
DOI: 10.14754/CEU.2024.08

Essays in Machine Learning and Networks

by

Olivér Kiss

Submitted to

Central European University

Department of Economics and Business

In partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Economics

Supervisor: Ádám Szeidl

Budapest, Hungary - Vienna, Austria

© 2024

This work is openly licensed via CC BY-NC-ND 4.0

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Copyright Notice and Attestation

Author: Olivér Kiss

Title: Essays in Machine Learning and Networks

Degree: Ph.D.

Dated: June 25, 2024

Copyright notice:

Copyright © Oliver Kiss, 2024. Essays in Machine Learning and Networks - This work is li-

censed underCCBY-NC-ND4.0. To viewa copy of this license, visithttps://creativecommons.

org/licenses/by-nc-nd/4.0/

Attestation:

Hereby I testify that this thesis contains no material accepted for any other degree in any other

institution and that it contains no material previously written and/or published by another person

except where appropriate acknowledgement is made.

Signature of the author:

i

C
E

U
eT

D
C

ol
le

ct
io

n

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: 10.14754/CEU.2024.08

Co-author contribution

Chapter 1: Machine Learning on Networks

Joint work with Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos,

Alexander Riedel, Maria Astefanoaei, Ferenc Beres, Guzmán López, Nicolas Collignon,

and Rik Sarkar

This chapter consists of three published papers. In the case of Karate Club and Little Ball of

Fur, I contributed the experimental evaluations and developed aminor part of the Python libraries

while Benedek Rozemberczki did most of the software development and wrote the theoretical

backgrounds for the papers. For Pytorch Geometric Temporal, Benedek Rozemberczki wrote

the majority of the software, Paul Scherer ran the experiments, and I and other co-authors

collected and contributed new datasets for the experimental evaluations.

Chapter 2: The Shapley Value in Machine Learning

Joint work with Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang,

Sebastian Nilsson, and Rik Sarkar

The original idea for the paper came fromBenedek Rozemberczki. I contributed themajority

of the theoretical background on the Shapley Value. The work on the approximation techniques

was mostly done by Lauren Watson. Other authors contributed to individual games described

in the paper according to their research areas and expertise.

ii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Abstracts

Chapter 1: Machine Learning on Networks1.

Joint work with Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos,

Alexander Riedel, Maria Astefanoaei, Ferenc Beres, Guzmán López, Nicolas Collignon,

and Rik Sarkar

This chapter consists of three published papers, all developing and examining machine

learning tools for graph-structured data.

Graphs encode important structural properties of complex systems. Machine learning on

graphs has therefore emerged as an important technique in research and applications. We

present Karate Club – a Python framework combining more than 30 state-of-the-art graph

mining algorithms. We show Karate Club’s efficiency in learning performance on a wide range

of real-world clustering problems and classification tasks along with supporting evidence of its

competitive speed.

Sampling graphs is an important task in data mining. We propose Little Ball of Fur a Python

library that includesmore than twenty graph sampling algorithms. Our experiments demonstrate

that Little Ball of Fur can speed up node and whole graph embedding techniques considerably

while only mildly deteriorating the predictive value of distilled features.

We present PyTorch Geometric Temporal, a deep learning framework combining state-of-

the-art machine learning algorithms for neural spatiotemporal signal processing. Experiments

demonstrate the predictive performance of the models implemented in the library on real-world

problems such as epidemiological forecasting, ride-hail demand prediction, and web traffic

management. Our sensitivity analysis of runtime shows that the framework can potentially

operate on web-scale datasets with rich temporal features and spatial structure.

1Papers in this chapter were published in the Proceedings of the 29th ACM International Conference on
Information and Knowledge Management (Rozemberczki, Kiss and Sarkar, 2020b,a) and the Proceedings of the
30th ACM International Conference on Information and Knowledge Management (Rozemberczki et al., 2021b)

iii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Chapter 2: The Shapley Value in Machine Learning2

Joint work with Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang,

Sebastian Nilsson, and Rik Sarkar

Over the last few years, the Shapley value, a solution concept from cooperative game theory,

has found numerous applications in machine learning. In this paper, we first discuss fundamental

concepts of cooperative game theory and axiomatic properties of the Shapley value. Then, we

give an overview of the most important applications of the Shapley value in machine learning:

feature selection, explainability, multi-agent reinforcement learning, ensemble pruning, and data

valuation. We examine the most crucial limitations of the Shapley value and point out directions

for future research.

Chapter 3: Peer Effects in Multiplex Networks

How social and economic networks govern real-life phenomena has been studied extensively

in the past decades. While in some settings constructing randomized experiments is possible,

most social ties are difficult or impossible to randomize. In such cases, the estimation of peer

effects must rely on observational data. Such estimation is, however, hindered by a range of

difficulties posed by the specific data structure. This paper proposes using spatial models to

address the problem of omitted variable bias caused by correlated social networks and to

disentangle peer effects in more complex social situations. The validity of the approach is

verified using Monte Carlo simulations and synthetic graphs. The difference arising from the

proposed simultaneous peer effects estimation is further illustrated using data from a technology

adoption field experiment in Uganda.

2This paper was published in the Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence (Rozemberczki et al., 2022).

iv

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Acknowledgements

I am indebted tomy advisor, Ádám Szeidl for providingmewith guidance and valuable feedback

throughout my years at CEU. His advising strongly influenced my thinking about economics

and research. It has been a privilege to work with him. I would also like to thank all CEU faculty

members who have supported me throughout this journey.

I was also fortunate to work with exceptional colleagues and friends during my studies. I

am grateful to Benedek Rózemberczki for all the projects we worked on together and for his

encouragement in times when I needed motivation.

I thank the examiners of this thesis, Brendan Lucier and Miklós Koren for their in-depth

reviews and suggestions. Their constructive feedback improved this thesis greatly.

I would also like to express my gratitude to the staff members of the Department of Eco-

nomics and Business. Their limitless efforts to minimize the bureaucratic burden on students

and faculty made CEU a better place for everyone.

Finally, I would like to thank my friends and my family. Their support and love means the

world to me.

v

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Contents

Introduction 1

1 Machine Learning on Networks 4

1.1 Karate Club: An API Oriented Open-Source Python Framework for Unsuper-

vised Learning on Graphs . 5

1.1.1 Introduction . 5

1.1.2 Related Work . 8

1.1.3 Graph mining procedures in Karate Club 9

1.1.4 Design Principles . 11

1.1.5 Experimental Evaluation . 17

1.1.6 Conclusion and Future Directions . 26

1.1.7 Appendix . 28

1.2 Little Ball of Fur: A Python Library for Graph Sampling 32

1.2.1 Introduction . 32

1.2.2 Related work . 34

1.2.3 Design principles . 38

1.2.4 Experimental Evaluation . 42

1.2.5 Conclusion and Future Directions . 50

1.3 Pytorch Geometric Temporal: Spatiotemporal signal processing with neural

machine learning models . 52

vi

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.3.1 Introduction . 52

1.3.2 Preliminaries and related work . 54

1.3.3 The Framework design . 58

1.3.4 Experimental evaluation . 71

1.3.5 Conclusions and Future Directions . 76

2 The Shapley Value in Machine Learning 79

2.1 Introduction . 79

2.2 Background . 81

2.2.1 Cooperative Games and the Shapley Value 81

2.2.2 Properties of the Shapley Value . 83

2.3 Approximations of the Shapley Value . 84

2.3.1 Monte Carlo Permutation Sampling 85

2.3.2 Multilinear Extension . 86

2.3.3 Linear Regression Approximation . 87

2.4 Machine Learning and the Shapley Value . 88

2.4.1 Feature Selection . 88

2.4.2 Data Valuation . 89

2.4.3 Federated Learning . 89

2.4.4 Explainable Machine Learning . 90

2.4.5 Multi-Agent Reinforcement Learning 93

2.4.6 Model Valuation in Ensembles . 93

2.5 Discussion . 94

2.5.1 Limitations . 94

2.5.2 Future Research Directions . 95

2.6 Conclusion . 96

vii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

3 Peer Effects in Directed Multiplex Networks 98

3.1 Introduction . 98

3.2 Model . 100

3.2.1 Quadratic utility model with a single network 100

3.2.2 Quadratic utility model with multiplex networks 102

3.3 Monte Carlo evidence . 104

3.3.1 Erdos-Renyi random graphs . 105

3.3.2 Simulation using Barabasi-Albert graphs 108

3.3.3 Simulation using networks with homophily 111

3.4 Empirical example . 112

3.4.1 Data . 113

3.4.2 Estimated peer effects . 116

3.5 Conclusion . 117

References 119

viii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

List of Tables

1.1 The social networks used for node level algorithms. 18

1.2 Statistics of graph datasets used for graph level algorithms. 19

1.3 Mean NMI values with standard errors on the node level datasets calculated

from 100 runs. 20

1.4 Mean AUC values with standard errors on the graph level datasets calculated

from 100 seed train-test splits. 22

1.5 Mean AUC values with standard errors on the node level datasets calculated

from 100 seed train-test splits. 24

1.6 Shapley values of embedding methods using the node level datasets calculated

from 100 seed train-test splits. 25

1.7 Mean AUC values with standard errors on the node level datasets calculated

from 20 seed train-test splits for different parametrizations of the HOPE method. 29

1.8 Mean AUC values with standard errors on the node level datasets calculated

from 20 seed train-test splits for different parametrizations of theNetMFmethod

across embedding dimensions. 30

1.9 Mean AUC values with standard errors on the node level datasets calculated

from 20 seed train-test splits for different parametrizations of theNetMFmethod

across SVD iterations. 30

ix

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.10 Mean AUC values with standard errors on the node level datasets calculated

from 20 seed train-test splits for different parametrizations of theNetMFmethod

across negative sample numbers. 31

1.11 Mean AUC values with standard errors on the node level datasets calculated

from 20 seed train-test splits for different parametrizations of theNetMFmethod

across PMI orders. 31

1.12 Statistics of social networks used for comparing sampling and node classifica-

tion algorithms. 42

1.13 Descriptive statistics and size of the graph datasets for graph subsampling and

whole graph classification. 44

1.14 Ground truth and estimated descriptive statistics of the web graphs and social

networks. We calculated average statistics from 10 seeded experimental runs

and included the standard errors below the mean. We included the ground truth

values based on the whole graph (first block) with estimates obtained with node

(second block), edge (third block) and exploration (fourth and fifth blocks)

sampling algorithms. Bold numbers denote for each category the best estimate

for a given dataset. 64

1.15 A comparison of spatiotemporal deep learning models in PyTorch Geometric

Temporal based on the temporal and spatial block, proximity order and edge

heterogeneity. 65

1.16 A desiderata and backend based comparison of open-source geometric deep

learning libraries. 66

1.17 A multi-aspect comparison of open-source spatiotemporal database systems,

data analytics libraries and machine learning frameworks. 66

1.18 Properties and granularity of the spatiotemporal datasets introduced in the paper

with information about the number of time periods ()) and spatial units (|+ |). . 73

x

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.19 The predictive performance of spatiotemporal neural networks evaluated by

average mean squared error. We report average performances calculated from

10 experimental repetitions with standard deviations around the average mean

squared error calculated on 10% forecasting horizons. We use the incremen-

tal and cumulative backpropagation strategies. Bold numbers denote the best

performance on each dataset given a training approach. 78

2.1 The permutations of the player set, marginal contributions of the players in each

permutation and the Shapley values. 83

2.2 An application area, payoff definition, Shapley value approximation technique,

and computation time (the player set is noted by N) based comparison of

research works. Specific applications of the Shapley value are grouped together

and ordered chronologically. 97

3.1 Monte Carlo simulation results of the regression including both networks si-

multaneously . 107

3.2 Monte Carlo simulation results of the biased regression including only Network 1107

3.3 Monte Carlo simulation results of the biased regression including only Network 2108

3.4 Monte Carlo simulation results of the regression including both networks si-

multaneously using Barabasi-Albert graphs 110

3.5 Monte Carlo simulation results of the biased regression including only Network

1 using Barabasi-Albert graphs . 110

3.6 Monte Carlo simulation results of the biased regression including only Network

2 using Barabasi-Albert graphs . 111

3.7 Monte Carlo simulation results of the regression including both networks si-

multaneously using networks with homophily 111

3.8 Monte Carlo simulation results of the biased regression including only Network

1 using networks with homophily . 113

xi

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

3.9 Monte Carlo simulation results of the biased regression including only Network

2 using networks with homophily . 113

3.10 Similarities of networks. Numbers show what fraction of the edges in the row

network are present in the column network. The last row contains the number

of edges in the given network. 115

3.11 Estimated coefficients using separate networks for different outcome variables. . 116

3.12 Estimated coefficients with simultaneous estimation for different outcome vari-

ables . 117

xii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

List of Figures

1.1 Creating a synthetic graph, using aDeepWalkmodel with standard andmodified

hyperparameter settings. 12

1.2 Creating a synthetic graph, using the DeepWalk constructor, fitting the embed-

ding and returning it. 12

1.3 Creating a synthetic graph, using theWalklets constructor, fitting the embedding

and returning it. 13

1.4 Creating a synthetic graph, clustering with two community detection techniques

and using an external library to evaluate the modularity of clusterings. 15

1.5 Scalability of the community detection procedures in Karate Club. We vary the

number of nodes and the density of an Erdos-Renyi graph. 26

1.6 Scalability of node embedding procedures in Karate Club. We vary the number

of nodes and the density of an Erdos-Renyi graph. 26

1.7 Scalability of graph embedding and summarization procedures in Karate Club.

We vary the number of Erdos-Renyi graphs and their size. 27

1.8 Re-parametrizing and initializing the constructor of a random walk sampler by

changing the random seed. 39

1.9 Using a random walk sampler on a Watts-Strogatz graph without changing the

default sampler settings. 40

1.10 Using a forest fire sampler on a Watts-Strogatz graph without changing the

default sampler settings. 40

xiii

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.11 Node classification performance on the Facebook Page-Page graph (Rozember-

czki, Allen and Sarkar, 2019) evaluated by average AUC scores on the test set

calculated from a 100 seeded experimental runs. 45

1.12 Node classification performance on the LastFM Asia graph (Rozemberczki and

Sarkar, 2020) evaluated by average AUC scores on the test set calculated from

a 100 seeded experimental runs. 46

1.13 Graph classification performance on the Reddit Threads and GitHub Stargazers

graph datasets (Rozemberczki, Kiss and Sarkar, 2020a) evaluated by average

AUC scores on the test set calculated from 100 seeded experimental runs. We

also report standard deviations around the mean performance. 47

1.14 Graph embedding runtime on the Reddit Threads and GitHub Stargazers graph

datasets (Rozemberczki, Kiss and Sarkar, 2020a) calculated from 100 experi-

mental runs. We also report standard deviations around the mean performance. 48

1.15 The data iterators in PyTorch Geometric Temporal can provide temporal snap-

shots for all of the non static geometric deep learning scenarios. 54

1.16 The average time needed for doing an epoch on a dynamic graph – temporal

signal iterator of Watts Strogatz graphs with a recurrent graph convolutional

model. 75

1.17 The average time needed for doing an epoch on a dynamic graph – temporal

signal iterator of Watts Strogatz graphs with a recurrent graph convolutional

model - GPU results only . 76

2.1 The Shapley value can be used to solve cooperative games. An ensemble game

is a machine learning application for it – models in an ensemble are players

(red, blue, and green robots) and the financial gain of the predictions is the

payoff (coins) for each possible coalition (rectangles). The Shapley value can

distribute the gain of the grand coalition (right bottom corner) among models. . 80

xiv

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Introduction

This thesis consists of two co-authored chapters and one single-authored chapter, all focusing

on machine learning and/or social and economic networks.

The first chapter, titled Machine Learning on Networks consists of three published papers

on applied network analysis tools. Karate Club is a python library implementing unsupervised

learning methods for graph structured data. It implements over 30 algorithms that practitioners

can use to perform datamining tasks on graphs. The paper has been published in the Proceedings

of the 29thACM International Conference on Information andKnowledgeManagement, amajor

double-blind-reviewed venue for resource papers, and it is widely used by the relevant research

community. InMay 2024, the library has been downloaded from the Python Package Index 4,379

times3. The methods implemented in this paper cover three relevant unsupervised problems: (i)

community detection, (ii) node embeddings and (iii) graph embeddings. Community detection

algorithms are used to identify groups if nodes in a network that are either densely interconnected

or share similar node characteristics. Node embeddings aim to assign a low dimensional vector

to each node in a network (embed them in a low dimensional space) in a way that their distance

in this low dimensional space reflects a notion of similarity. For example, neighborhood-

based node embeddig techniques aim assign this lower dimensional vector in a way such

that nodes that have a lower network distance are closer in this lower dimensional space too.

These embeddings can be used as controls in numerous downstream estimation and forecasting

tasks. Graph embeddings are very similar, but instead of embedding nodes, they assign low

3According to PyPI Download Stats: https://pypistats.org/packages/karateclub

1

C
E

U
eT

D
C

ol
le

ct
io

n

https://pypistats.org/packages/karateclub

DOI: 10.14754/CEU.2024.08

dimensional vector representations to whole graphs in a dataset consisting of a large set of

networks. Intuitively, the extracted information can be used in downstream machine learning

and regression models where each observation is a network.

The second resource paper, Little Ball of Fur, provides graph sampling methods for the

research community. Just like Karate Club, it has been published in the Proceedings of the 29th

ACM International Conference on Information and Knowledge Management. In May 2024,

the library has been downloaded from the Python Package Index 145 times4. This paper also

provides a set of evaluations for the implemented graph sampling techniques, which is valuable

to researchers relying on graph sampling. Sampling networks is not an evident problem for

economists studying spillover effects in economic and social networks. Random sampling of

nodes or edges can destroy salient information encoded in networks. Applying the correct

sampling method to retain the relevant information is essential. Our research provides insights

on how different sampling techniques perform in terms of preserving a set of ground truth

statistics.

Pytorch Geometric Temporal has been published a year later in the Proceedings of the Pro-

ceedings of the 30th ACM International Conference on Information and Knowledge Manage-

ment, the same double-blind-revieved venue. It has been downloaded from the Python Package

Index 1,919 times in May 20245. This library implements a wide set of tools that can be used

in spatiotemporal machine learning models. These models are used to describe dynamics when

agents in a social or economic network are observed over time. It covers three major settings: (i)

when the network is static, but the characteristics of the agents evolve over time, (ii) when the

characteristics of the agents are fixed but the network describing their connections changes over

time and (iii) when both the network and the attributes of the agents change over time. These

models are primarily used in predictive tasks, and can be applied in a wide variety of problems

relevant to many research disciplines. Among others, spread of infectious diseases in space

4According to PyPI Download Stats: https://pypistats.org/packages/littleballoffur
5According to PyPI Download Stats: https://pypistats.org/packages/torch-geometric-temporal

2

C
E

U
eT

D
C

ol
le

ct
io

n

https://pypistats.org/packages/littleballoffur
https://pypistats.org/packages/torch-geometric-temporal

DOI: 10.14754/CEU.2024.08

and time, dissemination of information over social networks, renewable energy production, or

travels in public transport networks are all spatiotemporal processes that can be modelled using

our library.

Chapter 2, titledThe ShapleyValue inMachineLearning provides a comprehensive overview

of how the Shapley Value - a solution concept in cooperative game theory - can be applied in the

domain ofmachine learning to assign values to different components inmachine learningmodels

or frameworks. This paper was published in the Proceedings of the Thirty-First International

Joint Conference on Artificial Intelligence, a double-blind-reviewed venue. To our knowledge,

this is the first paper that provides an extensive set of formal definitions for different machine

learning games.

Chapter 3, titled Peer Effects in Multiplex Networks contributes to the literature on peer

effects. It proposes a model that incorporates multiple types of connections (e.g.: friendships,

family relations, etc.) among the same set of agents simultaneously and discusses how such

a model can be estimated using spatial autoregressive models with multiple weight matrices.

This chapter provides both simulated and empirical evidence that failing to account for multiple

types of networks results in biased peer effect estimates. Results show that researchers relying

on observational data for peer effect estimations are likely to estimate significantly biased peer

effects unless they control for all relevant networks simultaneously.

3

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Chapter 1

Machine Learning on Networks
Joint work with Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos,

Alexander Riedel, Maria Astefanoaei, Ferenc Beres, Guzmán López, Nicolas Collignon, and

Rik Sarkar

This chapter consists of three papers on machine learning tools developed to extract information

from graph-structured data. Section 1.1 presents Karate Club, a Python library with unsuper-

vised learning methods for static graphs. Section 1.2 presents Little Ball of Fur, a package

implementing an extensive set of graph sampling algorithms. Section 1.3 discusses Pytorch

Geometric Temporal, a spatiotemporal signal processing extension for Pytorch. All of these

papers discuss the design principles behind the libraries and provide experimental evaluations

of their performances.

4

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.1 Karate Club: An API Oriented Open-Source Python

Framework for Unsupervised Learning on Graphs

1.1.1 Introduction

Techniques that extract features from graph data in an unsupervised manner (Perozzi, Al-

Rfou and Skiena, 2014; Yang and Leskovec, 2013; Narayanan et al., 2017) have seen an

increasing success in the machine learning community. Features automatically extracted by

these methods aim to retain information in a lower dimensional space based on similarity

metrics. The vast majority of these algorithms embed neighborhood information (nodes with a

lower distance are closer in the embedding space), structural information (nodes that have similar

structural characteristics, like degree or centrality, are closer in the embedding space) or attribute

information (nodes that are characterized by similar attributes will be closer in the embedding

space). These embeddings can serve as inputs for link prediction, node and graph classification,

community detection and various other tasks tasks (Rozemberczki, Allen and Sarkar, 2019;

Perozzi, Al-Rfou and Skiena, 2014; Narayanan et al., 2017; Perozzi et al., 2017; Yanardag and

Vishwanathan, 2015) in a wide range of real world research and application scenarios. Graph

mining tools such as SNAP, NetworkX or GraphTool (Leskovec and Krevl, 2014; Hagberg,

Swart and S Chult, 2008; Peixoto, 2014) have contributed to enhancement and development of

machine learning pipelines. The need for complicated custom feature engineering is reduced

by unsupervised graph mining techniques. This approach produces features that are naturally

reusable on multiple types of tasks. Recent research (Perozzi, Al-Rfou and Skiena, 2014;

Perozzi et al., 2017; Tsitsulin et al., 2018) has made such feature extraction highly efficient and

parallelizable.

The democratization of machine learning for tabular data was led by frameworks which

made fast paced development possible. Tools such as Scikit, TensorFlow or Pytorch (Pedregosa

et al., 2011; Buitinck et al., 2013; Abadi et al., 2016; Paszke et al., 2019; Rozemberczki, Kiss and

5

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Sarkar, 2020b) are available in general purpose scripting languages with easy to use consistent

interfaces. On the other hand, current graph based learning frameworks are less mature and of

limited scope. NetworkX and GraphTool (Hagberg, Swart and S Chult, 2008; Peixoto, 2014),

for example, host certain community detection algorithms, but none for whole graph or node

embedding. In addition, some of these tools (e.g.: SNAP, GraphTool Leskovec and Krevl (2014);

Peixoto (2014)) have significant barriers for the end users in terms of installing prerequisites

and custom data structures used for representing graphs.

We propose Karate Club, an open source Python framework for unsupervised learning on

graphs. Our work implements a wide range of methods that can be used in three unsupervised

learning scenarios: community detection, node embeddings for node classification, and graph

embeddings for graph classification. We implementedKarate Clubwith consistent API oriented

design principles in mind which makes the library end user friendly and modular. The name of

the package is inspired by Zachary’s Karate Club (Zachary, 1977) – a network commonly used

to demonstrate network algorithms. The design of this machine learning toolbox was motivated

by the principles used to create the widely used scikit-learn package (Buitinck et al., 2013).

The design entails a number of fundamental engineering patterns. Each algorithm has a

sensible default hyperparameter setting which helps non expert practitioners. To further ease

the use of our package, algorithms have a limited number of shared, publicly available methods

(e.g. fit). Models ingest data structures from the scientific Python ecosystem (Hagberg, Swart

and S Chult, 2008; Virtanen et al., 2019; Walt, Colbert and Varoquaux, 2011) as input and the

generated output also follows these formats. The innermodelmechanics are always implemented

as private methods using optimized back-end libraries such as NumPy, SciPy, Pysgp or GenSim

(Walt, Colbert and Varoquaux, 2011; Virtanen et al., 2019; Defferrard et al., 2017; Rehurek

and Sojka, 2011) for computing. These principles combined with the extensive documentation

ensure that Karate Club is accessible to a wider audience than the currently available open-

source graph mining frameworks.

Our empirical evaluation focuses on three common graph mining tasks: non-overlapping

6

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

community detection, node and graph classification. We compare the learning performance of

node and graph level algorithms implemented in our framework on various real world social,

web and collaboration networks (collected from Deezer, Reddit, Facebook, Twitch, Wikipedia

and GitHub). With respect to the runtime, models in Karate Club show reasonable scalability

which we demonstrate by the use of synthetic data.

Our contributions. Specifically our work makes the following key contributions:

1. We release Karate Club, a Python graph mining framework which provides a wide range

of easy to use community detection, node and whole graph embedding procedures.

2. We demonstrate with code the main ideas of the API oriented framework design: hy-

perparameter encapsulation and inspection, available public methods, dataset ingestion,

output generation, and interfacing with downstream learning algorithms and evaluation

methods.

3. We evaluate the learning performance of the framework on real world community detec-

tion, node and graph classification problems. We validate the scalability of the algorithms

implemented in our framework.

4. We open sourced with the framework a detailed documentation and released multiple

large graph classification datasets.

The remainder of this paper is structured as follows. In Section 1.1.3 we discuss the

covered graph mining techniques. We overview the main principles behind Karate Club in

Section 1.1.4 where we included detailed examples to explain these design ideas. The learn-

ing performance and scalability of the algorithms in the package are evaluated in Section

1.1.5. We review related data mining libraries in Section 1.1.2. The paper concludes with

Section 1.1.6 where we discuss future directions. The source code of Karate Club can be

downloaded from https://github.com/benedekrozemberczki/karateclub; the Python

7

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/benedekrozemberczki/karateclub

DOI: 10.14754/CEU.2024.08

package can be installed from the Python Package Index. Extensive documentation is available

at https://karateclub.readthedocs.io/en/latest/ with detailed examples.

1.1.2 Related Work

In this section we discuss how the design of our framework is related to existing machine

learning frameworks, and what differentiates it from other graph mining tools.

API oriented machine learning frameworks

Scikit-learn (Pedregosa et al., 2011; Buitinck et al., 2013) is a machine learning framework

with a consistent and easy-to-use design. The scikit-learn models are characterised by models

with a consistent API, their constructors have encapsulated sensible hyperparameters and utilize

widely used Python data structures for data ingestion and output generation. This compositional

design of the framework results in a low number of model classes and reusable model blocks

and enables fast deployment. The Karate Club API draws heavily from the ideas of scikit-learn

and the output generated by Karate Club is suitable as input for scikit-learn’s machine learning

procedures. While our general design patterns are similar to that of Scikit-learn, it is important

to note that we do not rely on any design frameworks or API components from any other library

and our tool implements these internally.

Graph mining libraries

The Karate Club framework is differentiated from other graph mining libraries because of

lightweight prerequisites and wide coverage of the learning techniques. First, the SNAP and

GraphTool packages both have C++ prerequisites which have to be pre-compiled and installed.

Our framework only has Python dependencies and builds on top of the NetworkX project.

Second, the SNAP (Leskovec and Krevl, 2014) library only covers specific methods which were

created by the authors of the framework. TheNetworkX (Hagberg, Swart and S Chult, 2008) and

8

C
E

U
eT

D
C

ol
le

ct
io

n

https://karateclub.readthedocs.io/en/latest/

DOI: 10.14754/CEU.2024.08

GraphTool (Peixoto, 2014) libraries only provide community detection tools. Node and whole

graph embedding is not supported by these frameworks.

1.1.3 Graph mining procedures in Karate Club

In this section, we briefly discuss the various graph mining algorithms which are available in

the 1.0. release of the Karate Club package.

Community detection

Community detection techniques cluster the vertices of the graph into densely connected groups

of nodes. This grouping can be the final result or an input for a downstream learning algorithm

(e.g. node classification or link prediction).

Karate Club currently contains several methods for overlapping and non-overlapping com-

munity detection.Non-overlapping community detection is analogous to clustering, and assumes

that a node can only belong to a single group; see, for example, Li et al. (2019b); Raghavan,

Albert and Kumara (2007); Prat-Pérez, Dominguez-Sal and Larriba-Pey (2014); Rozemberczki

et al. (2019). While overlapping community detection is analogous to fuzzy clustering as nodes

have an affiliation with multiple clusters (e.g.: Yang and Leskovec (2013); Ye, Chen and Zheng

(2018); Wang et al. (2017); Sun et al. (2017); Kuang, Ding and Park (2012)).

Node embedding

Node embeddings map vertices of a graph into an Euclidean space in which those that are

deemed to be similar according to a certain notion will be in close proximity. The Euclidean

representationmakes it easier to apply standardmachine learning libraries for node classification,

link prediction, clustering etc.

Neighbourhood preserving embedding maintains the proximity of nodes in the graph when

an embedding is created. These methods implicitly (Perozzi, Al-Rfou and Skiena, 2014; Perozzi

9

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

et al., 2017; Rozemberczki and Sarkar, 2018) or explicitly (Cao, Lu and Xu, 2015; Jundong Li,

2019; Sun and Fevotte, 2014; Qiu et al., 2018) decompose a proximity matrix (e.g. powers of

the adjacency matrix or a sum of these matrices) to create the node embedding.

Structural embedding conserves the structural roles of nodes in the embedding space (Hen-

derson et al., 2012; Ahmed et al., 2019; Donnat et al., 2018). Nodes with similar embeddings

have a similar distribution of descriptive statistics (e.g. centrality and clustering coefficient) in

their vicinity. Embeddings are distilled by the decomposition of matrices representing structural

features of nodes.

Attributed embedding retains the neighbourhood structure and generic feature similarity

of nodes when the embedding is learned. This learning involves the joint factorization of the

node-node and node-feature matrices with a direct (Yang et al., 2018, 2015) or implicit matrix

decomposition technique (Rozemberczki, Allen and Sarkar, 2019; Zhang et al., 2018).

Meta embedding combines information from neighbourhood preserving, structural and

attributed embeddings in order to create higher representation quality embeddings (Yang et al.,

2017).

Whole graph embedding and summarization

Whole graph embedding and summarization techniques create fixed size representations of

entire graphs as points in a Euclidean space. Those graphs which are close in the embedding

space share structural patterns such as subtrees. These representations are used for a range of

graph level tasks – graph classification, regression and whole graph clustering.

Spectral fingerprints extract statistics from the eigenvectors and eigenvalues of the graph

Laplacian (Tsitsulin et al., 2018; de Lara and Edouard, 2018; Verma and Zhang, 2017). Vectors

of the descriptive statistics are used as the whole graph representation.

Implicit factorization techniques create a graph – structural feature matrix (Narayanan et al.,

2017; Chen and Koga, 2019) by enumerating string features in the graphs. This matrix is

decomposed in order to create whole graph descriptors and feature embeddings jointly.

10

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.1.4 Design Principles

When we created Karate Club, we used an API-oriented machine learning system design point

of view (Pedregosa et al., 2011; Buitinck et al., 2013) in order to make an end-user-friendly

machine learning tool. This API-oriented design principle entails a few simple ideas. In this

section, we discuss these ideas and their apparent advantages with appropriate illustrative

examples in great detail.

Encapsulated model hyperparameters and inspection

An unsupervised Karate Club model instance is created by using the constructor of the appro-

priate Python object. This constructor has a default hyperparameter setting which allows for

sensible out-of-the-box model usage. In simple terms, this means that the end user does not need

to understand the inner model mechanics in great detail to use the methods implemented in our

framework. We set these default hyperparameters to provide a reasonable learning and runtime

performance. If needed, these model hyperparameters can be modified at the model instance

creation time with the appropriate re-parametrization of the constructor. The hyperparameters

are stored as public attributes to allow the inspection of model settings.

We demonstrate the encapsulation of hyperparameters by the code snippet in Figure 1.1.

First, we want to create an embedding for aNetworkX generated Erdos-Renyi graph (line 4) with

the standard hyperparameter settings. When the model is constructed and fitted (lines 6-7) we

do not change default hyperparameters and we can print the standard setting of the dimensions

hyperparameter (line 8). Second, we decided to set a different number of dimensions, so we

created and fitted a new model (lines 10-11) and we print the new value of the dimensions

hyperparameter (line 12).

11

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1 import networkx as nx
2 from karateclub import DeepWalk
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = DeepWalk()
7 model.fit(graph)
8 print(model.dimensions)
9

10 model = DeepWalk(dimensions=64)
11 model.fit(graph)
12 print(model.dimensions)

Figure 1.1: Creating a synthetic graph, using a DeepWalk model with standard and modified
hyperparameter settings.

API Consistency and non-proliferation of classes

Each unsupervised machine learning model in Karate Club is implemented as a separate

class that inherits from the Estimator class. Algorithms implemented in our framework have

a limited number of public methods as we do not assume that the end user is particularly

interested in the algorithmic details related to a specific technique. All models are trained by

the use of the fit method which takes the inputs (graph, node features) and calls the appro-

priate private methods to learn an embedding or clustering. Node and graph embeddings are

returned by the get_embedding public method and cluster memberships are retrieved by calling

get_memberships.

1 import networkx as nx
2 from karateclub import DeepWalk
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = DeepWalk()
7 model.fit(graph)
8 embedding = model.get_embedding()

Figure 1.2: Creating a synthetic graph, using the DeepWalk constructor, fitting the embedding
and returning it.

12

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

We avoided the proliferation of classes with two specific strategies. First, the inputs used

by our framework and the outputs generated do not rely on custom data classes. This helps

to prevent the unnecessary growth of the number of classes and also helps with interfacing

with downstream applications. Second, algorithms that use the same data pre-processing or

algorithmic step (e.g. truncated random walk, Weisfeiler-Lehman hashing) were built on shared

blocks.

In Figure 1.2 we create a random graph (line 4), and a DeepWalk model with the default

hyperparameters (line 6), we fit this model (line 7) using the public fit method and return the

embedding by calling the public get_embedding method (line 8).

1 import networkx as nx
2 from karateclub import Walklets
3

4 graph = nx.gnm_random_graph(100, 1000)
5

6 model = Walklets()
7 model.fit(graph)
8 embedding = model.get_embedding()

Figure 1.3: Creating a synthetic graph, using the Walklets constructor, fitting the embedding
and returning it.

The example in Figure 1.2 can be modified to create a Walklets embedding with minimal

effort by changing the model import (line 2) and the constructor (line 6) – these modifications

result in the snippet of Figure 1.3.

Looking at these two snippets the advantage of the API-driven design is evident as we only

needed a fewmodifications. First, we had to change the import of the embeddingmodel. Second,

we needed to modify the model construction, and the default hyperparameters were already set.

Third, the public methods provided by theDeepWalk andWalklets classes behave the same way.

An embedding is learned with fit and it is returned by get_embedding. This allows for quick and

minimal changes to the code when an upstream unsupervised model used for feature extraction

performs poorly.

