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Abstract

The thesis is centered around the investigation of two, strongly related classes of subsets.
Our approach is to first investigate GL(2)-equivariant classes of coincident root strata (CRS),
then use these to deduce invariants of varieties TλZf ⊂ Gr2(Cn) consisting of certain tangent
lines to a generic degree d hypersurface Zf ⊂ P(Cn).

Three chapters are dedicated to the study of three different classes of these subspaces, the
fundamental class and the Chern-Schwartz-MacPherson class living in singular cohomology and
the motivic Chern class living in K-theory. Each of these classes contains more information
then the previous and, correspondigly, is more difficult to calculate.

The first serves to solve enumerative problems such as counting certain lines tangent to
hypersurfaces. The answers to these problems generalize classical Plücker formulas counting
bitangents and flexes of a degree d generic plane curve. The second can be further used to
e.g. calculate the Euler characteristics of the varieties TλZf ⊂ Gr2(Cn). From the third, for
instance, we can infer the χy-genus of TλZf ⊂ Gr2(Cn).

We give new recursive methods to calculate the above equivariant classes. These algorithms
also help us to investigate a key feature of these classes: Using them we managed to prove
that the d-dependence of the fundamental and the Chern-Schwartz-MacPherson class of CRS
is polynomial, just like classical Plücker formulas are polynomials in d. These algorithms are
also easy to implement and quite fast. Based on the vast amount of examples they provide we
conjecture the polynomiality of the motivic Chern class of CRS.
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CHAPTER 1

Introduction

1.1. Coincident root strata

The vector space

Pold(C2) := {homogeneous polynomials of degree d in two variables}

admits a stratification into the so-called coincident root strata (CRS).

Definition 1.1.1. Let λ = (2e2 , . . . ,mem) be a partition without 1’s and d ≥ |λ| =
∑k

i=1 λi.
Then the coincident root stratum of λ is

Yλ(d) :=

f ∈ Pold(C2) : f =
k∏
i=1

(
fλii
) d∏
j=|λ|+1

(fj)

 ,

where 0 ̸= fi, fj : C2 → C are linear and no two of them are scalar multiples of each other.

Here we slightly changed the usual notation since we are interested in the d-dependence of
these strata. If d is clear from the context we will also use the shorthand notation Yλ. Note that
the above definition includes for all d’s the stratum Y∅(d) corresponding to the empty partition
∅.

Their closure Y λ(d), i.e. where we don’t require that the fi’s and fj’s are different are
algebraically closed subsets of Pold(C2). This means that the coincident root strata are smooth,
locally closed subsets.

Throughout this thesis we refer to locally closed algebraic sets over the complex numbers
simply as “varieties”. We use the word ”closed varieties“ for algebraically closed subsets.

The varieties {Yλ(d)}{λ:|λ|≤d} together with {0} gives a stratification of Pold(C2). A key prop-
erty of these strata is that they are invariant for the GL(2)-action on Pold(C2) ∼= Symd

(
C2∨)

coming from the standard representation of GL(2) on C2. It is intuitively clear that the codi-
mension of Yλ(d) in Pold(C2) is

∑k
i=1(λi − 1) =

∑m
j=2(j − 1)ej since every increase of the

multiplicity of a root by one increases the codimension by one. For details, see e.g. [FNR06].
For this reason we introduce the partition

λ̃ := (λ1 − 1, λ2 − 1, . . . , λk − 1),

the reduction of λ. Then
codim

(
Yλ(d) ⊂ Pold(C2)

)
= |λ̃|.

The length of the partition λ we will denote by l(λ); for the empty partition it is l(∅) = 0.

1.2. Type λ tangent lines to hypersurfaces

Let f ∈ Pold(Cn) be a nonzero homogeneous polynomial of degree d in n variables. It
defines a hypersurface Zf = (f = 0) in P(Cn). Let

λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) = (2e2 , . . . ,mem)

1

C
E

U
eT

D
C

ol
le

ct
io

n



1.2. TYPE λ TANGENT LINES TO HYPERSURFACES 2

be a partition without 1’s and d ≥ |λ|. A line in P(Cn) is called a tangent line of type λ to Zf
if it has e2 ordinary tangent points, e3 flex points, etc. A formal definition can be given the
following way. Projective lines [V ] in P(Cn) correspond to affine planes V 2 in Gr2(Cn).

Definition 1.2.1. The projective line [V ] is called a tangent line of type λ to Zf (or λ-line
for short) if

f |V =
k∏
i=1

(
fλii
) d∏
j=|λ|+1

(fj) ,

where fi, fj : V → C are linear, and no two of them are scalar multiples of each other.

For a given polynomial f ∈ Pold(Cn) let us denote by
TλZf := {tangent lines of type λ to Zf} ⊂ Gr2(Cn),

the variety of tangent lines of type λ to Zf .
Note here that although λ-lines are well-defined for the partition λ = ∅, those are not, in

the usual sense, tangent to Zf . Hopefully, this will not cause any confusion. Also, we will not
examine TλZf for λ = ∅.

The variety TλZf can be identified as a coincident root locus of a certain section of a vector
bundle:

Let S → Gr2(Cn) denote the tautological rank two vector bundle over the Grassmannian.
Consider the vector bundle Pold(S) → Gr2(Cn) with fiber Pold(V ) above each V ∈ Gr2(Cn).
To be more precise, Pold(S) can be defined as P ×GL(2) Pol

d(C2), a bundle associated to the
principal GL(2)-bundle P → Gr2(Cn) the frame bundle of S via the GL(2)-representation
Pold(C2) as above. The Yλ(d)-points of Pold(S) form a subbundle over Gr2(Cn),

Yλ(d)
(
Pold(S)

)
:= P ×GL(2) Yλ(d) ⊂ Pold(S) = P ×GL(2) Pol

d(C2).

We will also use the shorthand notation Yλ(Pold(S)) for Yλ(d)(Pold(S)).
Note that the exact same construction can and will later be applied to other rank two

complex vector bundles D → B resulting in bundles Yλ(Pold(D)) ⊂ Pold(D).
Given a nonzero homogeneous polynomial f ∈ Pold(Cn) we can define a section σf (V ) :=

f |V of the vector bundle Pold(S) → Gr2(Cn). Then, by definition,

TλZf = σ−1
f

(
Yλ(d)(Pol

d(S))
)
.

This, among many things, implies that for a generic polynomial f ∈ Pold(Cn) the variety
of λ-lines TλZf ⊂ Gr2(Cn) is also |λ̃|-codimensional. The dimension of the Grassmannian
Gr2(Cn)—the space of projective lines in P(Cn)—is 2(n − 2). If, for example, |λ̃| = 2(n − 2),
then TλZf ⊂ Gr2(Cn) is finite for a generic f , and we can ask its cardinality. This is the
simplest enumerative problem we will solve.

Being generic is a premise crucial for our approach to work. In general, a property is called
generic, if elements satisfying it form a nonempty open subset of the parameter space, here
Pold(C2).

The reason for identifying TλZf as a coincident root loci is that GL(2)-equivariant classes
of Yλ(d) ⊂ Pold(C2) are universal. Indeed, this is a key aspect of equivariant cohomology (and
K-theory): From a G-equivariant class of an invariant subset X ⊂ V of a G-representation V ,
it is sometimes possible to deduce non-equivariant classes of X-loci of vector bundles. Details
of this universal property will be provided for each of the three classes we investigate in the
following chapters.
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CHAPTER 2

Equivariant cohomology classes of coincident root strata and
generalized Plücker formulas

2.1. Introducing generalized Plücker formulas

In this chapter we give a new method to calculate the GL(2)-equivariant cohomology classes
of coincident root strata. We show a polynomial behavior of them, and apply this result
to prove that generalized Plücker formulas are polynomials in the degree, just as classical
Plücker formulas counting bitangents and flexes to a degree d generic plane curve. We calculate
the leading term of these polynomials to determine the asymptotic behaviour of the Plücker
formulas. We also explain how the equivariant method can be “translated” into the traditional
non-equivariant method of resolutions.

Let us start by defining enumerative problems, we call the Plücker formulas, that can be
deduced form GL(2)-equivariant cohomology classes of CRS. In fact, as we will see, Plücker
formulas and these cohomology classes are equivalent in some sense.

2.1.1. Definition of Plücker numbers. We have already seen that for a generic f ∈
Pold(Cn) if 2(n − 2) = |λ̃| holds for the partition λ = (2e2 , . . . ,mem), then the variety TλZf is
finite. This motivates the following.

Definition 2.1.1. Let λ = (2e2 , . . . ,mem) be a partition without 1’s such that 2(n0−2) = |λ̃|
for some n0. Then the Plücker numbers Plλ(d) for d ≥ |λ| are defined as the number of type λ
tangent lines to a generic degree d hypersurface in P(Cn0).

Example 2.1.2. The Plücker numbers

Pl2,2(d) =
1

2
d(d− 2)(d− 3)(d+ 3), Pl3(d) = 3d(d− 2),

the number of bitangent lines and flex lines to a generic degre d plane curve were calculated by
Plücker in the 1830’s. His formulas also include the cases of singular curves, but we only study
the generic case.

Note that, for typographical reasons, we omit the brackets from the indices.

If the dimension of TλZf is positive, we can obtain further numbers by adding linear condi-
tions:

Definition 2.1.3. Let λ = (2e2 , · · · ,mem) be a partition without 1’s. Choose n0 and
0 ≤ i ≤ |λ̃| such that |λ̃| + i = 2(n0 − 2). We define the Plücker number Plλ;i(d) for d ≥ |λ|
as the number of λ-lines of a generic degree d hypersurface in P(Cn0) intersecting a generic
(i+ 1)-codimensional projective subspace.

For Plλ;0(d) we recover the previous definition: Plλ;0(d) = Plλ(d). We will use both nota-
tions.

Example 2.1.4. For tangent lines we have

Pl2;1(d) = d(d− 1),

3

C
E

U
eT

D
C

ol
le

ct
io

n



2.1. INTRODUCING GENERALIZED PLÜCKER FORMULAS 4

the number of lines in P(C3) through a given point and tangent to a generic degree d curve. In
other words, the degree of the dual curve is d(d− 1).

Example 2.1.5. For bitangent lines we also have

Pl2,2;2(d) =
1

2
d (d− 1) (d− 2) (d− 3) ,

the number of bitangent lines to a generic degree d surface in P(C4) going through a point.

Example 2.1.6. For λ = (4) (the 4-flexes) we also have two Plücker numbers:

Pl4;1(d) = 2d(3d− 2)(d− 3), Pl4;3(d) = d(d− 1)(d− 2)(d− 3),

where Pl4;1(d) is the number of 4-flex lines to a generic degree d surface in P(C4) intersecting a
line, and Pl4;3(d) is the number of 4-flex lines to a generic degree d hypersurface in P(C5) going
through a point.

Remark 2.1.7. Notice that n0 doesn’t appear in our notation: Plλ;i(d) is defined as a
number of certain λ-lines in P(Cn0) for a specific n0 that is determined by λ and i via |λ̃|+ i =

2(n0 − 2). This also shows that the parity of admissible i’s is fixed: i = |λ̃|, |λ̃| − 2, . . . . In
particular, Plλ;0(d) = Plλ(d) is defined for a partition λ only if |λ̃| is even.

Moreover, Plλ;i(d) solves a family of enumerative problems: Choose an n ≥ n0. Elementary
geometric considerations imply that Plλ;i(d) is the number of λ-lines of a generic degree d
hypersurface in P(Cn) intersecting a generic (n−n0+ i+1)-codimensional projective subspace
A and contained in a generic (n0 − 1)-dimensional projective subspace B such that A ⊂ B.

2.1.2. Calculating Plücker numbers from classes of varieties of λ-lines. The key
observation is that for a given λ, all the Plücker numbers Plλ;i(d) are encoded in the cohomology
class [

TλZf ⊂ Gr2(Cn)
]
∈ H∗(Gr2(Cn)

)
for any n ≥ |λ̃|+ 2 and f ∈ Pold(Cn) generic.

Let us add here that throughout this thesis cohomology will be understood with Z coeffi-
cients.

Let sk,l for l ≤ k ≤ n − 2 denote the Schur polynomials, s1 = c1, s2 = c21 − c2, s1,1 =
c2, s2,1 = c1c2, etc., where c1, c2 are the Chern classes of S∨ → Gr2(Cn), the dual of the
tautological rank two bundle over the Grassmannian Gr2(Cn). Then {sk,l : l ≤ k ≤ n − 2} is
a basis of H∗(Gr2(Cn)) with dual basis {sn−2−l,n−2−k : l ≤ k ≤ n − 2}. The Schur polynomial
sk,l is the cohomology class of the Schubert variety

σk,l =
{
V ∈ Gr2(Cn) : dim(V ∩ Fn−k−1) ≥ 1 and V ⊂ Fn−l

}
,

where Fi ⊂ Cn is the subspace spanned by the first i coordinate vectors. This implies that
the Schur coefficients of

[
TλZf ⊂ Gr2(Cn)

]
are solutions of enumerative problems: Standard

transversality argument implies that if[
TλZf ⊂ Gr2(Cn)

]
=
∑

ak,lsk,l,

then ak,l is the number of λ-lines in σn−2−l,n−2−k. Setting (k, l) = (|λ̃| − j, j), we see that being
in σn−2−l,n−2−k is equivalent to the linear conditions of Remark 2.1.7 for i = |λ̃| − 2j. This
implies
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2.1. INTRODUCING GENERALIZED PLÜCKER FORMULAS 5

Proposition 2.1.8. Let λ = (2e2 , . . . ,mem) be a partition without 1’s, n ≥ |λ̃| + 2 and
f ∈ Pold(Cn) generic.

[
TλZf ⊂ Gr2(Cn)

]
=

t∑
j=0

Plλ;|λ̃|−2j(d)s|λ̃|−j,j,

where t = ⌊|λ̃|/2⌋.

Consequently, for a given λ = (2e2 , . . . ,mem) calculating all the Plücker numbers for λ is
equivalent to calculating the cohomology class

[
TλZf ⊂ Gr2(Cn)

]
for any n ≥ |λ̃| + 2 and

f ∈ Pold(Cn) generic.
Note that—corresponding to Remark 2.1.7—this cohomology class is stable in the sense

that in the Schur basis it is independent of n ≥ |λ̃| + 2. This justifies omitting n from Schur
coefficients of

[
TλZf ⊂ Gr2(Cn)

]
and writing ak,l. Taking the formal limit n→ ∞, we obtain a

unique polynomial in Z[c1, c2]. The ring Z[c1, c2] can be identified with the GL(2)-equivariant
cohomology ring of the point H∗

GL(2) := H∗(BGL(2)), and this polynomial is the equivariant
cohomology class [Y λ(d)]GL(2) of the coincidence root stratum Y λ(d), what we will define in
Section 2.2.

This is the reason why in this chapter we first give an algorithm to calculate these equivariant
cohomology classes, then we study the implications on the behaviour of the Plücker numbers.

2.1.3. A summary of results related to Plücker numbers. The key result of this
chapter is that the Plücker numbers Plλ;i(d) are polynomials in d. This was our motivation
for having d as a variable in our notation. We also give several structural results on these
polynomials.

In Section 2.2 we explain how to calculate the Plücker numbers using the equivariant coho-
mology classes

[
Y λ(d)

]
of the coincident root strata Yλ(d) ⊂ Pold(C2). This connection makes

Theorem 2.2.5 the key technical result of this chapter: we give an inductive formula, where
the induction is on the length of the partition λ. Several formulas were already known for the
equivariant classes

[
Y λ(d)

]
, however those are less suited for our purposes. A detailed account

of those formulas is given in Section 2.2.5.
Section 2.3 is devoted to the proof of Theorem 2.2.5. Most of the chapter is independent of

this section, except parts of Sections 2.7 and 2.8.
In Section 2.4 we show—using Theorem 2.2.5—that the equivariant classes of Y λ(d) are

polynomials of degree |λ| in d (Theorem 2.4.1) and, consequently, the Plücker numbers Plλ;i(d)
are polynomials of degree at most |λ| in d (Theorem 2.4.3). Furthermore, in Theorem 2.4.5 we
calculate the leading term (the d-degree |λ| part) of

[
Y λ(d)

]
. We also deduce a simple closed

formula for a large class of Plücker numbers:

Theorem 2.4.7. Let λ = (2e2 , · · · ,mem) be a partition without 1’s. Then

Plλ;|λ̃| = coef
(
s|λ̃|,

[
Yλ(d)

] )
=

1∏m
i=2 ei!

d(d− 1) · · · (d− |λ|+ 1),

in other words, for n ≥ |λ̃| + 2 we calculated the number of λ-lines for a generic degree d
hypersurface in P(Cn) through a generic point of P(Cn).

Finally, we state Theorem 2.4.8 that tells us the d-degrees of all the Plücker numbers.
In Section 2.5 we restrict our attention to λ = (m) and give closed formulas for the Plücker

numbers Plm;i(d). As a consequence, we get a closed formula for a classical problem:
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2.2. COHOMOLOGY CLASSES OF COINCIDENT ROOT STRATA AND COINCIDENT ROOT LOCI 6

Theorem 2.5.4. A generic degree d = 2n− 3 hypersurface in P(Cn) possesses
n−1∑
u=1

(−1)u+n+1

[
d
u

](
d− u+ 1

n− 1

)
du

lines which intersect the hypersurface in a single point. Here
[
d
u

]
denotes the Stirling number

of the first kind.

For n = 3 it says that a generic cubic plane curve has 9 flexes. For n = 4 we obtain the classical
result that a generic quintic has 575 lines which intersect the hypersurface in a single point.
In 2.5.2 we connect Plücker numbers Pld;i(d) to enumerative problems regarding the number
of lines on degree d hypersurfaces. In particular, we give a new proof of Don Zagier’s formula
([GM08]) on the number of lines on a degree d = 2n − 3 hypersurface in P(Cn+1). This
connection also implies that

Theorem 2.5.8. The number of lines on a generic degree d = 2n− 3 hypersurface in P(Cn+1)
is d times the number of hyperflexes to a generic degree d hypersurface in P(Cn).

We expected this to be a classical result, but found no mention of it in the literature.
In Section 2.6 we calculate the coefficient of d|λ| in Plλ;i(d) by relating it to certain Kostka—

and for special λ’s to Catalan and Riordan—numbers. This coefficient informs us about the
asymptotic behaviour of the Plücker number Plλ;i(d) as d tends to infinity, so we will call it the
asymptotic Plücker number aPlλ;i. The main theorem of the section is

Theorem 2.6.1. Let λ = (2e2 , . . . ,mem) be a partition without 1’s and j ≤ ⌊|λ̃|/2⌋ a nonneg-
ative integer. Let n = |λ̃| − j + 2.Then

aPlλ;|λ̃|−2j =
K(n−2,j),λ̃∏m

i=2 ei!
,

where Kµ,ν denote Kostka numbers.

In Section 2.7, using the example of m-flex lines, we compare our method with the classical
non-equivariant approach. We introduce the notion of incidence varieties and we use them to
formulate a non-equivariant version of Theorem 2.2.5. We try to convince the readers who are
not familiar with the equivariant method, that it is a useful language which can be translated
to classical terms.

In Section 2.8 we study variants of the Plücker numbers. In 2.8.1 we show how a substitution
into the cohomology class

[
Y λ(d)

]
calculates Plücker numbers for linear systems of hypersur-

faces. A small example is the number of flex lines through a point to a pencil of degree d curves.
In 2.8.2 we study the variety of m-flex points of λ-lines. To demonstrate the versatility of the
method we give the details for computing the degree of the curve of flex points of the (3, 2)-lines
to a surface. In 2.8.3 we show that the previous two constructions can be combined without
difficulty. As an example we calculate the degree of the curve of tangent points of bitangent
lines to a pencil of degree d plane curves.

2.2. Cohomology classes of coincident root strata and coincident root loci

2.2.1. Equivariant cohomology classes of invariant subvarieties. Suppose that the
algebraic Lie group G acts on an algebraic manifold M and Y ⊂M is a k-codimensional closed
G-invariant subvariety. Then we can define the G-equivariant cohomology class of Y :

[Y ⊂M ]G ∈ H2k
G (M).
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2.2. COHOMOLOGY CLASSES OF COINCIDENT ROOT STRATA AND COINCIDENT ROOT LOCI 7

This class was defined by several people independently and by quite different methods. Our
approach is the closest to [Tot99]. In this thesis G is always the product of general linear
groups, in which case the construction of the G-equivariant cohomology class is simpler:

Suppose that G = GL(r). We define an approximation of the universal bundle EGL(r) →
BGL(r) as P → Grr(CN), where P is the frame bundle of the tautological bundle of the
Grassmannian Grr(CN). Then B := P ×GL(r)M approximates the Borel construction BGL(r)M
in the sense that the map β : B → BGL(r)M—induced by the classifying map of P—induces
an isomorphism β∗ : H2k

GL(r)(M) = H2k(BGL(r)M) → H2k(B) if N is bigger than k. Therefore
we can define

(1) [Y ⊂M ]GL(r) := (β∗)−1[P ×GL(r) Y ⊂ P ×GL(r) M ],

and it is not difficult to see that this definition is independent of the choice of N > k. For
products of GL(ri)’s we can use the products of the approximations.

If it is clear from the context, we drop the group G or the ambient space from our notation
and write [Y ] or [Y ]G for [Y ⊂M ]G. Similarly, we sometimes drop the group from equivariant
characteristic classes of G-bundles E → B, and write ci(E) for cGi (E) and e(E) for eG(E).

2.2.2. Universal property of equivariant cohomology classes. Most of the time our
ambient manifold will be a complex vector space V with a linear G-action and a G-invariant
closed (affine) subvariety. In such cases, as H∗

G(V ) ∼= H∗
G canonically, [Y ⊂ V ]G can be consid-

ered as a G-characteristic class.
Any principal G-bundle P → B over the algebraic manifold B is a pullback of EG → BG

via a classifying map κ : B → BG. Consider the associated bundle E = P ×G V and its
subbundle

Y (E) = P ×G Y,

and denote by κ̂V : E → EG×G V the lift of the classifying map κ to E. Then

[Y (E) ⊂ E] = κ̂∗V [Y ⊂ V ]G .

If, moreover, we have a section σ : B → E that is transversal to Y (E), then we can take this
correspondence further to get[

σ−1(Y (E)) ⊂ B
]
= κ∗ [Y ⊂ V ]G = [Y ⊂ V ]G (P ),

the G-characteristic class evaluated at the bundle P → B.
Note that complex closed subvarieties are naturally stratified submanifolds, a stratification

of Y ⊂ V induces a stratification of Y (E) ⊂ E, and that here we call a map to a stratified
submanifold transversal if it is transversal to all the strata.

2.2.3. Cohomology classes of coincident root loci. As we have already described in
Chapter 1, varieties of λ-lines can be identified as concident root loci TλZf = σ−1

f

(
Yλ
(
Pold(C2)

))
.

This will imply that for a generic polynomial f ∈ Pold(Cn) the cohomology class of its closure
can be obtained from

[
Yλ(d) ⊂ Pold(C2)

]
GL(2)

by evaluating it at the frame bundle of the
tautological bundle S → Gr2(Cn).

Throughout this chapter, illustrating its effectiveness, we will use the above claim to calcu-
late from

[
Yλ(d) ⊂ Pold(C2)

]
GL(2)

the class
[
Y λ(Pol

d(D)) ⊂ Pold(D)
]

for other rank two vector
bundles D as well.

In Section 2.1.2, we hinted that H∗
GL(2) can be identified with the polynomial ring Z [c1, c2].

Evaulating
[
Yλ(d) ⊂ Pold(C2)

]
GL(2)

at the frame bundle of D amounts to substituting ci (D∨)
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2.2. COHOMOLOGY CLASSES OF COINCIDENT ROOT STRATA AND COINCIDENT ROOT LOCI 8

into these variables ci, thus[
Y λ(Pol

d(D)) ⊂ Pold(D)
]
=
[
Y λ(d) ⊂ Pold(C2)

]
GL(2)

|ci 7→ci(D∨).

For more details on the choice and interpretation of the generators c1, c2 see Section 2.3.2.

For a generic homogeneous polynomial f ∈ Pold(Cn) the section σf is transversal to
Y λ(Pol

d(S)), see Section A.1.1, implying that

[σ−1
f

(
Y λ(Pol

d(S))
)
⊂ Gr2(Cn)] = σ∗

f

[
Y λ(Pol

d(S)) ⊂ Pold(S)
]
,

where the pullback σ∗
f : H∗(Pold(S)) → H∗(Gr2(Cn)) is an isomorphism. This isomorphism is

independent of f , so we will not denote it in our formulas.

Corollary 2.2.1. The cohomology class
[
TλZf ⊂ Gr2(Cn)

]
is obtained from the equivari-

ant class
[
Y λ(d)

]
GL(2)

∈ Z[c1, c2] by substituting ci(S∨) into ci for i = 1, 2.

Remark 2.2.2. There is a subtle detail about the preimage of the closure. Our definition
for transversality is that σf has to be transversal to all strata Yµ(Pold(S)). The vector bundle
Pold(S) admits a Whitney stratification adapted to our situation ([GM88]): a Whitney strat-
ification such that every Y λ(Pol

d(S)) is a union of strata of this stratification. Transversality
with respect to this Whitney stratification implies that

σ−1
f

(
Y λ(Pol

d(S))
)
= σ−1

f

(
Yλ(Pol

d(S))
)
= TλZf .

However, usage of the Whitney property is not needed. Let f :M → N be an algebraic map
of smooth varieties and assume that f is transversal to the closed subvariety X ⊂ N , in the
sense that it is transversal to some stratification X =

∐
Xi with X0 being the open stratum.

Then it is possible that f−1(X0) is strictly smaller than f−1(X), but the difference is a union of
components of smaller dimension, so the cohomology classes

[
f−1(X0)

]
and [f−1(X)] = f ∗[X]

agree.

Now we can rephrase Proposition 2.1.8:

Proposition 2.2.3. Let λ = (2e2 , . . . ,mem) be a partition without 1’s. Then[
Y λ(d)

]
=

t∑
j=0

Plλ;|λ̃|−2j(d)s|λ̃|−j,j,

where t = ⌊|λ̃|/2⌋.

This connection motivates our calculation of the equivariant classes
[
Y λ(d)

]
.

Remark 2.2.4. As we have mentioned in the Section 2.1.2, we can avoid referring to equi-
variant cohomology here. First, observe that for the embedding i : Gr2(Cn) → Gr2(Cn+1) the
equality

i∗
[(
Y λ

(
Pold(S)

)
⊂ Pold(S)

)
→ Gr2

(
Cn+1

)]
=
[(
Y λ

(
Pold(S)

)
⊂ Pold(S)

)
→ Gr2 (Cn)

]
holds. Also notice that H∗(Gr2(Cn)) = Z[c1, c2]/In where the degree of the generators of In
tends to infinity with n. This implies the existence and uniqueness of a polynomial

[
Y λ(d)

]
GL(2)

∈
Z[c1, c2] with the property above.

For a general rank two vector bundle D → M over a projective algebraic manifold we can
use the fact that any such bundle can be pulled back from S → Gr2(Cn) for n >> 0. This
argument can be generalized to obtain a general definition of the G-equivariant cohomology
class of a G-invariant closed subvariety of a vector space V , where G is an algebraic group
acting on V (see e. g. [Tot99]).
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2.2. COHOMOLOGY CLASSES OF COINCIDENT ROOT STRATA AND COINCIDENT ROOT LOCI 9

2.2.4. A recursive formula for
[
Y λ(d)

]
. The main result of this section is Theorem

2.2.5, which gives an algorithm to calculate the universal cohomology classes
[
Y λ(d)

]
.

The class
[
Y λ(d)

]
∈ Z[c1, c2] can be expressed in the Chern roots a and b: substituting

c1 7→ a+ b and c2 7→ ab, we obtain a polynomial symmetric in the variables a and b.

Theorem 2.2.5. Let λ = (2e2 , . . . ,mem) be a partition without 1’s and d ≥ |λ|. Let λ′ denote
the partition (2e2 , . . . ,mem−1), where em = 1 is allowed. We also use the notation d′ = d−m.
Then [

Y λ(d)
]
=

1

em
∂
( [

Y λ′(d
′)
]
m/d′

m−1∏
i=0

(
ia+ (d− i)b

))
,

where for a polynomial α ∈ Z[a, b] and q ∈ Q we use the notation

αq(a, b) = α(a+ qa, b+ qa)

and

∂(α)(a, b) =
α(a, b)− α(b, a)

b− a
denotes the divided difference operation.

The notation d′ = d−m will be used throughout this thesis.

Remark 2.2.6. For any given d the class
[
Y λ(d)

]
is in Z[c1, c2], which is not obvious from

the recursion formula because of the divisions.

Example 2.2.7. For λ = (m) we recover the formula of [FNR06, Ex. 3.7 (4)]:

(2)
[
Y m(d)

]
= ∂

(
m−1∏
i=0

(
ia+ (d− i)b

))
.

For example,[
Y 2(d)

]
=∂
((
db
)(
a+ (d− 1)b

))
= d

(ab+ (d− 1)b2)− (ba+ (d− 1)a2)

b− a
=d(d− 1)(a+ b) = d(d− 1)c1 = d(d− 1)s1.

and [
Y 3(d))

]
=d(d− 1)(d− 2)c21 − d(d− 2)(d− 4)c2

=d(d− 2)(d− 1)s2 + 3d(d− 2)s1,1.

Example 2.2.8. For λ = (2, 2), m = 2, λ′ = (2) and d′ = d− 2. Hence we have[
Y 2(d− 2)

]
2/d−2

= (d− 2)(d− 3)

(
a+

2

d− 2
a+ b+

2

d− 2
a

)
= (d− 3)

(
(d+ 2)a+ (d− 2)b

)
,

implying that

[
Y 2,2(d)

]
=

1

2
∂
(
(d− 3)

(
(d+ 2)a+ (d− 2)b

)
db
(
a+ (d− 1)b

))
=

1

2
d(d− 3)∂

(
b(a+ (d− 1)b)

(
(d+ 2)a+ (d− 2)b

))
=

1

2
d(d− 3)(d− 2)

(
(d− 1)c21 + 4c2

)
=

1

2
d (d− 1) (d− 2) (d− 3) s2 +

1

2
d (d− 2) (d− 3) (d+ 3) s1,1,

(3)
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2.3. PROOF OF THE RECURSION FORMULA 10

which is a calculation still manageable by hand. Notice that the result is in agreement with
Examples 2.1.2 and 2.1.5.

Also notice that we obtained these results for all d’s at the same time, and the polynomial
dependence is also obvious. This is true for any partition λ, which will be proved in Section
2.4.

The recursion formula to calculate these polynomials is easy to implement for example in
Maple, and it is fast: for |λ| < 40 the results are immediate on a PC.

2.2.5. Earlier formulas. Using Kleiman’s theory of multiple point formulas ([Kle77,
Kle81, Kle82]), Le Barz in [LB82] and Colley in [Col86] calculated examples of Plücker
numbers.

Kirwan gave formulas for the SL(2)-equivariant cohomology classes of coincident root strata
in [Kir84]. The first formula for the GL(2)-equivariant cohomology classes

[
Y λ(d)

]
was given in

[FNR06]. Notice that the SL(2)-equivariant cohomology classes are obtained from the GL(2)-
equivariant ones by substituting zero into c1, therefore they do not determine the corresponding
Plücker numbers. Soon after a different formula was calculated with different methods in
[K0̋3]. These formulas don’t seem to be useful for proving polynomiality in d. In 2006 in his
unpublished paper [Kaz06] Kazarian deduced a formula in a form of a generating function
from his theory of multisingularities of Morin maps based on Kleiman’s theory of multiple
point formulas. This formula shows the polynomial dependence but further properties doesn’t
seem to follow easily. He also calculated several Plücker numbers Plλ(d). The paper [ST22] of
Spink and Tseng also develops a method to calculate the GL(2)-equivariant cohomology classes[
Y λ(d)

]
. One of their main goals is to establish relations between these classes.

