori as the toric varieties corresponding to lattices:

Spec C[Zn] = Spec C[x±
1 , . . . , x

±
n ] = (C∗)n = TZn .

We will work with lattices M,N ∼= Zn, that do not have distinguished bases. From a torus,
we can get back the corresponding lattice as the lattice of characters: Homgp(TM ,C∗) =
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

M . On the other hand, the dual lattice N can be realized as the lattice of one parameter
subgroups, that is, as N = Homgp(C∗, TM).

3.2.1 Non-normal toric varieties

There is much less literature on general, not necessarily normal toric varieties. We can
refer to [Stu96, Chapter 13.] for different aspects of normality of toric varieties and to
[GB09] for the theory of the relevant affine semigroups. We mainly rely on the paper
[GT14] of González Pérez and Teissier. We restrict our attention to affine varieties.

The lattice M represents the Laurent monomial functions on the variety Xσ. In
the normal setup, the cone σ encodes which monomials are holomorphic on Xσ. The
normality of the variety is equivalent to the semigroup Sσ being saturated. Let us recall
the definitions needed.

Definition 3.2.1.

(i) A commutative semigroup S is affine if it is the submonoid of some Zn.

(ii) An affine semigroup S ⊂ Zn is saturated or normal if k · a ∈ S (for some
k ∈ N, a ∈ Zn) implies a ∈ S. The saturation or normalization of S in Zn is

Ŝ = {a ∈ Zn : ∃k ∈ N such that ka ∈ S}.

Remark 3.2.2. A commutative semigroup S is affine if and only if it is finitely generated,
cancellative (that is, a+c = b+c =⇒ a = b) and torsion-free (that is, ka = kb =⇒ a = b

for k ∈ N).

Remark 3.2.3. Every saturated semigroup S ⊂ Zn can be expressed in the form S =
Zn ∩ σ for some cone σ ⊂ Rn. In fact, σ = R≥0⟨S⟩.

When we drop the condition of normality from the definiton of toric varieties, we can
consider non-saturated affine semigroups for Sσ. Such a semigroup cannot be defined as
the intersection of a cone and the lattice.

However, we can normalize a non-normal semigroup S filling in the gaps, that is the
elements of Ŝ \ S. The set of gaps have the following structure.

Proposition 3.2.4. Let S be an affine monoid with normalization Ŝ = σ∩Zn. Then the
set of gaps can be decomposed into a finite disjoint union

Ŝ \ S =
k⊔
1

(
ai + (S ∩ τ)

)
where ai ∈ Ŝ and τ ≤ σ is a face.

84

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

See [GB09, Proposition 2.35. (b)].
A morphism of semigroups φ : S → S ′ induces a morphism of C-algebras C[φ] :

C[S]→ C[S ′]. This map is injective (respectively surjective) if φ is that too.
We can obtain algebraic tori as the toric varieties corresponding to lattices:

Spec C[Zn] = Spec C[x±
1 , . . . , x

±
n ] = (C∗)n = TZn .

We will work with lattices M,N ∼= Zn, that do not have distinguished bases. From a torus,
we can get back the corresponding lattice as the lattice of characters: Homgp(TM ,C∗) =
M . On the other hand, the dual lattice N can be realized as the lattice of one parameter
subgroups, that is, as N = Homgp(C∗, TM).

Definition 3.2.5. The (not necessarily normal) affine toric variety corresponding to
the affine semigroup S is

XS = TV (S) = Spec C[S].

The set of closed points of Spec C[S] are in a one-to-one correspondence with the
semigroup homomorphisms Homsg(S,C) with respect to the multiplicative structure of
C. We can think about this as giving values to each monomial xs for s ∈ S. In particular,
the maximal torus consists of those points that satisfy the open condition xs1 . . . xsl ̸= 0
for a generating set {s1, . . . , sl} of S.

Another way to describe the maximal torus is the following. Let M = MS = ZS,
that is the lattice generated by S. The embedding S ↪→ M induces the Zariski-open
embedding TM ↪→ XS. This is true because C[M ] = (C[S])xa , the localization in xa for
some semigroup element that satisfies M = S + N · (−a). Moreover, this implies that
dimXS = dimTM = dimZM .

We want to describe XS with equations. First, we choose a generating set {s1, . . . , sl}
for S. Then S is the image of Nl at the Z-linear map β : Zl → M, ei 7→ si. The
corresponding C-algebra morphism

C[β|Nl ] : C[N l] = C[y1, . . . , yl]→ C[M ] ∼= C[x±
1 , . . . , x

±
n ]

is surjective onto the subalgebra C[S] ⊂ C[M ]. Let us rewrite each element a ∈ Zl as
a = a+ − a− where the two parts are non-negative and have disjoint supports. Then the
map be written as β(a) = β(a+) − β(a−), with both parts in S. The kernel ker(β) of
the group morphism consists those elements a for which β(a+)− β(a−) = 0. In turn, the
kernel of the C-algebra morphism is

Jβ = ker(C[β|Nl ]) =
({
ya+ − ya− : β(a+) = β(a−)

})
⊂ C[y1, . . . , yl].
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

This is called the toric ideal associated to the map β. These binomial equations describe
the toric variety

XS = V (Jβ).

The combinatorics of the cones and faces induce geometric structure on the geometric
level. First, we extend the notion of face to semigroups.

Definition 3.2.6. We call such a subset F = S ∩ τ ⊂ S, for τ ≤ σ, a face of S. Faces
are also characterized by the following condition: a subsemigroup F ⊂ S is a face if and
only if a+ b ∈ F for a, b ∈ S implies a, b ∈ F .

The latter condition is equivalent to the ideal

IF = C[S \ F ] ⊂ C[S]

corresponding to the face F being a prime ideal.
Note that R≥0S = σ is the cone that corresponds to the normalization Ŝ = σ ∩M .

Consider a face τ ≤ σ of the cone and the corresponding face τ ∩ S of the semigroup.
Let us denote the smaller dimensional lattices they generate by M(τ) = Z(τ ∩M) and
MS(τ) = Z(τ ∩ S). Then MS(τ) is a sublattice of M(τ) of finite index i(τ).

Proposition 3.2.7. The toric variety TV (τ ∩ S) corresponding to the semigroup τ ∩ S
and inside the lattice M(τ) can be embedded into XS as follows

ι : TV (τ ∩ S) ↪→ XS, ι(TV (τ ∩ S)) = V (Iτ∩S)

as the subvariety defined by the vanishing of the monomials in S \ F .

This embedding map can also be described as ι : Homsg(S ∩ τ,C) ↪→ Homsg(S,C)
taking a semigroup morphism η of the source to the morphism ι(η) that is ι(η)(a) = η(a)
for a ∈ S ∩ τ and ι(η)(a) = 0 otherwise.

The maximal torus of TV (τ ∩ S) is TMS(τ). The images of these tori are the orbits of
the action of TM on XS. Hence they subdivide the variety

XS =
⊔
τ≤σ

ι(TMS(τ)).

For τ ≤ σ, the closed subvariety V (Iτ∩S) is the closure of the orbit ι(TMS(τ)), that
contains all the orbits corresponding to faces υ ≤ τ . This is called the orbit–cone
correspondance. (Note that we differ from the standard notation, where the cones live
in the dual space NR, reversing the inclusion order of them.)

The regularity of a normal affine toric variety can be read off from its defining cone.
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

Definition 3.2.8. A cone σ∨ ⊂ NR is regular if its minimal lattice generators form a
basis of the lattice N .

Proposition 3.2.9. An normal affine toric variety Xσ is smooth if and only if the cone
σ∨ is regular.

The non-normal case is slightly more complicated.

Proposition 3.2.10. The non-singular locus of XS is the union of those orbits that
correspond to faces τ ≤ σ with index i(τ) = 1 and a regular dual cone τ⊥ ∩ σ∨ ⊂ NR. In
other words, the singular locus consists of the vanishing loci of ideals Iτ∩M corresponding
to the faces τ not satisfying the above conditions.

See [GT02, Remark 4.11.].

Remark 3.2.11. If we want to build a non-normal non-affine (for example, projective)
toric variety, we need to glue affine pieces together. In the normal case, the gluing is
encoded in a fan Σ of cones in NR. In our case, in addition to the fan Σ, we also need a
family of affine semigroups {Sσ}σ∨∈Σ, where Sσ ⊂ M ∩ σ, that satisfies some additional
compatibility conditions (see [GT14, Definition 4.1.]).

3.2.2 Cyclic quotient surface singularities

Let us see the case of ffine two-dimensional normal toric varieties. We fix the two-
dimensional lattices M,N ∼= Z2 and a cone σ ⊂MR.

Proposition 3.2.12. We can choose a basis {e1, e2} of M such that σ = R≥0⟨e2, pe1+qe2⟩
where 0 ≤ q < p and gcd(p, q) = 1.