13

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Standardized dataset ingestion

WedesignedKarate Club to use standardized dataset ingestionwhen amodel is fitted. Practically

this means that algorithms that have the same purpose use the same data types formodel training.

In detail:

• Neighbourhood-based and structural node embedding techniques use a single NetworkX

graph as input for the fit method.

• Attributed node embedding procedures take a NetworkX graph as input and the features

are represented as a NumPy array or as a SciPy sparse matrix. In these matrices, rows

correspond to nodes and columns to features.

• Graph level embedding methods and statistical graph fingerprints take a list of NetworkX

graphs as input.

• Community detection methods use a NetworkX graph as an input.

High performance model mechanics

The underlying mechanics of the graph mining algorithms were implemented using widely

available Python libraries which are not operation system dependent and do not require the

presence of other external libraries like TensorFlow or PyTorch does (Abadi et al., 2016;

Paszke et al., 2019). The internal graph representations in Karate Club use NetworkX. Dense

linear algebra operations are carried out using NumPy and their sparse counterparts use SciPy.

Implicit matrix factorization techniques (Perozzi, Al-Rfou and Skiena, 2014; Perozzi et al.,

2017; Rozemberczki, Allen and Sarkar, 2019; Ahmed et al., 2019; Zhang et al., 2018) utilize

the GenSim (Rehurek and Sojka, 2011) package to and methods which rely on graph signal

processing use PyGSP (Defferrard et al., 2017). It is important to note that these libraries only

provide fast and/or standardized ways for storing the raw data or performing mathematical

14

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

transformations on it. All internal model calculations are implemented by us, with the exception

of topic modeling algorithms provided by GenSim (Rehurek and Sojka, 2011).

1 import community
2 import networkx as nx
3 from karateclub import LabelPropagation, SCD
4

5 graph = nx.gnm_random_graph(100, 1000)
6

7 model = SCD()
8 model.fit(graph)
9 scd_memberships = model.get_memberships()

10

11 model = LabelPropagation()
12 model.fit(graph)
13 lp_memberships = model.get_memberships()
14

15 print(community.modularity(scd_memberships, graph))
16 print(community.modularity(lp_memberships, graph))

Figure 1.4: Creating a synthetic graph, clustering with two community detection techniques and
using an external library to evaluate the modularity of clusterings.

Standardized output generation and downstream interfacing

The standardized output generation of Karate Club ensures that unsupervised learning algo-

rithmswhich serve the same purpose always return the same type of output with a consistent data

point ordering. There is a very important consequence of this design principle. When a certain

type of algorithm is replaced with the same type of algorithm, the downstream code which uses

the output of the upstream unsupervised model does not have to be changed. Specifically the

outputs generated with our framework use the following data structures:

• Node embedding algorithms (neighbourhood preserving, attributed and structural) always

return aNumPy float array when the get_embeddingmethod is called. The number of rows

in the array is the number of vertices and the row index always corresponds to the vertex

index. Furthermore, the number of columns is the number of embedding dimensions.

15

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

• Whole graph embedding methods (spectral fingerprints, implicit matrix factorization

techniques) return a NumPy float array when the get_embedding method is called. The

row index corresponds to the position of a single graph in the list of graphs inputted. In

the same way, columns represent the embedding dimensions.

• Community detection procedures return a dictionarywhen the get_membershipsmethod is

called. Node indices are keys and the values corresponding to the keys are the community

memberships of vertices. Certain graph clustering techniques create a node embedding in

order to find vertex clusters. These return a NumPy float array when the get_embedding

method is called. This array is structured like the ones returned by node embedding

algorithms.

We demonstrate the standardized output generation and interfacing by the code fragment

in Figure 1.4. We create clusterings of a random graph and return dictionaries containing the

cluster memberships. Using the external community library we can calculate the modularity

of these clusterings (lines 15-16). This shows that the standardized output generation makes

interfacing with external graph mining and machine learning libraries easy.

Limitations

The current design ofKarate Club has certain limitations andwemake strong assumptions about

the input. We assume that the NetworkX graph is undirected and consists of a single strongly

connected component. All algorithms assume that nodes are indexedwith integers consecutively

and the starting node index is 0. Moreover, we assume that the graph is not multipartite, nodes

are homogeneous and edges are unweighted (each edge has a unit weight).

In the case of thewhole graph embedding algorithms (de Lara andEdouard, 2018;Verma and

Zhang, 2017; Narayanan et al., 2017; Chen and Koga, 2019; Tsitsulin et al., 2018; Gao,Wolf and

Hirn, 2019) all graphs in the set of graphs must amend the previously listed requirements with

respect to the input. The Weisfeiler-Lehman feature-based embedding techniques (Narayanan

16

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

et al., 2017; Chen and Koga, 2019) allow nodes to have a single string feature that can be

accessed with the feature key. Without the presence of this key, these algorithms default to the

use of degree centrality as a node feature.

1.1.5 Experimental Evaluation

In the experimental evaluation of Karate Club we will demonstrate two things. First, we will

show that the implemented algorithms have a good performance with respect to embedding and

extracted community quality on a variety of machine learning problems. Second, we support

evidence that those algorithms which in theory scale linearly with the input size (number of

nodes or number of graphs) scale linearly using our framework in practice. Throughout these

experiments, we will always use the standard hyperparameter settings of the 1.0. release of our

package.

Learning performance

The evaluation of the representation quality focuses on three types of machine learning tasks.

These are community detection with ground truth communities, node classification with node

embeddings, and whole graph classification with graph-level embeddings.

Datasets To evaluate the performance of vertex-level algorithms (node embedding and com-

munity detection) we used attributed web, collaboration, and social networks which are publicly

available on SNAP (Rozemberczki, Allen and Sarkar, 2019; Leskovec and Krevl, 2014). We

decided to use attributed networks because a large number of algorithms in Karate Club can

exploit the presence of node features. These datasets are the following:

• Wikipedia Crocodiles: In this graph nodes represent Wikipedia pages and edges are

mutual links. The vertex features describe the presence of nouns in the article and the

binary target variable indicates the volume of traffic on the site.

17

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

• GitHub Developers: Vertices in this network are developers who use GitHub and edges

represent mutual follower relationships between the users. Features are derived based on

location, biography and other metadata, the binary target variable is whether someone is

a machine learning or web developer.

• Twitch England:Nodes of this graph are Twitch users from England and edges are mutual

friendships between them. Node features were extracted based on the streaming history of

the users while the binary node class describes whether the user creates explicit content.

• Facebook Page-Page: A network of verified Facebook pages where nodes are pages and

the links between nodes are mutual likes. Features are distilled from the page descriptions

and the target is the category of the Facebook page (Politicians, Governments, Companies,

TV Shows).

The descriptive statistics of these node-level datasets are summarized in Table 1.1. As one can

see these networks have a large variety of sizes, levels of clustering, and diameter.

Table 1.1: The social networks used for node level algorithms.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

Nodes 11,631 37,700 7,126 22,470
Density 0.003 0.001 0.002 0.001
Transitivity 0.026 0.013 0.042 0.232
Diameter 11 7 10 15
Features 13,183 4,005 2,545 4,714

Graph level embedding algorithms were evaluated on a variety of web and social graph

datasets which we collected specifically for this paper. Wemade these graph collections publicly

available.1 The graph collections used for predictive performance evaluation are the following:

• Reddit Threads: Discussion and non-discussion based threads from Reddit which we

collected in May 2018. The task is to predict whether a thread is discussion-based.

1https://snap.stanford.edu/data/

18

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

• Twitch Egos: The ego-nets of Twitch users who participated in the partnership program

in April 2018. The binary classification task is to predict using the ego-net whether the

central gamer plays a single or multiple games.

• Github Stargazers: The social networks of developers who starred popular machine

learning and web development repositories until 2019 August. The task is to decide

whether a social network belongs to a web or machine learning repository.

• Deezer Egos: The ego-nets of Eastern European users collected from the music streaming

service Deezer in February 2020. The related task is the prediction of gender for the ego

node in the graph.

Table 1.2: Statistics of graph datasets used for graph level algorithms.

Nodes Density Diameter
Dataset Graphs Min Max Min Max Min Max

Reddit Threads 203,088 11 97 0.021 0.382 2 27
Twitch Egos 127,094 14 52 0.038 0.967 1 2

GitHub StarGazers 12,725 10 957 0.003 0.561 2 18
Deezer Egos 9,629 11 363 0.015 0.909 2 2

We listed the size of these datasets with the respective descriptive statistics in Table 1.2.

It is worth noting that the Reddit Threads and Twitch Egos both have at least 10 fold more

graphs than the social graph datasets which are widely used for graph classification evaluation

(Yanardag and Vishwanathan, 2015). We would also like to emphasize that the use of graph

kernels would not be feasible on graph datasets that are this numerous.

Community Detection We evaluate the community detection performance by running the

clustering algorithms on the node level datasets. In case of overlapping community detection

algorithms (Yang and Leskovec, 2013; Ye, Chen and Zheng, 2018; Wang et al., 2017; Sun et al.,

2017; Kuang, Ding and Park, 2012; Epasto, Lattanzi and Paes Leme, 2017) we assigned each

19

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Ta
bl
e
1.
3:

M
ea
n
N
M
Iv

al
ue
sw

ith
sta

nd
ar
d
er
ro
rs
on

th
e
no

de
le
ve
ld

at
as
et
sc

al
cu
la
te
d
fro

m
10

0
ru
ns
.

W
ik
ip
ed
ia

C
ro
co
di
le
s

G
itH

ub
D
ev
el
op

er
s

Tw
itc

h
En

gl
an

d
Fa

ce
bo

ok
Pa

ge
-P
ag
e

DA
N
M
F
Ye

,C
he
n
an
d
Zh

en
g
(2
01
8)

.0
51
±
.0

01
.0

83
±
.0

01
.0

07
±
.0

01
.1

64
±
.0

01

M
-N

M
F
W
an
g
et
al
.(
20
17
)

.0
63
±
.0

01
.0

84
±
.0

01
.0

04
±
.0

01
.0

68
±
.0

01

N
N
SE

D
Su

n
et
al
.(
20
17
)

.0
63
±
.0

01
.0

34
±
.0

01
.0

04
±
.0

01
.0

72
±
.0

01

Sy
m
m
N
M
F
K
ua
ng
,D

in
g
an
d
Pa
rk

(2
01
2)

.0
62
±
.0

01
.0

74
±
.0

01
.0

07
±
.0

01
.2

06
±
.0

01

Eg
o-
Sp

lit
tin

g
Ep

as
to
,L

at
ta
nz
ia
nd

Pa
es

Le
m
e
(2
01
7)

.1
57
±
.0

01
.2
02
±
.0
01

.2
23
±
.0
01

.3
46
±
.0

01

Ed
M
ot

Li
et
al
.(
20
19

b)
.0

85
±
.0

01
.1

80
±
.0

01
.0

08
±
.0

01
.2

72
.
±
.0

01

La
be
lP
ro
p
R
ag
ha
va
n,
A
lb
er
ta
nd

K
um

ar
a
(2
00
7)

.1
19
±
.0

01
.0

90
±
.0

02
.0

03
±
.0

01
.3

20
±
.0

04

SC
D
Pr
at
-P
ér
ez
,D

om
in
gu
ez
-S
al
an
d
La

rr
ib
a-
Pe
y
(2
01
4)

.1
81
±
.0
01

.1
89
±
.0

01
.1

69
±
.0

01
.3
86
±
.0
01

G
EM

SE
C
Ro

ze
m
be
rc
zk
ie
ta
l.
(2
01
9)

.1
02
±
.0

01
.1

27
±
.0

01
.0

08
±
.0

02
.2

44
±
.0

01

20

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

node to the cluster that has the strongest affiliation score with the node (ties were broken ran-

domly). The metric used for the clustering performance measurement is the average normalized

mutual information (henceforth NMI) score calculated between the cluster membership vector

and the factual class memberships. We report in Table 1.3 the NMI averages with the standard

errors calculated from 100 experimental runs.

Looking at Table 1.3 first we notice that the non-overlapping community detection tech-

niques (Li et al., 2019b; Raghavan, Albert and Kumara, 2007; Prat-Pérez, Dominguez-Sal and

Larriba-Pey, 2014; Rozemberczki et al., 2019; Epasto, Lattanzi and Paes Leme, 2017) materi-

ally outperform the overlapping models which create latent spaces (Yang and Leskovec, 2013;

Ye, Chen and Zheng, 2018; Wang et al., 2017; Sun et al., 2017; Kuang, Ding and Park, 2012)

on every dataset in terms of NMI. Second, those algorithms that create clusters based on the

presence of closed triangles (SCD (Prat-Pérez, Dominguez-Sal and Larriba-Pey, 2014) and

Ego-Splitting (Epasto, Lattanzi and Paes Leme, 2017)) have a generally strong performance.

Finally, on problems where it can be assumed that the class membership vector is associated

with structural properties (e.g. Wikipedia Crocodiles), the overlapping latent space creating

community detection methods perform poorly in terms of NMI.

Graph classification In each dataset we created representations for the graphs and used those

as predictors for the downstream classification task. We repeated the feature distillation and

supervised model training 100 times, using 80% of graphs for training and 20% for testing with

seeded splits. Using the graph class vectors of the test set and class probabilities outputted by

the logistic regression classifier we calculated the mean area under the curve (henceforth AUC)

values which are presented in Table 1.4 along with their standard errors.

The results presented in Table 1.4 show that the representations created by implicit factor-

ization (Narayanan et al., 2017; Chen and Koga, 2019) and spectral finger printing (de Lara

and Edouard, 2018; Tsitsulin et al., 2018; Verma and Zhang, 2017; Rozemberczki and Sarkar,

2020) techniques are predictive on most problems. In addition, we see evidence that algorithms

21

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.4: Mean AUC values with standard errors on the graph level datasets calculated from
100 seed train-test splits.

Reddit
Threads

Twitch
Egos

GitHub
StarGazers

Deezer
Egos

GL2Vec Chen and Koga (2019) .753 ± .002 .664 ± .002 .551 ± .001 .504 ± .001

Graph2Vec Narayanan et al. (2017) .804 ± .002 .702 ± .003 .585 ± .001 .512 ± .001

SF de Lara and Edouard (2018) .814 ± .002 .678 ± .003 .558 ± .001 .501 ± .001

NetLSD Tsitsulin et al. (2018) .827 ± .001 .631 ± .002 .632 ± .001 .522 ± .001

FGSD Verma and Zhang (2017) .825 ± .002 .705 ± .003 .656 ± .001 .526 ± .001

GeoScattering Gao, Wolf and Hirn (2019) .800 ± .001 .697 ± .001 .546 ± .003 .522 ± .003

FEATHER Rozemberczki and Sarkar (2020) .830 ± .002 .720 ± .003 .748 ± .002 .540 ± .001

from the latter group create somewhat higher-quality representations.

Node classification In this series of experiments we evaluated the node classification perfor-

mance on the node-level datasets. For each graph we learned a node embedding and used the

features of this node embedding as predictors for a downstream logistic (softmax) regression

model. We repeated the embedding and supervised model training 100 times, using 80% of the

nodes for training and 20% for testing with seeded splits. Using the target vectors of the test

set and the class probabilities outputted by the downstream model we calculated mean AUC

scores. These average AUC values are reported in Table 1.5 with standard errors. The results

in Table 1.5 generally demonstrate that the included neighbourhood based (Perozzi, Al-Rfou

and Skiena, 2014; Perozzi et al., 2017; Rozemberczki and Sarkar, 2018; Cao, Lu and Xu, 2015;

Qiu et al., 2018; Jundong Li, 2019; Sun and Fevotte, 2014; Ou et al., 2016; Belkin and Niyogi,

2002), structural role preserving (Ahmed et al., 2019; Donnat et al., 2018), and attributed

(Rozemberczki, Allen and Sarkar, 2019; Yang et al., 2018; Yang and Yang, 2018; Yang et al.,

2015; Bandyopadhyay et al., 2018; Zhang et al., 2018) node embedding techniques all generate

reasonable quality representations for this classification task. There are additional conclusions;

(i) multi-scale node embeddings such as GraRep (Cao, Lu and Xu, 2015), Walklets, (Perozzi

22

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

et al., 2017), and MUSAE (Rozemberczki, Allen and Sarkar, 2019) create high-quality node

features, (ii) combining neighbourhood and attribute information results in the best represen-

tations (Rozemberczki, Allen and Sarkar, 2019; Zhang et al., 2018), (iii) there is not a single

model which is generally superior.

Shapley values of node embedding methods in model ensembles We further evaluate the

node embeddingmethods implemented in Karate Club using Shapley values. Chapter 2 provides

an extensive discussion on how the Shapley value, a solution concept from cooperative game

theory can be utilized to assign a value to models in an ensemble.

In this experiment, we calculated the Shapley value of each node embedding technique

using the same four datasets. We embedded each network 100 times using each technique and

used seeded 80%-20% train-test splits to estimate logistic regressions. We then calculated the

mean AUC score of each model coalition (altogether 218 coalitions) across the 100 samples.

We aggregated the forecasts of the logistic regressions across embedding techniques by taking

the mean of the forecasted latent probabilities. The Shapley values of the embedding methods

for each dataset are presented in Table 1.6.

Contrary to our previous evaluation results, this measure reveals clearly superior embedding

methodologies. Attributed methods (Rozemberczki, Allen and Sarkar, 2019; Zhang et al., 2018)

consistently receive very high Shapley values across all datasets, meaning that their inclusion

in model ensembles results the largest average marginal improvement in AUC scores across all

feasible model ensembles.

Scalability Weperform scalability tests for all three types of algorithms (community detection,

node, and whole graph embedding). For each of these categories, we investigate the scalability

of 4 chosen algorithms. We use Erdos-Renyi graphs where the input size and graph density can

be manipulated directly.

Figure 1.5 plots runtime against the size and density of the clustered graph while the average

23

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.5: Mean AUC values with standard errors on the node level datasets calculated from
100 seed train-test splits.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

BoostNE Jundong Li (2019) .685 ± .001 .845 ± .001 .576 ± .001 .752 ± .001

NodeSketch Yang et al. (2019) .722 ± .001 .631 ± .001 .520 ± .001 .579 ± .001

Diff2Vec Rozemberczki and Sarkar (2018) .832 ± .001 .858 ± .001 .589 ± .001 .873 ± .001

NetMF Qiu et al. (2018) .866 ± .001 .867 ± .001 .629 ± .002 .946 ± .001

Walklets Perozzi et al. (2017) .875 ± .001 .899 ± .002 .622 ± .001 .973 ± .001

HOPE Ou et al. (2016) .870 ± .001 .844 ± .001 .612 ± .001 .909 ± .001

GraRep Cao, Lu and Xu (2015) .888 ± .002 .876 ± .001 .609 ± .001 .952 ± .001

DeepWalk Perozzi, Al-Rfou and Skiena (2014) .850 ± .001 .872 ± .002 .597 ± .002 .877 ± .001

NMF-ADMM Sun and Fevotte (2014) .747 ± .001 .784 ± .001 .619 ± .001 .937 ± .001

LAP Belkin and Niyogi (2002) .784 ± .001 .529 ± .001 .511 ± .001 .501 ± .001

GraphWave Donnat et al. (2018) .517 ± .001 .620 ± .001 .583 ± .001 .613 ± .001

Role2Vec Ahmed et al. (2019) .845 ± .001 .862 ± .002 .601 ± .002 .903 ± .002

BANE Yang et al. (2018) .866 ± .002 .570 ± .001 .551 ± .001 .970 ± .002

TENE Yang and Yang (2018) .907 ± .001 .874 ± .001 .615 ± .001 .886 ± .001

TADW Yang et al. (2015) .896 ± .001 .817 ± .001 .612 ± .002 .871 ± .001

FSCNMF Bandyopadhyay et al. (2018) .912 ± .001 .856 ± .002 .621 ± .001 .891 ± .001

SINE Zhang et al. (2018) .904 ± .001 .910 ± .002 .646 ± .001 .979 ± .001

MUSAE Rozemberczki, Allen and Sarkar (2019) .931 ± .001 .903 ± .001 .628 ± .001 .981 ± .001

number of edges is fixed to be 10. In the densification scenario, we clustered a graph with 212

nodes. Non-overlapping community detection techniques show a remarkable scalability with

respect to the graph size increase, and we also see that the densification of the graph results in

longer runtimes.

We measured the same way how the average runtime of node embedding varies with input

size changes and densification and plotted these in Figure 1.6. These results show that under

no preferential attachment, all of the included methods scale linearly with input size changes.

Moreover, implicit factorization runtimes are unaffected by the densification of the graph.

24

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.6: Shapley values of embedding methods using the node level datasets calculated from
100 seed train-test splits.

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

BoostNE Jundong Li (2019) 0.0296 0.0408 0.0439 0.0283

NodeSketch Yang et al. (2019) 0.0443 0.0336 0.0442 0.0314

Diff2Vec Rozemberczki and Sarkar (2018) 0.0459 0.0654 0.0619 0.0496

NetMF Qiu et al. (2018) 0.0594 0.0669 0.0657 0.0658

Walklets Perozzi et al. (2017) 0.0572 0.0743 0.0612 0.0726

HOPE Ou et al. (2016) 0.0623 0.0608 0.0575 0.0589

GraRep Cao, Lu and Xu (2015) 0.0565 0.0535 0.0566 0.0624

DeepWalk Perozzi, Al-Rfou and Skiena (2014) 0.0579 0.0672 0.0572 0.0571

NMF-ADMM Sun and Fevotte (2014) 0.0370 0.0304 0.0443 0.0289

LAP Belkin and Niyogi (2002) 0.0596 0.0582 0.0551 0.0613

GraphWave Donnat et al. (2018) 0.0287 0.0313 0.0421 0.0291

Role2Vec Ahmed et al. (2019) 0.0573 0.0334 0.0575 0.0642

BANE Yang et al. (2018) 0.0460 0.0335 0.0443 0.0584

TENE Yang and Yang (2018) 0.0709 0.0665 0.0608 0.0675

TADW Yang et al. (2015) 0.0686 0.0625 0.0585 0.0561

FSCNMF Bandyopadhyay et al. (2018) 0.0704 0.0657 0.0636 0.0635

SINE Zhang et al. (2018) 0.0720 0.0782 0.0644 0.0725

MUSAE Rozemberczki, Allen and Sarkar (2019) 0.0763 0.0776 0.0612 0.0726

In case of the whole graph representation we plotted the average runtime as a function of

the number of graphs and their size in Figure 1.7. The base graph used for the first plot had 64

nodes and 5 edges per node and for the second plot, we used 210 graphs. First, a takeaway is that

the runtime increases linearly with the size of the dataset assuming that the size of the graphs

is homogeneous. Second, the spectral fingerprinting techniques (de Lara and Edouard, 2018;

Verma and Zhang, 2017) do not scale well when the size of the graphs is increased.

25

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

8 10 12 14 16
−7
−5
−3
−1

1
3
5
7

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph size scalability

3 4 5 6 7 8

1

3

5

7

9

log2 Number of edges per node

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph density scalability

Label Propagation Ego-Net Splitting NNSED SymmNMF

Figure 1.5: Scalability of the community detection procedures in Karate Club. We vary the
number of nodes and the density of an Erdos-Renyi graph.

8 10 12 14 16
−5
−3
−1

1
3
5
7
9

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph size scalability

3 4 5 6 7 8−1

1

3

5

7

log2 Number of edges per node

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph density scalability

DeepWalk Walklets NetMF BoostNE

Figure 1.6: Scalability of node embedding procedures in Karate Club. We vary the number of
nodes and the density of an Erdos-Renyi graph.

1.1.6 Conclusion and Future Directions

In this work we described Karate Club a Python framework built on the open source pack-

ages NetworkX (Hagberg, Swart and S Chult, 2008), PyGSP (Defferrard et al., 2017), Gensim

(Rehurek and Sojka, 2011), NumPy (Walt, Colbert and Varoquaux, 2011), and SciPy Sparse

(Virtanen et al., 2019) which performs unsupervised learning on graph data. Specifically, it

supports community detection, node embedding, and whole graph embedding techniques.

We discussed in detail the design principles that we followed when we created Karate Club,

26

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

6 8 10 12 14 16
−3
−1

1
3
5
7
9

11

log2 Number of graphs

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph count scalability

3 5 7 9 11

1
3
5
7
9

11

log2 Number of nodes

lo
g 2

Ru
nt
im

e
in

se
co
nd
s

Graph size scalability

Graph2Vec FGSD SF GL2Vec

Figure 1.7: Scalability of graph embedding and summarization procedures in Karate Club. We
vary the number of Erdos-Renyi graphs and their size.

standard hyperparameter encapsulation, the assumptions about the format of input data and

generated output, and available public methods. In order to demonstrate these principles we

included illustrative examples of code. In a series of experiments on real-world datasets we

validated that the machine learning models in Karate Club produce high-quality clusters and

embeddings. We also demonstrated on synthetic data that the linear runtime algorithms scale

well with increasing input size.

As discussed,Karate Club has certain limitationswith regard to the types of graphs that it can

handle. In the future, we plan to extend it to operate on directed and weighted graphs. Another

aim is to provide a general framework for unsupervised learning algorithms on heterogeneous,

multiplex, temporal graphs and procedures for the hyperbolic embedding of nodes (Sarkar,

2011; Verbeek and Suri, 2014).

A potential future research application of our library is finding parametrizations of the

implemented models that perform well on a wide range of real-life datasets. While for some

hyperparameters there is a clear intuition regarding the choice of the proper parameter (e.g.:

increasing the number of embedding dimensions above a certain point results in overfitting), the

literature lacks evidence on most of the hyperparameters. We present a limited proof of concept

on this potential future application in the Appendix of this paper.

27

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.1.7 Appendix

We provide a proof of concept using a limited number of methods and parameter space for the

future research direction outlined in Section 1.1.6.

In this experiment, we evaluate two methods, HOPE (Ou et al., 2016) and NetMF (Qiu et al.,

2018) using four real-life datasets and a limited section of the hyperparameter space. For each

hyperparameter constellation, we embed the networks 20 times, and train logistic regressions

using seeded 80-20% train-test splits. We evaluate the performance using the mean AUC across

the 20 experiments.

In case of HOPE, the parameter space consists only of the embedding dimensions. This

experiment should therefore provide insights on how the model performance changes with

increasing the number of embedding dimensions. There is a clear intuition regarding this

parameter: the higher it is, the more information can be retained by the model (each node is

embedded in higher and higher dimensional spaces). At the same time, increasing this parameter

may result in overfitting. The results of this experiment are presented in Table 1.7.

The results align with the intuition. We can observe a general positive association between

the number of embedding dimensions and the AUC score across all but one datasets. The only

exception, Twitch, showcases the overfitting phenomenon. This dataset - being the smallest in

terms of the number of nodes among our test cases - benefits from increasing the number of

dimensions only until 32 dimensions. Above this level it shows clear signs of overfitting, with

the mean AUC scores decreasing both for 64 and 128 dimensions. These results imply that the

number of embedding dimensions should depend on the number of data points embedded.

The second experiment uses NetMF (Qiu et al., 2018), which has a 4-dimensional hyperpa-

rameter space. We embed each network 20 times and perform our downstream tasks just like

it has been done using HOPE. Our evaluation is identical as well, we calculate the mean AUC

across the 20 experiments. We use the following subset of hyperparameters for this experiment:

• Embedding dimensions: 8, 16 or 32

28

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.7: Mean AUC values with standard errors on the node level datasets calculated from 20
seed train-test splits for different parametrizations of the HOPE method

HOPE
Dimensions

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

8 .610 ± .001 .691 ± .001 .574 ± .001 .771 ± .001

16 .735 ± .001 .814 ± .001 .586 ± .001 .779 ± .001

32 .753 ± .001 .834 ± .001 .599 ± .001 .787 ± .001

64 .814 ± .001 .843 ± .001 .594 ± .001 .794 ± .001

128 .876 ± .001 .848 ± .001 .588 ± .001 .908 ± .001

• Number of singular value decomposition (SVD) iterations: 5, 10 or 15

• Pointwise mutual information (PMI) matrix orders: 1 or 2

• Number of negative samples: 1, 2 or 3

Due to the high dimensionality of the hyperparameter space, we focus our analysis on the

marginals of the distribution. Table 1.8 evaluates the results for each dataset across different

embedding dimensions, Table 1.9 presents the results for each SVD iteration option, Table 1.11

evaluates the optimal choice of PMI order and Table 1.10 contains the results on the number of

negative samples.

The results show that the predictive performance is increasing in the embedding dimensions

across all datasets. This result is likely to be due to the limitations of this evaluation. It is well

known, and is illustrated in the previous experiment that above a certain cutoff, increasing the

number of dimensions results in overfitting. Since all evaluations use a relatively low dimension,

this pattern is not observed in this experiment.

The number of SVD iterations and negative samples have no significant effect on the mean

AUC score for any of the datasets. These results are likely due to the limited number of datasets

that have been evaluated in these experiments. Extending the set of real-life networks in this

experiment is therefore an important potential future research direction.

In terms of PMI orders, the results are mixed. For two datasets, GitHub and Twitch, choosing

29

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

different PMI orders does result in a significant difference. In case of Wikipedia and Facebook

choosing a higher PMIorder significantly increases the performance of the downstreamestimator

in terms of the mean AUC score. These networks are different in terms of their diameters:

increasing the PMI order affects networks with a higher diameter.

We have to note that the results above have been established using a limited set of networks

and a limited set of hyperparameters, and therefore they only serve the purpose of a proof of

concept. Future research is needed to analyze the properties of these embedding methods across

additional datasets and segments of the hyperparameter space.

Table 1.8: Mean AUC values with standard errors on the node level datasets calculated from
20 seed train-test splits for different parametrizations of the NetMF method across embedding
dimensions

NetMF
Dimensions

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

8 .725 ± .041 .856 ± .003 .613 ± .008 .772 ± .024

16 .810 ± .040 .864 ± .001 .613 ± .003 .826 ± .037

32 .844 ± .024 .871 ± .002 .618 ± .004 .889 ± .059

Table 1.9: Mean AUC values with standard errors on the node level datasets calculated from 20
seed train-test splits for different parametrizations of the NetMF method across SVD iterations

NetMF
SVD iterations

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

5 .791 ± .006 .864 ± .006 .614 ± .006 .828 ± .007

10 .793 ± .006 .864 ± .006 .615 ± .006 .829 ± .006

15 .794 ± .006 .864 ± .006 .615 ± .006 .831 ± .006

30

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.10: Mean AUC values with standard errors on the node level datasets calculated from
20 seed train-test splits for different parametrizations of the NetMF method across negative
sample numbers

NetMF
Negative samples

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

1 .794 ± .006 .863 ± .006 .615 ± .007 .831 ± .007

2 .795 ± .006 .865 ± .006 .616 ± .002 .826 ± .006

3 .788 ± .006 .864 ± .008 .612 ± .003 .832 ± .006

Table 1.11: Mean AUC values with standard errors on the node level datasets calculated from
20 seed train-test splits for different parametrizations of the NetMF method across PMI orders

NetMF
PMI orders

Wikipedia
Crocodiles

GitHub
Developers

Twitch
England

Facebook
Page-Page

1 .766 ± .051 .864 ± .006 .616 ± .003 .806 ± .021

2 .829 ± .059 .864 ± .007 .613 ± .007 .854 ± .081

31

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.2 Little Ball of Fur: A Python Library for Graph Sampling

1.2.1 Introduction

Modern graph datasets such as social networks and web graphs are large and can be mined to

extract detailed insights. However, the large size of the datasets poses fundamental computa-

tional challenges on graphs (Kang, Tsourakakis and Faloutsos, 2009; Gonzalez et al., 2012).

Exploratory data analysis and computation of basic descriptive statistics can be time-consuming

on real-world graphs. More advanced graph mining techniques such as node and edge classifi-

cation or clustering can be completely intractable on full-size datasets such as web graphs.

One of the fundamental techniques to deal with large datasets is sampling. On simple

datasets such as point clouds, sampling preserves most of the distributional features of the data

and forms the basis of machine learning (Shalev-Shwartz and Ben-David, 2014). However,

graphs represent complex interrelations, so that naive sampling can destroy the salient features

that constitute the value of the graph data. Graph sampling algorithms therefore need to be

sensitive to the various features that are relevant to the downstream tasks. Such features include

statistics such as diameter, clustering coefficient (Easley, Kleinberg et al., 2010), transitivity

or degree distribution. In more complex situations, graphs are used for community detection,

classification, or edge prediction (Hamilton, Ying and Leskovec, 2017). A sampling algorithm

should be representative with respect to such downstream learning tasks.

Extracting sets of vertices and edges that result in a representative subsample of the original

source graph is a nontrivial problem to solve. The complicated nature of sampling is evident

as one has to address multiple specific questions about how sampling affects certain aspects

of the follow-up data analysis. What is the optimal ratio of nodes and edges retained after

the sampling? How does sampling affect the connectivity of the sampled graph compared to

that of the source graph? Does sampling change the value of graph-level descriptive statistics

of structure such as diameter, average degree, transitivity, or the degree correlation? How

distributional characteristics of the node and edge level graph are changing due to the sampling?

32

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

How competitive are the post graph sampling trained embeddings, classifiers, and clustering

models? What is the nature of the trade-off between the scalability gains and the downstream

analysis quality?

Various graph sampling procedures have been proposed with different objectives (Hu and

Lau, 2013). The implementation of the graph sampling technique and the choice of parameters

used for the subgraph extraction can affect its utility for the task in question. A toolbox of

well-understood graph sampling techniques can make it easier for researchers and practitioners

to easily perform graph sampling and have consistent reproducible sampling across projects.

Our goal is to make a large number of graph sampling techniques available to a large audience.

We release Little Ball of Fur – an open-source Python library for graph sampling. This is

the first publicly available and documented Python graph sampling library. The general design

of our framework is centered around an end-user-friendly application public interface which

allows for fast-paced development and interfacing with other graph mining frameworks.

We achieve this by applying a few core software design principles consistently. Sampling

techniques are implemented as individual classes and have pre-parametrized constructors with

sensible default settings, which include the number of sampled vertices or edges, a random seed

value, and hyperparameters of the sampling method itself. Algorithmic details of the sampling

procedures are implemented as private methods to shield the end-user from the inner mechanics

of the algorithm. These concealed workings of samplers rely on the standard Python library and

Numpy (Walt, Colbert and Varoquaux, 2011). Practically, sampling techniques only provide a

single shared public method (sample) which returns the sampled graph. Sampling procedures

use NetworkX (Hagberg, Swart and S Chult, 2008) and NetworKit (Staudt, Sazonovs and

Meyerhenke, 2016) graphs as the input and the output adheres to the same widely used generic

formats.

We demonstrate the practical applicability of our framework on various social networks and

web graphs (e.g. Facebook, LastFM, Deezer, Wikipedia). We show that our package allows

the precise estimation of macro-level statistics such as average degree, transitivity, and degree

33

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

correlation. We provide evidence that the use of sampling routines from Little Ball of Fur can

reduce the runtime of node and whole graph embedding algorithms. Using these embeddings as

input features for node and graph classification tasks we establish that the embeddings learned

on the subsampled graphs extract high-quality features.

