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Abstract

City is a living laboratory for more than half of population across the globe. Concep-
tualisation of city is not limited to the design of physical structure but rather far reaching
to the dynamics of each element that makes it alive respectively people, places, and in-
teractions. People visit various locations on daily basis to run their errands. Places
occupy particular area given their functions. Individual preference regarding places
they would like to visit differ from one to another and to the extent dictated by socioe-
conomic background. Considering such multifaceted setting, this thesis aims to analyse
the structure and dynamics of mobility segregation and spatial diversity in cities through
the lenses of network science and complex system with computational approach. At
first, we lay integrated theoretical foundation in portraying city, complex system, and
urban mixing. It is followed by the investigation on mixing patterns of urban mobil-
ity, supported by data driven study in the twenty largest cities of the United States.
We show that stratification exists in visit preference, presaging the ‘upwards bias’ and
closely related to segregation at large. Furthermore, we focus on analysing the impact
of COVID-19 on the configuration of mobility patterns in a number of main capital
cities namely New York, London, Jakarta and Bogota. The findings suggest that dy-
namical segregation phenomena exist which inevitably worsened during lockdown and
sustained into long term effects as residual segregation. In the last study, we formulate
artefact of measurement for economic diversity in urban context. It results in the notion
of dual centrality, highlighting the importance of economic diversity in determining the
location centrality. Finally, we present the overall contributions of this thesis and draw
the line for both empirical implementations and future extensions.
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Chapter 1

Introduction

"Cities are an immense laboratory of
trial and error, failure and success,
in city building and city design."

"This is what a city is,
bits and pieces that supplement each other

and support each other."
-Jane Jacobs-

1.1 City, complex system, and urban mixing

What makes a city a city? Once we hear about New York, our visual memory throws

the mesmerising Liberty Statue, the hustle and bustle in financial district of Wall Street,

or the masterpiece of landscape architecture in Central Park. Travelling to London,

Buckingham Palace symbolises the epicentre of largest monarchy in the world, located

steps away from Big Ben by the side of Thames River. A trip to South America leads

us to Bogota with the historical charm of La Candelaria or immersing street art culture.

Crossing the equatorial line, we embrace the warm smile of Jakarta with its remarkable

melting pot in between skyscrapers, newly developed metro line and monorail which

are integrated with wider transportation corridor, or indulging cuisines.

All in one, New York, London, Bogota, and Jakarta carry a capacity as an organic

identity to deal with the needs and demands of its inhabitants. Urban form and urban

function are inseparable when talking about cities as a whole, even the distinction is

context dependent [110]. In general, the description about physical characteristics and

shape of a city belongs to urban form, ranging from buildings, streets, to elements

that make up the urban space [48]. It is also interchangeably with urban morphology,

emphasising the geometry layout of a city [19].

1

C
E

U
eT

D
C

ol
le

ct
io

n



In conjunction with physical aspect, urban function embodies human activities that

are occurring within its spatial boundary, namely residential, productive, social, com-

muting, recreational, and administrational purposes [48; 204; 205]. Considering in-

tertwined relationship between urban form and urban function mutually shapes urban

dynamics through symbiotic interaction of infrastructures, people, and activities [22],

Arcaute and Ramasco (2022) further argue that ªmany of the spatial correlations of the

different processes taking place in cities, are tightly related to the spatial distribution of

functions and transport, which are both closely linked to the morphology of citiesº [10].

1.1.1 On city

The most common impression we have in mind could be a high density area filled

with lively wide range of activities where segmented attributes among individuals such

as economic status, social well-being, cultural background, and political leanings are

quite apparent. Another constructed perception about city refers to the socioeconomic

distance between the rich and the poor, the high rise buildings and the slump dwellers, or

the well-connected side and the patchy infrastructure with rather limited transportation

accessibility. On top of that, the way urban qualities are weighted also matters, for

instance how safe the area is, how functional the urban form is, and how attractive the

urban design is.

Unfortunately, negative associations particularly inequality [55], traffic conges-

tion [42], criminal misconduct [196], and health issues [31], often appears while men-

tioning city. Cities are under pressure during the fight against diseases. The outbreak of

COVID-19 poses a significant challenge to cities and their residents, affluent and lower

socioeconomic status alike. Its impact and the measures use to stop the virus’s spread

disproportionately impacted the poor, marginalised, and vulnerable, exposing critical-

ity in cities’ economic structures and readiness for such external shock, particularly the

public health quality and service delivery capacity.

The pandemic commencing from outside the system can be catastrophic to socioe-

conomic configuration and the related aspects and perpetuate individual mobility that

is already constrained by socioeconomic stratification [58; 39; 112]. For some people,

their capacities to adjust preferences and way of living in response to disruption are

limited by their well-being. People from lower income class might have narrow flex-

ibility and keep doing the usual means during lockdown period as seen by regularity

in mobility since their works demand on-site physical presence. Interestingly, regard-

less aforementioned drawbacks, city still captivates people to move in and be a part of

elements that make a city a city.
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Generic term of city is moulded into two types of definition, one is derived by quan-

titative threshold and another is classified by qualitative category. An administrative

unit is coined a city if population size reaches 5,000 inhabitants, with exceptions in

Japan and China where higher threshold is imposed respectively 50,000 and 100,000

residents [57]. Alternatively, city is attached to the presence of amenities with cer-

tain standards, including first-rate hotels, international airport, premium hospital, and

leading governmental institutions. Another qualitative attribution depends on typical

economic activities, mainly non-agricultural sectors [64]. Policy stipulation might also

reinstate the dimension that counts for city according to political evaluations and redis-

tribution of resources. In addition, there has been several attempts to refine the defini-

tion of a city, shifting from spatial-centric to human activity-centric. Mumford [132]

incorporates the notion of cities as agglomeration by formulating the presence of points

where power and culture that belong to community are concentrated. Sjoberg [180]

makes a distinction between cities and agricultural areas based on attribution to size,

occupation, and literacy. Toynbee [187] identifies the economic functionality attached

to cities as clusters with densely developed population where supply of goods and ser-

vices takes place.

1.1.2 On complex systems

Conceptualisation of city surpasses physical boundaries. The entanglement between

various elements that makes up a city namely human, space, and interactions, signifies

its dynamic and complex nature [14; 54]. Human and space could be studied in isolated

manner, for instance solely looking at the organisation of mobility flux or agglomer-

ation process through time. Nonetheless, the interactions between the self-standing

pieces remains unobserved. It comes to the realisation that towards comprehensive un-

derstanding about city, one should have understanding more than the behaviour of each

element [8]. Those interacting entities generate emergent properties that are beyond the

summation over each property separately [140; 15], making urban life more than the

overall additive relationship between urban form as seen in buildings and infrastruc-

ture, and urban function as reflected in business fluctuation along with daily commuting

flows [89].

For that reason, city stands out as an exemplary complex system and could be prop-

erly analysed by using complexity theories and methods. Jacobs envisages that a city

is supposed to accommodate "bits and pieces that supplement each other and support

each other" [89]. She addressed the problem of organised complexity arising from the

condition in which ªseveral dozen quantities are all varying simultaneously and in sub-
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tly connected waysº. Elements in the city concurrently affect and drive each other and

mostly result in circular causality, envisaging the nature of connections and interdepen-

dencies [23]. Correspondingly, the problems of organised complexity lies in the nature

of connections and interdependencies through social, economic, political, and any other

means to fulfil the necessary condition for well-functioning life in cities where oppor-

tunities and development are visible for everyone.

A number of more recent studies argue the necessity of applying complex system

framework in the science of cities. The notion of "inherent spatiality of complexity

science" [147] reflects explicit interactions between system components. Further iden-

tifications of the specific properties in urban complex system result in emergence (the

creation of new property driven by interactions among elements), nonergodicity (dy-

namically changing process over time), phase transition (cutoff point for which element

convergence changes the system ), and universality (persistent characterisation across

times and spatial scales) [63]. The later is especially conscientiously reflected as "cities

are seen around the world and through history, suggesting ‘universal’ reasons for their

existence" [13]. Universality is also linked to urban scaling. Theoretical exponent of

5/6 for density scaling (population area) is validated in various empirical analysis cov-

ering ancient and cities in modern times, denoting higher density by 12% in a city of

double the size as to compare to two cities of half the size [146].

There are two approaches employed in investigating simultaneous dynamic pro-

cesses in urban complex system respectively urban dynamics research and human dy-

namics research [176]. While urban dynamics research puts forward the evolution of

an urban area and attempts to trace growth, change, and decline of land use, human

dynamics research explicitly underlines the role of human activities at individual level,

followed by interactions among themselves that induces flows and patterns in an urban

area. Therefore, the object of interest slightly differs between the two.

Urban dynamics research emphasises on spatial emergence of city and the subse-

quent interactions between cities due to enlargement of city scale. In contrast, human

dynamics research perceives increasing interconnections between cities as outcomes of

higher intensity of human flows beyond a single urban boundary. Nevertheless, both

share mutual recognition towards the usefulness of spatiotemporal approach to better

understand the tangible physical space and intangible interactional space of city.

To refine the resolution of urban complex system, elements that contribute to the

structure and dynamics of city could be represented as network. Human dynamics

defines the configuration of mobility network where people’s home and places could be

mapped as nodes, while links constitutes visiting patterns. In addition, transportation

network is an aggregation over distinctive public transit modes (e.g.: bus, tram, and
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metro) in which nodes are stations/stops and links are connections stated in the travel

route. Street network is also present in cities with nodes stand for intersection and links

describe streets.

1.1.3 On urban mixing

This foundational question emerges as an retrospective notion in dealing with thou-

sands of years span human civilisation. The agglomeration of city usually absorbs its

closest neighbouring space that altogether creates an urban area. Expansion of space

sends signal to the inhabitants and even to the outsiders that the economic prospect

is larger, attracting more people to come and inducing wave of urbanisation. Urban

territory has been remarkably expanded in the modern day, serving as the economic

backbone of most countries globally.

Within a century, rapid transformation of settlement has been more concentrated in

city, giving a surge from 13% to 56% of the world population today [198]. Urbanisation

will likely be accelerated in the coming years as an estimated 2.5 billion more people

move into cities by 2050, making 7 of 10 people will live in cities. Urban sprawl

puts inevitable pressure on the land use patterns with new urban built-up will acquire

additional 1.2 million km2 coverage in 2030. This increased urbanisation is a key driver

of economic dynamism and social development, but it can also create enormous social

challenges.

The promise that city brings is not always adequately delivered. The exclusion of

the poor from the city’s socioeconomic fabric, the upswing of social and economic in-

equalities, and the risks of epidemics crisis that recently absorbed our utmost attention

are all concerns of urbanised populations. As the division becomes more visible, in-

equality and segregation are manifested in many aspects of life. Consequently, potential

encounters between people coming from different background is constrained by limited

shared physical space, pulling urban mixing process to bare minimum. Tackling these

challenges is of paramount importance to fulfil the economic and social promises that

cities hold, keeping them from becoming a landscape of segregation in various aspects

of life such as mobility and residence.

On this ground, urban mixing evolves as a pivotal issue to carefully deal with. In-

dividual mobility is dictated by one’s meaningful places like home and work locations,

or frequently visited places for shopping, children activities, and leisure. The choice

of these places is strongly determined by the financial capacities, education, race and

social network of people [149; 200]. The preference on residential areas and employ-

ment type emulate mobility pattern in order to meet daily errands. An interplay between
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inequality and the way people organise their mobility in urban space is inevitable.

In retrospect, urban mixing of people with different backgrounds is far from ho-

mogeneous and depends on a variety of factors including geographic constrains and

socioeconomic status. This leads to patterns of segregation in mobility and biased

mixing patterns of the population of a city that might be observable with appropriate

data. Moreover, a recent agent-based modelling simulation develops an extension of

the Schelling segregation model and finds that the types and locations of venues affect

segregation tendency in cities [178].

1.2 Aims and structure of the thesis

This thesis is dedicated to scientific queries evolving around socioeconomic mixing

process in cities through the lenses of human dynamics namely mobility network in

urban complex system. In the beginning, we provide conceptual framework of com-

plex system to accommodate a rigorous interplay between elements that make up a

city: mobility of people, spatial distribution of places, socioeconomic stratification of

both people and places, as well as the interaction between people and places. Social

dynamics, including urban mixing process, take place as a product of interconnections

among those elements. We propose the application of spatiotemporal approach in order

to capture its dynamic nature.

In the following chapters, the discussions are specified into two parts. At individual

level, mobility pattern is observed to determine the initial indication of segregation, or

commonly known as assortative mixing, given the presence of socioeconomic inequal-

ity. At aggregate level, residential area becomes focus of interest because it simulta-

neously reflects spatial embeddedness in individual preference dictated by prominent

socioeconomic stratification.

Throughout six chapters, we come up with systematic review of state-of-the-art on

city as a complex system where urban mixing process is closely related to the sociode-

mographic characteristics of area as seen in Chapter 2.

In Chapter 3 we investigate mixing patterns of mobility in the twenty largest cities

of the United States. Our methodology integrates Home Detection Algorithms (HDAs),

frequency visit modelled as a weighted bipartite network, and residential segregation

estimate. We find strong signs of stratification indicating that people mostly visit places

in their own socioeconomic class, occasionally visiting locations from higher classes.

The intensity of this ‘upwards bias’ increases with socioeconomic status and correlates

with standard measures of racial residential segregation. Our results indicate an even

stronger socioeconomic segregation in individual mobility than one would expect from
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system-level distributions, shedding further light on uneven mobility mixing patterns in

cities. This chapter is presented as a stand alone publication in EPJ Data Science [85].

In Chapter 4 we present our study on the changing residual isolation and segrega-

tion patterns in mobility patterns in response to COVID-19 for large urban areas such as

New York, London, Jakarta and Bogota. Sliding window algorithm is implemented to

refine dynamically shifting assortativity in mobility that reflects the segregation level at

a given time and complimented by entropy based measurement on individual trajectory.

In our findings, increasing segregation in mobility overlaps with lockdown period and

residual segregation in most cities suggests the emergence of long-term effects of pan-

demic interventions on socioeconomic mixing. Our results highlight population level

dynamical segregation phenomena observed at the individual level, that provides impor-

tant conclusions for better policy design with more equal consequences among people

from all socioeconomic classes.

In Chapter 5, we focus on the effects of size, scale and location on the spatial ag-

glomeration of economic diversity/complexity in New York City. Diversity in space

is measured by fitting Leibovici entropy at a number of grid sizes, in comparison to

our random models based on spatial randomisation procedure namely Poisson point

process. We introduce the use of bipartite projection on sectoral linkage to show the

centrality of area where economic diversity exists and a bipartite projection on spatial

linkage to reveal the structure of sectoral proximity that drives economic diversity in

city.

The final chapter of this thesis summarise the overall contributions of the presented

PhD projects and explores further scientific directions that could be taken into account.
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Chapter 2

Literature review and basic concepts

This chapter is dedicated to the state-of-the-arts of complex system approach to ur-

ban human dynamic process, connecting urban dynamics and human dynamics. As

previously proposed in Chapter 1, urban dynamics research brings in the importance

of tractable use of space across time and its implication on human activities as seen

in the process of urban sprawl driven by changing land use. This also includes the

inter-connectivity induced by various types of flows, among others flow of people and

flow of resources, between cities or areas within a city. Alternatively, human dynamics

emphasises on dynamics at both individual and group level behaviours that shapes the

foundation of human society in space and time, for instance daily commuting pattern.

As a complex system (Section 2.1), city accommodates urban human dynamic process

through mixing patterns and spatial embededdness (Section 2.3) for which spatiotem-

poral pattern serves as an unifying framework.

2.1 Complexity in urban system

Since the publication of The Death and Life of Great American Cities by Jacobs

[89], the abstraction of city as composite elements that are connected by interactions has

significantly developed into the integrated notion of complex system. It is the concep-

tion of interactions that brings the centrality of urban process after dominant tradition

of urban structure to the forefront discussion about cities.

Now, the main question is what does it mean with complex system and how does it

relate to the conceptualisation of cities. In broader perspective, Newman [140] defines

complex system as "a system composed of many interacting parts, often called agents,

which displays collective behaviour that does not follow trivially from the behaviours

of the individual parts" in which he explicitly mentions human society in the exemplary
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note. Human society is built on top of three aspects namely the physical structure of

society found in urban planning, the social structure of society represented by social

networks, and societal discrepancies reflected in social hierarchical structure.

Batty [19; 14; 15; 16] is widely regarded as the main figure in translating and apply-

ing complex system approach in urban design and science of cities. In the early days,

Batty redirects research in urban planning towards fractal geometry paradigm [19], re-

sulting in refined simulation and visualisation of its physical form such as networks,

hierarchies, and spatial distribution of population. Noticeably, distinct fractal structure

is revealed in the sense that urban function and process are self-similar across levels or

scale where hierarchy exists in the shape of nested structure, from neighbourhood to

city, dictated by rank-size mechanism.

What emerges from his body of work is well identified elements in city or urban

context that could be directly linked to the generic characterisation of complex system:

scaling, interaction, networks, dynamics, and morphologies [17; 18]. Scaling pinpoints

underlines a distinct feature that a city has proportional adjustment as a function of

size to maintain a number of essential functions. Adjustments might appear in shape

whenever there is change in size, known as allometry. Cities occupy space and sepa-

rate analysis namely between cities (interurban) and within cities (intraurban). As cities

differ in size due to agglomeration economies, it generates the distribution of city size

where small cities outnumber big cities due to asymmetric conditionality. Firstly, to be

a big city, one should pass the transformation from small a city. Secondly, a small city

usually starts as a nested structure in the hinterlands of a big city. Interaction connects

diverse individuals in cities via various processes, for instance production chains, trade

links, and exchange of ideas, as well as bridging different areas with dedicated land use

which creates economic and functional linkages, such as physical movement of peo-

ple from residential area to business district. Networks constitute formal abstraction

of relationships (links) between components/agents (nodes) within a system by using

graph representation. It is useful in modelling urban infrastructure and adaptive in dy-

namic setting in which simulations are deployed to study the changes in topology and

flows over time. Dynamics provides explanations regarding structural change resonat-

ing from multi-dimensional processes along temporal dimension, respectively human

factors, economic exchange, and natural spatial boundary. Morphologies conceive the

configurations of urban structure as a product of formation and transformation of urban

forms (e.g.: streets, public spaces, and buildings). Sufficient condition for a city to

reach a level of self-organisation is credited to its morphology, along with connectivity.

In a similar fashion, Battencourt [23] suggests that to be perceived as complex

(adaptive) systems, cities should exhibit five properties respectively heterogeneity, inter-
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connectivity, scaling, circular causality, and evolution. Firstly, the term of heterogeneity

refers to the fact that major cities are extremely diversified in many aspects, including

occupation type, income level, ethnic background, and socioeconomic status. Secondly,

inter-connectivity highlights the fact that everything is inextricably linked in cities, for

example the discourse on economic development is bounded by physical spaces and the

availability of services which in turn is connected to budget capacity of individual and

municipality. Thirdly, scaling, usually weighted by the number of population, deter-

mines the character of cities. A scale-dependent problem illustrates increasing returns

to socioeconomic activity due to higher intensity of infrastructure use and higher eco-

nomic productivity in bigger cities. Fourthly, circular causality is the situation in which

cause and effect are embodied as in dualism, such as whether building infrastructure

makes cities richer or being rich allows cities to build infrastructures. Last, evolution

envisions capability of cities and the subsystems (e.g.: people and business) to adapt

to gradual changes in uncertain environments, as seen in the economic cycle of boom

(expansion) and bust (depression), or any other external shocks.

Complexity theory applied to the urban is perceived as appropriate approach to deal

with many urban processes. Johnson [90] incorporates the reference of multi-level dy-

namics between subsystems (e.g.: transportation, retail, finance, and political), there-

fore every city should be treated as systems of systems of systems. Although these

subsystems possesses own self-organised subsystems, clear boundary could be barely

defined due to close knitted connectivities among them. More importantly, given the

fact that every subsystem impact on are impacted on by the others, he asserts that hy-

pernetworks should be at disposal in observing dynamic multilevel systems. It is in line

with previous concept of space of flows from Castells [38] in which network diversi-

ties enhance interdependencies in and among cities. This particular term steps on the

dynamics of urban process where urban space assumes a role as a nexus of flows, si-

multaneously mediating people, capital, goods, and information. Subsequently, Pflieger

and Rozenblat [153] stress on the importance of gaining better understanding on how

urban networks function and interact by focusing on specific features embedded in ur-

ban space namely social, economic, political, infrastructural, and technical.

We conceptualise the aforementioned aspects into a comprehensive research agenda

and contextualise empirical investigation under data-driven approach. The discussion

on socioeconomic stratification is provided in Subsection 2.1.3 with focuses on inequal-

ity and segregation in city (Subsection 2.3.1), followed by further elaboration on urban

mobility in Subsection 2.1.1 and a closer attention given to the changing patterns of

mobility during pandemics (Subsection 2.3.2). Insights on physical structure of city

renowned as urban morphology is supplemented in Subsection 2.1.2 with an exemplary
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case circulating around spatial diversity (Subsection 2.3.3).

2.1.1 Urban mobility

The structure and dynamics of cities are governed by mobility of people, most

prominently daily commuting patterns. People move from one locations to a bunch

different points sparsely located throughout space to run their errands, such as going

to work, buying groceries, eating out at restaurants, visiting parks, before returning to

their residences. Urban mobility patterns could be extracted by using a network ap-

proach [138] or an Origin±Destination (OD) matrix approach [53].

A

B
C

D

A

B

C

D

(a) (b)

Figure 2.1: Mobility network construction. (a) Weighted undirected mobility network and
(b) weighted directed mobility network, both having self-loops.

We formally express mobility network Gs = (N,E) as a weighted network. Nodes

n ∈ N are spatial units, for example neighbourhoods, and edges are flows of people

with volume (e.g.: number of people) w among these neighbourhoods e ∈ E. If we

disregard the direction of mobility flows, only taking the aggregated number of people

moving between a pair of nodes, then the network could be specified as weighted undi-

rected network (Fig. 2.1a) in which ei,j = ej,i and E = {(i, j) ∈ N×N ∧w(i, j) ̸= 0}.

Otherwise, the network is constructed as weighted directed network, with lines point-

ing from a node to another (Fig. 2.1b) and coding the direction and volume of move-

ment between connected nodes for which ei,j ̸= ej,i where E = {(i, j)|(j, i) ∈

N × N ∧ w(x, y) ̸= 0}. In both networks above, we have self-loops or self-edges,

representing the coincidence between origin node and destination node i = j ∈ N . In

this case, self-loops captures intra-mobility, flows within the same neighbourhood.

Bipartite networks (or two-mode networks) could be a better fit if we distinguish

between locations (nodes) (e.g.: separately identifying people’s home and places they

visit), instead of at spatial unit. We define Gb = (U, P,E) as a weighted bipartite

network. It connects people u in the set of node u ∈ U and visited places p for set of

node p ∈ P if visit eu,p ∈ E exists. Frequency of visit is counted as edge weights wu,p.
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The second approach, OD matrix Ai,j , constituting aggregated flows of individuals

from an area to various others. The origin of trip is denoted by the row i for set of origin

area i ∈ I and the destination is kept by the column j for set of destination area j ∈ J

(with I ≡ J). Intra-mobility is observable for i = j, in addition to inter-mobility for

which i ̸= j exists. Spatial resolution of areas in cities can be any administrative units,

such as census tract, zip code, or neighbourhood. Each matrix element a ∈ A contains

number of people/trip (traffic counts) between a pair of areas gi,j such that:

Ai,j =
∑

i,j

gi,j, i, j ∈ I, (2.1)

The value of Ai,j is an integer due to its nature as a count data. If there is no flow

between a pair if areas, the value is coded as 0.

(a) (b) (c)

Figure 2.2: Urban mobility in Jakarta at the administrative level 4 (kelurahan) bound-

aries. Three mobility snapshots are presented along the course of COVID-19 pan-
demic period: Before Lockdown (Fig. 2.2a), Lockdown I (Fig. 2.2b), and Reopen-
ing I (Fig. 2.2c). Node is the centroid of kelurahan, weighted by number of infec-
tions. The thickness of edge is proportional to the flow it represents. Lighter colour
of boundaries denotes lower socioeconomic status.

Fig. 2.2 shows the changing mobility network structure of urban mobility in Jakarta

due to COVID-19 resurgence. Before lockdown policy was implemented (Fig. 2.2a),

mobility of people were spread out across areas in the city but significantly dropped

during the lockdown period (Fig. 2.2b). Decrease in mobility erodes the connectivity of

areas located in the periphery, leaving away smaller proportion of flows in the central

part of the city where main nation-wide administrative functions and business activities

are located. As the mobility restrictions were uplifted to an extent (Fig. 2.2c), the

mobility intensity is still lower than the baseline level.
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2.1.2 Urban morphology

Talking about urban morphology, multifaceted definitions have been proposed with

different stressing points. The most basic and generic definition is "the study of ur-

ban form" [47] and could be extended as "the study of the physical (or built) fabric

of urban form, and the people and processes shaping it" [76]. This particular defini-

tion touches upon broad elements that build physical form of cities, respectively urban

fabric. It is also interchangeably with urban tissue, constituting diverse components ob-

servable through different levels of resolution [101] namely streets, street blocks, plots

and buildings.

