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Abstract

Physical networks are networks composed of interconnected, volume-occupying objects,
embedded in three-dimensional space. For example, a biological neural network is com-
posed of neurons, which are physical objects, connected via synaptic connections, thus
forming a network. Due to technological advances, data describing the three-dimensional
layout and network connectivity of physical networks is becoming increasingly available,
which provides an opportunity to ask fundamental questions about the relationship be-
tween their physical and network structure. In my thesis, I contribute to the emerging field
of physical network research by extending network science tools to incorporate physical
structure and using these novel tools to characterize the structure and dynamics of empir-
ical and model physical networks. Chapter 1 introduces the topic, and Chapter 2 reviews
the literature. The main results are presented in the following chapters:

In Chapter 3, I extend the so-called meta-graph to analyze empirical physical networks.
The meta-graph was originally introduced to capture physical conflicts in growing linear
physical models (i.e. networks where nodes are spheres and links are straight cylinders).
Here, I generalize the meta-graph to study the spatial proximity of general physical nodes
and links. Applying this tool to empirical networks, I find a strong correlation between
the layout and the combinatorial network describing the system, highlighting the need to
study the co-evolution of networks and their physical shape.

In Chapter 4, I standardize and analyze 15 physical networks from different domains, each
consisting of tube-like objects (links) connected at junction points (nodes). The networks
are categorized into three types: lattice-like networks, trees, and linked trees; most nodes
exhibit degrees of one or three. To characterize their layout, among other physical de-
scriptors, I introduce a quantity that captures how physically confined links are, showing
that while most links follow straight paths, some take winding trajectories through dense
network regions. The shape and connectivity of these networks are intertwined: for some
data sets, highly confined links tend to have high network centralities, confirming that
important links in the network are also confined in space.

In Chapter 5, I investigate the robustness of networks against physical damage. To sim-
ulate spatially correlated damage, physical networks are tiled with equally sized boxes,
which are sequentially removed. Whenever a tile is damaged, all links intersecting the tile
are removed from the network, leading to a percolation transition. Using numerical simu-
lations and analytical calculations, I systematically investigate how physical and network
structures affect the location of this transition for both random and targeted tile removal.
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I show, for example, that the presence of long physical links renders networks extremely
vulnerable to random tile damage. Even scale-free networks robust against random link
damage are dismantled after removing a vanishing fraction of the tiles.

This thesis contributes to the emergent field of physical network theory, with the over-
arching goal of identifying principles valid for a wide class of physical networks. My
results revealed that the shape and connectivity of physical networks are intertwined and
that their interaction strongly affects their behavior. Therefore, to fully understand such
systems, both physical and network structures must be taken into account.

III

C
E

U
eT

D
C

ol
le

ct
io

n



IV

C
E

U
eT

D
C

ol
le

ct
io

n



Every living being is an engine geared to the wheelwork of the universe.
Though seemingly affected only by its immediate surroundings, the sphere of external

influence extends to infinite distance.

— Nikola Tesla (1856–1943)
Serbian Engineer, Futurist, and Inventor
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Love never fails.
But where there are prophecies, they will cease;

where there are tongues, they will be stilled;
where there is knowledge, it will pass away.

For we know in part and we prophesy in part,
but when completeness comes, what is in part disappears.

When I was a child, I talked like a child, I thought like a child, I reasoned like a child.
When I became a man, I put the ways of childhood behind me.

For now, we see only a reflection as in a mirror;
then we shall see face to face.

Now I know in part; then I shall know fully, even as I am fully known.
And now these three remain: faith, hope, and love.

But the greatest of these is love.

— Corinthians 13:8–13
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Chapter 1

Introduction

1.1 Background and Problem Statement
Network science seeks to uncover principles governing complex systems by studying con-
nections between their constituents represented as a graph. This thesis focuses on physical
networks, which represent a diverse class of systems in which nodes and links are physi-
cal entities embedded in three-dimensional space. Examples include molecular networks
in metamaterials [1], the hard-wiring of computer chips [2], vascular systems [3, 4], and
the brain neural networks [5]. Apart from being representable as combinatorial graphs (i.e.
they have an abstract network structure), physical networks [6, 7, 8, 9, 10, 11] are also spa-
tially embedded, their nodes and links have complex three-dimensional shapes and these
nodes and links interact physically, for example, they obey volume exclusion [12, 13]. To
understand how these characteristics influence their structure, evolution, and functionality,
in addition to their abstract structure, their three-dimensional layout must also be taken
into account.

Recent advances in mapping technologies provided detailed three-dimensional representa-
tions of physical networks, offering opportunities to investigate the relation between their
layout and network structure. Examples of available large-scale data sets include neuron-
level maps of biological neural networks [14, 15], high-resolution MRI maps of vascular
systems [4], and mycelia network mappings of fungi [16]. Representing the detailed shape

1

C
E

U
eT

D
C

ol
le

ct
io

n



of physical networks requires large quantities of data, and data of such volume and type is
rarely studied within network science. Therefore, a suitable generalization of the toolset of
network science is necessary to describe such systems and to understand how spatial em-
bedding and physical constraints shape network connectivity, evolution, and robustness.
This thesis contributes to this effort by introducing novel computational and analytical
tools. By integrating spatial and physical constraints with traditional network science,
my work aims to explore the interplay between network properties and physical struc-
ture. While my research foremost aims to advance network science, it potentially provides
insights for applied areas studying specific physical networks.

1.2 Significance of the Problem
Physical networks perform central functions in both natural and artificial systems. For
example, the human brain is composed of billions of interconnected neurons exchanging
electrochemical impulses [5]; vascular networks regulate blood flow, lymph circulation,
and oxygen transport [3, 4]; and computer chip wiring enables the functioning of modern
technology [2]. These networks are not abstract graphs; their physical structure and spatial
embedding significantly impact their structure, robustness, and evolution.

Therefore, the broader significance of physical network theory lies in its potential to influ-
ence a wide range of adjacent fields by offering generalizable methods and principles. By
integrating physicality into network science, we not only deepen theoretical understand-
ing but also we also provide practical tools for analyzing and designing complex systems.
These insights, down the line, may find applications in biological systems and medicine.
They could also extend to technological advancements, including bio-inspired neural net-
works for neuromorphic computing, the development of network materials with custom
properties, and the design of infrastructure systems.

1.3 Contributions
Research on physical networks bridges network science and physical sciences by incorpo-
rating spatial embedding and physical constraints. This interdisciplinary approach uncov-
ers new phenomena that emerge when networks occupy space and cannot overlap, offering
insights into how physical properties influence network structure, dynamics, and robust-
ness.

This thesis contributes to the emergent field of physical network research by introducing
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computational and analytical tools to characterize physical networks, along with data com-
piled from different domains, and data representation and processing methods. Leveraging
this empirical data and novel toolset, I present findings in three chapters: i) In Chapter 3,
I provide evidence that shows that volume exclusion and physical shape significantly im-
pact the growth and functionality of real physical networks ii) In Chapter 4, I quantify the
physical and network structure for a collection of empirical networks, providing insights
to inform model development. iii) In Chapter 5, I study the robustness of networks against
physical damage through percolation analysis, showing that network layout encodes vul-
nerabilities that we are unable to capture relying on traditional methods of network science.

These results expand the scope of physical network research within network science and
potentially provide a fresh perspective in fields studying physical networks, such as neu-
roscience or metamaterials.

1.4 Thesis structure
This thesis is built upon three research articles, each of which is discussed in a separate
chapter [8, 17, 11]. While there is some overlap in notations, definitions, and datasets,
each chapter is intended to be self-contained. The structure of the thesis is as follows:

• Chapter 2: A literature review of both relevant research fields culminating in the
emerging field of physical network research. This chapter provides the broad back-
ground and immediate context for the thesis.

• Chapter 3: Introduction of the generalized meta-graph formalism, a tool that ana-
lyzes spatial proximity and highlights the correlation between physical layout and
network structure.

• Chapter 4: A systematic analysis of physical network properties across 15 empiri-
cal datasets from various domains. This chapter introduces novel physical descrip-
tors, including a measure of link confinement, and explores the relationship between
physical and network structures.

• Chapter 5: Investigation of the robustness of physical networks under spatially cor-
related damage using percolation analysis. This chapter identifies the role of physi-
cal link length and other structural features in determining network vulnerability.

• Chapter 6: A conclusion summarizing the key findings, discussing their implica-
tions, and suggesting directions for future research.
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Chapter 2

Literature review

In this chapter, I present a chronological development of relevant scientific fields that have
given rise to the field of physical networks. Although physical network theory is a nascent
field within network science, it builds on a long history of research-related topics and
on specific physical networks. I will start by reviewing relevant areas of graph theory,
and I continue with polymer physics and neuroscience. Then I cover related areas within
network science: transport networks, spatial networks, and network-of-networks. Finally,
I summarize the recent development of physical network research.

2.1 Graph theory
Physical network connectivity can be represented with combinatorial graphs [8] (also
called the abstract network representation [17]), making graph theory a cornerstone of
physical network research. Furthermore, subfields of graph theory, such as planar graphs,
graph drawing, and spatial graph theory, explore how mathematical and geometrical con-
straints are explicitly or implicitly tied to the connectivity, size, or other graph properties.
A similar notion is present in physical network research, which explores how spatial em-
bedding and the thickness of the links affect the network growth and structure. In this
section, I discuss these three areas of graph theory, relevant to physical network research -
planar graphs, graph drawing problems, and spatial graphs.
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Planar graphs [18] are graphs embedded in two-dimensional space whose edges do not
intersect, hence planar graphs can be thought of as two-dimensional physical networks
without the edge thickness. A typical problem in this subfield can be paraphrased as ”If we
have a graph with certain properties, a specific number of vertices, or edge connections,
can it be embedded without any edges intersecting (i.e. is it a planar graph)?”. One
of the fundamental results from this field is Euler’s formula [18], which states that the
number of vertices v, number of edges e, and number of faces f (regions) abides by the
following equation v+f = e+2, illustrating how the non-intersecting condition intricately
constraints the combinatorial network’s structure. Another famous result is the Kuratwoski
theorem [18, 19], which determines if a graph is planar, by analyzing its subgraphs, again
revealing a connection between the layout and the network structure. The results from
planar graph theory are not directly generalizable to three dimensions, as embedding the
edges without crossing becomes a trivial task in d > 2 dimensions. Nevertheless, by
introducing other types of constraints, such as adding thickness to edges and restricting
the embedding volume, or avoiding edge entanglements, similar problems are studied for
graphs embedded in three dimensions.

A graph drawing [20] is an embedding of a combinatorial network into some metric space;
it is said that a drawing is a geometric realization of a graph. If a graph is drawn with no
overlap between the edges, the graph drawing is called ”crossing-free”, which is a property
possessed by all physical networks as well, due to physical repulsion forces [6, 21, 17].
As mentioned in the last paragraph, avoiding edge crossing of lines in three dimensions is
a trivial task, unless additional constraints are imposed, such as turning edges into three-
dimensional objects by adding a thickness to them. Such three-dimensional drawings are
also investigated within the graph drawing literature [20]. One of the foundational pa-
pers of the field is ”On the Realization of Networks in Three-Dimensional Space” [22],
by Kolomogrov and Barzdin, published in 1967. Inspired by the real physical networks
(i.e. biological neural networks) [23] and how to construct them, they investigated how to
embed combinatorial graphs in three-dimensional space, given certain constraints. Specif-
ically, they draw graphs such that the nodes and links are restricted to follow an underlying
orthogonal grid and they investigate how the minimum volume needed to draw the network
depends on network size. Thus the result connects a property of the three-dimensional
layout to a property of the combinatorial network. Later work on three-dimensional graph
drawings investigated similar questions: connecting combinatorial graph invariants, (e.g.
graph colorability) to the volume of the drawings (for a short overview see Ref. [20]).
Even though the drawing algorithms do not evolve the network, rather, they are trying
to embed a predefined combinatorial graph, they still might be used to inspire physical
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network growth models. For example, algorithms used for the problem of orthogonal grid
drawings [20], where all edges are drawn on a grid, can be considered relevant for physical
networks grown via random walkers on a grid [9].

Spatial graphs are spatial representations of graphs (i.e. embedding) in Euclidean space
R3 [24]. One of the extensively studied problems in the subfield of spatial graph theory
can be paraphrased as: ”Can a graph be embedded in space without the formation of
entanglements?” [25]. Notable results are tied to entangled links (at least two disjoint
cycles, that are not individually knotted and cannot be separated without cutting them) and
entangled knots (a single loop in space, entangled in such a way that it cannot be untangled
into a simple loop without cutting it). For example, there are combinatorial graphs in S3

that cannot be embbeded in physical space without forming an entanglement link or an
entanglement knot, which are called intrinsically linked [26, 27] or intrinsically knotted
graphs [28]. Recent physical network research has shown that entanglements can arise in
the network growth process (for both model and empirical networks) and are shown to be
connected to their network structure [7, 29].

The graph drawing literature and spatial graph theory are useful for physical network re-
search in several ways: (i) the graph drawings can be used as representations of phys-
ical networks, providing a mathematical tool set to describe layouts, and (ii) theorems
on embedding combinatorial networks reveal fundamental constraints on network layout
imposed by combinatorial structure. However, graph drawing primarily focuses on real-
izations of a given graph, physical network research is interested in understanding how
network and physical structure evolve together and how the interaction of the two leads to
emergent phenomena [8, 9].

2.2 Polymer physics
Polymer physics [12] studies chains of covalently linked molecules, called polymers and
other macromolecules [30]. Its main aim is to model and bridge the micro-level proper-
ties of the polymer chains, to the macro-level behavior of materials like plastics, rubbers,
or biological macromolecules such as DNA. Polymer physics is relevant for physical net-
work research for several reasons: First, some physical networks are composed of macro-
molecules, like mitochondrial [31] or DNA contact networks [32]. Second, similarly to
polymers, physical networks are made of elongated objects that physically interact with
each other, e.g., they obey volume exclusion. Therefore, the mathematical characteriza-
tion and models developed for polymer systems, such as self-avoiding random walks or
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sequential deposition, are often adapted to general physical networks [9, 10].

To quantify the geometrical aspects of polymer systems and macromolecules, mathemat-
ical quantities such as persistence length [33, 34], radius of gyration [35, 34] and fractal
dimensions [36] have been used. To quantify the rigidity of polymers at different scales,
the persistence length lp is introduced, as a way to measure how much the directions of
subsequent chain segments are correlated. In other words, if one were to walk lp length
along the chain, the starting and ending points would, on average, be uncorrelated. As
physical networks can be represented as a series of subsequently connected segments (i.e.
a chain of segments), the persistence length was used as a physical intuition behind the
parameter choice for the skeleton representation of network layouts. [8, 17]. The radius of
gyration describes the distribution of a polymer’s components around its center of mass,
thus giving insight into the size and compactness of the polymer structure in solution. It is a
scalar quantity that describes the three-dimensional spatial configuration of a polymer, thus
providing a good tool for model comparison or analytical calculations, which were also
adapted for physical network research [8]. Fractal dimension describes the space-filling of
a physical object on multiple scales [37, 38, 39] and it has been used to characterize the
shape of polymers [40] and also, empirical physical networks [17].