The rest of this paper has the following structure. In Section 1.2.2 we overview the rel-

evant literature about graph sampling. This discussion covers node, edge, and exploration

sampling techniques, and the possible applications of sampling from graphs. The design prin-

ciples that we followed when Little Ball of Fur was developed are discussed in Section 1.2.3

with samples of illustrative Python code. The subsampling techniques provided by our frame-

work are evaluated in Section 1.2.4. We present results about network statistic estimation

performance, and machine learning case studies about node and graph classification. The

paper concludes with Section 1.2.5 where we discuss our main findings and point out di-

rections for future work. We open-sourced the software package and it can be downloaded

from https://github.com/benedekrozemberczki/littleballoffur; the Python pack-

age can be installed via the Python Package Index. A comprehensive documentation can be

accessed at https://little-ball-of-fur.readthedocs.io/en/latest/ with a step-

by-step tutorial.

1.2.2 Related work

In this section we briefly overview the types of graph subsampling techniques included in

Little Ball of Fur and the node and graph level representation learning algorithms used for the

experimental evaluation of the framework.

Graph sampling techniques

Graph subsampling procedures have three main groups – node, edge, and exploration-based

techniques. We give a brief overview of these techniques in this section.

34

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/benedekrozemberczki/littleballoffur
https://little-ball-of-fur.readthedocs.io/en/latest/

DOI: 10.14754/CEU.2024.08

Node sampling Techniques which sample nodes select a set of representative vertices and

extract the induced subgraph among the chosen vertices. Nodes can be sampled uniformly

without replacement (RN) (Stumpf, Wiuf and May, 2005), proportional to the degree centrality

of nodes (RDN) (Adamic et al., 2001) or according to the pre-calculated PageRank score of

the vertices (PRN) (Leskovec and Faloutsos, 2006). All of these methods assume that the set of

vertices and edges in the graph is known ex-ante.

Edge sampling The simplest link sampling algorithm retains a randomly selected subset of

edges by sampling those uniformly without replacement (RE) while another approach is to

randomly select nodes and an edge that belongs to the chosen node (RNE) (Krishnamurthy

et al., 2005). These techniques can be hybridized by alternating between node-edge sampling

and random edge selection with a parametrized probability (HRNE) (Krishnamurthy et al.,

2005).

By randomly selecting a set of retained edges one implicitly samples nodes. Because of this,

the random edge selection can be followed up by an induction step (TIES) (Ahmed, Neville and

Kompella, 2013) in which the additional edges among chosen nodes are all added. This step can

be a partial induction (PIES) (Ahmed, Neville and Kompella, 2013) if the edges were sampled

in a streaming fashion and only edges with already sampled nodes are selected in the induction

step.

Exploration-based sampling Node and edge sampling techniques do not extract represen-

tative subsamples of a graph by exploring the neighbourhoods of seed nodes. In comparison

exploration-based sampling techniques probe the neighborhood of a seed node or a set of seed

vertices.

A group of exploration-based sampling techniques uses search strategies on the graph to

extract a subsample. The simplest search-based strategies include classical traversal methods

such as breadth-first search (BFS) and depth-first search (DFS) (Doerr and Blenn, 2013).

35

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Snowball sampling (SB) (Goodman, 1961) is a restricted version of BFS where a maximum

fixed : number of neighbors is traversed. Forest fire (FF) sampling (Leskovec, Kleinberg and

Faloutsos, 2005) is a parametrized stochastic version of SB sampling where the constraint on

the maximum number of traversed neighbours only holds in expectation. A local greedy search-

based technique is community structure expansion sampling (Maiya and Berger-Wolf, 2010)

(CSE) which starting with a seeding node adds new nodes to the sampled set which can reach

the largest number of unknown nodes. Another simpler search-based sampling technique is

the random node-neighbor (RNN) (Leskovec and Faloutsos, 2006) algorithm which randomly

selects a set of seed nodes, takes the neighbors in a single hop, and induces the edges of the

resulting vertex set. Searching for shortest paths (SP) (Rezvanian and Meybodi, 2015) between

randomly sampled nodes can be used for selecting sequences of nodes and edges to induce a

subsampled graph.

A large family of exploration-based graph sampling strategies is based on random walks

(RW) (Gjoka et al., 2010). These techniques initiate a random walker on a seed node which

traverses the graph and induces a subgraph which is used as the sample. Random walk-based

sampling has numerous shortcomings and a large number of sampling methods try to correct

for specific limitations.

One of themajor limitations is that randomwalks are inherently biased towards visiting high-

degree nodes in the graph (Hu and Lau, 2013), Metropolis-Hastings random walk (MHRW)

(Hübler et al., 2008; Stutzbach et al., 2008) and its rejection-constrained variant (RC-MHRW)

(Li et al., 2015) address this bias by making the walker prone to visit lower degree nodes.

Another major shortcoming of random walk-based sampling is that the walker might get

stuck in the closely-knit community of the seed node. There are multiple ways to overcome

this. The first one is the use of non-backtracking random walks (NBTRW) (Lee, Xu and Eun,

2012) which removes the tottering behavior of random walks. The second one is circulating the

neighbors of every node with a vertex-specific queue (CNRW) (Zhou, Zhang and Das, 2015).

A third strategy involves teleports - the random walker jumps (RWJ) (Ribeiro and Towsley,

36

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

2010) with a fixed probability to a random node from the current vertex. A fourth approach is to

make the walker biased towards weak links by creating a common neighbor-aware random walk

sampler (CNARW) (Li et al., 2019c) which is biased towards neighbors with low neighborhood

overlap. A fifth strategy is using multiple random walkers simultaneously which form a so-

called frontier of random walkers (FRW) (Ribeiro and Towsley, 2010). These techniques can be

combined with each other in a modular way to overcome the limitations of random walk-based

sampling.

There are other possible modifications to traditional random walks which we implemented

in Little Ball of Fur. One example is random walk with restart (RWR) (Leskovec and Faloutsos,

2006), which is similar to RWJ sampling, but the teleport always ends with the seed node or

loop erased random walks (LERW) (Wilson, 1996) which can sample spanning trees from a

source graph uniformly.

Node and whole graph embedding

Our experimental evaluation includes node and graph classification for which we use fea-

tures extracted with neighbourhood-preserving node embeddings and whole graph embedding

techniques. These experiments utilize the implementations of the embedding techniques imple-

mented in the Karate Club library discussed in Section 1.1.

Neighbourhood preserving node embedding Given a graph � = (+, �) neighbourhood

preserving node embedding techniques (Perozzi, Al-Rfou and Skiena, 2014; Tang et al., 2015;

Grover and Leskovec, 2016; Ou et al., 2016; Cao, Lu and Xu, 2015; Perozzi et al., 2017;

Rozemberczki and Sarkar, 2018) learn a function 5 : + → R3 which maps the nodes E ∈ + into

a 3 dimensional Euclidean space. In this embedding space, a pre-determined notion of node-

node proximity is approximately preserved by learning the mapping. The vector representations

created by the embedding procedure can be used as input features for node classifiers.

37

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Whole graph embedding and statistical fingerprinting Starting with a set of graphs G =

(�1, . . . , �=)whole graph embedding and statistical fingerprinting procedures (Narayanan et al.,

2017; Chen and Koga, 2019; Verma and Zhang, 2017; Tsitsulin et al., 2018; Rozemberczki and

Sarkar, 2020) learn a function ℎ : G → R3 which maps the graphs � ∈ G to a 3 dimensional

Euclidean space. In this space, those graphs which have similar structural patterns are close to

each other. The vector representations distilled by these whole graph embedding techniques are

useful inputs for graph classification algorithms.

1.2.3 Design principles

We overview the core design principles that we applied when we designed Little Ball of Fur.

Each design principle is discussed with illustrative examples of Python code which we explain

in detail.

Encapsulated sampler hyperparameters, random seeding, and parameter inspection

Graph sampling methods in Little Ball of Fur are implemented as individual classes which all

inherit from the Sampler class. A Sampler object is created by using the constructor which

has default out-of-the-box hyperparameter settings. These default settings are available in the

documentation and can be customized by re-parametrizing the Sampler constructor. The hyper-

parameters of the sampling techniques are stored as public attributes of the Sampler instance

which allows for inspection of the hyperparameter settings by the user. Each graph sampling

procedure has a seed parameter – this value is used to set a random seed for the standard Python

and NumPy random number generators. This way the subsample extracted from a specific graph

with a fixed seed is always going to be the same.

The code snippet in Figure 1.8 illustrates the encapsulated hyperparameter and inspection

features of the framework. We start the script by importing a simple random walk sampler from

the package (line 1). We initialize the first random walk sampler instance without changing the

38

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

default hyperparameter settings (line 3). As the seed and hyperparameters are exposed we can

print the seed parameter which is a public attribute of the sampler (line 4) and we can see the

default value of the seed. We create a new instance with a parametrized constructor which sets

a new seed (line 6) that modifies the value of the publicly available random seed (line 7).

1 from littleballoffur import RandomWalkSampler
2

3 sampler = RandomWalkSampler()
4 print(sampler.seed)
5

6 sampler = RandomWalkSampler(seed=41)
7 print(sampler.seed)

Figure 1.8: Re-parametrizing and initializing the constructor of a random walk sampler by
changing the random seed.

Achieving API consistency and non-proliferation of classes

The graph sampling procedures included in Little Ball of Fur are implemented with a consistent

application public interface. As we discussed the parametrized constructor is used to create the

sampler instance and the samplers all have a single available public method. The subsample of

the graph is extracted by the use of the sample method which takes the source graph and calls

the private methods of the sampling algorithm.

We limited the number of classes and methods in Little Ball of Fur with a straightforward

design strategy. First, the graph sampling procedures do not rely on custom data structures

to represent the input and output graphs. Second, inheritance from the Sampler ensures that

private methods that check the input format requirements do not have to be re-implemented on

a case-by-case basis for each sampling procedure.

In Figure 1.9, first we import NetworkX and the random walk sampler from Little Ball of

Fur (lines 1-2). Using these libraries we create a Watts-Strogatz graph (line 4) and a random

walk sampler with the default hyperparameter settings of the sampling procedure (line 6). We

39

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1 import networkx as nx
2 from littleballoffur import RandomWalkSampler
3

4 graph = nx.watts_strogatz_graph(1000, 10, 0)
5

6 sampler = RandomWalkSampler()
7 sampled_graph = sampler.sample(graph)
8

9 print(nx.transitivity(sampled_graph))

Figure 1.9: Using a random walk sampler on a Watts-Strogatz graph without changing the
default sampler settings.

sample a subgraph with the public samplemethod of the randomwalk sampler (line 7) and print

the transitivity calculated for the sampled subgraph (line 8).

1 import networkx as nx
2 from littleballoffur import ForestFireSampler
3

4 graph = nx.watts_strogatz_graph(1000, 10, 0)
5

6 sampler = ForestFireSampler()
7 sampled_graph = sampler.sample(graph)
8

9 print(nx.transitivity(sampled_graph))

Figure 1.10: Using a forest fire sampler on a Watts-Strogatz graph without changing the default
sampler settings.

The piece of code presented in Figure 1.9 can be altered seamlessly to perform Forest Fire

sampling by modifying the sampler import (line 2) and changing the constructor (line 7) – these

modifications result in the example in Figure 1.10.

These illustrative sampling pipelines presented in Figures 1.9 and 1.10 demonstrate the

advantage of maintaining API consistency for the samplers. Changing the graph sampling

technique that we used only required minimal modifications to the code. First, we replaced the

import of the sampling technique from the Little Ball of Fur framework. Second, we used the

constructor of the newly chosen sampling technique to create a sampler instance. Finally, we

40

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

were able to use the shared samplemethod and the same pipeline to calculate the transitivity of

the sampled graph.

Backend deployment, standardized dataset ingestion and limitations

Little Ball of Fur was implemented with a backend wrapper. Sampling procedures can be

executed by the NetworKit (Staudt, Sazonovs and Meyerhenke, 2016) or NetworkX (Hagberg,

Swart and S Chult, 2008) backend libraries depending on the format of the input graph. Basic

graph operations such as random neighbor or shortest path retrieval of the backend libraries have

standardized naming conventions, data generation and ingestion methods. The generic backed

wrapper based design allows for the future inclusion of other general graph manipulation

backend libraries such as GraphTool (Peixoto, 2014) or SNAP (Leskovec and Krevl, 2014).

The shared public sample method of the node, edge, and exploration-based sampling al-

gorithms takes a NetworkX/Networkit graph as input and the returned subsample is also a

NetworkX/Networkit graph. The subsampling does not change the indexing of the vertices.

The rich ecosystem of graph subsampling methods and the consistent API required that

Little Ball of Fur was designed with a limited scope and we made restrictive assumptions about

the input data used for sampling. Specifically, we assume that vertices are indexed numerically,

the first index is 0 and indexing is consecutive. We assume that the graph that is passed to

the sampling method is undirected and unweighted (edges have unit weights). In addition, we

assume that the graph forms a single strongly connected component and orphaned nodes are

not present. Heterogeneous, multiplex, multipartite, and attributed graphs are not handled by

the 1.0 release of the sampling framework.

The sampler classes all inherit private methods that check whether the input graph violates

the listed assumptions. These are called within the sample method before the sampling process

itself starts. When any of the assumptions is violated an error message is displayed for the

end-user about the wrong input and the sampling is halted.

41

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.2.4 Experimental Evaluation

To evaluate the sampling algorithms implemented in Little Ball of Fur we perform a number

of experiments on real-world social networks and webgraphs. Details about these datasets are

discussed in this subsection. We proceed by showing how randomized spanning tree sampling

can be used to speed up node embedding without reducing predictive performance. Our ablation

study about graph classification demonstrates how connected graph subsampling can accelerate

the application ofwhole graph embedding techniques.We conclude this subsection by presenting

results about estimating graph-level descriptive statistics.

Table 1.12: Statistics of social networks used for comparing sampling and node classification
algorithms.

Facebook
Page-Page

Wikipedia
Crocodiles

LastFM
Asia

Deezer
Hungary

Nodes 22,470 11,631 7,624 47,538
Density 0.0007 0.0025 0.0010 0.0002
Transitivity 0.2323 0.0261 0.1786 0.0929
Diameter 15 11 15 12
Labels 4 2 18 84

Datasets

We use real-world social network and webgraph datasets to compare the performance of sam-

pling procedures and test their utility for speeding up classification tasks.

Node level datasets The datasets used for graph statistic estimation and node classification

are all available on SNAP (Leskovec and Krevl, 2014), and descriptive statistics can be found

in Table 1.12.

• Facebook Page-Page (Rozemberczki, Allen and Sarkar, 2019) is a webgraph of verified

official Facebook pages. Nodes are pages representing politicians, governmental organi-

zations, television shows, and companies while the edges are links between the pages.

The related task is multinomial node classification for the four page categories.

42

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

• Wikipedia Crocodiles (Rozemberczki, Allen and Sarkar, 2019) is a webgraph of Wiki-

pedia pages about crocodiles. Nodes are the pages and edges are mutual links between

the pages. The potential task is binary node classification.

• LastFM Asia (Rozemberczki and Sarkar, 2020) is a social network of LastFM (English

music streaming service) users who are located in Asian countries. Nodes are users and

links are mutual follower relationships. The task on this dataset is multinomial node

classification – one has to predict the location of the users.

• Deezer Hungary (Rozemberczki et al., 2019) is a social network of Hungarian Deezer

(French music streaming service) users. Nodes are users located in Hungary and edges

are friendships. The relevant task is multi-label multinomial node classification - one has

to list the music genres liked by the users.

Graph level datasets Our classification study on subsampled sets of graphs utilized forum

threads and small-sized social networks of developers. The respective descriptive statistics of

these datasets are in Table 1.13.

• Reddit Threads 10K (Rozemberczki, Kiss and Sarkar, 2020a) is a random subsample of

10 thousand graphs from the original Reddit threads datasets. Threads can be discussion

and non-discussion based and the task is the binary classification of them according to

these two categories.

• GitHub StarGazers (Rozemberczki, Kiss and Sarkar, 2020a) is a set of small sized

social networks. Each social network is a community of developers who starred a specific

machine learning or web development package on Github. The task is to predict the type

of the repository based on the community graph.

43

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.13: Descriptive statistics and size of the graph datasets for graph subsampling and whole
graph classification.

Nodes Density Diameter
Dataset Graphs Min Max Min Max Min Max

Reddit Threads 10K 10,000 11 97 0.021 0.291 2 22

GitHub StarGazers 12,725 10 957 0.003 0.561 2 18

Node classification with randomly sampled spanning tree embeddings of networks

Node embedding vectors (Perozzi, Al-Rfou and Skiena, 2014; Perozzi et al., 2017) are useful

compact descriptors of vertex neighborhoods when it comes to solving classification problems.

In traditional classification scenarios, the whole graph is used to learn the node embedding

vectors. At the same time, the size of social networks and web graphs can significantly limit

the applicability of these methods for researchers with limited computational resources. In this

experiment, we study a situation where the embedding vectors are learned from a randomly

sampled spanning tree of the original graph. We compare the predictive value of node em-

beddings learned on the whole graph with ones learned from spanning trees extracted with

randomized BFS (Krishnamurthy et al., 2005), DFS (Krishnamurthy et al., 2005) and LERW

(Wilson, 1996). The main advantage of randomized spanning trees is that storing the whole

graph requires O(|� |) memory when we learn the node embedding. In contrast, storing a

sampled spanning tree only requires O(|+ |) space.

Experimental settings The experimental pipeline that we used for node classification has

four stages.

1. Graph sampling. The BFS, DFS and LERW sample-based embeddings start with the

extraction of a random spanning tree using Little Ball of Fur. This sample is fed to the

embedding procedure.

2. Upstream model. The sampled graph is fed to the unsupervised upstream models Deep-

Walk (Perozzi, Al-Rfou and Skiena, 2014) and Walklets (Perozzi et al., 2017) which

44

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

learn the neighborhood preserving node embedding vectors. We used the Karate Club

(Rozemberczki, Kiss and Sarkar, 2020a) implementation of these models with the default

hyperparameter settings.

3. Downstream model. We inputted the node embedding vectors as input features for a

logistic regression classifier – we used the scikit-learn implementation (Pedregosa et al.,

2011) with the default hyperparameter settings. The downstream models were trained

with a varying ratio of nodes.

4. Evaluation. We report average AUC values on the test set calculated from 100 seeded

sampling, embedding and downstream model training runs.

1 3 5 7 9
0.5

0.6

0.7

0.8

0.9

1

% of nodes used for training

A
re
a
un
de
rt
he

cu
rv
e

DeepWalk

1 3 5 7 9
0.5

0.6

0.7

0.8

0.9

1

% of nodes used for training

A
re
a
un
de
rt
he

cu
rv
e

Walklets

Full Graph Breadth First Search Depth First Search Loop Erased Random Walk

Figure 1.11: Node classification performance on the Facebook Page-Page graph (Rozemberczki,
Allen and Sarkar, 2019) evaluated by average AUC scores on the test set calculated from a 100
seeded experimental runs.

Experimental results We report the predictive performance for the Facebook Page-Page and

LastFM Asia graphs respectively on Figures 1.11 and 1.12. First, we see that the features

extracted from the BFS, DFS and LERW sampled spanning trees are less valuable for node

classification based on the predictive performance on these two social networks. In plain words

node embeddings of randomly sampled spanning trees produce inferior features. Second, the

marginal gains of additional training data are smaller when the embedding is learned from a

45

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

subsampled graph. Third, DFS sampled node embedding features have a considerably lower

quality compared to the BFS and LERWsampled node embedding features. Finally, theWalklets

based higher order proximity preserving embeddings have a superior predictive performance

compared to the DeepWalk based ones even when the graph being embedded is a randomly

sampled spanning tree of the source graph. This experiment shows that randomly sampled

spanning tree embeddings (especially if trees are extracted using BFS) are valid alternatives to

embedding the whole graph in environments with limited computational capacities.

1 3 5 7 9
0.5

0.6

0.7

0.8

0.9

1

% of nodes used for training

A
re
a
un
de
rt
he

cu
rv
e

DeepWalk

1 3 5 7 9
0.5

0.6

0.7

0.8

0.9

1

% of nodes used for training

A
re
a
un
de
rt
he

cu
rv
e

Walklets

Full Graph Breadth First Search Depth First Search Loop Erased Random Walk

Figure 1.12: Node classification performance on the LastFM Asia graph (Rozemberczki and
Sarkar, 2020) evaluated by average AUC scores on the test set calculated from a 100 seeded
experimental runs.

An ablation study of graph classification

Graph classification procedures use the whole graph embedding vectors as input to discriminate

between graphs based on structural patterns. Using subsamples of the graphs and extracting

structural patterns from those can speed up this classification process. We will investigate how

exploration-based sampling techniques perform when they are used to obtain the samples used

for the embedding. A finding of low performance degradation would imply significant potential

future applications. Graph embeddings are computationally expensive, and thus sampling might

provide a way to reduce resource requirements and runtime.

46

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

0.5 0.6 0.7 0.8 0.9 1
0.68

0.69

0.7

0.71

0.72

0.73

Ratio of nodes retained

A
re
a
un

de
rt
he

cu
rv
e RW

RWR

(a) Reddit Threads

0.5 0.6 0.7 0.8 0.9 1
0.48
0.5

0.52
0.54
0.56
0.58
0.6

Ratio of nodes retained

A
re
a
un

de
rt
he

cu
rv
e RW

RWR

(b) Github Stargazers

Figure 1.13: Graph classification performance on the Reddit Threads and GitHub Stargazers
graph datasets (Rozemberczki, Kiss and Sarkar, 2020a) evaluated by average AUC scores on
the test set calculated from 100 seeded experimental runs. We also report standard deviations
around the mean performance.

Experimental settings. The data processing that we used for the evaluation of graph classi-

fication performance has four stages.

1. Graph sampling. We sample both datasets using the RW (Gjoka et al., 2010) and RWR

(Leskovec and Faloutsos, 2006) methods implemented in Little Ball of Fur 100 times for

each retainment rate with different random seeds. Using these algorithms ensures that the

graphs’ connectivity patterns are unchanged.

2. Upstream model. Following the sampling, all of the samples are embedded using the

Graph2Vec (Narayanan et al., 2017) algorithm. This procedure uses the presence of

subtrees as structural patterns.

3. Downstream model. With the embedding vectors as covariates, we estimate a logistic

regression for each dataset and retainment rate.We rely on the scikit-learn implementation

(Pedregosa et al., 2011) of the classifier with the default hyperparameter settings. We use

80% of the graphs to train the classifier.

4. Evaluation. The classification performance is evaluated using the AUC based on the

remaining 20% of graphs which form the test set.

47

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

0.5 0.6 0.7 0.8 0.9 1
30

40

50

60

Ratio of nodes retained

Ru
nt
im

e
in

se
co
nd

s RW
RWR

(a) Reddit Threads

0.5 0.6 0.7 0.8 0.9 1
40
50
60
70
80
90

100
110

Ratio of nodes retained

Ru
nt
im

e
in

se
co
nd

s RW
RWR

(b) Github Stargazers

Figure 1.14: Graph embedding runtime on the Reddit Threads and GitHub Stargazers graph
datasets (Rozemberczki, Kiss and Sarkar, 2020a) calculated from 100 experimental runs. We
also report standard deviations around the mean performance.

Experimental results. We report mean AUC values along with a standard deviation band in

Figure 1.13 for the Reddit Threads and Github Stargazers datasets with the Random Walk and

RandomWalk with Restart sampling methods. Lower retainment rate is associated with a lower

classification performance, as it can be expected. The more ragged, step function-like pattern

observed in case of the Reddit threads dataset is likely to be due to the interplay of structural

pattern downsampling and the generally smaller graphs in the dataset.

We report the mean runtime of the graph embedding process with a band of standard

deviations in Figure 1.14. As we decrease the retainment rate, a significant decrease in runtime

is prevalent. There is a clear trade-off between runtime and predictive performance. It is,

however, worth noting that while the runtime associated with the 50% retainment rate is, in

most cases close to half of the runtime using the whole graphs, the loss in classification power

in the case of the Reddit Threads dataset is less significant.

Estimating descriptive statistics

A traditional task for the evaluation of graph sampling algorithms is the estimation of graph-

level descriptive statistics. The graph level descriptive statistic is calculated for the sampled

48

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

graph and it is compared to the ground truth value which is calculated based on the whole set

of nodes and edges. A well-performing sampling procedure is ought to give a precise estimate

for the graph level quantity of interest with a reasonably small subsample of the graph. Creating

a sample that is representative in terms of different network characteristics might be important

for many disciplines. Evaluation of these techniques on real-life networks is therefore a crucial

experiment.

Experimental settings The pipeline used for estimating the graph-level descriptive statistics

had two stages.

1. Graph sampling. Node and exploration-based sampling procedures sample 50% of ver-

tices, while the edge sampling techniques select 50% of the edges to extract a subgraph.

2. Descriptive statistic estimation. We calculated the average of the clustering coefficient

(transitivity), average node degree, and the degree correlation for the sampled graphs.

We did 10 seeded experimental runs to get an estimate of the statistics and calculated the

standard error around these averages.

Experimental results The ground truth and estimated descriptive statistics are enclosed in

Table 1.14 for all of the node-level datasets. Blocks of rows correspond to node, edge, random

walk-based, and non-random walk-based exploration sampling algorithms. In each block of

methods, bold numbers denote the best-performing sampling technique (closest to the ground

truth) in a given category for a specific estimated descriptive statistic and dataset.

We can make a few generic observations about the quality of descriptive statistic estimates.

First, there is not a clearly superior sampling technique. This holds generally and within all of

the main categories of considered algorithms. Specifically, there is not a superior node, edge, or

expansion-based sampling procedure. Second, the induction-based edge sampling techniques

(TIES and PIES) give a good estimate of the statistics, but the induction step includes more

than 50% of the edges. Because of this, the obtained good estimation performance is somewhat

49

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

misleading as the majority of edges are still retained after the induction step. Third, edge

sampling algorithms sometimes fail to estimate the direction of the degree correlation properly.

Finally, the random walk-based techniques generally tend to overestimate the average degree.

This is not surprising considering that these are biased toward high-degree nodes.

In terms of different ground truth measures, we can make some additional observations.

Considering node sampling techniques, the clustering coefficient is best retained by the original

random node sampling for all datasets. This method is clearly superior to any other sampling

techniques from any other classes in two of our experimental samples, and it consistently

provides good quality estimates of the ground truth statistic. Therefore, in research settings that

require a representative sample in terms of the clustering coefficient, our results indicate that

the best sampling method is random node sampling.

In case of the average degree, there is no single best algorithm evenwithin classes of sampling

methods. It is worth noting though, that there are two methods that provide consistently close-

to-ground-truth estimates even if they are outperformed in some of the samples. These are the

PageRank-weighted random node sampling and the random edge selection method with partial

induction (PIES).

In terms of degree correlation, techniques based on random walk tend to perform best.

Among these methods, the one using a frontier of random walkers (FRW) and the common

neighbor-aware random walk sampler (CNARW) tend to provide decent estimates across all

cases.

1.2.5 Conclusion and Future Directions

In this paper, we described Little Ball of Fur – an open-source Python graph sampling framework

built on the widely used scientific computing libraries NetworkX (Hagberg, Swart and S Chult,

2008), NetworKit (Staudt, Sazonovs and Meyerhenke, 2016), and NumPy (Walt, Colbert and

Varoquaux, 2011). In detail, it provides techniques for node, edge, and exploration-based graph

50

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

sampling.

We reviewed the general conventions that we used for implementing graph sampling algo-

rithms in Little Ball of Fur. The framework offers a limited number of public methods, ingests

and outputs data in widely used graph formats, and embodies preset default hyperparameters.

We presented the practical implications of these design features with illustrative examples of

Python code snippets. Using various social networks and web graphs we had shown that using

sampled graphs extracted with Little Ball of Fur one can approximate ground truth graph level

statistics such as transitivity and the degree correlation coefficient. We also found evidence that

sampling subgraphs with our framework can accelerate node and graph classification without

extremely reducing the predictive performance.

As we have emphasized Little Ball of Fur assumes that the inputted graph is undirected

and unweighted. In the future, we envision to relax these assumptions about the input. We

plan to include additional high-performance backend libraries such as SNAP (Leskovec and

Krevl, 2014) and GraphTool (Peixoto, 2014). Furthermore, we aim to extend our framework by

including multiplex (Gjoka et al., 2011), attributed, and heterogeneous (Li and Yeh, 2011; Yang

et al., 2013) graph sampling algorithms with new releases of the framework. Our library can be

used to carry out comprehensive evaluation of different techniques to find the best method for

different ground truth statistics, as showcased by Table 1.14. Future research can extend the set

of statistics and networks considered in this analysis.

51

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1.3 PytorchGeometricTemporal: Spatiotemporal signal pro-

cessing with neural machine learning models

1.3.1 Introduction

Deep learning on static graph-structured data has seen unprecedented success in various busi-

ness and scientific application domains. Neural network layers which operate on graph data

can serve as building blocks of document labeling, fraud detection, traffic forecasting, and

cheminformatics systems (Rozemberczki et al., 2021a; Rozemberczki, Kiss and Sarkar, 2020a;

Yu, Yin and Zhu, 2018; Bojchevski et al., 2020; Rozemberczki et al., 2020). This emergence

and the widespread adaptation of geometric deep learning was made possible by open-source

machine learning libraries. The high quality, breadth, user-oriented nature, and availability of

specialized deep learning libraries (Fey and Lenssen, 2019; Zheng et al., 2020b; Data61, 2018;

Rozemberczki, Kiss and Sarkar, 2020a) were all contributing factors to the practical success

and large-scale deployment of graph machine learning systems. At the same time, the existing

geometric deep learning frameworks operate on graphs that have a fixed topology and it is also

assumed that the node features and labels are static. Besides limiting assumptions about the

input data, these off-the-shelf libraries are not designed to operate on spatiotemporal data.

We propose PyTorchGeometric Temporal, an open-source Python library for spatiotemporal

machine learning. We designed PyTorch Geometric Temporal with a simple and consistent API

inspired by the software architecture of existing widely used geometric deep learning libraries

from the PyTorch ecosystem (Paszke et al., 2019; Fey and Lenssen, 2019). Our framework was

built by applying simple design principles consistently. The framework reuses existing neural

network layers in a modular manner, in which models have a limited number of public methods

and hyperparameters can be inspected. Spatiotemporal signal iterators ingest data memory

efficiently in widely used scientific computing formats and return those in a PyTorch compatible

format. The design principles in combination with the test coverage, documentation, practical

52

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

tutorials, continuous integration, package indexing, and frequent releases make the framework

an end-user-friendly spatiotemporal machine learning system.

The experimental evaluation of the framework entails node-level regression tasks on datasets

released exclusively with the framework. Specifically, we compare the predictive performance

of spatiotemporal graph neural networks on epidemiological forecasting, demand planning, web

traffic management, and social media interaction prediction tasks. Synthetic experiments show

that with the right batching strategy PyTorch Geometric Temporal is highly scalable and benefits

from GPU accelerated computing.

The main contributions of our work can be summarized as:

• We publicly release PyTorch Geometric Temporal, the first deep learning library for

parametric spatiotemporal machine learning models.

• Weprovide data loaders and iterators withPyTorchGeometric Temporalwhich can handle

spatiotemporal datasets.

• Werelease new spatiotemporal benchmark datasets from the renewable energy production,

epidemiological reporting, goods delivery, and web traffic forecasting domains.

• We evaluate the spatiotemporal forecasting capabilities of the neural and parametric

machine learningmodels available inPyTorchGeometric Temporal on real-world datasets.

The remainder of the paper has the following structure. In Section 1.3.2 we overview im-

portant preliminaries and the related work about temporal and geometric deep learning and the

characteristics of related open-source machine learning software. The main design principles of

PyTorchGeometric Temporal are discussed in Section 1.3.3with a practical example.Wedemon-

strate the forecasting capabilities of the framework in Section 1.3.4 where we also evaluate the

scalability of the library on various commodity hardware. We conclude in Section 1.3.5 where

we summarize the results. The source code of PyTorch Geometric Temporal is publicly avail-

able at https://github.com/benedekrozemberczki/pytorch_geometric_temporal;

53

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/benedekrozemberczki/pytorch_geometric_temporal

DOI: 10.14754/CEU.2024.08

the Python package can be installed via the Python Package Index. Detailed documentation

is accessible at https://pytorch-geometric-temporal.readthedocs.io/.

1.3.2 Preliminaries and related work

In order to position our contribution and highlight its significance, we introduce some important

concepts about spatiotemporal data and discuss related literature about geometric deep learning

and machine learning software.

(a) Dynamic graph with temporal signal.

(b) Dynamic graph with static signal.

(c) Static graph with temporal signal.

Figure 1.15: The data iterators in PyTorch Geometric Temporal can provide temporal snapshots
for all of the non static geometric deep learning scenarios.

Temporal Graph Sequences

Our framework considers specific input data types onwhich the spatiotemporalmachine learning

models operate. Input data types can differ in terms of the dynamics of the graph and that

of the modelled vertex attributes. We take a discrete temporal snapshot view of this data

54

C
E

U
eT

D
C

ol
le

ct
io

n

https://pytorch-geometric-temporal.readthedocs.io/

DOI: 10.14754/CEU.2024.08

representation problem (Holme and Saramäki, 2012; Holme, 2015) and our work considers

three spatiotemporal data types which can be described by the subplots of Figure 1.15 and the

following formal definitions:

Definition 1 Dynamic graph with temporal signal A dynamic graph with a temporal signal

is the ordered set of graph and node feature matrix tuples D = {(G1,X1), . . . , (G) ,X))}

where the vertex sets satisfy that +C = +, ∀C ∈ {1, . . . ,)} and the node feature matrices that

XC ∈ R|+ |×3 , ∀C ∈ {1, . . . ,)} .

Definition 2 Dynamic graph with static signal. A dynamic graph with a static signal is the

ordered set of graph and node feature matrix tuples D = {(G1,X), . . . , (G) ,X)} where vertex

sets satisfy +C = +, ∀C ∈ {1, . . . ,)} and the node feature matrix that X ∈ R|+ |×3 .

Definition 3 Static graph with temporal signal. A static graph with a temporal signal is the

ordered set of graph and node feature matrix tuples D = {(G,X1), . . . , (G,X))} where the

node feature matrix satisfies that XC ∈ R|+ |×3 , ∀C ∈ {1, . . . ,)} .

Representing spatiotemporal data based on these theoretical concepts allows us the creation

of memory-efficient data structures which conceptualize these definitions in practice well.

Deep Learning with Time and Geometry

Our work provides deep learning models that operate on data that has both temporal and spatial

aspects. These techniques are natural recombinations of existing neural network layers that

operate on sequences and static graph-structured data.

Temporal Deep Learning A large family of temporal deep learning models such as the

LSTM (Hochreiter and Schmidhuber, 1997) and GRU (Cho et al., 2014) generates in-memory

representations of data pointswhich are iteratively updated as it learns by new snapshots.Another

family of deep learningmodels uses the attentionmechanism (Luong, Pham andManning, 2015;

55

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Bahdanau, Cho and Bengio, 2015; Vaswani et al., 2017) to learn representations of the data

points which are adaptively recontextualized based on the temporal history. These types of

models serve as templates for the temporal block of spatiotemporal deep learning models.

