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Chapter 1

Introduction

The thesis consists of three parts. The first, developing various topics in the the-

ory of graph limits, forms the bulk of the work. It is based on five papers, of

which two are published, two are about to be submitted, and one is a draft in

preparation. The two published papers prove that certain combinatorial construc-

tions on infinite graphs with bounded maximum degree can be obtained by local

algorithms, meaning in particular that their approximate versions can be built

along any graph sequence converging to such an infinite graph. The subsequent

two papers focus on graph convergence in the intermediate regime, that is in the

case when the number of edges grows superlinearly but subquadratically in the

number of vertices along a given graph sequence. The draft that closes the first

part approaches graph limits through the language of exchangeability and proves

[...] .

The second part, based on a paper under review, addresses the question of

existence of isometries of the set of probability measures on a metric space which

do not arise from an isometry of the metric space itself. We focus on the particular

case when the metric space is a sphere and show that in that scenario, there are no

such exotic isometries. The third and newest part investigates phenomena related

to random walks on countable discrete groups. We ask for which bounded functions

on Γ there is a probability measure on the group with respect to which the function

is harmonic, conjecture that changing an originally µ-harmonic function at exactly

one point produces a non-harmonisable function, and prove the conjecture in a
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special case. After that, we also extend the classical theorem that the values of a

harmonic function converge almost surely along the trajectory of a random walk

to say that the random harmonic function obtained by shifting our coordinates by

the trajectory of the random walk converges pointwise almost surely to a constant

function.
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Chapter 2

Part I: Graph limits

Let us suppose that we have a sequence (Gn)
∞
n=1 of finite simple graphs with

growing number of vertices. Is there a way to tell whether as n goes to infinity,

the graphs look more and more alike? And if yes, what is it?

The answer depends on what exactly it is that we consider important about

graphs. In recent years, when we often store and organise large datasets as graphs,

a multitude of approaches to the questions above has been emerging. In general,

we divide graph sequences to dense and sparse, where the former are those for

which

lim inf
n→∞

e (Gn)(
v(Gn)

2

) > 0,

that is a positive fraction of the
(
v(Gn)

2

)
possible edges is always present, while

under sparse sequences we understand those in which the edge density converges

to zero.

Whatever graph sequence (Gn)
∞
n=1 we have at hand, we can always fix a positive

integer k and for each n, sample uniformly at random k vertices from Gn. These

induce a subgraph of Gn, meaning we just obtained a probability distribution on

the finite set of simple graphs on k vertices. If for every fixed k, these sampling

distributions converge, we say that the sequence converges in the dense sense. The

reason for such name is that applying this process to a sparse sequence gives us no

structural information other than exactly the fact that the sequence is sparse. In

other words, this convergence notion trivializes for sparse sequences since for every

k, the distribution on induced k-vertex subgraphs converges to the Dirac mass at
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the empty graph.

The upside of the theory of dense convergence is the neat limit object called

graphon. Introduced by Lovász and Szegedy in [3], graphons are measurable func-

tions

W : [0, 1]2 −→ [0, 1]

such that W (x, y) = W (y, x) for almost all (x, y) ∈ [0, 1]2.

On the other side of the density spectrum, we have graph sequences with

uniformly bounded maximum degree, for example the sequence (Cn)
∞
n=3 of cycles

or the sequence (Pn)
∞
n=2 of paths. We can employ a different sampling procedure

now, in which k will become the depth of exploration. Concretely, we pick one

vertex uniformly at random and consider the subgraph of Gn induced by all the

vertices in the ball of radius k around our random vertex. Since there is a uniform

upper bound, say ∆, on the maximum degree of any vertex, we again arrive to

a scenario in which we have, for every k, probability distributions on the same

finite set of graphs, and are asking whether these converge. This is called local or

Benjamini-Schramm convergence, for which probabilistic objects called graphings

serve as the limit objects – see Chapter 18 in [2] for their precise definition.

In both the cases described above, once we have a limit object, we can de-

duce from it facts about any graph sequence converging to them. A particular

example of this phenomenon in the sparse regime are so-called local algorithms:

if we can construct a combinatorial structure on a graphing by a local algorithm,

then we can build at least nearly optimal such structures also along any graphs

sequence converging to this graphing. Examples of structures that we might have

in mind include independent sets witnessing a particular independence ratio, per-

fect matchings and similar. In the first two appendices, we tackle the question of

constructing Schreier decorations, that is, we want to find decorations of the edges

of infinite 2d-regular graphs with arrows and d colours which specify an action

of the free group Fd on the vertices of the graph which respects the adjacency

relation.

Outside of the two extreme worlds of the dense sequences on one hand and

sequences with uniformly bounded maximum degree on the other, we are left with

an abundance of sequences of intermediate edge density. The flagship example
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of these is the sequence of hypercubes, where V (Hn) = {0, 1}n and two vertices

are adjacent if and only if they differ at exactly one coordinate. Hn is thus an

n-regular graph with

e(Hn)(
v(Hn)

2

) =
n · 2n−1

(
2n

2

) =
n

2n − 1
→ 0.

A number of attempts have recently emerged that try to capture the essence

of sequences of intermediate density in a convergence notion and a corresponding

limit object. Of these, we explore action convergence and logarithmic convergence

in Appendices C and D, respectively.
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Chapter 3

Part II: Isometries of Wasserstein

spaces

Back in the 18th century, Gaspard Monge considered the following problem. Sup-

pose we have a pile of building material that we want to transfer to a construction

site. The transfer of each piece of the material from a point x ∈ R3 to a particular

place y ∈ R3 in the construction site accrues a certain cost c(x, y) ≥ 0, and we

want to find a map T : R3 → R3 which minimizes the overall cost

∫
c(x, T (x)) dµ(x),

where µ is the probability distribution describing the location of the pile of the

building material.

Let also ν be the probability measure describing the desired location of the

construction. Then we denote by

CM(µ, ν) := inf

∫
c(x, T (x)) dµ(x)

the infimum of the overall cost over all maps T : R3 −→ R3 under which the

pushforward T#µ of the measure µ is equal to ν, that is all maps that indeed

transport our pile to the construction site.

However, for some pairs of probability measures, no such maps exist – for

example, if µ is the Dirac mass δx at some x ∈ R3, while ν is not one. That is
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why in the 20th century, Leonid Kantorovich introduced the more general notion

of transport plans, under which mass coming from one place can be split to go to

multiple locations. Formally, a transport plan between two probability measures

µ and ν is any coupling π between them, that is a probability measure on R3×R3

such that for any measurable subset A of R3, we have that

π
(
A× R3

)
= µ(A)

and

π
(
R3 × A

)
= ν(A).

The infimum of the overall cost of the transfer when splitting mass is allowed is

then denoted by

CK(µ, ν) := inf
Π

∫
c(x, y) dπ(x, y),

where we run over all couplings of µ and ν.

From today’s point of view, there is of course nothing special about the partic-

ular space R3, and we will replace it with a general metric space (M,d) from now

on.

One of the first questions to spring to mind is of course under what conditions

is the infimum in the definition of CK realised, that is, under what conditions we

can replace it with a minimum. The answer covers a surprisingly wide range of

scenarios, the underlying reason for which is the tightness of the set of couplings

of two given probability measures. We call a set S of probability measures νn tight

if for every ε > 0, there is a compact set Kε such that for every θ ∈ S, we have

θ (Kϵ) ≥ 1 − ε. One can then utilise Prokhorov’s theorem on weak convergence

of probability measures to show that there exists an optimal coupling for CK

whenever (M,d) is separable and c is lower semi-continuous.

The most natural costs are of course derived from the metric d. Moreover, for

p ∈ [1,∞),

dWp(µ, ν) := inf
π∈Π

(∫

M×M
d(x, y)p dπ(x, y)

)1/p
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is a metric, called the p-Wasserstein distance on the set

Wp :=

{
µ | ∃x such that

∫

M

d(x, y)p dµ(y) < ∞
}
.

The family of the Wasserstein distances is a prime, but not the only example of

a metric on probability measures on (M,d) which is derived from the underlying

distance d. We already encountered the Lévy-Prokhorov metric dLP in the setting

of action convergence in Part I of the thesis, and several more similar metrics exist.

How much more structure or freedom is there then in
(
Wp, dWp

)
than in (M,d)?

One approach to this question is to examine the isometries, that is distance-

preserving maps, of these two spaces. Owing to the space-homogeneity of the

definition of dWp , every isometry ϕ of (M,d) is easily seen to also be an isometry

of
(
Wp, dWp

)
. But can

(
Wp, dWp

)
have any more isometries than that? The answer

wildly differs depending on the metric space in question and on the parameter p.

For example, Kloeckner showed in [CITE] that for M = Rn, exotic isometries of

(W2, dW2) exist, but for example the spheres Sn equipped with the geodesic distance

are isometrically rigid, meaning not admitting exotic isometries of
(
Wp, dWp

)
for

any p ∈ [1,∞). Somewhere in between these two scenarios lies the one of the

spheres Sn equipped with the distance inherited from Rn+1. We prove in Appendix

E that these, too, are rigid.
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Chapter 4

Part III: Harmonic functions on

discrete countable groups

Let Γ be a countable group on which we consider the σ-algebra of all its subsets.

Then for every probability measure µ on Γ, we can consider the Markov chain on

Γ whose transition probabilities p(g, h) are given by µ (g−1h) – that is, wherever

we are in the state space, we sample a group element according to µ and multiply

it on the right with out current state. Such a time-homogeneous Markov chain is

called a group walk, and coming hand in hand with it are µ-harmonic functions on

Γ, that is, functions f which satisfy that for every g ∈ Γ,

f(g) =
∑

h∈Γ
µ(h)f(gh).

Whenever we have a bounded µ-harmonic function, the martingale convergence

theorem tells us that its value converges along almost every realisation of a µ-

random walk. Informally, there seem to be some “points at infinity” towards one

of which the walk is eventually heading and whose function value it is adopting.

This heuristic is formulated precisely via an object known as Poisson boundary,

or sometimes Furstenberg-Poisson boundary, whose existence was shown by H.

Furstenberg in [CITE].

Poisson boundary of a pair (Γ, µ) is a probability space (B, ν) such that

H∞(Γ, µ) ∼= L∞(B, ν), (4.1)
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where H∞(Γ, µ) stands for the set of bounded µ-harmonic functions on Γ and

the isomorphism is that of normed vector spaces. We think of our random walk

eventually “hitting” a point in the boundary B on which a function F ∈ L∞(ν) is

waiting, which gives rise to a harmonic function on Γ by considering the expected

value of F if we start the random walk from a given element g of Γ. Harmonicity

of this expectation is simply the law of total probability used with conditioning

on where the first µ-random step takes us from g, and necessarily |Eg[F ]| ≤ ∥F∥∞
for every g ∈ Γ, where again, this is a somewhat informal statement based on the

assumption that almost every µ-random walk eventually ‘hits’ B, making F a ran-

dom variable. One can prove that considering expectations as above is in fact the

only source of bounded harmonic functions, and thus obtaining the isomorphism

(4.1).

Let us observe that so far, we have not truly used that our state space is a

group and indeed, the phenomena described up to now hold true for a general time-

homogeneous Markov chain just as well. However, when we do have a group walk

at hand, the group acts on trajectories via the diagonal action g · (x0, x1, x2, . . .) =

(gx0, gx1, gx2, . . .) and hence it also acts on the boundary B. One can for example

prove that the centre Z(Γ) of Γ always acts trivially on B, a consequence of which is

that the Poisson boundary of abelian groups is always trivial or in other words, they

admit no bounded harmonic functions other than constant. The property, known

as the Liouville property, of having no non-constant bounded harmonic functions,

in fact holds true for all virtually nilpotent groups with respect to any probability

measure one might try to choose on them. The converse of this result, i.e., that

every countable group which is not virtually nilpotent admits a probability measure

µ such that bounded non-constant µ-harmonic functions exist, was proved only

recently by Frisch, Hartman, Tamuz and Vahidi Ferdowsi [1].

After the diagonal action of Γ on trajectories, one can also consider the left

action on functions on Γ given by

(g · f)(x) = f
(
g−1x

)
for all x ∈ Γ.

Intuitively, g · f is the function f as g sees it when it looks around and thinks that

it is the origin.
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Recast in this language, the fact that for any bounded, or even just positive, µ-

harmonic function h and almost every µ-random trajectory (xn)
∞
n=0, the sequence

h(xn) converges is expressed by saying that xn · h(e) converges. It seems natural

that xn · h(g) should converge for every g ∈ Γ, that is, xn · h should converge

pointwise, and indeed, this is what we prove in the following proposition. In

Appendix F, a joint work with Omer Segev, we leverage this fact to show that if

probability measures θ and µ on Γ satisfy that

∥µ∗n ∗ θ − θ ∗ µ∗n∥TV → 0 as n → ∞,

then H∞(Γ, θ) ⊆ H∞(Γ, µ), where µ∗n are the convolution powers giving the

distribution of the n-th step of the µ-random walk started from the origin. This in

particular includes the case when µ and θ commute, but there do exist measures

µ, θ such that the total variation distance of µ∗n ∗ θ and θ ∗ µ∗n goes to zero while

µ∗θ ̸= θ∗µ (see Appendix F for an example). The inclusion H∞(Γ, θ) ⊆ H∞(Γ, µ)

then provides an elegant alternate way of showing some known results, e.g. the

aforementioned triviality of the action of Z(Γ) on the boundary.

Proposition 1.

Proof.

While the research of random walks and the corresponding harmonic functions

has mostly been centred on finding the harmonic functions for a given measure in

the past decades, one can also turn the question around and ask with respect to

which probability measures is a given (bounded) function harmonic. We close the

thesis with a conjecture and a partial result supporting it, which is based on the

fact that for any generating measure µ on the free group F2, the Gromov boundary

∂F2 is a factor of the Poisson boundary of (F2, µ).

Conjecture 2. Let Γ be a countable group and µ a probability measure on Γ. Let

h be a µ-harmonic function on Γ. Then if f is obtained from h by changing its

value at the origin, there is no probability measure ν on Γ with respect to which f

is harmonic. We say that f is non-harmonisable.

Theorem 3.
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Proof.

13

C
E

U
eT

D
C

ol
le

ct
io

n



References

[1] Joshua Frisch, Yair Hartman, Omer Tamuz, and Pooya Vahidi Ferdowsi.

Choquet-deny groups and the infinite conjugacy class property. Annals of

Mathematics, 190(1):307–320, 2019.
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Appendix A

Factor-of-iid balanced orientation

of non-amenable graphs

by Ferenc Bencs, Aranka Hrušková, László Márton Tóth
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a b s t r a c t

We show that if a non-amenable, quasi-transitive, unimodular
graph G has all degrees even then it has a factor-of-iid balanced
orientation, meaning each vertex has equal in- and outdegree.
This result involves extending earlier spectral-theoretic results
on Bernoulli shifts to the Bernoulli graphings of quasi-transitive,
unimodular graphs.

As a consequence, we also obtain that when G is regular (of
either odd or even degree) and bipartite, it has a factor-of-iid
perfect matching. This generalizes a result of Lyons and Nazarov
beyond transitive graphs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let G be a simple connected graph with all degrees even. An orientation of the edges of G is
balanced if the indegree of any vertex is equal to its outdegree. When G is finite, the term Eulerian
orientation is often used, as such an orientation can be obtained from an Eulerian cycle. Our interest
lies in infinite graphs, so we prioritize the term balanced. Our main result is the following.

Theorem 1. Every non-amenable, quasi-transitive, unimodular graph G with all degrees even has a
factor-of-iid orientation that is balanced almost surely.

The precise definitions of these notions are given in Section 2. Non-amenable means that
all finite subsets of G expand, quasi-transitive means G has finitely many types of vertices, and
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https://doi.org/10.1016/j.ejc.2023.103784
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F. Bencs, A. Hrušková and L.M. Tóth European Journal of Combinatorics 115 (2024) 103784

Fig. 1. Obtaining G∗ from G — the combinatorial transformation around a vertex of degree 4.

unimodularity is a reversibility condition of the simple random walk on G. Informally speaking,
a balanced orientation is a factor of iid if it is produced by a randomized ‘‘local’’ algorithm. To
start with, each vertex of G gets a random label from [0, 1] independently and uniformly. Then it
makes a deterministic measurable decision about the orientation of its incident edges, based on the
labeled graph that it sees from itself as a root. Neighboring vertices must make a consistent decision
regarding the edge between them. To make the statements of our results less cumbersome, instead
of saying ‘‘a factor-of-iid orientation of the edges that is balanced almost surely’’ we will simply say
‘‘factor-of-iid balanced orientation’’. (The naming is analogous for other decorations of vertices or
edges.)

Obtaining combinatorial structures or certain models in statistical mechanics as factors of iid
is a central topic in ergodic theory. See [1] and the references therein for an overview in the
non-amenable setting.

All Cayley graphs, in particular regular trees are unimodular. For d > 1, the 2d-regular tree T2d
is also non-amenable, so it is covered by Theorem 1. Note that on T2d there is a unique invariant
random balanced orientation, which by Theorem 1 is a factor of iid. Moreover, this result cannot be
obtained by measurable versions of the Lovász Local Lemma, see Remark 8.

Our interest in balanced orientations is due to the fact that on a 2d-regular graph a balanced
orientation is a partial result towards a Schreier decoration. A Schreier decoration of G is a coloring
of the edges with d colors together with an orientation such that at every vertex, there is exactly one
incoming and one outgoing edge of each color. It is a combinatorial coding of an action of the free
group Fd on the vertex set of the graphs. Every Schreier decoration gives a balanced orientation
by forgetting the colors. In [2], the third author proved that all 2d-regular unimodular random
rooted graphs admit an invariant random Schreier decoration, and the current authors show in a
parallel work [3] that such invariant random Schreier decorations can be obtained as a factor of iid
in Euclidean grids in all dimensions greater than 1 as well as on all Archimedean (planar) lattices
of even degree.

It remains an open question whether there indeed is a factor-of-iid Schreier decoration of T2d.
In [4], Thornton studies when graphs have factor-of-iid Cayley diagrams. Finding a Cayley diagram
of a fixed group as a random decoration comes with (compared to a Schreier decoration) additional
local restrictions on how the decoration should behave on loops. Nevertheless, the question of
finding a Cayley diagram of Fd overlaps with our interest in Schreier decorations on T2d. Thornton
has a result on factor-of-iid Cayley diagrams on non-amenable graphs ([4, Theorem 1.7]) that
provides approximate Cayley diagrams, but we do not allow for a small-probability local error here.

The proof of Theorem 1 relies on two main ingredients. First, we reduce the question of finding a
balanced orientation of G to finding a perfect matching in an auxiliary graph G∗. Fig. 1 illustrates the
construction, which already appears in works of Schrijver [5] and Mihail–Winkler [6]. The precise
formulation is given in Section 5.

Second, we apply earlier matching results of Lyons and Nazarov [7], who proved that bipartite,
non-amenable Cayley graphs have a factor-of-iid perfect matching. Csóka and Lippner extended this
to all non-amenable Cayley graphs in [8].
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In order to deduce Theorem 1 from these matching results, we have to establish vertex expansion
in the appropriate Bernoulli graphing (see Section 2.7 for the definition). We do this via spectral
theory, and state our spectral-theoretic result here because we believe it is of interest in itself.

Theorem 2. Let G be a connected, unimodular, quasi-transitive graph. If G is non-amenable then its
Bernoulli graphing G has positive spectral gap.

The interpretation of spectral gap is slightly different depending on the Bernoulli graphing being
measurably bipartite or not. See Theorems 17 and 18 for exact statements.

Our proof of Theorem 2 requires more sophistication than simply repeating earlier arguments
in a more general setting. To emphasize this, we point out that (unlike in the transitive case) −1
can indeed be part of the spectrum. Also our proof does not bound ∥M∥ above by ∥MG∥, where
∥MG∥ is the operator norm of the Markov operator MG on ℓ2(V(G)), while for Cayley graphs, one
has ∥M∥ ≤ ∥MG∥.

As a consequence of Theorem 2, we also obtain the following generalization of the result of Lyons
and Nazarov.

Corollary 3. Let G be a connected, unimodular, quasi-transitive non-amenable regular bipartite graph.
Then G has a factor-of-iid perfect matching.

The bipartite assumption in Corollary 3 cannot be dropped because there are unimodular, quasi-
transitive regular graphs that have no perfect matching at all, see Remark 21. Regularity cannot
be dropped either, as for example bi-regular trees (of two different degrees of regularity) have no
factor-of-iid perfect matching.

We also discuss how far Theorem 1 goes towards obtaining Schreier decorations on the regular
tree T2d.

Proposition 4. Regarding Schreier decorations of T2d we observe the following.

(i) If Td has a factor-of-iid proper edge coloring with d colors then T2d has a factor-of-iid Schreier
decoration.

(ii) T2d has a factor-of-iid Schreier decoration with the last two colors unordered.
(iii) Let T⃗4 denote the tree T4 with edges oriented in a balanced way. (T⃗4 is unique up to isomorphism.)

There is no Aut(T⃗4)-factor-of-iid Schreier decoration of T⃗4 with the additional property that after
forgetting the colors, it coincides with the original orientation of T⃗4.

(iv) For every positive integer d, if T2d has a factor-of-iid Schreier decoration then so does T2d+2.

It is an open question whether Td (for d > 2) has a factor-of-iid proper edge coloring by d
colors. Part (ii) utilizes the partial result towards such a factor-of-iid proper edge coloring presented
in [1]; see Section 6.2 for further comments. Note, however, that by part (iii), obtaining a factor-
of-iid Schreier decoration of T4 cannot be achieved by selecting a balanced orientation first and
then choosing the colors without modifying the orientation. This observation is unique to degree 4
because it relies on the 2-regular tree, otherwise known as the bi-infinite path, not having a factor-
of-iid proper edge coloring with two colors. For higher degree, a construction might be finished this
way, as pointed out in part (i).

Finally, regarding the auxiliary graph G∗ we show that existences of different factors of iid are
equivalent.

Proposition 5. For every 2d-regular graph G, the bipartite graph G∗ is also 2d-regular, and the
following are equivalent.

1. G∗ has a factor-of-iid proper edge 2d-coloring.
2. G∗ has a factor-of-iid perfect matching.
3. G∗ has a factor-of-iid Schreier decoration.

Moreover, if any of these is a finitary factor, the others are too.
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For the definition of finitary factors see Section 2.4.
The structure of the paper is as follows. In Section 2, we introduce the necessary notions

and existing results. In Section 3, we prove our spectral-theoretic result, Theorem 2. We deduce
Corollary 3 in Section 4, and in Section 5, we prove our main result, Theorem 1. Our results on
other types of decorations are collected in Section 6. Section 7 lists some open questions.

Addendum. After our manuscript was made available online, Riley Thornton brought to our
attention that his Theorem 2.8 in [9] provides a measurable balanced orientation in 2d-regular
graphings with expansion. Since Backhausz, Szegedy, and Virág show in [10, Theorem 2.2] that the
Bernoulli graphing of T2d does have expansion, a factor-of-iid balanced orientation of T2d can also
be obtained by combining these two results.

2. Notation and basics

Some of the descriptions in this section are identical to the ones in our parallel work [3].

2.1. Graphs

A graph G is given by its vertex set V (G) and edge set E(G), where E(G) ⊂ V (G)(2) is a collection
of 2-element subsets of V (G) and we write uv for the subset {u, v}. For any subset A ⊂ V (G), we
denote by NG(A) the neighborhood of A, that is {u ∈ V (G) : ∃v ∈ A such that uv ∈ E(G)}. We use
the calligraphic G for graphs that have a probability measure associated to them that makes them
a graphing (see Section 2.6 for precise definition).

2.2. Amenability

Let G be a locally finite connected graph, and let pn(x, y) denote the probability of the sim-
ple random walk started from x reaching y in n steps. Then the value lim supn→∞

n√pn(x, y) is
independent of the choice of x and y, and is in fact equal to the norm of the Markov operator
M : ℓ2(V (G),mst) → ℓ2(V (G),mst). Here mst is the degree-biased version of the counting measure,
i.e. mst(X) =

∑
v∈X deg(v), which is a stationary measure with respect to the random walk. The

operator M is defined by

(M(f )) (v) =
1

deg(v)

∑
uv∈E(G)

f (u).

M is self-adjoint and has norm at most 1 for any G. We will denote its norm (and spectral radius)
by ρ:

ρ = ∥M∥ = lim sup
n→∞

n
√
pn(x, y).

We say G is amenable if ρ = 1 and non-amenable if ρ < 1.
This characterization of amenability, due to Kesten [11], is of course only one of many. In

particular non-amenability is equivalent to the positivity of the Cheeger constant of G. In Section 5
we also work with Cheeger constants, but we do so on graphings, not on countably infinite graphs.

2.3. Schreier graphs

Given a finitely generated group Γ = ⟨S⟩ and an action Γ ↷ X on some set X , the Schreier graph
Sch(Γ ↷ X, S) of the action is defined as follows. The set of vertices is X , and for every x ∈ X , s ∈ S,
we introduce an oriented s-labeled edge from x to s.x.

Rooted connected Schreier graphs of Γ come from pointed transitive actions of Γ , which are in
one-to-one correspondence with subgroups of Γ . Trivially, a graph with a Schreier decoration is a
Schreier graph of the free group Fd on d generators. A special case is the (left) Cayley graph of Γ ,
denoted Cay(Γ , S), which is the Schreier graph of the (left) translation action Γ ↷ Γ .
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2.4. Factors of iid

Let Γ be a group. A Γ -space is a measurable space X with an action Γ ↷ X . A map Φ : X → Y
between two Γ -spaces is a Γ -factor if it is measurable and Γ -equivariant, that is γ .Φ(x) = Φ(γ .x)
for every γ ∈ Γ and x ∈ X .

A measure µ on a Γ -space X is invariant if µ(γ .A) = µ(A) for all γ ∈ Γ and all measurable
A ⊆ X . We say an action Γ ↷ (X, µ) is probability-measure-preserving (p.m.p.) if µ is a Γ -invariant
probability measure.

Let G be a countable graph and Γ ≤ Aut(G). Let u denote the Lebesgue measure on [0, 1]. We
endow the space [0, 1]V (G) with the product measure uV (G). The translation action Γ ↷ [0, 1]V (G) is
defined by

(γ .f )(v) = f (γ −1.v), ∀γ ∈ Γ , v ∈ V (G).

The action Γ ↷ ([0, 1]V (G), uV (G)) is p.m.p.
An orientation of G can be thought of as a function on E(G) sending every edge to one of its

endpoints. Viewed like this, orientations of G form a standard Borel space in the product E(G)V (G).
We denote this space of orientations Or(G), and note that it comes with a natural action of Γ . The
set BalOr(G) ⊆ Or(G) of balanced orientations is Γ -invariant and Borel, so it is a Γ -space in itself.
Similarly, the set of all Schreier decorations of G forms the Γ -space Sch(G).

Definition 6. A Γ -factor of iid balanced orientation (respectively, Schreier decoration) of a graph
G is a Γ -factor Φ : ([0, 1]V (G), uV (G)) → BalOr(G) (respectively, to Sch(G)). If the subgroup
Γ ≤ Aut(G) is not specified, we mean an Aut(G)-factor.

Remark 7. We allow Φ to not be defined on a uV (G)-null subset X0 ⊆ [0, 1]V (G).

Let us now recall some special classes of factor of iid processes on graphs. For a fixed vertex
x ∈ V (G), let

(
Φ(ω)

)
(x) denote the restriction of Φ(ω) to the edges incident to x. We say Φ is a

finitary factor of iid if for almost all ω ∈ [0, 1]V (G), there exists an R ∈ N such that
(
Φ(ω)

)
(x) is

already determined by ω|BG(x,R). That is, if we change ω outside BG(x, R), the decoration Φ(ω) does
not change around x. This radius R can depend on the particular ω. If it does not then we say Φ is
a block factor.

When constructing factors of iid algorithmically, one often makes use of the fact that a uniform
[0, 1] random variable can be decomposed into countably many independent uniform [0, 1] random
variables. In practice, this means that we can assume that a vertex has multiple labels or that a new
independent random label is always available after a previous one was used.

We will use a reverse operation as well: the composition of countably many uniform [0, 1]
random variables is again a uniform [0, 1] random variable.

Remark 8. Note that balanced orientations of T2d have the property that fixing the orientation
on all edges at distance r from some vertex u determines the orientation of edges incident to
u, independently of r . Consequently, the balanced orientation constructed in Theorem 1 has no
local reduction to the Lovász Local Lemma (LLL). Indeed, by [12, Section 11.1] it has randomized
local complexity Θ(log n), whereas the algorithm of [13] implies o(log n) complexity for problems
that have local reductions to the LLL. So although there are measurable versions of the LLL [14,15],
factor-of-iid balanced orientations of T2d cannot be obtained that way.

2.5. Unimodular quasi-transitive graphs

Unimodular random rooted graphs are central objects in sparse graph limit theory because they
can represent limits of locally convergent sequences of finite graphs. In this paper, however, we
only deal with a special case, namely unimodular quasi-transitive graphs. For a thorough treatment
of the topic and the connection to unimodular random rooted graphs, we refer the reader to [16,
Chapter 8.2] and [17].
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Let G be a locally finite graph, Γ = Aut(G). There is a function µ : V (G) → R+ such that for any
x, y ∈ V (G), we have

µ(x)
µ(y)

=
|StabΓ (x).y|
|StabΓ (y).x|

.

The function µ is unique up to multiplication by a constant. We say G is unimodular if
|StabΓ (x).y| = |StabΓ (y).x| for any pair x, y ∈ V (G) that are in the same Γ orbit, that is y ∈ Γ .x. So
G is unimodular if and only if µ(y) = µ(x) for any y ∈ Γ .x.

Moreover, when {oi} is the orbit section of G and
∑

i µ(oi)−1 < ∞, then we can normalize µ to
obtain a probability measure on {oi}.

In particular, when G is quasi-transitive, let T = {o1, . . . , ot} ⊂ V (G) be a set of representatives
of the orbits of Γ ↷ V (G). Let p be the normalized version of µ−1 as above — we think of p as a
distribution of a random root in G.

The notion of unimodularity comes hand in hand with the Mass Transport Principle. In our case,
it takes the following form:

Proposition 9 (Mass Transport Principle, Corollary 8.11. in [16]). Given a function f : V (G)× V (G) →

[0, ∞] that is invariant under the diagonal action of Γ , we have
t∑

i=1

p(oi)
∑

z∈V (G)

f (oi, z) =

t∑
i=1

p(oi)
∑

z∈V (G)

f (z, oi).

We immediately use the Mass Transport Principle to set up a finite state Markov chain mimicking
the transitions of the random walk on G between Γ -orbits.

Lemma 10. For any 1 ≤ i ̸= j ≤ t, the function p satisfies,

p(oi)
⏐⏐{oiv ∈ E | v ∈ Γ .oj}

⏐⏐ = p(oj)
⏐⏐{voj ∈ E | v ∈ Γ .oi}

⏐⏐ .
Proof. For fixed i ̸= j, set up a payment function f with f (x, y) = 1 if xy ∈ E(G), x ∈ Γ .oi and
y ∈ Γ .oj. Set f (x, y) = 0 otherwise. The Mass Transport Principle gives the desired equality. □

We define a Markov chain MT with states T and transition probabilities

pMT (oi, oj) =

⏐⏐{oiv ∈ E(G) | v ∈ Γ .oj}
⏐⏐

deg(oi)
.

Note that MT is just the projection of the random walk on G onto {Γ .o1, . . . , Γ .ot}.
With slight abuse of notation, we will also denote the transition matrix by MT . We write p̃ for

the degree-biased version of the root distribution p, that is

p̃(oi) =
deg(oi)

∆
· p(oi).

Here ∆ = Ep[deg(oi)] is the expected degree of a root picked with distribution p. Lemma 10
shows that p̃ is a reversible stationary distribution for MT .

List the eigenvalues of MT in decreasing order, 1 = λ1 ≥ λ2 ≥ · · · ≥ λt . We say MT is bipartite if
λt = −1. MT is bipartite if and only if we can partition T into two sets T1 and T2 such that whenever
oi, oj ∈ T1 or oi, oj ∈ T2, we have pMT (oi, oj) = 0. We set ρT = max({0} ∪ {|λi| | 1 < i ≤ t and λi >
−1}).

We will have to treat the bipartite and non-bipartite case separately. When MT is not bipartite,
we have ρT = 0 when t = 1 and ρT = max{λ2, |λt |} when t ≥ 2. The following is an immediate
consequence of the Convergence Theorem for finite-state Markov chains.

Lemma 11. Assume MT is not bipartite. Let eoi ∈ RT denote the characteristic vector of oi ∈ T . Then
for any v ∈ RT , there exists a C > 0 such that for any i ∈ [t] and k ∈ N we have

|⟨Mk
T eoi , v⟩ − ⟨̃p, v⟩| ≤ Cρk

T .
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When MT is bipartite, the spectrum is symmetric, i.e. λi = −λt−i+1 for all i ∈ {1, . . . , t}. In
particular, λt−1 = −λ2, so ρT = λ2 whenever t ≥ 3. (When t = 2 we have ρT = 0.) The reversibility
of MT ensures p̃(T1) = p̃(T2) = 1/2, and M2

T defines two disjoint Markov chains on T1 and T2
with stationary measures 2̃p|T1 and 2̃p|T2 respectively. The eigenvalues of M2

T are the squares of
the eigenvalues of MT , in particular they are non-negative, so M2

T is not bipartite on either T1 or T2.
Also the second largest eigenvalue in absolute value of M2

T (on both T1 and T2) is ρ2
T .

2.6. Graphings

Graphings play an essential role in obtaining invariant random structures on graphs as they
represent a space where both the probability measure and the underlying (possibly random) count-
able graph are present. Their use in constructing factor-of-iid perfect matchings is well-established
in [7,8]. For a more detailed introduction, see for example [18, Chapter 18].

Definition 12. Let (X, ν) be a Borel probability space. A (bounded-degree) graphing is a graph G
with V (G) = X and Borel edge set E(G), in which all degrees are at most D ∈ N, and∫

A
degB(x) dν(x) =

∫
B
degA(x) dν(x) (2.1)

for all measurable sets A, B ⊆ X , where degS(x) is the number of edges from x ∈ X to S ⊆ X .

We will now define what we mean by E(G) being Borel. The reason we do it in a slightly
convoluted way is because in this paper it will be more convenient to use E(G) to denote the set
of edges, and not think about it as a symmetric subset of X × X . The present downside to this is
that defining the Borel structure and the edge measure can be done most naturally inside X × X .
For this reason let Ẽ(G) denote the symmetric subset of X × X corresponding to the edges of G:

Ẽ(G) = {(x, y) ∈ X × X | xy ∈ E(G)}.

We say E(G) is a Borel edge set if Ẽ(G) ⊆ X × X is Borel. Then E(G) itself has a Borel σ -algebra
corresponding to the sub-σ -algebra of symmetric Borel subsets of Ẽ(G).

Moreover, the measure ν of a graphing G gives rise to a measure νẼ on X × X by defining

νẼ(A × B) =
1
2

∫
A
degB(x) dν(x)

for any measurable A, B ⊂ X . The measure νẼ is concentrated on Ẽ(G).
We then define the edge measure νE on E(G) by setting νE(F ) = νẼ(F̃ ) for measurable subsets

F ⊆ E(G). (F̃ is defined analogously to Ẽ(G).) Essentially we are restricting νẼ as defined above to
the symmetric Borel subsets of Ẽ(G). The factor 1/2 is introduced so that the appropriate version
of the usual edge double counting identity 2|E(G)| =

∑
v∈V (G) deg(v) for finite graphs also holds for

graphings:

2νE
(
E(G)

)
=

∫
X
deg(x) dν(x).

Example 13. Given a finitely generated group Γ = ⟨S⟩ and a p.m.p. action Γ ↷ (X, ν), the Schreier
graph Sch(Γ ↷ X, S) is a graphing (after forgetting the orientation and S-labeling). The action being
p.m.p. implies that the degree condition (2.1) holds.

2.7. Connection to Bernoulli graphings

We now introduce Bernoulli graphings, which are closely related to factors of iid.
For a unimodular quasi-transitive graph G, we define its Bernoulli graphing G as follows. The

vertex set of G is Ω , the space of [0, 1]-decorated, rooted, connected graphs with degree bound
D (up to rooted isomorphism). Elements of V (G) = Ω are of the form (H, u, ω), where (H, u) is a

7

C
E

U
eT

D
C

ol
le

ct
io

n



F. Bencs, A. Hrušková and L.M. Tóth European Journal of Combinatorics 115 (2024) 103784

connected, bounded-degree rooted graph, and ω : V (H) → [0, 1] is a labeling. We connect (H, u, ω)
with (H ′, u′, ω′) if and only if we can obtain (H ′, u′, ω′) from (H, u, ω) by moving the root u to one
of its neighbors. We denote the resulting measurable edge set by E .

It remains to define the probability measure on Ω . (Note that the vertex and edge sets are
the same for every G, only the measure will be different.) G is quasi-transitive, so it has finitely
many possible rooted versions, namely the (G, oi) for oi ∈ {o1, . . . , ot}. Let us pick a random root o,
choosing each oi with probability p(oi). We also pick a random labeling ω ∈ [0, 1]V (G) according to
uV (G). Recall that u stands for the uniform measure on [0, 1]. The triple (G, o, ω), considered up to
rooted isomorphism, is a random element of Ω , let νG denote its distribution. The Bernoulli graphing
of G is G = (Ω, E, νG). G satisfies (2.1) because G is unimodular.

Given a unimodular quasi-transitive graph G, constructing an Aut(G)-factor of iid almost surely
balanced orientation (Schreier decoration) of G is equivalent to constructing a measurable almost
everywhere balanced orientation (Schreier decoration) of the Bernoulli graphing G built on G. Here,
measurability means that the oriented edges (and the color classes) form νẼ-measurable subsets of
Ω × Ω .

Also note that a measurable Schreier decoration of any graphing G defines a p.m.p. action
Fd ↷ V (G) that generates the graphing as in Example 13.

Therefore, an equivalent formulation of our main motivating question is the following: given
a (quasi-transitive unimodular) 2d-regular graph G, is the Bernoulli graphing G generated by a
p.m.p. action of Fd? The answer is no for the bi-infinite line, and one can also construct 2d-regular
counterexamples for every d, see [3]. However, as far as the authors are aware, all such known
counterexamples are 2-ended. Some cases when the answer is positive are also established in [3].

It would of course be even better to answer this question for all unimodular random rooted
graphs.

2.8. Perfect matchings in expanding graphings

Finding measurable perfect matchings in non-hyperfinite graphings is usually achieved through
expansion properties. (There are important results in the hyperfinite case as well, see e.g. [19],
announced a few months after the first version of the current paper was made available online.
Results in the hyperfinite world however tend to use a rather different set of tools.)

We will use the following two results, both based on the argument of Lyons and Nazarov in [7].

Theorem 14 (Lyons-Nazarov, [7]). Let G = (X, E, ν) be a graphing with no odd cycles. Assume it has
vertex expansion at least c > 1. That is, for any A ⊂ X such that 0 < ν(A) ≤ 1/2, we have

ν(NG(A))
ν(A)

≥ c.

Then G has a Borel matching that covers all vertices up to a nullset.

Note that G having no odd cycles in the previous theorem means that each connected component
is bipartite, but G itself might not have ameasurable bipartition of its vertex set. If such a measurable
bipartition exists, we say G is measurably bipartite. In fact we will also need a variation of the above
for measurably bipartite graphings, because in that case the expansion assumption in Theorem 14
cannot hold. (A measure 1/2 subset of the larger side of the bipartition violates the inequality.)

Theorem 15 (Lyons-Nazarov, Theorem 9.1 in [20]). Let ε > 0. Let G = (X1, X2, E, ν) be a measurably
bipartite graphing with ν(X1) = ν(X2). Assume it has bipartite vertex-expansion at least 1 + ε. That is,
for any A ⊆ X1 and B ⊆ X2, we have

ν(NG(A)) ≥ min
{
(1 + ε)ν(A),

1
4

+ ε

}
and ν(NG(B)) ≥ min

{
(1 + ε)ν(B),

1
4

+ ε

}
.

Then G has a Borel matching that covers all vertices up to a nullset.
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3. Spectral gap for non-amenable quasi-transitive graphs

In this section we prove our spectral theoretic result, Theorem 2.
For a graphing G on (X, ν), we denote by νst the degree-biased version of ν, that is

νst(A) =

∫
x∈A

deg(x)dν
/∫

x∈X
deg(x)dν.

As the notation suggests, νst is stationary with respect to the Markov operator M of G that is
defined by

(Mf )(G, o, ω) =
1

degG(o)

∑
ov∈E

f (G, v, ω).

M is a self-adjoint operator on L2(Ω, νst). To get a bound on the spectral radius of M (on the
appropriate subspace), we will use the following lemma.

Lemma 16 (Lemma 2.4 of [10]). For a bounded self-adjoint operator T on a Hilbert space H and for any
spanning subset H of H, we have

ρ(T ) = ∥T∥ = sup
v∈H

(
lim sup
k→∞

⏐⏐⏐⏐ ⟨v, T kv⟩

⟨v, v⟩

⏐⏐⏐⏐1/k
)

.

The following two theorems deal with the non-bipartite and bipartite case separately. Recall
that we denote the Markov operator of G on ℓ2(G,mst) by M , where mst denotes the degree-biased
version of the counting measure on V (G). As G is non-amenable we have ρ = ∥M∥ < 1. Recall also
that ρT = max({0} ∪ {|λi| | 1 < i ≤ t and λi > −1}) is defined through the finite state Markov
chain MT , and ρT < 1.

Theorem 17. Let G be as in Theorem 2, and assume also that MT is not bipartite. Let L20(Ω, νst) denote
the orthogonal complement of the subspace of constant functions. Then the spectral radius of M on
L20(Ω, νst) is at most max{ρ, ρT } < 1.

Theorem 18. Let G be as in Theorem 2, and assume that MT is bipartite. Let ρ < 1 denote the
spectral radius of G on ℓ2(G,mst). The Bernoulli graphing G is measurably bipartite, with bipartition
X1 ∪ X2 = V (G). Let L200(Ω, νst) denote the orthogonal complement of the subspace generated by the
functions 1X and 1X1 − 1X2 . Then the spectral radius of M on L200(Ω, νst) is at most max{ρ, ρT } < 1.

Proof of Theorem 2. The content of Theorem 2 is exactly Theorems 17 and 18. □

We first prove Theorem 17 and then use it to prove Theorem 18.

Proof of Theorem 17. As before, let pk(o, y) denote the probability that the random walk on G
starting at o arrives at y after k steps. We have lim supk→∞

(
pk(o, y)

)1/k
= ρ, so for every ε > 0

there exists some C0(o, y, ε) ∈ R such that pk(o, y) ≤ C0(o, y, ε)(ρ + ε)k for all k.
During this proof, we will write µ for uV (G). We will use Lemma 16 in the following setting. Let

H ⊆ L20(Ω, νst) be the set of functions f such that

• f has zero mean, i.e.∫
(G,o,ω)∈Ω

f (G, o, ω) dνst =

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω) dµ = 0;

• f has norm 1, i.e.∫
(G,o,ω)∈Ω

f 2(G, o, ω) dνst =

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f 2(G, oi, ω) dµ = 1;
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• there exists some r ≥ 0 such that if we change labels of vertices further than r from the root
then the value of f does not change.

The set H is a spanning subset of L20(Ω, νst). (Note that a measurable function f : Ω → R
defines an R-valued factor of iid on any graph G. Indeed, for ω ∈ [0, 1]V (G) one defines

(
Φ(ω)

)
(v) =

f (G, v, ω).) This is equivalent to saying that any factor of iid process is a limit of block factors;
see [1].