In details, street system has two dimensions which are the open spaces for circula-

tion (e.g.: roads, avenues, and boulevards) and the open spaces for permanence (e.g.:

squares and gardens). There is a demarcation line drawn by street along different street

blocks, the territory that belongs to private or semi-public use on one hand and public

space where everyone crosses the path on the other hand. The later signifies the role of

city in facilitating social contact between people with diverse background, transforming

potential encounter into physical interaction in social terms. Consequently, the decision

made of how street system being designed (e.g.: the space for pedestrians vs the space

for vehicles) affect the dynamics of social mixing process in the city.

(a) (b)

(c) (d)

Figure 2.3: Urban tissues of cities at comparable scale (1:1000 m). We have 4 cities located
in different continents: Bogota (Fig. 2.3a), Jakarta (Fig. 2.3b), London (Fig. 2.3c),
and New York (Fig. 2.3d).
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Physical layout of cities approximately at the same scale might look different.

Fig. 2.3 visualises urban tissues where open space is favourable in the periphery of

Bogota (Fig. 2.3a) and Jakarta with its extremely dense built environment with small

street blocks interrupted by a number of main roads (Fig. 2.3b). Meanwhile, compact

urban design is fairly recognisable in London (Fig. 2.3c) and New York (Fig. 2.3d) with

noticeable presence of body of water and regular pattern of streets and of buildings

alignment.

2.1.3 Urban socioeconomic patterns

Elements that compose urban structure are endowed with urban functions, alto-

gether designate the emergence of cities. Stratification comes up as a consequence of

unequal spatial distribution of embedded attributes, from the conventional measure of

income and education [5; 106], to the immaterial features such as quality and happiness

of life [174; 11]. On the pervasive scale, socioeconomic stratification might result in

socioeconomic inequality. In the manifestation of socioeconomic inequality, elements

impacting human activity in numerous sectors, such as opportunities, resources, and

power, are unequally allocated [173].

Inequality is a multidimensional issue that is not only rooted in income disparity

but also reflected in many aspects of life including occupation and housing [95; 182].

Attachment to spatial delineation, in contrast to randomly distributed, makes inequal-

ity even more complex to deal with, therefore applying multidimensional analysis of

space offers better understanding regarding the socioeconomic structure of space and

reproduction mechanism of embedded inequality [108; 141].

Inferring socioeconomic attributes from digital trace data such as social media and

mobile phone communication could be taken as a strategy to capture population-level

distribution of selected attribute. Moreover, it allows us to generate a relative socioe-

conomic position of an individual based on three factors namely cultural, social, and

material capital, a concept coined as socioeconomic status (SES) in the literature [91].

It is manifested as statistical indicators comprising education, occupation, and income

in census or administrative record data. SES is also a substitute for socioeconomic class

defined by Ritzer (2013) [162] as attributes used to rank people within economic strat-

ification system. Consequently, socioeconomic hierarchy is clearly seen in a way that

the stratification in the modern society can be captured [170].

Given the multifaceted nature of socioeconomic measures, we attempt to reveal

the most influential attribute that shapes stratification and amplifies inequality. Feature

extraction technique namely Principal Component Analysis (PCA) is applied to identify
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the most relevant socioeconomic features by narrowing down the range of variables

that might portray inequality and segregation at best. It reveals that the largest loading

belongs to income features as presented in Fig. 2.4 that in total count for 11 variables,

comprising mean household income, mean earnings, median household income, median

earnings for male full-time, per capita income, median earnings for female full-time,

median earnings for workers, mean retirement income, mean social security income,

mean supplemental security income, and mean cash public assistance income.

Figure 2.4: Feature collection, extraction, and selection. We collect 78 socioeconomic fea-

tures from the ACS data. Based on PCA, the largest loadings correspond to
income features (11 variables). Different feature selections (Mutual Information
Rank, Decision Tree and Gini Coefficient) follow after. Per capita income stands
out comparing to the rest of features.

The result from feature selection in Fig. 2.5 confirms the previous finding given by

feature extraction. Mutual Information (MI) Rank suggests that income features have

the highest contribution to mutual information of SES. In Decision Tree, per capita

income remains the most important to SES. Gini Coefficient indicates that mean cash

public assistance (0.46) has the highest sensitivity in capturing inequality, followed by

per capita income (0.40). We choose per capita income over mean cash public assistance

due to several reasons. Firstly, the coverage of mean cash public assistance is limited

to particular segments in society. Secondly, it will be an issue when we are going

further for a comparative study across countries since not every country has similar

cash public assistance programs. Last, per capita income reflects various sources of

income, including salary, social assistance, and wealth. Therefore, it is considered as a

comprehensive measurement for average income and widely available.
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Figure 2.5: Principal Component Analysis (PCA) and Mutual Info (MI) Rank. To deter-
mine the fittest feature in reflecting socioeconomic aspect, number of feature extrac-
tion and selection techniques are applied accordingly. (a) We take the first principal
component which explains 93.5 % of the variability. (b) We estimate MI for dis-
crete target variable (SES) to measure the dependency between variables. MI with
higher value indicates higher dependency, thus, more explanatory contributions to
SES are gained. PCA and MI Rank show corresponding results where variables
associated with incomes appear on the top list.

2.2 Quantifying Inequalities and Socioeconomic

Classes

Taking income level as a reference for socioeconomic status, for instance, gives

us showcase of income concentration in the city. A common methodological practice

is to run quantile-based discretisation [122] on income. It allows us to divide up the

income data with given underlying distribution into equal sized bins. The percentiles

rule is set to determine the bins (e.g.: 10 categories of socioeconomic status indicating

quantile membership of each data point). For continuous income distribution X , the

kth q-quantile called x is defined as the value falls into a point where the cumulative

distribution function intersects k/q such that:
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Pr[X < x] ≤ k/q, (2.2)

which is equivalent to

Pr[X ≥ x] ≥ 1− k/q, (2.3)

and

Pr[X ≤ x] ≥ k/q. (2.4)

Figure 2.6: Socioeconomic Status Map of New York. Discretisation of income distribution
generates 10 equally populated classes. Colour is sorted from light to dark shade,
indicating ascending label from the poorest class (1) to richest class (10).

Fig. 2.6 visualises spatial distribution of diverse socioeconomic classes in New

York. Areas in the surrounding downtown Manhattan, the home of main central busi-

ness district, appears with darkest shade because it constitutes the highest income

among others. In contrast, Bronx located on the upper side is dominate by yellow

as income level of the residents are relatively low. It further implies the persistence of

sociospatial inequalities that indirectly reflects the organisation of urban fabric.

2.3 Characterising mixing patterns and spatial embe-

deddness

Social fabric and inequality feedbacks are recursively produced and reproduced by

mobilities [188; 94], bringing another layer of complexity in spatial embededdness
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of urban mixing patterns. To capture multidimensionality of mixing patterns in urban

landscape, we synthesis literature discussing the three main dimensions namely inequal-

ity and segregation (Subsection 2.3.1), mobility and pandemics (Subsection 2.3.2), and

spatial economic diversity (Subsection 2.3.3).

2.3.1 Inequality and segregation in mobility

Earlier studies on human mobility present evidence of characteristic spatial scales

[30; 73; 183; 4], as well as a correlation between human spatial behaviour and so-

cioeconomic dynamics [119; 148; 27]. Rather than being homogeneously mixed, hu-

man mobility (as represented by daily individual trajectories throughout urban spaces)

is strongly influenced by socioeconomic preferences. People sharing socioeconomic

backgrounds are more likely to visit similar places within their class range and interact

amongst themselves [26; 202; 192; 128], thus generating stratified mobility and so-

cial network patterns. In the presence of homophily mixing [124], spatial exploration

is dictated by one’s socioeconomic class, reducing the number of visits to locations

with different economic status, and thus inducing highly predictable trajectories. How-

ever, when people aspire to diversify their experiences by, e.g., visiting lavish areas

of the city, where they have never been able go before, the potential for an upwards

bias in visiting patterns appears. Meanwhile, other has studied the effects of segrega-

tion of mixing in urban places using location data to explore exploration/exploitation

behavioural patterns and their correlations with socioeconomic status [131].

In related studies, Dong and other [59] investigate segregation in economic and so-

cial interactions by using credit card transactions and Twitter data. They found that

segregation increases with difference in socioeconomic status but is asymmetric for

purchase activity. Meanwhile, neighbourhood isolation has been used [192] to ob-

serve travel patterns of individuals extracted from Twitter data. These findings show

racial differences in the composition of the neighbourhoods visited. Black and His-

panic neighbourhoods, regardless of their socioeconomic status, are less exposed than

white neighbourhoods. Moreover, white poor neighbourhoods are substantially isolated

from non-poor white neighbourhoods. Morales et al. [128] aims to investigate polarisa-

tion in shopping, communication, and mobility reflected by online interaction in Twit-

ter. It confirms the theoretical underpinning in which within-group homogenisation and

between-group differentiation promote social fragmentation. They provide in-depth as-

sessment on polarisation of conversations between neighbourhoods and show that the

differentiation of online conversations reflects the distribution of wealth.

To quantify the degree of stratification in mobility network, we define a stratified
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bipartite network G = (U, P,E), where individual u is a node in set U , and place p

belongs to set P (with U ∩P = ∅). People and places are connected by edges eu,p ∈ E

with weights wu,p coding the number of times person u visited place p (see Fig. 3.1).

Further, we stratify U into a set of socioeconomic classes indexed by values from CU

thus assigning a class membership cu = i ∈ CU to each individual.

In the same way we define cp = j ∈ CP classes for places. This network representa-

tion captures all information about the socioeconomically stratified visiting patterns of

people to venues, coding their possible encounters and giving an aggregated description

of the potential mixing patterns of people of different socioeconomic classes.

Based on the bipartite network representation we can measure the frequency at

which people of a given class visit places in different classes. To summarise these

visiting patterns we use stratification matrices [109; 85]. An empirical stratification

matrix gives the probability that a person u ∈ U from a given socioeconomic class

cu = i ∈ CU visits a place p ∈ P belonging to a class cp = j ∈ CP . More formally:

Mi,j =

∑

U,cu=i

∑

P,cp=j wu,p
∑

j∈CP

∑

U,cu=i

∑

P,cp=j wu,p

, (2.5)

where the numerator counts the number of times people from class i visit places of

class j, and the denominator normalises this frequency matrix column-wise to obtain a

visiting probability distribution for each individual class i ∈ CU .

As we have discussed, signatures of segregation can be associated to strong diagonal

elements in these matrices, indicating that people of a given SES are the most likely to

visit places associated with the same or similar SES, as compared to random visiting

patterns. To quantify the strength of diagonal concentration of visiting probabilities,

we measure the diagonality index of the normalised stratification matrices [25], which

is similar to the assortativity coefficient used by others [59; 139]. It is defined as the

Pearson correlation coefficient of matrix entries as

r =

∑

i,j ijNi,j −
∑

i,j iNi,j

∑

i,j jNi,j
√

∑

i,j i
2Ni,j −

(

∑

i,j iNi,j

)2
√

∑

i,j j
2Ni,j −

(

∑

i,j jNi,j

)2
. (2.6)

Here i ∈ cu indicates the socioeconomic class of individuals and j ∈ cp is the same

for places. The diagonality index takes values between −1 and 1. In case it is 1, it indi-

cates perfect assortative mixing corresponding to a fully stratified matrix with non-zero

elements in its diagonals and zero anywhere else. Cities with large r values are char-

acterised by visiting patterns of people who are strictly bounded to places associated to

their own socioeconomic class. On the contrary, if r takes smaller than zero values (in
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extremity r = −1), it indicates dis-assortative connections between people and places

of different socioeconomic status. This corresponds to mobility mixing patterns where

people prefer to visit places of different SES rather than places from their own class. In

case r = 0, the normalised stratification matrix is flat indicating no choice preferences

of people to visit places with particular SES.

Heterogeneity in urban setting could be traced by looking at two indivisible aspects

that shape the dynamics of city, accordingly mobility trajectory of people and spatial

distribution of places. We measure urban heterogeneity by computing mobility entropy

and spatial entropy on the basis of generic Shannon’s formula [175]. In the context

of mobility entropy, entropy could be employed to quantify predictability of a visiting

pattern. Generally, higher entropy is in line with lower predictability, eliciting the more

heterogeneous preference of places to visit in the individual trajectory. At first, we

define (spatial mobility entropy Hm(X)) as:

Hm(X) = −
∑

x∈X

p(x) log2 p(x) = E[− log p(X)], (2.7)

where X is a discrete random variable representing geographic location for which

variable’s possible values x ∈ X denote sequence of POI locations visited by people.

We replicate above formulation to measure (ses mobility entropy Hs(X)) such that:

Hs(X) = −
∑

x∈X

p(x) log2 p(x) = E[− log p(X)], (2.8)

where X is replaced by a discrete random variable substituting SES of POI for which

variable’s possible values x ∈ X denote sequence of socioeconomic classes of POI

found in individual trajectory.

The value is normalised for each period, therefore the maximum value 1 and mini-

mum value 0 is comparable across temporal snapshots. Upper bound value Hm(X) =

1 implies the sporadic visit to heterogeneous POI locations, while lower bound value

Hm(X) = 0 indicates homogeneous visit pattern to rather limited POI locations but

mostly with high return rate. In parallel, Hs(X) = 1 (heterogeneous SES POI) shows

visit to places located in various socioeconomic classes and Hs(X) = 0 signifies

visit pattern characterised by strictly preferred socioeconomic class (homogeneous SES

POI).

In the context of spatial entropy, we take a step ahead in response to the need of

suitable entropy measure in describing the spatial organisation, Leibovici (2009) [107]

attempts to properly account for space dimension by introducing an additional univari-

ate categorical variable Z containing every single realisation of coupled X in space,
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for example the co-occurrences between 2 sectors (xi, xi′) with preserved order such

that i ̸= i′ due to spatial dependence in co-occurrence configuration. It is explicitly

expressed as

HL(Z) = −
R
∑

r=1

p(zr|Ld) log2 p(zr|Ld), (2.9)

where p(zr|Ld) represents probability of distance d among occurrences which is condi-

tional on cumulative distribution d∗ ≤ d ∈ Ld. This computation is iterated over spatial

units under study.

In addition, those aforementioned stratification dynamics that takes place in space

could be further signified by measuring how pervasive the process diffuses across spa-

tial area. One way to capture it is through computation of spatial autocorrelation, a

tendency of clustering formation between closely located neighbouring areas with sim-

ilar attribute (e.g.: income or socioeconomic status). It could be quantified by fitting

the Moran’s I statistic given as [44]:

I =
n

S0

n
∑

i=1

n
∑

j=1

wij(xi − x̄)(xj − x̄)

n
∑

i=1

(xi − x̄)2
, (2.10)

where wij is the spatial weight between locations i and j, and summing all wij results

in S0 specified as:

S0 =
n
∑

i=1

n
∑

j=1

wij, (2.11)

The I values take range from -1 to 1, where spatial dispersion happens at -1, spatial

randomness holds at 0, and spatial clustering occurs at 1.

The Moran’s I statistic could be transformed from global measure capturing general

tendency of clustering pattern to relative measure locating a smaller spatial unit (e.g.:

census tract) under observed larger delineation (e.g.: city), whether it is aligned with

global pattern and similar to its neighbouring areas. For that purpose, we provide Local

Form of Moran’s I [9], an integral part of spatial measures under Local Indicators of

Spatial Association (LISA), is computed to locate area where similar level of economic

diversity is concentrated. It is defined as

Ii = zi
∑

j

wijzj, (2.12)
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where zi and zj contain deviations of value in respectively spatial unit i and its neigh-

bouring area j while wij is the weights in row- standardised with summation over neigh-

bouring values j ∈ Ji. The visualisation is designated as Local Cluster Map.

2.3.2 Effects of external shocks on mobility segregation

In urban mobility network, social stratification in conjunction with unequal access

to transport infrastructures brings social exclusion [116; 156] and social segregation

[202; 126]. External shock such as COVID-19 outbreak commencing from outside the

system can be catastrophic to socioeconomic configuration and the related aspects and

perpetuate individual mobility that is already constrained by socioeconomic stratifica-

tion [58; 39; 112]. For some people, their capacities to adjust preferences and way

of living in response to disruption are limited by their well-being. People from lower

income class might have narrow flexibility and keep doing the usual means during lock-

down period as seen by regularity in mobility since their works demand on-site physical

presence. After all, the impact of the pandemic on mobility segregation specifically,

would likely be multifaceted and would depend on a variety of factors, including the

specific characteristics of the people affected, the severity and duration of the pandemic,

and the specific policies and responses implemented.

Existing literature suggests that higher income is associated with larger mobility

reduction, while mobility inflexibility and less social distancing are observable among

low-income, raising disparity in mobility [195; 60; 125]. In a finer grain resolution,

Chang and other [40] decouple the differential spread of COVID-19 from racial compo-

sition and median income to study the disparities in mobility. They find that disadvan-

taged racial and socioeconomic groups, especially among the bottom income decile, for

income are exposed to higher infection risk, confirming previous studies [150; 43]. One

mechanism to explain this recurring pattern is their inability to reduce mobility in the

first phase of outbreak (March±May 2020). In Chicago, for instance, they visited 27%

more places than people from higher income. Moreover, transmission rates at those

places are higher because of smaller in size with higher visitor density ( 59% more

hourly visitors per square foot and 17% longer duration) as to compare to places visited

by the richer group. Therefore, a larger burden of infection belongs to disadvantaged

groups.

2.3.3 Spatial economic diversity

Literature in spatial economics, economic geography, and regional science widely

discuss the significance of industrial clusters and reckon the contribution of economic
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diversity in shaping competitiveness of a city. Malmberg and Maskell [117] underline

that in economic process, the notion of proximity and place plays an important role. In

this work, they specify that the backbone of economic process is knowledge creation or

learning perspective in which spatial proximity facilitates inter-firm innovation. Hence,

economic activities tend to form spatial agglomeration due to the presence of infor-

mational and knowledge exchange such as flow of labour [179], relationships between

supplier and customer [157], and knowledge spillover [103] where geographic proxim-

ity facilitates these exchanges [159], pointing out the relevance of urban morphological

structure at various spatial scale ranging from a street or block in a city to even larger

geographical coverage.

The emergence of industrial clusters is also linked to the rise of regional speciali-

sation that results in characterisation of heterogeneity of spatial concentration and mo-

tivated by the law of increasing returns to scale [102], the condition in which addi-

tional use of inputs in production generates increases in output by a larger proportion.

Within a finite spatial limit, congregation of firms accessing nearby production factors

including labours could accrue higher net gain as transaction costs coming from trans-

portation and communication spending are compensated by reduced distance, therefore,

localised increasing returns to scale gives a sound argument for the development of

industrial clusters [104]. The term of localisation economies incentives positive exter-

nalities in a particular industry or the sector concerned [118] is broaden by recognising

the dimension of spatial scales, known as urbanisation economies [87], making posi-

tive externalities available to various industries and all sectors. Mapping out the general

agreements in the literature, it has been widely perceived that industry agglomeration

and spatial clustering are related to cost sharing in infrastructure provision, the avail-

ability of a skilled labour, efficiency in transaction activities, and knowledge spillovers

where taking them into account leads to firm learning and innovation [117].
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Chapter 3

Socioeconomic biases in urban mixing

patterns

Urban areas serve as melting pots of people with diverse socioeconomic back-

grounds, who may not only be segregated but have characteristic mobility patterns in the

city. While mobility is driven by individual needs and preferences, the specific choice of

venues to visit is usually constrained by the socioeconomic status of people. The com-

plex interplay between people and places they visit, given their personal attributes and

homophily leaning, is a key mechanism behind the emergence of socioeconomic strat-

ification patterns ultimately leading to urban segregation at large. Here we investigate

mixing patterns of mobility in the twenty largest cities of the United States by coupling

individual check-in data from the social location platform Foursquare with census in-

formation from the American Community Survey. We find strong signs of stratification

indicating that people mostly visit places in their own socioeconomic class, occasion-

ally visiting locations from higher classes. The intensity of this ‘upwards bias’ increases

with socioeconomic status and correlates with standard measures of racial residential

segregation. Our results suggest an even stronger socioeconomic segregation in indi-

vidual mobility than one would expect from system-level distributions, shedding further

light on uneven mobility mixing patterns in cities.

3.1 Introduction

Patterns of socioeconomic inequality can be found everywhere in a modern city.

Large variations in earned income leading to uneven access to services, healthcare

and education [164; 2], as well as spatial and housing segregation [184; 86], are just

two of the most drastic examples of socioeconomic disparity. Less studied is the
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segregation related to mobility mixing, where people from different socioeconomic

classes encounter each other less often than what is potentially allowed by the city

fabric [59; 130; 137].

Big data presents a unique opportunity to analyse the role of human mobility in

segregation, from the level of individuals to the scale of societies. Digital data tracing

human movements in cities ranges from mobile call detail records (CDRs) [73; 183] and

GPS trajectories [186; 72; 3], to location-sharing services (LSS) and check-in sequences

on social media platforms [80; 199; 92]. The analysis of these data sources, providing

anonymised individual trajectories with unprecedented spatiotemporal resolution, has

proven essential for our growing understanding of the underlying mechanisms of hu-

man mobility [30; 12; 193; 4], and the associated ability to predict future trajectories

[20; 45]. It also offers the possibility to engage in a more comprehensive and nuanced

exploration of urban socioeconomic segregation, by combining high-dimensional mo-

bility data with information on the socioeconomic traits of individuals [114; 109; 59].

Homophily mixing is not the only mechanism influencing mobility patterns. The

variability of socioeconomic traits such as ethnic group, education level, occupation

sector, etc. also constrains the possibility of movement in urban spaces via residential

segregation [184; 86; 56; 32], where people with similar backgrounds live next to each

other and form fragmented areas in the city. Given the potentially complex interplay

between human mobility and socioeconomic stratification, it is worth asking whether

the presence of biased mobility across tracts of some socioeconomic trait is associated

with lower residential segregation. This is particularly relevant given the number of

studies reporting mobility as a key pillar in diminishing segregated spaces among people

from diverse groups in society [172; 197; 65; 66]. People show heterogeneity in many

aspects, including their mobility characteristics and socioeconomic capacities, which

shape their patterns of movement across urban space.

Build on these results, our study is dedicated to reveal the role of visit preference in

mobility bias caused across socioeconomic status at the individual and class levels. We

specifically analyse the extent to which mobility may contribute to the emergence of so-

cioeconomic stratification, ultimately leading to urban segregation at large. The scope

of our discussion is concentrating on visit preference to detect generic patterns where

‘upwards bias’ increases with socioeconomic status. Additional investigation on eth-

nic isolation aims to instantiate the entanglement between characteristics and mobility

patterns with other socioeconomic features, such as ethnic residential distribution.

In this study, we emphasise the need to query the extent to which behavioural seg-

regation (bias in mobility) is related to residential segregation. We take a step forward

in the current analysis of segregation in mobility by asking the following question:
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How do socioeconomic attributes and geographic constraints affect the spatiotemporal

process of individuals moving in urban spaces? To answer this question, we analyse

individual check-in trajectories in the twenty largest cities of the United States, coupled

with detailed socioeconomic maps indicating the economic status of people and places

they visit. After a short data description, in the following we will introduce stratifica-

tion matrix measures and individual- and class-level mobility bias scores to quantify

patterns of mobility segregation, visiting biases, and their variation across cities with

wide-ranging socioeconomic and ethnics segregation profiles. We base our analysis on

observational behavioural data, which may not be fully representative for the observed

populations. To address this shortcoming we carry out a careful analysis about the bi-

ases and confounding effects characterising the analysed data set. While the results of

this analysis are reported in the discussion and the Appendix of this paper, they con-

firm the robustness of upward biased visiting patterns of people to places in cities with

various socioeconomic stratification profiles.

3.2 Data and research methods

3.2.1 Data description

In order to simultaneously capture the mobility patterns and socioeconomic status

of people, we concentrate on two independent sources (mobility and socioeconomic

data, described below) and combine them using spatial information.

Mobility data: To construct individual mobility trajectories, we analyse a large,

open Foursquare dataset [201], which records how people move from one place to

another. Data comes as a sequence of user check-ins to places, or points of interest

(POIs), thus providing information on mobility trajectories of individuals and visiting

frequencies of places. This dataset is not collected directly through the Foursquare open

API, but from Foursquare check-ins via Twitter. The crawling method corresponds to

18 months (549 days) of observations between April 2012 and September 2013 for

users with Foursquare-tagged tweets. Using this mobility data, constituted by roughly

26,502 people with nearly 1,830,276 check-ins, we concentrate only on active users

(who checked-in from at least two different places during the observation period).

Socioeconomic data: To estimate the socioeconomic status of people and places, we

rely on the 2012 American Community Survey (ACS) [33] (recorded in the year match-

ing the closest to the Foursquare observation period). After identifying the correspond-

ing ACS census tract where a user’s home location lies, we associate the socioeconomic

indicators of this location to the individual. In order to estimate the economic status of
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a place, we follow a similar strategy and assign local socioeconomic status indicators

to POIs based on their locations.

By using the average per capita income as the socioeconomic indicator of active

users living in a given tract, we sort them in an ascending order. To group them into dis-

tinct socioeconomic classes, we then segment this sorted list into 10 equally populated

groups with people of the lowest income in class 1 and highest income in class 10. By

means of this procedure we assign a socioeconomic class cU to each user. In identical

fashion, each venue is assigned a value cP .

3.2.2 Pipeline description

Focusing on the 20 largest metropolitan areas in the US, we also infer the home

locations of 26,502 users following a conventional pipeline of conditions [123] [for a

detailed description of the method and a statistical summary see Section 7.1.1- 7.1.2].