2.3. Proof of the recursion formula

The proof of Theorem 2.2.5 is based on the following fundamental property of the equivariant
cohomology class:

Lemma 2.3.1. Let f : M → N be a proper G-equivariant map of smooth varieties with
Ỹ ⊂M . Suppose that f |Ỹ is generically k-to-1 to its image Y ⊂ N . Then

[Y ⊂ N ] =
1

k
f![Ỹ ⊂M ].

We will apply Lemma 2.3.1 to the projection π : P1×Pold(C2) → Pold(C2) and Y = Y λ(d).

Remark 2.3.2. To motivate the following construction of Ỹ , let us look at a projective
version: we construct an em-fold branched covering of PY λ ⊂ PPold(C2) ∼= Pd. Consider the
map

f : P1 × Pd′ → Pd,
where f = µ ◦

(
v × IdPd′

)
, v : P1 → Pm is the Veronese map and µ : Pm × Pd′ → Pd is the

projectivization of the multiplication map Polm(C2) × Pold
′
(C2) → Pold(C2). Then it is not

difficult to see that f |P1×PY λ′
is generically em-to-1 to its image PY λ(d).

Indeed, Pd can be identified with the space of unordered d-tuples of points of P1 with
multiplicities. The map f corresponds to adding an extra point with multiplicity m to a d′-
tuple of points, and a d-tuple of multiplicity λ has em preimages, depending on which point of
multiplicity m comes from the P1 factor.

To obtain our Ỹ we need to “deprojectivize” this construction. It is possible to use this
projective construction to prove the recursion formula, but the expressions for the equivariant
cohomology rings and the pushforward maps are more complicated.
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2.3. PROOF OF THE RECURSION FORMULA 11

2.3.1. The construction of the covering space: twisting with a line bundle.

Definition 2.3.3. For any representation ρ : G → GL(V ) of a Lie group G on a vector
space V , we define its scalar extension ρ̃ : G×GL(1) → GL(V ) as the tensor product of ρ and
IdGL(1) with V ⊗ C ∼= V identified canonically.

Let Y ⊂ V be a ρ-invariant subvariety, not necessarily closed. If Y is a cone i.e. invariant
for the scalar GL(1)-action on V , then it is also ρ̃-invariant.

Now, if A = P ×ρV →M is a vector bundle associated to P and L→M is any line bundle,
then using its frame bundle L× = Inj(C, L) (consisting of nonzero elements), we can obtain
A⊗ L as a bundle associated to the principal G×GL(1) bundle P ×M L× →M :

A⊗ L = (P ×M L×)×ρ⊗IdGL(1)
(V ⊗ C) ∼= (P ×M L×)×ρ̃ V.

This description allows us to define a subvariety of A⊗ L

Y (A⊗ L) :=
(
P ×M L×)×ρ̃ Y

= {em ⊗ lm : em ∈ (P ×ρ Y )m, lm ∈ Lm \ {0} ,m ∈M} .

Notice that Y λ′ (d
′) ⊂ Pold

′
(C2) is a cone, hence we can define

Ỹ := Y λ′(d
′)
(
Pold

′
(C2)⊗ Polm(C2/γ)

)
,

a subvariety of Pold
′
(C2)⊗ Polm(C2/γ), where γ is the tautological line bundle over P(C2).

We have an injective map

j : Pold
′
(C2)⊗ Polm(C2/γ) → P1 × Pold(C2),

induced by the multiplication of polynomials:

j(f ⊗ g)(v) :=
(
V, f(v) · g(v + V )

)
,

where f ∈ Pold
′
(C2) and V < C2 is the one-dimensional subspace such that g ∈ Polm(C2/V ).

Therefore we consider E := Pold
′
(C2) ⊗ Polm(C2/γ) and Ỹ to be subspaces of P1 × Pold(C2).

The projection π : P1 ×Pold(C2) → Pold(C2) restricted to Ỹ is generically em-to-1 to its image
Y λ(d), implying that

(4)
[
Y λ(d) ⊂ Pold(C2)

]
=

1

em
π!

[
Ỹ ⊂ P1 × Pold(C2)

]
.

Notice that all the maps above are GL(2)-equivariant, so we consider all these cohomology
classes and the pushforward equivariantly.

Remark 2.3.4. Notice that all these varieties admit compatible GL(1)-actions induced by
the scalar multiplication. Omitting the zeros sections and factoring out by this GL(1)-action,
we recover the construction of Remark 2.3.2.

An easy argument gives that

Lemma 2.3.5. Let E →M be a subbundle of the vector bundle Ê →M . Then the pushfor-
ward map induced by the inclusion i : E → Ê is given by

i!z = z · e(Ê/E),

where we did not denote the isomorphisms i∗ : H∗(Ê) ∼= H∗(E) and H∗(Ê) ∼= H∗(M). Equi-
variant versions of the statement also hold.
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2.3. PROOF OF THE RECURSION FORMULA 12

The lemma implies

(5)
[
Ỹ ⊂ P1 × Pold(C2)

]
= e

((
P1 × Pold(C2)

)
/E
)
· [Ỹ ⊂ E].

The key step in the proof of Theorem 2.2.5 is the calculation of [Ỹ ⊂ E], which we will do in
the next sections.

2.3.2. Conventions. To be able to make these calculations we need to fix generators of
the cohomology rings involved. Most calculations of the thesis happen in H∗(BGL(2)), the
GL(2)-equivariant cohomology ring of the point.

Our goal is to obtain “positive” expressions, so we choose ci = ci(S
∨) as generators of

H∗(BGL(2)) = Z[c1, c2], where S = EGL(2) ×GL(2) C2 is the tautological rank two bundle
over the infinite Grassmannian Gr2(C∞) ≃ BGL(2). We will also use the “Chern roots”: Let
T denote the subgroup of diagonal matrices in GL(2). The complex torus T is isomorphic to
GL(1)2. The inclusion i : T → GL(2) induces an injective homomorphism B i∗ : H∗(BGL(2)) →
H∗(BT) ∼= Z[a, b] with image the symmetric polynomials in the variables a and b. Let πi : T →
GL(1) denote the projection to the i-th factor and Li := E T×πiC denote the tautological line
bundles over the factors of BT ≃ P(C∞) × P(C∞). To be consistent with our first choice we
use the notation a := c1(L

∨
1 ) and b := c1(L

∨
2 ), so B i∗(c1) = a+ b and B i∗(c2) = ab.

For equivariant cohomology we need to specify (left) group actions on the spaces we are
interested in. Our convention is that the GL(2)-action on C2 is the standard action. This
induces a GL(2)-action on Pold(C2) via (gp)(v) := p(g−1v). We obtain T-actions by restriction.
These choices imply that the T-equivariant Chern class of C2 is cT(C2) = (1−a)(1− b), i.e. the
weights of C2 are −a and −b. Also cT

(
Pold(C2)

)
=
∏d

i=0

(
1+ ia+ (d− i)b

)
, i.e. the weights of

Pold(C2) are db, a+ (d− 1)b, . . . , da.
The standard action of GL(2) on C2 induces an action on P(C2). Its restriction to T has

fixed points ⟨e1⟩ and ⟨e2⟩ for C2 = ⟨e1, e2⟩. We will need the equivariant Euler classes of the
tangent spaces of these fixed points:

eT
(
T⟨e1⟩P(C2)

)
= eT

(
Hom(⟨e1⟩, ⟨e2⟩)

)
= (−b)− (−a) = a− b, eT

(
T⟨e2⟩P(C2)

)
= b− a.

With these choices the formulas are nicer. We pay the price in the proof of Theorem 2.2.5,
where the signs will change several times.

2.3.3. The twisted class. The results of this section are based on [FNR05, §6.]. A special
case of the twisted class appeared earlier in [HT84] under the name of squaring principle.

As Ỹ = Y λ′(d
′)(Pold

′
(C2)⊗Polm(C2/γ)) can be defined as a bundle associated to a principal

GL(2) × GL(1)-bundle using the ρ̃-action on Y λ′(d
′), we can—using the universal property of

the equivariant class—compute its cohomology class [Ỹ ⊂ E] from [Y λ′(d
′)]GL(2)×GL(1).

For our representation ρ : GL(2) → GL
(
Pold

′
(C2)

)
and invariant subvariety Yλ′(d

′) ⊂
Pold

′
(C2) it is possible to calculate [Y λ′(d

′)]GL(2)×GL(1) from [Y λ′(d
′)]GL(2).

More generally, let us say that a representation ρ : G → GL(V ) of a complex reductive
group G contains the scalars if there is a homomorphism φ : GL(1) → G and a positive integer
d such that

(6) ρ (φ(s)) = sd IdV .

For such φ, G has a maximal complex torus Tr ⊂ G with Im(φ) ⊂ Tr and φ : GL(1) → Tr ∼=
GL(1)r can be written as φ(s) = (sw1 , . . . , swr) for some integers wi. For our representation
Pold

′
(C2), we can choose w1 = w2 = −1 and d = d′.

In this thesis we are only concerned with group actions of the general linear group G =
GL(r), in which case we can—without limiting generality—restrict those actions to a maximal
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2.3. PROOF OF THE RECURSION FORMULA 13

complex torus i : Tr ∼= GL(1)r ↪→ G. We choose ai := c1
(
ETr×πiC

)
as generators of H∗(BTr),

where the homomorphism πi : Tr → GL(1) is the projection to the i-th factor. This is the
most common choice for generators. Compared with the conventions of Section 2.3.2, we have
a = −a1 and b = −a2.

By the splitting principle the induced map i∗ : H∗(BGL(r);Z) → H∗(BTr;Z) is an iso-
morphism onto its image H∗(BTr;Z)Sr ∼= Z[a1, . . . , ar]Sr such that i∗ [Y ]G = [Y ]T for any
G-invariant subset Y ⊂ V .

For a general connected Lie group G—by the Borel theorem—the analogous isomorphism
holds with rational coefficients onto H∗(BT,Q)W where T is a real maximal torus of G and W
is the Weyl group of G. This implies that the results of this section can be easily generalized
to connected Lie groups.

For the following discussion it will be convenient to keep track of not only the groups acting
but the actions themselves. For this reason, the G-equivariant class of a closed subvariety
Y ⊂ V invariant under the G-action ρ : G→ GL(V ) will be denoted by [Y ]ρ.

Proposition 2.3.6. Suppose that the representation ρ : GL(r) → GL(V ) contains the
scalars as above. If Y ⊂ V is a ρ-invariant closed subvariety, then it is also invariant for the
scalar extension ρ̃ (see Definition 2.3.3), and

[Y ]ρ̃(a1, . . . , ar, x) = [Y ]ρ(a1 +
w1

d
x, . . . , ar +

wr
d
x),

where [Y ]ρ ∈ H∗
GL(r)

∼= Z[a1, . . . , ar]Sr and H∗
GL(1)

∼= Z[x] such that x = c1
(
EGL(1)×1GL(1)

C
)
.

Proof. We can restrict the GL(r)-action to the maximal torus Tr without losing informa-
tion. We use the same notation ρ for the restriction to Tr.

Let σ : Tr×GL(1) → Tr and ψ : Tr×GL(1) → Tr×GL(1) denote the homomorphisms

σ(t1, . . . , tr, s) = φ(s) · (td1, . . . , tdr) = (sw1td1, . . . , s
wrtdr),

and
ψ(t1, . . . , tr, s) = (td1, . . . , t

d
r , s

d).

Then (6) and the definition of ρ̃ imply that ρ ◦ σ = ρ̃ ◦ψ. Equivariant cohomology is functorial
in te G variable. This means that for any ρ-invariant closed subvariety Y ⊂ V we have
ψ∗[Y ]ρ̃ = σ∗[Y ]ρ.
Since σ∗(ai) = dai + wix, ψ∗(ai) = dai and ψ∗(x) = dx with ai, x chosen as above, for [Y ]ρ̃ ∈
H∗

Tr ×GL(1)
∼= Z [a1, . . . , ar, x] we have

[Y ]ρ̃(da1, . . . , dar, dx) = [Y ]ρ(da1 + w1x, . . . , dar + wrx).

Since [Y ]ρ̃ and [Y ]ρ are homogeneous polynomials of the same degree—the codimension c of
Y ⊂ V—, we can divide by dc, which implies the proposition. □

The universal property of the equivariant class [Y ]ρ̃ immediately implies

Corollary 2.3.7. Let A = P ×ρ V → M for some principal GL(r)-bundle P → M ,
suppose that the representation ρ : GL(r) → GL(V ) contains the scalars as above and Y ⊂ V is
a ρ-invariant closed subvariety. Let L → M a line bundle. Then for the subvariety Y (A ⊗ L)
defined in Definition 2.3.3 we have

[Y (A⊗ L) ⊂ A⊗ L] = [Y ]ρ(α1 +
w1

d
ξ, . . . , αr +

wr
d
ξ),

where [Y ]ρ ∈ H∗
GL(r)

∼= Z[a1, . . . , ar]Sr , α1, . . . , αr and ξ are the Chern roots of P and L.
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2.3. PROOF OF THE RECURSION FORMULA 14

Proof. Using the splitting principle, we can replace P with a principal Tr-bundle. Indeed,
we have the splitting manifold M̂ := Fl(P ×GL(r) Cr) with the property that the projection
p : M̂ → M induces an injective homomorphism p∗ : H∗(M) → H∗(M̂) and p∗P can be
reduced to a principal Tr-bundle. We can also pull back the bundles A and L to M̂ . Therefore,
in the rest of the proof let P →M denote a principal Tr-bundle.

As Y (A⊗L) = (P×ML
×)×ρ̃Y—by the universal property of [Y ]ρ̃ and Proposition 2.3.6—we

have

[Y (A⊗ L) ⊂ A⊗ L] = κ̃∗ [Y ]ρ̃ = κ̃∗
(
[Y ]ρ

(
a1 +

w1

d
x, . . . , ar +

wr
d
x
))
,

where κ̃ : M → B (Tr×GL(1)) = BTr×BGL(1) is the classifying map of P ×M L×. We
complete the proof by noticing that κ̃∗ai = αi and κ̃∗x = ξ. □

Corollary 2.3.8. Let ρ : T → GL(V ) be a representation of the torus T = Tr that contains
the scalars, and Y ⊂ V be a ρ-invariant closed subvariety. Let L′ → M ′ be a T-line bundle
over the T-space M ′. Then V ⊗ L′ → M ′ is also a T-vector bundle via the diagonal action δ.
Then for the T-invariant subvariety Y (V ⊗ L′) we have

[Y (V ⊗ L′) ⊂ V ⊗ L′]δ = [Y ]ρ

(
a1 +

wi
d
cT1 (L

′), . . . , ar +
wr
d
cT1 (L

′)
)
,

where [Y ]ρ ∈ H∗
T
∼= Z[a1, . . . , ar] and cT1 (L′) ∈ H∗

T(M
′) is the T-equivariant first Chern class of

L′.

Proof. Recall from Section 2.2.1 that we can approximate E T → BT with

P := (CN \ 0)r → P(CN)r,

and for β : P ×T M
′ → BTM

′ we have

β∗[Y (V ⊗ L′) ⊂ V ⊗ L′]δ = [P ×δ

(
Y (V ⊗ L′)

)
⊂ P ×δ (V ⊗ L′)].

For M := P ×T M
′, A := p∗(P ×T V ) for the fibration p : M → P(CN)r, and L := P ×T L

′

Corollary 2.3.7 implies that

[P ×δ

(
Y (V ⊗ L′)

)
⊂ P ×δ (V ⊗ L′)] = [Y (A⊗ L) ⊂ A⊗ L] = [Y ]ρ(α1 +

w1

d
ξ, . . . , αr +

wr
d
ξ),

where the αi’s are Chern roots of p∗P and ξ = c1(L). Using that β∗ai = αi, β∗cT1 (L
′) = ξ and

that β∗ is injective, we obtain the result. □

Now, we are able to compute [ Ỹ ⊂ E]: Set w1 = w2 = −1 and d = d′ corresponding to our
GL(2)-representation Pold

′
(C2). In accordance with our conventions a1 = −a and a2 = −b,

(7) c1(Pol
m(C2/γ)) = −m (−(a+ b)− c1(γ)) = m (a+ b+ c1(γ)) .

Then, by Corollary 2.3.8, [Ỹ ⊂ E] = [Y λ′(d
′)(Pold

′
(C2)⊗Polm(C2/γ)) ⊂ Pold

′
(C2)⊗Polm(C2/γ)]

can be obtained from [Y λ′(d
′)] by substituting

−a 7→ −a+ −1

d′
(
m(a+ b+ c1(γ))

)
and − b 7→ −b+ −1

d′
(
m(a+ b+ c1(γ))

)
,

or, multiplying by −1, by substituting

(8) a 7→ a+
m

d′
(
a+ b+ c1(γ)

)
and b 7→ b+

m

d′
(
a+ b+ c1(γ)

)
.
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2.3.4. The pushforward map π!. According to the Atiyah-Bott-Berline-Vergne (ABBV)
integral formula, for a cohomology class α ∈ H∗

T2

(
P1 × Pold(C2)

)
its pushforward along π :

P1 × Pold(C2) → Pold(C2) is

π!α =

∫
P1

α =
α|⟨e1⟩

e(T⟨e1⟩P1)
+

α|⟨e2⟩
e(T⟨e2⟩P1)

=
α|⟨e1⟩
a− b

+
α|⟨e2⟩
b− a

,

where ⟨e1⟩ and ⟨e2⟩ are the fixed points of the torus T2 of diagonal matrices acting on P1 =
P(C2), and −a, −b are the weights of ⟨e1⟩ and ⟨e2⟩, according to the conventions of Section
2.3.2.

If α ∈ H∗
GL(2)(P1) and q(a, b) := α|⟨e2⟩, then α|⟨e1⟩ = q(b, a), therefore

(9)
∫
P1

α = ∂(q).

Proof of Theorem 2.2.5. By (4) and (5),

[Y λ(d) ⊂ Pold(C2)] =
1

em
π!

[
Ỹ ⊂ P1 × Pold(C2)

]
=

1

em
e
((
P1 × Pold(C2)

)
/E
)
· [Ỹ ⊂ E],

where E = Pold
′
(C2) ⊗ Polm(C2/γ) → P1. The pushforward can be computed as above;

therefore, to complete the proof we have to determine the restriction of

α = e
((
P1 × Pold(C2)

)
/E
)
· [Ỹ ⊂ E]

to ⟨e2⟩. Restricting to ⟨e2⟩ amounts to substituting c1(γ) 7→ −b, hence using (7), we have

e(Pold(C2)/E)|⟨e2⟩ =
∏d

i=0

(
ia+ (d− i)b

)∏d′

i=0

(
m(c1(γ) + a+ b) + ia+ (d′ − i)b

)∣∣∣∣∣
c1(γ)7→−b

=
m−1∏
i=0

(
ia+ (d− i)b

)
,

and by (8),

(10) [Ỹ ⊂ E]|⟨e2⟩ =
[
Y λ′(d

′)
]
m/d′

,

where we used the notation of Theorem 2.2.5. □

Remark 2.3.9. Note that the left hand side of (10) can be also be interpreted as the
equivariant cohomology class of the T-invariant subvariety xmY λ′(d

′) of xm Pold
′
(C2):[

Ỹ ⊂ E
]∣∣∣

⟨e2⟩
=
[
xm Y λ′(d

′) ⊂ xm Pold
′
(C2)

]
T
,

where y, x ∈ Pol1(C2) denotes the dual basis of e1, e2.

2.4. Polynomiality of
[
Y λ(d)

]
Theorem 2.4.1. The classes

[
Y λ(d)

]
are polynomials in d:

[
Y λ(d)

]
∈ Q[c1, c2, d].

Proof. We use the following well-known statement:

Lemma 2.4.2. Suppose that q(x) is a rational function, such that q(d) is an integer for all
d >> 0 integers. Then q(x) is a polynomial.
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The lemma can be proved by induction on the degree of q(x): Notice that q(x + 1)− q(x)
has the same property but smaller degree than q(x).

We prove the theorem by induction on the length of the partition λ using Theorem 2.2.5.
Suppose that we already know that

[
Y λ′(d

′)
]

is a polynomial in d′ = d−m. Then all the coeffi-
cients (of the monomials aibj) of

[
Y λ′(d−m)

]
m/(d−m)

are rational functions. These coefficients
are also integers for d >> 0, since, by (10),

[
Y λ′(d−m)

]
m/(d−m)

is an equivariant cohomology
class of an invariant subvariety. Then Lemma 2.4.2 implies that the class

[
Y λ′(d−m)

]
m/(d−m)

is a polynomial in d. The class e(Pold(C2)/E)|⟨e2⟩ =
∏m−1

i=0

(
ia+(d−i)b

)
is clearly a polynomial

in d, and the divided difference operator preserves polynomiality in d. □

Using Proposition 2.2.3, we see that Theorem 2.4.1 is equivalent to

Theorem 2.4.3. The Plücker numbers Plλ;i(d) for 0 ≤ i ≤ |λ̃| and i ≡ |λ̃| (mod 2) are
polynomials in d: there is a unique polynomial p(d) such that Plλ;i(d) = p(d) for d ≥ |λ|.

Remark 2.4.4. By definition, these polynomials have integer values for d >> 0, therefore
for every integer.

2.4.1. The leading term of
[
Y λ(d)

]
. The asymptotic behaviour of the classes

[
Y λ(d)

]
is determined by the largest d-degree parts. Using the same inductive argument, we can find
out what these d-leading terms are.

Theorem 2.4.5. For any λ = (2e2 , · · · ,mem), the top d-degree part of
[
Y λ(d)

]
is

1∏m
i=2 ei!

hλ̃d
|λ|,

where hν is the complete symmetric polynomial corresponding to the partition ν = (ν1, . . . , νk):
hν =

∏
hνi with hi the i-th complete symmetric polynomial in {a, b}.

Proof. First, notice that
[
Y ∅(d)

]
= 1, proving the codimension 0 case.

Now, let λ = (2e2 , · · · ,mem) and consider the divided difference formula of Theorem 2.2.5.
Using the notations from the previous proof, the induction hypothesis says that the d-leading
term of

[
Y λ′(d)

]
is

1∏m−1
i=2 (ei!) (em − 1)!

hλ̃′d
|λ|−m.

The shifted class
[
Y λ′(d−m)

]
m/(d−m)

has the same d-leading term, in particular, it remains
symmetric. The largest d-degree part of e(Pold(C2)/E)|⟨e2⟩ =

∏m−1
i=0

(
ia + (d − i)b

)
is dmbm,

hence the d-leading term of
[
Y λ(d)

]
is

1

em

1∏m−1
i=2 (ei!) (em − 1)!

hλ̃′d
|λ|−md

m(bm − am)

b− a
=

1∏m
i=2 ei!

hλ̃′hm−1d
|λ| =

1∏m
i=2 ei!

hλ̃d
|λ|.

□

This description of the leading term immediately implies that

Theorem 2.4.6. The polynomial
[
Y λ(d)

]
∈ Q[c1, c2][d] has d-degree |λ|.
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2.4.2. Plλ;|λ̃| and d-degrees of Plücker numbers. The recursive argument in Theorem
2.2.5 can also be used to calculate Plλ;|λ̃| for an arbitrary partition λ:

Theorem 2.4.7. Let λ = (2e2 , · · · ,mem) be a partition without 1’s. Then

Plλ;|λ̃| = coef
(
s|λ̃|,

[
Y λ(d)

] )
=

1∏m
i=2 ei!

d(d− 1) · · · (d− |λ|+ 1),

in other words, for n ≥ |λ̃| + 2 we calculated the number of λ-lines for a generic degree d
hypersurface in P(Cn) through a generic point of P(Cn).

Proof. We use induction on |λ|. Write the restriction of the twisted class as

(11)
[
Y λ′(d

′)
]
m/d′

=

|λ̃′|∑
t=0

(m
d′
a
)t
qt(a, b, d

′),

where qt ∈ Q [a, b, d′] is symmetric in a, b. Note that q0 = [Yλ′(d
′)].

As m ≥ 2
m−1∏
i=0

(
ia+ (d− i)b

)
= d(d− 1) . . . (d−m+ 1)bm + ab · p(a, b, d)

for some p ∈ Z[a, b, d]. Then

[
Y λ(d)

]
=

1

em
∂

([
Y λ′(d

′)
]
m/d′

m−1∏
i=0

(
ia+ (d− i)b

))
=

1

em
∂

 |λ̃′|∑
t=0

((m
d′
a
)t
qt(a, b, d

′)

)(
d(d− 1) . . . (d−m+ 1)bm + ab · p(a, b, d)

) =

1

em
∂
(
q0(a, b, d

′) · d(d− 1) . . . (d−m+ 1)bm + ab · r
)
=

1

em

[
Y λ′(d

′)
]
d(d− 1) . . . (d−m+ 1)∂(bm) +

1

em
ab · ∂

(
r
)

for some r ∈ Q [a, b, d]. Using the induction hypothesis,[
Y λ′ (d

′)
]
=

1∏m−1
i=0 (ei!)(em − 1)!

(d−m)(d−m− 1) . . . (d−m− |λ′|+ 1)s|λ̃′| + . . . ,

and that s|λ̃′|∂(b
m) = s|λ̃′|sm−1 = s|λ̃| is the only Schur polynomial not divisible by ab, we get

the result. □

Note in particular, that the d-degree of Plλ,|λ̃| reaches |λ|, the highest possible by Theorem
2.4.6. The idea of writing

[
Y λ′(d

′)
]
m/d′

as in (11) can be carried further to calculate the exact
d-degrees of all Plücker numbers:

Theorem 2.4.8. Let λ1 be the largest number in the partition λ. Then

deg
(
Plλ;|λ̃|−2j(d)

)
=

{
|λ| if j ≤ |λ̃| − λ1 + 1

|λ| − (j − |λ̃|+ λ1 − 1) if j > |λ̃| − λ1 + 1
.

In other words, Plλ;|λ̃|−2j(d) has degree |λ| for j = 0, . . . , |λ̃| − λ1 + 1, then by increasing j
by one, the degree drops by one.

The proof—which is straightforward but laborious—can be found is Appendix A.2.
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2.5. THE CLASS OF m-FLEXES 18

Example 2.4.9. For λ = (10, 2, 2) we have |λ| = 14, |λ̃| = 11, λ1 = 10 and |λ̃| −λ1+1 = 2,
implying

deg
(
Pl10,2,2;11(d)

)
= deg

(
Pl10,2,2;9(d)

)
= deg

(
Pl10,2,2;7(d)

)
= 14,

and
deg

(
Pl10,2,2;5(d)

)
= 13, deg

(
Pl10,2,2;3(d)

)
= 12, deg

(
Pl10,2,2;1(d)

)
= 11.

If λ1 is not much bigger than the other λi, exactly if λ1 ≤ ⌈|λ̃|/2⌉ + 1, then all Plücker
numbers have degree |λ|. We saw this in Example 2.1.2 and 2.1.5 for the bitangents: both Pl2,2;0
and Pl2,2;2 have degree |λ| = 4. A slightly bigger example is λ = (4, 3, 2) where all Plücker
numbers have degree |λ| = 9.

2.5. The class of m-flexes

This is a family of Plücker problems where closed formulas can be given. The formula for
the equivariant classes

[
Y m(d)

]
were already computed in [Kir84], and more explicitely in

[FNR06, Ex. 3.7 (4)]. However, deduction of the corresponding Plücker numbers given below
is new.

Using (2), we can write
[
Y m(d)

]
= ∂

(∏m−1
i=0

(
ia+ (d− i)b

))
in Schur basis:

m−1∏
i=0

(
ia+ (d− i)b

)
=

m−1∏
i=0

(
i(a− b) + db

)
= (db)m

m−1∏
i=0

(
1 + i

a− b

db

)

=
m−1∑
k=0

σk(1, 2, . . . ,m− 1)(a− b)k(db)m−k,

where σk denotes the k-th elementary symmetric polynomial. By definition, we have a connec-
tion with the Stirling numbers of the first kind:

σk(1, 2, . . . ,m− 1) =

[
m

m− k

]
.

Almost by definition, we have

∂
(
aibm−i) = sm−i−1,i,

where we use Schur polynomials indexed by vectors of integers. Using the straightening law,
we can restrict ourself to Schur polynomials indexed by partitions:

∂
(
aibm−i) ={sm−i−1,i if 2i < m

−si−1,m−i if 2i > m
,

and ∂ (aibi) = 0.
This implies that

Theorem 2.5.1. For m ≥ 2i+ 1 the coefficient of dm−ksm−i−1,i in
[
Y m(d)

]
is

coef
(
dm−ksm−i−1,i,

[
Y m(d)

] )
=

(−1)k+i
(
k

i

)[
m

m− k

]
if i ≤ k < m− i(

(−1)k+i
(
k

i

)
− (−1)k+m−i

(
k

m− i

))[
m

m− k

]
if m− i ≤ k < m.

C
E

U
eT

D
C

ol
le

ct
io

n



2.5. THE CLASS OF m-FLEXES 19

Note that adding up the above coefficients for i = 0,

Plm;m−1 = coef(sm−1,
[
Y m(d)

]
) =

m−1∑
k=0

(−1)k
[

m
m− k

]
dm−k = d(d− 1) . . . (d−m+ 1),

we get back Theorem 2.4.7 in the λ = (m) special case. In other words,

Proposition 2.5.2. For a generic degree d hypersurface in P(Cn), the number of (n−1)-flex
lines through a generic point of P(Cn) is d(d− 1) · · · (d− n+ 2).

2.5.1. Enumerative consequences. Specializing Theorem 2.5.1 to m = 2i+1, we obtain

coef
(
dm−ksi,i,

[
Y m(d)

] )
= (−1)k+i

(
k + 1

i+ 1

)[
2i+ 1

2i+ 1− k

]
for k = i, i+ 1, . . . ,m− 1, using the identity

(
k
i

)
+
(
k
i+1

)
=
(
k+1
i+1

)
. In other words,

Proposition 2.5.3. The number of m = 2n− 3-flexes to a degree d hypersurface in P(Cn)
is

Plm(d) =
n−1∑
u=1

(−1)u+n+1

[
m
u

](
m− u+ 1

n− 1

)
du.

In particular, for d = m we obtain

Theorem 2.5.4. A generic degree d = 2n− 3 hypersurface in P(Cn) possesses
n−1∑
u=1

(−1)u+n+1

[
d
u

](
d− u+ 1

n− 1

)
du

lines which intersect the hypersurface in a single point.

For n = 3 it says that a generic cubic plane curve has 9 flexes. For n = 4 we obtain the
classical result that a generic quintic has 575 lines which intersect the hypersurface in a single
point (see e.g. [EH16, Thm. 11.1]). For n = 5, 6, 7, 8, 9 we get

99715, 33899229, 19134579541, 16213602794675, 19275975908850375.

2.5.2. Lines on a hypersurface. After discovering Theorem 2.5.4, we found a formula
of Don Zagier [GM08, p. 26] on the classical problem of counting lines on hypersurfaces.
Comparing his formula with Theorem 2.5.4 shows a surprisingly simple connection between the
two problems. In this section we prove this connection directly and we also generalize it. As a
byproduct, we obtain a new proof of Zagier’s result.