Let us fix an element f ∈ H . Then

⟨Mkf , f ⟩ =

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)

∑
y∈Bk(oi)

pk(oi, y)f (G, oi, ω)f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∑

y∈Bk(oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ.

We split the sum depending on the distance between oi and y:

⟨Mkf , f ⟩ =

t∑
i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ (3.1)

+

t∑
i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ. (3.2)

If the distance between oi and y is bigger than 2r then (by the third property of f ) the
values f (G, oi, ω) and f (G, y, ω) depend on labels at disjoint sets of vertices. Since those labels are
independent, we have∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ =

∫
ω∈[0,1]V (G)

f (G, oi, ω)dµ
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ.

Therefore the first term, (3.1) is
t∑

i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∑

y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y/∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈V (G)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

−

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ

=

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ (3.3)

−

t∑
i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∑
y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, y, ω)dµ. (3.4)
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Along the calculation, we used that
∫

ω∈[0,1]V (G) f (G, y, ω) dµ only depends on the orbit that y is
in. Then we grouped all the y ∈ Γ .oj together, and used the fact that∑

y∈Γ .oj

pk(oi, y) = pMT
k (oi, oj).

Indeed, the probability of the random walk on G started from oi ending up at some y ∈ Γ .oj after
k steps is the same as the probability of the finite Markov chain MT , starting from oi ending up in
oj after k steps.

We now use that from any initial state, the finite Markov chain converges to the stationary
distribution. That is, we use Lemma 11, with the vector

v : oj ↦→

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ.

We get that there exists some C1 ∈ R such that⏐⏐⏐⏐⏐⏐
t∑

j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ −

t∑
j=1

p̃(oj)
∫

ω∈[0,1]V (G)
f (G, oj, ω) dµ

⏐⏐⏐⏐⏐⏐ ≤ C1ρ
k
T .

Note that C1 might depend on f , but not on k. The first property of f says the second term in the
absolute value is 0, so we have⏐⏐⏐⏐⏐⏐

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐ ≤ C1ρ
k
T .

We use this to bound the term (3.3):⏐⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐
≤

t∑
i=1

p̃(oi)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

⏐⏐⏐⏐
⏐⏐⏐⏐⏐⏐

t∑
j=1

pMT
k (oi, oj)

∫
ω∈[0,1]V (G)

f (G, oj, ω)dµ

⏐⏐⏐⏐⏐⏐
≤

t∑
i=1

p̃(oi)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

⏐⏐⏐⏐ C1ρ
k
T = C2ρ

k
T .

To recap, we had ⟨Mkf , f ⟩ = (3.1) + (3.2) = (3.3) − (3.4) + (3.2). We have already bounded
the absolute value of (3.3), so we now bound the absolute values of (3.2) and (3.4). These terms,
however, correspond to cases where the random walk on G arrives close to the starting point after
k steps. As G is non-amenable, the probability of this happening decays exponentially in k.

Formally, let us recall that pk(oi, y) ≤ C0(oi, y, ε)(ρ + ε)k. We write

⏐⏐(3.2)⏐⏐ =

⏐⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

⏐⏐⏐⏐⏐⏐
≤ (ρ + ε)k

t∑
i=1

p̃(oi)
∑

y∈B2r (oi)

C0(oi, y, ε)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)f (G, y, ω)dµ

⏐⏐⏐⏐  
C3

,

11

C
E

U
eT

D
C

ol
le

ct
io

n



F. Bencs, A. Hrušková and L.M. Tóth European Journal of Combinatorics 115 (2024) 103784

⏐⏐(3.4)⏐⏐ =

⏐⏐⏐⏐⏐⏐
t∑

i=1

p̃(oi)
∑

y∈B2r (oi)

pk(oi, y)
∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ

⏐⏐⏐⏐⏐⏐
≤ (ρ + ε)k

t∑
i=1

p̃(oi)
∑

y∈B2r (oi)

C0(oi, y, ε)
⏐⏐⏐⏐∫

ω∈[0,1]V (G)
f (G, oi, ω)dµ

∫
ω∈[0,1]V (G)

f (G, y, ω)dµ
⏐⏐⏐⏐  

C4

.

Note that the constants C3 and C4 depend on f , but not on k. We now combine our bounds and
get

lim sup
k→∞

⏐⏐⟨Mkf , f ⟩
⏐⏐1/k ≤ lim sup

k→∞

(
C2ρ

k
T + (C3 + C4)(ρ + ε)k

)1/k
= lim

k→∞

(
C2ρ

k
T + (C3 + C4)(ρ + ε)k

)1/k
= max(ρT , ρ + ε).

This holds for any ε > 0, so we have lim supk→∞

⏐⏐⟨Mkf , f ⟩
⏐⏐1/k ≤ max(ρT , ρ). By Lemma 16, we

now have ∥M|L20(Ω,νst)∥ ≤ max(ρT , ρ), which completes the proof. □

Proof of Theorem 18. Note that by bipartiteness, the subspaces 1⊥

X1
and 1⊥

X2
of L2(Ω) are invariant

under the action of M2, so M2 is well-defined as an operator on S1 = {f ∈ L200(Ω, νst) : f |X2≡ 0}
and on S2 = {f ∈ L200(Ω, νst) : f |X1≡ 0}. Moreover, L200(Ω, νst) can be written as the internal direct
sum

L200(Ω, νst) = S1 ⊕ S2,

so the spectrum of M2
|L200(Ω,νst) satisfies

σ

(
M2

|L200(Ω,νst)

)
= σ

(
M2

|S1

)
∪ σ

(
M2

|S2

)
.

M2
T restricted to T1 or T2 is not bipartite, so the proof of Theorem 17, applied to M2 on S1 and

on S2, yields that the two spectral radii are both at most max(ρ2, ρ2
T ).

Finally, we have σ (M2
|L200

) = {λ2
| λ ∈ σ (ML200

)}, which completes the proof. □

4. Perfect matchings in quasi-transitive graphs

In this section we prove Corollary 3. The hard work was done in Section 3 to establish our
spectral-theoretic results, here we can mostly follow the proof of Lyons and Nazarov. In order
to prove their main result, they obtain the necessary expansion properties from the spectral gap
through [7, Lemma 2.3]. We recall this as Lemma 19 below. We also need to complement it with a
measurably bipartite version, proved very similarly, which will be Lemma 20.

Lemma 19 ([7], Lemma 2.3). Let G = (X, E, ν) be a graphing, and let ρG = ρ

(
M|L20(X,νst)

)
. Let

B ⊆ X be a measurable subset, and let b = νst(B)/νst(X) denote the degree-biased density of B in
X. Let b′

= νst(N(B))/νst(X) denote the degree-biased density of the neighbors of B in X. Then

b′
≥

1
ρ2
G(1 − b) + b

· b.

Lemma 20. Let G = (X1, X2, E, ν) be a measurably bipartite graphing, and let ρG = ρ

(
M|L200(X,νst)

)
.

Let B ⊆ X1 be a measurable subset, and let b = νst(B)/νst(X1) denote the degree-biased density of B in
X1. Let b′

= νst(N(B))/νst(X2) denote the degree-biased density of the neighbors of B in X2. Then

b′
≥

1
ρ2
G(1 − b) + b

· b.
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The same holds for measurable subsets B ⊆ X2.

Proof, following Lemma 2.3 in [7]. First we note that by the graphing condition (2.1), we must
have νst(X1) = νst(X2) =

1
2 :

νst(X1) =

∫
X1

deg(x)dν∫
X deg(x)dν

=

∫
X1

degX2 (x)dν∫
X deg(x)dν

=

∫
X2

degX1 (x)dν∫
X deg(x)dν

=

∫
X2

deg(x)dν∫
X deg(x)dν

= νst(X2).

Since M1B is constant 0 on the complement of B′
= N(B), we have

νst(B) = ⟨1B, 1⟩ = ⟨1B,M1⟩ = ⟨M1B, 1⟩ = ⟨M1B, 1B′⟩.

Consequently,

νst(B)2 = ⟨M1B, 1B′⟩
2

≤ ∥M1B∥
2
· ∥1B′∥

2
= ∥M1B∥

2
· νst(B′) = ∥M1B∥

2
·
b′

2
. (4.1)

We split 1B as follows: 1B = b1X1 + fB, where fB = 1B − b1X1 = (1 − b)1B + (−b)1X1\B. Notice
that fB ⊥ 1 and fB ⊥ 1X1 − 1X2 , therefore ∥MfB∥ ≤ ρG · ∥fB∥. Moreover,

∥fB∥2
= (1 − b)2 · νst(B) + b2 · νst(X1 \ B) = (1 − b)2 ·

b
2

+ b2 ·
1 − b
2

=
b(1 − b)

2
.

Now M1B = b·M1X1 +MfB = b1X2 +MfB. Again, 1X2 ⊥ MfB because ⟨1X2 ,MfB⟩ = ⟨M1X2 , fB⟩ =

⟨1X1 , fB⟩ = 0. Hence,

∥M1B∥
2

= b2∥1X2∥
2
+ ∥MfB∥2

≤ b2 · ν(X2) + ρ2
G · ∥fB∥2

=
1
2

(
b2 + ρ2

Gb(1 − b)
)
. (4.2)

Putting (4.1) and (4.2) together, we get

b′
≥

2νst(B)2

∥M1B∥
2 =

b2

2∥M1B∥
2 ≥

b2

b2 + ρ2
Gb(1 − b)

=
1

ρ2
G(1 − b) + b

· b. □

Proof of Corollary 3. Let MT denote the finite state Markov chain defined by the quasi-transitive
graph G described in Section 2.5. If MT is not bipartite, we have spectral gap on L20(V (G), ν) by
Theorem 17, which implies vertex expansion by Lemma 19, and Theorem 14 provides the perfect
matching. If MT is bipartite, the Bernoulli graphing G is measurably bipartite and has spectral gap
by Theorem 18. This implies bipartite expansion by Lemma 20. The bipartite expansion implies the
existence of a perfect matching by Theorem 15.

Note that we use the regularity of G, as it implies that the probability measures ν (used in
Theorems 14 and 15) and νst (used in Lemmas 19 and 20) coincide. □

Remark 21. Abért, Csóka, Lippner and Terpai show in [8] that any infinite transitive graph has
a perfect matching. The following example shows that this is not true for quasi-transitive graphs.
Therefore if we want to extend the result of Lyons and Nazarov on factor-of-iid perfect matchings
beyond transitive graphs, assuming G to be bipartite is necessary.

Let G be any unimodular transitive non-amenable 2d-regular graph, e.g. the tree T2d. Let us now
attach two pendant K−

2d+5 (the complete graph minus an edge) to every vertex of G so that the
resulting graph G̃ is 2d + 4-regular and has three orbits. G̃ is quasi-isometric to G, and so it is non-
amenable. To see that it is unimodular as well, we refer to [21], where it is shown that performing
certain local changes preserves unimodularity. Every vertex v in G̃ corresponding to an original
vertex in G is now a cut vertex, and at least two of the components left in G̃ when v is removed
are finite and having odd order. G̃ has therefore no perfect matching at all, let alone a factor-of-iid
one.

5. Balanced orientations

In this subsection, we prove Theorem 1. We will use an auxiliary bipartite graph G∗ whose
perfect matchings correspond to balanced orientations of our graph G. This connection is implicit
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in Schrijver’s paper about counting Eulerian orientations [5]. The first explicit constructions of pairs
of graphs in which a balanced orientation of one is a perfect matching of the other were given
by Mihail and Winkler [6]. The auxiliary graph G∗ is constructed from G by local transformations,
which makes sure that it is quasi-isometric to G.

Definition 22. Let G be a simple graph in which every vertex has an even degree. Then we define
a simple graph G∗ as follows (see also Fig. 1). G∗ has a vertex for every edge e ∈ E(G) and deg(v)/2
vertices for every vertex v ∈ V (G), i.e.

V (G∗) = {xe : e ∈ E(G)} ∪ {vi : v ∈ V (G), i ∈ [deg(v)/2]}.

Then every vertex corresponding to a former edge is joined to all copies of its former endpoints.

E(G∗) = {xuvvi : uv ∈ E(G), i ∈ [deg(v)/2]}.

The vertices xe ∈ V (G∗) are called edge-type vertices of G∗, and vi ∈ V (G∗) are called vertex-type
vertices. Any perfect matching M in G∗ then defines a balanced orientation of G by orienting an edge
e ∈ E(G) towards its endpoint v if and only if xe and vi are matched by M for some i ∈ [deg(v)/2].

We now introduce the same construction starting from a graphing G. Recall that for a graphing
(G, ν) we denote by νE the edge measure on E(G).

Definition 23. Let (G, ν) be a graphing with finite average degree deg = 2νE(E(G)) < ∞ in which
almost every vertex has even degree. Then we define the measurably bipartite auxiliary graphing
(G∗, ν∗) as follows.

• V (G∗) = X1 ∪X2, where X1 = E(G) and X2 =
⋃

∞

i=1 Yi ×{i}, where Yi = {x ∈ V (G) | deg(x) ≥ 2i}.
Let us denote by π : X2 → V (G) the projection onto the first coordinate.

• The measure ν∗ is defined by

ν∗
|X1=

1
2νE
(
E(G)

)νE, ν∗
|Yi×{i}=

1
2νE
(
E(G)

)ν|Yi .

• For e ∈ X1, x ∈ X2 there is an edge ex ∈ E(G∗) connecting them if and only if π (x) ∈ e.

To check that G∗ is indeed a graphing, we compute for any A ⊆ X1 and B ⊆ X2 that∫
B
degA(v)dν

∗(v) =

∫
V (G)

⏐⏐π−1(v) ∩ B
⏐⏐ · ⏐⏐{a ∈ A | v is incident to a}

⏐⏐ dν(v)∫
V (G) deg(u)dν(u)

=

∫
A |π−1(u) ∩ B| + |π−1(v) ∩ B|dνE(uv)

2νE(E(G))
=

∫
A
degB(e)dν

∗(e).

As in the discrete case, a measurable matching M ⊆ E(G∗) defines a measurable balanced
orientation of G by orienting an edge e ∈ E(G) towards its endpoint v if e and (v, i) are matched by
M for some i ∈ [deg(v)/2].

We now go on to relate expansion properties of G to those of G∗. Let us define the Cheeger
constant of G as

Φst = inf

{∫
S degNG (S)\S(u)dν(u)

νst(S)

⏐⏐⏐ 0 < νst(S) ≤
1
2

}
.

Note that in this degree-biased version, we may have Φst > 0 even when the set of isolated vertices
has positive ν-measure.

Lemma 24. Let (G, ν) be a graphing with bounded average degree deg < ∞ and Cheeger constant
Φst(G) > 0. Then (G∗, ν∗) has bipartite expansion, that is, there is an ε > 0 such that for any A ⊆ X1
and B ⊆ X2, we have

ν∗
(
NG∗ (A)

)
≥ min

{
(1 + ε) ν∗(A),

1
4

+ ε

}
and
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ν∗
(
NG∗ (B)

)
≥ min

{
(1 + ε) ν∗(B),

1
4

+ ε

}
.

In particular, ε = min
{

3
20 ,

Φst(G)
4deg

}
satisfies this.

Proof. First, we observe that for B ⊆ X2 we have

ν∗(B) ≤
1

2νE
(
E(G)

) ∫
π (B)

deg(v)
2

dν(v) =
1
2
νst(π (B)).

For ease of notation we will write B′
= NG∗ (B), A′

= NG∗ (A), and E = E(G). The set B′ consists
exactly of those edges of G that have at least one vertex in π (B). Consequently,

ν∗(B′) =
1

2νE(E)
νE(B′) =

1
2

∫
π (B) deg(u)dν(u) +

1
2

∫
π (B)′\π (B) degπ (B)(u)dν(u)

2νE(E)

≥

1
2

∫
π (B) deg(u)dν(u)∫

V (G) deg(v)dν(v)
+

Φst min {νst(π (B)), 1 − νst(π (B))}

2deg⎧⎨⎩≥ ν∗(B) +
Φst
deg

·
νst(π (B))

2 ≥

(
1 +

Φst
deg

)
ν∗(B) if νst(π (B)) ≤

1
2

=
1
2νst(π (B)) +

Φst(1−νst(π (B)))
2deg

≥
1
4 +

Φst
4deg

if νst(π (B)) ≥
1
2 ,

where π (B)′ = NG
(
π (B)

)
.

Second, let us consider A ⊆ X1. In this case, A′ is all possible lifts of the vertices induced by A
in G. That is, if S ⊆ V (G) is the set of vertices that are incident to at least one edge from A, then
A′

= π−1(S). Thus

ν∗(A′) =
1∫

V (G) deg(v)dν(v)

∫
S
|π−1(u)|dν(u) =

1
2νE(E)

∫
S

1
2
deg(u)dν(u)

≥
1

2νE(E)

(
1
2

∫
S
degS(u)dν(u) +

1
2
Φst min {νst(S), 1 − νst(S)}

)
⎧⎪⎨⎪⎩

≥
1
2
∫
S degS (u)dν(u)

2νE (E)

(
1 +

Φst
deg

)
≥ ν∗(A)

(
1 +

Φst
deg

)
if νst(S) ≤

1
2

≥
1
2
∫
S degS (u)dν(u)

2νE (E)

(
1 +

Φst(1−νst(S))∫
S deg(u)dν(u)

)
≥ ν∗(A)

(
1 +

Φst
deg

·
1−νst(S)
νst(S)

)
if νst(S) ≥

1
2 .

We hence have that ν∗(A′) ≥

(
1 +

Φst
4deg

)
ν∗(A) for all A ⊆ X1 such that νst(S) ≤

4
5 . Moreover,

ν∗(A′) =
1
2νst(S), which means that νst(A′) ≥

1
4 +

3
20 whenever A ⊆ X1 is such that νst(S) ≥

4
5 . □

Proof of Theorem 1. We aim to find a factor-of-iid balanced orientation of the quasi-transitive
graph G, that is we aim to find a measurable balanced orientation (up to nullsets) in its Bernoulli
graphing (G, ν).

The spectrum of the Markov operator MG restricted to L20
(
V (G), νst

)
is bounded away from 1

(though not necessarily bounded away from −1). This is given for MG with non-bipartite MT by
Theorem 17. For MG with bipartite MT , we deduce this by observing that L20 (V (G), νst) can be
written as the direct sum L200 (V (G), νst) ⊕ ⟨1X1 − 1X2⟩ and applying Theorem 18.

By a standard argument this spectral gap ‘‘at the top of the spectrum’’ implies that G has positive
Cheeger constant. See e.g. [22, Proposition 3.3.6] for a formulation and proof for finite graphs
that generalizes to graphings (with the appropriate vertex- and edge measures). Consequently
by Lemma 24 the auxiliary graphing G∗ has bipartite vertex expansion, which means it has a
measurable perfect matching M by Theorem 15. Then M defines a measurable balanced orientation
of G as described after Definition 23. □
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6. Other decorations

6.1. Schreier decorations of T2d

In this section we prove the four items of Proposition 4.
We start by pointing out that for T2d, there are in fact unique Aut(T2d)-invariant measures µbo

and µSch on the spaces BalOr(T2d) and Sch(T2d) respectively. The reason is that both the balanced
orientation and Schreier decoration are essentially unique on T2d, meaning that StabAut(T2d)(o) acts
transitively on both BalOr(T2d) and Sch(T2d). Here o denotes an arbitrary root vertex in T2d.

One can construct µbo and µSch by starting at o and defining the balanced orientation or Schreier
decoration on the incident edges uniformly at random. Then continue moving radially outwards
through the vertices of T2d, always extending the structure to the 2d − 1 outwards edges where
it is not yet defined, doing so by choosing uniformly randomly among the possible extensions,
independently at each vertex.

Note that µbo is a factor of µSch, simply by forgetting the colors. In fact, there is an intermediate
object, which we can obtain from µSch by forgetting the order of the last two colors cd−1 and cd.
This gives µSch∗ , the unique invariant measure on Sch∗(Td), the space of Schreier decorations of T2d
with the colors {cd−1, cd} unordered. So the more detailed picture is that µbo is a factor of µSch∗ ,
which is itself a factor of µSch.

Theorem 1 implies that µbo is a factor of iid. For d > 1, one could show that µSch is a factor of
iid if Td had a factor of iid proper edge d-coloring. (However, the existence of such a coloring is an
open question [1].)

Proof of (i). A balanced orientation of T2d gives rise to a decomposition of the edges into infinitely
many edge-disjoint d-regular subtrees, with each subtree having either only incoming or only
outgoing edges at every vertex it covers. Each vertex is covered by exactly two such d-regular
subtrees.

We construct a balanced orientation (and the resulting decomposition) as a factor of iid by
Theorem 1. Furthermore, we can assume that each vertex v still has two independent uniform
random labels lin(v) and lout(v) to be used in each of the two subtrees covering it. Then by using the
assumed factor-of-iid proper edge d-coloring on each subtree, we obtain a Schreier decoration. □

In [1], Lyons presents a partial result towards constructing the unique invariant measure µcol on
proper edge colorings of Td with d colors as a factor-of-iid. He obtains a factor-of-iid proper edge
coloring, but with the last two colors being unordered. This allows us to prove part (ii), which states
that even µSch∗ is a factor of iid.

Proof of (ii). We follow the construction of part (i), and use the factor-of-iid proper edge coloring
with two colors unordered from [1] on the d-regular subtrees. To complete the construction, at
every vertex of the tree, we have to match the colors of the {cd−1, cd}-colored incoming edges to
the two outgoing {cd−1, cd}-colored edges. So each vertex chooses a random bijection between these
incoming and outgoing edges, placing the paired edges in the same color class from {cd−1, cd}. □

Notice that the map forgetting the order of colors from Sch(T2d) to Sch∗(T2d) is a 2-to-1 cover.
In a sense, we are only lacking a coin flip to find a Schreier decoration. However, this is exactly
the kind of randomness that cannot be used when constructing factors of iid — vertices far away
cannot generate a common random value because of correlation decay. In part (iii), we explicitly
show that ‘‘finishing the construction’’ starting from a balanced orientation of T4 is not possible.

Proof of (iii). Take two oriented edges e⃗ and f⃗ of T⃗4 that are the first and the last edge on a path
on which the orientation is alternating. Coloring one of them determines the color of the other in
a Schreier decoration that respects the orientation. If the path consists of an odd number of edges
then e⃗ and f⃗ have to have the same color.

On the other hand, the action of Aut(T⃗4) is edge-transitive, which implies that if we pick e⃗ and f⃗
further and further apart, the correlation between their colors must decay. Hence, there can be no
factor-of-iid Schreier decoration respecting the orientation. □
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Finally we prove part (iv), namely that if µSch is a factor of iid for T2d, then it is a factor of iid
also for T2d+2i for all i ∈ N.

Proof of (iv). Let us first construct two disjoint factor-of-iid perfect matchings on T2d+2 as in [7].
Then after disregarding the edges in these matchings, we are left with infinitely many copies of T2d,
in which we can find, by assumption, a factor-of-iid Schreier decoration with colors c1, . . . , cd. Let us
now in the tree T2d+2 disregard the edges colored with c1, so that we again are left with infinitely
many T2d-s. We delete the {c2, . . . , cd}, orientation, and matching decorations in these trees, and
construct on them, anew, a Schreier decoration with colors {c2, . . . , cd+1}. Together with the edges
decorated with c1, this gives a Schreier decoration of the tree T2d+2. □

6.2. A connection to measured group theory

Part (ii) of Proposition 4 also has the following interpretation.
The 2d-regular tree is the Cayley graph of Fd, the free group on d generators, but also of the

group (Z/2Z)∗2d, the 2d-fold free product of (Z/2Z) with itself. A Schreier decoration corresponds
to an action of Fd, while a proper edge coloring corresponds to an action (Z/2Z)∗2d.

Let Γ = (Z/2Z)∗2d. Consider the Bernoulli shift Fd ↷
(
[0, 1]Fd , uFd

)
, and similarly Γ ↷(

[0, 1]Γ , uΓ
)
. Let S and T denote the standard generating sets of F2 and Γ respectively.

One can ask whether the two Bernoulli shifts are equivalent in the strong sense that there exists a
measure-preserving bijection Φ : [0, 1]Fd → [0, 1]Γ such that (on a subset of measure 1) whenever
s.ω = ω′ for ω, ω′

∈ [0, 1]Fd , and s ∈ S, then there is some t ∈ T such that t.Φ(ω) = Φ(ω′). (Note
that this is much stronger than Orbit Equivalence, we require t to be from the finite generating set
T . We require that the distances defined by the word length on the orbits are preserved.)

As far as the authors are aware, this question is open. The existence of such Φ would imply
that Fd has a p.m.p. action on [0, 1]Γ that defines the same distance on orbits as Γ and vice versa.
So disproving the equivalence could be achieved by showing that one of these actions does not
exist. This is a fruitful approach when considering the same problem for groups with Cayley graphs
isomorphic to the square lattice.

The results of [1] and part (ii) of Proposition 4 respectively say that Γ acts on a 2-cover of
[0, 1]Fd defining the same distance on orbits, and Fd acts on a 2-cover of [0, 1]Γ and defines the
same distance on orbits.

6.3. Decorations of G∗

In this subsection, we further study the connection between balanced orientations of G and
perfect matchings of the auxiliary graph G∗.

We will first finish proving the equivalence of a balanced orientation of Gwith a perfect matching
on G∗ started in Section 5, and then use the perfect matching to construct Schreier decorations and
proper edge colorings of G∗.

Lemma 25. Let G be a simple graph with all degrees even. There is a (finitary) Aut(G)-factor of iid
balanced orientation of G if and only if there is a (finitary) Aut(G∗)-factor of iid perfect matching.

Proof. Suppose G∗ has a factor-of-iid perfect matching. Given random labels on V (G), we can
deterministically produce labels on V (G∗) as we will describe below. We use the factor-of-iid perfect
matching to deterministically compute matching M in G∗, which again deterministically defines a
balanced orientation of G. As all the steps are Aut(G)-equivariant, their composition is a factor-of-iid
balanced orientation of G.

By decomposing our original labels, we can assume that we have 3
2 deg(v) independent random

labels at each v ∈ V (G) at the beginning. We make each v give one of these labels to all the vi as
well as all xe for edges e incident to v. Then each xe takes the two labels it got from its endpoints and
composes them to get a label. This way each vertex of V (G∗) obtains a label. The joint distribution
of these labels is uniform iid, which completes the construction in this direction.
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On the other hand, suppose G has a factor-of-iid balanced orientation. Without loss of generality,
we will assume that G is connected. If G ̸= P and G ̸= Ck, then any y ∈ V (G∗) can determine
whether it is of edge-type or vertex-type. Also, if y is of vertex-type (say y = vi), it can identify
all other vertices of G∗ that correspond to the same vertex of G as y (all vertices of the form vj,
j ∈ [deg(v)/2]). If the vj, j ∈ [deg(v)/2] compose their labels to get a label l(v) for each v ∈ V (G),
then any y ∈ V (G∗) of vertex-type can simulate the factor-of-iid balanced orientation on ‘‘its
neighborhood in G’’. The balanced orientation determines which deg(v)/2 vertices of the form xvu
get matched to the vi. The vi can together choose the matching between {vi | i ∈ [deg(v)/2]} and
{xvu | uv is oriented towards v in G} randomly, yielding a factor-of-iid perfect matching of G∗.

If G = P is the bi-infinite path then G∗
= G and it has neither factor of iid perfect matching

nor balanced orientation. If G = Ck for some k ∈ N then G∗
= C2k, and so there is both a balanced

orientation on G and a perfect matching on G∗. □

Remark 26. From a more algebraic point of view, in the proof above, we use the fact that Aut(G)
acts on [0, 1]V (G∗). There is a natural embedding ϕ : Aut(G) → Aut(G∗), which in turn defines the
translation action of Aut(G) on [0, 1]V (G∗). By decomposing and combining the labels as explained,
we have in fact shown that Aut(G) ↷

(
[0, 1]V (G∗), uV (G∗)

)
is a factor of Aut(G) ↷

(
[0, 1]V (G), uV (G)

)
.

We can then utilize the existence of an Aut(G∗)-factor of iid perfect matching of G∗ and the
correspondence with balanced orientations of G to finish the proof by composing the appropriate
factor maps.

In the other direction, we aim to build a factor map from Aut(G∗) ↷
(
[0, 1]V (G∗), uV (G∗)

)
to

Aut(G∗) ↷
(
PM(G∗), µpm

)
through the factor from Aut(G) ↷

(
[0, 1]V (G), uV (G)

)
to Aut(G) ↷(

BalOr(G), µbo
)
. But in order to do that we have to consider

(
[0, 1]V (G), uV (G)

)
as an Aut(G∗)-space.

This is possible exactly when G has a vertex of degree at least 4, or equivalently when vertices of
G∗ can determine their type. In this case every element of Aut(G∗) is an element of Aut(G) up to
permuting the sets {vi | i ∈ [deg(v)/2]}.

As an immediate corollary, we get factor-of-iid perfect matchings on G∗.

Corollary 27. Let G be a unimodular, quasi-transitive, non-amenable graph with all degrees even. Then
G∗ is a unimodular, quasi-transitive, non-amenable graph that has a factor-of-iid perfect matching.

Proof. Follows from Theorem 1 and Lemma 25. □

Note that even though we obtained the factor-of-iid balanced orientation in Theorem 1 through
perfect matchings, there we used the auxiliary graphing G∗ of the Bernoulli graphing G (of G).
Whereas here we claim that the Bernoulli graphing of the graph G∗ has a measurable balanced
orientation.

We are now also ready to prove Proposition 5. For the reader’s convenience we restate it here.

Proposition 5. For every 2d-regular graph G, the bipartite graph G∗ is also 2d-regular, and the following
are equivalent.

1. G∗ has got a factor-of-iid proper edge 2d-coloring.
2. G∗ has got a factor-of-iid perfect matching.
3. G∗ has got a factor-of-iid Schreier decoration.

Moreover, if any of these is a finitary factor, the others are too.

Even though proving three implications would be enough, we show five to emphasize the
techniques that could be used more widely for other suitable bipartite graphs too.

Proof. Let v be a vertex of G whose neighbors are u1, . . . , u2d. Then for every i ∈
[ deg(v)

2

]
= [d], the

neighbors of vi in G∗ are exactly xvu1 , . . . , xvu2d . Also for any edge uv in G, the neighbors of xuv in
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G∗ are u1, . . . , ud, v1, . . . , vd, and so G∗ is also 2d-regular. Let us denote by AV the set of vertices of
G∗ that are of vertex-type, and by AE the set of vertices of edge-type.

1 H⇒ 2. Choose one of the 2d color classes to obtain a perfect matching.

3 H⇒ 2. Every finite bipartite 2d-regular graph has a perfect matching and choosing one at
random is a factor-of-iid process, so we can assume G is infinite. P∗

= P does not admit a factor-of-
iid Schreier decoration, so let us suppose that d ≥ 2. Then as in the proof of Lemma 25, every vertex
can determine whether it belongs to AV ⊂ V (G∗) or AE ⊂ V (G∗). To obtain a perfect matching, let
us fix a color c of the decoration and let each x ∈ AV pick the outgoing edge of color c and each
x ∈ AE the incoming edge of color c.

3 H⇒ 1. Suppose the Schreier decoration uses colors c1, . . . , cd and that we want to produce
proper coloring with colors c ′

1, . . . , c
′

2d. Similarly as in the proof of 3 H⇒ 2, let each edge of color
ci going from AE to AV get color c ′

2i and each edge of color ci going from AV to AE the color c ′

2i−1.

2 H⇒ 3. For every v ∈ V (G), the d copies of v in G∗ together with the d vertices they are matched
to induce a Kd,d. Let us note that the collection of these Kd,d-s is vertex-disjoint. Let us randomly
pick a proper edge d-coloring on each of these Kd,d-s and orient all their edges from AE to AV . After
removing the decorated edges, we are again left with a collection of vertex-disjoint Kd,d-s, this time
in each of which one part is formed by v1, . . . , vd for some v ∈ V (G) and the other by the neighbors
of vi, i ∈ [d] that are matched towards some uj where uv ∈ E(G). Each of these Kd,d-s again picks a
proper d-coloring at random, but this time we will orient each edge from AV to AE .

1 H⇒ 3. Suppose E(G∗) is colored with c1, . . . , c2d. Let every edge of color c1, c3, . . . retain it and
become oriented from AE to AV . Then all edges of a color ci, i ∈ [d] will get recolored to ci and get
oriented from AV to AE . □

7. Open questions

Question 28. Is the unique Aut(T2d)-invariant measure µSch on Sch(T2d) a factor of iid?

We believe that this question, which has already been asked in [23] for the case d = 2, is the
most natural and important one at this point. A very similar question asking for any Cayley diagram,
not just of Fd, as a factor of iid on the regular tree was asked by Thornton [4, Problem 4.16]. Our
positive examples of Schreier decorations in [3] so far seem fundamentally different from the tree
in the sense that none of them even have infinite monochromatic paths, which would be automatic
on T2d. This leads us to the following question (also included in [3]).

Question 29. Is there a factor-of-iid Schreier decoration on a unimodular transitive graph that has
infinite monochromatic paths with positive probability?

The Schreier decoration of T ∗

2d obtained from a factor-of-iid perfect matching according to the
2 H⇒ 3 part of Proposition 5 has infinite monochromatic paths, but T ∗

2d is not transitive.
The following is the question discussed in Section 6.2. We encountered it during personal

communication with Matthieu Joseph.

Question 30. Is there a measurable bijection Φ between the Bernoulli shifts of the free group Fd
and the free product (Z/2Z)∗2d that preserves the distance defined by word length on almost all
orbits?

Regarding our spectral result on quasi-transitive unimodular graphs, a natural question is to ask
for an extension to unimodular random graphs.

Question 31. Let (G, o) be an invariantly non-amenable (a.k.a. non-hyperfinite) unimodular random
rooted graph, and let G denote the Bernoulli graphing on (G, o). Does the Markov operator M on G
have spectral gap? Maybe under some stronger assumption of non-amenability?

Addendum. After the first version of this paper was made available online, Abért, Fraczyk, and
Hayes answered Question 31 negatively. They construct a unimodular random rooted graph that is
non-amenable almost surely, but its Bernoulli graphing does not have spectral gap.
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A Schreier decoration is a combinatorial coding of an action of the free group Fd on the 
vertex set of a 2d-regular graph. We investigate whether a Schreier decoration exists on 
various countably infinite transitive graphs as a factor of iid. We show that Zd, d ≥ 3, the 
square lattice and also the three other Archimedean lattices of even degree have finitary-
factor-of-iid Schreier decorations, and, answering a question of Thornton, exhibit examples 
of transitive graphs of arbitrary even degree in which obtaining such a decoration as a 
factor of iid is impossible.
We also prove that symmetrical planar lattices with all degrees even have a factor-of-iid 
balanced orientation, meaning the indegree of every vertex is equal to its outdegree, and 
demonstrate the existence of transitive graphs G whose classical chromatic number χ(G)

is equal to their factor-of-iid chromatic number.
© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 

training, and similar technologies.

1. Introduction

Let G be a simple connected 2d-regular graph. A Schreier decoration of G is a colouring of the edges with d colours 
together with an orientation such that at every vertex, there is exactly one incoming and one outgoing edge of each colour.

It is a folklore result in combinatorics that every finite 2d-regular graph has a Schreier decoration, and it is easy to 
extend this to infinite 2d-regular graphs as well. As a generalisation of the finite result, the third author proved in [29] that 
all 2d-regular unimodular random rooted graphs admit an invariant random Schreier decoration. It is natural to ask whether 
such an invariant random Schreier decoration can be obtained as a factor of iid. In this article, we investigate this question 
for some infinite deterministic graphs, more specifically the d-dimensional Euclidean grids, symmetrical planar lattices, and 
graphs quasi-isometric to the bi-infinite path P of the form H × P . We study non-amenable graphs in a separate paper [2].

Informally speaking, a Schreier decoration is a factor of iid if it is produced by a certain randomised local algorithm. To 
start with, each vertex of G gets a random label from [0, 1] independently and uniformly. Then it makes a deterministic 
measurable decision about the Schreier decoration of its incident edges, based on the labelled graph that it sees from itself 
as a root. Neighbouring vertices must make a consistent decision regarding the edge between them. The factor is finitary
if the decision is based only on a random finite-radius neighbourhood of each vertex. The precise definition is given in 
Section 2. Obtaining combinatorial structures or certain models in statistical mechanics as factors of iid is a central topic in 
ergodic theory. See [19] and the references therein for a recent overview.
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Fig. 1. Archimedean lattices of even degree.

A partial result towards a Schreier decoration on a 2d-regular graph is a balanced orientation of the edges. An orientation 
of the edges of a graph with all degrees even is balanced if the indegree of any vertex is equal to its outdegree. For 
finite graphs, the term Eulerian orientation is often used [23], and when G is 4-regular in particular, a balanced orientation 
is known as an ice configuration in statistical physics [30,1]. Every Schreier decoration gives a balanced orientation by 
forgetting the colours.

The main results of the present paper are the following.

Theorem 1.1. Let � be any of the four Archimedean lattices with even degrees (pictured in Fig. 1): the square lattice, the triangu-
lar lattice, the Kagomé lattice or the (3, 4, 6, 4) lattice. There is a finitary Aut(�)-factor of 

([0,1]V (�),μ�

)
which is a.s. a Schreier 

decoration of �. Moreover, it has almost surely no infinite monochromatic paths.

Theorem 1.2. Let �d
� denote the d-dimensional Euclidean grid. For every d ≥ 3, there is a finitary Aut(�d

�)-factor of iid which is a.s. 
a Schreier decoration of �d

� . Moreover, it has almost surely no infinite monochromatic paths.

As far as we are aware, this had not been known, not even in the case of the square lattice. Ray and Spinka show that 
balanced orientations (under the name “6-vertex-model”) exist on the square lattice as finitary factors of iid [21, Remark 
5.3.]. Schreier decorations (that would be the “24-vertex model” in their terminology) are not investigated. In [25], Thornton 
studies factors of iid which are approximate and exact Cayley diagrams, but we do not allow for a small-probability local 
error here.

Parts of the proof have to be adapted to the individual lattices, but our approach remains the same throughout. First we 
break the lattices into a hierarchy of finite pieces (also called toasts elsewhere in the literature, e.g. in [17]) using percolation 
theory. Similar hierarchies or their weaker forms called cell processes were already employed in a measurable setting by 
Holroyd, Schramm, and Wilson [18] and by Spinka [24] and in a Borel setting by Gao, Jackson, Krohne, and Seward [15,16]
and by Marks and Unger [20] who all build them from sequences of Voronoi cells with sparser and sparser centres. Then 
for each piece independently, we choose an edge-d-colouring scheme such that we can ensure that every monochromatic 
connected subgraph is a finite cycle. Each cycle will orient itself strongly. We also use a similar hierarchy argument to find 
balanced orientations on symmetrical planar lattices; see Theorem 3.8.

Next we show examples in which it is impossible to obtain a Schreier decoration as a factor of iid.
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Theorem 1.3. For every d ≥ 1, there exists a 2d-regular transitive graph that has no factor-of-iid balanced orientation. In particular, it 
has no factor of iid Schreier decoration.

Theorem 1.3 answers Thornton’s question [26, Problem 3.4]. However, the examples we construct are somewhat unsatis-
factory because they are all quasi-isometric to the bi-infinite path P . We do not know of any examples of transitive graphs 
with no factor-of-iid Schreier decoration that are not quasi-isometric to P .

Furthermore, Theorems 1.1 and 1.2 can be phrased in terms of Bernoulli graphings over the respective graphs, yielding 
the following corollary.

Corollary 1.4. The Bernoulli graphings of the Archimedean lattices as well as that of �d
� admit a probability-measure-preserving 

action of the free group Fd which satisfies that two vertices x, y of the graphing are adjacent if and only if there is a generator γ of Fd
such that γ .x = y.

This connection is another important motivation for studying factor-of-iid Schreier decorations because we would like to 
understand which 2d-regular graphings are so generated by actions of Fd . Our main question can be equivalently formulated 
as follows: given a (transitive unimodular) 2d-regular graph G , is the Bernoulli graphing of G generated by a p.m.p. action 
of Fd? The connection is spelled out in our parallel paper [2], where we investigate non-amenable graphs and utilise it in 
the other direction. Our main result there is the following.

Theorem 1.5 ([2]). Every non-amenable quasi-transitive unimodular 2d-regular graph has a factor of iid that is almost surely a bal-
anced orientation.

The existence of a factor-of-iid balanced orientation of non-amenable Cayley graphs, a prime example of unimodular 
graphs, was also showed by Thornton in [26].

The structure of the paper is as follows. In Section 2, we give definitions, present examples for Theorem 1.3, and treat 
invariance under quasi-isometry. Section 3 is concerned with general planar lattices, breaking them into clusters organised 
in a hierarchy and obtaining balanced orientations. We also give a proof, based on ideas of [7], of that the existence of cell-
processes implies the existence of a hierarchy. Building on some of these results, Section 4 gives the proofs of Theorem 1.1
separately for each lattice and of Theorem 1.2. In Section 5, we explore what other combinatorial structures we can obtain 
using the results and ideas presented thus far. Open questions are collected in Section 6.

2. Notation and basics

We call a graph G transitive if and only if it is vertex-transitive, i.e., the automorphism group Aut(G) acts transitively on 
the vertex set V (G). We call G edge-transitive whenever Aut(G) acts transitively on E(G).

For the rest of the paper, for every d ≥ 2, let �d
� stand for the 2d-regular d-dimensional grid, that is the Cayley graph of 

Zd with the standard generators after forgetting the labelling. In the planar case, we also use simply �� in place of �2
� .

2.1. Schreier graphs

Given a finitely generated group � = 〈S〉 and an action � � X on some set X , the Schreier graph Sch(� � X, S) of the 
action is defined as follows. The set of vertices is X , and for every x ∈ X , s ∈ S , we introduce an oriented s-labelled edge 
from x to s.x.

Rooted connected Schreier graphs of � are in one-to-one correspondence with pointed transitive actions of �, which in 
turn are in one-to-one correspondence with subgroups of �. Trivially, a graph with a Schreier decoration is a Schreier graph 
of the free group Fd on d generators. A special case is the (left) Cayley graph of �, denoted Cay(�, S), which is the Schreier 
graph of the (left) translation action � � �.

2.2. Factors of iid

Let � be a group. A �-space is a measurable space X with an action � � X . A map � : X → Y between two �-spaces 
is a �-factor if it is measurable and �-equivariant, that is γ .�(x) = �(γ .x) for every γ ∈ � and x ∈ X . (Contrary to the 
convention in dynamics but in line with the probabilistic literature on factors of iid, we do not require � to be surjective.)

A measure μ on a �-space X is invariant if μ(γ .A) = μ(A) for all γ ∈ � and all measurable A ⊆ X . We say an action 
� � (X, μ) is probability-measure-preserving (p.m.p.) if μ is a �-invariant probability measure.

Let G be a graph and � ≤ Aut(G). Let u denote the Lebesgue measure on [0, 1]. We endow the space [0, 1]V (G) with the 
product measure uV (G) . The translation action � � [0, 1]V (G) is defined by

(γ . f )(v) = f (γ −1.v), ∀γ ∈ �, v ∈ V (G).

The action � � ([0, 1]V (G), uV (G)) is p.m.p.
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An orientation of G can be thought of as a function on E(G) sending every edge to one of its endpoints. Viewed like 
this, orientations of G form a measurable function space Or(G) on which � acts. The set BalOr(G) ⊆ Or(G) of balanced 
orientations is �-invariant and measurable, so it is a �-space in itself. Similarly, the set of all Schreier decorations of G
forms the �-space Sch(G).

Definition 2.1. A �-factor of iid Schreier decoration (respectively, balanced orientation) of a graph G is a �-factor � :([0,1]V (G),uV (G)
) → Sch(G) (respectively, to BalOr(G)). If the group � is not specified, we mean an Aut(G)-factor.