The Foursquare dataset is not a uniform sample of the population, and as such, it may

introduce bias in our analysis of mobility patterns. However, we expect that aggre-

gation and averaging, as well as the length of the observation period (beyond yearly

seasonality), decreases this potential for bias. In any case, in the Supplementary Ma-

terial we estimate discrepancies between Foursquare data and the real population via a

bootstrapping analysis (Section 7.1.1), a Kruskal-Wallis H test (Section 7.1.14), and a

Dunn’s test (Section 7.1.15).

Figure 3.1: Mobility and socioeconomic data combination pipeline. (left) Overview of data
sources, data processing pipelines and data combination steps to obtain data for the
analysis of socioeconomic segregation in spatiotemporal urban mobility. (right) As
a result we obtain a bipartite network, with nodes classified into two sets comprising
individuals u and POIs p. Each node in both types is labelled by a socioeconomic
indicator (cU and cP ) assigned via our location-based method on the census tract
level. Weighted edges between individuals and POIs indicate the frequency of visits
of a given user to a given place.
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Although the socioeconomic status of venues could arguably be better estimated

from their pricing, this information is at present not available to us. Thus, we assume

that the socioeconomic status (SES) of people living at a location is well correlated

with the pricing of venues in the same neighbourhood and offered services around (for

a summary of our data construction pipeline see Fig. 3.1).

In order to obtain a proper representation of socioeconomic status in the context of

segregation, we consider 78 features from the ACS data. Although such a large number

of dimensions in principle provides a rich way of quantifying the socioeconomic status

of locations (and people living there), it turns out these variables have high redundancy.

We perform a principal component analysis to identify the most relevant ones and find

that income features (11 variables) have the largest loading, accounting for most of the

socioeconomic variance between places. After implementing three different techniques

(mutual information rank [99], decision tree [79], and Gini coefficient [160]), per capita

income consistently stands out as the best indicator of individual SES: It accounts for

the largest variance and it correlates strongly with other income variables such as earn-

ing/wage, wealth, and supplementary source of income (for more details on this analysis

see Section 2.1.3).

3.2.3 Matrix measures

To decide if these patterns appear as the consequence of population statistics or

other confounding effects, we compare the matrix Mi,j to a reference matrix, which

measures similar stratification patterns in a system where visiting patterns appear uni-

formly at random with certain constraints. This randomised stratification matrix is

defined through a random rewiring process of the bipartite network, while constrain-

ing the total number and frequency of visits of each individual (i.e. their activity and

link weights), the class of individuals and places, but fully randomising links between

individuals and visited places otherwise. The randomisation is performed by selecting

randomly for each link of an individual u a place to visit from the set of places ever vis-

ited by their respected socioeconomic classes cu, while keeping the link weight intact.

This in-class randomisation allows us to compare an individual’s behaviour to similar

others, meanwhile distinguishing between socioeconomic classes, which potentially are

characterised by very different visiting patterns.

After generating randomised bipartite networks via 100 independent realisations,

we compute a similar column-wise normalised stratification matrix Ri,j , representing

the probability of people from class ci randomly visiting to places of class cp. To finally

obtain whether the empirical mobility patterns appear more frequently than by chance,
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we compare the empirical and the preference-based null model matrices. We obtain a

normalised stratification matrix Ni,j by taking the element-by-element fraction of the

empirical and random contact matrices as:

Ni,j =
Mi,j

Ri,j

. (3.1)

For each element in the matrix Ni,j , the presence of Ni,j > 1 implies that higher prob-

ability of the visits made by individuals from class i ∈ CU to place of class j ∈ CP

are found in the empirical observations compared to expected values in the random null

model. Contrastingly, as Ni,j < 1 appears, smaller probability than expected by chance

holds for corresponding visits. In broader picture, the domination of Ni,j > 1 values

anywhere in Ni,j indicates patterns of socioeconomic stratification, where people prefer

to visit places of similar socioeconomic status as their own, rather than places, which

are richer or poorer than them.

These normalised stratification matrices reveal further characters of possible biases

of people in choosing places to visit, out of their own class. If in a city people exhibit

upward visiting biases, thus they tend to choose more expensive places to visit when

they step out of their own class, the upper diagonal matrix elements of Ni,j would appear

dominantly red. While, if the opposite is true, the lower diagonal elements would reflect

similar but downward visiting biases. To simply quantify these patterns, we compute

the average values Ni,j elements of normalised stratification matrix of cities above, at,

and under their diagonals. To measure the level of segregation in mobility mixing, we

analyse the earlier introduced normalised stratification matrix Ni,j for each city. The

Pearson correlation coefficient of matrix entries rN is imposed on Ni,j as previously

defined in Section 2.3.1.

3.2.4 Bias measures

We take a technical step ahead in order to adequately quantify this visiting bias

that indicates deviations in mixing from the respected cu socioeconomic class of an

individual. We compute a single empirical individual bias score for each individual

u ∈ U as

Bu = ⟨cp⟩u − cu, (3.2)

where ⟨cp⟩u =
∑

p∈P wu,p×cp

nu
p

is the average socioeconomic status of places an individual

u visited, defined as the fraction of the
∑

p∈P wu,p × cp sum of socioeconomic status

of places in the trajectory of individual u and the nu
p =

∑

p∈P wu,p number of times
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individual u visited any places. An individual has upward visiting bias if her individual

score Bu is positive, meaning that she tends to visit places located in more affluent areas

than where she lives. Secondly, an individual with negative score value has downward

visiting bias since places she usually visits are situated in lower socioeconomic class

than her own. Otherwise, an individual does not have any indication of bias (Bu = 0)

if she visits places within her own socioeconomic rank. A reference model for this

measure can follow a similar logic as the in-class randomisation for the realisations of

network reference models explained before. Given the individual trajectory resulted

from the random visit generating process, we calculated a randomised individual bias

score using the same formula as in Eq. 3.2.4. Note that in this measure boundary effects

may appear, as people from the poorest class cannot exhibit downward bias, and sim-

ilarly, the highest class cannot be upward biased. Individual bias scores can be fairly

compared to null models, which retain these boundary effects. In-class randomisation

fulfils this requirement, providing an average randomised bias score ⟨Brand⟩u for each

individual separately. Note, that the randomised individual bias scores take non-trivial

values, different from zero, due to the individual variance of visiting frequencies of in-

dividuals to different places. These are represented by the weights wu,p in the bipartite

network, which are preserved during the randomisation process.

The comparison of the empirical and in-class normalised individual bias scores can

be best quantified by an individual bias z-score as

zBu

u =
Bu − ⟨Brand⟩u

σBrand

u

, (3.3)

where ⟨Brand⟩u is the mean and σBrand

u is the standard deviation of the randomised

individual bias scores across 100 independent realisations of the null model. The value

of ZBu
u reflects how much the individual bias deviates from the expected bias for an

individual who chooses places to visit with the same frequency as before but selects

them from a given set of places dictated by others within the same socioeconomic class.

The individual bias score Bu compares the average class of visited places of an

individual to its own socioeconomic rank inferred from its home location. Meanwhile,

its z-score zBu
u indicates if this individual bias is weaker or stronger than expected from

random behaviour. However, this measure is using the class label of the individual as

a reference of comparison, and it says less about whether an individual visits higher or

lower class places as compared to the random expected behaviour characterising other

individuals in its own class. To directly measure this effect we introduce a class level

z-score measure
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zcuu =
⟨cp⟩u − ⟨cp⟩

rand
cu

σrand
cu

, (3.4)

where ⟨cp⟩u is the average socioeconomic status of places individual u visited, and

⟨cp⟩
rand
cu

and σrand
cu

are the average and standard deviation (respectively) of class of

places that others from class cu would visit if behave randomly. This reference mea-

sure, just like before, is generated by in-class shuffling to obtain null models over 100

realisations. The value of zcuu reflects directly how much the individual behaviour devi-

ates from the expected level, when the individual could choose randomly places to visit

from a given set dictated by others from the same socioeconomic class.

3.2.5 Residential segregation measure

To address the effects of residential segregation on mobility mixing, we took a sim-

ilar path than others [100; 192] and considered the ethnic group distribution in a city

as a proxy. Residential segregation is indicated by housing clustering tendency of indi-

viduals from the same ethnic group. This can be formally quantified by the so-called

distance decay isolation [129], which measures the probability that a racial group mi-

nority interacts with members of their own group by considering the distance from the

racial group minority’s housing area. This is measured as:

Dpxx∗ =
n
∑

i=1

(

xi

X

n
∑

j=1

kijxj

tj

)

, (3.5)

where xi and xj are the population sizes of a minority group in census tracts i and

j (respectively), X =
∑

i xi is the total population of the minority group, and tj is

the total population of census tract j. The distance decay dimension is reflected by

kij =
t
−dij
j

∑n
j=1

t
−dij
j

, where dij is the distance between the centroids of census tracts i and

j. Hence, higher index suggests higher probability of interaction with people from

the same group, inferring isolation from the rest of population. In our case, we use a

probabilistic individual profiling to identify the most likely socioeconomic profile of an

individual based on the ethnic group with the highest proportion at the respected census

tract where one lives. For instance, if an individual u lives at census tract i where the

racial composition there is 60% white, 15% Hispanic, 10% black, and 5% Asian, this

individual is considered as white. We consider different thresholds at first and we find

out that considering a neighbourhood the ethnicity if such people consist of at least the

30% of the given tract is the optimum cut-off because it is the highest threshold with

the lowest unidentified census tract ethnicity profiles.
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3.3 Results

Our main scientific goal is to study socioeconomic segregation and biases in popu-

lation mixing in cities by observing correlation patterns between the SES of people and

places they visit. Using the collected data, this objective can be addressed by building

a network of individuals visiting places.

3.3.1 Mobility stratification

Empirical stratification matrices Mi,j are shown in Fig. 3.2 for selected cities (Hous-

ton, New York and San Diego). The dominant diagonal elements for Houston and San

Diego indicate strongly stratified visiting patterns in these cities. People prefer to visit

places of their own or similar socioeconomic class, rather than places from remote

classes. Interestingly, for New York this pattern is less evident suggesting weaker so-

cioeconomic preferences in visiting venues.

Each element in the normalised stratification matrices Ni,j , which are Ni,j > 1 (red

bins in Fig. 3.2d-f) indicates that the visits made by individuals from class i ∈ CU to

place of class j ∈ CP appeared with higher probability in the empirical observations

than it was expected from the random null model. Otherwise, the blue blocks for Ni,j <

1 show that the corresponding visits appeared with a smaller probability than expected

by chance. In cases red bins dominate the diagonal of the normalised matrix Ni,j , it

indicates patterns of socioeconomic stratification, where people prefer to visit places of

similar socioeconomic status as their own, rather than places, which are richer or poorer

than them. This is the case of Houston and San Diego (see Fig. 3.2d and f respectively)

and many other cities listed in Section 7.2.2. However, this character is less evident for

New York (see Fig. 3.2e), where despite known strong residential segregation, the city

fabric mitigates a more homogeneous mixing of people.

From Fig. 3.2g it is clear that, in all cities, diagonal elements dominantly concen-

trate visiting probabilities. However, in terms of off-diagonal averages, in most of the

cities (like in Houston in Fig. 3.2d) the upper diagonal average takes a larger value as

compared to the lower diagonal average, indicating present upward visiting biases in

these metropolitan areas. Meanwhile, in some cases the contrary is true (like in San

Diego in Fig. 3.2f) or in some cities these averages are very similar thus indicating no

dominant upward or downward visiting biases, as in case of New York (see Fig. 3.2e

and Fig. 3.2g).
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Figure 3.2: Socioeconomic stratification matrices. (top) Empirical stratification matrices
Mi,j , showing the probabilities that individuals from a given class visit to places of
different classes. The darker colour shades of bins represent larger visiting probabil-
ity. Matrices of Houston (Fig. 3.2a), New York (Fig. 3.2b) and San Diego (Fig. 3.2c)
all show strong stratification patterns, indicating that people tend to visit most likely
places with similar status. The normalised stratification matrices Ni,j , defined as
the fraction of the empirical and randomised stratification matrices. After normali-
sation, such stratification pattern becomes less evident for New York (Fig. 3.2e) and
San Diego (Fig. 3.2f) but quite persistent in Houston (Fig. 3.2d). Similar matrices
computed for other urban areas are available in Section 7.1.4. (bottom) Mean of
matrix element Ni,j , computed separately for the upper, lower, and main diagonals.
Among 20 urban areas, 12 of them (including Houston) have higher mean values
for upper diagonal elements, indicating dominant upward visiting biases. In con-
trast, we see dominant downward visiting biases in San Diego, while mean values
of upper and lower diagonal elements are almost indistinguishable in New York
(respectively 0.932 and 0.945).

3.3.2 Mobility biases

The matrix measures presented in Fig. 3.2 reflect the coexistent socioeconomic con-

figurations derived from visit trajectories. Firstly, the empirical stratification matrices
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Mi,j bring an initial indication of homophily mixing as seen in the dominant frequency

visit within own class. Secondly, these results reveal the underlying inclination in visit-

ing places situated in higher SES as depicted by the larger proportion of upper diagonal

elements in the normalised stratification matrices Ni,j in most of the cities. Taking

these two configurations into account, it can be inferred that while individual mobility

is dictated by the membership of socioeconomic class most of the time, the embedded

motivation to visit upper class places is still present.

Figure 3.3: Individual Bias z-score zBu
u . Class level distributions and their median values are

shown for each socioeconomic class in Houston (Fig. 3.3a), New York (Fig. 3.3b)
and San Diego (Fig. 3.3c). The overall increasing trend of medians (blue dots)
indicates that people from lower classes are less biased than expected, while the
contrary is true for others from higher classes. Solid red line indicates the fully
unbiased case. For results on other cities see Section 7.1.6 and Fig. 7.7.

The class distributions of individual z-scores together with their median values are

shown in Fig. 3.3, where the unbiased level is assigned as a flat red line. These dis-

tributions appear broad for each class, indicating that actually people from any class

exhibit upward or downward biases in terms of their visiting patterns to other socioe-

conomic classes. Interestingly, the median z-scores indicate an increasing trend in all

the three depicted cities. The people from lower classes appear with slightly negative

bias z-score, meaning they have a slightly weaker bias to visit places of different so-

cioeconomic classes than expected from their random visiting patterns. In contrary, the

middle and upper classes are evidently biased stronger than expected. This increasing

trend of the median of the individual bias z-score with socioeconomic classes surpris-

ingly characterises all the investigated cities as shown in Section 7.1.6 Fig. 7.7 in the

SM.

Results in Fig. 3.4 show a different behaviour as compared to the individual bias

scores. In case of New York (see Fig. 3.4b), the distributions of the class level bias

z-scores indicate that, although the variation is large in each socioeconomic classes, the

medians of these distributions are all slightly positive and independent of the socioe-
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Figure 3.4: Class-level Bias z-score zcuu . Distribution of class-level biased z-scores as the func-
tion of socioeconomic classes. Distributions are shown for each socioeconomic
class with their median values as blue points for Houston (Fig. 3.4a), New York
(Fig. 3.4b), and San Diego (Fig. 3.4c). Z-score values corresponding to unbiased
cases are shown with red solid lines. Positive z-score values signal an upward vis-
iting bias characterising each city. For results on other cities see Section 7.1.7 and
Fig. 7.8 in the SM.

conomic class. This signals a weak upward bias in people’s visiting patterns in New

York as compared to the class behaviour that appears for each class. In other cities, we

find several other bias patterns during our analysis (see Section 7.1.7 Fig. 7.8). In case

of San Diego (in Fig. 3.4c) class-level biases are all positive and evidently increasing

with the socioeconomic classes. This suggests that richer people in San Diego may visit

even more affluent places, than one would expect from their random class behaviour.

Somewhat the opposite trend can be observed for Houston (Fig. 3.4a), where although

the class-level bias z-score is always positive and indicates upward bias for each class,

it seems to follow an overall decreasing trend.

Visiting patterns measured by the class-level bias scores suggest that an upward

socioeconomic bias characterise each cities we study. Although these measures incor-

porate the visiting frequency distribution of individuals, they do not show evidently that

upward biases typically appear due to repeated visits to places with higher class scores,

or due to several occasional visits to places out of ones socioeconomic classes. To an-

swer this question, we recompute the median bias scores, excluding places which were

visited less number of times by an individual than a given threshold. Results are de-

picted in Fig. 3.5 for each city. As expected, the median class-level bias score appears

as a decreasing function of the frequency threshold in each city. This suggests that peo-

ple visit more frequently places, which are closer in terms of socioeconomic status to

their own class, while visit more affluent places occasionally only, that in turn causes

upward bias patterns characterising their class. Beyond this general decreasing charac-

ter, this function indicates large variance between different cities. For example, in case

of San Diego (red line in Fig. 3.5), this curve starts from a high z-score value when
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Figure 3.5: Sensitivity of class-level bias z-score zcuu . Lower bound cutoff is set as b ≥ 1
to which we only take into account venues visited at least once. For each set of
venues in individual trajectory cumulatively visited b times or higher, we measure
class-level bias z-score zcuu and take the median values. Upper bound cutoff b ≥ 20
is added to accommodate venues visited even more frequently. As b incrementally
becomes larger, the medians are largely dropped closer to 0. It indicates that venues
visited more frequently tends to be more homogeneous in term of mixing and closer
to own socioeconomic status.

all visits are consider but decreases rapidly as repeated visits are taken into account. In

case of New York this function starts from a relatively small z-score values and decrease

linearly for larger threshold values. This suggests a different visiting behaviour where

people typically visit places more than one time, but closer to their own socioeconomic

class.

We prefer this particular measure over the one on individual bias, as our objective

here is to reveal the source of upward bias, whether it is driven by repeated visits to

places with higher class scores, or due to several occasional visits to places out of

one’s socioeconomic class. The class-level bias z-score serves this purpose as it already

incorporates the visiting frequency distribution of individuals compared to their own

class and gives positive z-score values.

3.3.3 Mobility mixing and segregated residences

While there is an expected relation between the mobility mixing patterns and res-

idential segregation in a city, the combined investigation of these phenomena has not

received much attention so far. Their relation is important however for several reasons.
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For example, due to the multitude correlated socioeconomic factors it is likely that e.g.

ethnicity, which strongly correlates with income status in US metropolitan areas, cor-

relates also with residential segregation, as it has been shown in several studies [86; 1].

On the other hand, the daily mobility of people and their visiting patterns to differ-

ent places are constrained also by these socioeconomic factors, thus they are likely to

resemble similar segregation patterns. To investigate these correlations, we focus on

different ethnic groups and the likelihood of their mixing in cities, which exhibits dif-

ferent level of mobility segregation patterns.

The mixing patterns in a city may not be only determined by the socioeconomic

status of people but also by residential segregation. Residential segregation is strongly

correlated with the ethnicity of people [121; 111; 1], which in turn, according to Wang

and others [192], is an even stronger predictor of mobility mixing than socioeconomic

status when it turns to black, Hispanic, and white poor and non-poor populations. This

study found that the minority groups - despite their socioeconomic status - have lower

exposure to richer or white neighbourhoods, comparing to poor white groups. The fact

that they travel across similar distance and frequency to many places, does not change

the persistent pattern of their isolation and segregation. Therefore, racial segregation

emerges from a higher-order level, not limited to their residential neighbourhood but

expanded to their mobility and potential contact.

Recalling the above mentioned diagonality index and individual bias, we take the

average of z-score of each of these bias measures at the level of ethnic groups in every

urban area and correlate them with their distance decay isolation value computed for

the same ethnic group in the same city. By considering four ethnic groups (White,

Hispanic, Black and Asian) we receive four data points for each cities as shown in

Fig. 3.6. Although the total number of analysed individuals are not proportional to the

total population of each city, the in-city fraction of different ethnic groups are similar to

the census distributions.

There is a striking correlation emerging between the diagonality index (quantifying

assortativity mobility mixing of each ethnic groups) and the distance decay isolation

(measuring the isolation of different ethnic groups) with R = 0.35 (p = 0.0). Notably,

almost all diagonality index measures appear with positive values suggesting assortative

mixing for most ethnic groups, with a few exceptions. Further, the overall correlation

suggests the intuitive picture that the stronger mobility mixing stratification patterns

characterises a city (i.e. larger its corresponding diagonality index), the stronger iso-

lation patterns emerge between its ethnic groups. In turn, it indicates that residential

segregation (and thus physical proximity) play an important role in determining visit-

ing and mixing patterns of people in a city. More interestingly, the de-coupled ethnic
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Figure 3.6: Segregation and bias measure correlations with isolation scores for different

ethnic groups. Panel (a) depicts the correlation between the diagonality index rN
and distance decay isolation Dpxx∗ while panel (b) show a similar correlation of
the average individual bias z-score zBu

u . In each plot colours of symbols and blobs
indicate ethnic groups of Hispanic (green), White (green), Black (purple) and Asian
(red) people. The sizes of symbols are scaled with the size of these ethnic popula-
tion identified in the Foursquare dataset in each city. Blobs with respected colour
illustrate the cluster formation based on racial groupings. The shape is arbitrary,
only to demonstrate the visibility of clusters.

groups for each city show an emerging clustering, which assigns the importance of

racial differences in mobility segregation. From Fig. 3.6a it appears that people belong-

ing to the white ethnic group (shown as orange points in Fig. 3.6a) appear to be the

most isolated from the rest of the population (with the largest values of Dpxx∗), while
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they appear with the strongest assortative mobility segregation patterns too (with the

highest diagonality indices) consistently in several cities (to lead the eye we coloured

this group as an orange blob in Fig. 3.6a). The contrary is true for the members of the

Asian ethnic groups (indicated by red points and blob in Fig. 3.6a). In most cities they

appear as the least isolated and the most dis-assortative (least stratified) ethnic group,

thus mixing well with the rest of the population. In between these two groups, peo-

ple from the Hispanic ethnic group (green points and blob) seem to be more isolated

than people from the black ethnic group (purple points and blob) although they show

comparable strength of segregation in mobility mixing, all weaker than white people.

Needless to say that the grouping patterns shown in Fig. 3.6a indicate overall trends

only, while several exception exists for each ethnic group. For example, the Hispanic

ethnic group of Charlotte appears with the strongest assortative pattern, although this

group is not strongly isolated from the rest of the population. Or the black community

of Austin appears with the lowest diagonality index, suggesting a strong dis-assortative

mixing of these people with the rest of the population, while they also appear as one of

the least isolated among any other communities.

A similar positive correlation appears in Fig. 3.6b with R=0.25 (p = 0.04) between

the average individual bias z-score and distance decay isolation values over all the in-

vestigated ethnic groups and cities. Moreover, ethnic groups show certain clustering

trends, which suggest ethnic trends in terms of visiting bias patterns. Interestingly,

white ethnic groups (shown by orange points and blob), who we have already found the

most isolated, show the strongest upward bias to visit more affluent places then their

own socioeconomic class. As high SES classes are populated mostly by white people,

this pattern derives from our earlier observations in Fig. 3.3, where we find upward

bias to increase with the SES of people. Their high isolation score can be explained

by their upward bias towards higher socioeconomic places, which are most likely to be

visited by other white people. Meanwhile, it may also indicate that our data have an

over-represented white population, as we find upward biases in all of the cities. Strik-

ingly, other racial groups indicate negative visiting biases and lover level of isolation.

This effect is the strongest for people from black racial groups all over the country, but

also characterises Hispanic and Asian communities although they show more unbiased

patterns, with average individual z-score values closer to 0.

Exceptions are again interesting. The Hispanic community of Washington appears

as the most upward biased ethnic group, while the black ethnic group of Seattle sits on

the other end of the spectrum and being the most downward biased minority among the

analysed cities. Both of these communities appear with low level of isolation. Conse-

quently, similar to the conclusion of Wang et al. [192], we observe that beyond socioe-
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conomic status, ethnicity (strongly correlated with residential segregation) is another

very important factor determining mixing patterns of people.

3.4 Discussion and conclusions

Mobility patterns are strongly determined not only by the fabric of a city but also by

the socioeconomic structure of the population living there. This leads to biased mixing

and segregation in mobility, which can be observed as stratification patterns in choices

to visit places. We have addressed this complex phenomenon via a mobility analysis of

people living in the 20 largest cities in the US, and aimed to quantify segregation pat-

terns in mobility capturing their visit patterns to places of interest. We systematically

found upward-biased mobility in all cities, with some variance across metropolitan ar-

eas. In one extreme, people living in New York do not exhibit dramatic stratification

in their visit patterns but visit places in all kinds of locations, rich or poor, indepen-

dently of their own socioeconomic status. Meanwhile, in Houston and San Diego peo-

ple are more stratified and visit places of their own socioeconomic class, and show

an upward bias towards richer places to visit. We found that this upward bias, which

characterises most cities analysed, is usually induced by single visits of individuals to

affluent places, while most visits correspond to their own socioeconomic class. We

also revealed distinct patterns of individual mobility in terms of stratified correlations

between the bias magnitude and residential segregation based on spatial distribution of

racial groups in urban areas. Visual representations of ethnic clusters indicate over-

all trends of behaviour characterising most studied cities, where segregated mobility is

bounded together with residential segregation and broadly contributes to the portrayal

of inequality.

It should be taken into account that data for a given socioeconomic class in the

population might not be comparable across cities due to sampling in the data collection

process. Particularly, Foursquare data over-represents wealthy classes when compared

to the underlying population. To understand better the fluctuations of the distribution

of SES due to the representativeness of the used dataset, we designed a bootstrapping

method (see Section 7.1.1). Bootstrapping results suggest that the SES distribution of

Foursquare users is sufficiently similar to the SES distribution of the real population.

