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Abstract

Networks are powerful tools to model systems composed of interacting entities, like
societies where individuals are interconnected. These structures are particularly useful for
studying the spread of social behaviours such as fashion trends, product adoption, or ideas
themselves, as they propagate through human interactions. As societies are dynamic and
constantly evolving, temporal networks, where connections between entities change over
time, provide an accurate framework to study spreading phenomena.

The dynamics of temporal networks can affect propagation processes, thus it is essential
to understand their evolution. In particular, their dynamics may evolve on multiple time
scales characterising periodic activity patterns or structural changes. The detection of these
time scales can be challenging from the direct observation of simple dynamical network
properties like the activity of nodes or the density of links. In the first part of the thesis
I propose two new methods based on static representations of temporal networks, which
allow us to define dissimilarity metrics and compute their power spectra from their Fourier
transforms. I demonstrate these methods outperform the reference measures using synthetic
and real-world data sets. One approach identifies more easily periodic changes in network
density, while the other one is better suited to detect periodic changes in the group structure
of the network.

After understanding the characteristics of temporal networks, I delve deeper into the study
of contagion processes on networks. The adoption of behaviours is largely determined by
stimuli from social interactions or external sources. While some individuals may change
behaviour after a single peer’s influence, others require multiple exposures from their social
circles or act independently. Those mechanisms, known as simple, complex and sponta-
neous contagions, often coexist in real-world social contagion processes. The goal of the
second part of the thesis is to understand whether coexisting adoption mechanisms can be
distinguished at the egocentric network level, without requiring global network informa-
tion. I formulate this question as a classification problem, employing likelihood analysis
and random forest classifiers in various synthetic and data-driven experiments.

While this last analysis is conducted on static networks, a more realistic scenario would
involve temporal networks where individuals can be infected by both the simple and the
complex contagions. Each person’s behaviour adoption depends on factors like personal
characteristics, the propagating behaviour, and the nature of social ties. My objective is to
determine which contagion mechanism predominates in social spreading with time-varying
interactions. I approach this as a classification problem using a mixed synthetic propagation
model on temporal networks. By analysing the simulation curves, I identify three categories
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of propagation and, through an analytical study, develop methods to detect transitions be-
tween them.

This study as a whole offers a novel perspective on the phenomena occurring at multiple
time scales in temporal networks, as well as on the nature of propagation processes. Those
insights allow a better understanding of contagion mechanisms from both local and global
views, contributing to the broader study of dynamic systems.
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afternoon walks and the morning swims. I would like to thank also Teo, Yijing, Jan, Sina,
Juli, Lorenzo, Onur, Omar, Jun, Qiuya, Piero, Lisette, Bukyang, Max, Thomas L., Rémi,
Valentina, Filippo, Andrea, Nelson and Alfonso for sharing the offices and contributing to
the good atmosphere around. And a big thanks also to the professors around for spreading
their good mood in the corridors, in particular to Fede for his only funny jokes, to Elisa and
to Petra. I am also very grateful to my colleagues in Barcelona, in particular Jaume, Andreu,
David and Andrea, for the warm welcome and the nice lunch breaks under the Spanish sun.

C
E

U
eT

D
C

ol
le

ct
io

n



I am glad to have found in Vienna a place to call home, mainly because I have always found
amazing flatmates wherever I have lived. Of course I am thinking about Marion, with who I
have spent hours talking late and laughing loud, Mirjam, who was always happy to share and
hear personal stories, Kevin, who warmed the flat with his playful laugh and his reflections
about the world, Christina, who has a huge heart and great feminist views, Leonie, who
comforted me with injury tips, Andrea, who quickly became a climbing partner always
ready for adventure, Luca, who brought his sweet personality and his dog adoption project,
Gladji, who had a great sense of fun and a great sense of friendship, Cleia who opened me
her house in Barcelona, Martina and Sara.

Also, network science is great but mountain sport is even better, and I survived the last
four years thanks to the evenings and the weekends I have spent in great company moving
around. I particularly thank Jessie B. whose enthusiasm for climbing, cinema and life in
general is contagious, Jessie S. for being not only an inspirational person, but also a very
warmhearted holiday-lover climber, Fabri to push climbing always harder in Slovenia, Aus-
tria and Italy, Gregor for the great advice, Christian who was a great bouldering-partner and
beer-drinking-partner, Adria to make me discover the coziness of Klosterneuburg despite the
cold of the winter, David for his constant enthusiasm and his big smile, Antoine and Blaz
with who I went ski-touring more than once no matter if it was sunny or windy, Thomas
B. for always coming back to Vienna motivated to move around. I am also very grateful to
the community of climbers of Boulderbar, for the good vibes, the cheering, and the warm
smiles, in particular thanks to Andrew, Ciro, Celia and Davide.

A big thank also to the pyjama party girls, Salambo, Ines, Anja, Lena and Núria. Ines
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Many thanks to my brothers Romain and Mathis, even if they have asked me thousands of
time to be written in these acknowledgements, I still like them a lot. And many thanks to
my parents Mireille and Bernard, to be a constant refuge of love and support.

ix

C
E

U
eT

D
C

ol
le

ct
io

n



Contents

1 Introduction 1

1.1 Human dynamics as complex systems . . . . . . . . . . . . . . . . . . . . 1

1.2 The static network approach . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Models of network structures . . . . . . . . . . . . . . . . . . . . . 4

1.3 The temporal network approach . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Representations and models of temporal networks . . . . . . . . . 9

1.4 Dynamical processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Simple contagion process (Sm) . . . . . . . . . . . . . . . . . . . 13

1.4.2 Complex contagion process (Cx) . . . . . . . . . . . . . . . . . . . 14

1.4.3 Spontaneous adoption process (St) . . . . . . . . . . . . . . . . . . 15

1.4.4 Comparison and distinguishability of the spreading processes . . . 15

1.5 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Detecting periodic time scales of changes in temporal networks 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Validation on synthetic data sets . . . . . . . . . . . . . . . . . . . . . . . 27

x

C
E

U
eT

D
C

ol
le

ct
io

n



2.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Parameter dependencies and limitations . . . . . . . . . . . . . . . 30

2.4 Applications on real networks . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Shuffling of the data . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Distinguishing mechanisms of social contagion from local network view 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Methods of classification . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Different mechanisms of social contagion . . . . . . . . . . . . . . 44

3.2.3 Process classification with known parameters . . . . . . . . . . . . 45

3.2.4 Process classification with unknown parameters . . . . . . . . . . . 54

3.2.5 Case study: adoption mechanisms on Twitter . . . . . . . . . . . . 55

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Competition between simple and complex contagion on temporal networks 65

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Model definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Analytical study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Pure complex contagion . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.2 Mixed simple and complex contagion . . . . . . . . . . . . . . . . 69

4.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusion 79

A Detecting periodic time scales of changes in temporal networks 81

xi

C
E

U
eT

D
C

ol
le

ct
io

n



A.1 Sensitivity analysis: size and length of the temporal network, sliding win-
dow parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B Distinguishing mechanisms of social contagion from local network view 86

B.1 Distribution of the features of the random forest of Experiment 2 . . . . . . 86

B.2 Best subset of features for the random forest on Experiment 2 . . . . . . . . 88

B.3 Accuracies of the classification of spontaneous adoption on Experiment 3 . 91

C Competition between simple and complex contagion on temporal networks 93

C.1 General case z > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C.2 Simulations on the extended parameter-space (β, p) . . . . . . . . . . . . . 94

xii

C
E

U
eT

D
C

ol
le

ct
io

n



List of Figures

1.1 Example of the representations of a temporal network realised with the
Supra-Adjacency and the Event-Graph methods. . . . . . . . . . . . . . . . 10

1.2 Illustration of the three contagion mechanisms: the simple contagion, the
complex contagion and the spontaneous adoption. . . . . . . . . . . . . . . 13

1.3 Speed dependency of the simple and complex contagions in function of the
parameters β and φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Methodology pipeline to measure the time scales of changes of a temporal
network GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Sketch of the method to compute the tensor portraits BDm
∗ of the temporal

network Gm
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Schematic representation of three settings simulated with the Activity-Driven
temporal network model with periodic changes of parameters. . . . . . . . 28

2.4 Periods corresponding to the two first harmonics measured through the SA-
method and the EG-method for periodic synthetic temporal networks gener-
ated through the Change of activity and grouping setting. . . . . . . . . . . 30

2.5 Number of events as a function of time for the four data sets: the US school,
the US flight, the Conference and the Resistance game. . . . . . . . . . . . 32

2.6 Power spectra of dissimilarity and activity functions of four real-world data
sets: a US middle-school, a US flight network, a conference, and a resistance
game network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Measures of the time-scales of changes of the US middle school temporal
network with the SA-method and the EG-method. . . . . . . . . . . . . . . 35

2.8 Power spectra for the data sets US school, US flight, Conference and Re-
sistance game networks shuffled using the two shuffling methods Pp(Γ) and
Pt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xiii

C
E

U
eT

D
C

ol
le

ct
io

n



3.1 Overview of experimental setups. . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Classification accuracy values of the likelihood method when it is obtained
theoretically and by simulation and of the random forest method. . . . . . . 46

3.3 Frequency of observation of the features used to train the random forest
classifier among the top-3 most important ones across the full parameter
space for Experiment 2 and 4. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Accuracies obtained by classifying the infection instances from Experiments
2 and 3 on different networks and with different methods. . . . . . . . . . . 56

3.5 Parameter distributions and dependencies of Experiment 4 inferred from the
#GiletsJaunes Twitter dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Classification of contagion mechanisms of the #GiletsJaunes Twitter dataset
as the function of φ̂ and β̂ parameters. . . . . . . . . . . . . . . . . . . . . 62

4.1 Network and contagion dynamics. . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Fraction of infected nodes ρ, proportion of nodes infected by simple ρs and
complex ρc contagion as a function of time, for z = 2. . . . . . . . . . . . . 72

4.3 Comparison of the contagion curves and the final ratio Λ when every node
has the same activity and when the activities are sampled from a power law. 73

4.4 The 1/ρ
z−1 curve obtained from simulation averages with (β, p)= (0.037,0.037),

fitted by a linear function on the period before tinit for z = 2 and z = 3. . . . 75

4.5 Areas corresponding to the three categories in the parameter-space (β, p) for
z = 2 and for z = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.1 Power spectra of the temporal network for different number of nodes. . . . 82

A.2 Power spectra of the temporal network for different periods. . . . . . . . . 83

A.3 Power spectra of the temporal network for different number of periods. . . . 83

A.4 Power spectra of the temporal network for different (γ1,γ2). . . . . . . . . . 84

A.5 Power spectra of the temporal network for different parameters of the sliding
window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1 Distribution of the features of the random forest algorithms across the pa-
rameter space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xiv

C
E

U
eT

D
C

ol
le

ct
io

n



B.2 Subsets of features giving the best accuracies in the parameter space (β,φ)
for a certain length of subset in the classification with the random forest of
Experiment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3 Subsets of features giving the best accuracies in the parameter space (β,φ)
for a certain length of subset in the classification with the random forest of
Experiment 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B.4 Parametrization and accuracy of the classification of Experiment 4 con-
structed based on the #GiletsJaunes Twitter dataset. . . . . . . . . . . . . . 92

C.1 Fraction of infected nodes, ρ(t), as the function of time for simulated spread-
ing scenarios, together with the proportion of nodes infected by the simple,
ρs, and the complex, ρc, contagions for z = 2. . . . . . . . . . . . . . . . . 95

C.2 Inverse of the proportion of infected neighbours to the power z-1, fitted with
a linear function on the first part of the propagation for the whole parameter-
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xv

C
E

U
eT

D
C

ol
le

ct
io

n



List of Tables

3.1 Average over the whole parameter-space of the accuracies on the classifica-
tion of the contagion cases from Experiment 2. . . . . . . . . . . . . . . . 52

3.2 Number of instances of contagion mechanisms inferred by the likelihood
and random forest methods on the #GiletsJaunes Twitter dataset. . . . . . . 57

B.1 Accuracy of the classification of the spontaneous adoptions on Experiment
4 with the random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvi

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 1

Introduction

1.1 Human dynamics as complex systems

We, as humans, are much less deterministic than atoms and molecules: we are driven by bi-
ological and emotional mechanisms which remain partially unknown and make the analysis
of our behaviours challenging. Our study is even more complex, thinking of us as social be-
ings, sharing the space and living together in our societies. Indeed, in addition to being com-
plex individuals on our own, we constantly interact with our peers, creating connections with
our social circle: family, friends, colleagues or acquaintances. Through those exchanges,
various processes emerge and characterise our behaviour like cultural dynamics [1], lan-
guage evolution [2], crowd behaviour [3] and the formation of hierarchies [4], contributing
to the complexity and the ever-changing nature of our societies over time. Namely, by influ-
encing our peers through our conduct and interactions, we thereby impact their decisions to
follow behavioural patterns similar to ours. Such patterns, mediated by social influence may
be interpreted as a spreading process leading to macroscopic phenomena of mass adoption
of products, ideas, beliefs, or information cascades [5–8].

To explore such phenomena, physicists often use tools from their domain even if social
propagation seems far from their original field [9]. This approach is justified by the obser-
vation that societies, like systems of statistical physics, can be understood as objects made
of interacting entities governed by their own rules. This parallel between social systems and
physical systems was first explored in the 1960s [10], marking the beginning of a cross-
disciplinary approach which continues to evolve today [5, 11]. Those studies have been
extended with the recent access to large data bases, allowing to explore further the dynam-
ics of social phenomenon, principally due to the advent of the digital data revolution. In
the context of behavioural propagation through social influence, the online social networks
and the messaging platforms provide great resources to understand communication patterns
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and behaviour adoption on a vast scale. Those new databases significantly surpass the old
traditional surveys conducted manually, which reach only a limited number of individuals.
Researchers use those new data sources to better design and parametrise the models, giving
more accurate forecasts, which helps to control the spreading dynamics of social norms,
memes or behavioural patterns.

Those spreading processes are arguably explained by simple decision mechanisms on well-
mixed populations [10–13]. However, this type of representation does not effectively encode
the underlying structure along which social influence travels, as in this description every
individual can have a potential contact with any other. To better capture the complexity of
real-world interactions, social networks provide a more realistic framework, as they restrict
connections to specific patterns of interactions. In that regard, the importance of social
networks has been recognised [14–16] since their structure could critically influence the
global outcome of social spreading phenomena unfolding on top of them [6, 17]. Social
networks inherently evolve over time, but they can be represented as either static or dynamic
structures, depending on data availability or the level of detail required for analysis.

1.2 The static network approach

1.2.1 Representations

Among the different existing network structures, I first introduce the static networks ap-
proach, which assumes that connections between individuals remain the same over time.
Static networks [18] are represented as graphs constituted of a set of entities V , called
nodes, which interact through connections called links or edges, defined by the set E, thus
G = (V,E). The number of vertices is typically indicated by N and the number of edges by
L. A way to represent networks is to use their adjacency matrices A, for which the element
A[i,j] is 1 if there is an edge between nodes i and j and 0 otherwise. In terms of struc-
ture, networks can be either undirected, for which the edges have no specific direction, or
directed, when the interactions are oriented from one node to another. Moreover, they can
be analysed at different scales, ranging from the microscopic level, focusing on individual
nodes and their connections, to the macroscopic level, which examines the overall structure
and patterns of the network. At the microscopic scale, an important node quantity is the de-
gree k, noted as ki for node i, measuring the number of nodes with whom it has a connection,
known as neighbours. The set of neighbours of node i is indicated as Γi, and its ego-network
is composed of the set Γi and the set of edges connecting the neighbours to node i. Another
crucial metric at the node scale is the clustering coefficient, which measures the probability
that two neighbours of a node are also connected to each other. The value of the clustering
coefficient at the node level is calculated as:
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Ci =
2ei

ki(ki −1)
(1.1)

where ei is the number of edges between the neighbours of i. In this way, the local clustering
coefficient is expressed as the ratio between the number of actual edges between the nodes
from Γi and the number of possible edges between them ki(ki−1)/2. This quantity can also
be defined at the global level providing an overall indication of the clustering in the entire
network as:

C =
3×number of triangles

number of connected triplets
(1.2)

where a triangle is a set of three nodes all connected to each other, and a triplet is a set of
three nodes connected by at least two edges. Additionally, at the mesoscopic scale, we can
identify communities in the network, which are ensembles of nodes that are more densely
connected to each other than to the rest of the network. There also exists at that level
connected components, which are groups of nodes in a network where every node can be
reached from any other node in the group through a series of edges, without connections to
nodes outside the group. Finally, at the global level, the shortest path length between two
nodes i and j, indicated as d(i, j), represents the minimum number of edges required to go
from node i to node j. Building on this, the diameter of the network is the longest shortest
path length, representing the maximum distance between any pair of nodes in the network.

D = max
i, j∈V

d(i, j) (1.3)

In a similar way, the average shortest path length ⟨d⟩, calculated over all pairs of nodes, is a
widely used measure to quantify how easily it is to navigate in the network.

1.2.2 Properties

Even if every real network is different, we find common properties that are present in almost
all of them [18]. First, the degree distribution pk follows in general a broad distribution,
implying that while the majority of the nodes have a low degree, a small fraction of them
possess a very high number of connections. For many of these networks, this distribution
is a power-law distribution, with an exponent typically between 2 and 3. This contributes
to making the network more resilient against random failure, as the high degree nodes are
more probable to not be affected by a random removal of the nodes, and thus reduces the risk
of disconnecting the network. Another property of real-world networks is a high clustering
coefficient. Indeed, this phenomenon is largely observed in social networks in which, for
example, the concept of “my friends are also friends between each other” is often true, but
can also be present in other types of networks. Finally, most networks tend to have a short
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average path length, which enables easy reachability across the network. The combination
of high clustering and short path lengths is known as small-worldness. This concept was
first highlighted by Stanley Milgram in the 1960s with his Six Degrees of Separation exper-
iment [19]. In his study, participants were asked to send a letter to a target person through
acquaintances, only using people they knew by their first name. Milgram found that, on
average, it took about six intermediaries, or degrees, for the letter to reach the target, sug-
gesting that any pair of individuals in the world are connected by a surprisingly short chain
of social connections. This observation has been repeated recently using emails [20] and
online social networks [21] verifying the earlier observed phenomena.

1.2.3 Models of network structures

As real-world networks exhibit specific characteristics, network scientists have developed
models to generate random networks that replicate their key properties, namely a power-
law degree distribution, a high clustering coefficient and a short average path length. These
models are largely used to study network science phenomena within a controlled environ-
ment where the properties and the parameters are known. This section presents the main
approaches used to construct synthetic static networks, that I am going to use in the upcom-
ing sections describing my research results.

Erdős–Rényi Model

Description
The Erdős–Rényi (ER) network model, known for its simplicity, stands as the fundamental
reference model in network theory. In the late 1950s, Erdős and Rényi introduced two ver-
sions of this model [22], both beginning with a network of N vertices. In the first version, the
L edges of the network are selected at random among the Lmax =N(N−1)/2 possible edges.
However, this approach introduces a subtle interdependence among edges as each link can
be chosen only once, thus this method is less commonly used. The second version, which
is more popular and the one employed in this work, avoids this effect as each of the Lmax
edges is independently present in the network with probability p. Thus the average number
of links ⟨L⟩ for networks with parameters (N, p), denoted GN,p, is given by ⟨L⟩ = pLmax.
Furthermore the correspondence between the two versions, parameterised respectively by
(N,L) and (N, p) can be expressed by the probability of constructing a network with exactly
L links:

PL(GN,p) =

(
Lmax

L

)
pL(1− p)Lmax−L (1.4)
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Degree distribution
The degree distribution in Erdős-Rényi model networks follows a binomial distribution
given by

pk =

(
N −1

k

)
pk(1− p)(N−1)−k (1.5)

This formula comes from the selection of the k neighbours of a node from the N−1 available
other nodes, where each connection occurs with probability p and is discarded with prob-
ability 1− p. Thus the average degree is < k >= p(N − 1), and the standard deviation is
σ

2 = p(1− p)(N−1). It is worth noticing that their ratio σ/ < k >≈ 1/(N−1)1/2 indicates
that as the network size increases, the degree distribution becomes increasingly narrower
around the average degree. For large N and a fixed < k >, the degree distribution is well-
approximated by a Poisson distribution pk = e−<k> < k >k /k!, which is characterised by
its narrow shape. In any case, the distribution does not follow a power law, so misses to
capture this characteristic of real networks.

Clustering coefficient
The clustering coefficient C of an Erdős–Rényi model network is determined by the proba-
bility p that two neighbours of a node are also connected to each other. Thus, this quantity
equal to C = p =< k > /(N −1) is quite small if N is large. This low clustering coefficient
contrasts with real-world networks, which typically exhibit much higher clustering coeffi-
cients. Therefore, the Erdős–Rényi model fails to replicate the high clustering observed in
real-world systems.

Average distance
We use here the diameter of a network as a proxy of its average shortest path length. In
random graphs, the convention is that the diameter of a graph is defined as the maximum
diameter of its connected components [23]. For most values of p, nearly all graphs with
the same N and p have an identical diameter, indicating that all graphs with N nodes and
a connection probability p have a narrow range in which their diameters D vary, usually
concentrated around D= ln(N)/ln(pN). Since this diameter value is quite small, the Erdős–
Rényi model successfully captures a key characteristic of real networks: a small diameter.

Component sizes
With this model, a giant component can emerge, and Erdős and Rényi found that the tran-
sition of apparition of this giant component is determined by the parameters of the model
(N, p). Indeed, when p is sufficiently small relative to N, such that p = c/N with c < 1 as N
increases, the network consists of small connected components of size O(ln(N))1. However,
when c > 1, a single giant component of size O(N) emerges coexisting with several smaller
isolated components, including a second-largest connected component of size O(ln(N)).

1The notation O or ’big o’ describes the upper bound of the growth rate of a function f (n) in terms of
another function g(n). f (n) = O(g(n)) means that f (n) grows no faster than a constant multiple of g(n) as
n → ∞
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At the critical point where c = 1, a second-order transition [24] occurs leading to a giant
component of size O(N2/3).

Watts-Strogatz Model

While the Erdős–Rényi model is known for its simplicity, it has the disadvantage of having
a low clustering coefficient [25]. To solve this issue, Watts and Strogatz introduced a new
model (WS) specifically designed to demonstrate the possible presence of high values of
clustering coefficient and short distances in the same network.