Remark 2.2. We allow � to not be defined on a uV (G)-null subset X0 ⊆ [0, 1]V (G) .

Let us now recall some special classes of iid processes on graphs. For a fixed vertex x ∈ V (G), let 
(
�(ω)

)
(x) denote the 

restriction of �(ω) to the edges incident to x. We say � is a finitary factor of iid if for almost all ω ∈ [0, 1]V (G) , there exists 
an R ∈N such that 

(
�(ω)

)
(x) is already determined by ω|BG (x,R) . That is, if we change ω outside BG(x, R), the decoration 

�(ω) does not change around x. This radius R can depend on the particular ω. If it does not then we say � is a block factor.
When constructing factors of iid algorithmically, one often makes use of the fact that a uniform [0, 1] random variable 

can be decomposed into countably many independent uniform [0, 1] random variables. In practice, this means that we can 
assume that a vertex has multiple labels or that a new independent random label is always available after a previous one 
was used.

We will use a reverse operation as well: the composition of countably many uniform [0, 1] random variables is again a 
uniform [0, 1] random variable. When the number of variables combined is finite, one can do this in a permutation-invariant 
way. In particular, this allows finite graphs to make joint random decisions as factors of iid by composing the labels of their 
vertices. So any Aut(G)-invariant random process on a finite graph G is a factor of iid. We frequently make use of this on 
finite subgraphs of our infinite graphs.

For Aut(G)-factors of iid on an infinite transitive graph G , the fact that the factor map intertwines the actions of �
implies that the further two vertices are from each other, the more independently the process behaves around them. We 
make use of the existence of this correlation decay both later in this section and in Section 6.

2.3. Graphs quasi-isometric to P

In this subsection, we present regular graphs of arbitrary even degree with the same large-scale geometry which in one 
case have factor-of-iid Schreier decorations but in the other not even a factor-of-iid balanced orientation. In both cases, our 
examples are quasi-isometric to the bi-infinite path P , that is the graph with V (P ) = {vi : i ∈ Z} in which vi and v j are 
adjacent if and only if |i − j| = 1. Proposition 2.3 below answers the question of Thornton about orienting regular graphs 
[26, Section 3].

For simple graphs G1 and G2, let the graph G1 × G2 be defined by having V (G1 × G2) = V (G1) × V (G2) with vertices 
(u, v) and (u′, v ′) being adjacent if and only if u = u′ and v v ′ ∈ E(G2) or v = v ′ and uu′ ∈ E(G1).

Proposition 2.3. Let H be a finite (2d − 2)-regular graph with an odd number of vertices. The 2d-regular graph H × P has no 
Aut(H × P )-factor of iid balanced orientation.

Proof of Theorem 1.3. In Proposition 2.3, take H to be the (2d −2)-regular clique K2d−1. As K2d−1 is transitive, so is K2d−1 ×
P . �

Proof of Proposition 2.3. First we note that P has no Aut(P )-factor of iid balanced orientation. This is because P has only 
two balanced orientations, and so orienting any single edge determines the whole balanced orientation. So two edges at an 
arbitrary distance get oriented in the same direction with probability 1. In a factor of iid orientation however, given two 
edges that are far enough from each other, the probability of them being oriented in the opposite direction is close to 1/2.

Second, suppose a balanced orientation of H × P is given. For adjacent vertices v, v ′ ∈ V (P ), define

n(v, v ′) = ∣∣{u ∈ V (H) | ((u, v), (u, v ′)
)

is an oriented edge in H × P }∣∣,
and note that n(vi, vi+1) + n(vi+1, vi) = |V (H)|.

We also claim that n(vi, vi+1) = n(vi+1, vi+2) for every i ∈Z. Indeed, as the orientation of H × P is balanced, we have
∑

u∈V (H)

indeg
(
(u, vi+1)

) =
∑

u∈V (H)

outdeg
(
(u, vi+1)

)
. (2.1)

On one hand, oriented edges of H × P of the form 
(
(u, vi+1), (u′, vi+1)

)
contribute 1 to both sides of (2.1). On the other 

hand, n(vi, vi+1) counts the edges of the form 
(
(u, vi), (u, vi+1)

)
contributing to the left-hand side of (2.1), and n(vi+1, vi+2)

counts the edges of the form 
(
(u, vi+1), (u, vi+2)

)
contributing to the right-hand side. Therefore n(vi, vi+1) = n(vi+1, vi+2)

as claimed.
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As |V (H)| is odd, we either have n(vi, vi+1) > n(vi+1, vi) or n(vi, vi+1) < n(vi+1, vi). We now have an argument similar 
to the one we presented to prove there is no factor of iid balanced orientation of P .

Our claim shows that if we have n(vi, vi+1) > n(vi+1, vi) for some i, then we have it for all i. That is, for i, j ∈ Z, and 
any random balanced orientation, we have

P
[
n(vi, vi+1) > n(vi+1, vi) and n(v j, v j+1) < n(v j+1, v j)

] = 0.

However, if the balanced orientation of H × P was a factor of iid, for any ε > 0 we could find i and j far enough such 
that ∣∣∣∣P

[
n(vi, vi+1) > n(vi+1, vi) and n(v j, v j+1) < n(v j+1, v j)

] − 1

2

∣∣∣∣ ≤ ε.

Consequently, H × P has no factor of iid balanced orientation. �

These non-examples are all quasi-isometric to P , which renders them somewhat unsatisfactory (see Question 6.4). Being 
quasi-isometric to P , however, does not imply being a non-example.

Proposition 2.4. Let H be a finite (2d − 2)-regular graph which has a perfect matching. Then the 2d-regular graph H × P has an 
Aut(H × P )-factor of iid Schreier decoration.

Proof. Let S be a non-empty factor-of-iid 4-independent subset of P , that is a subset such that for every vi, v j ∈ S , the 
distance dP (vi, v j) is at least 5. For each v ∈ S , let v ′ be a neighbour of v in P , chosen uniformly at random. Then let both 
H × {v} and H × {v ′} fix the same perfect matching M . Together with the |V (H)| edges between H × {v} and H × {v ′}, 
these form a 2-factor of H × {v, v ′} (whose all cycles are even).

Next we are going to complement these 2-factors to obtain a 2-factor of the entire H × P . Let S ′ = {v ′ : v ∈ S}, and 
suppose that i ∈ Z, j ∈ N are such that vi−1, vi+ j+1 ∈ S ∪ S ′ but vk /∈ S ∪ S ′ for any k ∈ [i, i + j]. We note that j is finite 
and greater than zero because S is a factor of iid and 4-independent, respectively. Now let H × {vi} fix the same perfect 
matching as H × {vi−1} does and H × {vi+ j} the same as H × {vi+ j+1}. Together with the j · |V (H)| edges of the form 
(u, vi+k−1)(u, vi+k), k ∈ [ j], these form a 2-factor of H × {vi, . . . vi+ j} (whose all cycles are even).

Let us give colour c1 to every edge in this 2-factor of H × P and orient each of its finite cycles strongly. Then after 
removing all the decorated edges, we are left with a (2d − 2)-regular graph whose all connected components are finite; 
in particular, they are all isomorphic to either H or a connected component of (H \ M) × {vi, vi+1}. To complete the 
construction, let each connected component pick at random a Schreier decoration with colours c2, . . . , cd . �

With a couple more technicalities in the proof, we could in fact tweak the Schreierisation so that all oriented cycles of 
colour c1 would have length at most 3 · |V (H)| and all oriented cycles of the other colours at most 2 · |V (H)|. This means 
that H × P is the Schreier graph of a factor-of-iid action of many more groups than just Fd .

Most (2d − 2)-regular graphs with an even number of vertices do have a perfect matching. For example, if they are 
bipartite or contain a Hamiltonian path, a perfect matching must exist. However, there are instances for every d ≥ 3 which 
do not have a perfect matching despite having an even number of vertices [8,4]. For these, we do not know whether their 
product with P admits a factor-of-iid Schreier decoration or a perfect matching; see also subsection 5.1 and Question 6.5.

Finally, taking H = K2d−1 in Proposition 2.3 and H = K2d−2,2d−2 in Proposition 2.4 shows that the property of having a 
factor-of-iid Schreier decoration is not invariant under quasi-isometry not even when we restrict to transitive graphs of a 
given even degree.

3. Finite clusters of arbitrary thickness and their hierarchy

In this section, we will develop the main tools to manipulate planar lattices. Our goal is to break a lattice into pieces of 
finite size such that each of the pieces is “wide” enough and surrounded by another one – such a partition of the vertex 
set will be called a hierarchy. (In the toast language our pieces in the hierarchy being wide translates to the pieces of toast 
having boundaries that are far apart.)

In the first subsection, we prove that given any hierarchy, one can coarsen it in a factor of iid way so that the pieces 
of the resulting hierarchy have arbitrarily large width. This thickening will become key both in subsection 3.2, in which we 
show how to obtain a factor-of-iid balanced orientation of any planar lattice with m-fold symmetry and all degrees even, 
and in Section 4. In these, we use percolation theory to obtain an initial hierarchy, but need non-adjacent vertex clusters to 
be far from one another to have enough space for the desired combinatorial constructions. In the last subsection, we show 
how a hierarchy can be derived from the cell processes of Spinka [24] and Timár [28].

We remark that the existence of these hierarchies (shown in Theorem 3.6 and in Corollary 3.11) has also been developed 
for toasts in a more general setting. The contents of subsection 3.3 follow from the fact that hyperfinite graphings admit a 
toast off a nullset (essentially due to Conley and Miller [10]), and that the Bernoulli graphings we consider are hyperfinite 
(by Kaimanovich’s Theorem, see e.g. [14, Prop. 2.2]).
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Throughout this and the following section, for any graph G , let μG denote the usual product measure on [0, 1]V (G) , with 
each coordinate getting the Lebesgue measure.

3.1. General cluster hierarchy and its thickness

To obtain Schreier decorations of three of the Archimedean lattices, we partition their vertex set V into finite parts, 
which we shall call clusters, such that for each cluster C , there is a unique cluster C+ surrounding it. That is, a unique part 
C+ such that C is in its convex hull and such that there are adjacent vertices u ∈ C , v ∈ C+ . Such a partition of V can 
be described by a one-ended infinite tree T whose vertices are the finite clusters; B, C ∈ V (T ) are adjacent if and only if 
one surrounds the other. Moreover, every vertex C ∈ V (T ) has a well-defined parent C+ distinguishable from C ’s children, 
should there be any.

Definition 3.1 (Hierarchy). Let G be a graph and H a partition of V (G). We say that two distinct parts C, D ∈ H are adjacent 
if and only if there is u ∈ C and v ∈ D which are adjacent in G . Then H is a hierarchy on G if the following holds for every 
C ∈ H.

1) C is finite,
2) there is a unique C+ ∈ H such that C and C+ are adjacent and for all v ∈ V (G) but finitely many, any path from C to v

contains a vertex from C+ ,
3) whenever B ∈ H is adjacent to C , either B = C+ or C = B+ .

Note that it is not necessarily the case that the subgraph of G induced by a cluster C is connected.
A key feature of the hierarchies we use later is that any two non-adjacent clusters are far from one another. Let us 

describe how starting with any hierarchy, we can obtain one in which non-adjacent clusters are as far from one another as 
we wish.

Definition 3.2 (k-spaced hierarchy). Let G be a graph and k a natural number. A hierarchy H on G is k-spaced if for all 
non-adjacent B, C ∈ H, the graph distance d(B, C) = minu∈B,v∈C dG (u, v) is at least k.

Proposition 3.3. Let G be a graph and suppose there is a (finitary) Aut(G)-factor of iid hierarchy H on G. Then ∀k ∈ N , there is a 
(finitary) Aut(G)-factor of iid k-spaced hierarchy Hk on G.

Moreover, ∀c, k ∈ N , there is a (finitary) Aut(G)-factor of iid pair ( J c,k, η : J c,k → [c]) where J c,k is a k-spaced hierarchy and 
η : J c,k → [c] is a colouring of the parts with c colours such that ∀C ∈ J c,k, if C has colour i then C+ has colour i + 1 (mod c).

Proof. Consider the infinite tree TH whose vertices are the parts of H, i.e., the clusters of the hierarchy. Let us now colour 
uniformly randomly the vertices of TH green and yellow, independently of each other (in other words, we carry out a site 
percolation with p = 1

2 ). For any vertex z ∈ V (TH), write z+ for the parent of z and zn+ := (z(n−1)+)+ whenever n ≥ 2. Then 
with probability 1, ∀z ∈ V (TH) ∃n such that zn+ has the opposite colour than z. Together with the fact that every vertex 
x ∈ V (TH) is an ancestor of only finitely many other vertices (i.e., |{y ∈ V (TH) : ∃n such that x = yn+}| < ∞), this means 
that with probability 1, all monochromatic connected components of the coloured TH are finite.

For every z ∈ V (TH), let us now merge it with z+ if and only if z and z+ have the same colour or z is yellow and z+
is green. The modification this makes on the tree TH is that of contracting all edges whose two endpoints have the same 
colour and those edges zz+ for which z is yellow and z+ is green. This corresponds to coarsening H into a new hierarchy H�
which has the property that for each cluster C , the distance d(C, C++) = minu∈C,v∈C++ dG(u, v) is at least 3. This is because 
every path from C to C++ must go through C+ , but C+ ∈ H� consists of at least two clusters of the original hierarchy H. 
More precisely, C is the finite union of some former clusters A1, . . . , Am ∈ H, C+ of B1, . . . , Bn and C++ of D1, . . . , Dl . C+
surrounds C , so there must be unique i ∈ [m], j ∈ [n] such that A+

i = B j . C and C+ being distinct clusters in H� implies that 
the vertex Ai ∈ V (TH) was coloured green and B j ∈ V (TH) yellow. But then B j cannot be the part of the union ∪n

r Br through 
which C+ neighbours C++ , that is B+

j ∈ {B1, . . . , Bn}, and so d(C, C++) = d(Ai, C++) ≥ d(Ai, B++
j ) = d(Ai, A+++

i ) ≥ 3.

If we repeat such contraction of the hierarchy tree m times to obtain Hm� , then d(C, C++) ≥ 2m + 1 for every C ∈ Hm� . 
However, for B, C ∈ Hm� such that B+ = C+ , we can still have d(B, C) = 2. To fix this, let us divide every C ∈ Hm� to

Couter = {v ∈ C : d(v, C+) = min
u∈C+ dG(v, u) < 2m−1}

and C inner = {v ∈ C : d(v, C+) = min
u∈C+ dG(v, u) ≥ 2m−1},

and define a hierarchy H2m−1 = {B inner ∪ ⋃
B=C+ Couter : B ∈ Hm�}. See Fig. 2 for illustration. Then for every B ∈ Hm� such that 

B inner �= ∅,
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Fig. 2. Splitting clusters C , B , and B ′ into their inner and outer parts. The shaded region shows Cinner ∪ ⋃
B+=C Bouter .

d
(

B inner ∪
⋃

B=C+
Couter,

(
B inner ∪

⋃
B=C+

Couter
)++)

= d
(

B inner ∪
⋃

B=C+
Couter, B++

inner ∪
⋃

B++=C+
Couter

)

= d
(

B inner,
⋃

B++=C+
Couter

)
= d(B inner, B+

outer) ≥ d(B inner, B+) = 2m−1.

Two clusters in H2m−1 have the same parent if and only if they are of the form B inner ∪ ⋃
B=C+ Couter and D inner ∪⋃

D=C+ Couter for some B, D ∈ Hm� with B+ = D+ . For such a pair, we observe that

d
(

B inner ∪
⋃

B=C+
Couter, D inner ∪

⋃
D=C+

Couter

)
= d(B inner, D inner)

≥ d(B inner, B+) + d(D+, D inner) = 2 · 2m−1.

Having obtained Hk with d(B, C) ≥ k whenever B, C are non-adjacent for every k ∈N , we want to find coloured hierar-
chies J c,k . For fixed c, k ∈N , start by considering a hierarchy Hck . Then divide every C ∈ Hck to parts C1, . . . , Cc where

Ci = {v ∈ C : d(v, C+) ∈ ((i − 1)k, ik]} for every i ∈ [c − 1]
and Cc = {v ∈ C : d(v, C+) > (c − 1)k}.

Colouring Ci with colour c + 1 − i yields the desired pair ( J c,k, η : J c,k → [c]). �

3.2. Percolation clusters in planar lattices and their matching lattices

Let � be a planar lattice, that is a connected, locally finite plane graph, with V (�) a discrete subset of R2, such that there 
are translations T v1 and T v2 through two independent vectors v1 and v2 both of which act on � as a graph isomorphism 
[5, p. 138]. Note that any planar lattice � is necessarily quasi-transitive. We wish to use site percolation in a way that 
would partition V (�) into finite clusters with a hierarchy. For lattices satisfying θ s

( 1
2

) = 0, i.e., on which site percolation 
does not occur when p = 1

2 , we could colour the vertices V (�) uniformly at random yellow and green and consider the 
monochromatic connected components. However, though this produces, with probability 1, only finite clusters, there isn’t 
necessarily a clear hierarchy associated to them; this inconvenience is best illustrated by the random vertex 2-colouring of 
the square lattice. Nevertheless, when the lattice possesses some mild symmetry properties, a two-step solution presents 
itself. The first step is a result on matching pairs with m-fold symmetry.

Definition 3.4 (m-fold symmetry, [6]). For m ≥ 2, a plane lattice � has m-fold symmetry if the rotation about the origin through 
an angle of 2π/m maps the plane graph � into itself.

Based on ideas of Zhang, Bollobás and Riordan prove the following [5,6].

Theorem 3.5. Let � be a plane lattice with m-fold symmetry for some m ≥ 2 and �× its matching lattice, i.e., the graph obtained 
from � by adding all diagonals to all faces of �. Then for every p ∈ [0, 1], the percolation probabilities θ s

�(p), θ s
�× (1 − p) satisfy that 

θ s
�(p) = 0 or θ s

�× (1 − p) = 0. Furthermore, ps
H (�) + ps

H (�×) = 1, where ps
H is the Hammersley critical probability.
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This result tells us that choosing to randomly 2-colour the vertices of our planar lattice � such that a site is yellow with 
probability ps

H (�) and green with probability ps
H (�×) is well defined. The definition of a cluster hierarchy on � then comes 

naturally, with yellow clusters being exactly the yellow connected components of the random 2-colouring and green clusters 
the would-be green connected components on �× (that is in �, the green clusters are unions of connected components 
which have vertices appearing in a same face). The trouble is that the theorem does not guarantee that neither of the colours 
will have an infinite cluster, or in other words that percolation does not occur at criticality at neither the planar lattice nor 
its matching lattice. Benjamini and Schramm conjectured in 1996 that this indeed is the case [3]. However, for now, to 
obtain this crucial property, one needs to analyse lattices one by one (e.g. Russo showed that both critical percolations die 
for the square lattice �� and its matching lattice �� [22]).

The second step in our solution to the hierarchy problem is therefore to add a vertex to every non-triangular face of 
a lattice � with m-fold symmetry and connect it to all the vertices of that face. Let us call the resulting lattice �• and 
observe that it also has m-fold symmetry. �• is self-matching, and so Theorem 3.5 tells us that ps

H (�•) = 1
2 and percolation 

does not occur at criticality.
This finding gives us a factor-of-iid hierarchy on � as follows. Colour the vertices of � yellow or green uniformly at 

random. For each non-triangular face, decide uniformly at random whether either all of its yellow vertices will be treated 
as if they were connected through the face or all of its green vertices will be so treated. This results, with probability one, 
in a well-defined cluster hierarchy on �, which we can combine with Proposition 3.3 to conclude the following.

Theorem 3.6. Let � be a planar lattice with m-fold symmetry, m ≥ 2. Then for every k ∈ N , there is a finitary Aut(�)-factor of ([0,1]V (�),μ�

)
which is almost surely a k-spaced hierarchy on �.

Theorem 3.6 now allows us to obtain a finitary factor of iid balanced orientation of any planar lattice with m-fold 
symmetry in which all degrees are even. To carry out the construction, we first need to clearly demarcate the clusters.

Definition 3.7 (Boundary ∂ B). Let � be a planar lattice and H a hierarchy on �. The boundary ∂ B of a cluster B ∈ H is a set 
of edges with both endpoints in B as follows. An edge uv ∈ E(B) is in ∂ B if and only if one of its two contiguous faces 
F1, F2 consists only of vertices of the cluster B and its offspring, while the other contains a vertex from B+ .

Note that in general, it may be the case that F1 = F2, but when all degrees of � are even, these two faces must be 
distinct.

Theorem 3.8. Let � be a planar lattice with m-fold symmetry, m ≥ 2, in which all degrees are even. There is a finitary Aut(�)-factor 
of 

([0,1]V (�),μ�

)
which is a balanced orientation of � almost surely.

Proof. V (�) is a discrete set in R2, i.e., it has no accumulation points, and so there is 
 ∈ N such that every face of �
consists of at most 
 vertices. Let us fix a finitary factor of iid 
+1

2 -spaced hierarchy H on �, so that no face contains 
vertices of non-adjacent clusters, and consider the boundaries ∂ B , B ∈ H.

We observe that for every vertex v ∈ B , the number of edges from ∂ B that are incident to v is even. Indeed, let r be a 
positive number such that the disc D with radius r centred at v contains no other vertices than v , and let x1, . . . , xdeg(v)

be the neighbours of v as we traverse them clockwise. Then the edges vx1, . . . , vxdeg(v) split D into deg(v) many areas 
Ai−1,i , where vxi−1 moves through Ai−1,i clockwise towards vxi (all indices are taken (mod deg(v))). Now call Fi−1,i the 
faces spanned by Ai−1,i ; note that we might have Fi−1,i = F j−1, j even when i �= j. The faces Fi−1,i are of two types – 
those with all vertices from the cluster B and its offspring and those with a vertex from B+ . As no face contains vertices 
of non-adjacent clusters, the edge vxi is in ∂ B if and only if the two consecutive faces Fi−1,i, Fi,i+1 are of different types. 
But when we start in F1,2 and make one full circle clockwise back to F1,2, the change of types must occur even number of 
times.

Even though the construction of a spaced hierarchy H on � based on Proposition 3.3 and Theorem 3.6 does not ensure 
that all clusters are connected, it does say that ∪∞

n=1Cn+ is connected (and infinite) for every C ∈ H. Therefore, there is no 
vertex from ∪∞

n=1Cn+ inside ∂C (each cycle of ∂C splits the plane into a finite and an infinite region; by inside, we mean 
the union of the finite regions). On the other hand, all vertices of any offspring of C are inside ∂C , so any cluster which has 
a child must have non-empty boundary. Let us now reassign any vertices of a cluster C which are outside ∂C to C+ – these 
are exactly the vertices such that all faces they are in contain a vertex from C+ .

Every cluster C will now randomly choose one of two allowed orientation patterns which will be given to all non-
boundary edges with at least one endpoint in C and none in C+ . These are exactly the edges in the finite region enclosed 
by ∂C , but outside the finite regions enclosed by ∂ B for all B with B+ = C . The patterns are as follows: for a vertex v and 
its neighbours x1, . . . , xdeg(v) , ordered as we traverse them clockwise, we want the orientations of vx1, . . . , vxdeg(v) to be 
alternating between into v and out of v . In other words, we choose randomly one of the two chessboard colourings of the 
faces in this region, and orient cycles bounding black faces clockwise and cycles bounding white faces counter-clockwise.

For every cluster C , if C and C+ happen to choose the same pattern, we will propagate it to ∂C as well. If C and C+
choose different patterns, then ∂C randomly picks one of its balanced orientations (recall that ∂C has all degrees even, so a 
balanced orientation exists).
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Fig. 3. A disagreement between patterns around a vertex of degree 6.

Finally, we claim that the resulting global orientation of � is balanced. If a vertex v ∈ C is not in ∂C or if C and C+
agree on their patterns, then all the edges incident to v follow the same pattern, i.e., they alternate between in and out 
and the orientation is balanced at v . Now suppose C and C+ have different patterns and some of the edges incident to v
are in ∂C . Then let D be a disc centred at v as before – the boundary edges split it into areas A0, . . . , A2n−1, ordered as 
we traverse them clockwise, for some integer n, where in any pair of adjacent areas, one is inside ∂C and one is outside. 
The patterns at adjacent areas disagree, i.e., they are not the restriction of the same alternating orientation at v (see Fig. 3). 
Let us note that vx and v y have the same orientation with respect to v if and only if there is an even number of edges 
incident to v between them and they are in regions following the same pattern, or there are an odd number of regions 
between them and they are in regions following different patterns.

Inside each area Ai , the number of non-boundary edges is either even or odd. If it is even, half of these edges are 
oriented towards v and half from v because they all follow the same pattern. If the number is odd, let j be the smallest 
positive integer such that Ai+ j also contains odd number of non-boundary edges, where i + j is understood mod 2n. If j is 
even then Ai and Ai+ j follow the same pattern. Also, the total number of edges separating them at v , counted from Ai to 
Ai+ j in the clockwise direction (including those in ∂C ) is even. These two observations imply that the orientation restricted 
to the edges (at v) in Ai ∪ Ai+ j is alternating. Consequently, exactly half of these edges is oriented towards v and half 
from v . If j is odd then Ai and Ai+ j follow different patterns, but the total number of edges separating them (including 
those in ∂C ) is odd. These together also imply that the orientation restricted to the edges in Ai ∪ Ai+ j is alternating (see 
Fig. 3), so again exactly half of these is oriented towards v and half from v . Combined with the fact that due to the 
balanced orientation of ∂C , half of the boundary edges go into v and half out of v , this means that the orientation at v is 
balanced. �

Let us note that the first half of the proof uses neither that the lattice � is symmetric nor that all degrees are even, so 
we can also use it to deduce the following technical lemma that we will heavily use in Section 4.

Lemma 3.9. Let � be a planar lattice and suppose there is a (finitary) Aut(�)-factor of iid which is almost surely a hierarchy on �. 
Then for every k ∈N , there is a (finitary) Aut(�)-factor of iid which is almost surely a k-spaced hierarchy with the additional property 
that the boundary ∂C of any cluster C is a union of edge-disjoint cycles and any path between any u ∈ C , v ∈ ∪∞

n=1Cn+ must cross 
∂C. Subsequently, for any distinct clusters B, C , we have that d(∂ B, ∂C) ≥ k − 


2 , where 
 is an upper bound on the number of vertices 
forming any face of �.

Proof. Given k ∈ N , let us fix a max{k, 
+1
2 }-spaced hierarchy Hk (whose existence is ensured by Proposition 3.3), and 

observe that we can repeat verbatim the proof of that for every vertex v ∈ B , the number of edges from ∂ B that are 
incident to v is even. It also remains true that for any cluster C ∈ Hk , the vertices v ∈ C which remained outside of ∂C are 
exactly those such that all faces they are in contain a vertex from C+ . Let us repeat the reassignment of vertices outside 
∂C to C+ so that for any cluster C , C = {v ∈ V (�) : v is inside ∂C but outside ∂ B for every B such that B+ = C} ∪ ∂C as 
required. In particular, this reassignment leaves the boundaries ∂C , C ∈ Hk intact and ensures the second property.

Finally, if B and C are distinct non-adjacent clusters then d(∂ B, ∂C) ≥ k simply because the hierarchy is k-spaced. On the 
other hand, for any C ∈ Hk and any vertex u ∈ ∂C+ , the definition of boundary tells us that d(u, C++) ≤ 


2 . But d(∂C, C++) ≥
k as C and C++ do not neighbour, so by the triangle inequality,

k ≤ d(∂C, C++) ≤ d(∂C, ∂C+) + d(∂C+, C++) ≤ d(∂C, ∂C+) + 


2
.

Thus d(∂C, ∂C+) ≥ k − 

2 as required. �
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3.3. Deriving a hierarchy from a cell process

Let G be a graph. Following Spinka [24], we call a random sequence A = (A1, A2, . . . ) of subsets of V (G) a cell process
whenever almost surely A1 ⊂ A2 ⊂ . . . , for each n ≥ 1, all connected components of An are finite, and A1 ∪ A2 ∪ A3 · · · =
V (G).

Given an invariant cell process, we would like to consider the partition A1 ∪ {An+1 \ An | n ≥ 1} of V (G), but this 
is not necessarily a hierarchy because the definition does not guarantee that all neighbours of all vertices of An are in 
An+1. However, using some ideas from [7, Section 4], one can almost surely get to a factor-of-iid hierarchy starting from a 
factor-of-iid cell process.

Lemma 3.10. Let G be a graph and A a (finitary) factor-of-iid cell process on G. Then there is a (finitary) factor-of-iid hierarchy on G.

Proof. Let us define a sequence of indices recursively as follows: let n1 = 1 and for i > 1 let ni be chosen as the smallest 
such an integer, such that:

P [N(Ani−1(v)) ⊆ Ani (v) | v ∈ Ani−1 ] ≥ 1 − 2−i

where Ai(v) denote the connected component of v in Ai .
Now let us create, for every vertex v ∈ V (G), a new sequence (where each member of the sequence can be obtained as 

a finitary factor-of-iid process) as follows: let s̄(v)0 = min{i | N(Ani (v)) ⊆ Ani+1 (v)} and for j > 0,

s̄(v) j = min{i > s̄(v) j−1 | N(Ani (v)) ⊆ Ani+1(v)}.
First of all observe that with probability 1, there is a finite i ∈N such that v ∈ Ani , since Ai was a cell-process.
Second we claim that s(v) =N \ {s̄(v) j} j∈N , which we think of as the set of bad indices for v , is finite with probability 

1. Indeed, if it was infinite with positive probability, then it would mean that with positive probability, infinitely many of 
the events

Ei = {N(Ani (v)) �⊆ Ani+1(v)}
happened where i is sufficiently large. But by Borel-Cantelli lemma, we know that the probability that infinitely many Ei
occur has probability 0 because 

∑
i 2−i < ∞.

Now we are ready to define the hierarchy as the “remained sets”, i.e., for any i ≥ 1

Bi = {v ∈ V | i /∈ s(v)} ⊆ Ani .

To obtain the desired hierarchical partition, we take

H = C(B1) ∪ {
L \ ∪ j<i+1 B j | i ≥ 1, L ∈ C(Bi+1)

}
,

where C(B) is the collection of connected subgraphs induced by B . �

Using the results of Spinka [24] and Timár [28], we can now conclude the following.

Corollary 3.11. Let G be an amenable graph. If G is transitive, there is a finitary-factor-of-iid hierarchy on G. If G is unimodular, there 
is a factor-of-iid hierarchy on G.

Proof. Spinka constructs a finitary-factor-of-iid cell process for any amenable transitive graph in [24], which together with 
Lemma 3.10 gives the first part of the statement.

In [28], Timár constructs a factor-of-iid sequence �1 ⊂ �2 ⊂ . . . of non-induced subgraphs witnessing hyperfiniteness of 
any amenable unimodular G such that 

⋃
n �n = E(G) and for every n, all connected components of �n are finite. Taking 

An := {v ∈ V (G) : uv ∈ �n for all u adjacent to v} gives a cell process, and we again apply Lemma 3.10. �

4. Schreier decorations of Archimedean lattices and �d
�, d ≥ 3 as finitary factors of iid

An Archimedean lattice is a vertex-transitive tiling of the plane by regular polygons. It is known that there are ten of them 
(eleven if we count separately the two mirror images of the lattice (34, 6); see e.g. [5, Chapter 5]), out of which four have 
even regularity. These are the infinite grid �� (that is the Cayley graph of Z2 with the standard generators), the triangular 
lattice T (the only 6-regular planar lattice), the Kagomé lattice (i.e., the line graph of the hexagonal lattice H), and the 
4-regular lattice (3, 4, 6, 4) where the numbers denote the orders of the faces when we go round a vertex.
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Fig. 4. Each edge has four guards.

Fig. 5. Examples of what the inner pattern can look like on a fixed 16-vertex square. (Here, blue is identical to full lines, and red is identical to dashed 
lines.)

4.1. The square lattice

Proof of Theorem 1.1 for � = ��. We start with independent [0, 1]-labels on V (�).

Step 1 Spaced hierarchy. The square lattice has a 4-fold symmetry, so we can use Theorem 3.6, Proposition 3.3 and 
Lemma 3.9 to create a k-spaced hierarchy H2,k based on percolation clusters where k is a sufficiently large inte-
ger. Moreover, each part C ∈ H2,k is assigned a number from {1, 2} such that every child has the other number than 
its parent.

Step 2 Definition of guards. The guards of an edge e = uv ∈ E(��) are the four of its six incident edges that are perpen-
dicular to it. That is, the four incident edges that appear with e in a C4 (see Fig. 4).

Step 3 Red-blue edge colourings inside clusters. Each cluster numbered 1 wants to determine for itself an edge colouring 
consisting of monochromatic C4-s. That is, each such cluster B finds a vertex v ∈ B (e.g. the one with the largest 
label) and chooses one of the four C4-s containing v to have all its edges coloured red. As we want our B-pattern to 
be the union of blue C4-s and red C4-s and such that every u ∈ B has two incident edges blue and two red, fixing 
one red C4 determines the rest of the pattern. We call this colouring the inner pattern of B (Fig. 5).
On the other hand, each cluster numbered 2 wants to determine for itself an edge colouring in which all parallel 
edges have the same colour (and so every C4 has two edges red and two blue in an alternating manner, and every 
edge has different colour than its guards). We call such a colouring an interface pattern.

Step 4 Amalgamating the patterns. For every cluster C numbered 2 (i.e., a cluster with an interface pattern), we will apply 
its pattern to all edges with at least one endpoint in C . Let B be a cluster numbered 1 and e an edge with both 
endpoints in B . Let S be the set of the guards of e whose other endpoint (the one not shared with e) is not in 
B (note that S might be empty). Then we colour e as follows: If there is g ∈ S on which the inner pattern of B
(should it be extended there) disagrees with the interface pattern by which g is coloured, we colour e according to 
the interface pattern, i.e., with the opposite colour than g has. This may or may not coincide with the colour the 
inner pattern would give to e. If there is no such guard g ∈ S , e is coloured according to the inner pattern of B . Our 
hierarchy being k-spaced (where k ≥ 4) ensures that this is well defined.

Step 5 Claim that the colouring is balanced. In the edge colouring defined above, every vertex v ∈ V (�) has exactly two 
red and two blue incident edges a.s.

Proof of claim. If v ∈ C where C is numbered 2, then all its four incident edges follow the same interface pattern. As any 
interface pattern is internally balanced, so are the colours at v .

So let us now assume that v is in a cluster B numbered 1, and consider the 9-vertex square centred on v . Regardless of 
what clusters the remaining 8 vertices belong to, the final colouring of the four edges incident to v can be described by say-
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Fig. 6. Vertex v has two red and two blue incident edges.

ing that we first colour all four of them with the inner pattern (so that a perpendicular pair is red and the complementary 
one blue), and then recolour if necessary.

First observe that thanks to the hierarchy being k-spaced where k ≥ 5, the 9-vertex square does not contain both a vertex 
from B+ and a vertex from a B− . Hence there is only one interface pattern according to which edges may wish to recolour 
themselves. Also note that regardless of the inner and the interface pattern, exactly one red and exactly one blue edge out 
of the four edges incident to v already follow the interface pattern at the beginning, so they will not get recoloured in any 
case. That is, at most two of the four edges will get recoloured.

If two edges get recoloured, then as explained above, one of them is initially blue and one is initially red. So recolouring 
both of them does not change the multiplicity of colours incident to v , and as this multiplicity was balanced to start with, 
it will remain balanced. If no edges get recoloured, then again, we invoke that the initial colouring was already balanced. 
Finally, we would like to argue that it cannot happen that exactly one of the four edges gets recoloured.

Let uv and bv be the two perpendicular edges on which the inner pattern and the interface pattern disagree, and 
suppose on the contrary that only uv gets recoloured. Note that uv is a guard of bv , so if u /∈ B then both uv and bv
would get recoloured. Also bv is a guard of uv , so by the same logic we also must have b ∈ B . If a, the fourth corner of 
the square spanned by b, u and v , was not in B , then again both bv and uv would get recoloured. Finally, the inner pattern 
and the interface pattern agree on the two remaining guards of uv , so they will not be recoloured in any case, meaning uv
also does not get recoloured. But that is in contradiction with the assumption that uv does get recoloured. Hence it cannot 
happen that exactly one of the four edges incident to v gets recoloured (Fig. 6). �

Step 6 Claim that there are no infinite paths. There are no infinite monochromatic paths in the balanced colouring defined 
above a.s. That is, the set of blue edges is a union of vertex-disjoint finite blue cycles, and similarly the set of red 
edges is a union of vertex-disjoint finite red cycles.

Proof of claim. Suppose there is an infinite monochromatic path P . Let A be a cluster whose intersection with P is non-
empty. Then the path must share a vertex with every cluster in the sequence (An+)∞n=0, where A0+ := A and An+ :=(

A(n−1)+)+
for every positive integer n. Pick the n ∈ {1, 2} such that An+ is numbered 1, and so gets the inner pattern. 

There must be a section u, v1, . . . , vm of P such that vm ∈ ∂ An+ , vi ∈ An+ \ ∂ An+ for every i ∈ [m − 1], and u ∈ ∂ B for 
some cluster B such that B+ = An+ . We used Lemma 3.9 when building the k-spaced hierarchy, so we can now deduce that 
m ≥ k − 2. Moreover, for every i ∈ [m − (k − 5), m] and every cluster C such that C+ = An+ ,

k − 2 ≤ d(C, ∂ An+) ≤ d(C, vi) + d(vi, ∂ An+) ≤ d(C, vi) + k − 5,

and so d(C, vi) ≥ 3. This means that the edges vm−(k−4)vm−(k−5), . . . , vm−1 vm must have empty S , and so must all follow 
the inner pattern of An+ . In particular, as k ≥ 8, this is at least four edges. But no monochromatic walk of length four in an 
inner pattern can contain five distinct vertices (i.e., be a path) because inner patterns are made up of monochromatic C4-s. 
This would be a contradiction, and so there is no infinite monochromatic path almost surely. �

Step 7 Orientation. Finally, let each monochromatic cycle choose one of the two strong orientations for itself (e.g. by finding 
the edge with the largest sum of labels and orienting it from the vertex with the larger label to the one with the 
smaller label). Then every vertex lies in one strongly oriented blue cycle and one strongly oriented red cycle, and so 
the coloured orientation is balanced. �

Remark 4.1. In fact, it is not necessary to rely on Proposition 3.3 to prove Theorem 1.1 for � = �� . It makes the proof 
neater, but one can also make do just with the basic percolation clusters for the matching pair {��, ��}. The approach 
not using Proposition 3.3 (in which every yellow cluster is merged with its green parent into a blob and edges bridging 
different blobs get an interface pattern) heavily relies on the fact that critical percolation on either of the lattices in this 
matching pair has no infinite cluster a.s. (though expected sizes of the clusters will be infinite) [22]. Interestingly, the related 
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Fig. 7. Constructing Schreier decoration of �� . (Subfigures (b) and (c) are coloured. To view them in their coloured version, the reader is referred to the 
web version of this article.)

conjecture of there being no percolation at criticality (site or bond) in Zd has not been settled for 3 ≤ d ≤ 18 (see [13] for 
a partial progress).

4.2. Grids in higher dimensions

Our construction on �� made use of the hierarchical structure of clusters, as well as of their thickness preventing local 
recolourings of edges close to boundaries and other tweaks to overlap (Fig. 7). We achieved these desired properties by 
classical percolation-theoretic results, which are sadly not available in higher dimensions. However, we can utilise subsection 
3.3 now and combine it with the patterns developed for �� to obtain a factor-of-iid Schreierisation of all �d

�, d ≥ 2.
While we were writing this paper up, Jan Grebík and Václav Rozhoň informed us that using techniques developed in [9], 

they can prove the existence of a (Borel) hierarchy in any Borel graph with connected components isomorphic to �d
� . This 

should allow one to construct Borel Schreier decorations on all such Borel graphs [17].

Proof of Theorem 1.2. We will first construct a balanced edge colouring with colours c1, . . . , cd , and then give orientation 
separately to each monochromatic cycle.

Step 1 Spaced hierarchy. Let H be the finitary-factor-of-iid hierarchy on �d
� given by Corollary 3.11, and let us use Propo-

sition 3.3 to obtain from it (H2d−2,k, η : H2d−2,k → [2d − 2]) where k is a sufficiently large integer and H2d−2,k is a 
k-spaced hierarchy.

Step 2 Edge colouring of even-numbered clusters. The edges of �d
� travel in d different directions. Let us observe that if 

we remove all edges in d − 2 of them, we are left with disjoint copies of the square lattice. Each cluster C ∈ H2d−2,k
such that η(C) is odd will be assigned an interface pattern in direct analogy to subsection 4.1. By an interface pattern, 
we understand a balanced edge colouring in which the edge directions of �d

� and the d colours are in bijection. 
That is, after removing all edges of any d − 2 directions (= all edges of any d − 2 colours), we would end up with an 
interface pattern on disjoint copies of the square lattice.
In particular, each cluster C ∈ H2d−2,k numbered 2d − 2 identifies its ancestor C (2d−2)+ (which is also numbered 
2d − 2) and then all its 2d − 2-th generation offspring C = C1, . . . , Cn . The clusters C1, . . . , Cn will make a common 
choice of the interface pattern.
Subsequently, each {2, . . . , 2d − 4}-numbered cluster C ∈ H2d−2,k identifies its nearest 2d − 2-numbered ancestor 
Cabove := C (2d−2−η(C))+ and should there be any, also its nearest 2d − 2-numbered offspring and their interface 
patterns. The role of the {2, . . . , 2d − 4}-numbered clusters, as well as of the odd-numbered clusters, is to provide a 
balanced transition between the patterns of the 2d − 2-numbered clusters.
If a {2, . . . , 2d − 4}-numbered cluster C has no 2d − 2-numbered offspring then it will simply copy the pattern from 
Cabove. Otherwise, we will assign interface patters so that for any cluster C with η(C) = 2i ≤ 2d − 4, the directions 
of the colours c1, . . . , ci in C and Cabove agree. In particular, we will first assign patterns to 2-numbered clusters, 
then 4-numbered etc. all the way up to 2d − 4. A {2, . . . , 2d − 4}-numbered cluster C shall identify the interface 
patterns of its grandchildren and of Cabove. If these agree in the direction of the colour ci then C will simply adopt 
the pattern of its grandchildren without a change. If they disagree then C will employ the interface pattern obtained 
from that of its grandchildren by swapping ci and the colour that currently travels in the direction that ci takes in 
Cabove.
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Step 3 Edge colouring of odd-numbered clusters. Each cluster C ∈ H2d−2,k such that η(C) is odd will be assigned an inner 
pattern. By an inner pattern, we understand a balanced edge d-colouring in which all the edges in d − 2 cho-
sen directions have the same colour, while the remaining copies of the square lattice get a pattern consisting of 
monochromatic C4-s of the remaining two colours (that is an inner pattern in the sense of subsection 4.1).
In particular, each odd-numbered cluster C ∈ H2d−2,k identifies its parent C+ and its interface pattern and its children 
(should there be any) and their interface pattern. By construction, these two interface patterns are either the same 
or one can be obtained from the other by a single transposition, that is by swapping two colours. In the former case 
and also when C has no children, C will randomly choose two colours and put monochromatic C4-s to the grids 
spanned by their two directions. In the latter case, the C4-s shall be built from the two colours on which the two 
interface patterns disagree. Anyhow, the colours and directions of the colours not chosen to form C4-s will propagate 
through C without change of direction.