For the proof of the equivalent statement for the dual cone in NR, see [CLS11, Proposition
10.1.1.].

Notation 3.2.13. We denote the corresponding affine toric surface as

Xp,p−q = Xσ = SpanC[σ ∩M ].

Two pairs of parameters, (p, q) and (p′, q′), define the same cone up to a change of
bases, and in turn isomorphic surfaces, if p = p′ and either q = q′ or qq′ ≡ 1 (mod p).

According to Proposition 3.2.9, Xp,p−q is smooth if e2 and pe1 + qe2 form a basis of M .
If their generated lattice M ′ = Z⟨e2, pe1 + qe2⟩ is a proper sublattice of M , then Xp,p−q
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

has an isolated singularity. The singular point is defined by the semigroup morphism
Hom(Sσ,C), a 7→ 0 – let us denote it by 0 ∈ Xp,p−q from now on.

The quotient M/M ′ is isomorphic to the cyclic group Z/p of order p. This group is
also isomorphic to the group of pth root of unity Gp = {ξ ∈ C : ξp = 1}.

Proposition 3.2.14. The toric surface Xp,p−q is isomorphic to the quotient C2/Gp with
respect to the action ξ(x, y) = (ξx, ξp−qy).

The singularity (Xp,p−q, 0) is called cyclic quotient surface singularity or Hirzebruch–
Jung singularity. In fact, there are three more equivalent ways to describe this class of
singularites.

(i) The singularity Xp,p−q is isomorphic to the normalization of vanishing locus of the
equation xyq = zp in C3.

(ii) The minimal resolution graph of Xp,p−q is a bamboo with gv = 0 for every vertex v.

(iii) There is an analytic covering map (Xp,p−q, 0) → (C2, 0) whose branch locus is
{xy = 0} for suitable coordinates x, y of (C2, 0).

For the proof of the equivalence and further reference, see [Ném22, Section 2.3.].
In later calculations, it will be crucial to understand this resolution graph, in particular

the generic S1-fibre of the plumbing over each component of the exceptional divisor. First,
we consider the semigroup σ∨∩N of those one-parameter subgroups that can be extended
to 0, and choose a minimal set of generators e0, . . . , er+1 of it – the same way as in
Proposition 3.3.1. From that proof it follows that adjacent generators ei, ei+1 form a basis
of N , or, equivalently, their cone τ∨

i = R≥0⟨ei, ei+1⟩ ⊂ NR is regular. Let us denote the
fan of consisting of the subcones of the cones τ∨

i by Σ. Then the subdivision σ∨ = ⋃r
0 τ

∨
i

defines a toric map
ρ : XΣ → Xσ,

that is a toric resolution of the cyclic quotient singularity of Xσ.
The affine charts of the resolution correspond to the cones τ∨

i of the subdivision.
Each embedding τ∨

i ↪→ σ∨ yields a dual embedding σ ↪→ τi ⊂ MR and, in turn,
an embedding of semigroups Sσ ↪→ Sτi

. The latter defines a morphism Xτi
→ Xσ

of toric varieties. Note that τi is also regular. Let us denote its two generators by
ni,mi+1 ∈ M with ni ∈ e⊥

i ,mi+1 ∈ e⊥
i+1. Therefore the corresponding chart is smooth

Xτi
= C⟨xni , xmi+1⟩ ∼= C2 and the resolution on this chart can be given by expressing the

semigroup generators {gj}s+1
0 of Sσ in terms of ni,mi+1. Let us remark that ni = −mi.

88

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

e0

e1

e2

e3

e4

τ∨
0

τ∨
1

τ∨
2τ∨

3
As an example, consider σ∨ = R≥0⟨(1, 0), (−3, 7)⟩.

The picture on the right shows the decomposition and Fig-
ure 3.2.1 shows the semigroup embedding that corresponds
to τ2.

On each chart – except for the first and the last –
two components of the exceptional divisor E = ρ−1(0)
can be seen: Ei+1 = V (xni) and Ei = V (xmi+1). On the
two extreme charts, there is only one component because
n0 = g0 and mr+1 = gs+1 so they must vanish on the
exceptional locus. Under the orbit–cone correspondence,
each component Ei belongs to a new one-dimensional cone
R≥0⟨ei⟩ = τ∨

i−1∩τ∨
i in the fan Σ, that we introduced during

the resolution.
How can we express a generic fibre over Ei? This

component is V (xni−1) on one chart and V (xmi+1) on the other one, and it is parametrized
by xni = (xmi)−1 – with the equation holding on the overlap. Therefore xni = 1, and
respectively xmi = 1, define a generic fibre Fi ⊂ XΣ. These equations imply that any two
characters a, a+kni ∈M agree on Fi∩TM as group morphisms TM → C∗. Hence Fi is the
closure of the image of the map of tori TM/ni

→ TM that is defined by the quotient map
of lattices M → M/Zni. In turn, this is equivalent to the image of the one-parameter
subgroup λei : C∗ → TM corresponding to the lattice element ei ∈ N that is perpendicular
to ni. We can express this map in the toric coordinates: λei(t) = (tei·gj )s+1

j=0 where ei · gj
means the scalar pairing between the dual lattices N and M .

g0 g1 g2

g3

n2

m3

SσSτ2

Figure 3.2.1: The semigroup incusion corresponding to a chart of the resolution.

As the resolution ρ is an isomorphism outside the exceptional locus, we get the
following statement.
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Chapter 3. Non-isolated toric singularities 3.2. Toric geometry

Proposition 3.2.15. The one-parameter subgroup corresponding to the generator ei ∈ N
defines a generic fibre Li = λei(C) ∩ Sε of the plumbing of the link of Xσ, that belongs to
the exceptional divisor Ei.

3.2.3 Toric deformations

This subsection is dedicated mainly to the work of Altmann on the deformation theory
of normal toric varieties. [Alt93; Alt94; Alt95a; Alt95b; Alt97; ACF22; ACF20]

In [Chr91], Christophersen observed that cyclic quotient surface singularities have
versal deformations with toric total space over each component of the base space. This
raises the question whether every toric sungularity has such a versal deformation. It turns
out that a component of the versal base must belong to the ‘negative part’ of T 1 in order
to have toric total space over it ([Alt95a, p. 8]).

In [Alt93; Alt95b], Altmann charecterized the toric deformations of a given normal
affine toric variety Y with an isolated singularity over Ck as base. More precisely, he
characterized deformations that fit into the commutative diagram

Y X

{0} Ck

i

π ,

where i is a morphism of toric varieties, Y has an isolated singularity and π is flat.
Consider a lattice M and a top-dimensional cone σ ⊂ MR and a k-dimensional

sublattice L ⊂ M such that M/L is torsion-free and L ∩ σ = 0. (Note that we switch
the roles of σ and σ∨ compared to Altmann’s papers.) Let the sublattice L be generated
by a set {q1 − r1, . . . , qk − rk} of differences semigroup elements and let us ‘squeeze’ the
cone σ to σ̄ = σ/LR. Then the toric ideal (xq1 − xr1 , . . . , xqk − xrk) ⊂ C[Sσ] defines a
toric complete intersection subvariety Xσ̄Xσ. This is isomorphic to Xσ̄ defined by σ̄ and
the quotient lattice M/L if the faces of the dual cone σ∨ ⊂ NR and the generators of L
satisfy some – rather technical – conditions (∗), for the deatils see [Alt93, (2.4) Theorem].
To summarize, we obtain a toric deformation of Y with the above construction if Y ∼= Xσ̄

and (∗) are satisfied. In fact, the conditions (∗) guarentee that the squeezed semigroup
Sσ/L is saturated. We will actually be interested in the non-saturated case.

We may also hope for a nice combinatorial description of the infinitesimal deformations
of a toric singularity. By construction, T 1

Xσ ,0 is a C[Sσ]-module that gives an M -grading
on it. In [Alt94], Altmann gives a formula for the graded pieces T 1

Xσ ,0(−R) for R ∈M . To
state the theorem, we need to introduce some notations. Let the cone σ be the intersection
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

of the half-spaces defined by the inequalities (ai,m) ≥ 0 for some ai ∈ N – that in turn
generate the dual cone σ∨ = R⟨a1, . . . , al⟩. Let E be the generating set of the semigroup
Sσ and let us pick R ∈M . Then let us denote the generators below R in the ai direction
by ER

i = {e ∈ E : (ai, e) < (ai, R)} and their union by ER = ⋃l
1 E

R
i .

Theorem 3.2.16. [Alt94, (2.3)]

T 1
Xσ ,0(−R) =

(
Rel(ER)

/∑l
1 Rel(ER

i )
)∗
⊗
Z
C,

where Rel(F ) denotes the group of linear relations between the elements of F .