Description of the model
Inspired by the ”six degrees of separation” concept, stating that each person is in the world
connected to anyone else with a chain of six acquaintances on average, the objective of
Watts and Strogatz was to develop a network model that exhibits small-world properties,
i.e. a high clustering coefficient and a short average path length. Their idea [26] was to use
a network which already presents a high clustering coefficient, in their case a regular ring
lattice which naturally contains a lot of triangles. The model initially consists of N vertices,
each connected by k0 edges. In order to reduce the average path length of the network,
the authors introduce a rewiring process where each edge is randomly reconnected with a
probability p, meaning that one end does not change while the other end is rewired to a
random vertex. The final network is an object between a regular ring lattice where p = 0
and a completely random network where p = 1.

Degree distribution The degree distribution is typically measured from a version of the
Watts-Strogatz model slightly different than the one described above, in which links are
not rewired but added to the lattice with a probability p. This model is then similar to an
Erdős–Rényi network for which a link exists with a probability p. As the original lattice has
an initial number of k0 edges, the degree distribution is given by a shifted Poisson distribu-
tion

pk = e−<k−k0>
< k− k0 >

k−k0

(k− k0)!
(1.6)

Thus this model unfortunately does not present a broad degree distribution as real networks,
since the Poisson distribution is sharply peaked.

Clustering coefficient
The authors of [27] introduce a new definition of the clustering coefficient at a global level.
This quantity C can then be measured as the fraction between the mean number of links
between the neighbours of a node and the mean number of possible links between these
neighbours. By applying this definition, the authors obtain for the Watts-Strogatz model:
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C(p) =
3(k−1)

2(2k−1)
(1− p)3 (1.7)

as N → ∞. This value remains large for a large interval of p values, ensuring a large cluster-
ing coefficient.

Average path length
The average path length < d > decreases quickly when p increases, as it introduces shortcuts
in the lattice network between the nodes. Indeed, each random rewiring is likely to connect
two distant parts of the network, and thus significantly reducing the average path length.
Only a low proportion of rewiring is enough to observe an important decrease of the average
path length, typically when p ≈ O (1/N) [28], while the network retains ordered at the local
level. Consequently, this model successfully achieves its objective: for a range of values
of p, the network exhibits both the two small-world properties which are a high clustering
coefficient and a small path length.

Barabási-Albert Model

The Watts-Strogatz model successfully captures the small-world phenomenon observed in
real-world networks, but fails to explain the broad degree distribution characterising these
networks. To overcome this challenge, Barabási and Albert introduced a model [29] that
generates networks with such properties.

Definition
Earlier synthetic models typically assume that networks have a fixed number of nodes, but
in reality they evolve by growing. Building on this concept, Barabási and Albert develop a
model, known as the Barabási-Albert (BA) model, belonging to the family of random graphs
which evolve through growing processes. Beginning with a small initial number of nodes
m0, nodes are then added one by one to the network, each connecting to m nodes. To ensure
to have a power law degree distribution, the m neighbours are chosen with preferential at-
tachment, meaning that this method biases the selection of the m nodes, promoting the ones
which have more connections. The probability that a new node gets attached to the already
existing node i is given by:

Π(ki) = ki/ ∑
j∈Γi

k j (1.8)

The total number of nodes at any given time step t is expressed by N = m0 + t, and the
total number of links by L = mt. In some studies [30], the initial m0 nodes form a clique,
therefore the number of links is given by L = mt +m0(m0 −1)/2.
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Properties
Since the probability of selecting a node is proportional to its degree, the degree distribution
of the network follows a power law with an exponent of 3 regardless of the value of m, with
an average degree of < k >= 2L/N. Additionally, the average distance < d > is given by
ln(N)/ln(ln(N)), which is consistent with the short average path lengths observed in real
networks [31]. However, the clustering coefficient, expressed as C = ln(N)2m/(8N), goes
to zero when N → ∞, unlike the expected high clustering typically observed in real-world
networks.

Stochastic Block Model

Another characteristic of real-world networks is the frequent presence of communities,
meaning that certain groups of nodes are more densely connected between themselves than
with the rest of the network. This observation motivated network scientists in the early
1980s to develop a model to build random modular graphs, which has led to the creation
of the Stochastic Block Model (SBM) [32, 33]. In the SBM, nodes are assigned to dis-
tinct blocks, and edges are distributed following the Erdős–Rényi model, but the connection
probabilities vary depending on whether edges are within or between blocks. This design
ensures that nodes within the same block share similar connectivity patterns. The flexibility
of the SBM to capture diverse connection schemes among large network blocks makes it a
suitable tool in network science, with multiple applications such as graph clustering [33],
social network analysis [34], and community detection [35, 36].

1.3 The temporal network approach

Even though static networks are accurate to describe structure characteristics of real-world
complex systems, many complex systems are evolving dynamically as their elements and
the interactions between them are subject to changes in time. The recent availability of
high-temporal-resolution network data sets has stimulated the emergence of the new field
of temporal networks [37–39], which has been useful to describe human behaviour [40–
42]. In particular, this representation goes beyond the conventional static description of
networks [43], as it keeps track of the temporal order of successive interactions between
elements and allows for instance to identify notions of potential causality.

1.3.1 Representations

In practical terms, a temporal network GT = (V,ET ,T ) consists of a set of nodes V and a set
ET of events over a time interval T , each event e(i, j, t) ∈ ET describes a temporal interac-
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tion between two nodes (i, j) ∈ V ×V at a certain time t ∈ T . A snapshot at a given time t
is the static graph containing the nodes and edges present at time t in the temporal network.
Therefore, similarly to static networks, single nodes can be characterised by their instanta-
neous degree (number of neighbours at a given time). At the global level, the temporal paths
between nodes represent the series of successive interactions along which information can
be transmitted [44,45]. In addition, the activity of a temporal network stands for its number
of events as a function of time.

1.3.2 Properties

Temporal networks present different time-dependent properties at different structural scales.
First, links often follow a bursty dynamics, meaning that events occur in rapid, concentrated
bursts followed by long periods of inactivity [46, 47]. This characteristic occurs in many
real-world temporal networks such as communication networks, social interactions, or even
transportation systems. The bursty nature of human behaviour has important implications in
the dynamics of spreading processes, like information diffusion or epidemic outbreaks, as
burstiness can accelerate or slow down these processes depending on how the events are dis-
tributed over time. In addition to this, connections between nodes tend to follow correlated
dynamics, such as circadian patterns, which are all typical of human dynamics [48–50].
While different measures such as the degree or the communities change through time, they
may evolve at different time scales [51], including overall changes between global states at
the macroscopic level [52–54]. In particular, periodic variations can emerge, e.g. driven by
the circadian fluctuations of human behaviour [50, 55], regular scheduling in different con-
texts like in transportation or schools, or the repetition of metabolic reactions in biological
systems [56].

1.3.3 Representations and models of temporal networks

Higher order representations of temporal networks

Temporal networks are complex objects, but their study and the investigation of the dynam-
ical processes happening on top of them can be simplified by embedding them into simpler
structures. For this purpose, we are using in Chapter 2 two methods, the Supra-Adjacency
and the Event-Graph representations. Both methods embed the information from a tempo-
ral network into a static network, enabling them to be applicable to any temporal network.
They also provide a lossless mapping that preserves all the essential temporal dynamics
while transforming them into a static framework.
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a.  Original temporal network:

n1
n2
n3

Timet1 t2 t3

e1

e2 e3

G = ({n1, n2, n3}, {e1, e2, e3}, {t1, t2, t3})
c. EG representation  :GEG

n1
EG : (n2, n3, t1)

n2
EG : (n1, n2, t2)

n3
EG : (n1, n3, t3)

n1
SA : (n2, t1)

n2
SA : (n3, t1)

b.  SA representation  :GSA

n3
SA : (n1, t2) n5

SA : (n1, t3)

n4
SA : (n2, t2)

n6
SA : (n3, t3)

Figure 1.1: Example of the representations of a temporal network (panel a) realised with
the Supra-Adjacency (SA) (panel b) and the Event-Graph (EG) (panel c) methods. In the
original temporal network GT , the timelines of the nodes are represented by horizontal lines
depicting the activity of each node through time (the direction of the time goes from left
to right). Each event occurring between two nodes is symbolized by a line linking those
two nodes at the corresponding time. The SA and EG representations are static directed
networks. In the SA case, the nodes are pairs (node, timestep) of the temporal network. In
the EG, the nodes are events, i.e., triplets (node, node, timestep) of the temporal network.

The Supra-Adjacency (SA) representation [57,58] was initially used to investigate dynamical
processes on temporal networks, particularly for predicting the evolution and outcomes of
such processes with limited information on the dynamics itself. This method transforms a
temporal network into a static directed network, efficiently compressing the information. It
also encapsulates the paths along which information can propagate in the original temporal
network.

In this representation of a temporal network GT , denoted GSA = (VSA,ESA), each node vSA ∈
VSA represents a pair (node, time) of the original temporal network: the node (i, t) ∈ VSA
denotes that the node i ∈ V was active at time t ∈ T , i.e., had at least one interaction at
t. A directed edge eSA ∈ ESA between two nodes of VSA, (i, ta) and ( j, tb) (with ta < tb),
encodes the fact that information can propagate on GT from node i at ta to node j at tb,
without intermediary events. If i = j, this is possible if ta and tb are successive interaction
times for i (there is no event involving i at times ta < t < tb). Edges of type (i, ta)→ (i, tb)
in ESA thus simply correspond to following the successive interaction times of i in GT . For
instance in Figure 1.1, node n2 is involved in the events e1 and e2, happening respectively at
times t1 and t2. As it is the same node in two consecutive events, there is an edge in the SA
representation between (n2, t1) and (n2, t2). For i ̸= j instead, the event (i, j, ta) ∈ ET results
in two directed edges in ESA: (i, ta) → ( j, tb) and ( j, ta) → (i, tc), where tb (resp. tc) is the
first time after ta in which j (resp. i) is active again. In Figure 1.1, there is an edge in the SA
representation between (n2, t1) and (n3, t3) and another edge between (n3, t1) and (n2, t2) as
the nodes n2 and n3 are linked at time t1 in the original temporal networks. The direction
of edges in GSA respects the arrow of time, and the set of edges ESA allows to preserve the
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information about all possible temporal paths of the original temporal network.

The Event-Graph (EG) representation [59,60] is a static weighted directed acyclic network
representation of a temporal network. It encodes all the possible time-respecting paths that
information or an infection can follow within the network. The original motivation for using
the event-graph is to study percolation in temporal networks with a computationally efficient
tool, but it can be applied to other contexts.

The construction of an event-graph network GEG from a temporal network GT goes as the
following: each event in GT is represented by a node in GEG, and two nodes of GEG are
connected if the two corresponding events in GT were adjacent [59], i.e., share at least one
node (in V ) and are consecutive. For instance, there is an edge in Figure 1.1 between the
nodes of the EG representation corresponding to the events e1 (n1

EG) and e2 (n2
EG) as they

share the node n2. Each edge between two nodes in GEG is directed along the direction of
time (from the earlier event to the later one) and is weighted by the time difference between
the two corresponding events. Consequently, GEG encodes also all information of time
respecting paths emerging in the original temporal network.

The Activity-Driven temporal network Model

The Activity-Driven temporal network model [61] (ADN) is one of the most widely-used
frameworks to capture the dynamics of real-world temporal networks. This model is defined
by a set of N nodes, each having an intrinsic activity ai taken from a given distribution P(a) 2.
At each time step, node i becomes active with probability ηai, where η is a rescaling factor
and, if active, establishes connections with m other nodes chosen randomly. Connections
are erased after each time step thus the model does not present any memory nor correlations
between time steps. As a major strength this model explains structural features like the
presence of hubs, which arise from the heterogeneous activity levels of the nodes, while
remaining simple and flexible. Additional mechanisms driving the link dynamics of nodes
can explain further emergent network properties like a high clustering coefficient [63].

Random reference models of temporal networks

On a different note, empirical temporal network data entail structural and temporal corre-
lations of different nature. To explore their characteristics, a common method consists of
shuffling the data to create randomized reference models [64] in which specific correlations
are destroyed while others are preserved. In other words, through shuffling we create a sam-
ple from a uniformly sampled microcanonical ensemble of randomized networks, where

2Here we define the activity as an activation probability. Other works [62] consider ai as an activation rate,
or probability per unit time
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certain network properties are kept constrained, while the networks are maximally random
otherwise. Specifically, in this work we consider the following random reference models,
following the canonical notations introduced in [64]:

• Pp(Γ) shuffling: To remove any correlations, the order of the temporal network snap-
shots is randomly shuffled, keeping fixed the structure of each snapshot. This proce-
dure destroys any structural correlations between consecutive snapshots, removing the
effects of structural reorganizations and randomizing also the sequence of the timing
of the events between the nodes.

• Pτ shuffling: The method rewires randomly all links in each snapshot of the temporal
network. This process keeps the same number of nodes and edges as in the origi-
nal snapshot. The number of events by time step is thus preserved while the group
structure and its changes are removed.

1.4 Dynamical processes

The study of spreading processes on top of networks is a particularly prominent area of
network science that gets significant attention from the community. These explorations
provide an advanced understanding of various types of propagation, including diseases but
also social behaviours, on which I focus in this manuscript. Initially, the models were built
assuming that the population was fully mixed, meaning that each individual can interact with
any other person in the network [65]. This hypothesis, known as the homogeneous mixing
approximation, assumes that the network, for which the nodes represent the individuals, is
fully connected. However, most real-world networks are sparse [66], necessitating to use
another underlying structure namely complex networks [67].

Models of social contagion on networks commonly describe the propagation as a binary state
process [68], attributing to each node a state representing its status regarding the spreading.
In this framework, the individuals of the network can be either susceptible (S) meaning the
contagion has not reached them yet or infected (I) indicating they have already been con-
taminated and may potentially spread the infection. These two states, S and I, are mutually
exclusive. The condition to transit from the susceptible to the infected state depends on
the chosen model, for which we distinguish two main families: the simple and the complex
contagions. Additionally, infections not caused by the network are modelled as spontaneous
adoption, accounting for external factors that may influence the infection of the node. Those
different contagion types, explained in Figure 1.2, are discussed in the following paragraphs.
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Contagion mechanisms

SIMPLE  
(Sm)

COMPLEX 
(Cx)

#
+# #

> ϕi

+

SPONTANEOUS 
(St)

: susceptible : infected

βi βii i

r

ii i

Figure 1.2: Illustration of the three contagion mechanisms: the simple contagion param-
eterised by the adoption probability βi through a single stimulus; the complex contagion
parameterised by the threshold φi of the necessary fraction of adopter neighbours to induce
the adoption event; and the spontaneous adoption that occurs with probability r.

1.4.1 Simple contagion process (Sm)

One family of mechanisms, commonly termed simple contagion in the social science litera-
ture, has first been introduced to model biological epidemic processes [6,67]. These models
are originally used to represent the transmission of a disease from a susceptible to an infected
individual after contact. However, their effectiveness has been proved on the spread of other
fields such as the propagation of social behaviour like the adoption of applications [69, 70],
technologies [71, 72] or the spread of rumors [10, 11]. This contagion type assumes tran-
sition probabilities from susceptible to infected state, where a single contact or exposure is
taken independently and sufficient to trigger transmission. The term simple comes from the
fact that an infection may occur from only one exposure. The simplest model that applies
this idea, and the one used in this work, is the Susceptible-Infected (SI) model [6].

Susceptible-Infected (SI) model
The concept is the following: each interaction between a susceptible node and an infectious
one may independently result in the infection of the susceptible node, following a set prob-
ability. At the start, every node is susceptible, except for a small set of infected individuals,
called seeds. Any infected individual can spread the infection to one of its susceptible neigh-
bours i with a probability βi per iteration, as explained in Figure 1.2. If a susceptible node
is connected to multiple infected neighbours, it has multiple independent chances of getting
infected. The outcome of this process is always the infection of every node after forecasting
a logistic curve with an early exponential increase [73].

Other models
In the SI model, the only possible state transition is from susceptible to infected, with no
possibility of going back to the susceptible state once infected. Nevertheless, other well-
known models allow different transitions, such as the Susceptible-Infected-Susceptible (SIS)
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model [67], where infected nodes can revert to being susceptible. Additionally, there are
models with additional states, like the Susceptible-Infected-Recovered (SIR) model, where
nodes enter a recovered state after infection and cannot be reinfected.

1.4.2 Complex contagion process (Cx)

From simple contagion to complex contagion
Even though the simple contagion effectively models social phenomenon in some cases, the
reasons for infection are sometimes more complex. Empirical evidence suggests that peer
influence and reinforcement mechanisms play a crucial role in social contagion processes
[74,75]. Those indicate the need for an alternative model, called complex contagion [76,77].
In this case, exposures are not independent, but peer pressure can impact in a non-linear way
the individual infection probability [13, 17, 78] meaning that contagion requires multiple
exposures from different sources to happen. The complex contagion has inspired different
models and the main ones are described in the following paragraphs.

Threshold models
Some of the most used models to depict the complex contagion are the threshold models,
where individuals change their behaviour once a predefined quantity exceeds a limit. Those
thresholds are associated with social contagion phenomena, where the influence of peers
can change an individual behaviour after reaching a limit. Interestingly, thresholds are also
significant in certain diseases like tuberculosis and dysentery [79] where the infection occurs
only when the pathogen concentration in the body surpasses a critical level.

The early fundamental work in this area has been done by Schelling and Granovetter on
well-mixed populations. First Schelling [13] defines a model of residential segregation il-
lustrating how an individual decides to leave its neighbourhood based on a threshold on
the number of agents of its own colour living close by on a grid. Inspired by the work
of Schelling, Granovetter [12] discusses the number of people engaging in a particular be-
haviour depending on the distribution of individual thresholds, highlighting the critical role
of social networks and peer influence in shaping collective outcomes. He claims that this
model could explain a range of social behaviours, including the diffusion of innovations, the
propagation of rumours or the voting behaviour.

Watts models
The model proposed by Granovetter propagates on top of a fully mixed population, mean-
ing that every individual can potentially interact with any person in the system. The Watts
model [17] adopts Granovetter’s idea on structured populations represented as networks,
thereby removing the fully mixed population assumption. In this model, the determinant
quantity is not the number of exposures but the number or proportion of infected peers
surrounding a susceptible individual. When this quantity exceeds a certain threshold, the
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node gets infected due to the accumulated social influence. We use this model in the rest of
the manuscript given its common application in several studies about spreadings of social
behaviour [17,70,80–82]. We consider the fraction of the infected neighbours as the consid-
ered quantity for the infection, and we denoted by φi the threshold of the node i (see Figure
1.2).

Cascade effect
Depending on the model parameters, the complex contagion mechanism may lead to a cas-
cading phenomenon, where mass infection emerges over a short period of time. This was
first shown on Erdős-Rényi networks by Watts [17], while several follow-up studies explored
a rich family of similar phenomena in multi-layer [83–85], weighted [86, 87] or temporal
networks [47, 88], demonstrating their relevance in real-world settings [70, 74, 89–91].

1.4.3 Spontaneous adoption process (St)

Simple and complex contagions capture network-based adoptions, however, social influ-
ence may not always spread on an observable network (e.g., advertisements, news or policy
recommendations, etc.). Some studies take such external influences into account by also
considering a third mechanism, called spontaneous adoption [70,92,93]. This type of infec-
tion is agnostic to the underlying network structure and is modelled as an alternative way for
a node to become infected in addition to the simple or the complex contagions. We denote
by r the rate of infection of the spontaneous adoption (Figure 1.2), which can infect equally
at every time step all susceptible nodes.

1.4.4 Comparison and distinguishability of the spreading processes

Most studies focus on understanding the properties and the distinguishability between the
simple and the complex contagions, as it helps to better understand and model any conta-
gion process. This comprehension is crucial for example to develop effective strategies in
marketing, misinformation control, and public health interventions. Since those works in
general do not consider the spontaneous adoption due to its independence from the network,
we explore in the next paragraphs the main differences between the simple and the complex
contagions.

Speed of the propagations
The speed of the contagion processes differs according to the parameters employed in the
simulations, which could help to differentiate between the two processes. In Figure 1.3, I
implement separately a simple contagion process in which every node has the same parame-
ter β and a complex contagion process in which all nodes are characterised by the threshold
φ on Erdős–Rényi networks. High values of β characterise simple contagion processes with
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high speed since nodes in this scenario have a higher probability of being infected, com-
monly after a single stimulus. The opposite effect characterises complex contagion: if φ

is high, the propagation is slow-down as the proportion of infected neighbours needed for
adoption is large.
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Figure 1.3: (central panel) Speed dependency of the simple and complex contagions in
function of the parameters β and φ (respectively). The purple and orange colours, which
are schematic, display respectively the areas where the simple and the complex contagions
are faster. The number of infected nodes through time is shown on the four extremes of the
parameter space, in purple for the simple contagion and in orange for the complex contagion.
The dynamical processes are implemented separately on an Erdős-Rényi network of 1000
nodes, with an average degree of 4.

Moreover, the logistical curves, which show the number of infected nodes over time, differ
between the simple and the complex contagions. In the simple contagion, the curves typi-
cally exhibit a fast exponential growth at the beginning as each exposure can independently
trigger the spread, followed by a steadier increase. The complex contagion, however, starts
more slowly as it requires multiple exposures from multiple sources. Then, once enough
reinforcement is achieved, the number of infected nodes suddenly increases, leading to a
sharp rise caused by the cascade effect.
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Properties of the contagion types
The simple and the complex contagions depend non-trivially on several networks and dy-
namical characters of an ego and its peers [94]. It has been shown that while simple conta-
gion spreads easier on dense and degree-heterogeneous structures, with high-degree nodes
early infected [95], these properties mitigate complex contagion as the threshold of high-
degree nodes can be hardly reached [6, 96]. Moreover, while weak ties connecting densely
connected communities act as facilitating bridges for simple contagion [12], they slow down
complex contagion cascades [76], as they likely deliver non-reinforced social influence to
susceptible individuals. In addition, the timing and the order of infection stimuli, their
concurrency, and the bursty dynamics of interactions [88, 97, 98] between individuals and
their peers influence the adoption dynamics and the macroscopic dynamical outcome of the
spreading process as a whole.

Moreover, both contagion types exhibit a property known as the waiting time [99], which
refers to the time between when a node becomes infected and when the adoption is actually
observed. Since individuals have limited time and energy, there can be a delay between
the moment someone wants to adopt a behaviour and the moment it is fully adopted. In
the simple and the complex contagion models, this waiting time is always 1 as the ego
node adopts immediately in the next time step once its condition of infection is reached.
However, in real-world scenarios, this delay can vary, which will limit some of our methods
in Chapter 3.