Multiple sources of data containing digital traces of human movements with higher

resolution, such as mobile phone call records and GPS trajectories, may improve the

robustness of findings presented in this paper. Methodological improvements to infer

individual attributes (like racial group membership) provide a direction of future re-

search. Moreover, algorithms for probabilistic individual profiling could be developed
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by using machine learning techniques such as Random Forests and Support Vector Ma-

chines in the presence of ground truth information from alternative data sources.

One potential confounding factor of the emergent stratification patterns reported

here is distance, as people visit places closer to their home more frequently, thus induc-

ing similar correlation motifs. To check the robustness of our methods in investigating

segregation in mobility and biased visiting patterns and the magnitude of such distance

effect, we recomputed our results on out-of-class data after excluding own census tract

visits for each individual’s trajectory. Even with this constraint, SES plays a consid-

erable role in shaping mobility (comparative observations for all cities can be found

in Section 7.1.4-7.1.5 and Section 7.1.8-7.1.9, along with Section 7.1.12 Fig. 7.13 in

the case of Houston, New York, and San Diego, in contrast to Fig.3.2 above). On the

ground of visiting biases, there are some variations among cities regarding individual

bias. The earlier notion of upward visiting bias is also very much present in the case

of out-of-class measurements since z-score values are all positive above the red median

unbiased line (complete plots are available in Section 7.1.6-7.1.7 and Section 7.1.10-

7.1.11, while a deeper exploration for Houston, New York, and San Diego is available

in Section 7.1.12 Fig. 7.14 and Fig. 7.15). Therefore, there are no conflicting results

from our methodology even after controlling for this confounding factor. Enforcing

out-of-class treatment is reasonable in this context because our study aims to analyse

and quantify mixing patterns and not yet look for causal links or underlying reasons of

their emergence.

Segregation is not an exclusive phenomenon to the quasi-static configuration of

housing settlement, but also exists in more dynamic settings such as mobility. Ques-

tions about the conceptual relations between segregated mobility and segregated resi-

dence stand still in the literature, yet relatively untapped, while scientific investigations

should follow this line of inquiry. We take a step forward through empirical data-driven

analysis and yield an interaction effect between both types of segregation. Individual at-

tributes (such as racial groups) partly explain the emergence of distinct clusters, beyond

income levels. Our findings also highlight the notion that inequality is multidimensional

in nature. A comprehensive policy design to address this issue should entail the wider

possibility of individual movement across the urban landscape to accommodate larger

socioeconomic heterophily and further interaction between socioeconomic classes.
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Chapter 4

Mobility segregation dynamics during

pandemic interventions

COVID-19 outbreak presents as the embodiment of external shock that suddenly

disturbs the typical mobility pattern in urban areas. Everyone faces the need to reor-

ganise their daily errands throughout space, but the magnitude of changes might not be

identical for everyone across socioeconomic classes. This given condition raises con-

cern on the emergence of further detrimental effect it potentially brings to inequality

as the pandemic prolongs. In this study, we examine how COVID-19 outbreak and the

restrictions that follow induce variability of mobility adjustment in terms of preferen-

tial mixing in socioeconomic and physical space. Anonymised and privacy-preserved

mobility data in global cities namely Bogota, Jakarta, London, and New York, coupled

with socioeconomic reference from Central Bureau of Statistics, are used to capture in-

equality in mobility among classes along temporal transitions, passing through before,

during, and reopening phases. We find that the first lockdown induced considerable

increase in mobility segregation, but the attempt to loosening mobility restriction did

not necessarily diminish isolation within own neighbourhood, indicating that recovery

is not fully made. Persistently lower heterogeneity in both locations and socioeconomic

status of places visited by individual is also visible. Finally, we address the question,

which interventions contributed the strongest to the change of segregation in different

intervention periods. Our results highlight population level dynamical segregation phe-

nomena observed at the individual level, that provides important conclusions for better

policy design with more equal consequences among people from all socioeconomic

classes.
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4.1 Introduction

Inequality has always been a prominent feature of today’s society. Inadequate distri-

bution and access of resources, among others, stand as a preliminary setting. Untangled

paths to income [113], education [181], and employment [37] are moulded into be-

havioural preference in daily life. Van Hamm et.al. [191] argue that rising inequality

becomes more prevalent anywhere across the globe nowadays and it largely contributes

to socioeconomic segregation especially in cities where heterogeneity in terms of in-

come, education, and employment is the highest. The convergence of global trends

is due to the fact that cities in lower-income countries have higher levels of inequality

and segregation, but inequality and segregation are growing faster in high-income coun-

tries. It reveals the complex entanglement carried out by inequality because eventually

socioeconomic segregation is none other than a spatial footprint of inequality itself.

Socioeconomic segregation is not the only factor that is linked to inequality. Be-

yond that, there are numbers of segregation type, namely residential segregation and

employment segregation, to mention a few. Residential segregation is manifested as

separation of different groups of people into different neighbourhoods within a city. At

the same time, income could be a driving force behind the emergence of segregation

in housing. Selective residential mobility flows, for instance, happen due to the quality

of neighbourhoods moving farther away from each other and result in the highly seg-

mented profile on the two extreme: downgraded neighbourhoods where people with low

income live and upgraded neighbourhoods where high income people stay [133; 185].

Therefore, housing plays an intermediary role in reproducing inequality through the

coupling effect between income inequality and residential segregation [185]. On the

other spectrum, employment segregation entails changing occupational structure that

is mainly characterised by professionalisation and socioeconomic upgrading. Growing

proportion of high-income segment among workforce nonetheless increases demand for

residential units located in inner city neighbourhoods, motivated by the centrality and

accessibility of urban living [35; 190].

The preference on residential areas and employment type emulate mobility pattern

in order to meet daily errands. An interplay between inequality and the way people

organise their mobility in urban space is inevitable. In line with Urry [188], Olvera et

al. [143] define inequality in mobility as behavioural differences in the level of trans-

port use due to differences in the distribution of monetary ownership such as income or

wealth. Furthermore, they find that car ownership is a strong determinant to mobility

pattern and residential locations and diminishes potential interaction with people with

heterogeneous backgrounds (as to compared with shared space in public transporta-
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tion). Entitlement to more affluent socioeconomic status allows people to buy car and

live in the outskirt of city since distance is no longer an issue and trip could be made

promptly with higher degree of flexibility. As a result, segregation pattern comes out as

an entanglement between inequality and mobility.

To clarify the conceptual interconnectedness between patterns of inequality and mo-

bilities, Ohnmacht et al. [142] propose three separated mechanisms namely: inequality

shapes mobility, mobility shapes inequality, and reciprocal linkage between inequality

and mobility. The first mechanism works through social strata dictated by monetary

ownership. Individual mobility, therefore, is determined by the ability to move in time

and space in the presence of mobility capital (e.g: economic capacity). Unequal access

to mobility capital ultimately marks different behavioural characteristics in mobility.

The second mechanism emphasises on structural societal changes that require higher

mobility intensity. Working households (e.g: mobility for work purpose), spatial dis-

persion in social networks (e.g: mobility for visiting friend) and perception as well as

preference towards transportation mode (e.g: bus vs car). Consequently, unmet needs

in mobility could induce deeper stratification that later translated into inequality. Other

than that, inequality and mobility could be simultaneously interacting, pinned up by

Kaufmann et al. [94] as motility. This terminology refers to the existence of capacity

to move, including relational linkage to inequality and mobility needs. To an extent,

motility may produce spatialisation even spatial isolation as unfulfilled mobility spa-

tially bounds individual exploration in space. Residential relocation, for instance, is

driven by motives to gain social and economic benefits due to better job prospects.

In urban mobility network, social stratification in conjunction with unequal access

to transport infrastructures brings social exclusion [116; 156] and social segregation

[202; 126]. External shocks such as COVID-19 outbreak commencing from outside

the system can be catastrophic to socioeconomic configuration and the related aspects

and perpetuate individual mobility that is already constrained by socioeconomic strat-

ification [58; 39; 112]. For some people, their capacities to adjust preferences and

way of living in response to disruption are limited by their well-being. People from

lower income class might have narrow flexibility and keep doing the usual means dur-

ing lockdown period as seen by regularity in mobility since their works demand on-site

physical presence. After all, the impact of the pandemic on mobility segregation specif-

ically, would likely be multifaceted and would depend on a variety of factors, including

the specific characteristics of the people affected, the severity and duration of the pan-

demic, and the specific policies and responses implemented. Existing literature suggests

that higher income is associated with larger mobility reduction, while mobility inflexi-

bility and less social distancing are observable among low-income, raising disparity in
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mobility [195; 60; 125].

The fact that social fabric and inequality feedbacks are recursively produced and

reproduced by mobilities [188; 94] justifies our approach using mobility as an opera-

tional concept to analyse socioeconomic stratification and spatial isolation brought by

the pandemic. This research investigates the impact of COVID-19 outbreak and the

non-pharmaceuticals interventions (NPI) that later follows in some urban areas across

the globe namely Bogota, Jakarta, London, and New York. Our ultimate goal is to anal-

yse the size of changing residual isolation and segregation pattern in mobility due to

external shock. It is also in our interest to observe whether such phenomenon is tem-

porary caused by timely restrictions such as lockdown or rather become a long term

effects.

To test this, firstly, we capture the changing segregation pattern by quantifying mo-

bility stratification in every sequence of pandemic periods. Secondly, we empirically

points out behavioural effects of spatial and socioeconomic exploration in mobility by

computing entropy measures derived from spatial and socioeconomic property of vis-

ited places. Moreover, we identify types of intervention contributing to aforementioned

behavioural effects and their impacts on mobility segregation. Interestingly, these pro-

cedures lead us to the still presence of residual effect of shock even after the removal of

mobility restrictions.

4.2 Data and research methods

4.2.1 Data description

The first part of data collection is dedicated to mobility data from CUEBIQ dataset

[50]. The dataset contains geolocation of places visited by anonymous smartphone

users along with timestamps. Time period starts from January 2020 with last day of ob-

servation that varies between cities. Given the time gap among them, we assure that the

time window still adequately covers temporal transition during pandemics namely be-

fore lockdown, lockdown, and reopening as presented in Supplementary Material (SM)

Section 7.2.1. In total, we successfully identify 597,000 home locations of people with

different sample sizes between cities. Home location is defined as the most frequent lo-

cation visited by each individual during the night time (between 9PM to 6AM). Details

of dataset coverage and home inference algorithm is specified respectively in Section

4.2.1 and Section 4.2.2. To check the general reproducibility of mobility pattern in

New York, we also use SafeGraph dataset [93] which is available at coarser resolution

(census tract level) and longer temporal coverage (until May 2021).
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We overlay socioeconomic layer on top of the existing mobility layer. Income re-

lated features are fitted for this purpose. In Bogota, multidimensional poverty index

[51] at urban section developed by Colombian bureau of statistics (DANE) becomes the

basis for socioeconomic status computation. It captures quite comprehensive dimension

of individual well-being: health, education, utilities and housing, employment, as well

as childhood and youth condition. A simpler version of poverty index called poverty

rate [28] is used in Jakarta at village-level resolution, taking the proportion of people

living below particular amount of average monthly income. Meanwhile, socioeconomic

configuration of London and New York is plotted respectively based on total annual in-

come recorded by Office for National Statistics (ONS) [144] in 2015 at middle layer

super output area (MSOA) level and per capita income in 2018 at census tract level

taken from American Community Survey (ACS) [34]. We group the people by income

distribution in the dataset into 10 equally populated groups from the lowest SES/poorest

(1) to highest SES/riches (10). It should be taken into account that the direct compari-

son between cities could not be fully established because of diverse characterisation by

nonidentical SES indicators. Therefore, comparison across period in the same city is

more visible to derive in this context.

To synchronise the movement along mobility points and to derive observable struc-

tural break in mobility pattern induced by the epidemiological outbreak and policies

coming after, we refer to the stringency index on Oxford COVID-19 Government Re-

sponse Tracker (OxCGRT) dataset [77]. It contains a broad-spectrum of COVID-19

related policy responses taken daily by the government worldwide and measures the

strength of strictness-degree of such mobility restriction. Stringency index consists

of containment and closure policies (closings of schools and universities/C1; clos-

ings of workplaces/C2; cancelling public events/C3; limits on gatherings/C4; closing

of public transport/C5; orders to stay-at-home/C6; restrictions on movement between

cities/regions/C7; and restrictions on international travel/C8) complimented with health

system policy (presence of public information campaigns/H1). We validate this with

actual implementation at city level to ensure policy alignment between national and

local government.

Timestamp for each recorded movement opens up possibility to identify residual

effect of periodical intervention, such as the diversity of non-pharmaceutical interven-

tion (NPI) taken by the government during the COVID-19 pandemics as reflected in

the changing mobility patterns. On top of that, the degree of socioeconomic leaning

in mobility pattern is also discernible, making it visible to measure the difference in

mobility.
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4.2.2 Pipeline description

Human motion exhibits a generic and reproducible pattern formulated as a function

of temporal and spatial regularity [73]. The distribution of individual trajectories is

spatially skewed to a few highly frequented locations with home or work taking largest

proportion. With this significant regularity in mind, we build an integrated pipeline to

refine individual mobility pattern. In our pipeline, data that have been processed will be

used to construct mobility network.

We follow procedure described in Section 7.1.2 to infer home location and construct

an algorithm to detect POI (non-home) locations as seen in Fig. 4.1. Our methodology

combines the spatial and temporal attributes such as frequency of visit, time window

of visit, as well as duration of stay at given locations. We take a further step to infer

socioeconomic status for each people (based on home location and POI) by performing

spatial projection and merge it with demographic data (average income) from bureau of

statistics.

Income 

Distribution

Demography Data

$

$$$

$$

$$

Socioeconomic 

Inference

Unit:

Census 

Tract
SES people i

SES POI j

Label:

Unit:

Census

Tract

Mobility Data

Trajectory Location 
Detection

Home u

POI p

Label:

Spatial
Identification

Figure 4.1: Inference Algorithm. Mobility data contains information regarding whereabouts
of people namely geographic locations and timestamp (trajectory). Demographic
data covers average income of given spatial unit (eg: census tract). We build an
algorithm to separate home u and POI locations p and identify the inferred income
based on its spatial delineation. Discretisation on distribution of inferred income
results in two separated SES label: SES People i and SES POI j.

POI Location: Apart from home, human individual activities evolve around other
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areas for some reasons, including work. Trip between home and work location dom-

inates daily mobility, while visits to other locations are broadly distributed with short

inter-event times [171]. We set criteria for POI location as place other than home

where people with identified home locations are present during weekdays from 9AM

until 3PM. Afterwards, the rest of locations that do not fall into either home or work

category are labelled as others.

Socioeconomic Status (SES): We assign SES label to every individual and and POI

based on socioeconomic data previously discusses in Section 4.2.1. The first step to

SES people is to identify socioeconomic feature of area where they live (home location).

Similarly, SES POI is inferred by mapping out the area where points (work and other

locations) are spatially positioned. We sorted the values by ascending order and split

them into equally populated bins of 10 SES labels, making SES 1 to be the poorest and

SES 10 to be the richest.

4.2.3 Mobility matrix

In Section 2.3.1, we mention the basic formulation of stratification used in the mo-

bility stratification matrix Mi,j is based on mobility network G = (U, P,E). Given a

pair of mobility stratification matrix Mi,j in two consecutive periods, we initialise mo-

bility adjustment matrix Si,j is set up where the matrix element bij entails the difference

in proportion of frequency visits. More formally:

Si,j = M t1
i,j −M t2

i,j, (4.1)

where t1 denotes the initial period and t2 is the succeeding rolling period. For instance,

if we have 3 periods namely Before Lockdown (BL), Lockdown (L1) and Reopening

(R1), we could generate three Si,j respectively:

SBL−L1
i,j = MBL

i,j −ML1
i,j , (4.2)

SL1−R1
i,j = ML1

i,j −MR1
i,j , (4.3)

SBL−R1
i,j = MBL

i,j −MR1
i,j , (4.4)

while SBL−R1
i,j shows the difference between period before enforcement of lockdown

and reopening (removal some mobility restrictions in the post-lockdown).

Moreover, the degree of socioeconomic isolation is presented by assortativity mea-
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sure of mobility stratification matrix r. Values closer to 1 signal the higher concen-

tration of visiting venues within own socioeconomic range, while lower cutoff values

at -1 reveals the tendency of visiting places outside own class. If the value is equal

to 0, the dispersion in visiting pattern throughout classes without any structural choice

preference regarding socioeconomic status of places.

4.2.4 Ranking of non-pharmaceutical intervention

To rule out the effectiveness of each type of restrictions, we initiate univariate lin-

ear regression model. There are 9 restrictions k listed as NPI respectively closings of

schools and universities (C1), closings of workplaces (C2), cancelling public events

(C3), limits on gatherings (C4), closing of public transport (C5), orders to stay-at-home

(C6), restrictions on movement between cities/regions (C7), restrictions on international

travel(C8) and presence of public information campaigns (H1). Stringency value S for

every restriction in each temporal snapshots is obtained from OxCGRT dataset and to

be used as independent variable. The dependent variable is two types of mobility en-

tropy, being computed separately: geographic space-based Hm(X) and socioeconomic

space-based Hs(X). If a city passes three temporal snapshots t (eg: BL-L1-R1), we

will build upon 3 periods-by-9 restrictions that results in 27 univariate linear regression

models.

To further understand the impact magnitude of a single restriction k ∈ K at period

t ∈ T , we fit the data to this form:

Hm(X)t ∼ St
k, (4.5)

and

Hs(X)t ∼ St
k. (4.6)

Given the configuration, each model gives R−squared that is used as basis of rank-

ing after sorting from the highest value. As a statistical measure indicating goodness-

of-fit, R − squared shows the extent variation of a dependent variable (spatial or ses

mobility entropy) could be explained by the independent variable (a single restriction).

Therefore, we base our framework on this approach.
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4.3 Results

Organisation of daily mobility pattern is affected by dynamics of socioeconomic

fabric. Spatial distribution of commercial areas, residential units, workplaces, and

schools, among others, encourages people to move from a point to many different

places across urban landscape. Built up on the notion of unequal distribution at in-

dividual level, mobility is also engendered and reinforced by inequality [142]. The

presence of individual preferences over socioeconomic characteristics of places could

be further signified at the class level by taking the visit ratio of people coming from

particular class to places distributed in various other classes.

We set our scientific agenda to study the impact of COVID-19 outbreaks, includ-

ing imposed restrictions that come after, on the way people make adjustments in their

daily mobilities. We introduce two conceptual frameworks respectively induced assor-

tativity and residual isolation. To operationalise the aforementioned concepts, we take

the strategy previously proposed [109; 85] to indicate the existence of socioeconomic

assortativity in visiting patterns.

4.3.1 Changing segregation pattern

Assortativity may lead to segregation in mobility where people of different socioe-

conomic characters meet less likely than with own counterparts in the same socioeco-

nomic level. We take the first step to capture stratification tendency by transforming mo-

bility network into mobility stratification matrix Mi,j as defined earlier in Section 2.3.1.

As a result, mobility stratification in each period is summarised in a single matrix. To

standardise the assortativity measure for the sake of comparability and reproducibility,

we compute correlation coefficient r between i ∈ cu and j ∈ cp as motivated by assor-

tativity coefficient used in number of works [139; 59; 25]. Values closer to 1 signal the

higher concentration of visiting venues within own socioeconomic range (assortative

mobility), while 0 pinpoints the dispersion in visiting pattern throughout classes (non-

assortative mobility). Otherwise, lower values with cutoff -1 indicates the tendency to

visit places outside own socioeconomic class (disassortative mobility). Complete tech-

nical note on transformation technique and assortativity computation is discussed in

Section 4.2.3.

Fig. 4.2 provides snapshots of mobility stratification pattern in London, starting

from before lockdown and followed by the interchangeable periods between series

of lockdown and reopening. We construct two different matrices. Firstly, Fig. 4.2a

contains all locations in the trajectories, regardless identified label as either home or
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(a)

(b)

r = 0.416 r = 0.608 r = 0.474 r = 0.461

r = 0.279

Figure 4.2: Mobility stratification matrix Mi,j . The structure of empirical socioeconomic
stratification in London is visualised in a matrix form composing visit probabilities
of individuals in each class to places located in various other classes. Fig. 4.2a re-
veals that larger visit proportion happens in a bin with lighter colour grades along
diagonal elements across periods: Before Lockdown (BL), Lockdown (L1/L2), and
Reopening (R). The strength of assortative mixing is quantified by a correlation
coefficient between i and j denoted as r. We find stronger diagonal concentra-
tion during lockdown, denoting considerable visits to locations within own SES.
Therefore, enforcing lockdown levels up assortative mixing. This is considered as
a change in mobility preference due to NPI. Fig. 4.2b is constructed by implement-
ing sliding window algorithm. For every 1 week window with 1 day slide interval, a
mobility matrix is generated with computed r. Increasing r overlaps with lockdown
period. Colour shades of line and block denotes city.

non-home areas. Inference method for location detection and labelling (home and non-

home) is provided in Section 4.2.2. In Fig. 4.2a, x-axis represents socioeconomic

classes of people i while y-axis denotes socioeconomic classes of places j. As people

move, we calculate the frequency visit for each pair of classes (people-place), propor-

tional to total visits made by everyone who belongs to cu = i (column-wise normal-

isation). Colour shades differ the visit magnitude where it becomes lighter as visit

proportion gets larger.

Taking a closer look at Fig. 4.2a, we find noticeable main diagonal elements of the

matrix where the colour gradient is away brighter than the the rest. The dominance

of diagonal trace reveals that people usually visit places within their own class, inde-

pendent of their socioeconomic rank. This generic pattern is consistent from time to

time against the level of mobility restriction. More prominently, there is solid cycli-
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cal pattern showing assortativity measure r as a response function towards strictness

of such restrictions (NPI). The implementation of lockdown (L1 and L2), for example,

harnesses mobility at large and encourages people to visit POI within own socioeco-

nomic spectrum. Therefore, correlation coefficient r is on the peak during the first

lockdown (L1). Once ease of mobility is reintroduced during reopening (R1), visiting

more places is possible again. Chance for higher socioeconomic mixing in mobility is

opened, resulting in lower r. However, it does not retrieve back to the original level be-

fore lockdown. We recognise this phenomena as induced assortativity. Similar matrices

computed for other urban areas are presented in Section 7.2.2.

To refine the computational robustness, we look at more granular temporal length

by introducing sliding window approach in constructing mobility stratification matrix

(Fig. 4.2b). For every 2 weeks window with 1 day slide interval, we create a matrix

and measure its r. This steps explodes the number of generated matrices, showing how

segregation is changing as a function of t. It is also found anywhere across the hemi-

sphere but quite unshifted in New York. Mobility assortativity in New York relatively

stable across the time without any significant temporal cycle. Outlier pattern in New

York could be addressed to the imbalance and asymmetric mobility between five bor-

oughs within its territory: Manhattan, Brooklyn, Queens, Bronx, and Staten Island. In

related studies, Rajput and other [161] state that stay-at-home orders implemented in

the midst of COVID-19 outbreak disturbed 80% typical daily movement within city in

New York from as early as the second half of March 2020. Recalling that Manhattan is

the epicentrum of human dynamics where various mobility motifs and activities occur,

we observe the case on Manhattan separately in Section 4.3.3 to clarify the upsurge in

assortativity during lockdown that already found in other cities.

4.3.2 Residual isolation

The next logical question is regarding the persistence of the segregation pattern

that being discussed so far. To refine the observation, we isolate home location effect

on visiting pattern by removing own home location from mobility trajectory of each

individual (see Section 7.2.3). Assortative mixing is consistently pronounced regardless

types of policy imposed on mobility restriction, for instance lockdown and reopening.

Moreover, it validates the finding as the revolving cycle persists even after we exclude

own home location from mobility trajectory of each individual.

To further refine the observation related to changing segregation pattern, we moti-

vate this study to measure the presence of residual isolation. The ultimate recovery is

expected when mobility pattern and assortative mixing during the reopening stage are
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(a)

(b)

Figure 4.3: Mobility adjustment matrix Si,j . It shows the ratio in stratified mobility pattern
between a period during the pandemic namely Lockdown (L1/L2) and Reopening
(R) as to compare to Before Lockdown (BL). Green shades indicate more visits
made before the enforcement of lockdown, white blocks constitute equal visits,
otherwise brown blocks appear. Therefore, we observe contrast proportion on the
upper diagonal elements in London as visits to these places touch the lowest level
in L1 relative to BL, burst in R1 and drop in L2 (Fig. 4.3a). Residual isolation
effects as measured by average value of main diagonal trace in each matrix µre.
Comparative measure across cities in terms of average residual isolation effect µre

is provided in Fig. 4.3b. Purple block shows the difference between before lock-
down baseline and reopening stage.

on the same level as before lockdown. If such conditions hold, sudden changes trig-

gered by external shock namely COVID-19 outbreak might only carry short-temporal

effect and people don’t have any barrier to return to the normal pre-pandemics config-

uration. Mobility adjustment matrix Si,j is set up where the matrix element bij entails

the difference in proportion of frequency visits between a pair of consecutive periods

as seen in Fig. 4.3. In London, there are 4 pairwise comparisons. If the visits are more

prominent in the second period, the bins have negative value with brown shades. Other-

wise, visits mostly happen during the first period coded in green. If the bins turn white,

visit proportion remains the same in those two periods.