In particular, we can deduce that each graded piece is finite dimensional.
In [Alt95a, Chapter 3.], he gave alternative T 1-formulas. Moreover, he deduced that,

for normal affine toric varieties of dimension at least 3, the space T 1 is infinite-dimensional
(see [Alt95a, p. 44]).

In [Alt97], he creates a deformation for toric Gorenstein singularites Xσ, that are
smooth in codimension 2. The defining dual cone σ∨ of such a variety has a lattice polytope
Q embedded in it as the hyperplane cut at height 1 in the Gorenstein direction. We can
build a deformation from the different ways of splitting Q into Minkowski summands.
This deformation is versal when dimT 1

Xσ
<∞, in particular, when the singularity of Xσ is

isolated. In [ACF22], Altmann, Constantinescu and Filip generalized this construction to
the maximal deformations with prescribed tangent space T 1(−R) of any toric singularity
while also strengthening the statement about versality.

This theory also gives a new way of describing the versal deformation of cyclic quotient
surface singularities.

3.3 A family of non-isolated toric surfaces

3.3.1 Semigroup generators

Take a two-dimensional lattice M ∼= Z2 and a strongly convex rational polyhedral cone
σ ⊂ MR ∼= R2. Let us denote the corresponding semigroup by Sσ = σ ∩M . We create
a normal affine toric surface with this data: Xσ = Spec (C[Sσ]). Note that (Xσ, 0) is a
cyclic quotient surface singularity.

Up to an integral linear coordinate change, we can assume that one extremal ray
generator of Sσ is (0, 1). We can also assume that the other extremal ray generator (p, q)
is primitive and p > q ≥ 0. Consider the primitive extremal lattice points of the convex
hull conv(Sσ \ 0). They can be ordered naturally from g0 = (0, 1) to gs+1 = (p, q).
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Proposition 3.3.1. The primitive extremal lattice points g0, g1, . . . , gs+1 of the convex
hull form a Hilbert basis of the semigroup Sσ.

Proof: First, we cut the semigroup Sσ into slices along the rays R≥0⟨gi⟩. We show
that gi and gi+1 generate the corresponding slice Si = R≥0⟨gi, gi+1⟩ ∩M of the semigroup
S for all 0 ≤ i ≤ s. Any lattice point h ∈ Si can be written as h = αgi + βgi+1 with
α, β ≥ 0. We want to show that α and β are integers. Let us shift h ‘backwards’ with a
combination of gi, gi+1 into the parallelogram Pi = conv(0, gi, gi+1, gi + gi+1). The shifted
copy is

h′ = (α− ⌊α⌋)gi + (β − ⌊β⌋)gi+1 =: α′gi + β′gi+1.

Now 0 ≤ α′, β′ < 1, and h′ is still in σ ∩M .
Where can this h′ be inside the parallelogram? We know that it cannot be inside the

‘lower half’ triangle formed by 0, gi and gi+1 – only if it coincides with one of the vertices
– as in that case h′ would be extremal too. This means that α′ + β′ ≥ 1. However,
being in the ‘upper half’ triangle – meaning α′ + β′ > 1 – is not possible either for
the following reason. The lattice M is centrally symmetric to the bisector gi+gi+1

2 . This
reflection interchanges the two triangles, taking α′gi + β′gi+1 to (1− α′)gi + (1− β′)gi+1.
Finally, α′ + β′ = 1 would mean that h′ is on the segment connecting the two extremal
points, making it, again, extremal. Therefore, h′ must coincide with one of the vertices
of the parallelogram, and according to the inequalities, that can only be 0. This means
α′ = β′ = 0, in turn making α and β integers. □

The assumption p > q implies (1, 1) ∈ σ, yielding g1 = (1, 1) as this point must be
extremal.

One can compare the neighbouring triples of these gi generators resulting in a set of
very nice relations.

Proposition 3.3.2. The equations

g0 + g2 = k1 · g1

g1 + g3 = k2 · g2
...

gs−1 + gs+1 = ks · gs

(3.1)

hold for some ki ≥ 2 integers.

Proof: The sum gi−1 + gi+1 obviously lies in the union Si−1 ∪ Si+1 of the two
corresponding slices. Thus we can express the sum as a positive integer combination
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

of either gi−1, gi or gi, gi+1. Assume gi−1 + gi+1 = αgi−1 + βgi. Then α = 0 must hold,
otherwise gi+1 = (α − 1)gi−1 + βgi ∈ Si−1 would be a contradiction. The same happens
for gi−1 + gi+1 = αgi + βgi+1. Hence gi−1 + gi+1 = kigi.

The coefficient ki cannot be 1, as gi−1 + gi+1 is not an extremal point of the convex
hull. □

Example 3.3.3. As a running example, let us consider (p, q) = (7, 3) that gives Xσ =
X7,4. The generators of the semigroup are g0 = (0, 1), g1 = (1, 1), g2 = (2, 1), g3 = (7, 3)
and they satisfy the equations g0 + g2 = 2g1, g1 + g3 = 4g2. (See Figure 3.3.1)

g0 g1

(2)
g2

(4)

g3
Sσ

(0, 1)

(7, 3)

Figure 3.3.1: The generators of the semigroup Sσ corresponding to X7,4 with their
coefficients with respect to (3.1).

The coefficients {ki} also appear in the Hirzebruch–Jung – or from now on – negative
continued fraction

p

p− q
= [k1, k2, . . . ks]. (3.2)

For a clear and concise, yet slightly differently structured description of the generators,
coefficients and the continued fraction, see [CLS11, §10.2.].

Let us denote the algebra elements corresponding to gi by zi. Then the semigroup
equations (3.1) turn into

z0z2 = zk1
1

z1z3 = zk2
1

...
zs−1zs+1 = zks

s

(3.3)

Note that this is not the complete list of equations that generate the vanishing ideal of
the variety. For that, see (3.8).
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Dual picture and the plumbing graph

The dual cone of σ is σ∨ = R≥0⟨(1, 0), (−q, p)⟩ ⊂ NR. Up to integral change of bases σ∨

is equivalent to R≥0⟨(1, 0), (p− q, p)⟩.
One can read off the data from this dual picture that determines the topology of the

singularity. The dual semigroup consists of the one-parameter subgroups C∗ → TM that
can be extended to 0 ∈ C. This semigroup is generated by e0, e1, . . . er+1 (with e0 = (1, 0))
satisfying the relations analogous to (3.1) with the coefficients b1, b2, . . . br. As above, these
give the negative continued fraction

p

q
= [b1, b2, . . . br]. (3.4)

What is more important, they describe a resolution of Xσ. The dual resolution graph of
Xσ is

−b1 −b2 . . .
−br

(3.5)

(In this sense the two continued fractions (3.2) and (3.4) are dual to each other.)

(1, 0)
e0

(3)
e1

(2)
e2

(2)
e3

(−3, 7) e4

σ∨

⇒ −3 −2 −2

Figure 3.3.2: The dual cone and the resolution graph of X7,4.

3.3.2 The theorem

Due to its normality, the affine surface Xσ can only have an isolated singularity at the
origin. In order to create a non-isolated toric singularity, we remove some elements from
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

the semigroup. In fact, we need to remove an infinite family of elements. Otherwise,
it would be a non-normal germ whose δ-invariant equals the number of gaps. Hence, it
would still have an isolated singularity. The normalization, defined by the saturation on
the semigroup level, is described in Section 3.3.3.

As it turns out, the simplest case is when we remove a ‘mod 2’ family of elements.
Let S = Sσ \ {(0, 1), (0, 3), (0, 5), ...(0, 2k + 1), ...}. Let X = Spec (C[S]) denote the
corresponding toric variety.

Theorem 3.3.4. The boundary of the Milnor fibre of X with respect to the deformation
described in Section 3.3.4 is a graph manifold with the following plumbing graph

−2

−2

−1 ⊖ −2 −b1 −b2 . . .
−br

(3.6)

The rest of the paper is devoted to setting up and proving this result.

Remark 3.3.5. If either side of a negative edge is a tree, then one can remove the minus
sign. Indeed, we can simply remove the negative sign and change the orientation of the
fibres and the bases – which is the R0. (a) move in [Neu81] – on one side resulting in the
graph

−2

−2

−1 −2 −b1 −b2 . . .
−br

(3.7)

This type of graph belongs to Neumann’s N1 type according to his classification theorem
in [Neu81].