Distinguishability of the mechanisms
Distinguishing between the simple and the complex contagions is an emerging question
that several studies have already tackled, classifying a whole spreading process between the
different types of contagion.

The first significant study in this area [90] was conducted on the social platform Twitter (now
X), using ’social bots’ to disseminate information. They describe the simple and the com-
plex dynamics by proposing two Bayesian statistical models which consider the timing of
peer stimuli. This method demonstrates that the complex contagion model more accurately
represents the observed behaviour of the bots.

Some years later, Hébert-Dufresne et al. [100] compares two interacting simple contagion
processes -where being infected by one process increases the probability of being infected
by another- with a complex contagion process. They found that these processes are not
distinguishable based on macroscopic quantities such as the final fraction of infected nodes
or the number of infected neighbours at the moment of the infection.

Another study [96] further distinguishes the simple contagion, the complex contagion and
two other types of contagions involving higher-order contagion mechanisms where group
dynamics enhances the infection rate. By analyzing how high-degree nodes get infected
first with the simple contagion and last with the complex contagion, they measure the cor-
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relation between the ranking of the nodes in the contagion with its degree and its clustering
coefficient. By training a machine learning algorithm, they successfully classify contagions
into four types, achieving accuracies above 0.84.

In Chapter 3, we will also address this issue by classifying infection instances at the node
level. Moreover, in chapter 4, we will consider mixed propagation dynamics and determine
if these processes are governed by the simple or the complex contagions.

1.5 Outline of the thesis

Revealing mechanisms behind spreading processes is important to understand social be-
haviours propagation through societies. These dynamical processes are more accurately
represented on temporal networks, as they reflect the ever-changing nature of social inter-
actions. However, the evolving characteristic of temporal networks significantly influences
propagation processes, hence the need to analyse those objects. In particular, many societal
phenomena are cyclic, such as the daily patterns, thus temporal networks present periodic
changes that are usually not obvious to measure. In chapter 2, we contribute to this endeav-
our by defining a new method to measure the periodic time scales of changes in temporal
networks. Given a temporal network as input, we first divide it into temporal sub-networks.
We then use lossless mappings (see Section 1.3.3) of these temporal sub-networks to get
a sequence of static networks and quantify the dissimilarity between them successively to
obtain a dissimilarity function describing the changes between the successive temporal sub-
networks. We extract the timescales of this function by computing its power spectrum to
identify its main frequencies and harmonics. We focus on applying this method to the de-
tection of periodic changes in the link density and group structure of temporal networks.

With a better understanding of the properties of temporal networks, we investigate closer
spreading processes on top of networks. The challenge of distinguishing between the simple
and the complex contagions is gaining importance in the scientific community, with several
studies addressing this issue (see Section 1.4.4). However, these studies commonly make
two assumptions limiting their applicability in real-world scenarios. First, they expect full
knowledge about both the underlying network structure and the spreading dynamics. Indeed,
this is a strong assumption in common real-world scenarios, where information about infec-
tion events is typically incomplete or limited to local knowledge, possibly obtained only
about an adopting ego and its peers. Second, these studies assume that all individuals fol-
low the same single adoption mechanism; either simple or complex contagion. In contrast,
it has been argued that the mechanism driving one’s decision to adopt a behaviour during
an unfolding social contagion may depend on the intrinsic susceptibility of an individual to
the actual behavioural form and the properties of the propagation process itself [101, 102].
Therefore each single adoption event may be driven by different mechanisms that jointly
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depend on personal factors [103,104] (heterogeneous susceptibility and predisposition), the
properties of the item being adopted (Gladwell’s stickiness [101]), and the particular context
(environment, time of adoption, other external factors).

In Chapter 3, we study the distinguishability between simple, complex and spontaneous con-
tagion mechanisms by addressing the challenge that a single social contagion process may
involve multiple adoption mechanisms [105]. We frame this question as a classification
problem at the ego-network level and explore solutions based on likelihood and random for-
est approaches. These methods are developed and tested on extensive synthetic simulations,
encompassing different spreading scenarios and underlying social structures, ranging from
fully controlled experiments to empirical spreading cases observed on Twitter (currently
called X).

While this last study is realised on static networks, we consider similar distinguishability
questions in a more realistic setting using temporal networks. In Chapter 4, we address
this challenge by proposing a new methodological approach to distinguish which contagion
type dominates the spreading dynamics by modelling mixed synthetic propagation scenar-
ios on temporal networks. By analysing the simulation curves, we identify three categories
of spreading processes: those dominated by the simple contagion during the whole dynam-
ics, those entirely governs by the complex contagion, and mixed dynamics, where simple
contagion rules the process at the beginning and then transitions to be dominated by the
complex contagion. Through an analytical study, we introduce several methods to identify
the transitions between those three regimes.

This PhD work offers a novel perspective on the observations of temporal networks and
spreading processes without prior knowledge about the contagion mechanism of individuals,
thereby enhancing our understanding of the dynamics of social contagion processes.
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Chapter 2

Detecting periodic time scales of changes
in temporal networks

2.1 Introduction

Temporal networks present an accurate framework to study dynamics phenomena, espe-
cially human behaviours [40–42], but also biological and ecological systems [106, 107] or
public transportation [108,109]. This representation provides an effective tool to investigate
the structure and dynamics of these systems, as well as the potential dynamical processes
occurring on top of them [6, 37]. Specifically, this representation preserves the temporal
sequence of interactions between the nodes, enabling for example to determine the causality
with the temporal paths [44, 45].

Temporal networks have distinct time-dependent characteristics, from node-properties to
whole network properties, which may change over different scales, involving shifts at the
macroscopic level [52–54]. These changes can be periodic, particularly due to the cyclic
pattern of human behaviour, paced for instance by the succession of days and years [50,55],
or the recurrence of metabolic processes in biological systems [56]. Interesting relevant
examples of such variations are given by changes in the connection density in the network,
or in the way nodes form and dissolve groups or communities. For example, the number
and structure of social interactions vary due to daily rhythms and schedules in contexts such
as workplaces, scheduled social gatherings or in schools, where students interact within a
class during lectures, but also with other classes during breaks [55, 110]. The identification
of the temporal scales of periodic variations in a temporal network is an important step for
the characterisation and understanding of the system under investigation. However, their
measure represents a challenge as they co-appear with other arbitrary non-periodic temporal
scales, which appear as noise and hinder the possibility to detect the periodic behaviour by
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simply following the temporal evolution of simple network summary measures.

Some recent works have addressed the detection of relevant temporal scales in temporal
networks, e.g. by optimizing the overlap between the sets of events on consecutive time
intervals [111] or by searching for the precise recurrence of connections between nodes in
different time windows [112]. Another approach consists of defining the correlation between
instantaneous adjacency matrices of the temporal graph [113]. Finally, computing a whole
similarity matrix between all pairs of timestamps can make it possible to detect states in
which the network structure remains stable [52–54], but this method requires rather heavy
computations.

In this chapter, we introduce a novel approach for measuring the periodic time scales of
changes in temporal networks. Our method begins by dividing the temporal network into
smaller temporal sub-networks using successive sliding windows. Each sub-network is then
transformed into a sequence of static networks through the Supra-Adjacency or the Event-
Graph methods. By calculating the dissimilarity between consecutive static networks, we
generate a dissimilarity function that captures the changes over time. We analyze the power
spectrum of this function to determine the dominant frequencies and harmonics, which in-
dicate the timescales of periodic changes. We are here interested to use our approach to
detect periodic changes in terms of link density and group structure of temporal networks.
To this aim, first we consider synthetic networks in which we impose periodic variations of
density and structure with tunable frequencies. We show that the method is able to retrieve
the actual time scales of the networks. We then apply our methods to several empirical tem-
poral networks presenting periodic dynamics. In each case, the method captures correctly
the system’s main characteristic times, which could most often not be extracted by simple
measures of the network’s overall activity. Our work opens the door to a better character-
isation of the time scales of changes of temporal networks, essential in the understanding
of the dynamics of the underlying complex systems. There are also numerous potential ap-
plications of understanding the periodic structural and density changes. In communication
networks, it can optimize future infrastructure development and bandwidth allocation by
identifying peak usage times. The method discussed in this chapter can also help to detect
and analyse echo chambers on social networks. Additionally, it can participate to optimize
healthcare networks by predicting patient flow patterns and identifying high-interaction pe-
riods. Furthermore, it helps to plan strategic interventions during pandemics by uncovering
the structural and density patterns of contact networks. Finally, the approach in Chapter
2 contributes to understand how animals in herds live and organize within ecological net-
works.
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2.2 Methods

Let us consider a temporal network GT = (V,ET ,T ), for which we want to measure the
periodic time scales of changes. The whole generic pipeline is summarized in Figure 2.1.

D
*

n

Fourier Transform

Time

GTSliding window ( , )tw Δtw

t1 t3 t5

G2* G3*
dissimilarity
measure

Am
pl

itu
de

Frequency

G3
TG2

TG1
T

G1*
dissimilarity
measure

t7

Power Spectrum

Figure 2.1: Methodology pipeline to measure the time scales of changes of a temporal
network GT . From top to bottom: the initial temporal network is divided into sub-temporal
networks through a sliding window of parameters tw (shift between 2 consecutive windows)
and ∆tw (length of the sliding window). The mth sub-network is denoted Gm

T . A static
representation of each sub-network (Gm

∗ ) is generated through the method * (either Supra-
Adjacency or Event-Graph). Each Gm

∗ is then described by a 3-dimensional tensor Bm
∗ ( j,k,τ)

that encodes information about the paths and distances in the sub-network. We compare
consecutive tensors with a dissimilarity measure, obtaining the dissimilarity function D∗.
Finally, we compute the power spectrum of D∗ and measure the frequencies of the main
harmonics.
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Temporal sub-networks. With such a temporal network as an input, we first extract a
sequence of temporal sub-networks of GT by using sliding windows of length ∆tw and stride
tw (shift between the start of successive windows). Successive windows can thus overlap.
Specifically, the mth sub-network Gm

T is composed of the nodes of V and of the subset ET m of
events of ET taking place in the time interval starting at time m∗tw and ending at m∗tw+∆tw:

Gm
T = (V,ET m,T m = [m∗ tw : m∗ tw +∆tw]) for m ∈ N and T m ⊆ T. (2.1)

Based on this definition we can obtain a sequence of temporal sub-networks Gm
T to com-

pute a dissimilarity function characterising the dynamical changes in the structure and the
overall activities present in the original temporal network GT . More precisely, we want to
compute the dissimilarity between consecutive temporal sub-networks, Gm

T and Gm+1
T . How-

ever, while there exist several methods to compare static networks, few exist to quantify the
dissimilarity between two temporal networks. We thus choose to map the temporal sub-
networks into static network representations in order to use an already known and validated
comparison method for static networks [114], that we adapt to our purposes.

Static network representations. We thus first map each temporal sub-network onto a
static network representation using the two different methods described in Section 1.3.3:
the Supra-Adjacency and the Event-Graph representations. We apply them to each temporal
sub-network Gm

T defined above to map them into a sequence of static representations Gm
SA

and Gm
EG. In the following, we use the symbol ∗ to refer to the static representation method:

it replaces the abbreviation SA or EG, as every object from now on can be calculated using
one method or the other.

Network dissimilarity function. As a next step we compute a dissimilarity function D∗(m)
between successive static networks, Gm

∗ and Gm+1
∗ , for each sequence of static representa-

tions {Gm
∗ ,m= 1, · · ·}. To this aim, we adapt a method proposed by Bagrow and Bollt [114],

which allows to compare static networks at multiple scales. The first step of this method is
to compute, for each static network, its “portrait” B defined as

Bl,k = number of nodes which have k nodes at distance l .

The dissimilarity between two networks is then given by the Kullback-Leibler divergence
between their respective portraits. In our case, the static networks that we need to compare
are representations of temporal networks, with either the Supra-Adjacency or the Event-
Graph method, noted Gm

∗ . Nodes and edges in these networks contain information about
nodes, interactions and times of the original temporal network. To take this into account,
we adapt and modify the definition of network portrait, and define the tensor portrait of
Gm
∗ by relying on BDm

∗ ( j,k,τ) which is the number of nodes of Gm
∗ which can reach, in
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two hops, j nodes, k events and τ timestamps of the original temporal network. In other
words, we consider for each node of the static representation Gm

∗ its ego-network at distance
2, and count the number of distinct nodes, timestamps and events of the original temporal
network Gm

T involved. We then collect this information for all nodes of Gm
∗ and summarize

the resulting histogram as the portrait Bm
∗ ( j,k,τ). We illustrate this method to compute the

tensor portrait Bm
∗ ( j,k,τ) in Figure 2.2. We also note that the static representations of the

a.  Original temporal network:

c. EG representation  and its tensor portrait :Gm
EG BDm

EG
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Figure 2.2: Sketch of the method to compute the tensor portraits BDm
∗ of the temporal net-

work Gm
T displayed in panel a. The static SA and EG representations Gm

SA and Gm
EG are

shown respectively in panels b and c. We first evaluate the number of nodes, events and
timestamps from the temporal network accessible within two hops from each node of the
static networks. We illustrate the computation for n2

∗ (purple dashed highlight). We then
count the number of nodes of the static representation that can reach j nodes, k events and
τ timestamps of the original temporal network to compute the element BDm

∗ ( j,k,τ) of the
tensor portrait.

temporal networks are directed, with edge directions following the arrow of time. The ego-
network of a node of the static representation involves only future timestamps and events.
To take also into account how each node can receive information from events in the past, we
create for each Gm

∗ its reversed version Gm
∗,R by inverting the direction of each edge of the

representation and compute its portrait BRm
∗ . We then obtain the final tensor Bm

∗ by summing
BDm

∗ and BRm
∗ .
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Finally, we compute the dissimilarity between each pair of consecutive tensors Bm
∗ and Bm+1

∗ ,
as their Jensen-Shannon (JS) divergence (if the two tensors Bm

∗ and Bm+1
∗ differ in size,

we adjust the size of the smaller one to the size of the biggest one by filling the missing
entries with zeros). The Jensen-Shannon divergence is based on the Kullback-Leider (KL)
divergence, also known as the relative entropy, which is a measure of statistical distance that
quantifies how two probability distributions differ from each other. This divergence can be
interpreted as how ineffective an approximated distribution is to replace the true one. It is
defined as the following

DKL(P || Q) = ∑
x∈X

P(x) ln
(

P(x)
Q(x)

)
(2.2)

where X represents the sample space and P and Q are two probability distributions. The
KL divergence cannot be negative, and a value of zero means that the two distributions are
identical. It is important to note that the KL divergence is not symmetrical between the two
distributions. Also, the second distribution Q cannot present a probability of zero over X ,
otherwise the KL divergence becomes infinite. In that sense, both compared distributions
must share the same sample space. To overcome this limitation, the Jensen-Shannon diver-
gence can be used. This consists in using an intermediate distribution M, the average of the
two distributions P and Q, and computes:

DJS(P,Q) =
1
2

DKL(P || M)+
1
2

DKL(Q || M) (2.3)

where M is defined as M = (P+Q)/2 Note that, in the case of an empty network, the Jensen-
Shannon divergence is not defined. We then assign one single event to the corresponding
empty temporal sub-network Gm

T . At that step, we have to ensure that the dissimilarity
function respects the Nyquist–Shannon sampling theorem [115], i.e. that its sample rate is
at least twice bigger than the observation frequency of the temporal network. It is also worth
noticing that the method which compares the temporal sub-networks should be asymmetric
because it has to be able to differentiate between the transition of the original network from
one state to another, from the opposite transition.

Power Spectrum of dissimilarity function. Each dissimilarity function D∗ provides an
overall signal that reflects the structural and activity changes in the original temporal net-
work. It presents higher values when the network goes through larger and abrupt transforma-
tions and takes smaller values when the network is more stable or changing only gradually
with time. It can thus provide insights into the time scales of dynamical changes in the orig-
inal temporal network. In particular, periodic patterns of network changes can be revealed
by taking the power spectrum of the dissimilarity function, which should present harmonics
at the characteristic frequencies of the temporal network.

25

C
E

U
eT

D
C

ol
le

ct
io

n



Mathematically, according to the Fourier analysis, any signal can be decomposed in a sum
of sinusoidal functions, each with its own period, amplitude and phase. These sinusoidal
components, called harmonics, have frequencies that constitute either a discrete set if the
initial signal is periodic, or a continuous range if it is not cyclical. This decomposition
can be studied in the frequency domain where the signal is represented by its frequency
components with the Fourier transform. When the initial signals are discrete, we need to
use the Discrete Fourier Transform (DFT), given by the following formula

Xk =
Nsample−1

∑
n=0

xne− j2πkn/Nsample,k ∈ J0,Nsample −1K (2.4)

where xn is the discrete signal sample and Nsample is the number of samples. The Fourier
transform is invertible, meaning that the original function can be recovered from its fre-
quency spectrum. One of the main algorithms used to compute the DFT is the Fast Fourier
Transform due to its computational efficiency. One of the characteristics of the DFT is its
magnitude-squared function, which represents the power spectral density of the signal. It il-
lustrates how the power of the signal is distributed over the different frequencies, indicating
the amount of power present in each frequency. The magnitude-squared function is given
by

PSk = |Xk|2 (2.5)

The power spectral density is invariant to time shifts. One of the goals of the Fourier trans-
form is to measure the correct period of a signal, however this task becomes more challeng-
ing when only a sampling from the signal is available, but not the original signal itself. In
order to retrieve the correct period, and assure a proper reconstruction of the signal from its
discrete sample, we need to apply the Nyquist–Shannon sampling theorem [115], fundamen-
tal principle in signal processing. The theorem states that the sampling frequency must be at
least twice the highest frequency present in the signal, a rate known as the Nyquist frequency.
If the criterion is not respected, the sampled data fails to accurately represent the original
signal and the correct period of the signal cannot be measured. Thus, the Nyquist–Shannon
criteria is crucial as it ensures that the spectral content of the original signal is accurately
preserved when going to a discrete representation.

More precisely, we compute the magnitude-square of the discrete-time Fourier transform of
D∗ defined as:

PSk =

∣∣∣∣∣
Nsample

∑
j=0

D∗( j)ei2πk j/Nsample

∣∣∣∣∣
2

(2.6)

where Nsample is the length of D∗ and k ∈ [0,Nsample − 1]. The frequency corresponding to
the kth harmonic PSk is fk = k/(twNsample) where tw is the time shift between two successive
sub-networks Gm

T . The main harmonics of the PS function (appearing as the largest modes in
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the transformed function) correspond to the principal frequencies of the temporal network.
Their inverse yield the characteristic time scales of the main periods present in the network
dynamics.

In the following, we refer to the full methodology pipelines using respectively the SA and
EG representations as the SA−method and EG−method.

2.3 Validation on synthetic data sets

To better understand the temporal properties that the above defined dissimilarity functions
and their power spectra can capture, we focus on synthetic temporal networks with con-
trolled structural and temporal properties. In particular, we consider networks with tunable
changes in activity (number of events per timestamp) and group structure. We utilise the
Activity-Driven temporal network (ADN) model [61] for these purposes (Section 1.3.3),
considering networks of size N = 100 with a power-law node activity distribution with min-
imum value ε = 0.001 and parameters m = 4, η = 4, | T |= 9200 and γ = 1.8, γ being the
exponent of the power-law distribution.

Using these parameters as a baseline, we build three types of periodically varying temporal
networks, to model the following settings:

• Change of activity: we simulate an ADN in which the density of edges varies peri-
odically in time. We assign to each node i two activity values a1

i and a2
i , respectively

extracted from two power-law distributions with exponents γ1 = 1.8 and γ2 = 2.8. We
then alternate periodically (and synchronously for all nodes) between the two activity
values, with a period Ta. This results in periodic changes in the overall activity of the
network, as illustrated in Figure 2.3a.

• Change of grouping: we consider an ADN model of N = 100 nodes forming groups of
5 nodes each, and we periodically alternate, with a period of Tg, between time intervals
in which connections are made at random with no restriction as in the baseline and
intervals in which only connections within groups are allowed. The average activity
is kept constant over time (Figure 2.3b).

• Change of activity and grouping: finally, we consider an ADN in which both activity
and group structure change periodically over time, by combining the previous two
mechanisms, each with its own period, respectively Ta and Tg (see Figure 2.3c).

For each case, we apply the SA and EG methods to compute the power spectra of the re-
sulting temporal networks. As a baseline method, we compute directly the power spectrum
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a b c

d e f

Figure 2.3: Schematic representation of three settings simulated with the Activity-Driven
temporal network model with periodic changes of parameters (N = 100, ε = 0.001, η = 4).
(a) The Change of activity case presents networks with activity periods of Ta = 200; (b)
the Change of grouping case presents recurrent structural changes with period Tg = 150;
while (c) the Change of activity and grouping setting is defined as a mix of both dynamics.
Panels (a-c) display the number of events as a function of time for a realization of each
experiment; Gray areas in panels b and c indicate the intervals in which interactions can
only occur within groups. Panels (d-f) depict the power spectra of these networks obtained
respectively through the SA-method and EG-method, as well as the power spectrum of
the activity timeline. The first and second harmonics of each power spectrum are shown
respectively with a star and a diamond symbol. In each case, the SA-method and EG-
method are able to retrieve the correct period of the networks, while the power spectrum of
the activity signal fails in measuring temporal structural changes. In the Change of activity
and grouping case, the SA-method identifies the frequency of activity changes as the main
harmonic, while the EG-method detects the structural changes frequency as the dominant
one.

of the activity function, that is measured as the link density at each time step of observation
(see Figure 2.3). This is a simple summary metric that describes the overall changes in the
temporal network and can be computed for any system.
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2.3.1 Results

The settings we consider involve either one or two types of periodic changes in the syn-
thetic temporal networks: a periodic fluctuation in the amount of activity and/or in the net-
work structure in terms of inter and intra group interactions. Our first goal is to investigate
whether the SA- and EG-methods can uncover the corresponding periods Ta and Tg through
the measure of the dominant frequencies in the associated power spectrum. As shown in
Figure 2.3d and e, when only one type of periodic change is present, both methods are
able to detect the corresponding period. It is evident from the depicted star symbols that
indicate the largest mode in the frequency scale, correctly positioned at the right frequency
corresponding to the period of the actual periodic changes. At the same time, the baseline
method, computed as the PS of the activity timeline, strongly underperforms as compared to
the other two methods. While in case of activity changes (see panel Figure 2.3d) it at least
identifies approximately the value of the period, in case of periodical group changes it does
not succeed to capture the rightful period at all. This was expected as in this case the overall
activity does not reflect any periodicity but simply fluctuates randomly around a constant
value.