Since the introduction of self-avoiding random walks by Flory in the 1940s [41], random
walk trajectories have been used to study the spatial configurations of macromolecules
and polymers. As real macromolecules are objects that physically cannot overlap with
each other or themselves (i.e. they obey the excluded volume effect [34]), a random walk
that cannot intersect its trajectory (i.e., self-avoiding walk or SAW) has been utilized to
recreate their spatial configurations [12]. As simple as random walk models are, self-
avoiding walks and their variants have successfully characterized the macroscopic behav-
ior of polymer systems, such as the size and shape parameters of random-flight chains, the
determination of the distribution of end-to-end distance from moments, and polymer-chain
adsorption at surfaces [42]. Recent work used random walks to model growing physical
networks [9] and are used as null models to study empirical physical networks [17].

From the initial investigations of the car parking problem by Alfréd Rényi [43] and one-
dimensional polymer chain growth by Flory [44] in the 1950s, the field of random se-
quential deposition (also called addition or adsorption) [45, 46], has studied processes
in which particles are sequentially introduced into a system, without physical overlaps.
The key quantity of interest in random sequential deposition is the maximum packing
density [47, 48], which represents the highest fraction of space that can be covered by
the addition of objects to the system, without violating volume exclusion. As random
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sequential deposition respects the non-crossing condition, it was used as a foundational
mechanism for physical network growth models, such as linear physical networks [8] and
bundle formation model [10].

Overall, due to the similarity of the studied objects, polymer physics adds to the toolset of
methods and measures that are useful for physical network research [6, 9, 8]. In polymer
physics, the focus is on the collective properties of mostly disconnected, elongated objects,
while in physical network research, the main focus is on the collection of objects that
realize a complex network and lead to new types of phenomena, related both to the physical
and the network structure.

2.3 Neuroscience
Neuroscience [49] is devoted to studying the nervous system and its function, which in-
cludes the biological neural networks, one of the largest and the most complex physical
networks. For example, the human brain contains the order of magnitude ≈ 1011 neurons
and glial cells [50], making it very difficult to fully map and analyze. In addition to the
sheer size of these networks, there are individual and developmental differences [51] -
each human has a unique brain, which changes and develops during their lifetime, thus
adding to the complexity. Here, I briefly discuss three subfields of neuroscience relevant
to physical network research - neuromorphology, neural development, and network neu-
roscience.

Neuromorphology [52, 53] studies the shape and structure of the nervous system. In a
recent review study [54], 23 different open-source tools have been identified, which in to-
tal, provide 150 unique morphometric features of the neuron shape. From the perspective
of physical network research, relevant results from this subfield show the relationship be-
tween the neuron morphology and their function [55, 56]. For example, Peter’s rule [57],
predicts the number of synapses between two neurons, based on the overlap of axonal and
dendritic branches. Although they are not directly applicable to every physical network,
some of the applied measures and principles could be generalized for the quantification of
physical network shape and structure [17].

Neural development [58, 59] studies the processes that grow, develop, and change nervous
systems. One of the ways these naturally occurring processes are researched is by sim-
ulation using computational models [60, 61, 62], which encapsulate physical and chem-
ical processes of neural growth and guidance. Although the growth of neurons and the
formation of biological neural networks occur within a specific context, the developed
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mathematical models and principles could be generalized for physical network research as
well.

Network neuroscience encompasses the application of network science methods to the
study of nervous systems [63, 64]. In recent years, there has been a surge of high-quality
data, which has allowed for network representation and analysis [63] of connectomes (neu-
rons connected via synapses) [65, 66] and functional brain networks [67] (connected and
dynamically active brain regions). Specifically, the availability of high-resolution mor-
phological mappings of different species has allowed for the discovery of the geometric
scaling law between neuron connection probability and their distance [68], along with the
validation of the exponential decay pattern in axonal length distribution (exponential dis-
tance rule) [69, 70]. These large data sets with morphological information are important
empirical examples of physical networks, that drive the development of a general theory
of physical networks.

2.4 Transportation networks
Transporation [71] or transport networks [72] are networks through which material or
mass flows between nodes in the network. They can be man man-made, such as gas
pipelines [73] or naturally occurring, like vascular systems [74] of different species - from
leaf veneration of plants [75, 76] to blood vessels of animals [4, 77]. Real transport net-
works are necessarily physical networks, composed of links and nodes that carry physical
material, hence physical network research can also build on the principles and methods
of transport network analysis, such as flow optimization, transport robustness, and scaling
laws.

Flow optimization or optimal design [78] seeks to minimize resource costs while main-
taining efficient transport of the material within the network. This is particularly crucial
in biological networks [79], which must grow and adapt, as energy efficiency is vital for
their survival. Techniques such as minimizing path redundancy or optimizing the network
structure to reduce global energy loss are central to this approach [80, 81], thus, similar
models optimizing the tradeoff between function and the cost of building and maintaining
physical connections represent an important, but mostly unexplored direction in physical
network research.

Transport network robustness [82] is the ability of the network to continue transporting
material, despite failures or disruptions. Robustness is important for both man-made net-
works like road systems [83], which must withstand accidents or closures, and biological
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networks, where physical damage or disease might damage the living tissue [84]. Studies
on robustness often model the effect of damage as a percolation process [85] or event-
based attacks that stress-test the networks [86] to understand how much disturbance they
can tolerate before a system-wide collapse occurs. Naturally, physical network robustness
can be explored in the same manner, but also taking spatial embedding or geometrical
properties into account [11].

Scaling laws describe how the properties of the network change with its size. These laws
are useful in predicting how large-scale systems—whether natural, like ecosystems, or
engineered, like cities—behave as they grow. For example, scaling laws help explain
how the length and density of transport routes must adjust as the system expands [87].
In general, uncovering the scaling laws characterizing physical networks is an important
step in understanding and predicting their evolution and organization. For example, re-
cent work explored the scaling properties of a physical network model [8], showing that
volume-exclusion and thickness of the networks impact their growth. Another recent work
investigated the scaling between physical node size and degree, also exploring how this
correlation affects diffusive dynamics on the network [9].

Overall, transport networks are an important example of physical networks, with the cen-
tral theme in this research field being the tradeoff between cost and transportation effi-
ciency. Studying similar tradeoffs, in a more general way, is a goal of physical network
research as well, therefore it is important to incorporate the knowledge and principles from
the field of transport networks

2.5 Spatial networks
Spatial networks [88] are networks embedded in real space; therefore, all physical net-
works are necessarily spatial networks, but not all spatially embedded networks are phys-
ical. For example, an online social network can be considered as a spatial network: users
have a home location that can affect how they form connections in the online space; how-
ever, the links of the network are not physical objects [89]. A spatial network is typically
described by its combinatorial network (i.e., the list of connections between node pairs)
and the spatial coordinates of the nodes. In contrast, the characterization of a physical
network requires much more data: in addition to the combinatorial network, we also need
to describe the three-dimensional shape of each node and link. This difference in level
of description means that the results of spatial network theory do not always translate to
physical network research. In this section, I highlight concepts and methods developed for
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spatial networks that directly apply to or inspire physical network research.

Long links (i.e. measured by their Euclidean path length, compared to the system size
or typical link length) in spatial networks are generally costly to build and maintain in
terms of resources. For example, in transportation networks, longer connections, like
highways, require more materials, higher energy consumption, and ongoing maintenance
expenses. However, these long links are also crucial for the overall function of the network,
as they often provide shortcuts that optimize flow and reduce the number of intermediary
nodes [88]. This duality also holds for physical networks [17], which should be incorpo-
rated in physical network models [6]. Moreover, long links impact both the abstract and
physical structure of a network - for some physical networks, longer links can provide
more connectivity in the abstract network structure (i.e. long links tend to have high link
degree or link betweenness centrality) [17], but for some other physical networks, they
might lead to more entanglements or congestion in their layout [29].

The robustness of networks against external damage is a central question of network sci-
ence, and it is often modeled as a percolation process. Spatial features in percolation are
considered in three main ways: (i) Spatial embedding affects the structure of the network
and hence affects its critical properties. For example, controlling the typical length of links
leads to a crossover between mean-field-like to lattice percolation [90] (ii) Damage may
spread in the network depending on space, through spatially restricted interdependence
links [91]. (iii) The external damage applied to the network may depend on space. Exam-
ples of this method include the simulations of earthquakes [92], space weather events [93],
or hurricanes [94] used to model the damage they might cause to the road or electricity
transmission networks. Therefore, this approach can be extended to physical networks,
where damage is modeled by removing links that pass through a certain volume in three-
dimensional space [11], which is elaborated in more detail in Chapter 5.

Spatial network theory mostly focuses on whether it is sufficient to know the location of
the nodes, while other spatial features can be neglected. Physical networks on the other
hand focus on the case when physical interactions between nodes and links cannot be
ignored [8, 17]. This distinction requires us to extend the toolset of network science and
thus extend to scope of spatial network theory.

2.6 Network-of-networks
Network visualization and spatial network research typically focus on network embed-
dings where nodes are points in space connected by straight lines. In the case of physical
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networks, however, it is often useful to consider nodes that are extended objects with com-
plex shapes and links that are point-like connections between them. To capture the com-
plex shape of nodes, we can represent the individual nodes as spatially embedded networks
that are bound together with physical links, thus forming a network-of-networks [95]. For
example, a biological neuron can be represented as a spatially embedded network where
branching points are nodes and links are tube-like connections between them, and these
networks representing individual neurons are then bound together by synapses, thus creat-
ing a network-of-networks [8]. This approach mirrors the primary and dual representations
of road networks: the former treats road junctions as nodes and road sections connecting
junctions as links, while the latter treats entire roads as nodes and connects them if they
share a junction point [96]. The network-of-networks representation establishes a formal
connection between multi-layer network theory and physical networks. In this section,
I review how methods developed to analyze network-of-networks (including multi-layer,
multiplex, and interdependent networks) are and could be adopted to characterize physical
networks.

The supra-Lapacian matrix, an extension of the Laplacian matrix, was used to model dif-
fusion processes and connectivity on multi-layer networks [97, 98, 99]. This method has
inspired the introduction of the so-called physical Laplacian describing diffusion-like dy-
namics on the network-of-networks representation of physical networks [9] and it has been
used to show that node volume, a physical characteristic, impacts the diffusion dynamics.
Following this approach, future work investigates other ways physical properties of the
systems affect dynamics on the network, for example, understanding the role of hubs in
spreading dynamics or going beyond linear dynamics [100, 101].

The robustness of multi-layer and interdependent networks is a well-studied topic, for ex-
ample, percolation [102] has been previously performed on spatially embbeded networks-
of-networks [103] to asses their robustness [104, 105]. Interdependent network percola-
tion considers spatially embedded multi-layer networks, where nodes in different layers
are connected by interdependency links. If a node in a layer fails, it causes nodes in other
layers to fail in its proximity. Such events may trigger large cascades of node failure, lead-
ing to abrupt percolation transitions. Analogously, physical network damage may spread
between nodes and links in each other’s spatial proximity even if they are not connected in
the abstract network [11]. Therefore, the results and methods of interdependent network
percolation can be used to understand and model the spread of physical damage [106].

Multi-layer extensions of network centralities [107] make it possible to assign a central-
ity measure not just to individual nodes, but network layers too. Future work, therefore,
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adapting multi-layer centralities to the network-of-networks representation of physical net-
works can characterize the importance of physical nodes in a way that incorporates their
physical structure. Furthermore, one may partition the bounding box of a physical network
into equally sized regions [11], and then treat each region as a layer to form a multi-layer
network. Applying multi-layer centralities to this representation would allow us to assign
an importance not to individual nodes, but to spatial regions of the network.

The formal connection between networks-of-networks and physical networks provides a
rich set of tools for physical network research. However, these tools must be adapted for
use, since networks-of-networks literature typically focuses on systems with a few layers
that are similar in size, while networks representing individual physical nodes focus on
subnetworks that are large in number and have heterogeneous size distributions [8, 17].
While in my thesis, with a few exceptions, I mostly focus on physical network representa-
tions where nodes are spherical or point-like, future work should leverage the connection
between the two research areas [9].

2.7 Physical networks
The term physical network is used in a number of contexts from computer hardware to
chemical reaction networks [108, 109]. Here, I use it to mean networks of objects em-
bedded in three-dimensional space, where physical constraints apply to nodes and links
(e.g. non-crossing conditions), following the convention of Dehmamy et al [6] from 2018.
The rise of available data describing the three-dimensional structure of networks spurred
an effort to understand the fundamental principles of physical networks building on the
framework of network science. In this section, I focus on the recent developments in this
field to which my thesis also aims to contribute. I summarize three topics: tractable mod-
els of network formation, three-dimensional link organization, and dynamical processes
on physical networks.

The influential Barabási-Albert and Erdős-Rényi models of traditional network science
are minimal tractable models that aim to strip away the system-dependent, and often com-
plicated details of network formation, and focus on processes present in a wide range of
systems. Such models allow us to understand general mechanisms shaping networks, serve
as null models to compare empirical data, and as a starting point for more complex mod-
els. Several recent works introduced such minimal models for physical networks; what
they have in common is that all models incorporate volume exclusion to model physical-
ity, i.e., nodes and links are not allowed to intersect each other. The model of Dehmamy et
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al [6] generated abstract networks using the classic BA and ER models and found a three-
dimensional layout that minimizes the length of links while obeying volume exclusion. By
changing the diameter of nodes and links, the authors discovered when physicality affects
the layout and how this physical region depends on the characteristics of the combinato-
rial network. The approach of Dehmamy et al first generates a combinatorial network and
then a realistic layout, mimicking the approach of graph drawing problems; therefore, it is
unable to capture how the layout can affect network structure. To overcome this limitation,
Posfai et al [8] introduced a model where physical layout and network structure evolve to-
gether. In this work, the linear physical network (LPN) model is generated by sequentially
depositing straight rods into the unit cube, respecting the non-crossing condition. Given
the minimal assumptions behind this model, it can be also considered the ”ER model for
physical networks”. The results of this research show how link thickness and the number
of links, due to their physicality, limit which type of network structures can be realized.
Additionally, there is an emergent correlation between the layout and network structure, as
it is encoded in the spectrum of the adjacency matrix, which carries the information about
the layout. The aforementioned models had nodes as spheres or point-like objects, where
links are the tubes that connect them. In reality, links may have a more complex shape,
where for example, a neuron might be considered a node, while a synaptic connection
might be considered a link. Defining extended objects as nodes and their contact points as
links, a minimal random walk model on a grid has also been employed to generate physi-
cal networks [9]. Due to the effect of physicality (i.e. random walkers avoid each other),
the emergent network structure has a broad degree distribution and node degree and node
volume correlation. Readapting models from other fields or the introduction of new phys-
ical network models is still a promising area of research, which would help in answering
fundamental questions about the importance of physicality to network structure.

The three-dimensional organization of physical networks is another significant area of in-
vestigation. For example, utilizing knot theory, researchers measured the entanglement of
physical links in model networks and real systems [7, 29]. Findings reveal that the inter-
twined structure of non-crossing networks carries physical energy and undergoes transi-
tions between different states of intertwining, quantified by measures such as the graph
linking number [7]. Additionally, Bonamassa et al [10] explored link bundling, where
physical links follow trajectories parallel to each other, and have demonstrated, using a
simple linear physical network model, that due to volume exclusion alone, link bundles
can be formed.