Static Graph Representation Learning Learning representations of vertices, edges, and

whole graphs with graph neural networks in a supervised or unsupervised way can be described

by the message passing formalism (Gilmer et al., 2017). In this conceptual framework using the

node and edge attributes in a graph as parametric function generates compressed representations

(messages) which are propagated between the nodes based on a message-passing rule and

aggregated to form new representations. Most of the existing graph neural network architectures

such as GCN (Kipf and Welling, 2017), GGCN (Li et al., 2016), ChebyConv (Defferrard,

Bresson and Vandergheynst, 2016), and RGCN (Schlichtkrull et al., 2018) fit perfectly into this

general description of graph neural networks. Models are differentiated by assumptions about

the input graph (e.g. node heterogeneity, multiplexity, presence of edge attributes), the message

compression function used, the propagation scheme, and the message aggregation function

applied to the received messages.

Spatiotemporal Deep Learning A spatiotemporal deep learning model fuses the basic con-

ceptual ideas of temporal deep learning techniques and graph representation learning. Operating

on a temporal graph sequence, these models perform message-passing at each time point with

a graph neural network block, and the new temporal information is incorporated by a temporal

deep learning block. This design allows for sharing salient temporal and spatial autocorrelation

information across the spatial units. The temporal and spatial layers which are fused together

in a single parametric machine learning model are trained together jointly by exploiting the

fact that the fused models are end-to-end differentiable. In Table 1.15 we summarized the spa-

tiotemporal deep learning models implemented in the framework which we categorized based

on the temporal and graph neural network layer blocks, the order of spatial proximity, and

56

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

heterogeneity of the edge set.

Graph Representation Learning Software

The current graph representation learning software ecosystem which allows academic research

and industrial deployment extends open-source auto-differentiation libraries such as TensorFlow

(Abadi et al., 2016), PyTorch (Paszke et al., 2019),MxNet (Chen et al., 2015) and JAX (Bradbury

et al., 2018; Frostig, Johnson and Leary, 2018). Our work does the same as we build on the

PyTorch Geometric ecosystem.We summarize the characteristics of these libraries in Table 1.16

which enables for comparing frameworks based on the backend, presence of supervised training

functionalities, presence of temporal models, and GPU support. Our proposed framework is the

only one to date which allows the supervised training of temporal graph representation learning

models with graphics card-based acceleration.

Spatiotemporal Data Analytics Software

The open-source ecosystem for spatiotemporal data processing consists of specialized database

systems, basic analytical tools, and advanced machine learning libraries. We summarized the

characteristics of the most popular libraries in Table 1.17 with respect to the year of release, the

purpose of the framework, source code language, and GPU support.

First, it is evident that most spatiotemporal data processing tools are fairly new and there is

much space for contributions in each subcategory. Second, the database systems are written in

high-performance languages while the analytics andmachine learning oriented tools have a pure

Python/R design or a wrapper written in these languages. Finally, the use of GPU acceleration

is not widespread which alludes to the fact that current spatiotemporal data processing tools

might have a scalability issue. Our proposed framework PyTorch Geometric Temporal is the

first fully open-source GPU accelerated spatiotemporal machine learning library for graph-

structured data. Our experimental results showcase that GPU acceleration is greatly beneficial

to the implemented algorithms. Therefore building our library in a way that it is compatible

57

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

with pre-existing GPU-acceleration solutions implemented in Pytorch (Paszke et al., 2019) is a

crucial feature of our work and amajor improvement compared to other, state-of-the-art libraries

providing similar functionalities.

1.3.3 The Framework design

Our primary goal is to give a general theoretical overview of the framework, discuss the

framework design choices, give a detailed practical example and highlight our strategy for the

long-term viability and maintenance of the project.

Neural Network Layer Design

The spatiotemporal neural network layers are implemented as classes in the framework. Each

of the classes has a similar architecture driven by a few simple design principles.

Non-proliferation of classes The framework reuses the existing high-level neural network

layer classes as building blocks from the PyTorch and PyTorch Geometric ecosystems. The goal

of the library is not to replace the existing frameworks. This design strategy makes sure that the

number of auxiliary classes in the framework is kept low and that the framework interfaces well

with the rest of the ecosystem.

Hyperparameter inspection and type hinting The neural network layers do not have default

hyperparameter settings as some of these have to be set in a dataset-dependent manner. In order

to help with this, the layer hyperparameters are stored as public class attributes and are available

for inspection. Moreover, the constructors of the neural network layers use type hinting which

helps the end-users to set the hyperparameters.

Limited number of public methods The spatiotemporal neural network layers in our frame-

work have a limited number of public methods for simplicity. For example, the auxiliary layer

58

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

initialization methods and other internal model mechanics are implemented as private methods.

All of the layers provide a forward method and those which explicitly use the message-passing

scheme in PyTorch Geometric provide a public message method.

Auxiliary layers The auxiliary neural network layers which are not part of the PyTorch

Geometric ecosystem such as diffusion convolutional graph neural networks (Li et al., 2018) are

implemented as standalone neural network layers in the framework. These layers are available

for the design of novel neural network architectures as individual components.

Data Structures

The design of PyTorch Geometric Temporal required the introduction of custom data structures

that can efficiently store the datasets and provide temporally ordered snapshots for batching.

Spatiotemporal Signal Iterators Based on the categorization of spatiotemporal signals dis-

cussed in Section 1.3.2 we implemented three types of Spatiotemporal Signal Iterators. These

iterators store spatiotemporal datasets in memory efficiently without redundancy. For example,

a Static Graph Temporal Signal iterator will not store the edge indices and weights for each time

period in order to save memory. By iterating over a Spatiotemporal Signal Iterator at each step a

graph snapshot is returned which describes the graph of interest at a given point in time. Graph

snapshots are returned in temporal order by the iterators. The Spatiotemporal Signal Iterators

can be indexed directly to access a specific graph snapshot – a design choice that facilitates the

use of advanced temporal batching.

Graph Snapshots The time period specific snapshots which consist of labels, features, edge

indices and weights are stored as NumPy arrays (Van Der Walt, Colbert and Varoquaux, 2011)

in memory, but returned as a PyTorch Geometric Data object instance (Fey and Lenssen, 2019)

by the Spatiotemporal Signal Iterators when these are iterated on. This design choice hedges

59

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

against the proliferation of classes and exploits the existing and widely used compact data

structures from the PyTorch ecosystem (Paszke et al., 2019).

Train-Validation-Test Splitting As part of the library we provide a temporal train-test split-

ting function that creates train and test snapshot iterators from a Spatiotemporal Signal Iterator

given a test dataset ratio. This parameter of the splitting function decides the fraction of data

that is separated from the end of the spatiotemporal graph snapshot sequence for testing. The

returned iterators have the same type as the input iterator. Importantly, this splitting does not

influence the applicability of widely used semi-supervised model training strategies such as

node masking.

Integrated Benchmark Dataset Loaders We provided easy-to-use practical data loader

classes for widely used existing (Panagopoulos, Nikolentzos and Vazirgiannis, 2021) and the

newly released benchmark datasets. These loaders return Spatiotemporal Signal Iteratorswhich

can be used for training existing and custom-designed spatiotemporal neural network architec-

tures to solve supervised machine learning problems.

Design in Practice Case Study: Cumulative Model Training on CPU

In the following, we overview a simple end-to-end machine learning pipeline designed with

PyTorch Geometric Temporal. These code snippets solve a practical epidemiological forecasting

problem – predicting the weekly number of chickenpox cases in Hungary (Rozemberczki et al.,

2021a). The pipeline consists of data preparation, model definition, training, and evaluation

phases.

1 from torch_geometric_temporal import ChickenpoxDatasetLoader

2 from torch_geometric_temporal import temporal_signal_split

3

4 loader = ChickenpoxDatasetLoader()

60

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

5

6 dataset = loader.get_dataset()

7

8 train, test = temporal_signal_split(dataset,

9 train_ratio=0.9)

Listings 1.1: Loading a default benchmark dataset and creating a temporal split with PyTorch
Geometric Temporal.

Dataset Loading and Splitting In Listings 1.1 as a first step we import the Hungarian

chickenpox cases benchmark dataset loader and the temporal train test splitter function (lines

1-2). We define the dataset loader (line 4) and use the get_dataset() class method to return a

temporal signal iterator (line 5). Finally, we create a train-test split of the spatiotemporal dataset

by using the splitting function and retain 10% of the temporal snapshots for model performance

evaluation (lines 7-8).

1 import torch

2 import torch.nn.functional as F

3 from torch_geometric_temporal.nn.recurrent import DCRNN

4

5 class RecurrentGCN(torch.nn.Module):

6 def __init__(self, node_features, filters):

7 super(RecurrentGCN, self).__init__()

8 self.recurrent = DCRNN(node_features, filters, 1)

9 self.linear = torch.nn.Linear(filters, 1)

10

11 def forward(self, x, edge_index, edge_weight):

12 h = self.recurrent(x, edge_index, edge_weight)

13 h = F.relu(h)

61

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

14 h = F.dropout(h, training=self.training)

15 h = self.linear(h)

16 return h

Listings 1.2: Defining a recurrent graph convolutonal neural network using PyTorch Geometric
Temporal consisting of a diffusion convolutional spatiotemporal layer followed by rectified
linear unit activation, dropout and a feedforward neural network layer.

Recurrent Graph Convolutional Model Definition We define a recurrent graph convolu-

tional neural network model in Listings 1.2. We import the base and functional programming

PyTorch libraries and one of the neural network layers from PyTorch Geometric Temporal

(lines 1-3). The model requires a node feature count and convolutional filter parameter in the

constructor (line 6). The model consists of a one-hop Diffusion Convolutional Recurrent Neural

Network layer (Li et al., 2018) and a fully connected layer with a single neuron (lines 8-9).

In the forward pass method of the neural network, the model uses the vertex features, edges,

and optional edge weights (line 11). The initial recurrent graph convolution-based aggregation

(line 12) is followed by a rectified linear unit activation function (Nair and Hinton, 2010) and

dropout (Srivastava et al., 2014) for regularization (lines 13-14). Using the fully connected layer

the model outputs a single score for each spatial unit (lines 15-16).

1 model = RecurrentGCN(node_features=8, filters=32)

2

3 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

4

5 model.train()

6

7 for epoch in range(200):

8 cost = 0

9 for time, snapshot in enumerate(train):

62

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

10 y_hat = model(snapshot.x,

11 snapshot.edge_index,

12 snapshot.edge_attr)

13 cost = cost + torch.mean((y_hat-snapshot.y)**2)

14 cost = cost / (time+1)

15 cost.backward()

16 optimizer.step()

17 optimizer.zero_grad()

Listings 1.3: Creating a recurrent graph convolutional neural network and training it by cumu-
lative weight updates.

Model Training Using the dataset split and the model definition we can turn our attention

to training a regressor. In Listings 1.3 we create a model instance (line 1), transfer the model

parameters (line 3) to the Adam optimizer (Kingma and Ba, 2015) which uses a learning rate

of 0.01 and set the model to be trainable (line 5). In each epoch, we set the accumulated cost to

be zero (line 8), iterate over the temporal snapshots in the training data (line 9), make forward

passes with the model on each temporal snapshot, and accumulate the spatial unit-specific

mean squared errors (lines 10-13). We normalize the cost, backpropagate and update the model

parameters (lines 14-17).

63

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Ta
bl
e
1.
14

:G
ro
un

d
tru

th
an
d
es
tim

at
ed

de
sc
rip

tiv
e
sta

tis
tic

s
of

th
e
w
eb

gr
ap
hs

an
d
so
ci
al

ne
tw
or
ks
.W

e
ca
lc
ul
at
ed

av
er
ag
e
sta

tis
tic

s
fro

m
10

se
ed
ed

ex
pe
rim

en
ta
lr
un

sa
nd

in
cl
ud

ed
th
e
sta

nd
ar
d
er
ro
rs
be
lo
w
th
e
m
ea
n.
W
e
in
cl
ud

ed
th
e
gr
ou

nd
tru

th
va
lu
es

ba
se
d
on

th
e

w
ho

le
gr
ap
h
(fi
rs
tb
lo
ck
)w

ith
es
tim

at
es

ob
ta
in
ed

w
ith

no
de

(s
ec
on

d
bl
oc
k)
,e
dg
e(
th
ird

bl
oc
k)

an
d
ex
pl
or
at
io
n
(fo

ur
th
an
d
fif
th
bl
oc
ks
)

sa
m
pl
in
g
al
go

rit
hm

s.
B
ol
d
nu

m
be
rs
de
no

te
fo
re

ac
h
ca
te
go

ry
th
e
be
st
es
tim

at
e
fo
ra

gi
ve
n
da
ta
se
t.

Fa
ce
bo

ok
Pa

ge
-P
ag
e

W
ik
ip
ed
ia

C
ro
co
di
le
s

La
st
FM

A
sia

D
ee
ze
r
H
un

ga
ry

C
lu
st
er
in
g

C
oe
ffi
ci
en
t

Av
er
ag
e

D
eg
re
e

D
eg
re
e

C
or
re
la
tio

n
C
lu
st
er
in
g

C
oe
ffi
ci
en
t

Av
er
ag
e

D
eg
re
e

D
eg
re
e

C
or
re
la
tio

n
C
lu
st
er
in
g

C
oe
ffi
ci
en
t

Av
er
ag
e

D
eg
re
e

D
eg
re
e

C
or
re
la
tio

n
C
lu
st
er
in
g

C
oe
ffi
ci
en
t

Av
er
ag
e

D
eg
re
e

D
eg
re
e

C
or
re
la
tio

n

Tr
ut
h

0.
23

2
15
.2

05
0.

08
5

0.
02

6
29
.3

65
−0
.2

77
0.

17
9

7.
29

4
0.

01
7

0.
09

3
9.

37
7

0.
20

7
R
N
St
um

pf
,W

iu
fa

nd
M
ay

(2
00
5)

0.
22
9

0.
00

2
7.

53
1

0.
06

0
0.
07
0

0.
00

3
0.
02

8
0.

00
1

14
.2

93
0.

38
8

-0
.2
84

0.
00

8
0.
17
7

0.
00

4
3.

64
2

0.
03

2
0.
02

0
0.

01
0

0.
09
2

0.
00

1
4.

69
9

0.
01

0
0.

19
0

0.
00

2
D
R
N
A
da
m
ic
et
al
.(
20
01
)

0.
26

1
0.

00
1

21
.5

14
0.

02
1

0.
08

0
0.

00
1

0.
03

8
0.

00
1

40
.7

50
0.

05
4

−0
.3

24
0.

00
1

0.
23

1
0.

00
1

9.
53

1
0.

02
0

0.
04

5
0.

00
1

0.
10

2
0.

00
1

8.
55

1
0.

00
7

0.
21
1

0.
00

1
PR

N
Le

sk
ov
ec

an
d
Fa
lo
ut
so
s(
20
06
)

0.
27

0
0.

00
1

16
.2
28

0.
03

2
0.

13
6

0.
00

1
0.

04
9

0.
00

1
32

.3
70

0.
07

4
−0
.2

90
0.

00
1

0.
23

6
0.

00
1

8.
20
9

0.
02

2
0.

06
4

0.
00

2
0.

09
8

0.
00

1
7.

25
1

0.
00

7
0.

23
1

0.
00

1
R
E
K
ris

hn
am

ur
th
y
et
al
.(
20
05
)

0.
11

6
0.

00
1

8.
47

0
0.

00
4

0.
08
4

0.
00

1
0.

01
3

0.
00

1
15
.4

62
0.

00
9

-0
.2
77

0.
00

1
0.

09
0

0.
00

1
4.

42
2

0.
00

9
0.
01
9

0.
00

2
0.

04
6

0.
00

1
5.

01
8

0.
00

1
0.

18
3

0.
00

1
R
N
E
K
ris

hn
am

ur
th
y
et
al
.(
20
05
)

0.
09

2
0.

00
1

7.
60

2
0.

00
1

−0
.0

75
0.

00
1

0.
00

7
0.

00
1

14
.6

82
0.

00
1

−0
.2

31
0.

00
1

0.
04

6
0.

00
1

3.
67

4
0.

00
1

−0
.1

08
0.

00
1

0.
04

2
0.

00
1

4.
70

1
0.

00
1

0.
05

6
0.

00
1

H
R
N
E
K
ris

hn
am

ur
th
y
et
al
.(
20
05
)

0.
08

1
0.

00
1

7.
19

4
0.

00
2

−0
.0

05
0.

00
1

0.
00

7
0.

00
1

13
.5

50
0.

00
5

−0
.2

34
0.

00
1

0.
04

6
0.

00
1

3.
56

2
0.

00
3

−0
.0

70
0.

00
2

0.
03

9
0.

00
1

4.
50

1
0.

00
1

0.
09

5
0.

00
1

TI
ES

A
hm

ed
,N

ev
ill
e
an
d
K
om

pe
lla

(2
01
3)

0.
23

5
0.

00
1

16
.5

64
0.

00
7

0.
08

3
0.

00
1

0.
02
6

0.
00

1
30
.7

20
0.

01
6

−0
.2

78
0.

00
1

0.
19

0
0.

00
1

8.
21

8
0.

01
0

0.
02

7
0.

00
1

0.
09

4
0.

00
1

9.
74

8
0.

00
1

0.
20

4
0.

00
1

PI
ES

A
hm

ed
,N

ev
ill
e
an
d
K
om

pe
lla

(2
01
3)

0.
23
1

0.
00

1
15
.3
57

0.
00

8
0.

08
7

0.
00

1
0.
02

6
0.

00
1

29
.1
42

0.
01

5
−0
.2

83
0.

00
1

0.
18
6

0.
00

1
7.
24
7

0.
01

0
0.

03
7

0.
00

1
0.

08
6

0.
00

1
8.

50
1

0.
00

3
0.
20
9

0.
00

1
RW

G
jo
ka

et
al
.(
20
10
)

0.
25

5
0.

00
1

22
.5

35
0.

02
2

0.
07

3
0.

00
1

0.
03

6
0.

00
1

41
.6

48
0.

19
6

−0
.3

25
0.

00
1

0.
22

4
0.

00
1

9.
87

8
0.

02
1

0.
03

9
0.

00
3

0.
10

4
0.

00
1

9.
22

1
0.

00
8

0.
21

8
0.

00
1

RW
R
Le

sk
ov
ec

an
d
Fa
lo
ut
so
s(
20
06
)

0.
25

3
0.

00
3

20
.2

82
0.

29
3

0.
09

2
0.

00
7

0.
04

3
0.

00
3

38
.9

67
0.

54
9

−0
.3

13
0.

00
6

0.
22

2
0.

00
3

9.
07

8
0.

08
7

0.
03

6
0.

00
4

0.
09

8
0.

00
1

9.
12

2
0.

08
2

0.
21
3

0.
00

3
RW

J
R
ib
ei
ro

an
d
To
w
sl
ey

(2
01
0)

0.
27

1
0.

00
1

18
.6

15
0.

03
6

0.
12

3
0.

00
1

0.
04

7
0.

00
1

34
.4

75
0.

07
4

−0
.2

97
0.

00
1

0.
23

3
0.

00
1

9.
01

2
0.

03
2

0.
06

7
0.

00
3

0.
10

2
0.

00
1

8.
35

1
0.

01
6

0.
23

3
0.

00
2

M
H
RW

H
üb
le
re

ta
l.
(2
00
8)
;S

tu
tz
ba
ch

et
al
.(
20
08
)

0.
28

0
0.

00
2

17
.9
03

0.
11

3
0.

13
4

0.
00

3
0.

11
9

0.
00

2
29

.9
14

0.
22

3
−0
.1

46
0.

00
4

0.
23

2
0.

00
1

8.
85

4
0.

04
1

0.
10

2
0.

00
7

0.
10

6
0.

00
1

7.
76

1
0.

02
3

0.
24

2
0.

00
3

R
C
-M

H
RW

Li
et
al
.(
20
15
)

0.
26

6
0.

00
1

21
.0

70
0.

06
4

0.
10

6
0.

00
2

0.
07

2
0.

00
1

35
.7

58
0.

15
9

−0
.2

54
0.

00
2

0.
23

2
0.

00
1

9.
59

4
0.

03
1

0.
07

8
0.

00
3

0.
10

3
0.

00
1

8.
55
3

0.
02

1
0.

23
7

0.
00

2
FR

W
R
ib
ei
ro

an
d
To
w
sl
ey

(2
01
0)

0.
06

3
0.

00
1

5.
74

5
0.

05
9

0.
06

9
0.

00
4

0.
00

4
0.

00
1

5.
81

3
0.

05
8

-0
.2
80

0.
00

3
0.

08
4

0.
00

1
4.

48
5

0.
03

2
0.
01
8

0.
00

8
0.

03
3

0.
00

1
3.

24
3

0.
00

5
0.

09
1

0.
00

2
C
N
RW

Zh
ou
,Z

ha
ng

an
d
D
as

(2
01
5)

0.
25

5
0.

00
1

22
.5

90
0.

03
8

0.
07

2
0.

00
1

0.
03

7
0.

00
1

41
.6

45
0.

10
4

−0
.3

24
0.

00
1

0.
22

3
0.

00
1

9.
92

4
0.

01
8

0.
03

6
0.

00
2

0.
10

4
0.

00
1

9.
25

4
0.

01
7

0.
21

8
0.

00
1

C
N
A
RW

Li
et
al
.(
20
19
c)

0.
23
9

0.
00

1
21
.1

17
0.

03
3

0.
08

2
0.

00
1

0.
02
6

0.
00

1
41
.0

64
0.

10
1

−0
.3

48
0.

00
1

0.
22
0

0.
00

1
9.

50
8

0.
03

2
0.

05
2

0.
00

2
0.
09
4

0.
00

1
9.

14
0

0.
01

3
0.

21
8

0.
00

1
N
BT

-R
W

Le
e,
X
u
an
d
Eu

n
(2
01
2)

0.
25

7
0.

00
1

22
.3

53
0.

04
8

0.
07

6
0.

00
1

0.
03

8
0.

00
1

41
.2

64
0.

14
4

−0
.3

22
0.

00
1

0.
22

6
0.

00
1

9.
81

8
0.

02
7

0.
04

9
0.

00
2

0.
10

4
0.

00
1

9.
10

6
0.

01
0

0.
23

0
0.

00
1

SB
G
oo
dm

an
(1
96
1)

0.
23
8

0.
00

2
20
.6

71
0.

22
3

0.
06

9
0.

00
4

0.
05

7
0.

00
4

37
.2

78
0.

57
6

−0
.2

92
0.

00
9

0.
20

7
0.

00
2

9.
13

1
0.

12
1

−0
.0

08
0.

00
5

0.
09
3

0.
00

1
9.
91
3

0.
10

3
0.

12
2

0.
00

3
FF

Le
sk
ov
ec
,K

le
in
be
rg

an
d
Fa
lo
ut
so
s(
20
05
)

0.
23
8

0.
00

1
19
.2

19
0.

08
9

0.
07

9
0.

00
2

0.
07

4
0.

00
2

33
.1
90

0.
26

2
−0
.2

27
0.

00
6

0.
20

4
0.

00
1

9.
03

4
0.

02
5

0.
05

1
0.

00
1

0.
09

6
0.

00
1

10
.1

20
0.

01
3

0.
19

7
0.

00
1

C
SE

M
ai
ya

an
d
B
er
ge
r-W

ol
f(
20
10
)

0.
22

9
0.

00
2

13
.1
16

0.
04

6
0.

07
0

0.
00

3
0.
02
6

0.
00

1
20
.3

14
0.

34
5

-0
.2
90

0.
00

6
0.
19
1

0.
00

3
6.

54
4

0.
05

5
0.
00
6

0.
00

6
0.

08
9

0.
00

2
6.

55
4

0.
00

1
0.

16
5

0.
00

1
SP

Re
zv
an
ia
n
an
d
M
ey
bo
di

(2
01
5)

0.
22

1
0.

00
1

12
.8

42
0.

06
2

0.
10

6
0.

00
2

0.
03

7
0.

00
1

23
.4

51
0.

12
5

−0
.2

92
0.

00
1

0.
20

3
0.

00
1

7.
25
8

0.
03

2
0.

04
3

0.
00

2
0.

07
9

0.
00

1
8.

17
6

0.
00

7
0.
20
9

0.
00

1

64

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Ta
bl
e
1.
15

:A
co
m
pa
ris

on
of

sp
at
io
te
m
po

ra
ld

ee
p
le
ar
ni
ng

m
od

el
si
n
Py

To
rc
h
G
eo
m
et
ric

Te
m
po

ra
lb

as
ed

on
th
e
te
m
po

ra
la
nd

sp
at
ia
l

bl
oc
k,

pr
ox
im

ity
or
de
ra

nd
ed
ge

he
te
ro
ge
ne
ity
.

M
od

el
Te

m
po

ra
l

La
ye
r

G
N
N

La
ye
r

Pr
ox
im

ity
O
rd
er

M
ul
ti

Ty
pe

D
C
R
N
N
(L
ie
ta
l.,

20
18

)
G
RU

D
iff
C
on
v

H
ig
he
r

Fa
ls
e

G
C
on

vG
R
U
(S
eo

et
al
.,
20

18
)

G
RU

C
he
by
sh
ev

Lo
w
er

Fa
ls
e

G
C
on

vL
ST

M
(S
eo

et
al
.,
20

18
)

LS
TM

C
he
by
sh
ev

Lo
w
er

Fa
ls
e

G
C
-L

ST
M

(C
he
n
et
al
.,
20

18
b)

LS
TM

C
he
by
sh
ev

Lo
w
er

Tr
ue

D
yG

rA
E
(T
ah
er
ia
nd

B
er
ge
r-W

ol
f,
20

19
;T

ah
er
i,
G
im

pe
la
nd

B
er
ge
r-W

ol
f,
20

19
)

LS
TM

G
G
C
N

H
ig
he
r

Fa
ls
e

LR
G
C
N
(L
ie
ta
l.,

20
19
a)

LS
TM

RG
C
N

Lo
w
er

Fa
ls
e

EG
C
N
-H

(P
ar
ej
a
et
al
.,
20

20
)

G
RU

G
C
N

Lo
w
er

Fa
ls
e

EG
C
N
-O

(P
ar
ej
a
et
al
.,
20

20
)

LS
TM

G
C
N

Lo
w
er

Fa
ls
e

T-
G
C
N
(Z
ha
o
et
al
.,
20

19
)

G
RU

G
C
N

Lo
w
er

Fa
ls
e

A
3T

-G
C
N
(Z
hu

et
al
.,
20

20
)

G
RU

G
C
N

Lo
w
er

Fa
ls
e

AG
C
R
N
(B

ai
et
al
.,
20

20
)

G
RU

C
he
by
sh
ev

H
ig
he
r

Fa
ls
e

M
PN

N
LS

TM
(P
an
ag
op

ou
lo
s,
N
ik
ol
en
tz
os

an
d
Va

zi
rg
ia
nn

is
,2

02
1)

LS
TM

G
C
N

Lo
w
er

Fa
ls
e

ST
G
C
N
(Y
u,

Y
in

an
d
Zh

u,
20

18
)

A
tte

nt
io
n

C
he
by
sh
ev

H
ig
he
r

Fa
ls
e

A
ST

G
C
N
(G

uo
et
al
.,
20

19
)

A
tte

nt
io
n

C
he
by
sh
ev

H
ig
he
r

Fa
ls
e

M
ST

G
C
N
(G

uo
et
al
.,
20

19
)

A
tte

nt
io
n

C
he
by
sh
ev

H
ig
he
r

Fa
ls
e

G
M
A
N
(Z
he
ng

et
al
.,
20

20
a)

A
tte

nt
io
n

C
us
to
m

Lo
w
er

Fa
ls
e

M
TG

N
N
(W

u
et
al
.,
20

20
)

A
tte

nt
io
n

C
us
to
m

H
ig
he
r

Fa
ls
e

A
AG

C
N
(S
hi

et
al
.,
20

19
)

A
tte

nt
io
n

C
us
to
m

H
ig
he
r

Fa
ls
e

D
N
N
TS

P
(Y
u
et
al
.,
20

20
)

A
tte

nt
io
n

G
C
N

Lo
w
er

Fa
ls
e

65

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 1.16: A desiderata and backend based comparison of open-source geometric deep learning
libraries.

Library Backend Supervised Temporal GPU
PT Geometric (Fey and Lenssen, 2019) PT 4 8 4

Geometric2DR (Scherer and Lio, 2020) PT 8 8 4

CogDL (Cen et al., 2021) PT 4 8 4

Spektral (Grattarola and Alippi, 2020) TF 4 8 4

TF Geometric (Hu et al., 2021) TF 4 8 4

StellarGraph (Data61, 2018) TF 4 8 4

DGL (Zheng et al., 2020b) TF/PT/MX 4 8 4

DIG (Liu et al., 2021a) PT 4 8 4

Jraph (Godwin* et al., 2020) JAX 4 8 4

Graph-Learn (Yang, 2019) Custom 4 8 4

GEM (Goyal et al., 2018) TF 8 8 4

DynamicGEM (Goyal and Ferrara, 2018) TF 8 4 4

OpenNE (Tu et al., 2018) Custom 8 8 8

Karate Club (Rozemberczki, Kiss and Sarkar, 2020a) Custom 8 8 8

Our Work PT 4 4 4

Table 1.17: A multi-aspect comparison of open-source spatiotemporal database systems, data
analytics libraries and machine learning frameworks.

Library Year Purpose Language GPU
GeoWave (Whitby, Fecher and Bennight, 2017) 2016 Database Java 8

StacSpec (Hanson, 2019) 2017 Database Javascript 8

MobilityDB (Zimányi, Sakr and Lesuisse, 2020) 2019 Database C 8

PyStac (Rob, 2020) 2020 Database Python 8

StaRs (Pebesma, 2017) 2017 Analytics R 8

CuSpatial (Taylor et al., 2019) 2019 Analytics Python 4

PySAL (Rey and Anselin, 2010) 2017 Machine Learning Python 8

STDMTMB (Anderson et al., 2018) 2018 Machine Learning R 8

Our work 2021 Machine Learning Python 4

66

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

1 model.eval()

2 cost = 0

3 for time, snapshot in enumerate(test):

4 y_hat = model(snapshot.x,

5 snapshot.edge_index,

6 snapshot.edge_attr)

7 cost = cost + torch.mean((y_hat-snapshot.y)**2)

8 cost = cost / (time+1)

9 cost = cost.item()

10 print("MSE: {:.4f}".format(cost))

Listings 1.4: Evaluating the recurrent graph convolutional neural network on the test portion of
the spatiotemporal dataset using the time unit averaged mean squared error.

Model Evaluation The scoring of the trained recurrent graph neural network in Listings 1.4

uses the snapshots in the test dataset. We set the model to be non-trainable and the accumulated

squared errors as zero (lines 1-2). We iterate over the test spatiotemporal snapshots, make

forward passes to predict the number of chickenpox cases, and accumulate the squared error

(lines 3-7). The accumulated errors are normalized and we can print the mean squared error

calculated on the whole test horizon (lines 8-10).

Design in Practice Case Study: Incremental Model Training with GPU Acceleration

Exploiting the power of GPU-based acceleration of computations happens at the training and

evaluation steps of the PyTorch Geometric Temporal pipelines. In this case study, we assume

that the Hungarian Chickenpox cases dataset is already loaded in memory, the temporal split

happened and a model class was defined by the code snippets in Listings 1.1 and 1.2. Moreover,

67

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

we assume that the machine used for training the neural network can access a single CUDA

compatible GPU device Sanders and Kandrot (2010).

1 model = RecurrentGCN(node_features=8, filters=32)

2 device = torch.device('cuda')

3 model = model.to(device)

4

5 optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

6 model.train()

7

8 for epoch in range(200):

9 for snapshot in train:

10 snapshot = snapshot.to(device)

11 y_hat = model(snapshot.x,

12 snapshot.edge_index,

13 snapshot.edge_attr)

14 cost = torch.mean((y_hat-snapshot.y)**2)

15 cost.backward()

16 optimizer.step()

17 optimizer.zero_grad()

Listings 1.5: Creating a recurrent graph convolutional neural network instance and training it
by incremental weight updates on a GPU.

Model Training In Listings 1.5 we demonstrate accelerated training with incremental weight

updates. The model of interest and the device used for training are defined while the model is

transferred to the GPU (lines 1-3). The optimizer registers the model parameters and the model

parameters are set to be trainable (lines 5-6). We iterate over the temporal snapshot iterator

200 times and the iterator returns a temporal snapshot in each step. Importantly the snapshots

68

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

which are PyTorch Geometric Data objects are transferred to the GPU (lines 8-10). The use of

PyTorch Geometric Data objects as temporal snapshots enables the transfer of the time period

specific edges, node features, and target vector with a single command. Using the input data a

forward pass is made, the loss is accumulated and weight updates happen using the optimizer

in each time period (lines 11-17). Compared to the cumulative backpropagation-based training

approach discussed in subsubsection 1.3.3 this backpropagation strategy is slower as weight

updates happen at each time step, not just at the end of training epochs.

Model Evaluation During model scoring the GPU can be utilized again. The snippet in

Listings 1.6 demonstrates that the only modification needed for accelerated evaluation is the

transfer of snapshots to the GPU. In each time period, we move the temporal snapshot to the

device to do the forward pass (line 4). We do the forward pass with the model and the snapshot

on the GPU and accumulate the loss (lines 5-8). The loss value is averaged out and detached

from the GPU for printing (lines 9-11).

1 model.eval()

2 cost = 0

3 for time, snapshot in enumerate(test):

4 snapshot = snapshot.to(device)

5 y_hat = model(snapshot.x,

6 snapshot.edge_index,

7 snapshot.edge_attr)

8 cost = cost + torch.mean((y_hat-snapshot.y)**2)

9 cost = cost / (time+1)

10 cost = cost.item()

11 print("MSE: {:.4f}".format(cost))

Listings 1.6: Evaluating the recurrent graph convolutional neural network with GPU based
acceleration.

69

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Maintaining PyTorch Geometric Temporal

The viability of the project is made possible by the open-source code, version control, public

releases, automatically generated documentation, continuous integration, and nearly 100% test

coverage.

Open-Source Code-Base and Public Releases The source code of PyTorch Geometric Tem-

poral is publicly available on GitHub under the MIT license. Using an open version control

system allowed us to have a large group collaborate on the project and have external contributors

who also submitted feature requests. The public releases of the library are also made available

on the Python Package Index, which means that the framework can be installed via the pip

command using the terminal.

Documentation The source-code of PyTorch Geometric Temporal and Sphinx (Brandl, 2010)

are used to generate a publicly available documentation of the library2. This documentation

is automatically created every time when the code-base changes in the public repository. The

documentation covers the constructors and public methods of neural network layers, temporal

signal iterators, public dataset loaders, and splitters. It also includes a list of relevant research

papers, an in-depth installation guide, a detailed getting-started tutorial, and a list of integrated

benchmark datasets.

Continuous Integration We provide continuous integration for PyTorch Geometric Temporal

with GitHub Actions which are available for free on GitHub without limitations on the number

of builds. When the code is updated on any branch of the GitHub repository the build process

is triggered and the library is deployed on Linux, Windows and macOS virtual machines.

Unit Tests and Code Coverage The temporal graph neural network layers, custom data

structures, and benchmark dataset loaders are all covered by unit tests. These unit tests can be

2Available at https://pytorch-geometric-temporal.readthedocs.io/

70

C
E

U
eT

D
C

ol
le

ct
io

n

https://pytorch-geometric-temporal.readthedocs.io/

DOI: 10.14754/CEU.2024.08

executed locally using the source code. Unit tests are also triggered by the continuous integration

provided by GitHub Actions. When the master branch of the open-source GitHub repository is

updated, the build is successful, and all of the unit tests pass a coverage report is generated by

CodeCov.