When both types of periodic changes are present, an interesting distinction emerges between
the results of the SA- and EG-methods. Indeed, both methods correctly detect the Ta and Tg
periods as the first two dominant frequencies in the power spectrum. However, in the SA-
method the frequency describing the periodic activity changes is identified as the dominant
frequency and the periodic group frequency to the second largest value (T SA

1 = Ta = 200,
T SA

2 = Tg = 150 in Figure 2.3f), while this is reversed for the EG-method (T EG
1 = Tg = 150,

T EG
2 = Ta = 200 in Figure 2.3f). These results suggest that the SA-method is more sensi-

tive to periodic changes in activity, while the EG-method is more suited to detect periodic
structural fluctuations. We also note that the PS of the baseline method yields as dominant
timescales T1 = 156.7 and T2 = 82.5, the first one describing approximately the activity pe-
riods of the network, while the second one does not correspond to the period of either of the
underlying processes.

To check the robustness of the proposed methods against the relative values of the periods,
we further investigate this point by exploring systems with different values of Ta and Tg in
the Change of activity and grouping setting. We generate 100 synthetic temporal networks
for each pair of values (Ta, Tg), compute the dissimilarity function and power spectra of
these realizations, and extract the corresponding first two harmonics for each method (SA
and EG).

Figure 2.4 summarizes the results by showing in each case the fraction of realizations which
detected the periods of Ta, Tg correctly, or failed to detect any of them. These results demon-
strate again that the SA-method identifies predominantly Ta (the activity change period)
through the first harmonic and Tg (change of group structure) through the second, while the
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a b

Figure 2.4: Pie charts indicating the proportion of simulations in which the measured peri-
ods correspond to either Ta (x-axis) or Tg (y-axis) for periodic synthetic temporal networks
generated through the Change of activity and grouping setting (N = 100, ε = 0.001, η = 3,
| T |= 9200). The values correspond to the two first harmonics measured through the SA-
method (panel a) and the EG-method (panel b). For each pair of values (Ta, Tg), we generate
100 realizations of the temporal network and apply the SA- and EG-method to extract the
two main harmonics. We show in blue around a small black disk (resp. grey disk) the
fraction of realizations in which the main frequency (resp. the second main) corresponds
to Ta, in pink the fraction of cases in which it yields Tg, and in yellow the cases in which
it corresponds to neither (we consider a tolerance of 10% for both periods). In most cases,
both periods are correctly inferred, with the main frequency corresponding to Ta in the SA-
method and to Tg in the EG-method.

reverse is observed for the EG-method. Some deviations from this behaviour are observed
at large values of the periods and/or when Ta and Tg are close to each other.

2.3.2 Parameter dependencies and limitations

Both the synthetic temporal networks and the analysis method involve some parameters.
In particular, we explore their dependencies on the network size, temporal length and ratio
between total temporal length and periods of changes Ta or Tg, with results presented in Ap-
pendix A.1. We observe that at large network size, both methods identify as main frequency
a value corresponding to the half value of the original period. Moreover, evidently, for cor-
rect time scale detection the observation period of the temporal network needs to cover at
least two full periods of any kind of changes. In addition, regarding the experiment Change
of activity, both methods are very sensitive to this kind of changes. Even small variations
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of the density of links through time, obtained by changing the exponent γ of the ADN, are
detected.

The first step of our pipeline moreover involves the definition of sliding windows with stride
tw and length ∆tw. Naturally, these parameters affect the amount of information contained in
each sub-temporal network and consequently influence the resulting dissimilarity function
[116–118]. We explore the effect of these parameters in Appendix A.1, while keeping tw ≤
∆tw to have a non-zero overlap between successive time windows. We also ensure that the
two parameters under study have values below the time span of the network’s period (their
maximum value is 20 while the period is 100).

As shown in Appendix A.1 in Figure A.5, the two methods show the best performance if
the tw stride is not too large and if ∆tw length is neither too high nor too small. If the time
interval between two temporal sub-networks tw is too high, we collect less information about
the similarity between successive sliding windows. The dissimilarity function is then less
precise and our methods perform less well to identify the characteristic temporal scales.
Moreover, if ∆tw is too small, each sliding window contains too little information to obtain
an accurate measure of the time-scale of the original network. On the opposite, if ∆tw is
too large, each temporal sub-network may summarize too much information and lose the
specific characteristic of the activity or the structure of the network at a certain time or in-
terval of time. As an observation bias this could smooth dissimilarities between consecutive
temporal network slices as they average too much information, and not because the net-
work does not present significant changes through time. It is also worth noticing that both
methods measure systematically half of the period as dominant modes for very large values
of tw and ∆tw (Appendix A.1, Figure A.5). In that case, every half-period of the network
is covered by a small number of temporal sub-networks, leading to a lack of resolution in
the dissimilarity function, in which only the peaks of dissimilarity at half-periods are well
marked, leading to the detection of the half-period as typical timescale. Another limitation
of these methods is that they cannot measure time scales of networks having periods equal
to their time resolutions. It is because it is not feasible to create a sliding window capable of
detecting the changes, as it should be smaller than the period, which is the time resolution
in this case.

2.4 Applications on real networks

After validating our methods on synthetic networks with controlled properties, to explore
further the capabilities of our methods, we consider empirical temporal networks represent-
ing different systems. We note that in such systems, in contrast to the cases studied above,
several time scales, that correspond both to periodic or non-periodic fluctuations, may co-
exist, as well as structural changes of different nature.
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2.4.1 Data sets

We consider four temporal networks describing interactions of different nature, with var-
ious sizes and over different observation lengths. Their temporal changes of activity are
displayed in Figure 2.5.

a b

c d

Figure 2.5: Number of events as a function of time for the four data sets: the US school
(panel a), the US flight (panel b), the Conference (panel c) and the Resistance game (panel
d). The US school network contains high activity periods during recreational moments of the
students’ day, while the US flight and the Conference networks present circadian patterns.
The Resistance game network does not have particular periodic activity changes.

• US middle school network: this data set describes close proximity interactions be-
tween students of a middle school in the United States, during one day with a tempo-
ral resolution of 20 seconds [119], recorded by Radio Frequency Identification (RFID)
wearable devices. It involves several low contact periods of class-times and inter-class
breaks including two lunch periods with a high number of contacts as students freely
mix while changing classrooms or eating together. The network consists of 591 nodes
(each node corresponding to a student) and contains 473,755 records of pairwise tem-
poral interactions between them.

• US flight network: this air-transportation network describes the direct flight connec-
tions between 278 airports in the US [120]. In our observation period we concentrate
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on 4 days of data that records 71,315 flights between the airports that we consider as
undirected temporal interactions. This network is expected to show strong periodici-
ties in activity, reflecting the daily recurrent flight schedules, while structural changes
may not be strong as almost always the same airports are connected every day.

• Conference network: these data also describe face-to-face contacts between individ-
uals, with a temporal resolution of 20 seconds, obtained from the SocioPatterns col-
laboration [121] by RFID devices built on a different architecture. The contacts were
measured during a scientific conference, namely the IC2S2 conference that took place
in Cologne (Germany) in 2017 [122]. Our observation period spans over the three first
days of the conference, and records 229,536 temporal contacts between 274 partici-
pants. This data set is expected to show periodic behaviour both in terms of activity
and structural changes, by reflecting the circadian pattern characterising the daily life
of the participants.

• Resistance game network: it is an eye-contact network between participants of the Re-
sistance game [123, 124], which is a role game where some of the players are hidden
’defeaters’, and the goal of the other players is to uncover them. The game involves
multiple rounds of around 4 minutes each, starting with a discussion involving ev-
ery participant, and ending with a vote. The recorded network is built from directed
events between participants who looked at each other at a given time t. The network
is recorded between 8 individuals and contains 52,731 temporal interactions that we
deem undirected for simplicity. This network provides an example where the interac-
tion level should not reflect strong periodicity as every player of the game is looking
at someone else at each time step but the grouping of participants changes between
each session.

2.4.2 Results

After applying our pipeline on each data set using both the SA- and EG- and the baseline
methods, in Figure 2.6 we depict the power spectra of the obtained dissimilarity functions,
with stars indicating the dominant frequencies. Interestingly, both the SA- and EG-methods
identify the relevant timescales of changes in most networks, while the baseline method
failed to detect them besides for the Conference network. For the US middle school net-
work, both methods yield a timescale of about 46 minutes, coherent with the length of a
class. Meanwhile, the baseline activity timeline PS would estimate the dominant frequency
as corresponding to a period of 139 minutes. In the case of the US flight network, where the
main changes are expected to be ruled by circadian fluctuations, both SA- and EG-methods
also correctly identified periods of around 24 hours. This time-scale is also captured by the
baseline method, but recognised only as its third largest harmonic. The two first harmonics
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are identified as periods of 5 and 10 minutes, which may correspond to the characteristic
times between consecutive departures of planes from the same airport. The Conference
network also presents strong signs of circadian changes of activity. This is reflected by
all computed power spectra, which show a harmonic corresponding to a period of about
24 hours for both the SA-method and the EG-method, captured as well by the baseline
method. Finally, regarding the Resistance game, which presents only structural changes, the
EG-method measures accurately the time-scales of periods characterising a single round in
the game, around 4 minutes. Since no periodic change of activities characterise this net-
work, both the SA-method (more sensitive to activity changes) and the baseline method fail
to identify any meaningful time-scale. The power spectrum of the SA-method suggests the
dominant mode to correspond to 0.53 minute, while the baseline method detects 13 minutes.

a b

dc

Figure 2.6: Power spectra of dissimilarity and activity functions of four real-world data sets
(a) a US middle-school, (b) a US flight network, (c) a conference, and (d) a resistance game
network. Dissimilarity functions were calculated by the SA-method (in orange) and the EG-
method (in blue), while results computed for the baseline model using activity signals are
shown in purple. The highest harmonics are highlighted with a star symbol for each PS,
and the corresponding values of the period are indicated below each panel. The parameters
of the sliding windows (tw,∆tw) are (2 minutes, 5 minutes) for the US middle school, (2
minutes, 10 minutes) for the US flight, (2 minutes, 5 minutes) for the Conference and (1/3
minute, 1 minute) for the Resistance game.
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Figure 2.7: Measures of the time-scales of changes of the US middle school temporal net-
work with the SA-method (left panel) and the EG-method (right panel) for different param-
eters (tw,∆tw). The measure of 46 minutes is robust over the parameter pairs (tw,∆tw).

It is worth noticing that we have used different sliding window parameters for the different
data sets: (tw,∆tw) are (2 minutes, 5 minutes) for the US middle school, (2 minutes, 10
minutes) for the US flight, (2 minutes, 5 minutes) for the Conference and (1/3 minute, 1
minute) for the Resistance game. It is due to the fact that the temporal characteristics of
the networks under study vary a lot: from the order of magnitude of the minute for the
Resistance game to the daily pattern of the Conference. The parameters tw and ∆tw should
be chosen in an appropriate manner with respect to the data set and its characteristic time
scales, if an a priori knowledge of their order of magnitude is available (cf paragraph 2.3.2).
Indeed, ∆tw must be chosen large enough to avoid noise in the measure and small enough
to avoid a flattening of the dissimilarity function. Also, the parameter tw must respect the
Nyquist-Shannon theorem. If it is not possible to know a priori which range of parameters
to use according to the data set, one should investigate a spectrum of potential parameters
(tw,∆tw) and check that the extracted timescale is robust on a range of parameter values.
This has been proceeded for example on the data set US middle school (cf Figure 2.7) and
the same period of 46 minutes is obtained for most of the parameter pairs (tw,∆tw). The
only different value appears when the parameter ∆tw =2 minutes with the EG-method. This
is because when the sub-networks are too short, the noise perturbs the measure.

2.4.3 Shuffling of the data

To identify which factors influence the measure of the time-scales, we shuffle the data, cre-
ating randomized reference models that preserve some correlations while disrupting others.
In that purpose, we use the Pp(Γ) and the Pτ described in Section 1.3.3. The first approach
removes the structure and the activity of the temporal networks, while the second keeps the
number of events by time step while erasing the structural organisation. In turn, we apply
the SA- and EG-methods to compute the power spectra of the shuffled data and check how
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these methods capture the modification of the time scales due to shuffling.

a

c

e f

hg

d

b

Figure 2.8: Power spectra for the data sets US school, US flight, Conference and Resistance
game networks shuffled using the two shuffling methods Pp(Γ) (panels a-d) and Pt (panels
e-h), obtained with the SA-method (orange curve) and the EG-method (blue curve). The
period of each original data set is indicated with a black vertical line. For data shuffled using
the Pp(Γ) method, the original period is never recovered. In the case of the Pt shuffling
instead, the SA- and EG methods still measure original periods if the network presents
large activity changes (US flight and Conference data sets). In the case of the US middle
school network, only the SA-method is able to assess the original time scale as this method
performs better to detect activity changes. Finally, none of the methods can measure the
original period of the Resistance game network shuffled with the Pt method as it does not
present any periodic variations.
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Results are shown in Figure 2.8 for the four data sets and the two shuffling procedures.
When the networks are shuffled with the Pp(Γ) procedure (panels a-d), the original periods
of changes are not recovered, which is expected since the shuffling destroys any periodicity
in the data.

However, when we shuffle the networks using the Pτ method, which removes the structural
effects but keeps the fluctuations in the overall activity, our methods present some capacity
to identify the residual time scales of changes in some of the data sets. In particular, two of
the data sets present large periodic activity variations, i.e. the US flight and the Conference
networks. After shuffling, these regular changes are still present, as the Pτ method preserves
their activity timelines, while any other pattern has been destroyed by the shuffling. Conse-
quently, we may still measure their original circadian period from their Pτ-shuffled versions.
Indeed, both the SA- and the EG-methods applied to the Conference network recover the
dominant time scales, while in the case of the US flight data set, the EG-method captures
the expected time scale of around one day. We also find a time scale of 5 minutes with the
SA-method applied to the US flight data set, which corresponds to another characteristic
time of activity of this network (see Figure 2.6).

In contrast, both the SA- and the EG-methods miss the identification of the original time
scales when applied on the Pτ-shuffled Resistance game. Since the original network has no
periodic fluctuations in terms of activity, neither its shuffled counterpart present any regular
changes in terms of activity. Thus the detected time scales are only induced by some noise
in the data.

Finally, the US middle school network presents activity variations that are not easily assessed
even in the original network. Once shuffling with the Pτ method, only the SA-method, which
is overall more sensitive to activity changes, retrieves the original period (≈ 46 minutes) in
the shuffled network. The EG-method overestimates this time by detecting a period of 5 ≈ 9
minutes.

2.5 Conclusion

In this chapter, we have put forward a new methodology to uncover periodic time-scales
of changes in temporal networks. In our proposed pipeline, first we locally aggregate the
original temporal network by using a sliding window to build a sequence of temporal sub-
networks. Subsequently, we map these temporal sub-networks into a sequence of static net-
works, using known lossless higher-order temporal network representations, namely supra-
adjacency matrices or event-graphs. We further extend a method for the comparison between
the consecutive static network samples to define a dissimilarity function that reflects activity
and structural changes in the original temporal network. Finally, we take the power spectrum
of the dissimilarity function to detect the relevant periodic time-scales from the dominant
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frequencies characterising the original network. This work has several applications in net-
work analysis, optimisation and understanding of the diverse dynamic phenomena arising
on top of these networks.

We have explored this pipeline, focusing on changes in the activity and group structure of
temporal networks. Using synthetic data sets with prescribed changes, we have shown that
while both methods are able to recover the time scales of the modelled periodic dynamics,
they perform differently in the identification of changes in activity and structure. Specif-
ically, the SA-method is more sensitive to overall activity changes while the EG-method
captures better periodic structural fluctuations, which cannot instead be obtained through
the power spectrum of the activity timeline. We have also shown that these methods are able
to highlight relevant periods in more complex empirical data sets.

The methodology presented here has certain limitations. First, its performance depends on
some parameters of the aggregation method and the temporal network observed. The ob-
servation needs in particular to span a long enough interval: at least two periods of changes
need to be observed. The sliding window parameters also have some impact on the perfor-
mance: each temporal sub-network should encode enough information but should not be too
long to average out relevant changes. The stride should be small enough to keep a reasonable
temporal resolution and a substantial overlap between successive windows. Also, the meth-
ods presented in this article cannot measure temporal changes if they are smaller or equal to
the time of resolution of the network. Overall, if no prior external knowledge is available on
the expected order of magnitude of the network timescales, the method should be tested on a
range of parameter values, and the robustness of the extracted timescale should be checked.

The proposed methodology pipeline opens the door to the investigation of several interesting
extensions and research questions. Possible extensions of the present method could include
the consideration of other static representations as well as other similarity measures between
successive temporal sub-networks 1, which could potentially be more sensitive to various
types of structural changes of the temporal network. For instance, it would be interesting
to explore whether changes in the instantaneous core-periphery structure [54] could be un-
covered. Future work could also explore extensions to time-varying hypergraphs [125, 126]
or the interaction between the detected time scales of the underlying temporal network and
ongoing dynamical processes. Our work presents a proof of concept for a new method-
ological direction that will contribute to the better characterisation of time varying complex
structures.

Understanding periodic structural and density changes in communication networks can op-
timize infrastructure and bandwidth allocation, detect social media echo chambers, and en-
hance healthcare networks by predicting patient flow patterns. This method also aids in

1including the tensor portrait defined in Section 2.2 but considering different numbers of hops from each
node.
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pandemic planning by revealing contact network patterns and helps understand animal or-
ganization within ecological networks.

In the work presented in this chapter, I contributed by participating to the design of the
methods, conducting all the experiments and exploring with my collaborators their results.
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Chapter 3

Distinguishing mechanisms of social
contagion from local network view

3.1 Introduction

Building on the understanding of temporal network characteristics, I further explore the dy-
namics of contagion processes. As previously discussed in Section 1.4, the propagation of
social behaviours can be modelled using simple contagion, complex contagion, or spon-
taneous adoption approaches, and several works provide methods to distinguish between
these mechanisms. However, these studies commonly make two assumptions limiting their
applicability in real-world scenarios. First, they expect full knowledge about both the un-
derlying network structure and the spreading dynamics. Indeed, this is a strong assumption
in common real-world scenarios, where information about infection events is typically in-
complete or limited to local knowledge, possibly obtained only about an adopting ego and
its peers. Second, these studies assume that all individuals follow the same single adop-
tion mechanism; either simple or complex contagion. In contrast, it has been argued that the
mechanism driving one’s decision to adopt a behaviour during an unfolding social contagion
may depend on the intrinsic susceptibility of an individual to the actual behavioural form and
the properties of the propagation process itself [101, 102]. Thus, each single adoption event
may be driven by different mechanisms that jointly depend on personal factors [103, 104]
(heterogeneous susceptibility and predisposition), the properties of the item being adopted
(Gladwell’s stickiness [101]), and the particular context (environment, time of adoption,
other external factors).

In this chapter, we distinguish between simple, complex and spontaneous contagion mecha-
nisms by addressing both the issue of limited data availability and the challenge that a single

40

C
E

U
eT

D
C

ol
le

ct
io

n



social contagion process may involve multiple adoption mechanisms [105]. We frame this
question as a classification problem and explore solutions based on likelihood and random
forest approaches. These methods are developed and tested on extensive synthetic simula-
tions, encompassing different spreading scenarios and underlying social structures, ranging
from fully controlled experiments to empirical spreading cases observed on Twitter (cur-
rently called X). Our ultimate goal is to uncover the fundamental limits of distinguishability
of these mechanisms, and to propose solutions that can be readily used in real-world scenar-
ios aimed at understanding social contagion phenomena.

3.2 Results

3.2.1 Methods of classification

The following section presents diverse methods of classification used in this chapter.

Likelihood analysis

In order to perform a classification task, we use in this manuscript a method based on the
likelihood analysis [127].

Likelihood definition
The likelihood is used when we want to verify a hypothesis based on observed data. More
precisely, it quantifies how well the given hypothesis explains the data, and is expressed as
the probability of observing the data D given the hypothesis H:

Likelihood = P(D | H) (3.1)

Even if the likelihood P(D | H) is similar to a probability, it is not a probability distribution
over the hypothesis space, but instead a function of H for a fixed data set D. Thus, the like-
lihood should not be seen as the probability of the hypothesis but as a measure of how well
the hypothesis explains the data.

Maximum Likelihood Estimation
An important application of the likelihood function is in Maximum Likelihood Estimation
(MLE) [128], where the goal is to find the hypothesis H that maximizes the likelihood func-
tion. In our case in this chapter, we will have three possible hypotheses and we will choose
the one giving the higher likelihood regarding the data.
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Markovian hypothesis
Another important concept when calculating the likelihood is the Markovian hypothesis,
which states that the future state of a system only depends on its present state, and not on
the states preceding it. Thus, the transition from one state to another one is independent of
any other transition. In probability terms, this means that we can express the probability of
being in one particular state at time t as the product of every transition from one state to
another over time until reaching t.

Machine learning methods

One of the first machine learning algorithms was introduced by Samuel in 1959, able to
play a game of checker [129]. Since then, research in machine learning has flourished to
be today’s one of the largest fields of computer science, being able to solve tasks such as
classification -which is what we will do in this work-, prediction, clustering, dimentional-
ity reduction and many more [130]. Supervised machine learning algorithms are trained
on input and ground truth data pairs to learn patterns and rules to perform intelligent tasks.
These algorithms are widely used in various domains, including web search, spam filter,
credit scoring, fraud detection or computer design. Although there exist many algorithms,
this work mostly employs the random forest algorithm, which is based on the random tree
approach. We have however tried several other algorithms described in paragraph ??.