Understanding the relationship between the physical properties of nodes and links and
their role in the abstract network is a crucial step in understanding the effect of physicality
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on networks. For example, our recent work [17] has shown using model networks and
empirical data that a positive correlation between node volume and degree is prevalent in
physical networks, and that such correlations can have a strong effect on both network
evolution and dynamics on networks. Concepts like the generalized meta-graph and the
link confinement, discussed in Chapters 3 and 4, reveal that spatially confined physical
nodes and links tend to be central in the abstract network. The meta-graph representation
serves as an efficient tool for physical networks [8], which can capture the interactions
and collisions resulting from physical constraints, for both model and empirical networks,
deepening our understanding of how physical properties influence network growth and
function.

Physicality does not only affect network structure, but can also influence its function or dy-
namical behavior, including diffusion processes governed by the Laplacian operator, which
were studied to understand how physical constraints impact the flow or the spread of in-
formation, energy, or materials through a physical network [9]. Investigations into spatial
percolation processes (i.e. sequential spatially correlated attacks), discussed in Chapter
5, have revealed that robustness and connectivity are affected by the three-dimensional
layout, highlighting differences from traditional percolation in abstract networks [11].

Overall, research on physical networks bridges the gap between network science and the
physical sciences, and by incorporating spatial embedding and physical constraints, it ex-
plores new phenomena and properties that arise when networks occupy space and cannot
overlap. This interdisciplinary approach has led to significant insights into how physical
properties and constraints influence network structure, dynamics, and robustness, expand-
ing our understanding of complex systems in natural and engineered contexts.
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Chapter 3

Generalized meta-graphs on real
networks

3.1 Introduction
Recent experimental advances provide increasingly accurate three-dimensional maps of
physical networks; however, network science lacks the tools to understand how physi-
cality affects the structure and the evolution of their abstract networks. In this chapter, I
introduce one such tool called the generalized meta-graph based on my contributions to
Pósfai et al [8]. In this work, the impact of physicality was studied using a simple physi-
cal network model, where nodes are spheres and links are straight cylinders. The authors
introduced the so-called meta-graph to keep track of potential conflicts between physical
links, this meta-graph provided a framework to characterize the model analytically. Cru-
cially, the meta-graph relies on the fact that the links are straight in the model. However,
real physical networks are typically not linear [17], meaning a link cannot be accurately
represented with a straight rod. Furthermore, if we add a new non-straight physical link to
a network, we can route it infinitely many ways; therefore, it is impossible to keep track of
emerging physical conflicts relying on the original definition of the meta-graph. Despite
this limitation, we show that it is possible to define a generalized version of the meta-graph
that is useful to characterize the physical structure of any existing physical network, which
can be used to predict their functional features, like synapse formation in the brain.
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In this chapter, I introduce linear physical networks and the original meta-graph in Sec-
tion 3.2, followed by the definitions of the skeleton representation in Section 3.3 and gen-
eralized meta-graph in Section 3.4. Finally, the restricted meta-graph is introduced in
Section 3.5, applied in Section 3.6, with results being discussed in Section 3.7.

3.2 Linear physical networks and the metagraph
In this section, I briefly introduce the simple network model studied in Pósfai et al [8] and
the related meta-graph formalism.

A linear physical network (LPN) is a network embedded in three-dimensional Euclidean
space such that each node in the network is a sphere and each link is a capped cylinder
with diameter λ. The nodes and links satisfy volume exclusion, meaning that they cannot
overlap in space. To avoid restricting the maximum node degree, we allow a node to
overlap with the links that are connected to it, and we allow links to overlap with each
other if they share an endpoint, leading to the following formal definition:

Definition 3.2.1. A λ-linear physical network (LPN) in its strictest sense is a graph G such
that the vertex set of G is a point set P ⊂ R3 and the edges (p1, p2) ∈ E ⊂ P2 are straight
segments connecting these points, where P2 is every unordered pair formed of elements
of P . We require that the distance is at least λ between

1. every point pair p1, p2 ∈ P , with p1 ̸= p2 (node-node interaction);

2. every point p1 and every edge (p2, p3) ∈ E , with {p1} ∩ {p2, p3} = ∅ (node-link
interaction);

3. every pair of edges (p1, p2), (p3, p4), respectively, with {p1, p2}∩{p3, p4} = ∅ (link-
link interaction).

Here we define the meta-graph M(P , λ), which is an auxiliary graph that captures the
physical constraints between link candidates connecting point pairs (p, q) ∈ P × P .

Definition 3.2.2. The meta-graph M(P , λ) is a graph defined for a λ > 0 and point set
P , such that

1. the vertex set of M(P , λ) is the set of link candidates that do not overlap with nodes,
i.e.,

Vmeta = {(p, q) ∈ P2 : d((p, q), r) ≥ λ ∀ r ∈ P \ {p, q}}
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2. and the edges of M(P , λ) connect link candidates that overlap in space, i.e.,

Emeta =
{((p, q), (r, s)) ∈ Vmeta × Vmeta : d((p, q), (r, s)) < λ

∀(r, s) ∈ P × P and {p, q} ∩ {r, s} = ∅}.

If link-node interaction is not considered, the vertex set of the meta-graph contains all
possible point pairs, i.e., Vmeta = (p, q) ∈ P × P and Nmeta = N(N − 1)/2, where
Nmeta = |Vmeta| and N = |P| .

To illustrate both the LPN and the meta-graph, Fig. 3.1 presents an example of an 8-node
LPN. Once a linear physical network has been generated, its corresponding meta-graph
can be constructed by identifying all possible links and their physical constraints. The
figure showcases two examples: a low link diameter of λ = 0.01 in Fig. 3.1a, where most
links are allowed, and a higher diameter of λ = 0.2 in Fig. 3.1c, where many links are
restricted due to volume exclusion. The corresponding meta-graphs are shown in Fig. 3.1b
and Fig. 3.1d, where each vertex represents a candidate link, and edges indicate mutual
exclusion due to spatial overlap. This visualization highlights how increasing λ reduces
the feasible connectivity of the linear physical network by enforcing stricter geometric
constraints, which is reflected in the structure of its meta-graph.

In the following sections, I will generalize the meta-graph to study networks where the
links have arbitrary shapes.
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Figure 3.1: Linear physical networks (LPN) (a,c) A linear physical network (LPN) with
eight nodes, showing its structure for two different λ values. While for the small λ in (a)
most links are allowed, for λ = 0.2 in (b) many links are forbidden, as they would overlap
with other links. (b,d) The 28 vertices of the meta-graph represent the candidate links of
the physical network, each labeled by the node numbers they attempt to connect. Two
vertices are connected if the corresponding links overlap, hence they cannot coexist in a
physical network. Figure adapted from co-authors [8].
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3.3 Skeletonized representation of physical networks
To generalize the meta-graph, we introduce an appropriate representation of the layout -
skeletonized representation, which allows for the generalization of formalism applied to
linear links or nodes, to the non-linear cases. For example, this representation would allow
to generalize of the meta-graph formalism on physical networks where nodes are not just
straight rods, but more complex, extended objects [17, 9].

Most real physical networks, from neural or vascular networks to rock fissures, are ob-
tained as volumetric data from experiments. Volumetric representation of a physical net-
work means that the three-dimensional space is divided into voxels, the three-dimensional
equivalent of pixels, and the voxels are labeled to be inside or outside the physical net-
work. While such representation provides the most accurate description of the shape of
a physical network that is available, it is both computational and analytically demand-
ing to analyze. Therefore volumetric data is routinely approximated by skeletonization,
capturing less details, but providing a more concise description [110].

The skeleton of a physical network is in fact a variant of a linear physical network: a
skeletonization algorithm approximates the shape of a physical network with vertices and
straight segments inside the physical network and associates a radius to each vertex. Mul-
tiple segments in the skeleton can correspond to what is considered a separate entity in
the original network, e.g., a single neuron in a neural network or a non-branching section
of a vessel in the vascular network is represented by a collection of straight segments in
the skeleton. Therefore it is common to associate a label with each segment connecting it
to the original object it represents. Altogether, a skeleton representation for our purposes
must have the following properties

Definition 3.3.1. A skeleton representation S is a graph with vertex set V and edge set E
together with

• a position r : V → R3 and a radius ρ : V → R+ associated to each vertex,

• and a label σ : E → Z associated to each edge.

Note that the skeleton S is a physical realization of the abstract network G, where the node
set of G is the set of labels in S.

To recover an approximate volume of a physical network from a skeleton, we take the
union of spheres centered at r(v) with radius ρ(v) for each vertex v ∈ V , and truncated
cones that have axis corresponding to the segment (r(v), r(w)) and parallel faces with
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radii ρ(v) and ρ(w) for each edge (v, w) ∈ E . Alternatively, a less accurate but simpler
approximate volume can be obtained by substituting each edge with a cylinder with axis
(r(v), r(w)) and radius (ρ(v) + ρ(w))/2.

The quality of the approximation can be controlled by the number of vertices in the skele-
ton. There is, however, no single definition of the cost function that characterizes how good
an approximation is, and there are a large number of skeletonization algorithms available
and used in various scientific disciplines [111]. We obtained the data that we work with
already in a skeleton representation unless otherwise noted.

3.4 The generalized meta-graph
Having defined the skeletonized representation, we can generalize the metagraph, whose
goal is to characterize a given physical network by identifying components that are in a
physically confined space. Specifically, we define the generalized meta-graph Mg for a
skeleton representation of a physical network.

Definition 3.4.1. Given a skeleton representation S and a parameter ∆λ, the associated
generalized meta-graph Mg(∆λ,S) is a graph with vertex set corresponding to the edge
labels of S. We increase the diameter of each skeleton-vertex by ∆λ, and meta-vertices l1
and l2 are connected if the approximate volume corresponding to the labels l1 and l2 now
overlap.

The labels li of a skeleton representation S correspond to separate nodes or links of a
physical network, for example, a label can identify the skeleton of a single neuron in a
neural network or a vessel segment in a vascular network. The degree of a neuron or
vessel in Mg(λ,S) quantifies its physical confinement: it counts the neurons or vessels
that surround it in space.

3.5 Empirical networks and the restricted meta-graph
A skeleton S is a physical realization of an abstract network G, such as the synaptic net-
work for neurons or the network of vessel segments connected together by junction points.
There are, however, many alternative skeletons S ′ that realize the same abstract network,
prompting the question: What are the properties of S that are common in all realizations
and what are the differences? Two neurons that are connected in the synaptic network or
two vessels bound together at a junction point are necessarily adjacent in physical space,
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hence they become connected in the generalized meta-graph for low ∆λ for any possible
physical layout S ′ realizing the abstract network. To measure the excess confinement of
a neuron, i.e., the confinement beyond what is necessitated by the synaptic network, we
define the restricted meta-graph, where we exclude all edges in the generalized meta-graph
that are between neurons that are synaptic partners or vessel segments bound together.

Definition 3.5.1. Given a generalized meta-graph Mg(∆λ,S) and a corresponding ab-
stract network G, the restricted meta-graph Mr(∆λ,S) is obtained by removing each edge
e = (l1, l2) from Mg(∆λ,S) if l1 and l2 are adjacent in G.

Figure 3.2 shows an example comparing the generalized and the restricted meta-graph.

Note that the original meta-graph M(λ,P) is a special case of the restricted meta-graph.
We start from a skeleton S corresponding to a complete graph on P with uniform link
thickness 0, and labeling each link uniquely. The restricted meta-graph Mr(λ,S) obtained
by thickening each link by λ is equivalent to the original meta-graph M(λ,P).

We calculate the restricted meta-graph for the four real physical networks (for more details
about the data sets, see SI 3.8.2) as a function of ∆λ, where we measure ∆λ in units of the
average radius of the original network. As a reference, we also generate a jammed random
linear physical network with N = 300 nodes and λ = N−1/2 and calculate its restricted
meta-graph by thickening the links present in the jammed state. Figure 3.3f shows the
average meta-degree ⟨kmeta⟩ as a function of ∆λ for each network, revealing two distinct
patterns: for the brain network, we observe an initial fast increase in the average meta-
degree followed by a slower, steady growth. Such rapid growth is absent in the vascular,
mitochondrial, and root system networks, and is also absent in random linear networks.

This different behavior represents the differences in the building blocks: the connectome
consists of highly intertwined neurons with complex shapes, while the other three net-
works consist of tube-like components, such as vessels, molecular chains, and roots. In-
deed, if we subdivide each neuron into smaller non-branching segments before construct-
ing the meta-graph, we recover the superlinear behavior without the initial rapid growth of
of ⟨kmeta⟩ (Fig. 3.3e).
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Figure 3.2: The generalized and the restricted meta-graph. (a) The schematic layout
of five neurons. The black neuron must be physically adjacent with its synaptic partners
(purple and orange) and depending on the layout may be confined by other neurons it does
not synapse with (green and blue). (b) In the synaptic network realized by the physical
layout (a), the black neuron has degree two. (c) In the generalized meta-graph a neuron is
connected with all neurons it overlaps with after thickening its branches by ∆λ; therefore
the generalized meta-degree of the black neuron is four. (d) In the restricted meta-graph,
we remove edges representing an overlap between synaptic partners; therefore, the re-
stricted meta-degree of the black neuron is two.
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Figure 3.3: The restricted meta-graph of real networks. (a-d) Three-dimensional ren-
dering of the skeletonized description of the four real physical networks. (e) For the vas-
cular, mitochondrial, and root system networks, we label non-branching sections uniquely,
i.e., paths connecting skeleton vertices with degree not equal to two (color-coded sections).
In the generalized and restricted meta-graph the vertices represent these non-branching
sections. (f) Average degree of the restricted meta-graph ⟨kmeta⟩ as the thickness of the
network is increased by ∆λ, where ∆λ is measured in units equal to the average radius of
the original physical network. Dots represent real physical networks and the dashed line
represents a linear physical network with N = 300 nodes and λ = N−1/2. To show that
the complex shape of the neurons is responsible for the shape of ⟨kmeta⟩ (∆λ) we divide
the neurons into smaller non-branching sections and we calculate ⟨kmeta⟩ treating these
sections as the vertices of the restricted meta-graph.
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3.6 The meta-graph of the neural network
In the previous section, we calculated the meta-graph of four real networks. Here, we take
a closer look at one of the case studies, the network representing the brain region of a fruit
fly, and we investigate correlations between the node’s position in the meta-graph and in
the synaptic network.

We illustrate the process in Fig. 3.4a, which shows the meta-graph Mg(∆λ) of the fruit
fly connectome, consisting of N = 2, 970 neurons and M = 35, 707 synapses serving
as links. According to Peter’s rule, neurons can only form synapses if their axons and
dendrites are in close physical proximity [57, 112]. Hence we expect and find a strong
correlation between the meta-degree and the number of synapses. To abstract from these
obvious correlations between the generalized meta-graph and synapse formation, we fo-
cus only on conflicts between neurons that are not connected by synapses and therefore
are the result of the packing of the neurons in the brain. We achieve this by building a
restricted meta-graph, where we remove the synaptically connected links from the meta-
graph (for more details, see SI 3.8.1). Figure 3.4a highlights the vertex with the highest
restricted meta-graph degree kA = 13, corresponding to the most physically confined neu-
ron, bordered by 13 other neurons that it does not synapse with (Fig. 3.4b,c). This prompts
the question: Is the most confined neuron also the most central in the synaptic network?
To find an answer, we performed a linear regression between the restricted meta-degree
and the logarithm of synapses, revealing a positive association between the physical con-
finement and the functional role of neurons (Fig. 3.4e, slope a = 0.356 ± 0.022 and
R2 = 0.26). Our result indicates that synaptically central neurons in the connectome are
tightly confined in the brain by non-synaptic partners.

