

RETRIEVAL AUGMENTED
GENERATION BASED, LARGE
LANGUAGE MODEL
POWERED DOCUMENT QA
CHATBOT – SAP AUSTRIA
Business Analytics MSc Capstone Project Summary

Marcell Magda

June 2024

C
E

U
eT

D
C

ol
le

ct
io

n

Table of Contents

Problem Introduction ..2

Client Requirements ...2

System Overview ..2

Evaluation Method ..3

Project Overview / Handover ...4

Learning Outcomes ...4

C
E

U
eT

D
C

ol
le

ct
io

n

Problem Description
As data volumes are ever increasing, many businesses manage a burgeoning catalogue

of documents, with those responsible being bogged down by the information overload. These

documents are also stored in a large number of file formats, such as PDFs, DOCX files, and

scanned images. This was the exact issue faced by the client, SAP, and so it was decided that

the best solution to this problem would be a centralized, AI-powered document management

WebApp that could intelligently handle, store, and retrieve documents using natural language

queries. This approach would aim to drastically reduce the time spent on manual document

handling and improve organizational efficiency.

Client Requirements
 In more detail, as of now, the querying of a document, or collection by a user involves

many clicks. These are, looking through internal systems to find the one that most likely

contains the file, combing through sub-folders to locate the file and question, and only then can

the process of reading through potentially hundreds of pages of content relevant to user begin.

This process, while wildly inefficient, is yet the current standard. The document management

WebApp aims to handle the first part by providing a central location the client to upload

relevant documents, and the second, and more challenging issue, by using Large Language

Models in combination with a Vector Store, based on the Retrieval Augmented Generation

Framework. This way, an employee can locate and synthesize relevant information in seconds

rather than hours.

System Overview
 The system created consists of three distinct parts: backend, a frontend, and a database.

The backend is written in python and handles all the interaction with the database(s) and the

LLM(s). Here there was an architectural choice made to create a system that is distilled to

consist of four distinct “building blocks”. These are: Chunking, Embedding, Retrieval and

C
E

U
eT

D
C

ol
le

ct
io

n

Prompt. All these different blocks have sub-blocks behind them that are interchangeable,

making the system highly robust. For example, at the chunking stage there is a choice of 3

different types (character, sentence, semantic), so it is up to the user to choose exactly what

kind of chunking method to pair with what embedding model at document ingestion, and then

to select a method of retrieval search and prompt template for querying this given ingested

document. For the front-end, it is written in JavaScript using a framework called React, and a

UI toolkit named “Material UI”. This front end allows the user to do two main interactions,

there is one page for uploading documents, and there is one page for querying documents. The

latter page is also where the uploaded documents are accessible, and when a given query is

inputted to the system, an optional visualization, built using “Plotly” can be turned on. This

displays a graphical representation of the document’s embeddings in a three-dimensional space

along with the query and the pieces of text used to formulate the answer. The application was

packaged up for deployment into and interconnected network of three containers, the frontend,

the backend and the backup database (Chroma DB).

In a firm specific aspect, there was a focus on using SAP’s own capabilities to build the

application. This involved two main tech platforms. Firstly, the SAP Business Technology

Platform was used to provide both the Large Language Models and the Embedding Models.

Here one can access OpenAI Models hosted in a secure Azure cloud environment. The second

is the SAP HANA Cloud database, which was used for storing the documents and the

embeddings through one of their premier offerings, the SAP HANA Vector datatype.

Evaluation Method
 The method used to evaluate this WebApp, namely the block-based architecture of the

backend involved creating an evaluator framework. This was perhaps the hardest part of the

project, as evaluation proved a very abstract concept in terms of a chatbot. There was an intense

search for a possible solution to this problem, a way to quantify the effectiveness and efficiency

C
E

U
eT

D
C

ol
le

ct
io

n

of the system. The solution was a testing script, that can evaluate the system’s efficiency in an

automated manner, by cycling through all the possible block combinations, currently:

3𝑐ℎ𝑢𝑛𝑘𝑠×3𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑠×2𝑠𝑒𝑎𝑟𝑐ℎ×3𝑝𝑟𝑜𝑚𝑝𝑡=54𝑢𝑛𝑖𝑞𝑢𝑒. There are sample queries define

together with “optimal” answers, and the system answers for these combinations are evaluated

against an “optimal” answer using the BLEU (Bilingual Evaluation Understudy) scoring

method. There is now a standardized method of testing out and evaluating new sub-blocks were

they to be introduced, and a way to optimize the system on a document level, if the client

wishes to do so.

Project Overview / Handover
 The project documentation, along with the codes for both the backend and the front

end, as well as the packaged application were handed over to the client, SAP at the end of the

project. The development can be considered successful as the created application fulfils the

requirements set forth and performs to standard. Through careful testing and continuous

consultation with the client, edge cases that would cause the system to go awry have been

identified and corrected prior to the handover. Where there to every be any future issues, the

source code is now fully available, and so theoretically any prospective client-side developer

can engage with the codebase as necessary.

Learning Outcomes
Throughout the project, I significantly enhanced my programming skills, honing my

existing ones in Python and SQL, while mastering a new one, JavaScript. I addition to this, I

also learned frameworks such as React, and gained in-depth understanding of SAP

technologies. Simultaneously, I developed a profound understanding of how artificial

intelligence and machine learning can be pragmatically applied to real-world business

challenges, particularly in natural language processing and document management systems.

C
E

U
eT

D
C

ol
le

ct
io

n

	Problem Description
	Client Requirements
	System Overview
	Evaluation Method
	Project Overview / Handover
	Learning Outcomes