Random tree and random forest
A random tree [131] is a machine learning tool used for classifying data by systematically

dividing it into categories based on its features. The tree is trained on labelled data, for
which the class of each instance is known, and applied to unlabelled data to estimate their
categories. Structurally, a random tree is a binary decision tree, meaning that it is organised
with nodes, each node having two child nodes. Initially, the tree begins with a root node
containing all instances, then the data is divided into two subsets according to a specific
feature, giving the child nodes, which are themselves divided in two and so on. At every
division, a feature is selected and the data is split into the subset which has its feature above
the threshold, and the one for which the feature falls below it. This process is repeated with
different features and thresholds on the resulting subsets until the data is classified as accu-
rately as possible. Thus, in this structure, internal nodes represent tests on specific attributes,
branches represent the outcomes of these tests, and terminal nodes, or leaf nodes, represent
the final class predictions. Once the tree is built, it can classify new data by following the
splits from the root to a leaf node, with each path being interpreted as a logical rule for the
classification.
The choice of the feature and the threshold is determined to optimise the purity of the child
nodes, meaning that each node must be as homogeneous as possible. There exist several
ways to define purity such as the Gini index [132] or the entropy function [133].
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There are typically two phases to build a tree: initially, the algorithm recursively generates
a partition based on selected attributes, and then it identifies and removes the branches that
reflect noise or outliers. The algorithms coding trees are greedy, notably the Hunt’s algo-
rithm, which is a recursive algorithm on each child node of the tree.
While the majority of random trees aim to classify data as accurately as possible, some as-
sign an estimation of the class to each leaf node rather than a class label, depending on the
frequency of the instances in the leaves. This probabilistic approach can lead to overfitting,
especially if a leaf node contains only a few instances, meaning that the frequency may not
reflect the reality. To solve this issue, there exist some corrections, like the Laplace correc-
tion which moderate the importance of those leaves.
Following the definition of a random tree, a random forest [133] is an ensemble of random
trees all built on a different sample of the initial data set, thus they are all slightly different.
To classify new data, the random forest collects the inferred classes of every random tree
of the forest, and returns the category which appears the most in the results. This approach
makes the classification more accurate and reliable than any simple random tree, as combin-
ing the results of many trees tends to balance the errors.

Other machine learning algorithms
Even if we use the random forest algorithm to perform our classification task, we initially
investigate to find the classification machine learning algorithm that gives the best accuracy.
In addition to the random tree and the random forest, we test the following 7 algorithms:

• Naives Bayes [134]: algorithm which classifies instances using the Bayes’ theorem
under the hypothesis that every pair of features are independent.

• K-nearest neighbours (Knn) [135]: the training instances are displayed in a space
of the dimension of the number of features. Every instance is assigned to the same
category as the majority of its closest neighbours in this feature space.

• Perceptron [136]: classifier that learns by iteratively adjusting weights. It uses a
threshold function to determine the class of the instances based on the dot product
of input features and learned weights.

• Support Vector Classification (SVM) [137]: algorithm that identifies an optimal hy-
perplane to separate data into different classes by maximizing the margin between the
classes.

• Linear Support Vector Classification (Linear SVM) [137]: variant of Support Vector
Classification that specifically employs a linear decision boundary to classify data
points into distinct categories.

• Ada boost [138]: boosting algorithm that sequentially trains weak learners by em-
phasizing misclassified instances in subsequent iterations, and thus builds a strong
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Figure 3.1: Overview of experimental setups. (a) The parameter space (β,φ) and the speed
dependence of the simple and complex contagion processes shown as a schematic repre-
sentation for illustration purposes. (b) The different experimental setups that include the
considered contagion mechanisms, the complexity of the underlying network, and model
update rules. (c) Schematic pipeline for the application of the log-likelihood (LLH) and ran-
dom forest machine learning (ML) classification approaches to the different experiments.

classifier by combining the predictions of these weak learners.

• Gradient boosting [139]: boosting algorithm that sequentially trains weak learners
giving more weight to the misclassified instances based on gradients of a loss function.

3.2.2 Different mechanisms of social contagion

We study adoption processes on networks, with the three infection mechanisms (simple,
complex and spontaneous contagions) that can change the state of a node from susceptible
to infected (cf Figure 1.2). Among the parameters of these spreading approaches, βi and φi
are crucial in shaping the propagation dynamics. High values of βi lead to faster adoption
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via Sm, while low values of φi accelerate the adoption rate via Cx, as individual thresholds
become easier to reach (see Figure 3.1a and also Section 1.4.4).

The backbone of the chapter is a series of four experiments (Figure 3.1b), where we tackle
the problem of distinguishing simulated Sm, Cx and St processes based on the infection
times of an ego node and its neighbours. The experiments cover a wide range of scenarios,
from the simplest configuration on disjoint star networks with βi and φi known to the esti-
mator (Experiment 1), to the most involved setup, simulated with co-existing, asynchronous
update mechanisms with unknown parameters (Experiment 4). In each experiment, we dis-
tinguish the adoption processes using a maximum likelihood approach and a random forest
classifier, whenever the method is applicable (Figure 3.1c). The likelihood approach features
theoretical guarantees, and the possibility to include prior knowledge about the underlying
processes [140]. However, likelihood-based approaches may not be robust if they cannot
capture precisely the data from the assumed generative process [141]. In contrast, ran-
dom forest classifiers tend to be more robust even if the dataset does not fit perfectly to the
model, while falling short on the interpretability of the results. Finally, after highlighting the
strengths and weaknesses of the two classification approaches, we apply the random forest
classifier to real ego-level datasets collected from the Twitter (now called X) micro-blogging
and social networking platform.

3.2.3 Process classification with known parameters

We start approaching the proposed classification task in the most elementary case, that is
when the parameters {βi}i∈N , {φi}i∈N and r governing the spreading processes are known
to the classifier. Even though such information is not available in practical real-world sce-
narios, this setup represents an ideal starting point to understand the performance of the
classifiers in a simple and controlled synthetic context.

Contagion on egocentric networks

Experiment 1. As we aim at classifying contagion mechanisms relying solely on the in-
formation available at the level of an ego node and its neighbours, the simplest setting to
consider is the case of contagion processes that spread on disjoint star structures that are
not part of a larger network structure. We assume knowledge only about egos and their
neighbours, that together define a star structure around the central ego. The degrees of the
ego (i.e. number of its neighbours) are drawn from a binomial distribution of parameters
(N, p) = (1000,0.004) (which yields a mean of ⟨k⟩ = 4), excluding the value 0. This was
necessary to obtain the same parametrization as the Erdős-Rényi networks that we used
in Experiment 2. We assign to each ego-node a predetermined adoption class, simple or
complex, with each contagion mechanism having an equal probability of 1/2, with the cor-
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Figure 3.2: Classification accuracy values of the likelihood method (green rectangle (d)
when it is obtained theoretically and yellow rectangle (a-c) when it is obtained by simula-
tion) and of the random forest method (red rectangle (e-g)). Results in the same column
are obtained on the same Experiment produced by synthetic models, with model complexity
increasing from left to right. In panel (g), the notation qparameter

n represents the nth quintile
of the parameter distribution. Panels (h-k) show the confusion matrices, namely the table
which displays the counts of true versus predicted labels, with actual labels on the x-axis and
predicted labels on the y-axis, associated with the highlighted pairs (β, φ) from Experiments
2 and 3. In general, classification accuracy decreases with increasing model complexity,
but the accuracy remains well-above the random baseline (0.5 for Experiment 1 and 0.33
for Experiments 2-4). Within one experiment-method pair, accuracy increases with φ and
decreases with β, which agrees with our intuition that the Sm and the Cx are most difficult
to distinguish when both contagions propagate fast in the network.

responding parameter, respectively β or φ. Further, we defined the same adoption proba-
bility rΓ for any neighbour of an ego, mimicking their adoption dynamics as a Bernoulli
process. Assuming each node in the ego-network to be susceptible at the outset, neighbours
became infected following their Bernoulli dynamics, while egos changed state only when
their condition to infect has been satisfied. We simulate this contagion dynamics on 100,000
ego-networks, having 10,000 realisations for each parameter values of β and φ taking values
from {0.1, 0.3, 0.5, 0.7, 0.9} and with parameter rΓ = 0.05. In this setting the classifier was
informed by the βi, φi and r parameter values for each instance i.

After simulating the contagion process for T time steps, we feed the classification algorithm
with the trajectory {σi(t)}T

t=0 that takes values 0 (S) or 1 (I) and tracks the status of each
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ego node i at each time step t. In order to assess whether the trajectory of an ego has been
generated by the Sm or Cx mechanism, we formulate the classification problem under a
likelihood framework. Since both contagion processes are Markovian, we can write, for
each node i, the likelihood for an observed process to be generated by each mechanism
X ∈ {Sm,Cx} with parameters {βi,φi} as the product of the probabilities:

Li(X ) =
T

∏
t=0

P(σi(t +1)|σi,Γi(t),X ,{βi,φi}), (3.2)

where σi,Γi(t) denotes the trajectories of the ego node and of its neighbours. The parameter
T, corresponding to the time span of the spreading process, will never be specified as it
changes for every simulation and does not influence the results. To compute the probability
of observing the ego’s state σi(t+1) conditioned on its state and the states of the neighbours
σi,Γi(t) in the previous time step, we distinguish three cases:

1. ego stays susceptible, formally σi(t +1) = σi(t) = 0, which we abbreviate as 0 → 0

2. ego becomes infected, formally σi(t+1) = 1, σi(t) = 0, which we abbreviate as 0→ 1

3. ego stays infected, formally σi(t +1) = σi(t) = 1, which we abbreviate as 1 → 1.

In case of a simple contagion, the independence of infection probabilities on each edge
makes it possible to combine the three cases into a single equation as

P(σi(t +1)|σi,Γi(t),Sm,β) =


∏
j∈Γi

(1−β)σ j(t) 0 → 0

1− ∏
j∈Γi

(1−β)σ j(t) 0 → 1

1 1 → 1

(3.3)

In case of a complex contagion, the same likelihood function takes the binary values

P(σi(t +1)|σi,Γi(t),Cx,φ) =


⊮(σi,Γi(t)) 0 → 0
1−⊮(σi,Γi(t)) 0 → 1
1 1 → 1

(3.4)

depending on whether the condition

⊮(σi,Γi(t)) = Θ

(
φ∑

j
Ai j −∑

j
σ j(t)Ai j

)
, (3.5)
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on the proportion of infected nodes is satisfied or not. In this case A denotes the adjacency
matrix of the network, with elements Ai j, and Θ denotes the Heaviside step function, which
is equal to 1 if the input is positive, 0 otherwise.
An observed adoption could then be classified to the mechanism having the highest likeli-
hood.

Assuming that the star networks have degrees k drawn from a binomial distribution, we
display in the heatmap of Figure 3.2a the obtained accuracies (proportion of well-classified
nodes) as a function of the respective pair of parameters (β,φ) that generated the simulations.
We obtain relatively high accuracy values —with a mean of 0.9— over the whole parameter
space, with the exception of the portion of the space where Sm and Cx both evolve fast,
which corresponds to the parameter extreme when β → 1 and φ → 0. In this case, Sm
and Cx are very difficult to distinguish; in both cases, the ego node becomes infected most
likely one timestep after its first neighbour adopts. This parameter range also corresponds
to the least distinguishable scenario at the level of the global epidemic curves, as they both
evolve rapidly even in populations with homogeneous adoption mechanisms (Figure 1.3).
In this range, the lowest classification accuracy is around 0.55, which is still slightly above
the expected accuracy of a random classifier 0.5. Notably, the two processes are highly
distinguishable in the opposite case, when β = 0.1 and φ = 0.9. In this other extreme, φ

is so high that Cx adoptions are possible only once most of the neighbours of the adopting
ego have been spontaneously infected. At the same time, Sm adoptions are still possible via
repeated stimuli from a few neighbours, making the two processes easier to distinguish.

A major advantage of this stylised setup on disjoint degree-k star networks is that the like-
lihood classification accuracy can be approximated analytically. Let us define X̂ to be the
contagion label that the algorithm assigns, and X to be the true contagion label. Assuming
a uniform prior on the contagion labels, the accuracy of the algorithm can be expressed as:

P(X̂ =Cx | X =Cx)+P(X̂ = Sm | X = Sm)

2
(3.6)

Since for a node infected by the complex contagion, the probability to observe the transition
0 → 0 (0 → 1) assuming that the complex contagion is at stake, is always equal to 1 as
the proportion of infected neighbours is below (above) φ (Eq. 3.4). Therefore, we always
have P(σi(t+1)|σi,nb(t),Cx,φ) = 1 and the maximum likelihood approach always classifies
complex nodes correctly. Consequently, P(X̂ =Cx | X =Cx) = 1 always holds.

For the second term, to compute

P(X̂ = Sm | X = Sm) = 1−P(X̂ =Cx | X = Sm), (3.7)

we need to estimate the probability that a node i with degree k becomes infected by the
simple contagion immediately after ⌈kφ⌉ of its neighbours get spontaneously infected, and
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therefore it incorrectly becomes classified as complex. Conditioning on the event that the
ego has n infected neighbours at time t, we define the following two random variables:

• Nn denotes the number of time steps until a new neighbour gets infected

• En denotes the number of time steps until the ego gets infected, assuming that no new
neighbour gets infected.

Since at each time step, the probability of a new neighbour spontaneously becoming infected
is pn = 1− (1− r)k−n, the random variable Nn follows a geometric distribution with success
probability pn. Similarly, since the probability that any of the n neighbours infect the ego
node in each time step is bn = 1− (1− β)n, the random variable En follows a geometric
distribution with success probability bn. Our goal is to compute the probability of the event
that the ego becomes infected immediately after ⌈kφ⌉ of its neighbours get infected, i.e. that
Nn < En holds for n < ⌈kφ⌉, but E⌈kφ⌉ = 1. For each n < ⌈kφ⌉, the corresponding event
probability can be computed based on the well-known formula of two competing geometric
random variables. For n = ⌈kφ⌉, the event probability is simply bn. Finally, due to the
Markov property of the contagion process, assuming that no two neighbours get infected at
the same time, we arrive at the final result by computing the product of the event probabilities
for each n:

P(X̂ =Cx | X = Sm)≈

(
⌊kφ⌋

∏
n=1

pn − pnbn

bn + pn − pnbn

)
b⌈kφ⌉. (3.8)

Our result is an approximation, because we did not account for the low-probability event that
two neighbours might be infected at the same time. Despite this limitation, comparing the
theoretically estimated accuracies from Eq. (3.8) (visualised in Figure 3.2d) with the simu-
lation outcomes (Figure 3.2a), we observe a very close match, with a maximum difference
of 0.01.

Overall, Experiment 1 features a high classification accuracy and precise analytical results,
while making strong assumptions on the network structure and the adoption mechanisms.
Since the likelihood approach matches the underlying model exactly, it is an optimal estima-
tor, and we omit the application of the random forest approach in this setup. However, since
this setting also neglects some of the most important features of realistic social contagions
and social structures, it can only be considered as the simplest solvable reference model to
be compared with more complex scenarios.

Contagion on random networks

Experiment 2. To generate a more realistic setting, we consider contagion mechanisms
that spread over larger network structures. Most of the results in this section were ob-
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tained on the giant component of Erdős-Rényi random networks [142] with 1000 nodes
and an average degree of 4, but we also present results on random networks with degree
heterogeneity, triadic closure and community structure with the same parameters using
Watts-Strogatz [143] and Barabási–Albert [29] model networks, Stochastic Block model
networks [33], and a real Twitter mention network [144] defined by linked customers if they
mutually mentioned each other during the observation period. For computational purposes
we filter the Twitter mention network to keep only its largest connected component, i.e.
the largest interconnected subset of nodes within a network (370,544 nodes and 1,013,096
links) and we assume it to be undirected by ignoring the directions of its links. Similarly
to Experiment 1, we randomly predetermine the contagion mechanism (simple or complex)
for each node with a probability 1/2 and a parameter (β or φ) accordingly from the set {0.1,
0.3, 0.5, 0.7, 0.9} in order to have all pairs (process, parameter) equally distributed in the
data set. This time, however, we allow each node to spontaneously adopt during the con-
tagion process, regardless of their predetermined mechanism. This way the contagion does
not vanish even on large networks with extreme Sm and Cx contagion parameters, but con-
tinues spreading following a linear dynamics. Having all nodes as susceptible at the outset,
the propagation initialised by infecting one random node. The spreading process among the
rest of the nodes is gradually spreading either by their assigned process of contagion, or
through the spontaneous adoption with a rate of r. We stop the contagion process when all
of the nodes become infected, except for the Twitter mention network. For this network,
we terminate the process when 90% of the nodes are contaminated, as simulating until the
entire network is infected is computationally heavy due to its large size.

For each synthetic network model, the propagation is run on 20 independent network re-
alisations, with r = 0.005. For each node i, the parameters βi, φi and r are assumed to be
known by the classifiers. The modification also implies that, since nodes can adopt via the
simple, the complex or the spontaneous mechanisms, our classification algorithms need to
distinguish between the three hypotheses.

In line with the approach of Experiment 1, we compute the likelihood that each adopter
follows a specific contagion mechanism (see Eq. (3.2)) based on the trajectories of the ego
nodes and their neighbours. Since the assumption of the independent adoption of the neigh-
bours of an ego does not hold anymore, the likelihood framework becomes an approxima-
tion. The calculations are similar to Experiment 1, but instead of two, now they involve
three processes: simple, complex and spontaneous adoptions. For clarity, we divide those
three processes in four scenarios:

1. The ego, initially assigned with the simple contagion, eventually becomes infected by the
simple contagion:
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P(σi(t +1)|σi,nb(t),Sm,β) = (3.9)

(1− r) ∏
j∈nb

(1−β)σ j(t) 0 → 0

(1− r)

(
1− ∏

j∈nb
(1−β)σ j(t)

)
0 → 1

1 1 → 1

(3.10)

2. The ego, initially assigned with the simple contagion, eventually becomes infected by the
spontaneous contagion:

P(σi(t +1)|σi,nb(t),Sm → St,β) = (3.11)
(1− r) ∏

j∈nb
(1−β)σ j(t) 0 → 0

r 0 → 1
1 1 → 1

(3.12)

Note that the 0 → 1 transition can occur at any step due to the Sm or the Sp process, but
once it occurs it is irreversible. Therefore we need that

P(0,Sm|0,Sm,β)+P(1,Sm|0,Sm,β)+P(1,Sp|0,Sm,β) = 1,

which is indeed holds for these equations.

3. The ego, initially assigned with the complex contagion, eventually becomes infected by
the complex contagion:

P(σi(t +1)|σi,nb(t),Cx,β) = (3.13)
(1− r)

(
1−⊮(σi,nb(t))

)
0 → 0

(1− r) ⊮(σi,nb(t)) 0 → 1
1 1 → 1

(3.14)
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4. The ego, initially assigned with the complex contagion, eventually becomes infected by
the spontaneous contagion:

P(σi(t +1)|σi,nb(t),Cx → St,β) = (3.15)
(1− r)

(
1−⊮(σi,nb(t))

)
0 → 0

r 0 → 1
1 1 → 1

. (3.16)

Note that the 0 → 1 transition can occur at any step due to the Cx or the Sp process, but once
it occurs it is irreversible. Therefore we need that

P(0,Cx|0,Cx,β)+P(1,Cx|0,Cx,β)+P(1,Sp|0,Cx,β) = 1,

which is indeed holds for these equations.

Nevertheless, accuracy values for the whole parameter space summarised in Figure 3.2b
confirm that this approach can still perform well achieving a mean accuracy of 0.87 —well
above the expected accuracy of a random classifier (0.33).

Since the likelihood framework provides an approximate solution for Experiment 2, it calls
for alternative approaches. We conduct an extensive classification model selection to find
the best machine learning algorithm to distinguish between the simple, complex and spon-
taneous contagions in Experiment 2. We test 9 algorithms and present the mean accuracies
over the whole parameter-space in the classification of the instances from Experiment 2 for
each of them in Table 3.1. Among the algorithms displaying the highest accuracies (above
0.82), we opt for the Random forest method first due to its significantly faster computa-
tion times compared to SVM. Additionally, the Random forest algorithm, consisting of an
ensemble of decision trees whose outcomes are combined, generally outperforms individ-
ual Decision Tree methods. Finally, we exclude the Gradient Boosting algorithm due to its
limited explainability.

Naives
Bayes

Knn Percep-
tron

Linear
SVM

SVM Decision
tree

Random
forest

Ada
boost

Gradient
boost-
ing

0.66 0.81 0.68 0.81 0.82 0.82 0.82 0.75 0.83

Table 3.1: Average over the whole parameter-space of the accuracies on the classification of
the contagion cases from Experiment 2
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In order to strike a balance between performance and interpretability, we train random forest
classifiers on the same synthetic dataset as above. After testing on several structural and
dynamical features of the ego and its neighbours, we identify eight relevant features for the
classification that appear with distinct distributions for different infection mechanisms (cf
Appendix B.1). These are (i) the degree, (ii) the proportion of infected neighbours, (iii) the
number of infected neighbours, (iv) the sum of received stimuli, (v) the average number of
received stimuli by neighbour, (vi) the standard deviation of per neighbour stimuli, (vii) the
time since the first infected neighbour and (viii) the time since the last infected neighbour.

We train 25 random forest algorithms, one for each pair of (β,φ) by sampling 18,000 in-
stances from Experiment 2, with 6,000 contagion cases from each category. Then we test
the models on a set containing 6,000 instances (2,000 instances from each category). The re-
sults are averaged over 10 realisations. Each random forest algorithm has 100 trees without
any limit on the maximum depth. As mentioned in paragraph 3.2.1, various functions, such
as the Gini index or the entropy function, can measure the purity of the leaves. To select
the optimal function, we employ the grid search method, which consists in finding the best
hyper-parameters (here the best function) for a model by testing all possible combinations.

The random forest approach provides very similar results (see Figure 3.2e) to the likelihood-
based calculations (Figure 3.2b), only with slightly worse average accuracy 0.82. The con-
fusion matrix, namely the table evaluating the performance of a classification model by
showing the distribution of correct and incorrect predictions across different classes, is dis-
played in Figure 3.2h and j. While the two methods perform similarly in classifying simple
contagion cases, the random forest misclassifies complex and spontaneous instances at a
higher rate.

Notably, given the interpretability of the trained random forest classifiers via feature im-
portance, we can further restrict our original eight features to only three, and retain similar
accuracies as before (see Appendix B.2). Interestingly, some feature subsets are consistently
optimal across the full parameter space. This is reported in Figure 3.3, where we present the
number of times a feature appears within the subset of the top-3 optimal features, normalised
by the number of possible instances (parameter pairs β,φ in the phase space). Overall, the
two most recurring features are the times since the first and the last infected neighbours.
These can be also easily interpreted within the modelling framework: the time since the first
infected neighbour cannot be too high for Sm, as that would mean too many repeated stimuli
without an infection event, while for the threshold-based Cx the time since the last infected
neighbour has to be necessarily one.
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Figure 3.3: Frequency of observation of the features used to train the random forest classifier
among the top-3 most important ones across the full parameter space for Experiment 2
(blue) and Experiment 4 (orange). Frequencies are computed as the number of appearances
normalised by the number of possible occurrences. The resulting most important features
are the time since the first and the last infected neighbour.

3.2.4 Process classification with unknown parameters

Up to this point, all the investigated tasks assumed precise knowledge of the parameters
βi, φi and r governing the different processes. However, in realistic scenarios, these need
to be also inferred together with the contagion mechanisms, thus motivating the following
experimental setup.