3.3.3 Non-normal singularity

The normal variety Xσ can be embedded into Cs+2 ∼= C⟨z0, ...zs+1⟩. Riemenschneider in
[Rie81] tells us that the a set of functions generating the ideal defining Xσ has a nice
compressed form
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces


z0 z1 z2 . . . zs

zk1−2
1 zk2−2

2 . . . zks−2
s

z1 z2 z3 . . . zs+1

 (3.8)

that means the following: for any 0 ≤ i < j ≤ s

zizj+1 = zi+1
( j∏
l=i+1

zkl−2
l

)
zj. (3.9)

Now, we want to find the equations defining X. First, we need a new generating set
of the punctured semigroup S as we have lost the first generator g0 = (0, 1).

S

hx hy

g1 g2

g3

Figure 3.3.3: Removal of a ‘mod 2’ family from the semigroup and the new generators.

Proposition 3.3.6. The semigroup S is generated by the elements hx = (0, 2), hy =
(1, 2), g1, g2, . . . gs+1.

Proof: Let s ∈ S ⊂ Sσ. As an element of the latter, we can express s as

s = a0g0 + a1g1 + ...+ as+1gs+1

with ai ∈ Z≥0. We will show that we can create an expression for s using the new
generators. If a0 is even, we can replace g0 with hx = 2g0 in the following way:

s = a0

2 hx + a1g1 + ...+ as+1gs+1. (3.10)

Now, assume a0 is odd. We can take care of (a0 − 1) · g0 as above leaving only one
g0. Our assumption implies that s ̸= a0g0 because odd multiples of g0 are exactly the
elements we threw out in (3.10). So, let am > 0. Then we can use the additive version of
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

the equation (3.9) for i = 0, j = m− 1. That is g0 + gm = g1 +
(∑m−1

l=1 (kl− 2) · gl
)

+ gm−1.
The right hand side does not have g0. Hence, we have the expression

s = a0g0 + a1g1 + ...+ amgm + ...+ as+1gs+1

= a0−1
2 hx + g1 +∑m−1

l=1 (kl − 2) · gl + gm−1 + a1g1 + ...+ (am − 1)gm + ...+ as+1gs+1,

that uses only the new generators. The only problem, that might occur, is if the only
nonzero coefficient is a1, because then i = 0 = m− 1 = j and we cannot use (3.9). But in
that case, using hy = g0 + g1, we can obtain s = a0g0 + a1g1 = a0−1

2 hx + hy + (a1 − 1)g1,
which works, too. □

In the sequel, we denote the algebra elements corresponding to hx and hy by x and y.

New relations

We need to find a set of equations which generates the ideal of X.
From the equations (3.8) we can obtain new ones by getting rid of z0. Fortunately,

this only appears in the top left corner. If we multiply the first column with any term,
we will get a set of relations – that corresponds to adding a vector to the two sides of the
additive relations involving g0 and g1.

If we multiply by z0, as z2
0 = x and z0z1 = y, we get

x z1 z2 . . . zs

zk1−2
1 zk2−2

2 . . . zks−2
s

y z2 z3 . . . zs+1

 . (I)

Similarly, multiplying by z1 results in
y z1 z2 . . . zs

zk1−2
1 zk2−2

2 . . . zks−2
s

z2
1 z2 z3 . . . zs+1

 . (II)

In both cases the rule to read off relations is the analogue of (3.9).
Note that the relations coming from after the second column are repeated identically

in the two sets.
In addition to the above relations, there is the relation formed by the two first columns

of the above matrices.
x y

y z2
1

 (III)
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

We can patch these relations into one Riemenschneider matrix-like diagram
x y z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

y z2
1 z2 . . . zs+1

 . (∗)

Proposition 3.3.7. The relations encoded in (∗) form a generating set of the ideal of the
variety X ⊂ Cs+3⟨x, y, z1, ...zs+1⟩.

Proof: Firstly, the discussion above shows that all these relations hold for the variables.
Secondly, we shall prove that these relations generate each relation that holds true.

According to the toric construction, it is enough to show that any binomial relation can
be generated by the relations of (∗). Consider a generic relation

xαxyαy

s+1∏
1
zαi
i = xβxyβy

s+1∏
1
zβi
i .

We shall assume that each variable appears on one side only – otherwise the relation would
be a multiple of a simpler one. Thus ∀i ∈ {x, y, 1, ..., s + 1} we have αi = 0 or βi = 0.
Assume αx ̸= 0. Take the last variable with nonzero power on the left side: z

αj

j , and
apply the appropriate multiple of the relation

xzj = y · 1 · zk1−2
1 · ... · zkj−1−2

j−1 · zj−1,

replacing the left hand side with

xαx−1yαy+1zα1+k1−2
1 · ... · zαj−1+kj−1−1

j−1 · zαj−1
j−1 .

Note that this step decreases the power of x by one. In αx steps we get rid of all of x.
Then we can remove all the y from the side where they appear after simplification using
similar multiples of the relation

yzj = z2
1 · zk1−2

1 · ... · zkj−1−2
j−1 · zj−1.

This step decreases the power of y by one and does not reintroduce x. Once we manage
to get rid of both x and y, we end up with a relation involving only zi’s.

Consider the cone σ̄ = R≥0⟨g1, gs+1⟩ and the corresponding semigroup Sσ̄. The
arguments in 3.3.1 and 3.3.2 hold for Sσ̄, hence this semigroup is generated by
{g1, g2, . . . , gs+1}. Similarly, the analogue of (3.8):


z1 . . . zs

zk2−2
2 . . . zks−2

s

z2 . . . zs+1

 (3.11)
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

gives the generating set of equations between the variables z1, . . . zs+1. On the other hand,
this (3.11) is included in (∗), thus we are done.

The only question that remains is how this algorithm can get stuck. In what situation
can we not reduce the power of x (or y respectively)? If there is any αi ̸= 0, i ≥ 2,
we are fine. If there isn’t any, but α1 ≥ 2, then we can apply a multiple of (III):
xz2

1 = y2, decreasing αx further. The only problematic cases remaining are when
αi = 0 for i ≥ 2 and α1 < 2 or when αi = 0 for i ≥ 2, αx = 0. That is we only have to
take care of the following types of monomials:

xαxyαy , xαxyαyz1, y
αyzα1

1 .

Note that the these monomials cannot be nontrivially equal to a monomial involving only
zi’s, because the former represent a lattice vector in R≥0⟨hx, g1⟩, whereas the latter in
R≥0⟨g1, gs+1⟩. So, could the listed monomials equal each other? This would mean an
additive lattice equation involving only hx, hy and g1 with no redundancy on the two
sides. For convexity, the only possibility is αxhx + g1 = βyhy. This, on the other hand, is
not possible as in the canonical basis it turns into

αx · (0, 2) + (1, 1) = (1, 2αx + 1) = (βy, 2βy) = βy · (1, 2),

where the parity of the second coordinate does not match.
Thirdly, we need to show that there is no redundancy. That is, none of the relations

of (∗) can be expressed with the others. This becomes obvious if we notice that for any
of our relations, the monomial on the left hand side involves only two variables, and that
pair characterises the particular relation.

□

Example 3.3.8. For the running example (3.3.3), the equations are the following. The
surface Xσ ⊂ C4 is defined by the equations

z0 z1 z2

z2−2
1 z4−2

2

z1 z2 z3

 .
For instance, the first equation is z0z2 = z1z

0
1z1. The new equations for the non-normal

X are 
x y z1 z2

1 z2−2
1 z4−2

2

y z2
1 z2 z3

 .
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Normalization and singular locus

From the functoriality of the toric variety construction, we can obtain the normalization
map. First, consider the embedding

S ↪→ Sσ

hx 7→ 2g0

hy 7→ g0 + g1

gi 7→ gi for 0 < i ≤ s+ 1.

This defines an embedding of C-algebras

C[S] ↪→ C[Sσ]
x 7→ z2

0

y 7→ z0z1

zi 7→ zi for 0 < i ≤ s+ 1,

that in turn defines a map of varieties

n : Xσ → X.

This is the normalization of X. The singular locus Sing(X) of X is the x-axis. The
map n is a branched 2 : 1 cover over Sing(X), that is covered by the z0-axis. Outside the
singular locus, n is an isomorphism.

3.3.4 Deformation

We want to deform the non-isolated singularity X.

Remark 3.3.9. First, we tried to modify the deformations of Xσ, coming from the general
theory, so that they give deformations of X (see Subsection 3.2.3 and [Alt95b]). Consider
a 1-parameter toric deformation of Xσ. That consists of a cone ρ ⊂ MR ∼= R3 and a
1-sublattice L ⊂ M such that the squeezed semigroup Sρ/L ⊂ M/L is isomorphic to Sσ.
We can easily adjust this to the non-saturated case: let S̃ be the subsemigroup of Sρ that
we obtain as the preimage of S ⊂ Sσ by the quotient map. However, the semigroup S̃

needs too many generators compared to S that means that X ⊂ X
S̃

is cut out by more
than one equations, hence the result is not a 1-parameter family.