Fig. 4.3a reveals the difference between before lockdown and the first lockdown,

inferring that the first lockdown is the most stringent among others. It tells us that the
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induced assortativity develops into isolation. In the extreme degree, individuals during

lockdown restrict their preference to be present in the areas within own socioeconomic

boundary around 20% more than they used to be. As the reopening is imposed after

the first lockdown, the pattern is reversed. The difference between reopening and the

second lockdown is very subtle. Interestingly, the reopening is not necessarily able to

restore the typical configuration to before lockdown. We still see brownish gradient

along main diagonal traces, revealing the existence of residual isolation effect.

Quantitative measure of residual isolation µre is provided by computing average

value of matrix diagonal elements in Fig. 4.3b. It confirms the visual assessment in

Fig. 4.3a. Initially, if we include all locations in the trajectories (Fig. 4.3b: All Visits),

shifting to the first lockdown (BL-R1) results in the lowest µre because visits in the first

lockdown is highly concentrated within own socioeconomic class. In this case, Jakarta

exhibits highest average residual effect where people tend to spend almost more than

30% frequent activities in the class they belong to. It is followed by Bogota at about

20%, slightly lower in London, and nearly 10% in New York. However, the reopening

(compared to before lockdown/BL-R) does not directly bring µre equal to zero in cities

we observe, indicating the prevalent residual isolation. The order of residual isolation

level changes a bit as New York precedes London. Weaker average residual isolation is

found after removing local visits (see Section 7.2.3) and pushes µre closely distributed

around zero.

4.3.3 Manhattan effect

New York is made up of five boroughs respectively Manhattan, Brooklyn, Queens,

Bronx, and Staten Island. Among others, Manhattan is the centre of human activity

agglomeration. Manhattan as a borough with the highest economic pull-factors in New

York is massively affected, because mobility disruption hit not only movement of peo-

ple inside borough, but also inter-borough movement that usually found in commuting

pattern to workplace. People who reside in Brooklyn and Queens, for example, stop

commuting to Manhattan as many of them switched to working from home practice. It

is also reflected in lower use of public transportation and level of road traffic.

Segregation pattern changes as a response to mobility restriction imposed due to the

pandemic. In Fig. 4.2b, we see that the mobility assortativity r in New York is relatively

flat as to compare to other cities such as Bogota, Jakarta, and London, but a more

substantial mechanism at work that shapes urban human dynamics might contribute as

well. In this section we take two strategies to disentangle spatial scale. At first, we

focus in the area of Manhattan where activities and mobilities are heavily concentrated.
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Later on, we analyse mobilities in each borough that together unite as New York (intra-

mobility), followed by mobilities between a pair of boroughs (inter-mobility).

(a)

(b) (c)

r = 0.519 r = 0.656 r = 0.621

μre = -0.158 μre = 0.030 μre = -0.128

r = 0.319 r = 0.372 r = 0.351

Figure 4.4: Mobility stratification matrix Mi,j and adjustment matrix Si,j for Manhattan.
We impose additional layer of filtering in New York by only looking at the locations
within Manhattan boundary. Assortative mixing touches the highest level during
lockdown (r = 0.656) as shown in Fig. 4.4a. Similar computation based on sliding
window algorithm at higher temporal resolution (1 week window with 1 day slide
interval) in Fig. 4.4c is also in concordance. After reopening, average residual
isolation effect µre is still 12.8% higher as to compare to before lockdown period
Fig. 4.4b.

Mobility stratification in Manhattan is visualised as matrix in Fig. 4.4a and a sliding

time window plot in Fig. 4.4b. Measures taken during lockdown affect individual pref-

erence regarding their mobility. Inevitably, there is an increase in visits to places within

own socioeconomic range. Reopening happen at some points, however nothing such

fully recovery exists. Taking a pair of matrices in two consecutive periods, we have

another form of matrix to show mobility adjustment as seen in Section 4.4b. We still

find that the average value of diagonal elements is 12% higher than before lockdown

(see right matrix). After all, residual isolation effect remains prominent in Manhattan.

Computations for mobility in New York based on CUEBIQ dataset (Fig. 4.5a) are

reproduced for SafaGraph dataset (Fig. 4.5b). The two comes in conformity in terms

of the proportion of mobility category in which individual flows within a single bor-

ough (intra-mobility) surpasses the fluxes across different territories (inter-mobility).

The first is presented in Fig. 4.5c (CUEBIQ) and Fig. 4.5d (SafeGraph). A striking

mirroring degree of assortativity in mobility r within Manhattan is seen, ranging from

0.6 before the implementation of lockdown to 0.8 in the aftermath. While the value

of r is slightly different in Bronx (light green), Brooklyn (orange), Queens (purple),

and Staten Island (pink), the pattern stays the same: increasing segregation since the

lockdown period. One reason behind is that once people stay at residential area, they

are bounded not only by spatial scale, but also socioeconomic homogeneity in the sur-
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Figure 4.5: Trip composition and mobility assortativity r by category. Intra-mobility (mo-
bility within borough) dominates trip proportion in both CUEBIQ (Fig. 4.5a) and
SafeGraph dataset (Fig. 4.5b). Mobility assortativity is computed at census tract
level based on OD matrix, showing similar pattern for intra-mobility mixing namely
increasing segregation in the two datasets (Fig. 4.5c-d). Interestingly, segregation
in inter-mobility (mobility between borough) tends to be lower instead, for instance
in mobility flow between Manhattan and Bronx (Fig. 4.5e).

rounding neighbourhoods.

On contrary, individual flows across boroughs (inter-mobility) exhibits decreasing

segregation as shown in Fig. 4.5e in the case of mobility flux between Manhattan and

Bronx. As a undirected mobility network, mobility recorded in CUEBIQ dataset (dark

green) and SafeGraph dataset (dark blue) indicate the emergence of disassortative mix-

ing with value lower than 0, implying that people abruptly visit places differ from own

socioeconomic status whenever they need to step out territory/borough where they re-

side due to multiple mobility reasons (e.g.: work or school).

4.3.4 Restriction and behavioural effects

Pandemic brings another complexity in the way people move from one location to

numerous others across space. During the COVID-19 outbreak, mobility is not merely

driven by established personal preference but also supplementary necessity to align with
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prescribed mobility restrictions. Long distance and intensive human movements are no

longer possible to take deliberately in order to restrain the surging number in COVID-

19 infections and spreads. This inter-twinned mobility motif draws our attention to

translate its effect on the variability of location preference among individuals.

We look at heterogeneity of where-to-go decision from two different aspects: spatial

and socioeconomic composition. Entropy is employed to measure the regularity of mo-

bility traces in term of geolocation that resulted in spatial mobility entropy Hm(X) and

socioeconomic class of those locations that gives SES mobility entropy Hs(X). Lower

entropy corresponds to higher domination of particular locations/SES of locations in the

visit pattern, signalling the extensive locational/socioeconomic isolation. Given that the

measure is normalised by period, the upper cut-off is 1 (absolute heterogeneity) and the

lower cut-off is 0 (absolute homogeneity). Formal formulation of entropy is available

in Section 2.3.1.

(a)

(b)

(c)

(d)

μμ

μ

σ

σ

Figure 4.6: Spatial and SES mobility entropy. Spatial mobility entropy Hm(X) (Fig. 4.6a)
takes into account the heterogeneity of places in individual trajectory with value
range from 0 (visiting same locations) to 1 (visiting various locations). SES mo-
bility entropy Hs(X) (Fig. 4.6b) takes similar computation after replacing set of
locations with socioeconomic status of area where those places located implying
visit variation between socioeconomic isolation (0) and socioeconomic diversity
(1). In London, we observe less heterogeneity in both locations and socioeconomic
status of places visited by individual during lockdown. Even after some relaxations
are allowed, people do not experience mobility at pre-pandemics level. Similar ob-
servation also become evident in other cities globally (Fig. 4.6c).

In London, we deal with four phases of pandemic: Before Lockdown (BL), Lock-

down I (L1), Reopening (R1), and Lockdown II (L2). Fig. 4.6a reveals the distribu-

tion of locational mixing degree in individual trajectory. Fig. 4.6b follows the simi-

lar way but rather emphasising on socioeconomic setting of those listed locations. In
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both figures, skewness of the curve moves to the left (to the direction of zero) in the

first lockdown (light green), so does in the second lockdown (dark green). It points

out the tendency of upholding more homogeneous visiting pattern. In respect of spa-

tial scale, urban explorability drops once policy limiting mobility flow implemented.

Consequently, trajectory becomes more narrow (centred to smaller set of places) and

localised (closer to where home is located). Similar pattern also holds with regard to

socioeconomic range. As set of locations is shrunken by distance, in turn it becomes

highly concentrated to particular socioeconomic level that reflects own well-being.

We check the shifting magnitude by computing average value (µ) and standard de-

viation (σ) of the two entropies. In Fig. 4.6c, the initial phase of lockdown (L1) char-

acterises mobility pattern to be locationally more homogeneous since spatial mobility

entropy Hm(X) is lower than before lockdown period (BL). Spatial shrinkage largely

happened in Bogota during L1, reaching the lowest record of average value at 0.35.

Jakarta comes after at 0.37, while New York and London are somewhere between 0.4

and 0.5. The reopening phase that follows (R1) does not bounce the variability of

locational and socioeconomic preference back to original level before lockdown even

though it goes to recovery direction. Compared to spatial mobility entropy, ses mobility

entropy Hs(X) in Fig. 4.6d receives grave repercussions caused by the outbreak even

more as µ ranges from about 0.5 to lower values. During L1, People in Bogota and

Jakarta experience deeper socioeconomic isolation as Hs(X) falls below 0.2. London

is close to 0.35 while New York is around the borderline of 0.4.

4.3.5 Mobility intervention

To this point, we have revealed the embeddedness of residual isolation effect of

shock even after mobility restrictions gradually lifted. However, what kind of restric-

tion significantly contributes to such configuration is still unknown. Data on NPI con-

tains the strictness level of every single restriction (9 categories) over period of time,

including closing of main venues such as school and workplace. We rank those restric-

tions listed as NPI by running linear regression where the dependent variable is entropy

values and the independent variable is stringency of each restriction. The R− squared

is descendingly sorted and label the rank from 1 to 9 starting from the restriction with

highest (1) R-squared to the lowest (9). On top of that, we are motivated to reveal the

similarity of restriction profile. We compute Spearman’s rank correlation on the re-

striction ranking by city rkHm(X). It measures the strength of monotonic relationship

on the ranked data. Possible coefficient values are between -1 (perfect negative mono-

tonic relationship) and 1 (perfect positive monotonic relationship), while 0 denotes the
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condition where no correlation found. Methodological justification for this approach is

further explained in Section 4.2.4.

(a) (b)

(c) (d)

Figure 4.7: Spatial Constraint. The effectiveness of NPI in constraining spatial (Fig. 4.7a-d)
exploration of individual is presented as rank based on significance of each type
of restriction (C1-C8 and H1) in interfering spatial entropy rkHm(X). Restrictions
that come on the top rank is printed in bold. In all cities except New York, public
information campaign (HI/light purple) is the most influential instrument before
lockdown, but weakening later on.

Public information campaign (H1/light purple) is the most preponderant for every-

one in Bogota, Jakarta, and London (Fig. 4.7a-c, top row), equally affects mobility in

terms of locational diversity in mobility. This restriction gets less importance as time

goes by. International travel controls (C8/dark oranges) predominantly dictates the tra-

jectories in the first lockdown in Bogota (Fig. 4.7a) and in both reopening phases in

Jakarta (Fig. 4.7b). Workplace closing (C2/dark blue) highly affects London in the first

lockdown (Fig. 4.7c) but rather later to be effective in New York (Fig. 4.7d). Meanwhile

in New York, stay at home requirements (C6/red) diminishes spatial exploration in the

first lockdown.

Individual exploration occurs not only over physical space, but also beyond socioe-

conomic dimension. Therefore, enforcement of NPI (widely known as mobility re-
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strictions) also reduces socioeconomic diversity of visiting places. The computational

results on the effectiveness of NPI in restricting mobility in term of socioeconomic

exploration rkHs(X) is reported in Section 7.2.8.

4.4 Discussion and conclusions

Mobility network as a system is dictated by personal preferences over location, in-

cluding home and workplace area as well as the availability of supporting amenities

and infrastructures like school, park, shop, and public transportation. Given the fact

that personal preferences are bounded by own socioeconomic background, social strat-

ification characterises mobility at large. The strict preference towards such boundary

may lead to social exclusion [116; 156] and social segregation [202; 126].

The presence of sudden change coming from outside of the system, for instance the

burst of COVID-19 outbreak, definitely reshapes typical pattern of mobility network.

To combat the spread of infection, governments worldwide take into account the non-

pharmaceuticals interventions (NPI) with basic principle of controlling crowds. Social

distancing stands on the frontier and later followed by various other measures such

as cancellation of large gathering, closure of school and workplace, and stay-at-home

order. In response to imposed regulation, people reorganise their mobility motif and

reduce the activities outside home. Essential daily trips grocery or pharmacy cut short

and become localised, closer to the neighbourhood where they live. Consequently,

changing travel behaviour is visible, especially in terms of destinations and distances.

Earlier study [105] uses mobility data to show the effectiveness of aforementioned

interventions in dealing with the surge of COVID-19 cases. However, the understand-

ing related to the extent those mobility restrictions bring additional strength of assor-

tative mixing in urban encounter that further stratifies the society remains untapped.

Disadvantages such as isolation and segregation caused by reduced spatial scale and

possibility of wider urban encounter and exploration may stimulate excess homophilic

behaviour [192] at the cost of shrinking diverse encounters [167].

We took a step forward to analyse the impact of COVID-19 outbreak on structural

preference reflected in mobility pattern by looking at the mobility dynamics in Bogota,

Jakarta, London, and New York. In this study, we find that in-class visits dominate

mobility pattern in every temporal snapshots, ranging from before lockdown, lockdown,

to reopening (see Fig. 4.2a). Solid cyclical pattern of homophilic behaviour is also

detected as the assortativity coefficient r remains highest during lockdown while the

emergence of reopening does not directly brings the typical mobility mixing pattern

to the original level before the enforcement of lockdown, indicating the existence of
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residual isolation effect.

We further measured the degree of residual isolation by comparing stratification

in mobility pattern between two consecutive periods (see Fig. 4.3a). It validates the

presence of residual isolation effect where visits within own class during reopening

is still higher than the usual rate. Another feature of isolation in mobility that has

been presented in this study is the decreasing heterogeneity of where-to-go decision

from two distinctive aspects: spatial and socioeconomic composition (see Fig. 4.6).

Entropy measures reveal that visits becomes highly concentrated to particular locations

and socioeconomic classes.

In literature, NPI is globally considered to have potent impact in reducing virus

transmission brought by COVID-19 [98; 177]. Nevertheless which type of NPI does

constrains mobility across time window is still open to investigation. We proposed

ranking approach for each mobility restriction listed as NPI to examine its magnitude in

intervening the diversity configuration of visiting pattern. In all cities we observed, the

significance of public information campaign (H1) gains its highest importance in the

early stage of pandemic but drops as other measures available on the table. Variability

of ranking could be related to the structure of urban fabric in respected city as well as

the level of socioeconomic well-being. The results of this study could be extended by

mapping out the spatial distribution of urban forms in order to better understand better

way to mitigate dissonance induced by residual segregation in the pandemic time, for

example by alienating with functional mixing of urban amenities.

Apart from the computations demonstrated to this point, we realise that stronger ev-

idence for residual isolation in the longer term could be presented if the access to more

recent data is available. Our latest data only covers the initial period of reopening where

NPI and the COVID-19 protocols is still at the frontier in controlling the outbreak. It

solely depends on the behavioural conformity/attitude towards mask wearing and social

distancing without any intervention from vaccination policy. The difference that the a

2-dose COVID-19 vaccination makes in the US is estimated reducing the overall attack

rate 9.0% to to 4.6% [127]. Reduction in death rate at 69.3% is also quite remarkable,

as well as decreasing adverse effects among ICU hospitalisations (65.6%) and non-ICU

hospitalisations (63.56%). However, the considerable drop of epidemic spreading dur-

ing this period is still under the condition of necessary NPI implementation. Once the

attitude towards becomes NPI less adherent due to the massive vaccination and the ar-

rival of booster program, we could further investigate whether mobility configuration

of visit preference will be fully recovered and back to normal pre-pandemic level.

Another boundary that we would like to underline is the limitation in direct com-

parison between cities. This issue is raised up due to the difference variables we use
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in defining SES, depending on the availability of data. In some cities, SES is con-

structed solely based on income. However, poverty index that captures aspect beyond

income such as quality of life is preferred in other cities. If similar characterisation of

SES could be made once data is accessible in the same spatial resolution (e.g: Relative

Wealth Index for every 2 km sq), broader comparative interpretation could be brought

in this study.
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Chapter 5

Multiscale spatial economic diversity

Urban economic diversity is a complex phenomenon that entangles various aspects

such as proximity and embededdness. Under the notion of agglomeration and spillover,

cluster formation emerges as result. Apart from the multifaceted process, the under-

standing on economic diversity still faces the gap especially related to the relation be-

tween spatial scale and sector size that colloquially seeds proximity through colocation.

In this study, our utmost motivation is to clarify the entanglement between the role of

spatial proximity and spatial embeddedness in reproducing economic diversity across

industrial sectors by presenting three mechanisms that affect economic diversity in New

York with main focus in Manhattan namely size, spatial, and proximity. We also search

for evidence of larger economic diversity in larger spatial unit by comparing computa-

tions over a number of spatial grid scales based on bipartite projection on spatial and

sectoral linkage. The results show that sectors with larger number of firms or enti-

ties form close knitted connections in the network and largely contribute to the urban

economic diversity.

5.1 Introduction

Global city emerges as a conceptual underpinning for a primary node in inter-

sectoral economic activities at world wide scale. In the literature, a number of lead-

ing papers have explored the concept of global city and its interchangeable term called

world city, including their role in shaping the economy. Friedmann (1986) [71] pro-

poses the foundational hypothesis of world city by dismantling hierarchical organisa-

tion of city and identifying joint economic forces that form global network: invest-

ment flows, division of labour, and flow of people. While investment flows are widely

supported by backbone of banking and financial sector, the existence of extended ser-
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vices such as manufacturing and retail are not diminutive either. Dual side of labour

market characterised by co-existing professionals and low-skilled workers brings mon-

etary prospect to wider population, making flow of people at large inevitable. Sassen

(1991) [168] rather observe the presence of global city as a spatial extension of global

economy that incorporates various economic activities along production chain located

in different places, implying "advanced producer services which are the distinctive

feature of contemporary world city formation". Consequently, the theorisation of the

global city model consists of complex building blocks from central corporate func-

tions, specialised service firm, growing agglomeration economies, highly specialised

and networked services sector, expanding transnational urban system, increasing spatial

and socioeconomic inequality, to rising informalisation of a range of economic activi-

ties [169].

Nonetheless, the position of New York in such configuration as the world’s business

hub is mainly driven by centrality of international financial and business centres located

in the city with direct transactional connections to many other industries world wide. In

2022, with a market of 8.6 million potential clients and a metro area population of more

than 25 million, the economic prospects in New York are appealing. On the supply side,

the city has over 250,000 enterprises and 43 of the corporations in the S & P 500 Index

have their headquarters here, the most of any city in which altogether contributing to

the Gross Annual City Product of USD 678 billion [46]. Its robust economy and

infrastructure, global workforce, on top of cross-industry innovation attracts many other

sectors and people to be connected, creating multiplier for already highly established

diversity level in the economic sectors. However, looking at finer spatial scale where

New York as a city consists of 5 boroughs namely Bronx, Brooklyn, Manhattan, Staten

Island, and Queens, activities and sectors apparently are not distributed homogeneously

in space. Main central business districts (CBD) respectively Midtown, Midtown South,

and Downtown are located in Manhattan.

Literature in spatial economics, economic geography, and regional science widely

discuss the significance of industrial clusters and reckon the contribution of economic

diversity in shaping competitiveness of a city. Malmberg and Maskell (2002) [117]

underline that in economic process, the notion of proximity and place plays an im-

portant role. Economic activities tend to form spatial agglomeration due to the pres-

ence of informational and knowledge exchange such as flow of labour (Simpson,

1992) [179], relationships between supplier and customer (Porter, 1990) [157], and

knowledge spillover (Krugman, 1992) [103] where geographical proximity facilitates

these exchanges (Potter and Watts, 2011) [159]. The emergence of industrial clusters is

also linked to the rise of regional specialisation that results in characterisation of hetero-
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geneity of spatial concentration and motivated by the law of increasing returns to scale

(Krugman, 1991) [102]. Nevertheless, the context of space becomes an integral part

while discussing embeddedness, shaping the understanding towards inherently spatial

framework (Martin, 1994) [120]. More precisely, spatial embededdness counts on "who

is embedded in what" and "what is so spatial about it" [155; 83]. The first remark is

linked to emulation of local institutional fabrics as suggested by MacLeod (1997) [115]

and the second is articulated by Porter (1998)) [158] via the conceptualisation of cluster

as an embodiment of geographical proximity in the firm networks. In addition, Halinen

and Tornroos (1998) [78] land on the lenses prescribed by location theory by looking at

the preference of businesses over locations in running their activities. Although these

studies closes the gap on the absence of spatial scale in the Granovetter’s preliminary

work [75], the methodological toolbox purposely designed to capture the scale effect

aspect in spatial embeddedness remains missing from the literature.

Within a finite spatial limit, congregation of firms accessing nearby production

factors including labours could accrue higher net gain as transaction costs coming

from transportation and communication spending are compensated by reduced distance,

therefore, localised increasing returns to scale gives a sound argument for the develop-

ment of industrial clusters (Krugman, 1993) [104]. According to Nefke and Henning

(2013) [135], employees and their skills are listed as the main important resource that a

firm has because skills as endowment factors enable people to transform resources into

end products and bring relatedness among various industries via knowledge creation.

In this context, skill intermediates connectivity due to switching employment driven

by revealed ability of skilled employees to move principle. It is quantified as Revealed

Skill Relatedness (RSR) and suggests that labour flows dictates industrial linkages, mak-

ing the existing nested hierarchy-based industrial classification system less adequate in

contrast to proposed web-based industrial skill connections.

Observing industrial relatedness breaks another layer of complexity, taken into ac-

count its presence in different phase of economic process. In general, industrial relat-

edness could be measured by a broad spectrum of approaches. The first is constructed

based on similarity in output, widely known as the standard industry classification sys-

tem [7]. It has a nested structure that implies higher relatedness among industries within

same 4-digit class than 2-digit class, for instance. The second highlights the importance

of shared inputs and knowledge in production process. Breschi et al. (2003) [29] use

patent portfolios to distinguish one industry to another while Farjoun (1994) [67] takes

occupational profile as an instrument in measuring such relatedness. The third is derived

from industrial portfolios where economies of scope comes out as a further implication

of resource co-utilisation at various levels, including firm level [84] and country level
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[136]. Neffke et al. (2008) [136] and Frenken et al. (2007) [70] come into an agreement

that externalities caused by industrial relatedness are superior than externalities solely

raising from localisation and diversity.

Relatedness and embededdness are utterly two sides of the same coin. Related-

ness draws connectivity among sectors while embededdness underline the localisation

aspect of relatedness. Moreover, industrial relatedness on one hand brings sectoral

proximity given sizeable shared resources. Locational embededdness on the other hand

reinstates the notion of spatial proximity because of being closely located next to each

other in the same area. The term of localisation economies incentives positive external-

ities in a particular industry or the sector concerned (Marshall, 1920) [118] is broaden

by recognising the dimension of spatial scales, known as urbanisation economies (Ja-

cobs, 1960) [87], making positive externalities available to various industries and all

sectors. In details, Goya (2022) makes a distinction between Marshallian and Jacobian

externalities [74]. According to Marshallian externalities, benefits due to spatial ag-

glomeration is considered to spread out across firms in the same industry because they

share the pool of labours, the chain of suppliers, and the accumulation of specialised

knowledge. On the other spectrum, Jacobian externalities suggests that the presence of

diverse industries induces interactions among firms and triggers innovation, therefore

positive externalities simultaneously affect multiple firms and industries. Consequently,

size of city matters recalling that a larger area tends to have more diverse amenities and

greater capacity to accumulate input-output linkages. However, the relation between

spatial scale and sector size that colloquially seeds proximity through colocation is left

to the lack of elaboration. The availability of free and updatable place of interest (POI)

data open opportunity to establish integrated observation under study.

Our objective in this research is therefore to unravel the role of spatial proximity and

spatial embeddedness in reproducing economic diversity across industrial sectors. We

are interested in addressing methodological issues and proposing an artefact of mea-

surement that allows us to disentangle the interdependence between geographical space

and sectoral diversity. In our perspective, tools in network science could be adopted to

enrich our analysis, especially in dealing with the complex interconnected phenomenon

that drives economic diversity such as the size problem, the spatial scale problem, and

the proximity problem.

Jacobs (1961) pinpoints a higher dependency of smaller enterprises on city as a rep-

resentation of consolidated market where varied material supplies and skills are abun-

dant in a concentrated area and directly connected to other sector of the economy, al-

lowing them to further contribute to the diversity at large. Accordingly, the size of each

sector has an influence on how it contributes to the estimation of its effect on the overall

68

C
E

U
eT

D
C

ol
le

ct
io

n



diversity level due to the aforementioned mechanism such as the effect of proximity

between sectors as seen in the concept of relatedness. It motivates us to take an initial

step in formulating the first research question (RQ1): What are the effects of size of

sector relating to inducing economic diversity?.