Experiment 3. In this setting we classify the contagion instances from Experiment 2 as-
suming unknown contagion parameters, which means distinguishing mechanisms without
knowledge of the parameters that governed them. In the likelihood approach, we use the
same equations to compute the likelihood that the contagion instance i is simple, complex
or spontaneous as before, except we also estimate the values of βi, φi and r. We set the value
of β̂i as the inverse of the number of received stimuli by the node i, and the value of φ̂i as
the proportion of infected neighbours at the time of the infection of node i. The value of r̂
is calculated as the fraction of time spent by a node in the S state with at least one infected
neighbour, averaged on every node in that case.

Figure 3.2c shows that we still classify the adoption mechanisms with high accuracy, es-
pecially considering the increased difficulty of the classification problem compared to the
earlier settings. The mean accuracy was found to be 0.69, well above the reference value of
a random classifier (0.33). We observe the worse performance for low values of φ, due to the
high rate of confusion between complex and simple contagion cases (Figure 3.2i). Those
nodes are generally infected just after the appearance of an infectious neighbour, making it
difficult for the model to distinguish between the two peer-driven mechanisms Sm and Cx.
The accuracy is the highest for large values of φ and low values of β. As before, we gain the
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most information about the processes when both of them are progressing slowly.

We also test the random forest approach in this experiment by using the same features used
in Experiment 2, but training instead one unique model over the whole phase space as the
parameters are not known anymore. The training data set contains 18,000 instances in total
(6,000 instances in each category), regardless of the parameters. The results are averaged
over 10 realisations. Each random forest algorithm has 100 trees without any limit on the
maximum depth. The use of the Gini function or the entropy function is determined by grid
search.

Interestingly, this solution provides slightly more accurate results (see Figure 3.2f) than the
likelihood method (see Figure 3.2c), especially for low values of β. Reading the confusion
matrices (in Figure 3.2k and i resp.), this improvement mostly comes from the better clas-
sification of complex contagion instances, that were commonly classified as simple by the
likelihood approach. Nevertheless, the overall accuracy of the random forest classifier is
lower for Experiment 3 as compared to Experiment 2, which is expected, as the estimators
receive less information.

To understand how network structure influences process distinguishability, we apply the
classification methods on Experiments 2 and 3 on various networks (Figure 3.4). The values
of accuracies remain consistent across the Barabási-Albert, Watts-Strogatz and Stochastic
Block Model networks. This suggests that the global network structure has a limited impact
on the local differentiation of contagion processes in each performed experiment. However,
we observe a decrease of 0.02 on the accuracy average considering a true Twitter network,
but with the machine learning method with unknown parameters. Indeed, one of the most
important features of this method is the degree (Figure 3.3), which presents a larger variation
with the Twitter network.

3.2.5 Case study: adoption mechanisms on Twitter

After demonstrating the validity of our methods in controlled synthetic settings, we now turn
our focus toward real contagion processes to showcase the applicability of the devised ap-
proach to empirical scenarios. To this end, we rely on an ego-level dataset of adoptions from
Twitter [145] (now called X), a micro-blogging and social networking platform, where users
can follow each other, and share short messages, or tweets. The dataset contains all tweets
posted by 8527 selected users (egos who are interested in French politics) and the people
they follow (whom we call followees, or the members of the ego network) between May 1
2018 to May 31 2019 (for more details about the data collection see [146]). This mounts up
to a total of 1,844,978 timelines, i.e., the timely ordered personal stream of tweets posted
by all these users. This dataset allows us to identify the time of adoption of a given hashtag
by an ego together with the time of all incoming stimuli from its neighbours that previously
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Figure 3.4: Accuracies obtained by classifying the infection instances from Experiments 2
and 3 on different networks (x-axis) and with different methods (y-axis). The networks are
created with 1000 nodes and an average degree of 4. The model parameters are chosen to
maintain this average degree, with m = 2 for the Barabasi-Albert model and k0 = 4 for the
Watts-Strogatz model. In addition, in the Watts-Strogatz model, 5% of the edges are rewired.
In the Stochastic Block Model, nodes are gathered into 20 groups, with a probability to have
an edge between groups of 0.001. To maintain an average degree of 4, the probability of an
edge within a group is adjusted, resulting in a value of 0.066. The results are averaged over
20 realisations. The values of accuracies do not depend on the structure of the network.

posted the same hashtag. These tweets cover multiple topics, which may correspond to
the spreading of various co-occurring social contagion processes. Since we are interested
in analysing each contagion process separately, we filter messages that contain a given set
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Sm Cx St
Random forest 970 349 4955
Likelihood 4440 1447 387

Table 3.2: Number of instances of contagion mechanisms inferred by the likelihood and
random forest methods on the #GiletsJaunes Twitter dataset.

of hashtags within the same topic. We choose to focus on the hashtag #GiletsJaunes and
its variants1, characterising a political uprising in France that induced a significant social
contagion unfolding on Twitter. We first identify egos who adopted a related hashtag, and
observe the posts of their followees over the preceding week, limiting in this way the effect
of influence to the recent past only. As per the synthetic cases, we can define the degree of
an ego as the number of its followees who have posted at least one tweet during the week
preceding the adoption. In addition, user activity on Twitter is not linear in time —as in our
previous simulations— but it is driven by circadian fluctuations, bursty patterns, and indi-
vidual preferences. We thus move from real-time to event-time simulations. In this setting, a
time step for an ego (leading to potential adoption cases) is counted as the number of tweets
by the followees, regardless of whether they contain the hashtag of interest; every time an
alter posts content containing the selected hashtag, the ego will receive a stimulus.

Empirical traces of social contagion set a particularly difficult problem for classification
because neither the parameters of the different contagion mechanisms are known, nor any
ground truth is available for validation of the classification results. In the following, we
propose pathways that yet allow us to learn about the distinguishability of contagion mech-
anisms in the Twitter dataset.

As a starting point, we applied our classifiers designed for Experiment 3, where we have
no information about the adoption parameters. Table 3.2 shows that the two methods give
rather unbalanced results, with the random forest detecting a large number of spontaneous
adoptions and the likelihood approach being biased towards simple contagion. This dis-
crepancy in the results suggests that one or both of the models might not be capturing the
interaction patterns within the Twitter data sufficiently well.

When it comes to empirical adoption data collected via social media, one of the largest
biases is induced by the waiting time tw [85], that is the time gap between the moment
someone becomes convinced by an idea (upon exposure) and the moment we can actually
observe it through an active adoption event (posting). We report the waiting time distribution
for the Twitter dataset in Figure 3.5a, where one time step corresponds to the time span
between two consecutive tweets. This tw = ta − te lag between the exposure te and the
adoption ta time can depend on individual user characteristics. It biases our observations as

1We target every user who has posted one of those hashtags: #GiletsJaunes, #giletsjaunes, #Giletsjaunes,
#GiletJaune, #Giletjaune, #giletjaune, #giletsjaune, #Giletsjaune, #GJ
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during this tw time further exposures can appear, that in principle could not be even necessary
for the subsequent adoption (“incubation”). Nevertheless, the only observation we can make
is about the sequence of influencing tweets, as we can not know the exact tweet that triggered
the adoption. The effects of such biases have been studied earlier in other scenarios of online
adoption [85,99]. In light of these observations, it is clear from the likelihood computations
and from the feature importance ranks shown in Figure 3.3 that both the approaches used so
far are ill-suited in this case since they heavily rely on precise adoption times —assuming
no waiting time. To steer our classification algorithms away from making estimates based
on this hard assumption, we now introduce a synthetic contagion process evolving on an
activity driven temporal network model parameterised from data, and where waiting times
can be measured. The goal of this following model is to obtain a representation as close
to reality as possible, enabling the training of a random forest algorithm to classify real
contagion cases.

Activity driven networks with asynchronous dynamics

Experiment 4. This experiment is inspired by the Activity Driven network model (ADN)
and has been created to represent the propagation of a hashtag on the Twitter platform. Here
we use the largest connected component of an undirected mutual follower network from
Twitter [144] and concentrate on the propagation of the hashtags related to the political
movement #GiletsJaunes. For computational purposes, we iteratively filter this network to
reduce its size. At the outset, the filtered network only contains one randomly selected node
from the initial network. Subsequently, a neighbour of the initial node is selected with a
probability inversely proportional to the node’s degree. Once a neighbour is selected, it is
incorporated into the filtered network along with its edge. This approach allows us to sample
a connected subset without bias toward hubs. Subsequently we reproduce this process, each
time selecting a neighbour from the newly integrated node and its edge, until we achieve a
network size of 100,000 nodes.

We assume that nodes can be in three distinct states: susceptible (not yet infected), aware
(they are already infected, but that has not been observed yet through an active post), and
detected (they are infected and this has been observed). Every node i is assigned with
an activity âi ∈ [0,1] mimicking its level of participation on the Twitter platform. As the
distribution of the number of tweets posted by each user during a week depends on its degree
and because those distributions along a certain degree range are not part of the typical known
distributions (Figure 3.5c), we sample the assigned activity of each node with a normal
distribution centered on the average number of tweets posted by each user corresponding to
its degree and constrained between 0 and 1. They are also attributed homogeneously to a
contagion process, either simple or complex, which determines their adoption mechanism.
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Figure 3.5: Parameter distributions and dependencies of Experiment 4 inferred from the
#GiletsJaunes Twitter dataset. The waiting time distributions observed in the (a) #Gilets-
Jaunes dataset and (b) in Experiment 4. (c) Correlation between the activities and degrees
of nodes in the synthetic propagation inferred from the distribution of the number of tweets
posted during the week before adoption as a function of the number of active followees
in the Twitter dataset. (d) Correlation between the inferred simple contagion parameter
β̂ = 1/(number stimuli) and node degrees observed for egos in the #GiletsJaunes dataset.
(e) Distribution of the inferred simple contagion parameter β̂. The inset depicts the same
distribution stratified by degree. (f) Distribution of the φ̂ complex contagion parameter in-
ferred as the proportion of infected neighbours at the time of adoption of an ego in the
#GiletsJaunes dataset (φ̂). Since the P(β̂) and P(φ̂) are broad, we apply a filter to retain the
80% of their smallest values.

Further, nodes are endowed with parameters β̂i or φ̂i. β̂ are defined as the inverse of the num-
ber of times a hashtag appeared in the timeline of an observed ego’s neighbours, one week
before the ego’s adoption. Note that we consider cases of infected egos who have at least one
infected neighbour at the time of adoption. Since the β̂ parameter shows correlation with the
node degree (see Figure 3.5d), we decided to account for this dependency when sampling

59

C
E

U
eT

D
C

ol
le

ct
io

n



β̂ values for egos. We group nodes by their degrees and assume that each P(β̂)k distribu-
tion for a degree class can be approximated by a log-normal distribution with an average
characterising the actual degree class (see Figure 3.5e and its inset). Thus for each node i
with degree k to obtain a β̂i we simply sample the corresponding log-normal distribution.
At the same time, the parameter φ̂i for the complex contagion mechanism is measured as the
fraction of infected neighbours of an ego that adopted a hashtag. The distribution of P(φ̂)
(in Figure 3.5f) is measured from adoption cases where the last infected neighbour of the
ego before its adoption was a newly infected neighbour. We assign a parameter φ̂i to a node
i by sampling this distribution P(φ̂) shown in Figure 3.5f. Finally, to avoid the sampling of
extreme values, since the distributions P(β̂) and P(φ̂) appeared as broad distributions, we
filter them by keeping 80% of their lowest values for parameter sampling. For a robustness
analysis on the effect of filtered fraction of inferred parameters see the Appendix B.3.

After infecting a uniformly randomly selected seed node to launch the spreading process, we
iteratively execute the following protocol at each time step: first a node is selected randomly
with a probability proportional to its activity, indicating that this node posts a tweet. If the
node is susceptible, it can become adopted with probability r, mimicking the possibility to
post the hashtags spontaneously. Otherwise the susceptible node can get infected through
its assigned adoption mechanism. If a node is active but susceptible, its post will not count
towards the influence of its neighbour. However, if the node is aware, at the time of its next
post it becomes detected. Once aware or detected we assume that at each future activity of a
node it will post the spreading hashtag. If a post of a node includes the hashtag, it counts as
a stimulus to all of its neighbours, which can become aware if they are susceptible and their
condition of infection is reached. In our simulations we modelled the contagion processes in
the network until they reached 90% of the nodes and used the observed adoption instances
for the training of a random forest classifier that was not aware of the contagion parame-
ters. The resulting waiting time, measured for each infected node as the time between the
aware and detected state, follows a broad distribution (Figure 3.5b), similar to the empirical
observations.

The complexity of Experiment 4 makes the application of the likelihood method unfeasible,
so we continue our investigation only through the random forest approach, using the same
feature set as in the previous experiments, and assuming unknown contagion parameters.
As before, we pre-assign an adoption mechanism to each node in the modelled Activity-
Driven network and compute the classification accuracy. Results, shown in Figure 3.2g,
demonstrate that despite the increased complexity of this data-driven experiment, the ran-
dom forest can achieve good classification accuracy all across the parameter space, with
average accuracy 0.72. In this experiment, the spontaneous adoptions are the hardest to
classify since they appear with a very low rate (see Appendix B.3, Table B.1). It is worth
noticing that the importance of the features is different from the one previously shown for
Experiment 2 (Figure 3.3). While the feature time since the last infected neighbours dimin-
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ishes in importance due to the presence of a waiting time, the proportion of the infected
neighbours, and particularly the degree of the central ego gain significance (Figure 3.3).

Classification of Twitter hashtags

Experiment 5. To conclude our case study on the Twitter dataset, we apply the trained
models from Experiment 4 on the adoption cases of #GiletsJaunes and related hashtags.
The inset of Figure 3.6 shows that most adoption cases are classified as simple as opposed to
complex. This suggests that more people adopt #GiletsJaunes through a repeated influence
from their contacts than through combined influence mechanisms. The less detected class is
the one of spontaneous adoptions, suggesting the limited influence of external sources with
respect to peer-induced contagion within the platform.

Since no ground truth exists for this dataset, instead of visualizing the accuracy values on the
(β,φ) phase space, I show in Figure 3.6 the full distribution of inferred adoption mechanisms
stratified by their inferred contagion parameters β̂ and φ̂ (aggregated in deciles). We can see
that ego nodes with high β̂ and low φ̂ values are more likely to be classified as Cx, whereas
egos with low β̂ and high φ̂ tend to be classified as Sm. However, Figure 3.6 also suggests
that the two inferred parameters, β̂ and φ̂, cannot capture the complexity of the classification
problem on their own. Indeed, both Sm and Cx adoptions appear throughout the parameter
space, highlighting the added value of the random forest classifiers trained in our modelling
framework. Finally, we observe that the certainty of the classification algorithm improves
with lower β̂ and higher φ̂ values, which can be explained by the increased number of stimuli,
and therefore a richer dataset, in this parameter range.

3.3 Discussion

Our goal in this chapter was to infer social contagion mechanisms leading to the adoption
of products, ideas, information, or behaviours. We restricted the focus to three complemen-
tary contagion mechanisms potentially determining the behaviour of an ego node, whether
adopting spontaneously (exogenous influence) or due to transmission on a social network
(endogenous influence) via simple or complex contagion mechanisms. The general problem
of distinguishing social contagion mechanisms in networked populations has recently been
addressed by analysing macroscopic spreading curves at the population level [90, 96, 100],
typically assuming that only one a single mechanism is exclusively present during the con-
tagion process. In this work, we overcome these assumptions by (i) considering only mi-
croscopic information at the level of the adopter and their peers and (ii) allowing different
contagion mechanisms to be simultaneously present —with different parameters— during
the same spreading phenomenon. Under these assumptions, we tackled the inference ques-
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Figure 3.6: Classification of contagion mechanisms of the #GiletsJaunes Twitter dataset as
the function of φ̂ (x-axis) and β̂ (y-axis) parameters. The notation dparameter

n represents the
nth deciles of the parameter distribution from the #GiletsJaunes dataset from Figure 3.5.
The classification results of each instance i are shown at the corresponding location of the
decile of its inferred φ̂i and β̂i parameters sampled from the P(φ̂) and P(β̂) distributions.
The background colour of each panel indicates the dominating classified mechanism that
characterise the given parameters (purple for Sm, orange for Cx and blue for Sp). The
certainty of classification, displayed with black circles, is defined as the proportion of trees in
the random forest that have classified an instance into the assigned contagion type, averaged
over the set of instances classified in that contagion type. Most of the infection cases are
classified as simple if their β̂ are in the 8th decile or below and their proportion of infected
neighbours is greater than dφ

5 , and as complex otherwise.
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tion as a classification problem under a likelihood and a random forest approach over a
sequence of experiments with increasing levels of complexity. We showed, in controlled
synthetic settings, that the limited information available from an ego and its peers is gener-
ally enough to distinguish the specific adoption dynamics with varying levels of accuracy
depending on the contagion parameters. The lines between the mechanisms become more
blurred in cases when one infectious neighbour is enough to induce the adoption of an ego.
This can happen for strongly infectious items spreading via simple contagion (akin to high
individual susceptibility) or low individual thresholds in adoptions triggered by complex
contagion, both cases leading to an immediate local transmission and rapid global spread-
ing. Interestingly, in the simplest experiments performed via simulations on synthetic static
networks, we found little impact of the network structure on the accuracy of the classi-
fication task. Recent results have shown that simple contagion leads to similar infection
patterns across different network models, while the patterns associated with complex conta-
gion mechanisms are less robust [94, 147, 148]. This could explain the fact in Experiments
2 and 3 we do not observe major differences in the distinguishability of the mechanisms
over different network structures, from Erdős-Rényi graphs to those generated via Barabási-
Albert, Watts-Strogatz, and Stochastic Block Model approaches. Increasing the level of
realism, we demonstrated that simplistic models fail to capture the full complexity proper
of real-world transmissions, such as waiting times, or the non-static structure of empirical
social networks. The challenges arising in these scenarios confirm the inherent difficulty
that comes with these tasks when several internal and external factors are at play at both the
dynamical and structural level, as also highlighted in other recent studies that tackled the
inference problem in different contexts [149]. Nevertheless, even in these realistic settings
when mechanistic approaches seem to be out of reach, a random forest classifier trained on
a carefully parametrized synthetic model can give interpretable results.

Despite the comprehensive approach to the inference problem in this paper, our results pre-
sented here have certain limitations. First, for simplicity reasons we only consider static
network structures, while in reality social influence is mediated via temporal interactions.
Further, we assumed that the effects of external influence (like advertisements and news)
do not vary in time, that is clearly an approximation. During our likelihood formulation we
assume each contagion instance to be independent from each other, which is only an approx-
imation, that is accounted for in the random forest approach. Finally, since no real dataset
is available with ground truth information regarding the adoption mechanisms of a social
contagion, it prevents us to validate our findings in our final experimental setting. Such
datasets are challenging to collect and require careful experimental design. However, we
envision that our learned labels could be validated even without extensive data collection, if
they were treated as hidden variables used to predict adoption times. More explicitly, under
the assumption that certain spreading processes or certain individuals predominantly follow
simple or complex contagion, our inferred labels on past datasets could predict future labels,
which could improve native estimates of future adoption times. Given the great number of
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difficulties and unknowns, we leave this task for future research.

Beyond accounting for these limitations, possible extensions of the present method could in-
clude the analysis of the spreading of different items on the same population; or to classify
different infection mechanisms [74,81] even beyond pairwise exposures [150–152], as con-
sidered in a recent work [96]. Another potential direction for future research is to explore
the competition between simple and complex contagions, where the adoption mechanism
of a node is not predetermined but depends on the circumstances [153]. One could also
integrate homophily, and conceive a model in which nodes of a same group are more likely
to adopt through the same contagion process or nodes within the same mechanism have a
higher probability to form connections between themselves [154]. Such a scenario would
create correlated inferences, potentially affecting the accuracy of the classification.

We believe that our results open the door to the investigation of microscopic social contagion
mechanisms at the local network level. In one way, our study aims to contribute to the
understanding of how seemingly similar macroscopic processes can be differentiated at the
microscopic level. In another way, we hope to lay down a path to study social contagion
processes at the level of individuals, that is more feasible from a real data perspective and
can lead us to a more fine-grained understanding of how local decision mechanisms lead to
system level global phenomena in social contagion processes.

In the work presented in this chapter, I contributed by designing the likelihood method and
the machine learning approach with my collaborators, making the synthetic propagations,
running the five experiments and exploring the results and finding ways to improve them
with my collaborators.
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Chapter 4

Competition between simple and
complex contagion on temporal networks

4.1 Introduction

Following the previous study on the distinguishability between the simple and the complex
contagions in static networks, this chapter extends the analysis to temporal networks, which
offer a more realistic framework for modelling human interactions. The addition of a tempo-
ral component changes the approach. Indeed, the time-varying nature of social interactions
influences heavily the contagion dynamics, as it determines the time-respecting paths along
which information or influence can be disseminated. The lifetime of links [155], the fre-
quency of interactions [85, 156], the limited waiting times of processes at nodes [157], the
causally related adjacent events [158], the memory length of influence [47, 88, 159], or the
heterogeneous bursty interaction dynamics [47,97,156,159] all have been identified impor-
tant to influence spreading processes on temporal networks.

As it has been recognised in Chapter 3, both the simple and the complex contagions are
present in one single spreading process. Several studies follow this approach: in some of
them, contagion mechanisms vary across network layers or community structures [154,160],
while other researches assign individual thresholds to nodes, specifying the number of ex-
posures needed for adoption [85, 104, 105, 161, 162]. Across all these works, the contagion
mechanism of a node is always assigned beforehand. The infectiousness of the spread-
ing process and the underlying network structure often determine which mechanism domi-
nates [163]. In a case of a mixture of simple or complex adoption cases, the easier contracted
simple contagion cases govern the spreading initially and they trigger in turn the complex
contagion adoptions that are conditional to a fraction of peers to be infected a priori [105].
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However, in real-world scenarios, individuals are not limited to a single contagion mecha-
nism: they might adopt behaviours through both simple and complex contagions depending
on their social context. For example, adoption might occur from a single intimate contact
(simple contagion) or through repeated interactions with distant acquaintances (complex
contagion). Therefore, considering the interplay between these mechanisms is pivotal to ap-
proximating more realistic social phenomena. In this chapter, we propose a new approach to
identify whether simple, complex, or mixed contagion processes dominate at different stages
of spreading dynamics in temporal networks. We classify processes into three categories and
introduce methods to analyse transitions between them based on various parameters. In our
simulations an individual is not endowed with a pre-assigned contagion mechanism but,
depending on the peers involved, they could adopt via both simple or complex contagions.