On the other hand, we can try ‘lifting’ the generators of S to S̄ ⊂ Sρ in a way that
X ⊂ XS̄ is defined by one toric equation. Then the subsemigroup S̄ ⊂ Sρ has too many
gaps resulting in a flat family with non-isolated singularities in all the fibres.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Instead, we define a 3-dimensional normal toric variety whose semigroup becomes non-
saturated after squeezing it, as described in Subsection 3.2.3. We define the total space
of a deformation as a normal toric variety corresponding to a 3-dimensional cone. Let
M̃ = M ⊕ Z and σ̃ = R≥0⟨(hx, 1), (hy, 1), (hy, 0), (gs+1, 0)⟩ ⊂ M̃R. Note that the linear
extension of the projection M̃ ↠M maps σ̃ onto σ.

Let S̃ = σ̃ ∩ M̃ , the semigroup defining the deformation space.
When talking about the semigroup generators in the 3-lattice M ⊕ Z, we will

abuse notation and use both of these formats: (hx, 1) = (0, 2, 1), (hy, 1) = (1, 2, 1),
(hy, 0) = (1, 2, 0), (g1, 0) = (1, 1, 0).

Proposition 3.3.10. The semigroup S̃ is generated by the set
{(hx, 1), (hy, 1), (hy, 0), (g1, 0), (g2, 0), ...(gs+1, 0)}.

Proof: We want to show that the given vectors generate each vector in the semigroup.
For this, we cut the cone σ̃ into simplicial cones in the following, rather natural way, and
generate the lattice vectors subcone by subcone.

(hx, 1) (hy, 1)

(hy, 0) (g1, 0)
. . .

(gi, 0) (gi+1, 0)
. . .

(gs+1, 0)

Figure 3.3.4: Simplicial subdivision.

All the lattice vectors in a simplicial subcone are generated by the three ray generators
if (and only if) the ray generators form a basis of the lattice – we call these cones regular.
An equivalent criterion of this is whether the 3× 3 determinant of the generators equals
±1.

We claim that all the cones besides the first one are regular. Take R≥0⟨(hy, 1), (hy, 0), (g1, 0)⟩.
The corresponding determinant is∣∣∣∣∣∣∣∣∣

hy 1
hy 0
g1 0

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 2 1
1 2 0
1 1 0

∣∣∣∣∣∣∣∣∣ = −1.

For any 1 < i ≤ s, we have an inductive argument, claiming that they agree with the
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

previous determinant.∣∣∣∣∣∣∣∣∣
hy 1
gi 0
gi+1 0

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣ gi

gi+1

∣∣∣∣∣∣ =
∣∣∣∣∣∣ gi

kigi − gi−1

∣∣∣∣∣∣ = −
∣∣∣∣∣∣ gi

gi−1

∣∣∣∣∣∣ =
∣∣∣∣∣∣ gi−1

gi

∣∣∣∣∣∣
And the first step of the induction is∣∣∣∣∣∣ g0

g1

∣∣∣∣∣∣ =
∣∣∣∣∣∣0 1
1 1

∣∣∣∣∣∣ = −1.

On the other hand the first cone is not regular, the corresponding generators only give
a subgroup of order 2: ∣∣∣∣∣∣∣∣∣

hx 1
hy 1
hy 0

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 2 1
1 2 1
1 2 0

∣∣∣∣∣∣∣∣∣ = 2.

Fortunately, we are allowed to use the generators corresponding to other subcones too.
The simplest sum (hx, 1) + (g1, 0) = (1, 3, 1) landing in this cone luckily helps. Let us
subdivide the first cone into three cones via this vector as the figure shows.

(hx, 1) (hy, 1)

(hy, 0)

(hx, 1) + (g1, 0)

Figure 3.3.5: Subdivision into regular cones.

The three subcones are now regular:∣∣∣∣∣∣∣∣∣
hx 1
hy 1

hx + g1 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 2 1
1 2 1
1 3 1

∣∣∣∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣∣∣∣
hy 1
hy 0

hx + g1 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 2 1
1 2 0
1 3 1

∣∣∣∣∣∣∣∣∣ = 1,

∣∣∣∣∣∣∣∣∣
hx 1
hy 0

hx + g1 1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
0 2 1
1 2 0
1 3 1

∣∣∣∣∣∣∣∣∣ = −1.

Hence, all the semigroup elements are generated by the given vectors. □
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Let X̃ = Spec (C[S̃]). Let us denote the algebra generators in the following way.
For each vector with 0 as last coordinate, we use the same variable name as in C[S]:
y, z1, . . . zs+1. In case of vectors with last coordinate 1, we introduce a ’∼’ on top of them:
x̃, ỹ. This will help us to keep track of the relations and will not be such a big abuse of
notation because of the deformation.

X̃ fits into the commutative diagram

X X̃

0 C

t

with the function t = ỹ − y parametrizing the family.

Proposition 3.3.11. This is a deformation.

Proof: According to Proposition 3.1.12 a t-family X̃ is flat if and only if t is not a zero
divisor in O

X̃
. As X̃ is a normal toric variety, its structure sheaf has no zero divisors. □

Furthermore, we can lift all the defining equations (∗) of X obtaining
x̃ y z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

ỹ z2
1 z2 . . . zs+1

 . (∗∗)

Proposition 3.3.12. The relations (∗∗) above define the total deformation space X̃.

Proof: First, we check that these equations hold true. Dropping to the level of
semigroup elements one only needs to check the third coordinates in the relations as the
first two coordinates agree with those in (∗). There, only x̃ and ỹ (or (hx, 1), (hy, 1)
respectively) are nonzero, but they come as a pair in (∗∗).

We want to show that these equations are enough.
Each non-redundant equation of X̃ is the unique lifting of an equation of X, because we

only have a choice regarding the lifting of the generator y, and there the third coordinate
of the lattice M̃ = M ⊕Z tells the right combination of y and ỹ in the lifting. But as (∗)
generate every equation of X, and (∗∗) generates a lifting of each of them, this gives all
the equations for X̃. □
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Example 3.3.13. For the running example, the 3-dimensional cone corresponding to the
total space, with the semigroup generators, looks like the following.

x̃ ỹ

y

z1 z2

z3

This yields the equations 
x̃ y z1 z2

1 z0
1 z2

2

ỹ z2
1 z2 z3

 .

3.3.5 Nearby singularities

Despite being a deformation, the family t : X̃ → C is not a smoothing as the nearby
fibres have singularities. However, we have the following.

Proposition 3.3.14. Each nearby fibre has a single isolated singularity along the ỹ-axis.

Proof: We want to find the singular locus of X̃. In case of a normal toric variety such
as X̃, it can be read off the corresponding fan in the space NR. One only needs to check
the regularity of the cones of the fan. In our case, the fan consists of all the subcones of
σ̃∨.

The cone σ̃∨ is generated by the following vectors:

(hy, 0)× (hx, 1) =

∣∣∣∣∣∣∣∣∣
1 2 0
0 2 1
i j k

∣∣∣∣∣∣∣∣∣ =


2
−1
2

 , (hx, 1)× (hy, 1) =

∣∣∣∣∣∣∣∣∣
0 2 1
1 2 1
i j k

∣∣∣∣∣∣∣∣∣ =


0
1
−2

 ,

(hy, 1)×(gs+1, 0) =

∣∣∣∣∣∣∣∣∣
1 2 1
p q 0
i j k

∣∣∣∣∣∣∣∣∣ =


−q
p

q − 2p

 , (hy, 0)×(gs+1, 0) =

∣∣∣∣∣∣∣∣∣
p q 0
1 2 0
i j k

∣∣∣∣∣∣∣∣∣ =


0
0

2p− q

 .
We check each subcone. Firstly, the whole cone is not even simplicial, so it is singular.

This results in a singularity at 0 ∈ X̃. Then we go through the four facets. Regularity
of a 2-cone in 3-space is equivalent to the cross product of the corresponding two vectors
being primitive.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces


2
−1
2




0
1
−2



−q
p

q − 2p




0
0
1



Figure 3.3.6: Dual cone σ̃∨.


2
−1
2

×


0
1
−2

 = (0, 4, 2) = 2 · (0, 2, 1),


0
1
−2

×

−q
p

q − 2p

 = (q, 2q, q) = q · (1, 2, 1),


−q
p

q − 2p

×


0
0
1

 = (p, q, 0),


0
0
1

×


2
−1
2

 = (1, 2, 0).

Hence, the two former facets listed are singular, whereas the latter two are regular.
Finally, the one-dimensional faces are always regular in the normal setup.
This means that along the axes corresponding to (0, 2, 1) = (hx, 1) and (1, 2, 1) =

(hy, 1) lie the singular locus of the variety. In other words,

Sing(X̃) = {ỹ = y = z1 = · · · = zs+1 = 0} ∪ {x̃ = y = z1 = · · · = zs+1 = 0} = Σ̃1 ∪ Σ̃2.