The Fano variety Ff of lines on a degree d hypersurface Zf ⊂ P(Cn+1) is the zero locus of
the section σf : Gr2(Cn+1) → Pold(S). Therefore, for a generic f we have[

Ff ⊂ Gr2(Cn+1)
]
= e
(
Pold(S)

)
.

For d = 2n− 3 we have finitely many lines, and to find their number we need to calculate the
coefficient of sn−1,n−1 in e

(
Pold(S)

)
=
∏d

i=0

(
ia+ (d− i)b

)
.

To establish the promised connection we need the following

Proposition 2.5.5. Written in Chern roots we have

e
(
Pold(C2)

)
= dab

[
Y d(d)

]
.
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2.5. THE CLASS OF m-FLEXES 20

Proof. By basic properties of the divided difference, we have

(12)
[
Y d(d)

]
= ∂

(
d−1∏
i=0

(
ia+ (d− i)b

))
=

d−1∏
i=1

(
ia+ (d− i)b

)
∂(db) = d

d−1∏
i=1

(
ia+ (d− i)b

)
,

implying that
e
(
Pold(C2)

)
= dab

[
Y d(d)

]
.

□

In retrospect, this connection could have been known to the authors: The first appearance
of the factorized form (12) may be in [K0̋3]. It can also be obtained by the classical resolution
method.

Observation 2.5.6. For Schur polynomials in variables a, b we have

si+1,j+1 = absi,j

for all i ≥ j.

This observation together with Proposition 2.5.5 immediately implies

Corollary 2.5.7. Expressing e
(
Pold(C2)

)
and

[
Y d(d)

]
in Schur basis:

e
(
Pold(C2)

)
=

⌊(d+1)/2⌋∑
j=0

ujsd+1−j,j and
[
Y d(d)

]
=

⌊(d−1)/2⌋∑
j=0

vjsd−1−j,j

we have the identities uj+1 = dvj for j = 0, . . . , ⌊(d− 1)/2⌋ and u0 = 0.

If d = 2n− 3, the case un−1 = dvn−2 implies

Theorem 2.5.8. The number of lines on a generic degree d = 2n − 3 hypersurface in
P(Cn+1) is d times the number of hyperflexes to a generic degree d hypersurface in P(Cn).

Remark 2.5.9. If would be nice to have a geometric explanation of this connection. Igor
Dolgachev recommended to use cyclic coverings: let f(x1, . . . , xn) ∈ Pold(Cn) be generic and

f̃(x1, . . . , xn, xn+1) := f(x1, . . . , xn) + xdn+1

with d = 2n−3. Then the projection π : Zf̃ → P(Cn) has the following property: The preimage
of a hyperflex to Zf is the union of d lines on Zf̃ . The case of n = 3 is explained in [Dol12,
Ex 9.1.24]. It remains to be shown that for generic f the section σf̃ : Gr2(Cn+1) → Pold(S)
is transversal to the zero section and have no other zeroes. We will not pursue this approach
further.

Corollary 2.5.10 (Zagier’s formula). The number of lines on a generic degree d = 2n− 3
hypersurface in P(Cn+1) is

n−1∑
u=1

(−1)u+n+1

[
d
u

](
d− u+ 1

n− 1

)
du+1.

The identities uj+1 = dvj imply the following generalization of Theorem 2.5.8:

Theorem 2.5.11. Let d be any degree and choose n and 0 ≤ i ≤ d− 1 such that d− 1+ i =
2(n− 2). Then the number of lines on a generic degree d hypersurface in P(Cn+1) intersecting
a generic (i + 1)-codimensional projective subspace is d times the number of hyperflexes to a
generic degree d hypersurface in P(Cn) intersecting a generic (i + 1)-codimensional projective
subspace.
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2.6. Asymptotic behaviour of the Plücker number Plλ;i(d)

Theorem 2.4.6 implies that the Plücker numbers Plλ;i(d) are polynomials in d and have
degree at most |λ|. In this section we calculate the coefficient of d|λ| in Plλ;i(d) by relating it
to certain Kostka numbers.

This coefficient informs us about the asymptotic behaviour of the Plücker number Plλ;i(d) as
d tends to infinity, so we will call it the asymptotic Plücker number aPlλ;i. Theorem 2.4.8 shows
that for some i the polynomial Plλ;i can have degree less than |λ|. In these cases aPlλ;i = 0.
For example, the number of flexes is Pl3(d) = 3d(d − 2), so the coefficient of d3, aPl3 is zero.
More generally, Proposition 2.5.3 shows that degd(Plm(d)) = (m+1)/2, so the degree of Plλ(d)
can be much lower than |λ|.

Recall that Kostka numbers can be defined as coefficients of the Schur expansion of the
complete symmetric polynomials:

hν =
∑

Kµ,νsµ.

Then the leading term formula of Theorem 2.4.5 immediately implies

Theorem 2.6.1. Let λ = (2e2 , . . . ,mem) be a partition without 1’s and j ≤ ⌊|λ̃|/2⌋ a
nonnegative integer. Let n = |λ̃| − j + 2.Then

aPlλ;|λ̃|−2j =
K(n−2,j),λ̃∏m

i=2 ei!
.

In particular, from basic properties of the Kostka numbers (see e.g. [FH91, Exercise A.11.])
we obtain that

Corollary 2.6.2. The asymptotic Plücker number aPlλ is zero if and only if λ1 ≥ |λ̃|/2+2.

Note that this can also been easily deduced from Theorem 2.4.8.

Remark 2.6.3. Kostka numbers have an interpretation as solutions to linear Schubert
problems: Let n = |µ| − j + 2, then the Kostka number K(n−2,j),µ is the number of lines in
P(Cn) intersecting generic subspaces of codimension µ1 + 1, . . . , µk + 1 and n− j − 1.

For example, the number of 4-tangents is

Pl24(d) =
1

12
d(d− 7)(d− 6)(d− 5)(d− 4)(d3 + 6d2 + 7d− 30),

therefore aPl24 =
1
12

= 2
4!
, and this 2 can be interpreted as the solution of the famous Schubert

problem: how many lines intersect four generic lines in P3?

More generally, for λ = 22(n−2), we have
K(n−2)2,12(n−2) = C(n− 2),

where C(n) denotes the n-th Catalan number, e.g. the number of standard Young tableaux for
the 2-by-n rectangle. This implies

Proposition 2.6.4.

aPl22(n−2) =
C(n− 2)

(2n− 4)!
=

1

(n− 2)!(n− 1)!
.

Similarly, for λ = 3n−2—as K(n−2)2,2n−2 = R(n− 2)—we have

Proposition 2.6.5.
aPl3n−2 =

R(n− 2)

(n− 2)!
,

where R(n) is the n-th Riordan number (R(3) = 1, R(4) = 3, R(5) = 6, R(6) = 15, see OEIS
https: // oeis. org/ A005043 ).
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On the other hand, for λ = (n− 1, n− 1)—as K(n−2)2,(n−2)2 = 1—we have

Proposition 2.6.6.
aPln−1,n−1 =

1

2
,

2.7. Comparison with the classical non-equivariant method

The goal of this section is to build a bridge between the classical method of solving enu-
merative problems and the equivariant one.

2.7.1. The general setup. The classical method for computing the cohomology class of
a closed subvariety Z ⊂ X is to give a resolution φ : Z̃ → X of Z and compute φ!1. For a
general TλZf ⊂ Gr2(Cn), to find a resolution for which we can calculate this pushforward is
difficult.

Instead, we use equivariant cohomology classes that can be computed using equivariant
methods, such as localization and the ABBV integral formula. Then we write Z ⊂ X as a
locus of a sufficiently transversal section σ in

P ×G Y A = P ×G V

Z = σ−1 (P ×G Y ) X

⊆

⊆

σ

so we can use the universal property of the equivariant class [Y ⊂ V ]G to compute
[Z = σ−1 (P ×G Y ) ⊂ X].

However, if

(13)
E M × V V

M

φ

j π

is an equivariant fibered resolution of Y ⊂ V , then, by Lemma 2.3.5, not only [Y ⊂ V ]G =
π!eG (V/E) but also we can avoid using equivariant theory as from (13) we can derive a resolu-
tion of Z ⊂ X as follows. All the maps in diagram (13) are G-equivariant, so we can associate it
to the principal G-bundle P → X. Complete the resulting diagram with the associated vector
bundle p : M = P ×GM → X to get

E = P ×G E V = P ×G (M × V ) = p∗A A = P ×G V

M = P ×GM X

j π

p

σ̄=p∗σ σ .

It follows from the construction that σ̄ is transversal to E, hence p restricted to σ̄−1 (E) gives
a resolution of Z = σ−1 (P ×G Y ).

By Lemma 2.3.5, we get that

[Z ⊂ X] = p!e (V/E) .

Note that, to keep our formulas shorter, we use the same notation for a bundle and its injective
image.
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2.7.2. The case of m-flex lines. Our recursive method provides an equivariant fibered
resolution such as (13) for Y λ ⊂ Pold(C2) when λ = (m). In what follows, we work out the
details of the above general method for this case. For some m’s calculations are described in
[EH16, Ch. 11].

We recall the construction from Section 2.2.3: f ∈ Pold(Cn) defines a hypersurface Zf ⊂
P(Cn). It also induces a section

σf : X = Gr2(Cn) → A = Pold(S), σf (V ) := f |V ,
where S → Gr2(Cn) is the tautological bundle. We identified the variety of tangent lines of
type λ as

TλZf = σ−1
f (Yλ(d)).

Once we have
[
Y λ(d)

]
, we can get

[
TλZf ⊂ Gr2(Cn)

]
by substituting ci 7→ ci(S

∨) as in Section
2.2.

The covering map, described in Section 2.3.1, becomes a fibered resolution for λ = (m):

(14)
E = Pold

′
(C2)⊗ Polm(C2/γ) P(C2)× Pold(C2) Pold(C2)

P(C2)

φ

j π

.

Associate diagram (14) to the frame bundle P = Inj(C2, S) → X = Gr2(Cn) to get:

(15)
E = Pold

′
(S2)⊗ Polm(S2/S1) V = Pold(S2) = p∗ Pold(S) A = Pold(S)

M = Fl1,2 (Cn) Gr2(Cn)

j π

p

σ̄f=p
∗σf σf ,

where Si is the tautological bundle of rank i over the flag manifold Fl1,2(Cn) and d′ = d −m.
([EH16, Ch. 11] uses the notation G(1, n − 1) for the Grassmannian Gr2(Cn) and Ψ for the
flag manifold Fl1,2(Cn).)

As we explained in the previous section, if f is generic, then
[
TmZf ⊂ Gr2(Cn)

]
= p!e(V/E),

where p : Fl1,2(Cn) → Gr2(Cn) denotes the projection. To calculate the pushforward we use
Proposition 2.7.1. [EH16, Prop. 10.3] Let D → X be a rank k bundle over a smooth X,

and p : P(D) → X its projectivization. Then all α ∈ H∗(P(D)) is of the form α =
∑
βip∗mi,

where β = c1(γ
∨ → P(D)) with γ → P(D) the tautological line bundle of P(D) and

p!α =
∑

si−k+1mi,

where 1/c(D) = s(D) = 1 + s1 + · · · is the Segre class of D (or, equivalently, si = si(cj(D
∨)),

the Schur polynomial in the Chern classes of the dual bundle D∨).

Namely, recall that Fl1,2(Cn) is the total space of the projective bundle p : P(S) → Gr2(Cn),
and S1 → Fl1,2(Cn) is the tautological line bundle of P(S).

To stay close to the notation of [EH16, Ch. 11], we choose generators of H∗(Fl1,2(Cn))

c1((S
2)∨) = σ1, c1((S

1)∨) = ζ :

S1 is a subbundle of S2 so S2/S1 is also a line bundle over Fl1,2(Cn) with c1((S
2/S1)∨) = η =

σ1 − ζ. Using these generators, we can apply Proposition 2.7.1 and calculate the pushforward
p! as

p!(ζ
aσb1) = sa−1σ

b
1, where s = 1 + σ1 + σ2

1 − σ2 + . . .
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is the Segre class of S. Note that we don’t distinguish between cohomology classes and their
pullbacks and hence, in the remainder of this Section, denote by σi the i-th Chern class of
S∨ → Gr2Cn. Be aware that in the earlier Sections we used ci for ci(S∨).

The Chern classes of the “bold” bundles can be obtained by substituting the corresponding
Chern roots:

c(V) =
d∏
i=0

(
1 + (d− i)ζ + iη

)
=

d∏
i=0

(
1 + (d− 2i)ζ + iσ1

)
.

Similarly,

c(E) =
d−m∏
i=0

(
1 +m(σ1 − ζ) + (d−m− i)ζ + i(σ1 − ζ)

)
,

implying that

c(V/E) =
m−1∏
i=0

(
1 + (d− i)ζ + iη

)
=

m−1∏
i=0

(
1 + (d− 2i)ζ + iσ1

)
and

e(V/E) = cm(V/E) =
m−1∏
i=0

(
(d− i)ζ + iη

)
=

m−1∏
i=0

(
(d− 2i)ζ + iσ1

)
.

The case m = 2:

p!c2(V/E) = p!
(
dζ((d− 2)ζ + σ1)

)
= d(d− 1)σ1 = d(d− 1)s1,

which is equivalent to the Plücker formula Pl2;1 of Example 2.1.4.

The case m = 3:

p!c3(V/E) = p!
(
dζ((d− 2)ζ + σ1)((d− 4)ζ + 2σ1)

)
= p!

(
2dζσ2

1 + d(3d− 8)ζ2σ1 + d(d− 2)(d− 4)ζ3
)

=d(d− 1)(d− 2)σ2
1 − d(d− 2)(d− 4)σ2 = d(d− 1)(d− 2)s2 + 3d(d− 2)s1,1,

whose coefficients are the Plücker numbers Pl3;2 and Pl3 of Example 2.1.2.

For a specific n, calculations can be simplified by the observation that ζn = 0, since S1 is
the pullback of the tautological bundle of P(Cn).

Remark 2.7.2. A different formula can be given for the pushforward map in the special
case of P1-bundles p : P(D) → X like Fl1,2(Cn) → Gr2(Cn). Let ζ, η denote the Chern roots of
the rank two bundle D∨ → X: ζ := c1(γ

∨ → P(D)) and η := c1((p
∗D/γ)∨ → P(D)). Then for

any polynomial q(ζ, η) ∈ H∗(P(D)) its pushforward along p : P(D) → X is given by

p!q(ζ, η) = ∂q.

This is easy to prove directly, but also follows from the equivariant pushforward formula (9).
The calculations above become simpler if we use the variables ζ, η and this pushforward formula.
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2.7.3. Incidence varieties. It is instructive to describe the section σ̄f and the subvariety
σ̄−1
f (E) ⊂ Fl1,2(Cn) of (15).

σ̄f ((W,L)) = f |W ∈ V(W,L) = Pold(W ),

hence
σ̄f ((W,L)) ∈ E(W,L) = Pold

′
(W )⊗ Polm(W/L)

is equivalent to having a basis x, y of W∨ such that x(L) = 0 and f |W = xmp(x, y) for some
polynomial p of degree d′ = d−m. Therefore

Im := σ̄−1
f (E) = {(W,L) : [W ] and Zf has a point of contact of order at least m at [L]},

which is the usual resolution of TmZf . We will call it the incidence variety.

Notice that the bundle E used in [EH16, Ch. 11] looks different than our V/E. They have
the same Chern classes, so the calculations are the same. They are probably also isomorphic.

Remark 2.7.3. The construction of the incidence variety can be generalized. Let m be an
element of λ, not necessarily equal to λ1. Denote by λ′ the partition λ minus m. Similarly to
what we had for the covering map constructed in Section 2.3.1, E has a subbundle

Yλ′ (E) = Yλ′
(
Pold

′
(S2)⊗ Polm(S2/S1)

)
corresponding to invariant subvariety Yλ′(d′) ⊂ Pold

′
(C2).

Choose a generic f ∈ Pold(Cn). It induces a section σ̄f : Fl1,2(Cn) → V = Pold(S2). Then
σ̄−1
f

(
Y λ′(E)

)
can be identified with the incidence variety Iλ′;m of m-flex points and λ-lines for

f . Therefore, by Lemma 2.3.5 and Corollary 2.3.7,

[Iλ′;m ⊂ Fl1,2] = e(V/E) ·
[
Y λ′(E) ⊂ E

]
and [

Y λ′(E) ⊂ E
]
=
[
Y λ′(d

′)
] (
η +

m

d′
η, ζ +

m

d′
η
)
,

where we substitute into the equivariant class
[
Y λ′(d

′)
]

expressed in Chern roots a, b, see
Section 2.3.2.

Since p|Iλ′;m is an em to 1 branched covering of TλZf , we can calculate its cohomology class:[
TλZf ⊂ Gr2(Cn)

]
=

1

em
p!

(
e(V/E) ·

[
Y λ′(E) ⊂ E

] )
.

This is the non-equivariant version of the proof of Theorem 2.2.5. Notice that Iλ′;m is not
smooth in general.

Example 2.7.4. For λ = (2, 2) the class of the incidence variety I2;2 of bitangent points
and bitangents is

[I2;2 ⊂ Fl1,2(Cn)] =e (V/E)
[
Y 2 (E) ⊂ E

]
=

1∏
i=0

(
(d− i)ζ + iη

)
·
[
Y 2(d− 2)

](
η +

2

d− 2
η, ζ +

2

d− 2
η

)
=d(d− 3)(d+ 2)ζσ2

1 + d(d− 3)(d2 − 8)ζ2σ1 − 4d(d− 2)(d− 3)ζ3.

As its pushforward along p we get[
T2,2Zf ⊂ Gr2(Cn)

]
=
1

2
p! [I2;2 ⊂ Fl1,2] =

1

2
d(d− 1)(d− 2)(d− 3)σ2

1 + 2d(d− 2)(d− 3)σ2

=
1

2
d(d− 1)(d− 2)(d− 3)s2 +

1

2
d(d− 2)(d− 3)(d+ 3)s1,1,
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agreeing with (3).

2.8. Further enumerative problems

2.8.1. The universal hypersurface and Plücker numbers for linear systems. A
more general construction considers all hypersurfaces Zf at once. Consider the vector bundle

Au := Hom
(
L,Pold(S)

)
P
(
Pold(Cn)

)
×Gr2(Cn),

where L and S are the tautological bundles over P
(
Pold(Cn)

)
and Gr2 (Cn).

Au has a section

σ([f ], V )(f) : f 7→ f |V ,

the universal section. Applying the construction in Section 2.3.1 to Au ∼= Pold(S) ⊗ L∨

and GL(2)-invariant subsets Yλ(d) ⊂ Pold(C2) we get subbundles Yλ(Au). The universal sec-
tion is transversal to the subvarieties Y λ(Au) (see Example A.2.3). The cohomology classes[
σ−1(Y λ(Au))

]
are the source of answers for new enumerative problems and can be calculated

using Corollary 2.3.7 from the equivariant classes
[
Y λ(d)

]
expressed in Chern classes c1, c2 (see

Section 2.3.2) by substituting

c1 7→ c1 +
2

d
ξ, c2 7→ c2 +

1

d
ξc1 +

1

d2
ξ2,

where on the right hand side of these substitutions ci and ξ denote the Chern classes of the
duals of S and L respectively.

For example, [
σ−1(Y 2 (Au))

]
= d(d− 1)c1 + 2(d− 1)ξ.

Therefore 2d − 2, the coefficient of ξ, is the number of degree d curves in a pencil tangent
to a given line.

Similarly,

[σ−1(Y 3(Au))] =d(d− 1)(d− 2)c21 − d(d− 2)(d− 4)c2 + 3d(d− 2)ξc1 + 3(d− 2)ξ2

=d(d− 2)(d− 1)s2 + 3d(d− 2)s1,1 + 3d(d− 2)ξs1 + 3(d− 2)ξ2.

The coefficient of ξ2—the degree of the variety P
(
Y 3(d)

)
(See [FNR05, Cor. 6.4])—was

already calculated by Hilbert (for all Y λ(d)). The only new information is the coefficient of
ξs1, which for n = 3 is the number of lines that go through a point and are flex lines to a
member of a pencil of degree d curves. In other words, 3d(d− 2) is the degree of the curve in
the projective plane of lines that consists of those lines that are flexes to a member of a given
generic pencil.

2.8.2. m-flex points of λ-lines. The flag manifold Fl1,2(Cn) possesses another fibration
q : Fl1,2(Cn) → P(Cn). We call the q-image of the incidence variety Iλ′;m of Remark 2.7.3 the
variety of m-flex points of λ-lines. Since q : Iλ′;m → q(Iλ′;m) is generically one-to-one, we can
calculate its cohomology class by pushing forward [Iλ′;m] along q.
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Example 2.8.1. Let λ = (3, 2). Remark 2.7.3 with m = 3 and λ′ = (2) gives that for the
incidence variety I2;3 of flex points and (3, 2)-lines

[I2;3 ⊂ Fl1,2(Cn)] =e (V/E)
[
Y 2(E) ⊂ E

]
=dζ((d− 1)ζ + η)((d− 2)ζ + 2η) ·

[
Y 2(d− 3)

](
η +

3

d− 3
η, ζ +

3

d− 3
η

)
=dζ((d− 1)ζ + η)((d− 2)ζ + 2η) · (d− 3)(d− 4)

(
η +

3

d− 3
η + ζ +

3

d− 3
η

)
.

The fibration q : Fl1,2(Cn) → P(Cn) is isomorphic to the projective bundle P(Cn/γ) →
P(Cn), where γ → P(Cn) denotes the tautological bundle. Because of this description, we can
use Proposition 2.7.1 to calculate the pushforward q!:

(16) q!
(
ηaζb

)
= sa−n+2ζ

b, where s = 1− ζ

is the Segre class of Cn/γ and ζ = c1(γ
∨ → P(Cn)).

Notice that γ∨ → P(Cn/γ) corresponds to (S2/S1)∨ → Fl1,2(Cn) hence the use of η in (16)
is consistent with our earlier choice of generators of H∗(Fl1,2(Cn)).

Contrary to the fibration p : Fl1,2(Cn) → Gr2(Cn), the relative codimension of q depends
on n. For n = 4, the nonzero pushfowards are q!(η2) = 1 and q!(η

3) = −ζ, hence for a generic
degree d surface, the class of the curve consisting of the 3-flex points of the (3, 2)-lines is

q!
[
I2;3 ⊂ Fl1,2(C4)

]
=
[
q(I2;3) ⊂ P(C4)

]
= d(d− 4)(3d2 + 5d− 24)ζ2.

Similar calculation shows that for a generic degree d surface the cohomology class of the
curve consisting of the 2-tangent points of the (3, 2)-lines is[

q (I3;2) ⊂ P(C4)
]
= d(d− 2)(d− 4)(d2 + 2d+ 12)ζ2.

Example 2.8.2. The degree of the curve of 4-flex points on a surface is calculated in [EH16,
p. 399]. The calculation is essentially the same, so we don’t repeat it here.

2.8.3. m-flex points of λ-lines for a linear system. The previous two constructions
can be combined without difficulty.

Let λ = (λ′,m) with m not necessarily equal to λ1, and consider the vector bundle Vu =
Hom(L,V) → P

(
Pold(Cn)

)
× Fl1,2(Cn) and its subbundle

Eu = Hom (L,E) = Hom
(
L,Pold

′
(S2)⊗ Polm(S2/S1)

)
→ P

(
Pold(Cn)

)
× Fl1,2 (Cn) ,

where L and Si are the tautological bundles over P(Pold(Cn)) and Fl1,2(Cn).
Vu has a section

σ ([f ] , (W,L)) : f 7→ f |W .
Applying the construction in Section 2.3.1 to Eu

∼= Pold
′
(S2)⊗ Polm(S2/S1)⊗ L∨ and GL(2)-

invariant subsets Yλ′(d′) ⊂ Pold
′
(C2), we get subbundles Yλ′(Eu). The section σ is transversal

to these subbundles, hence the class of their pullbacks σ−1(Y λ′(Eu)) can be calculated, using
Lemma 2.3.5 and Corollary 2.3.7, as[

σ−1
(
Y λ′ (Eu)

)
⊂ P(Pold(Cn))× Fl1,2(Cn)

]
=
[
Y λ′ (Eu) ⊂ Vu

]
= e (Hom (L,V/E)) ·

[
Y λ′(d

′)
](
η +

1

d′
(ξ +mη), ζ +

1

d′
(ξ +mη)

)
,

where we substitute into the equivariant class
[
Y λ′(d

′)
]

expressed in Chern roots a, b, see
Section 2.3.2.

The variety σ−1
(
Y λ′(Eu)

)
can be identified with the universal incidence variety of m-flex

points and λ-lines for degree d hypersurfaces in P(Cn).
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Since the composition

P(Pold(Cn))× Fl1,2 (Cn) Fl1,2(Cn) P(Cn)
πFl q

restricted to σ−1
(
Y λ′ (Eu)

)
is generically one-to-one, the class of the image is q!πFl!

[
σ−1

(
Y λ′ (Eu)

)]
.

This class provides solutions to further enumerative problems aboutm-tangent points of λ -lines
in linear systems of hypersurfaces.

Example 2.8.3. To calculate the degree of the curve consisting of tangent points of bitan-
gent lines in a pencil of degree d curves, set λ = (2, 2), m = 2, λ′ = (2) and n = 3. Then the
class of the universal incidence variety is

(17)
[
σ−1

(
Y 2(Eu)

)
⊂ P(Pold(C3))× Fl1,2(C3)

]
= e
(
Hom(L,V/E)

)
·
[
Y 2(Eu) ⊂ Eu

]
= (dζ + ξ)(η + (d− 1)ζ + ξ) · (d− 3)

(
(d− 2)(η + ζ) + 2ξ + 4η

)
.

Restricting our attention to a generic pencil of degree d plane curves amounts to multiplying
(17) by ξN−1 where N = dim(Pold(C3)), while the pushforward along πFl gives the coefficient
of the volume form ξN . Therefore[
πFl
(
σ−1

(
Y 2(Eu)

))
⊂ Fl1,2(C3)

]
= (d+2)(d−3)η2+2(d−3)(d2+3d−2)ηζ+(d−3)(4d2−7d+2)ζ2.

Finally, Proposition 2.7.1 calculates the pushforward q! as in Section 2.8.2, and we get that the
degree of the curve of tangent points of bitangent lines is

(d− 3)(2d2 + 5d− 6),

in particular, for quintics the degree is 46.

Example 2.8.4. The degree of the curve of flex points in a pencil of degree d curves is
calculated e.g. in [EH16, p. 407].
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CHAPTER 3

Chern-Schwarz-MacPherson classes of coincident root strata and
varieties of λ-lines

3.1. A brief introduction to the (equivariant) Chern-Schwartz-MacPherson class

The existence of Chern-Schwartz-MacPherson classes (CSM) of constructible functions
on complex algebraic varieties was conjectured by Eligne and Grothendieck and proved by
MacPherson ([Mac74]). Following [FR18], we prefer its cohomology counterpart we get by
applying the Poincaré duality. It provides a deformation of the cohomology fundamental class
of an algebraic variety. As we will see, it encodes finer numerical invariants of the variety than
its fundamental class. In what follows, we restrict our attention to embeddings of complex
varieties into a smooth variety M .

Our definition of the CSM class is due to Aluffi ([Alu06]): it is a motivic class for singular
cohomology H∗: By a motivic class for a complex oriented cohomology theory h∗ we mean an
additive morphism m mapping a constructible (finite union of locally closed subsets) U ⊂ M
to m(U) in a sense that it has the motivic property,

m(U ∪ V ⊂M) = m(U ⊂M) + m(V ⊂M)−m(U ∩ V ⊂M)

and a property we will call homology property,

f! m(U ⊂M) = m(f(U) ⊂ N)

for f : M → N a proper map that is an isomorphism when restricted to U ⊂ M . Sometimes,
if it is clear from the context, we will omit the ambient space from the notation. In particular,
m(M) will always denote m(M ⊂M).

As discussed in [FRW21], setting m(M) determines the motivic class. For example, for a
closed embedding i : X ⊂M of a smooth variety

m(X ⊂M) = i! m(X)

by the homology property. We extend this to embeddings of not necessarily closed smooth
varieties i : U ↪→M using a proper normal crossing extension ī of i:

Definition 3.1.1. Suppose f : U →M is a map of smooth varieties. Then a proper normal
crossing extension of f is a proper map f̄ : Y → M with an embedding j : U ↪→ Y satisfying
f = f̄ ◦ j such that the variety Y is smooth and the complement Y \ j(U) =

⋃s
k=1Dk is a

simple normal crossing divisor.

Such proper normal crossing extension always exists ([Web17, § 5]).

If for K ⊂ s = {1, 2, . . . , s} we set DK =
⋂
k∈K Dk and īK = ī|DK

, in particular ī∅ = ī, we
have

m(U ⊂M) =
∑
K⊂s

(−1)|K |̄iK ! m(DK).

Independence of the chosen extension follows from a refined version of the Weak Factorization,
as formulated in [Wlo09]. Finally, note that complex subvarieties admit stratifications with
smooth strata.

29
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3.1. A BRIEF INTRODUCTION TO THE (EQUIVARIANT) CHERN-SCHWARTZ-MACPHERSON CLASS 30

We define the CSM class mapping by setting cSM(M) = c(M) = c(TM) for every algebraic
manifold M . Then for every pair X ⊂M

cSM(X ⊂M) = [X] + · · ·+ χ(X)[∗],

which shows that we indeed got a deformation of the fundamental class. That the highest
degree term of cSM(X ⊂ M) is χ(X) times the class of a point [pt] ∈ H∗(M) is an immediate
consequence of the definition for closed embeddings of smooth varieties. In general, it can be
shown using the fact that for complex algabraic varieties the Euler characteristics is motivic
(see e.g. [Ful95]).

Choosing cSM(M) = c(TM) as the base case has the added benefit that the multiplicative
property of the total Chern class yields the same property of the CSM class:

(18) cSM(X1 ×X2 ⊂M1 ×M2) = cSM(X1 ⊂M1)× cSM(X2 ⊂M2).

Let us add here a further feature of motivic classes, the local property : If i : U ↪→ M is
open, then for any subvariety X ⊂M

(19) m(U ∩X ⊂ U) = i∗m(X ⊂M).

This is an easy consequence of the definition, but it will turn out to be very helpful is compu-
tations.

3.1.1. Divisor trick. Multiplicativity also implies that the CSM class of the zero locus
Z = σ−1(0) of a vector bundle E →M can be easily determined using the following fact:

Proposition 3.1.2. Let σ :M → E be a section of the vector bundle E, which is transversal
to the zero section. For Z := σ−1(0) we have

νZ⊂M ∼= E|Z ,

where νZ⊂M is the normal bundle of Z ⊂M .

This combined with the short exact sequence defining the normal bundle results in the
following formulas; we will refer to them as divisor trick :

(20) cSM(Z) =
c(TM)|Z
c(νZ⊂M)

=
c(TM)

c(E)

∣∣∣∣
Z

,

and if i : Z ↪→ M denotes the inclusion, then, by the adjunction property of the pushforward,
we also get

cSM(Z ⊂M) = i!c
SM(Z) = i!i

∗ c(TM)

c(E)
=
c(TM)

c(E)
i!1 =

c(TM)

c(E)
[Z ⊂M ] =

c(TM)

c(E)
e(E).