Step 4 Boundaries between clusters. Whenever two clusters C and C+ meet, there are d − 2 colours which simply travel 
in a fixed direction, which is moreover the same in C and C+ . We will let these d − 2 colours propagate in their 
directions also on all edges with one endpoint in C and one in C+ . After disregarding these, we are left with copies 
of the square grid, and on every such copy, we see an inner pattern in the sense of subsection 4.1 coming from 
one of the clusters and interface pattern from the other one. We amalgamate these into a balanced colouring as in 
subsection 4.1.
Finally, we observe that for every C ∈ H2d−2,k and i ∈ [d], there is, with probability 1, an n ∈N such that Cn+ has an 
inner pattern and one of the colours of its C4-s is ci . Therefore, there cannot be any infinite monochromatic path, 
and every colour class is almost surely a union of finite cycles. To finish the construction, let each monochromatic 
cycle randomly choose one of the two strong orientations for itself. �

4.3. The triangular lattice

Similarly as in the case of the higher-dimensional grids, once we have a spaced enough hierarchy, we can use the 
patterns developed for �� to obtain a Schreier decoration of T .

Proof of Theorem 1.1 for � = T . We will first construct a red-blue-green edge colouring and then as in the previous case, 
give orientation separately to each monochromatic cycle.

Step 1 Spaced hierarchy. T has a 3-fold symmetry and is self-matching, so Theorem 3.5 tells us that its site-percolation 
critical probability is 1

2 and percolation does not occur at criticality. Let H be the finitary factor of iid hierarchy on T
given by the percolation clusters, and let us use Proposition 3.3 to obtain from it (H4,k, η : H4,k → [4]) where k is a 
sufficiently large integer and H4,k is a k-spaced hierarchy.

Step 2 Edge colouring of odd-numbered clusters. The edges of T travel in three different directions. Let us observe that 
if we remove all edges in one of them, we are left with the square lattice. Each cluster C ∈ H4,k numbered 1 or 
3 will be assigned an inner pattern. By an inner pattern, we understand a balanced edge 3-colouring in which all 
the edges in a chosen direction have the same colour, while the remaining square lattice gets a pattern consisting 
of monochromatic C4-s of the remaining two colours (that is an inner pattern in the sense of subsection 4.1). In 
particular, each cluster C ∈ H4,k numbered 1 identifies its grandparent C++ (which is numbered 3) and then all 
its grandchildren C = C1, . . . , Cn . The clusters C1, . . . , Cn will make a common choice of the inner pattern. They 
randomly choose one of the three edge directions, colour all edges in the chosen direction green, and put blue and 
red C4-s on the remaining square lattice.
Subsequently, each cluster C ∈ H4,k numbered 3 identifies its grandchildren (should there be any) and their inner 
pattern and its grandparent C++ and its inner pattern. Then it chooses the direction not chosen by either of the 
patterns and colours all its edges blue. If there is a choice between two directions, siblings (i.e., clusters with the 
same parent C+) make it together.
Every odd-numbered cluster C will apply its chosen inner pattern to all edges which are inside ∂C , but outside the 
boundaries of its children.

Step 3 Edge colouring of even-numbered clusters. Each cluster C ∈ H4,k numbered 2 or 4 will be assigned an interface 
pattern in direct analogy to subsection 4.1. By an interface pattern, we understand a balanced edge colouring in 
which the edge directions of T and the three colours are in bijection. That is, after removing all edges of any of 
the directions (= all edges of any of the colours), we would end up with an interface pattern on the square lattice 
(Fig. 8).
In particular, each even-numbered cluster C ∈ H4,k identifies its parent C+ and its inner pattern and its children 
(should there be any) and their inner pattern. By construction, these two inner patterns disagree both in their 
chosen direction and their chosen colour. To the direction of C+ , C will assign the colour chosen by C+ (i.e., green 
if C+ is numbered 1 and blue if it is numbered 3). To the direction of the pattern of its children, C will assign the 
colour chosen by the children. This fully determines the interface pattern of C (if C has no children, then it shall 
randomly choose one of the two suitable patterns).
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Fig. 8. Examples of patterns used in odd- and even-numbered clusters.

Step 4 Boundaries. Let ∂C , C ∈ H4,k be the cluster boundaries as per the definition in subsection 3.2. For every C ∈ H4,k , 
we want the boundary ∂C between C and C+ to travel only in the two directions not chosen by the odd-numbered 
cluster. Suppose that uv ∈ ∂C travels in the undesired direction and x, y are the common neighbours of u and v . 
Then by the definition of a boundary, exactly one of x, y is in C and one is in C+ (without loss of generality, x ∈ C+). 
We will replace every such uv in the boundary with the pair ux, xv . As H4,k is k-spaced and k ≥ 3, such changes 
cannot cause that boundaries of two different clusters would touch (share a vertex).
Now for a cluster C , there is exactly one colour c such that there is a direction in which all the edges of both C and 
C+ have colour c. Moreover, the boundary ∂C never travels in this direction, so after forgetting the edges of colour 
c, we are left with two neighbouring clusters in the square lattice, one of which has the inner pattern and the other 
the interface pattern. We proved in subsection 4.1 that there is a 2-colouring of the boundary which amalgamates 
the two patterns into a balanced 2-colouring.
Finally, as in subsection 4.1, there are no infinite monochromatic paths a.s. To finish the construction, let each 
monochromatic cycle randomly choose one of the two strong orientations for itself. �

Let us also note that a strategy a little simpler but analogous to the above, of transforming a colour scheme to another 
one, one colour at a time can be used to obtain a vertex 4-colouring of T . A very similar idea has already been used by 
Holroyd, Schramm, and Wilson (who employ similar techniques as us to obtain a hierarchy, though they lack the function 
η from Proposition 3.3) to construct vertex 3-colourings of �d

� [18].

Proposition 4.2. There is a finitary Aut(T )-factor of iid which is a.s. a proper vertex 4-colouring of T .

Proof. There are six proper vertex colourings of T with the colours R, G, and B, which can be described as RGB, RBG, BGR, 
BRG, GBR, and GRB according to the colouring of one fixed triangle. Let us get a 2-spaced hierarchy J and a numbering 
η : J → [4] of its parts as given by Proposition 3.3. For each cluster numbered 1, pick one of the six colourings above 
uniformly at random. Then use the three remaining layers and the fourth colour c4 to transition between the clusters 
numbered 1 (e.g., RGB→RGc4 →BGc4 →BRc4 →BRG). �

Suppose G is a graph such that any proper vertex χ(G)-colouring c : V (G) → [χ(G)] has the property that knowing 
c|S for some finite subset S ⊂ V (G) determines the entire c – e.g., in the case of T , any two adjacent vertices act as 
such a subset, and whenever G is bipartite and connected, any singleton would do. Then whenever G has a factor-of-iid 
hierarchy, we can always construct a factor-of-iid vertex χ(G) + 1-colouring as in the proposition above, while correlation 
decay prevents the existence of a factor-of-iid χ(G)-colouring. On the other hand, if no such finite subset S exists, then a 
factor-of-iid vertex χ(G)-colouring may exist as demonstrated in subsection 5.2.

4.4. The Kagomé and the (3, 4, 6, 4) lattice

The remaining two Archimedean lattices differ from the first two ones in that not all faces are bounded by cycles of the 
same length (the lattice (3, 4, 6, 4) is not even edge-transitive). This slightly increased heterogeneity makes the proofs much 
easier, and in the case of the (3, 4, 6, 4) lattice even the length of monochromatic cycles is bounded, meaning the resulting 
decoration is a Schreier graph of actions of many more groups than just F2.

Proof of Theorem 1.1 for � = K . Split the lattice into finite clusters organised in a hierarchy H as in Lemma 3.9. Each finite 
cluster picks a pattern composed of monochromatic (red and blue) triangles. There are two ways to randomly place this 
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Fig. 9. Kagomé lattice – two cases that can occur at a boundary vertex.

pattern on the Kagomé lattice. Consider the boundaries ∂C where C ∈ H. If a boundary travels on two out of the three edges 
of a given triangle abc, replace the two edges in the boundary (say ab, bc ∈ ∂C ) by the third one (ac) – as a side effect, each 
boundary becomes a union of vertex-disjoint cycles.

Let each cluster C apply its pattern to all non-boundary edges with at least one endpoint in C . If two neighbouring 
clusters C and C+ agree in their pattern, simply propagate it to ∂C as well. If C and C+ disagree, we will colour the 
boundary as follows. Suppose uv is in ∂C and w is the common neighbour of u and v . Then by construction, either all 
three edges uv, v w, wu are in the boundary (in which case we will propagate the pattern of C+ to them) or neither v w
nor wu is in the boundary. In the latter case, v w and wu follow the same pattern and are in the same triangle, so they are 
assigned the same colour. Let uv get the opposite colour.

As remarked earlier, every vertex x ∈ C is incident to either two or none edges from ∂C . If it is incident to none and 
also if the patterns of C and C+ agree, the colouring at x is an inner pattern, which is balanced. If x is incident to two 
boundary edges xy and xz and yz ∈ E(K ), the same reasoning applies. Finally, if the patterns disagree and y and z are not 
adjacent, let y′ be the common neighbour of y and x and z′ the common neighbour of z and x. Then xy has the opposite 
colour than xy′ by the definition of the colouring on boundaries, and similarly xz has the opposite colour than xz′ . Hence 
the amalgamated colouring is balanced at every vertex. (See Fig. 9.)

As in the previous cases, the colour classes are thus unions of finite cycles, and we let each monochromatic cycle 
randomly pick one of the two possible strong orientations to finish the decoration. �

Proof of Theorem 1.1 for � = (3,4,6,4). The (3, 4, 6, 4) lattice is not edge-transitive which makes constructing a Schreier 
decoration easy in this case. Every edge is either part of a triangle or a hexagon, but not both.

Therefore, we can simply colour all triangles red and all hexagons blue. To complete the Schreier decoration, we choose 
a random strong orientation for each triangle and hexagon independently. �

Constructing a factor of iid perfect matching on the (3, 4, 6, 4) lattice is similarly easy: each hexagon can choose one of 
its two perfect matchings independently at random, and these matchings together form a perfect matching of the whole 
lattice.

5. Ramifications for proper edge and vertex colourings and perfect matchings

Proper edge 2d-colourings encode actions of the group (Z/2Z)∗2d , the 2d-fold free product of (Z/2Z) with itself, just 
like Schreier decorations encode actions of the free group Fd . Both groups have T2d as their standard Cayley graph, and T2d
is the universal cover of any 2d-regular graph. In this sense, looking for these structures on 2d-regular graphs is equally 
natural, but we focus more on Schreier decorations because all 2d-regular graphs have a (deterministic) Schreier decoration, 
while this is not the case for proper edge 2d-colourings. When searching for these structures as factors of iid, however, we 
do not know of a single transitive example, where one exists and the other does not.

5.1. Proper edge 2d-colourings and perfect matchings

Most of our results in Section 4 are ultimately based on the absence of infinite monochromatic paths, or in other words 
on decomposing the graphs into monochromatic cycles such that for every colour c and vertex x, there is a cycle of colour 
c going through x. This decomposition is useful more generally, for example to construct a proper 2d-colouring whenever 
the graph in question is bipartite, so we isolate a statement about its existence here.

Corollary 5.1 (of Theorems 1.1 and 1.2). For every d ≥ 2, there is a finitary Aut(�d
�)-factor of iid that is a partition of the edges of �d

�
into d colour classes such that each colour class is a spanning 2-regular graph consisting of finite cycles.
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Corollary 5.2 (of Lemma 5.1). For every d ≥ 2, there is a finitary Aut(�d
�)-factor of iid which is a proper edge 2d-colouring of �d

�
almost surely. Subsequently, there is a finitary Aut(�d

�)-factor of iid which is a perfect matching of �d
� almost surely [27].

Proof. By Lemma 5.1, we can decompose �d
� into finite monochromatic cycles. �d

� is bipartite, so all of these cycles are 
even. To obtain a proper 2d-colouring, let each cycle of colour ci, i ∈ [d] choose randomly one of the two proper 2-colourings 
of its edges by clight

i and cdark
i .

By choosing one colour class (say clight
1 ), we obtain the second statement. �

In fact, one can now obtain many more corollaries simply by noticing when graphs have a decomposition into several 
locally identifiable copies of �d

� . The square lattice with diagonals added is an example of a transitive graph that decom-
poses into three copies of the square lattice. This decomposition does not even need randomness, one can detect whether 
an edge is diagonal or not by looking at neighbourhoods of vertices. We use 2 colours for the horizontal and vertical edges 
(this is one copy of ��), and 2 other colours for the diagonals (these form two disjoint copies of �� , we decorate them 
independently).

Corollary 5.3. There is an Aut(��)-factor of 
([0,1]V (��),μ�

)
which is a Schreier decoration a.s. Moreover, it has almost surely no 

infinite monochromatic paths. Subsequently, there is an Aut(��)-factor of 
([0,1]V (��),μ�

)
which is a perfect matching of �� a.s.

Unfortunately the same argument does not provide a proper edge 6-colouring on the triangular lattice, because there is 
no guarantee that the finite cycles have even length. Nevertheless in the next example, if care is taken while constructing a 
Schreier decoration, bipartiteness is not necessary.

Corollary 5.4 (of Proposition 2.4). Let H be a finite (2d − 2)-regular graph whose chromatic index is χ ′(H) = 2d − 2. Then there is a 
finitary Aut(H × P )-factor of iid which is a proper edge 2d-colouring of H × P almost surely.

Proof. Let us in the proof of Proposition 2.4 always choose a matching M which is given by a colour class of a proper 
edge colouring. We made sure in the proof to spell out that all cycles of colour c1 have even length. On each of those, pick 
randomly one of the two proper edge colourings with colours clight

1 and cdark
1 .

Now on each connected component left after removing the decorated edges which is isomorphic to H , pick randomly 
a proper edge colouring with colours c3, . . . , c2d . On each component isomorphic to (H \ M) × {vi, vi+1}, let the |V (H)|
edges between (H \ M) × {vi} and (H \ M) × {vi+1} all have colour c3, while we properly colour both (H \ M) × {vi} and 
(H \ M) × {vi+1} with c4, . . . , c2d . �

We can again obtain a perfect matching of H × P by choosing one of the colour classes, but there is already the trivial 
construction of simply picking a perfect matching on each of the P copies of H .

5.2. Line graphs

Proposition 5.5. Let G be a 2d-regular graph. Then if G admits a factor-of-iid Schreier decoration, so does its line graph L(G).

Proof. If d = 1 then G = L(G), so the statement is a tautology.
If d ≥ 2 then there is a 1-to-1 correspondence between vertices of G and the cliques K2d in L(G). Also every vertex v in 

L(G) is in exactly two cliques K2d because it has two endpoints in G .
Suppose now that K is isomorphic to K2d and its vertices are cin

1 , cout
1 , . . . , cin

d , cout
d . Let us fix a proper edge 2d − 1-

colouring of K with colours c′
1, . . . , c

′
2d−1. Then put on top an orientation such that for all i ∈ [d], j ∈ [2d − 1], the edge of 

colour c′
j incident to cin

i is oriented towards cin
i if and only if the edge of colour c′

j incident to cout
i is oriented from cout

i . 
This decorated K will serve as a template for decorating the cliques of L(G).

Indeed, the Schreier decoration of G gives rise to a vertex d-colouring of L(G) with colours c1, . . . , cd such that moreover, 
every vertex of L(G) labels one of the cliques it is in as ‘in’ and the other as ‘out’. Also every clique K2d in L(G) has vertices 
which are relatively to this clique labelled cin

1 , cout
1 , . . . , cin

d , cout
d . Given this vertex decoration, let every K2d in L(G) decorate its 

edges as dictated by the template K . Since every cin
i is cout

i in its other clique, this gives a Schreier decoration of L(G). �

Interestingly, we cannot use the same strategy to show that a proper edge 2d-colouring of G implies a proper edge 
4d − 2-colouring of L(G). This is exactly because every vertex v of the line graph would get a decoration which is the same 
as viewed from either of the two cliques v is in. However, when d is even, we get the following.

Proposition 5.6. Let G be a 2d-regular graph where d is an even positive integer. Then if G admits a factor-of-iid balanced orientation, 
its line graph L(G) has a factor-of-iid perfect matching.
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Proof. Every vertex v of G gives rise to K2d in L(G) with d vertices labelled ‘in’ and d labelled ‘out’. As d is even, in 
each such clique, we can pick a (random) perfect matching on the vertices labelled ‘in’ – crucially, these are labelled ‘out’ 
with respect to the other cliques they are in. We claim that this is a perfect matching. Similarly as before, the balanced 
orientation of G gives a vertex decoration of L(G) such that every vertex is labelled exactly once with ‘in’ and once with 
‘out’, therefore at every vertex, there is exactly one matched edge to be chosen. �

Finally, the line graphs of �d
� , d ≥ 2, are the first example in the literature that the authors are aware of infinite transitive 

graphs that admit proper vertex χ -colouring as a factor of iid, where χ is the classical chromatic number.

Proposition 5.7. For every d ≥ 2, there is a finitary Aut(L(�d
�))-factor of iid which is a proper vertex χ(L(�d

�))-colouring of L(�d
�)

almost surely.

Proof. Follows from Corollary 5.2. �

6. Open questions and remarks

Question 6.1. Is it true that for all 2d-regular graphs G which are vertex- or edge-transitive, the following are equivalent?

1. There is a factor of iid which is a proper edge 2d-colouring of G a.s.
2. There is a factor of iid which is a perfect matching of G a.s.
3. There is a factor of iid which is a Schreier decoration of G a.s.
4. There is a factor of iid which is a balanced orientation of G a.s.

We have demonstrated in this paper that all four of the structures exist as factors of iid for �d
�, d ≥ 2, for H × P

where H is a finite 2d-regular graph with χ ′(H) = 2d, and more loosely speaking for graphs that are made up of locally 
identifiable copies of these. We have also constructed Schreier decorations and balanced orientations on more planar lattices 
than �� and suspect that the hierarchies which are available on them should make it possible to obtain proper edge 2d-
colourings too. (We only achieved this for �� and �� in subsection 5.1.) Also pointing in this direction is the fact that all 
amenable Cayley graphs have invariant random perfect matchings [11,12] – the lattices T and K are indeed Cayley graphs 
of G T = 〈a, b, c | a3 = b3 = c3 = abc = e〉 and G K = 〈a, b | a3 = b3 = (ab)3 = e〉 respectively.

On the other hand, H × P where |V (H)| is odd forms the prominent example of a class of graphs where none of the 
four factors exist. We have shown in Proposition 2.3 that no balanced orientation of H × P is a factor of iid, and the proof 
that there is no factor-of-iid perfect matching follows similar lines. Indeed, suppose a perfect matching M of H × P is given, 
and let n(i) be the number of edges in M of the form (u, vi)(u, vi+1). Then for every i ∈Z, if n(i) is odd then n(i + 1) must 
be even and if n(i) is even then n(i + 1) must be odd. This is, however, in contradiction with the existence correlation decay 
in factor of iid processes.

In our parallel paper [2, Definition 22], we further show a class C∗
2d = {G∗ : G is 2d-regular} of 2d-regular bipartite graphs 

for which a proper edge 2d-colouring exists as a factor of iid if and only if perfect matching does if and only if Schreier 
decoration does. All the above leads us to tentatively conjecture that the answer to Question 6.1 is yes for amenable graphs.

It also seems that if the transitivity assumption is relaxed, the four structures are listed in a strictly decreasing order of 
difficulty. As we said, H × P where |V (H)| is odd does not have a factor-of-iid balanced orientation, which by [2, Lemma 
25] means (H × P )∗ ∈ C∗

2d has no factor-of-iid perfect matching. Thus (H × P )∗ has no factor-of-iid edge 2d-colouring either 
by [2, Proposition 5]. The non-transitivity of (H × P )∗ , however, allows for locally recognisable factorisation of the graph 
into copies of Kd,2d , which implies the existence of factor-of-iid balanced orientation whenever d is even.

To get graphs with a factor-of-iid Schreier decoration but without a factor-of-iid perfect matching, we can start with 
any 2d-regular G satisfying Question 6.1 in its positive sense and by attaching two pendant K −

2d+5 to every vertex obtain 
a 2d + 4-regular graph which has no perfect matching at all. Alternatively, we can construct graphs like the one in Fig. 10
which have deterministic, but not factor-of-iid perfect matchings. Any perfect matching contains two or no edges of the big 
squares in an alternating fashion, which again violates correlation decay. However, Schreier decoration can be constructed 
by colouring the two edges to the left of a cut vertex red and to the right blue, or vice versa, chosen randomly and 
independently at each cut vertex. Each remaining finite component properly extends this 2-colouring and monochromatic 
cycles get a random strong orientation.

Finally, any finite 2d-regular graph has a factor-of-iid Schreier decoration, so whenever its chromatic index equals 2d + 1, 
we again get an example in which a proper edge 2d-colouring does not exist, but when a perfect matching does, like in the 
Meredith graph, we get an instance for the last type which has exactly three of the four structures as factors of iid.

Question 6.2. Is there a 2d-regular quasi-transitive graph which has a factor-of-iid proper edge 2d-colouring or perfect 
matching, but not a factor-of-iid Schreier decoration or balanced orientation?

We also point out that all the Schreier decorations constructed in this paper have no infinite monochromatic paths, 
i.e., no infinite orbits.
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Fig. 10. An infinite graph which admits a factor-of-iid Schreier decoration but not a factor-of-iid perfect matching.

Question 6.3. Is there a factor of iid Schreier decoration on the square lattice that has infinite monochromatic paths with 
positive probability? Or on any of the other lattices we consider? Or on any transitive graph?

By ergodicity, this would imply that the factor of iid Schreier decoration has infinite monochromatic paths with proba-
bility 1. The next question aims to improve our counterexamples.

Question 6.4. Give an example of a transitive graph that is not quasi-isometric to Z and has no factor of iid balanced 
orientation. Or has no factor of iid Schreier decoration.

In fact, the best would be to have a precise structural description of when these decorations exist as factors of iid.

Question 6.5. Give a necessary and sufficient condition for a 2d-regular transitive graph to have a factor of iid balanced 
orientation and/or Schreier decoration.
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Limits of action convergent graph sequences
with unbounded (p, q)-norms

Aranka Hrušková
Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, Budapest, Hungary

Abstract

The recently developed notion of action convergence by Backhausz and Szegedy [2] unifies and
generalises the dense (graphon) and local-global (graphing) convergences of graph sequences. This
is done through viewing graphs as operators and examining their dynamical properties. Suppose
(An)

∞
n is a sequence of operators representing graphs, Cauchy with respect to the action metric. If

(An)
∞
n has uniformly bounded (p, q)-norms where (p, q) is any pair in [1,∞)×(1,∞), then Backhausz

and Szegedy prove that (An)
∞
n has a limit operator which, moreover, must be self-adjoint and

positivity-preserving. In the present work, we construct a large class of graph sequences whose only
uniformly bounded (p, q)-norm is the (∞, 1)-norm, but which converge nonetheless. We show that
the limit operators in this case are not unique, not self-adjoint, and need not be positivity-preserving.
In particular, in the action convergence language, this means that the space of graphops is not
compact. By identifying these multiple limits, we also demonstrate that c-regularity is not invariant
under weak equivalence, where c is the eigenvalue of the identity function, when the identity function
is an eigenfunction.

1 Introduction

The central object of the relatively young field of graph limit theory is a sequence (Gn)
∞
n=1 of finite

graphs, for which we seek to find a limit object. The two most thoroughly developed convergence
notions, based on different methods of sampling small subgraphs from large graphs, are, however, only
applicable when either the number of edges in Gn is asymptotically quadratic in terms of the number of
vertices [6, 12, 13] or when the maximum degree ∆(Gn) is uniformly bounded above [12, 17]. We call
the former sequences dense and have graphons for them as limit objects, while the latter are an extreme
case of sparse sequences and their limits are graphings [9]. This leaves out the territory of sequences in
which the number of edges grows subquadratically but superlinearly in terms of the number of vertices –
that includes for example the hypercubes, the incidence graphs of finite projective planes, and many
regimes of the Erdős-Rényi model G(n, p(n)). A number of authors have in recent years defined various
extensions of the classical notions mentioned above with the aim of reaching the world of sequences with
intermediate densities [3, 4, 5, 7, 8, 11, 14, 15]. In this paper, we are interested in action convergence
introduced by Backhausz and Szegedy [2], which unifies and generalises graphons and graphings in the
common framework of P -operators.

Definition (P -operator). Let (Ω,A, µ) be a probability space. Then we call a linear operator A : L∞(Ω) →
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L1(Ω) a P-operator if the norm

∥A∥∞→1 = sup
v∈L∞(Ω)

∥Av∥1
∥v∥∞

is finite.

As the name and the definition of the limit object above suggest, action convergence lays emphasis on
the dynamical properties of graphs. There is a number of natural operators associated to a finite graph,
of which the most prominent are the adjacency matrix, the discrete Laplacian, and the transition matrix
of the simple random walk; in this paper, we will always identify a finite graph with its adjacency matrix.
The key to the definition of the convergence is the notion of profiles that allow us to compare operators
even when they act on L-spaces of different probability spaces. A k-profile Sk(A) of a P -operator A is
a collection of probability measures on R2k encoding the actions of A and giving rise to the following
metrisation.

Definition. Let A : L∞(ΩA) → L1(ΩA) and B : L∞(ΩB) → L1(ΩB) be P -operators. Then their action
distance is

dM (A,B) =

∞∑

k=1

dH(Sk(A),Sk(B))

2k
,

where dH is the Hausdorff distance. A sequence (An)
∞
n of P -operators action converges to a P -operator

A if and only if limn dM (An, A) = 0. When dM (A,B) = 0, we say that A and B are weakly equivalent.

Importantly, Backhausz and Szegedy show in [2] that a sequence (Gn)
∞
n of graphs with uniformly

bounded maximum degree converges locally-globally to a graphing G if and only if their adjacency
matrices (A(Gn))

∞
n action converge to G, and that a sequence (Gn)

∞
n of graphs converges to a graphon

W if and only if their scaled adjacency matrices
(
A(Gn)
|V (Gn)|

)∞
n

action converge to W . In our setting, a

graphon W : [0, 1]2 → [0, 1] becomes the P -operator that sends f ∈ L2 ([0, 1], λ) to

(Wf)(x) =

∫ 1

0
W (x, y)f(y) dλ(y),

and a graphing (G, ν) becomes the P -operator that sends v ∈ L2 (V (G), ν) to

(Gv)(x) =
∑

xy∈E(G)
v(y).

In particular, both graphons and graphings are not just operators from L∞ to L1, but from L2 to L2,
and satisfy that ∥W∥2→2 ≤ 1 and ∥G∥2→2 ≤ d, where d is the maximum degree of the graphing G. Both
of them are also self-adjoint and positivity-preserving – any P -operator that has these two properties is
called a graphop. Given a sequence of P -operators, we can in general deduce information about the
existence of its limit and about the limit’s properties if we can assume uniform boundedness of some
(p, q)-norms like the (2, 2)-norms above.

Lemma 1.1 (Sequential compactness, Lemma 2.6 in [2]). Let (An)∞n=1 be a sequence of P -operators
with uniformly bounded ∥·∥∞→1 norms. Then (An)

∞
n=1 has a Cauchy subsequence with respect to the

distance dM .
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Theorem 1.2 (Existence of limit object, Theorem 2.9 in [2]). Let p ∈ [1,∞) and q ∈ [1,∞]. Let (An)∞n=1

be a sequence of P -operators, Cauchy with respect to the distance dM and with uniformly bounded ∥·∥p→q

norms. Then there is a P -operator A such that limn dM (An, A) = 0 and ∥A∥p→q ≤ lim supn ∥An∥p→q.

For c ∈ R, a P -operator is called c-regular if the identity function 1 is an eigenfunction with
eigenvalue c, i.e., A1 = c1.

Proposition 1.3 (Section 3 in [2]). Let p, q ∈ [1,∞] be fixed and let (An)∞n be a sequence of P -operators
with uniformly bounded (p, q)-norms. Suppose that (An)∞n action converges to a P -operator A. Then

(a) if q /∈ {1,∞} and An is self-adjoint for every n, then A is also self-adjoint,

(b) if p ̸= ∞ and An is positivity-preserving for every n, then A is also positivity-preserving, and

(c) if p ̸= ∞, c ∈ R and An is c-regular for every n, then A is also c-regular.

In the present work, we are interested in optimality of the restrictions on p and q in Theorem 1.2
and Proposition 1.3. We quickly show that part (a) of Proposition 1.3 must hold for all (p, q) ∈
[1,∞]2 \ {(∞, 1)}, but our main result is identifying a large class of sequences (An)

∞
n in which An is

self-adjoint and positivity-preserving for every n and whose only uniformly bounded (p, q)-norms are
the (∞, 1)-norms, but which at the same time have multiple limit objects, none of which are self-adjoint
and some of which are not positivity-preserving. In other words, we show that a sequence of graphops
does not necessarily action converge to a graphop. The graphops in our sequences arise as the adjacency
matrices of finite simple graphs G that contain a vertex of degree |V (G)| − 1, that is a vertex adjacent
to every other vertex of G. We call G+ the graph on |V (G)|+ 1 vertices obtained from G by adding a
vertex like that.

Theorem 1.4. Let (Gn)∞n be a sequence of finite graphs with |V (Gn)| → ∞, whose adjacency operators
action converge to a P -operator A : L∞(Ω, ν) → L1(Ω, ν), where (Ω, ν) is separable. Then there is a
ν-filter F on Ω such that for any ν-ultrafilter U extending F , both

A+ : L∞(Ω, ν) → L1(Ω, ν)

given by
(
A+g

)
(ω) = (Ag)(ω) + ϕU (g)

and
A− : L∞(Ω, ν) → L1(Ω, ν)

given by
(
A−g

)
(ω) = (Ag)(ω)− ϕU (g)

are action limits of (G+
n )

∞
n , where ϕU : L∞(Ω, ν) → R is the functional sending limn→∞

∑n
i=1 αn,iχEn,i

to limn→∞
∑n

i=1 αn,i1En,i∈U .

In the construction of the limit objects, we utilise a functional ϕU from the dual space (L∞)∗ of L∞

which are not in the canonical embedding of L1 in (L∞)∗. In particular, ϕU : L∞ → R arises from a
finitely additive measure given by an ultrafilter U , where U is any extension of a suitable countably
generated filter F . In the course of proving that such a filter F exists, we establish Theorem 4.3 which
we believe is of independent interest. It states that for any linear operator A : L∞(Ω) → L1(Ω), where
Ω is a finite measure space, there is an ultrafilter U such that for any function f ∈ L∞ and a number
a ∈ R, we can find functions fa which are arbitrarily close to f in the 1-norm and also whose images
under A are arbitrarily close to Af in the 1-norm, but such that ϕU (fa) = a, independently of the value
of ϕU (f).

The rest of the paper is organised as follows. In Section 2, we define k-profiles and prove the extension
of part (a) of Proposition 1.3. In Section 3, we warm up with the most basic case of our construction
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which is the star graphs (Sn)
∞
n . We recall the structure of (L∞)∗, explain how the functional ϕU plays

the role of the high-degree vertex, prove that the (∞, 1)-norm is not continuous with respect to dM by
showing that limn ∥Sn∥∞→1 > ∥limn Sn∥∞→1, establish that no action limit of Sn can be self-adjoint,
and prove a special case of Theorem 1.4. The main results are in Section 4 in which we first describe
what the limiting k-profiles of (G+

n )
∞
n must be. Then we prove Theorem 4.3 and relying on it, we go on

to prove Theorem 1.4. We close off in Section 6 with two open questions.

2 Preliminaries

Let A : L∞(Ω) → L1(Ω) be a P -operator. Then for every f ∈ L∞(Ω), the pair (f,Af) represents an
observation of the dynamical properties of A. We want to compress this observation into a form which
will not involve Ω and also neglect some inessential features of A, and do so by considering the law of
the random variable

(f,Af) : Ω → R2

ω 7→ (f(ω), Af(ω)).

More generally, taking a k-tuple (f1, . . . , fk) of functions in L∞(Ω) provides an even finer observation
(f1, . . . , fk, Af1, . . . , Afk), and by compressing and collecting all of these, we arrive at a set of probability
measures which captures the various ways in which A acts on functions.

Definition (k-profile). Let A : L∞(Ω) → L1(Ω) be a P -operator and k a positive integer. The k-profile
Sk(A) of A is

Sk(A) :=
{
D(f1, . . . , fk, Af1, . . . , Afk) : f1, . . . , fk ∈ BL∞

1

}
⊂ P

(
R2k
)
,

where BL∞
1 is the closed unit ball of L∞(Ω) and D(f1, . . . , fk, Af1, . . . , Afk) is the joint distribution of

f1, . . . , fk, Af1, . . . , Afk, i.e., the image measure given by the map ω 7→ (f1(ω), . . . , fk(ω), Af1(ω), . . . , Afk(ω)).

We will also be using the shorthand

DA(f1, . . . , fk) := D (f1, . . . , fk, Af1, . . . , Afk) .

For a hands-on example, when A is an n × n matrix then its k-profile is the set of all discrete
probability measures on R2k of the form

1

n

n∑

j=1

δ((v1)j ,...,(vk)j ,(v1A)j ,...,(vkA)j)

where v1, . . . , vk are real vectors with entries in [−1, 1] and δx denotes the Dirac measure concentrated
on x ∈ R2k. (We assumed the uniform distribution on [n] here.)

As explained in the Introduction, we measure the similarity of k-profiles of different P -operators by
the Hausdorff distance.
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Definition (Hausdorff pseudometric). Let (M,d) be a metric space. Then the Hausdorff pseudometric
dH on the power set P(M) is given by

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}

for all subsets X, Y of M .

Note that dH(X,Y ) = 0 if and only if X = Y .
It remains to determine what metric we consider on the set P

(
R2k
)

of probability measures on R2k.
Since we want to metrise the weak convergence of measures, we choose the Lévy-Prokhorov metric.

Definition (Lévy-Prokhorov metric). Let (M,d) be a metric space, B(M) its associated Borel σ-algebra,
and P(M) the set of all probability measures on (M,B(M)). The Lévy-Prokhorov metric dLP on P(M)
is given by

dLP (η, µ) = inf{ε > 0 : η(U) ≤ µ(U ε) + ε and µ(U) ≤ η(U ε) + ε for every Borel set U ⊂M},

where U ε = {x ∈M : d(x, U) < ε}.

Note that for any two probability measures η, µ ∈ P(Rn), we have dLP (η, µ) ≤ 1, hence also for any
two P -operators A,B, their distance satisfies dM (A,B) ≤∑∞

k=1
1
2k

= 1.
Let now (·, ·)A denote the bilinear form on functions from L∞(Ω) given by a P -operator A as follows:

(f, g)A :=

∫

Ω
(Af)g dµ = E[(Af)g].

Definition. A P -operator A : L∞(Ω) → L1(Ω) is

1. self-adjoint if (f, g)A = (g, f)A for all g, f ∈ L∞(Ω),

2. positivity-preserving if (Af)(ω) ≥ 0 holds for a.a. ω ∈ Ω whenever f(ω) ≥ 0 holds for a.a. ω ∈ Ω,

3. c-regular if A1 = c1, for c ∈ R,

4. a graphop if it is self-adjoint and positivity-preserving.

While the definition of a P -operator requires the (∞, 1)-operator norm to be finite, the general
definition of a (p, q)-norm, for p, q ∈ [1,∞], is

∥A∥p→q := sup
f∈L∞

∥Af∥q
∥f∥p

.

Since the q-norms ∥·∥q are increasing with q, the operator norms ∥·∥p→q are increasing with q and
decreasing with p, meaning in particular that

∥A∥∞→1 ≤ ∥A∥p→q

for any linear operator A and any p, q ∈ [1,∞].
Following the lines of the argument made in [10] for finite matrices, we quickly prove the following.
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Lemma 2.1. Let p, q be in [1,∞], and let p′, q′ be their Hölder conjugates. Let A and A∗ be P -operators
satisfying that

(v, w)A = (w, v)A∗ for all v, w ∈ L∞.

Then ∥A∥p→q = ∥A∗∥q′→p′.

Proof.

∥A∥p→q = sup
f∈L∞

∥Af∥q
∥f∥p

= sup
f∈L∞

{
∥Af∥q : ∥f∥p ≤ 1

}

= sup
f∈L∞

{
sup
g∈L∞

{∣∣∣∣
∫
(Af)g

∣∣∣∣ : ∥g∥q′ ≤ 1

}
: ∥f∥p ≤ 1

}

= sup
g∈L∞

{
sup
f∈L∞

{∣∣∣∣
∫
f(A∗g)

∣∣∣∣ : ∥f∥p ≤ 1

}
: ∥g∥q′ ≤ 1

}

= sup
g∈L∞

{
∥A∗g∥p′ : ∥g∥q′ ≤ 1

}

= sup
g∈L∞

∥A∗g∥p′
∥g∥q′

= ∥A∗∥q′→p′

Corollary 2.2. The assumption in Proposition 1.3 (a) can be extended from (p, q) ∈ [1,∞]× (1,∞) to
(p, q) ∈ [1,∞]2 \ {(∞, 1)}.
Proof. Let p ∈ (1,∞). If ∥A∥p→1 or ∥A∥p→∞ are uniformly bounded then so are ∥A∥∞→p′ or ∥A∥1→p′

by Lemma 2.1, and so Proposition 1.3 (a) gives that A is self-adjoint.
If ∥A∥1→1, ∥A∥1→∞ or ∥A∥∞→∞ are uniformly bounded then so are, say,

∥A∥2→1 = ∥A∥∞→2 ,

by monotonicity of the (p, q)-norms. Now we can apply Proposition 1.3 (a) to ∥A∥∞→2 to conclude
that A is self-adjoint.

Finally, as remarked in [2, Section 2], the (p, q)-norms can be read out from the 1-profiles of
P -operators (and are hence invariant under weak equivalence). For a measure µ on R2, let µy ∈ P(R)
denote its y-axis marginal. Then in the case of the (∞, 1)-norm, we can get it as follows:

∞ > ∥B∥∞→1 = sup
f∈L∞

∥Bf∥1
∥f∥∞

= sup {∥fB∥1 : ∥f∥∞ ≤ 1}

= sup

{∫

Ω
|Bf | dν : f ∈ BL∞

1

}

= sup

{∫

R
|x| dD(Bf) : f ∈ BL∞

1

}

= sup

{∫

R
|x| dµy(x) : µ ∈ S1(B)

}
.
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This enables us to prove that the (∞, 1)-norms are lower semicontinuous with respect to action
convergence.

Lemma 2.3. Let (An)∞n be a Cauchy sequence of P -operators with uniformly bounded ∥·∥∞→1 norms.
Suppose further that limn→∞ dM (An, A) = 0 for a P -operator A. Then ∥A∥∞→1 ≤ lim infn→∞ ∥An∥∞→1.

Proof. Suppose that a sequence (µn)
∞
n of measures on R2 converges in dLP to a measure µ. Then for

every n, dLP ((µn)y, µy) ≤ dLP (µn, µ), and so the measures (µn)y converge in dLP to µy. The Lévy-
Prokhorov distance is on R a metrisation of weak convergence of measures, and so by the portmanteau
theorem, ∫

R
|x| dµy(x) ≤ lim inf

n→∞

∫

R
|x| d(µn)y(x)

because the function |x| is continuous and bounded below. This implies both that the equality

∥B∥∞→1 = sup

{∫

R
|x| dµy(x) : µ ∈ S1(B)

}

from above can be extended to

∥B∥∞→1 = sup

{∫

R
|x| dµy(x) : µ ∈ S1(B)

}
= sup

{∫

R
|x| dµy(x) : µ ∈ S1(B)

}

and that any measure µ ∈ S1(A) and any sequence (µn)
∞
n with µn ∈ S1(An) and µn

dLP−−→ µ must satisfy
∫

R
|x| dµy(x) ≤ lim inf

n→∞

∫

R
|x| d(µn)y(x) ≤ lim inf

n→∞
∥An∥∞→1 ,

implying

∥A∥∞→1 = sup

{∫

R
|x| dµy(x) : µ ∈ S1(B)

}
≤ lim inf

n→∞
∥An∥∞→1 .

However, we will see in Section 3 that the (∞, 1)-norm is not continuous.

3 The case of stars

The question naturally arises whether Theorem 1.2 is as good as it gets, that is whether there are
Cauchy sequences with uniformly bounded norms ∥·∥∞→q for some q ∈ [1,∞] which, however, do not
action converge to any P -operator.

For positivity-preserving operators A,

∥A∥∞→q = ∥A1∥q ,

where 1 = χΩ is the constant function with value 1. At the same time, we have seen that for self-adjoint
operators A,

∥A∥∞→q = ∥A∥q′→1 .
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Suppose then that we want to look for a candidate Cauchy sequence (An)
∞
n which would exemplify the

impossibility of extending Theorem 1.2 beyond p ̸= ∞ – if we want to find it among graphops then
these two observations tell us that (∥An1∥q)∞n must be unbounded for every q ∈ (1,∞]. Let us note
that if A is the adjacency matrix of a graph then A1 = d is (an ordering of) its degree sequence, and so
the sequence (Sn)

∞
n of stars, having as large a difference between minimum and maximum degree as

possible in a simple graph, becomes in immediate candidate to investigate.
In particular, we denote by Sn the n-vertex tree with n − 1 leaves. Then we can check that for

q ∈ (1,∞), the q-norm of its degree sequence is unbounded:

∥d∥q =
(
1

n
(1q + · · ·+ 1q + (n− 1)q)

) 1
q

=

(
n− 1

n
+

(n− 1)q

n

) 1
q

≥ n− 1

n
1
q

→ ∞ as n→ ∞.

By the monotonicities of (p, q)-norms, this means that the (∞, 1)-norm

∥Sn∥∞→1 =
1

n
(1× (n− 1) + (n− 1)× 1) < 2

is the only uniformly bounded (p, q)-norm of the star sequence, where we took the liberty of identifying
Sn with its adjacency matrix.

In the rest of the section, we will investigate what a putative action limit A of (Sn)∞n would have to
satisfy, showing that necessarily, the continuity of the (∞, 1)-norm cannot hold, i.e.,

lim
n→∞

∥Sn∥∞→1 ̸= ∥A∥∞→1 ,

and that A cannot be self-adjoint, so in particular, it cannot be a graphop. We will derive an action
limit at the end of the section.

Lemma 3.1. A P -operator A satisfies limn→∞ dM (Sn, A) = 0 if and only if

Sk(A) = P
(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

}

for every positive integer k.

We shall in fact deduce this lemma from the following more general result.

Lemma 3.2 (Uniform approximability of P(M)). Let (M,d) be a totally bounded metric space. Then
for all ε > 0, there is N = N(ε) such that for every µ ∈ P(M,B(M)), there is a sequence

(
µn =

1
n

∑n
i=1 δxi

)∞
n

of discrete probability measures such that

∀n ≥ N(ε) dLP (µ, µn) < ε.

In particular, N does not depend on µ.

Proof. For a positive integer k, let us fix a finite set {z1, . . . , zm(k)} ⊆M whose 1
k -balls cover M and

a partition M1, . . . ,Mm(k) in B(M) of M such that zi ∈ Mi ⊆ B1/k(zi) for every i ∈ [m] = [m(k)].
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Given a probability measure µ on M and a partition M1, . . . ,Mm as described, let κm ∈ P(M) be
κm =

∑m
i µ(Mi)δzi . Then for every measurable A,

µ(A) =
m∑

i=1

µ(A ∩Mi) =
∑

i∈[m]
A∩Mi ̸=∅

µ(A ∩Mi) ≤
∑

i∈[m]
A∩Mi ̸=∅

µ(Mi) =
∑

i∈[m]
A∩Mi ̸=∅

κm({zi}) ≤ κm

(
A1/k

)

and
κm(A) =

∑

i∈[m]
zi∈A

κm({zi}) =
∑

i∈[m]
zi∈A

µ(Mi) ≤ µ(A1/k),

so dLP (µ, κm) ≤ 1
k .