1.3.4 Experimental evaluation

The proposed framework is evaluated on node-level regression tasks using novel datasets which

we releasewith the paper.We also evaluate the effect of various batching techniques on predictive

performance and runtime.

New Datasets

We release new spatiotemporal benchmark datasets with PyTorch Geometric Temporal which

can be used to testmodels on node-level regression tasks. The descriptive statistics and properties

of these newly introduced benchmark datasets are summarized in Table 1.18.

These newly released datasets are the following:

• Chickenpox Hungary. A spatiotemporal dataset about the officially reported cases of

chickenpox in Hungary. The nodes are counties and edges describe direct neighborhood

relationships. The dataset covers the weeks between 2005 and 2015 without missingness.

• Windmill Output Datasets. An hourly windfarm energy output dataset covering 2 years

from a European country. Edgeweights are calculated from the proximity of the windmills

– highweights imply that twowindmill stations are in close vicinity. The size of the dataset

relates to the grouping of wind farms considered; the smaller datasets are more localized

to a single region.

• Pedal Me Deliveries. A dataset about the number of weekly bicycle package deliveries

by Pedal Me in London during 2020 and 2021. Nodes in the graph represent geographical

71

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

units and edges are proximity-based mutual adjacency relationships.

• WikipediaMath.ContainsWikipedia pages about popular mathematics topics and edges

describe the links from one page to another. Features describe the number of daily visits

between 2019 March and 2021 March.

• Twitter Tennis RG and UO. Twitter mention graphs of major tennis tournaments from

2017. Each snapshot contains the graph of popular player or sport news accounts and

mentions between them (Béres et al., 2018, 2019). Node labels encode the number of

mentions received and vertex features are structural properties.

• Covid19 England. A dataset about mass mobility between regions in England and the

number of confirmed COVID-19 cases from March to May 2020 (Panagopoulos, Niko-

lentzos and Vazirgiannis, 2021). Each day contains a different mobility graph and node

features corresponding to the number of cases in the previous days. Mobility stems from

Facebook Data For Good 3 and cases from gov.uk 4.

• Montevideo Buses. A dataset about the hourly passenger inflow at bus stop level for

eleven bus lines from the city of Montevideo. Nodes are bus stops and edges represent

connections between the stops; the dataset covers a whole month of traffic patterns.

• MTM-1HandMotions.A temporal dataset ofMethods-TimeMeasurement-1 (Maynard,

Stegemerten and Schwab, 1948) motions, signaled as consecutive graph frames of 21 3D

hand key points that were acquired viaMediaPipeHands (Zhang et al., 2020) fromoriginal

RGB-Video material. Node features encode the normalized 3D-coordinates of each finger

joint and the vertices are connected according to the human hand structure.

3https://dataforgood.fb.com/
4https://coronavirus.data.gov.uk/

72

C
E

U
eT

D
C

ol
le

ct
io

n

 https://dataforgood.fb.com/
https://coronavirus.data.gov.uk/

DOI: 10.14754/CEU.2024.08

Table 1.18: Properties and granularity of the spatiotemporal datasets introduced in the paper
with information about the number of time periods ()) and spatial units (|+ |).

Dataset Signal Graph Frequency) |+ |
Chickenpox Hungary Temporal Static Weekly 522 20

Windmill Large Temporal Static Hourly 17,472 319
Windmill Medium Temporal Static Hourly 17,472 26
Windmill Small Temporal Static Hourly 17,472 11

Pedal Me Deliveries Temporal Static Weekly 36 15
Wikipedia Math Temporal Static Daily 731 1,068
Twitter Tennis RG Static Dynamic Hourly 120 1000
Twitter Tennis UO Static Dynamic Hourly 112 1000
Covid19 England Temporal Dynamic Daily 61 129
Montevideo Buses Temporal Static Hourly 744 675

MTM-1 Hand Motions Temporal Static 1/24 Seconds 14,469 21

Predictive Performance

The forecasting experiments focus on the evaluation of the recurrent graph neural networks

implemented in our framework. We compare the predictive performance under two specific

backpropagation regimes which can be used to train these recurrent models:

• Incremental:After each temporal snapshot the loss is backpropagated andmodel weights

are updated. Thiswould need asmanyweight updates as the number of temporal snapshots.

• Cumulative: When the loss from every temporal snapshot is aggregated, it is backprop-

agated, and weights are updated with the optimizer. This requires only one weight update

step per epoch.

Experimental settings Using 90% of the temporal snapshots for training, we evaluated the

forecasting performance on the last 10% by calculating the average mean squared error from

10 experimental runs. We used models with a recurrent graph convolutional layer which had

32 convolutional filters. The spatiotemporal layer was followed by the rectified linear unit (Nair

and Hinton, 2010) activation function and during training time we used a dropout of 0.5 for

regularization (Srivastava et al., 2014) after the spatiotemporal layer. The hidden representations

were fed to a fully connected feedforward layer which outputted the predicted scores for each

73

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

spatial unit. The recurrentmodels were trained for 100 epochswith theAdamoptimizer (Kingma

and Ba, 2015) which used a learning rate of 10−2 to minimize the mean squared error. Our target

variables are normalized.

Experimental findings Results are presented in Table 1.19 where we also report standard

deviations around the test set mean squared error and bold numbers denote the best performing

model under each training regime on a dataset. Since our outcome variables are normalized,

the error rates can be interpreted in units of variance. Our experimental findings demonstrate

multiple important empirical regularities which have important practical implications, namely:

1. Most recurrent graph neural networks have a similar predictive performance on these

regression tasks. In simple terms, there is not a single model which acts as a silver bullet.

This also postulates that the model with the lowest training time is likely to be as good as

the slowest one.

2. Results on the Wikipedia Math dataset imply that a cumulative backpropagation strategy

can have a detrimental effect on the predictive performance of a recurrent graph neural

network. When computation resources are not a bottleneck, an incremental strategy can

be significantly better.

Runtime Performance

The evaluation of the PyTorch Geometric Temporal runtime performance focuses on manipu-

lating the input size and measuring the time needed to complete a training epoch. We investigate

the runtime under the incremental and cumulative backpropagation strategies.

Experimental settings The runtime evaluation used the GConvGRUmodel (Seo et al., 2018)

with the hyperparameter settings described in subsubsection 1.3.4. We measured the time

needed for doing a single epoch over a sequence of 100 synthetic graphs. Reference Watts-

Strogatz graphs in the snapshots of the dynamic graph with temporal signal iterator have binary

74

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

8 9 10 11 12

0

8

16

24

log2 Number of nodes

Ru
nt
im

e
in

se
co
nd

s

2 3 4 5 6
log2 Number of edges per node

3 4 5 6 7

0

8

16

24

log2 Number of node features

Ru
nt
im

e
in

se
co
nd

s

2 3 4 5 6
log2 Number of filters

Incremental CPU Cumulative CPU Incremental GPU Cumulative GPU

Figure 1.16: The average time needed for doing an epoch on a dynamic graph – temporal signal
iterator of Watts Strogatz graphs with a recurrent graph convolutional model.

labels, 210 nodes, 25 edges per node, and 25 node features. Runtimes were measured on both of

the following hardware specifications:

• CPU: The machine used for benchmarking had 8 Intel 1.00 GHz i5-1035G1 processors.

• GPU:We utilized a machine with a single Tesla V-100 graphics card for the experiments.

Experimental findings We plot the average runtime calculated from 10 experimental runs

on Figure 1.16 for each input size. We also include a log-transformed version of the graph

depicting GPU results only on Figure 1.17 to better visualize the patterns in GPU runtimes.

Our results about runtime have two important implications about the practical application of

our framework:

1. The use of a cumulative backpropagation strategy only results in marginal computation

gains compared to the incremental one.

75

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

8 9 10 11 12

−0.10

−0.05

0.00

0.05

log2 Number of nodes

Ru
nt
im

e
in

lo
g
se
co
nd

s

2 3 4 5 6
log2 Number of edges per node

3 4 5 6 7

−0.10

−0.05

0.00

0.05

log2 Number of node features

Ru
nt
im

e
in

lo
g
se
co
nd

s

2 3 4 5 6
log2 Number of filters

Incremental GPU Cumulative GPU

Figure 1.17: The average time needed for doing an epoch on a dynamic graph – temporal signal
iterator of Watts Strogatz graphs with a recurrent graph convolutional model - GPU results only

2. On temporal sequences of large dynamically changing graphs the GPU-aided training

can reduce the time needed to do an epoch by a whole magnitude. This result further

emphasizes the importance of the GPU acceleration that is available in our library.

3. CPU and GPU training times present the same patterns across covariates. Increasing the

network size clearly increases the runtime. This positive association holds for the number

of node features, the network density and the number of filters as well.

1.3.5 Conclusions and Future Directions

In this paper, we discussedPyTorch Geometric Temporal, the first deep learning library designed

for neural spatiotemporal signal processing. We reviewed the existing geometric deep learning

and machine learning techniques implemented in the framework. We gave an overview of the

76

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

general machine learning framework design principles, the newly introduced input, and output

data structures, long-term project viability and discussed a case study with source code that

utilized the library. Our empirical evaluation focused on (a) the predictive performance of the

models available in the library on real-world datasets which we released with the framework;

(b) the scalability of the methods under various input sizes and structures.

Our work could be extended and it also opens up opportunities for novel geometric deep

learning and applied machine learning research. A possible direction to extend our work would

be the consideration of continuous-time or time differences between temporal snapshots which

are not constant. Another opportunity is the inclusion of temporal models which operate on

curved spaces such as hyperbolic and spherical spaces. We are particularly interested in how the

spatiotemporal deep learning techniques in the framework can be deployed and used for solving

high-impact practical machine learning tasks.

77

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Ta
bl
e1

.1
9:
Th

ep
re
di
ct
iv
ep

er
fo
rm

an
ce

of
sp
at
io
te
m
po

ra
ln
eu
ra
ln
et
w
or
ks

ev
al
ua
te
d
by

av
er
ag
em

ea
n
sq
ua
re
d
er
ro
r.
W
er
ep
or
ta
ve
ra
ge

pe
rfo

rm
an
ce
sc

al
cu
la
te
d
fro

m
10

ex
pe
rim

en
ta
lr
ep
et
iti
on

sw
ith

sta
nd

ar
d
de
vi
at
io
ns

ar
ou

nd
th
e
av
er
ag
e
m
ea
n
sq
ua
re
d
er
ro
rc

al
cu
la
te
d

on
10

%
fo
re
ca
sti
ng

ho
riz

on
s.

W
e
us
e
th
e
in
cr
em

en
ta
l
an
d
cu
m
ul
at
iv
e
ba
ck
pr
op

ag
at
io
n
str
at
eg
ie
s.

B
ol
d
nu

m
be
rs

de
no

te
th
e
be
st

pe
rfo

rm
an
ce

on
ea
ch

da
ta
se
tg

iv
en

a
tra

in
in
g
ap
pr
oa
ch
. C
hi
ck
en
po

x
H
un

ga
ry

Tw
itt
er

Te
nn

is
R
G

Pe
da

lM
e
Lo

nd
on

W
ik
ip
ed

ia
M
at
h

In
cr
em

en
ta
l

C
um

ul
at
iv
e

In
cr
em

en
ta
l

C
um

ul
at
iv
e

In
cr
em

en
ta
l

C
um

ul
at
iv
e

In
cr
em

en
ta
l

C
um

ul
at
iv
e

D
C
R
N
N
(L
ie
ta
l.,

20
18

)
1.

12
4
±

0.
01

5
1.

12
3
±

0.
01

4
2.

04
9
±

0.
02

3
2.

04
3
±

0.
01

6
1.

46
3
±

0.
01

9
1.

45
0
±

0.
02

4
0.

67
9
±

0.
02

0
0.

80
3
±

0.
01

8
G
C
on

vG
R
U
(S
eo

et
al
.,
20

18
)

1.
12

8
±

0.
01

1
1.

13
2
±

0.
02

3
2.

05
1
±

0.
02

0
2.

00
7
±

0.
02

2
1.

62
2
±

0.
03

2
1.

94
4
±

0.
01

3
0.

65
7
±

0.
01

5
0.

83
7
±

0.
02

1
G
C
on

vL
ST

M
(S
eo

et
al
.,
20

18
)

1.
12

1
±

0.
01

4
1.

11
9
±

0.
02

2
2.

04
9
±

0.
02

4
2.

00
7
±

0.
01

2
1.

44
2
±

0.
02

8
1.

43
3
±

0.
02

0
0.

77
7
±

0.
02

1
0.

86
8
±

0.
01

8
G
C
-L

ST
M

(C
he
n
et
al
.,
20

18
b)

1.
11

5
±

0.
01

4
1.

11
6
±

0.
02

3
2.

05
3
±

0.
02

4
2.

03
2
±

0.
01

5
1.

45
5
±

0.
02

3
1.

46
8
±

0.
02

5
0.

77
9
±

0.
02

3
0.

85
2
±

0.
01

6
D
yG

rA
E
(T
ah
er
ia
nd

B
er
ge
r-W

ol
f,
20

19
;T

ah
er
i,
G
im

pe
la
nd

B
er
ge
r-W

ol
f,
20

19
)

1.
12

0
±

0.
02

1
1.

11
8
±

0.
01

5
2.

03
1
±

0.
00

6
2.

00
7
±

0.
00

4
1.

45
5
±

0.
03

1
1.

45
6
±

0.
01

9
0.

77
3
±

0.
00

9
0.

81
6
±

0.
01

6
EG

C
N
-H

(P
ar
ej
a
et
al
.,
20

20
)

1.
11

3
±

0.
01

6
1.

10
4
±

0.
02

4
2.

04
0
±

0.
01

8
2.

00
6
±

0.
00

8
1.

46
7
±

0.
02

6
1.

43
6
±

0.
01

7
0.

77
5
±

0.
02

2
0.

85
7
±

0.
02

2
EG

C
N
-O

(P
ar
ej
a
et
al
.,
20

20
)

1.
12

4
±

0.
00

9
1.

11
9
±

0.
02

0
2.

05
5
±

0.
02

0
2.

01
0
±

0.
01

4
1.

49
1
±

0.
02

4
1.

43
0
±

0.
02

3
0.

75
0
±

0.
01

4
0.

82
3
±

0.
01

4
A
3T

-G
C
N
(Z
hu

et
al
.,
20

20
)

1.
11

4
±

0.
00

8
1.

11
9
±

0.
01

8
2.

04
5
±

0.
02

1
2.

00
8
±

0.
01

6
1.

46
9
±

0.
02

7
1.

47
5
±

0.
02

9
0.

78
1
±

0.
01

1
0.

87
2
±

0.
01

7
T-
G
C
N
(Z
ha
o
et
al
.,
20

19
)

1.
11

7
±

0.
01

1
1.

11
1
±

0.
02

2
2.

04
5
±

0.
02

7
2.

00
8
±

0.
01

7
1.

47
9
±

0.
01

2
1.

48
1
±

0.
02

9
0.

76
4
±

0.
01

1
0.

84
6
±

0.
02

0
M
PN

N
LS

TM
(P
an
ag
op

ou
lo
s,
N
ik
ol
en
tz
os

an
d
Va

zi
rg
ia
nn

is
,2

02
1)

1.
11

6
±

0.
02

3
1.

12
9
±

0.
02

1
2.

05
3
±

0.
04

1
2.

00
7
±

0.
01

0
1.

48
5
±

0.
02

8
1.

45
8
±

0.
01

3
0.

79
5
±

0.
01

0
0.

90
5
±

0.
01

7
AG

C
R
N
(B

ai
et
al
.,
20

20
)

1.
12

0
±

0.
01

0
1.

11
6
±

0.
01

7
2.

03
9
±

0.
02

2
2.

01
0
±

0.
00

9
1.

46
9
±

0.
03

0
1.

46
5
±

0.
02

6
0.

78
8
±

0.
01

1
0.

83
2
±

0.
02

0

78

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Chapter 2

The Shapley Value in Machine Learning
Joint work with Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Sebas-

tian Nilsson, and Rik Sarkar

2.1 Introduction

Measuring importance and the attribution of various gains is a central problem in many practical

aspects of machine learning such as explainability (Lundberg and Lee, 2017), feature selection

(Cohen, Dror and Ruppin, 2007), data valuation (Ghorbani and Zou, 2019), ensemble pruning

(Rozemberczki and Sarkar, 2021) and federated learning (Wang et al., 2020; Fan et al., 2021).

For example, one might ask: What is the importance of a feature in the decisions of a machine

learning model? How much is an individual data point worth? Which models are the most

valuable in an ensemble? These questions have been addressed in different domains using

specific approaches. Interestingly, there is also a general and unified approach to these questions

as a solution to a transferable utility (TU) cooperative game. In contrast with other approaches,

solution concepts of TU games are theoretically motivated with axiomatic properties. The best

known solution is the Shapley value (Shapley, 1953) characterized by desiderata that include

fairness, symmetry, and efficiency (Chalkiadakis, Elkind and Wooldridge, 2011).

79

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

In the TU setting, a cooperative game consists of a player set and a scalar-valued charac-

teristic function that defines the value of coalitions (subsets of players). In such a game, the

Shapley value offers a rigorous and intuitive way to distribute the collective value (e.g. the

revenue, profit, or cost) of the team across individuals. To apply this idea to machine learning,

we need to define two components: the player set and the characteristic function. In a machine

learning setting players may be represented by a set of input features, reinforcement learning

agents, data points, models in an ensemble, or data silos. The characteristic function can then

describe the goodness of fit for a model, reward in reinforcement learning, financial gain on

instance level predictions, or out-of-sample model performance. We provide an example about

model valuation in an ensemble (Rozemberczki and Sarkar, 2021) in Figure 2.1.

Figure 2.1: The Shapley value can be used to solve cooperative games. An ensemble game is a
machine learning application for it – models in an ensemble are players (red, blue, and green
robots) and the financial gain of the predictions is the payoff (coins) for each possible coalition
(rectangles). The Shapley value can distribute the gain of the grand coalition (right bottom
corner) among models.

We introduce basic definitions of cooperative games and present the Shapley value, a solution

concept that can allocate gains in these games to individual players. We discuss its properties

and emphasize why these are important in machine learning. We overview applications of the

80

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Shapley value in machine learning: feature selection, data valuation, explainability, reinforce-

ment learning, and model valuation. Finally, we discuss the limitations of the Shapley value

and point out future directions. The paper is supported by a collection of related work under

https://github.com/AstraZeneca/awesome-shapley-value.

2.2 Background

This section introduces cooperative games and the Shapley value followed by its properties. We

also provide an illustrative running example for our definitions.

2.2.1 Cooperative Games and the Shapley Value

Definition 4 Player set and coalitions. Let N = {1, . . . , =} be the finite set of players. We call

each non-empty subset S ⊆ N a coalition and N itself the grand coalition.

Definition 5 Cooperative game. A TU game is defined by the pair (N , E) where E : 2N → R is

a mapping called the characteristic function or the coalition function of the game assigning a

real number to each coalition and satisfying E(∅) = 0.

It is important to note that there are no additional requirements towards the coalition function.

For example, it does not have to be increasing in set addition (the marginal contribution of a

player to a coalition can be negative).

Example 1 Let us consider a 3-player cooperative gamewhereN = {1, 2, 3}. The characteristic
function defines the payoff for each coalition. Let these payoffs be given as:

E (∅) = 0; E ({1}) = 7; E ({2}) = 11; E ({3}) = 14;

E ({1, 2}) = 18; E ({1, 3}) = 21; E ({2, 3}) = 23; E ({1, 2, 3}) = 25.

Definition 6 Set of feasible payoff vectors. Let us define Z(N , E) = {z ∈ RN | ∑8∈N z8 ≤

E(N)} the set of feasible payoff vectors for the cooperative game (N , E).

81

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/AstraZeneca/awesome-shapley-value

DOI: 10.14754/CEU.2024.08

Definition 7 Solution concept and solution vector. Solution conceptΦ is amapping associating

a subset Φ(N , E) ⊆ Z(N , E) to every TU game (N , E). A solution vector q(N , E) ∈ RN to the

cooperative game (N , E) satisfies solution concept Φ if q(N , E) ∈ Φ(N , E). Solution concept

Φ is single-valued if for every (N , E) the set Φ(N , E) is a singleton.

A solution concept defines an allocation principle through which rewards can be given to the

individual players. The sum of these rewards cannot exceed the value of the grand coalition

E(N). Solution vectors are specific allocations satisfying the principles of the solution concept.

Definition 8 Permutations of the player set. Let Π(N) be the set of all permutations defined

on N , a specific permutation is written as c ∈ Π(N) and c(8) is the position of player 8 ∈ N

in permutation c.

Definition 9 Predecessor set. Let the set of predecessors of player 8 ∈ N in permutation c be

the coalition:

Pc8 = { 9 ∈ N | c(9) < c(8)} .

Let us imagine that the permutation of the players in our illustrative game is c = (3, 2, 1). Under

this permutation the predecessor set of the 1BC player is Pc1 = {3, 2}, that of the 2=3 player is

Pc2 = {3} and P
c
3 = ∅.

Definition 10 Shapley value. The Shapley value (Shapley, 1953) is a single-valued solution

concept for cooperative games. The 8Cℎ component of the single solution vector satisfying this

solution concept for any cooperative game (N , E) is given by Equation 2.1.

q(ℎ8 =
1

|Π(N)|
∑

c∈Π(N)
[E(P c8 ∪ {8}) − E(P c8)]︸ ︷︷ ︸
Player 8’s marginal contribution

in permutation c

(2.1)

The Shapley value of a player is the average marginal contribution of the player to the value of

the predecessor set over every possible permutation of the player set. Table 2.1 contains manual

82

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

calculations of the players’ marginal contributions to each permutation and their Shapley values

in Example 1.

Marginal Contribution
Permutation Player 1 Player 2 Player 3

(1, 2, 3) 7 11 7
(1, 3, 2) 7 4 14
(2, 1, 3) 7 11 7
(2, 3, 1) 2 11 12
(3, 1, 2) 7 4 14
(3, 2, 1) 2 9 14

Shapley value 32/6 50/6 68/6

Table 2.1: The permutations of the player set, marginal contributions of the players in each
permutation and the Shapley values.

2.2.2 Properties of the Shapley Value

We define the solution concept properties that characterize the Shapley value and emphasize

their relevance and meaning in a feature selection game. In this game input features are players,

coalitions are subsets of features and the payoff is a scalar valued goodness of fit for a machine

learning model using these inputs.

Definition 11 Null player. Player 8 is called a null player if E(S∪{8}) = E(S) ∀S ⊆ N \{8}. A

solution concept Φ satisfies the null player property if for every game (N , E), every q(N , E) ∈

Φ(N , E), and every null player 8 it holds that q8 (N , E) = 0.

In the feature selection game a solution concept with the null player property assigns zero value

to those features that never increase the goodness of fit when added to the feature set.

Definition 12 Efficiency. A solution concept Φ is efficient or Pareto optimal if for every game

(N , E) and every solution vector q(N , E) ∈ Φ(N , E) it holds that ∑
8∈N

q8 (N , E) = E(N).

Consider the goodness of fit of the model trained using the whole set of features. The importance

measures assigned to features by an efficient solution concept sum to this goodness of fit. This

83

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

allows for quantifying the contribution of features to the performance of a model trained on the

whole feature set.

Definition 13 Symmetry. Two players 8 and 9 are symmetric if E(S ∪ {8}) = E(S ∪ { 9}) ∀S ⊆

N \ {8, 9}. A solution concept Φ satisfies symmetry if for all (N , E) for all q(N , E) ∈ Φ(N , E)

and all symmetric players 8, 9 ∈ N it holds that q8 (N , E) = q(N , E) 9 .

The symmetry property implies that if two features have the same marginal contribution to the

goodness of fit when added to any coalition then the importance of the two features is the same.

This property is essentially a fair treatment of inputs and results in identical features receiving

the same importance score.

Definition 14 Linearity. A single-valued solution concept Φ satisfies linearity if for any two

games (N , E) and (N , F), and for the solution vector of the TU game given by (N , E + F) it

holds that

q8 (N , E + F) = q8 (N , E) + q8 (N , F), ∀8 ∈ N .

Let us imagine a binary classifier and two sets of data points – on both of these datasets, we can

define feature selection games with binary cross entropy-based payoffs. The Shapley values of

input features in the feature selection game calculated on the pooled dataset would be the same

as adding together the Shapley values calculated from the two datasets separately.

These four properties together characterize the Shapley value.

Theorem 1 (Shapley, 1953) A single-valued solution concept satisfies the null player, effi-

ciency, symmetry, and linearity properties if and only if it is the Shapley value.

2.3 Approximations of the Shapley Value

Shapley value computation requires a factorial number of characteristic function evaluations,

resulting in factorial time complexity. This is prohibitive in a machine learning context when

84

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

each evaluation can correspond to training a machine learning model. For this reason, machine

learning applications use a variety of Shapley value approximation methods we discuss in this

section. In the following discussion q̂(ℎ
8

denotes an approximated Shapley value for player

8 ∈ N .

2.3.1 Monte Carlo Permutation Sampling

Monte Carlo permutation sampling for the general class of cooperative games was first proposed

by Castro, Gómez and Tejada (2009) to approximate the Shapley value in linear time. Their

method performs a sampling-based approximation, at each iteration, a random element from

the permutations of the player set is drawn. The marginal contributions of the players in the

sampled permutation are scaled down by the number of samples (which is equivalent to taking

an average) and added to the approximated Shapley values from the previous iteration. Castro,

Gómez and Tejada (2009) provide asymptotic error bounds for this approximation algorithm

via the central limit theorem when the variance of the marginal contributions is known. Maleki

et al. (2013) extended the analysis of this sampling approach by providing error bounds when

either the variance or the range of the marginal contributions is known via Chebyshev’s and

Hoeffding’s inequalities. Their bounds hold for a finite number of samples in contrast to the

previous asymptotic bounds.

Stratified Sampling for Variance Reduction

In addition to extending the analysis ofMonte Carlo estimation,Maleki et al. (2013) demonstrate

how to improve Shapley value approximation when sampling can be stratified by dividing

the permutations of the player set into homogeneous, non-overlapping sub-populations. In

particular, they show that if the set of permutations can be grouped into strata with similar

marginal gains for players, then the approximation will be more precise. Following this, Castro,

Gómez et al. (2017) explored stratified sampling approaches using strata defined by the set of all

85

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

marginal contributions when the player is in a specific position within the coalition. Burgess and

Chapman (2021) propose stratified sampling approaches designed to minimize the uncertainty

of the estimate via a stratified empirical Bernstein bound.

Other Variance Reduction Techniques

Following the stratified approaches of Maleki et al. (2013); Castro, Gómez et al. (2017);

Burgess andChapman (2021), Illés andKerényi (2019) propose an alternative variance reduction

technique for the sample mean. Instead of generating a random sequence of samples, they

instead generate a sequence of ergodic but not independent samples, taking advantage of

negative correlation to reduce the sample variance. Mitchell et al. (2021) show that other Monte

Carlo variance reduction techniques can also be applied to this problem, such as antithetic

sampling (Lomeli et al., 2019; Rubinstein and Kroese, 2016). A simple form of antithetic

sampling uses both a randomly sampled permutation and its reverse. Finally, Touati, Radjef

and Lakhdar (2021) introduce a Bayesian Monte Carlo approach to Shapley value calculation,

showing that Shapley value estimation can be improved by using Bayesian methods.

2.3.2 Multilinear Extension

By inducing a probability distribution over the subsets S where E8 is a random subset that

does not include player 8 and each player is included in a subset with probability @, Owen

(1972) demonstrated that the sum over subsets in Definition 10 can also be represented as an

integral
∫ 1
0 48 (@)3@ where 48 (@) = E[E(E8 ∪ 8) − E(E8)]. Sampling over @ therefore provides

an approximation method – the multilinear extension. For example, Mitchell et al. (2021) uses

the trapezoid rule to sample @ at fixed intervals while Okhrati and Lipani (2021) proposes

incorporating antithetic sampling as a variance reduction technique.

86

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

2.3.3 Linear Regression Approximation

In their seminal work Lundberg and Lee (2017) apply Shapley values to feature importance

and explainability (SHAP values), demonstrating that Shapley values for TU games can be

approximated by solving a weighted least squares optimization problem. Their main insight

is the computation of Shapley values by approximately solving the following optimization

problem:

FS =
|N | − 1(|N |

|S |
)
|S|(|N | − |S|)

(2.2)

<8=
q̂(ℎ0 ,..., q̂(ℎ=

∑
S⊆N

FS

(
q̂(ℎ0 +

∑
8∈S

q̂(ℎ8 − E(S)
)

(2.3)

B.C. q̂(ℎ0 =E(∅), q̂(ℎ0 +
∑
8∈N

q̂(ℎ8 = E(N). (2.4)

The definition of weights in Equation (2.2) and the objective function in Equation (2.3)

implies the evaluation of E(·) for 2= coalitions. To address this Lundberg and Lee (2017) propose

approximating this by subsampling the coalitions. Note that FS is higher when coalitions are

large or small. Covert and Lee (2021) extend the study of this method, finding that while SHAP

is a consistent estimator, it is not an unbiased one. By proposing and analyzing a variation

of this unbiased method, they conclude that while there is a small bias incurred by SHAP it

has a significantly lower variance than the corresponding unbiased estimator. Covert and Lee

(2021) then propose a variance reduction method for SHAP, improving convergence speed by a

magnitude through sampling coalitions in pairs with each selected alongside its complement.

87

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

2.4 Machine Learning and the Shapley Value

Our discussion about applications of the Shapley value in machine learning focuses on the

formulation of the cooperative games, definition of the player set and payoffs, Shapley value ap-

proximation, and the time complexity of the approximation. We summarized the most important

application areas in Table 2.2 and grouped the relevant works by the problem solved.

2.4.1 Feature Selection

The feature selection game treats input features of a machine learning model as players and

model performance as the payoff (Guyon and Elisseeff, 2003; Fryer, Strümke and Nguyen,

2021). The Shapley values of features quantify how much individual features contribute to the

model’s performance on a set of data points.

Definition 15 Feature selection game. Let the player set be N = {1, . . . , =}, for S ⊆ N the

train and test feature vector sets are XTrain
S =

{
xTrain
8
|8 ∈ S

}
and XTest

S =
{
xTest
8
|8 ∈ S

}
. Let 5S (·)

be a machine learning model trained using XTrain
S as input, then the payoff is E(S) = 6(y, ŷS)

where 6(·) is a goodness of fit function, y and ŷS = 5S (XTest
S) are the ground truth and predicted

targets.

Shapley values, and close relatives such as the Banzhaf index (Banzhaf III, 1964), have been

studied as a measure of feature importance in various contexts (Cohen, Dror and Ruppin,

2007; Pintér, 2011; Sun et al., 2012; Williamson and Feng, 2020; Tripathi, Hemachandra

and Trivedi, 2020). Using these importance estimates, features can be ranked and selected

or removed accordingly. This approach has been applied to various tasks such as vocabulary

selection in natural language processing (Patel et al., 2021) and feature selection in human

action recognition (Guha, Khan et al., 2021).

88

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

2.4.2 Data Valuation

In the data valuation game training set data points are players and the payoff is defined by the

goodness of fit achieved by a model on the test data. Computing the Shapley value of players

in a data valuation game measures how much data points contribute to the performance of the

model.

Definition 16 Data valuation game. Let the player set be N = {(x8, H8) | 1 ≤ 8 ≤ =} where x8

is the input feature vector and H8 is the target. Given the coalition S ⊆ N let 5S (·) be a machine

learning model trained on S. Let us denote the test set feature vectors and targets as X and Y,

given 5S (·) the set of predicted labels is defined as Ŷ = { 5S (x) |x ∈ X}. Then the payoff of a

model trained on the data points S ⊆ N is E(S) = 6(Y, Ŷ) where 6(·) is a goodness of fit

metric.

The Shapley value is not the only method for data valuation – earlier works used function

utilization (Koh and Liang, 2017), leave-one-out testing (Cook, 1977) and core sets (Dasgupta

et al., 2009). However, these methods fall short (Jia et al., 2019; Ghorbani and Zou, 2019;

Kwon and Zou, 2021) when there are fairness requirements from the data valuation technique.

Ghorbani and Zou (2019) proposed a framework of utilizing Shapley value in a data-sharing

system; Jia et al. (2019) advanced this work with more efficient algorithms to approximate

the Shapley value for data valuation. The distributional Shapley value has been discussed by

Ghorbani, Kim and Zou (2020) who argued that maintaining privacy is hard during Shapley

value computation. Their method calculates the Shapley value over a distribution which solves

problems such as lack of privacy. The computation time of this can be reduced as Kwon, Rivas

and Zou (2021) point out with approximation methods optimized for specific models.

2.4.3 Federated Learning

A federated learning scenario can be seen as a cooperative game by modeling the data owners

as players who cooperate to train a high-quality machine learning model (Liu et al., 2021b).

89

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Definition 17 Federated learning game. In this game players are a set of labeled dataset

owners N = {(X8,Y8) |1 ≤ 8 ≤ =} where X8 and Y8 are the feature and label sets owned by the

8Cℎ silo. Let (X,Y) be a labeled test set, S ⊆ N a coalition of data silos, 5S (·) a machine

learning model trained on S, and ŶS the labels predicted by 5S (·) on X. The payoff of S ⊆ N

is E(S) = 6(Y, ŶS) where 6(·) is a goodness of fit metric.

The system described by Liu et al. (2021b) uses Monte Carlo sampling to approximate the

Shapley value of the data silos. Given the potentially overlapping nature of the datasets, the

use of configuration games, an extension of the Shapley value, could be an interesting future

direction for federated learning.

2.4.4 Explainable Machine Learning

In explainable machine learning the Shapley value is used to measure the contributions of input

features to the output of a machine learning model at the instance level. Given a specific data

point, the goal is to decompose the model prediction and assign Shapley values to individual

features of the instance. There are universal solutions to this challenge that are model agnostic

and designs customized for deep learning (Chen et al., 2018a; Ancona, Oztireli and Gross,

2019), classification trees (Lundberg and Lee, 2017), and graphical models (Liu et al., 2020;

Singal, Michailidis and Ng, 2021).

Universal Explainability

A cooperative game for universal explainability is completely model agnostic; the only require-

ment is that a scalar-valued output can be generated by the model such as the probability of a

class label being assigned to an instance.

Definition 18 Universal explainability game. Let us denote the machine learning model of

interest with 5 (·) and let the player set be the feature values of a single data instance: N =

90

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

{G8 |1 ≤ 8 ≤ =}. The payoff of a coalition S ⊆ N in this game is the scalar-valued prediction

E(S) = ĤS = 5 (S) calculated from the subset of feature values.