3.1.2. The Segre-Schwartz-MacPherson class. There is a variant of the CSM class,
the Segre-Schwartz-MacPherson class (SSM), we get by dividing with the CSM class of the
ambient space:

sSM(X ⊂M) =
cSM(X ⊂M)

c(M)
.

The SSM class may have non-zero components in infinitely many degrees, strictly speaking,
it is an element of the completion of H∗(M). We will not denote this completion.

For a closed embedding i : X ⊂M withX (andM) smooth sSM(X ⊂M) = i!c(TX)/c(TM) =
i!c(−νX⊂M), where c(−νX⊂M) denotes the inverse of the Chern class.

As a consequence, this Segre variant behaves well with respect to some suitable type of
transversal pullbacks: Let f : N → M be a map of smooth varieties and X ⊂ M a Whitney
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3.1. A BRIEF INTRODUCTION TO THE (EQUIVARIANT) CHERN-SCHWARTZ-MACPHERSON CLASS 31

stratified closed subvariety. Assume that f is transversal to the strata ofX. Then, see [Ohm16,
Prop. 3.8],

(21) sSM(f−1(X) ⊂ N) = f ∗sSM(X ⊂M).

3.1.3. Equivariant CSM and SSM classes. The equivariant version of Chern-Schwartz-
MacPherson classes for reductive linear groups was developed by Ohmoto ([Ohm04]). Again,
our preferred version is the cohomological equivariant CSM class of G-invariant subvarieties of
complex smooth G-varieties. These can be defined similarly to the non-equivariant case, as the
above construction can be carried out in the presence of a group action since, by Bierstone and
Milman ([BM95]), equivariant resolutions exist and the Weak Factorization can be realized in
an invariant manner.

Motivic, homology and local properties remain true in the equivariant setting. Multiplica-
tivity also holds: for Gi-invariant subvarieties Ui ⊂Mi,

(22) cSMG1×G2
(X1 ×X2 ⊂M1 ×M2) = cSMG1

(X1 ⊂M1)× cSMG2
(X2 ⊂M2),

or, if G1 = G2 = G, using the diagonal map G→ G×G,

(23) cSMG (X1 ×X2 ⊂M1 ×M2) = cSMG (X1 ⊂M1)× cSMG (X2 ⊂M2).

The following lemma, combined with the latter equation, will prove to be essential in our
calculations of CSM classes of affine varieties.

Lemma 3.1.3 (motivic calculus for CSM ). Let the torus T act on C by the weight a. Then
for the T-equivariant CSM classes we have

cSM(C ⊂ C) = 1 + a, cSM({0} ⊂ C) = e(C) = a, cSM(C \ {0} ⊂ C) = 1.

For example, for our T2-representation Pold(C2) and invariant subset ⟨xsyd−s⟩ \ {0} we get

cSM
(
⟨xsyd−s⟩ \ {0} ⊂ Pold(C2)

)
=

cSM
(
⟨xsyd−s⟩ \ {0} ⊂ ⟨xsyd−s⟩

)
·

d∏
t=0
t̸=s

cSM
(
{0} ⊂ ⟨xtyd−t⟩

)
=

1 ·
d∏
t=0
t̸=s

(ta+ (d− t)b) =
e
(
Pold(C2)

)
sa+ (d− s)b

.

Equivariant SSM classes in representations

sSMG (X ⊂ V ) :=
cSMG (X ⊂ V )

cSMG (V )

are especially important as they are universal for SSM classes of degeneracy loci ([Ohm16,
Theorem 3.13]):

First, suppose that P → M is a principal G-bundle and denote by κ : M → BG its
classifying map. Let A be a smooth G-variety. We can associate A to both principal G-bundles
P →M and EG→ BG. Denote by κ̂A : P ×G A→ EG×G A the lift of κ to the total spaces
of these associated bundles, and let

a := κ̂∗A : H∗
G(A) → H∗(P ×G A).

Proposition 3.1.4. Let X ⊂ A be G-invariant subvariety. Then

sSM (P ×G X ⊂ P ×G A) = a
(
sSMG (X ⊂ A)

)
.
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3.2. POLYNOMIAL BEHAVIOUR OF COEFFICIENTS IN cSM (Pold(Cn)) 32

If σ : M → P ×G A is a section of the associated bundle that is transversal to a Whitney
stratification of the subbundle P ×G X, then we can apply (21) to get

Corollary 3.1.5. Let X ⊂ A be a G-invariant closed subvariety of the smooth variety
A. Suppose that P → M is a principal G-bundle, and σ : M → P ×G A is a section of the
associated bundle that is transversal to a Whitney stratification of the subbundle P ×GX. Then

sSM(σ−1(P ×G X) ⊂M) = σ∗a
(
sSMG (X ⊂ A)

)
.

If A is a vector space, H∗
G(A)

∼= H∗
G, hence G-equivariant SSM classes of invariant subvari-

eties are G-characteristic classes. Similarly, σ∗ : H∗(P×GA) → H∗(M) is an isomorphism. Un-
der these identifications the composition σ∗a becomes κ∗, that is, the class sSM(σ−1(P ×GX) ⊂
M) can be obtained as sSMG (X ⊂ A) evaluated at the bundle P →M .

Moreover, note that a G-invariant Whitney stratification of X induces a Whitney stratifi-
cation of P ×G X.

3.1.4. Structure of the chapter. The main focus of this chapter is analogous to that
of Chapter 2: to investigate CSM classes of CRS and see how cSM(Yλ(d) ⊂ Pold(C2)) can
be used to gather further information about varieties of λ-lines of generic hypersurfaces. In
particular, we prove that the d-dependency of homogeneous {a, b}-degree f parts of cSM(Yλ(d))
is polynomial for large enough d’s: cSM(Yλ(d))f ∈ Q[a, b; d]S2 , the ring of polynomials that are
symmetric in variables a and b.

To prove the above polynomiality, we need to show that the CSM class of the ambient vector
space Pold(C2) also has this property. In Section 3.2 we investigate cSM(Pold(Cn)) for all n’s,
not necessarily 2. This is motivated by the fact that certain coefficients of these classes provide
solutions to a different kind of enumerative question: In Section 3.2.4, following [Man99], we
use cSM(Pold(Cn)) to examine degrees of varieties of hypersurfaces containing linear subspaces.

In Section 3.3 we take a slight detour to show how the characteristic polynomials and the
CSM classes of hyperplane arrangements are related. This can serve as an ilustration of the
motivic property, and will also be used to give a formula for cSM(Y∅(d)).

Section 3.4 is the CSM analog of Section 2.3: Using the same branched covering, we ar-
rive at a formula for cSM(Yλ(d)) that allows us to calculate its homogeneous degree f parts,
cSM(Yλ(d))f recursively.

In Section 3.5 we describe a fibered resolution that, combined with results from Section
3.3 for some Weyl type arrangements of hyperplanes, provides a non-recursive formula for
cSM(Y∅(d)). This section is independent from the rest of the chapter.

Next, we return to our main objective. Section 3.6 is devoted to the proof of the aforemen-
tioned polynomial property of cSM(Yλ(d))f . We list some our conjectures as well as unpublished
results of Balázs Kőműves about the threshold from where this polynomial dependence holds.

Finally, in Section 3.7 we turn back to generic hypersurfaces and see how CSM classes of
CRS can be used to calculate CSM classes of varieties of λ-lines. We introduce a non-degenerate
pairing on H∗(Gr2(Cn)), and use this to show that the class cSM(TλZf ⊂ Gr2(Cn)) is equivalent
to Euler characteristics of generic Schubert cell sections χ(TλZf ∩ Ωµ). This then implies that
these Euler characteristics also form a polynomial in the degree of the hypersurfaces.

3.2. Polynomial behaviour of coefficients in cSM(Pold(Cn))

The standard GL(n) action on Cn induces a GL(n)-representation on Pold(Cn) ∼= Symd(Cn)∨.
The weights of this representation are d1x1 + · · · + dnxn with

∑n
i=1 di = d, where xi = −ai =

−c1 (E Tn×πiC), see also Section 2.3.3. Using motivic calculus, we immediately see that the
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3.2. POLYNOMIAL BEHAVIOUR OF COEFFICIENTS IN cSM (Pold(Cn)) 33

GL(n)-equivariant Chern class is

(24) c(Pold(Cn)) =
∏

(d1,...,dn)
d1+···+dn=d

(1 + d1x1 + · · ·+ dnxn) .

Throughout this section we will consider the parameter n as fixed. Then for every d the
class c(Pold(Cn)) is a symmetric polynomial of degree d + 1 in variables x1, . . . , xn, hence can
be written in the Schur polynomial basis. Some of the coefficients in this Schur polynomial
basis have geometric interpretations, see Section 3.2.4, hence we are mostly interested in the
d-dependence of them.

However, d-dependence in the monomial symmetric basis seems to be easier to tackle,
therefore we will start by looking at the coefficients of monomials xH =

∏n
i=1 x

hi
i , and then

make the transition to the Schur polynomial basis. In particular, in Section 3.2.2 we will prove
that

Theorem 3.2.1. For every multi-index H = (h1, . . . , hn), the coefficients aH(d) of xH =∏n
i=1 x

hi
i in

c(Pold(Cn)) =
∏

(d1,...,dn)
d1+···+dn=d

1 + d1x1 + · · ·+ dnxn =
∑
H

aH(d)x
H

form a polynomial aH ∈ Q[d] whose leading term is

1

H!

(
1

n!

)|H|

dn|H|,

where H! = h1! . . . hn!.

We can subdivide c(Pold(Cn)) into n− 1 products
d∏

d1=0

· · ·
d−d1−···−di−1∏

di=0

. . .

d−d0−···−dn−2∏
dn−1=0

(1 + d1x1 + · · ·+ dn−1xn−1 + (d− d1 − · · · − dn−1)xn) .

This has the benefit of reducing the indices in (24) to a single di. The downside is that at each
product its terms contain the remaining “parameters” d, d1, . . . , di−1. In the following Section
3.2.1, to be able to treat all these n − 1 products in a universal way, we formulate a suitable
generalization of our situation. Results there will provide the induction step in the proof of
Theorem 3.2.1.

3.2.1. Polynomiality in certain one parameter products. Suppose that the formal
power series

P (d0, . . . , dr, t, x) =
∑
J

pJ(d0, . . . , dr, t)x
J ∈ Q [d0, . . . , dr, t] [[x]]

satisfies P (d0, . . . , dr, t, 0) = 1, where x = (x1, x2, . . . ) and we use the multi-index notation
xJ =

∏
i x

Ji
i . Let K : Nr+1 → N be a function on the “parameter space” and define

(25)
K(d0,...,dr)∏

t=0

P (d0, . . . , dr, t, x) =
∑
H

aH(d0, . . . , dr)x
H .

The goal of this section is to give a description of the coefficients aH(d0, . . . , dr), investigate
their polynomiality and possibly their degree. To make our formulas more concise, we sometimes
in this section abbreviate by d the sequence of “parameters” d0, . . . , dr.
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3.2. POLYNOMIAL BEHAVIOUR OF COEFFICIENTS IN cSM (Pold(Cn)) 34

Let us further introduce coefficients in the expansion

pJ(d, t) =
∑

m∈IP (J)

pJ,m(d)t
m,

where we assume that pJ,m(d) ̸= 0 for all m ∈ IP (J) . We are going to express aH(d) in terms
of these pJ,m(d)’s and substitutes of monomial symmetric polynomials

mλ(y0, y1, . . . , yK(d))
∣∣
yi=i

= mλ(y1, . . . , yK(d))
∣∣
yi=i

.

According to the following proposition such an expression can provide polynomiality:

Proposition 3.2.2. For each partition λ, there exists a polynomial Mλ ∈ Q[v] of degree
|λ|+ l(λ) such that for every v ≥ 0

(26) Mλ(v) = mλ(y1, . . . , yv)|yi=i ,
where, by definition, mλ(y1, . . . , yv) = 0 if l(λ) > v.

For λ = (1e1 , . . . , kek) the leading term of Mλ is

1

e1! . . . ek!

∏
i

(
1

λi + 1

)
v|λ|+l(λ) =

1

e1! . . . ek!

∏
i

vλi+1

λi + 1
.

E.g. for the partition λ = (2, 1, 1)

M(2,1,1)(v) =
1

720
v (v − 1) (v − 2) (v + 1)

(
30 v3 + 35 v2 − 11 v − 12

)
is divisible by v(v − 1)(v − 2) corresponding to the cases when v < l(λ).

Proof. For every λ = (1e1 , . . . , kek) the monomial symmetric polynomial mλ can be ex-
pressed as a polynomial of power sum symmetric polynomials pk:

mλ =
1

e1! . . . ek!
pλ +

∑
µ∈∂λ

cµpµ

for some cµ ∈ Q, where ∂λ denotes the set of partitions coming from λ with at least two of
its elements merged and pη = pη1 . . . pηl for η = (η1, . . . , ηl). The yi = i substitute of the RHS
is, e.g. by Faulhaber’s formula, a polynomial in v whose highest, |λ| + l(λ) degree part comes
from the λ summand and has leading term

1

e1! . . . er!

1∏
i(λi + 1)

v|λ|+l(λ).

□

For any exponent H ∈ N∞ denote by

P(H) =
{
J =

(
J1, J2, . . . , Jl(J)

)∣∣ 0 ̸= Js ∈ N∞,
∑
Js = H and J1 ≥ J2 ≥ . . .

}
the set of partitions of H, where ≥ denotes some (e.g. lexicographical) ordering of N∞. For
example,

P ((2, 0, 1, 0, . . . )) =
{
((2, 0, 1, 0, . . . )) ,

((2, 0, 0, 0, . . . ), (0, 0, 1, 0, . . . )) ,

((1, 0, 1, 0, . . . ), (1, 0, 0, 0, . . . )) ,

((1, 0, 0, 0, . . . ), (1, 0, 0, 0, . . . ), (0, 0, 1, 0, . . . ))
}
.

Vectors of size 1 will be important, let us denote by 1i in which the 1 is at the i-th place.
Define

µ(J) =
∏

ei!
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3.2. POLYNOMIAL BEHAVIOUR OF COEFFICIENTS IN cSM (Pold(Cn)) 35

for ei’s the multiciplities of vectors in J . For example,

µ (((1, 0, 0, 0, . . . ), (1, 0, 0, 0, . . . ), (0, 0, 1, 0, . . . ))) = 2!1! .

Finally, let
(l ↪→ [v]) = {f : {1, . . . , l} → {0, 1, . . . , v}| f injective} .

Using the above notations, we can express aH(d) as

(27) aH(d) =
∑

J∈P(H)

1

µ(J)

∑
c∈(l(J)↪→[K(d)])

l(J)∏
s=1

pJs(d, c(s))︸ ︷︷ ︸
J-contribution

.

To shorten our future formulas, let us extend definition (26) from partitions to (unordered)
tuples possibly containing zeros: For λ = (0e0 , 1e1 , . . . , kek) let

(28) Mλ(v) :=
1

e1!· · · ek!
∑

c∈(l(λ)↪→[v])

l(λ)∏
s=1

c(s)λs ,

where l(λ) =
∑k

i=0 ei denotes the length of the tuple. Note that

Mλ(v) =
(
v + 1− l(λ×)

)
. . . (v + 1− (l(λ)− 1))Mλ×(v)

holds for every v ≥ 0, where λ× stands for the nonzero, ordered part of λ, e.g. (1, 0, 0, 2, 0, 1)× =
(2, 1, 1). This shows that (28) is indeed a generalization of (26) with analogous leading term:

(29)
1

e1! . . . ek!

∏
i

(
1

λi + 1

)
v|λ|+l(λ) =

1

e1! . . . ek!

∏
i

vλi+1

λi + 1
.

Note, however, that contrary to what is the case for partitions in Proposition 3.2.2, for a general
tuple λ we only have

(30) Mλ(v) = 0 if v < l(λ)− 1.

Then for a fixed J ∈ P(E) we can write the corresponding J-contribution of (27) as

(31)
1

µ(J)

∑
c∈(l(J)↪→[K(d)])

l(J)∏
s=1

pJs(d, c(s)) =
1

µ(J)

∑
c∈(l(J)↪→[K(d)])

l(J)∏
s=1

∑
m∈IP (Js)

pJs,m(d)c(s)
m =

1

µ(J)

∑
c∈(l(J)↪→[K(d)])

∑
λ=(λ1,...,λl(J))
λs∈IP (Js)

l(J)∏
s=1

pJs,λs(d)c(s)
λs =

1

µ(J)

∑
λ=(λ1,...,λl(J))
λs∈IP (Js)

J∏
s=1

(pJs,λs(d))
∑

c∈(l(J)↪→[K(d)])

l(J)∏
s=1

c(s)λs =

1

µ(J)

∑
λ=(λ1,...,λl(J))
=(0e0 ,1e1 ,...,kek )

λs∈IP (Js)

e1! . . . ek!Mλ(K(d))

l(J)∏
s=1

pJs,λs(d)︸ ︷︷ ︸
λ−contribution

.

If e.g. K ∈ Q[d0, . . . , dr], then the substitutes Mλ(K(d0, . . . , dr)) will also be polynomials,
proving
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Proposition 3.2.3. Suppose that the formal power series P (d0, . . . , dr, t, x) ∈ Q[d0, . . . , dr, t][[x]]
satisfies P (d0, . . . , dr, t, 0) = 1, where x = (x1, x2, . . . ). Let

K(d0,...,dr)∏
t=0

P (d0, . . . , dr, t, x) =
∑
H

aH(d0, . . . , dr)x
H ,

where K(d0, . . . , dr) ∈ Q[d0, . . . , dr]. Then coefficients aH(d0, . . . , dr) ∈ Q[d0, . . . , dr].

We can use (31) to determine the degree of aH(d) by comparing for all J =
(
J1, . . . , Jl(J)

)
∈

P(H) and for all tuples λ = (λ1, . . . , λl(J)), λs ∈ IP (Js) the degrees of the corresponding
λ-contributions,

(32) deg

Mλ(K(d))

l(J)∏
s=1

pJs,λs(d)

 (29)
= deg(K)(l(J) + |λ|) +

l(J)∑
s=1

deg(pJs,λs) =

l(J)∑
s=1

deg(K)(1 + λs) + deg(pJs,λs).

Note that by “degree” we mean the total degree. We use degz or z-degree for degree with
respect to a specific variable z.

In the cases of our interest we will have a particularly simple relationship between degree
of the coefficients pJ(d, t) and aH(d):

Proposition 3.2.4. Suppose that the formal power series

P (d0, . . . , dr, t, x) =
∑
J

pJ(d0, . . . , dr, t)x
J ∈ Q[d0, . . . , dr, t][[x]]

satisfies P (d0, . . . , dr, t, 0) = 1, where x = (x1, x2, . . . ). Let L(d0, . . . , dr) be a linear combination
of the di’s and define

L(d0,...,dr)∏
t=0

P (d0, . . . , dr, t, x) =
∑
H

aH(d0, . . . , dr)x
H .

If there is linear form W : Z∞ → Z such that for every exponent J ∈ N∞, deg(pJ) ≤ W (J),
then

i) deg(aH) ≤ W (H) + |H|,
ii) the degree W (H) + |H| part of aH comes from the

L(d0,...,dr)∏
t=0

(
1 +

∑
i≥1

p1i(d0, . . . , dr, t)xi

)
summand of

∏
t P (d0, . . . , dr, t, x).

Proof. Let pJ(d0, . . . , dr, t) =
∑

m pJ,m(d0, . . . , dr)t
m as usual. The condition deg(pJ) ≤

W (J) and the linearity of L imply by (32) that for every exponent H = (h1, . . . , hn) and every
J ∈ P(H)

deg(J-contribution) ≤ max
λ=(λ1,...,λl(J))

l(J)∑
s=1

1 + λs + deg (pJs,λs) ≤

max
λ=(λ1,...,λl(J))

l(J)∑
s=1

1 + λs +W (Js)− λs = l(J) +W (H) ≤ W (H) + |H|,
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showing i). P(H) has a single partition

Jmax =
(
1h11 , . . . , 1

hn
n

)
of length |H|, and hence for which the degree of its contribution can reach W (H) + |H|. This
proves ii). □

3.2.2. Coefficients of c(Pold(Cn)) in the monomial symmetric basis. In this section
we complete the proof of Theorem 3.2.1 about the d-dependence of coefficients of c(Pold(Cn))
in the monomial symmetric polynomial basis.

Recall that c(Pold(Cn)) can be written as
d∏

d1=0

. . .

d−d1−···−di−1∏
di=0

. . .

d−d0−···−dn−2∏
dn−1=0

1 + d1x1 + · · ·+ dn−1xn−1 + (d− d1 − · · · − dn−1)xn︸ ︷︷ ︸
Pn−i(d,d1,...,di−1,x)

.

As mentioned above, the proof relies on the iterative application of the approach described in
Section 3.2.1: Let

P0(d, d1, . . . , dn−1, x) = 1 + d1x1 + · · ·+ dn−1xn−1 + (d− d1 − · · · − dn−1)xn

=
∑
H

a0,H(d, d1, . . . , dn−1)x
H .

Then for each i = 1, . . . , n− 1

Pi(d, d1, . . . , dn−i−1, x) =

d−d1−···−dn−i−1∏
dn−i=0

Pi−1(d, d1, . . . , dn−i, x)

=
∑
H

ai,H(d, d1, . . . , dn−i−1)x
H ,

(33)

is of the form (25) with t = dn−i, P = Pi−1, parameters d, d1, . . . , dn−i and K(d, d1, . . . ) =
d − d1 − · · · − dn−i−1, the upper bound of the product. Therefore, the inductive usage of
Proposition 3.2.3 gives that coefficients ai,H(d, d1, . . . , dn−i−1) ∈ Q[d, d1, . . . , dn−i−1].

Since deg(a0,J) = |J |, successive application of Proposition 3.2.4 also shows that

deg(ai,H(d)) ≤ i|H|+ |H| = (i+ 1)|H|.
The last, i = n− 1 step proves that aH(d) = an−1,H(d) ∈ Q[d] and that deg(aH(d)) ≤ n|H|.

To prove that this degree estimate is sharp, we calculate, by a series of reductions, that for
every exponent H = (h1, . . . , hn)

aH(d) =
1

H!

(
1

n!

)|H|

dn|H| + (lower degree terms).

Throughout our calculations we will use that for every n ≥ 1

(34)
d∑

d1=0

d−d1∑
d2=0

. . .

d−d1−···−dn−1∑
dn=0

1 =

(
d+ n

n

)
and that for every n ≥ 0, k ≥ 1

(35)
1

n!

n∑
t=0

(
n

t

)
(−1)t

1

t+ k
=

(k − 1)!

(n+ k)!
.

Both equations can be proved using induction on n.
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According to ii) of Proposition 3.2.4 the degree n|H| part of aH(d) comes from the

d∏
d1=0

(
1 +

n∑
i=1

an−2,1i(d, d1)xi

)

summand of
∏d

d1=0 Pn−2. Because of symmetry reasons and then straightforward applications
of (34) and (35), this is equal to

d∏
d1=0

(
1 +

d−d1∑
d2=0

. . .

d−d1−···−dn−2∑
dn−1=0

(d1)x1 +

d−d1∑
d2=0

. . .

d−d1−···−dn−2∑
dn−1=0

(d2) (x2 + · · ·+ xn)

)
(34)
=

d∏
d1=0

(
1 +

((
d− d1 + n− 2

n− 2

)
d1

)
x1 +

(
d−d1∑
d2=0

(
d− d1 − d2 + n− 3

n− 3

)
d2

)
(x2 + · · ·+ xn)

)
(35)
=

d∏
d1=0

(
1+

(
(d− d1)

n−2d1
(n− 2)!

+ (lower {d, d1}-degree terms)
)
x1+

(
(d− d1)

n−1

(n− 1)!
+ (lower {d, d1}-degree terms)

)
(x2 + · · ·+ xn)

)
.

From this we see that the leading terms of the aH(d)’s and the leading term of the a′H(d)’s in
the much simpler

d∏
d1=0

(
1 +

(d− d1)
n−2d1

(n− 2)!
x1 +

(d− d1)
n−1

(n− 1)!
(x2 + · · ·+ xn)︸ ︷︷ ︸

P ′(d,d1,x)

)
=
∑
H

a′H(d)x
H

are the same.
Let us denote coefficients in the expansion of P ′(d, d1, x) as usual: P ′(d, d1, x) =

∑
J p

′
J(d, d1)x

J =∑
J

(∑
m p

′
J,md

m
1

)
xJ ,

(36) PJs,m(d) =

{
1

(n−2)!

(
n−2
m−1

)
(−1)m−1dn−1−m if s = 1, . . . , h1

1
(n−1)!

(
n−1
m

)
(−1)mdn−1−m otherwise.
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Fix an exponent H = (h1, . . . , hn). Once again, we can use (27) to express a′H(d) as a single
J = (1h11 , . . . , 1

hn
n )-contribution by substituting (29) and (36) into (31). We get that

a′H(d) =
1

H!

∑
λ

l(J)∏
s=1

(
dλs+1

λs + 1

)
+ (lower degree terms)

 l(J)∏
s=1

pJs,λs(d) =

1

H!

∑
λ

l(J)∏
s=1

dλs+1

λs + 1
pJs,λs(d)

+ (lower degree terms)

 =

1

H!

l(J)∏
s=1

(
n−1∑
m=0

dm+1pJs,m(d)

m+ 1

)
+ (lower degree terms)

(36)
=

1

H!

(
dn

(n− 2)!

n−1∑
m=1

(
n− 2

m− 1

)
(−1)m−1

m+ 1

)h1 (
dn

(n− 1)!

n−1∑
m=0

(
n− 1

m

)
(−1)m

m+ 1

)h2+···+hn

+ (l. d. t.)
(35)
=

1

H!

(
1

n!

)h1+···+hn
dn|H| + (lower degree terms).

3.2.3. Coefficients of c(Pold(Cn)) in the Schur polynomial basis. In this section we
want to convert our results to the Schur polynomial basis; namely, our goal is to deduce

Theorem 3.2.5. Let bλ(d) denote the coefficients in the Schur polynomial expansion

c(Pold(Cn)) =
∑
λ

bλ(d)sλ.

Then the leading term of bλ(d) is∏
1≤i<j≤n (λi − λj + j − i)

(λ1 + n− 1)!(λ2 + n− 2)! . . . λn!

(
1

n!

)|λ|

dn|λ|.

Proof. Schur polynomials can be defined as

sλ(x1, . . . , xn) =
Aλ+δ

Aδ
,

where δ = (n− 1, . . . , 1, 0) and for a partition µ = (µ1, . . . , µn) A
µ denotes the determinant of

the n-by-n matrix,
Aµ =

∣∣∣(xµij )i,j∣∣∣ = ∑
ρ∈Sn

sgn(ρ)xρ(µ).

Note that if the partition µ is strictly decreasing, then Aµ has a single term, corresponding to
ρ = 1, where the exponent (ρ(µ1), . . . , ρ(µn)) of x is decreasing.

Multiplying c(Pold(Cn)) by the Vandermond determinant Aδ, we get that

Aδc(Pold(Cn)) =
∑
λ

bλ(d)A
λ+δ =

∑
λ

bλ(d)
∑
ρ∈Sn

sgn(ρ)xρ(λ+δ) =

∑
λ

bλ(d)x
λ+δ +

∑
λ

∑
1̸=ρ∈Sn

sgn(ρ)bλ(d)x
ρ(λ+δ),

where only the first summand of the RHS contains terms with (strictly) decreasing exponents.
We also have

Aδc(Pold(Cn)) =
∑
H

∑
ρ∈Sn

sgn(ρ)aH(d)x
H+ρ(δ).
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Collecting terms with strictly decreasing exponents, we deduce that

(37) bλ(d) =
∑
(H,ρ)

H+ρ(δ)=λ+δ

sgn(ρ)aH(d).

Combining Theorem (3.2.1) and (37), we see that

bλ(d) =
∑
(H,ρ)

H+ρ(δ)=λ+δ

(
sgn(ρ)

1

H!

)
︸ ︷︷ ︸

M(λ)

(
1

n!

)|λ|

dn|λ| + (lower degree terms).

The following proposition provides an exact formula for the term M(λ). This formula
immediately implies that M(λ) > 0 for every partition λ, and hence that the leading term of
bλ(d) is

M(λ)

(
1

n!

)|λ|

dn|λ|.

Proposition 3.2.6. Let δ = (n− 1, . . . , 1, 0). Then for any partition λ = (λ1, . . . , λn)

(38) M(λ) =
∑
(H,ρ)

H+ρ(δ)=λ+δ

(
sgn(ρ)

1

H!

)
=

∏
1≤i<j≤n (λi − λj + j − i)

(λ1 + n− 1)!(λ2 + n− 2)! . . . λn!
.

Proof. For any vector K = (k1, . . . , kn) write K ≥ 0, if for all its coordinates ki ≥ 0.
Then, as ρ(δ)i = n− ρ(i),

∑
(H,ρ)

H+ρ(δ)=λ+δ

(
sgn(ρ)

1

H!

)
=

∑
ρ∈Sn

λ+δ−ρ(δ)≥0

sgn(ρ)
1

(λ+ δ − ρ(δ))!
=

∑
ρ∈Sn

λ+δ−ρ(δ)≥0

sgn(ρ)
n∏
i=1

1

(λi + ρ(i)− i)!
= |γ(i, j)i,j|,

a determinant |γ(i, j)i,j| of the n-by-n matrix with entries

γ(i, j) =
1

Γ(λi + j − i+ 1)
=

{
1

(λi+j−i)! if λi + j − i ≥ 0

0 otherwise.

Factoring out 1
(λi+n−i)! from the i-th row, we get that

|γ(i, j)| = 1

(λ1 + n− 1)!(λ2 + n− 2)! . . . λn!
|(λi + j − i+ 1) . . . (λi + n− i)i,j| .

By expanding its entries and then using multilinearity, the latter determinant can be further
written as

|(λi − i+ j + 1) . . . (λi − i+ n)i,j| =

∣∣∣∣∣∣
(
n−j∑
t=0

(λi − i)tσn−j−t(j + 1, . . . , n)

)
i,j

∣∣∣∣∣∣ =
∑

J=(J1,...,Jn)
0≤Jj≤n−j

|WJ | ,
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where σk denotes the k-th elementary symmetric polynomial and |WJ | stands for the determi-
nant

|WJ | =
∣∣(λi − i)Jjσn−j−Jj(j + 1, . . . , n)i,j

∣∣ = n∏
j=1

(
σn−j−Jj(j + 1, . . . , n)

) ∣∣∣((λi − i)Jj
)
i,j

∣∣∣ ={∣∣∣((λi − i)n−j)i,j

∣∣∣ =∏1≤i<j≤n(λi − i)− (λj − j) if J = (n− 1, . . . , 0)

0 otherwise.

Putting everything together, we get (38). □

Since all the terms λi − λj + j − i in (38) are positive, M(λ) > 0 for every partition λ. □

3.2.4. Degree of varieties of hypersurfaces containing linear subspaces. Manivel
in [Man99] showed that for rectangular partitions coefficients of corresponding Schur polyno-
mials in c(Pold(Cn)) can be given a geometric interpretation as degrees of certain subvarieties
Σ(d,m, k) ⊂ P(Pold(Cm+1)). In this section, following [CZ20], we define these subvarieties and
explain how Manivel’s formula for deg(Σ(d,m, k) ⊂ P(Pold(Cm+1))) translates to our equivari-
ant setting.