The next step is to approximate the discrete measure κm by µn = 1
n

∑n
i δxi where for every i ∈ [n]

we will put xi = zj for some j ∈ [m]. Let µn be any probability measure on {z1, . . . , zm} such that
µn ({zj}) = ⌊nκm(zj)⌋ /n or ⌈nκm(zj)⌉ /n for every j ∈ [m]. Then |κm(zj)−µn(zj)| < 1

n for all j ∈ [m],
and so dLP (κm, µn) < m

n . Finally, the triangle inequality implies

dLP (µ, µn) ≤ dLP (µ, κm) + dLP (κm, µn) <
1

k
+
m

n
,

and hence for every µ ∈ P(M) and n ≥ m(k) · k, we have that dLP (µ, µn) < 2/k as desired.

Proof of Lemma 3.1. Let us first note that limn→∞ dM (Sn, A) = 0 if and only if

lim
n→∞

dH (Sk(Sn),Sk(A)) = 0

for every positive integer k, so let us fix k for the rest of the proof and show that limn→∞ dH (Sk(Sn),Sk(A)) =
0 if and only if

Sk(A) = P
(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

}
.

Lemma 3.2 implies that for every ε > 0, there is an N = N(ε) such that ∀n ≥ N ,

dH

({ 1

n

n∑

i=1

δxi : xi ∈ [−1, 1]k
}
×
{
δz : z ∈ [−1, 1]k

}
,P
(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

}
)

≤ ε.

On the other hand, Sn sends the vector (a1, a2, . . . , an) ∈ [−1, 1]n to (
∑n

j=2 aj , a1, . . . , a1), which means
that every choice of vectors v1, . . . , vk with entries in [−1, 1] gives an element 1

n

(
δ((v1)1,...,(vk)1,

∑n
j=2(v1)j ,...,

∑n
j=2(vk)j)

+∑n
j=2 δ((v1)j ,...,(vk)j ,(v1)1,...,(vk)1)

)
of Sk(Sn) which satisfies

dLP

(
1

n

(
δ((v1)1,...,(vk)1,

∑n
j=2(v1)j ,...,

∑n
j=2(vk)j)

+
n∑

j=2

δ((v1)j ,...,(vk)j ,(v1)1,...,(vk)1)

)
,

1

n

(
δx+

n∑

j=2

δ((v1)j ,...,(vk)j)

)
× δ((v1)1,...,(vk)1)

)
≤ 1

n
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for every x ∈ [−1, 1]k. This means that

dH

(
Sk(Sn),

{
1

n

n∑

i=1

δxi : xi ∈ [−1, 1]k

}
×
{
δz : z ∈ [−1, 1]k

})
≤ 1

n
,

and so the triangle inequality tells us that ∀n ≥ N ,

dH
(
Sk(Sn),P

(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

})

≤ dH

(
Sk(Sn),

{ 1

n

n∑

i=1

δxi : xi ∈ [−1, 1]k
}
×
{
δz : z ∈ [−1, 1]k

})

+ dH

({ 1

n

n∑

i=1

δxi : xi ∈ [−1, 1]k
}
×
{
δz : z ∈ [−1, 1]k

}
,P
(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

})

≤ ε +
1

n
.

Now if Sk(A) = P
(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k} then ∀n ≥ N ,

dH
(
Sk(Sn),Sk(A)

)

≤ dH

(
Sk(Sn),P

(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k}

)
+ dH

(
P
(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k},Sk(A)

)

= dH

(
Sk(Sn),P

(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k}

)

≤ ε+
1

n
,

and so limn→∞ dH(Sk(Sn),Sk(A)) = 0.
On the other hand, if limn dH(Sk(Sn),Sk(A)) = 0 and ε > 0 then there is M = M(ε) such

that ∀n ≥ M dH(Sk(Sn),Sk(A)) < ε. Combining this with the computations above, we get that
∀n ≥ max{N(ε),M(ε)},

dH
(
Sk(A),P([−1, 1]k)× {δz : z ∈ [−1, 1]k}

)

≤ dH (Sk(A),Sk(Sn)) + dH
(
Sk(Sn),P([−1, 1]k)× {δz : z ∈ [−1, 1]k}

)

< 2ε+
1

n
,

and so in fact dH
(
Sk(A),P([−1, 1]k)× {δz : z ∈ [−1, 1]k}

)
= 0. As P

(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

}
is

closed, this is equivalent to Sk(A) = P
(
[−1, 1]k

)
×
{
δz : z ∈ [−1, 1]k

}
as desired.

Let us now assume that there is a P -operator A : L∞(Ω, µ) → L1(Ω, µ) for some probability space
(Ω,A, µ) such that limn→∞ dM (Sn, A) = 0.

Every f ∈ BL∞
1 gives an element D(f,Af) of S1(A) which, by Lemma 3.2, is of the form ν × δcf for

some constant cf ∈ [−1, 1]. That is, A is in fact an element of L∞(Ω)∗ and sends f to cf .

Lemma 3.3. For every f ∈ BL∞
1 , it must be the case that |cf | ≤ ∥f∥∞.

10

C
E

U
eT

D
C

ol
le

ct
io

n



Proof.
∥∥∥∥

f

∥f∥∞

∥∥∥∥
∞

= 1 ⇒ f

∥f∥∞
∈ BL∞

1

⇒
∣∣∣∣A

f

∥f∥∞

∣∣∣∣ ≡ |c f
∥f∥

| ≤ 1

⇒ ∥f∥∞
∣∣∣∣A

f

∥f∥∞

∣∣∣∣ ≤ ∥f∥∞
⇒ |cf | ≡ |Af | ≤ ∥f∥∞

Next we note that for every x ∈ [−1, 1] \ {0}, the Dirac measure δ(0,x) is in S1(A), while the lemma
above says it cannot be in the profile S1(A) itself. Thus for every x ∈ [−1, 1] \ {0} and for every ϵ > 0
there must be fx,ϵ ∈ BL∞

1 such that dLP
(
δ(0,x),DA(fx,ϵ)

)
< ϵ. Now

dLP
(
δ(0,x),DA(fx,ϵ)

)
< ϵ

⇔ inf{δ > 0 : δ(0,x)(U) ≤ DA(fx,ϵ)(U
δ) + δ and DA(fx,ϵ)(U) ≤ δ(0,x)(U

δ) + δ for every Borel set U ⊂ R2} < ϵ

⇔ δ(0,x)(U) ≤ DA(fx,ϵ)(U
ϵ) + ϵ and DA(fx,ϵ)(U) ≤ δ(0,x)(U

ϵ) + ϵ for every Borel set U ⊂ R2

⇔ 1 ≤ DA(fx,ϵ)
(
Bϵ((0, x))

)
+ ϵ

⇒ cfx,ϵ ∈ (x− ϵ, x+ ϵ) ∩ [−1, 1]. (3.1)

Also let Ωx<ϵ be the subset {ω : |fx,ϵ(ω)| < ϵ} of Ω, and similarly let Ωx≥ϵ = {ω : |fx,ϵ(ω)| ≥ ϵ} ⊂ Ω.
Then apart from the line (3.1) above, 1 ≤ DA(fx,ϵ)

(
Bϵ((0, x))

)
+ ϵ also implies that µ (Ωx<ϵ) ≥ 1 − ϵ

and µ
(
Ωx≥ϵ

)
≤ ϵ.

Corollary 3.4. If a P -operator A is an action limit of (Sn)∞n then ∥A∥∞→1 = 1.

Proof.

∥A∥∞→1 = sup
f∈BL∞

1

∥Af∥1
∥f∥∞

= sup
f∈BL∞

1

|cf |
∥f∥∞

≤ sup
f∈BL∞

1

∥f∥∞
∥f∥∞

= 1.

On the other hand, for every ε > 0

∥A∥∞→1 ≥
∥Af1,ε∥1
∥f1,ε∥∞

=
|cf1,ε |

∥f1,ε∥∞
>

1− ε

∥f1,ε∥∞
≥ 1− ε,

so ∥A∥∞→1 ≥ 1, completing the proof.

Since we will later construct an action limit of (Sn)∞n , Corollary 3.4 shows that, as claimed at the
beginning of the section, the (∞, 1)-norm is not continuous with respect to action convergence. In
particular, if limn dM (Sn, A) = 0 then

lim
n→∞

∥Sn∥∞→1 = lim
n→∞

2n− 2

n
= 2 ̸= 1 = ∥A∥∞→1 .

Using the notation set up before Corollary 3.4, we will now deliver on our second promise of proving
that A cannot possibly be self-adjoint.
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Proposition 3.5. Suppose that a P -operator A is an action limit of (Sn)∞n . Then A is not self-adjoint.

Proof. Let ε ∈ (0, 1/3) and 1 be the characteristic function χΩ. Then

|(1, f1,ε)A| =
∣∣∣∣
∫
(A1)f1,ε dµ

∣∣∣∣ =
∣∣∣∣c1
∫
f1,ε dµ

∣∣∣∣ ≤
∣∣∣∣∣

∫

Ω1
<ε

f1,ε dµ+

∫

Ω1
≥ε

f1,ε dµ

∣∣∣∣∣ ≤ εµ
(
Ω1
<ε

)
+µ
(
Ω1
≥ε
)
≤ 2ε

while
|(f1,ε,1)A| =

∣∣∣∣
∫

(Af1,ε)1 dµ

∣∣∣∣ = |cf1,ε | > 1− ε.

But then
|(f1,ε,1)A| > 1− ε > 2ε ≥ |(1, f1,ε)A| ,

and so (f1,ε,1)A ̸= (1, f1,ε)A and A is not self-adjoint.

Again, since we will actually show the existence of an action limit A at the end of the section,
Proposition 3.5 demonstrates a limitation of Proposition 1.3 (a) and together with Corollary 2.2
effectively answers the question of necessary self-adjointness of a limit of a sequence of self-adjoint
P -operators.

Proposition 3.6. There is no g ∈ L1(Ω, µ) such that Af ≡
∫
Ω gfdµ for every f ∈ L∞(Ω, µ).

Proof. Suppose that on the contrary, g ∈ L1(Ω, µ) is as stated. Then

∥g∥1 =
∫

Ω
|g|dµ =

∫

Ω
g
(
1{ω:g(ω)≥0} − 1{ω:g(ω)<0}

)
dµ = A

(
1{ω:g(ω)≥0} − 1{ω:g(ω)<0}

)
≤ 1.

Now let x ∈ [−1, 1] \ {0} and ϵ > 0. By the discussion between Lemma 3.3 and Corollary 3.4, we have
that

x−ϵ < |cfx,ϵ | =
∣∣∣∣
∫
gfx,ϵdµ

∣∣∣∣ ≤
∫
|gfx,ϵ| =

∫

Ωx
<ϵ

|gfϵ|+
∫

Ωx
≥ϵ

|gfϵ| < ϵ

∫

Ωx
<ϵ

|g|+
∫

Ωx
≥ϵ

|g| ≤ ϵ
(
1−
∫

Ωx
≥ϵ

|g|
)
+

∫

Ωx
≥ϵ

|g|,

and so ∫

Ωx
≥ϵ

|g| > x− 2ϵ

1− ϵ
.

Taking x = 1, we get ∫

Ω1
≥ϵ

|g| > 1− 2ϵ

1− ϵ
→ 1 as ϵ→ 0, (3.2)

and recalling
∫
Ω1

≥ϵ
|g| ≤

∫
Ω|g| ≤ 1, we conclude that

∫
Ω|g| = 1.

Now for any integer n ≥ 2, let Bn =
⋃∞
i=nΩ

1
≥2−i ⊂ Ω. Note that for every m ≥ n, (3.2) tells us that

1 ≥
∫

Bn

|g| ≥
∫

Ω1
≥2−m

|g| > 1− 21−m → 1 as m→ ∞,
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and so for every n ≥ 2 we have
∫
Bn

|g| = 1 and thus
∫
Ω\Bn

|g| = 0. On the other hand, observe that

µ(Bn) = µ

( ∞⋃

i=n

Ω1
≥2−i

)
≤

∞∑

i=n

µ
(
Ω1
≥2−i

)
≤

∞∑

i=n

2−i = 21−n,

which implies that the intersection of the chain B2 ⊇ B3 ⊇ B4 ⊇ B5 ⊇ . . . has measure zero. But then

1 =

∫

Ω
|g| =

∫

∩∞
n=2Bn

|g|+
∫

∪∞
n=2(Ω\Bn)

|g| = 0 + 0 = 0,

which is a contradiction.

We have just shown that when A : L∞(Ω,A) → R is an action limit of (Sn)∞n then

A ∈ L∞(Ω)∗ \ L1(Ω),

where we are abusing notation and identifying elements g ∈ L1(Ω) with the functionals f 7→
∫
fg dµ.

Let us now recall the structure of the dual space L∞(Ω,A, µ)∗. We mostly follow the terminology and
notation of [16] and [1]. Let ba(A) be the space of of bounded finitely additive signed measures, also
known as signed charges. The total variation of a charge ν on the σ-algebra A is

|ν|(Ω) = sup

{
n∑

i=1

|ν(Mi)| : {M1, . . . ,Mn} is a measurable partition of Ω

}
,

and ν ∈ ba(A) if and only if |ν|(Ω) <∞. The dual of L∞(A, µ) is represented by the subset ba(A, µ) of
ba(A) which consists of all the finitely additive signed measures ν that satisfy

ν(N) = 0 whenever µ(N) = 0, for all N ∈ A.

Any such charge ν then gives a functional via

f 7→
∫

Ω
f dν = lim

n→∞

n∑

i=1

αn,iν (En,i) ,

where
(∑n

i=1 αn,iχEn,i

)∞
n

is any sequence of simple functions which converge to f in the L∞-norm, and
every element of L∞(A, µ)∗ arises this way. Moreover, as shown for example in Section 6.2 of [1], the
(∞, 1)-norm of this functional is |ν|(Ω). Having proved Corollary 3.4, we could have used this fact to
streamline the first part of the proof of Proposition 3.6.

Every ν ∈ ba(A) can be uniquely written as ν = κν + γν , where κν is countably additive, i.e., κν is
a singed measure, and γν is purely finitely additive. Having proved that if A is an action limit of stars,
the purely finitely additive part of the finitely additive measure representing A must be non-trivial,
we now zoom in on a particular subset of purely finitely additive measures. We start by introducing
µ-ultrafilters, which turn out to be in one-to-one correspondence with the {0, 1}-valued elements of
ba(A, µ).

Definition (µ-filter). Let (Ω,A, µ) be a measure space. A non-empty collection F of measurable subsets
of Ω is a µ-filter if and only if
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• µ(S) > 0 for all S ∈ F ,

• if S, T ∈ F then S ∩ T ∈ F , and

• if S ∈ F and S ⊂ T then T ∈ F .

A maximal filter is called an ultrafilter.

Every µ-ultrafilter U now gives a finitely additive measure δU by setting

δU (E) =

{
1, if E ∈ U
0, if E /∈ U .

Moreover, every {0, 1}-valued element of ba(A, µ) arises this way, and if µ is atomless then each such
charge is purely finitely additive.

Theorem 3.7. Let U be a λ-ultrafilter on the probability space (Ω = [0, 1),B([0, 1)), λ). Then the
P -operator A given by

A : L∞(λ) → L1(λ)

f 7→
(∫

f dδU

)
· χΩ

satisfies limn→∞ dM (Sn, A) = 0.

Proof. By Lemma 3.1, this is equivalent to showing that for every positive integer k,

Sk(A) = P
(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k}.

Let k be fixed. The operator A sends every element f ∈ L∞(Ω) to a constant function where
the absolute value of the constant is at most ∥f∥∞, so in particular elements of BL∞

1 are sent
to [−1, 1]. Thus Sk(A) ⊂ P

(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k}. On the other hand, for every µ ∈

P
(
[−1, 1]k

)
and z ∈ [−1, 1]k, we will now construct a sequence (DA(fn,1, . . . , fn,k))

∞
n in Sk(A) such

that limn dLP (µ× δz,DA(fn,1, . . . , fn,k)) = 0, implying that P
(
[−1, 1]k

)
× {δz : z ∈ [−1, 1]k} ⊆ Sk(A).

We start by fixing a sequence (En)
∞
n in U such that for every n ≥ 1, En =

[
i−1
n , in

)
for some i ∈ [n].

Given µ ∈ P
(
[−1, 1]k

)
and z ∈ [−1, 1]k, let (µn = 1

n

∑n
i δxi)

∞
n be a sequence given by Lemma 3.2. Now

for every n ≥ 1 and j ∈ [k] let

fn,j(ω) =

{
(xi)j , if ω ∈

[
i−1
n , in

)
\ En

zj , if ω ∈ En.

Then

dLP
(
µn × δz,DA(fn,1, . . . , fn,k)

)
= dLP

(
µn × δz,

1

n

(
δz +

∑

i∈[n]
[ i−1

n
, i
n
) ̸=En

δxi

)
× δz

)

= dLP

(
1

n

n∑

i=1

δxi ,
1

n

(
δz +

∑

i∈[n]
[ i−1

n
, i
n
)̸=En

δxi

))
≤ 1

n
.
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Hence, by the triangle inequality,

dLP
(
µ× δz,DA(fn,1, . . . , fn,k)

)
≤ dLP (µ× δz, µn × δz) + dLP

(
µn × δz,DA(fn,1, . . . , fn,k)

)

≤ dLP (µ, µn) +
1

n
→ 0 as n→ ∞.

Remark 3.8. Note that the limit object in Theorem 3.7 is definitely not unique. Not only do we have
a choice of the ultrafilter, but we could also take any (M,B(M), κ) instead of (Ω = [0, 1),B([0, 1)), λ),
where (M,d) is a totally bounded metric space such that for infinitely many positive integers n, it is
possible to partition M into M1, . . . ,Mn ∈ B(M) with κ(Mi) =

1
n for all i ∈ [n].

4 Graphs G+ with a vertex that neighbours everything

Stars are in fact just a special case of the following construction.

Definition. Let G be a graph. Then G+ is the graph on |V (G)|+ 1 vertices formed from G by adding a
single vertex v and connecting it to all the other vertices.

Seen like this, a star with n leaves is E+
n where En is the empty graph on n vertices. This viewpoint

allows us to extend the result from the previous section to more sequences of the form (G+
n )

∞
n than

just (Sn)
∞
n = (E+

n )
∞
n . Before stating the full theorem, we set up the scene with a couple of lemmas and

propositions.

Lemma 4.1. Let (Gn)∞n be Cauchy in dM . If lim supn→∞ |V (Gn)| = ∞ then lim infn→∞ |V (Gn)| = ∞,
and for any action limit A : L∞(Ω, ν) → L1(Ω, ν) of (Gn)∞n , (Ω, ν) is atomless.

Proof. Suppose on the contrary that there is a natural number k such that for infinitely many n, the
graph Gn has k vertices. Then there is a subsequence (Gmj )j such that |V (Gmi)| = k for all i ≥ 1. On
the other hand, let (Gni)i be a subsequence with strictly increasing number of vertices. For a measure
µ ∈ P

(
R2
)
, let µx ∈ P(R) be its x-axis marginal. Then dLP (µx, κx) ≤ dLP (µ, κ) for all µ, κ ∈ P(R2),

and thus
dH ((S1)x(Gn), (S1)x(Gm)) ≤ dH (S1(Gn),S1(Gm)) ≤ 2dM (Gn, Gm)

for any n,m ∈ N, where

(S1)x(G) := {µx : µ ∈ S1(G)} =
{
D(f) : f ∈ BL∞

1

}
.

Now limi(S1)x(Gni) contains the uniform measure on [−1, 1], which implies that both limj(S1)x(Gmj )

and (S1)x(A) must contain it too. But limj(S1)x(Gmj ) only contains measures which are approximable
arbitrarily well by k atoms, so we get a contradiction with lim infn |V (Gn)| <∞. Similarly, (S1)x(A)
containing the uniform measure on [−1, 1] implies that (Ω, ν) is atomless.

Lemma 4.1 implies that if (G+
n )

∞
n is Cauchy in dM and lim supn→∞ |V (Gn)| = ∞ then the special

added vertices vn will have smaller and smaller weight, yet the fact that they are adjacent to all the other
vertices in their graph means that the value at vn has a great impact on the outcome after applying the
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adjacency operator. In particular, if two functions f, g : V (G+
n ) → R only differ in the value they assign

to the added vertex vn, then as n grows larger, the resulting measures DGn(f) and DGn(g) will more
and more look like they are equivalent up to a shift along the y-axis by f(vn)− g(vn). To formalise the
intuition forming upon this observation, we introduce the following definition.

Definition. Let µ be a measure on Rn and v ∈ Rn a vector. Then µ⊕ v is the measure on Rn such that

(µ⊕ v)(T ) = µ(T ⊕ {−v}) = µ({t− v : t ∈ T})

for any measurable subset T . For any set S of measures on Rn and set V ⊆ Rn of vectors,

S ⊕ V := {µ⊕ v : µ ∈ S, v ∈ V }.

So as not to clutter the exposition with technicalities, we will only focus on sequences (Gn)
∞
n with

|V (Gn)| → ∞.

Proposition 4.2. If (Gn)∞n is Cauchy in dM and lim supn |V (Gn)| = ∞ then (G+
n )

∞
n is Cauchy in dM

too. Moreover, if the limiting closures of the k-profiles of (Gn)∞n are Xk := limn→∞ Sk(Gn) then the
limiting closures of Sk (G+

n ) are Xk ⊕ Vk where Vk = {0}k × [−1, 1]k.

Proof. Let us fix µ ∈ Xk and v = {0}k × (v1, . . . , vk) ∈ Vk. By the definition of Xk, there is a sequence
(µn)

∞
n = (DGn(f1, . . . , fk))

∞
n of measures in Sk(Gn) such that limn→∞ dLP (µn, µ) = 0. Let µ+vn be

the measure in Sk(G+
n ) obtained by assigning the same values to the vertices of the subgraph Gn as

f1, . . . , fk do and giving the values (v1, . . . , vk) to the additional vertex. Formally,

µ+vn := DG+
n

(
f+v11 , . . . , f+vkk

)
where f+vii (u) =

{
fi(u) if u ∈ V (Gn)

vi if {u} = V (G+
n ) \ V (Gn).

Then
dLP (µ

+v
n , µn ⊕ v) ≤ 1

|V (Gn)|+ 1

because (µ⊕v)(A⊕{v}) = µ(A) for any measurableA, and
(
(f+v11 , . . . , f+vkk )G+

n

)
(u) = ((f1, . . . , fk)Gn) (u)+

(v1, . . . , vk). By the triangle inequality,

dLP (µ
+v
n , µ⊕ v) ≤ dLP (µ

+v
n , µn ⊕ v) + dLP (µn ⊕ v, µ⊕ v) ≤ 1

|V (G)|+ 1
+ dLP (µn, µ),

where the right-hand side tends to 0 by Lemma 4.1. Hence for every measure in Xk ⊕ Vk, there is a
sequence in Sk(G+

n ) converging to it.
Vice versa, suppose that (µ+n = DG+

n
(f+1 , . . . , f

+
k ))

∞
n is a sequence with µ+n ∈ Sk(G+

n ) which is
convergent in dLP to a measure µ+. We want to show that µ+ ∈ Xk ⊕ Vk. Let vn ∈ [−1, 1]k be the
values assigned by f+1 , . . . , f

+
k to the added vertex in G+

n . The set [−1, 1]k is compact, so there is a
subsequence

(
µ+ni

)∞
i

on which vn converges to some v ∈ [−1, 1]k.
Employing the triangle inequality again gives

dLP (µni ⊕ v, µ+) ≤ dLP (µni ⊕ v, µni ⊕ vni) + dLP (µni ⊕ vni , µ
+
ni
) + dLP (µ

+
ni
, µ+) (4.1)
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for every i ∈ N. The second summand on the right-hand side is bounded above by 1
|V (Gni )|+1 like before

and the third summand goes to 0 by the assumption of convergence of (µ+n )∞n . To bound the first
summand, we observe two facts: that dLP (η ⊕ w, ν) = dLP (η, ν ⊕ (−w)) and that dLP (η, η ⊕ w) ≤ ∥w∥
for any measures η and ν and vector w. The first is true because for any ε > 0,

(η ⊕ w)(U) ≤ ν (U ε) + ε for all measurable U
⇔ (η ⊕ w)(U ⊕ {w}) ≤ ν ((U ⊕ {w})ε) + ε for all measurable U
⇔ η(U) ≤ ν (U ε ⊕ {w}) + ε for all measurable U
⇔ η(U) ≤ (ν ⊕ (−w)) (U ε) + ε for all measurable U

and similarly the other way round. The second is true because U ⊕ {w} ⊆ U∥w∥+ε for any ε > 0,
implying that

η(U) = (η ⊕ w)(U ⊕ {w}) ≤ (η ⊕ w)
(
U∥w∥+ε

)

and (η ⊕ w)(U) = η(U ⊕ {−w}) ≤ η
(
U∥w∥+ε

)
.

Returning to inequality 4.1, we now get

dLP
(
µni , µ

+ ⊕ (−v)
)
= dLP

(
µni ⊕ v, µ+

)
≤ ∥vni − v∥+ 1

|V (Gni)|+ 1
+ dLP (µ

+
ni
, µ+) → 0 as i→ ∞.

Since µni ∈ Sk(Gni), we conclude that µ := µ+ ⊕ (−v) ∈ Xk, and so µ+ = µ ⊕ v ∈ Xk ⊕ Vk as
claimed.

Having established the form of limn Sk (G+
n ), we could now show along more technical, but in essence

similar lines as in the proof of Proposition 3.5 that no action limit of (G+
n )

∞
n , where lim |V (Gn)| = ∞,

can possibly be self-adjoint.

Notation. Given a measure space (Ω,A, µ), we write χF for the characteristic function of a measurable
set F ∈ A, and 1E for the indicator functions of events E from any other measure space. We also write
BLp

r (g) for the closed Lp-ball of radius r around the function g ∈ Lp, and we denote by 0 the function
which sends (almost every) element of Ω to 0. Finally, BLp

1 is a shorthand for the unit ball around 0.

We are now preparing to prove that when Gn → A, there indeed is a P -operator A+ whose k-profiles
are like those prescribed by Proposition 4.2 for the prospective limit of (G+

n )
∞
n . We would like to keep A

in A+ in some form because it encodes the possibly complicated structure of (Gn)∞n which is of course
also present in (G+

n )
∞
n . But at the same time we must introduce the shifts arising from the presence

of the special vertex in G+
n which has an outsized influence with respect to its increasingly negligible

measure. Like we did in Section 3, we will use an ultrafilter-based functional

ϕU : L∞ → R

lim
n→∞

n∑

i=1

αi,nχEi,n 7→ lim
n→∞

n∑

i=1

αi,n1Ei,n∈U
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for this – decreasing nested sequences of smaller and smaller sets in U will play the role that the special
vertex played in the proof of Proposition 4.2. However, we must be careful that the ultrafilter U does
not interfere with the key properties of the original limit A. The following theorem, which is also of
independent interest, tells us that U can be chosen to satisfy our needs.

Theorem 4.3. Let A : L∞(Ω, µ) → L1(Ω, µ) be a linear operator, where (Ω, µ) is an atomless separable
finite measure space. Then there is a µ-filter F such that any ultrafilter U containing F has the following
property:
for all f ∈ BL∞

1 , ε > 0, a ∈ [−1, 1], there is fa,ε ∈ BL∞
1 such that

I. ∥f − fa,ε∥1 < ε

II. ∥Af −Afa,ε∥1 < ε

III. ϕU (fa,ε) ∈ (a− ε, a+ ε).

Proof. We will generate F in countably many steps; using the separability of L1(Ω), we will generate
countably many functions f ∈ L∞(Ω) that represent the action of A to an arbitrary precision (see
Figure 1), and build a filter F that meshes well with the properties of these functions.

Let us first consider the image A
(
BL∞

1

)
⊆ L1(Ω, µ) of the unit ball of L∞(Ω) under the action

of the operator A. Since L1(Ω, µ) is separable, we can pick, for any positive integer n, a countable
collection Cn of functions g ∈ L1(Ω, µ) such that the union of their 1

n -balls covers A
(
BL∞

1

)
, that is,

A
(
BL∞

1

)
⊆
⋃

g∈Cn
BL1

1/n(g).

Next, we look at the preimages A−1
(
BL1

1/n(g)
)
⊆ L∞(Ω, µ) of these covering 1

n -balls. Given one such

fixed preimage A−1
(
BL1

1/n(g)
)
, we view it as a subset of L1(Ω, µ) and pick a countable collection Dn,g

of functions in A−1
(
BL1

1/n(g)
)
∩ BL∞

1 whose 1
n -balls cover A−1

(
BL1

1/n(g)
)
∩ BL∞

1 . Altogether, this
produces the countable family Bn =

⋃
g∈Cn Dn,g of functions from the unit ball of L∞(Ω, µ) which by

construction satisfies that for every f ∈ BL∞
1 , there is some hf ∈ Bn such that both ∥hf − f∥1 ≤ 1

n and
∥Ahf −Af∥1 ≤ 2

n .
We will now construct a filter F based on the countable collection B =

⋃∞
n=1 Bn. Let us start by

fixing an ordering f1, f2, . . . of the elements of B ⊂ BL∞
1 .

For each m ≥ 1, we will find a sequence Em,1 ⊃ Em,2 ⊃ Em,3 . . . of measurable sets such that

1. µ(Em,k) > 0 for all k, but µ(Em,k) → 0 as k → ∞,

2.
∥∥AχEm,k

∥∥
1
→ 0 as k → ∞, and

3. the range of fm|Em,k
shrinks, i.e. ess sup(fm|Em,k

)− ess inf(fm|Em,k
) → 0 as k → ∞.

The conditions 1.–3. will help us to prove the corresponding requirements I.–III. from the statement of
the theorem. In particular, condition 3. helps us track the value of ϕU (fm), which we will be able to
change by adding functions which are non-zero only on Em,k. Moreover, the sets Em,k will also satisfy
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L∞(Ω)

BL∞
1

L1(Ω)
A

A
(
BL∞

1

)

(a) We first cover A
(
BL∞

1

)
with 1

n -balls, i.e., A
(
BL∞

1

)
is represented by the countable collection Cn up to an

error of 1/n in the 1-norm.

L∞(Ω)

BL∞
1

L1(Ω)
A

A−1

A
(
BL∞

1

)

BL1

1/n (g)A−1
(
BL1

1/n(g)
)

(b) Each function f ∈ BL∞
1 belongs to a preimage A−1

(
B1

1/n(g)
)
, which can itself be represented up to a 1

n -error
in the 1-norm by a countable collection Dn,g.

Figure 1: Constructing the countable family Bn =
⋃
g∈Cn Dn,g of functions in the unit ball BL∞

1 whose
1
n -balls cover it
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E1,1 ⊃ E1,2 ⊃ E1,3 ⊃ . . .⊃ ⊃ ⊃

E2,1 ⊃ E2,2 ⊃ E2,3 ⊃ . . .⊃ ⊃ ⊃

E3,1 ⊃ E3,2 ⊃ E3,3 ⊃ . . .
...

...
...

Figure 2: The measurable sets Em,k satisfy that for any fixed m ≥ 1, the real numbers µ(Em,k),∥∥AχEm,k

∥∥
1
, and sup(fm|Em,k

)− inf(fm|Em,k
) all tend to zero as k tends to infinity.

the inclusions E1,k ⊃ E2,k ⊃ E3,k . . . for every positive integer k (see Figure 2). Together with that
µ(Em,k) > 0 for all m, k ∈ N, this implies that

µ(Em1,k1 ∩ · · · ∩ Emn,kn) > 0 (4.2)

for any n ∈ N and m1, . . . ,mn, k1, . . . , kn ∈ N because Em1,k1 ∩ · · · ∩Emn,kn ⊇ Emaxi∈[n]{mi},maxi∈[n]{ki}.
Finally, inequality (4.2) tells us that defining

F := {(Em1,k1 ∩ · · · ∩ Emn,kn) ∪B : n ∈ N, B ⊆ Ω is measurable}

gives a µ-filter.
Let us now construct the sequences (Em,k)

∞
k=1 by induction as follows. For m = 1, put

E1,1 =

{
f−1
1 ([0, 1]) , if µ

(
f−1
1 ([0, 1])

)
> 0

f−1
1 ([−1, 0)) , if µ

(
f−1
1 ([0, 1])

)
= 0.

Note that µ
(
f−1
1 ([−1, 0)) ∪ f−1

1 ([0, 1])
)
= µ(Ω) because f1 ∈ BL∞

1 , so we necessarily have µ(E1,1) > 0.
Having obtained E1,k as a subset of f−1

1

(
[x1k, x1k + 21−k]

)
where x1k is some number in

[
−1, 1− 21−k

]
,

we obtain E1,k+1 by first restricting to R, where R is given by

R =

{
E1,k ∩ f−1

1

(
[x1k, x1k + 2−k]

)
, if µ

(
E1,k ∩ f−1

1 ([x1k, x1k + 2−k])
)
> 0

E1,k ∩ f−1
1

(
[x1k + 2−k, x1k + 21−k]

)
, if µ

(
E1,k ∩ f−1

1 ([x1k, x1k + 2−k])
)
= 0,

and then to R′, where R′ is any measurable subset of R satisfying that 0 < µ(R′) ≤ µ(R)
2 (see Figure 3).

We then set x1,k+1 to be equal to x1k if R was chosen to be a subset of f−1
1

(
[x1k, x1k + 2−k]

)
and to

x1k + 2−k otherwise. Restricting to R and then R′ ensures, respectively, that

sup
(
f1|E1,k+1

)
− inf

(
f1|E1,k+1

)
≤ 2−k and µ (E1,k+1) ≤

µ(Ω)

2k
.

Since (Ω, µ) is atomless, there is an uncountable collection R of measurable subsets of R′ such that
for any S1 ̸= S2 ∈ R, we have µ(S1△S2) > 0 and either S1 ⊂ S2 or S2 ⊂ S1. We now consider
the uncountable collection of functions AχS , S ∈ R in L1(Ω, µ), and conclude that by separability of
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E1,k

f−1
1

(
[x1k, x1k + 2−k]

)

f−1
1

(
[x1k + 2−k, x1k + 21−k]

)

f−1
1

(
[x1k, x1k + 21−k]

)

R′

R
E1,k+1

Figure 3: Constructing E1,k+1 as a subset of E1,k

L1(Ω, µ), there must be some S ⊂ T ∈ R such that ∥AχT −AχS∥1 < 1
k . Linearity of A then implies

that
∥∥AχT\S

∥∥
1
< 1

k , and so we set E1,k+1 := T \ S.
For m > 1, suppose we already have Em−1,1 ⊃ Em−1,2 ⊃ . . . as desired. Now if there is some j ≥ 1

such that µ
(
Em−1,j ∩ f−1

m ([0, 1])
)
= 0 then we set Em,1 := Em−1,1 ∩ f−1

m ([−1, 0)), and we necessarily
have that µ(Em,1 ∩ Em−1,j) > 0 for all j ∈ N. Otherwise µ

(
Em−1,j ∩ f−1

m ([0, 1])
)
> 0 for all j ∈ N,

and we set Em,1 := Em−1,1 ∩ f−1
m ([0, 1]). Suppose now that we have obtained Em,k as a subset of

f−1
m

(
[xmk, xmk + 21−k]

)
for some xmk ∈

[
−1, 1− 21−k

]
and that µ(Em,k ∩ Em−1,j) > 0 for all j ≥ k.

We obtain Em,k+1 by first restricting to

R =





Em−1,k+1 ∩ Em,k ∩ f−1
m

(
[xmk, xmk + 2−k]

)
,

if µ
(
Em−1,j ∩ Em,k ∩ f−1

m ([xmk, xmk + 2−k])
)
> 0 for all j > k

Em−1,k+1 ∩ Em,k ∩ f−1
m

(
[xmk + 2−k, xmk + 21−k]

)
,

if µ
(
Em−1,j ∩ Em,k ∩ f−1

m ([xmk, xmk + 2−k])
)
= 0 for some j > k.

As before, we set xm,k+1 to be xmk if R is chosen to be a subset of f−1
m

(
[xmk, xmk + 2−k]

)
and to

be xmk + 2−k otherwise. Let us now partition R into
⋃∞
j=k+1Rj , where

Rj := (Em−1,j \ Em−1,j+1) ∩R.

Importantly, we observe that we must have µ(Rj) > 0 for infinitely many j: if there was some J > k
such that µ(Rj) = 0 for all j ≥ J then we would conclude that

0 =
∞∑

j=J

µ(Rj) = µ




∞⋃

j=J

Rj


 = µ (Em−1,J ∩R) ,

which contradicts the definition of R. Next, by atomlessness of Ω, for every j > k, there is a family
{Rj(t) : t ∈ (0, 1]} of measurable subsets of Rj , which satisfies that

µ(Rj(t)) = tµ(Rj)
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Em−1,k+1
Em−1,k+2

Em−1,k+3

Rk+1

Rk+2

Rk+3

R (1/2)

R(1/4)
R (1/8)

Em,k

Figure 4: Constructing Em,k+1 as a subset of Em−1,k+1

and Rj(t) ⊆ Rj(s) whenever t ≤ s. Let us define R(t) ⊆ R to be

R(t) :=
∞⋃

j=k+1

Rj(t)

for any t ∈ (0, 1], and note that R(t) ⊊ R(s) whenever t < s (see Figure 4). Crucially,

µ ((R(s) \R(t)) ∩ Em−1,j) > 0

for all t < s and j > k. This is because (R(s) \R(t)) ∩ Em−1,j contains
(
Rj′(s) \Rj′(t)

)
∩ Em−1,j′ = Rj′(s) \Rj′(t)

where j′ ≥ j is an integer such that µ(Rj′) > 0.
We are now ready to consider the uncountable family AχR(t), t ∈ (0, 1] of functions in L1(Ω). As

before, by separability of L1(Ω), there must be some t < s such that
∥∥AχR(s) −AχR(t)

∥∥
1
< 1

k . Linearity
of A then implies that

∥∥AχR(s)\R(t)

∥∥
1
< 1

k , and we set Em,k+1 := R(s) \R(t).
We have now constructed the sets Em,k as promised and, as already said, we set the µ-filter F to be

F := {(Em1,k1 ∩ · · · ∩ Emn,kn) ∪B : n ∈ N, B ⊆ Ω is measurable} .

Let now U be any ultrafilter containing F . It remains to show that for a given f ∈ BL∞
1 , ε > 0 and

a ∈ [−1, 1], there is fa,ε ∈ BL∞
1 satisfying the conditions 1.–3. We first note that for every m ≥ 1,

the sequence (xmk)
∞
k=1 of real numbers converges. Let xm be the limit, and let us observe that by the

careful construction of F , we can conclude that ϕU (fm) = xm for every m. This follows from the general
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fact that if some measurable set E is in U then for any function g ∈ L∞, the number ϕU(g) must be
in [ess inf(g|E), ess sup(g|E)]. Next, let n be a positive integer such that 2

n < ε and let us recall what
we noted at the beginning of the proof, that is that by the construction of Bn, there is some hf ∈ Bn
such that ∥hf − f∥1 ≤ 1

n and ∥Ahf −Af∥1 ≤ 2
n . Suppose that hf appears as fm in the ordering of

B =
⋃
n Bn. Then we would like to set fa,ε to be fm + (a− xm)χEm,k

for some large enough k because
linearity of ϕU and Em,k being in F gives us that

ϕU
(
fm + (a− xm)χEm,k

)
= ϕU (fm) + (a− xm)ϕU (χEm,k

) = xm + (a− xm) = a. (4.3)

However, fm + (a− xm)χEm,k
may not be in the unit ball BL∞

1 , so we will need to do some technical
tinkering. On Ω \ Em,k, the functions fm and fa,ε are equal, so we do not get out of BL∞

1 there
because fm = hf is in BL∞

1 to start with. On Em,k, fm takes values in
[
xmk, xmk + 21−k

]
, and so

fm + (a − xm)χEm,k
takes values in V =

[
xmk + a− xm, xmk + 21−k + a− xm

]
. But xm itself is in[

xmk, xmk + 21−k
]
, and so V ⊂

[
a− 21−k, a+ 21−k

]
. Setting fa,ε to be

fa,ε :=





fm + (a− xm)χEm,k
, if a ∈

[
−1 + 21−k, 1− 21−k

]

fm + (1− 21−k − xm)χEm,k
, if a ∈

(
1− 21−k, 1

]

fm + (−1 + 21−k − xm)χEm,k
, if a ∈

[
−1,−1 + 21−k

)

therefore ensures that fa,ε is in the unit ball BL∞
1 , and we fix k to be a positive integer large enough so

that
max

{
µ(Ω)

2k−2
,

2

k − 1
, 21−k

}
< ε− 2

n
.

Finally, we check that fa,ε satisfies the conditions I.–III. Firstly,

∥f − fa,ε∥1 ≤ ∥f − fm∥1+∥fm − fa,ε∥1 <
1

n
+2
∥∥χEm,k

∥∥
1
=

1

n
+2µ(Em,k) ≤

1

n
+2µ(E1,k) ≤

1

n
+
µ(Ω)

2k−2
< ε.

Secondly,

∥Af −Afa,ε∥1 ≤ ∥Af −Afm∥1 + ∥Afm −Afa,ε∥1 ≤
2

n
+ 2

∥∥AχEm,k

∥∥
1
≤ 2

n
+

2

k − 1
< ε.

Thirdly, if a ∈
[
−1 + 21−k, 1− 21−k

]
then ϕU (fa,ε) = a as per equation (4.3). If a ∈ (1− 21−k, 1] then

ϕU (fa,ε) = 1− 21−k = a+
(
1− 21−k − a

)
,

where 1− 21−k − a ∈ [−21−k, 0), and similarly for a ∈ [−1,−1 + 21−k), so

|ϕU (fa,ε)− a| ≤ 21−k < ε

as desired.

Remark 4.4 (on assumptions in Theorem 4.3). In the theorem above, finiteness of µ(Ω) is implicitly
used in viewing subsets of L∞(Ω) as subsets of L1(Ω). Note, however, that we do not require ∥A∥∞→1

to be bounded! One may hope to eliminate the condition of separability of L1(Ω), and especially if we
would instead insist that ∥A∥∞→1 be finite, it does not seem unreasonable to believe that this might
indeed be possible.
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We now restate and prove our main theorem, of which Theorem 3.7 is a special case.

Theorem 1.4. Let (Gn)∞n be a sequence of finite graphs with |V (Gn)| → ∞, whose adjacency operators
action converge to a P -operator A : L∞(Ω, ν) → L1(Ω, ν), where (Ω, ν) is separable. Then there is a
ν-filter F on Ω such that for any ν-ultrafilter U extending F , both

A+ : L∞(Ω, ν) → L1(Ω, ν)

given by
(
A+g

)
(ω) = (Ag)(ω) + ϕU (g)

and
A− : L∞(Ω, ν) → L1(Ω, ν)

given by
(
A−g

)
(ω) = (Ag)(ω)− ϕU (g)

are action limits of (G+
n )

∞
n , where ϕU : L∞(Ω, ν) → R is the functional sending limn→∞

∑n
i=1 αn,iχEn,i

to limn→∞
∑n

i=1 αn,i1En,i∈U .

As already mentioned, our limits A+ and A− cannot be self-adjoint, showing that Proposition 1.3
(a), which holds under the assumption of uniform boundedness of the (p, q)-norms of a Cauchy sequence,
cannot be extended to include (p, q) = (∞, 1). However, the situation is interestingly more subtle
with being positivity-preserving. If the original limit A is positivity-preserving then so is A+ because
the value ϕU(f) is always in the essential range of f . But that is to say that the functional −ϕU is
positivity-reversing, and so when we return to the case of the star sequence (Sn)

∞
n , where A ≡ 0 is

the trivial P -operator on an atomless space (Ω, ν), then the limit A+ is positivity-preserving while
A− is not. This shows that Proposition 1.3 (b) cannot be extended to (p, q) = (∞, 1), but raises the
question whether a Cauchy sequence of graphops always has a positivity-preserving limit (see Section 6).
In any case, we conclude that the property of being positivity-preserving is not invariant under weak
equivalence.