Calculating the Shapley value in a game like this offers a complete decomposition of

the prediction because the efficiency axiom holds. The Shapley values of feature values are

explanatory attributions to the input features and missing input feature values are imputed

with a reference value such as the mean computed from multiple instances (Lundberg and

Lee, 2017; Covert and Lee, 2021). The pioneering Shapley value-based universal explanation

method SHAP (Lundberg and Lee, 2017) proposes a linear time approximation of the Shapley

values which we discussed in Section 2.3. This approximation has shortcomings and implicit

assumptions about the features which are addressed by newer Shapley value-based explanation

techniques. For example, in Frye et al. (2020) the input features are not necessarily independent,

Frye, Rowat and Feige (2020) restricts the permutations based on known causal relationships,

and in Covert and Lee (2021) the proposed technique improves the convergence guarantees of

the approximation. Several methods generalize SHAP beyond feature values to give attributions

to first-order feature interactions (Sundararajan and Najmi, 2020; Sundararajan, Dhamdhere

and Agarwal, 2020). However, this requires that the player set is redefined to include feature

interaction values.

Deep Learning

In neuron explainability games neurons are players and attributions to the neurons are payoffs.

The primary goal of Shapley value-based explanations in deep learning is to solve these games

and compute attributions to individual neurons and filters (Ghorbani and Zou, 2020; Ancona,

Oztireli and Gross, 2019).

Definition 19 Neuron explainability game. Let us consider 5IN(·) the encoder layer of a neural

network and x the input feature vector to the encoder. In the neuron explainability game the

player set is N = 5IN(x) = {ℎ1, . . . , ℎ=} - each player corresponds to the output of a neuron in

91

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

the final layer of the encoder. The payoff of coalition S ⊆ N is defined as the predicted output

E(S) = ĤS = 5OUT(S) where 5OUT(·) is the head layer of the neural network.

In practical terms, the payoffs are the output of the neural network obtained by masking

out certain neurons. Using the Shapley values obtained in these games the value of individual

neurons can be quantified. At the same time, some deep learning specific Shapley value-

based explanation techniques have designs and goals that are aligned with the games described

in universal explainability. These methods exploit the structure of the input data (Chen et al.,

2018a) or the nature of feature interactions (Zhang et al., 2021) to provide efficient computations

of attributions.

Graphical Models

Compared to universal explanations the graphical model-specific techniques restrict the admis-

sible set of player set permutations considered in the attribution process. These restrictions

are defined based on known causal relations and permutations are generated by various search

strategies on the graph describing the probabilistic model (Heskes et al., 2020; Liu et al.,

2020; Singal, Michailidis and Ng, 2021). Methods are differentiated from each other by how

restrictions are defined and how permutations are restricted.

Relational Machine Learning

In the relational machine learning domain the Shapley value is used to create edge importance

attributions of instance-level explanations (Duval and Malliaros, 2021; Yuan et al., 2021).

Essentially the Shapley value in these games measures the average marginal change in the

outcome variable as one adds a specific edge to the edge set in all of the possible edges set

permutations. It is worth noting that the edge explanation and attribution techniques proposed

could be generalized to provide node attributions.

92

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Definition 20 Relational explainability game. Let us define a graph G = (V,N) where V

and N are the vertex and edge sets. Given the relational machine learning model 5 (·), node

feature matrix X, node D ∈ V, the payoff of coalition S ⊆ V in the graph machine learning

explanation game is defined as the node level prediction E(S) = ĤS,D = 5 (X,V,S, D).

2.4.5 Multi-Agent Reinforcement Learning

Global reward multi-agent reinforcement learning problems can be modeled as TU games

(Wang et al., 2021; Li et al., 2021) by defining the player set as the set of agents and the payoff

of coalitions as a global reward. The Shapley value allows an axiomatic decomposition of the

global reward achieved by the agents and the fair attribution of credit assignments to agents.

2.4.6 Model Valuation in Ensembles

The Shapley value can be used to assess the contributions of machine learning models to a

composite model in ensemble games. In these games, players are models in an ensemble and

payoffs are decided by whether an instance level prediction made by the model is correct.

Definition 21 Ensemble game. Let us consider a single target - feature instance denoted by

(H, x). The player set in ensemble games is defined by a set of machine learning models

N = { 58 (·) |1 ≤ 8 ≤ =} that operate on the feature set. The predicted target output by the

ensemble S ⊆ N is defined as ĤS = 5̃ (S, x) where 5̃ (·) is a prediction aggregation function.

The payoff of S is E(S) = 6(H, ĤS) where 6(·) is a goodness of fit metric.

The ensemble games described by Rozemberczki and Sarkar (2021) are formulated as a special

subclass of voting games. This allows the use of precise game-specific approximation (Fatima,

Wooldridge and Jennings, 2008) techniques and because of this the Shapley value estimates

are obtained in quadratic time and have a tight approximation error. The games themselves are

model agnostic concerning the player set – ensembles can be formed by heterogeneous types of

machine learning models that operate on the same inputs.

93

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

2.5 Discussion

The Shapley value has a wide-reaching impact in machine learning, but it has limitations and

certain extensions of the Shapley value could have important applications in machine learning.

2.5.1 Limitations

Computation Time

Computing the Shapley value for each player naively in a TU game takes factorial time. In some

machine learning application areas such as multi-agent reinforcement learning and federated

learning where the number of players is small, this is not an issue. However, in large scale data

valuation (Kwon, Rivas and Zou, 2021; Kwon and Zou, 2021), explainability (Lundberg and

Lee, 2017), and feature selection (Patel et al., 2021) settings the exact calculation of the Shapley

value is not tractable. In Sections 2.3 and 2.4 we discussed approximation techniques proposed

to make Shapley value computation possible. In some cases, asymptotic properties of these

Shapley value approximation techniques are not well understood – see for example Chen et al.

(2018a).

Interpretability

By definition, the Shapley values are the average marginal contributions of players to the

payoff of the grand coalition computed from all permutations (Shapley, 1953). Theoretical

interpretations like this one are not intuitive and not useful for non-game theory experts. This

means that translating the meaning of Shapley values obtained in many application areas to

actions is troublesome (Kumar et al., 2020). For example in a data valuation scenario: is a

data point with a twice as large Shapley value as another one twice as valuable? Answering a

question like this requires a definition of a cooperative game that is intuitive.

94

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Axioms Do Not Hold Under Approximations

Aswe discussedmost applications of the Shapley value inmachine learning use approximations.

The fact that under these approximations the desired axiomatic properties of the Shapley value

do not hold is often overlooked (Sundararajan and Najmi, 2020). This is problematic because

most works argue for the use of Shapley value based on these axioms. In our view, this is the

greatest unresolved issue in the application of the Shapley value.

2.5.2 Future Research Directions

Hierarchy of the Coalition Structure

The Shapley value has a constrained version called Owen value (Owen, 1977) in which only

permutations satisfying conditions defined by a coalition structure - a partition of the player set

- are considered. The calculation of the Owen value is identical to that of the Shapley value,

with the exception that only those permutations are taken into account where the players in

any of the subsets of the coalition structure follow each other. In several real-world data and

feature valuation scenarios even more complex hierarchies of the coalition, the structure could

be useful. Having a nested hierarchy imposes restrictions on the admissible permutations of

the players and changes player valuation. Games with such nested hierarchies are called level

structure games in game theory. Winter (1989) presents the Winter value a solution concept to

level structure games - such games are yet to receive attention in the machine learning literature.

Overlapping Coalition Structure

Traditionally, it is assumed that players in a coalition structure are allocated in disjoint partitions

of the grand coalition. Allowing players to belong to overlapping coalitions in configuration

games (Albizuri, Aurrecoechea et al., 2006) could have several applications inmachine learning.

For example in a data-sharing - feature selection scenariomultiple data ownersmight have access

to the same features - a feature can belong to overlapping coalitions.

95

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Solution Concepts Beyond the Shapley Value

The Shapley value is a specific solution concept of cooperative game theory with intuitive ax-

iomatic properties (Section 2.2). At the same time it has limitations with respect to computation

constraints and interpretability (Sections 2.3 and 2.5). Cooperative game theory offers other

solution concepts such as the core, nucleolus, stable set, and kernel with their own axioma-

tizations. For example, the core has been used for model explainability and feature selection

(Yan and Procaccia, 2021). Research into the potential applications of these solution concepts

is lacking.

2.6 Conclusion

In this paper we discussed the Shapley value, examined its axiomatic characterizations and

frequently used Shapley value approximations. We defined and reviewed its uses in machine

learning, highlighted issues with the Shapley value and potential new application and novel

research areas in machine learning.

96

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

A
pp

lic
at
io
n

R
ef
er
en

ce
Pa

yo
ff

A
pp

ro
xi
m
at
io
n

Ti
m
e

Fe
at
ur
e
Se

le
ct
io
n

C
oh

en
,D

ro
ra

nd
Ru

pp
in

(2
00

7)
Va

lid
at
io
n
lo
ss

Ex
ac
t

O
(|
N
|!)

Su
n
et
al
.(
20

12
)

M
ut
ua
li
nf
or
m
at
io
n

Ex
ac
t

$
(|
N
|!)

W
ill
ia
m
so
n
an
d
Fe
ng

(2
02

0)
Va

lid
at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

Tr
ip
at
hi
,H

em
ac
ha
nd

ra
an
d
Tr
iv
ed
i(
20

20
)

Tr
ai
ni
ng

lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

$
(|
N
|)

Pa
te
le
ta
l.
(2
02

1)
Va

lid
at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

$
(|
N
|)

G
uh

a,
K
ha
n
et
al
.(
20

21
)

Va
lid

at
io
n
lo
ss

Ex
ac
t

$
(|
N
|!)

D
at
a
Va

lu
at
io
n

Ji
a
et
al
.(
20

19
)

Va
lid

at
io
n
lo
ss

Re
str

ic
te
d
M
on

te
C
ar
lo

sa
m
pl
in
g

O
(√ |N|

lo
g
|N
|2)

G
ho

rb
an
ia
nd

Zo
u
(2
01

9)
Va

lid
at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

Sh
im

et
al
.(
20

21
)

Va
lid

at
io
n
lo
ss

Ex
ac
t

O
(|
N
|lo

g
|N
|)

D
eu
tc
h
et
al
.(
20

21
)

Va
lid

at
io
n
lo
ss

Re
str

ic
te
d
M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

K
w
on

,R
iv
as

an
d
Zo

u
(2
02

1)
Va

lid
at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

K
w
on

an
d
Zo

u
(2
02

1)
Va

lid
at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

Fe
de

ra
te
d
Le

ar
ni
ng

Li
u
et
al
.(
20

21
b)

Va
lid

at
io
n
lo
ss

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

U
ni
ve
rs
al

Ex
pl
ai
na

bi
lit
y

Lu
nd

be
rg

an
d
Le

e
(2
01

7)
A
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Su
nd

ar
ar
aj
an
,D

ha
m
dh

er
e
an
d
A
ga
rw

al
(2
02

0)
In
te
ra
ct
io
n
at
tri
bu

tio
n

In
te
gr
at
ed

gr
ad
ie
nt
s

O
(|
N
|2)

Su
nd

ar
ar
aj
an

an
d
N
aj
m
i(
20

20
)

In
te
ra
ct
io
n
at
tri
bu

tio
n

In
te
gr
at
ed

gr
ad
ie
nt
s

O
(|
N
|2)

Fr
ye

et
al
.(
20

20
)

A
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Fr
ye
,R

ow
at
an
d
Fe
ig
e
(2
02

0)
A
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Yu
an

et
al
.(
20

21
)

A
ttr
ib
ut
io
n

M
on

te
C
ar
lo

sa
m
pl
in
g

$
(|
N
|)

C
ov
er
ta
nd

Le
e
(2
02

1)
A
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Ex
pl
ai
na

bi
lit
y
of

D
ee
p
Le

ar
ni
ng

C
he
n
et
al
.(
20

18
a)

A
ttr
ib
ut
io
n

Re
str

ic
te
d
M
on

te
C
ar
lo

sa
m
pl
in
g

O
(2
|N
|)
or
O
(|
N
|)

A
nc
on

a,
O
zt
ire

li
an
d
G
ro
ss

(2
01

9)
N
eu
ro
n
at
tri
bu

tio
n

Vo
tin

g
ga
m
e

O
(|
N
|2)

G
ho

rb
an
ia
nd

Zo
u
(2
02

0)
N
eu
ro
n
at
tri
bu

tio
n

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

Zh
an
g
et
al
.(
20

21
)

In
te
ra
ct
io
n
A
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Ex
pl
ai
na

bi
lit
y
of

G
ra
ph

ic
al

M
od

el
s

Li
u
et
al
.(
20

20
)

A
ttr
ib
ut
io
n

Ex
ac
t

O
(|
N
|!)

H
es
ke
se

ta
l.
(2
02

0)
C
au
sa
lA

ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

W
an
g,

W
ie
ns

an
d
Lu

nd
be
rg

(2
02

1)
C
au
sa
lA

ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Si
ng
al
,M

ic
ha
ili
di
sa

nd
N
g
(2
02

1)
C
au
sa
lA

ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

Ex
pl
ai
na

bi
lit
y
in

G
ra
ph

M
ac
hi
ne

Le
ar
ni
ng

Yu
an

et
al
.(
20

21
)

Ed
ge

le
ve
la
ttr
ib
ut
io
n

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

D
uv
al
an
d
M
al
lia

ro
s(
20

21
)

Ed
ge

le
ve
la
ttr
ib
ut
io
n

Li
ne
ar

re
gr
es
si
on

O
(|
N
|)

M
ul
ti-
ag
en

tR
ei
nf
or
ce
m
en

tL
ea
rn

in
g

W
an
g
et
al
.(
20

21
)

G
lo
ba
lr
ew

ar
d

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

Li
et
al
.(
20

21
)

G
lo
ba
lr
ew

ar
d

M
on

te
C
ar
lo

sa
m
pl
in
g

O
(|
N
|)

M
od

el
Va

lu
at
io
n
in

En
se
m
bl
es

Ro
ze
m
be
rc
zk
ia
nd

Sa
rk
ar

(2
02

1)
Pr
ed
ic
tiv

e
pe
rfo

rm
an
ce

Vo
tin

g
ga
m
e

O
(|
N
|2)

Ta
bl
e2

.2
:A

n
ap
pl
ic
at
io
n
ar
ea
,p
ay
off

de
fin

iti
on

,S
ha
pl
ey

va
lu
ea

pp
ro
xi
m
at
io
n
te
ch
ni
qu
e,
an
d
co
m
pu

ta
tio

n
tim

e(
th
ep

la
ye
rs
et
is
no

te
d

by
N
)b

as
ed

co
m
pa
ris

on
of

re
se
ar
ch

w
or
ks
.S
pe
ci
fic

ap
pl
ic
at
io
ns

of
th
eS

ha
pl
ey

va
lu
ea

re
gr
ou

pe
d
to
ge
th
er
an
d
or
de
re
d
ch
ro
no

lo
gi
ca
lly
.

97

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Chapter 3

Peer Effects in Directed Multiplex

Networks

3.1 Introduction

Networks characterize a multitude of economic and social interactions. For instance, existing

social relationships can shape how individuals create new connections and build social capital

(Coleman, 1988), while ownership and management networks may influence the way com-

panies operate within a competitive business landscape (Davis, Yoo and Baker, 2003; Gulati

and Gargiulo, 1999). In international trade, geographic networks influence the direction and

magnitude of exports and imports between countries (Helpman, Melitz and Rubinstein, 2008).

Whenever different types of connections such as social or geographical have an impact on eco-

nomic outcomes, it’s crucial to take into account the observable network dependencies. Existing

literature has analyzed, among other topics, peer effects (Sacerdote, 2001), social segregation

(Lazarsfeld and Merton, 1954), production networks (Acemoglu et al., 2012), and migration

networks (Ortega and Peri, 2013).

Connections across agents also have important policy implications. An intervention targeting

certain individuals can have spillover effects, thus indirectly affecting the outcomes of other

98

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

agents as well (Galeotti, Golub and Goyal, 2020). These spillover effects, also called peer

effects, have therefore been of interest in multiple domains. For example, Centola (2010)

studied the spread of behavior using randomized online communities, Ammermueller and

Pischke (2009) estimated peer effects in primary school performance, Gwozdz et al. (2015)

investigated peer effects in adolescent obesity while Maxwell (2002) analyzed the effect of

peers on risky behaviors, among others.

Estimating peer effects is, however, hindered by multiple practical challenges. Jackson,

Rogers and Zenou (2017) outline the difficulties in relation to analyzing networks. These are

network endogeneity and homophily (i.e.: network formation is not random, individuals often

connect with like-minded people), measurement errors in links between agents, misspecification

of the model describing peers’ interactions, and having multiple types of relationships. This

paper contributes to the discussion on the last issue by proposing amodel that relies onmultiplex

networks - networks where among the same set of agents multiple types of relationships are

observed.

This work proposes a tractable model with peer effect parameters that can be estimated

using traditional tools in spatial econometrics. While this model does not address every issue

discussed by Jackson, Rogers and Zenou (2017), it provides an insight into how failing to

take into account multiple, correlated networks can result in biased peer effect estimates. The

findings of this paper imply that research on peer effects in any setting should consider potentially

correlated underlying networks and control for them during the estimation of these effects.

The remainder of this paper is structured as follows. Section 3.2 introduces the theoretical

model and connects it to the reduced form spatial autoregressive model that is used for the

parameter estimations. Section 3.3 presents the experimental setup and discusses the results

of Monte Carlo simulations using synthetic data. Section 3.4 provides an empirical example

using data from Ferrali et al. (2020), illustrating that alternative empirical approaches yield

significantly different, likely biased results. Section 3.5 concludes by summarizing the most

important findings of this work and further research directions.

99

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

3.2 Model

This section presents a quadratic utility model that captures peer effects both in a single network

and in a multiplex network setting. Section 3.2.1 introduces the general framework using a

single network, while Section 3.2.2 extends the model to multiplex networks.

3.2.1 Quadratic utility model with a single network

Consider a game of # players, where each player 8 has to decide their effort level H8 ∈ R+0 . In a

social network setting, for example, H8 may represent decision variables such as time spent in a

specific social setting or using a social media site. The action profile of the players, y is defined

as:

y =

H1
...

H8

...

H#

Each player’s payoff is given as a function of the action profile y and an underlying network

G# . G# can be described by adjacency matrix A:

A =

011 . . . 01 9 . . . 01#
...

...
...

081 . . . 08 9 . . . 01#
...

...
...

0#1 . . . 0# 9 . . . 0##

The 08 9 element of adjacency matrix A can be either (i) a binary value describing whether

there is a network connection from player 8 to player 9 or (ii) a non-negative real number

describing the strength of the network connection from player 8 to player 9 . In a quadratic utility

100

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

model with peer effects, the payoff function of each player can be described by Equation (3.1).

c8 (y) = U8H8 −
1
2
H2
8 + _

#∑
9=1
08 9 H8H 9 (3.1)

where _ is the peer effect parameter. The intuition behind Equation 3.1 is that the payoff of

each agent depends (i) on one’s own actions, which provides direct utility but also results in a

quadratic cost [H8], (ii) individual factors represented by U8 and (iii) the actions of the agents

they interact with. In this setting, the effect agent 9’s action has on agent 8’s utility is proportional

to 08 9 . Ballester, Calvó-Armengol and Zenou (2006) present a similar model of peer effects,

however, their model is not identifiable in the way presented in this paper. In this game, the first

order conditions in a Nash-equilibrium ∀8 satisfy:

H8 = U8 + _
#∑
9=1
08 9 H 9

Let us assume that U8, the individual factor, can be described by using a linear model. If

U = XV + Y where

Y =

Y1
...

Y8

...

Y#

is a vector of disturbances, then

y = _Ay + XV + Y

which is a classical spatial autoregressivemodel. Lee (2003) and Lee, Liu and Lin (2010) present

a wide set of estimators that can efficiently estimate the structural parameters in such a model

under different assumptions on the distribution of disturbances. This and variants of this model

(extended by spatially lagged exogenous variables or spatial autoregressive disturbances) have

101

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

been extensively applied to estimate peer effects in the literature (see for example Lin (2010),

Lin (2015), Hsieh and van Kippersluis (2018), Fortin and Yazbeck (2015) or Hsieh and Lee

(2016)). This model, however, does not account for multiple types of relationships and cannot

be directly applied to multiplex networks. The next section presents an extension of this model

that incorporates multiple types of relationships.

3.2.2 Quadratic utility model with multiplex networks

Consider a multiplex network of � dimensions G�×# , that is, among the same agents we

may observe � distinct types of edges. In a real-life setting, for example, we could observe

friendships, family relationships, geographical proximities, andmany other connections between

the same set of individuals. It is a plausible assumption that we have heterogeneous peer effects

across different types of connections. That is, one derives different utility from the actions of

different types of peers. Such a scenario can be represented with a model where each player’s

payoff is:

c8 (y) = U8H8 −
1
2
H2
8 +

�∑
3=1

_3

#∑
9=1
038 9 H8H 9

where _3 is the peer effect parameter of network 3. With this specification, the first order

conditions in a Nash-equilibrium ∀8 satisfy:

H8 = U8 +
�∑
3=1

_3

#∑
9=1
038 9 H 9

If we model the individual effects in a linear fashion, that is U = XV + Y then

y =
�∑
3=1

_3Ady + XV + Y (3.2)

102

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

which is a spatial autoregressive model with multiple weight matrices. Equation (3.2) can be

rearranged by defining

S ≡ IN −
�∑
3=1

_3Ad

Using this definition, we can rewrite Equation (3.2) as

y = S−1XV + S−1Y

Notice that the right-hand side only contains the exogenous node characteristics and the

multiplex network adjacencies.

A potential issue with the identification of such a model is that most estimation approaches

assume that Y8 ∼ 8.8.3.(0, f2). In a social network setting this assumption is likely to be violated

due to homophily. Since neighbors in a social network usually have similar characteristics, their

error terms are likely correlated as well. To address this issue, we can additionally assume that

the error term can be modeled with another spatial autoregressive term. That is, the model is:

y =
�∑
3=1

_3Ady + XV + u

where

u ≡
�∑
3=1

d3Adu + Y (3.3)

Equations (3.2.2) and (3.3) describe a (�'�'(?, @)model withmultiple weightmatrices where

? = @ = � and the spatial weight matrices are the adjacency matrices of the multiplex network.

Let us define

S ≡ IN −
�∑
3=1

_3Ad

and

R ≡ IN −
�∑
3=1

d3Ad

103

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Then the reduced form is

y = S−1XV + S−1R−1Y

It has been shown by Liu, Lee and Bollinger (2010), Badinger and Egger (2011) and Lee

and Liu (2010) that the structural model parameters of interest (_3 , d3) in such a setting can

be identified efficiently by iterative GMM estimators. These works, however, do not contain

microfoundations for the empirical model and focus exclusively on econometric theory and the

estimation of the model parameters. At the same time, they all mention potential applications

of such a model: Liu, Lee and Bollinger (2010) and Lee and Liu (2010) cite regional, urban and

public economics as potential application domains, while Badinger and Egger (2011) mention

trade, foreign direct investment, migration and social interactions as a potential use case for

their estimator. To our knowledge, the only application in the literature in the domain of this

paper is done by König, Liu and Zenou (2019) estimate R&D spillover effects with three weight

matrices. In their model, however, the same reduced form arises from an industrial organization

model of multiple markets with substitutable goods.

3.3 Monte Carlo evidence

This section presentsMonte Carlo evidence using synthetic data to illustrate both that i) omitting

a network from the estimation results in biased estimates and that ii) simultaneous estimation

of the peer effect parameters eliminates such bias in three different network scenarios. The

first set of experiments evaluates the estimator using Erdos-Renyi random graphs. The sec-

ond experiment repeats the first exercise using networks that were generated according to the

Barabasi-Albert preferential attachment model (Albert and Barabási, 2002). The last subsection

evaluates the model in a setting where the presence of network connections is correlated with

exogenous node characteristics, that is, the networks present homophily.

104

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

3.3.1 Erdos-Renyi random graphs

In the first illustration of omitted network bias we evaluate the estimator using � = 2 Erdos-

Renyi random graphs. These networks contain a fixed number of vertices where each pair of

vertices is connected by an edge with independent probability ?.

We use the following parameters across all experiments:

• The peer effect parameter of network 1 is _1 = 0.3.

• The peer effect parameter of network 2 is _1 = 0.1.

• There is a single covariate drawn from - ∼ * [0, 5]. Its coefficient is V = 1.

• Y is drawn from a standard normal distribution, d3 = 0∀3.

• Each Monte Carlo simulation is repeated 500 times.

We test the behavior of the estimator for multiple network densities and network sizes. Each

experiment is repeated using networks with 25, 50, and 100 nodes. We run simulations for all

combinations of ?1 ∈ {0.1, 0.2} and ?2 ∈ {0.05, 0.1, 0.15, 0.2}.

All parameter constellations above are evaluated in three settings:

• Running the estimation with both networks included.

• Estimating with using only one of the networks (2 cases).

The first setup shows that by including both networks the estimator can identify the peer effect

parameters. The second and third cases illustrate that omitting a network from the estimation

yields biased peer effect estimates for the network included in the estimation.

We evaluate every simulation using three measures. We calculate the bias of the estimator

the standard way. That is, for each parameter \ we calculate

BIAS =

500∑
8=1
\̂8

500
− \

105

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

We also include twomeasures capturing the variance of the estimator.We calculate the mean

absolute error (MAE) to show the average magnitude of the prediction error and the root of the

mean squared error (RMSE) which, contrary to MAE, is sensitive to outliers. These measures

are defined for each parameter \ as:

MAE =

500∑
8=1
|\̂8 − \ |

500

and

RMSE =

√√√√√500∑
8=1
(\̂8 − \)2

500

Table 3.1 presents the results of the first test case, where both networks are included in

the estimation simultaneously. Bias in all test cases is relatively low. In the case of the peer

effect parameters, it does not exceed 10% of the estimated true parameter value with only one

exception (the relative bias in case of _2 in the last test case and 50 nodes is 17.9%). These

results are consistent with the findings of Badinger and Egger (2011). On similar sample sizes,

they find that the average relative bias of the estimator is approximately 8 percent. It holds in

almost all test cases that increasing the number of nodes decreases the magnitude of the bias

for the estimated peer effects.

Another prevalent pattern in the results shows that the size of the bias increases in the

densities of the networks. This pattern can intuitively be due to the fact that higher network den-

sities imply more overlap between the networks, and therefore it is more difficult to distinguish

between the effects propagating through each individual network precisely.

The parameter of the exogenous covariate is estimated precisely in all cases. Its bias does not

exceed 1.4% of the true parameter value in any of the test cases. These findings are, in general,

consistent with previous literature evaluating the behavior of the proposed estimator (Badinger

and Egger, 2011).

106

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.1: Monte Carlo simulation results of the regression including both networks simultane-
ously

Test case 25 nodes 50 nodes 100 nodes

p network 1 p network 2 Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

0.1 0.05
V -0.0015 0.1042 0.1332 -0.0054 0.0789 0.1006 -0.0009 0.0548 0.0692
_1 -0.0041 0.0811 0.1064 0.0014 0.0834 0.1063 -0.0046 0.0983 0.1229
_2 -0.0035 0.0767 0.0992 -0.0018 0.0714 0.0902 0.0042 0.0919 0.1164

0.1 0.1
V -0.0027 0.1119 0.1406 -0.0083 0.0825 0.1036 -0.002 0.0553 0.0696
_1 -0.0062 0.0896 0.1141 -0.0017 0.1139 0.1427 -0.0018 0.1323 0.1644
_2 0.0028 0.0879 0.1129 0.0036 0.1077 0.1364 0.0021 0.1288 0.1599

0.1 0.15
V -0.0039 0.1149 0.1448 -0.008 0.0808 0.1026 -0.0017 0.0552 0.0698
_1 -0.0103 0.0996 0.1268 0.0035 0.1294 0.1636 0.0009 0.1455 0.1787
_2 0.0075 0.1112 0.139 -0.0015 0.1261 0.16 -0.0009 0.1463 0.1771

0.1 0.2
V -0.0038 0.1167 0.147 -0.0084 0.0807 0.1022 -0.0016 0.0553 0.0698
_1 -0.0125 0.1022 0.1296 0.0092 0.1372 0.1746 0.0004 0.1536 0.1889
_2 0.0099 0.1185 0.1484 -0.0072 0.1337 0.1695 -0.0004 0.1537 0.1883

0.2 0.05
V -0.0074 0.1122 0.1411 -0.0049 0.0787 0.1004 -0.0003 0.0553 0.07
_1 -0.0005 0.0932 0.1204 0.0029 0.0914 0.1174 -0.0053 0.108 0.1345
_2 -0.0024 0.0777 0.1007 -0.0036 0.0782 0.1003 0.0046 0.1003 0.1258

0.2 0.1
V -0.0093 0.1164 0.1453 -0.008 0.0816 0.1027 -0.0016 0.0556 0.07
_1 0.0026 0.12 0.1531 -0.0001 0.1423 0.1788 -0.0006 0.1528 0.1975
_2 -0.0023 0.1054 0.1377 0.0017 0.1354 0.1718 0.0008 0.1477 0.1898

0.2 0.15
V -0.0136 0.1188 0.1497 -0.0082 0.0793 0.1013 -0.0018 0.0559 0.0706
_1 -0.0031 0.1597 0.2099 0.009 0.171 0.2189 0.0008 0.1802 0.2283
_2 0.007 0.1597 0.2054 -0.007 0.1671 0.2149 -0.0005 0.1793 0.2247

0.2 0.2
V -0.0123 0.1205 0.15 -0.0078 0.0792 0.1013 -0.0019 0.0558 0.0704
_1 -0.004 0.1734 0.2243 0.0195 0.1869 0.2365 -0.0019 0.1968 0.2482
_2 0.0075 0.1739 0.2239 -0.0179 0.1836 0.2311 0.0021 0.1942 0.2459

Table 3.2: Monte Carlo simulation results of the biased regression including only Network 1

Test case 25 nodes 50 nodes 100 nodes

p network 1 p network 2 Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

0.1 0.05
V 0.0262 0.1106 0.1387 0.0149 0.0822 0.1051 0.0087 0.0567 0.0717
_1 0.0491 0.0894 0.1114 0.0766 0.0889 0.1064 0.0922 0.0936 0.1039

0.1 0.1
V 0.0355 0.1102 0.1398 0.0135 0.0801 0.1033 0.008 0.0559 0.0709
_1 0.0611 0.0919 0.1136 0.0849 0.0938 0.1111 0.093 0.0943 0.1044

0.1 0.15
V 0.0377 0.1099 0.1385 0.0135 0.0812 0.1037 0.008 0.0558 0.0705
_1 0.0663 0.094 0.1153 0.0852 0.0944 0.1115 0.093 0.0942 0.1044

0.1 0.2
V 0.0382 0.1101 0.14 0.0131 0.0809 0.1033 0.0075 0.056 0.0708
_1 0.0667 0.0945 0.1155 0.0857 0.0944 0.1115 0.0934 0.0946 0.1047

0.2 0.05
V 0.0041 0.1188 0.1501 0.0066 0.0795 0.1013 0.0064 0.0553 0.0699
_1 0.0663 0.1019 0.1253 0.0834 0.0941 0.1107 0.0941 0.0954 0.1054

0.2 0.1
V 0.0043 0.118 0.1488 0.005 0.0777 0.0999 0.0056 0.0548 0.0694
_1 0.0848 0.1088 0.133 0.0918 0.1 0.1162 0.0951 0.0962 0.1061

0.2 0.15
V 0.0044 0.1149 0.1458 0.0046 0.0787 0.1 0.0056 0.0545 0.0689
_1 0.091 0.1118 0.1351 0.0926 0.1008 0.1166 0.0952 0.0961 0.106

0.2 0.2
V 0.0036 0.116 0.1472 0.0044 0.078 0.0995 0.0051 0.0546 0.0692
_1 0.0925 0.1131 0.1363 0.0929 0.1005 0.1165 0.0954 0.0964 0.1063

Tables 3.2 and 3.3 present the simulation results in case of omitting network 2 or network 1

from the estimation, respectively. Both cases exhibit similar patterns in terms of the bias of the

parameter estimates. Peer effect parameters are always biased positively. The intuition behind

this result is that the positive peer effects of the omitted network are picked up by the remaining,

107

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.3: Monte Carlo simulation results of the biased regression including only Network 2

Test case 25 nodes 50 nodes 100 nodes

p network 1 p network 2 Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

0.1 0.05
V 0.2533 0.2588 0.2888 0.1554 0.1634 0.1902 0.0568 0.077 0.0959
_2 0.0924 0.1142 0.1368 0.1846 0.1848 0.1992 0.2557 0.2557 0.2611

0.1 0.1
V 0.1548 0.1819 0.2219 0.056 0.1012 0.1249 0.0265 0.062 0.0775
_2 0.1677 0.1761 0.2028 0.2538 0.2539 0.2655 0.2795 0.2795 0.284

0.1 0.15
V 0.0861 0.1533 0.1929 0.0342 0.0907 0.1165 0.0199 0.0593 0.0752
_2 0.2157 0.2197 0.2465 0.2703 0.2703 0.2813 0.2848 0.2848 0.289

0.1 0.2
V 0.0704 0.1475 0.1847 0.0276 0.0897 0.1155 0.0183 0.0584 0.0741
_2 0.2282 0.2304 0.2566 0.2755 0.2756 0.2867 0.2863 0.2863 0.2905

0.2 0.05
V 0.2678 0.2716 0.2975 0.1512 0.1591 0.1848 0.0536 0.075 0.0936
_2 0.1047 0.1195 0.1391 0.1882 0.1882 0.202 0.2576 0.2576 0.2629

0.2 0.1
V 0.1543 0.1812 0.2182 0.0476 0.0958 0.1189 0.0229 0.0612 0.0769
_2 0.1874 0.1915 0.2162 0.2601 0.2602 0.2714 0.2816 0.2816 0.2862

0.2 0.15
V 0.0792 0.1442 0.1794 0.0255 0.0872 0.1116 0.016 0.0595 0.075
_2 0.2387 0.2401 0.262 0.2768 0.2768 0.2872 0.2872 0.2872 0.2914

0.2 0.2
V 0.056 0.1362 0.1686 0.019 0.0867 0.1101 0.0145 0.0577 0.0737
_2 0.2559 0.2565 0.2777 0.2819 0.2821 0.2925 0.2886 0.2886 0.2928

included network. The pattern in the bias across different test cases also supports this finding.

We can observe that holding a network density (?1 or ?2) fixed, increasing the other network’s

density - and thus the overlap between the two networks - increases the bias of the peer effect

estimates.

Another observable pattern across all test cases is that increasing the sample size results in

a more precise identification of the exogenous covariate’s regression coefficient. This, in turn,

results in a higher bias for the estimated peer effect parameter as the effects of the omitted

network are picked up by this parameter instead.

3.3.2 Simulation using Barabasi-Albert graphs

This section explores how the estimator performs using Barabasi-Albert random graphs (Albert

and Barabási, 2002). These graphs are generated using a preferential attachment mechanism,

where nodes sequentially enter the network and form exactly < new connections randomly.

The probability of forming a link with any pre-existing node 8 that is already in the network is

proportional to the degree of the given node. That is, the new node is more likely to connect

with already well-connected agents.

In order to control for the overlap between the two underlying networks, we apply the

108

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

following logic in this experiment:

• We start generating a single network using the Barabasi-Albert method.

• Once the number of nodes in the network reaches a pre-defined fraction of the total

number of nodes to be added, we create a copy of this network.

• The two networks are then completed separately.

The method outlined above ensures that the two networks overlap, and provides a way to

control the extent of this overlap by changing the cutoff point where the networks are separated.