This is non-obvious, as we can construct physical networks that have negative correlations
between the number of synapses and the restricted meta-degree: consider a physical net-
work with N nodes where each neuron is physically adjacent to all N − 1 other neurons,
as shown in Fig. 3.5. If a neuron i has k synaptic partners, it has N − 1− k meta-degree,
resulting in a perfect anticorrelation between the number of synapses and the meta-degree.
Additionally, some studies show that in dense neural circuits, neurons that are physically
close to each other are more likely to form synaptic connections, as spatial proximity in-
creases the chance of their axons and dendrites coming into contact [113]. However, other
studies highlight the prevalence of non-local connections guided by molecular cues and
functional specificity, indicating that spatial proximity alone does not universally deter-
mine synaptic connectivity [114, 115]. This complexity is further explored in a study [57]
critically examining Peter’s Rule—the idea that synapse formation is largely determined
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by axo-dendritic overlap. While the study confirms that overlap is a strong predictor at
the cell-type level (between the neuron types), it also shows that many potential con-
nections remain unrealized due to selective wiring rules. Therefore, in a brain network
where physical proximity does not guarantee connectivity, the persistence of a positive
correlation—even after removing direct synaptic partners suggests a deeper structural or
developmental constraint. The persistent positive correlation also confirms that the gener-
alized meta-graph captures important properties of the physical layout and can be used to
systematically study the connection between physical and abstract network structure.

As connectome mapping aspires to scale up to the 1011 neurons of the human brain [50],
new mathematical and computational formalisms, like the one offered by the meta-graph,
are needed to unveil the predictive power of these exceptionally large physical network
maps. A full description of the layout of a physical network requires copious amounts of
data that is difficult to handle computationally and also limits analytical advances. For ex-
ample, the Hemibrain dataset describes the 3D trajectory of approximately 25000 neurons
of a fruit fly using 117 million linear segments [5]. Naı̈ve identification of physical con-
flicts, therefore, requires 1016 distance computations, a prohibitive computational burden
for most researchers. In contrast, the 25000 × 25000 adjacency matrix of the generalized
meta-graph can be represented using a few hundred MB of data, hence publishing it to-
gether with the adjacency of the connectome would allow the computationally efficient
study of the relation between physical and abstract network structure.
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Figure 3.4: Meta-graph of a real neural network. (a) Each vertex of the restricted
meta-graph represents a neuron in the fruit fly connectome [5]. A link between two ver-
tices of the restricted meta-graph implies that the corresponding neurons overlap if we
increase their thickness by ∆λ ≈ 0.028 but they are not connected by synapses. The neu-
ron with the highest restricted meta-degree, A, has 13 connections, while 1469 isolated
vertices (not shown) correspond to neurons that are conflict-free for ∆λ ≈ 0.028. (b) A
three-dimensional rendering of neuron A (red) and its neighbors, shown here as a two-
dimensional projection for visualization purposes, highlights that neuron A exhibits the
most excess confinement. Displayed alongside are the 13 neurons within distance ∆λ of
A, which are connected to A in the restricted meta-graph and highlighted in (a). Neuron
colors correspond to the meta-vertices in (a). (c) Neuron A, being an extended physical
object, exhibits spatial conflicts with other neurons that are localized to specific regions
of the physical network, as illustrated in its three-dimensional structure (projected in 2D
for this figure). (d) The degree distribution of the restricted meta-graph for ∆λ ≈ 0.028.
Vertices with degree zero correspond to conflict-free neurons, i.e., lack proximity within
∆λ with other neurons that are not connected to them via synapses. Physically confined
neurons have high restricted meta-degree, indicative of a large number of physical con-
flicts. (e) The dependence of the restricted meta-degree on the number of synapses of each
neuron indicates that the restricted meta-degree is predictive of synapse formation. The
dashed line corresponds to linear regression between the restricted meta-degree and the
logarithm of the number of synapses for each neuron. Small markers represent individ-
ual neurons, large markers are binned averages. For illustration purposes we chose ∆λ
such that the meta-graph is sparse. In SI 3.8.1, we repeat the above analysis for various
∆λ values, finding that the positive association between the restricted meta-graph and the
synaptic network is robust.
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a b c

Generalized meta-graphPhysical nodePhysical layout

Figure 3.5: Physical layout with negative correlation between restricted meta-degree
and abstract network degree. (a) A physical network with N = 5 nodes, each color
corresponds to a separate node. We construct the network by placing five parallel logs
in one layer, then we place another five parallel logs on top of them rotated by 90 de-
grees. (b) Logs of the same color are bound together, meaning that each physical node is
a cross. (c) In this construction, each physical node touches every other node; therefore,
the corresponding generalized meta-graph is fully connected, each node has generalized
meta-degree 4. Since all physical nodes are adjacent in space, this physical layout can
realize any abstract network. For example, if nodes represent neurons, the physical layout
can support any synaptic network. If neuron i in the synaptic network is connected to ki
other neurons, its restricted meta-degree is N −ki, meaning that there is a perfect negative
correlation between the degree in the synaptic network and the restricted meta-degree.
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3.7 Discussion
Recent experimental advances, driven by connectomics and high-resolution MRI, have of-
fered detailed and accurate maps of a wide range of physical networks, from the structure
of individual neurons in a brain, to 3D maps of large vascular systems. These advances un-
veiled an important gap in network science: the lack of understanding of how physicality
affects the network structure. The need for a quantitative and conceptual framework goes
beyond biology: complex metamaterials, combining random and repetitive local struc-
tures [116, 1, 117], offer other manifestations of physical networks, and so do computer
chips that pack billions of transistors.

In this chapter, I introduced a formalism designed to systematically explore the structure
of real physical networks, which are characterized by non-uniform node density, hetero-
geneous link diameters, and bent links [17]. The impact of these features can be studied
by using the generalized meta-graphs, where for example, the link confinement measure,
also introduced in the following Chapter 4, can be considered an adaptation of the meta-
graph formalism. Other issues are less straightforward extensions of this work but may
benefit from the meta-graph framework, such as understanding the effect of the physical
architectures on network robustness [118, 119, 11], which is investigated in Chapter 5, or
on dynamics on networks [120, 121, 122, 123, 124, 9].

A quantitative understanding of physicality can directly impact multiple areas of science.
For example, at this point it is unclear to what degree the observed brain connectomes are
driven by the genetic processes that govern their developmental biology [125], or by phys-
ical constraints that the neurons and their interactions must obey, limiting a neuron’s abil-
ity to synapse with desired target neurons in a very dense environment. Answers require a
modeling and analytical platform that helps us systematically explore the competing role
of genetics and physicality.
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3.8 Supplementary Information

3.8.1 The generalized and the restricted meta-graph of the fruit fly
brain network

Neurons can only form synapses if their axons and dendrites are in close physical proxim-
ity; therefore, if we increase the diameter of neuron branches, neurons will quickly overlap
with synaptic partners (Fig. 3.6).

In the generalized meta-graph Mg(λ) of the fruit fly brain network, vertices represent
neurons, and edges indicate conflicts between pairs of neurons – both between pairs that
are connected via synapses and pairs that are not. Since synaptic partners necessarily
overlap, we expect a positive correlation between the number of synapses a neuron has
and the generalized meta-degree of the neuron, this expectation is indeed confirmed by
numerical measurements (Fig. 3.7).

On the other hand, edges of the restricted meta-graph Mr(λ) represent physical conflicts
only between neuron pairs that are not connected by synapses. In other words, Mr(λ)
focuses on conflicts that are not necessitated by the synaptic network. Fig. 3.8 shows that
we again find a positive correlation between the number of synapses and the restricted
meta-degree of a neuron, indicating that neurons central in the synaptic network are also
tightly confined by other neurons. This is non-obvious, as we can construct physical net-
works that have a negative correlation between the number of synapses and the restricted
meta-degree (Fig. 3.5).

One of the potential explanations for the relationships observed in the Figs. 3.6, 3.7 and
3.8 could be the cable length of the neuron. Longer cables provide more spatial opportu-
nities to encounter other neurons, thereby increasing both the chance of forming synapses
and the number of potential neighbors. Also, recent studies have shown that in physical
networks, a node’s degree is often proportional to its size, both in neural networks [126]
and other empirical and model networks [9].
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Figure 3.6: Conflicts with synaptic partners. To form synapses neurons must be in
close vicinity of each other; therefore, after thickening the neurons, synaptic partners will
be in physical conflict. We show the meta-degree (i.e., the number of conflicts) of the neu-
ron highlighted in Fig. 4 of the main text with non-synaptic (blue) and synaptic (orange)
partners as a function of ∆λ. Initially, for ∆λ = 0 the neuron has no conflicts. After
increasing the thickness of the neural branches all 312 synaptic partners become quickly
in conflict with the neuron. The number of conflicts with non-synaptic partners outnum-
bers the conflicts with synaptic partners, for example, at ∆λ ≈ 3.34 the neuron has 312
conflicts with synaptic partners and 574 conflicts with non-synaptic partners.
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Figure 3.7: Generalized meta-graph of the fruit fly brain network. (a) The generalized
meta-degree distribution for varying ∆λ values. Physically confined neurons have high
meta-degree. (b) Two neurons that are connected by a synapse are necessarily adjacent in
physical space, hence are connected in the generalized meta-graph. Hence we expect to
find a positive correlation between the generalized meta-degree and number of synapses.
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Figure 3.8: Restricted meta-graph of the fruit fly brain network. (a) The restricted
meta-degree excludes edges between neurons that are synaptic partners, capturing the ex-
cess confinement of a neuron that is not necessitated by the synaptic network. For illustra-
tion purposes, in the main text we focused on value of ∆λ (blue) that produced a sparse
restricted meta-graph. Increasing ∆λ may significantly increase the average meta-degree.
(b) We again observe a positive correlation between the restricted meta-degree and the
number of synapses for all tested ∆λ values.
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3.8.2 Data sets
Fruit fly brain

Relying on automated imaging techniques, a recent project mapped out a large fraction of
the brain of the fruit fly Drosophila melanogaster containing the three-dimensional map
of approximately 25000 neurons and the location 20 million synapses [5]. We downloaded
the skeletonized data describing the shape of each neuron through the publicly available
NeuPrint API [127].

To reduce the computational complexity, the network had to be sub-sampled, which is
a non-trivial task, and we carefully considered different approaches when designing the
study. The challenge arises because neurons in the fruit fly brain are not strictly confined
to single brain regions, making it difficult to determine their inclusion based on anatomical
boundaries alone. However, synapses in the dataset are annotated with precise spatial
coordinates and assigned to specific brain regions [5]. This allowed us to select neurons
based on their synaptic activity in a region, rather than attempting to assign entire neurons
to regions directly. We explored two strategies: (i) extracting a cubic sample independent
of functional brain regions, and (ii) selecting neurons based on defined brain regions using
synapse location. In both cases, we considered whether to truncate neuron skeletons at
specific boundaries or to retain their complete skeletons. Ultimately, we opted to focus on
a well-defined region of interest and to keep entire neuronal skeletons intact. This choice
was made for two key reasons:

1. Ensuring that neurons in the sample are meaningfully connected and functionally
relevant within the selected region.

2. Ensuring consistency in pairwise relationships in the generalized meta-graph: specif-
ically, if two neurons are included in the sample, whether or not they are connected
in the generalized meta-graph remains unchanged, regardless of whether the sam-
ple is extended. That is, the meta-graph of the sample forms an induced subgraph
of the full meta-graph, preserving all synaptic connections among sampled neurons
exactly as they appear in the full network.

While this method provides a practical and functionally motivated approach, we acknowl-
edge that it does not fully resolve the complexities of defining neuron membership in a
given region. Future work could avoid sampling issues entirely by constructing the gener-
alized meta-graph of the entire network, enabling a more comprehensive analysis.

Based on this methodology, we analyzed all neurons that had synaptic connections in the
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Medula brain region (labeled ME(R), Fig. 3.3a) [128], which contains 2979 neurons and
1.464 · 106 segments, making it a computationally difficult task to identify collisions be-
tween neurons exactly. To overcome this difficulty, we substitute each neuron skeleton
with a point cloud and use an efficient k-d tree implementation to query minimum dis-
tances between them.

In the skeletonized data set, each segment is labeled by the neuron that it belongs to, hence
the meta-vertices represent neurons. The skeleton together with the location of the synapse
is a physical realization of the synaptic network.

Vascular network

The vascular network data set describes the vasculature found in a 600 × 600 × 662 µm
sample of a mouse cortex (Fig. 3.3b) [4]. The data is provided as a skeleton including radii
at the skeleton vertices. We uniquely label non-branching vessel sections, i.e., each path
connecting a pair of skeleton vertices with degree k ̸= 2 receives a unique identifier. The
skeleton is a physical realization of an abstract network, where nodes are vessel segments,
and two nodes are connected if the corresponding vessels are bound together at a junction
point. We construct the generalized meta-graph such that the meta-vertices represent the
labeled vessel segments.

Mitochondrial network

The mitochondrial network data represents the mitochondrial reticulum of yeast cells
(Fig. 3.3c) [31]. The data set is available both as a skeleton and as a mesh represent-
ing the surface. Radii is not provided with skeleton vertices; therefore we extracted a
radius for each skeleton vertex based on the surface mesh using the Skeletor python pack-
age [129]. Similarly to the vascular network, we uniquely label non-branching sections
of the skeleton, and we construct the generalized meta-graph such that the meta-vertices
represent these labeled sections.

Root system

The root network describes the root system of a Cryptomeria japonica tree (Fig. 3.3d) [130].
The data is provided as a skeleton including radii at the skeleton vertices. We uniquely la-
bel non-branching root sections, i.e., each path connecting a pair of skeleton vertices with
degree k ̸= 2 receives a unique identifier. We construct the generalized meta-graph such
that the meta-vertices represent these labeled sections.
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Chapter 4

Three-dimensional shape and
connectivity of physical networks

4.1 Introduction
Recent physical network research investigated artificial spatial embeddings of complex
networks that obey volume exclusion [6], the entanglement of physical links [131], models
of physical network growth [8, 9], and the effect of physical shape on the dynamics on net-
works [9]. However, systematic exploration of the three-dimensional shape, the network
properties, and the relationship between them in real networks is still lacking. Such explo-
ration is hampered by the lack of standardized representation. First, there is the technical
difficulty that experimental maps of physical networks, like neural or molecular networks,
are collected, processed, and analyzed with domain-specific methodology. Therefore, any
investigation of physical networks must be preceded by the time-consuming and computa-
tionally burdensome task of data pre-processing. Second, even seemingly simple questions
like what is a node and a link in a physical network carry a level of ambiguity: a physical
network is a continuous object in space; to represent it as a network, we must discretize it
into nodes and links. The definition of nodes and links in turn affects, for example, what
properties of the network we can study or the right choice of null models.