Furthermore, if A is c-regular for some c ∈ R then A+ is c+ 1-regular while A− is c− 1-regular. In
other words, Theorem 1.4 shows that also c-regularity is not invariant under weak equivalence, unless
we first restrict our consideration from the set of all P -operators to the set of P -operators with the
(p, q)-norm bounded above by b, for some p, q ∈ [1,∞)× [1,∞] and fixed b ∈ R≥0. This in particular
means that Proposition 1.3 (c) cannot be extended to include (p, q) = (1,∞).

Proof. If lim supn→∞ |V (Gn)| <∞ then by Lemma 4.1, (Gn)∞n is eventually constant, and so is (G+
n )

∞
n .

Suppose now that lim supn→∞ |V (Gn)| = ∞. To prove that A+ and A− are action limits of (G+
n )

∞
n ,

we need to show that the closures of their k-profiles equal the limits of the closures of the k-profiles of
G+
n . In other words, that

Sk(A±) = lim
n→∞

Sk(G+
n )

for every k. By Proposition 4.2,
lim
n→∞

Sk(G+
n ) = Xk ⊕ Vk

where Xk = limn Sk(Gn). We will now show first that Sk(A±) ⊆ Xk ⊕ Vk and then that Xk ⊕ Vk ⊆
Sk(A±).

For a given k ∈ N, let µ = DA±(f1, . . . , fk) be any measure in Sk(A±), given by some k functions in
BL∞

1 . Then

µ = DA±(f1, . . . , fk) = D
(
f1, . . . , fk, A

±f1, . . . , A±fk
)

= D (f1, . . . , fk, Af1 ± ϕU (f1) · 1, . . . , Afk ± ϕU (fk) · 1)
= D (f1, . . . , fk, Af1, . . . , Afk)⊕ (0, . . . , 0,±ϕU (f1), . . . ,±ϕU (fk)) ∈ Sk(A)⊕ Vk.
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This proves that both Sk(A+) and Sk(A−) are subsets of Sk(A) ⊕ Vk, and hence their closures are
subsets of Sk(A)⊕ Vk = Xk ⊕ Vk. In other words, Sk(A±) ⊆ Xk ⊕ Vk as required.

On the other hand, let µ be a measure in Xk. Then there is a sequence
(
µn = DA(f

1, . . . , fk)
)∞
n

of
measures that converge to µ in dLP . The functions f1, . . . , fk ∈ BL∞

1 naturally depend on n, but we
again drop this further index in the interest of readability. We also stress that the upper indices are just
indices and do not stand for taking powers. Let also v = {0}k × (v1, . . . , vk) be an element of Vk. We
will now show that we can approximate the measure µ⊕ v with elements from Sk(A+) as well as from
Sk(A−).

Let F be a ν-filter given by Theorem 4.3 and let U be any ultrafilter extending it. For every i ∈ [k],
let f i

vi,
1
n

and f i−vi, 1n
be the functions also given by Theorem 4.3 upon applying it to f i. Then we set

µ+vn := DA+

(
f1
v1,

1
n

, . . . , fk
vk,

1
n

)
∈ Sk(A+)

and similarly
µ−vn := DA−

(
f1−v1, 1n

, . . . , fk−vk, 1n

)
∈ Sk(A−).

By the triangle inequality,

dLP
(
µ±vn , µ⊕ v

)
≤ dLP

(
µ±vn , µn ⊕ v

)
+ dLP (µn ⊕ v, µ⊕ v)

= dLP

(
DA±

(
f1±v1, 1n

, . . . , fk±vk, 1n

)
,DA

(
f1, . . . , fk

)
⊕ v
)
+ dLP (µn, µ) (4.4)

where the second summand goes to 0 by the assumption that µn → µ. Shifting our attention to the
first summand, we see that for A+ it is equal to

dLP

(
D
(
f1v1, 1

n
, . . . , fkvk, 1

n
, A+f1v1, 1

n
, . . . , A+fkvk, 1

n

)
,D
(
f1, . . . , fk, Af1, . . . , Afk

)
⊕ v
)

= dLP

(
D
(
f1v1, 1

n
, . . . , fkvk, 1

n
, Af1v1, 1

n
+ ϕU (f

1
v1,

1
n
)1, . . . , Afkvk, 1

n
+ ϕU (f

k
vk,

1
n
)1
)
,D
(
f1, . . . , fk, Af1 + v11, . . . , Af

k + vk1
))

and similarly when we start with DA−

(
f1−v1, 1n

, . . . , fk−vk, 1n

)
instead of DA+

(
f1
v1,

1
n

, . . . , fk
vk,

1
n

)
, we arrive

to the first summand being

dLP

(
D
(
f1−v1, 1n

, . . . , fk−vk, 1n
, A−f1−v1, 1n

, . . . , A−fk−vk, 1n

)
,D
(
f1, . . . , fk, Af1, . . . , Afk

)
⊕ v
)

= dLP

(
D
(
f1−v1, 1n

, . . . , fk−vk, 1n
, Af1−v1, 1n

− ϕU (f1−v1, 1n
)1, . . . , Afk−vk, 1n

− ϕU (fk−vk, 1n
)1
)
,

D
(
f1, . . . , fk, Af1 + v11, . . . , Af

k + vk1
))

.

To bound this first summand, both for A+ and A−, we use that by Theorem 4.3, the functions
f i
vi,

1
n

− f i and f i−vi, 1n
− f i as well as Af i

vi,
1
n

−Af i and Af i−vi, 1n
−Af i all have their 1-norms bounded

above by 1/n. Markov’s inequality then gives that the 2k sets

N+
i =

{
ω ∈ Ω :

∣∣∣
(
f i
vi,

1
n

− f i
)
(ω)
∣∣∣ ≥ δ

}

M+
i =

{
ω ∈ Ω :

∣∣∣
(
Af i

vi,
1
n

−Af i
)
(ω)
∣∣∣ ≥ δ

}
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as well as the 2k sets

N−
i =

{
ω ∈ Ω :

∣∣∣
(
f i−vi, 1n

− f i
)
(ω)
∣∣∣ ≥ δ

}

M−
i =

{
ω ∈ Ω :

∣∣∣
(
Af i−vi, 1n

−Af i
)
(ω)
∣∣∣ ≥ δ

}

all satisfy ν
(
N±
i

)
≤ 1

δn and ν
(
M±
i

)
≤ 1

δn , where δ = δ(n) is a positive number to be chosen later. Put
together also with that

ϕU
(
f i
vi,

1
n

)
∈
(
vi −

1

n
, vi +

1

n

)
,

this says that the set

M+ :=

{
ω ∈ Ω : ∃i ∈ [k] such that

∣∣∣
(
f ivi, 1

n
− f i

)
(ω)
∣∣∣ ≥ δ or

∣∣∣
(
A(f ivi, 1

n
− f i) + (ϕU (f

i
vi,

1
n
)− vi)1

)
(ω)
∣∣∣ ≥ δ +

1

n

}

satisfies M+ ⊆ N+
1 ∪ · · · ∪N+

k ∪M+
1 ∪ · · · ∪M+

k . Analogously, with

M− :=

{
ω ∈ Ω : ∃i ∈ [k] such that

∣∣∣
(
f i−vi,

1
n
− f i

)
(ω)
∣∣∣ ≥ δ or

∣∣∣
(
A(f i−vi,

1
n
− f i) + (−ϕU (f i−vi,

1
n
)− vi)1

)
(ω)
∣∣∣ ≥ δ +

1

n

}

we have that M− ⊆ N−
1 ∪ · · · ∪N−

k ∪M−
1 ∪ · · · ∪M−

k , and so by the union bound,

ν
(
M±) ≤

k∑

i=1

ν
(
N±
i

)
+

k∑

i=1

ν
(
M±
i

)
≤ 2k

δn
.

The inequality above expresses that on most of Ω, the functions
(
f1±v1, 1n

, . . . , fk±vk, 1n
, Af1±v1, 1n

± ϕU (f1±v1, 1n
)1, . . . , Afk±vk, 1n

± ϕU (fk±vk, 1n
)1
)
: Ω → R2k

and
(
f1, . . . , fk, Af1 + v11, . . . , Af

k + vk1
)
: Ω → R2k

output real vectors that are close to one another. In particular, for every ω ∈ Ω \ M±, we have
that all the 2k coordinates of

(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fk±vk, 1n

)1
)
(ω)− (f1, . . . , Afk + vk1)(ω) are

in (−δ − 1/n, δ + 1/n). This implies that
(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fk±vk, 1n

)1
)−1

(U) ⊆
(
f1, . . . , Afk + vk1

)−1 (
U∥(δ+ 1

n
,...,δ+ 1

n
)∥) ∪M±

and (f1, . . . , Afk + vk1)
−1(U) ⊆

(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fkvk, 1n

)1
)−1 (

U∥(δ+ 1
n
,...,δ+ 1

n
)∥) ∪M±

for any measurable subset U of R2k. Taking the measure ν of both sides of these inclusions gives

D
(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fk)1

)
(U)

= ν

((
f1±, . . . , Af

k
±vk, 1n

± ϕU (fkvk, 1n
)1
)−1

(U)

)
≤ ν

(
(f1, . . . , Afk + vk1)

−1
(
U∥(δ+ 1

n
,...,δ+ 1

n
)∥) ∪M±

)

≤ D
(
f1, . . . , Afk + vk1

)(
U (δ+1/n)

√
2k
)
+

2k

δn
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and

D
(
f1, . . . , Afk + vk1

)
(U) = ν

(
(f1, . . . , Afk + vk1)

−1(U)
)

≤ ν

((
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fkvk, 1n

)1
)−1 (

U∥(δ+ 1
n
,...,δ+ 1

n
)∥) ∪M±

)

≤ D
(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fkvk, 1n

)1
)(

U (δ+1/n)
√
2k
)
+

2k

δn
,

which means that

dLP

(
D
(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fk±vk, 1n

)1
)
,D
(
f1, . . . , Afk + vk1

))
≤ max

{(
δ +

1

n

)√
2k,

2k

δn

}
.

Finally, we set δ = δ(n) to be 1/
√
n, to get that

dLP
(
µ±vn , µn ⊕ v

)
= dLP

(
D
(
f1±v1, 1n

, . . . , Afk±vk, 1n
± ϕU (fk±vk, 1n

)1
)
,D(f1, . . . , Afk + vk1)

)

≤ max

{
(1 +

√
n)

√
2k

n
,
2k√
n

}
→ 0.

This finishes the argument started at inequality (4.4) that dLP (µ±vn , µ⊕ v) → 0, and so Xk ⊕ Vk ⊆
Sk(A±).

Remark 4.5 (on assumptions in Theorem 1.4). The mild requirement that (Ω, ν) be separable could
be replaced by that A be positivity-preserving or at least by the existence of a measurable set E with
ν(E) > 0 such that for every f ≥ 0 which is only non-zero on E, Af ≥ 0. In that case, the construction
of an appropriate ν-filter F becomes much easier than in the proof of Theorem 4.3.

5 Subdivisions of the complete graphs Kn

Let us denote by K•
n the graph on

(
n
2

)
+ n vertices obtained from the n-vertex clique by dividing each

of its edges into two.

Theorem 5.1. Let (Ω, µ) be an atomless probability space. There exists a µ2-ultrafilter-valued random
variable U on (Ω, µ) such that the P -operator A : L∞ (Ω× Ω, µ× µ) → L1 (Ω× Ω, µ× µ) given by

(Af)(x, y) = ϕU(x)(f) + ϕU(y)(f)

is an action limit of the subdivisions of Kn.

Lemma 5.2. For every k ∈ N, limn→∞ Sk(K•
n) is equal to

{
κ ∈ P

(
[−1, 1]k × [−2, 2]k

)
: ∃µ1, . . . , µk ∈ P([−1, 1]) such that κk+i = law (Xi + Yi) for Xi, Yi

iid∼ µi

}
,

where κj is the j-th marginal of κ.

27

C
E

U
eT

D
C

ol
le

ct
io

n



Similarly to Section 3, we will prove this lemma using a general result about approximability of
divisible laws. For that purpose, we introduce the following notation.

R :=
{
κ ∈ P ([−1, 1]× [−2, 2]) : ∃µ ∈ P ([−1, 1]) such that κy = law(X + Y ) for X,Y iid∼ µ

}

Rn :=

{
κ =

1

n2

n2∑

i=1

δ(ai,bi) : (ai, bi) ∈ [−1, 1]× [−2, 2]

and ∃x1, . . . , xn ∈ [−1, 1] such that κy = law(X + Y ) for X,Y iid∼ 1

n

n∑

i=1

δxi

}

and more generally for every positive integer k,

Rk =
{
κ ∈ P

(
[−1, 1]k × [−2, 2]k

)
: ∃µ1, . . . , µk ∈ P([−1, 1]) such that κk+i = law (Xi + Yi) for Xi, Yi

iid∼ µi

}
,

Rk
n :=

{
κ =

1

n2

∑

i,j

δ(
a
(1)
{i,j},...,a

(k)
{i,j},b

(1)
i +b

(1)
j ,...,b

(k)
i +b

(k)
j

) : a
(m)
{i,j}, bi ∈ [−1, 1] for all m ∈ [k], i, j ∈ [n]

}

Proof. Let θ be an element of Sk (K•
n), given by some k functions f1, . . . , fk ∈ L∞

[−1,1]

(
[n+

(
n
2

)
]
)
. Then

θ = n
n+(n2)

θv+
(n2)

n+(n2)
θe, where θv is the probability measure on R2k given by sampling one of the vertices

v1, . . . , vn of degree n−1 and getting the corresponding value (f1(v), . . . , fk(v),
∑

e∼v f1(e), . . . ,
∑

e∼v fk(e)),
while θe is the probability measure given by sampling one of the vertices e1, . . . , e(n2) of degree 2 and get-
ting the value (f1(e), . . . , fk(e), f1(u) + f1(v), . . . , fk(u) + fk(v)), where u and v are the two neighbours
of e.

Similarly, any measure κ ∈ Rk
n can be written as κ = n−1

n κd +
1
nκs, where κd is given by sampling

two different indices among the available n, that is, κd = 1

(n2)

∑
i<j δ

(
a
(1)
{i,j},...,a

(k)
{i,j},b

(1)
i +b

(1)
j ,...,b

(k)
i +b

(k)
j

),

and κs comes from sampling two identical indices, i.e., κs = 1
n

∑
i δ

(
a
(1)
{i},...,a

(k)
{i},2b

(1)
i ,...,2b

(k)
i

). But we note

that θe is of the form κd for any measure κ ∈ Rk
n whose κs is equal to 1

n

∑
i δ

(
a
(1)
i ,...,a

(k)
i ,2f1(vi),...,2fk(vi)

),

where a(m)
i , i ∈ [n],m ∈ [k] are any numbers in [−1, 1]. Let, for concreteness, κθ be the measure in

Rk
n whose κd is θe and κs = 1

n

∑
i δ(0,...,0,2f1(vi),...,2fk(vi)). Then by the triangle inequality, dLP (θ, κθ) ≤

dLP (θ, θκ) + dLP (κd, κθ). But for any t ∈ [0, 1] and probability measures α, β on R2k,

dLP (α, tα+ (1− t)β) ≤ 1− t, (5.1)

and so
dLP (θ, θκ) + dLP (κd, κθ) ≤

n

n+
(
n
2

) + 1

n
<

3

n
.
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In particular,

sup
θ∈Sk

inf
κ∈Rk

dLP (θ, κ) ≤ sup
θ∈Sk

inf
κ∈Rk

n

dLP (θ, κ) ≤
3

n
. (5.2)

On the other hand, let κ = 1
n2

∑
i,j δ

(
a
(1)
{i,j},...,a

(k)
{i,j},b

(1)
i +b

(1)
j ,...,b

(k)
i +b

(k)
j

) be an element of Rk
n. Then

κd = 1

(n2)

∑
i<j δ

(
a
(1)
{i,j},...,a

(k)
{i,j},b

(1)
i +b

(1)
j ,...,b

(k)
i +b

(k)
j

) is exactly of the form θe for θκ ∈ Sk (K•
n) given by

fk (vi) = b
(k)
i and fk (vivj) = a

(k)
{i,j}, and so again by the triangle inequality,

dLP (κ, θκ) ≤ dLP (κ, κd) + dLP (θe, θκ) .

Reusing inequality (5.1), we obtain that

dLP (κ, κd) + dLP (θe, θκ) ≤
n

n+
(
n
2

) + 1

n
<

3

n
,

and hence
sup
κ∈Rk

n

inf
θ∈Sk

dLP (θ, κ) ≤
3

n
. (5.3)

Inequalities (5.2) and (5.3) now combine to give dH
(
Sk (K•

n) ,Rk
n

)
≤ 3

n , and so we obtain that

dH

(
Sk (K•

n) ,Rk
)
≤ dH

(
Sk (K•

n) ,Rk
n

)
+ dH

(
Rk
n,Rk

)
≤ 3

n
+ dH

(
Rk
n,Rk

)
.

But since Rk
n ⊂ Rk, Lemma 5.3 tells us that dH

(
Rk
n,Rk

)
tends to 0 as n → ∞, and hence so does

dH
(
Sk (K•

n) ,Rk
)
.

Lemma 5.3 (Uniform approximability of R). For all ε > 0, there is N = N(ε) such that for every
measure κ ∈ R, there is a sequence

(
κn = 1

n2

∑n2

i=1 δ(ai,bi)

)∞
n

of discrete probability measures in Rn

such that
∀n ≥ N(ε) dLP (κ, κn) < ε.

In particular, N does not depend on κ, so since Rn ⊂ R, the lemma implies that dH (R,Rn) ≤ ε
for all n ≥ N(ε).

Proof. We prove the lemma for the case k = 1 only because it greatly eases the notation while already
containing all the relevant ideas, which is, in essence, due to the fact that we are dealing with nearly
transitive graphs.

Let ε > 0 be fixed. We will show that the lemma holds with N(ε) = 54

ε4
. Throughout, we will work

with the Wasserstein distance instead of the Lévy-Prokhorov distance because the former one lends
itself to easily obtaining upper bounds on it by constructing concrete transport plans. In particular,
given κ ∈ R and n ≥ N(ε), we will produce a measure κn ∈ Rn whose construction is geared towards
quickly getting ε2 as an upper bound on dW1 (κ, κn). Then since dLP (µ, ν)2 ≤ dW1(µ, ν) for all measures
µ, ν ∈ P ([−1, 1]× [−2, 2]), the statement of the lemma follows.
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Let κ and µ be fixed, where κ ∈ R and the y-marginal κy of κ is the law of X + Y for X,Y iid∼ µ.
Let us suppose that the cumulative density function Fκ : (−∞, 1]× (−∞, 2] → [0, 1] is continuous and
further also that the values

hi := sup

{
a ∈ [−1, 1] : µ ((−∞, a]) <

i

n

}

= inf

{
b ∈ [−1, 1] : µ ((−∞, b]) ≥ i

n

}

=sup

{
a ∈ [−1, 1] : κ ([−1, 1]× (−∞, a]) <

i

n

}
, i ∈ [n]

are such that hi + hj = hk + hℓ only if {i, j} = {k, ℓ}. We will denote by v1 < v2 < · · · < v(n2)+n
≤ 2

the values in {hi + hj : i, j ∈ [n]}, so that the κn = 1
n2

∑
i,j δ(wi,j ,hi+hj) we are trying to obtain is of the

form κn = 1
n2

∑
k∈O δ(wk,vk) +

2
n2

∑
k∈T δ(wk,vk), where O, T is the partition

O := {k : vk = hi + hi for some i ∈ [n]}
T := {k : vk = hi + hj for some i ̸= j ∈ [n]}

of
[(
n
2

)
+ n

]
. Let now µn be the discrete measure 1

n

∑n
i=1 δhi and let Xn, Yn

iid∼ µn.
For all v ∈ R, we have that

P (Xn + Yn ≤ v) =
∑

i,j∈[n]
hi+hj≤v

P (Xn ∈ (hi−1, hi]) · P (Yn ∈ (hj−1, hj ])

=
∑

i,j∈[n]
hi+hj≤v

P (X ∈ (hi−1, hi]) · P (Y ∈ (hj−1, hj ]) ≤ P (X + Y ≤ v)

and
P (X + Y ≤ v)− 2n− 1

n2
≤ P (Xn + Yn ≤ v) .

In particular, for all u < v ∈ R,

P (Xn + Yn ∈ (u, v]) = P (Xn + Yn ≤ v)− P (Xn + Yn ≤ u)

≥ P (X + Y ≤ v)− 2n− 1

n2
− P (X + Y ≤ u)

= P (X + Y ∈ (u, v])− 2

n
+

1

n2
.

Let us observe that for all i ∈
[(
n
2

)
+ n

]
, P (Xn + Yn ∈ (vi−1, vi]) is equal to 1

n2 or 2
n2 , and the first value

occurs for n indices i, while the second for
(
n
2

)
indices i.

Now we want to set up roughly
√
n intervals Jℓ and then roughly

√
n intervals Iℓ,k for every ℓ,

dividing [−1, 1]× [−2, 2] into roughly n rectangles Iℓ,k × Jℓ such that κ (Iℓ,k × Jℓ) =
1
n for most ℓ, k.

In particular, we let

J1 := [−2, u1] ,

Jℓ := (uℓ−1, uℓ] , for ℓ = 2, . . . ,
⌊√

n
⌋
,
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where u1 < · · · < u⌊√n⌋ = 2 are chosen so that

κ ([−1, 1]× Jℓ) = P (X + Y ∈ Jℓ) =
1√
n

for all ℓ <
⌊√

n
⌋
.

Now that we spliced [−2, 2] up into ⌊√n⌋ intervals Jℓ, we want to further splice the rectangles
[−1, 1]× Jℓ into Iℓ,k × Jℓ so that also these rectangles have roughly the same measure.

For each ℓ ∈ [⌊√n⌋], let

wℓ,k := sup

{
a ∈ [−1, 1] : κ ([−1, a]× Jℓ) <

k

n

}
, k ∈

[⌊√
n
⌋
− 1
]
,

wℓ,⌊√n⌋ := 1,

and let us set

Iℓ,1 := [−1, wℓ,1]

Iℓ,k := (wℓ,k−1, wℓ,k], for k = 2, . . . ,
⌊√

n
⌋
.

Then κ (Iℓ,k × Jℓ) =
1
n for every ℓ ∈ [⌊√n⌋] and k ∈ [⌊√n⌋ − 1].

Having obtained the partition Iℓ,k × Jℓ, ℓ, k ∈ [⌊√n⌋] of [−1, 1]× [−2, 2] into ⌊√n⌋2 rectangles most
of which have κ-measure 1

n , we define κn to be

κn =
1

n2

∑

i,j

δ(wℓ(i,j),k(i,j),hi+hj),

where ℓ(i, j) is the least integer ℓ such that hi + hj ≤ uℓ and k(i, j) is the greatest integer k ∈ [⌊√n⌋]
such that

k − 1

n
< P

(
Xn + Yn ∈

(
uℓ(i,j)−1, hi + hj

])
,

where u0 := −2.
The measure κn then satisfies that

κn (Iℓ,k × Jℓ) ∈
{
1

n
− 1

n2
,
1

n
,
1

n
+

1

n2

}
for all ℓ ∈

[⌊√
n
⌋]
, k ∈

[⌊√
n
⌋
− 2
]
.

This is because for all ℓ, k,

κn ([−1, wℓ,k]× Jℓ) = κn
(
[−1, wℓ,k]×

(
uℓ−1, vm(ℓ,k)

])

= κn
(
[−1, 1]×

(
uℓ−1, vm(ℓ,k)

])

= P
(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k)

])
,

where vm(ℓ,k) is the largest hi + hj with ℓ(i, j) = ℓ, k(i, j) ≤ k. But we also have that for all ℓ ∈ [⌊√n⌋],

P (Xn + Yn ∈ Jℓ) ≥ P (X + Y ∈ Jℓ)−
2

n
+

1

n2
≥ 1√

n
− 2

n
+

1

n2
>

⌊√n⌋ − 2

n
,
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(a) To construct κn, we first partition [−1, 1] ×
[−2, 2] to ⌊√n⌋ rectangles Iℓ,k × Jℓ satisfying
κ (Iℓ,k × Jℓ) ≥ 1

n , then we place Dirac masses at
some intersections of the lines y = vj and x = wℓ,k.

(b) After constructing κn, we con-
sider transport plans from κn to
κ which transport 1

n or 1
n − 1

n2 of
mass within the rectangles Iℓ,k × Jℓ,
k ∈ [⌊√n⌋ − 2].

Figure 5: Constructing κn ∈ Rn which is close to a given κ ∈ R

meaning that for all k ∈ [⌊√n⌋ − 1], there exist i, j ∈ [n] such that ℓ(i, j) = ℓ and k(i, j) = k. In
particular, for any k ∈ [⌊√n⌋ − 2], vm(ℓ,k)+1 is still in Jℓ and hence satisfies

P
(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k)

])
≤ k

n
< P

(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k)+1

])
.

Since the increment
(
vm(ℓ,k), vm(ℓ,k)+1

]
has probability 1

n2 or 2
n2 under the law of Xn + Yn and because

k
n = kn

n2 , we conclude that P
(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k)

])
= k

n or k
n − 1

n2 . Subsequently,

κn (Iℓ,k × Jℓ) = κn ([−1, wℓ,k]× Jℓ)− κn ([−1, wℓ,k−1]× Jℓ)

= P
(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k)

])
− P

(
Xn + Yn ∈

(
uℓ−1, vm(ℓ,k−1)

])

is equal to one of 1
n − 1

n2 ,
1
n ,

1
n + 1

n2 .
In the last step, we construct a transport plan from κn to κ which is good enough to witness our

desired inequality.
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We first observe that

κn


[−1, 1]× [−2, 2]

∖ ⌊√n⌋⋃

ℓ=1

⌊√n⌋−2⋃

k=1

Iℓ,k × Jℓ


 = 1−

⌊√n⌋∑

ℓ=1

⌊√n⌋−2∑

k=1

κn (Iℓ,k × Jℓ)

≤ 1−
⌊√

n
⌋ (⌊√

n
⌋
− 2
)( 1

n
− 1

n2

)

< 1−
(√
n− 1

) (√
n− 3

)( 1

n
− 1

n2

)

=
4√
n
− 2n+ 4

√
n− 3

n2
<

4√
n

and hence the cost of any plan which transports as much mass within Iℓ,k × Jℓ for each ℓ ∈ [⌊√n⌋] , k ∈
[⌊√n⌋ − 2] as possible is bounded above by

∑

ℓ,k

cost of transport within Iℓ,k × Jℓ +
∑

ℓ,k

cost of transport from Iℓ,k × Jℓ outside

<

⌊√n⌋∑

ℓ=1

⌊√n⌋−2∑

k=1

1

n

√
|Iℓ,k|2 + |Jℓ|2 +

⌊√n⌋∑

ℓ=1

⌊√n⌋−2∑

k=1

1

n2

√
22 + 42 +

4√
n

√
22 + 42

≤ 1

n

⌊√n⌋∑

ℓ=1

⌊√n⌋−2∑

k=1

(|Iℓ,k|+ |Jℓ|) +
⌊√

n
⌋ (⌊√

n
⌋
− 2
) √20

n2
+

4
√
20√
n

≤ 1

n

⌊√n⌋∑

ℓ=1

(
2 +

(⌊√
n
⌋
− 2
)
|Jℓ|
)
+
√
n
(√
n− 2

) √20

n2
+

4
√
20√
n

≤ 2 ⌊√n⌋
n

+
⌊√n⌋ − 2

n
· 4 + (

√
n− 2)

√
20

n
√
n

+
8
√
5√
n

≤ 6 + 8
√
5√

n
+

(
2
√
5− 8

)√
n− 4

√
5

n
√
n

<
6 + 8

√
5√

n
.

For κ ∈ R with continuous cdf Fκ and such that the values hi + hj , i, j ∈ [n] are distinct, we just
constructed κn ∈ Rn satisfying dW1 (κ, κn) <

6+8
√
5√

n
. But for any κ ∈ R, there are elements in R

arbitrarily close to κ possessing these desired properties. In particular, there exists κ′ ∈ R as above and
with dW1 (κ, κ

′) ≤ 1√
n
. Then the triangle inequality gives us that

dW1

(
κ, κ′n

)
≤ dW1

(
κ, κ′

)
+ dW1

(
κ′, κ′n

)
<

1√
n
+

6 + 8
√
5√

n
<

25√
n
.

Then
dLP

(
κ, κ′n

)
≤
√
dW1 (κ, κ

′
n) <

5

n1/4
,

which is bounded above by ε whenever n ≥ 54

ε4
.
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Proof of Theorem 5.1. For any probability space (Ω, µ) and any µ2-ultrafilter-valued random variable
U on (Ω, µ), the k-profiles of A satisfy Sk(A) ⊆ Rk by virtue of (Ω× Ω, µ× µ) being a product space
and hence the two summands ϕU (f) being distributed identically and independently of one another for
every f ∈ L∞(Ω× Ω, µ× µ).

Now we will construct a λ2-ultrafilter-valued random variable U which also ensures Rk ⊆ Sk(A). To
start with, let, for every a ∈ [0, 1), Fa be the λ-filter

Fa := {[a, a+ ε] ∪B : ε ∈ (0, 1− a), B ∈ B([0, 1])} .

We note that for any a, b ∈ [0, 1), the λ-filters Fa,Fb are mutual shifts. That is, the bijection

σb−a : B ([0, 1)) −→ B ([0, 1))

B 7→ {x+ b− a (mod 1) : x ∈ B}

sends Fa to Fb.
Let now V0 be a fixed λ-ultrafilter extending F0. Then for every a ∈ [0, 1), the shift Va := σa (V0) is

a λ-ultrafilter extending Fa.
Similarly, we can now construct λ2-filters

Ga :=
{
(V × [0, ε]) ∪B : V ∈ Va, ε ∈ (0, 1), B ∈ B

(
[0, 1)2

)}

and fix a λ2-ultrafilter U0 extending G0. As before, Ga, Gb are related by the shift σb−a, where now this
is understood to be the map

σb−a : B([0, 1)2) −→ B([0, 1)2)
B 7→ {(x+ b− a (mod 1), y) : (x, y) ∈ B} ,

and we define Ua to be σa (U0). Then we claim that setting

U : ([0, 1), λ) −→ λ2-ultrafilters
x 7→ Ux

meets our requirements.
Let κ ∈ Rk be given. Then we want to find [−1, 1]-valued functions f in ∈ L∞([0, 1), λ) such that

DA

(
f1n, . . . , f

k
n

) dLP−−→ κ as n→ ∞. By definition of Rk, there are measurable functions f1, . . . , fk : [0, 1)×
[0, 1) −→ [−1, 1] and g1, . . . , gk : [0, 1) −→ [−1, 1] such that the pushforward F∗(λ× λ) of the measure
λ× λ under the map

F : Ω× Ω −→ [−1, 1]k × [−2, 2]k

(x, y) 7→ (f1(x, y), . . . , fk(x, y), g1(x) + g1(y), . . . , gk(x) + gk(y))

is equal to κ. Now for ε ∈ (0, 1), for every i ∈ [k], we define f εi : Ω× Ω −→ [−1, 1] by

f εi |Ω×[ε,1) = fi|Ω×[ε,1)

and f εi (x, y) = gεi (x) whenever (x, y) ∈ Ω× [0, ε),
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where gεi is a continuous function that will be specified later. Then by construction of U and continuity
of gεi ,

(Af εi ) (x, y) = ϕUx (f
ε
i ) + ϕUy (f

ε
i ) = ϕVx (g

ε
i ) + ϕVy (g

ε
i ) = gεi (x) + gεi (y).

What we would really like to see is this sum being equal to gi(x) + gi(y) because that would exactly
mean that the joint distribution D (Af ε1 , . . . , Af

ε
k) is equal to κ>k as desired. Unfortunately, for k > 1,

we cannot ensure that for every i ∈ [k], gi is discontinuous only on a set of measure 0, which means
that on a set of positive measure, it becomes difficult to control the values ϕVx (gi). This is why
we turn to Lusin’s theorem, by which there are continuous functions gεi : Ω −→ [−1, 1] such that
λ ({ω : gεi (ω) ̸= gi(ω)}) < ε. Then the distributions DA (f ε1 , . . . , f

ε
k) weakly* converge to F∗(λ× λ) = κ

as ε→ 0 because the function F differs from

Fε : Ω× Ω −→ [−1, 1]k × [−2, 2]k

(x, y) 7→ (f ε1 (x, y), . . . , f
ε
k(x, y), g

ε
1(x) + gε1(y), . . . , g

ε
k(x) + gεk(y))

on a set of measure at most ε+ k · (1− (1− ε)2) = ε+ k · (2ε− ε2). But since R2k is separable, we have
that dLP metrizes weak* convergence, and so DA (f ε1 , . . . , f

ε
k)

dLP−−→ κ as we were aiming to show.

6 Two questions

We tried to push the boundaries of Theorem 3.7 and Proposition 1.3, and while we concluded that all
three parts of the latter fail unless uniform boundedness of (p, q)-norms is assumed, we did not find
a Cauchy sequence that would exemplify that the norm requirement could not be dropped from the
statement of Theorem 3.7.

Question 6.1. Let (An)
∞
n be a Cauchy sequence of graphops. Is there always a P -operator A with

limn dM (An, A) = 0?

We have also seen limits of graphop sequences which were not positivity-preserving, yet we were
always able to find a positivity-preserving limit too.

Question 6.2. Let (An)∞n be a graphop sequence which has an action limit A. Is there necessarily an
action limit B of (An)∞n which is positivity-preserving?
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Logarithmic convergence of projective planes

Márton Borbényi, Aranka Hrušková, Ander Lamaison

June 2022

Abstract

In this paper, we study the so-called log-convergence of graphs defined by Balázs Szegedy [4]. We
answer positively his Question 4 whether the sequence of the incidence graphs of projective planes
over finite fields log-converges and whether the limit coincides with that of a particular random graph
model.

1 Introduction

Since its introduction in the 1980s, the theory of graph limits has been applied to numerous problems in
extremal graph theory, and it has been generalized and extended to many different discrete structures.
A particular focus has been placed on dense graph limits: limits of graph sequences in which the edge
density is bounded away from 0. While there has been some success in defining a limit theory in other
particular classes, such as graphs with bounded maximum degree, there is no universally agreed upon
approach toward limits and convergence in the entire sparse regime.

One such approach, called logarithmic convergence, was proposed in 2015 by Balázs Szegedy [4]. This
notion was motivated by Sidorenko’s conjecture [3] in which the central inequality becomes linear after
taking logarithms. For technical reasons, we will restrict ourselves to considering only bipartite graphs,
although Szegedy’s definition applies to general graphs.

We denote by B the set of finite bipartite graphs whose vertex classes are labelled V1 and V2. That is,

B = {G = (V1(G), V2(G), E(G)) : E(G) ⊆ V1(G)× V2(G)} .
A homomorphism between two elements of B is a graph homomorphism which is label-preserving. That
is, we will only count maps φ : H → G which are graph homomorphisms in the classical sense and for
which φ(V1(H)) ⊆ V1(G) and φ(V2(H)) ⊆ V2(G). Subsequently, this gives rise to the definition of the
bipartite density of H ∈ B in G ∈ B as

tB(H,G) :=
hom(H,G)

|V1(G)||V1(H)||V2(G)||V2(H)| .

where hom(H,G) is the number of homomorphisms from H to G.
The quantity tB(H,G) can be interpreted also as the probability that a randomly chosen label-

preserving map V (H) → V (G) is a homomorphism, in which view

d(H,G) := − log tB(H,G)

denotes the Kullback-Leibler divergence of the uniform distribution on homomorphisms with respect to
the uniform measure on all label-preserving maps.
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Definition (log-convergence). Let B0 be the class of graphs of B with at least one edge. We say that a
sequence (Gn)

∞
n of graphs in B0 is log-convergent if, for every pair of graphs H1, H2 ∈ B0, the sequence

− log tB(H1, Gn)

− log tB(H2, Gn)
(1)

has a limit.

This definition can, however, be greatly simplified. Let h(H,G) be the particular ratio

h(H,G) =
d(H,G)

d(K2, G)
=

− log tB(H,G)

− log tB(K2, G)
,

where K2 ∈ B0 is the edge with partition. Then the following lemma tells us that, in a sense, log-
convergence is in fact only concerned with the quantities log tB(H,G) modulo edge density.

Lemma 1 (Lemma 4.2 in [4]). A graph sequence (Gn)
∞
n in B0 is log-convergent if and only if

lim
n→∞

h(H,Gn) = lim
n→∞

− log tB(H,Gn)

− log tB(K2, Gn)

exists for every H ∈ B0. Every graph sequence in B0 has a log-convergent subsequence.

The ratios of the form (1) are not defined when Gn is a complete bipartite graph. In this case, following
the same criterion as Szegedy, we define h(H,G) = |E(H)| for any complete bipartite graph G.

Lemma 1 tells us that the trivial limit object for a log-convergent sequence (Gn)
∞
n is the vector

(limn h(H1, Gn), limn h(H2, Gn), . . . ) ∈ RB0

≥0, where H1, H2, . . . is some fixed enumeration of B0. As of
now, the theory of log-convergence lacks a good analytical or algebraic limit object akin to graphon or
graphing, and so whenever we will be talking about a limit, we will simply mean an element of RB0

≥0.
Hand in hand with any theory of graph convergence goes a random model reflecting its salient features.

When analytical limit objects like graphons are at our disposal, we can typically use them to generate
random graph sequences that almost surely converge to the limit object we started with. While as pointed
out above, we currently do not have such a non-trivial limit, Szegedy introduced a random bipartite model
that satisfies the almost sure convergence and captures a wide array of structural scenarios. As opposed
to the Erdős-Rényi model G(n, p) which has only one parameter determining the asymptotic behaviour,
namely the edge density p, Szegedy’s model requires two parameters: β accounts for the edge density,
and α accounts for the relative sizes of the two vertex classes in the bipartition. This random model
R(n, β, α) will be defined in Section 2. Szegedy proved that, for any fixed choice of the two parameters,
the sequence (R(n, β, α))

∞
n of random bipartite graphs log-converges with probability 1, and gave an

explicit description of the limit R(β, α) ∈ RB0

≥0.
While studying the random model R(n, β, α), Szegedy asked whether the incidence graphs of finite

projective planes are pseudorandom in the log-convergence framework. In particular, let PG(2, q) be the
projective plane over the finite field Fq. Then its incidence graph Gq is the bipartite graph in which
the class V1 is the set of points of PG(2, q), the class V2 is the set of lines of PG(2, q), and an edge is
drawn between a point p and a line ℓ if p ∈ ℓ. Szegedy asked whether the sequence of incidence graphs of
projective planes is log-convergent, when the parameter q ranges over the set of primes. He further asked,
in case the sequence is convergent, whether the limit is R(3/4, 1/2), the same as the limit of a specific
sequence of random bipartite graphs. We answer both questions in the affirmative, even when q is allowed
to be a prime power.
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Theorem 2. The sequence (Gq)
∞
q of incidence graphs of projective planes PG(2, q), where q ranges over

the prime powers, is log-convergent. Moreover, its limit is R(3/4, 1/2).

This statement is remarkable because if we change the definition of tB to count only injective homo-
morphisms rather than all homomorphisms, the incidence graph of the projective plane behaves differently
than the random bipartite graph. We will see some examples of this in the next section.

2 Preliminaries

In this paper, all graphs mentioned belong to B0, and in particular are finite and bipartite. Through the
rest of the paper, inj(H,G) and surj(H,G) denote, respectively, the number of injective homomorphisms
and surjective homomorphisms from H to G (remember that we only count those homomorphisms sending
Vi(H) to Vi(G)).

Earlier, we defined log-convergence in terms of the fraction − log tB(H1,Gn)
− log tB(H2,Gn)

. Lemma 1 says that the

only parameters that we are interested in are the exponents to which we need to raise the edge density in
order to obtain the other densities tB(H,G). This is what allows us to distinguish graphs which, in the
classical definition of convergence, would have as limit the zero graphon. This control over the exponents
of densities is reflected in the following definition of a random bipartite graph model.

Definition (random graph model). Let β ∈ (0, 1] and α ∈ (0, 1) be fixed. We denote by G(n, β, α) the
distribution on bipartite graphs with |V1| = ⌈nα⌉, |V2| = ⌈n1−α⌉ given by including each of the ⌈nα⌉⌈n1−α⌉
possible edges with probability nβ−1, independently of each other.

Szegedy proves in [4] that for every fixed β, α > 0, G(n, β, α) log-converges as n tends to ∞ with
probability 1, and denotes by R(β, α) the collection of the limits limn h (H,G(n, β, α)). ı́The limits
attained for different values of β and α are distinct. Are they?

We now shift our attention to the graph sequence whose log-convergence we wish to prove. Let q
be a (power of a) prime number. As we mentioned earlier, Gq is the incidence graph of the projective
plane PG(2, q). In this graph, both V1(Gq) and V2(Gq) contain q2 + q + 1 vertices, and the graph is
q+1-regular. By looking at the largest order terms, we can see that the graph G(q4, 3/4, 1/2) would have
similar part sizes (q2 each) and expected edge density (E [tB(K2, G)] = q−1) as Gq. Szegedy asks whether
the sequence (Gq)

∞
q is pseudorandom, in particular, whether it converges to R(3/4, 1/2). In the rest of

the paper, we will prove that (Gq)
∞
q converges to R(3/4, 1/2) by showing increasing similarity between

Gq and Rq := G(q4, 3/4, 1/2).
The following definition plays a crucial role in the description of the limit in our main result, as well

as in its proof:

Definition (collapse). A graph H ′ is a collapse1 of a graph H if there is a graph homomorphism φ from
H to H ′ which is both vertex- and edge-surjective. Let C(H) denote the set of collapses of H.

Since we only care about the ratio of logarithms, we are free to choose the base of such logarithm. Given
the parametrization of our graphs, it seems natural to take q as the base of the logarithm, because the
edge density of our graph is (1+o(1))q−1. That means that limq→∞ − logq tB(K2, Gq) = 1, cancelling the
denominator in Lemma 1. In addition, observe that logq tB(H,Gq) = logq hom(H,Gq)− |V (H)| logq(q2 +
q + 1), and so by Lemma 1, to guarantee the log-convergence of (Gq)

∞
q it is enough to verify that

logq hom(H,Gq) has a limit for every H ∈ B0.

1Szegedy uses the term homomorphic image for collapses in [4].
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First we are going to show that, by restricting ourselves to an adequate subsequence of prime powers
q, we can assume that limq→∞ logq inj(H,Gq) and limq→∞ logq hom(H,Gq) exist for all graphs H, where
logq 0 = −∞.

Lemma 3. There exists a sequence of prime powers (qi)
∞
i=1 such that logq inj(H,Gq) and logq hom(H,Gq)

converge on this subsequence for every H ∈ B0. Moreover, if Theorem 2 is false, then such a subsequence
can be taken in a way that limq→∞ logq hom(H,Gq) ̸= limq→∞ logq hom(H,Rq) for at least one H ∈ B0.

Proof. For everyH, we have that inj(H,Gq) and hom(H,Gq) are integers in the interval
[
0, (q2 + q + 1)|V (H)|].

Since q2 + q + 1 < q3 for q ≥ 2, we have that logq inj(H,Gq) and logq hom(H,Gq) both lie on {−∞} ∪
[0, 3|V (H)|]. Therefore, by associating each Gq with its corresponding values of logq inj(H,Gq) and
logq hom(H,Gq), we obtain a sequence (xq)

∞
q in the space

X =
∏

H∈B0

({−∞} ∪ [0, 3v(H)])
2
.