The set of hypersurfaces Zf ⊂ Pm is parametrized by P(Pold(Cm+1)). For each k and
f ∈ Pold(Cm+1) the Fano variety of k-planes Fk(Zf ) of the projective variety Zf is, by definition,
the variety of k-planes that are contained in Zf . As usual, we will treat this variety as a subset
of Grk+1(Cm+1), and identify it as the zero locus of the section σf (W ) = f |W of the rank

(
d+k
k

)
vector bundle Pold(S) → Grk+1(Cm+1). For a generic f ∈ Pold(Cm+1), σf is transversal to the
zero section, hence Fk(Zf ) is a

δ(d,m, k) = (k + 1)(m− k)−
(
d+ k

k

)
dimensional subvariety.

This also shows that if δ(d,m, k) < 0 and f ∈ Pold(Cm+1) is generic, then Fk(Zf ) = ∅.
Denote by

Σ(d,m, k) ⊂ P(Pold(Cm+1))

the subvariety whose points correspond to degree d ≥ 3 hypersurfaces that do contain a k-plane.
Then Σ(d,m, k) is an irreducible subvariety of codimension −δ(d,m, k) in P(Pold(Cm+1)), its
generic point corresponds to a hypersurface that carries a unique k-plane and its degree is

(39) deg(Σ(d,m, k)) =

∫
Grk+1(Cm+1)

c(k+1)(m−k)(Sym
d(S∨)),

where S → Grk+1(Cm+1) denotes the tautologival bundle, see [Man99].
By definition, the GL(n)-equivariant Chern class c(Pold(Cn)) is the Chern class of the Borel

construction BGL(n) Pol
d(Cn) → BGL(n) ∼ Grn(C∞). Setting n = k + 1, the vector bundle

Symd(S∨) ∼= Pold(S) → Grk+1(Cm+1) is just the restriction of BGL(k+1) Pol
d(Ck+1), therefore

c(Symd(S∨)) = c(Pold(Ck+1))|ci 7→ci(S∨),

where ci = σi(x1, . . . , xn) is the i-th Chern class of the dual of the tautological bundle over the
infinite Grassmannian Grk+1(C∞). As integration over Grk+1(Cm+1) returns the coefficient of
the volume form s(m−k)k+1 , we get that

(40) deg(Σ(d,m, k)) = coefficient of s(m−k)k+1 in c(Pold(Ck+1)).
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In [Man99] Manivel also claims without proof that fixing m and k, deg(Σ(d,m, k)) depends
on d as a degree 2(k + 1)(m− k) polynomial. By looking at examples for k other than 2, one
immediately sees that this is not the case. In fact, (40) combined with Theorem 3.2.5 implies
that

Proposition 3.2.7. Let Σ(d,m, k) denote the subvariety of P(Pold(Cm+1)) whose points
correspond to degree d ≥ 3 hypersurfaces in Pm that contain a k-plane. Fixing m and k, degrees
deg(Σ(d,m, k)) form a polynomomial in d , whose leading term is∏

1≤i<j≤k+1(j − i)

m! . . . (m− k)!

(
1

(k + 1)!

)(k+1)(m−k)

d(k+1)2(m−n).

Example 3.2.8. For m = 3 and k = 2 Proposition 3.2.7 tells us that deg(Σ(d, 3, 2)), the
degree of the variety of degree d surfaces in P3 containing a projective plane, is a degree 9
polynomial in d. Then by e.g. interpolating its values for d = {3, . . . , 13}, we get that

deg(Σ(d, 3, 2)) =
1

1296
d (d+ 3) (d+ 2) (d+ 1)

(
d2 + 2

) (
d3 + 3 d2 + 2 d+ 12

)
.

Remark 3.2.9. For degrees of varieties Σ(d,m,m − 1)—such as the above example—we
even have a closed formula, i.e. no interpolation is needed: The map

φ : P(Pol1(Cm+1))× P(Pold−1(Cm+1)) ↪→ P(Pold(Cm+1))

induced by multiplication of polynomials provides a resolution of Σ(d,m,m − 1). Such a
resolution can be used to calculate the degree as

deg(Σ(d,m,m− 1)) =

∫
P(Pol1(Cm+1))×P(Pold−1(Cm+1))

φ∗cD1 ,

where D =
(
d+m−1
m

)
+m−1 is the dimension of the domain and c1 = c1(γ

∨) for γ the tautological
line bundle. Let u and v denote the first Chern classes of the duals of tautological bundles over
the first and second factor of the domain. As φ∗γ∨ is the tensor product of these dual bundles,

φ∗ (cD1 ) = (u+ v)D =
D∑
t=0

(
D

t

)
utvd−t.

The above integration amounts to taking the coefficient of the volume form umvD−m, hence
substituting D =

(
d+m−1
m

)
+m− 1, we get

deg(Σ(d,m,m− 1)) =

((d+m−1
m

)
+m− 1

m

)
.

3.3. Scalar equivariant CSM classes and characteristic polynomials of hyperplane
arrangements

Let GL(1) act on C and denote by w : GL(1) → C the weight of this representation. Every
linear subspace of Cn is invariant under the direct sum of n copies of this representation. In
particular, every (vector) hyperplane arrangement and its complement are GL(1)-invariant. In
this section we show that the characteristic polynomial of such a hyperplane arrangement A is
essentially the same as the GL(1)-equivariant CSM class cSM(Cn \

⋃
A).

Applying this result to Weyl arrangements will help us providing a formula for CSM classes
of the open CRS, cSM(Y∅(d)).
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The characteristic polynomial of a hyperplane arrangement A in Cn is defined by

χ(A, t) =
∑
B⊂A
∩B≠∅

(−1)|B|tdim(
⋂

B),

where we set
⋂

∅ = Cn ([Sag99]). Using the motivic and the multiplicative property of the
CSM class, we will show that, similarly,

cSM(Cn \
⋃

A) =
∑
B⊂A
∩B≠∅

(−1)|B|(1 + w)dim(
⋂

B)wn−dim(
⋂

B).

In other words,

Proposition 3.3.1. Let A be a (vector) hyperplane arrangement in Cn, denote by χ(A, t)
its characteristic polynomial. Let GL(1) act on C with w : GL(1) → C the weight of this
representation. Then Cn \

⋃
A is invariant under the induced action on Cn and its GL(1)-

equivariant CSM class can be computed as

cSM(Cn \
⋃

A) = χ(A, t)|tk 7→(1+w)kwn−k .

Proof. First, using the motivic calculus of Lemma 3.1.3 we see that for any k-dimensional
linear subspace

cSM(Ck ⊂ Cn) = (1 + w)kwn−k.

Denote by I the set of all possible nonempty proper intersections:

I :=
{⋂

B
∣∣∣ ∅ ≠ B ⊂ A,

⋂
B ̸= ∅

}
.

For every W ∈ I count the number of subsets B ⊂ A of size t whose intersection contains W :

st(W ) :=
∣∣∣{B ⊂ A| |B| = t,W ⊂

⋂
B
}∣∣∣ .

Then for any W ∈ I, by the inclusion-exclusion principle,

1 = s1(W )− s2(W ) + · · ·+ (−1)|A|+1s|A|(W ).

Finally, for any W ∈ I denote by
◦
W the “interior” of W :

◦
W := W \

⋃
{W ′ ∈ I|W ′ ⊊ W} .

As
⋃

A = ⨿W∈I
◦
W , by the motivic property of the CSM class,

(41) cSM
(⋃

A
)
=
∑
W∈I

cSM(
◦
W ) =

∑
W∈I

(s1(W )− s2(W ) + . . . )cSM(
◦
W ) =

|A|∑
t=1

(−1)t+1
∑
W∈I

st(W )cSM(
◦
W ) =

|A|∑
t=1

(−1)t+1
∑
B⊂A⋂

B̸=∅,|B|=t

cSM
(⋂

B
)
=

|A|∑
t=1

(−1)t+1
∑
B⊂A⋂

B≠∅,|B|=t

(1 + w)dim(
⋂

B)wn−dim(
⋂

B) =
∑

∅≠B⊂A⋂
B̸=∅

(−1)|B|+1(1 + w)dim(
⋂

B)wn−dim(
⋂

B)

Subtracting (41) from cSM(Cn) = cSM(
⋂
∅) = (−1)0(1 + w)n, we get our formula for the

complement cSM(Cn \
⋃

A). □
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Example 3.3.2. Let us apply Proposition 3.3.1 to calculate cSM(Cn \ An) for n ≥ 2 and
the Weyl arrangement of type A,

An := {xi − xj = 0| 1 ≤ i < j ≤ n} .

The characteristic polynomial of An is well-known, see for example [Sag99];

(42) χ(An, t) = (t)n = t(1− t) . . . (t− (n− 1)),

we only need to understand the effect of the substitutions tk 7→ (1 + w)kwn−k.
We claim that

(43) t(t− 1) . . . (t− (n− 1))|tk 7→(1+w)kwn−k = (1 + w)(1− w) . . . (1− (n− 2)w) :

By the definition of the Stirling number of the first kind, the left-hand side can be written as

(44)
n∑
l=1

(−1)n−l
[
n
l

]( l∑
s=0

(
l

s

)
(1 + w)swn−l

)
=

n∑
u=0

(
u∑
t=0

(−1)t
[

n
n− t

](
n− t

u− t

))
wu.

We use the identity [GKPL89, Table 251][
n
m

]
=

n∑
k=m

(−1)m−k
[
n+ 1
k + 1

](
k

m

)
to further simplify the coefficient of wu in (44) to

n∑
s=n−u

(−1)n−s
[
n
s

](
s

n− u

)
=

n∑
s=n−u

(−1)n−s
[
n
s

]((
s− 1

n− u− 1

)
+

(
s− 1

n− u

))
=

(−1)u
[

n− 1
n− u− 1

]
+ (−1)u−1

[
n− 1
n− u

]
.

This is clearly equal to the coefficient of wu in the right-hand side of (43).
We got that

(45) cSM(Cn \
⋃

An) = (1 + w)(1− w) . . . (1− (n− 2)w).

Example 3.3.3. For future use, let us extend Example 3.3.2 to a hyperplane arrangement
in C1, and define

A1 := ∅.
Although choosing A = {x1 = 0} might seem to be the logical extension, the above choice has
the benefit that formulas (42) and (45) describe its characteristic polyomial and the CSM class
of its complement.

3.4. A recursive formula for the CSM class of CRS

In this section we give a formula for cSM(Yλ(d)) that provides a recursive method for calcu-
lating these classes. Its proof is based on the following fundamental property of the equivariant
CSM class:

Lemma 3.4.1. Let f : M → N be a proper G-equivariant map of smooth varieties and
Ỹ ⊂M a constructible subset. Suppose that f |Ỹ is k-to-1 to its image Y ⊂ N . Then

cSM(Y ⊂ N) =
1

k
f!c

SM(Ỹ ⊂M).
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This allows us to use the same proper GL(2)-equivariant map φ that we had in Chapter 2
for the fundamental class,

(46)
E = Pold−m(C2)⊗ Polm(C2/γ) P(C2)× Pold(C2) Pold(C2)

P1 = P(C2)

φ

p

j π

,

to get a recursive formula also for the CSM classes of CRS. Only that this time, as the CSM class
is inhomogeneous and detects bigger codimensional parts, generic property of the restriction
φ|Yλ′ (E) is no longer enough, we have to be more specific.

Recall the construction from Section 2.3.1: Let λ = (2e2 , . . . ,mem) be a nonempty partition
without 1’s and d ≥ |λ|. Let λ′ denote the partition (2e2 , . . . ,mem−1), where em = 1 is allowed.
We also use the notation d′ = d −m. Then there is an injective map j : E = Pold−m(C2) ⊗
Polm(C2) → P1×Pold(C2) defined via multiplication of polynomials and a subvariety Yλ′(E) ⊂
E such that for φ = π ◦ j its restriction φ|Yλ′ (E) is generically em-to-1 to its image.

In the special case of λ = (m), λ′ is defined to be the empty partition ∅. Recall that, by
Definition 1.1.1, this partition corresponds to the open strata:

Y∅(d
′) :=

{{
f ∈ Pol0(C2) : f ̸= 0

}
if d′ = 0{

f ∈ Pold
′
(C2) : f =

∏d′

j=1 fj

}
if d′ > 0,

where 0 ̸= fj : C2 → C are linear and no two of them are scalar multiples of each other.
Then for every λ

(47) φ(Yλ′(E)) = Yλ(d)⨿
∐

µ∈∨λ(d)

Yµ(d),

for partitions µ ∈ ∨λ(d) of size at most d we get by adding m to an element of λ′:

∨λ(d) :={{
(. . . , iei−1, . . . ,mem−1, i+m) |2 ≤ i ≤ m− 1

}
if d = |λ|{

(. . . , iei−1, . . . ,mem−1, i+m) |2 ≤ i ≤ m− 1
}
∪
{
(. . . ,mem−1, 1 +m)

}
if d ≥ |λ|+ 1,

where we only denoted multiciplities different from those in λ and all of them should be non-
negative. Note that for any λ the set ∨λ(d) is stable for d ≥ |λ| + 1. Omitting d from the
notation, we will refer to this stable set. Also note that for every µ ∈ ∨λ
(48) codim (Yµ) = codim (Yλ) + 1 :

If µ ∈ ∨λ, we have either l(µ) = l(λ)−1 or |µ| = |λ|+1. For example, when λ = (5, 5, 5, 3, 2, 2),

∨ (5, 5, 5, 3, 2, 2)(d) ={
{(10, 5, 3, 2, 2), (8, 5, 5, 2, 2), (7, 5, 5, 3, 2)} if d = |λ| = 21

{(10, 5, 3, 2, 2), (8, 5, 5, 2, 2), (7, 5, 5, 3, 2), (6, 5, 5, 3, 2, 2)} if d ≥ |λ|+ 1 = 22.

In addition to (47), we have

φ−1

Yλ(d)⨿ ∐
µ∈∨λ(d)

Yµ(d)

 = Yλ′(E).
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The restriction of φ : E → Pold(C2) to φ−1(Yλ(d)) is an em-to-1 covering of Yλ(d), while φ
restricted to φ−1(Yµ(d)) is an isomorphism for every µ ∈ ∨λ(d). Combining Lemma 3.4.1 with
the motivic property of the CSM class, we get that

(49) φ!

(
cSM(Yλ′(E) ⊂ E)

)
= φ!

cSM (φ−1 (Yλ(d))
)
+

∑
µ∈∨λ(d)

cSM
(
φ−1 (Yµ(d))

) =

φ!

(
cSM

(
φ−1(Yλ(d))

))
+

∑
µ∈∨λ(d)

φ!

(
cSM

(
φ−1(Yµ(d))

))
=

emc
SM (Yλ(d)) +

∑
µ∈∨λ(d)

cSM(Yµ(d)).

The rest of this section contains the analysis of the left-hand side of (49). This then leads
to

Theorem 3.4.2. Let λ = (2e2 , . . . ,mem) be a nonempty partition without 1’s and d ≥ |λ|.
Let λ′ denote the partition (2e2 , . . . ,mem−1), where em = 1 is allowed. We also use the notation
d′ = d−m. Then
(50)

cSM(Yλ(d)) =
1

em

∂((1 + b− a)
m−1∏
i=0

(
ia+ (d− i)b

)
cSM (Yλ′(d

′))m/d′

)
−

∑
µ∈∨λ(d)

cSM(Yµ(d))

 ,

where for a polynomial α ∈ Z[a, b] and q ∈ Q we use the notation

αq(a, b) = α(a+ qa, b+ qa)

and

∂(α)(a, b) =
α(a, b)− α(b, a)

b− a
denotes the divided difference operation.

For any polynomial p(a, b) in Chern roots a and b, let pf denote its homogeneous degree f
part, e.g. for any d

cSM(Yλ(d)) =
d+1∑

f=codim(Yλ)

cSM(Yλ(d))f .

Throughout this section, homogeneous terms of negative degree will always be 0.
The reason we call (50) recursive is that for any given degree f and partition λ, to calculate

cSM(Yλ(d))f the necessary ingredients from the right-hand side are either homogeneous CSM
classes in smaller degrees or CSM classes corresponding to partitions with bigger codimensional
CRS, see Section 3.6 for more details.

3.4.1. The twisted CSM class. Similarly to what we had in Section 2.3.3, the GL(2)-
equivariant cSM(Yλ′(E) ⊂ E) can be obtained from cSM(Yλ′(d

′)):

(51) cSM(Yλ′(E) ⊂ E) = c(TP1) · cSM(Yλ′(d
′))
(
a+

m

d′
(a+ b+ c1(γ)), b+

m

d′
(a+ b+ c1(γ))

)
,

where we substitute into cSM(Yλ′(d
′)) ∈ H∗

GL(2)
∼= Z[a, b]S2 , see Section 2.3.2 for our use of

the variables a and b. Note here that H∗
GL(2)(E)

∼= H∗
GL(2)(P1 × Pold(C2)) ∼= H∗

GL(2)(P1) are
naturally isomorphic. We will express terms as elements in H∗

GL(2)(P1) without indicating these
isomorphism.
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To show 51, we can use SSM class analogs of the statements in Section 2.3.3 since, by
Theorem 3.1.4, (GL(2)×GL(1))-equivariant SSM classes are universal. We get that

cSMδ (Yλ′(E) ⊂ E)

cSMδ (E)
=

a
(
cSMρ̃ (Yλ′(d

′))
)

a
(
cSMρ̃ (Pold

′
(C2))

) .
Here, to makes things easier to follow, we got back into including group actions in the notation
of equivariant classes: the GL(2)-action on E → P1 is denoted by δ, and we used notation ρ̃ from
Section 2.3.1 for the scalar extension of ρ : GL(2) → GL(Pold

′
(C2)), the usual representation

on Pold
′
(C2). Connecting them is the map

a : H∗
GL(2)×GL(1) → H∗

GL(2)(P1)

induced by the classifying map of the principal (GL(2)×GL(1))-bundle

BGL(2)

(
(P1 ×GL(2))×P1 Polm(C2/γ)×

)
→ BGL(2) P1.

The term cSMδ (E) can be computed using the fact that for any (G-)vector bundle p : E →M
the (G-equivariant) sequence

0 p∗E TE p∗TM 0
Tp

is exact, implying that

cSMδ (E) = cδ(TE) = cδ(TP1)cδ(E),

where we used the same letter for the induced actions on tangent bundles.
Under the isomorphism H∗

GL(2)×GL(1)(Pol
d′(C2)) ∼= H∗

GL(2)×GL(1) the class cSMρ̃ (Pold
′
(C2)) =

cρ̃(T Pold
′
(C2)) corresponds to cρ̃(Pold

′
(C2)), hence, by the definition of a, we have

a
(
cSMρ̃ (Pold

′
(C2))

)
= cδ(E).

Finally, as the representation ρ contains the scalars, the SSM variant of Proposition 2.3.6
implies that

(52) sSMρ̃ (Yλ′(d
′)) = sSMρ (Yλ′(d

′))

(
a+

1

d′
x, b+

1

d′
x

)
.

This substitution corresponds to a map that relates (GL(2)×GL(1))-equivariant cohomology to
GL(2)-equivariant cohomology, see the proof of Proposition 2.3.6. As this map assigns weights
of ρ̃ to weights of ρ,

cSMρ̃ (Pold
′
(C2)) = cSMρ (Pold

′
(C2))

(
a+

1

d′
x, b+

1

d′
x

)
,

and hence the CSM version of (52) also holds. The map a amounts to substituting x 7→
c
GL(2)
1 (Polm(C2/γ), therefore

a
(
cSMρ̃ (Yλ′(d

′))
)
= cSM(Yλ′(d

′))
(
a+

m

d′
(a+ b+ c1(γ)), b+

m

d′
(a+ b+ c1(γ))

)
.

Putting everything together, we arrive at (51).
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3.4.2. GL(2)-equivariant Chern class of TP1. The only thing left to finish the proof of
the recursive formula is to calculate the GL(2)-equivariant Chern class c(TP1). Luckily, maps
in the Euler exact sequence

0 Hom(γ, γ) Hom(γ,P1 × C2) Hom(γ, γ⊥) 0

TP1

∼=

are all GL(2)-equivariant with respect to actions induced by the standard GL(2)-action on C2.
Hence, identifying these actions, we get that

cGL(2)(TP1) = (1− a− c
GL(2)
1 (γ))(1− b− c

GL(2)
1 (γ)) ≡ 1− a− b− 2c

GL(2)
1 (γ) ∈ H∗

GL(2)(P1).

We calculate the pushforward φ! = π!j! the same way as we did in Section 2.3.4 : By Lemma
2.3.5, pushing forward along j : E → P1 × Pold (C2) amounts to multiplying by

e
(
(P1 × Pold(C2))/E

)
=

∏d
i=0

(
ia+ (d− i)b

)∏d′

i=0

(
m(c1(γ) + a+ b) + ia+ (d′ − i)b

)
and the pushforward π! can be computed— using the ABBV integral formula—as the divided
difference of the restriction to the ⟨e2⟩ fixed point. This restriction can be obtained by substi-
tuting cGL(2)

1 (γ) 7→ −b, e.g.

c(TP1)
∣∣
⟨e2⟩

= 1− a− b− 2c1(γ)|c1(γ)7→−b = 1 + b− a.

Together with (51), this gives

(53) φ!c
SM (Yλ′(E) ⊂ E) = ∂

(
(1 + b− a)

m−1∏
i=0

(
ia+ (d− i)b

)
cSM(Yλ′(d

′))m/d′

)
,

where we used the notation of Theorem 2.2.5. Substituting (53) into (49) finishes the proof of
Theorem 3.4.2.

3.5. A non-recursive formula for cSM(Y∅(d))

The above recursive method uses the motivic property of CSM class to calculate cSM(Y∅)f
as a difference

cSM(Y∅)f = cSM(Pold(C2)×)f −
∑

λ∈Pf (d)

cSM(Yλ(d))f ,

where Pold(C2)× = Pold(C2) \ {0} and for each d and f we set

Pf (d) := {λ : |λ| ≤ d and codim(Yλ) ≤ f} ,

the set of partitions of size at most d such that CSM classes of the corresponding CRS in
Pold(C2) can contain nonzero degree f terms. In this part we take a detour and describe a
d!-fold covering of this open CRS that, combined with results from Secion 3.2.4 about the CSM
classes of hyperplane arrangements, provides a direct, non-recursive formula for cSM(Y∅(d)):
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Proposition 3.5.1. For every d ≥ 1 the CSM class of the open CRS is

cSM(Y∅(d) ⊂ Pold(C2)) =

e(Pold(C2))

d!wd

(
(−1)0

db
(1 + w)

d−2∏
j=1

(1− jw) +
(−1)d

da
(1− w)

d−2∏
j=1

(1 + jw)+

(1− w2)
d−1∑
s=1

(
d

s

)
(−1)d−s

(d− s)a+ sb

s−2∏
j=1

(1− jw)
d−s−2∏
j=1

(1 + jw)

)
.

Proof. Consider the following GL(2)-equivariant diagram

L = ⊗d
t=1 (C2/γt)

∨ \ {0} Xd

t=1 (P(C2)t)× Pold(C2) Pold(C2)

M = Xd

t=1 P(C2)t

φ

j π

,

where j is induced by multiplication of polynomials and π is the projection to the second factor.
Let us denote by i : X = X∅(d) ⊂ Xd

t=1 P(C2)t the complement of the fat diagonal

∆ :=
{
(v1, . . . , vn) ∈ ×d

t=1P(C2)t
∣∣ vt = vs for some t ̸= s

}
.

Then the restriction of φ to
◦
L = L|X is a GL(2)-equivariant d!-fold covering of Y∅(d) ⊂ Pold(C2),

so we can use Lemma 3.4.1 to get

cSM(Y∅(d) ⊂ Pold(C2)) =
1

d!
φ!

(
cSM(

◦
L ⊂ L)

)
=

1

d!
π!

(
cSM

(
j(

◦
L) ⊂M × Pold(C2)

))
.

Restricting the above GL(2)-actions to a maximal complex torus T2 ⊂ GL(2), we can use
the ABBV integral formula to write the pushforward as

π!

(
cSM

(
j(

◦
L) ⊂M × Pold(C2)

))
=

∑
f∈F(M)

cSM
(
j(

◦
L) ⊂M × Pold(C2)

)∣∣∣
f

e(TfM)
,

where F(M) is the fixed point set of M consisting of tuples f = (f1, . . . , fn) ∈ M with
coordinates ft = ⟨e1⟩ or ft = ⟨e2⟩. Let us call such a fixed point with s of its coordinates equal
to ⟨e1⟩ a fixed point of type ⟨e1⟩s⟨e2⟩d−s. For each s = 0, . . . , d there are

(
d
s

)
of them and their

corresponding Euler class is

e(TfM) =
s∏
t=1

e(T⟨e1⟩P1)
d−s∏
t=1

e(T⟨e2⟩P1) = (a− b)s(b− a)d−s = (−1)d−s(a− b)d.

We can calculate the numerators by first restricting to
◦
L|Uf

, where TfM
ψf∼= Uf ⊂ M is an

torus-invariant affine trivializing neighbourhood of the fixed point f given by e.g. the stan-
dard charts of P1. Motivic classes are local, so this restriction shows, using the multiplicative
property, that

cSM
(
j(

◦
L) ⊂M × Pold(C2)

)∣∣∣
f
= cSM

(
ψ−1
f (Uf ∩X) ⊂ TfM

)
cSM

(
j(Lf ) ⊂ Pold(C2)

)
.
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For a fixed point f of type ⟨e1⟩s⟨e2⟩d−s motivic calculus shows that

cSM
(
j(Lf ) ⊂ Pold(C2)

)
=
e(Pold(C2))

e(⟨xd−sys⟩)
=

∏d
t=0 (ta+ (d− t)b)

(d− s)a+ sb
.

The first term of the numerator we will compute by relating it to CSM classes of hyperplane
arrangements. For an ⟨e1⟩s⟨e1⟩d−s type fixed point TfM ∼= Cs

w ⊕ Cd−s
−w , where by Cw we mean

the one-dimensional GL(2)-representation with weight w = a − b : T2 → C. Under these
isomorphisms

TfM Cd
w

ψ−1
f (Uf ∩X) Cd

w \ Ad

∼=

∼=

⊂ ⊂ for f = ⟨e1⟩d and d ≥ 1,

TfM Cs
w Cd−s

−w

ψ−1
f (Uf ∩X) Cs

w \
⋃

As Cd−s
−w \

⋃
Ad−s

∼= ⊕

∼=

⊂ ⊂

×
⊂

for f of type ⟨e1⟩s⟨e2⟩d−s with s ≥ 1
and d ≥ 2.

In Examples 3.3.2 and 3.3.3 we calculated CSM classes of complements of such hyperplane
arrangements. From (45) we deduce that

cSM
(
ψ−1
f (Uf ∩X) ⊂ TfM

)
={

(1 + w)
∏d−2

j=1(1− jw) if f = ⟨e1⟩d and d ≥ 2

(1− w2)
∏s−2

j=1(1− jw)
∏d−s−2

j=1 (1 + jw) if f = ⟨e1⟩s⟨e2⟩d−s and d ≥ 2, s ≥ 1.

Putting everything together finishes the proof. □

3.6. Polynomial d-dependence of cSM(Yλ(d))

This section is the CSM analog of Section 2.4: Generalizing results there, we show that
the d-dependece of coefficients of cSM(Yλ(d)) is also polynomial; in other words, that for any
f ≥ codim(Yλ) the degree f homogeneous parts of the cSM(Yλ(d))’s form a polynomial in
Q[a, b; d]S2 for large enough d’s.

Theorem 3.6.1. For any partition λ = (2e2 , . . . ,mem) and degree f there is a polynomial
pλ,f ∈ Q[a, b; d]S2 such that

cSM(Yλ(d))f = pλ,f (d)

for every d ≥ |λ|+ 2(f − codim(Yλ)).

We will refer to these polynomials pλ,f ∈ Q[a, b; d]S2 as stable homogeneous parts of CSM
classes of CRS, and often denote them the same way, as cSM(Yλ(d))f , see also Remark 3.6.2.

Proof. Our inductive proof is built on the recursive formula (50). More precisely, we will
use its homogeneous counterpart,

(54) cSM(Yλ(d))f =
1

em

(
∂

(
m−1∏
i=0

(
ia+ (d− i)b

) (
cSM (Yλ′(d

′))f−m+1

)
m/d′

)
+

∂

(
(b− a)

m−1∏
i=0

(
ia+ (d− i)b

) (
cSM (Yλ′(d

′))f−m

)
m/d′

)
−

∑
µ∈∨λf (d)

cSM(Yµ(d))f

)
,

C
E

U
eT

D
C

ol
le

ct
io

n
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where, for the sake of uniformity, we introduced

∨λf (d) := {µ ∈ ∨λ(d)| codim(Yµ) ≤ f} =

{
∅ if f = codim(Yλ)

∨λ(d) if f > codim(Yλ).

The set ∨λf (d) is stable for d ≥ |λ| if f = codim(Yλ) and for d ≥ |λ| + 1 if f ≥ codim(Yλ).
Let ∨λf denote these stable sets. As substitution ()m/d′ does not change the {a, b}-degree, (54)
follows immediately from (50).

A critical part of the proof is to keep track of the boundary from where polynomial property
holds. For this reason, we set

k(λ, f) := |λ|+ 2(f − codim(Yλ)).

To describe the induction scheme, let us recall that for each d and f we defined

Pf (d) = {λ : |λ| ≤ d and codim(Yλ) ≤ f} ,

the set of partitions of size at most d such that CSM classes of the corresponding CRS in
Pold(C2) can contain nonzero degree f terms. Note that Pf (d) doesn’t increase after d = 2f .
We will denote the stable set by Pf . On each Pf fix a linear extension of the partial order
corresponding to the codimension of its members. For example,

P3 = {∅ ≤ (2) ≤ (3) ≤ (2, 2) ≤ (4) ≤ (3, 2) ≤ (2, 2, 2)} .

The proof goes by induction on the degree f : Starting from f = 0, for each Pf we prove
in reverse order that for every λ ∈ Pf for d ≥ k(λ, f) homogeneous parts cSM(Yλ(d))f form a
polynomial pλ,f ∈ Q[a, b; d]S2 .

The theorem holds in the f = 0 case: P0 = {∅} and the cSM(Y∅(d))0 = 1’s for d ≥ k(∅, 0) = 0
form the constant polynomial p∅,0 = 1 ∈ Q[a, b; d]S2 .

For f > 0 and ∅ ̸= λ ∈ Pf the induction step is provided by (54). We first show that the
divided differences of (54) form a polynomial for d ≥ k(λ, f): m ≥ 2 implies f − m < f −
m+1 < f , therefore, by the induction hypothesis, there exists polynomials pλ′,f−m, pλ′,f−m+1 ∈
Q[a, b; d′]S2 such that

cSM(Yλ′(d
′))f−m = pλ′,f−m(d

′) and cSM(Yλ′(d
′))f−m+1 = pλ′,f−m+1(d

′)

hold for every d′ ≥ k(λ′, f −m+ 1) > k(λ′, f −m).
Substitutions d′ = d − m and ()m/d′ result in rational functions p̂λ′,f−m and p̂λ′,f−m+1.