Here, we compile and standardize 15 data sets from various domains. Each of these phys-
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ical networks is composed of tube-like objects bound together at junction points; moti-
vating us to treat the junction points as nodes and the tubes connecting them as physical
links. We characterize both the physical shape and the abstract network structure and the
correlations between them. For this, we calculate standard descriptors such as the degree
distribution of the abstract network or the fractal dimension of the layout. We also intro-
duce a measure of link confinement to understand the role of volume exclusion, which
compares the physical links to a null model that randomizes link trajectories. The remain-
der of the chapter is organized as follows: In the next section, we describe the data sets we
collected and their standardization. In sections 4.3-4.5, we analyze the data sets’ abstract
network properties, their physical shape, and the emergent correlations between network
and shape. Finally, Sec. 4.6 provides a brief discussion.
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Figure 4.1: Physical networks. (a) A physical network composed of three tube-like links
bound together at a single junction point. (b) The skeleton representation of (a) approx-
imates the original structure as a collection of vertices (black points) and edges (colored
segments). (c) The combinatorial or abstract network of (a) captures the connectivity of the
system without the physical structure: nodes represent junction points and terminal points,
with a link between two nodes that are directly connected by a physical link. (d) The skele-
ton representation allows us to approximate the original volume of real physical networks
– e.g., vascular network (top) and mitochondrial network (bottom). (e) We compiled a set
of 15 physical networks from various domains. The size of the networks varies greatly:
the number of skeleton segments Nseg capturing the shape of each network spans 4 orders
of magnitude.
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4.2 Data
Our goal is to systematically study the three-dimensional layout of physical networks
and to understand the relationship between their physical properties and their network
structure. For this, we collected 15 data sets from various domains, including individual
neurons [132, 133, 134, 135], biological neural networks [5], plant roots [130], vascular
networks [4], a mitochondrial network [31], and the imprint of an anthill (see SI 4.7.1).
Before any analysis, however, we must uniformly represent and standardize these data sets.
In the following sections, we propose the use of a labeled skeleton representation, which
efficiently captures both the physical shape and abstract network of physical networks.

4.2.1 Skeleton representation
Experimental imaging techniques that are used to capture the shape of physical networks,
such as scanning electron microscopy or magnetic resonance imaging, typically output
a three-dimensional image composed of voxels. Hence, this voxel representation is the
most accurate description available of network layouts. A three-dimensional voxel image,
however, is difficult to handle both computationally and analytically; therefore a more
compact representation of the data is needed.

Physical networks are typically composed of tube-like objects bound together at junction
points (Fig. 4.1a), making them suitable to be approximated by a series of straight seg-
ments and radii of the network at the endpoints of the segments (Fig. 4.1b). The process
of creating these segments from a raw data format is called skeletonization [111], often
employed in the fields of computer graphics [136] and neuroscience [137, 138]. Formally,
a skeleton representation S of a physical network is a graph whose set of vertices V cor-
respond to points in space and set of edges E correspond to segments connecting point
pairs. Therefore each vertex i ∈ V has a set of coordinates ri = (xi, yi, zi) and a radius ρi
associated to it. Figure 4.1b shows the skeleton of Fig. 4.1a.

The radius ρi captures the thickness of the physical network at each vertex i. Therefore,
we can approximate the original occupied volume of a segment connecting vertex i with
radius ρi and vertex j with ρj as a truncated cone, and the full volume of the network is
approximated by the sum of these truncated cones. More specifically, for each edge (i, j)
in S we add a truncated cone with axis (ri, rj) and parallel faces with radii ρi and ρj which
has volume:

Vseg(i, j) =
1

3
· π · (ρ2i + ρ2j + ρi · ρj) · |ri − rj|. (4.1)
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Three-dimensional physical network data obtained from experiments is routinely skele-
tonized, and the skeleton of the network is published together with the raw data. In fact,
all but one of the 15 data sets that we study here was skeletonized by the original authors,
the only exception is the anthill imprint provided to us as a surface mesh which we skele-
tonized using the Tangent-ball [139] algorithm from the Skeletor Python module [138].
The experimental setup and the choices made during the skeletonization may affect our
analysis which is performed on the skeleton. For example, increasing the number of skele-
ton segments Nseg increases how well the skeleton approximates the original shape of the
network. However, increasing Nseg also increases the size of the data set, hence increasing
the computational burden of the analysis. To improve the uniformity of the data sets, we
perform two pre-processing steps:

1. Merging segments: If two consecutive segments (ri, rj) and (rj, rk) appear parallel
to each other in the data set, we merge them into a single segment (ri, rk) (see
SI 4.7.3).

2. Skeleton healing: Due to noisy data, a skeleton may be disconnected even when it
represents a single continuous object in reality. For example, a skeleton of a neuron
may appear to have multiple components. To remedy this, we add a segment to
connect the two nearest skeleton vertices from two disconnected components. We
repeat this step until the skeleton becomes connected.

Following these pre-processing steps, the number of segments Nseg in a skeleton, as shown
in Fig. 4.1e, spans three orders of magnitude from mitochondrial networks, which have
approximately 103 segments, to fruit fly neural networks which have up to 106 segments.

4.2.2 Network structure
A physical network is a continuous object embedded in Euclidean space, to characterize
this object as a network we must separate it into discrete nodes and links. For this, first
note that all 15 data sets that we collected can be seen as a collection of tube-like objects
bound together at junction points. Hence, we define the junction and terminal points of the
tubes as physical nodes and the non-branching tubes pairwise connecting these terminal
and junction points as physical links. A motivation for this definition is that cutting a
physical link (i.e., a tube) at any point along its length causes the same disruption to the
connectivity of the network.

More formally, for a skeleton representation S of a physical system, we define each phys-
ical node to correspond to a skeleton vertex i with degree k(i) ̸= 2, and each physi-
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cal link to corresponds to a path in the skeleton given by the ordered set T (i0, il) =
[(i0, i1), (i1, i2), . . . , (il−1, il)], such that k(i0), k(il) ̸= 2 and k(ij) = 2 for j = 1, 2, . . . , l−
1.

With the above definition of nodes and links, we can talk about the abstract or combi-
natorial network G of the system which captures its connectivity without the physical
structure. The skeleton S is one possible physical realization of the abstract network G;
however, there are many possible physical realizations of the same G. In general, we are
interested in understanding the relationship between the physical layout captured by S and
the network structure captured by G.

As an example consider the physical network shown in Fig. 4.1a which consists of three
tubes bound together at a single junction point. Its skeleton representation (Fig. 4.1b),
therefore, has three vertices with degree 1 corresponding to the terminal points, one vertex
with degree k = 3 corresponding to the junction point, and several vertices with degree
k = 2 tracing the trajectory of the tubes. This means that the network consists of four
physical nodes and three physical links, and its abstract network is a star (Fig. 4.1c).

Finally, note that for a given skeleton S, the above definition of physical nodes and links
is not the only viable definition. For example, in a neural network, it is natural to treat a
neuron as a physical node and synapses between them as links, as individual neurons can
have complex three-dimensional shapes that can be represented by a skeleton itself. More
generally, subgraphs of a large S may represent functional units in a physical network and
it can be useful to treat these functional units as physical nodes [9]. Note, however, that
our definition of the abstract network G provides the most detailed picture of the system’s
connectivity, and other definitions can be thought of as coarse-grained versions of G.

With the skeleton representation and the definition of the abstract network at hand, we
are in the position to start our analysis. In the following sections, we first explore the
structure of the abstract networks of the 15 data sets, then we continue by characterizing
their physical properties, and finally, we investigate the relation between the two.

4.3 Abstract network properties
The above definition of physical nodes and links allows us to explore the properties of
the abstract networks capturing the connectivity of physical networks without their three-
dimensional structure; we focus on the degree distribution and motif frequencies.

The nodes in our physical networks are terminal and junction points, meaning that by con-
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struction nodes cannot have degree k = 2, only degree k = 1 or k > 2. Figure 4.2a
shows the degree distribution p(k) of all 15 networks, and our main observation is that
most nodes have degree k = 1 or k = 3, and nodes with a larger degree are exceed-
ingly rare, i.e., p(1) + p(3) ≈ 1. This means that junctions tend to be bifurcation points
along the tube-like physical links making up the network. This is in line with previous
empirical observations and theoretical predictions for neurons [140, 141] and transport
networks [142, 143]. The observed narrow degree distribution is in contrast with degree-
heterogeneous networks typically in the focus of network science and should be accounted
for by mathematical models of physical networks [8].

In graph topological terms, 7 out of 15 collected physical networks are trees: the individual
neurons, the anthill imprint, and the plant roots. Each bifurcation point with degree k =
3 in a tree creates one new leaf node with degree k = 1; therefore the fact that these
networks are trees together with the observation that most junctions are bifurcation points,
completely determines their degree distribution as p(1) ≈ p(3) ≈ 1/2. The remainder of
the networks contain cycles: The vascular networks have no terminal points, apart from
a few appearing due to finite sample size; therefore are almost completely composed of
k = 3 nodes. The mitochondrial network representing a network of molecular strands
has the highest fraction of k > 3 nodes. Finally, the fruit fly neural networks represent
a collection of individual neurons which are trees, bound together by synapses, and their
degree distribution closely resembles that of trees.

To explore the local loop structure of the networks, we calculate the abundance of observed
4-node motifs. Namely, we focus on two motifs: the star motif and the 4-cycle. To
quantify their abundance, we calculate their Z-score compared to their degree-preserving
randomized counterparts:

zs/c =
ns/c − ⟨ns/c⟩

σs/c
, (4.2)

where ns/c is the number of occurrences of the star and 4-cycle motifs in the original net-
works, and the expected value ⟨ns/c⟩ and standard deviation σs/c is estimated by creating
200 independent randomizations [144], while keeping the degree sequence fixed. Fig-
ure 4.2b shows the scatter plot of zs and zc for the 15 networks. As expected, in tree
networks containing no cycles the star motif is slightly over-represented zs > 0, and the
cycle motif is slightly under-represented zs < 0, while for networks containing cycles,
we find the opposite. The highest abundance of 4-cycles is observed for the networks
representing different brain regions of the fruit fly brain.

Based on the degree distributions and motif profile of the abstract networks, the physical
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networks fall into three broad categories: (i) topological trees (the individual neurons, the
root systems, and the anthill tunnel imprint), (ii) lattice-like networks that are characterized
by a loopy structure and few terminal points (the vascular networks and the mitochondrial
network), and (iii) linked trees which are a collection of trees bound together by additional
links (the fruit fly brain regions).
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Figure 4.2: Abstract network properties. (a) The abstract networks are composed of
terminal and bifurcation points; therefore, their degree distribution is mostly concentrated
on k = 1 and k = 3. More specifically, lattice-like networks, such as vascular and mito-
chondrial networks, are mostly made up of branching nodes (degree k = 3). For the rest
of the network, nodes with k = 1 and k = 3 are approximately evenly split, as expected
for tree networks. (b) We calculate the z-scores of four-node star and cycle motifs of the
original networks compared to random networks with the same degree distribution. Mark-
ers are the average of nt = 200 independent randomizations, and error bars representing
the standard error of the mean are smaller than the marker size. Both axes are symlog
axes, i.e., linear from -1 to 1, log otherwise for both positive and negative values. The star
motif is slightly over- and the cycle motif is slightly under-represented in tree networks
(green markers), as expected. In contrast, stars are under and cycles are overrepresented
in both lattices (blue markers) and linked trees (red markers). The overrepresentation of
the 4-cycle motif reflects the presence of periodic structures in lattices and highlights the
existence of local cycles formed by synaptic connections in the fruit fly brain networks.
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4.4 Physical properties
In the previous section, we measured properties of the abstract network capturing the con-
nectivity of the 15 physical networks. We continue our investigation focusing on the phys-
ical properties of the system: we characterize the three-dimensional shape of the system
without considering the abstract network.

4.4.1 Space filling and fractal dimension
A fundamental property of a physical network is its space-filling, i.e., the amount of vol-
ume it occupies from the available space. We expect that networks that are tightly packed
in space are strongly affected by physicality [6, 8, 9], although the study of random physi-
cal networks built from straight links suggests that volume exclusion can play a significant
role even for diminishing small space filling [8]. Many real physical networks have ir-
regular shapes, hence much of their bounding box is unoccupied. Therefore, instead of
measuring space-filling globally, we divide the axis-aligned bounding box of each physi-
cal network into rectangular boxes. We then measure the local space-filling in each box i
as

ϕ(i) =
Vocc(i)

Vbox
, (4.3)

where Vocc(i) is the volume of the intersection of the network and box i and Vbox is the
volume of the rectangular box. The distribution of ϕ(i) depends on the choice of Vbox;
therefore, to ensure consistency, we set them separately for each data set such that every
bounding box is split into a 10×10×10 grid of boxes (see SI 4.7.5). Figure 4.3a shows the
distribution of ϕ for all 15 physical networks, revealing that the physical networks fill out
the space with mostly sparse regions and fewer denser regions. Therefore we expect that
physicality will also affect the network structure unevenly: volume exclusion can limit the
number and shape of links in dense regions.

To further characterize the shape of the networks, we calculate their box-counting fractal
dimension Df, which compactly describes the space-filling of a physical object on multiple
scales [37, 38, 39] and is widely used to characterize the shape of complex biological
systems [39, 145]. Possible values of Df for connected networks range between 1 and the
embedding dimension D = 3, Fig. 4.3b shows Df for the 15 networks, we find that both
lattices and linked trees have Df ⪆ 2, while trees are typically characterized by Df ⪅ 2,
except for the anthill imprint. The fractal scaling spans at least two orders of magnitude
of length scales (see SI 4.7.5), again pointing towards regions of high and low physical
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density at different resolution levels.
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Figure 4.3: Space-filling and fractal dimension. (a) The boxplots of local space-filling
ϕ show the coexistence of mostly sparse and fewer dense regions, where the vertical lines
indicate the median, the boxes span the 25th-75th percentile range, and the whiskers ex-
tend to 1.5 times the interquartile range. (b) The fractal dimension of physical networks
Df ranges between 1 and the embedding dimension D = 3. Linked trees (red) and lattices
(blue) have fractal dimension values between Df ≈ 2.0 and Df ≈ 2.3, while trees (green)
have more variation, ranging from Df ≈ 1.5 to Df ≈ 2.0 (except for from the anthill im-
print). We estimate Df using the box-counting method, the error bars indicate the standard
deviation of the local scaling estimates (see SI 4.7.5).
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4.4.2 Link volume and shape
The distribution of space-filling and the fractal dimension characterize the shape of physi-
cal networks as a whole. In this section, we continue by quantifying the shape of individual
links; we focus on their volume and their straightness.

The skeleton describing the three-dimensional shape of a physical network is composed
of straight segments connecting pairs of skeleton vertices and a radius associated to each
skeleton vertex, allowing us to approximate the volume belonging to a segment in Eq. (4.1)
as a truncated cone. The total volume of a link (i, j) is then:

Vlink(i, j) =
1

Vtotal

∑
(v,w)∈(i,j)

Vseg(v, w), (4.4)

where Vseg(v, w) is the volume of each segment tracing the link (i, j). We normalize the
link volume by the total volume of the network Vtotal, setting the unit of measurement.
We find that linked trees, or the fruit fly neural networks, have consistently high link
volume heterogeneity, as their distributions span 6 to 8 orders of magnitude, which is
higher compared to most lattices and trees (Fig.4.4a).