X is the product of countably many sequentially compact spaces, and is therefore sequentially compact.
Hence there exists a subsequence of (xq)

∞
q in which every coordinate converges.

If Theorem 2 is false, then for some H ∈ B0 the sequence
(
logq hom(H,Gq)

)∞
q

does not converge to

limq→∞ logq hom(H,Rq). This means that this sequence must have a different accumulation point. Select
a sequence of prime powers q that tends to this accumulation point, then use the sequential compactness
of X to find a subsequence for which the corresponding points in X converge.

From this point on, when we write (Gq)
∞
q , we assume that the values of q are restricted to the

sequence obtained in Lemma 3. This restriction is necessary: for example G2, which is the incidence
graph of the Fano plane, is a subgraph of Gq if and only if q is a power of 2, meaning that the sequence(
logq inj(G2, Gq)

)∞
q

does not converge when q ranges over all prime powers.

We are going to use the following notation:

î(H) = lim
q→∞

logq inj(H,Gq)

ĥ(H) = lim
q→∞

logq hom(H,Gq)

îR(H) = 2|V (H)| − |E(H)|
ĥR(H) = max

H′∈C(H)
îR(H

′)

Given the notation that we are using, one might expect to find an analogy between î and îR, and
between ĥ and ĥR. Such a relation is not evident at first sight, but it can be found when considering the
graph Rq. A simple first moment calculation reveals that

lim
q→∞

logq E [inj(H,Rq)] = 2|V (H)| − |E(H)| = îR(H).

From there, classifying the homomorphisms from H to Rq by their image produces

lim
q→∞

logq E [hom(H,Rq)] = lim
q→∞

logq
∑

H′∈C(H)

surj(H,H ′)E [inj(H ′, Rq)] = max
H′∈C(H)

îR(H
′) = ĥR(H).
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Szegedy ([4], see Theorem 3) proved a concentration result for the number of homomorphisms in the
random bipartite graph R(n, β, α). His result implies that with probability 1, for every graph H the

number logq hom(H,Rq) converges to ĥ(H).

The next proposition states that it is possible to compute the ĥ of a graph from the î of its collapses,
in the same way as one can compute ĥR from îR.

Proposition 4. For every graph H ∈ B0, we have

ĥ(H) = max
H′∈C(H)

î(H ′).

Proof. Let ϕ be a homomorphism from H to Gq. Its image is a collapse H ′ of H. In fact, ϕ can
be expressed in a unique way as the composition of a surjective homomorphism from H to H ′ and an
injective homomorphism from H ′ to Gq. Recall that surj(H,H ′) denotes the number of label-preserving
surjective homomorphisms from H to H ′. Then

hom(H,Gq) =
∑

H′∈C(H)

surj(H,H ′)inj(H ′, Gq).

Note that

max
H′∈C(H)

î(H ′) = max
H′∈C(H)

lim
q→∞

logq inj(H
′, Gq) = lim

q→∞
logq max

H′∈C(H)
inj(H ′, Gq)

by finiteness of C(H), and thus

logq hom(H,Gq) = logq


 ∑

H′∈C(H)

surj(H,H ′)inj(H ′, Gq)




≤ logq




 ∑

H′∈C(H)

surj(H,H ′)


 max

H′∈C(H)
inj(H ′, Gq)




= logq


 ∑

H′∈C(H)

surj(H,H ′)


+ logq max

H′∈C(H)
inj(H ′, Gq)

→ max
H′∈C(H)

î(H ′) as q → ∞,

and

logq hom(H,Gq) = logq


 ∑

H′∈C(H)

surj(H,H ′)inj(H ′, Gq)




≥ logq max
H′∈C(H)

inj(H ′, Gq)

→ max
H′∈C(H)

î(H ′) as q → ∞,

hence we obtained the desired identity.
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Throughout the paper we will use the following notations for graph operations.

Definition (graph operations). Let G = (V1(G), V2(G), E(G)) ∈ B be a labelled bipartite graph. For any
W ⊆ V1(G) ∪ V2(G) let G −W denote the bipartite graph that we obtain by deleting the vertices of W
and all edges incident to these vertices. Let v, w ∈ Vi(G) be vertices of G for some i ∈ {1, 2}. Let Gv,w

denote the bipartite graph obtained from G by first deleting the vertices v, w (obtaining G − {v, w}) and
then adding a vertex u to Vi(G) which is connected to a vertex x if and only if x was a neighbour of v or
w in G. Do we ever use this?

The wedge sum of two graphs H1 and H2, at vertices v1 ∈ Vi(H1) and v2 ∈ Vi(H2), is obtained by
taking disjoint copies of H1 and H2, and identifying the vertices v1 and v2. The disjoint union of H1 and
H2 connected by an edge at vertices v1 ∈ Vi(H1) and v2 ∈ V3−i(H2) is, as its name indicates, the disjoint
union of H1 and H2 together with an edge between v1 and v2.

Lemma 5. Let k be a nonnegative integer and H ∈ B0. Let us set

injk(H,Gq) := min
v1,...,vk∈V (Gq)

inj(H,Gq − {v1, ..., vk}).

Then for every H ∈ B0 and any nonnegative k,

î(H) = lim
q→∞

logq injk(H,Gq).

Proof. We can assume that the left-hand side is not −∞, because otherwise the lemma is trivial.
Let w ∈ V (H), v ∈ V (Gq). Then the probability that a uniformly randomly chosen injection f takes

w to v is 0 or 1/(q2 + q + 1) by the point/line transitivity of the projective planes. Thus by the union
bound for any A = {v1, ..., vk} ⊂ V (Gq)

P(f(H) ∩A ̸= ∅) ≤ |V (H)|k
q2 + q + 1

= O(q−2).

Hence

logq injk(H,Gq)− logq inj(H,Gq) = logq
injk(H,Gq)

inj(H,Gq)
= logq

[
min
|A|=k

P(f(H) ∩A = ∅)
]
→ 0

as q tends to infinity, so we are done.

Lemma 6. Let H1 and H2 be two labelled bipartite graphs. Let H be obtained from H1 and H2 by taking
either their disjoint union (H1∪̇H2), wedge sum (H1 ∨ H2) or the disjoint union connected by an edge.

Then î(H), îR(H), ĥ(H) and ĥR(H) are as in Table 1, independently of which two vertices are identified
by the wedge or connected by the edge.

Proof. The result is trivial for the quantitites îR and ĥR. For î and ĥ, the first column comes from Lemma
5 because hom(H1∪̇H2, Gq) = hom(H1, Gq)hom(H2, Gq) and

inj(H1, Gq)inj|V (H1)|(H2, q) ≤ inj(H1∪̇H2, Gq) ≤ inj(H1, Gq)inj(H2, Gq).

For the second column, we have hom(H1 ∨ H2, Gq) =
hom(H1,Gq)hom(H2,Gq)

q2+q+1 and inj(H1 ∨ H2, Gq) ≤
inj(H1,Gq)inj(H2,Gq)

q2+q+1 . For the lower bound we need an argument similar to Lemma 5.
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H = H1∪̇H2 H = H1 ∨H2 disjoint union connected by an edge

î(H) î(H1) + î(H2) î(H1) + î(H2)− 2 î(H1) + î(H2)− 1

îR(H) îR(H1) + îR(H2) îR(H1) + îR(H2)− 2 îR(H1) + îR(H2)− 1

ĥ(H) ĥ(H1) + ĥ(H2) ĥ(H1) + ĥ(H2)− 2 ĥ(H1) + ĥ(H2)− 1

ĥR(H) ĥR(H1) + ĥR(H2) ĥR(H1) + ĥR(H2)− 2 ĥR(H1) + ĥR(H2)− 1

Table 1: Results of Lemma 6

We can assume that î(H1), î(H2) ̸= −∞, as otherwise the statement is trivial. Up to a change in
the indices, we can suppose that v1 ∈ V1(H1). Fix a copy of H1 in Gq, and consider the point p which
is the image of v1. Consider the subgroup of automorphisms of PG(2, q) which fixes p. This group is
transitive on the set of points distinct from p, transitive on the set of lines containing p, and transitive
on the set of lines not containing p. Next consider a copy of H2 in Gq for which the image of v2 is p.

By transitivity of Gq, there are exactly
inj(H2,Gq)
q2+q+1 such copies. Now consider the image of H2 under the

automorphism group described above. Given a vertex w1 ∈ V (H1)\{v1} and a vertex w2 ∈ V (H2)\{v2},
the proportion of homomorphisms that send w1 to w2 is at most 1

q+1 . This means that the proportion of

automorphisms of the copy of H2 that intersect non-trivially the fixed copy of H1 is at most O(q−1), and

so inj(H1 ∨H2, Gq) ≥ (1−O(q−1))
inj(H1,Gq)inj(H2,Gq)

q2+q+1 .
Finally, the third column can be obtained from the second, because the disjoint union of H1 and H2

joined by an edge can be written as (H1 ∨K2) ∨H2.

Corollary 7. Let H be a labelled bipartite graph, and let v ∈ V (H).

• If d(v) = 0, then î(H − v) = î(H)− 2.

• If d(v) = 1, then î(H − v) = î(H)− 1.

• If d(v) ≥ 2, then î(H − v) ≥ î(H).

Proof. An isolated vertex has î(K1) = 2. If d(v) = 0, then H is the disjoint union of H − v and K1.
If d(v) = 1, then H is the union of H − v and K1 connected by an edge. If d(v) ≥ 2, then the fact
that any pair of distinct vertices in Gq has at most one common neighbour implies that any injective
homomorphism from H − v to Gq extends in at most one way to H, so

î(H) = lim
q→∞

logq inj(H,Gq) ≤ lim
q→∞

logq inj(H − v,Gq) = î(H − v).

Finally, we will need the following lemma. It seems out of place right now, but it will be used in the
final steps of the proof of Theorem 2, in which 2-connectivity is important.

Lemma 8. Let G be a 2-connected graph with δ(G) ≥ 3. Then there is an edge e ∈ E(G) such that the
graph G− {e} obtained by removing e from G is still 2-connected.
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Proof. By the main theorem of [1], there is a vertex v ∈ V (G) such that G−v is still 2-connected. Suppose
u1, . . . , udeg(v) ∈ V (G) were the neighbours of v. Then adding a vertex w to G − v and connecting it
to u2, . . . , udeg(v) is adding a vertex of degree at least 2 to a 2-connected graph, so the resulting graph
G− v+w is still 2-connected. But G− v+w is isomorphic to G−{u1v}, so u1v is an edge whose removal
preserves 2-connectivity.

Before starting with the proof of our main theorem, let us rephrase it using the notation that we have
introduced. The following statement is, using Lemma 3, equivalent to Theorem 2.

Theorem 9. For every bipartite graph H we have ĥ(H) = ĥR(H).

If instead of homomorphisms we only count injective homomorphisms, we can see that the graphs Gq

and Rq behave differently. An obvious example is C4: in a projective plane, every pair of lines intersects

in exactly one point, so î(C4) = −∞, while we have îR(C4) = 4. On the other hand, there are examples
in which î(H) > îR(H), i.e., the graph appears more often in Gq than in Rq. Such examples include
the incidence graphs of the point-line arrangements corresponding to Pappus’s theorem (denoted by P̄ )
and Desargues’s theorem (denoted by D̄). These graphs satisfy îR(P̄ ) = 9, î(P̄ ) = 10, îR(D̄) = 10 and
î(D̄) = 11.

Figure 1: Point-line arrangements corresponding to Pappus’s theorem (left) and Desargues’s theorem
(right).

The reason why these differences between Gq and Rq do not immediately disprove Theorem 2 is that
a significant proportion of the homomorphisms from the graphs described above to Gq and Rq are not

injective. By Proposition 4 and the definition of ĥR, in order to determine the values of ĥ and ĥR of a
graph H one needs to consider the values of î and îR not just for H itself, but also for its collapses. In
these cases, there are collapses for which the values of î and îR are greater than or equal to those of H.
Indeed, consider the star K1,t which has î(K1,t) = îR(K1,t) = t + 2. Observe that K1,2 is a collapse of
C4, K1,9 is a collapse of P̄ , and K1,10 is a collapse of D̄, each obtained by mapping all vertices of one side
of the bipartition to the center of the star.

3 Proof of Theorem 9

We mentioned in the previous paragraph how, for some graphs H, a constant proportion of homomor-
phisms from H to Gq and Rq are not injective. We will establish a definition for the opposite case, that
is, when almost all homomorphisms are injective. This definition will play a crucial role in the proof of
our main theorem:
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Definition. A graph H is critical in (Gq)
∞
q if î(H) > î(H ′) for all proper collapses H ′ of H. Analogously,

H is critical in (Rq)
∞
q if îR(H) > îR(H

′) for all proper collapses H ′ of H.

The following proposition, which will be the main part of our proof, implies Theorem 9:

Proposition 10. Suppose that a graph H ∈ B0 satisfies î(H) ̸= îR(H). Then H is not critical in (Gq)
∞
q

nor in (Rq)
∞
q .

Proof of Theorem 9. Suppose that the theorem is not true. Let H be a graph with ĥ(H) ̸= ĥR(H).

Suppose that ĥ(H) > ĥR(H) (the other case is analogous). By Proposition 4, there exists at least one

collapse H ′ of H which satisfies î(H ′) = ĥ(H). Out of those, select one that minimizes |V (H ′)|. Since
the collapse relation is transitive, every collapse H ′′ of H ′ satisfies î(H ′′) < î(H ′), as H ′′ is a collapse
of H smaller than H ′. This means that H ′ is critical in (Gq)

∞
q , and so by Proposition 10 we have

îR(H
′) = î(H ′). But again by Proposition 4 we have ĥR(H) ≥ îR(H

′) = î(H ′) = ĥ(H), yielding the
desired contradiction.

This is not a big improvement because proving Proposition 10 is essentially as hard as proving Theo-
rem 9. The main difference between the two is that Proposition 10 is written in a form that lends itself
to be proved using induction. In general, it will be easier to relate the values of î(H) and îR(H) to those

of the subgraphs of H than the values of ĥ(H) and ĥR(H).

Proof of Proposition 10. Suppose the statement is not true and let H be a minimal counterexample (min-
imal with respect to number of vertices). We will do a thorough case analysis to show that H cannot
exist.

We start by observing that H must be connected. Indeed, if H is not connected then it is the disjoint
union of two non-empty graphs H1, H2. Then by Lemma 6, we know that î(H1) + î(H2) = î(H) and
îR(H1) + îR(H2) = îR(H). Thus we can assume that î(H1) ̸= îR(H1). By minimality of H, we have
that H1 is not critical in (Gq)

∞
q nor in (Rq)

∞
q . There exist proper collapses H ′

1 and H ′′
1 of H1 such that

î(H ′
1) ≥ î(H1) and îR(H

′′
1 ) ≥ îR(H1). But then again by Lemma 6, we obtain î(H ′

1 ∪ H2) ≥ î(H) and
îR(H

′′
1 ∪H2) ≥ îR(H). Since H ′

1 ∪H2 and H ′′
1 ∪H2 are proper collapses of H, we conclude that H is not

critical in (Rq)
∞
q or (Gq)

∞
q , proving that H is not a counterexample in the first place.

Next we consider different cases depending on the minimum degree of H:
Case 0: δ(H) = 0. H is in B0, and so it cannot be an isolated vertex. But H must be connected, so

we must conclude that δ(H) = 0 cannot happen.

Case 1: δ(H) = 1. Let v be a vertex in H of degree 1. Then Lemma 6 tells us that

î(H) = î(H − v) + 1.

On the other hand, the definition of îR says that

îR(H−v) = 2|V (H−v)|−|E(H−v)| = 2(|V (H)|−1)− (|E(H)−1) = 2|V (H)|−|E(H)|−1 = îR(H)−1.

Since H is a counterexample, we must have î(H) ̸= îR(H), and in particular by the two equations above,

î(H − v) = î(H)− 1 ̸= îR(H)− 1 = îR(H − v).

But H was a minimal counterexample, so H − v is not a counterexample, and hence it cannot be critical
in (Gq)

∞
q nor in (Rq)

∞
q . In particular, H − v not being critical in (Gq)

∞
q tells us that there is a proper
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collapse (H− v)′ of H− v satisfying î(H− v) ≤ î((H− v)′). Let +v denote the operation of attaching the
previously deleted vertex back to (the node representing) the original neighbour of v. With this notation,
H − v + v = H, and (H − v)′ + v is a proper collapse of H. Then

î(H − v) ≤ î((H − v)′)

î(H) = î(H − v) + 1 ≤ î((H − v)′) + 1 = î((H − v)′ + v)

meaning that H is not critical in (Gq)
∞
q .

H − v is also not critical in (Rq)
∞
q , and so there is some proper collapse (H − v)′′ of H − v satisfying

îR(H − v) ≤ îR((H − v)′′), which implies that

îR(H) = îR(H − v) + 1 ≤ îR((H − v)′′) + 1 = 2|V ((H − v)′′)| − |E((H − v)′′)|+ 1

= 2(|V ((H − v)′′ + v)| − 1)− (|E((H − v)′′ + v)| − 1) + 1

= 2|V ((H − v)′′ + v)| − |E((H − v)′′ + v)| = îR ((H − v)′′ + v) .

But this means that H is not critical in (Rq)
∞
q either, so in particular it is, after all, not a counterexample

to the proposition.

Case 2: δ(H) = 2. Let v be a vertex in H of degree 2.
Case 2.1: H is critical in (Gq)

∞
q . Then

ĥ(H) = î(H) ≤ î(H − v) (2)

by Proposition 4 and Corollary 7. Now we consider two cases depending on whether H − v is critical in
(Gq)

∞
q or not.

Case 2.1.1: H − v is not critical in (Gq)
∞
q . Then there exists a proper collapse H ′

of H − v such that î(H ′) ≥ î(H − v) and moreover, we can choose it in such a way that the collapse itself
is critical in (Gq)

∞
q .

By definition of collapse, H ′ is the image of H − v after a homomorphism. Let x and y be the
neighbours of v in H, and let x′ and y′ be their images in H ′ (potentially we have x′ = y′). Construct a
graph H ′ + w by adding a new vertex w, and attaching it to x′ and y′. Then H ′ + w is a collapse of H,
obtained by extending the homomorphism H − v → H ′ to map v to w.

Then

ĥ(H ′ + w) ≥ ĥ(H ′) ≥ î(H ′) ≥ î(H − v) ≥ ĥ(H),

contradicting the criticality of H in (Gq)
∞
q .

Case 2.1.2: H − v is critical in (Gq)
∞
q . Since H is a minimal counterexample to the

proposition, we know that H − v being critical in (Gq)
∞
q must mean that

î(H − v) = îR(H − v).

ĥR(H) ≥ ĥR(H − v) ≥ îR(H − v) = î(H − v) ≥ ĥ(H).

Consider H ′ ∈ C(H) such that H ′ is critical in (Rq)
∞
q and

ĥR(H) = ĥR(H
′) = îR(H

′).
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If H is not critical in (Rq)
∞
q (thus H ′ ̸= H), by minimality of H

îR(H
′) = î(H ′) ≤ ĥ(H ′) < ĥ(H),

and hence
ĥR(H) < ĥ(H),

which is a contradiction. If H is critical in (Rq)
∞
q (thus H = H ′)

ĥR(H) = îR(H) = îR(H − v)

îR(H − v) = îR(H) ̸= î(H) = î(H − v).

which produces a contradiction.
Case 2.2: H is critical in (Rq)

∞
q , but not in (Gq)

∞
q . Then

ĥR(H) = îR(H) = îR(H − v).

Consider H ′ ∈ C(H), such that H ′ is critical in (Gq)
∞
q . Then by the minimality of H

ĥ(H) = ĥ(H ′) = î(H ′) = îR(H
′) < îR(H).

Now we consider two cases depending on whether î(H − v) = îR(H − v) or not.
Case 2.2.1: î(H − v) ̸= îR(H − v). In this case H − v is not critical in (Rq)

∞
q . Thus

there exists a collapse H ′′ ∈ C(H − v) such that

îR(H
′′) ≥ îR(H − v).

It is then possible to add a vertex w with deg(w) ≤ 2, such that H ′′ + w ∈ C(H), i.e. is a collapse of H
(see Case 2.1.1). Then

îR(H
′′ + w) ≥ îR(H

′′) ≥ îR(H − v) = îR(H),

contradicting the criticality of H.
Case 2.2.2: î(H − v) = îR(H − v). First observe that

î(H − v) = max
u∈Vv(H)

{
î(H), î(Hv,u)

}
,

where Vv(H) is the bipartition class of H containing v, and we get Hv,u from H by collapsing vertices

v and u together. Since î(H − v) = îR(H − v) = îR(H) ̸= î(H), the maximum is not attained at î(H).
Select a vertex u for which the maximum holds.

Note that
î(Hv,u) = î(H − v) = îR(H − v) = îR(H) ̸= îR(Hv,u),

hence Hv,u is not critical. Thus there exists H ′
v,u ∈ C(Hv,u) such that H ′

v,u is critical in (Gq)
∞
q .

îR(H
′
v,u) = î(H ′

v,u) ≥ î(Hv,u) = îR(H),

contradicting the criticality of H in (Rq)
∞
q .
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Case 3: δ(H) ≥ 3.
Case 3.1: H is not 2-connected. In this case H has either at least two connected components,

or a cut-vertex. In either case, the graph H can be expressed as the disjoint union or the wedge sum
of two graphs H1 and H2, each with fewer vertices than H. By Lemma 6, if î(H) ̸= îR(H) then either
î(H1) ̸= îR(H1) or î(H2) ̸= îR(H2). Without loss of generality assume the former.

By the induction hypothesis, H1 is not critical in (Gq)
∞
q nor in (Rq)

∞
q . This means that there exist

graphsH ′
1 andH

′′
2 which are proper collapses ofH1 and which satisfy î(H1) = î(H ′

1) and îR(H1) = îR(H
′′
1 ).

If H is the disjoint union of H1 and H2, let H
′ be the disjoint union of H ′

1 and H2. Otherwise, let v1 and
v2 be the vertex at which H1 and H2 are joined to form H. Let H ′ be formed by taking the wedge sum
of H ′

1 at the homomorphic image of v1 in H ′
1, and of H2 at v2. Define H ′′ analogously. These two graphs

are proper collapses of H and, by Lemma 6, we have î(H) = î(H ′) and îR(H) = îR(H
′′), thus H is not

critical in (Gq)
∞
q nor in (Rq)

∞
q , so H is not a counterexample to our statement.

Case 3.2: H is 2-connected. In this case, by Lemma 13(a), we have î(H) ≤ |V (H)|
2 + 1. Let

V (H) = X ∪ Y be the bipartition of H. Assume without loss of generality that |X| ≥ |Y |. Then
î(H) ≤ |X|+ 1.

The star K1,|X| is a proper collapse of H, obtained by mapping all vertices of Y into the center of

the star and all vertices of X into the leaves. We also have that î(K1,|X|) = |X| + 2 > î(H), since

it can be obtained from a single vertex by repeatedly attaching leaves, each of which increases î by 1
by Proposition 6. We deduce that H is not critical in (Gq)

∞
q . It is also not critical in (Rq)

∞
q , since

îR(H) = 2|V (H)| − |E(H)| ≤ |V (H)|
2 ≤ |X| < î(K1,|X|). Hence H cannot be a counterexample to our

statement.

We have now reduced our problem to proving that î(H) ≤ |V (H)|
2 + 1 for 2-connected graphs with

δ(H) ≥ 3. This is a substantial step down from our main theorem. Unfortunately this statement by itself
is not easy to prove by induction, so just like in Proposition 10, we will use induction on a more general
statement. In order to state it properly, we will need to define some concepts related to connectivity:

Definition. Let H be a graph. A bridge is an edge e = uv satisfying that, in the graph H−e, the vertices
u and v lie in different components.

Definition. Let H be a graph. A block of H is an induced subgraph B ⊆ H which is maximally 2-
connected (that is, it is not a proper superset of another induced 2-connected subgraph of H) and it is
not a bridge. This definition differs slightly from the more traditional definition, in which bridges are not
excluded.

This redefinition of block means that several classical results about them need to be rephrased. For
example, every edge which is not a bridge is contained in exactly one block. Another result that can be
rephrased is the existence of the block-cut tree:

Lemma 11 ([2], Chapter 4). Let H be a connected graph, let S1, S2 and S3 be the sets of its blocks,
bridges and cut vertices, resectively. Construct a graph G by taking S1 ∪ S2 ∪ S3 as the vertex set, and
connecting each cut vertex to every block and every bridge that contain that vertex. Then G is a tree.

Definition. Let H be a graph. A block B of H is a pseudoleaf if B there is at most one vertex v in B
which has edges to vertices outside of S. If such a vertex exists, we call it the linking vertex of B.

Corollary 12. A graph H with δ(H) ≥ 3 and which contains a bridge has at least two pseudoleaves.
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Proof. We can assume that H is connected, otherwise restrict to the component of H that contains the
bridge. In the block-cut tree T of H, consider a leaf v. This leaf does not correspond to a cut-vertex of
F , since a cut-vertex is incident to at least two blocks or bridges (since it separates them). v cannot be
a bridge either, since both endpoints of a bridge are cut vertices. v must therefore be a block, which is
incident to at most one cut vertex. In other words, v correspond to a pseudoleaf. Use the fact that any
tree that is not a single vertex contains at least two leaves to complete the proof.

Lemma 13. (a) Let H be a 2-connected graph with δ(H) ≥ 2, and let v2(H) be the number of vertices

with degree 2. Then î(H) ≤ |V (H)|+max{v2(H),2}
2 .

(b) Let H be a connected graph with δ(H) ≥ 3, and let ℓ(H) be the number of pseudoleaves. Then

î(H) ≤ |V (H)|+max{ℓ(H),2}
2

The statement that we wanted to prove, namely î(H) ≤ |V (H)|
2 + 1 for 2-connected graphs with

δ(H) ≥ 3, is implied by each of a and b.
Before we start the proof, let us briefly discuss the role of max{v2(H), 2} and max{ℓ(H), 2} in

Lemma 13. For the former, let H be a 2-connected subgraph. Suppose that H is an induced sub-
graph of a strictly larger graph H ′ with δ(H ′) ≥ 3, and that H is not a pseudoleaf in H ′. What is the
least possible number of edges in H ′ that go from H to the rest of the graph? There must be at least
two, since H is not a pseudoleaf. And since δ(H ′) ≥ 3, every vertex of degree 2 in H must be incident to
an edge connecting it to H ′ \H, giving a lower bound of max{v2(H), 2}.

Next let H be a connected graph with δ(H) ≥ 3, and suppose that H is an induced subgraph of a
strictly larger 2-connected graph H ′. What is the least possible number of edges in H ′ that go from H
to the rest of the graph? There must be at least two, since H ′ is 2-connected. In addition, if H is not
2-connected and S is a pseudoleaf of H, then there must exist an edge of H ′ that connects S to H ′\H that
does not hit the linking vertex of S. Since every vertex that is not a linking vertex is contained in at most
one pseudoleaf, there are at least ℓ(H) edges from H to H ′ \H, giving a lower bound of max{ℓ(H), 2}.

On the other hand, both maxima are necessary: for example, the incidence graph P of the Pappus
configuration is a 2-connected cubic graph with |V (P )| = 18 and î(P ) = 10.

Proof of Lemma 13. Suppose the statement is not true and let H be a minimal counterexample (minimal
with respect to number of edges this time) to either (a) or (b). We will do a thorough case analysis
to show that H cannot exist. Observe that if H is 2-connected and δ(H) ≥ 3 then both parts of the
statement give the same bound, since v2(H) = 0 and ℓ(H) = 1.

Case 1: δ(H) = 2. We produce a graph sequence H0, H1, H2, . . . as follows: we start with H0 = H.
Given Hi, if it contains at least one vertex with degree at most 2, choose one of them as vi and set
Hi+1 = Hi − vi. Otherwise we stop the sequence. The last term of the sequence Hk is either empty or
satisfies δ(Hk) ≥ 3. Note that since δ(H) = 2 we have k > 0.

Let W1,W2, . . . ,Wr be the components of Hk (where we potentially have r = 0). By Lemma 6, and

by induction, we have î(Hk) =
∑r

i=1 î(Wi) ≤
∑r

i=1
|V (Wi)|+max{ℓ(Wi),2}

2 . Since vi has degree at most 2 in

Hi, by Corollary 7 we have î(Hi) ≤ î(Hi+1) + 2 − d(vi). This means that î(Hi) + 2|V (Hi)| − |E(Hi)| is
non-decreasing on i. Thus, comparing this value at i = 0 and i = k:

î(H) ≤ î(Hk) + 2k − |E(H) \ E(Hk)|.
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Let us estimate the value of |E(H)\E(Hk)|. Consider the graphW0 formed by the edges in E(H)\E(Hk).
As pointed out before the start of the proof of Lemma 13, the vertices on each Wi are incident to at least
max{ℓ(Wi), 2} edges in W0. On the other hand, since all but v2(H) vertices in {v0, v1, . . . , vk−1} have
degree at least 3 in H (and the remaining vertices have degree 2), the sum of their degrees inW0 is at least

3k − v2(H). Adding the degrees of all vertices, we have that |E(W0)| ≥ 3k−v2(H)
2 +

∑r
i=1

max{ℓ(Wi),2}
2 .

We conclude that

î(H) ≤î(Hk) + 2k − |E(H) \ E(Hk)|

≤
r∑

i=1

|V (Wi)|+max{ℓ(Wi), 2}
2

+ 2k − 3k − v2(H)

2
−

r∑

i=1

max{ℓ(Wi), 2}
2

=
k + v2(H)

2
+

r∑

i=1

|V (Wi)|
2

≤ |V (H)|+max{v2(H), 2}
2

,

as we wanted to prove. Hence H is not a counterexample to the lemma.
Case 2: δ(H) ≥ 3, H is 2-connected. By Lemma 8 we can remove an e edge 2-connected graph.

The number injections could not decrease as we romve e, the number of vertices does not change, and
v2(H) = 0, v2(H − e) ≤ 2 thus max{v2(·), 2} does not change. Thus if H is a counterexample, then so is
H − e, which has less number of edges.

Case 3: δ(H) ≥ 3, H is not 2-connected. In this case H has at least one cut-vertex, meaning
that all the blocks of H satisfy part (a). The next lemma in our proof states precisely that in these
circumstances H satisfies (b):

Proposition 14. Let H be a connected graph with δ(H) ≥ 3 which is not 2-connected. If every block Wi

of H satisfies î(Wi) ≤ |V (Wi)|+max{v2(H),2}
2 , then H satisfies î(H) ≤ |V (H)|+max{ℓ(H),2}

2 .

This means that H is not a counterexample to the lemma, completing the proof.

The reason we state Lemma 14 as a standalone proposition is because the induction step here is
incompatible with the one on Lemma 13: on some occasions we will actually want to increase the number
of edges (this will happen when we add bridges between blocks). In order to properly define our induction
we will need the following proposition:

Proposition 15. There exists a function f such that every connected graph H with k blocks and δ(G) ≥ 3
has at most f(k) bridges.

Proof. Consider the block-cut tree T of H (the tree obtained in Lemma 11), and let S1 be the set of
vertices corresponding to blocks of H. Because δ(H) ≥ 3, every leaf of T is a block, and thus T contains
at most k leaves. As a consequence, T contains at most k − 2 vertices of degree at most 3. Denote the
set of these vertices as W .

Consider a bridge uv, and its corresponding vertex z in T . Because δ(H) ≥ 3, each of the vertices u
and v (which are themselves cut vertices) is either contained in a block of H, or it is incident to at least
three bridges, meaining that they are elements of W . In either case, the bridge uv is the unique bridge
separating two elements of S1 ∪W . From this we deduce that H contains at most

(
2k−2

2

)
bridges.

Proof of Proposition 14. Suppose that the statement is not true. Consider a counterexample H that
minimizes the number of blocks, and among those counterexamples, select one that maximizes the number
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of bridges. This is well-defined because by Proposition 15. We will do a thorough case analysis to show
that H cannot exist.

Case 1: H contains a vertex v contained in at least two blocks. We can express the graph
v as the wedge sum of two graphs H1 and H2, each containing at least one of the blocks containing H.
Then î(H) = î(H1) + î(H2)− 2, by Lemma 6. Let v1 and v2 be the vertices of H1 and H2 corresponding
to v, and let H ′ be the union of H1 and H2 connected by the edge v1v2.

By Lemma 6 we have î(H ′) = î(H1) + î(H2) − 1 = î(H) + 1. H ′ contains as many blocks as H, as
many pseudoleaves as H, one more vertex and one more bridge. In addition we have δ(H ′) ≥ 3, since
v1 and v2 have degree at least 2 in the respective graphs because they lie in a block. Thus î(H ′) ≤
|V (H′)|+max{ℓ(H′),2}

2 , and î(H) ≤ |V (H′)|+max{ℓ(H′),2}
2 − 1 < |V (H)|+max{ℓ(H),2}

2 . Thus H cannot be a
counterexample.

Case 2: H contains a vertex v not contained in any block. In this case, every edge incident to
v is a bridge. Let W1,W2, . . . ,Wk be the components of H − v, and observe that k = d(v) ≥ 3. Applying

Lemma 6 repeatedly, we obtained that î(H) = −(k − 2) +
∑k

i=1 î(Wi).
For any 1 ≤ i, j ≤ k, let Wij be the union of Wi and Wj with an edge between the corresponding

neighbours of v. Every pseudoleaf of H is contained in some Wi, and it is a leaf of Wij for all j ̸= i,

which means that ℓ(H) =
∑k

i=1 ℓ(Wi(i+1))/2, where the subindex k + 1 is identified with 1. In addition,

by Lemma 6, and using Corollary 12 we have î(Wi) + î(Wj)− 1 = î(Wij) ≤ |V (Wi)|+|V (Wj)|+ℓ(Wij)
2 , so

î(H) =
k∑

i=1

î(Wi)− k + 2 ≤
k∑

i=1

î(Wi) + î(Wi+1)

2
− k + 2 =

k∑

i=1

î(Wi) + î(Wi+1)− 1

2
− k − 4

2

≤
k∑

i=1

|V (Wi)|+ |V (Wi+1)|+ ℓ(Wi(i+1))

4
− k − 4

2
=

|V (H)| − 1 + ℓ(H)

2
− k − 4

2

≤|V (H)|+ ℓ(H)

2
,

since k ≥ 3. Thus H cannot be a counterexample.
Case 3: Every vertex in H is contained in exactly one block. Let H ′ be the graph obtained

from H by contracting every block of H. Because every vertex is contained in exactly one block of H,
the vertices of H ′ are in bijection with the blocks of H. H ′ is connected and acyclic, so it is a tree.

Let B be the set of blocks of H and let B ∈ B. Notice that δ(B) ≥ 2, and any vertex in B with degree
2 must be incident to a bridge in H, so d(vB) ≥ v2(B). In addition, if B is not a pseudoleaf then it must
be incident to at least two bridges, so d(vB) ≥ max{v2(B), 2}. On the other hand, if B is a pseudoleaf
then there is exactly one vertex of B which is incident to a bridge (and thus might have degree 2 in B).
This means that d(vB) ≥ max{v2(B), 2} − 1. All together, that makes

2|B| − 2 = 2e(H ′) =
∑

B∈B
d(vB) ≥ −ℓ(H) +

∑

B∈B
max{v2(B), 2}.

By applying Lemma 6 repeatedly we see that î(H) =
∑

B∈B î(B)− |B|+ 1, as every bridge decreases

î by one. Since each block satisfies î(B) ≤ |V (B)|+max{v2(B),2}
2 , we can put this together:

î(H) ≤
∑

B∈B

|V (B)|+max{v2(B), 2}
2

− |B|+ 1 ≤ |V (H)|+ ℓ(H)

2
.
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Thus H cannot be a counterexample, and the proof is complete.

4 Concluding remarks

In reality we don’t need the fact that these projective planes are field planes. We only need the following
conditions (here Pq is the projective plane, Gq is its incidence graph):

• Pq is isomorphic to its dual.

• Pq is transitive. That is, the automorphism group of Pq is transitive.

• The size of Pq tends to infinity.

This shows how the statement does not care about the prime divisor of the prime power, the proof only
uses the basic geometric properties of the planes.

In the classical notion of graph convergence, the Chung-Graham-Wilson theorem establishes the equiv-
alence of several conditions on graph sequences, which are collectively referred to as “quasirandomness”.
One of those conditions is convergence to the constant graphon, i.e., having the same limit as G(n, p). We
would be interested in finding analogous of some of these conditions. In particular, we would be interested
in two types of conditions:

Question 16. Does there exist a finite family F ⊆ B0, such that for every infinite sequence {Gn}∞n=1 of
graphs in B0, if

lim
n→∞

log hom(H,Gn)

− log tB(K2, Gn)
= ĥR(H)

holds for every H ∈ F , then it also holds for every H ∈ B0?

One of the implications of the Chung-Graham-Wilson theorem is that t(K2, Gn) and t(C4, Gn) are

enough to determine quasirandomness. In particular, if t(K2, Gn) converges and lim
n→∞

− log t(C4,Gn)
− log t(K2,Gn)

= 4,

then {Gn}∞n=1 is quasirandom. Szegedy asked whether a similar limit, with tB replacing t, is enough to
guarantee that the sequence {Gn}∞n=1 converges to a linear combination of certain random graphs.

If this was the case, we could say that the sequence of all incidence graphs of projective planes (not
necessarily standard) is quasirandom. This is because, if G is the incidence graph of a projective plane
of order q (where q might not necessarily be restricted to prime powers), then hom(C4, G) = Θ(q4), with
the image of each homomorphism being either a single edge or a cherry.

Another, more restrictive condition, involves the spectrum of the adjacency matrix of the graphs.
The eigenvalues of the incidence graph of a projective plane depend only on its order q, and can be
computed explicitly. If the log-convergence of a sequence of graphs to the quasirandom limit depends
only on its spectrum, as is the case in the classical notion of convergence, then that would also imply the
log-convergence of all incidence graphs of projective planes.

Question 17. Given an infinite sequence {Gn}∞n=1 of graphs in B0, is it possible to determine whether it
converges to the same limit as {Rn}∞n=1 just by knowing the spectrum of the graphs Gn?

Finally, we return to considering only standard projective planes. As we saw in Section 2, the sequence
logq inj(G2, Gq) does not converge, as it is equal to −∞ when q is an odd prime power and non-negative
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when q is a power of 2. Could something similar happen if q is restricted to only take prime values?
Remember that this restriction was included in Szegedy’s question about log-convergence of projective
planes, even though it turned out to be unnecessary. Could this restriction be enough to guarantee
convergence on the number of injective homomorphisms?

Question 18. If q ranges over the prime numbers, does logq inj(H,Gq) converge for all H ∈ B0?
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Appendix E

Isometric rigidity of Wasserstein

spaces over Euclidean spheres

by György Pál Gehér, Aranka Hrušková, Tamás Titkos, Dániel Virosztek
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ISOMETRIC RIGIDITY OF WASSERSTEIN SPACES OVER

EUCLIDEAN SPHERES

GYÖRGY PÁL GEHÉR, ARANKA HRUŠKOVÁ, TAMÁS TITKOS, AND DÁNIEL VIROSZTEK

Abstract. We study the structure of isometries of the quadratic Wasserstein space
W2

(
Sn, ϱ∥·∥

)
over the sphere endowed with the distance inherited from the norm of Rn+1.

We prove that W2

(
Sn, ϱ∥·∥

)
is isometrically rigid, meaning that its isometry group is iso-

morphic to that of
(
Sn, ϱ∥·∥

)
. This is in striking contrast to the non-rigidity of its ambient

space W2

(
Rn+1, ϱ∥·∥

)
but in line with the rigidity of the geodesic space W2 (Sn,∢). One of

the key steps of the proof is the use of mean squared error functions to mimic displacement
interpolation in W2

(
Sn, ϱ∥·∥

)
. A major difficulty in proving rigidity for quadratic Wasser-

stein spaces is that one cannot use the Wasserstein potential technique. To illustrate its
general power, we use it to prove isometric rigidity of Wp

(
S1, ϱ∥·∥

)
for 1 ≤ p < 2.
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)
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4. Isometric rigidity of W2

(
Sn, ϱ∥·∥

)
— the proof of Theorem 1.1 7
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In recent years, there has been considerable activity in characterising isometries of various
metric spaces of measures. See e.g. [2–4,6,7,9–21,24,27] for results about the total variation,
Lévy, Kuiper, Lévy-Prokhorov, Kolmogorov-Smirnov, and Wasserstein metrics. Among
these, an interesting result is due to Kloeckner. In [18, Theorem 1.1 and Theorem 1.2], he
shows that the quadratic Wasserstein space W2

(
Rn+1, ϱ∥·∥

)
, where ϱ∥·∥(x, y) = ∥x − y∥ is

the metric induced by the norm, exhibits the rare phenomenon of not being isometrically
rigid, meaning that not all isometries of W2

(
Rn+1, ϱ∥·∥

)
are induced by an isometry of(

Rn+1, ϱ∥·∥
)
. In this paper, we consider the metric subspace

(
Sn, ϱ∥·∥

)
of the base space(

Rn+1, ϱ∥·∥
)
and prove that the non-rigidity does not carry over: the exotic isometries

2020 Mathematics Subject Classification. Primary: 54E40; 46E27 Secondary: 60A10; 60B05.
Key words and phrases. Wasserstein space, isometric rigidity.
Gehér was supported by the Leverhulme Trust Early Career Fellowship (ECF-2018-125), and also by

the Hungarian National Research, Development and Innovation Office (Grant no. K115383); Hrušková
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2 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

of W2

(
Rn+1, ϱ∥·∥

)
send measures supported on Sn to measures supported also outside of

Sn, while we gain no new exotic isometries by restricting to this smaller metric space. In
general, when H is an arbitrary Borel subset of Rn+1 then Wp(H, ϱ∥·∥) embeds isometrically

into Wp

(
Rn+1, ϱ∥·∥

)
, but this does not necessarily imply that there exists such a natural

embedding for their isometry groups. To see an example, we mention the case of the real
line (R, | · |) with the subset H = [0, 1] (see [12, Theorem 2.5 and Theorem 3.7] for details):
the isometry group of W1([0, 1], | · |) is the Klein group, which cannot be embedded by a
group homomorphism into the isometry group of W1(R, | · |), which is isomorphic to the
isometry group of the real line.

Finally, we draw attention to Santos-Rodŕıguez’s paper [24] and our recent work [15].
In [24], the author considers (among others) Wasserstein spaces with p > 1 whose underlying
metric space is a rank-one symmetric space, which class contains the sphere Sn with the
spherical distance ∢, while in [15], we considered finite-dimensional tori and spheres with
their geodesic distances for all parameters p ≥ 1. Together, these two papers show that
Wp (Sn,∢) is isometrically rigid for all p ≥ 1. As explained above, in this paper, we replace
the angular distance ∢ with another natural metric: the distance ϱ∥·∥ inherited from the

norm of Rn+1. We focus on the case of p = 2 because this is the only parameter value for
which the ambient space Wp

(
Rn+1, ϱ∥·∥

)
is not rigid. We expect that for p ̸= 2, techniques

similar to the ones used in [14] would lead to a proof of isometric rigidity. The situation
is analogous to the case of the real line and the unit interval: the quadratic Wasserstein
space is not rigid over R but it is rigid over the compact subset [0, 1], see [18, Theorem 1.1]
and [12, Theorem 2.6]. Our main result reads as follows.

Theorem 1.1. For all n ∈ N, the quadratic Wasserstein space W2

(
Sn, ϱ∥·∥

)
is isometrically

rigid. That is, for any isometry Ψ: W2

(
Sn, ϱ∥·∥

)
→ W2

(
Sn, ϱ∥·∥

)
, there exists an isometry

ψ : Sn → Sn such that Ψ = ψ#.