We run our simulations using the following parameter space:

• <: the number of new connections each new node forms. We evaluate two cases, < ∈

{2, 4}.

• Cutoff percentage: we analyze our method using four distinct cutoff points: 20%, 30%,

40% and 50%.

• Number of nodes: similarly to our previous experiments, we use 25, 50 and 100 nodes.

Table 3.4 presents the estimation results with both networks simultaneously included in

the regression. The patterns we can observe are similar to those of the Erdos-Renyi case.

Our estimates have a low level of overall bias. The magnitude of the bias shows a negative

association with the number of nodes. Having higher number of edges per node entering is

positively correlated with the magnitude of the bias. This is intuitive, as in more dense networks

the expected overlap between the two networks is higher. The same intuition applies when it

comes to the cutoff percentage, which also shows a positive association with the magnitude of

the bias.

Our simulation results omitting either the first or the second network from the estimation

are presented in Table 3.5 and Table 3.6. These results are qualitatively identical to those of the

experiment using Erdos-Renyi graphs. All estimates showcase a significant bias. The magnitude

109

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.4: Monte Carlo simulation results of the regression including both networks simultane-
ously using Barabasi-Albert graphs

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V -0.0122 0.1202 0.1522 -0.0077 0.0797 0.1008 0.0003 0.0538 0.0689
_1 0.0037 0.1612 0.2133 0.0026 0.1067 0.1335 -0.0012 0.0703 0.0881
_2 -0.0011 0.1579 0.2051 -0.0016 0.1024 0.1282 -0.0002 0.0699 0.0877

2 30%
V -0.0137 0.1175 0.149 -0.0089 0.0787 0.1005 0.0005 0.0548 0.0696
_1 -0.0018 0.1734 0.2247 0.001 0.1096 0.1398 -0.0041 0.069 0.0866
_2 0.0055 0.1678 0.22 0.001 0.1079 0.1364 0.0027 0.0719 0.0896

2 40%
V -0.0124 0.121 0.153 -0.0076 0.08 0.1014 -0.0001 0.0549 0.07
_1 0.0024 0.1814 0.2438 0.0044 0.1113 0.142 -0.0037 0.073 0.0922
_2 0.0013 0.1794 0.2375 -0.0037 0.1123 0.1422 0.0029 0.0744 0.0937

2 50%
V -0.0147 0.1168 0.1483 -0.0065 0.0806 0.1023 0.0003 0.0551 0.0695
_1 -0.0048 0.1979 0.2472 0.0088 0.116 0.147 -0.0031 0.084 0.1057
_2 0.0107 0.1916 0.2421 -0.0084 0.1119 0.1448 0.002 0.0858 0.107

4 20%
V -0.0127 0.118 0.1462 -0.0078 0.0817 0.1038 -0.0005 0.0544 0.0702
_1 0.0181 0.2488 0.3104 0.0124 0.1523 0.1922 -0.0016 0.1061 0.1336
_2 -0.0141 0.2383 0.3001 -0.0113 0.1519 0.1929 0.0008 0.1076 0.1345

4 30%
V -0.014 0.1183 0.1488 -0.0071 0.0803 0.1031 -0.0003 0.0548 0.0699
_1 0.0105 0.2628 0.3309 0.0135 0.1611 0.2028 0.0074 0.1119 0.14
_2 -0.0053 0.2577 0.3238 -0.0122 0.1579 0.2006 -0.0083 0.1106 0.1384

4 40%
V -0.0117 0.1184 0.1502 -0.0079 0.0813 0.1044 0.0001 0.0551 0.0698
_1 0.0043 0.2654 0.3401 0.0186 0.1697 0.2128 0.0019 0.1096 0.1396
_2 -0.0004 0.2613 0.3383 -0.018 0.1708 0.2168 -0.0031 0.1097 0.1394

4 50%
V -0.0137 0.119 0.1503 -0.0081 0.0809 0.1029 0.0002 0.054 0.0691
_1 0.0156 0.2614 0.3289 0.0154 0.1675 0.2109 0.0065 0.1226 0.1517
_2 -0.0097 0.2579 0.3281 -0.0136 0.1642 0.2097 -0.0078 0.1169 0.1455

Table 3.5: Monte Carlo simulation results of the biased regression including only Network 1
using Barabasi-Albert graphs

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V 0.0101 0.1165 0.1466 0.0129 0.0807 0.1032 0.0196 0.0577 0.0729
_1 0.0866 0.1096 0.135 0.0853 0.0934 0.1107 0.0834 0.0854 0.096

2 30%
V 0.0093 0.1151 0.1451 0.013 0.0806 0.1028 0.0187 0.0566 0.0719
_1 0.0877 0.1092 0.1344 0.0855 0.0936 0.1105 0.0841 0.086 0.0965

2 40%
V 0.0088 0.1165 0.146 0.0114 0.0795 0.1012 0.0173 0.0559 0.071
_1 0.0879 0.1095 0.1351 0.0865 0.094 0.1108 0.0852 0.087 0.0972

2 50%
V 0.0075 0.1164 0.1452 0.0097 0.0807 0.1019 0.0155 0.0558 0.0705
_1 0.0893 0.1108 0.1361 0.088 0.0953 0.1123 0.0869 0.0882 0.0986

4 20%
V 0.0008 0.116 0.145 0.0036 0.0792 0.1015 0.0101 0.0556 0.0704
_1 0.0957 0.115 0.1386 0.0933 0.101 0.1177 0.0912 0.0924 0.1026

4 30%
V 0.0001 0.1153 0.1444 0.0032 0.0787 0.1005 0.0092 0.0559 0.0706
_1 0.096 0.1151 0.1389 0.0936 0.1009 0.1175 0.0918 0.093 0.1032

4 40%
V 0.0001 0.1151 0.1445 0.0029 0.0794 0.101 0.0086 0.0555 0.0702
_1 0.096 0.1154 0.1388 0.094 0.1013 0.118 0.0921 0.0932 0.1034

4 50%
V 0.0007 0.1148 0.1445 0.0023 0.0789 0.1007 0.0085 0.0555 0.0701
_1 0.0957 0.115 0.1386 0.0942 0.1015 0.1181 0.0925 0.0937 0.1037

of the bias is positively correlated with the peer effect of the omitted network, the cutoff point

and the density of the networks. Including more observations marginally decreases the bias,

however, even using 100 nodes it remains substantial.

110

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.6: Monte Carlo simulation results of the biased regression including only Network 2
using Barabasi-Albert graphs

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V 0.0507 0.1338 0.167 0.0602 0.0993 0.1237 0.0717 0.0879 0.1081
_2 0.2567 0.2578 0.2795 0.2506 0.2506 0.262 0.2435 0.2435 0.2499

2 30%
V 0.0473 0.1314 0.1656 0.0547 0.0952 0.1198 0.0678 0.0847 0.1041
_2 0.2583 0.2609 0.2813 0.2543 0.2543 0.2657 0.2467 0.2467 0.2527

2 40%
V 0.0455 0.1316 0.1647 0.0519 0.0966 0.1218 0.0602 0.0828 0.1012
_2 0.2606 0.2634 0.2843 0.2561 0.2561 0.268 0.2528 0.2528 0.2588

2 50%
V 0.0377 0.1293 0.1622 0.0499 0.0922 0.1174 0.0551 0.0768 0.0947
_2 0.2666 0.2679 0.2882 0.2582 0.2583 0.2693 0.2563 0.2563 0.2617

4 20%
V 0.023 0.1197 0.1497 0.0309 0.0896 0.1125 0.0354 0.0668 0.0845
_2 0.278 0.2789 0.2966 0.2726 0.2727 0.2836 0.2725 0.2725 0.2776

4 30%
V 0.0221 0.1198 0.1503 0.0285 0.0869 0.1122 0.036 0.0654 0.0823
_2 0.28 0.2813 0.2988 0.2746 0.2746 0.2851 0.2723 0.2723 0.2771

4 40%
V 0.0214 0.1196 0.1521 0.027 0.0874 0.1125 0.0339 0.0656 0.0818
_2 0.2801 0.2814 0.2998 0.2753 0.2754 0.2862 0.2743 0.2743 0.2792

4 50%
V 0.0167 0.1201 0.1506 0.0235 0.0852 0.1082 0.0296 0.0626 0.0783
_2 0.283 0.2838 0.302 0.2789 0.2792 0.2892 0.2768 0.2768 0.2813

3.3.3 Simulation using networks with homophily

Table 3.7: Monte Carlo simulation results of the regression including both networks simultane-
ously using networks with homophily

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V -0.0117 0.1528 0.1958 -0.0118 0.1075 0.1351 -0.0082 0.0775 0.0959
_1 0.0126 0.1682 0.2158 0.0152 0.1093 0.1399 0.0003 0.0759 0.093
_2 -0.0092 0.1634 0.2097 -0.0112 0.1011 0.128 0.0039 0.0756 0.094

2 30%
V -0.0228 0.1493 0.1912 -0.0105 0.1037 0.1311 -0.0065 0.0762 0.0945
_1 0.0081 0.1756 0.2274 0.0065 0.1059 0.1357 0.0082 0.078 0.0958
_2 0.0026 0.1722 0.2237 -0.0025 0.1008 0.128 -0.0054 0.0732 0.0922

2 40%
V -0.0141 0.1506 0.1942 -0.0098 0.1064 0.1332 -0.0061 0.0756 0.0941
_1 0.016 0.1786 0.2338 0.0092 0.1135 0.1443 0.0089 0.0807 0.1016
_2 -0.0125 0.1732 0.2244 -0.0058 0.1081 0.1369 -0.0066 0.0787 0.0974

2 50%
V -0.014 0.1483 0.1916 -0.0088 0.1048 0.1307 -0.0089 0.0747 0.094
_1 -0.0001 0.1807 0.2515 0.0103 0.124 0.1557 0.0019 0.0814 0.1033
_2 0.0051 0.1786 0.2423 -0.0074 0.1154 0.1495 0.0024 0.0798 0.1014

4 20%
V -0.013 0.1531 0.1924 -0.0053 0.1039 0.1309 -0.0064 0.0777 0.0949
_1 0.0059 0.2494 0.3221 0.0076 0.1503 0.1923 -0.002 0.1031 0.1303
_2 -0.0025 0.2496 0.3262 -0.0076 0.1463 0.1868 0.0046 0.1032 0.1315

4 30%
V -0.0191 0.149 0.1886 -0.0062 0.1028 0.1288 -0.0048 0.0772 0.0955
_1 0.005 0.2525 0.3327 0.0096 0.158 0.1993 0.0112 0.099 0.1242
_2 0.0027 0.2491 0.33 -0.0092 0.1574 0.1986 -0.0096 0.0991 0.1248

4 40%
V -0.0173 0.1484 0.1876 -0.0052 0.1031 0.1289 -0.0025 0.0768 0.0946
_1 -0.0062 0.2383 0.3132 0.0076 0.1617 0.2044 0.0059 0.1166 0.1462
_2 0.0124 0.2403 0.3153 -0.0083 0.1589 0.1997 -0.006 0.1169 0.1453

4 50%
V -0.019 0.1463 0.1912 -0.0035 0.104 0.1307 -0.0041 0.0784 0.0965
_1 -0.0121 0.2715 0.3421 0.0092 0.1549 0.1989 -0.0036 0.1142 0.1433
_2 0.0196 0.2715 0.3476 -0.0105 0.1542 0.1981 0.0047 0.115 0.1438

The last set of simulations considers a case where networks show homophily, that is, the

network connections of agents are dependent on their characteristics. This phenomenon is

111

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

present in many real-life networks: agents are more likely to connect with other, similar agents.

In order to simulate such a scenario, we have modified the mechanism of the Barabasi-Albert

model. Our logic of generating the networks in this experiment is the following: nodes enter the

network one-by-one and form exactly < new connections randomly, just like in the Barabasi-

Albert model. However, the probability of forming a link with any pre-existing node 8 that is

already in the network is proportional to their absolute distance in the covariate associated with

each node. This means that the new node will be more likely to connect with another agent that

has similar characteristics.

All other components of this experiment imitate the previous one using Barabasi-Albert

graphs. We evaluate cases with < ∈ {2, 4} connections, 20%, 30%, 40% and 50% cutoffs, and

25, 50 and 100 nodes.

The results of the simulations where both networks are included in the estimation are

presented in Table 3.7. The findings of the previous exercises hold in this case as well. All

estimates are characterized with a low relative bias, and the direction of the association between

the magnitude of the bias and the hyperparameters are unchanged.

Estimates that rely on a single network are presented in Table 3.8 and Table 3.9. The

qualitative results presented for the two other cases hold here as well. Peer effect estimates are

characterized by significant positive bias in both cases and the bias is more severe if (i) the

networks are more dense, (ii) the overlap between the networks is higher or (iii) the networks

are smaller, and thus the number of observations is lower.

3.4 Empirical example

This section presents an illustrative example using data from Ferrali et al. (2020). The next

section provides background on the data used for peer effect estimations. It is followed by

discussing the results of estimating the peer effects using three strategies: (i) estimating peer

effects from a collapsed network; (ii) estimating peer effects network-by-network and (iii)

112

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.8: Monte Carlo simulation results of the biased regression including only Network 1
using networks with homophily

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V 0.0074 0.1164 0.1455 0.0126 0.0828 0.1041 0.0176 0.058 0.0739
_1 0.09 0.1107 0.1344 0.0857 0.0949 0.1121 0.0849 0.0867 0.0973

2 30%
V 0.0088 0.1151 0.1448 0.0116 0.0822 0.1034 0.0167 0.058 0.0737
_1 0.0895 0.1101 0.1332 0.0864 0.0949 0.1123 0.0856 0.0873 0.0979

2 40%
V 0.0073 0.1151 0.1438 0.0109 0.0813 0.1032 0.0162 0.0575 0.0735
_1 0.0908 0.1102 0.1336 0.0871 0.0959 0.1132 0.0861 0.0877 0.0984

2 50%
V 0.0063 0.1145 0.144 0.0099 0.0814 0.103 0.0153 0.0569 0.0724
_1 0.0916 0.1114 0.1349 0.0879 0.0962 0.1135 0.087 0.0885 0.099

4 20%
V 0.0022 0.1134 0.1424 0.0039 0.0796 0.101 0.0103 0.0568 0.0713
_1 0.0949 0.1136 0.1353 0.0929 0.101 0.1169 0.0908 0.0922 0.1028

4 30%
V 0.0008 0.1134 0.1417 0.0032 0.0796 0.1006 0.01 0.0572 0.072
_1 0.0957 0.1138 0.1355 0.0936 0.1009 0.1171 0.0912 0.0926 0.1033

4 40%
V 0.0016 0.1134 0.1432 0.0023 0.0796 0.1004 0.0097 0.0571 0.0715
_1 0.0953 0.1137 0.1356 0.094 0.1016 0.1177 0.0914 0.0929 0.1036

4 50%
V 0.0003 0.1139 0.1424 0.0026 0.08 0.1008 0.0093 0.0574 0.0718
_1 0.0962 0.1144 0.1364 0.0941 0.1014 0.1175 0.0919 0.0932 0.1039

Table 3.9: Monte Carlo simulation results of the biased regression including only Network 2
using networks with homophily

Test case 25 nodes 50 nodes 100 nodes

m cutoff Parameter BIAS MAE RMSE BIAS MAE RMSE BIAS MAE RMSE

2 20%
V 0.0536 0.1348 0.1718 0.0635 0.1033 0.131 0.0704 0.0866 0.1047
_2 0.2557 0.2572 0.2789 0.2487 0.2487 0.261 0.2461 0.2461 0.2516

2 30%
V 0.0456 0.1401 0.1747 0.061 0.1048 0.1313 0.0649 0.0831 0.1016
_2 0.2627 0.2636 0.2856 0.2503 0.2505 0.263 0.2502 0.2502 0.2558

2 40%
V 0.0463 0.1376 0.1742 0.0541 0.0991 0.1257 0.0617 0.0807 0.0999
_2 0.2618 0.2626 0.285 0.2557 0.2558 0.2674 0.252 0.252 0.2578

2 50%
V 0.0382 0.1321 0.1666 0.0482 0.0955 0.1216 0.0535 0.0754 0.094
_2 0.2681 0.2688 0.2889 0.261 0.2613 0.2721 0.2587 0.2587 0.2638

4 20%
V 0.0189 0.1162 0.1476 0.0286 0.0916 0.1145 0.0352 0.0662 0.0833
_2 0.2826 0.2829 0.2999 0.2751 0.2752 0.2861 0.2732 0.2732 0.278

4 30%
V 0.0211 0.1198 0.1511 0.0266 0.0874 0.1112 0.0346 0.0664 0.0827
_2 0.2809 0.2812 0.2996 0.2769 0.2769 0.2869 0.2733 0.2733 0.2781

4 40%
V 0.0173 0.1189 0.1506 0.0289 0.0883 0.1126 0.0307 0.0647 0.0813
_2 0.2837 0.2838 0.3023 0.2757 0.2759 0.286 0.2763 0.2763 0.281

4 50%
V 0.0184 0.1178 0.1486 0.0211 0.0846 0.1075 0.0288 0.0631 0.0789
_2 0.2831 0.2835 0.301 0.2811 0.2811 0.2906 0.2776 0.2776 0.2822

estimating peer effects simultaneously. We then discuss how the estimation results relate to the

Monte Carlo simulation results presented above and point out the main takeaways from applying

different strategies.

3.4.1 Data

We use survey data collected by Ferrali et al. (2020) in Uganda 2 years after the introduction

of a new communication platform (U-Bridge) connecting district officials and citizens. The

113

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

technology was implemented in a northwestern region of Uganda, Arua. The platform itself

consisted of a short-code number to which any citizen could send messages to report disrup-

tions in government-provided services free of charge, anonymously. On the other end of the

communication, officials were given tablets to access and respond to the reports from citizens.

Ferrali et al. (2020) conducted in-person surveys in April and May 2016. They attempted

to collect information from every available adult in 16 villages. The surveys contained ques-

tions regarding demographics, social ties, and U-bridge knowledge and usage. They obtained

information from 3,184 individuals, covering about 82%

They collected information about multiple social ties across individuals and constructed five

networks between the same agents. These are the following:

• Friendship network: There is an edge pointing from node i to node j if i considers j a

friend.

• Family network: There is an edge pointing from node i to node j if i names j as a family

member.

• Lender network: There is an edge pointing from node i to node j if i named j as someone

who would lend them money.

• Problem solver network: There is an edge pointing from node i to node j if i would go to

j to solve a problem.

• Speaking network: There is an edge pointing from node i to node j if i spoke to j about

the technology.

Additionally, they generated and used a network pooling all the edges from all the networks

listed above. The networks collected by Ferrali et al. (2020) contain overlapping edges - in line

with the model setup - meaning that individual i might consider individual j a friend, family

member, lender, solver or could have spoken to them about the technology all at the same time.

A measure of pairwise overlap is presented in Table 3.10. Table 3.10 shows that up to 33.6% of

114

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

the edges in a network are present in another network as well (excluding the pooled network,

where it can be by construction higher for the denser networks) which indicates significant

overlap between the networks. Due to these overlaps, this dataset is optimal to analyze the effect

of applying different estimation strategies and to evaluate the proposed estimator.

Table 3.10: Similarities of networks. Numbers show what fraction of the edges in the row
network are present in the column network. The last row contains the number of edges in the
given network.

all family friend lender solver speak
all 1.0 0.481 0.277 0.211 0.228 0.022
family 1.0 1.0 0.051 0.147 0.088 0.014
friend 1.0 0.088 1.0 0.182 0.072 0.016
lender 1.0 0.336 0.240 1.0 0.122 0.020
solver 1.0 0.187 0.087 0.113 1.0 0.015
speak 1.0 0.316 0.199 0.193 0.154 1.0
|E| 30,329 14,613 8,403 6,401 6,927 686

We estimate three outcomes:

1. Heard: Heard is an indicator that gets the value of 1 if the respondent has heard about the

U-Bridge service.

2. Adopt: Adopt is a self-reported, binary variable that equals 1 if the respondent has used

the platform at least once in the past 12 months.

3. Sent: Shows the level of usage measured by the self-reported number of messages sent by

the individual in the past 6 months.

We estimate each model with and without controls as well. Controls are gender, age, income,

education, and village indicators. Our evaluation strategy is analogous to the simulations pre-

sented in Section 3.3. That is, (i) we estimate peer effects using a network-by-network fashion,

including only a single network in the estimation at a time and (ii) we estimate the peer effects for

each network simultaneously using the proposed estimator. Additionally, we evaluate a strategy

where we use the pooled network of social ties to estimate a single peer effect. The next section

presents and discusses the results of each estimation strategy.

115

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

3.4.2 Estimated peer effects

The estimated coefficients using the collapsed network and the networks one by one are presented

in Table 3.11. Each coefficient estimate is underset with its corresponding standard error. The

results show that every estimated peer effect parameter is significant at the one percent level for

all outcome variables. Ferrali et al. (2020) also estimate peer effects in the collapsed network

using a different approach. The peer effect they estimate is of the same magnitude as the one

presented in Table 3.11.We can observe that the estimated peer effects are robust to the inclusion

of controls.

Table 3.11: Estimated coefficients using separate networks for different outcome variables.

Parameter All Family Friend Lender Solver Speak

Hear _ .022
.003

.021
.002

.056
.006

.044
.004

.077
.006

.077
.004

.069
.005

.056
.004

.027
.002

.017
.002

.198
.006

.156
.007

d .015
.003

.008
.003

−.002
.003

−.020
.006

−.035
.007

−.062
.007

−.019
.008

−.035
.008

−.027
.003

.004
.007

−.094
.013

−.073
.015

Adopt _ .056
.003

.049
.004

.083
.006

.089
.004

.112
.006

.120
.006

.104
.005

.111
.005

.051
.004

.060
.004

.230
.004

.225
.004

d −.004
.001

.007
.003

−.060
.005

−.072
.005

−.075
.006

−.091
.006

−.086
.006

−.098
.006

−.043
.003

−.040
.005

−.208
.004

−.216
.005

Sent _ .063
.007

.052
.005

.101
.007

.098
.003

.117
.013

.146
.005

.113
.005

.138
.003

.065
.007

.084
.005

.218
.005

.206
.005

d −.011
.001

−.011
.005

−.110
.003

−.097
.004

−.025
.005

−.339
.003

−.297
.002

−.239
.004

−.014
.002

−.121
.002

−.385
.003

−.103
.003

Controls

N 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019 3019

In the case of the simultaneous estimation, results are presented in Table 3.12. Compared

to the network-by-network strategy, most estimated peer effect coefficients drop significantly.

While the majority of them remain significant for all outcome variables, some of them even

become insignificant.

This significant decrease in the estimated parameters is consistent with both our model

presented in 3.2.2 and the Monte Carlo simulations. The intuition is that the networks we

consider are overlapping, as shown in Table 3.10, and therefore estimating peer effects in a

network-by-network fashion results in omitted network bias. Each peer effect estimated by the

network-by-network strategy picks up partial effects of the correlated networks. This can lead

to stronger, significant peer effect estimates in networks that, in fact, have less of a role in the

116

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Table 3.12: Estimated coefficients with simultaneous estimation for different outcome variables

Parameter Hear Adopt Sent

_

Family .002
.006

.012
.004

.011
.005

.010
.004

−.005
.004

.022
.003

Friend .038
.007

.039
.005

.008
.006

.018
.005

−.027
.006

.045
.004

Lender .014
.006

.010
.005

−.001
.006

.008
.005

.018
.005

.028
.004

Solver −.004
.003

−.005
.002

−.003
.004

−.002
.003

.023
.003

.017
.003

Speak .138
.019

.112
.009

.229
.007

.215
.005

.197
.005

.147
.005

d

Family .037
.007

.005
.006

−.008
.007

−.011
.005

.037
.006

−.006
.004

Friend −.006
.009

−.030
.008

.006
.008

−.010
.006

.060
.005

−.030
.005

Lender −.006
.009

−.007
.008

.009
.008

−.002
.006

.024
.005

−.071
.004

Solver −.013
.005

.007
.008

.002
.005

.002
.004

−.057
.003

−.071
.002

Speak −.062
.027

−0.65
.016

−.212
.007

−.204
.006

−.334
.003

−.080
.003

Controls

N 3019 3019 3019 3019 3019 3019

spillover. Taking a closer look at which parameters remained strongly significant and high-

magnitude, we can observe that the only such parameter is the one belonging to the speaking

network. This intuitively means that both knowledge about the technology and uptake are mostly

influenced by talking about it, which is a fairly straightforward finding. At the same time, it

is important to notice that a researcher estimating peer effects using the individual networks

would reach a different conclusion, namely, that all kinds of social ties have a strong influence

on both the spread of information and the uptake of the technology.

3.5 Conclusion

This paper proposed a tractable theoretical model with parameters that can be estimated using

conventional tools from spatial econometrics to model and estimate peer effects in multiplex

networks. This contribution can be particularly important as the failure to account for multiple

117

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

correlated networks results in biased peer effect estimates. Our findings demonstrated the

importance of including multiple networks in the estimation process.

The proposed model, despite its limitations, provides a valuable tool in the analysis of

heterogeneous peer effects across different types of relationships. Given that individuals often

interact with each other on different platforms or in diverse social settings, these complexities

should be reflected in research models.

The Monte Carlo experiments that we ran provided compelling evidence of the potential

biases that could result from using traditional, single-network models when estimating peer

effects in a multiplex network setting. The results highlighted that such biases not only perturb

the true relations among variables but may also overestimate the impacts of certain peer effects

due to omitted networks.

Our empirical analysis utilizing data from Uganda provided an illustrative example of how

peer effects could be misinterpreted when multiple types of relationships are not included in

the estimation step. Using network-by-network estimation, we found that all types of social ties

appeared to have a strong influence on both the spread of information and the uptake of the

technology. However, when we controlled for multiple networks simultaneously, there was a

significant decline in the peer effect coefficients, and some even became insignificant.

In conclusion, our work highlights the importance of incorporating multiplex networks in

estimating peer effects. Revisiting the way we quantify and understand peer effects can provide

researchers, policymakers, and social planners with insights needed to more accurately interpret

social phenomena and design effective interventions and strategies.

118

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

References

Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. “Ten-
sorflow: A System for Large-Scale Machine Learning.” 265–283.

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi.
2012. “The Network Origins of Aggregate Fluctuations.” Econometrica, 80(5): 1977–2016.

Adamic, Lada A, Rajan M Lukose, Amit R Puniyani, and Bernardo A Huberman. 2001.
“Search in power-law networks.” Physical review E, 64(4): 046135.

Ahmed, Nesreen K, Jennifer Neville, and Ramana Kompella. 2013. “Network sampling:
From static to streaming graphs.” ACM Transactions on Knowledge Discovery from Data
(TKDD), 8(2): 1–56.

Ahmed, Nesreen K, Ryan A Rossi, John Boaz Lee, Theodore LWillke, Rong Zhou, Xiang-
nan Kong, and Hoda Eldardiry. 2019. “role2vec: Role-based network embeddings.”

Albert, Réka, and Albert-László Barabási. 2002. “Statistical mechanics of complex net-
works.” Rev. Mod. Phys., 74: 47–97.

Albizuri, Josune, Jesús Aurrecoechea, et al. 2006. “Configuration Values: Extensions of the
Coalitional Owen Value.” Games and Economic Behavior, 1–17.

Ammermueller, Andreas, and Jörn-Steffen Pischke. 2009. “Peer Effects in European Primary
Schools: Evidence from the Progress in International Reading Literacy Study.” Journal of
Labor Economics, 27(3): 315–348.

Ancona, Marco, Cengiz Oztireli, and Markus Gross. 2019. “Explaining Deep Neural Net-
works with a Polynomial Time Algorithm for Shapley Value Approximation.” 272–281.

Anderson, Sean, Eric Ward, Lewis Barnett, and Philippina English. 2018. “sdmTMB:
Spatial and spatiotemporal GLMMs with TMB.” https://github.com/pbs-assess/
sdmTMB.

Badinger, Harald, and Peter Egger. 2011. “Estimation of higher-order spatial autoregres-
sive cross-section models with heteroscedastic disturbances.” Papers in Regional Science,
90(1): 213–235.

119

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/pbs-assess/sdmTMB
https://github.com/pbs-assess/sdmTMB

DOI: 10.14754/CEU.2024.08

Bahdanau, Dzmitry, Kyung Hyun Cho, and Yoshua Bengio. 2015. “Neural Machine Trans-
lation by Jointly Learning to Align and Translate.”

Bai, Lei, Lina Yao, Can Li, XianzhiWang, and CanWang. 2020. “Adaptive Graph Convolu-
tional RecurrentNetwork for TrafficForecasting.”Advances inNeural InformationProcessing
Systems, 33.

Ballester, Coralio, Antoni Calvó-Armengol, and Yves Zenou. 2006. “Who’s Who in Net-
works. Wanted: The Key Player.” Econometrica, 74(5): 1403–1417.

Bandyopadhyay, Sambaran, Harsh Kara, Aswin Kannan, andMNarasimhaMurty. 2018.
“Fscnmf: Fusing structure and content via non-negative matrix factorization for embedding
information networks.” arXiv preprint arXiv:1804.05313.

Banzhaf III, John F. 1964. “Weighted Voting Doesn’t Work: A Mathematical Analysis.”
Rutgers L. Rev., 317.

Belkin, Mikhail, and Partha Niyogi. 2002. “Laplacian eigenmaps and spectral techniques for
embedding and clustering.” 585–591.

Béres, Ferenc, Domokos M. Kelen, Róbert Pálovics, and András A. Benczúr. 2019. “Node
Embeddings in Dynamic Graphs.” Applied Network Science, 4(64): 25.

Béres, Ferenc, Róbert Pálovics, Anna Oláh, and András A. Benczúr. 2018. “Temporal Walk
Based Centrality Metric for Graph Streams.” Applied Network Science, 3(32): 26.

Bojchevski, Aleksandar, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020. “Scaling
Graph Neural Networks with Approximate Pagerank.” 2464–2473.

Bradbury, James, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-
Milne, and Qiao Zhang. 2018. “JAX: Composable Transformations of Python+NumPy
Programs.”

Brandl, Georg. 2010. “Sphinx Documentation.” URL http://sphinx-doc. org/sphinx. pdf.

Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jacob VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. 2013.
“API design for machine learning software: experiences from the scikit-learn project.” ArXiv,
abs/1309.0238.

Burgess, Mark A., and Archie C. Chapman. 2021. “Approximating the Shapley Value Using
StratifiedEmpiricalBernstein Sampling.” 73–81. International JointConferences onArtificial
Intelligence Organization. Main Track.

Cao, Shaosheng, Wei Lu, and Qiongkai Xu. 2015. “Grarep: Learning graph representations
with global structural information.” 891–900, ACM.

120

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Castro, Javier, Daniel Gómez, and Juan Tejada. 2009. “Polynomial Calculation of the Shap-
ley Value Based on Sampling.” Computers & Operations Research, 36(5): 1726–1730.

Castro, Javier, Daniel Gómez, et al. 2017. “Improving Polynomial Estimation of the Shapley
Value by Stratified Random Sampling with Optimum Allocation.” Computers & Operations
Research, 82: 180–188.

Centola, Damon. 2010. “The Spread of Behavior in an Online Social Network Experiment.”
Science, 329(5996): 1194–1197.

Cen, Yukuo, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan
Zeng, ShiguangGuo, PengZhang,GuohaoDai, et al. 2021. “CogDL:An Extensive Toolkit
for Deep Learning on Graphs.” arXiv preprint arXiv:2103.00959.

Chalkiadakis, Georgios, Edith Elkind, and Michael Wooldridge. 2011. “Computational
Aspects of Cooperative Game Theory.” Synthesis Lectures on Artificial Intelligence and
Machine Learning, 5(6): 1–168.

Chen, Hong, and Hisashi Koga. 2019. “GL2vec: Graph Embedding Enriched by Line Graphs
with Edge Features.” 3–14, Springer.

Chen, Jianbo, Le Song, Martin Wainwright, and Michael Jordan. 2018a. “L-Shapley and
C-Shapley: Efficient Model Interpretation for Structured Data.”

Chen, Jinyin, Xuanheng Xu, Yangyang Wu, and Haibin Zheng. 2018b. “GC-LSTM:
Graph Convolution Embedded LSTM for Dynamic Link Prediction.” arXiv preprint
arXiv:1812.04206.

Chen, Tianqi, Mu Li, Yutian Li, Min Lin, NaiyanWang, MinjieWang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang. 2015. “MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed Systems.” arXiv preprint arXiv:1512.01274.

Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. 2014. “Learning Phrase Representations
Using RNN Encoder–Decoder for Statistical Machine Translation.” 1724–1734. Association
for Computational Linguistics.

Cohen, Shay, Gideon Dror, and Eytan Ruppin. 2007. “Feature Selection via Coalitional
Game Theory.” Neural Computation, 19(7): 1939–1961.

Coleman, James S. 1988. “Social Capital in the Creation of HumanCapital.”American Journal
of Sociology, 94: S95–S120.

Cook, R Dennis. 1977. “Detection of influential observation in linear regression.” Technomet-
rics.

Covert, Ian, and Su-In Lee. 2021. “Improving KernelSHAP: Practical Shapley Value Estima-
tion Using Linear Regression.” 3457–3465.

121

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Dasgupta, Anirban, Petros Drineas, , et al. 2009. “Sampling algorithms and coresets for
\ell_p regression.” SIAM Journal on Computing, 2060–2078.

Data61, CSIRO’s. 2018. “StellarGraph Machine Learning Library.” https://github.com/
stellargraph/stellargraph .

Davis, Gerald, Mina Yoo, and Wayne Baker. 2003. “The Small World of the American
Corporate Elite, 1982-2001.” Strategic Organization, 1.

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. 2016. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering.” 3844–3852.

Defferrard, Michaël, Lionel Martin, Rodrigo Pena, and Nathanaël Perraudin. 2017.
“PyGSP: Graph Signal Processing in Python.”

de Lara, Nathan, and Pineau Edouard. 2018. “A simple baseline algorithm for graph classi-
fication.”

Deutch, Daniel, Nave Frost, Amir Gilad, and Oren Sheffer. 2021. “Explanations for Data
Repair Through Shapley Values.” CIKM ’21, 362–371. New York, NY, USA:Association for
Computing Machinery.

Doerr, Christian, andNorbert Blenn. 2013. “Metric convergence in social network sampling.”
45–50.

Donnat, Claire, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. “Learning struc-
tural node embeddings via diffusion wavelets.” 1320–1329, ACM.

Duval, Alexandre, and Fragkiskos D. Malliaros. 2021. “GraphSVX: Shapley Value Expla-
nations for Graph Neural Networks.” 302–318.

Easley, David, Jon Kleinberg, et al. 2010. Networks, crowds, and markets. Vol. 8, Cambridge
university press Cambridge.

Epasto, Alessandro, Silvio Lattanzi, and Renato Paes Leme. 2017. “Ego-Splitting Frame-
work: From Non-Overlapping to Overlapping Clusters.” KDD ’17, 145–154.

Fan, Zhenan, Huang Fang, Zirui Zhou, et al. 2021. “Improving Fairness for Data Valuation
in Federated Learning.” arXivv:2109.09046.

Fatima, Shaheen S, Michael Wooldridge, and Nicholas R Jennings. 2008. “A Linear Ap-
proximation Method for the Shapley Value.” Artificial Intelligence, 172(14): 1673–1699.