We also measure the aspect ratio of physical links a(i, j) = ρlink(i, j)/llink(i, j), where
ρlink is the average radius and llink(i, j) is the length of link (i, j). We find the largest
average aspect ratios for one of the fruit fly networks and the anthill (med(a) ≈ 0.3),
while med(a) is substantially lower for other data sets (see SI Table 4.1). Overall, this
confirms that physical links are elongated tube-like objects.

Since physical links are tube-like objects, we can capture most of their shape by character-
izing their one-dimensional trajectory. Here, we calculate the deviation of the link trajecto-
ries from a straight line, quantifying how curved a link is. For this, we rely on a measure of
straightness introduced originally in the context of geographical networks [146], namely
we calculate the complimentary straightness for each link

S̄(i, j) = 1− |ri − rj|
llink(i, j)

, (4.5)

where |ri − rj| is the Euclidean distance between nodes i and j and llink(i, j) =∑
(v,w)∈(i,j)|rv − rw| is the length of the physical link (i, j). The complimentary straight-

ness S̄(i, j) is 0 if the physical link is straight and close to 1 if it follows a winding trajec-
tory much longer than the straight path between the two points.
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Calculating the median of complimentary link straightness distribution, med(S̄), reveals
that links in all of the 15 physical networks tend to follow a trajectory close to a straight
line: most networks have med(S̄) ≈ 0.1, meaning that the length of links is most often less
than 10% longer than the optimal straight trajectory. Similarly to link volume heterogene-
ity, linked trees tend to cluster together and are among the networks with the straightest
links with med(S̄) = 0.05. Reference [21] introduced random linear physical networks,
a minimal model that constructs a physical network from straight cylinders. The fact that
we observed an abundance of straight or close-to-straight links lends support for using
such linear physical network models to understand the role of physicality in real networks.
Note, however, that although most links are close to straight, the distribution of S̄ is right-
skewed as seen in Fig. 4.4, which points to a smaller fraction of links that significantly
deviate from a straight trajectory (see SI Table 4.7).

Finally, we computed the correlations between link straightness S(i, j) and the total link
length llink(i, j) and volume Vlink(i, j) for each data set using Kendall’s rank correlation
coefficient τ [147]. Figure 4.4b shows that for all networks, there is a positive rank cor-
relation τ > 0 between S̄(i, j) and llink(i, j), indicating that longer links tend to follow
a more winding path. We also observe a positive correlation τ > 0 between S̄(i, j) and
Vlink(i, j), since longer links tend to have larger volume. The only exception to this is the
fruit fly neural networks, for which S̄(i, j) and Vlink(i, j) are negatively correlated τ < 0.

One possible cause contributing to the negative correlation is that fruit fly neural networks
are composed of neurons that have large somata, which are represented in the data set as
short, yet high-volume segments (see SI 4.7.2).
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Figure 4.4: Link shape, length, and volume. (a) Box plots of S̄ and Vlink, where the
vertical lines indicate the median, the boxes span the 25th-75th percentile range, and the
whiskers extend from the 0.1th to the 99.9th percentile. We find that the bulk of the
distributions fall in the range between med(S̄) = 0 and med(S̄) = 0.1, indicating that the
networks are mostly composed of close-to-straight links. Link volume Vlink distributions
span a wider range for linked trees and are the most narrow for lattices. (b) By computing
Kendall rank correlation τ between link complementary straightness S̄, link volume Vlink

and link trajectory length llink, we observe a consistent trend of τ > 0, meaning that longer
and more voluminous links tend to have more winding paths. This trend is only reversed
for the fruit fly networks, which have τ < 0 between S̄ and Vlink. This could be explained
by neuron somatas, which are represented as high-volume, straight links composed of a
small number of skeleton segments.
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4.4.3 Link confinement
In the previous sections, we found that space-filling and link properties are heteroge-
neously distributed: most regions of space are sparse and most links are close-to-straight,
yet there exists dense regions of the network and a small fraction of links follow paths
that deviate from a straight line significantly. This suggests that volume exclusion or other
repulsive physical interactions may also play an uneven role in shaping the network. To
further investigate this hypothesis we devise a quantity that captures the confinement of a
link by other components of a network.

A link (i, j) following a trajectory T (i, j) in a real physical network obeys volume exclu-
sion: it does not overlap with other links. Our strategy to quantify the role of repulsive
forces that may shape T (i, j) is to calculate the number of overlaps with other links for a
random ensemble of synthetic links that follow similar trajectories to T (i, j). If the syn-
thetic links typically overlap with many other links, the trajectory T (i, j) is an outlier and
must be shaped by forces not captured by the random ensemble.

The trajectory of a physical link (i, j) in our data sets is given by the ordered set T (i, j)
of oriented three-dimensional segments. To generate the random trajectory Tr(i, j), we
shuffle the order of the segments while maintaining their orientation and length, creat-
ing a uniform random permutation of T (i, j). The randomization preserves the endpoints
and the total length of the link, but otherwise removes any correlation between subsequent
segments (see SI S4.4.); therefore, the possible link trajectories Tr(i, j) have the same com-
plimentary straightness S̄ as the original link. Next, we estimate I(i, j; l, k), the expected
fraction of intersections between the randomized link Tr(i, j) and a non-randomized link
T (k, l). To quantify the confinement of the link (i, j), we sum up the expected fraction of
intersections with other links:

C(i, j) =
∑

k,l ̸=i,j

I(i, j; l, k) + I(l, k; i, j), (4.6)

where the first term corresponds to intersections when link (i, j) is randomized, and the
second term corresponds to intersections when link (l, k) is randomized. Note that the
summation in Eq. (4.6) excludes links that share an endpoint with (i, j). We do this to
exclude trivial intersections from the count, since adjacent links (i, j) and (j, k) necessarily
overlap at the junction point j even for non-randomized link trajectories.

The procedure of calculating C(i, j) is illustrated by Fig. 4.5a: we start with a link (green)
surrounded by two neighboring links (red and blue). The figure shows nt = 2 randomiza-
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tion trials of the green link: In trial one, the randomized link intersects the red link, but
not the blue. In trial two, the randomization creates an intersection with the blue link; the
two links, however, are adjacent (they share a junction point), hence the intersection is not
counted. In this particular example, the contribution to the link confinement measure from
the randomization of the green link will be:

I(green, red) =
0 + 1

2
= 0.5 (4.7)

I(green, blue) =
0 + 0

2
= 0 (4.8)

To complete the calculation of C(green), we also need to randomize the red link to es-
timate I(red, green) in the same manner, while I(blue, green) = 0 by definition. Fi-
nally, the confinement of the green link is obtained by summing up the contributions, i.e.,
C(green) = I(green, red) + I(red, green).

Collision detection between link trajectories is a computationally expensive task, in prac-
tice we randomize each link nt = 20 times (and nt = 5 for the fruit fly 1 network) and
we rely on an efficient collision detection algorithm leveraging kd-trees [148] (see SI 4.7.5
and SI 4.7.6).

Figure 4.5b shows a large variation in link confinement C. Across all networks, physical
links are characterized by C ≈ 0, indicating that these links are not affected by the physi-
cal proximity of other components of the network. However, we also find highly confined
links with C > 10 and even C > 100 expected intersections, suggesting again that phys-
icality tends to play a heterogeneous role in forming networks. In particular, the linked
tree networks typically have heavy-tailed link confinement distributions (see SI 4.7.7). In
terms of absolute counts, the linked trees or the fruit fly neural networks show the highest
values of link confinement. This can be explained by the fact that these networks are com-
posed of multiple neurons, hence in these networks, we have more complete information
about the physical environment of the links, compared to networks that describe single
neurons.
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Figure 4.5: Link confinement. (a) To quantify volume exclusion at the link level, we
introduce link confinement C, the expected fraction of intersections after randomizing a
link’s trajectory. To estimate C of the green link, we randomize its trajectory twice. In trial
#1, the green link intersects the red link, while in trial #2, it intersects the blue link. The
blue link, however, shares an endpoint with the green link; therefore their intersection is
not counted. (b) The distribution of C for each physical network. The y-axis is shown on
a logarithmic scale, while the x-axis is linear. There are many links with link confinement
values close or equal to C = 0, and typical values of link confinement are around C ∼ 10,
and only for the fruit fly networks, there are links with link confinement values C > 100,
indicating highly confined links for the linked tree networks.
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4.5 Link confinement correlation profiles
In the previous section, we defined the link confinement C as the expected fraction of in-
tersections if a link would follow a random trajectory, allowing us to identify links whose
trajectory is most affected by repulsive forces in the network. Here, we characterize the
properties of such confined links by calculating the Kendall rank correlation τ between
the link confinement C and other link properties. Specifically, we focus on the (i) phys-
ical properties, complementary straightness S̄ and link volume Vlink (ii) abstract network
properties link betweenness Blink and link degree klink(i, j), where the latter is defined as
the sum of the degrees of the endpoints of link (i, j).

Figure 4.6 shows the correlation profiles of all 15 networks. A persistent pattern we ob-
serve is the positive correlation between link confinement C and link volume Vlink. This
is expected since larger links have more opportunities to intersect or be intersected by
neighboring links. On the other hand, correlations between link confinement and straight-
ness show a more curious pattern: we observe that most networks tend to have positive
and significant correlations τ between the link confinement C and link complementary
straightness S̄, as expected, indicating that more winding links are also more confined.
However, for linked trees (fruit fly neural networks) we find a negative τ between C and
S̄. To explain this, recall that in the fruit fly neural networks, we found a negative cor-
relation between S̄ and Vlink, and a positive correlation between S̄ and llink (Sec. 4.4.2).
This means that short links tend to be more confined due to their large volume, while also
following a straighter path.

For correlations between link confinement C and the abstract network properties, such
as link betweenness Blink and degree klink, we find consistent and significant positive cor-
relations for fruit fly neural networks. This indicates emergent correlations between the
three-dimensional layout and abstract network properties of physical networks: more cen-
tral links in the abstract network tend to be more confined in physical space. For lattice-like
networks and trees, we find less consistent and weaker positive correlations. Overall, we
are able to show that the abstract network structure and physical layout are intertwined
for networks where we have sufficient information about the surrounding environment of
the physical links, such as the fruit fly neural networks, which contain multiple neurons in
close proximity with each other.
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-0.116*** 0.222*** 0.251*** 0.091***

Figure 4.6: Link confinement correlations. We compute the Kendall rank correlation τ
between the link confinement C and the physical and abstract network properties of links,
obtaining a correlation profile for each physical network. Across all datasets, except some
trees, link volume Vlink and link confinement C have a statistically significant (p < 0.01)
moderate positive relationship. We also find a significant association with complementary
straightness S̄, which is positive for lattices and trees, and negative for linked trees, con-
sistent with the correlations between Vlink and S̄ (Fig. 4.4). For the linked trees, which are
the data sets with the most complete information about the environment of the physical
links, we find a significant positive association between the centrality of the links in the
abstract network (link degree klink and link betweenness Blink) and their link confinement
C.
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4.6 Discussion
Experimental data describing the three-dimensional shape of physical networks is increas-
ingly becoming available, and the growth in the number and size of these data sets is
expected to continue: connectome of the human brain consists of ≈ 1011 [50] neurons and
fungal mycorrhizal networks are estimated to span ≈ 1017 km in Earth’s soil [149]. The
new data calls for extending the toolset of network science to analyze, model, and under-
stand how the three-dimensional layout and physical interactions shape the structure and
function of physical networks. Here, we contributed to this effort in three distinct ways:
(i) We collected and standardized 15 data sets describing the three-dimensional layout of
physical networks from diverse domains. (ii) We characterized the structure of both the
abstract network and physical layout of the 15 systems using descriptors such as the de-
gree distribution and fractal dimension. (iii) We introduced link confinement as a method
to quantify how physical interactions shape link trajectories in physical networks, allowing
us to investigate emergent correlations between physical and abstract network properties.

Our work may support future research on physical networks in several ways. First, we pro-
mote the use of labeled skeleton graphs to represent both the layout and the connectivity
of physical networks. The skeleton captures the shape of the network, while the labeling
identifies the physical objects corresponding the the nodes and links of the abstract net-
work. Here, we focused on treating junction points in the skeleton as nodes and sequences
of segments connecting them as links; however, the labeled skeletons are not limited to
such interpretation. For example, sub-graphs representing larger functional units, such as
neurons in the brain, can be identified as physical nodes.

Second, our results also inform theoretical models of physical network growth. Recent
work that modeled physical nodes as spheres and links between them as tubes [6, 8]. We
found that most physical links follow close to straight trajectories, suggesting that linear
physical network models where links are straight cylinders are indeed a useful class of
models to understand physicality in networks. On the other hand, these physical network
models generalize the classic Erdős-Rényi and Barabási-Albert models to physical space
and thus do not restrict the node degree. We, however, found that junction points in real
physical networks almost exclusively have degree three, a fact that must be accounted for
by future models. Note that to obtain real physical networks with non-trivial degree distri-
butions one must abandon identifying junction points as nodes, instead we must identify
larger sub-graphs of the skeleton as physical nodes. In more formal terms, these networks
can be modeled as a network-of-networks: we represent each physical node as a skeleton
that has junction points with degree 3, and these physical sub-networks are bound together
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to form a network-of-networks with no restriction on the number of connections a sub-
network can make with other sub-networks [9]. Future work may explore the relationship
between the network-of-networks representation and the more fine-grained junction net-
work representation.

Finally, we quantified the physical confinement of individual links by comparing the path
that links follow to randomized trajectories, allowing us to identify correlations between
physical and abstract network properties. In general, understanding the relationship be-
tween physical shape and abstract network structure is one of the key challenges of physi-
cal network research [8, 9, 150]. Future work may rely on other spatially randomized null
models and abstract network measures to probe the relation between the two.

Our work is limited by the scope of the available data sets and computational constraints.
First, our data sets do not contain information about the environment the networks are em-
bedded in; therefore, we can only investigate interactions between the components of the
network and not interactions between the networks and their surroundings. For example,
we found the strongest relationship between link confinement and abstract network struc-
ture for the fruit fly neural network data sets and we found a weaker or no relationship for
individual neurons. This is likely due to the fact that the fruit fly data sets contain multiple
neurons, thus capturing more of the environment of individual physical links. Future work
may consider more complete data sets as they become available or theoretical models of
network growth could incorporate non-trivial environments.

4.7 Supplementary Information

4.7.1 Data sets
In this section, we provide a summary table of data sets, along with a subsection providing
more details about every data source.