Analogously to what we had in Section 2.4, coefficients of aibj in both of them have integer
values for d >> 0. Hence, by Lemma 2.4.2, p̂λ′,f−m, p̂λ′,f−m+1 ∈ Q[a, b; d]S2 such that

p̂λ′,f−m(d) =
(
cSM(Yλ′(d−m))f−m

)
m/(d−m)

and p̂λ′,f−m+1(d) =
(
cSM(Yλ′(d−m))f−m+1

)
m/(d−m)

hold for every d ≥ k(λ′, f −m+ 1) +m = k(λ, f). The terms (b− a)
∏m−1

i=0

(
ia+ (d− i)b

)
and∏m−1

i=0

(
ia + (d − i)b

)
are clearly polynomials. Multiplying them and taking divided difference

preserve polynomiality.
Next, we prove that sums

∑
µ∈∨λf (d) c

SM(Yµ(d))f in (54) form a polynomial for d ≥ k(λ, f).
By (48), we can apply the induction hypotesis which says that for every µ ∈ ∨λf (d) there exists
pµ,f ∈ Q[a, b; d]S2 such that

cSM(Yµ(d))f = pµ,f (d) for every d ≥ k(µ, f).
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As k(µ, f) > k(λ, f) for all µ ∈ ∨λf , and d ≥ k(λ, f) implies ∨λf (d) = ∨λf , we get for every
d ≥ k(λ, f) that ∑

µ∈∨λf (d)

cSM(Yµ(d)) =

( ∑
µ∈∨λf

pµ,f

)
(d)

finishing the induction step for the Y∅ ̸= Yλ case.
Lastly, for f > 0 and ∅ ∈ Pf we can use the motivic property of the CSM class to prove the

polynomiality of cSM(Y∅(d))f . As Pf (d) = Pf for every d ≥ 2f = k(∅, 0),

Y∅(d) = Pold(C2)× \
∐

λ∈Pf\{∅}

Yλ(d).

Then we deduce from Theorem 3.2.1 that for every degree f there is a polynomial p×f ∈
Q[a, b; d]S2 such that

(55) cSM
(
Pold(C2)×

)
f
= p×f (d) for every d ≥ f.

Also, as |λ| ≥ 2l(λ) for every partition λ,

max
∅≠λ∈Pf

k(λ, f) = max
∅̸=λ∈Pf

(|λ|+ 2 (f − (|λ| − l(λ)))) = 2f = k
(
2f , f

)
,

so we can use the induction hypothesis, and get that for every d ≥ k(∅, f)

cSM(Y∅(d))f =

(
p×f −

∑
∅≠λ∈Pf

pλ,f

)
(d).

□

Remark 3.6.2. The same induction scheme shows that starting from f = 0 and for all
f going through partitions in Pf in reverse order we can, using the homogeneous recursion
formula (54), compute these stable homogeneous parts of CSM classes

cSM(Yλ(d))f ∈ Q[a, b; d]S2 .

The only input we need is stable homogeneous parts of cSM
(
Pold(C2)×

)
f
∈ Q[a, b; d]S2 , which,

by Theorem 3.2.1, are homogeneous polynomials of degree 2f , and can be interpolated using
values cSM

(
Polf (C2)×

)
f
, . . . , cSM

(
Pol3f (C2)×

)
f
.

The recursion in easy to implement for example in Maple. The vast number of examples we
got this way led us to the assumption that the boundary |λ| + 2(f − codim(Yλ)) in Theorem
3.6.1 can be strengthened.

3.6.1. Remarks about the threshold for the polynomiality property. In this sec-
tion we collect conjectures and remarks about possible ways to strenghten our result about the
threshold k(λ, f) = |λ|+2(f−codim(Yλ)) for the polynomiality property of cSM(Yλ(d))f . These
often imply divisibility of cSM(Yλ(d))f by certain linear factors, which we will also describe.

Conjecture 3.6.3. For any partition λ = (2e2 , . . . ,mem) and degree f there is a polynomial
pλ,f ∈ Q[a, b; d]S2 such that

pλ,f (d) =

{
0 if f ≤ d < |λ|
cSM(Yλ(d))f if |λ| ≤ d.

The above distinction reflects the fact that Yλ(d) is only defined for d ≥ |λ|. As an easy
consequence of Conjecture 3.6.3 we obtain
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Conjecture 3.6.4. Let λ = (2e2 , . . . ,mem) be a partition. Then for any degree f ∈
{codim(Yλ), . . . , |λ| − 1} the stable homogeneous part cSM(Yλ(d))f ∈ Q[a, b; d]S2 is divisible
by

(d− f) . . . (d− (|λ| − 1)).

For example,

cSM(Y3,2,2(d))4 =
1

2
d(d− 1)(d− 2)(d− 3)(d− 4)(d− 5)(d− 6)

(
a4 + b4

)
+

1

2
d(d− 4)(d− 5)(d− 6)(3 d3 + d2 − 14 d+ 24)

(
a3b+ ab3

)
+ d(d− 4)(d− 5)(d− 6)(2 d3 + 5 d2 + 3 d− 18)a2b2

cSM(Y3,2,2(d)5 = −1

4
d(d− 1)(d− 2)(d− 3)(d− 4)2(d− 5)(d− 6)(d− 7)

(
a5 + b5

)
− 1

4
d(d− 5)(d− 6)(d− 7)(4 d5 − 29 d4 + 17 d3 + 230 d2 − 672 d+ 288)

(
a4b+ ab4

)
− 1

4
d(d− 5)(d− 6)(d− 7)(7 d5 − 25 d4 − 92 d3 − 40 d2 + 448 d− 192)

(
a3b2 + a2b3

)
cSM(Y3,2,2(d))6 =

1

48
d(d− 1)(d− 2)(d− 3)(d− 4)2(d− 5)2(d− 6)2(3d− 25)

(
a6 + b6

)
+

1

48
d(d− 6)(15 d9 − 466 d8 + 5726 d7 − . . . )

(
a5b+ ab5

)
+

1

48
d(d− 6)(33 d9 − 869 d8 + 8170 d7 − . . . )

(
a4b2 + a2b4

)
+

1

24
d(d− 6)(21 d9 − 518 d8 + 4326 d7 − . . . )a3b3

Remark 3.6.5. Balázs Kőműves has results regarding the boundary in Theorem 3.6.1 that
are, in most cases, even stronger than Conjecture 3.6.3. He claims that the polynomial property
holds for

d ≥


|λ|+ 3 if l(λ) = 0

|λ|+ 2 if l(λ) = 1

|λ|+ 1 if l(λ) = 2

|λ| if l(λ) ≥ 3.

In other words, substituting a specific d ≥ |λ| in the stable homogeneous part cSM(Yλ(d))f ∈
Q[a, b; d]S2 gives the degree f homogeneous part of the CSM class of Yλ(d) ⊂ Pold(C2) except
for partitions λ of length 0,1 or 2, where for f ≥ |λ|+1 substituting |λ|, . . . , |λ|+2− l(λ) may
not give the correct value.

The top degree parts of equivariant CSM classes of affine cones are the equivariant Euler
classes of the ambient, see [FR18, p. 7]. This implies that cSM(Yλ(d))d+1 = 0 for any partition
λ. Combined with the above remark, we get that cSM(Yλ(d))f is divisible by

(56)

(d− (|λ|+ 3)) . . . (d− (f − 1)) for f = |λ|+ 4, . . . if l(λ) = 0,

(d− (|λ|+ 2)) . . . (d− (f − 1)) for f = |λ|+ 3, . . . if l(λ) = 1,

(d− (|λ|+ 1)) . . . (d− (f − 1)) for f = |λ|+ 2, . . . if l(λ) = 2,

(d− |λ|) . . . (d− (f − 1)) for f = |λ|+ 1, . . . if l(λ) ≥ 3.

Based on examples we calculated, an even stronger assumption can be made:
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Conjecture 3.6.6. Let λ = (2e2 , . . . ,mem) be a partition. Then the stable homogeneous
part cSM(Yλ(d))f ∈ Q[a, b; d]S2 is divisible by

(57)

(d− (|λ|+ 3)) . . . (d− f) for f = |λ|+ 3, . . . if l(λ) = 0,

(d− (|λ|+ 2)) . . . (d− f) for f = |λ|+ 2, . . . if l(λ) = 1,

(d− (|λ|+ 1)) . . . (d− f) for f = |λ|+ 1, . . . if l(λ) = 2,

(d− |λ|) . . . (d− f) for f = |λ|, . . . if l(λ) ≥ 3.

3.7. Invariants of the variety of tangent lines of type λ

In this section we turn back to hypersurfaces, and see what can we can deduce about them
using CSM classes of CRS.

Let f ∈ Pold(Cn) be a nonzero homogeneous polynomial of degree d and denote by Zf ⊂
P(Cn) the hypersurface it defines. Recall that in Section 1.2 we identified the variety of λ-lines
TλZf with the degeneracy locus σ−1

f

(
Yλ
(
Pold(S)

))
in

Yλ
(
Pold(S)

)
Pold(S)

σ−1
f

(
Yλ
(
Pold(S)

))
Gr2(Cn).

⊂

⊂

σf

Equivariant SSM classes are universal, evaluating them at the defining bundle, we can
calculate the SSM class of such a degeneracy locus: As detailed in Remark 2.2.2, Pold(S)
admits a Whitney stratification adapted to our coincident root stratification. For a generic
homogeneous polynomial f ∈ Pold(Cn) the section σf : V 7→ f |V is transversal to all strata
of Y λ

(
Pold(S)

)
in this Whitney stratification, see Proposition A.1.1. This means that we can

combine the motivic property of the CSM class with Corollary 3.1.5 for P → Gr2(Cn), the frame
bundle of the tautological bundle S → Gr2(Cn), to calculate the SSM class of TλZf ⊂ Gr2(Cn).
With the right choice of generators, see our conventions in Section 2.3.2, this gives

Proposition 3.7.1. For a generic homogeneous polynomial f ∈ Pold(Cn) the class sSM(TλZf ⊂
Gr2(Cn)) is obtained from the equivariant class sSM(Yλ(d)) ∈ H∗

GL(2)
∼= Z [c1, c2] by substituting

ci(S
∨) into ci for i = 1, 2.

In other words,

(58) cSM(TλZf ⊂ Gr2(Cn)) = c (T Gr2(Cn))
cSM(Yλ(d))

cSM(Pold(C2))

∣∣∣∣
ci 7→ci(S∨)

.

Since Gr2(Cn) has nonzero cohomology only in degrees at most its dimension 2(n− 2) and
the smallest degree part of the term cSM(Yλ(d)) is the equivariant fundamental class in degree
codim(Yλ), to calculate cSM(TλZf ⊂ Gr2(Cn)), we only need homogeneous parts of cSM(Yλ(d))

in degrees at most 2(n − 2) and homogeneous parts of c(T Gr2(Cn)) and 1/cSM(Pold(C2)) in
degrees at most 2(n− 2)− codim(Yλ).

To obtain the multiplicative inverse of cSM(Pold(C2)), we apply Wronski’s formula, see e.g.
[Hen74, Thm. 1.3], to get

Proposition 3.7.2. Let 1 +
∑∞

i=1 bit
i the formal multiplicative inverse of the power series

1 +
∑∞

i=1 ait
i. Then

(59) bi = (−1)i∆1i(a1, . . . , ai),
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where ∆1i(a1, . . . , ai) is the determinant of the matrix
a1 a2 a3 . . . ai
1 a1 a2 . . . ai−1

0 1 a1 . . . ai−2
... . . . ...
0 . . . 0 1 a1

 .

This proposition also shows that homogeneous parts of cSM(Pold(C2)) needed in (58) are also
of degree at most 2(n− 2)− codim(Yλ).

In Section 3.6 and Section 3.2 we described approaches to calculate stable homogeneous
parts of cSM(Yλ(d)) and cSM(Pold(C2)) . The remaining term of the right-hand side can be
computed as follows.

3.7.1. Total Chern classes of Grassmannians. Let Q denote the quotient bundle
(Grk Cn × Cn) /S. Then T (Grk (Cn)) ∼= Hom (S,Q), therefore applying the functor Hom (S,−)
to the split exact sequence

0 S Grk (Cn)× Cn Q 0,

we see that

(60) c(T Grk (Cn)) =
c (Hom(S,Grk(Cn)× Cn)

c (Hom(S, S))
=

∏k
i=1 (1 + xi)

n∏k
i=1

∏k
j=1(1 + xi − xj)

,

where the xi’s are Chern roots of S∨.

Example 3.7.3. Let us use (58) to calculate the Euler characteristics of the dual of a generic
(non-singular) plane curve. The dual of such a degree d plane curve Zf ⊂ P(C3) corresponds to
T2Zf ⊂ Gr2 (C2). As σ−1

f

(
Y λ(Pol

d(S))
)
= TλZf , see Remark 2.2.2, its class can be calculated

as

cSM
(
T2Zf ⊂ Gr2(C3)

)
= c

(
T Gr2(C3)

) cSM
(
Y2(d)

)
cSM(Pold(C2))

∣∣∣∣∣
ci 7→ci(S∨)

.

Here we only need degree 1 and 2 homogeneous parts of cSM
(
Y2(d)

)
:

cSM
(
Y2(d)

)
1
= [Y2(d)] = d(d− 1)c1,

cSM
(
Y2(d)

)
2
= cSM

(
Y2(d)

)
2
+ [Y3(d)] + [Y3(d)] = −1

2
d(d− 4)(d− 1)2c21 − d(d− 2)(d− 4)c2,

as all other strata in the closure are of codimension bigger than 2, and the lowest degree term
of cSM(Z ⊂M) is [Z ⊂M ] for any smooth variety M and (closed) subvariety Z.

For the other two terms in the right-hand side, (60) applied either directly to Gr2(C3) or to
P
(
C3∨) ∼= Gr2(C3) implies that

c
(
T Gr2(C3)

)
= 1 + 3c1 + 3c21

in H∗(Gr2(C3)) ∼= Z[c1, c2]/(c21 − c2, c
3
1 − 2c1c2), while e.g. interpolation for the degree 2 coeffi-

cient of c1 in c(Pold(C2)) together with (59) gives
1

cSM(Pold(C2))
= 1− 1

2
d(d+ 1)c1 + (higher degree terms).

Putting everything together, we get

cSM
(
T2Zf ⊂ Gr2(C3)

)
= d(d− 1)c1 −

1

2
d(d− 3)(d2 + d− 4)c21.
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As the highest degree part of cSM
(
T2Zf ⊂ Gr2(C3)

)
encodes the Euler characteristics, we obtain

χ
(
T2Zf ⊂ Gr2(C3)

)
=

∫
Gr2(C3)

cSM
(
T2Zf ⊂ Gr2(C3)

)
= −1

2
d(d− 3)(d2 + d− 4).

Example 3.7.4. Similarly, we can use (58) to calculate CSM classes of (locally closed)
varieties of lines tangent to degree d surfaces.

Here, again, c(T Gr2(C4)) can be calculated in two ways, either by (60) or by the divisor
trick, (20), using the fact that the Plücker embedding embeds Gr2(C4) as a quadratic hyper-
surface in P(C5):

cSM(Gr2(C4)) =
(1 + c1)

6

1 + 2c1
= 1 + 4c1 + 7c21 + 6c31 + 3c41.

For e.g. λ = (3) we get that

(61) cSM(T3Zf ⊂ Gr2(C4)) = d(d− 1)(d− 2)c21 − d(d− 2)(d− 4)c2−

d(d4 − d3 − 19d2 + 42d− 4)c1c2 +
1

2
d(d6 − 2d5 − 31d4 + 100d3 + 194d2 − 1032d+ 864)c21c2.

We know that the lowest and the highest degree terms correspond to the fundamental class
and the Euler characteristics. In the following section we will see how the rest of such a CSM
class can be endowed with geometric interpretation.

3.7.2. A pairing and the Aluffi transformation for the cohomology of Grass-
mannians. Aluffi showed in [Alu13] that the CSM class of a projective subvariety can be
expressed from the Euler characteristics of generic linear sections. We generalize this idea to
Grassmannian manifolds.

For any compact smooth variety M we can define a bilinear map on H∗(M):

(62) ⟨α, β⟩ :=
∫
M

αβ

c(M)
.

This is non-degenerate because the cup product pairing is non-degenerate. If M has nonzero
cohomology only in even degrees, e.g. M = Grk(Cn), (62) is also symmetric. The key feature
of this pairing, see e.g. [Sch17], is that

Proposition 3.7.5. If the closed subvarieties X, Y ⊂ M are Whitney transversal, i.e.
both are endowed with a Whitney stratification such that all strata of X and all strata of Y are
transversal, then

⟨cSM(X), cSM(Y )⟩ = χ(X ∩ Y ).

From now on, let M = Grk(Cn). In this case, CSM classes of the Schubert cells Ωλ ⊂
Grk(Cn) form a basis of H∗(Grk(Cn)). Denote by {fλ} the basis dual to {cSM(Ωλ)} with
respect to this non-degenerate pairing. Then for any closed subvariety Y ⊂ M and cSM(Y ⊂
M) =

∑
µ aµfµ, as the Schubert stratification of the Grassmannian is Whitney (see [Nic12]),

Proposition 3.7.5 implies that

(63) χ(Y ∩ Ωλ) = ⟨cSM(Y ), cSM(Ωλ)⟩ = ⟨
∑
µ

aµfµ, c
SM(Ωλ)⟩ = aλ

if Ωλ is chosen such that the Schubert variety Ωλ is Whitney-transversal to (the canonical
stratification of) Y . This shows that Euler characteristics of generic Schubert cell sections
determine the CSM class of Y ⊂M .

The dual basis was calculated in [AMSS17]: fλ = cSM(Ωλ̄), where λ̄ denotes the dual
partition of λ. This is equivalent to the fact that Richardson “cells” Ωλ ∩ Ωµ —intersections
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of Schubert cells with opposite Schubert cells—have zero Euler characteristics unless µ = λ̄, in
which case the Richardson cell is a point, and the Euler characteristics is 1.

To see this, let us equip Grk (Cn) with the standard GL(n)-action. Let T ⊂ GL(n) denote
a maximal torus and consider the restriction of this T-action to the T-invariant Ωλ ∩ Ωµ. If
µ ̸= λ̄, Ωλ∩Ωµ contains no torus fixed point, F(Ωλ∩Ωµ) = ∅, therefore, by the ABBV integral
formula,

χ(Ωλ∩Ωµ) =

∫
Ωλ∩Ωµ

cSM(Ωλ∩Ωµ) =
(T)∫
Ωλ∩Ωµ

cSMT (Ωλ∩Ωµ) =
∑

f∈F(Ωλ∩Ωµ)

cSMT (Ωλ ∩ Ωµ)
∣∣
f

e
(
TfΩλ ∩ Ωµ

) = 0.

The same could be extended to (complex) partial flag manifolds. This generalization we
will not need in what follows.

3.7.3. Euler characteristics of generic Schubert cell sections of varieties of tan-
gent lines. Applying the above change of basis to varieties of lines of type λ, we get

Corollary 3.7.6. Let λ denote a partition without 1’s and µ a partition inside the 2-by-
(n− 2) rectangle. For each d let

Xλ,µ,d = χ(TλZfd ∩ Ωµ)

for a generic polynomial f ∈ Pold(Cn) and a generic Schubert cell Ωµ ⊂ Gr2(Cn). Then the
Xλ,µ,d’s form a polynomial in Q[d] for large enough d’s.

Proof. By (58) and (59), for a generic polynomial f ∈ Pold(Cn) every homogeneous part of
cSM(TλZf ⊂ Gr2(Cn)) can be written as a polynomial in homogeneous parts of cSM(Gr2(Cn)),
cSM(Yλ(d)) and cSM(Pold(C2)). By Theorem 3.6.1 and 3.2.1, the latter two form polynomials
in Q[a, b; d]S2 for large enough d’s. Therefore, coefficients of e.g. any Schur polynomial sµ in
cSM (TλZf ⊂ Gr2(Cn)) form a polynomial in Q[d] for large enough d’s.

By (63), Euler characteristics χ(TλZf ∩Ωµ) for a sufficiently transversal Ωµ is the coefficient
of cSM(Ωµ̄ ⊂ Gr2(Cn)) in cSM(TλZf ⊂ Gr2(Cn)), and changing from the {sµ} basis to the
{cSM(Ωµ ⊂ Gr2(Cn))} basis of H∗(Gr2(Cn)) does not change this polynomiality property. □

Example 3.7.7. To illustrate the above corollary, let us calculate Euler characteristics of
Schubert cell sections of the variety of 3-flex lines for a generic degree d surface in P3. All we
have to do is to write (61) in the {cSM(Ωµ ⊂ Gr2(C4))} basis.

Understanding the simple geometry of these Schubert cells gives an “elementary” way to
calculate these classes: Closures of Ωµ ⊂ Gr2(C4) for µ ̸= (1) are all isomorphic to projective
spaces, while the closure of Ω1 ⊂ Gr2(C4) can be described as a cone over a smooth degree 2
surface, hence its CSM class can be computed using [Feh21, Prop. 3.1] and the fact that it is
symmetric in s2 and s1,1. We get that

cSM(Ω2,2) = s2,2,

cSM(Ω2,1) = s2,1 + s2,2,

cSM(Ω2) = s2 + 2 s2,1 + s2,2,

cSM(Ω1,1) = s1,1 + 2 s2,1 + s2,2,

cSM(Ω1) = s1 + 2 s1,1 + 2 s2 + 3 s2,1 + s2,2,

cSM(Ω∅) = 1 + 3s1 + 4 s1,1 + 4 s2 + 4 s2,1 + s2,2.
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After the change of basis, (61) becomes

cSM(T3Zf ⊂ Gr2(C4)) = 3d(d− 2)ω1,1 + d(d− 1)(d− 2)ω2−
d(d4 − d3 − 17d2 + 42d− 12)ω2,1+

1

2
d(d6 − 2d5 − 29d4 + 98d3 + 158d2 − 948d+ 848)ω2.2,

where ωµ = cSM(Ωµ ⊂ Gr2(C4)). By (63), for a generic f ∈ Pold(C4) and generic Ωµ’s the
coefficient of e.g. ω2,1 is equal to χ(T3Zf ∩ Ω1), i.e. the Euler characteristics of the variety of
3-flexes of Zf that intersect a generic puncture line in P3. The coefficient of ω1,1 is the Euler
characteristics that counts the the number of 3-flexes of Zf contained in a generic P2 \P1. This
is equal to the number of 3-flexes of a generic degree d plane curve.

There are general formulas computing CSM classes of Schubert cells of an arbitrary Grass-
mannian Grk(Cn) in e.g. [FR18]:

cSM(Ωµ ⊂ Grk(Cn)) = S

(
k∏
j=1

z
µj
j

k∏
j=1

(1 + zj)
n−ik+1−j

1∏
1≤i<j≤k(1 + zi − zj)

)
,

where it = µk+1−t + t and the operation S = Sz1,...,zk is defined as S(zλ11 . . . zλkk ) = sλ1,...,λk ,
possibly combined with the straightening laws, for a monomial zλ11 . . . zλkk , and extended linearly
for a polynomial.

This makes it possible to use our approach to calculate Euler characteristics of generic
Schubert cell sections of varieties of λ-lines for hypersurfaces of arbitrary dimensions.
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CHAPTER 4

Motivic Chern classes of coincident strata and varieties of λ-lines

4.1. A brief introduction to (equivariant) motivic Chern classes

In this last chapter we focus on calculating equivariant motivic Chern classes of coincident
root strata and deducing motivic Chern classes of varieties of λ-lines. The motivic Chern class
can be regarded as a K-theory analog of the Chern-Schwartz-MacPherson class.

4.1.1. An overview of K-theory. K-theory of a complex projective variety X comes in
different flavors: In algebraic geometry we can consider the Grothendieck group of locally free
sheaves K0(X) and the Grothendieck group of coherent sheaves K0(X). For a smooth X the
existence of finite locally free resolutions of coherent sheaves implies that K0(X) and K0(X)
are isomorphic.

We can also look at the Grothendieck group of complex vector bundles K0
top(X) for the

analytic topology on X. Using Bott periodicity, the functor K0
top(X) can be extended to a Z2-

graded complex-oriented cohomology theory K∗
top(X) with, among many others, K-theoretic

Euler and Chern classes and pushforwards f! along proper maps defined. This extension we
won’t need, all our calculations will be inside K0

top(X). In fact, if all cells of a finite CW complex
X have even dimension, then K1

top(X) = 0.
Connecting the algebraic and the topological versions is the natural forgetful morphism

K0(X) → K0
top(X). This, by the Riemann-Roch theorem, commutes with the respective push-

forwards, but is an isomorphism only in some rare cases, for example when X admits a decom-
position into algebraic cells. Luckily, in this thesis we are only interested in the K-groups of
X = Grk(Cn), where all three variants coincide. This we will denote by K(X).

Likewise, G-equivariant K-theory has algebraic KG
alg and topological KG

top versions. For a
brief summary and comparison of them, see [FRW21]. [FRW21, Thm. 9.1] implies that the
natural mapKGL(2)

alg (Pold(C2)) → K
U(2)
top (Pold(C2)) is an isomorphism for our GL(2)-representation

Pold(C2). In such cases, the isomorphic groups we will denote by KG(X). Then e.g. isomor-
phisms

(64) K
GL(2)
alg (Pold(C2)) ∼= K

GL(2)
alg (pt) ∼= R(GL(2)) ∼= R(T)W

—where T ⊂ GL(2) is a maximal complex torus, W ∼= S2 is the Weyl group of GL(2) and R
refers to the representation rings—allow us to restrict our GL(2)-action to T without losing
information.

As we have mentioned, our main objective for this chapter is to compute T-equivariant mC
classes of CRS. These are elements of

KT(Pol
d(C2)) ∼= KT(pt) ∼= R(T) ∼= Z

[
X±1, Y ±1

]
,

where we abbreviated projections πi ∈ R(T) to the i-th factor as X := π1 and Y := π2. We will
also use generators α := X−1 and β := Y −1 to avoid negative exponents in the (multiplicative)
characters αiβd−i of the representation Pold(C2) ∼= Symd

(
C2∨).

In case of a torus action, the Lefschetz-Riemann-Roch theorem—a K-theory counterpart of
the ABBV integral formula—can help us to determine K-theory pushforwards. The following

59
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4.1. A BRIEF INTRODUCTION TO (EQUIVARIANT) MOTIVIC CHERN CLASSES 60

special case ([FRW21, Prop. 7.5]) will be particularly useful for calculating torus-equivariant
motivic Chern classes of CRS:

Proposition 4.1.1. Suppose that the torus T acts on the vector space V with no zero weight
and on the smooth and compact M with finitely many fixed points. Let π :M × V → V denote
the projection onto V . Then for all ω ∈ KT(M × V ) we have

π!ω =
∑

f∈F(M)

ω|f
eK(TfM)

,

where F(M) denotes the fixed point set of M and eK refers to the equivariant K-theoretic Euler
class.

Note that inclusions 0 ↪→ V and M ↪→ M × V induce isomorphism on K-theory, and that
we identified the fixed points f ∈M with (f, 0) ∈M × V accordingly.

4.1.2. Definition and some properties of the motivic Chern class. The motivic
Chern (mC) class can be defined similarly to the Chern-Schwartz-MacPherson class. More
precisely —restricting again our attention to constructible subsets X of a smooth algebraic
variety M— it is a motivic class taking X ⊂ M to mC(X ⊂ M) ∈ K0

alg(M)[y], where y is a
formal variable. The normalizing condition is given by

mC(M) = λy(T
∨M),

where for a vector bundle E we define λy(E) =
∑rankE

i=0 [ΛiE] yi.
The motivic Chern class analog of the local property (19) is again an easy consequence of

the definition, and the fact that λy is multiplicative implies the analog of the multiplicative
property (18). The divisor trick expressing mC classes of zero loci, see Proposition 3.1.2, takes
the following form

(65) mC(Z) =
λy(T

∨M)|Z
λy(ν∨Z⊂M)

=
mC(M)

λy(E∨)

∣∣∣∣
Z

and mC(Z ⊂M) =
mC(M)

λy(E∨)
eK(E),

where eK(E) stands for the K-theoretic Euler class of E.
The motivic Chern class also has a Segre variant,

mS(X ⊂M) =
mC(X ⊂M)

mC(M)
.

This motivic Segre class behaves well for transversal pullbacks for a fine notion of transversality
([FRW18, § 8.1]):

Definition 4.1.2. Let N be a smooth variety. Then g : N →M is motivically transversal
to a map of smooth varieties f : U → M if there is a proper normal crossing extension
f̄ : Y →M of f such that g is transversal to all the f̄K ’s.

Here we used notations of Definition 3.1.1. Motivically transversal pullbacks of proper
normal crossing extensions are proper normal crossing extensions. Therefore, if g : N → M is
motivically transversal to a smooth variety U ⊂M , we have ([FRW18, Thm. 8.5])

(66) mS(g−1(U) ⊂ N) = g∗mS(U ⊂M).
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4.1. A BRIEF INTRODUCTION TO (EQUIVARIANT) MOTIVIC CHERN CLASSES 61

4.1.3. The Todd genus and the χy-genus of Hirzebruch. Compared to cohomology,
K-theory has a new feature ([Feh21, § 2.7]): Let X be a smooth, closed projective variety.
Then the Todd genus of X, the K-theoretic pushforward of 1 ∈ K(X) along the collapse map
coX : X → pt,

Td(X) :=

∫
X

1 := coX !1 ∈ K(pt) ∼= Z

is a non-trivial invariant.
The following is a key result in K-theory, it will be used throughout this chapter.

Theorem 4.1.3 ([AH62]). The Todd genus of the projective space,

Td(Pn) = 1.

A straightforward consequence is that for any linear subspace Pk ⊂ Pn the pushforward of
its K-class, ∫

Pn

[
Pk ⊂ Pn

]
= 1.

These classes generate the K-theory of Pn: K(Pn) ∼= Z[H]/(Hn+1) for H = [Pn−1 ⊂ Pn] =
1− [γ], where γ → Pn denotes the tautological bundle, see Section 4.4.1. This means that we
can calculate the integral for any ω ∈ K(Pn).

A straighforward extension of the Todd genus is the χy-genus of Hirzebruch:

χy(X) =

∫
X

λy(T
∨X) =

∫
X

mC(X),

for X a smooth, closed projective variety ([Feh21, § 2.9]).

4.1.4. Equivariant mC and mS classes. The equivariant version of the motivic Chern
class for a linear algebraic group G acting on a smooth G-variety was developed in [FRW21].
The definition is parallel to what we have sketched for the non-equivariant setting: For example,
a G-action on M lifts to make TM a G-vector bundle, the exterior powers ΛiT∨M are also
G-vector bundles, so mCT(M) := λy(T

∨M) can be considered as an element in KG
alg(M)[y].

Analogs of the multiplicative property (22) and (23) hold for the equivariant mC class.
These together with the following lemma form the backbone of our calculations of mC classes
of affine varieties.

Let α denote a torus action T ∼= (C×)r on C. The inclusion 0 ↪→ C induces an isomorphism
KT
alg(C) ∼= KT

alg(pt) which we won’t denote in our formulas. Under this isomorphism [TC] ∈
KT
alg(C), the class represented by the natural lift of α to TC, corresponds to the T-equivariant

line bundle over the point with α the T-action on its total space. Corresponding to KT
alg(pt)

∼=
R(T), we use the same letter α for this T-equivariant line bundle. Under these identifications,
by definition, we have:

Lemma 4.1.4 (motivic calculus for mC ). Let α denote a torus action on C. Then for the
torus-equivariant motivic Chern classes we have

mC(C ⊂ C) = 1 + y/α, mC({0} ⊂ C) = 1− 1/α, mC(C \ {0} ⊂ C) = (1 + y) /α.