4.2 Model definition

We simulate the dynamics of time-varying interactions by building on the Activity-Driven
network (ADN) model, since it provides a flexible modelling framework of temporal net-
works. The network evolves through asynchronous iterations of N microscopic time steps
of duration ∆t = 1/N, in which each node is updated once on average.

To model the binary state contagion process [68] on the top of an ADN model, we assume as
previously that each node at any time step can be in one of the two mutually exclusive states:
susceptible (S), or infected (I). We set all nodes initially as susceptible and start the spread-
ing from a small set of randomly selected infected seed nodes. Once a susceptible node is
contaminated during the spreading, it remains in this state, thus the system is evolving to-
wards a fully infected absorbing state. Susceptible nodes can become infected in two ways:
either get contaminated through the simple contagion mechanism, or through the complex
contagion mechanism.

We schematically summarize the network dynamics and the two contagion mechanisms in
Fig. 4.1. We initially infect a randomly selected 1% of seed nodes. Subsequently, at each
time step, if an activated node is susceptible, it will follow the simple contagion mechanism
with probability p, and the complex contagion one with probability 1− p. In the former
case, the node may get infected with probability β from any of its infected neighbours.
Otherwise, it gets infected if the fraction of the infected neighbours exceeds the threshold φ.
In practical terms, if ni is the number of infected nearest neighbours of the susceptible node
i, complex contagion takes place if ni ≥ z, where z = ⌈mφ⌉. These steps are repeated until
every node is in the infected state.

In the following, we denote by I(t) the number of infected nodes at time t and by ρ(t) =
I(t)/N (ρ for brevity) the fraction of infected nodes (prevalence), while ρ0 being this quan-
tity at the start of the propagation. Likewise, ρs and ρc indicate the fractions of nodes
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Figure 4.1: Network and contagion dynamics. (a) A node i is activated with probability ai
and connects to m randomly selected nodes. If the activated node i is susceptible, with prob-
ability p it follows the simple contagion mechanism (b) and gets infected by each infected
neighbor with probability β. With probability (1− p) it follows the complex contagion rule
(c) and gets infected if the fraction of its infected neighbors is above φ.

infected by the simple or complex contagion, respectively. To simplify the mathematical
description, we formulate some assumptions about the propagation process. We model a
homogeneous network dynamics by assuming that all nodes have the same activity a. We
consider the heterogeneous case in Section 4.4. We also consider that all nodes share the
same parameters β and φ. Further, we study the cases of z = 2 and z = 3. The analytical
treatment for more general cases with any value of z is reported in the Appendix C.1.

4.3 Analytical study

To shed analytical light on the model, we consider its description in terms of a mean-field
rate equation, inspired by Ref. [61]. We consider the time evolution of the number of in-
fected individuals I(t). In a microscopic time step ∆t, we choose a node at random (the
ego node), which is susceptible with probability (N − I)/N. The ego node becomes active
with probability a, in which case with probability p it follows a simple contagion, and with
probability 1− p complex contagion to potentially become infected. Therefore, within a
mean-field approximation [61], the number of infected nodes at time t +∆t can be written
as

I(t +∆t) = I(t)+
N − I(t)

N
a
[
p∆m,β(ρ)+(1− p)Pz(ρ)

]
, (4.1)

where ∆m,β(ρ) and Pz(ρ) are the probabilities that the focal node becomes infected by the
simple and complex processes, respectively. For the simple contagion process, the ego node
is connected to m other nodes, each one infected with probability ρ. Each infected neighbour
transmits the infection to the ego node with probability β. Thus, the probability that any one
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of the infected neighbours infects the ego is

∆m,β(ρ) = 1− (1−ρβ)m. (4.2)

On the other hand, for complex contagion to take place, we need the ego to be neighbour of
at least z infected nodes, an event that happens with probability

Pz(ρ) =
m

∑
n=z

(
m
n

)
ρ

n(1−ρ)m−n ≡ Iρ(z,m+1− z), (4.3)

where Ix(a,b) is the regularized incomplete beta function [164].

Assuming that the time interval ∆t = 1/N, in such a way that a whole update of the network
corresponds to one Monte Carlo time step 1, we can take the thermodynamic limit N → ∞

in Eq. (4.1) to write the differential rate equation

dρ

dt
= a(1−ρ)

[
p×∆m,β(ρ)+(1− p)×Pz(ρ)

]
. (4.4)

In the following, we analyse the beginning of the propagation process, in the limit t → 0,
ρ ≪ 1, considering different cases.

4.3.1 Pure complex contagion

We first consider the case where only complex contagion is present, corresponding to p = 0.
In this scenario, using Eqs (4.4) and (4.3), we obtain

dρ

dt
= a(1−ρ)Iρ(z,m+1− z). (4.5)

Since we are interested in the behaviour for small t and ρ, we can use the power expansion
of the regularized incomplete beta function for integer z [164]

Iρ(z,m+1− z)∼ ρ
z
(

m
z

)
, ρ → 0. (4.6)

Thus, keeping only the leading terms, Eq. (4.5) can be written as

dρ

dt
=Cρ

z (4.7)

1In particle physics, a Monte Carlo time step is the time it takes for each particle in a system, on average,
to have one chance to change state in a simulation.
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where the constant C is equal to

C = a
(

m
z

)
(4.8)

The solution of this equation, in terms of the initial density of infected seeds ρ0, is

ρ
z−1(t) =

1
ρ

1−z
0 − (z−1)Ct

. (4.9)

This solution shows a linear decreasing behaviour in time of the function 1/ρ
z−1, with a

divergence at a time t = ρ
1−z
0 /[C(z−1)]. The time of the divergence is smaller when ρ0 is

higher, as initially there are more infected nodes, and when z is smaller, since the condition
to be infected is easily reached.

This divergence is non-physical since it appears from a lower order approximation; adding
other terms in the full equation curbs the divergence and leads to a prevalence ρ(t) ≤
1. However, we can interpret this apparent divergence in opposition to the behaviour of
pure simple contagion, in which prevalence grows exponentially in the linear approxima-
tion [165]. Complex contagion operates instead in cascades, in which a large fraction of
nodes become infected in a very short period of time [17]. Thus, we can identify the diver-
gence time as the onset of the cascading behaviour of complex contagion.

4.3.2 Mixed simple and complex contagion

We consider now the case of mixed simple and complex contagions. To simplify our calcu-
lations, we focus here on the case of z = 2. We thus have, for the simple contagion infection
probability,

∆m,β(ρ) = 1− (1−ρβ)m ≃ mβρ−ρ
2m(m−1)

β2

2
, (4.10)

where we have kept only the lower order terms in ρ. For the complex contagion probability,
from Eq. (4.6),

P2(ρ)≃ ρ
2
(

m
2

)
= ρ

2 m(m−1)
2

, (4.11)

where again we have kept only the leading terms in ρ. Inserting Eqs. (4.10) and (4.11) in
Eq. (4.4), we obtain

dρ

dt
= apmβ(ρ+Bρ

2) (4.12)
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up to order ρ
2, and where we have defined the constant

B =
(1− p)(m−1)

2pβ
− (m−1)β

2
−1. (4.13)

The solution of Eq. (4.12) in terms of the initial density of infected nodes is

ρ(t) =
1

Ae−tapmβ −B
, (4.14)

where we have defined the constant

A = B+
1
ρ0

. (4.15)

The sign of B determines the behaviour of the prevalence. If B is negative (and ρ0 sufficiently
small in such a way that A > 0), then ρ(t) grows at short times, until it saturates to the value
1/|B|. If B is positive, on the other hand, ρ(t) diverges at the time

tcasc =
1

apmβ
ln
(

A
B

)
, (4.16)

which serves as a proxy to indicate the time of the cascade, namely the time of a sudden
increase of the density of infected nodes.

These different behaviours, depending on the sign of B can be understood as follows. For
B < 0, the second term on the r.h.s of Eq. (4.12) is negative, in agreement with the second
order expansion of the rate equation for pure simple contagion (see Eq.(4.10)). Otherwise,
if B > 0, the second term on the r.h.s of Eq. (4.12) is positive, as corresponding to the pure
complex contagion rule (see Eq. (4.11)). We can interpret the value B = 0, corresponding to
the probability

pc(β) =
m−1

2β+(1+β2)(m−1)
, (4.17)

as the boundary separating a dominating simple contagion (for p > pc) from a dominating
complex contagion (for p < pc). Within the complex contagion dominated phase, the di-
vergence time tcasc is a proxy of the time at which complex contagion takes over from the
simple contagion prevalent at very short times.

The divergence time tcasc diminishes as ρ0 increases, since the increase of the proportion of
infected nodes occurs earlier when there are initially more infected nodes. The parameter β

also makes the critical time decreasing when it is increasing: as there is a higher probability
to be infected for the simple contagion, the number of infected nodes is greater, thus the
increase of ρ is earlier.
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In the complex contagion dominated region with B > 0, another way to estimate when this
dynamics takes over simple contagion emerges from the analysis of Eq. (4.12). In this
equation, we have a linear term, arising from simple contagion, and a quadratic term, with
components from the complex and simple contagions. Assuming that complex contagion
dominates over simple contagion when the second order term becomes larger than the lin-
ear one, we can define the threshold density of infected nodes (see Appendix C.1 for the
expression of ρeq in the general case z > 2)

ρeq =
1
B
, (4.18)

such that at the time teq, corresponding to ρ(teq) = ρeq, the second order term overcomes the
first order one, and we expect complex contagion to prevail. From the solution Eq. (4.14),
we can estimate, within small time approximation,

teq =
1

apmβ
ln
(

A
2B

)
(4.19)

such that teq < tcasc. In the case that ρ0 > ρeq, the quadratic term containing elements from
the complex and simple contagions dominates from the initial instant of the dynamics. This
scenario corresponds to teq = 0 and marks the region below which the complex contagion is
fully predominant from the early stage of the dynamics.

To sum up the behaviour of z = 2, for p > pc(β), contagion is dominated by the simple
mechanism. For p < pc(β), contagion is dominated, at large times by the complex mech-
anism. At short times, however, simple contagion is prevalent, since it is a larger average
transmission. At the time teq, complex contagion takes over from the initially predominant
simple mechanism.

4.4 Numerical simulations

We contrast our analytical results with numerical simulations, with parameters N = 1000,
a = 1, m = 5 and φ = 0.25 for z = 2, and φ = 0.5 for z = 3. We average simulations over
100 runs. We fix z = 2 (if not noted otherwise) while varying β and p.

Figure 4.2 shows the contagion curves for different β and p (see Figure C.1 in the Ap-
pendix C.2 for the full parameter space). When p is large, dynamics is determined by
simple contagion, as we can see by the fast growth of the prevalence, which is faster for
larger values of β, see Figure 4.2a and 4.2b. When p is small, on the other hand, the com-
plex contagion prevails, see Figure 4.2c-d. In this regime, the prevalence grows initially
slowly, followed by a sudden increase indicative of cascading. Interestingly, as shown in
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Figure 4.2: Fraction of infected nodes ρ (yellow line), proportion of nodes infected by
simple ρs (blue) and complex ρc (purple) contagion as a function of time, for z = 2. Panels
show different (β, p) parameters: a) (0.05,0.99), b) (0.99,0.99), c) (0.05,0.05), and d)
(0.99,0.05). The simple (complex) contagion dominates the propagation when p is high
(low), with a minor influence from β which can be observed on Figure C.1. The grey area
indicates the early period of the contagion up to tinit , when ρ = 0.02. Dashed vertical lines
indicate tcasc, corresponding to the expected outbreak time if B is positive (see Eq. (4.16)),
in panels c) and d).

Figure 4.2d, the ρc cascade emerges earlier when rare (p = 0.05) but likely transmitting
(β = 0.99) simple contagion events are present. Since the initial seeds may not be eligible to
induce a complex contagion outbreak, simple contagion cases build up the necessary initial
conditions to trigger complex contagion.

Figure 4.2 and Figure C.1 (Appendix C.2) show that the analytical divergence time tcasc
generally predicts quite closely the time when the infection curve ρ(t) starts taking off,
signalling the onset of cascades. Nevertheless, tcasc slightly underestimates the real outbreak
time if both β and p have high values, while tcasc is somewhat late if β is low and p is high.

Further, we note here that a non-constant activity distribution can affect the propagation
speed. In Figure 4.3, we aim to compare the results of two activity distributions: a dirac
distribution (every node has the same activity, used in the main manuscript) and a power
law distribution. Both distributions have the same average of 0.1, thus the exponent of the
power law is 1.14. We observe that the simulations made with the dirac distribution are at
first slower than the ones made with a power law distribution, but reach faster the final state
(Figures 4.3, panels a to d). Indeed, as some nodes have a high activity with the power-law
distribution, they are infected first and accelerate the beginning of the process. However, as
the majority nodes have a low activity, the process is slow to reach the contagion of all the
nodes.
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Figure 4.3: Comparison of the contagion curves (panels a to d) and the final ratio Λ (panel e)
when every node has the same activity and when the activities are sampled from a power law.
Both distributions have the same average, i.e., 0.1. The exponent of the power law distribu-
tion is 1.14. The simulations on the left part are parameterised with (β, p): a - (0.05,0.99), b
- (0.99,0.99), c - (0.05,0.05), and d - (0.99,0.05). The propagation is considerably slower
when the nodes have the same activity, but reaches faster the final state. On panel e, every
scatter point stands for a couple of parameters (β, p). The final ratio Λ is identical for the
two activity distributions.

Following this qualitative analysis, we focus now on disentangling the effective mechanisms
that rule the evolution of the spreading process. As we have mentioned above, the domi-
nant mechanism can change during the process in the mixed simple/complex scenario. We
thus consider the early and late stages of the propagation separately. The early stage corre-
sponds up to the time tinit , at which the prevalence ρ fulfils the condition ρ = 0.02, while the
late stage encompasses from tinit to the time when all nodes are infected, tend . To identify
the early and late contagion mechanisms we consider the ratios λ = ρc(tinit)/ρs(tinit) and
Λ = ρc(tend)/ρs(tend). It is worth noticing that the outcome Λ of the two compared activity
distributions on Figure 4.3 (the dirac distribution and the power law distribution.) are iden-
tical: the final ratio between the number of nodes infected by the simple and the complex
contagions is the same (Figure 4.3e). If the simple (complex) contagion dominates the en-
tire process, both quantities remain below (above) 1. If the simple contagion dominates the
early stage but the complex one takes over in the late stage, then we expect Λ > 1 and λ < 1
respectively.

Since the case Λ< 1 and λ> 1 cannot be observed (once the complex contagion is triggered,
it propagates much faster than the simple one), we classify the spreading dynamics into three
categories: pure simple contagion (Λ < 1 and λ < 1), pure complex contagion (Λ > 1 and
λ > 1), and mixed contagion (Λ > 1 and λ < 1). We thus expect two transitions in the pa-
rameter space (β, p). The first, pure simple to mixed contagion, and the second from mixed
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to pure complex. The first transition takes place at a threshold pc(β), given by Eq. (4.17) for
z = 2, separating the phase in which simple contagion is always dominating from the phase
in which complex contagion dominates at large times. In the mixed phase, while complex
contagion is dominant at large times, at short times simple contagion is prevalent. The sec-
ond transition separates this mixed phase from the pure complex contagion phase, in which
even at short times complex contagion is predominant.

In the following, we propose two different methods to identify the transition point from
mixed to pure complex phases.

Method 1: In the complex dominated phase, we measure the time teq and prevalence
ρeq = ρ(teq) when the two terms in the rhs of Eq. (4.12) become equal, indicating when
the simple contagion term takes over the complex contagion one. These quantities can be
computed analytically from Eqs. (4.18) and (4.19), and numerically by evaluating in sim-
ulations when the first and second terms in the rhs of Eq. (4.12) become equal. The time
teq signals thus the transition between a dynamics initially dominated by simple contagion
and the dynamics asymptotically dominated by complex contagion. In the parameter space
(β, p), the transition from the mixed phase to the pure complex contagion phase should thus
correspond to teq(β, p) = 0 (noted teq null in the following figures), that is, when right at the
initial time step the contagion is dominated by the complex mechanism.

Method 2: The second approach relies on the results in Eq. (4.9), suggesting that the
function 1/ρ

z−1 should decrease linearly with time t, if the spreading is governed by pure
complex contagion. We demonstrate this behaviour in Figure 4.4a and b (for z = 2 and
z = 3 respectively) by showing the curve 1/ρ

z−1 for simulations corresponding to the (β, p)
pairs indicated by the black points in Figure 4.4c and d respectively. In the case where both
simple and complex contagions are present, looking at the short time behaviour of 1/ρ

z−1

is also linear with t, see Eq. (4.14), as it can be seen expanding the exponential in the
denominator regardless the sign of B. However, this linear trend breaks down earlier, since
the expansion of the exponential fails sooner. As a result, the complex contagion dominates
longer, as marked by a longer linear decrease. To quantify this effect, we first consider an
initial regime up to small initial time tinit , in which we assume a linear behavior for 1/ρ

z−1.
To take equally different values of z, we define tinit as the time when ρ satisfied the condition

1
ρz−1/

1
ρ

z−1
0

= 0.5 (if z = 2 and ρ0 = 0.01, this condition corresponds to ρ = 0.02). We then

fit a linear function to 1/ρ(t)z−1 in the interval [0, tinit ]. Finally, we find the value tlim at
which the linear behavior breaks down. This is defined by the time at which the function
1/ρ(t)z−1 differs from the initial linear fit by a value larger or equal than ε = 0.05/ρ

z−1
0 .

The prevalence at this time is denoted as ρlim = ρ(tlim).
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Figure 4.4: The 1/ρ
z−1 curve (dark blue line) obtained from simulation averages with

(β, p) = (0.037,0.037), fitted by a linear function (black dotted line) on the period before
tinit (grey area) for z = 2 (panel a) and z = 3 (panel b). The tlim time point when the two
curves diverge is corresponding to an ε > 0.15/ρ

z−1
0 difference, indicated by a vertical light

blue line. The different tlim obtained across the whole parameter-space (β, p) are displayed
for z = 2 (panel c) and z = 3 (panel d). 1/ρ

z−1 stops being linear at early times when the
propagation is fast i.e., when both β and p are high, while this linearity persists longer when
the contagion process is slow (low β, and high p for z = 2). Simulations results were calcu-
lated as averages over 100 realisations.
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In Figure 4.4 we show an example of the application of Method 2. Indeed, as Figure 4.4a
depicts, tlim takes a larger value as the 1/ρ

z−1 curve scales linearly over an extended regime,
suggesting dominating complex contagion. On the contrary, in Figure 4.4b, the simulations
are dominated by simple contagion, thus tlim is small as a shorter linear scaling is observable.
We display the rescaled time tlim/tend for an extended parameter space in Figures 4.4c and
Figures. 4.4d for z equal to 2 and 3, respectively. According to these results our method can
well separate the regime where the complex contagion dominates, characterised by large
tlim/tend values and corresponding to lower values of β and p, from the simple contagion
dominated regime, with small values of tlim/tend and for higher values of β and p.

Fig. 4.5 shows how the analytical and numerical methods capture the transitions from pure
simple contagion to mixed, and from mixed to pure complex, in the (β, p) parameter space.
Figs. 4.5a and 4.5c show a phase diagram depicting the different regions in the (β, p) space
for z = 2 and z = 3, respectively. The regions are determined by comparison of the values
λ and Λ defined above: pure simple contagion for Λ,λ < 1, pure complex contagion for
Λ,λ> 1, and mixed contagion for Λ> 1, λ< 1. For z= 2, the phase boundary between pure
complex (brown area) and mixed (pink area) is well captured by Method 1, corresponding to
a null teq line in red. The boundary between mixed and pure simple (green area) is slightly
shifted from the prediction pc(β) (green line). In the case of z = 3, again Method 1 provides
an excellent approximation for the boundary between pure complex/mixed phases, which
seems to take place at smaller values of (β, p) than for z = 2. In this case, we do not have an
analytical prediction for the boundary mixed/pure simple, leaving us alone with the results
of numberical simulations. However, it seems to appear again for smaller (β, p) values.

In Figs. 4.5b and 4.5d, we present the predictions by Method 2 for the location of the bound-
aries between pure complex/mixed phases for the cases of z = 2 and z = 3, respectively. In
these plots we depict as color maps the density ρlim for the whole range of the (β, p) pa-
rameter space. As we can see, the collapse of the boundary extracted from Method 2 with
the classification made in terms of Λ and λ ratios is excellent, while also being in very good
agreement with the prediction of Method 1 represented by teq null.

4.5 Conclusion

In this chapter, we introduced a mixed model of social contagion on temporal networks, in
which nodes can be infected by either simple or complex contagion dynamics simultane-
ously. We focused on the simplest modelling scenario of a homogeneous Activity-Driven
network with all nodes having the same activity. We tackled the solution of the model ana-
lytically using a mean-field rate equation for the total density of infected nodes as a function
of time, and numerically through extensive simulations. This way we proposed two ways to
differentiate between processes of different dominant contagion processes.
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Figure 4.5: Areas corresponding to the three categories in the parameter-space (β, p) on
panel a for z = 2 and on panel b for z = 3. The quantities pc(β) and the limit of teq null,
indicated by a green and a purple line respectively, match the transitions between those
areas. The values of ρlim, displayed in the second column, are also marked by the transition
between pure complex and mixed.

77

C
E

U
eT

D
C

ol
le

ct
io

n



We identified three phases of contagion according to the two main parameters of the model,
the probability of adopting by simple contagion p and the infection probability of simple
contagion β. For small (large) values of (β, p), the dynamics is ruled purely by simple
(complex) contagion. For intermediate values of (β, p), instead, the dynamics is mixed:
initially dominated by simple contagion but following complex contagion at large times.
Finally, for large (β, p) parameter values the spreading is dominated by the simple contagion
mechanism. We proposed a criterion to determine the phases of the system, confirmed by
analytical expressions for one of the boundaries and by numerical methods for all of them.

Future work should be dedicated to extending the analytical study to larger z values, to
find a critical adoption probability pc separating simple and mixed contagion in these cases.
Furthermore, we explored the effect of heterogeneity of nodes —with respect to their activ-
ity rate— only qualitatively, by comparing contagion curve profiles between constant and
power-law activity distributions. Extending the analytical and numerical frameworks pre-
sented here to the case of heterogeneous networks represents a significant avenue for future
research.

We believe that our results open the door to the investigation of mixed-propagation in which
a same node can adopt by both the simple and the complex contagion mechanisms. Our aim
is to contribute to the understanding of the spreading of social behaviour taking into account
the differences between individuals.