4.7.2 Data sets Summary
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Data set Nlink Nnode Nseg lseg ρseg aseg Category Source
h neuron 631 632 38340 1.16 ±

0.07
0.11 ±
0.00

0.1 ±
0.01

tree [134]

r neuron 185 186 4536 2.21 ±
1.98

0.46 ±
0.19

0.22 ±
0.27

tree [133]

m neuron 154 155 16814 0.36 ±
0.28

0.23 ±
0.15

0.62 ±
0.3

tree [132]

z neuron 307 308 2867 1.51 ±
1.24

0.34 ±
0.12

0.22 ±
0.19

tree [135]

anthill 15240 15241 29387 16.4 ±
8.38

9.61 ±
3.17

0.59 ±
0.3

tree [151]

root 1 975 976 5621 25.66±
0.61

4.69 ±
5.11

0.18 ±
0.2

tree [130]

root 2 410 411 2132 38.49±
12.56

7.2 ±
7.47

0.18 ±
0.2

tree [130]

fruit fly 1 100388 97588 535611 48.5 ±
49.2

19.8 ±
17.38

0.41 ±
0.19

linked
tree

[127]

fruit fly 2 32121 31408 181068 48.99±
46.06

20.0 ±
15.86

0.41 ±
0.2

linked
tree

[127]

fruit fly 3 49599 49233 121318 39.6 ±
41.97

18.38±
20.2

0.49 ±
0.27

linked
tree

[127]

fruit fly 4 34987 32749 138488 41.57±
41.57

16.97±
17.85

0.41 ±
0.19

linked
tree

[127]

vascular 1 2359 1558 17935 4.69 ±
1.62

3.0 ±
1.22

0.62 ±
0.33

lattice [4]

vascular 2 1300 862 16078 3.91 ±
1.11

3.17 ±
1.41

0.83 ±
0.45

lattice [4]

vascular 3 1181 789 12487 5.1 ±
1.95

2.96 ±
0.97

0.61 ±
0.31

lattice [4]

mitochon 73 59 847 0.09 ±
0.06

0.11 ±
0.02

1.17 ±
0.67

lattice [31]

Table 4.1: Data sets summary. For each data set, we provide the total number of physical
nodes Nnode (i.e., junction and terminal points in the skeletonized representation), physical
links Nlink and skeleton segments Nseg. We also provide the segment statistics - segment
length lseg, segment radius ρseg, and segment aspect ratio aseg, along with the abstract net-
work categories and sources. For quantities with ±, we used the median and interquartile
range (difference between the 75th and 25th percentile) to quantify their variation.
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Anthill imprint

The anthill imprint (named anthill) was created as an art project by casting a fire ant colony
with molten aluminum, the resulting cast was then scanned by the artist and provided to us
as a surface mesh [151]. We skeletonized the mesh using the maximal tangent ball method
implemented by the Skeletor Python package [129]. The anthill imprint network is a tree
(i.e. it does not contain cycles) with a single exception where two branches of the tree
became connected; this single cycle, however, is ignored by the skeletonization algorithm.

There are several potential explanations for the tree structure of the anthill imprint, based
on the available studies, which are not directly related to this dataset:

1. Energy efficiency—a tree minimizes tunnel length, saving time and labor, especially
in small colonies, where loops rarely appear [152].

2. Digging behavior—ants follow local excavation rules, extending tunnels step by
step. Forming a loop would require two digging fronts to meet underground, which
is unlikely without centralized planning [153].

3. Structural stability—a tree-like layout provides strong load support, with branched
tunnels acting as pillars and arches that resist collapse [153, 154].

These factors could potentially explain why the original nest, and thus its imprint, lacks
cycles.

Vascular networks

Each vascular network data sets (named vascular 1, vascular 2 and vascular 3) describes
the vessels in a 600× 600× 662 µm sample of mouse cortex [4]. The data is provided by
the authors as a skeleton including radii at the skeleton vertices.

Mitochondrial network

The mitochondrial network (named mitochon) represents the mitochondrial reticulum in a
yeast cell [31]. The data set was published by the authors both as a skeleton and as a mesh
representing the surface. The authors did not provide the radii at the skeleton vertices;
therefore, we extracted a radius for each skeleton vertex based on the surface mesh using
the Skeletor Python package [129].
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Root systems

The root networks (root 1 and root 2) describe the root system of a Cryptomeria japon-
ica tree [130]. The data is originally shared as a skeleton including radii at the skeleton
vertices.

Individual neurons

In total, four neurons were obtained from NeuroMorpho.Org [155] a centrally curated
database of digitally reconstructed neurons associated with peer-reviewed publications.
Specifically, we characteize neuron of a rhesus monkey [132], a rat [133], a human [134]
and a zebrafish [135] (named m neuron, r neuron, h neuron and z neuron, respec-
tively).

Fruit fly brain regions

The Hemibrain project mapped a large portion of the fruit fly Drosophila melanogaster
brain, providing a three-dimensional reconstruction of approximately 25,000 neurons and
20 million synapses [5]. We obtained the skeletonized neuron morphology and synapse
data via the publicly available NeuPrint API [127].

To manage computational complexity, we focused on four anatomically defined brain re-
gions (neuropils): POC (Posterior Optic Commissure), GF(R) (Giant Fiber Right), mALT(L)
(Median Antennal Lobe Tract, Left), and GC (Great Commissure). These regions were se-
lected for their high density of reconstructed neurons, well-documented connectivity, and
practical dataset size, offering a balance between analytical relevance and computational
tractability.

Each synapse in the dataset is annotated with precise spatial coordinates and assigned to a
specific brain region [5]. We used this to define neuron inclusion: neurons were selected
based on their synaptic activity in a given region rather than their entire morphology. Us-
ing the same methodology as in Sec. 3.8.2, we retained entire neuron skeletons without
truncation to preserve the physical structure. Initially, we applied a 1-synapse threshold,
including any neuron with at least one synapse in the region, which led to excessive dataset
size. To reduce the resulting network size, we adopted a 10-synapse threshold (10 input
and 10 output synapses), which helped filter out weakly connected or incomplete neurons
and kept only those with meaningful connections. Moreover, since branching points were
treated as physical nodes, this resulted in networks with around ∼ 104nodes, which were
large enough for detailed analysis, but still computationally manageable.
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We performed two additional data processing steps:

1. Due to noise, the skeleton of a neuron may appear disconnected in the data set. To
ensure that each neuron is a connected subgraph of the network, we heal each neu-
ron individually: We iteratively merge disconnected components of the neuron, by
adding a new segment between their closest points, until a single network compo-
nent remains.

2. In the original data set the shape of each neuron is provided by a separate skeleton,
these individual skeletons are disjoint. The location of each synapse is provided by
two coordinates: the location of the presynaptic site and the postsynaptic site, the
former belonging to the neuron sending the signal, the latter to the neuron receiving
the signal. In the data set, the synaptic sites do not correspond to skeleton vertices.
To form one connected physical network, we bound together neuron pairs that share
a synapse by adding three new skeleton segments: one segment for each neuron that
connects the closest vertex of the skeleton to the presynaptic or postsynaptic site, and
one segment that bridges the two synaptic sites. The radii of the segments are chosen
as the minimum radius of the segment for each neuron. Note that two neurons
typically connect through more than one synapse and that the resulting network will
be fully connected, with no isolated neurons.

Table 4.2 summarizes the number of neurons, number of synapses, links, and nodes re-
tained for each network in each region, following these data processing steps.

Data set Region Nneuron Nsynapse Nlink Nnode

fruit fly 1 POC 96 6249 100388 97588
fruit fly 2 GF(R) 10 1947 32121 31408
fruit fly 3 mALT(L) 20 429 49599 49233
fruit fly 4 GC 28 13079 34987 32749

Table 4.2: Fruit fly neural network data sets. We chose 4 regions of interest in the
Drosophila melanogaster brain, which had a specific number of neurons Nneuron associated
with them and total number of synapses Nsynapse, given our criteria of connectivity (at least
10 in-going and 10 out-going synaptic connections). Additionally, we provide the total
number of abstract network links Nlink and the total number of abstract network nodes
Nnode.
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Figure 4.7: Link volume-length correlations. In Fig.4.4 of the main text, we show that
there is a negative rank correlation between link volume and length. To better understand
this counter-intuitive finding, we show here the number of segments used to represent
physical approximately follows an exponential distribution (upper row). Links represented
with ⪆ 5 segments have a higher volume as the number of segments increases. For links
with ⪅ 5 segments, the trend is reversed. This at least is partially explained by the presence
of the neurons somata, represented in the skeleton as short segments with a large radius.

61

C
E

U
eT

D
C

ol
le

ct
io

n



4.7.3 Data processing
In this section, we provide details about the skeletonization algorithms and data pre-
processing steps that we take to increase the uniformity of the empirical data sets and
to allow efficient collision detection.

Skeletonization

The three-dimensional shape of physical networks can be represented using different data
structures, such as point clouds, 2D and 3D meshes [156, 157], and volumetric images
(voxels) [158], which are often transformed into a more computationally efficient format
via skeletonization algorithms [111]. Skeletonization aims to represent the shape of a 3D
object using a collection of straight segments, making it particularly useful for describing
elongated objects, such as physical links. Although there are many skeletonization meth-
ods that vary in details and how their quality is assessed, a typical skeletal representation
aims to trace the medial axis of a 3D object, i.e., the locus of the centers of all inscribed
spheres of maximal radius [111, 137]. Skeletal representations of physical networks are
routinely published together with 3D imaging data. In fact, all but one of the 15 data set
were skeletonized by the original authors. The only exception was the anthill imprint,
which we skeletonized using the Skeletor Python package [138].

Merging paralleled skeleton segment pairs

Since some data sets contained sequentially connected, parallel skeleton segments, this
wouldn’t accurately represent the separate components of the links, and would therefore
influence the computation of the link confinement C. To address this issue, we perform
the following steps on an example link (k, l):

1. We compute path length llink of the (k, l) link, as a sum of all segment lengths lseg

that compose that link.

2. For each consecutive pairs of segments of [(i0, i1), (i1, i2)...(in−1, in)] that compose
a link (k, l) the cosine of the angle between them is computed. For example, we can
have subsequent segment pairs (i0, i1) and (i1, i2), with their respective direction
vectors n and m. We calculate cos(θ)m,n = m·n

|m||n| , where m · n is the dot product
between their direction vectors and |m| and |n| are their lengths.

3. All segment pairs are ranked based on the cosine of the angle between them in de-
scending order. The top-ranked (highest value) pair of segments are merged into a
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single segment. For example, merging segments (i0, i1) and (i1, i2) results in seg-
ment (i0, i2), and now link (k, l) is composed of segments [(i0, i2)...(in−1, in)].

4. Steps 2. and 3. are repeated until the total path length llink of the link (k, l) would
decrease after the next merge.

Note that using the above stopping criteria only merges completely parallel consecutive
skeleton segments; therefore it does not result in any loss of information.

A more relaxed stopping criteria would reduce the size of the skeleton at the price of de-
creasing how well the skeleton approximates the original neuron volume. Merging skele-
ton segments is related to the concept of persistence length from polymer physics [159],
which roughly quantifies how long a segment can be before we can stop treating it as a
stiff rod.

Labeled Point Clouds and KD-Trees

The computation of space-filling ϕ, fractal dimension Df, and link confinement C require
identifying physical intersections (collisions) that might occur between two physical links
or a physical link and the side of a cube. We relied on collision detection methods utilized
in computer graphics to identify physically intersecting objects [160]. More specifically,
we developed a custom algorithm that utilizes kd-trees to efficiently detect overlapping
physical objects [148]. A kd-tree is a data structure that partitions space and allows to
query points that are in the physical proximity of each other. Hence to detect overlaps, we
transform physical links into point clouds, arrange the points in a kd-tree, and if the points
representing two distinct links are closer to each other than a threshold, we conclude that
the links overlap.

Segment to point cloud transformation

To transform the skeleton segments to a point cloud, we perform three following steps:

1. First, for each segment starting at the ri and ending at rj with radii ρi and ρj at
the endpoints, a line of points is created in the direction rj − ri, with the distance
between the points is lres. We choose lres as the average skeleton vertex radius ⟨ρ⟩.

2. Second, we account for local thickness by generating points on circles perpendicular
to the line segment at each point, interpolating radii linearly from ρi to ρj . The

number of points on each circle is chosen as min
(
3,
⌈
2πρ
lres

⌉)
to accurately represent

the surface of the truncated cone segment.
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3. Finally, for segments where the endpoint diameters 2 ·ρ exceed lres, additional points
are generated on concentric inner circles to fill these larger gaps in the bases of the
segments, ensuring that all segments are enclosed (contrary to being hollow),

By controlling the resolution lres of the point cloud, we ensure that our representation of
volumetric data matches the resolution of the original data while remaining computation-
ally efficient.

Detecting intersections using kd-trees

Once the point cloud is created, a single kd-tree is constructed that stores all points. To
test whether a point r (e.g., belonging to a new physical link) intersects any of the existing
physical links, we query the kd-tree the point r at distance lres, which provides all points
whose distance from r is less than lres. The labels of these points provide the physical links
that intersect r.
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4.7.4 Abstract network properties

Data set Dnet klink Blink

root 1 87 5.0 ± 2.0 [2.05 ± 16.24] ×10−3

root 2 34 5.0 ± 2.0 [4.87 ± 28.7] ×10−3

h neuron 49 4.0 ± 2.0 [3.16 ± 18.78] ×10−3

z neuron 46 4.0 ± 2.0 [6.49 ± 62.61] ×10−3

m neuron 20 4.0 ± 2.0 [12.9 ± 49.94] ×10−3

r neuron 21 4.0 ± 2.0 [10.75 ± 41.85] ×10−3

anthill 343 5.0 ± 2.0 [0.13 ± 1.05] ×10−3

vascular 1 27 6.0 ± 0.0 [3.78 ± 4.34] ×10−3

vascular 2 22 6.0 ± 0.0 [6.43 ± 7.06] ×10−3

vascular 3 22 6.0 ± 0.0 [7.04 ± 7.27] ×10−3

mitochon 11 6.0 ± 0.0 [57.62 ± 70.81] ×10−3

fruit fly 1 602 6.0 ± 2.0 [0.06 ± 0.25] ×10−3

fruit fly 2 289 6.0 ± 2.0 [0.19 ± 0.76] ×10−3

fruit fly 3 479 6.0 ± 2.0 [0.04 ± 0.49] ×10−3

fruit fly 4 254 6.0 ± 2.0 [0.18 ± 0.61] ×10−3

Table 4.3: Summary of abstract network properties. Having defined links and nodes in
our skeleton data, we provide the abstract network properties, where klink is link degree,
Dnet is the network diameter and Blink is the link betweenness centrality. For quantities
with ±, we used the median and interquartile range to quantify their variation (difference
between the 75th and 25th percentile).
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Figure 4.8: Abstract network degree distribution. Node degree k has a very sharp
distribution centered around k = 1 and k = 3 with higher degree nodes being increasingly
rare. The nodes with degree > 3 in fruit fly networks are mostly junction points that
correspond to synaptic connections between two neurons and not internal branching points
of dendrites. Degree k = 2 nodes are not present by the definition of the abstract network.
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Data set ns nc ⟨ns⟩ ⟨nc⟩ σs σc Zs Zc

z neuron 185 0 179.60 0.70 5.85 0.86 0.92 -0.78
h neuron 395 0 388.65 0.60 9.30 0.72 0.68 -0.83
m neuron 129 0 117.94 0.70 12.39 0.93 0.89 -0.76
r neuron 92 0 88.47 0.60 2.84 0.80 1.24 -0.73
anthill 10488 0 10481.94 0.70 4.44 0.85 1.36 -0.85
root 1 623 0 617.71 0.70 4.69 0.80 1.13 -0.88
root 2 333 0 320.81 0.90 14.98 0.88 0.81 -1.02
fruit fly 1 57169 222 60354.6 0.76 6.50 0.83 -490.17 265.39
fruit fly 2 18017 77 19658.4 0.81 6.93 0.82 -236.83 93.30
fruit fly 3 27785 33 27959.8 0.64 3.62 0.76 -48.32 42.80
fruit fly 4 23722 286 30522.1 1.04 21.70 0.97 -313.36 294.16
vascular 1 1613 58 1726.0 2.30 4.83 1.61 -23.41 34.61
vascular 2 853 29 930.8 2.06 4.74 1.39 -16.42 19.41
vascular 3 709 21 786.9 2.02 4.06 1.36 -19.19 13.92
mitochon 36 1 44.3 1.39 4.37 1.07 -1.90 -0.36

Table 4.4: Four node motifs. To understand which motifs are over- or under-represented
in the empirical data, we compared the abstract network structure with the configuration
model (which is not affected by physicality) allowing multi-links. The table shows the
motif count of the original network ns/c, as well as the expected value ⟨ns/c⟩ and standard
deviation σs/c of the motif counts in the configuration model and the corresponding z-
scores Zs/c. We generated nt = 200 independent randomizations for each network.
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4.7.5 Physical properties
In this section, we provide details about how space-filling ϕ and fractal dimension Df are
computed.