As shown in [FRW18, § 8.2], G-equivariant motivic Segre class

mSG(X ⊂M) =
mCG(X ⊂M)

mCG(M)

is a universal formula for motivic Chern classes of degeneracy loci. This statement can be
dissected into two levels.
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4.2. MOTIVIC CHERN CLASS OF PLANE CURVES 62

First, suppose that P →M is a principal G-bundle over the smooth M and A is a smooth
G-variety. Then we can define a map
(67) a : KG(A) → K(P ×G A)

by association: For any G-vector bundle E over A the associated bundle P ×G E is a vector
bundle over P ×G A. Then by [FRW18, Prop. 8.7] we have

Proposition 4.1.5. Let Y ⊂ A be G-invariant. Then

mS(P ×G Y ⊂ P ×G A) = a
(
mSG(Y ⊂ A)

)
.

The second part ([FRW18, Cor. 8.8]) can be deduced by applying (66):

Corollary 4.1.6. Suppose that σ : M → P ×G A is a section motivically transversal to
P ×G Y . Then the mS class of the Y -locus of the section σ is

(68) mS(σ−1(P ×G Y ) ⊂M) = σ∗a
(
mSG(Y ⊂ A)

)
.

If A is a vector space then KG(A) ∼= KG(pt), σ∗ can be identified with the identity map
K(P ×G A) = K(M), and under these identifications a : KG(pt) → K(M) maps the class of a
G-representation [V ] ∈ KG(pt) to [P ×G V ] ∈ K(M).

4.1.5. Structure of the chapter. In Section 4.2 we calculate motivic Chern classes of
plane curves in terms of their degree, sum of Milnor numbers and sum of delta invariants. Later
we apply the resulting formula to duals of generic plane curves.

Section 4.3 starts with an example showing that the motivic Chern class doesn’t behave
well with respect to pushforwards along branched coverings. As a consequence, we describe a
resolution for CRS, and we use this to deduce a recursive formula for equivariant mC classes
of CRS. We also conjecture that in an appropriate basis d-dependence of the coefficients of
mC(Yλ(d)) is polynomial.

We conclude with Section 4.4, where we show for generic polynomials how the motivic
Chern class of the corresponding variety of λ-lines can be calculated from mC(Yλ(d)). We then
combine Section 4.2 with this approach for ordinary tangent lines to prove polynomial property
for some of the coefficients in mC(Y 2(d)).

4.2. Motivic Chern class of plane curves

To illustrate some characteristic features of K-theory and the motivic Chern class, let us
calculate the mC classes of projective plane curves. Applying the resulting formula to the dual
of a generic plane curve connects this and Section 4.4.3. Let us start with the smooth case.

4.2.1. Motivic Chern classes of smooth plane curves. A smooth degree d hypersur-
face Zd ⊂ Pn is the zero locus of a section of the line bundle (γ∨)d. Using the divisor trick (65),
we get

(69) mC(Zd ⊂ Pn) =
(1 + yt)n+1

1 + y
· 1− td

1 + ytd
,

where t denotes the class of the tautological bundle [γ]. This is an elegant formula, but we will
also need the χy-genus. It can be deduced from (69) by first taking the n-th Taylor polynomial
in H = [Pn−1 ⊂ Pn] = 1− t then substituting H = 1:

To find the multiplicative inverse of 1 + ytd, we can apply 3.7.2. Luckily for n = 2, as
K(P2) ∼= Z[H]/(H3) and 1 − td = 1 − (1 − H)d = dH −

(
d
2

)
H2 + . . . , we only need its linear

term:
1

1 + y − ydH
=

1

(1 + y)
(
1− dy

1+y
H
) =

1

1 + y

(
1 +

yd

1 + y
H

)
=

1

(1 + y)2
(1 + y + ydH) .
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4.2. MOTIVIC CHERN CLASS OF PLANE CURVES 63

Then expanding terms in (69), we get

mC(Zd ⊂ P2) ≡ 1

(1 + y)3
· ((1 + y)3 − 3y(1 + y)2H)(dH −

(
d

2

)
H2)(1 + y + dyH),

which is congruent to

mC(Zd ⊂ P2) = (1 + y)dH +

(
−
(
d

2

))
H2 +

(
d2 − 5d

2

)
yH2.

Substituting H = 1, we get the χy-genus of the degree d smooth plane curve:

(70) χy(Zd) =

((
d− 1

2

)
− 1

)
(y − 1).

4.2.2. Motivic Chern classes of singular plane curves.

Proposition 4.2.1. The motivic Chern class of a degree d plane curve C ⊂ P2 with M the
sum of Milnor numbers and ∆ the sum of delta invariants is

(71) mC(C ⊂ P2) = (1 + y)dH +

(
−d

2 − d

2
+M −∆

)
H2 +

(
d2 − 5d

2
−∆

)
yH2.

To prove this proposition, let φ : Z̃ → P2 be a normalization of Z ⊂ P2. We will see that
the pushforward φ! provides a comparison between χy(Z̃) and χy(Z). From χy(Z), using the
Aluffi transformation, we can calculate mC(Z ⊂ P2).

4.2.2.1. Aluffi transformation for P2. Motivic Chern classes of subvarieties of partial flag
manifolds can be calculated from the χy-genera of their intersections with Schubert varieties.
The simplest use case for this is the computation of mC(Z ⊂ P2), which we do next. Let us
write

mC(Z ⊂ P2) = aH + byH + cH2 + dyH2,

and let i : P1 ↪→ P2 be motivically transversal to Z. Denoting by P1 its image, we have

mS(Z ∩ P1 ⊂ P1) = i∗mS(Z ⊂ P2).

As mC(Z ∩ P1 ⊂ P1) = aH, this implies that a = b, meaning that if

χy(Z ∩ P1) = z10 and χy(Z) = z20 + z21y,

then

(72) mC(Z ⊂ P2) = z10(1 + y)H + (z20 − z10)H
2 + (z21 − z10)yH

2.

4.2.2.2. χy-genus of a plane curve from its normalization. The deviation of the geometric
genus, the genus of the normalization Z̃ = Σg, from the smooth case can be localized to delta
invariants of the singular points:

g =

(
d− 1

2

)
−∆.

Generalizing (70), we have

(73) χy(Σg) = h0,0 − h0,1 + (h1,0 − h1,1)y = 1− g + (g − 1)y = (1− g)(1− y) =(
1−

(
d− 1

2

)
+∆

)
+ y

((
d− 1

2

)
−∆− 1

)
The Milnor-Jung formula

µ = 2δ − r + 1,
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4.3. A RECURSIVE FORMULA FOR MOTIVIC CHERN CLASSES OF CRS 64

where µ is the Milnor number, δ is the delta invariant and r is the branching number of the
singularity, implies that the number of “extra” preimages of the normalization is 2∆−M . This
combined with the homology and the motivic property of the motivic Chern class gives that

φ! mC(Z̃)− (2∆−M)φ! mC(pt ⊂ Z̃) = mC(Z ⊂ P2).

Integrating the left-hand side over Z̃, the right-hand side over P2, we obtain

χy(Z) = χy(Z̃)− (2∆−M) =

(
1−

(
d− 1

2

)
+M −∆

)
+ y

((
d− 1

2

)
−∆− 1

)
.

Substituting this and χy(Z ∩ P1) = z10 = deg(Z) = d into (72), we complete the proof.

4.3. A recursive formula for motivic Chern classes of CRS

In this section we describe a recursive formula for GL(2)-equivariant motivic Chern classes
of CRS. As explained in Section 4.1.2, the motivic Chern class can be regarded as a K-theory
counterpart of the Chern-Schwartz-MacPherson class. Accordingly, they share lots of common
features. There is, however, a major difference: as the next example shows, the motivic Chern
class doesn’t behave well with respect to branched coverings.

Example 4.3.1. Consider the composition φ = i2fd : P1 → P2, where fd : P1 → P1 has
degree d and it : P1 ↪→ Pt denotes a linear embedding. Then φ is a d-fold branched covering of
P1 ⊂ P2 with exceptional points A,B ∈ P1 ⊂ P2 having unique preimages. We will show that,
contrary to what a motivic Chern class analog of Lemma 3.4.1 would imply,

φ!(mC(P1)) ̸= dmC(P1 \ {A,B} ⊂ P2) + mC({A,B} ⊂ P2).

Let Zd ⊂ Pd denote the degree d rational normal curve , the image of the Veronese embed-
ding νd : P1 → Pd. Then its K-class is

νd!1 =
[
Zd ⊂ Pd

]
= dHd−1 − (d− 1)Hd,

see [Feh21], while νd!H = Hd trivially holds. As the composition idfd is homotopic to νd,
id!1 = Hd−1 and id!H = Hd imply that fd!1 = d− (d− 1)H and fd!H = H, hence

φ!1 = dH − (d− 1)H2 and φ!H = H2.

As λy is multiplicative, we can use the Euler exact sequence to show that

mC(Pn) =
n∑
i=1

(
n+ 1

i

)
(−y)i(1 + y)n−iH i.

In particular, mC(P1) = 1 + y − 2yH and we can conclude that

φ!(mC(P1)) = φ!(1 + y − 2yH) = d(1 + y)H − ((d− 1) + (d+ 1)y)H2 ̸=
dmC(P1 \ {A,B} ⊂ P2) + mC({A,B} ⊂ P2) = d(1 + y)H − (2(d− 1) + 2dy)H2.

This means that we can no longer apply the branched covering (46) we used to calculate
the CSM classes to compute motivic Chern classes of CRS. In the next section we remedy this
situation by providing proper maps whose suitable restrictions are isomorphisms.
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4.3. A RECURSIVE FORMULA FOR MOTIVIC CHERN CLASSES OF CRS 65

4.3.1. A resolution of CRS. Let us first remark that the method we will describe in
this section was the starting point for our investigation of GL(2)-equivariant invariants of CRS.
After discovering the following method, we realized that if the invariant behaves well with
respect to branched coverings, it can be modified to better suit our needs. In particular,
this modification helped us to prove the polynomial “d-dependence” of the CSM classes of
CRS, see Theorem 3.6.1. Correspondingly, the subsequent recursive formula can be regarded
as somewhat outdated: Many of the results we have for singular cohomology invariants can
possibly be transferred to the K-theory case.

The biggest difference is that for motivic Chern classes we will stop short of proving results
about “d-dependence” (but see Conjecture 4.3.3). Correspondingly, in this chapter partitions
can contain 1’s— to distinguish these partitions we will denote them by λ̂ = (λ̂1, . . . , λ̂r)—,
and by the corresponding CRS we will always mean a subset of Pol|λ̂|(C2):

Yλ̂ = Yλ(|λ̂|),

where the right-hand side is as in Definition 1.1.1 and λ denotes the partition we get by removing
all the 1’s from λ̂.

The resolution we describe next will provide the main step in a recursive algorithm comput-
ing GL(2)-equivariant classes mC

(
Yλ̂
)
= mC

(
Yλ̂ ⊂ Pol|λ̂|(C2)

)
: Given a partition λ̂, however,

the procedure calculating the mC class of the corresponding CRS invokes the procedure itself
for a slightly bigger class of subsets, shifted CRS,

xkylYµ̂ =
{
xkylp

∣∣ p ∈ Yµ̂
}
⊂ Polk+l+|µ̂|(C2).

Note that this subset is invariant only for the restriction of our usual GL(2)-action to its
maximal torus T2, and it is its T2-equivariant mC(xkylYµ̂ ⊂ Polk+l+|µ̂|(C2)) we will compute
next.

Let λ̂ = (1e1 , . . . ,mem) be a partition, where m = max(λ̂) = 1 is allowed. Let us write λ̂′′ for
the partition (1e1 , . . . , (m− 1)em−1) of |λ̂| −mem we get by removing all the maximal elements
from λ̂. Recall that in the m = 1 case, λ̂′′ = ∅ with Y∅̂ = Pol0(C2) \ {0} the corresponding
CRS. Consider the equivariant diagram for xkylYλ̂:
(74)

E = γ⊗m ⊗ Polk+l+|λ̂|−mem(C2) P(Polem(C2))× Polk+l+|λ̂|(C2) Polk+l+|λ̂|(C2)

Pem = P(Polem(C2))

φ

j π

p ,

where γ → Pem denotes the tautological line bundle, and the embedding j is induced by
multiplication of polynomials. The T2-invariant subset xkylYλ̂′′ determines a subbundle

xkylYλ̂′′(E) ⊂ E,

see Section 2.3.1, and φ restricted to this subbundle is a T2-equivariant isomorphism to its
image.

This image φ(xkylYλ̂′′(E)) consists of partitions we get by first adding up some elements of
(mem), then merging some of those to elements of λ̂′′. More precisely, let τ be a partition of em,
then for each subset υ ⊂ τ denote by Pυ the set of partitions (of size |λ̂|) we get by merging
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4.3. A RECURSIVE FORMULA FOR MOTIVIC CHERN CLASSES OF CRS 66

υm into partitions we obtain by adding all the elements of (τ \ υ)m to elements of λ̂′′, where
the exponentiation is meant coordinate-wise. Let

∨λ̂ =
⋃
τ⊢em

⋃
υ⊂τ

Pυ.

Then φ(xkylYλ̂′′(E)) =
⋃
µ̂∈∨λ̂ x

kylYµ̂. Here, choices τ = 1em and υ = τ correspond to the
partition λ̂. Since for all the other partitions in ∨λ̂ their length is strictly smaller, and

codim(xkylYµ̂ ⊂ Polk+l+|µ̂|(C2)) = k + l + |µ̂| − l(µ̂),

we see that xkylYλ̂ is the smallest codimensional stratum of the image. For e.g. λ̂ = (5, 5, 3, 3, 3, 1, 1)

partitions of ∨λ̂ are

(5, 5, 3, 3, 3, 1, 1), (8, 5, 3, 3, 1, 1), (6, 5, 3, 3, 3, 1), (8, 8, 3, 1, 1), (8, 6, 3, 3, 1), (6, 6, 3, 3, 3),

(10, 3, 3, 3, 1, 1), (13, 3, 3, 1, 1), (11, 3, 3, 3, 1).

4.3.2. Deducing the recursive formula from the resolution. The preceding section,
combined with the motivic property of the mC class, implies that

mC(xkylYλ̂ ⊂ Polk+l+|λ̂|(C2)) = φ! mC
(
xkylYλ̂′′(E) ⊂ E

)
−
∑

λ̸̂=µ̂∈∨λ̂

mC(xkylYµ̂ ⊂ Polk+l+|λ̂|(C2)).

The pushforward can be calculated using Proposition 4.1.1:

(75) φ! mC(xkylYλ̂′′(E) ⊂ E) = π! mC
(
j
(
xkylYλ̂′′(E)

)
⊂ Pem × Polk+l+|λ̂|(C2)

)
=

∑
f∈F(Pem )

mC
(
j
(
xkylYλ̂′′(E)

)
⊂ Pem × Polk+l+|λ̂|(C2)

)∣∣∣
f

e (TfPem)
,

where the summation is over the T2-fixed points of P(Polem(C2)). In the rest of this section we
show how terms in this localization formula can be calculated.

For the fixed point f = ⟨xiyem−i⟩ ∈ P(Polem(C2)) the denominator of (75) is

(76) e (TfPem) =
em∏
j=0
j ̸=i

(
1− αiβem−i

αjβem−j

)
,

as we can apply motivic calculus to the representation

TfPem ∼=
⊕
j=0
j ̸=i

⟨xiyem−i⟩∨ ⊗ ⟨xjyem−j⟩

with (multiplicative) characters (αjβem−j)/(αiβem−i) for i ̸= j = 0, . . . , em.

To calculate the numerators, let ω = mC
(
j
(
xkylYλ̂′′(E)

)
⊂ Pem × Polk+l+|λ̂|(C2)

)
. To

compute the local contribution ω|f , we first restrict ω to p−1(Uf ), where f ∈ Uf ⊂ Pem is a
trivializing neighbourhood of E. Then the isomorphisms

j
(
xkylYλ̂′′(E)

)
∩ p−1(Uf ) ∼= Uf × xkylYλ̂′′(E)f

∼= Uf × xkyl(xiyem−i)mYλ̂′′ ,

combined with the fact that motivic classes are local and multiplicative, gives that

(77) ω|f = ω|Uf

∣∣∣
f
= mC

(
Uf × xkyl(xiyem−i)mYλ̂′′ ⊂ Uf × Polk+l+|λ̂|(C2)

)∣∣∣
f
=

mC(Pem)|f mC
(
xk+miyl+m(em−i)Yλ̂′′ ⊂ Polk+l+|λ̂|(C2)

)
.
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The first term of (77) is

(78) mC(Pem)|f =
1

1 + y

(
em∏
j=0

(
1 +

y

αjβem−j

)
−

em∏
j=0

(
1− 1

αjβem−j

))∣∣∣∣∣
α 7→α1−i/emβi/em−1

β 7→α−i/emβi/em

.

This can be shown in two steps. First, following [Feh21], we show that

mC(Pem) =
1

1 + y
mC(Polem(C2) \ {0} ⊂ Polem(C2))

∣∣
α 7→αt−1/em

β 7→βt−1/em

,

where t ∈ KT2 (Pem) denotes the class of the tautological bundle with the natural T2-action:
For the K-theoretic Kirwan map κ

κ
(
mST2×GL(1)

(
Polem(C2) \ {0} ⊂ Polem(C2)

))
= mST2

(
P(Polem(C2))

)
,

where GL(1) acts on Polem(C2) via scalar multiplication. As the T2-representation Polem(C2)
contains the scalars, see Section 2.3.3, the former class can be obtained from mST2

(
Polem(C2)\

{0} ⊂ Polem(C2)
)
. We can get back to the mC class correspondence by multiplying with

mCT2(Pem)
κ(mCT2 ×GL(1)(Pol

em(C2)))
=

λy (T
∨Pem)

κ (λy(T∨ Polem(C2)))
=

1

1 + y
,

as e.g. exterior powers of the Euler exact sequence show.
The second step is the restriction to the fixed point f = ⟨xiyem−i⟩. This amounts to further

substituting t 7→ αiβem−i. Combining these substitutions, we get (78).
To calculate the second term of (77),

(79) mC
(
xk+miyl+m(em−i)Yλ̂′′ ⊂ Polk+l+|λ̂|(C2)

)
we have to solve a problem like the original. We do this the same way, using an xk+miyl+m(em−i)Yλ̂′′
analog of the diagram (74). In case λ̂ = mem , λ̂′′ = ∅, and (79) becomes

mC(xk+miyl+m(em−i)\{0} ⊂ Polk+l+mem(C2)) =
1 + y

αk+miβl+m(em−i)

k+l+mem∏
j=0

j ̸=k+mi

(
1− 1

αjβk+l+mem−j

)
.

The above recursion works, since the classes mC(xsytYµ̂ ⊂ Polk+l+|λ̂|(C2)) needed to cal-
culate mC(xkylYλ̂ ⊂ Polk+l+|λ̂|(C2)) are for µ̂’s that are either smaller or their corresponding
shifted CRS is of bigger codimension.

For example, the diagram below shows some of the steps the recursion has to go through
when calculating mC(Y5,5,1,1,1 ⊂ Pol13(C2)). More precisely, each column lists the shifted CRS
whose mC class we have to compute to determine the underlined class to its left.
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Y5,5,1,1,1 Y6,5,1,1 Y11,1,1 Y12,1 Y13 x13Y∅

Y6,6,1 Y7,5,1 x11Y1,1 x12Y1 y13Y∅

Y10,1,1,1 x6Y5,1,1 y11Y1,1 y12Y1

Y11,1,1 y6Y5,1,1

x10Y1,1,1

x5y5Y1,1,1

y10Y1,1,1

4.3.3. Bases of KGL(2)(pt) and a conjecture on polynomial d-dependence of mC(Yλ(d).
The algorithm gives the motivic Chern classes of CRS in the α, β-monomial base. CRS are
GL(2)-invariant, so these classes are symmetric in α, β, and the isomorphisms (64) correspond
to writing them as polynomials in

α + β = [C2
Id∨GL(2)

] and αβ = [Λ2C2
Id∨GL(2)

] ∈ KGL(2)(pt),

where [C2
Id∨GL(2)

] is the class represented by the dual of the standard representation of GL(2).
This basis we will call the representation theoretic basis of KGL(2)(pt).

Analyzing the recursive formula (75), it is easy to see that in mC(Yλ̂) the total degrees of
monomials with nonzero coefficients are divisible by |λ̂|. For example, after changing to the
variables X = α−1, Y = β−1, we have

mC(Y2) =
(
−X3Y 3 +XY

)
y2 +

(
−X3Y − 2X2Y 2 −XY 3 +X2 + 2XY + Y 2

)
y+

X3Y 3 −X3Y − 2X2Y 2 −XY 3 +X2 +XY + Y 2,

mC(Y2,1) =
(
−X6Y 6 −X5Y 4 −X4Y 5 +X4Y 2 +X3Y 3 +X2Y 4

)
y3+(

−2X6Y 3 − 4X5Y 4 − 4X4Y 5 − 2X3Y 6 +X5Y + 3X4Y 2 + 4X3Y 3 + 3X2Y 4 +XY 5
)
y2+(

. . .
)
y −X5Y 4 −X4Y 5 +X2Y +XY 2.

This shows that we cannot expect d-dependence of the coefficients in the representation theo-
retic basis to be polynomial.

However, based on the examples we calculated, we conjecture that stability holds for the
coefficients in the topological basis of KGL(2)(pt): The Koszul complex definition of the Euler
class works in the equivariant setting, meaning that (equivariant) Chern roots of C2

Id∨GL(2)
are

U := 1− α−1 = 1−X and V := 1− β−1 = 1− Y,

while its (equivariant) Chern classes can be defined, using the splitting principle, as elementary
symmetric polynomials in U and V .

The topological basis, i.e. monomials of e.g. U, V , seems to have several advantages over the
representation theoretic basis. For example, it seems to respect codimension:

Conjecture 4.3.2. Written in the topological basis, degree of the lowest degree term of the
motivic Chern class of a subvariety (closed or not) is the codimension.
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Also, polynomial d-dependence seems to be true:

Conjecture 4.3.3. Let λ denote a partition without 1’s and fix exponents j, k and l. Then,
for large enough d’s, coefficients of the monomial yjUkV l in mC(Yλ(d) ⊂ Pold(C2)) form a
polynomial in Q[d].

For example, coefficients of y0U2V in mC(Y2(d)) seems to form a polynomial
3

2
d6 − 21

2
d5 +

295

12
d4 − 3

2
d3 − 643

12
d2 +

39

2
d.

We yet to give a complete proof for both conjectures. Relating mC(Y 2(d)) to the motivic
Chern class of the dual of a generic plane curve, see Section 4.4.3, proves the polynomiality
assumption for a small number of coefficients in mC(Y 2(d)).

4.4. Motivic Chern classes of varieties of λ-lines

In this part, for the last time, we make use of the fact that varieties of λ-lines of generic
hypersurfaces are coincident root loci: We see what further information about them can be
deduced from motivic Chern classes of CRS.

In Section 1.2 we identified TλZf with the locus σ−1
f (Yλ(d)). This means that we can use

Corollary 4.1.6 to show that for a polynomial f ∈ Pold(Cn) such that σf : Gr2(Cn) → Pold(S)

is motivically transversal to Yλ(Pold(S))

(80) mS(TλZf ⊂ Gr2(Cn)) = a
(
mSGL(2)(Yλ(d))

)
.

Corollary A.1.3 shows that this transversality condition holds for a generic polynomial in
Pold(Cn). First, let us describe the K-theory of Grassmannians.

4.4.1. K-theory and motivic Chern classes of complex Grassmannians. As we
have mentioned, (topological) K-theory is a complex oriented cohomology theory, so it shares
many common properties with singular cohomology. For example, K-theoretic Euler class

eK(L) = 1− [L∨] for a line bundle L

and K-theoretic Chern classes

cKi (E) := σi(eK(L1), . . . , eK(Lr)) for a vector bundle E = ⊕r
t=1Lt

(in K0
top) are defined, and the corresponding version of the projective bundle formula holds.

This implies for the Grassmannian Grk(Cn) (or similarly for partial flag manifolds) that the
map cHi (S

∨) 7→ cKi (S
∨) induces a ring isomorphism H∗(Gr) → K(Gr), where S denotes the

tautological bundle.
From now on, let us restrict our attention to the k = 2 case. Monomials in c1(S

∨), c2(S
∨)

(or monomials in Chern roots of S∨: U = 1− [L1] = 1−X and V = 1− [L2] = 1− Y for some
S = L1 ⊕ L2) we will call the topological basis of K(Gr2(Cn)).

The above also implies that monomials in [S] = X + Y and [Λ2S] = XY also generate
K(Gr2(Cn)). An independent subset of these we will call the representation theoretic basis
of K(Gr2(Cn)) for reasons that will become apparent in the next section. Relations in the
K-theory of the Grassmannians in this basis are complicated.

There is a third, well-known basis of K(Gr) consisting of Grothendieck polynomials Gλ, the
K-classes of Schubert varieties. Intergration in this basis is easy:

∫
Gr
Gλ = 1.

The mC class of the Grassmannian Gr2(Cn) can be expressed (in the representation theoretic
basis) analogously to the CSM case (60) as

λy(T
∨ Gr2 (Cn)) =

λy
(
Hom (S,Gr2(Cn)× Cn)∨

)
λy (Hom(S, S)∨)

=
(1 + yX)n(1 + yY )n

(1 + y)2(1 + yXY −1)(1 + yX−1Y )
.
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4.4.2. Map by association to the frame bundle of the tautological. For the frame
bundle P → Gr2(Cn) of the tautological bundle

a : KGL(2)(pt) ∼= Z[X±1, Y ±1]S2 → K(Gr2(Cn)),

maps X+Y = [C2
IdGL(2)

] to [P ×IdGL(2)
C2] = [S] and XY = [Λ2C2

IdGL(2)
] to [Λ2S], that is, a maps

basis elements ofKGL(2)(pt) to respective basis elements ofK(Gr2(Cn)), e.g. X+Y ∈ KGL(2)(pt)
to X + Y ∈ K(Gr2(Cn)).

As a consequence, applying a : KGL(2)(pt) → K(Gr2(Cn)) to elements written in the repre-
sentation theoretic or in the topological basis, e.g. to mCGL(2)

(
Pold(C2)

)
=
∏d

t=0

(
1 + yX tY d−t)

amounts to factoring out by relations of K(Gr2(Cn)).
Equation (80) can be written as

(81) mC(TλZf ⊂ Gr2(Cn)) = mC(Gr2(Cn))
a(mCGL(2)(Yλ̂))

a(mCGL(2)(Pol
|λ̂|(C2)))

.

These show that for any partition λ̂ and generic f ∈ Pol|λ̂|(C2) we have a way of calculating
mC(Tλ̂Zf ⊂ Gr2(Cn)).

Remark 4.4.1. Let us remark that, by introducing a pairing for the K-theory of partial flag
manifolds, a K-theoretic analog of the analysis in Section 3.7.2 can be carried out. This shows
that the motivic Chern class of a constructible subset of a partial flag manifold is encoded in
the χy-genera of its sufficiently transversal Schubert cell sections.

4.4.3. Motivic Chern classes of dual curves. We can calculate the mC classes of duals
of generic plane curves in two ways: The first one is to substitute Plücker formulas into the
formula (71) describing mC classes of plane curves. The second is by applying Section 4.4.2 to
deduce it from the equivariant mC(Y 2(d) ⊂ Pold(C2)). Comparing the two, we show polynomial
d-dependence of some of the coefficients of mC(Y 2(d) ⊂ Pold(C2)):

Recall that the Milnor number of the cusp is 2, of the node is 1. The delta invariant is 1 for
both. Therefore previous calculations of the degree d∨, the number of ordinary double points
δ∨ and the number of cusps κ∨ of the dual curve C∨ of a generic degree d plane curve C give
that

d∨ = d(d− 1), M∨ = 2κ∨ + δ∨ =
1

2
d(d− 2)(d2 + 3), ∆∨ = κ∨ + δ∨ =

1

2
d(d− 2)(d2 − 3),

where M∨ and ∆∨ denotes the sum of Milnor numbers and the sum of delta invariants of C∨.
Therefore

mC(C∨ ⊂ P2) = (1 + y)d∨H +

(
−d

∨(d∨ − 1)

2
+M∨ −∆∨

)
H2 +

(
(d∨)2 − 5d∨

2
−∆∨

)
yH2

= (1 + y)d(d− 1)H − 1

2
d(d3 − 2d2 − 6d+ 13)H2 − 1

2
d(d+ 1)yH2.

(82)

On the other hand, combining formula (81) for Y 2, Y 2,1, . . . with the isomorphismK(P(C3)∨) →
K(Gr2(C

3)) induced by the Plücker embedding Gr2(C3) → P(C3)∨ also gives mC classes for
duals of generic degree d curves for each d ≥ 2.

Let us introduce coefficients for the topological basis,

mC
(
Y 2(d) ⊂ Pold(C2)

)
=
∑
j≥0

yj
∑
k,l≥0

pj,k,l(d)U
kV l.
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Comparing the two approaches, we get that

p0,1,0(d) = d(d− 1) p1,1,0(d) = d2(d− 1) p2,1,0(d) =
1

2
d2(d− 1)2 . . .

p0,1,1(d)−p0,2,0(d) = −1

2
d(d3−2d2−4d+11) p1,1,1(d)−p1,2,0(d) = −1

2
d(d4−2d3−2d2+11d−6) . . . .
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Appendix A. Transversality

A.1. Transversality of a generic section

Proposition A.1.1. (Bertini for globally generated bundles: [FNR12, Prop. 6.4])
Let E → X be an algebraic vector bundle, B a vector space and φ : B → Γ(E) is a linear
family of algebraic sections. Suppose that E is generated by the sections φ(b), b ∈ B, i.e.
Φ(b, x) := φ(b)(x) : B × X → E is surjective, and Y is a closed subvariety of the total space
E. Then there is an open subset U of B such that for all b ∈ U the section φ(b) is transversal
to Y .

Example A.1.2. For our family of algebraic sections

φ : Pold(Cn) → Γ(Pold(S)), f 7→ σf

Pold(S) is clearly generated by the sections σf , hence for a generic f ∈ Pold(Cn) σf is transversal
to any subvariety Y λ(Pol

d(S)).

Since the definition of proper normal crossing extension involves finitely many maps, the
above proposition implies the following motivic version:

Corollary A.1.3. Let E → X, φ : B → Γ(E) and Y ⊂ E be as above. Then there is an
open subset U of B such that for all b ∈ U the section φ(b) is motivically transversal to Y .

A.2. Transversality of the universal section

The following is a modification of the idea of [FRW18, Prop. 8.11]. We show that, with
the proper definitions, universal sections are transversal.

Definition A.2.1. Let V be a G-vector space and assume that j : P ↪→ V is an open
G-invariant subset such that π : P → P/G is a principal G-bundle over the smooth M := P/G.
Let W be another G-vector space and let ϑ : V → W be a G-equivariant linear map. Then
ϑ ◦ j : P → W is G-equivariant, therefore

σϑ :M → P ×GW, [p] 7→ [p, ϑ(p)]

determines a section of the associated bundle P ×GW . We call σϑ the universal section of ϑ.

Proposition A.2.2. If ϑ : V → W is surjective then the universal section σϑ is transversal
to P ×G Z for any G-invariant constructible subset Z ⊂ W .