The existence of spatial embededdness is vastly examined within the literature, yet

further investigation on the extent spatial scale matters in determining sectoral linkage

among different business is still unavailable. As in Bergman and Feser (2020) [21], Van

den Berg et al. (2001) [189] limit the observation to the imprecise dimension called

local or regional if the emergence of industrial cluster, a network of co-located firms of

a given industry, fills in a territorial boundary without specifying the spatial scale and

shape. To tap the gap, we stand on the the importance of raising the following question

(RQ2): What are the effects of spatial and scale of sector relating to inducing economic

diversity?.

Last, our approach in response to proximity problem differs from the existing stud-

ies in which spatial proximity and sectoral proximity are treated separately. Spatial

proximity could be measured based on metric distance or time distance (e.g.: travel

time in the transportation networks subject to the availability of transportation modes)

between two corresponding locations. On another spectrum, sectoral proximity is com-

puted by taking industrial similarity (e.g.: 2-digit Standard Industrial Classification/SIC

category) into account as seen in Bishop and Gripaios (2007) [24]. Instead of following

the same construction, we combine the two and raise a question (RQ3): To what extent

does spatial proximity corresponds to co-location patterns between sectors?.

5.2 Materials and methods

5.2.1 Data description

We decide to analyse New York as a case study in investigating multiscale spatial

distribution of economic diversity because of two concerns. The first concern is related

to the profile of New York as global city with its complex sectoral and spatial linkages

that fits to our motivation in studying scale and shape of economic diversity. The second

concern is due to the availability of POI data at a fine-grained resolution. These data are

collected from SafeGraph Core Places [166] for 71,468 places across New York City

in which 68,258 (96%) of them are located in Manhattan. Core Places dataset contains

baseline information on business listing including business name, address, industry cat-

egory, and geolocation (latitude and longitude).
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Aggregated Sector 2 digit NAICS code 2 digit NAICS description

Agriculture 11 + 21
Agriculture, Forestry, Fishing and Hunting

Mining, Quarrying, and Oil and Gas Extraction

Arts 71 + 72
Arts, Entertainment, and Recreation

Accommodation and Food Services

Construction 23 Construction

Educational 61 + 62
Educational Services

Health Care and Social Assistance

Finance 52 + 53
Finance and Insurance

Real Estate and Rental and Leasing

Information 51 Information

Manufacturing 31 + 32 + 33 Manufacturing

Other 81 Other Services (except Public Administration)

Professional 54 + 55 + 56

Professional, Scientific, and Technical Services

Management of Companies and Enterprises

Administrative and Support and Waste Management and Remediation Services

Public 92 Public Administration

Retail 44 + 45 Retail Trade

Transportation 48 + 49 + 22
Transportation and Warehousing

Utilities

Wholesale 42 Wholesale Trade

Table 5.1: Sector classification. We regroup economic sectors based on 2
digit NAICS into 13 aggregated sectors.

Industrial classification is taken from the North American Industry Classification

System (NAICS) [134] that composes hierarchical classification system ranging from 2

to 6 digit code. Greater classification detail is found in more digits. At 2 digit level, it

reflects the composition of economic sectors and we will group POI listed in SafeGraph

Core Places dataset into 13 sectors based on aggregation of 2 digits NAICS as seen in

Table 5.1.

5.2.2 Pipeline description

Fig.5.1a shows sectoral composition of firms in New York. Manhattan stands out

in terms of number of firms especially in the 3 leading sectors respectively (Fig.5.1b).

For the purpose of constructing random model as to compare with empirical data, there

are 3 grid resolutions used in this study comprising 10km x 10km grid, 5km x 5km grid

and 1km x 1km grid (Fig.5.1c). Due to the spatial concentration of different business

sectors in this area, Manhattan is studied closely.
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Figure 5.1: Sectoral composition, spatial distribution, and grid design. In New York, Man-
hattan remains the most densely populated by firms (Fig.5.1a). Within Manhattan,
economic sectors falling under arts, educational, and finance have the highest spa-
tial distribution (Fig.5.1b). We use 3 grid resolutions in the following computations
namely 10km x 10km grid, 5km x 5km grid and 1km x 1km grid (Fig.5.1c).

5.2.3 Economic diversity

Jane Jacob’s notion of urban diversity has been well established and widely ac-

cepted as a factor that veraciously contributes to economic prosperity and quality of

life in cities. In her prolific work [88], the broad spectrum of definition on urban di-

versity touches upon the attribute of having urban areas with mixtures of land use and

human activities that drives social and cultural dynamics to enhance inhabitants’ lives.

Additionally, she perceives that cities are natural generators of diversity and prolific

incubators of new enterprises and ideas of all kind, assigning cities to a distinctive po-

sition as natural economic homes of immense numbers and ranges of small enterprises,

to name a few are supermarkets and standard movie houses plus delicatessens, Vien-

nese bakeries, foreign groceries, and art movies. Sectors like entertainment, retail trade,

and cultural facilities gain advantage in urban geographical territory because there are

enough people that could take part in the provision of service on supply side as well as

sufficient demand for variety of attractions.

This particular condition shows the centrality of city in accommodating economic

diversity where dependency on resources available in the city is translated into the di-

versity creation as more businesses open their doors. Therefore, a vibrant city is the one

with ability to permit and stimulate the multiplier effect of diversity itself. In parallel,

Foord (2013) expresses the requisite for which urban vitality could be achieved namely

the risky experimentation across co-located sectors in which hitherto unrelated knowl-
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edge and activities [68]. From an economic geography perspective, level of economic

diversity is positively correlated with the size of city [61]. Henderson (1997) [82]

draws a line between cities in the category of medium size (50,000±500,000 popula-

tion) and large cities (over 500,000) and reveals that the later excels in sectors related

to finance, insurance and real estate while the prior performs better in manufacturing.

Regarding the scaling pattern of diversity, Henderson (1991) [81] provides evidence

among cities under observation in which similarity in sectoral specialisation is in line

with similarity in size. To measure spatial diversity given the distribution of diverse

firms across industries in an area, we apply entropy approach especially the one that is

designed for the purpose of spatial analysis such as Leibovici entropy.

To answer RQ1 (What are the effects of size of sector relating to inducing economic

diversity?), we propose to measure economic diversity using the Leibovici entropy be-

cause it takes into account spatial mixing pattern. The Leibovici entropy consists in the

relevance of spatial locations of occurrences, recognised as the primary characteristic

of spatial data, and is different from the Shannon entropy (formally expressed in Sec-

tion 2.3.1), used to measure economic diversity, for instance in Zachary and Dobson

(2020) [203] and Palenzuela et al. (2022) [163], but subject to the limitation of dis-

cerning the role attached to space in measuring heterogeneity and dealing with different

spatial distributions, for instance in the presence of spatial association and random-

ness [6].

Moreover, by running out-of-bag approach (removing one business sector at a time),

we know which sector guarantees diversity in that particular area. We define change in

Leibovici entropy for each sector as

∆HL(Z) =
HL(Z)−HL(Z)

∗

HL(Z)
∗ × 100%, (5.1)

where HL(Z) is Leibovici entropy of respected area and HL(Z)
∗ constitutes the afore-

mentioned value after removing the business sector of an interest. Presented in per-

centage, large negative value indicates the ability of a sector in considerably reducing

spatial diversity in the local area, while large positive value contributes to higher diver-

sity. Otherwise, no observable impact is brought by that particular sector in the case

of zero value. We state our hypothesis that sector with larger number of firms within a

spatial unit induces higher economic diversity in that respected area (H1).

5.2.4 Sectoral linkages and co-location

Diversity in economic sector is argued to promote Jacobian externalities as Frenken

et al.(2004) [69], for example, argue that diversity magnifies spillover effects with
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higher likelihood of agglomeration emergence when there are some linkages between

sectors in terms of technology or knowledge. In the large cities, economic diversity

tends to be higher with more complex linkages which later encourages firms to increase

productivity level and results in positive growth of average earning for the labours.

Within the theoretical framework, Duranton and Puga (2004) [62] distinguish a num-

ber of mechanisms for cities to strengthen their economic existence called as micro-

foundations of localised increasing returns among co-located firms. The first makes use

of sharing mechanism including production facilities, input suppliers, and risks. The

second gives an importance to matching mechanism in which probability of matching

and quality of matches are expected to improve and reduce the hold-up quantity. More-

over, there is learning mechanism that creates, distributes, and takes stock of knowledge

in production process. We introduce the measurement strategy based on networks and

bipartite projections of co-located firms to reveal the mechanism at work.

In the previous section, we mention that the literature conform the impact of size

on the level of economic diversity and sectoral linkages in cities. A widely accepted

assumption is the larger the city, the higher variability of firms and sectors as well as

complexity of linkages. Nevertheless, the spatial dimension in which the two takes

place is rarely formulated, making the size of spatial boundaries becomes fuzzy [152]

and may lead to the modifiable areal unit problem (MAUP) problem. It arises from

the changing aggregation of shape and size of areal units or spatial data, generating

possible contradicting results in statistical analysis [145; 52]. Not only aggregation

into fewer and larger spatial units diminishes variation of the data, but also the alter-

native combinations of spatial units at comparable scales. Consequently, both carries

associated effects on the quantitative findings. To tackle MAUP issues in multiscale or-

ganisation of economic activities, we compare various spatial delineations specifically

10km x 10km, 5km x 5km, and 1km x 1km cell grid and investigate the extent robust

results could be obtained.

To answer RQ2 (What are the effects of spatial and scale of sector relating to induc-

ing economic diversity?), we vary the size and shape of geographical units in which to

measure economic diversity. We use a spatial delineation of 10km x 10km, 5km x 5km,

and 1km x 1km cell grid with a given area as previously shown in Fig. 5.1c and calculate

the aforementioned entropy. Distance effect at multiscale dimension is now observable.

This result is compared to the entropy measurement on random model based on 100

iterations of synthetics business location. We control the confounding effects in ob-

serving locational aspect by keeping the number of POIs and distribution across sector

constant at system level (aggregate). There are two scenarios in the random model:

(i) Complete Randomisation (no specific pattern of clustering nor dispersion) and (ii)
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Clustered Randomisation (y-axis is divided into partitions that belong to specific sec-

tor.) The first scenario is realised by shuffling sector label for each POI. Meanwhile the

second scenario is implemented by ordering a single sector into a unique partition and

running Poisson point process [96] to create synthetic locations. Our hypothesis is that

spatial embededdness shapes the spatial distribution of firms across sectors (H2) as sug-

gested by Halinen and Tornroos (1998) [78] and Malmberg and Maskell (2002) [117].

Two-sided Kolmogorov±Smirnov Test [97] is employed to test H2. In this test, spatial

embeddedness is signified if there is significant difference in ∆HL(Z) between em-

pirical and synthetic spatial distribution of POIs. The test statistic D∗ evaluates the

difference between the cumulative distribution functions (CDFs) of two spatial data

distributions as specified in

D∗ = max lim
x
(|F̂1(x)− F̂2(x)|), (5.2)

where F̂1(x) denotes the ratio of values that belong to the first data vector x1 (e.g.:

empirical data) which are less than or equal to the range CDFs of data distribution from

those two data vectors x. Similarly, F̂2(x) stands for the second data vector x2 (e.g.:

synthetic data) ess than or equal to x. Given D∗ is generated with corresponding p −

values, therefore in the case of p−value < α = 5%, the null hypothesis stating that the

two data distributions are identical is rejected, validating that location embeddedness

matters in shaping economic diversity.

To answer RQ3 (To what extent does spatial proximity corresponds to co-location

patterns between sectors?), we construct a bipartite projection on spatial and sectoral

linkage. A distinct characteristics of bipartite network G = (S,A,E) is the existence

of two sets of nodes, for instance sector s in the set of node s ∈ S and area/grid cell a

for set of node a ∈ A. Edges es,a ∈ E represent connections between nodes in different

sets with multiple edges counted as edge weights ws,a. In the first projection, the node

is sector and the spatial linkage is taken into account by pairing nodes if that area/grid

cell has those sectors co-located. Inversely, in the projection based on sectoral linkage,

the node constitutes the centroid of each area/grid cell and an edge emerges connecting

those nodes if sectors are co-located in both areas/grid cells. We compute betweenness

centrality of each node as follows

bv =
∑

i,j

nv
i,j

ni,j

, (5.3)

where nv
i,j is the number of shortest paths spanning from i to j passing v and ni,j is the

total number of shortest paths from i to j. Higher value of betweenness centrality of
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node v indicates larger proportion of nodes in the networks connected via node v, con-

tributing to implication of its strategic location in controlling, mediating and facilitating

information flows passing between others. Reflecting on the pioneering work of Jacob

(1960) [87] and Hidalgo et al. (2007) [84], we hypothesise that spatial and sectoral

proximity simultaneously trigger the emergence of linkages which further stimulates

economic diversity (H3).

5.3 Results

Do some sectors contribute more to economic diversity than others? The idea of

diversity is rooted in Jacobian externalities where recombination of wide varieties of

knowledge may stimulate novelty in ideas and application, a source of innovation po-

tential [88]. Notably, the likelihood of sectoral contribution to diversity, mainly via joint

innovation, is not uniformly distributed. Rutten et al. (2011) [165] and Chapain et al.

(2010) [41] highlight the strategic position of creative industry in promoting diversity

through novelty creation. The first paper comes up with an argument in which cre-

ative industry is able to set its leverage because of high growth rate, high specialisation

degree, and supported by crosslinking nature with other sectors in the economy, signi-

fying the importance of sectoral linkage or inter-industry effects. In the second paper,

the postulate regarding colocation is used as a basis for boosting potential spillovers

commencing from creative industry to any other industries. Creative spillovers are also

found in various types such as product spillovers with the demand generation for com-

plementary creative goods and network spillovers with the rise of tourism industry in

the aftermath of creative activities.

5.3.1 Size effects

In this study, we investigate sectoral spatial configuration of economic activities.

POIs are grouped into 13 sectors based on aggregation of 2 digits NAICS. Among oth-

ers, arts (71+72), educational (61+62), and finance (52+53), make up the highest num-

ber. In details, arts comprises POI identified as arts, entertainment, recreation, accom-

modation, and food services, while educational represents educational services, health

care, and social assistance. Moreover, finance is used to label commercial activities in

finance, insurance, real, estate, rental, and leasing.

Fig. 5.2 shows the spatial distribution of business locations in Manhattan. For each

sector, we use three spatial scaling to illustrate the impact of granularity on concentra-

tion in spatial distribution. At coarse grain level in 10km x 10km grid (first row), all of

75

C
E

U
eT

D
C

ol
le

ct
io

n



(a) (b) (c)

1
0

k
m

 x
 1

0
k

m
 G

ri
d

5
k

m
 x

 5
k

m
 G

ri
d

1
k

m
 x

 1
k

m
 G

ri
d

(d) (e) (f)

(g) (h) (i)

Figure 5.2: Spatial concentration of business in Manhattan by sector (left to right): arts,

educational, and finance and by granularity (top to bottom): 10km x 10km

grid, 5km x 5km grid and 1km x 1km grid.

three sectors mainly occupy the same grid cell/tile. As the spatial scale becomes finer at

5km x 5km, different sector is concentrated on different tiles. Higher resolution of grid

at 1km x 1km even further indicates more visible cluster tendency by sector. Therefore,

distribution of business exhibits spatial pattern that might differ across sector.

Lower Manhattan exhibits striking profile in which all sectors are highly concen-

trated. The density of POIs in this area is very high, with arts sector dominating the

proportion of business along with educational and finance sector succeeding. Within

the economically most active grid in 10km x10km resolution, arts sector alone opens

the door for more than 4,000 business entities, while educational sector accommodates

slightly lower number around 3000 and finance sector takes half the figure. Arts sec-

tor consists of any business falling into ’Arts, Entertainment, and Recreation’ (71) and

’Accommodation and Food Services’ (72). A primary reason for these listed activities

to stand out is it functions as derived demand from what it is well known for, finance
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sector, consisting of ’Finance and Insurance’ (52) and ’Real Estate and Rental and Leas-

ing’ (53). For similar reason, it provides ancillary support to educational sector which

composes ’Educational Services’ (61) and ’Health Care and Social Assistance’ (62).

As the area with immense level of diversity on daily life, Lower Manhattan is home

for diverse attractions, raging from business deals, cultural epicentres, to governmental

affairs. Business district is located in the heart of Lower Manhattan where the Financial

District or Wall Street neighbourhood is spaced out by leading financial institutions

such as Wall Street, the New York Stock Exchange, and the Federal Reserve Bank

of New York. Cultural epicentres becomes a trademark especially in the area around

Broadway. The presence of educational sector is highly visible along Park Avenue

and its surrounding neighbourhoods where Columbia University, City College of NYC,

Manhattan School of Music, and The Apollo Theatre can be found.

The importance of proper scaling is inevitable to better capture the sectoral distri-

bution pattern. Sectors with intense spatial concentration like arts are better preserved

over scale than the more ubiquitous sector like finance. Moreover, artefact of Central

Park situated in the middle of Manhattan is visually present at higher scales in which

1km x 1km grid shows surpasses the others. This preliminary observation on the con-

textual entanglement between spatial scaling and size of sectors provides a foundation

for further inference towards the level of diversity. It is in line with our first hypoth-

esis stating that the sector size measured by the number of firms within itself largely

contributes to the economic diversity in the delineated area.

5.3.2 Scale effects

Contribution of a sector to spatial diversity is measured by taking the percentage

change between Leibovici entropy with all sectors and without sector in question as

formally expressed in Eq. 5.2.3. We repeat this procedure for all sectors in every grid

cell across grid resolutions. Higher percentage change implies larger contribution to

spatial diversity in the given area. Leibovici entropy is preferred to measure spatial

diversity due to its ability to capture not only variability of sectoral composition, but

also the role of space in shaping spatial distribution of sector, for instance the degree of

spatial association/randomness.

Fig. 5.3 presents the intertwining relationship between spatial diversity and size of

sector. The x-axis points out the impact brought by the sector of interest to economic

diversity in the given grid cell (∆HL(Z)), showing the magnitude of contribution that

a sector has. Positive value shows its ability to induce higher level of diversity, in

contrast to negative value that reduces the diversity degree in respected area. In the case
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(a) (b) (c)

Figure 5.3: Sectoral entropy and size distribution. Various grid resolutions are presented:
(a) 10km x 10km grid, (b) 5km x 5km grid, and (c) 1km x 1km grid. Dot size is
normalised by number of POI per grid while colour denotes sector.

of zero value, no observable contribution coming from the sector is detected. On the

y-axis, relative size of sector (p̂i) is plotted as percentage. The value is generated by

dividing the number of POI per sector category by total number of POI in each grid

cell. Maximum number of dot appears in every grid resolution equals to number of

sector exist in every grid and multiplied by number of grid cell in that respected grid

resolution. For instance, in 10km x 10km grid, there are 18 grid cells for which 13

sectors exist in total, resulting in 234 dots in the plot if all sectors are presents in each

grid cells. For each grid resolution (Fig. 5.3a-c), vertical red dash is the average value

of entropy change (denoted as the average impact to diversity) and horizontal red dash

is the average value of relative sector size.

Cluster tendency is captured in the plot for all grid resolutions where transporta-

tion and wholesale sector are less affluent in bringing up the economic diversity to the

local area and relatively small in size (less than 20% in proportion to sectors in the

economy). Quite the opposite, arts, educational and finance sector are characterised by

considerable role in shaping economic diversity, so do they have larger relative size. It

is hypothesised earlier that larger sector has larger role in inducing economic diversity.

This condition holds as Spearman correlation coefficient ρ ranges from 0.81 (10km

x 10km grid) to 0.59 (1km x 1km grid), signifying high correlation between sectoral

contribution to spatial diversity and size of sector.

5.3.3 Spatial effects

This section is dedicated to reveal the significance of scale-dependence spatial ef-

fects in shaping economic diversity. To operationalise this approach, we compare

∆HL(Z), change in Leibovici entropy for each sector as an indicator for sectoral con-

tribution to economic diversity, generated from empirical distribution of POI and ran-
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dom model. The randomisation mechanism takes two procedures namely Complete

Randomisation where no clustering tendency considered and Clustered Randomisation

where each sector being located in a specific cluster. For each entropy computation, we

iterate over spatial scale granularity respectively 10km x 10km, 5km x 5km, and 1km

x 1km. The comparison is tested against statistical significance based on Kolmogorov-

Smirnov Test introduced earlier in this paper (Section 5.2.1). This methodological

construct allow us to further investigate whether higher economic diversity is expected

at larger spatial scale.

The presence of difference in term of statistical significance indicates the existence

of spatial embeddedness. As a concept, spatial embeddedness highlights the preference

of businesses over locations [78] based on local institutional fabrics [115] that later

incentifies the emergence of cluster [158]. Fig. 5.4 provides the result of Kolmogorov-

Smirnov Test performed across spatial scales under two types of random models for that

purpose. For both random models, the importance of spatial embeddedness becomes

more evidence at higher spatial resolution (smaller grid size) because in Complete Ran-

domisation, all sectors show statistically significant different impact to economic diver-

sity comparing to empirical data in at 1km x 1km spatial resolution (Fig.5.4e). Similar

pattern is also found in Clustered Randomisation for each sector except Agriculture

(Fig.5.4f), considering diminutive size of agriculture being clustered together might not

be distinctively observable. Moreover, Clustered Randomisation gives larger conver-

gence to spatial embeddedness as replacing 10km x 10km grid with 5km x 5km grid

results in more sectors showing different impact to economic diversity given the spatial

distribution of POI (from 6 sectors to 10 sectors). In comparison, Complete Randomi-

sation triples the number of sectors from 2 to 6 sectors and includes all sectors at the

finest spatial resolution (1km x 1 km grid). Therefore, the Clustered Randomisation fits

better as a random model in reference to real-life distribution in empirical setting and

spatial and scale effect are more finely captured at higher resolution which in this case

is 1km x 1 km grid.
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Figure 5.4: Kolmogorov-Smirnov Test for 10km x 10km grid, 5km x 5km grid and 1km x

1km grid. The squares on the map illustrates the way randomisation takes place.
In the Complete Randomisation, there is only a single square exists, showing no
sectoral clustering pattern in space. In contrast, Clustered Randomisation consists
of multiple squares for which each is populated by POI within the same sector.
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5.3.4 Sectoral proximity and colocation

To test whether spatial and sectoral proximity simultaneously trigger the emergence

of linkages which further stimulates economic diversity, we analyse sectoral proxim-

ity and colocation derived from bipartite network. There are two bipartite projections

we present in this section. First, bipartite projection on spatial linkage (Fig. 5.5) is

constructed by pairing nodes if that area/grid cell has those sectors co-located. Sec-

ond, bipartite projection on sectoral linkage (Fig. 5.6) is initialised by connecting the

centroid of each area/grid cell if sectors are co-located in both areas/grid cells.
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Figure 5.5: Bipartite projection on spatial linkage by grid resolution (row) and aggrega-

tion (column). Node is sector with size is comparable to the number of POI.

In Fig. 5.5, the size of each node is proportional to the number of POI. We observe

robust structure regardless spatial grid resolution. There are strong closely connected

main nodes at sector level (Fig.5.5a, c, and e): arts, educational, finance, and other. The
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order of node size is also consistent at industry group level (Fig.5.5b, d, and f). It is in

line with findings presented by Park et al. (2019) [151] where the leisure industry under

aggregated 2 digit NAICS in our study (71/arts) is one of the most widely connected,

exhibiting strong connections to many other sectors, including healthcare, education,

art, media, and manufacturing. Moreover, it confirms the findings by Chapain et al.

(2010) [41] and Rutten et al. (2011) [165] in which creative spillovers is the driving

force behind diversification of activities and products in the larger spectrum of creative

industry, including Arts (71), Educational (61), and Finance (53) that appears to be well

connected and quite dominant in size.

(a) (b) (c)10km x 10km Grid 5km x 5km Grid 1km x 1km Grid

𝝆: 𝟎. 𝟕𝟑 𝝆: 𝟎. 𝟔𝟐 𝝆: 𝟎. 𝟕𝟗

Moran Cluster Map Moran Cluster Map Moran Cluster Map

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Leibovici Entropy HL(Z) Leibovici Entropy HL(Z)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Leibovici Entropy HL(Z)

3.5

Figure 5.6: Bipartite projection on sectoral linkage by grid resolution: (a) 10km x 10km

grid, (b) 5km x 5km grid, and (c) 1km x 1km grid. Node is the centroid of each
grid cell.

As seen in Fig. 5.6, there is high correlation between Leibovici entropy (Eq. 2.3.1)

and betweenness centrality (Eq. 5.2.4) of given grid. The area in the closely located to

Lower Manhattan has the lightest colour, denoting the highest economic diversity, and

remains consistent across spatial scale. Among others, the finest resolution at 1km x

1km spatial grid retains the highest correlation ρ equals to 0.79, implying that the con-

junction between economic diversity and importance of location is seeded at localised

boundary. This structure indicates the importance of economic diversity in determining

the centrality of each area in mediating the business interconnection across sectors.

On the bottom right map in each grid resolution in Fig. 5.6, Moran Cluster Map is

visualised based on computation of Local Form of Moran’s I [9] in Eq.2.3.1. It delin-

eates similar areas of particularly high/low economic diversity. Moreover, the appear-

ance of read area captures the inclination toward cluster-like formation among areas

with economic diversity higher than average (high-high/HH), meanwhile the dark blue

represents cluster tendency among areas with lower than average economic diversity

(lower-lower/LL). It is also possible that the surrounding areas instead show dissimilar

value level, for instance light blue (low-high/LH) and orange (high-low/HL). Other-
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wise, the space is filled by grey, exhibiting no statistically significant clustering pattern.