(3.12)
Note that the x̃-axis, Σ̃1 = Sing(X), that is the first branch is contained in the fibre
over 0. On the other hand, the ỹ-axis, Σ̃2 intersects each nearby fibre Xµ at one point
{ỹ = µ, x̃ = y = zi = 0}. See Figure 3.3.7.

Furthermore, this is the only singular point of a nearby fibre Xµ. To see this, we need
to show that a smooth point of X̃ is also a smooth point of the fibre containing it.

Let p be a smooth point of X̃ with t(p) = µ ̸= 0. For p to be a singular point of Xµ,
the differential of t|

X̃
must vanish there. That is,

d(t|
X̃

)(p) : Tp(X̃)→ Tµ(C)
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Figure 3.3.7: Singular locus of X̃.

must be the zero map. This is a closed analytic criterion on p, so such points form a
closed subvariety ∆ ⊂ X̃.

The map t|∆ : ∆ → C is a holomorphic function. The condition above means that it
is locally constant.

Therefore t(∆) ̸= C. Then we can take a small neighbourhood U ⊂ C around 0 such
that U ∩ t(∆) ⊂ {0}. In this case, let us restrict our deformation to this neighbourhood
U , where the proposition holds true. □

Remark 3.3.15. The nearby fibre Xµ ⊂ Cs+3⟨x̃, y, z1, . . . zs+1⟩ for µ ̸= 0 is defined by
the equations 

x̃ y z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

y + µ z2
1 z2 . . . zs+1

 . (3.13)

It has an isolated singularity at (0, 0, 0, 0, . . . , 0).

What kind of singularity is this?

Proposition 3.3.16. The isolated singularity of a nearby fibre has the dual resolution
graph

−b2 −b3 . . .
−br

(3.14)
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Proof: We are only interested in the germ (Xµ, 0), thus we can replace the invertible
bottom-left term y + µ with 1 in (3.13). The obtained set of relations is

x̃ y z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

1 z2
1 z2 . . . zs+1

 . (3.15)

This can be further simplified by replacing y with x̃z2
1 from its first equation:

x̃ x̃z2
1 z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

1 z2
1 z2 . . . zs+1

 . (3.16)

Note that the third column is the z2
1-multiple of the first one, and they have a 1 between

them. Hence we can delete the second and third column without losing any equations,
getting 

x̃ z1 . . . zs

zk1−2
1 zk2−2

2 . . . zks−2
s

1 z2 . . . zs+1

 . (3.17)

If k1 > 2, we jump straight to (3.20) with i = 1. If k1 = 2, (3.17) becomes
x̃ z1 . . . zs

1 zk2−2
2 . . . zks−2

s

1 z2 . . . zs+1

 . (3.18)

Using the first equation x̃z2 = z1, we can substitute x̃z2 for z1, which makes the third
column redundant – being the z2 multiple of the first one. After deleting it, we have

x̃ z2 . . . zs

zk2−2
2 zk3−2

3 . . . zks−2
s

1 z3 . . . zs+1

 , (3.19)

that is similar to (3.17), but with one less variables. We repeat this process until we reach
a variable zi with ki > 2. Then we can move one zi to the bottom-left obtaining

x̃ zi . . . zs

zki−3
i z

ki+1−2
i+1 . . . zks−2

s

zi zi+1 . . . zs+1

 . (3.20)

This set of equations belong to another cyclic quotient surface singularity. Now, we show
the corresponding semigroup.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Consider the cone σ′ = R≥0⟨(−1, 0), (p, q)⟩ ⊂ MR – that we obtained by replacing
g0 = (0, 1) with g = (−1, 0) as the first ray generator for σ. We want to find
the generating set, described in Proposition 3.3.1, of Sσ′ = σ′ ∩ M . Recall that
g0 = (0, 1), g1 = (1, 1), . . . , gs+1 = (p, q) form the old set of generators of Sσ. As
g0 = g + g1, we do not need g0. If k1 = 2, then 2g1 = g0 + g2 = g + g1 + g2, thus
g1 = g + g2. In fact, g0, . . . , gi−1 can all be expressed with g and gi, hence they are not
part of the generating set of Sσ′ . The first nontrivial relation between neighbouring gi’s
is kigi = gi−1 + gi+1 = g + gi + gi+1. This implies (ki − 1)gi = g + gi+1. The rest of the
relations kjgj = gj−1 + gj+1 remain unchanged for j > i.

Therefore, {g, gi, gi+1, . . . , gs+1} is the desired generating set of Sσ′ . This is also the
set of primitive extremal lattice points of the convex hull of Sσ′ \ 0. The corresponding
continued fraction is [ki−1, ki+1, . . . , ks]. The corresponding set of toric equations, defining
Xσ′ , is (3.20).

The dual cone is σ′∨ = ⟨(0, 1), (−q, p)⟩ ⊂ NR, that we compare to σ∨ = ⟨(1, 0), (−q, p)⟩.
As (0, 1) = e1 is the second generator of the one-parameter semigroup σ∨ ∩ N , our
new semigroup is generated by {e1, . . . , er+1}. The corresponding continued fraction is
[b1, . . . , br], therefore we have proven the proposition. □

3.3.6 Boundary of Milnor fibre

We decompose the boundary of the singular Milnor fibre following [Sie91], where this
technique was introduces for singularites defined by f : (Cn+1, 0) → (C, 0) with 1-
dimensional singular locus. We are inspired by [MP16] by Michel and Pichon and [NS12]
by Némethi and Szilárd.

Let Xµ = X̃ ∩ {ỹ − y = µ} be a nearby fibre of our singularity X with some |µ| ≪ ε.
The boundary ∂Xµ = Xµ ∩ Sε of Xµ can be decomposed into two parts relative to the
singular locus Sing(X) of X: the trunk and the vanishing zone:

∂F = ∂1F ∪ ∂2F. (3.21)

We fix the triple |µ| ≪ δ ≪ ε, where δ will be the radius of the tubular neighbourhood
separating the two parts.

Trunk: ∂1Xµ

Now we treat both X and Xµ as subspaces of Cs+3⟨x̃, y, z1, . . . , zs+1⟩. Let us denote the
link of Sing(X) in S2n+5 by K = Sing(X) ∩ S2s+5

ε . The boundary of the Milnor fibre is
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

∂Xµ = Xµ ∩ Sε.
We take a tubular δ-neighbourhood Tδ(K) of K in Sε and we throw away the part of

the boundary that is included in this: ∂1Xµ = ∂Xµ \ Tδ(K). We think about this as the
part away from the singular locus. We claim that this is isomorphic to the link of the
normalization with the neighbourhood of the double points removed from it:

∂1Xµ = ∂Xµ \ Tδ(K) ∼= ∂X \ Tδ(K)
∼=←−
n

∂Xσ \ n−1(Tδ(K)), (3.22)

where the variety Xσ is the cyclic quotient singularity defined by the cone σ =
R≥0⟨(0, 1), (p, q)⟩. The link of Xσ is a plumbed 3-manifold with the bamboo (3.5) as
dual graph.

The pull-back of the tubular neighbourhood n−1(Tδ(K))∩∂Xσ that we remove from the
link ∂Xσ of the normalized singularity Xσ is diffeomorphic to the tubular neighbourhood
around n−1(K) in ∂Xσ. The pull-back of K is n−1(K) = {z0-axis} ∩ n−1(Sε), that is
homeomorphic to S1. Let us denote this S1 with the parametrization t 7→ ε · (t, 0, . . . , 0)
as LK . The trunk is a plumbed 3-manifold with boundary corresponding to the graph

[0, 1]
−b2 . . .

−br

(3.23)

where the label [0, 1] means that tha corresponding base is of genus 0 and 1 disk is removed
from it.

Example 3.3.17. As an orientation, let us remind ourselves to the generators of the dual
semigroups of the running example 3.3.3.

g0 g1 g2

g3

Sσ ⊂M

e0

e1

e2

e3

e4

σ∨ ∩N
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

In order to be able to glue the trunk and the vanishing zone, we want to parametrize
the boundary torus ∂(∂1Xµ) by picking a longitude and a meridian.

In case of the longitude, we have to make a choice, but in our case L1 is a natural
choice. Due to Proposition 3.2.15 the fibre over the (−b1)-indexed base in the graph
manifold ∂Xσ can be parametrized as

L1 : S1 → Xσ, t 7→ ε · (te1·gj )j. (3.24)

Note that e1 = (0, 1) according to the normal form we chose in the beginning, thus
e1 · g0 = 1, e1 · g1 = 1. There is a homotopy in Xσ

H : [0, 1]× S1 → Xσ, (s, t) 7→ ε · (t, st, ste1·g2 , . . . , ste1·gs+1)

between LK and L1 that corresponds to moving in the base E1 and it that can be pushed
into the adequate link Xσ ∩n−1(Sε). Therefore L1 is indeed isotopic to a longitude of the
boundary of the tubular neighbourhood Tδ(LK) ⊂ Xσ.