Proof. The question is local, so let φ : U → P be a local slice to P . Then πφ : U → M
is a chart of M . In this local trivialization σϑ has a particularly simple form: If m := πφ(u)
for some u ∈ U , then σϑ(m) = (m,ϑ(φ(u))). By definition, a local slice is transversal to every
G-orbit of P . As ϑ−1(Z) ⊂ V is G-invariant, for every G-orbit of P , ϑ−1(Z) either contains the
whole orbit or they are disjoint. Therefore σId is transversal to P ×Gσ

−1(Z). If ϑ is a surjective
G-equivariant linear map, this implies that σϑ is transversal to P ×G Z. □

Example A.2.3. In Section 2.8.1 we introduced the vector bundle

Au := Hom
(
L,Pold(S)

)
→ P

(
Pold(Cn)

)
×Gr2(Cn),
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and its section
σ([f ], A)(f) := f |A,

where L and S are the tautological bundles over P
(
Pold(Cn)

)
and Gr2(Cn).

This is a special case of the previous construction with the choices V = Pold(Cn) ⊕
Hom(C2,Cn), W = Pold(C2), P =

(
Pold(Cn) \ {0}

)
× Σ0(C2,Cn), G = GL(1)×GL(2) and

ϑ(f, β) = f ◦ β.
The surjectivity of ϑ is clear, so the universal section is transversal to the Y λ(Au)’s, therefore
our calculations for the cohomology class of [σ−1(Y λ(Au))] is valid.
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Appendix B. Degrees of Plücker numbers

This chapter is dedicated for the proof of Theorem 2.4.8. The proof is a straightforward
application of the recursive formula in Theorem 2.2.5 and is very technical. To make it more
concise, let us in this chapter use the shorthand ρ ⊢ k for partitions ρ of k with length at most
2. We also introduce an ordering on {ρ| ρ ⊢ k} according to the usual ordering of π2(ρ), the
projection to the second coordinate:

(k, 0) ≤ (k − 1, 1) ≤ · · · ≤
(⌈

k

2

⌉
,

⌊
k

2

⌋)
.

The proof can arranged into two theorems, the first one directly reflecting our recursive
formula:

Theorem B.2.4. Let λ = (2e2 , . . . , rer) be a partition without 1’s. The class of the corre-
sponding coincident root stratum can be expressed in Schur polynomials[

Y λ(d)
]
=
∑
ρ⊢c

rρsρ

(
c = |λ̃| = codim

(
Yλ ⊂ Pold

(
C2
)))

,

where rρ ∈ Q [d].
Let m be any member of λ (em ̸= 0) and denote by λ′ = (2e2 , . . . ,mem−1, . . . , rer) the

partition λ minus m.
i) Then for any ρ ⊢ c the coefficients of sρ in[

Y λ(d)
]

and
1

em

[
Y m(d)

] [
Y λ′(d)

]
have the same leading term.

ii) If m is such that m − 2 ≤ c′ := |λ̃′| = codim(Yλ′ ⊂ Pold (C2)), (e.g. m = min(λ)),
then for any ρ ⊢ c the coefficients of sρ in[

Y λ(d)
]

and
1

em
p(m−1,0)s(m−1,0)

[
Y λ′(d)

]
have the same leading term, where

[
Y m(d)

]
=
∑

µ⊢m−1 pµsµ.

Note that according to Theorem 2.2.5, strictly speaking, we should compare e.g.
[
Y λ(d+m)

]
with 1/em

[
Y m(d+m)

] [
Y λ′(d)

]
. However, the “+m” translation doesn’t change the leading

coefficient, hence its omission from the above theorem.
The second is Theorem 2.4.8, slightly reformulated:

Theorem B.2.5. Let λ1 be the largest number in the partition λ. Denote by c = |λ̃| the
codimension of the corresponding coincident root stata Yλ ⊂ Pold (C2). Then for the coefficients
rρ in its class

[
Y λ(d)

]
=
∑

ρ⊢c rρsρ

degd (rρ) =

{
|λ| if ρ ≤ (λ1 − 1, c− λ1 + 1)

|λ| − (π2(ρ)− (c− λ1 + 1)) if ρ > (λ1 − 1, c− λ1 + 1).
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Plainly speaking, rρ has degree |λ| for ρ = (c, 0), . . . , (λ1 − 1, c− λ1 +1), then by increasing
ρ by one, the degree drops by one.

Throughout their proof we will use the following:

Theorem B.2.6. For any partition λ and index ρ ⊢ c := |λ̃| the leading coefficient of rρ in[
Y λ(d)

]
=
∑

ρ⊢c rρsρ is positive.

Proof. Theorem B.2.6 has a geometric proof: for big enough d’s the values of rρ ∈ Q[d]
are solutions to enumerative problems. Those solutions are necessarily nonnegative, therefore
the leading coefficients of the rρ’s must be nonnegative as well. We will prove the remaining
two theorems at once using induction on the length of the partition λ.

Induction starts with λ = (m), where by Theorem 2.5.1, p(m−1−l,l) in[
Y m(d)

]
=
∑
µ⊢m′

pµ(d)sµ
(
m′ := m− 1 = codim

(
Ym ⊂ Pold

(
C2
)))

has the expected degree, degd p(m−1−j,j) = m− 1− j .
Let m be a member of λ, and denote by λ′ = (2e2 , . . . ,mem−1, . . . , rer) the partition λ minus

one instance of m. λ′ has length 1 less than λ so we can assume Theorem B.2.4 and B.2.5 hold
for the coefficients qν in[

Y λ′(d)
]
=
∑
ν⊢c′

qusν

(
c′ := |λ̃′| = codim

(
Yλ′ ⊂ Pold

(
C2
)))

.

Then by Theorem 2.2.5

[
Y λ(d+m)

]
=

1

em
∂

([
Y λ′(d)

] ∣∣
b=b+(m/d)a

a=a+(m/d)a ·
m−1∏
i=0

(ia+ (d+m− i)b)

)

=
1

em
∂

([
Y λ′(d)

] ∣∣
b=b+x
a=a+x

∣∣∣∣
x=(m/d)a

·
m−1∏
i=0

(ia+ (d+m− i)b)

)
.

(83)

Let us keep the variable x for a moment and introduce Bt ∈ Q [a, b; d]S2 , t = 0, . . . , c′—
symmetric of degree c′ − t in a, b —and its Schur polynomial coefficients qµ ∈ Q[d], µ ⊢ c′ − t
as in [

Y λ′(d)
] ∣∣
b=b+x
a=a+x =

c′∑
t=0

Btx
t =

c′∑
t=0

∑
ν⊢c′−t

(qνsν)x
t.

Note that B0 =
[
Y λ′(d)

]
. Then we can expand (83) as

[
Y λ(d+m)

]
=

1

em
∂

(
c′∑
t=0

(
Bt

(m
d
a
)t)

·
m−1∏
i=0

(ia+ (d+m− i)b)

)

=
1

em

c′∑
t=0

Bt

(m
d

)t
· ∂

(
at

m−1∏
i=0

(ia+ (d+m− i)b)

)
.

(84)

Let us further introduce At ∈ Q [a, b; d]S2 , t = 0, . . . , c′—symmetric of degree m′+ t in a, b—and
its Schur polynomial coefficients pµ ∈ Q[d], µ ⊢ m′ + t as in

At = ∂

(
at

m−1∏
i=0

(ia+ (d+m− i)b)

)
=
∑

µ⊢m′+t

pµsµ.
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Note that A0 = [Ym(d+m)]. Then we can continue (84) as

[
Y λ(d+m)

]
=

1

em

c′∑
t=0

(m
d

)t
AtBt

=
1

em

c′∑
t=0

(m
d

)t ∑
µ⊢m′+t

(pµsµ)
∑
ν⊢c′−t

(qνsν)

(85)

To prove Theorem B.2.4 is to show—assuming the induction hypotheses for the partitions (m)
and λ′—that for every ρ ⊢ c = m′ + c′ and every t > 0

(∗) degd

(
coefficients of sρ in

(m
d

)t
AtBt

)
< degd(rρ).

In particular, the leading term of rρ and the coefficient of sρ in 1
em
A0B0 (or—in the special case

ii) of Theorem B.2.4) in 1
em
p(m−1,0)s(m−1,0)B0) agree. Theorem B.2.5 then can be proved by

choosing m = min(λ).
We proceed with the following steps.
(A) We show that degree of qν (ν ⊢ c′ − t) depends only on π2(ν) and that its leading

coefficient is always positive.
(B) We describe line segments of {µ ⊢ m′ + t| 0 ≤ t ≤ c′} with pµ ̸= 0 along which the

degree of pµ and the sign of its leading coefficient are constant, see Figure 1.
(C) For every ρ ⊢ c we define a function fρ such that for partitions µ ⊢ m′ + t fρ(µ) helps

us to compare the d-degrees of coefficients of sρ’s in the µ-contributions

(86)
(m
d

)t
pµsµBt =

(m
d

)t
pµsµ

∑
ν⊢c′−t

qνsν .

(D) Comparing these values fρ(ν), we determine monotonicity properties of d-degrees of
µ-contributions along the line segments of (B).

(E) We show that from the above monotonicity properties

(87) degd (coefficients of sρ in A0B0) > degd

(
coefficients of sρ in

(m
d

)t
AtBt

)
and hence (∗) follows for any ρ ⊢ c and t > 0.

(F) We prove the ii) case of Theorem B.2.4.
(G) We conclude with a proof for Theorem B.2.5.

(A) A simple substitution into Jacobi’s bialternant formula shows that

(88) s(k,l)
∣∣
b=b+x
a=a+x =

k+l∑
t=0

xc
′−t
∑
(u,v)⊢t

((
k + 1

u+ 1

)(
l

v

)
−
(
k + 1

v

)(
l

u+ 1

))
s(u,v).

Here, for all the s(u,v)’s their coefficients are nonnegative and zero if u > k or v > l. Hence, the
coefficient of s(u,v) ((u, v) ⊢ c′ − t) in[

Y λ′(d)
] ∣∣
b=b+x
a=a+x =

∑
ν⊢c′

qνsν
∣∣
b=b+x
a=a+x

is xt times a linear combination of elements in
{
q(k,l)

∣∣ (u, v) ⊢ c′, u ≤ k and v ≤ l
}

with positive
coefficients. Using the positivity property and the monotone decreasing nature of (degd(qν))ν⊢c′

C
E

U
eT

D
C

ol
le

ct
io

n



APPENDIX B. DEGREES OF PLÜCKER NUMBERS 77

as in Theorem B.2.6 and Theorem B.2.5 part of the induction hypothesis for λ′, we deduce that
for every t = 0, . . . , c′ and (k, l) ⊢ c′ − t

(89) degd
(
q(k,l)

)
= degq

(
q(k+t,l)

)
and the leading coefficient of q(k,l) is positive,

that is, degd (qν) only depends on π2(ν), therefore

(90)
degd (qν) is monotone decreasing in π2(ν) and

it’s difference for ν’s with adjacent π2(ν)’s is at most 1.

(B) Expanding its definition, we can write At as

At = ∂

(
at

m−1∏
i=0

(ia+ (d+m− i)b)

)
t

=
m∑
f=1

ef∂
(
at+m−fbf

)
,

for some degree f polynomials ef ∈ Z[d], independent of t, whose leading coefficient is positive.
Using

∂
(
at+m−fbf

)
=


sf−1,m+t−f if 2f > m+ t

0 if 2f = m+ t

−sm+t−1−f,f if 2f < m+ t

,

we get that for any f = 1, . . . ,m the Schur polynomials in the At terms with coefficient +ef
are sf−1,m−f+t, t < 2f −m and the Schur polynomials in the At terms with coefficient −ef are
sm+t−1−f,f , t > 2f −m.

In other words, degd (pµ) is constant with positive coefficients along each segment

{(i, j + t) ⊢ m′ + t| t ≤ i− j}

corresponding to partitions (i, j) ⊢ m′. We will call these segments diagonal. Similarly, degd (pµ)
is constant with negative coefficients along each line

{(i+ t, j)| t ≥ 0}

corresponding to partitions (i, j), 1 ≤ j ≤ m. We will call these segments horizontal, see the
diagram below.

Our plan is to compare d-degrees of the coefficients of Schur polynomials in (85) along these
segments.
(C) Products of Schur polynomials in two variables can be easily calculated using e.g. Pieri’s
formula. For µ ⊢ m′ + t and ν ⊢ c′ − t

sµsν =
∑

ρ∈I(µ,ν)

sρ,

where I(µ, ν) = [p(µ, ν), P (µ, ν)] is an interval of partitions ρ ⊢ c, with endpoints

p ((i, j), (k, l)) = (i+ k, j + l) and P ((i, j), (k, l)) = (max(i+ l, j + k),min(i+ l, j + k)) .

The positivity of the leading coefficients of the qν ’s, see (89), implies that if ρ ⊢ c and
µ ⊢ m′ + t are partitions such that ρ ∈ ∪ν⊢c′−tI(µ, ν), then sρ appears in the expansion of the
µ-contribution (86).

As degd qν is monotone decreasing in ν ⊢ c′ − t (90), we are interested in the smallest
ν ⊢ c′ − t such that ρ ∈ I(µ, ν). Therefore, for every ρ ⊢ c and µ ⊢ m′ + t we define

fρ (µ) =

{
min {ν ⊢ c′ − t| ρ ∈ I (µ, ν)} if ρ ∈

⋃
ν⊢c′−t I (µ, ν)

∞ if ρ /∈
⋃
ν⊢c′−t I (µ, ν)

.
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Figure 1. Segments with constant d-degree, nonzero coefficients pµ for m = 6,
where the leading coefficient positive on the blue diagonal segments and negative
on the red horizontal lines, their degrees written on the lines.

If we extend the list of qν coefficients with q∞ = 0, then—again by the positivity of the
leading coefficients, (89)—the coefficient of sρ in (86) and in(m

d

)t
pµsµqfρ(µ)sfρ(µ),

have the same d-degree. Here, we define the d-degree of the constant 0 polynomial to be −∞.
In particular, the d-degree of the coefficient of sρ in (86) only depends on fρ(µ). Therefore

(91) degd

(
coefficients of sρ in

(m
d

)t
pµsµBt

)
= degd (pµ) + degd

(
qfρ(µ)

)
− t.

Combining this with (90), we get that if µi ⊢ m − ti and ρ ⊢ c are partitions such that
π2(fρ(µ1)) ≤ π2(fρ(µ2)) + f for some f ≥ 0, then degd(qfρ(µ1)) + f ≥ degd(qfρ(µ2)), in other
words,

(92) degd

(
coefficients of sρ in

(m
d

)t1
pµ1sµ1Bt1

)
− degd(pµ1) + f ≥

degd

(
coefficients of sρ in

(m
d

)t2
pµ2sµ2Bt2

)
+ (t2 − t1)− degd(pµ2).

Here, we define π2(∞) = ∞ for the ρ /∈
⋃
ν⊢c′−t I (µ, ν) case.

(D) Goal of this part is to prove that for every ρ ⊢ c the d-degree of coefficients of sρ in the
µ-contribution
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(D/I) along the diagonal segments is strictly monotone decreasing (including −∞ > −∞)
and

(D/II) along the horizontal lines is monotone decreasing.
We do this by comparing fρ(µ)’s for adjacent µ’s along these line segments:

(D/I) Let µ1 = (i, j) ⊢ m′ + t and µ2 = (i, j + 1) ⊢ m′ + (t + 1) adjacent partitions of a
diagonal segment. Then for every (k, l) ⊢ c′ − (t+ 1)

p ((i, j), (k + 1, l)) < p ((i, j + 1), (k, l)) and P ((i, j), (k + 1, l)) = P ((i, j + 1), (k, l)) ,

hence

(93) I ((i, j), (k + 1, l)) ⊃ I ((i, j + 1), (k, l)) ,

which in turn—as illustrated by Figure 2 with an example—implies that for every ρ ⊢ c

π2(fρ(µ1)) ≤ π2(fρ(µ2)).

Figure 2. Comparison of intervals I (µ1, (k + 1, l)) and I (µ2, (k, l)) for adjacent
partitions µ1 = (5, 1) ⊢ m′ + 1 and µ2 = (5, 2) ⊢ m′ + 2 of the degree 6 diagonal
segment in the m = 6, c′ = 9 case.

Then (92) becomes

degd

(
coefficients of sρ in

(m
d

)t
pµ1sµ1Bt

)
≥

degd

(
coefficients of sρ in

(m
d

)t+1

pµ2sµ2Bt+1

)
+ 1,

proving the desired strictly decreasing property.
(D/II) We claim that for µ1 = (i, j) ⊢ m′ + t and µ2 = (i + 1, j) ⊢ m′ + (t + 1), adjacent

partitions of a horizontal segment,

(94) π2 (fρ(µ1)) ≤ π2 (fρ(µ2)) + 1

holds for every ρ ⊢ c. Then (92) becomes

degd

(
coefficients of sρ in

(m
d

)t
pµ1sµ1Bt

)
+ 1 ≥

degd

(
coefficients of sρ in

(m
d

)t+1

pµ2sµ2Bt+1

)
+ 1,

proving the desired decreasing property.
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To prove (94), we will compare the corresponding intervals I(µ1, (k+1, l)), (k+1, l) ⊢ h :=
c′ − t and I (µ2, (k, l)), (k, l) ⊢ c′ − (t+ 1) = h− 1. As their starting points are equal,

(95) p (µ1, (k + 1, l)) = (i+ k + 1, j + l) = p (µ2, (k, l)) ,

we can move on to their endpoints. More precisely, we are interested in their π2 projections,
which we will denote by

g1(l) := π2 (P (µ1, (h− l, l))) = min(i+ l, j + h− l), 0 ≤ l ≤
⌊
h

2

⌋
and

g2(l) := π2 (P (µ2, (h− 1− l, l))) = min(i+ 1 + l, j + h− 1− l), 0 ≤ l ≤
⌊
h− 1

2

⌋
.

Then g1(l + 1) = g2(l) for every 0 ≤ l < ⌊h/2⌋. Together with (95), this tells us that for every
0 ≤ l < ⌊h/2⌋ ⋃

ν1≤(k,l+1)

I (µ1, ν1) ⊃
⋃

ν2≤(k,l)

I (µ2, ν2) ,

in other words,

(96) π2(fρ(µ1)) ≤ π2(fρ(µ2)) + 1 for every ρ ∈
⋃

l<⌊h/2⌋

I (µ2, (k, l)) .

What is left to prove (94) is that the ρ’s occuring in (96) are all the ρ’s with finite fρ(µ2),
that is

(97)
⋃

(k,l)⊢h−1

I (µ2, (k, l)) =
⋃

l<⌊h/2⌋

I (µ2, (k, l)) .

We define

x1 := x(µ1) :=
h+ j − i

2
and x2 := x(µ2) :=

h− 1 + j − (i− 1)

2
= x1 − 1,

elements where the i+ l, j + h− l arguments of g1(l) and the i+1+ l, j + h− 1− l arguments
of g2 intersect respectively. At ⌊xi⌋ (and ⌈xi⌉) gi reaches its maximum ⌊c/2⌋, therefore

(98) ⌊x2⌋ < ⌊x1⌋ ≤
⌊
h

2

⌋
shows that even if ⌊h− 1/2⌋ = ⌊h/2⌋, and hence there is an extra interval on the left-hand side
of (97), for its endpoint

g2

(⌊
h− 1

2

⌋)
≤ g2

(⌊
h− 1

2

⌋
− 1

)
,

therefore (97) holds.
(E) We will prove (87) by showing—using induction on t ≥ 1—that for every ρ ⊢ c and µ ⊢ m′+t

(99) degd (coefficients of sρ in A0B0) > degd

(
coefficients of sρ in

(m
d

)t
pµsµBt

)
.

First, it is true for t = 1: for any µ ⊢ m′ +1 with pµ ̸= 0 we have π2(µ) ≥ 1, therefore there
exists a diagonal segment along which µ is adjacent to a µ1 ⊢ m′ and whose strict monotonocity
property implies that

degd (coefficients of sρ in pµ1sµ1B0) > degd

(
coefficients of sρ in

m

d
pµsµB1

)
.
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µ1 = (5, 2) ⊢ m′+2 and µ2 = (6, 2) ⊢ m′+3 of
the degree 2 horizontal segment in the m = 6,
c′ = 9 case

µ1 = (4, 4) ⊢ m′+2 and µ2 = (5, 4) ⊢ m′+3 of
the degree 4 horizontal segment in the m = 7,
c′ = 9 case

Figure 3. Comparison of endpoints of intervals P (µ1, (k + 1, l)) and
P (µ2, (k, l)) for adjacent partitions µ1 and µ2 of horizontal segments.

For any µ1 ⊢ m′, pµ1 has positive leading coefficient. Together with the positivity of the leading
coefficients in qν , ν ⊢ c′, this means that these high d-degree terms cannot cancel each other
out, hence the strict inequality remains true for (99).

Now suppose that (99) is true for t ≥ 1 and let µ ⊢ m′ + t + 1 such that pµ ̸= 0. Then,
except possibly for µ = (m,m), there is a horizontal or a diagonal segment along which µ is
adjacent to some µ1 ⊢ m′ + t. The monotonicity property of either of them gives

(100)

degd

(
coefficients of sρ in

(m
d

)t
pµ1sµ1Bt

)
≥ degd

(
coefficients of sρ in

(m
d

)t+1

pµsµBt+1

)
.

For the special case µ = (m,m), the d-degree of the coefficient of sρ in the µ-contribution
can be compared to that of µ1 = (m,m − 1) ⊢ m′ + t (t ≥ 2) using an analysis analogous
to (D/I). Only that—as this time degd(pµ1) = degd(pµ) − 1—(92) yields the same non-strict
inequality (100), concluding the proof.
(F) We will prove ii) case of Theorem B.2.4 by showing that

(101)
⋃
ν⊢c′

I ((m′, 0), ν) = {ρ| ρ ⊢ c} ,

and that for any ρ ⊢ c the d-degree of the coefficient of sρ in the µ-contribution is strictly
monotone decreasing along the t = 0 vertical segment.

The first claim follows from the hypothesis: m− 2 ≤ c′ is equivalent to

x ((m′, 0)) :=
c′ −m′

2
> −1.

This, together with x ((m′, 0)) ≤ c′/2, ensures that the set of endpoints {P ((m′, 0), ν)| ν ⊢ c′}
contains the maximum (⌈c/2⌉, ⌊c/2⌋). As p ((m′, 0), (c′, 0)) = (c, 0), (101) holds.
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Proof of the second claim will be similar to the analysis we have done in part (D/II). More
precisely, we will prove that for any ρ ⊢ c and µ1 = (i, j), µ2 = (i − 1, j + 1) ⊢ c′ adjacent
partitions of the vertical segment

(102) π2 (fρ(µ1)) ≤ π2 (fρ(µ2)) .

Then (92) becomes

degd (coefficients of sρ in pµ1sµ1B0)− (m− j) ≥
degd (coefficients of sρ in pµ2sµ2B0)− (m− (j + 1)),

showing the strictly monotone decreasing property.
In the comparison of intervals I (µ1, (k, l)) and I (µ2, (k, l)), for their starting points we have

p (µ1, (k, l)) < p (µ2, (k, l)) .

To investigate their endpoints, we again define

g1(l) := π2 (P (µ1, (k, l))) and g2(l) := π2 (P (µ2, (k, l))) , 0 ≤ l ≤
⌊
c′

2

⌋
,

for which g1(l) = g2(l + 1), 0 ≤ l ≤ ⌊c′/2⌋. These imply that for every (k, l) ⊢ c′⋃
ν1≤(k,l)

I (µ1, ν1) ⫌
⋃

ν2≤(k,l)

I (µ2, ν2) ,

therefore (102) holds.
(G) To prove Theorem B.2.5, let us choose m = minλ. m− 1 = m′ ≤ c′ so we can use case ii)
of Theorem B.2.4 which, combined with (91), tells us that for every ρ ⊢ c
(103) degd(rρ) = degd(pµ) + degd(qfρ(µ)) = m+ degd(qfρ(µ)),

where, throughout this part, we fix µ = (m′, 0).
If we define

ϑ(λ) := max
{
f | degd(r(c−v,v)) = |λ|, 0 ≤ v ≤ f

}
,

the threshold for which degd(rρ) is constant |λ|. Then it remains to show that

ϑ(λ) = min
(⌊ c

2

⌋
, c− λ1 + 1

)
and that after (c− ϑ(λ), ϑ(λ)) every time we increase ρ by one, degd(rρ) decreases by one.

To describe the term degd(qfρ(µ)), we need to look into the function ρ = (c− h, h) 7→ fρ(µ).
Specifically, it’s π2-projection, which—in this m− 2 ≤ c′ case—is

(104) π2(f(c−h,h)(µ)) = max(0, h−m′).

Assuming the induction hypothesis for λ′, (103) implies that degd(rρ) = m + |λ′| = |λ| for
every ρ such that fρ(µ) ≤ ϑ(λ′) or, by (104) equivalently, for every ρ in⋃

l≤ϑ(λ′)

I(µ, (k, l)),

whose endpoint has π2-projection

(105) ϑ(λ) = min
(⌊ c

2

⌋
,m′ + ϑ(λ′)

)
.

Again by the induction hypotheses for λ′, the behaviour of degd(rρ) for ρ > (c− ϑ(λ), ϑ(λ))
will be the same as the behaviour of degd(qν) for ν > (c′ − ϑ(λ′), ϑ(λ′)).

λ1 = λ′1, thus to complete the induction step all we need to check is that

min
(⌊ c

2

⌋
,m′ + ϑ(λ′)

)
=min

(⌊ c
2

⌋
,m′ +min

(⌊
c′

2

⌋
, c′ − λ1 + 1

))
=min

(⌊ c
2

⌋
, c− λ1 + 1

)
.
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This follows easily from the observation that adding m′ to the inequality⌊
c′

2

⌋
≤ c′ − λ1 + 1,

we get ⌊ c
2

⌋
=

⌊
c′ +m′

2

⌋
≤
⌊
c′

2

⌋
+m′ ≤ c′ − λ1 + 1 +m′ = c′ − λ1 + 1.

□
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Dũng Tráng Lê, Mutsuo Oka, and Jawad Snoussi, editors, Singularities in Geometry, Topology,
Foliations and Dynamics, pages 207–231, Cham, 2017. Springer International Publishing.

[ST22] Hunter Spink and Dennis Tseng. PGL2-equivariant strata of point configurations in P1. Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5), 23(2):569–621, 2022.

[Tot99] Burt Totaro. The Chow ring of a classifying space. In Algebraic K-theory (Seattle, WA, 1997),
volume 67 of Proc. Sympos. Pure Math., pages 249–281. Amer. Math. Soc., Providence, RI, 1999.

[Web17] A. Weber. Hirzebruch class and Bialynicki-Birula decomposition. Transformation Groups, 22(2):537–
557, 2017.

[Wlo09] J. Wlodarczyk. Simple constructive weak factorization. In Algebraic Geometry, Part 2: Seattle 2005,
Proceedings of Symposia in Pure Mathematics, pages 957–1004. American Mathematical Society,
2009.

C
E

U
eT

D
C

ol
le

ct
io

n

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.8275&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.8275&rep=rep1&type=pdf

	Declaration
	Abstract
	Acknowledgement
	Chapter 1. Introduction
	1.1. Coincident root strata
	1.2. Type  tangent lines to hypersurfaces

	Chapter 2. Equivariant cohomology classes of coincident root strata and generalized Plücker formulas
	2.1. Introducing generalized Plücker formulas
	2.1.1. Definition of Plücker numbers
	2.1.2. Calculating Plücker numbers from classes of varieties of -lines
	2.1.3. A summary of results related to Plücker numbers

	2.2. Cohomology classes of coincident root strata and coincident root loci
	2.2.1. Equivariant cohomology classes of invariant subvarieties
	2.2.2. Universal property of equivariant cohomology classes
	2.2.3. Cohomology classes of coincident root loci
	2.2.4. A recursive formula for [Y(d)]
	2.2.5. Earlier formulas

	2.3. Proof of the recursion formula
	2.3.1. The construction of the covering space: twisting with a line bundle
	2.3.2. Conventions
	2.3.3. The twisted class
	2.3.4. The pushforward map !

	2.4. Polynomiality of [Y(d)]
	2.4.1. The leading term of [Y(d)]
	2.4.2. Pl and d-degrees of Plücker numbers

	2.5. The class of m-flexes
	2.5.1. Enumerative consequences
	2.5.2. Lines on a hypersurface

	2.6. Asymptotic behaviour of the Plücker number `3́9`42`"̇613A``45`47`"603APl;i(d)
	2.7. Comparison with the classical non-equivariant method
	2.7.1. The general setup
	2.7.2. The case of m-flex lines
	2.7.3. Incidence varieties

	2.8. Further enumerative problems
	2.8.1. The universal hypersurface and Plücker numbers for linear systems
	2.8.2. m-flex points of -lines
	2.8.3. m-flex points of -lines for a linear system


	Chapter 3. Chern-Schwarz-MacPherson classes of coincident root strata and varieties of -lines
	3.1. A brief introduction to the (equivariant) Chern-Schwartz-MacPherson class
	3.1.1. Divisor trick
	3.1.2. The Segre-Schwartz-MacPherson class
	3.1.3. Equivariant CSM and SSM classes
	3.1.4. Structure of the chapter

	3.2. Polynomial behaviour of coefficients in cSM(`3́9`42`"̇613A``45`47`"603APold(Cn))
	3.2.1. Polynomiality in certain one parameter products
	3.2.2. Coefficients of c(`3́9`42`"̇613A``45`47`"603APold(Cn)) in the monomial symmetric basis
	3.2.3. Coefficients of c(`3́9`42`"̇613A``45`47`"603APold(Cn)) in the Schur polynomial basis
	3.2.4. Degree of varieties of hypersurfaces containing linear subspaces

	3.3. Scalar equivariant CSM classes and characteristic polynomials of hyperplane arrangements
	3.4. A recursive formula for the CSM class of CRS
	3.4.1. The twisted CSM class
	3.4.2. `3́9`42`"̇613A``45`47`"603AGL(2)-equivariant Chern class of T ¶1

	3.5. A non-recursive formula for cSM(Y(d))
	3.6. Polynomial d-dependence of cSM(Y(d))
	3.6.1. Remarks about the threshold for the polynomiality property

	3.7. Invariants of the variety of tangent lines of type 
	3.7.1. Total Chern classes of Grassmannians
	3.7.2. A pairing and the Aluffi transformation for the cohomology of Grassmannians
	3.7.3. Euler characteristics of generic Schubert cell sections of varieties of tangent lines


	Chapter 4. Motivic Chern classes of coincident strata and varieties of -lines
	4.1. A brief introduction to (equivariant) motivic Chern classes
	4.1.1. An overview of K-theory
	4.1.2. Definition and some properties of the motivic Chern class
	4.1.3. The Todd genus and the y-genus of Hirzebruch
	4.1.4. Equivariant mC and mS classes
	4.1.5. Structure of the chapter

	4.2. Motivic Chern class of plane curves
	4.2.1. Motivic Chern classes of smooth plane curves
	4.2.2. Motivic Chern classes of singular plane curves

	4.3. A recursive formula for motivic Chern classes of CRS
	4.3.1. A resolution of CRS
	4.3.2. Deducing the recursive formula from the resolution
	4.3.3. Bases of KGL(2)(`3́9`42`"̇613A``45`47`"603Apt) and a conjecture on polynomial d-dependence of `3́9`42`"̇613A``45`47`"603AmC(Y(d)

	4.4. Motivic Chern classes of varieties of -lines
	4.4.1. K-theory and motivic Chern classes of complex Grassmannians
	4.4.2. Map by association to the frame bundle of the tautological
	4.4.3. Motivic Chern classes of dual curves


	Appendices
	Appendix A. Transversality
	A.1. Transversality of a generic section
	A.2. Transversality of the universal section

	Appendix B. Degrees of Plücker numbers
	Bibliography