Hence, it shows areas in which values are concentrated: Lower/Downtown Manhattan.

It provides suggestive evidence about the processes that might be at work: economic

diversity is optimised by the degree of urban process complexity (higher income area,

higher similarity in term of socioeconomic profile) and the radius where similar level of

economic diversity is concentrated (1 km for the smallest spatial component to 10 km

for the largest spatial component).
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5.4 Discussion and conclusions

The existing literature in spatial economics, economic geography, and regional

science provide conceptual framework regarding the distribution of POI over space

through location theory [78]. Spatial embededdness [120] take a steps forward to show

that preference on location matters for business entities due to the presence of two

types of positive externalities, the intra industry based known as Marshallian externali-

ties [118] and the inter industry externalities recognised as Jacobian externalities [87].

In the following phase of urban dynamics, the later stimulates more businesses from

diverse industries to come in urban territory, increasing the economic diversity level.

Therefore, externalities are perceived as a pivotal means in facilitating spillovers that

incentives cluster formation. Two causes of externalities are cited widely: industrial

relatedness [136; 70] and spatial localisation [104; 158]. In this study, we label the first

as sectoral proximity and the second as spatial proximity.

We identify the gap in this configuration especially on the the relation between spa-

tial scale and sector size that colloquially seeds proximity through colocation. The

objective we want to reach is to unravel the role of spatial proximity and spatial embed-

dedness in reproducing economic diversity across industrial sectors. Methodological

building block and data driven computation is therefore necessary to bring more com-

prehensive analysis. Here we offer an artefact of measurement that allows us to disen-

tangle the interdependence between geographical space and sectoral diversity through

the lenses of network science by specifying the three forces behind urban economic

diversity respectively the size problem (RQ1), the spatial scale problem (RQ2), and the

proximity problem (RQ3).

Evidence from New York shows that Manhattan dominates the spatial distribution

of POI. At sector level, arts, educational, and finance remain on the top three in business

composition. On the size problem, our result suggests that larger sector has larger role

in inducing economic diversity as shown by higher Spearman correlation coefficient ρ

between relative size of sector (p̂i) and the impact brought by the sector of interest to

economic diversity (∆HL(Z)). Stronger entanglement is captured in larger area cov-

erage noticeably 10km x 10km with ρ equals to 0.81, reiterating earlier proposition of

diversity in bigger spatial unit [87; 61]. On the spatial scale problem, we find that the

Clustered Randomisation at finer resolution (1km x 1km) gives a better fit to empirical

distribution of POI, validating the presence of clusters in various sectors in the econ-

omy [115; 158; 78]. In addition, on the proximity problem, we show that the largest

sectors namely arts, educational, and finance are closely connected in the network and

remains robust across grid resolution and at different level of industrial aggregation tax-
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onomy (sector level/2 digit NAICS as and industry group level/4 digit NAICS), in line

with previous studies discussing the role of the aforementioned sectors in stimulating

economic diversity [41; 165]. Furthermore, we reveal the dualism profile of spatial unit

between being economically diverse and locationally important. A high correlation be-

tween Leibovici entropy and betweenness centrality (up to 0.79 in the finer scale of

1km x 1km) implies the importance of economic diversity in determining the centrality

of each area in mediating the business interconnection across sectors as in the case of

Lower Manhattan.

The results obtained from this research should be followed by studies that observe

wider spatial coverage in the future. The limit in terms of spatial coverage that merely

focuses in Manhattan could be tested further by replicating the artefact of measurement

in other cities or urban area. Another direction to pursue is checking on smaller in-

cremental scale limit (e.g.: incremental grid of 1km x 1km in a step) instead of only

providing stand alone comparative scale setting like the one used in this study (e.g.:

10km x 10km, 5km x 5km, and 1km x 1km). The results of analyses of this kind will

be better presented after its robustness could be extrapolated across space and scale

in order to bring about integrated understanding on the complexity of urban economic

diversity.
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Chapter 6

Conclusion and future extensions

"Science must, over the next 50 years, learn to deal with these problems of organised

complexity."

ÐWarren Weaver-

As a scientific work of its nature, this thesis is expected to contribute to the char-

acterisation of city in accommodating socioeconomic mixing process. The analysis

presented along the chapters fills the scientific queries related to human dynamics in

urban setting by taking into account main spectrum, the spectrum drawn by perplexed

and multifaceted elements that all together shape the social dynamics of a city: people

visiting places from time to time, places located in various neighbourhood, people and

places being socioeconomically stratified, as well as the interaction pattern commencing

between people and places. One reflective thinking we formulate is based on the idea of

complex system that flourished in the mid-century through the terms of organised com-

plexity by Warren Weaver (1948) [194] and its presence in city as "bits and pieces that

supplement each other and support each other" by Jane Jacob (1961) [89]. We leverage

the analytical framework of network science with spatiotemporal approach due to the

structural compatibility it offers in dealing with the phenomena under study, organised

complexity in cities, respectively the elements in the system (nodes), the connections

among elements (edges), and the way both shapes interaction dynamics.

6.1 Conclusion

In the initial chapter, this thesis sets out conceptual framework used in perceiving

city as a complex system and urban mixing that takes place within its spatial boundary.

Systematic review of state-of-the-art and mathematical representation of basic concepts

87

C
E

U
eT

D
C

ol
le

ct
io

n



covering urban mobility network, urban morphology, and urban socioeconomic pattern

are provided in Chapter 2.

In Chapter 3, we propose the integration Home Detection Algorithms (HDAs) into

a data driven and network based computation to reveal mixing patterns of mobility.

Case studies presented are the twenty largest cities of the United States in which they

come to conformity regarding the emergence of strong signs of stratification in vis-

iting preference. Interestingly, not only people are driven by "upward bias" to visit

places with higher socioeconomic status whenever possible, but the degree of such bias

is also positively correlated with own socioeconomic status and racial residential seg-

regation. Consequently, uneven mobility mixing patterns become more prominent in

cities. Therefore, policy aiming to improve social cohesion should take into account

this persistent aspect by designing inclusive shared space for people across socioe-

conomic class to have potential encounters. Alternatively, promoting adequate living

quality across neighbourhood to make it appealing for anyone to live side by side is

also a direction to pursue.

In our study presented in Chapter 4, we show that segregation pattern in mobility

is not a static object. External disturbance such as COVID-19 outbreak affects existing

mobility configuration and contributes to the changing residual isolation. We approach

the problem by implementing measures on dynamic assortativity in mobility network

based on sliding time window, complimented with entropy on inseparable dimensions

of individual trajectory: heterogeneity of locations and their respected socioeconomic

status. We apply the methods in four metropolitan areas across hemisphere namely

Bogota, Jakarta, London, and New York. In comparison among them, we observe that

the degree of mobility restriction especially the highest during lockdown period induces

increasing segregation in mobility which on the later stage seeds the emergence of long-

term effects on socioeconomic mixing. This approach allows us to look at broader tem-

poral spectrum on how epidemic affect segregation phenomena in mobility that turns to

be country-dependent and socioeconomic-dependent, a feature that should be carefully

considered in proposing better policy.

The final research part in Chapter 5 demonstrates that the heterogeneity in urban

context is not limited to mobility aspect, but also manifested in spatial distribution of

places of interest (POI). Performing entropy measure on space as suggested by spatial

entropy, among others Leibovici entropy, serves as the first step to disentangle the con-

figuration of urban economic diversity as a complex phenomenon. We introduce the use

of scale dependent random models as a reference to validate empirical mechanism that

colloquially seeds economic diversity constituting sectoral size, spatial embededdness,

and sectoral-spatial proximity. Furthermore, we synthesise insight from complex sys-
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tem and network science by projecting bipartite network on spatial and sectoral linkage.

We show the result from New York with focus in Manhattan and the findings suggest

that sectors with larger number of firms or entities form close knitted connections in

the network and largely contribute to urban economic diversity. Furthermore, it implies

the presence of dualism profile that a spatial unit has, between being economically di-

verse and locationally important as denoted by high correlation between the two. In

retrospect, urban planner could translate this attribute in the agenda making of more

equitable cities.

6.2 Future extension

Capturing socioeconomic mixing process in cities is the ultimate goal of this pre-

sented thesis. We offer methodological framework and empirical evidence to investigate

structure and dynamics of embedded segregation which occurs not only in the prefer-

ence over visiting places in mobility, but also the selection of locations in commercial

activities. Through the perspective of mobility of people, the measures we propose

suggest that segregation is not trivial. In cities, segregation is pervasive, reaching wide

range of human dynamics where mobility presents as the intermediary which ampli-

fies the existing residential segregation. This degree of segregation is even elevated

when restriction imposed on mobility, producing higher isolation to the already strat-

ified socioeconomic groups. Through the perspective of spatial distribution of places

in commercial activities, similar logical consequence also appears. An area with more

homogeneously segregated economic activity tend to be afar from gaining centrality.

Afterall, these discussed findings fulfil the original hypothesis stated earlier in which

segregation is a consequence of stratification and homophily leaning in preferences.

As an extension in the future scientific agenda, building probabilistic model to esti-

mate the occurrence of segregation given mobility pattern and socioeconomic attribute

could be considered. This direction is taken into account by fitting the Exploration

and Preferential Return (EPR) model, a modelling approach to derive properties of in-

dividual human mobility by estimating the decision on either visiting new places or

returning to usual places given related parameters namely distance, waiting time and

the jump length. We expect to empirically determine the probability that two people

may meet (e.g.: share a public space) by chance at any location in a city in terms of

their socioeconomic status or any other attributes. As a result, more refined understand-

ing on the intertwining dimensions in segregation or mixing process becomes highly

visible.

In achieving them, there is a limitation regarding the resolution of data. The show-
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cases we present in this thesis unravel the data driven approach and computational ca-

pabilities in handling heterogeneous sources of data in urban mobility and complex sys-

tem. The use of Social network platform such as Foursquare, Open Street Map (OSM)

and POI, as well as digital trace data for instance anonymous smartphone records that

have been intensively used in this thesis could be enriched by data extracted from smart

transportation card, public Wi-Fi signals, and Call Detail Records (CDRs)/ eXtended

Detail Records (XDRs). The role of future technology let alone the forefront of super

computing power is also incredibly important because it allows the deployment of more

realistic analysis that is not only limited to static measure but also simulation of segre-

gation dynamics at city level in the form of Agent Based Modelling (ABM) and Digital

Twins. A successful analysis would increase the predictability of epidemic outbreaks

and help answer several societal challenges such as efficient urban design and inequal-

ity reduction based on the main findings in this thesis namely the importance of mixing

process in urban encounters from both the perspective of people (mobility and visiting

preference) and places (location and land-use mix preference).
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Chapter 7

Appendices

7.1 Socioeconomic biases in urban mixing patterns

7.1.1 Summary statistics

This study focuses on the presence of mixing patterns in the largest 20 urban ar-

eas in the US. We consider urban area as the level of analysis because this densely

developed territory fits very well with our objective in capturing the interaction be-

tween peoples and places. While people are represented by Foursquare users (who are

also Twitter users in this case due to the crawling technique used in data collection),

places are functional point of interests (POI) in accordance with the Foursquare venue

category hierarchy. After combining the selected geographic and cartographic infor-

mation from the U.S. Census Bureau (American Community Survey/ACS 2012) and

Foursquare check-ins data (April 2012 - September 2013), we infer a set of active users

and urban land uses (e.g.: residential, commercial, and other nonresidential) along with

their socioeconomic status (SES).

During the SES assignment procedure, first we identify the home location of

Foursquare users and group them into distinct socioeconomic classes such that each

class presents the same size. To signify the representativeness of Foursquare users, we

create synthetic data based on the population size and income. We segment this sorted

list into 10 equally populated groups of the lowest income in class 1 and highest income

in class 10 as seen in Fig. 7.1. Meanwhile, to assign the SES of POIs in Fig. 7.2, we

match each POI with the boundary income of users. Recalling that we segment users to

equal SES, this SES segmentation is used for POIs. Consequently, POIs are not equally

distributed in each city as it is less plausible in reality that the spatial distribution of

POIs identically resembles residential distribution all over space in the city.

Fig. 7.3 shows the bootstrapping result as a strategy to deal with the data represen-
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Urban Area Number of population Average income (US$) Number of users Average income of users (US$) Number of POIs Number of check-ins
Atlanta 1,515,880 32,154 1,597 40,880 12,729 117,403
Austin 964,309 32,508 1,101 32,127 7,654 59,698
Baltimore 1,558,743 30,275 1,006 33,762 9,697 66,848
Boston 2,090,520 39,810 1,653 49,789 13,548 103,395
Charlotte 864,236 31,520 614 41,298 5,579 42,730
Chicago 2,540,254 28,279 2,318 55,997 18,059 166,133
Dallas 1,368,607 26,425 884 43,966 6,160 49,683
Houston 2,027,223 27,149 1,063 45,351 9,967 67,999
Los Angeles 2,066,612 27,162 1,284 41,929 10,101 90,234
Miami 2,146,572 23,599 1,542 34,445 10,509 74,525
Mineapolis 2,074,556 34,483 1,109 35,230 12,784 97,669
New York 7,669,696 32,225 1,353 50,457 31,060 191,564
Philadelphia 2,430,063 28,960 1,369 37,958 12,445 100,518
Phoenix 1,806,374 23,744 969 28,537 8,746 67,922
San Diego 1,732,145 29,692 1,330 41,386 11,783 84,476
San Francisco 2,059,293 39,878 2,348 51,715 16,353 122,846
San Jose 1,446,254 38,089 762 42,280 6,918 41,023
Seattle 1,316,257 41,967 1,148 43,595 10,260 63,755
Tampa 1,120,985 27,904 765 30,888 7,506 55,255
Washington 600,566 45,237 2,287 58,226 17,662 166,627

Table 7.1: Summary statistics. It summarises size of dataset used in this study, including

population information (eg: number and income) extracted from census as well

as Foursquare users and POIs in the 20 Urban Areas. Number of population is
the summation of real population in the census tract that appears in the Foursquare
dataset. Number of users is counted from pool of users with identified home loca-
tions after running home location algorithm explained in Section 7.1.2. Number of
check-ins is the total frequency of users tagging themselves at every listed POI in the
urban area where they live.

tativeness issue in this study. As previously seen in Table 7.1, the ratio between the

number of Foursquare users and population could be quite small in some cities. There-

fore, it is necessary to estimate the potential fluctuations of the distribution of the SES

of people due to the small sample of populations. In response to this issue, we design

a bootstrapping method. We apply bootstrapping with replacement by taking the origi-

nal Foursquare population size for each city to generate random samples of the SES of

Foursquare users for 1000 iterations in each city. After obtaining a re-sampling distri-

bution, we compute mean values of the SES of Foursquare users for each iteration and

plot them as histograms to observe the bootstrapping distribution. The SES distribu-

tion of Foursquare users is similar to that of the underlying population, since the 95%

confidence interval is quite narrow with boundary value less than 1 SES class.
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Figure 7.1: Data representativeness of Foursquare User. The representativeness of the user
data is visualised as density distributions between the size of populations from cen-
sus (green bars) and number of Foursquare users in each SES class (red bars). In
general, it reveals over-represented rich people in some cities in the Foursquare
data, as red bars are above green bars for high SES classes.
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Figure 7.2: Data representativeness of Foursquare POI. The representativeness of the POI
data is visualised as density distributions between the size of populations from cen-
sus, and number of Foursquare POI in each SES class. Given the variability of SES
distribution of POI, it’s not always the case that POI are highly concentrated POI in
richer areas in even though it is quite common.
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Figure 7.3: Bootstrapping. We perform bootstrapping to estimate potential fluctuations in the
results due to limited sample size in the dataset. As the results show, the repeated
samples have mean value (light pink line) in close approximation to the mean value
of the Foursquare user population (red dash), while the yellow line represents 95%
confidence interval. Therefore, the bootstrap method provides a solid ground to
examine the proximity of the sample to the original distribution.
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7.1.2 Home location inference

Detecting home location is a primary step in dealing with mobility data because

spatial identifier serves as an intermediary instrument among heterogeneous source of

data, including census data. Various decision rules have been developed to identify

the whereabouts of people reside. In mobility literature, a single rule home detection

algorithm is widely applied in both continuous (eg: global positioning system/GPS

data) and non-continuous location traces (eg: call detailed record/CDR data). Home is

defined as the location where highest proportion of activities occurs during night hours

with variations regarding time window [36; 49; 154].

For each individual mobility trajectory, we identify which locations are categorised

as home and venues, including visits to places located in their own SES tract. Home

inference algorithm is constructed based on daily temporal windows. It consists of 8

time slots starting from midnight with 4-hour intervals. The main criterion of home

location is consistent check-ins from 9PM to 6AM (time window 1, 2, and 8) at lo-

cations labelled by Foursquare as ’Assisted Living’, ’Home (private)’, ’Housing De-

velopment’, ’Residential Building (Apartment / Condo)’, and ’Trailer Park’. The rank

of home location candidacy is sorted based on frequency of check-ins. We iterate the

process for other venues to accommodate users that might live in the downtown, next

to multi-purposes buildings attached to various urban functionalities (e.g.: a flat on the

top of deli or store). This algorithm is designed with ability to properly identify the

logical consequence of urban built environment where the human activities frequently

take place at a location serving numerous settings as previously mentioned.
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7.1.3 Distribution of Mobility Stratification

This section is dedicated to show the socioeconomic distribution of area where POIs

are located and the socioeconomic segmentation of people visiting them. POIs are

grouped based on a category taxonomy extracted from Foursquare API called category

labels. The hierarchical taxonomy record allow us to characterise the place to differ-

ent levels of granular categorisation. For this purpose, we opt for parent categories:

’Arts and Entertainment’, ’Business and Professional Services’, ’Community and Gov-

ernment’, ’Dining and Drinking’, ’Health and Medicine’, ’Landmarks and Outdoors’,

’Retail’, ’Sports and Recreation’, and ’Travel and Transportation’.

Fig. 7.4 shows that most of POI categories across cities have positive values, indi-

cating assortativity and the presence of considerably high homophily mixing. Mean-

while, disassortative visiting patterns only characterise visits to POI categories in Mi-

ami (‘Community and Government’), San Diego (‘Health and Medicine’), and Tampa

(‘Health and Medicine’). Furthermore, we observe deviations of disaggregated r from

aggregate r to both directions and none of single POI category consistently and uni-

formly dictates visit patterns in all cities.

Figure 7.4: Diagonality Index of Arts and Entertainment POI. We further demonstrate this
point by a comparative summary of the diagonality index r for all visits (aggregate,
red cross) and visits to particular places (by poi categories, coloured points). Ag-
gregate r takes positive values, ranging from about 0.2 to 0.4, while disaggregated r

retains a broader distribution. The diagonality index r for ’Arts and Entertainment’
(light blue dot) deviates from the aggregate r (red cross), implying that variability
in visit patterns are not merely triggered by the visit patterns to particular POIs, for
example in ’Arts and Entertainment’.
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7.1.4 Empirical stratification matrices

The mixing pattern in mobility network conceptualised in Section3.3.1 measures

the proportion of visits by people to places stratified by their respective SES. According

to the empirical stratification matrices Mi,j shown in Fig. 7.5, we find that individual

mobility in some cities is less stratified than others, in which colour of bins fades away

from diagonal elements such as in New York and Austin. In contrast, strong empirical

homophily mixing appears in most cities, for instance in Phoenix, Philadelphia, and

Tampa.

Figure 7.5: Empirical stratification matrices Mi,j . Each bin represents the visiting proba-
bilities of individuals from a given class to places of different classes. The darker
colour shades of bins represent larger visiting probability.
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7.1.5 Normalised stratification matrices

We replicate methodological approach of the empirical stratification matrices Mi,j

used in Section 3.3.3 to construct normalised stratification matrices Ni,j . In Fig. 7.6, red

colour amplifies the higher frequency visit than expected, while blue denotes fairly less

visits. Furthermore, the presence of red blocks in the upper diagonal elements signifies

the upwards bias where people are aspired to drop by at places with higher SES. The

bold red gradient along the diagonal exhibits homophily mixing.

Figure 7.6: Normalised stratification matrices Ni,j . Each bin contains the fraction of the em-
pirical and randomised stratification matrices. Colour gradients ranges from darker
blue to darker red, taking the condition of lower to higher frequency visit than ex-
pected.
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7.1.6 Individual bias z-score

The individual bias z-score zBu
u (Fig. 7.7) measures how far empirical individual

bias score deviates from the random mobility model. The technical formulation is ex-

plained in Section 2.3.1. Similar to typical individual mobility in other studies, indi-

vidual mobility in our data is also characterised by large jumps between two types of

people: a small proportion of people with large trajectories and a largely dominant type

with small trajectories. Fig. 7.7 reveals the coexistence of upward and downward biases

in terms of visiting patterns to other socioeconomic classes in any class.

Figure 7.7: Individual Bias z-Score zBu
u . Class distributions of individual z-scores reflects

how much the individual bias differs from the expected bias for an individual who
chooses places to visit with the same frequency as before but selects them from a
given set of places dictated by others within the same socioeconomic class.
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7.1.7 Class-level bias z-score

The class-level bias z-score zcuu (Fig. 7.8) is formalised to quantify the difference

between typical visited places in an individual trajectory from the trajectory in the ran-

dom class average. The composition of visit patterns differs with respect to SES. Many

places, usually within its own range, are visited many times along the trajectory. Mean-

while, some others are only visited less frequently. We dedicate Section 3.2 to formulate

and discuss this measurement.

Figure 7.8: Class-level Bias z-score zcuu . Distribution of class-level biased z-scores reflects
directly how much the individual behaviour deviates from the expected level, when
the individual could choose randomly places to visit from a given set dictated by
others from the same socioeconomic class.
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7.1.8 Out-of-class empirical stratification matrices

The out-of-class empirical stratification matrices Mci,j shown in Fig. 7.9 take the

same methodological approach as the empirical stratification matrices Mi,j shown in

Fig. 7.5. The two differ in term of the census tract scope, since the out-of-class measure

excludes the own census tract in each individual trajectory. This step is taken into

account to control distance effect that contributes to the homophily mixing condition.

Even though we observe less diagonality here, some stratification patterns remain in

several cities.

Figure 7.9: Out-of-class Empirical Stratification Matrices Mci,j . Probabilities that individ-
uals from a given class visit to places of different classes are visualised with colour
shades. The darker the bin, the higher visiting probability.
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7.1.9 Out-of-class normalised stratification matrices

We construct out-of-class normalised stratification matrices Nci,j Fig. 7.10) in order

to examine the robustness of out-of-class empirical stratification matrices Mci,j Fig.

7.9). A normalised version of out-of-class stratification matrices is generated to measure

the difference in magnitude between the out-of-class empirical stratification matrices

and random visit occurrence. We observe that an upward bias tendency (red gradient

in upper diagonal matrices) is still considerably present in some cities and such distinct

pattern does not emerge by chance.

Figure 7.10: Out-of-class Normalised Stratification Matrices Nci,j . Defined as the fraction
of the empirical and randomised stratification matrices without own census tract,
out-of-class normalised stratification matrices reveals the visiting patterns of up-
ward bias (red gradient), downward bias (blue gradient), and no bias (white) ten-
dency across a SES pair of people and visited places in their trajectories.
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7.1.10 Out-of-class individual bias z-score

The out-of-class individual bias z-score zcBu
u depicted in Fig. 7.11 takes the same

methodological approach as the individual bias z-score zBu
u shown in Fig. 7.7. The two

differs in term of census tract scope where out-of-class excludes the own census tract in

each individual trajectory. This step is taken into account to control the distance effect

that contributes to biases in visiting patterns, recalling that mobility mostly takes place

in home census tract or nearby locations.

Figure 7.11: Out-of-class Individual Bias z-score zcBu
u . We show class level distributions and

their median values (blue dots) for each socioeconomic class after removing own
census tract. Unbiased condition is depicted by horizontal red line. Upper red line
areas contain upward biases in terms of visiting patterns, in contrast to downward
biases on the lower part.
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7.1.11 Out-of-class class-level bias z-score

The out-of-class class-level bias z-score zccuu (Fig. 7.12) indicates if this individual

bias is weaker or stronger than expected from random behaviour, considering the ab-

sence of visit to places located in the own census tract. It reflects directly how much

the individual behaviour deviates from the expected level, when the individual could

choose randomly places to visit from a given set dictated by others from the same so-

cioeconomic class.

Figure 7.12: Out-of-class Class-level Bias z-Score zccuu . After removing own census tract,
distributions are shown for each socioeconomic class with their median values as
blue points. Above the red unbiased median line, an upward visiting bias holds,
otherwise upward visiting bias is prevalent.
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7.1.12 Out-of-class measures in Houston, New York, and San Fran-

cisco

In Section 7.1.8- 7.1.9 and Section 7.1.10- 7.1.11, we raise the issue of potential

confounding factors driven by distance effects. It is important to realise that shortcom-

ings may arise from this particular computation which disregards distance aspects. In

dealing with that, we remove mobility data in own census tracts and recompute the

stratification matrices as well as bias measures. In line with the discussion in the main

text (Fig. 3.2), this section is dedicated to analyse the robustness and sensitivity of our

homophily mixing and visiting bias measures in Houston, New York, and San Diego.

We find that mobility is still stratified by SES as seen in Fig. 7.13a, 7.13b and 7.13c.

Moreover, the presence of upward bias tendency is still visible in those cities by looking

at Fig. 7.13d, 7.13e, and 7.13f. It is confirmed by the fact that mean of upper diagonal

matrix elements surpass mean of lower diagonal matrix elements in 7.13g.