The meridian can be given as the boundary of a transversal section of the torus Tδ(LK).
Let us cut at (ε, 0, 0, . . . , 0) ∈ LK with {z0 = ε}. The boundary of the (approximately-)
δ-neighbourhood of (1, 0, 0, . . . , 0) in {z0 = ε} ∩Xσ is the circle

Mtr : S1 → Xσ \ Tδ(LK), t 7→ (ε, δt, . . . , εgi·e1(tδ/ε)gi·e0 , . . . ), (3.25)

where the coordinate functions are computed from the first two coordinates using the
toric monomial lattice structure to satisfy the equations (3.8) defining Xσ. This is, in fact
homotopic to the one-parameter subgroup Mtr ∼ λe0 corresponding to e0.

The relation of one-parameter subgroups λe0λe2 = b1λ
e1 yields an equation

Mtr + L2 − b1L1 = 0 (3.26)

in the fundamental group of the link of Xσ. The homotopy can avoid the thrown out LK ,
thus it is also an equation in the fundamental group of the trunk. Therefore ∂1(Xµ) is
the plumbed 3-manifold with boundary corresponding to the graph

−b1

L1

−b2

L2
. . .

−br
LrMtr (3.27)

where the arrow represents the fibre LK whose neighbourhood we remove. We
parametrized the boundary torus with the meridian-longitude pair (Mtr, L1).

110

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Vanishing zone: ∂2Xµ

In this subsection, we are following some of the leading principles of [MP16], and [NP18]
in crucial details.

The vanishing zone is the part of the deformed surface inside the tubular neighbour-
hood of the original singular locus.

The upshot of building the vanishing zone is the following. At a singular point of the
link K we can cut the link ∂X transversally, getting a singular curve. In our case this is of
equisingularity type A1. When we deform X, we deform this transversal curve, obtaining
the transversal type of the vanishing zone. Then we have to put together a fibration of
these deformed curves over K with some potential vertical monodromy.

Recall, that the nearby fibre Xµ is defined by the equations (3.13):
x̃ y z1 . . . zs

1 zk1−2
1 zk2−2

2 . . . zks−2
s

y + µ z2
1 z2 . . . zs+1

 . (3.28)

When we take the link of this nearby fibre, we take the intersection Xµ ∩ Sε, where
Sε = {|(x̃, y, z1, . . . , zs+1)| = ε}. Although, now we are only interested in a δ -tubular
neighbourhood (δ ≪ ε) of the x̃-axis, which is the singular locus. Thus, we can replace
the condition |(x̃, y, z1, . . . , zs+1)| = ε with |x̃| = ε in the tubular neighbourhood.

π2 : Xµ → C2, (x̃, y, z1, . . . , zs+1) 7→ (x̃, y).

Also let
∂2Xµ = π−1

2 (ε · S1 ×B2(0, δ)), (3.29)

with |µ| ≪ δ ≪ ε.
To make computations less painful and actually doable, we reduce the number of

coordinates we have to care about. Consider the projection

π3 : Xµ → C3, (x̃, y, z1, . . . , zs+1) 7→ (x̃, y, z1).

On ∂2Xµ, this is a real analytic isomorphism. In fact, provided that X̃ ̸= 0, π3 is an
isomoprphism of complex spaces with the inverse – defined inductively:

C3 → Xµ, zi+1 = x̃−1 · (y + µ) · zk1−2
1 · · · · · zki−2

i · zi. (3.30)

This is well defined by definition. We only need to check that the target is indeed Xµ.
For this we show that the coordinates we define satisfy the equations (3.28) above.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Equations involving x̃ are satisfied by definition. Equations starting with y of the
form yzi+1 = zk1

1 z
k2−2
2 . . . zki−2

i zi become multiples of the equation of x̃−1(y + µ)y = z2
1

after we substitute the expression in (3.30) for zi+1. Finally, equations of the form
zjzi+1 = zj+1z

kj+1−2
j+1 . . . zki−2

i zi for j < i become trivial after substituting for both zi+1

and zj+1.
All in all, this means that, in computations concerning ∂2Xµ, it suffices to calculate

x̃, y, z1. Note that when we project further π3,2 : π3(∂2Xµ)→ π2(∂2Xµ) = εS1 ×B2(0, δ),
we get a double cover of 2-tori π3(∂(∂2Xµ))→ εS1 × δS1 as z2

1 = x̃−1(y + µ)y.

Proposition 3.3.18. The vanishing zone ∂2Xµ is a Seifert manifold over a 2-disk with
two special fibres of type (2, 1).

Proof: Let us see what are the fibres of the projection π2, or equivalently that of
π3,2 over the whole εS1 × B2(0, δ). Fix a pair of values x̃, y ∈ C satisfying |x̃| = ε and
|y| ≤ δ. We want to see π−1

3,2(x̃, y). For y = 0 and y = −µ, there is only one solution z1

of z2
1 = x̃−1(y + µ)y, for any other value of y, we have two – as x̃ ̸= 0. The rest of the

variables are uniquely determined after these, and can be computed inductively:
Therefore the projection to the y-coordinate πy = π2,y ◦ π2 : ∂2Xµ → S1×B2 → B2 is

a Seifert fibration with two special fibres over 0 and −µ.
The two special fibres are of type (2, 1) because if we approach 0 or µ in the base

B(0, δ) and follow the S1 fibres, their limit is two times the respective special fibre. □

With the notation of [NP18] ∂2Xµ
∼= Y . This Seifert fibre space with boundary can

be described as a graph manifold too, with the following graph.

−2

−2
[0, 1]

(3.31)

The two special fibres are the fibres over the −2-bases on the left. They can be
parametrized in the following way:

Λ1 : S1 → π3(∂2Xµ), t 7→ (εt, 0, 0)
Λ2 : S1 → π3(∂2Xµ), t 7→ (εt,−µ, 0)

(3.32)

Later, when we will have to identify these loops in the fundamental group. It will be
useful to have homotopic curves Λ′

i ∼ Λi that are closed only after connecting them to
the base point.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Λ′
1 : [0, 2π]→ π3(∂2Xµ), τ 7→ (εeiτ , µ2eiτ , ≈ µ3/2ε−1/2)

Λ′
2 : [0, 2π]→ π3(∂2Xµ), τ 7→ (εeiτ , −µ+ µ2eiτ , ≈ µ3/2ε−1/2)

(3.33)

The third, z1-coordinate of these functions are approximately constant. The
approximations through the rest of the section are of magnitude δµ

ε
.

The boundary of the vanishing zone ∂2Xµ is a 2-torus, that we parametrize with two
loops as in the case of the trunk. The longitude LV Z shall be a generic fibre of the
Seifert fibration. For the meridian MV Z , we choose one component of the boundary of a
transversal section of the vanishing zone.

LV Z : S1 → π3(∂2Xµ), t 7→ (εt2, δ, ≈ δε−1/2t−1)
MV Z : S1 → π3(∂2Xµ), t 7→ (ε, δt, ≈ δε−1/2t)

(3.34)

From the Seifert structure, we have the following equations in the fundamental group
of (∂2Xµ):

LV Z = 2 · Λ1, LV Z = 2 · Λ2. (3.35)

For a third equation, consider the sum Λ′
1 + Λ′

2 −LV Z . It is homotopic to a loop that
is constant in x̃ and goes around the two special fibres in y. That makes it homotopic to
MV Z . Therefore

Λ1 + Λ2 − LV Z = MV Z (3.36)

in the fundamental group.
The above equations imply that the Euler number of the middle vertex is −1 with

this framing. The trunk is homeomorphic to the graph-3-manifold corresponding to the
following graph – due to [Neu81].

−2
Λ1

−2
Λ2

−1
LV Z −MV Z

(3.37)

The boundary torus is parametrized by LV Z and MV Z .

Gluing

As described in [NP18], when we glue the trunk ∂1Xµ and the vanishing zone ∂2Xµ,
the result is, again, a plumbed 3-manifold whose graph consists of those of the two parts
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

connected by a vertex that replaces the two arrowheads. The boundary between the trunk
and the vanishing zone is a 2-torus (S1)2 ∼= ∂(∂2Xµ) = π−1

2 (εS1× δS1) ∼= π−1
3,2(εS1× δS1),

that is parametrized by a meridian-longitude basis from each side separately. We want to
find the transition matrix between the two bases.