In the work presented in this chapter, I contributed by designing the research question and
the model, conducting the mathematical analysis with my collaborators, making the simu-
lations and exploring the results with my collaborators.
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Chapter 5

Conclusion

Understanding the underlying mechanisms of spreading processes is crucial for explaining
how social behaviours propagate in our societies. Temporal networks, which reflect the
dynamic nature of social interactions, provide an accurate framework to study processes
arising on top of them. Since these evolving structures influence propagation, the coupled
analysis of the interactions and the process dynamics is necessary to understand the spread-
ing phenomena. Especially, many temporal characters, such as daily routines, exhibit cyclic
patterns that are often difficult to detect when they are represented by temporal networks.
In Chapter 2, we proposed a method to measure the periodic time scales of these temporal
objects that we applied to assess periodic changes in link density and group structures. We
proved the efficiency of the methods by applying them to synthetic and real networks. We
then shifted focus to social behaviour propagation and we aimed to distinguish between the
spontaneous, simple and complex contagion mechanisms. Many studies assume that only
one single contagion mechanism occurs in a whole spreading process, but in reality different
ones can coexist depending on the individuals. In Chapter 3, we addressed this classification
problem on the microscopic level, using likelihood and random forest approaches that we
tested on synthetic simulations and real-world data. Finally, Chapter 4 extended this analy-
sis to temporal networks, categorizing the simulations from a mixed propagation model into
pure simple, pure complex, or mixed dynamics and identifying the dominant contagion type
at the macroscopic scale through different methods.

The limitations of this work are very similar to those encountered in complex systems.
Studying spreading processes on top of networks especially involves making several as-
sumptions. While it is certain that interactions between individuals play a role in the spread-
ing of behaviours, it is a significant assumption to claim that every exchange is about the
adoption behaviour. In reality, there is a competition on every different topic two individuals
can discuss, which creates uncertainty about the type of content shared during their interac-
tions. Moreover, it is difficult to distinguish if the spreading is caused by social influence
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or other factors like homophily. The Activity-Driven Model also assumes that any node can
interact with any other node if they are randomly selected, which is unrealistic as people
tend to interact in limited social circles.
Another challenge faced in this work is about the availability of data needed to study those
dynamical processes. In Chapter 3, we assumed that all the local information of the spread-
ing of an ego-network is known. In reality, it is difficult to be exhaustive in enumerating
every social interaction and understanding the exact time of infection of the neighbours.
Even on online platforms like Twitter, the underlying algorithms remain unknown meaning
that we cannot be certain about every interaction since users are shown selected posts. For
those reasons, getting a complete data set of a whole propagation process is even harder, but
would be useful to apply the methods of Chapter 4. Additionally, the size of the contagion
data sets can be significantly large, which can be problematic for running the algorithms
efficiently. In Chapters 2, we assumed a complete knowledge of the temporal network.
However, it is complicated to gather data over a long period of time, unless dealing with
specific scheduled events like airplane flights.
Finally, the analytical methods used in the diverse chapters of this work come with their
own limitations. Several simplifying assumptions were needed to be able to calculate the
equations, which made the results less accurate.

This work opens the door to studying propagation processes at the individual level, allow-
ing nodes to adopt through different mechanisms. This approach provides a more realistic
view by reflecting the differences between individuals and leads to more accuracy in the
modellings of propagation as long as a better understanding of how humans influence each
other. I hope this thesis will encourage more research in this direction, potentially uncover-
ing new phenomena.
Similarly, in the same way we combine spreading processes with temporal networks, fu-
ture work could extend these approaches to cumulate in addition to the temporal component
other types of networks, such as directed networks or hyper-graphs. This would not only
increase the complexity of the propagation models but also make them more realistic.
Moreover, this work could be applied to more real-world datasets, particularly for the stud-
ies presented in Chapter 3 and Chapter 4, as both lack ground-truth data for which the
contagion process at stake is known. It would be worth considering the creation of datasets
specifically designed to distinguish between the simple and the complex contagion pro-
cesses. The COVID-19 pandemic has been extensively studied, resulting in the creation of
large datasets in epidemiology, and it is promising that we may also see a rise of datasets on
social behaviours, especially nowadays when information spreads more widely and quickly
than before.

To conclude, this study offers a perspective on both temporal networks and social conta-
gion, enhancing our understanding of spreading processes without prior assumptions about
individual behaviours.
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Appendix A

Detecting periodic time scales of changes
in temporal networks

A.1 Sensitivity analysis: size and length of the temporal
network, sliding window parameters

To evaluate the reliability of our results, we perform a sensitivity analysis on the parameters
of the experiments Change of activity and Change of grouping. We change one parameter in
both experiments while keeping the other constant (N = 100, ε = 0.001, η = 4, γ oscillating
between 1.8 and 2.8 for the Change of activity and γ = 2.8 for Change of grouping, Ta =
Tg = 100, | T | is adjusted to have 12 periods, ∆tw = 5 and tw = 2).

When we vary the number of nodes of the networks (Figure A.1), the original period is
almost always measured properly except when the number of nodes is high. In that case, the
measured period is 50 (corresponding to a frequency of 0.02), which is half of the original
period. In fact, when the networks change from a high-activity state to a low-activity state,
we observe a peak in the dissimilarity function. This situation happens twice in a period:
when changing from low to high and from high to low activity. The measured period is
then the half period (Note that this happens at all sizes, and the half-period is indeed always
recovered as one of the harmonics, but it seems here to become dominant at large sizes).

The same analysis has been realized by changing the length of the period (Figure A.2) and
in every case, the original period is correctly measured: the length of the period does not
influence the observation. Instead, when we change the number of periods observed (Figure
A.3), we observe that we need a minimum of 2 periods to measure the original time scale.
Finally, changing the exponents in the Change of activity experiment does not have any
effect on the measure of the correct time scale (Figure A.4) but they must obviously be
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different, which is necessary to have a period network.

We finally study the influence of the parameters of the sliding window tw and ∆tw on the
results. In Figure A.5, we compute the power spectra of the AD network with the SA-
method and the EG-method having different parameters tw and ∆tw. Indeed, in the case
of empirical data sets, if no prior information is available on the orders of magnitude, one
should explore a range of possible parameters and check the robustness of the extracted
timescales. The correct period (100) is properly measured if tw is not too large and if ∆tw
has an intermediate value.
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Figure A.1: Power spectra of the temporal network from the Change of activity experiment
(left column) and the Change of grouping experiment (right column) measured from the
SA-method (yellow background) and the EG-method (blue background). The number of
nodes of the AD networks varies from 50 to 1000. The correct frequencies are indicated
with vertical dashed lines. Those original periods are well-measured in the majority of the
cases. However, when the number of nodes is too important, the method measures the semi-
period.
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Figure A.2: Power spectra of the temporal network from the Change of activity experiment
(left column) and the Change of grouping experiment (right column) measured from the
SA-method (yellow background) and the EG-method (blue background). The period varies
from 25 to 300. The correct frequencies are indicated with vertical dashed lines and are here
always well recovered.
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Figure A.3: Power spectra of the temporal network from the Change of activity experiment
(left column) and the Change of grouping experiment (right column) measured from the
SA-method (yellow background) and the EG-method (blue background). The number of
periods of the AD networks observed during T varies from 1 to 6. The correct frequencies
are indicated with vertical dashed lines. Those proper periods are well-measured as long as
the data set contains at least two periods.
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Figure A.4: Power spectra of the temporal network from the Change of activity experiment
measured from the SA-method (left column, yellow background) and the EG-method (right
column, blue background). The parameter γ1 of the AD networks corresponding to periods
of high activity varies from 1.8 to 2.8, while the other parameter γ2 characterising the low-
activity state remains constant equal to 2.8. The correct frequencies are indicated with
vertical dashed lines. Those proper periods are well-measured as long as γ1 is different than
γ2.
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ing window: the x-axis presents different values of the stride tw and the y-axis different
values of time-window lengths (∆tw). The period of the initial networks is 100 and the re-
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Appendix B

Distinguishing mechanisms of social
contagion from local network view

B.1 Distribution of the features of the random forest of Ex-
periment 2

The features of the random forest have been chosen to present different values according to
the mechanisms of adoption. As depicted in Figure B.1, the distributions of most features
differ for the simple, complex and spontaneous adoptions. The degree is the only feature
which is not related to the propagation itself but to the structure of the network. While it
does not present significant differences in the distributions within Erdős-Rényi networks,
we keep it due to the potential influence of a node’s degree in other type of networks.
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Figure B.1: Distribution of the features of the random forest algorithms across the parame-
ter space: degree (panel a), number of infected neighbours (panel b), proportion of infected
neighbours (panel c), sum of stimuli (panel d), standard deviation of stimuli (panel e), num-
ber of stimuli by neighbours (panel f), time since the first infected neighbour (panel g) and
time since the last infected neighbour (panel h). The displayed values, taken from Experi-
ment 2, are grouped by their dynamical processes (simple, complex or spontaneous).
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B.2 Best subset of features for the random forest on Ex-
periment 2

To evaluate the significance of the features of the random forest method on Experiments
2 and 4, we train algorithms with all possible subsets of the eight features. Figures B.2
and B.3 present the subset with the highest accuracy (y-axis) for each subset length (x-axis),
respectively for Experiments 2 and 4, across the whole parameter-space, with corresponding
accuracy values indicated in blue. Looking at the results from Experiment 2, enlarging the
feature set from one to three increases the accuracy, but a plateau is reached for subsets larger
than four. In other words, in most regions of the parameter space, only three features are
necessary to achieve the same accuracy as with more features. However, this optimal subset
varies through the parameter space. Also, adding features increases the accuracy when φ is
high, but does not have any effect when the value of φ is small. Differently, the set of features
for the classification of Experiment 4 does not have a great influence on the accuracies, as
the obtained values for different lengths of subsets are very similar. In contrast, the selection
of features for the classification in Experiment 4 has a limited influence on the accuracies,
as the obtained values for different subset lengths are very similar.
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Figure B.2: Subsets of features giving the best accuracies (y-axis of each subplot) in the
parameter space (β,φ) for a certain length of subset (x-axis of each subplot) in the classifi-
cation with the random forest of Experiment 2. The corresponding accuracies are displayed
in blue. If several subsets give the same best accuracies, we compute the frequency of ap-
parition of each feature in those subsets. In most of the cases, only three features are enough
to obtain the same accuracy values as with the total set of features, but those three features
are different across the parameter space.
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Figure B.3: Subsets of features giving the best accuracies (y-axis of each subplot) in the
parameter space (β,φ) for a certain length of subset (x-axis of each subplot) in the classifi-
cation with the random forest of Experiment 4. The corresponding accuracies are displayed
in blue. If several subsets give the same best accuracies, we compute the frequency of ap-
parition of each feature in those subsets. In most of the cases, only three features are enough
to obtain the same accuracy values than with the total set of features, but those three features
are different across the parameter space.
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B.3 Accuracies of the classification of spontaneous adop-
tion on Experiment 3

We assess the classification accuracies of the simple, complex and spontaneous cases from
Experiment 4 with the random forest algorithm, using different values of filtering on the
values of β̂ and φ̂ (40%, 60%, 80% and 100%). The accuracies of the classification of
the simple and complex instances increase while the percentage of the filtering diminishes
(Figure B.4), even though all the obtained values remain above the accuracy of the random
classification (0.33). We choose to work with a filter of 80% which presents accuracies
above 0.65 while keeping most of the values of the distribution. The accuracies of the
classification of the spontaneous instances (Table B.1) are consistently low, regardless of
the percentage of data filtering employed in Experiment 3. This is attributed to the inability
to assess the rate of infection r.

Percentage of filtering 40 60 80 100
Accuracy of the St 0.07 0.12 0.23 0.50

Table B.1: Accuracy of the classification of the spontaneous adoptions on Experiment 4
with the random forest.
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Figure B.4: Parametrization and accuracy of the classification of Experiment 4 constructed
based on the #GiletsJaunes Twitter dataset. The distributions of β̂ and φ̂ respectively panels
a-b and c-d are filtered keeping their 40%, 60%, 80% or 100% lower values. The accuracy
values of the classification of the simple contagion (panel e) and the complex contagion
(panel f) increase while the percentage of filtering increases.
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Appendix C

Competition between simple and
complex contagion on temporal networks

C.1 General case z > 2

We can also calculate ρeq when z > 2. To do so, we first aim to calculate the expression of
P(n ≥ z) and ∆m,β(ρ) in the general case in which z can take any value. We first prove that
P(n ≥ z) is a polynomial for which the zth order Taylor expansion has a lower degree of z,
meaning that P(n ≥ z) is governed by the term ρ

z. Indeed, the Taylor expansion of the term
(1−ρ)m−n in Eq. (4.3) gives the following.

P(n ≥ z)(ρ) =
m

∑
n=z

(
m
n

)
ρ

n

[
1+

z

∑
i=1

(−1)iρi

i!
(m−n) . . .(m−n− i+1)

]
(C.1)

In order to prove that the lowest degree of P(n ≥ z) is z, we consider the term ρ
α, with α < z

and demonstrate that its coefficient Cα is null. From Equation C.1, if α is equal to 0, the

coefficient is 1 -
(

m
0

)
ρ

0, which is null, otherwise the coefficient Cα is the following.

Cα =−
(

m
α

)
−

α−1

∑
n=0

(
m
n

)
(−1)α−n

(α−n)!
(m−n) . . .(m−α+1) (C.2)

By reorganising the terms, Eq. (C.5) is then equal to the following.
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Cα =−
(

m
α

)[
−1−

α−1

∑
n=0

(
α

n

)
(−1)α−n

]
(C.3)

The right term of Eq. (C.3) can be expressed as −1−

[
α

∑
n=0

(
α

n

)
(−1)α−n1n −1

]
. Using the

Newton’s binomial, we show that that term is null, thus Cα is also null, which demonstrates
that the zth order Taylor expansion of the polynomial P(n ≥ z) has a lower degree of z. The
coefficient of the term in z is then the following:

Cz =−
z−1

∑
n=0

(
m
n

)
(−1)z−n

(z−n)!
(m−n) . . .(m− z+1) (C.4)

By reorganising the term, we prove that Cz =

(
m
z

)
, and then P(n ≥ z) =

(
m
z

)
ρ

z.

The general term of ∆m,β(ρ) is given by its Taylor expansion:

∆m,β(ρ) =−
z

∑
i=1

(
m
i

)
(−1)i

β
i
ρ

i (C.5)

We then use those expressions in Eq. (4.4). In the right part of the equation, the term in ρ
z is

a
(

m
z

)
[p(−β)z−1[β+

z
m− z+1

]+1− p]ρz and the term in ρ is −apmβρ. Those two terms

are equivalent when:

ρeq ≈ z−1

√
mpβ(m

z

)
[p(−β)z−1[β+ z

m−z+1 ]+1− p]
(C.6)

C.2 Simulations on the extended parameter-space (β, p)

The contagion curves and the expected times of increase tcasc, displayed on Figure 4.2 in the
main text for four different parametrisations (β, p), are shown for a larger range of values
on Figure C.1. We can observe that large values of p and small values of β lead to a slow
dynamics, as the model attempts but fails to infect nodes through the simple contagion. In
contrast, the fastest contagion processes are for high values of both p and β as the nodes in
this setting are mainly infected successfully by the simple contagion.
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Figure C.1: Fraction of infected nodes, ρ(t), as the function of time for simulated spreading
scenarios (yellow line), together with the proportion of nodes infected by the simple, ρs,
(blue curve) and the complex, ρc, (purple curve) contagions for z = 2. Panels show simula-
tion results averaged over 100 realisations, for different values of β (x-axis) and p (y-axis).
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We explore then the proportion of nodes infected by each process through time, namely
ρs and ρc on Figure 4.2 (extended parameter-space of Figure 4.2). Complex contagion
dominates the propagation for small values p, as nodes are more likely infected by the
complex contagion in this setting. Also, in line with previous results, the simple contagion
governs the spreading when p is high. The influence of β is minor but observable, leading to
higher ρs when β increases. In particular, in the simulations for p= 0.5, p= 0.6 and p= 0.7,
raising β changes the contagion process dominating the simulation, from the complex to the
simple contagions.

Figure C.2 exemplifies the second method to evaluate the dominance of the simple or com-
plex contagions at the beginning of the process with an extended parameter-space compared
to Figure 4.4 in the main text. The curve ρ

z−1 is linear decreasing if the complex contagion
dominates, which is the case for low values of β and p. We measure the linearity of the
early times of the curves by fitting the curves with a line and showing the time when the
simulations and the fits have a difference higher than ε. As expected, the linear trend is not
present for high values of β and p, for which the simple contagion governs.
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Figure C.2: Inverse of the proportion of infected neighbours to the power z-1 (dark blue
line), fitted with a linear function on the first part of the propagation (black dotted line). The
x-axis stands for different values of β, while the y-axis represents the values of p.The time
tlim when the difference between 1/ρ

z and its fit is higher than ε > 5 is indicated with a light
blue line.
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Vestergaard, “Randomized reference models for temporal networks,” SIAM Review,
vol. 64, no. 4, pp. 763–830, 2022.

[65] R. M. Anderson and R. M. May, Infectious diseases of humans: dynamics and con-
trol. Oxford university press, 1991.

[66] M. E. Newman, “The structure and function of complex networks,” SIAM review,
vol. 45, no. 2, pp. 167–256, 2003.

102

C
E

U
eT

D
C

ol
le

ct
io

n



[67] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, “Epidemic
processes in complex networks,” Reviews of modern physics, vol. 87, no. 3, p. 925,
2015.

[68] J. P. Gleeson, “Binary-state dynamics on complex networks: Pair approximation and
beyond,” Physical Review X, vol. 3, no. 2, p. 021004, 2013.

[69] J.-P. Onnela and F. Reed-Tsochas, “Spontaneous emergence of social influence in
online systems,” Proceedings of the National Academy of Sciences, vol. 107, no. 43,
pp. 18375–18380, 2010.

[70] M. Karsai, G. Iniguez, K. Kaski, and J. Kertész, “Complex contagion process in
spreading of online innovation,” Journal of The Royal Society Interface, vol. 11,
no. 101, p. 20140694, 2014.

[71] E. Oster and R. Thornton, “Determinants of technology adoption: Peer effects in
menstrual cup take-up,” Journal of the European Economic Association, vol. 10,
no. 6, pp. 1263–1293, 2012.

[72] O. Bandiera and I. Rasul, “Social networks and technology adoption in northern
mozambique,” The economic journal, vol. 116, no. 514, pp. 869–902, 2006.

[73] S. Cure, F. Pflug, and S. Pigolotti, “Rate of epidemic spreading on complex net-
works,” arXiv preprint arXiv:2406.15449, 2024.

[74] N. O. Hodas and K. Lerman, “The simple rules of social contagion,” Scientific re-
ports, vol. 4, no. 1, p. 4343, 2014.

[75] F. L. Pinheiro, M. D. Santos, F. C. Santos, and J. M. Pacheco, “Origin of peer influ-
ence in social networks,” Physical review letters, vol. 112, no. 9, p. 098702, 2014.

[76] D. Centola and M. Macy, “Complex contagions and the weakness of long ties,” Amer-
ican journal of Sociology, vol. 113, no. 3, pp. 702–734, 2007.

[77] D. Guilbeault, J. Becker, and D. Centola, “Complex contagions: A decade in review,”
Complex spreading phenomena in social systems: Influence and contagion in real-
world social networks, pp. 3–25, 2018.

[78] M. Granovetter, “Threshold models of collective behavior,” American journal of so-
ciology, vol. 83, no. 6, pp. 1420–1443, 1978.

[79] R. I. Joh, H. Wang, H. Weiss, and J. S. Weitz, “Dynamics of indirectly transmitted
infectious diseases with immunological threshold,” Bulletin of mathematical biology,
vol. 71, pp. 845–862, 2009.

103

C
E

U
eT

D
C

ol
le

ct
io

n



[80] S. Melnik, J. A. Ward, J. P. Gleeson, and M. A. Porter, “Multi-stage complex con-
tagions,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 23, no. 1,
2013.

[81] Z. Ruan, G. Iniguez, M. Karsai, and J. Kertész, “Kinetics of social contagion,” Phys-
ical review letters, vol. 115, no. 21, p. 218702, 2015.
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[118] M. Kivelä and M. A. Porter, “Estimating interevent time distributions from finite
observation periods in communication networks,” Physical Review E, vol. 92, no. 5,
p. 052813, 2015.

[119] D. J. Toth, M. Leecaster, W. B. Pettey, A. V. Gundlapalli, H. Gao, J. J. Rainey, A. Uz-
icanin, and M. H. Samore, “The role of heterogeneity in contact timing and duration
in network models of influenza spread in schools,” Journal of The Royal Society In-
terface, vol. 12, no. 108, p. 20150279, 2015.

[120] “Bureau of transportation statistics, bureau of transportation statistics website
(2017).,”

[121] C. Cattuto, W. Van den Broeck, A. Barrat, V. Colizza, J.-F. Pinton, and A. Vespignani,
“Dynamics of person-to-person interactions from distributed rfid sensor networks,”
PloS one, vol. 5, no. 7, p. e11596, 2010.
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e mutabilità (1912) by corrado gini,” The Journal of Economic Inequality, vol. 10,
pp. 421–443, 2012.

[133] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

[134] H. Zhang, “The optimality of naive bayes,” Aa, vol. 1, no. 2, p. 3, 2004.

[135] A. Mucherino, P. J. Papajorgji, P. M. Pardalos, A. Mucherino, P. J. Papajorgji,
and P. M. Pardalos, “K-nearest neighbor classification,” Data mining in agriculture,
pp. 83–106, 2009.

[136] S. I. Gallant et al., “Perceptron-based learning algorithms,” IEEE Transactions on
neural networks, vol. 1, no. 2, pp. 179–191, 1990.

[137] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A practical guide to support vector classi-
fication,” 2003.

[138] R. Wang, “Adaboost for feature selection, classification and its relation with svm, a
review,” Physics Procedia, vol. 25, pp. 800–807, 2012.

[139] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial,” Frontiers in neu-
rorobotics, vol. 7, p. 21, 2013.

[140] L. F. Price, C. C. Drovandi, A. Lee, and D. J. Nott, “Bayesian synthetic likelihood,”
Journal of Computational and Graphical Statistics, vol. 27, no. 1, pp. 1–11, 2018.

[141] M. H. Hansen and B. Yu, “Model selection and the principle of minimum description
length,” Journal of the American Statistical Association, vol. 96, no. 454, pp. 746–
774, 2001.

108

C
E

U
eT

D
C

ol
le

ct
io

n
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