In a deeper analysis, we exploit the persistence of biased behaviour in mobility by

employing procedural bias measures at individual and class level that have been intro-

duced earlier in Section 7.1.8-7.1.9 and 7.1.10-7.1.11. In the case of the out-of-class

individual bias z-score zcBu
u , visiting bias is less expected among lower class people in

New York (Fig. 7.14b), while anyone in Houston (Fig. 7.14a) and San Diego (Fig.

7.14c) can be as much biased in their visiting patterns regardless their socioeconomic

classes. Upward visiting bias is even stronger at class level in all three as none of z-

score values fall below the red unbiased median line (Fig. 7.14a, Fig. 7.14b and Fig.

7.14c).
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Figure 7.13: Out-of-class socioeconomic stratification matrices. Out-of-class socioeco-
nomic stratification matrices are constructed based on individual trajectories or a
set of locations visited by each individual after the removal of own census tract. (a)
The out-of-class empirical stratification matrices Mci,j , showing the probabilities
that individuals from a given class visit to places of different classes. The darker
colour shades of bins represent larger visiting probability. (b) The out-of-class
normalised stratification matrices Nci,j , defined as the fraction of the empirical
and randomised stratification matrices without own census tract. We observe less
diagonality in Houston (Fig. 7.13a and Fig. 7.13d), New York (Fig. 7.13b and
Fig. 7.13e) and San Diego (Fig. 7.13c and Fig. 7.13f). Interestingly, upward
bias tendency is still considerably present as seen in (Fig. 7.13g) where mean of
upper diagonal matrix elements exceeds mean of lower diagonal matrix elements
in 12 out of 20 urban areas, including Houston.

107

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 7.14: Out-of-class Individual Bias z-score zcBu
u . After removing own census tract,

class level distributions and their median values are shown for each socioeconomic
class. Horizontal red line at z-score=0 represents the condition of unbiasedness.
Median values that appear on the top of red line suggests upward biases in terms
of visiting patterns, otherwise downward biases persist. The blue dots show that
while in general people from lower classes in New York (Fig. 7.14b) are less
bias than expected, they could be as much biased regardless their socioeconomic
classes in Houston (Fig. 7.14a) and San Diego (Fig. 7.14c).

Figure 7.15: Out-of-class Class-level Bias z-score zccuu . Distribution of class-level biased z-
scores as the function of socioeconomic classes. After removing own census tract,
distributions are shown for each socioeconomic class with their median values
as blue points for Houston (Fig. 7.15a), New York (Fig. 7.15b), and San Diego
(Fig. 7.15c). All z-score values remain above the red unbiased median line, there-
fore signalling an upward visiting bias.
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7.1.13 Homophily mixing measures

We formulate the dispersion index as a supplementary measure to the diagonality

index which is discussed in Section 3.4. The dispersion index aims to measure the

segregation tendency based on the normalised stratification matrix Ni,j constructed as

a 10-by-10 matrix with non-negative entries aij ≥ 0, where the summation over all

entries can be written as S =
∑i

i=1

∑j

j=1 aij . Let b = (1, 2, ... , 10) be a threshold

and for each threshold b we sum up the diagonal and the off diagonals up to Sb =
∑i

ib=1

∑j

jb=1 aibjb where ib, jb belong to the first b diagonals (in both directions). It

returns S1 as the trace, and Sc = S as the sum of all elements. The absolute dispersion

measure is proposed as

Db =
Sb

S
(7.1)

and defined as the function of b. Consequently, the presence of large values concen-

trated around the diagonal contributes to a sharp increase along b. In contrast, we expect

a marginal increment as we increase b in the case of a highly homogeneous matrix Ni,j .

To capture the extent to which such values differs from by chance, we compute a

reference Drb. In this regard, a reference homogeneous matrix Mri,j is constructed

where all entries are constant. The absolute dispersion measure of the reference matrix

Drb is computed likewise. The dispersion in the matrix Ni,j relative to a homogeneous

reference point Mri,j is measured by

∆D = Db−Drb (7.2)

retaining the area between the curves of Db and Drb as a function of b.

The index value ranges from 0 to 1. The lower boundary indicates complete hetero-

geneous mixing in which users visit places across socioeconomic status and the upper

boundary pinpoints complete homogeneous mixing in which users’ mobilities are con-

centrated within their own socioeconomic status. Dispersion index provides consistent

result with diagonality index as revealed in Fig. 7.16.

7.1.14 Kruskal-Wallis H Test

In order to check the statistical significance of the difference between the empirical

stratification matrix Mi,j and the randomised stratification matrix Ri,j , we employ a
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Figure 7.16: Homophily Mixing. Homophily mixing tendency presented as 2 dimensional
measure: Diagonality and Dispersion Index. Charlotte and Seattle seem to be
outliers because the two are located away from the rest. Houston has the high-
est main-homophily mixing tendency among other cities, as well as the strongest
neighbouring-homophily mixing. New York is less segregated, while Dallas is
even far from being homophily mixing.

Kruskal-Wallis H Test (non-parametric one-way ANOVA). Considering that the defini-

tion of the normalised stratification matrix Ni,j does not take into account any statisti-

cal test, just a simple quotient between the real data Mi,j and some random null model

number Ri,j , this procedure aims to justify the significance of homophily mixing in the

diagonal elements. The null hypothesis (H0) is formulated as an equal median between

Mi,j and Ri,j . We cannot accept (H0) if the p-value is smaller than the confidence

level α = 0.05, otherwise the alternative hypothesis (Ha) holds. Table 7.2 justifies the

specification of proposed null model in testing the existence of homophily mixing. We

obtain statistically significant difference between Mi,j and Ri,j for all cities.

Moreover, the Kruskal-Wallis H Test is also used in testing the individual bias z-

scores distributions across SES. Given the socioeconomic stratification in our analysis

with 10 SES groups, we are interested to determine statistically significant differences

between two or more SES groups. It is built based on the null hypothesis (H0) of

equal median values of individual bias z-scores across all groups, with the alternative

hypothesis (Ha) as the opposite condition. The decision rule states to reject the null

hypothesis if p-value is less than confidence level in which we set α = 0.05. Results in

Table 7.3 show statistically significant differences in median values of individual bias

z-scores between SES groups in observed areas except New York. It underlines the role

of socioeconomic stratification in shaping individual bias z-scores. Differences are not

significant in New York as initially indicated by the relatively flat median values as a

function of SES class in Fig. 7.8.
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Urban Area H statistic p-value
Atlanta 7433.403 0.000
Austin 12283.197 0.000
Baltimore 4784.554 0.000
Boston 8631.003 0.000
Charlotte 11163.451 0.000
Chicago 5585.874 0.000
Dallas 8181.791 0.000
Houston 6237.627 0.000
Los Angeles 1555.634 0.000
Miami 3840.331 0.000
Minneapolis 9687.547 0.000
New York 13333.814 0.000
Philadelphia 3757.849 0.000
Phoenix 3834.426 0.000
San Diego 905.343 0.000
San Francisco 7663.206 0.000
San Jose 7063.406 0.000
Seattle 10666.214 0.000
Tampa 3699.826 0.000
Washington 7318.923 0.000

Table 7.2: Kruskal-Wallis H Test on empirical stratification matrix Mi,j and randomised

stratification matrix Ri,j . We show that statistically significant difference between
Mi,j and Ri,j is valid in all urban areas at α = 0.05, signifying the proper use of null
model and the significant presence of homophily mixing in the diagonal elements.
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Urban Area H statistic p-value
Atlanta 141.489 5.082x10−26

Austin 33.065 1.301x10−4

Baltimore 60.753 9.594x10−10

Boston 111.234 8.241x10−20

Charlotte 69.144 2.240x10−11

Chicago 146.474 4.736x10−27

Dallas 63.167 3.274x10−10

Houston 69.038 2.349x10−11

Los Angeles 57.382 4.269x10−9

Miami 127.727 3.477x10−23

Minneapolis 61.857 5.872x10−10

New York 17.350 4.3504x10−1

Philadelphia 117.192 5.015x10−21

Phoenix 114.045 2.202x10−20

San Diego 75.688 1.156x10−12

San Francisco 185.417 3.741x10−35

San Jose 46.844 4.196x10−7

Seattle 56.402 6.575x10−9

Tampa 81.395 8.535x10−14

Washington 121.341 7.101x10−22

Table 7.3: Kruskal-Wallis H Test on individual bias z-scores. In all cities, the p-value is
away lower than the confidence level at α = 0.05. These statistics imply that socioe-
conomic stratification leads to statistically significant differences in individual bias
z-scores in those areas. New York reveals a contrasting situation where the distribu-
tion of individual bias z-scores does not seem to differ across SES.
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7.1.15 Dunn’s Test

In this section, we employ an additional statistical test called Dunn’s Test. After ob-

taining results of the Kruskal-Wallis H test to check whether all distributions of visiting

patterns are the same between people across SES, we motivate this post-hoc procedure

to determine exactly which SES of people produces statistically significant different

individual bias z-scores. The null hypothesis (H0) states equality regarding their indi-

vidual bias z-scores for each pair of SES i of users, against the alternative hypothesis

(Ha) where one or more pair are statistically significantly different. If the p-value is less

than the confidence level (α = 0.05), we should reject the null hypothesis, implying that

those pairs exist.

We capture variability of pairs of SES i of users that contribute to the difference in

individual bias z-scores in each city as seen in Fig. 7.17 (dark blue blocks). For ex-

ample, in Austin, the significant difference in individual bias z-scores is found between

user with SES 1 and 8 as well between user with SES 1 and 10. The pairs that contribute

to differences in individual bias z-scores vary across cities. This indicates that the indi-

vidual biases are not homogeneously induced across socioeconomic classes. Given that

no statistically significant differences between individual bias z-scores in New York are

found, all blocks are coloured orange.

7.2 Mobility segregation dynamics during pandemic in-

terventions

7.2.1 Summary statistics

In the dataset, Bogota retains longest temporal observation until May 2021, fol-

lowed by London (February 2021), Jakarta (December 2020), and New York (July

2020). Each individual in every city has a set of trajectories constituting timestamps

(start and end) whenever he is detected at a certain location (latitude and longitude).

We focus on mobility traces of people whose home locations are successfully identi-

fied. In Bogota, there are approximately 55,000 people containing 25 million trajec-

tories. The number of people fluctuates among cities, so do total trajectories: Jakarta

(around 65,000 people/26 million trajectories), London (almost 200,000 people/ 115

million trajectories), and New York (about 277,000 people/30 million trajectories).
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Figure 7.17: Dunn’s Test. The dark blue blocks represent pairs of SES of people i that con-
tribute to the difference in individual bias z-scores in each city; otherwise orange
blocks indicate blocks of no contributions from those pairs. The value contained
in each matrix element eij denotes an adjusted p-value for the difference between
a pair of SES class i. A pair of classes is statistically significantly different if eij
< α = 0.05, as coloured in dark blue, otherwise orange.

Urban Area Number of People Number of Trajectory

Bogota 55,000 25 million

Jakarta 65,000 26 million

London 200,000 115 million

New York 277,000 30 million

Table 7.4: Sample size. We have different size sample across cities but
preserves the temporal representation of pandemic cycle: before
lockdown, lockdown, and reopening.

Human mobility captures multi-layer information with high spatiotemporal resolu-

tion. Not only physical movement from one point to million others, it resumes individ-

ual behavioural dynamics in exploring spatial boundaries. In order to make meaning-
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ful observation related to individual mobility patterns within urban landscape, we map

out socioeconomic condition of people and places they visit by inferring income-based

metadata gathered from bureau of statistics of respected locations. This method allows

us to comprehensively analyse two aspects of individual trajectory over places: spatial

and socioeconomic status (SES) distribution. We construct a pipeline comprising data

collection, data processing, and data analysis as depicted in Fig. 7.18.

Data 
Collection

Data 
Processing

Data 
Analysis

Mobility Data Demography Data Epidemiology Data

Home locations:

POI locations: 

𝑢 ∈ 𝑈

p ∈ 𝑃

where 𝑈 ∩ 𝑃 = 𝜙

SES People:

SES POI:

𝑐! = 𝑖 ∈ 𝐶!

𝑐" = 𝑗 ∈ 𝐶"

Location 

Detection

Socioeconomic 

Classification
Policy 

Period
- Before Lockdown (BL)
- Lockdown (L/L1/L2)

- Reopening (R/R1/R2)

Mobility 

Matrix
Mobility 

Entropy
- Spatial Mobility Entropy
- SES Mobility Entropy

- Mobility Stratification 
Matrix

- Mobility Adjustment 
Matrix

Mobility 

Intervention
- Spatial Constraint
- SES Constraint

Figure 7.18: Data analytical pipeline. We observe mobility in Bogota (Colombia), Jakarta
(Indonesia), London (United Kingdom), and New York (United States). Three
types of data are used: mobility data (CUEBIQ), socioeconomic data (Bureau of
statistics), and COVID-19 data (OxCGRT/national task force).
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7.2.2 Mobility stratification matrix: All visits

Distribution of frequency visit with regards to socioeconomic stratification between

SES People i and SES POI j is conceptually introduced in Section 5.2 as Mobility

Stratification Matrix Mij . Normalisation in performed by own SES (column-wise).

Fig. 7.19 reveals the generic pattern in which assortative mixing increases during the

lockdown as increasing r is found across cities. It reflects the extend individual responds

to the pandemics by reorganising their typical mobility configuration. In the case of

more than one period of lockdown appears (L1 and L2), the first seems to be stronger

in inducing the isolation effect. As the reopening (R1) phase is started, the assortative

visit remains higher than the level before lockdown (BL).

r = 0.317 r = 0.613 r = 0.522 r = 0.428

r = 0.366 r = 0.695 r = 0.589 r = 0.615 r = 0.602

r = 0.571 r = 0.598 r = 0.606

r = 0.416 r = 0.608 r = 0.474 r = 0.461

(a)

(b)

(c)

(d)

(e)

Figure 7.19: Mobility Stratification Matrix for all visits Mij . Matrix elements in Fig. 7.19a-
d represent the magnitude of frequency visits for each pair of SES People i and
SES POI j where lighter colour shows larger visit proportion. All locations found
in individual trajectories are taken into account.
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7.2.3 Mobility stratification matrix: Without home area visit

We repeat the procedure used to generate Fig. 7.19 after excluding local visits to

own neighbourhood to generate Mobility Stratification Matrix for visits outside home

area Mcij . This step is considered as robustness control over the persistent assortative

mixing. In Fig. 7.20 we see that the first lockdown is still the most stringent because

it alters preference to visit more places within own socioeconomic class. Comparing

to Fig. 7.20, assortativity coefficient r in general is away lower, indicating that short

distance visit in the surrounding neighbourhood assumes considerable proportion on

mobility pattern.

r = 0.083 r = 0.304 r = 0.166 r = 0.131

r = 0.096 r = 0.197 r = 0.151 r = 0.104 r = 0.119

r = 0.203 r = 0.279 r = 0.218 r = 0.213

r = 0.444 r = 0.379 r = 0.413

(a)

(b)

(c)

(d)

(e)

Figure 7.20: Mobility Stratification Matrix for visits outside home area Mcij . Proportion
of frequency visit of people from SES i to places in SES j is computed after
removing places located in own neighbourhood. The lighter bin colour, the higher
visit probability is.
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7.2.4 Mobility adjustment matrix: All visits

Mobility adjustment matrix Sij is constructed to detect the indication of residual

isolation effect. We operationalise the computation in Section 4.2.3 in which the dif-

ference in proportion of frequency visits between two consecutive periods is visible in

Fig. 7.21. None of cities in this study exhibit full recovery after the occurrence of re-

opening as the bin colour remains under brown shades, indicating larger visit ratio to

places in own socioeconomic class as to compare with before lockdown period. There-

fore, it leads to the notion of residual isolation induced by COVID-19 outbreak.

(a)

(b)

(c)

(d)

(e)

Figure 7.21: Mobility Adjustment Matrix for all visits Sij . The difference in term of visit
probability between a pair of two consecutive Mobility Stratification Matrix Mij

is measured. The presence of white bins indicates indifferent visiting pattern,
while green shows more visits during the first period. Otherwise, brown shades
appear. All locations found in individual trajectories are taken into account.
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7.2.5 Mobility adjustment matrix: Without home area visit

Mobility adjustment matrix Sij is transformed to Scij by eliminating visits to own

neighbourhood. It runs on similar motivation in Section 7.2.5, namely as robustness

check given the large local visits in the individual trajectory. Fig. 7.22 tries to uncover

the main attribution of residual isolation effect by eliminating visits to own neighbour-

hood/home area. This procedure dilutes the magnitude of assortativity force, therefore

we address the residual isolation effect as a longer term consequence of localised mo-

bility due to COVID-19 restrictions. Interestingly, BL-R shows segregated pattern of

visit where before lockdown people tend to explore more places in higher socioeco-

nomic ranks (top rows/green shades) while during the reopening places in lower classes

contribute more to visit proportion (brown shades) in every cities. Beyond that, Bo-

gota exhibit bimodal segregation where dominant visit before lockdown does not only

happen in upper class, but also lower class.

(a)

(b)

(c)

(d)

(e)

Figure 7.22: Mobility Adjustment Matrix for visits outside home area Scij . Every Mobility
Stratification Matrix for visits outside home area Mcij is paired with the one in
the following period. There are three patterns to detect: no difference between
those two periods (white), dominant visit in the first period (green), and dominant
visit in the second period (brown).
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7.2.6 Spatial mobility entropy

Heterogeneity of places visited by individual is quantified by computation of Spatial

Mobility Entropy Hm(X) proposed in Section 5.3. Dispersion of value may take either

to the direction of 0, signifying strict preference on particular locations over the rest and

making the trajectory more homogeneous spatial wise. In contrast, as the value takes

closer to 1, no strict preference presumed and visits are widely distributed across loca-

tional space. We find that people become more restricted in deciding which locations

to visit as the average value Hm(X) hits the lowest point than ever in all cities. The

introduction of reopening phase does not directly bounce the value back to the normal

level before lockdown, in line with condition suggested in Fig. 7.19 and Fig. 7.21.

(a) (b)

(c) (d)

Figure 7.23: Spatial Mobility Entropy Hm(X). We measure heterogeneity of individual
preference regarding location of places visited. The presence of commonly re-
peated places pushes the value closer to zero, denoting lower degree of hetero-
geneity. On the other hand, higher variability of locations is represented by value
near 1.
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7.2.7 Socioeconomic mobility entropy

In this section, we redo the computation for trajectory heterogeneity in terms of

socioeconomic factor based on entropy formulation in Section 5.3. To measure So-

cioeconomic Mobility Entropy Hs(X), we substitute geolocation feature with SES of

places. The result in Fig. 7.24 confirms previous finding where people have stricter

preference over places during lockdown. It is beyond spatial boundary since socioeco-

nomic profile of those places is now also heavily skewed, making average value Hs(X)

touches lowest record in comparison to other periods. Therefore, it reaffirms condition

stipulated in Fig. 7.19, Fig. 7.21 and Fig. 7.23.

(a) (b)

(c) (d)

Figure 7.24: Socioeconomic Mobility Entropy Hs(X). After replacing geolocation of places
in individual trajectory by SES information, we recompute entropy. As the value
skews to 0, visiting pattern tends to be concentrated on particular SES, otherwise
it is somewhere close to 1.
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7.2.8 Socioeconomic constraint

We provide technical note explaining the method used to determine the effective-

ness of NPI in Section 5.4. There are 9 measures constituted in mobility interventions

namely closings of schools and universities (C1), closings of workplaces (C2), can-

celling public events (C3), limits on gatherings (C4), closing of public transport (C5),

orders to stay-at-home (C6), restrictions on movement between cities/regions (C7), re-

strictions on international travel(C8) and presence of public information campaigns

(H1). As effectiveness is defined as its significance in restricting mobility in term of so-

cioeconomic exploration, we descendingly sort the rank rkHs(X) based on R−squared

generated from each time series regression between Socioeconomic Mobility Entropy

Hs(X) (y-variable) and the stringency of respected intervention Sk (x-variable). As

suggested previously in Section 4.3.5, public information campaigns (H1) is the most

essential instrument before lockdown but tends to diminish over time. Other than that,

we observe heterogeneity at city level across the globe.

(a) (b)

(c) (d)

Figure 7.25: SES Constraint. The implementation of NPI also restricts exploration of places
situated in diverse SES. The effectiveness of each NPI measure in limiting socioe-
conomic diversity in individual trajectory is presented as rank rkHs(X).

Individual exploration occurs not only over physical space, but also beyond socioe-
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conomic dimension. Therefore, enforcement of NPI (widely known as mobility restric-

tions) also reduces socioeconomic diversity of visiting places. In Bogota, locational

(Fig. 4.7a) and socioeconomic diversity (Fig. 7.25a) of visiting places are identically

shaped by consistent composition of restriction on the top rank. Before lockdown (BL),

public information campaign (H1/red) is on the lead but toppled down by workplace

closing (C2/dark blue) during the first lockdown (L1). The emergence of reopening

(R1) marks the increasing importance of international travel control (C8/orange), while

the second chapter of lockdown (L2) gives rise to the policy of public transport closing

(C5/bright green). Looking at the ranking dynamics, information outreach gets lesser

as more specific and targeted policy is preferred in the subsequent periods. There is

counter cyclicality between workplace closing and international travel control. Closing

public transport in longer period persistently and increasingly limits exposures to wider

locations and socioeconomic mixture.
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7.2.9 Robustness of mobility adjustment: All visits

We take into account the robustness check of isolation effect by applying Kruskal-

Wallis H Test (non-parametric one-way ANOVA) on Mobility Stratification Matrix for

both before (Mi,j) and after removing visits to own home area (Mwi,j). The formulation

of the null hypothesis (H0) could be defined as an equal median between before lock-

down and another period that comes after. If the p-value appears to be smaller than the

confidence level α = 0.05, H0 is rejected. Otherwise, he alternative hypothesis (Ha)

remains. Table 7.5 and 7.6 provide justification for the presence of different degrees of

isolation effect due to the variability of mobility in response to the dynamics of mobility

restrictions. New York stands on strikingly opposite pattern as statistically significant

difference is seen after removing local visits to the area where home is located while

other cities exhibit such pattern for broad visits to any locations.

Urban Area Matrix Element BL & L1 L1 & R1 R1 & L2 L2 & R2 BL & R1 BL & R2
Bogota all 7.556∗ 3.567∗ 1.664 Ð 0.435 Ð
Bogota diagonal 11.063∗ 2.063 7.406∗ Ð 9.606∗ Ð
Jakarta all 9.135∗ 5.108∗ 0.748 0.043 1.504 2.720
Jakarta diagonal 12.091∗ 10.079∗ 1.651 0.571 9.143∗ 9.606∗

London all 10.832∗ 12.362∗ 0.215 Ð 0.299 Ð
London diagonal 14.286∗ 13.719∗ 1.286 Ð 9.143∗ Ð
New York all 1.404 5.970 Ð Ð 1.381 Ð
New York diagonal 7.406∗ 0.143 Ð Ð 6.606∗ Ð
*p < 0.05

Table 7.5: Kruskal-Wallis H Test on Mobility Stratification Matrix before removing visits

to home area across pairs of policy period (Mi,j). Statistical significance could
be implied in which the induced isolation effect largely takes place between before
lockdown and the first lockdown (BL & L1). It happens in all urban areas (for
diagonal elements) but New York (for all elements) as the p-value is away lower than
the confidence level at α = 0.05. Even after the introduction of the first reopening,
the distribution of mobility pattern still does not revert to the pre-pandemic level (BL
& R1)
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7.2.10 Robustness of mobility adjustment: Without home area visit

Urban Area Matrix Element BL & L1 L1 & R1 R1 & L2 L2 & R2 BL & R1 BL & R2
Bogota all 1.728 0.795 0.202 Ð 6.595∗ Ð
Bogota diagonal 1.851 0.006 0.001 Ð 1.463 Ð
Jakarta all 6.090∗ 0.006 0.013 0.160 4.550∗ 3.252
Jakarta diagonal 1.286 0.051 0.001 0.281 0.691 0.966
London all 0.294 0.199 0.001 Ð 0.638 Ð
London diagonal 1.286 0.463 0.023 Ð 1.286 Ð
New York all 0.119 0.084 Ð Ð 0.001 Ð
New York diagonal 0.206 0.051 Ð Ð 0.206 Ð
*p < 0.05

Table 7.6: Kruskal-Wallis H Test on Mobility Stratification Matrix after removing visits

to home area across pairs of policy period (Mwi,j). Mobility pattern differs sig-
nificantly between before and during the first lockdown (BL & L1) in Jakarta (for all
elements) but not apparent in other urban areas given the p-value is away lower than
the confidence level at α = 0.05. Similar direction also becomes visible between
before and during the first reopening (BL & R1). Strict isolation along diagonal ele-
ments is not found anywhere. Therefore, levelling up the contribution of local visits
in the surrounding of home locations to isolation.
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7.2.11 Inter-mobility

(d)(a)

(b) (e)

(c)

Figure 7.26: Inter-mobility assortativity r. The computation is performed for trips across
a pair of boroughs at census-tract level OD matrix: Manhattan-Brooklyn
(Fig. 7.26a), Manhattan-Queens (Fig. 7.26b), Bronx-Queens (Fig. 7.26c), Bronx-
Brooklyn (Fig. 7.26c), and Brooklyn-Queens (Fig. 7.26d). In this category, mo-
bility is mostly disassortative, leading to lower segregation level except flows of
people between Brooklyn and Queens.
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