On the trunk side, the meridian, Mtr and the longitude, L1 were defined in (3.24), and
in (3.25) respectively, as loops in the normalization. In order to compare them with the
other side, we compose them with the normalization map, obtaining

n ◦ L1 ◦ π3 : S1 → ∂Xµ \ Tδ(K), t 7→ (ε2t2, ε2t2, εt)
n ◦Mtr ◦ π3 : S1 → ∂Xµ \ Tδ(K), t 7→ (ε2, εδt, δt).

We can choose a homeomorphism ∂1Xµ = ∂Xµ \ Tδ(K) ∼= ∂X \ Tδ(K) such that they
become

L′
1 : S1 → ∂(∂1Xµ, t 7→ (εt2, δt2, ≈ δε−1/2t)

M ′
tr : S1 → ∂(∂1Xµ), t 7→ (ε, δt, ≈ δε−1/2t).

In the vanishing zone, we have MV Z and LV Z defined in (3.34).
We notice that

M ′
tr ≡MV Z . (3.38)

We want to relate the longitudes, too. For that, we need

(2MV Z)(t) = (ε, δt2,≈ δε−1/2t2)

by doubling the ‘t-speed’ of the loop. Similarly, (LV Z + 2MV Z)(t) = (x̃V Z , yV Z , z1,V Z) is
homotopic to (εt2, δt2, ≈ δε−1/2t) = (x̃tr, ytr, z1,tr) = L′

1(t). To create such a homotopy,
note that each coordinate function above maps S1 to a suitably rescaled copy of S1 ⊂ C,
that is the projection of the boundary torus. As the powers of t in the respective coordinate
functions match, we can create such a homotopy by giving two homotopies between x̃tr

and x̃V Z , and between ytr and yV Z respectively, then compute the third coordinate of the
homotopy from the equation of the torus, that makes the homotopy stay in the torus.
Therefore, in the fundamental group of the boundary torus, we have

LV Z + 2MV Z = L′
1. (3.39)

According to [Neu81], the above relations, (3.38) and (3.39), ensure that the two
graph manifolds with boundary, (3.27) and (3.37), can be connected with a new vertex
with Euler number −2. The negative edge between the new vertex and the vanishing zone
is due to the minus sign in the rearranged (3.36): −LV Z + Λ1 + Λ2−MV Z = 0 and (3.39):
−2MV Z + L′

1 − LV Z = 0. See the schematic picture of the plumbing in Figure 3.3.8.
This concludes the proof of Theorem 3.3.4.
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Chapter 3. Non-isolated toric singularities 3.3. A family of non-isolated toric surfaces

Figure 3.3.8: Graph manifold structure of ∂Xµ with generic fibres and Euler numbers of
bases.

Example 3.3.19. The trunk and the vanishing zone of the running example have the
following plumbing graphs.

−3 −2 −2−1

−2

−2

We glue them together to obtain the graph of the Milnor fibre boundary.

−3 −2 −2−2−1

−2

−2
⊖
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Symbols

x vector (x1, . . . , xn) 6

C{x1, . . . , xn} ring convergent power series 6

mC{x} the unique maximal ideal of the local ring C{x} 7

(f1, . . . , fs) ideal generated by the elements f1, . . . , fk 7

dimA Krull dimension 8

φ# sheaf morphism corresponding to the map φ 10

V (I) vanishing set of the ideal sheaf I 11

OX structure sheaf of the complex space X 11

OX,p stalk of OX at p 11

I(S) vanishing ideal sheaf of the set S 12

dimpX Krull dimension of X at p 13

edimpX embedding dimension of X at p 13

X ×
T
Y analytic fibre product 14

(X, p) complex space germ 14

D fat point of order two 16

Sing(X) singular locus of the complex space X 17

E = ⋃
Ei irreducible decomposition of the exceptional divisor 23

ΓX resolution graph of X 26
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List of symbols

LX link of (X, 0) 28

µ Milnor number 32

σf signature of f 32

i(f, g) intersection multiplicity 34

δ(f) δ-invariant 35

F C and R 37

∆(F ) discriminant locus of the mapping F 38

A set of pairs of diffeomorphisms, left-right equivalence 38

Φ̃ unfolding of the mapping Φ 39

T 1
Ae

Φ nontrivial unfoldings of Φ 42

θk space of vector fields on Fk 43

θ(Φ) space of vector fields along the mapping Φ 43

codimAe(Φ) Ae-codimension of Φ 44

B(Φ̃) The bifurcation set of the unfolding Φ̃ 47

C(Φ) codimension of the ramification ideal, also counting Whitney points of the
stabilization 49

T (Φ) codimension of the second fitting ideal, counting triple points of the stabilization
50

lkS3(γ, γ̃) linking number 55

L(f) Ekholm-Szűcs linking invariant 57

(X̃, 0) deformation of the germ (X, 0) 72

T 1
(X,0) isomorphism classes of infinitesimal deformations of (X, 0) 79

τ(X, 0) Tjurina number of the singularity (X, 0) 81

M character lattice 83
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List of symbols

Sσ affine semigroup defined by σ 83

C[Sσ] C-algebra generated by the semigroup Sσ 83

TM torus associated to the character lattice M 83

Xσ toric variety defined by the cone σ ⊂MR 83

N lattice of one-parameter subgroups 83

R≥0⟨S⟩ cone of R≥0-linear combinations of the elements of S 84

XS toric variety defined by the semigroup S ⊂M 85

σ∨ dual cone to σ 87

Xp,p−q cyclic quotient surface singularity with parameters p, p− q 87
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Index

A -equivalence, 38
A -finite, 44

analytic C-algebra, 6
analytic map, 11
analytic set

closed, 13
defined by I, 11

bifurcation set, 47
blowup, 23

character, 83
complex space, 11

closed analytic subspace, 12
normal, 20
reduced, 13
regular, smooth, non-singular, 14
singular, 14

complex space germ, 14
analytic subgerm, 16
irreducible, 17
irreducible decomposition, 18
reduced, 15
regular, 17

cone, 83
regular, 87

critical point, 38

cusp, 20
cyclic quotient surface singularity, 88

deformation, 72
category, 79
induced, pullback, 77
miniversal, 78
morphism of, 72
negative, 90
rigid, 79
versal, 78

delta invariant, 35
dimension

embedding, 8, 13
Krull, 8, 13
of complex space germ, 16

Ekholm–Szűcs linking invariant, 54
for finitely determined holomorphic

germ, 59
of triple point, 60
of Whitney umbrella, 60

exceptional divisor, 24
extended tangent space, 42

fat point of order two, 16, 79
finite morphism, 20
finite type (ideal sheaf), 11
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INDEX

finitely determined, 39
fitting ideal, 49
flat

map germ, 73
module, 74
one-parameter family, 76

GAGA principle, 21
generic fibre, 89
gluing, 113

Hilbert-Rückert Nullstellensatz, 12
Hirzebruch–Jung singularity, 88
holomorphic map germ

regular, 19

immersion, 38
infinitesimal deformation

of singularity, 79
infinitesimal deformations

T 1 of toric singularities, 91
of map germs, 42

infinitesimal stability, 44
intersection matrix, 25

negative definite, 25
intersection multiplicity, 34

Jacobian
matrix, 8
rank, 8
rank lemma, 8

jet, 39

Kodaira–Spencer map, 82

left-right equivalence, 38
link, 28

plumbing, 31

linking invariant for real maps, 65

map germ
holomorphic, 14
stable, 40

Mather’s finite determinacy, 45
Mather–Gaffney criterion, 46
Milnor fibration, 29
Milnor fibre, 29, 33

boundary, 29, 33
connected, 31
CW-complex, 31
Stein manifold, 31

Milnor number, 32, 35
modification, 22
morphism

of complex spaces, 11
multi-germ, 15

nearby fibration, 29
singular, 29

negative continued fraction, 93
Noether normalization, 9
Noether property, 7
normal module, 81
normalization, 20

one-parameter subgroup, 83
orbit–cone correspondance, 86

plumbing graph, 28, 94

ramification ideal, 49
reduction, 16
resolution, 23

good, 23
minimal, 23
of normal surface singularity, 26
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INDEX

resolution graph, 26
ringed space, 10

C-analytic, 10
locally, 10

semigroup
affine, 84
face, 86
saturated, normal, 84

semigroup algebra, 85
signature, 32
singular locus, 17

is analytic, 18
singularity, 14
Smale invariant, 67
smoothing, 30
stabilization, 47
structure sheaf, 10
submersion, 38

Tjurina number, 81
toric deformation, 90
toric ideal, 86
toric variety

affine, 85
normal, 83

trunk, 108

unfolding, 39
miniversal, 41
trivial, 41
versal, 41

vanishing
ideal sheaf, 12

vanishing zone, 111
vector fields, 43

Whitney umbrella, 37

Zariski’s main theorem, 24
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