Ferrali, Romain, Guy Grossman, Melina R. Platas, and Jonathan Rodden. 2020. “It Takes
a Village: Peer Effects and Externalities in Technology Adoption.” American Journal of
Political Science, 64(3): 536–553.

Fey, Matthias, and Jan E. Lenssen. 2019. “Fast Graph Representation Learning with PyTorch
Geometric.”

122

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

DOI: 10.14754/CEU.2024.08

Fortin, Bernard, andMyraYazbeck. 2015. “Peer effects, fast food consumption and adolescent
weight gain.” Journal of Health Economics, 42: 125–138.

Frostig, Roy, Matthew James Johnson, and Chris Leary. 2018. “Compiling Machine Learn-
ing Programs via High-Level Tracing.” Systems for Machine Learning.

Frye, Christopher, Colin Rowat, and Ilya Feige. 2020. “Asymmetric Shapley Values: In-
corporating Causal Knowledge Into Model-Agnostic Explainability.” Advances in Neural
Information Processing Systems, 33.

Frye, Christopher, Damien de Mĳolla, Tom Begley, et al. 2020. “Shapley Explainability on
the Data Manifold.”

Fryer, Daniel, Inga Strümke, and Hien Nguyen. 2021. “Shapley Values for Feature Selection:
the Good, the Bad, and the Axioms.” arXiv:2102.10936.

Galeotti, Andrea, Benjamin Golub, and Sanjeev Goyal. 2020. “Targeting Interventions in
Networks.” Econometrica, 88(6): 2445–2471.

Gao, Feng, Guy Wolf, and Matthew Hirn. 2019. “Geometric Scattering for Graph Data
Analysis.” Vol. 97, 2122–2131.

Ghorbani, Amirata, and James Zou. 2019. “Data Shapley: Equitable Valuation of Data for
Machine Learning.” 2242–2251.

Ghorbani, Amirata, and James Zou. 2020. “Neuron Shapley: Discovering the Responsible
Neurons.” 5922–5932.

Ghorbani, Amirata, Michael Kim, and James Zou. 2020. “A Distributional Framework for
Data Valuation.” 3535–3544.

Gilmer, Justin, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
2017. “Neural Message Passing for Quantum Chemistry.” 1263–1272, PMLR.

Gjoka,Minas,CarterTButts,MaciejKurant, andAthinaMarkopoulou. 2011. “Multigraph
sampling of online social networks.” IEEE Journal on Selected Areas in Communications,
29(9): 1893–1905.

Gjoka, Minas, Maciej Kurant, Carter T Butts, and Athina Markopoulou. 2010. “Walking
in facebook: A case study of unbiased sampling of osns.” 1–9, Ieee.

Godwin*, Jonathan, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia
Li, Kimberly Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. 2020. “Jraph:
A Library for Graph Neural Networks in Jax.”

Gonzalez, Joseph E, Yucheng Low, Haĳie Gu, Danny Bickson, and Carlos Guestrin. 2012.
“Powergraph: Distributed graph-parallel computation on natural graphs.” 17–30.

Goodman, Leo A. 1961. “Snowball sampling.” The annals of mathematical statistics, 148–170.

123

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Goyal, Palash, and Emilio Ferrara. 2018. “GEM: A Python Package for Graph Embedding
Methods.” Journal of Open Source Software, 3(29): 876.

Goyal, Palash, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Arquimedes
Canedo. 2018. “DynamicGEM: A Library for Dynamic Graph Embedding Methods.” arXiv
preprint arXiv:1811.10734.

Grattarola, Daniele, and Cesare Alippi. 2020. “Graph Neural Networks in TensorFlow and
Keras with Spektral.” arXiv preprint arXiv:2006.12138.

Grover, Aditya, and Jure Leskovec. 2016. “node2vec: Scalable feature learning for networks.”
855–864.

Guha, Ritam, Ali Hussain Khan, et al. 2021. “CGA: A new feature selection model for visual
human action recognition.” Neural Computing and Applications, 33(10): 5267–5286.

Gulati, Ranjay, and Martin Gargiulo. 1999. “Where Do Interorganizational Networks Come
From?” American Journal of Sociology, 104(5): 1439–1493.

Guo, Shengnan, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019. “Atten-
tion Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting.”
Vol. 33, 922–929.

Guyon, Isabelle, and André Elisseeff. 2003. “An Introduction to Variable and Feature Selec-
tion.” Journal of machine learning research, 3(Mar): 1157–1182.

Gwozdz,Wencke, Alfonso Sousa-Poza, Lucia A. Reisch, Karin Bammann, Gabriele Eiben,
Yiannis Kourides, Éva Kovács, Fabio Lauria, Kenn Konstabel, Alba M. Santaliestra-
Pasias, Krishna Vyncke, and Iris Pigeot. 2015. “Peer effects on obesity in a sample of
European children.” Economics and Human Biology, 18: 139–152.

Hagberg, Aric, Pieter Swart, and Daniel S Chult. 2008. “Exploring network structure, dy-
namics, and function using NetworkX.” Los Alamos National Lab.(LANL), Los Alamos,
NM (United States).

Hamilton, William L, Rex Ying, and Jure Leskovec. 2017. “Representation learning on
graphs: Methods and applications.” arXiv preprint arXiv:1709.05584.

Hanson, Matthew. 2019. “The Open-Source Software Ecosystem for Leveraging Public
Datasets in Spatio-Temporal Asset Catalogs (STAC).” Vol. 2019, IN23B–07.

Helpman, Elhanan, Marc Melitz, and Yona Rubinstein. 2008. “Estimating Trade Flows:
Trading Partners and Trading Volumes.” The Quarterly Journal of Economics, 123(2): 441–
487.

Henderson, Keith, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong, Sugato Basu,
Leman Akoglu, Danai Koutra, Christos Faloutsos, and Lei Li. 2012. “Rolx: structural
role extraction & mining in large graphs.” 1231–1239.

124

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Heskes, Tom, Evi Sĳben, Ioan Gabriel Bucur, and Tom Claassen. 2020. “Causal Shapley
Values: Exploiting Causal Knowledge to Explain Individual Predictions of ComplexModels.”
Advances in Neural Information Processing Systems, 33.

Hochreiter, Sepp, and Jürgen Schmidhuber. 1997. “Long Short-Term Memory.” Neural
computation, 9(8): 1735–1780.

Holme, Petter. 2015. “Modern Temporal Network Theory: A Colloquium.” The European
Physical Journal B, 88(9): 1–30.

Holme, Petter, and Jari Saramäki. 2012. “Temporal Networks.” Physics reports, 519(3): 97–
125.

Hsieh, Chih-Sheng, and Hans van Kippersluis. 2018. “Smoking initiation: Peers and person-
ality.” Quantitative Economics, 9(2): 825–863.

Hsieh, Chih-Sheng, and Lung Fei Lee. 2016. “A Social Interactions Model with Endogenous
Friendship Formation and Selectivity.” Journal of Applied Econometrics, 31(2): 301–319.

Hübler, Christian, Hans-Peter Kriegel, Karsten Borgwardt, and Zoubin Ghahramani.
2008. “Metropolis algorithms for representative subgraph sampling.” 283–292, IEEE.

Hu, Jun, Shengsheng Qian, Quan Fang, Youze Wang, Quan Zhao, Huaiwen Zhang, and
Changsheng Xu. 2021. “Efficient Graph Deep Learning in TensorFlow with TF Geometric.”
arXiv preprint arXiv:2101.11552.

Hu, Pili, and Wing Cheong Lau. 2013. “A survey and taxonomy of graph sampling.” arXiv
preprint arXiv:1308.5865.

Illés, Ferenc, and Péter Kerényi. 2019. “Estimation of the Shapley Value by Ergodic Sam-
pling.” arXiv:1906.05224.

Jackson, Matthew O., Brian W. Rogers, and Yves Zenou. 2017. “The Economic Conse-
quences of Social-Network Structure.” Journal of Economic Literature, 55(1): 49–95.

Jia, Ruoxi, David Dao, Boxin Wang, Hubis, et al. 2019. “Towards Efficient Data Valuation
Based on the Shapley Value.” 1167–1176.

Jundong Li, Liang Wu, Huan Liu. 2019. “Multi-Level Network Embedding with Boosted
Low-Rank Matrix Approximation.” 50–56, ACM.

Kang, U, Charalampos ETsourakakis, andChristos Faloutsos. 2009. “Pegasus: A peta-scale
graph mining system implementation and observations.” 229–238, IEEE.

Kingma, Diederik, and Jimmy Ba. 2015. “Adam: A Method for Stochastic Optimization.”

Kipf, Thomas N., and MaxWelling. 2017. “Semi-Supervised Classification with Graph Con-
volutional Networks.”

125

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Koh, Pang Wei, and Percy Liang. 2017. “Understanding black-box predictions via influence
functions.” 1885–1894.

Krishnamurthy, Vaishnavi, Michalis Faloutsos, Marek Chrobak, Li Lao, J-H Cui, and
Allon G Percus. 2005. “Reducing large internet topologies for faster simulations.” 328–341,
Springer.

Kuang,Da,ChrisDing, andHaesunPark. 2012. “Symmetric nonnegativematrix factorization
for graph clustering.” 106–117, SIAM.

Kumar, Elizabeth, SureshVenkatasubramanian, Carlos Scheidegger, and Sorelle Friedler.
2020. “Problems with Shapley-Value-Based Explanations as Feature Importance Measures.”
5491–5500.

Kwon, Yongchan, and James Zou. 2021. “Beta Shapley: a Unified and Noise-reduced Data
Valuation Framework for Machine Learning.” arXiv:2110.14049.

Kwon, Yongchan, Manuel A Rivas, and James Zou. 2021. “Efficient Computation and
Analysis of Distributional Shapley Values.” 793–801.

König,MichaelD., XiaodongLiu, andYvesZenou. 2019. “R&DNetworks: Theory, Empirics,
and Policy Implications.” The Review of Economics and Statistics, 101(3): 476–491.

Lazarsfeld, Paul Felix, and Robert K. Merton. 1954. “Friendship as a social process: a
substantive and method-ological analysis.” Freedom and Control in Modern Society, 18–66.

Lee, Chul-Ho, Xin Xu, and Do Young Eun. 2012. “Beyond random walk and metropolis-
hastings samplers: why you should not backtrack for unbiased graph sampling.” ACM SIG-
METRICS Performance evaluation review, 40(1): 319–330.

Lee, Lung-fei, and Xiaodong Liu. 2010. “Efficient GMM Estimation of High Order
Spatial Autoregressive Models with Autoregressive Disturbances.” Econometric Theory,
26(1): 187–230.

Lee, Lung-fei, Xiaodong Liu, and Xu Lin. 2010. “Specification and estimation of social
interaction models with network structures.” The Econometrics Journal, 13(2): 145–176.

Lee, Lung-fei. 2003. “Best Spatial Two-Stage Least Squares Estimators for a Spatial Autore-
gressive Model with Autoregressive Disturbances.” Econometric Reviews, 22(4): 307–335.

Leskovec, Jure, and Andrej Krevl. 2014. “SNAP Datasets: Stanford Large Network Dataset
Collection.” http://snap.stanford.edu/data.

Leskovec, Jure, and Christos Faloutsos. 2006. “Sampling from large graphs.” 631–636.

Leskovec, Jure, Jon Kleinberg, and Christos Faloutsos. 2005. “Graphs over time: densifica-
tion laws, shrinking diameters and possible explanations.” 177–187.

126

C
E

U
eT

D
C

ol
le

ct
io

n

http://snap.stanford.edu/data

DOI: 10.14754/CEU.2024.08

Li, Jhao-Yin, and Mi-Yen Yeh. 2011. “On sampling type distribution from heterogeneous
social networks.” 111–122, Springer.

Li, Jiahui, Kun Kuang, Baoxiang Wang, et al. 2021. “Shapley Counterfactual Credits for
Multi-Agent Reinforcement Learning.” 934–942.

Li, Jia, Zhichao Han, Hong Cheng, Jiao Su, Pengyun Wang, Jianfeng Zhang, and Lujia
Pan. 2019a. “Predicting Path Failure in Time-Evolving Graphs.” 1279–1289.

Lin, Xu. 2010. “Identifying Peer Effects in Student Academic Achievement by Spatial Autore-
gressive Models with Group Unobservables.” Journal of Labor Economics, 28(4): 825–860.

Lin, Xu. 2015. “Utilizing spatial autoregressive models to identify peer effects among adoles-
cents.” Empirical Economics, 49(3): 929–960.

Li, Pei-Zhen, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. 2019b. “EdMot: An
Edge Enhancement Approach for Motif-aware Community Detection.” KDD ’19, 479–487.

Li, Rong-Hua, Jeffrey Xu Yu, Lu Qin, Rui Mao, and Tan Jin. 2015. “On random walk based
graph sampling.” 927–938, IEEE.

Liu, Meng, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Zhao Xu,
Haiyang Yu, Jingtun Zhang, Yi Liu, Keqiang Yan, Bora Oztekin, Haoran Liu, Xuan
Zhang, Cong Fu, and Shuiwang Ji. 2021a. “DIG: A Turnkey Library for Diving into Graph
Deep Learning Research.” arXiv preprint arXiv:2103.12608.

Liu, Xiaodong, Lung-fei Lee, and Christopher R. Bollinger. 2010. “An efficient GMM
estimator of spatial autoregressive models.” Journal of Econometrics, 159(2): 303 – 319.

Liu, Yifei, Chao Chen, Yazheng Liu, et al. 2020. “Shapley Values and Meta-Explanations for
Probabilistic Graphical Model Inference.” 945–954.

Liu, Zelei, Yuanyuan Chen, Han Yu, Yang Liu, and Lizhen Cui. 2021b. “GTG-
Shapley: Efficient and Accurate Participant Contribution Evaluation in Federated Learning.”
arXiv:2109.02053.

Li, Yaguang, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. “Diffusion Convolutional Recur-
rent Neural Network: Data-Driven Traffic Forecasting.”

Li, Yongkun, Zhiyong Wu, Shuai Lin, Hong Xie, Min Lv, Yinlong Xu, and John CS Lui.
2019c. “Walking with Perception: Efficient Random Walk Sampling via Common Neighbor
Awareness.” 962–973, IEEE.

Li, Yujia, Richard Zemel, Marc Brockschmidt, and Daniel Tarlow. 2016. “Gated Graph
Sequence Neural Networks.”

Lomeli, Maria, Mark Rowland, Arthur Gretton, and Zoubin Ghahramani. 2019. “Anti-
thetic and Monte Carlo Kernel Estimators for Partial Rankings.” Statistics and Computing,
1127–1147.

127

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Lundberg, Scott M, and Su-In Lee. 2017. “A Unified Approach to Interpreting Model Pre-
dictions.” 4768–4777.

Luong,Minh-Thang,HieuPham, andChristopherDManning. 2015. “EffectiveApproaches
to Attention-based Neural Machine Translation.” 1412–1421.

Maiya, Arun S, and Tanya Y Berger-Wolf. 2010. “Sampling community structure.” 701–710.

Maleki, Sasan, Long Tran-Thanh, Greg Hines, Talal Rahwan, and Alex Rogers. 2013.
“Bounding the Estimation Error of Sampling-based Shapley Value Approximation.”
arXiv:1306.4265.

Maxwell, K.A. Friends. 2002. “The Role of Peer Influence Across Adolescent Risk Behaviors.”
Journal of Youth and Adolescence, 31: 267–277.

Maynard, Harold B, G J Stegemerten, and John L Schwab. 1948. Methods-Time Measure-
ment. McGraw-Hill.

Mitchell, Rory, Joshua Cooper, Eibe Frank, and Geoffrey Holmes. 2021. “Sampling Per-
mutations for Shapley Value Estimation.” arXiv:2104.12199.

Nair, Vinod, and Geoffrey E Hinton. 2010. “Rectified Linear Units Improve Restricted Boltz-
mann Machines.” 807–814.

Narayanan, Annamalai, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen,
Yang Liu, and Shantanu Jaiswal. 2017. “graph2vec: Learning Distributed Representations
of Graphs.”

Okhrati, Ramin, and Aldo Lipani. 2021. “A Multilinear Sampling Algorithm to Estimate
Shapley Values.” 7992–7999, IEEE.

Ortega, Francesc, and Giovanni Peri. 2013. “The effect of income and immigration policies
on international migration.” Migration Studies, 1(1): 47–74.

Ou, Mingdong, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. “Asymmetric
transitivity preserving graph embedding.” 1105–1114.

Owen, Guillermo. 1972. “Multilinear Extensions of Games.”Management Science, 18(5-part-
2): 64–79.

Owen, Guilliermo. 1977. “Values of Games with a Priori Unions.” InMathematical Economics
and Game Theory. 76–88. Springer, Berlin, Heidelberg.

Panagopoulos, George, Giannis Nikolentzos, and Michalis Vazirgiannis. 2021. “Transfer
Graph Neural Networks for Pandemic Forecasting.”

Pareja, Aldo, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao B Schardl, and Charles E Leiserson. 2020. “EvolveGCN:
Evolving Graph Convolutional Networks for Dynamic Graphs.” 5363–5370.

128

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
“PyTorch: An imperative style, high-performance deep learning library.” 8024–8035.

Patel, Roma, Marta Garnelo, Ian Gemp, et al. 2021. “Game-Theoretic Vocabulary Selection
via the Shapley Value and Banzhaf Index.” 2789–2798.

Pebesma, Edzer. 2017. “staRs: Spatiotemporal Arrays: Raster and Vector Datacubes.” https:
//github.com/r-spatial/stars.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. 2011. “Scikit-learn: Machine learning in Python.” Journal of machine
learning research, 12(Oct): 2825–2830.

Peixoto, Tiago P. 2014. “The graph-tool python library.” figshare.

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. 2014. “Deepwalk: Online learning of
social representations.” 701–710, ACM.

Perozzi, Bryan, Vivek Kulkarni, Haochen Chen, and Steven Skiena. 2017. “Don’t Walk,
Skip!: online learning of multi-scale network embeddings.” 258–265, ACM.

Pintér, Miklós. 2011. “Regression games.” Annals of Operations Research, 186(1): 263–274.

Prat-Pérez, Arnau, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. 2014. “High qual-
ity, scalable and parallel community detection for large real graphs.” 225–236.

Qiu, Jiezhong, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
“Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec.”
459–467, ACM.

Raghavan, Usha Nandini, Réka Albert, and Soundar Kumara. 2007. “Near Linear Time
Algorithm to Detect Community Structures in Large-scale Networks.” Physical review E,
76(3): 036106.

Rehurek, Radim, and Petr Sojka. 2011. “Gensim—statistical semantics in python.” Retrieved
from genism. org.

Rey, Sergio J, and Luc Anselin. 2010. “PySAL: A Python Library of Spatial Analytical
Methods.” In Handbook of Applied Spatial Analysis. 175–193. Springer.

Rezvanian, Alireza, andMohammad RezaMeybodi. 2015. “Sampling social networks using
shortest paths.” Physica A: Statistical Mechanics and its Applications, 424: 254–268.

Ribeiro, Bruno, and Don Towsley. 2010. “Estimating and sampling graphs with multidimen-
sional random walks.” 390–403.

129

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/r-spatial/stars
https://github.com/r-spatial/stars

DOI: 10.14754/CEU.2024.08

Rob, Emanuele. 2020. “PySTAC: Python library for working with any SpatioTemporal Asset
Catalog (STAC).” https://github.com/stac-utils/pystac.

Rozemberczki, Benedek, and Rik Sarkar. 2018. “Fast Sequence-Based Embedding with
Diffusion Graphs.” 99–107, Springer.

Rozemberczki, Benedek, and Rik Sarkar. 2020. “Characteristic Functions on Graphs: Birds
of a Feather, from Statistical Descriptors to Parametric Models.” ACM.

Rozemberczki, Benedek, and Rik Sarkar. 2021. “The Shapley Value of Classifiers in Ensem-
ble Games.” 1558–1567.

Rozemberczki, Benedek, Carl Allen, and Rik Sarkar. 2019. “Multi-scale Attributed Node
Embedding.” arXiv preprint arXiv:1909.13021.

Rozemberczki, Benedek, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Se-
bastian Nilsson, and Rik Sarkar. 2022. “The Shapley Value in Machine Learning.” 5572–
5579. International Joint Conferences on Artificial Intelligence Organization. Survey Track.

Rozemberczki, Benedek,OliverKiss, andRik Sarkar. 2020a. “Karate Club:AnAPIOriented
Open-source Python Framework for Unsupervised Learning on Graphs.” ACM.

Rozemberczki, Benedek, Oliver Kiss, and Rik Sarkar. 2020b. “Little Ball of Fur: A Python
Library for Graph Sampling.” ACM.

Rozemberczki, Benedek, Paul Scherer, OliverKiss, Rik Sarkar, and Tamas Ferenci. 2021a.
“Chickenpox Cases in Hungary: a Benchmark Dataset for Spatiotemporal Signal Processing
with Graph Neural Networks.”

Rozemberczki, Benedek, Paul Scherer, Yixuan He, George Panagopoulos, Alexander
Riedel, Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzmán López, Nicolas Col-
lignon, and Rik Sarkar. 2021b. “PyTorch Geometric Temporal: Spatiotemporal Signal
Processing with Neural Machine Learning Models.” CIKM ’21, 4564–4573. New York, NY,
USA:Association for Computing Machinery.

Rozemberczki, Benedek, Peter Englert, Amol Kapoor, Martin Blais, and Bryan Per-
ozzi. 2020. “Pathfinder Discovery Networks for Neural Message Passing.” arXiv preprint
arXiv:2010.12878.

Rozemberczki, Benedek, Ryan Davies, Rik Sarkar, and Charles Sutton. 2019. “GEMSEC:
Graph Embedding with Self Clustering.” 65–72, ACM.

Rubinstein, Reuven Y, and Dirk P Kroese. 2016. Simulation and the Monte Carlo Method.
John Wiley and Sons, Inc.

Sacerdote, Bruce. 2001. “Peer Effects with RandomAssignment: Results for Dartmouth Room-
mates.” The Quarterly Journal of Economics, 116(2): 681–704.

130

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/stac-utils/pystac

DOI: 10.14754/CEU.2024.08

Sanders, Jason, and EdwardKandrot. 2010.CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional.

Sarkar, Rik. 2011. “Low distortion delaunay embedding of trees in hyperbolic plane.” 355–366,
Springer.

Scherer, Paul, and Pietro Lio. 2020. “Learning Distributed Representations of Graphs with
Geo2DR.”

Schlichtkrull, Michael, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. 2018. “Modeling Relational Data with Graph Convolutional Networks.”
593–607, Springer.

Seo, Youngjoo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. 2018.
“Structured Sequence Modeling with Graph Convolutional Recurrent Networks.” 362–373,
Springer.

Shalev-Shwartz, Shai, and Shai Ben-David. 2014. Understanding machine learning: From
theory to algorithms. Cambridge university press.

Shapley, Lloyd. 1953. “A Value for N-Person Games.” Contributions to the Theory of Games,
307–317.

Shi, Lei, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. “Two-Stream Adaptive Graph
Convolutional Networks for Skeleton-Based Action Recognition.” 12026–12035.

Shim, Dongsub, Zheda Mai, Jihwan Jeong, Scott Sanner, et al. 2021. “Online Class-
Incremental Continual Learning with Adversarial Shapley Value.” Vol. 35, 9630–9638.

Singal, Raghav, George Michailidis, and Hoiyi Ng. 2021. “Flow-based Attribution in Graph-
ical Models: A Recursive Shapley Approach.” Vol. 139, 9733–9743.

Srivastava, Nitish,GeoffreyHinton, AlexKrizhevsky, Ilya Sutskever, andRuslan Salakhut-
dinov. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” The
Journal of Machine Learning Research, 15(1): 1929–1958.

Staudt, Christian L, Aleksejs Sazonovs, and Henning Meyerhenke. 2016. “NetworKit: A
Tool Suite for Large-Scale Complex Network Analysis.” Network Science, 4(4): 508–530.

Stumpf, Michael PH, Carsten Wiuf, and Robert M May. 2005. “Subnets of scale-free
networks are not scale-free: sampling properties of networks.” Proceedings of the National
Academy of Sciences, 102(12): 4221–4224.

Stutzbach,Daniel,RezaRejaie,NickDuffield, Subhabrata Sen, andWalterWillinger. 2008.
“On unbiased sampling for unstructured peer-to-peer networks.” IEEE/ACM Transactions on
Networking, 17(2): 377–390.

Sun, Bing-Jie, Huawei Shen, JinhuaGao,WentaoOuyang, andXueqi Cheng. 2017. “A non-
negative symmetric encoder-decoder approach for community detection.” 597–606, ACM.

131

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Sundararajan, Mukund, and Amir Najmi. 2020. “The Many Shapley Values for Model
Explanation.” 9269–9278.

Sundararajan, Mukund, Kedar Dhamdhere, and Ashish Agarwal. 2020. “The Shapley
Taylor Interaction Index.” 9259–9268.

Sun, Dennis L, and Cedric Fevotte. 2014. “Alternating direction method of multipliers for
non-negative matrix factorization with the beta-divergence.” 6201–6205, IEEE.

Sun, Xin, YanhengLiu, Jin Li, et al. 2012. “Feature Evaluation and Selectionwith Cooperative
Game Theory.” Pattern recognition, 45(8): 2992–3002.

Taheri, Aynaz, and Tanya Berger-Wolf. 2019. “Predictive Temporal Embedding of Dynamic
Graphs.” 57–64.

Taheri, Aynaz, Kevin Gimpel, and Tanya Berger-Wolf. 2019. “Learning to Represent the
Evolution of Dynamic Graphs with Recurrent Models.” WWW ’19, 301–307.

Tang, Jian, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. 2015.
“Line: Large-scale information network embedding.” 1067–1077.

Taylor, Paul, Christopher Harris, Thompson Comer, and Mark Harris. 2019. “CUDA-
Accelerated GIS and Spatiotemporal Algorithms.” https://github.com/rapidsai/
cuspatial.

Touati, Sofiane, Mohammed Said Radjef, and SAIS Lakhdar. 2021. “A Bayesian Monte
Carlo Method for Computing the Shapley Value: Application to Weighted Voting and Bin
Packing Games.” Computers & Operations Research, 125: 105094.

Tripathi, Sandhya, N Hemachandra, and Prashant Trivedi. 2020. “Interpretable Feature
Subset Selection: A Shapley Value Based Approach.” 5463–5472.

Tsitsulin, Anton, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel
Müller. 2018. “Netlsd: hearing the shape of a graph.” 2347–2356.

Tu, Cunchao, Yuan Yao, Zhengyan Zhang, Ganqu Cui, Hao Wang, Changxin Tian, Jie
Zhou, andChengYang. 2018. “OpenNE:AnOpen Source Toolkit for Network Embedding.”
https://github.com/thunlp/OpenNE.

Van Der Walt, Stefan, S Chris Colbert, and Gael Varoquaux. 2011. “The NumPy Array:
a Structure for Efficient Numerical Computation.” Computing in science & engineering,
13(2): 22–30.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. “Attention is All You Need.” 6000–
6010.

Verbeek, Kevin, and Subhash Suri. 2014. “Metric embedding, hyperbolic space, and social
networks.” 501–510.

132

C
E

U
eT

D
C

ol
le

ct
io

n

https://github.com/rapidsai/cuspatial
https://github.com/rapidsai/cuspatial
https://github.com/thunlp/OpenNE

DOI: 10.14754/CEU.2024.08

Verma, Saurabh, and Zhi-Li Zhang. 2017. “Hunt for the unique, stable, sparse and fast feature
learning on graphs.” 88–98.

Virtanen, Pauli, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright,
et al. 2019. “SciPy 1.0–fundamental algorithms for scientific computing in Python.” arXiv
preprint arXiv:1907.10121.

Walt, Stéfan van der, S Chris Colbert, and Gael Varoquaux. 2011. “The NumPy array:
a structure for efficient numerical computation.” Computing in Science & Engineering,
13(2): 22–30.

Wang, Jianhong, JinxinWang, YuanZhang, Yunjie Gu, andTae-KyunKim. 2021. “SHAQ:
Incorporating Shapley Value Theory into Q-Learning for Multi-Agent Reinforcement Learn-
ing.” arXiv:2105.15013.

Wang, Jiaxuan, Jenna Wiens, and Scott Lundberg. 2021. “Shapley Flow: A Graph-Based
Approach to Interpreting Model Predictions.” 721–729.

Wang, Tianhao, Johannes Rausch, Ce Zhang, et al. 2020. “A Principled Approach to Data
Valuation for FederatedLearning.” InFederated Learning. 153–167. SpringerNature Switzer-
land.

Wang, Xiao, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
“Community Preserving Network Embedding.” AAAI’17, 203–209.

Whitby,Michael A, Rich Fecher, andChris Bennight. 2017. “GeoWave: UtilizingDistributed
Key-Value Stores for Multidimensional Data.” 105–122, Springer.

Williamson, Brian, and Jean Feng. 2020. “Efficient Nonparametric Statistical Inference on
Population Feature Importance Using Shapley Values.” 10282–10291.

Wilson, David Bruce. 1996. “Generating random spanning trees more quickly than the cover
time.” 296–303.

Winter, Eyal. 1989. “A Value for Cooperative Games with Levels Structure of Cooperation.”
International Journal of Game Theory, 18(2): 227–40.

Wu, Zonghan, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi
Zhang. 2020. “Connecting the Dots:Multivariate Time Series Forecastingwith GraphNeural
Networks.” 753–763.

Yanardag, Pinar, and S.V.N. Vishwanathan. 2015. “Deep Graph Kernels.” 1365–1374.

Yang, Cheng-Lun, Perng-Hwa Kung, Chun-An Chen, and Shou-De Lin. 2013. “Semanti-
cally sampling in heterogeneous social networks.” 181–182.

Yang, Cheng,Maosong Sun, Zhiyuan Liu, and Cunchao Tu. 2017. “Fast network embedding
enhancement via high order proximity approximation.” 3894–3900.

133

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Yang, Cheng, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Chang. 2015. “Network
representation learning with rich text information.”

Yang, Dingqi, Paolo Rosso, Bin Li, and Philippe Cudre-Mauroux. 2019. “NodeSketch:
Highly-Efficient Graph Embeddings via Recursive Sketching.” 1162–1172.

Yang, Hong, Shirui Pan, Peng Zhang, Ling Chen, Defu Lian, and Chengqi Zhang. 2018.
“Binarized attributed network embedding.” 1476–1481, IEEE.

Yang, Hongxia. 2019. “AliGraph: A Comprehensive Graph Neural Network Platform.” 3165–
3166.

Yang, Jaewon, and Jure Leskovec. 2013. “Overlapping community detection at scale: a non-
negative matrix factorization approach.” 587–596, ACM.

Yang, Shuang, and Bo Yang. 2018. “Enhanced Network Embedding with Text Information.”
326–331, IEEE.

Yan, Tom, and Ariel Procaccia. 2021. “If You Like Shapley Then You Will Love the Core.”
Proceedings of the AAAI Conference, 5751–5759.

Ye, Fanghua, Chuan Chen, and Zibin Zheng. 2018. “Deep Autoencoder-like Nonnegative
Matrix Factorization for Community Detection.” CIKM ’18, 1393–1402.

Yuan, Hao, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. 2021. “On Explainability of
Graph Neural Networks via Subgraph Explorations.” 12241–12252.

Yu, Bing, Haoteng Yin, and Zhanxing Zhu. 2018. “Spatio-Temporal Graph Convolutional
Networks: a Deep Learning Framework for Traffic Forecasting.” 3634–3640.

Yu, Le, Leilei Sun, BowenDu, Chuanren Liu, Hui Xiong, andWeifeng Lv. 2020. “Predicting
Temporal Sets with Deep Neural Networks.” 1083–1091.

Zachary,WayneW. 1977. “An information flowmodel for conflict and fission in small groups.”
Journal of anthropological research, 33(4): 452–473.

Zhang, Daokun, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. “SINE: Scalable In-
complete Network Embedding.” 737–746, IEEE.

Zhang, Fan, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung,
Chuo-Ling Chang, andMatthias Grundmann. 2020. “MediaPipe Hands: On-device Real-
time Hand Tracking.”

Zhang, Hao, Yichen Xie, Longjie Zheng, et al. 2021. “Interpreting Multivariate Shapley
Interactions in DNNs.” Vol. 35, 10877–10886.

Zhao, Ling, Yujiao Song, Chao Zhang, Yu Liu, PuWang, Tao Lin, Min Deng, and Haifeng
Li. 2019. “T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction.” IEEE
Transactions on Intelligent Transportation Systems, 21(9): 3848–3858.

134

C
E

U
eT

D
C

ol
le

ct
io

n

DOI: 10.14754/CEU.2024.08

Zheng, Chuanpan, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020a. “GMAN: A
Graph Multi-Attention Network for Traffic Prediction.” Vol. 34, 1234–1241.

Zheng, Da,MinjieWang, QuanGan, Zheng Zhang, andGeorge Karypis. 2020b. “Learning
Graph Neural Networks with Deep Graph Library.” WWW ’20, 305–306.

Zhou, Zhuojie, Nan Zhang, andGautamDas. 2015. “Leveraging History for Faster Sampling
of Online Social Networks.” Proceedings of the VLDB Endowment, 8(10).

Zhu, Jiawei, Yujiao Song, Ling Zhao, andHaifeng Li. 2020. “A3T-GCN: Attention Temporal
Graph Convolutional Network for Traffic Forecasting.” arXiv preprint arXiv:2006.11583.

Zimányi, Esteban, Mahmoud Sakr, and Arthur Lesuisse. 2020. “MobilityDB: A Mobility
Database Based on PostgreSQL and PostGIS.” ACM Transactions on Database Systems
(TODS), 45(4): 1–42.

135

C
E

U
eT

D
C

ol
le

ct
io

n

	Introduction
	Machine Learning on Networks
	Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs
	Introduction
	Related Work
	Graph mining procedures in Karate Club
	Design Principles
	Experimental Evaluation
	Conclusion and Future Directions
	Appendix

	Little Ball of Fur: A Python Library for Graph Sampling
	Introduction
	Related work
	Design principles
	Experimental Evaluation
	Conclusion and Future Directions

	Pytorch Geometric Temporal: Spatiotemporal signal processing with neural machine learning models
	Introduction
	Preliminaries and related work
	The Framework design
	Experimental evaluation
	Conclusions and Future Directions

	The Shapley Value in Machine Learning
	Introduction
	Background
	Cooperative Games and the Shapley Value
	Properties of the Shapley Value

	Approximations of the Shapley Value
	Monte Carlo Permutation Sampling
	Multilinear Extension
	Linear Regression Approximation

	Machine Learning and the Shapley Value
	Feature Selection
	Data Valuation
	Federated Learning
	Explainable Machine Learning
	Multi-Agent Reinforcement Learning
	Model Valuation in Ensembles

	Discussion
	Limitations
	Future Research Directions

	Conclusion

	Peer Effects in Directed Multiplex Networks
	Introduction
	Model
	Quadratic utility model with a single network
	Quadratic utility model with multiplex networks

	Monte Carlo evidence
	Erdos-Renyi random graphs
	Simulation using Barabasi-Albert graphs
	Simulation using networks with homophily

	Empirical example
	Data
	Estimated peer effects

	Conclusion

	References