In our recent works [14, 15], recovering measures from their Wasserstein potentials —
see (2.3) for precise definition — turned out to be a powerful method to prove isometric
rigidity. However, this method cannot be used in the case of W2

(
Sn, ϱ∥·∥

)
, as shown by

the following simple example. Let δx denote the Dirac measure concentrated at x ∈ Sn,
let µz := 1

2(δz + δ−z) for z ∈ Sn, and note that for any x ∈ Sn we have d2W2
(µz, δx) =

1
2(∥x−z∥2+∥x+z∥2) = 2 independently of x and z — see (2.1) for the precise definition of
the p-Wasserstein distance dWp . This means that every element of the set {µz | z ∈ Sn} has
the same Wasserstein potential function, and hence potentials do not determine measures
uniquely in general.

Our complimentary result Theorem 3.1 demonstrates sensitivity of the Wasserstein po-
tential method to the parameter value p. Namely, we show that, at least in the special
case of S1, measures are uniquely determined by their potentials if 1 ≤ p < 2, and hence
Wp

(
S1, ϱ||·||

)
is isometrically rigid.

2. The Wasserstein space Wp

(
Sn, ϱ∥·∥

)
and the Wasserstein potential

In this section, we recall all the necessary notions and notations. Let (Y,m) be a complete
and separable metric space, p ≥ 1 a fixed real number, and P(Y ) the set of all Borel
probability measures on Y . The p-Wasserstein space Wp(Y,m), where p ∈ [1,∞), is then
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defined as the set


µ ∈ P(Y )

∣∣∣∣∣∃ŷ ∈ Y :

∫

Y

m(y, ŷ)p dµ(y) <∞





of probability measures endowed with the p-Wasserstein metric

dWp(µ, ν) :=


 inf
π∈Π(µ,ν)

∫∫

Y×Y

m(x, y)p dπ(x, y)




1/p

, (2.1)

where the infimum is taken over the set Π(µ, ν) of all couplings of µ and ν. A Borel
probability measure π on Y × Y is called a coupling of µ and ν if π (A× Y ) = µ(A) and
π (Y ×B) = ν(B) for all Borel sets A,B ⊆ Y . For more details about Wasserstein spaces,
we refer the reader to the comprehensive textbooks [1,8,23,26]. Now we only mention that
optimal couplings always exist, and the infimum in (2.1) becomes minimum [1, Theorem
1.5]. Furthermore, finitely supported measures are dense inWasserstein spaces, see, e.g., [26,
Theorem 6.18].

An isometric embedding between metric spaces (X, d) and (Y,m) is a map ϕ : (X, d) →
(Y,m) which preserves distances, i.e., a map such that d(x, x′) = m (ϕ(x), ϕ(x′)) for all
x, x′ ∈ X. We shall use the term isometry for a surjective isometric embedding from a metric
space onto itself. It is important to note that if (X, d) is a compact metric space then every
isometric embedding ϕ : (X, d) → (X, d) is surjective and hence an isometry [5, Theorem
1.6.14].

For a Borel-measurable map ψ : Y → Y , its push-forward ψ# : Wp(Y,m) → Wp(Y,m)
is defined by

(
ψ#(µ)

)
(A) := µ(ψ−1[A]), where A ⊆ Y is a Borel set and ψ−1[A] =

{x ∈ X |ψ(x) ∈ A}. In particular, when ψ : Y → Y is an isometry then so is ψ# by the
very definition of the Wasserstein distance, giving rise to a canonical embedding of the
isometries of (Y,m) to the isometries of Wp(Y,m).

In this paper, we consider the compact metric space
(
Sn, ϱ∥·∥

)
, where Sn is the unit

sphere of Rn+1

Sn := {x ∈ Rn+1 : ∥x∥ = 1}
and ϱ∥·∥ : Sn × Sn → [0, 2] is the metric inherited from the euclidean norm of Rn+1, i.e.,
ϱ∥·∥(x, y) = ∥x − y∥ for all x, y ∈ Sn. The point −x is called the antipodal of x. Since(
Sn, ϱ∥·∥

)
is bounded, the Wasserstein space Wp

(
Sn, ϱ∥·∥

)
is the entire set P (Sn) endowed

with the distance

dWp(µ, ν) :=


 inf
π∈Π(µ,ν)

∫∫

Sn×Sn

∥x− y∥p dπ(x, y)




1/p

. (2.2)

We write Wp

(
Sn, ϱ∥·∥

)
instead of the usual Wp (Sn) notation to avoid any confusion with

the results in [15,24]. As the Wasserstein distance metrizes the weak convergence of proba-
bility measures over bounded metric spaces (see, e.g., [25, Theorem 7.12]), by Prokhorov’s
theorem,

(
Sn, ϱ∥·∥

)
being compact tells us that Wp(Sn, ϱ∥·∥) is compact too — see also Re-

mark 6.19 in [26]. This implies that every isometric embedding of Wp

(
Sn, ϱ∥·∥

)
into itself

is an isometry.
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4 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

For a measure µ ∈ P (Sn), its support supp(µ) is the set of all points x ∈ Sn for which
every open neighbourhood of x has positive measure. As usual, δx denotes the Dirac mea-
sure supported on the single point x ∈ Sn.

The question arises whether it is possible to identify a measure if we know its distance
from all Dirac measures. (Recall that dWp(δx, δy) = ∥x− y∥ for all x, y ∈ Sn and thus the
set of all Dirac measures is an isometric copy of the underlying metric space.) To answer

this question, we first introduce the notion of Wasserstein potential T (p)
µ . For a given

µ ∈ Wp

(
Sn, ϱ∥·∥

)
, the Wasserstein potential is the function

T (p)
µ : Sn → R; T (p)

µ (x) := dpWp
(δx, µ) =

∫

Sn

∥x− y∥p dµ(y). (2.3)

Now, the question above can be rephrased as follows: does the Wasserstein potential
determine the measure uniquely?

3. Does the Wasserstein potential determine the measure uniquely?

The answer to this question is no, in general. A prominent example is W2

(
Sn, ϱ∥·∥

)

where measures supported on antipodal points with both weights equal to 1
2 have the

same (constant) potential function — see the example in Section 1, after Theorem 1.1.
Beyond this, exotic isometries of W2(R, | · |) (see [18, Section 5.1 and Section 5.2]) are
also counterexamples. For the reader’s convenience, we briefly recall some elements of
Kloeckner’s surprising result. Let us introduce the subsets

∆1(R) := {δx |x ∈ R}, ∆2(R) := {λδx + (1− λ)δy |x, y ∈ R, λ ∈ [0, 1]} (3.1)

of P(R). One can show that if Φ is an isometry of W2(R, | · |), then Φ maps the set ∆2(R)
onto itself. Kloeckner made use of the fact that each element of ∆′

2(R) := ∆2(R) \∆1(R)
can be written uniquely as

µ(m,σ, r) :=
e−r

e−r + er
δm−σer +

er

e−r + er
δm+σe−r , (3.2)

for m, r ∈ R, σ ∈ R\{0} and showed that d2W2

(
µ(m1, σ1, r1), µ(m2, σ2, r2)

)
= |m1−m2|2+

σ21+σ
2
2+2σ1σ2e

−|r1−r2|. This identity implies that the map Φψ : µ(m,σ, r) 7→ µ(m,σ, ψ(r))
is a distance-preserving bijection on ∆′

2(R) for any isometry ψ : R → R. Kloeckner proved
that Φψ can be uniquely extended into an isometry of the whole space W2 (R, | · |), and this

extension, denoted by Φ̃ψ, leaves all Dirac measures fixed. If ψ is not the identity, then

Φ̃ψ ̸= idW2(R,|·|), and therefore we can find a measure µ, such that µ ̸= Φ̃ψ(µ) =: ν. But for
these two measures, we have

T (2)
µ (s) = d2W2

(δs, µ) = d2W2

(
Φ̃ψ(δs), Φ̃ψ(µ)

)
= d2W2

(δs, ν) = T (2)
ν (s) for all s ∈ R.

This shows that indeed, the Wasserstein potential does not always determine the measure
uniquely.

However, we will now prove that it does in the case of S1 ≃ T = {z ∈ C : |z| = 1}
equipped with the distance function r(z, ω) =

∣∣1
2(z − ω)

∣∣ for 1 ≤ p < 2. This normalization
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of the distance is consistent with the one used in [27]. In this section, we assume that
1 ≤ p < 2, and we recall that the p-Wasserstein distance of µ, ν ∈ Wp(T) in this case is

dWp (µ, ν) =


 inf
π∈Π(µ,ν)

∫∫

T×T

∣∣∣∣
1

2
(z − ω)

∣∣∣∣
p

dπ (z, ω)




1/p

,

and therefore for any z ∈ T, the Wasserstein potential is of the form

T (p)
µ (z) = dpWp

(δz, µ) =

∫

T

∣∣∣∣
1

2
(z − ω)

∣∣∣∣
p

dµ (ω) . (3.3)

We showed in [15] that Fourier analytic methods can sometimes solve the problem of
rigidity in a very elegant way. For example, we showed that isometric rigidity of W2(T,∢)
can be proved by using the Fourier transform of the Wasserstein potential, however, the
same method fails in the case W1(T,∢). As we will see, if we endow T with the distance
r(z, ω) =

∣∣1
2(z−ω)

∣∣ then the situation changes: the same method works to prove isometric
rigidity of W1(T, r), but fails in the case W2(T, r).

Now we recall the very basics of Fourier analysis on the abelian group T. The main
reason for doing so is to fix the notation. The continuous characters of T are exactly the
power functions with an integer exponent. That is, if φk(z) = zk for all k ∈ Z and Γ is
the dual group (i.e., the group of all continuous characters), then Γ = {φk : T → C | k ∈ Z},
and Γ ∼= Z. The group T is compact, hence it admits a unique Haar probability measure
λ, which can be expressed explicitly as

dλ (z) =
dz

2πiz
.

The Fourier transform of a (complex-valued) function f ∈ L1 (T, λ) is defined by

f̂(k) =

∫

T

fφkdλ =
1

2πi

∫

T

f(z)z−(k+1)dz (k ∈ Z).

Let us denote the set of all (complex-valued) measures of finite total variation by M (T).
The Fourier transform of µ ∈ M (T) is defined by

µ̂(k) =

∫

T

φndµ =

∫

T

z−k dµ (z) (k ∈ Z).

We note that L1 functions can be naturally identified with absolutely continuous measures
(with respect to the Haar measure), see [22, Subsection 1.3.4.]. The convolution of L1

functions f and g is defined by

(f ∗ g) (z) =
∫

T

f
(
zω−1

)
g(ω) dλ(ω) (3.4)

and the convolution of f ∈ L1 (T, λ) and µ ∈ M(T) is defined by

(f ∗ µ) (z) =
∫

T

f
(
zω−1

)
dµ(ω). (3.5)

It is a key identity that the Fourier transform factorizes the convolution, that is,

f̂ ∗ ν = f̂ · ν̂. (3.6)
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6 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

Now we are ready to state and prove the main result of this section. It says that if
1 ≤ p < 2 then the Wasserstein space Wp(T, r) is isometrically rigid.

Theorem 3.1. Let p ∈ [1, 2) be a real number and let Ψ: Wp (T, r) → Wp (T, r) be an
isometry. Then there exists an isometry ψ : (T, r) → (T, r) such that Ψ = ψ#.

Proof. First observe that the diameter of Wp(T, r) is 1, and dWp(µ, ν) = 1 if and only if
µ = δx and ν = δ−x for some x ∈ T. Since Ψ is an isometry, we have

1 = dWp(δx, δ−x) = dWp (Ψ(δx),Ψ(δ−x)) (3.7)

for all x ∈ T, which implies that Ψ (δx) is a Dirac measure as well.
Let us define the map ψ : T → T via the identity Ψ(δx) = δψ(x) – this means that Ψ

coincides with ψ# on the set of Dirac measures. The map ψ : (T, r) → (T, r) is in fact an
isometry:

r (ψ(x), ψ(y)) = dWp

(
δψ(x), δψ(y)

)
= dWp (Ψ(δx),Ψ(δy)) = dWp (δx, δy) = r(x, y)

for all x, y ∈ T, and (T, r) is compact. These together combine into that
(
ψ−1

)
#
◦Ψ is an

isometry which fixes all Dirac measures. If we now prove that any isometry of Wp(T, r)
which fixes all Dirac measures must be the identity, we are done: in that case,

(
ψ−1

)
#
◦Ψ =

idWp(T,r), i.e., Ψ = ψ# as claimed.
From now on, let us assume that Φ: Wp(T, r) → Wp(T, r) is an isometry such that

Φ(δz) = δz for all z ∈ T. Then we have

T (p)
µ (z) = dpWp

(δz, µ) = dpWp
(Φ(δz),Φ(µ)) = dpWp

(δz,Φ (µ)) = T p
Φ(µ)(z)

for all z ∈ T and µ ∈ Wp (T, r). The question is whether this implies µ = Φ(µ). The
proof will be done once we prove that a measure µ ∈ Wp(T, r) is uniquely determined by
its Wasserstein potential. To this end, assume that µ and ν are two measures such that

T (p)
µ (z) = T p

ν (z) for all z ∈ T. (3.8)

We need to show that (3.8) implies µ = ν. Let us introduce the map

fp(z) :=

∣∣∣∣
1

2
(z − 1)

∣∣∣∣
p

. (3.9)

Then by (3.3) and (3.5) one can observe that T (p)
µ (z) = (fp ∗ µ)(z) holds for all z ∈ T and

µ ∈ Wp(T). Indeed, we have

T (p)
µ (z) = dpWp

(δz, µ) =

∫

T

∣∣∣∣
1

2
(z − ω)

∣∣∣∣
p

dµ (ω)

=

∫

T

∣∣∣∣
1

2

(
zω−1 − 1

)∣∣∣∣
p

dµ (ω) =

∫

T

fp
(
zω−1

)
dµ (ω) = (fp ∗ µ) (z).

(3.10)

The key observation is that the Fourier transform of fp does not vanish anywhere, that is,

f̂p(n) ̸= 0 for all n ∈ Z. For n = 0, we have

f̂p(0) =

∫

T

∣∣∣∣
1

2
(z − 1)

∣∣∣∣
p

dλ(z) > 0,
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while for n ̸= 0, we use that

fp(z) =

(∣∣∣∣
1

2
(z − 1)

∣∣∣∣
2
) p

2

=

(
1

4

(
2− z − z−1

)) p
2

=

(
1− 1

4

(
2 + z + z−1

)) p
2

,

and by the binomial series expansion we get that

fp(z) =

∞∑

k=0

(p
2

k

)(−1

4

(
2 + z + z−1

))k
, (3.11)

where
( p

2
0

)
= 1 and

( p
2
k

)
=

∏k−1
j=0 (

p
2
−j)

k! . Using that the sign of
( p

2
k

)
(−1)k is negative for all

k ≥ 1, equality (3.11) can be written as

fp(z) = 1−
{
p

2
· 2 + z + z−1

4
+

∞∑

k=2

(
p
2

∏k−1
j=1(j − p

2)

k!

(2 + z + z−1

4

)k
)}

. (3.12)

It is a useful feature of the group T that the Fourier series of a function coincides with its
power series. Therefore, the above binomial expansion gives us useful information about
f̂p, namely, f̂p(k) coincides with the coefficient of zk in the expansion (3.11).

Let us note that for n ̸= 0, the coefficient of zn must be strictly negative because the
expressions p

2 , 1−
p
2 , 2−

p
2 , . . . are all positive – here we use the assumption that p < 2. So

we obtained that f̂p(0) > 0 and f̂p(n) < 0 for n ̸= 0 which means that f̂p(n) ̸= 0 for all
n ∈ Z.

By (3.10), the assumption that T (p)
µ (z) = T p

ν (z) for all z ∈ T implies that fp ∗µ = fp ∗ ν.
By (3.6), this means that f̂p · µ̂ = f̂p · ν̂. Since f̂p(n) ̸= 0 for every n, we can deduce that
µ̂ = ν̂, but the Fourier transform completely determines the measure [22, Chapter 1], hence
µ = ν, and the proof is done.

□

4. Isometric rigidity of W2

(
Sn, ϱ∥·∥

)
— the proof of Theorem 1.1

The assumption p < 2 was crucial in the previous section, and therefore the quadratic
case cannot be handled with the same Fourier analytic technique. In this section, we use
a method that allows us to prove isometric rigidity in the quadratic case not only over the
circle but over higher-dimensional spheres too. We start this section with three propositions
which will be utilized later in the proof of Theorem 1.1.

The first proposition, which can be found also in the Appendix of [14] (see the proof of
Lemma 3.13 there), helps us understand how a translation affects the Wasserstein distance.
For µ ∈ P

(
Rn+1

)
and v ∈ Rn+1, the translation of µ by v is the measure (tv)#µ ∈ P

(
Rn+1

)

where tv : Rn+1 → Rn+1, x 7→ x + v is the translation by v. Recall that elements of
W2

(
Sn, ϱ∥·∥

)
can be considered as elements ofW2(Rn+1, ϱ∥·∥) becauseW2(Sn, ϱ∥·∥) naturally

embeds into W2(Rn+1, ϱ∥·∥). The barycenter of µ ∈ W2

(
Sn, ϱ∥·∥

)
is defined to be the point

m(µ) =
∫
Sn x dµ(x) ∈ Rn+1.

Proposition 4.1. Let µ, ν ∈ W2

(
Rn+1

)
and v ∈ Rn+1. Then we have

d2W2
((tv)#µ, ν) = d2W2

(µ, ν) + ⟨v, v + 2m(µ)− 2m(ν)⟩ . (4.1)

In particular, substituting v = m(ν)−m(µ) gives

d2W2
(µ, ν) = d2W2

(
(t−m(µ))#µ, (t−m(ν))#ν

)
+ ∥m(ν)−m(µ)∥2. (4.2)
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8 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

Subsequently, ν is a translated version of µ if and only if dW2(µ, ν) = ∥m(ν)−m(µ)∥.
Proof. For any π ∈ Π(µ, ν) and v ∈ Rn+1, we have (t(v,0))#π ∈ Π((tv)#µ, ν), and vice

versa. (Here, 0 stands for 0 ∈ Rn+1.) Hence

d2W2
((tv)#µ, ν) = inf

π∈Π(µ,ν)

∫∫

Rn+1×Rn+1

∥x− y∥2 d
(
(t(v,0))#π

)
(x, y)

= inf
π∈Π(µ,ν)

∫∫

Rn+1×Rn+1

∥x+ v − y∥2 dπ(x, y)

= inf
π∈Π(µ,ν)

∫∫

Rn+1×Rn+1

(
∥x− y∥2 + ∥v∥2 + 2 ⟨x, v⟩ − 2 ⟨y, v⟩

)
dπ(x, y)

= d2W2
(µ, ν) + ∥v∥2 + 2

∫

Rn+1

⟨x, v⟩ dµ(x)− 2

∫

Rn+1

⟨y, v⟩ dν(y),

which gives (4.1). The identity (4.2) follows if we translate both arguments in the left-hand
side by the vector m(ν). □

In quadratic Wasserstein spaces over uniquely geodesic spaces, the α-weighted mean
squared-error function

ρ 7→ (1− α)d2W2
(µ, ρ) + αd2W2

(ν, ρ)

defined by µ and ν has a unique minimizer — provided that the optimal coupling of µ and
ν is unique — which is the displacement convex combination or displacement interpolation
of µ and ν with weights (1−α) and α [25,26]. Intuitively, this is the measure that we obtain
if we start moving µ to ν according to the optimal transport plan, but stop at proportion
α of the journey. A great challenge concerning

(
Sn, ϱ∥·∥

)
is that it has no geodesics at

all, and hence the quadratic Wasserstein space W2

(
Sn, ϱ∥·∥

)
has no geodesics either. Still,

mean squared-error functions make perfect sense on W2

(
Sn, ϱ∥·∥

)
, they are invariant under

isometries in an appropriate sense, and hence if the measures µ and ν defining them are
fixed by an isometry Φ, then so are the unique minimizers — if they exist. We will prove in
Proposition 4.2 that on

(
Sn, ϱ∥·∥

)
, the minimizer of the α-weighted squared-error function

is the projection of the displacement interpolation onto the sphere. This is similar to how
for a measure µ ∈ P (Sn), its closest Dirac measure supported on a point in Rn+1 is δm(µ),
while among those supported on Sn, it is the projection of δm(µ). We are going to exploit
this characterisation in Step 6 of the proof of Theorem 1.1.

We will use the following projection of the α-weighted mean of two points x, y onto Sn
frequently:

pα(x, y) :=
(1− α)x+ αy

∥(1− α)x+ αy∥ (α ∈ [0, 1], x, y ∈ Sn) .

Note that pα(x, y) is not defined when α = 1
2 and x = −y.

Let us define the cost cα : Sn × Sn → [0, 2] by

cα(x, y) := min
z∈Sn

{
(1− α) ||x− z||2 + α ||z − y||2

}
= 2(1− ||(1− α)x+ αy||). (4.3)

If π ∈ P (Sn × Sn) is a coupling of µ and ν, then let ρ
(α)
π ∈ W2

(
Sn, ϱ∥·∥

)
be defined to be

the displacement interpolation in Rn+1 at time α between µ and ν according to the plan
π, projected to Sn. Formally,

ρ(α)π := ({(x, y) 7→ pα(x, y)})# π. (4.4)
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Now let µ, ν ∈ W2

(
Sn, ϱ∥·∥

)
and consider the α-weighted mean squared error

Qµ,να : W2

(
Sn, ϱ∥·∥

)
→ [0,∞); ρ 7→ Qµ,να (ρ) := (1− α)d2W2

(µ, ρ) + αd2W2
(ν, ρ). (4.5)

Proposition 4.2. Let µ, ν ∈ W2

(
Sn, ϱ∥·∥

)
be such that there is a unique optimal transport

plan π∗ for them with respect to the cost cα defined in (4.3). Suppose that α ̸= 1
2 or α = 1

2
and π∗ ({(z,−z) : z ∈ Sn}) = 0. Then the mean squared error Qµ,να defined in (4.5) has

a unique minimizer which is equal to ρ
(α)
π∗ , the push-forward of π∗ by pα — see (4.4) for

the precise definition. If π∗ ({(z,−z) : z ∈ Sn}) > 0 and α = 1
2 , then ρ

(α)
π∗ = ρ

( 1
2
)

π∗ is not
well-defined and Qµ,να = Qµ,ν1

2

has infinitely many minimizers.

Proof. We proceed by establishing a lower bound for (4.5) and taking care of the case of
equality. Let ρ ∈ W2

(
Sn, ϱ∥·∥

)
be arbitrary, and let πµ,ρ and πρ,ν be optimal transport

plans (w.r.t. the quadratic distance) between µ and ρ, and ρ and ν, respectively. Let
πµ,ρ,ν ∈ P (Sn × Sn × Sn) be the gluing of πµ,ρ and πρ,ν — see [25, Lemma 7.6] for the
precise definition. Then πµ,ν := (πµ,ρ,ν)1,3 ∈ P (Sn × Sn) is a coupling of µ and ν. Now

Qµ,να (ρ) = (1− α)d2W2
(µ, ρ) + αd2W2

(ν, ρ)

= (1− α)

∫∫

Sn×Sn
∥x− z∥2 dπµ,ρ(x, z) + α

∫∫

Sn×Sn
∥z − y∥2dπρ,ν(z, y)

=

∫∫∫

Sn×Sn×Sn
(1− α)∥x− z∥2 + α∥z − y∥2 dπµ,ρ,ν(x, z, y)

≥
∫∫∫

Sn×Sn×Sn
cα(x, y) dπµ,ρ,ν(x, z, y) =

∫∫

Sn×Sn
cα(x, y) dπµ,ν(x, y).

(4.6)

The inequality (4.6) is saturated if and only if z = pα(x, y) for πµ,ρ,ν-a.e. (x, z, y) ∈ (Sn)3,
that is, if ρ = ρ

(α)
πµ,ν . Moreover, the right-hand side of (4.6) is minimal if and only if

πµ,ν = π∗. Consequently,

Qµ,να (ρ) ≥ min
π∈Π(µ,ν)

{∫∫

Sn×Sn
cα(x, y) dπ(x, y)

}
=

∫∫

Sn×Sn
cα(x, y) dπ∗(x, y)

and the only ρ realizing this minimum is ρ
(α)
π∗ . On the other hand, if π∗ puts weight on

antipodal points, that is, π∗ ({(z,−z) : z ∈ Sn}) > 0, and α = 1
2 , then we have an infinite

collection of minimizing measures by the theorems of Thales and Pythagoras — or by a
simple direct computation. □

In the next proposition, we consider the case when the first argument of pα is fixed, and
we clarify injectivity/surjectivity properties of pα as α varies form 0 to 1.

Proposition 4.3. Let α ∈
(
0, 12
)
∪
(
1
2 , 1
]
and let N ∈ Sn be arbitrary but fixed — it may

be considered as the “north pole”. Let pα(N, ·) : Sn → Sn be the map sending u to

pα(N, u) =
(1− α)N + αu

||(1− α)N + αu|| .

Then for α ∈
(
1
2 , 1
]
, pα(N, ·) is bijective. For α ∈

(
0, 12
)
, pα(N, ·) is neither surjective nor

injective: it is 2-to-1 for almost all points of Sn. Finally, p 1
2
(N, ·) : Sn \{−N} → Sn \{−N}

is injective, and its range is the open “upper” hemisphere {z ∈ Sn | ⟨z,N⟩ > 0}.

C
E

U
eT

D
C

ol
le

ct
io

n



10 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

Proof. When considering pα(N, u), we can assume without loss of generality that N =

(0, 0, . . . , 0, 1) and u = (cos θ, 0, . . . , 0, sin θ) for some θ ∈ (−π, π]. Let c
(α)
u be the nor-

malising constant ||(1− α)N + αu||. Note that c
(α)
u > 0 if and only if (α, u) ̸=

(
1
2 ,−N

)
.

Whenever (α, u) ̸=
(
1
2 ,−N

)
, we have that

c(α)u pu(N, u) = (α cos θ, 0, . . . , 0, (1− α) + α sin θ),

and so for a fixed α ̸= 1
2 , setting

xθ := α cos θ

yθ := (1− α) + α sin θ,

we see that (xθ, yθ) satisfy x2θ + (yθ − (1 − α))2 = α2, i.e., they lie on the circle of radius
α with the centre at (0, 1− α). For any point u = (cos θ, 0, . . . , 0, sin θ), its image pα(N, u)
is the projection of (xθ, 0, . . . , 0, yθ) onto Sn, i.e., the point obtained as the intersection of
Sn and the half-line from (0, . . . , 0) through (xθ, 0, . . . , 0, yθ). Now the statements of this
proposition are easy to see from Figure 1.

N N N

α >
1

2
α =

1

2
α <

1

2

(0, 1− α)

(0, 1− α)
(0, 1− α)

u

u

u1

u2

pα(N,u)

pα(N,u)

pα(N,u1) = pα(N,u2)

Figure 1. pα(N, u) lies on the S1 spanned by N and u, at the spherical

projection of c
(α)
u pα(N, u). The bigger circle displayed in each of the cases

is S1, the smaller one is c
(α)
· pα(N, ·).

□

Now we turn to the proof of Theorem 1.1 which, for the sake of clarity, we divide into
six steps.

Step 1. Similarly as in the proof of Theorem 3.1, we first understand the action of Ψ on
the set of Dirac measures. The maximal distance in W2

(
Sn, ϱ∥·∥

)
is 2, and is attained only

on pairs of Dirac measures that are concentrated on antipodal points. Since

2 = dW2(µ, ν) = dW2(Ψ(µ),Ψ(ν)),

we get that Ψ(δx) is a Dirac measure for all x ∈ Sn. Since Ψ and Ψ−1 are both isometries,
the map ψ : Sn → Sn defined by Ψ(δx) = δψ(x) is a bijection, and furthermore, since

∥ψ(x)− ψ(y)∥ = dW2

(
δψ(x), δψ(y)

)
= dW2 (Ψ(δx),Ψ(δy)) = dW2 (δx, δy) = ∥x− y∥,
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it is in fact an isometry. Just as before, we will be done once we prove that an isometry
of W2

(
Sn, ϱ∥·∥

)
which fixes all Dirac measures is necessarily the identity, because then in

particular,
(
ψ−1

)
#
◦Ψ = idW2(Sn,ϱ∥·∥), and so Ψ = ψ# as claimed. From now on, we assume

that Φ is an isometry of W2

(
Sn, ϱ∥·∥

)
such that Φ(δx) = δx, and our aim is to show that

Φ(µ) = µ for all µ ∈ W2

(
Sn, ϱ∥·∥

)
.

Step 2. Next we claim that Φ preserves the barycenter of measures.
For any µ ∈ W2

(
Sn, ϱ∥·∥

)
and x ∈ Sn, we have

d2W2
(µ, δx) =

∫

Sn
∥y − x∥2dµ(y) = 2− 2

〈
x,

∫

Sn
y dµ(y)

〉
= 2(1− ⟨x,m(µ)⟩). (4.7)

Therefore,

argmin
{
d2W2

(µ, δx) : x ∈ Sn
}
=

{
m(µ)

||m(µ)|| if m(µ) ̸= 0

Sn if m(µ) = 0

and

min
{
d2W2

(µ, δx) : x ∈ Sn
}
= 2(1− ||m(µ)||).

Since Φ(δx) = δx and hence d2W2
(Φ(µ), δx) = d2W2

(µ, δx) for all x ∈ Sn, we get that

2(1− ||m(Φ(µ))||) = min
{
d2W2

(Φ(µ), δx) : x ∈ Sn
}

= min
{
d2W2

(µ, δx) : x ∈ Sn
}
= 2(1− ||m(µ)||).

This implies that ||m(Φ(µ))|| = ||m(µ)||, and in particular, m(Φ(µ)) = 0 ∈ Rn+1 whenever
m(µ) = 0. Moreover, if m(µ) ̸= 0 then

m(µ)

||m(µ)|| = argmin
{
d2W2

(µ, δx) : x ∈ Sn
}

= argmin
{
d2W2

(Φ(µ), δx) : x ∈ Sn
}
=

m(Φ(µ))

||m(Φ(µ))||
which implies the desired equality m (Φ (µ)) = m (µ) for all µ ∈ W2

(
Sn, ϱ∥·∥

)
.

Step 3. Now we prove that measures supported on two points are mapped to measures
supported on two points. We first show that for all µ, ν ∈ W2

(
Sn, ϱ∥·∥

)
,

affspan
(
supp

(
Φ(µ)

))
⊥ affspan

(
supp

(
Φ(ν)

))

holds if and only if

affspan (supp(µ)) ⊥ affspan (supp(ν)) .

Kloeckner proved in [18, Lemma 6.2] that orthogonality of supports can be characterized
by the metric in the ambient space W2

(
Rn+1, ϱ∥·∥

)
. Namely,

d2W2(Rn+1)(µ, ν) = ||m(µ)−m(ν)||2 + d2W2(Rn+1)

(
µ, δm(µ)

)
+ d2W2(Rn+1)

(
ν, δm(ν)

)

holds if and only if there exist two orthogonal affine subspaces L,M ⊂ Rn+1 such that
supp(µ) ⊆ L and supp(ν) ⊆M . We proceed by showing that the isometries of W2

(
Sn, ϱ∥·∥

)
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12 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

leave the W2(Rn+1)-distance of a measure from the Dirac mass concentrated on its barycen-
ter invariant, that is,

dW2(Rn+1)

(
µ, δm(µ)

)
= dW2(Rn+1)

(
Φ(µ), δm(Φ(µ))

)

for any µ ∈ W2

(
Sn, ϱ∥·∥

)
. Indeed, a direct computation very similar to (4.7) shows that

d2W2(Rn+1)

(
µ, δm(µ)

)
= 1− ||m(µ)||2 and d2W2(Rn+1)

(
Φ(µ), δm(Φ(µ))

)
= 1− ||m(Φ(µ))||2 ,

which implies our statement as we have shown m(Φ(µ)) = m(µ) in Step 2. Hence for any
µ, ν ∈ W2

(
Sn, ϱ∥·∥

)
,

||m(µ)−m(ν)||2 + d2W2

(
µ, δm(µ)

)
+ d2W2

(
ν, δm(ν)

)

= ||m(Φ(µ))−m(Φ(ν))||2 + d2W2

(
Φ(µ), δm(Φ(µ))

)
+ d2W2

(
Φ(ν), δm(Φ(ν))

)
,

meaning that orthogonally supported measures must be mapped to orthogonally supported
measures by Φ.

A maximal set of measures whose supports are one-dimensional and pairwise orthogonal
must therefore be mapped to a set of measures whose supports are zero- or one-dimensional.
But zero-dimensionally supported measures are exactly the Dirac masses, to which only
Dirac masses can be mapped by Φ, and so one-dimensionally supported measures must be
mapped to one-dimensionally supported measures. Continuing similarly, we would see more
generally that the affine dimension of the support is preserved by Φ, but since on the sphere,
one-dimensionally supported measures are exactly the two-point supported measures, the
one-dimensional case is enough to prove our statement.

Step 4. We proceed with showing that measures supported on two points are fixed by
Φ. Let us introduce the notation ∆′

2(Sn) for the set of all elements in W2

(
Sn, ϱ∥·∥

)

with a two-point support, set µ̃ :=
(
t−m(µ)

)
#
µ for all µ ∈ ∆′

2(Sn), and ∆′
2,0(Sn) :={

µ̃ ∈ P(Rn+1) : µ ∈ ∆′
2(Sn)

}
. By Step 3, Φ|∆′

2(Sn) : ∆
′
2(Sn) → ∆′

2(Sn) is an isometric em-

bedding. By Proposition 4.1 we know that for all µ, ν ∈ ∆′
2(Sn),

d2W2
(µ̃, ν̃) = d2W2

(µ, ν)− ||m(µ)−m(ν)||2

= d2W2
(Φ(µ),Φ(ν))− ||m(Φ(µ))−m(Φ(ν))||2 = d2W2

(
Φ̃(µ), Φ̃(ν)

)
.

Consequently, µ̃ = ν̃ holds if and only if Φ̃(µ) = Φ̃(ν), in other words, Φ(ν) is a translate
of Φ(µ) if and only if ν is a translate of µ.

Let a measure µ ∈ ∆′
2(Sn) be fixed. We can assume without loss of generality that

supp(µ) = {(cos θ, 0, . . . , 0, sin θ), (cos θ, 0, . . . , 0,− sin θ)}
for some θ ∈ (0, π/2]. In this case,

1

2

∑

x∈supp(µ)
x = (cos θ, 0, . . . , 0)

and 
affspan (supp(µ))− 1

2

∑

x∈supp(µ)
x




⊥

= {(v1, . . . , vn, 0) : v1, . . . , vn ∈ R}.
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Define µ⃗ :=
{
v ∈ Rn+1 : (tv)#µ ∈ P (Sn)

}
, and observe that µ⃗ is the set of those vectors

(v1, . . . , vn+1) such that

∥(v1 + cos θ, v2, . . . , vn, vn+1 + sin θ)∥ = ∥(v1 + cos θ, v2, . . . , vn, vn+1 − sin θ)∥ = 1.

Then we get that v ∈ µ⃗ if and only if

(v1 + cos θ)2 + v22 + · · ·+ v2n + v2n+1 ± 2vn+1 sin θ = 1− sin2 θ.

Since sin θ ̸= 0, this holds exactly when vn+1 = 0 and (v1 + cos θ)2 + v22 + · · ·+ v2n = cos2 θ,
i.e., the first n coordinates span an n − 1-dimensional sphere with radius | cos θ| centered
at (− cos θ, 0, . . . , 0), or they are just the singleton containing 0 ∈ Rn in the case cos θ = 0.
In other words,

µ⃗ = −(cos θ, 0, . . . , 0) + | cos θ| · (Sn ∩ {(v1, . . . , vn, 0) : v1, . . . , vn ∈ R})

= −


1

2

∑

x∈supp(µ)
x


+

∣∣∣∣∣∣

∣∣∣∣∣∣
1

2

∑

x∈supp(µ)
x

∣∣∣∣∣∣

∣∣∣∣∣∣
·


Sn ∩


affspan (supp(µ))− 1

2

∑

x∈supp(µ)
x




⊥
 .

As Φ maps the translates of µ to the translates of Φ(µ), there is an η ∈ ∆′
2,0(Sn) ⊂

P
(
Rn+1

)
such that

Φ ((tv)#µ) = (tv+m(µ))#η (v ∈ µ⃗). (4.8)

We emphasize that η does not depend on v. It follows that µ⃗+m(µ) + supp(η) ⊂ Sn. But
by plugging v = 0 ∈ Rn+1 to (4.8), we get that supp (Φ(µ)) = m(µ) + supp(η), and so the

previous line becomes µ⃗ + supp (Φ(µ)) ⊂ Sn. By the definition of ⃗Φ(µ), this means that

µ⃗ ⊆ ⃗Φ(µ).
For any µ with diam(supp(µ)) < 2, we have that cos θ ̸= 0, and so µ⃗ is an n − 1-

dimensional sphere, implying that µ⃗ = ⃗Φ(µ) and supp(µ) = supp (Φ(µ)). Now µ and Φ(µ)
are probability measures with the same 2-point support and the same barycenter, and so
µ = Φ(µ). Finally, µ = Φ(µ) for all µ ∈ ∆′

2 (Sn) by continuity.

Step 5. Now assume that µ =
∑m

i=1 λiδxi where xi ̸= −xj for all 1 ≤ i < j ≤ m. Such
measures form a dense subset of W2

(
Sn, ϱ∥·∥

)
. We claim that

supp
(
Φ(µ)

)
⊆ {x1, . . . , xm} ∪ {−x1, . . . ,−xm}

and
(
Φ(µ)

)
({xi,−xi}) = µ({xi}) for all 1 ≤ i ≤ m.

The proof of this claim relies on preserving the mass of bisectors which are defined as
follows: for u, v ∈ Sn, the corresponding bisector is

B(u, v) := {y ∈ Sn : ||u− y|| = ||v − y||} ∼= Sn−1.

To start, we apply Lemma 3.17 from [14] with E = Rn+1, p = 2, x ∈ Sn, a = 1 and b = −1
to obtain that

µ (B(x,−x)) = max {α : dW2 (µ, αδx + (1− α)δ−x) = mµ}
−min {α : dW2 (µ, αδx + (1− α)δ−x) = mµ} ,

where mµ := min {dW2 (µ, αδx + (1− α)δ−x) : 0 ≤ α ≤ 1} and B(x,−x) ∼= Sn−1 is the bi-
sector between x and −x, i.e., the set of all points equidistant from x and −x. But since
Φ (αδx + (1− α)δ−x) = αδx + (1 − α)δ−x for all α ∈ [0, 1] by Steps 1 and 4, we get that
mµ = mΦ(µ), and subsequently µ(B(x,−x)) = (Φ(µ)) (B(x,−x)) for all x ∈ Sn. Since for
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every x ∈ Sn, B(x,−x) is an n−1-dimensional subsphere of Sn, and every n−1-dimensional
subsphere of Sn is of the form B(x,−x) for some x ∈ Sn, the previous sentence says that
µ(S) = (Φ(µ))(S) for every subsphere S of codimension 1.

For every x̃ ∈ {x1, . . . , xm} = supp(µ), there exists a sequence (Sj)j∈N of n − 1-

dimensional subspheres of Sn such that Sj ∩ supp(µ) = {x̃} for every j, and the in-
tersection of any n subspheres is trivial, that is,

⋂n
k=1 Sjk = {x̃,−x̃} for any choice of

j1 < j2 < · · · < jn. Therefore,

µ({x̃}) = µ (Sj) =
(
Φ(µ)

)
(Sj) (j ∈ N) ,

and we are in the right position to prove that

Φ(µ) ({x̃,−x̃}) = µ ({x̃}) .
The inequality Φ(µ) ({x̃,−x̃}) ≤

(
Φ(µ)

)
(Sj) = µ({x̃}) holds because {x̃,−x̃} ⊆ Sj . If

n = 1 then in fact {x̃,−x̃} = Sj , and we are done. If n ≥ 2, assume indirectly that
Φ(µ) ({x̃,−x̃}) < µ ({x̃}), and let ε > 0 denote the gap between the two sides of this strict
inequality. Now we have

(
Φ(µ)

)
(Sj \ {x̃,−x̃}) =

(
Φ(µ)

)
(Sj)− Φ(µ) ({x̃,−x̃}) = ε

for every j ∈ N. The fact that
⋂n
k=1 Sjk = {x̃,−x̃} for every j1 < j2 < · · · < jn implies that

the family of sets (Sj \ {x̃,−x̃})∞j=1 covers any point of Sn at most n times. This means

that
∑∞

j=1

(
Φ(µ)

)
(Sj \ {x̃,−x̃}) is bounded from above by n ·

(
Φ(µ)

)
(Sn) = n, which is a

contradiction as
(
Φ(µ)

)
(Sj \ {x̃,−x̃}) = ε for every j ∈ N and

∑∞
j=1 ε = ∞.

Step 6. A crucial consequence of the claim made in Step 5 is that the isometry Φ fixes all
measures that are supported within an open hemisphere of Sn. Indeed, we learned from
Step 2 that Φ preserves the barycenter of measures, and from Step 5 that the only possible
action Φ can do is to send some mass from a point to its antipodal point. But if a measure
is supported on an open hemisphere then the transport of any mass to its antipodal point
would change the barycenter.

Suppose that µ ({−N}) = 0. Then the spherical projection ρ
( 1
2
)

δN⊗µ of the displacement

convex combination of δN and µ is well-defined, and since it is supported on the upper

hemisphere, Φ

(
ρ
( 1
2
)

δN⊗µ

)
= ρ

( 1
2
)

δN⊗µ. Let us now consider the sets

A : =

{
QδN ,µ1

2

(ρ) : ρ ∈ P (Sn)
}

=

{
Q

Φ(δN ),Φ(µ)
1
2

(Φ(ρ)) : ρ ∈ P (Sn)
}

=

{
Q
δN ,Φ(µ)
1
2

(κ) : κ ∈ P (Sn)
}

=: B

where the last equality follows from the surjectivity of the isometry Φ. Since A = B,
necessarily

minB = minA = QδN ,µ1
2

(
ρ
( 1
2
)

δN⊗µ

)
= Q

Φ(δN ),Φ(µ)
1
2

(
Φ

(
ρ
( 1
2
)

δN⊗µ

))
= Q

δN ,Φ(µ)
1
2

(
Φ

(
ρ
( 1
2
)

δN⊗µ

))
.

The fact that B has a unique minimizer implies by the second statement of Proposition 4.2
that Φ(µ)({−N}) = 0. Consequently — let us use now the first statement of Proposition
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4.2 — the unique minimizer of Q
δN ,Φ(µ)
α is ρ

( 1
2
)

δN⊗Φ(µ) and hence

ρ
( 1
2
)

δN⊗Φ(µ) = Φ

(
ρ
( 1
2
)

δN⊗µ

)
= ρ

( 1
2
)

δN⊗µ. (4.9)

By the injectivity of p 1
2
(N, ·) on Sn\{−N}, see Proposition 4.3, for every measure ν ∈ P (Sn)

supported within the upper hemisphere, there is a unique measure κ ∈ P (Sn) such that

ν is the spherical projection ρ
( 1
2
)

δN⊗κ of the displacement convex combination of δN and κ.

Therefore, (4.9) implies that Φ(µ) = µ, which completes the proof.
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16 GY.P. GEHÉR, A. HRUŠKOVÁ, T. TITKOS, AND D. VIROSZTEK

[22] W. Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12
Interscience Publishers, New York-London, (1962).

[23] F. Santambrogio, Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential
Equations and Their Applications 87, Birkhauser Basel (2015).
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