Space-filling

To compute the space-filling ϕ of physical networks, we perform the following steps:

1. We determine the axis-aligned bounding box of the network (the smallest box that
fully contains the network), which we further partition into equally sized rectangular
boxes, by splitting the bounding box into 10 equal segments along each dimension
in space, leading to a grid of 1000 rectangular boxes. Note the rectangular box sides
do not need to be equal.

2. For each rectangular box i in the grid, we determine the number of segments that
have both endpoints inside.

3. The space-filling ϕ is calculated as the ratio of the sum of all segment volumes and
the volume of the rectangular box.

One possible issue with this method is that even though both endpoints of the segments are
inside the rectangular box, the segment might be thick enough to be physically larger than
the rectangular box. To avoid this, we have chosen rectangular box sizes large enough so
that the number of these cases is below 1%.

Fractal dimension

We use the box-counting method to compute the fractal dimension Df of the physical
networks [161], by performing the following steps:

1. The physical network is transformed into a point cloud of minimum resolution lres

(Sec. 4.7.3).

2. We determine the axis-aligned bounding box (the smallest box that fully contains
the network), which we further split into equally sized cubes of side lb, thus form-
ing a grid. To account for the fact that our cubes might not perfectly align with
the bounding box, we add one extra cube along each dimension to fully cover the
original bounding box.
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3. For all cubes, we check if at least 1 point from the point cloud is inside it, thus
accounting for the total number of occupied boxes nb(lb).

4. This procedure is repeated for a range of cube side lengths lb spanning at least two
orders of magnitude.

In the log-log plots of nb and lb, we extract the negative slope (with two different methods),
as shown in Fig. 4.9 to obtain the fractal dimension

Df = − log nb

log lb
(4.9)

We performed linear ordinary least squares regression (OLS) to estimate D̄f,OLS as the
slope of nb(lb) on the log-log plot. Since the OLS requires independent data points,
which is not satisfied, the standard error of D̄f,OLS is underestimated. To remedy this,
we also estimate the slope in this plot as the average local slope. Specifically, we com-
pute the slope for every consecutive data point pair, thus obtaining a distribution of slopes
D̄f(1), D̄f(2), . . . , D̄f(n − 1). We estimate the fractal dimension as the mean of these
slopes, i.e., D̄f,local = 1/(n − 1)

∑
i Df(i), while our error estimate is the standard devia-

tion of this local slope distribution σlocal.
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Figure 4.9: Estimating the fractal dimension. To compute the fractal Df we find the line
of best fit for the log-log scatter plots of the number of filled boxes log(nb) and log(lb). Or-
dinary least squares (OLS) linear regression line is displayed, along with the local slopes,
that connect consecutive points.
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Data set D̄f,OLS R2 σOLS D̄f,local σlocal min(Df(i)) max(Df(i))
root 1 -1.69 1.00 0.02 -1.73 0.15 -2.05 -1.62
root 2 -1.63 1.00 0.02 -1.62 0.08 -1.76 -1.54
h neuron -1.25 1.00 0.03 -1.34 0.16 -1.59 -1.13
z neuron -1.37 1.00 0.04 -1.30 0.18 -1.52 -1.03
m neuron -1.32 1.00 0.02 -1.29 0.16 -1.44 -0.98
rat neuron -1.46 1.00 0.03 -1.54 0.19 -1.91 -1.36
anthill -2.51 1.00 0.02 -2.53 0.07 -2.58 -2.37
vascular 1 -1.94 1.00 0.06 -2.12 0.35 -2.75 -1.78
vascular 2 -1.94 1.00 0.05 -2.10 0.33 -2.73 -1.76
vascular 3 -1.88 1.00 0.04 -2.01 0.26 -2.42 -1.74
mitochon -1.73 1.00 0.02 -1.76 0.10 -1.91 -1.61
fruit fly 1 -2.25 1.00 0.03 -2.31 0.15 -2.58 -2.10
fruit fly 2 -2.01 1.00 0.01 -1.99 0.12 -2.15 -1.75
fruit fly 3 -1.88 1.00 0.02 -1.84 0.12 -2.00 -1.69
fruit fly 4 -2.05 1.00 0.02 -2.06 0.07 -2.14 -1.95

Table 4.5: Fractal dimension analysis. Summary of the OLS linear regression (fractal
dimension D̄f,OLS, coefficient of determination R2 and standard error σOLS) and the local
slope estimation (fractal dimension D̄f,local, local slope standard deviation σlocal, minimum
and maximum values of the local slope min(Df(i)) and max(Df(i)).
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Kendal-τ correlation

Kendall’s τ coefficient measures the association between the ranks of two quantities [162].
The coefficient τ is useful to measure correlations between non-normally distributed quan-
tities as it does not make assumptions about their distributions. We use the tau-b version
of Kendall’s τ which accounts for ties:

τ(x, y) =
(P −Q)√

(P +Q+ T ) · (P +Q+ U)
(4.10)

where x and y are the two quantities we compare, P is the number of concordant pairs, Q
is the number of discordant pairs, T is the number of ties only in x, and U is the number of
ties only in y. If a tie occurs for the same pair in both x and y, it is not added to either T or
U . Accounting for ties is necessary, since link properties often have identical values, for
example, all straight links have S̄ = 0 and link degrees klink = 4 or klink = 6 are abundant
in physical networks.

Data set τ(S̄, Vlink) p-val
τ(S̄, Vlink)

τ(S̄, llink) p-val
τ(S̄, llink)

root 1 0.094 < 10−3 0.462 < 10−3

root 2 0.134 < 10−3 0.457 < 10−3

h neuron 0.305 < 10−3 0.369 < 10−3

z neuron 0.388 < 10−3 0.504 < 10−3

m neuron 0.048 0.375 0.328 < 10−3

r neuron 0.276 < 10−3 0.456 < 10−3

anthill 0.455 < 10−3 0.609 < 10−3

vascular 1 0.312 < 10−3 0.482 < 10−3

vascular 2 0.366 < 10−3 0.589 < 10−3

vascular 3 0.412 < 10−3 0.556 < 10−3

mitochon 0.363 < 10−3 0.437 < 10−3

fruit fly 1 -0.061 < 10−3 0.413 < 10−3

fruit fly 2 -0.065 < 10−3 0.407 < 10−3

fruit fly 3 -0.136 < 10−3 0.463 < 10−3

fruit fly 4 -0.109 < 10−3 0.353 < 10−3

Table 4.6: Correlations summary between shape, volume and length. Kendall-τ corre-
lations and their corresponding p-values between link complementary straightness S̄ and
link volume Vlink and llink.
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Generating randomized trajectories

Each link trajectory is composed of a series of segments T (i0, il) = [(i0, i1), (i1, i2), . . . ,
(il−1, il)], where each segment (ik, ik+1) is characterized by an offset vector and has two
radii at its endpoints. For example, the first segment in the T (i0, il) trajectory, (i0, i1), has
an offset vector o1 = ri1 − ri0 (where rik is the location of point ik) starting at the point i0
with radius ρi0 and ending at the point i1 with radius ρi1 . This means that we can attribute
to each link T (i0, il), an ordered set of vectors [o1,o2, . . . ,ol] and ordered set of radii at
points where segments are connected [ρ0, ρ1, . . . , ρl]. To generate a randomized trajectory,
we randomly shuffle the ordered sets of offset vectors and base radii (independently of
each other), thus obtaining new randomized ordered set with the same number of elements
of direction vectors [oj1 ,oj2 , . . . ,ojl ] and radii pairs [ρk0 , ρk1 , . . . , ρkl ]. For example, oj1
will correspond to the truncated base radii of ρk0 and ρk1 after the shuffling. Note that
the radii list has one more element than the direction vector list (as each subsequent pair
corresponds to a direction vector.) and that both randomizations are done independently
(with different sets of indices). The new randomized trajectory is constructed by sequen-
tially adding the offset vectors together starting from the original starting location ri0 . For
example, the first segment of the randomized trajectory starts from ri0 and ends at ri0+oj1 ,
the radii at its endpoints are ρk0 and ρk1 . This construction ensures that the randomized
link trajectory has the same starting and ending locations as the original trajectory.

4.7.6 Collisions and link confinement
To calculate link confinement C, we need to count the number of links that randomized
trajectories intersect. For this task, we developed a collision detection algorithm that uti-
lizes labeled point clouds and kd-trees [160, 148]. By using labeled point clouds, this data
can be sparsely, but accurately represented, and an intersection can be quickly found by
using the spatial search capabilities of kd-trees. More specifically, we identify collisions
through the following steps:

1. All links of the original physical network are transformed to labeled point clouds
with the distance between the points lres (Sec. 4.7.3), which are then stored in a
kd-tree.

2. When a single link is randomized, it is also transformed to a point cloud of a mini-
mum resolution lres and then stored to a link-specific kd-tree.

3. By using query_ball_tree() method of the scipy.spatial kd-tree con-
taining all the original links, we can query it using the kd-tree of a single randomized
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link, with a threshold distance lres, which provides us with all the points that the ran-
domized link intersects. The original physical links corresponding to the intersecting
points are the links that the randomized trajectory overlaps with.

Each link is randomized for nt trials, hence the average fraction of intersections between
a link (i, j) and a link (k, l) is:

I(i, j; k, l) =
1

nt

∑
n

In(i, j; k, l), (4.11)

where In(i, j; k, l) is an indicator function which is 1 if the nth randomization for the link
(i, j) intersects the original link (k, l), and is otherwise 0.

It’s important to recognize that two long links may intersect at multiple points, and in
principle, a single link could fully constrain another, leading to numerous intersections be-
tween just one pair of links. However, in practice, links are continuous objects, while our
analysis relies on discrete representations. This makes it inherently ambiguous to distin-
guish between one or multiple intersections, as the classification depends on discretization
(i.e skeletonization). To ensure consistency and comparability across datasets, we adopt
a simplified approach: rather than counting each individual intersection, we record only
whether a link is intersected at least once. This provides a conservative yet robust lower-
bound estimate of confinement effects. Apart from allowing for multiple intersections,
one potential avenue for extending this methodology is to measure the volume of overlap
between intersecting links.

Also, note that I(i, j; k, l) is not symmetric, i.e., I(i, j; k, l) ̸≡ I(k, l; i, j). For example, a
longer link (i, j) might often collide with a smaller link (k, l) after randomization, while a
smaller (k, l) link might not collide with (i, j) at all.
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Physical link properties

Data set S̄ nseg alink Vlink

root 1 0.03414 ± 0.1012 5 ± 6 0.045 ± 0.079 [2.76 ± 0.67] ×10−4

root 2 0.02326 ± 0.0967 4 ± 5 0.054 ± 0.103 [4.54 ± 1.34] ×10−4

h neuron 0.06744 ± 0.1298 40 ± 66 0.002 ± 0.003 [3.32 ± 0.51] ×10−4

z neuron 0.07432 ± 0.1877 5 ± 8 0.053 ± 0.107 [0.51 ± 1.30] ×10−3

m neuron 0.0892 ± 0.0812 62 ± 163 0.008 ± 0.04 [2.42 ± 2.78] ×10−3

r neuron 0.19821 ± 0.1654 18 ± 37 0.011 ± 0.069 [3.1 ± 4.21] ×10−3

anthill 0.000 ± 0.1934 1 ± 1 0.374 ± 0.376 [4.7 ± 5.9] ×10−5

vascular 1 0.06068 ± 0.1038 6 ± 7 0.109 ± 0.17 [0.20 ± 0.25] ×10−3

vascular 2 0.03443 ± 0.1063 9 ± 12 0.100 ± 0.166 [0.400 ± 0.56] ×10−3

vascular 3 0.10353 ± 0.1978 7 ± 10 0.083 ± 0.151 [0.42 ± 0.60] ×10−3

mitochon 0.06387 ± 0.0921 9 ± 9 0.107 ± 0.107 [9.58 ± 11.62] ×10−3

fruit fly 1 0.0532 ± 0.1115 3 ± 5 0.144 ± 0.288 [1.0 ± 4.0] ×10−6

fruit fly 2 0.05698 ± 0.1096 3 ± 5 0.132 ± 0.258 [3.0 ± 8.0] ×10−6

fruit fly 3 0.0 ± 0.0738 1 ± 2 0.324 ± 0.508 [6.0 ± 13.0] ×10−6

fruit fly 4 0.05053 ± 0.1042 3 ± 4 0.154 ± 0.251 [5.0 ± 14.0] ×10−6

Table 4.7: Summary of physical link properties. With a definition of a link as a series
of physical segments joining two junction points, we calculate the number of segments
composing a link nseg, the aspect ratio of the link alink = llink/ ⟨ρlink⟩ (where llink is the link
length and ⟨ρlink⟩ is the average radius of the link) and link volume Vlink. For quantities
with ±, we used the median and interquartile range to quantify their variation (difference
between the 75th and 25th percentile).
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4.7.7 Link confinement distributions
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Figure 4.10: Difference between confined and non-confined links. We split the links
into two groups: confined C > 0 and non-confined C = 0 links. Then, we compared the
two groups across different properties: complimentary straightness S̄, the volume Vlink,
the link degree klink and the link betweenness Blink , by performing Kolmogorov-Smirnov
(KS) and Mann Whitney (MW) tests. We find that for linked trees (fruit fly networks)
and anthill imprint network, confined C > 0 and non-confined C = 0 links differ in both
physical and network properties, while for most of the other data sets, we were able to
detect significant differences in the physical properties.
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We examine the statistical significance of the fit between the observed data and several the-
oretical distributions. The table 4.8 summarizes the p-values obtained from comparing the
fit of an exponential distribution to a stretched exponential, truncated power law, lognor-
mal, and power law distributions for different types of neuronal data and other structures:

Data set
Stretched

Exponential
Truncated

Power Law Lognormal
Power
Law

human neuron 0.139 0.311 0.314 0.317
rat neuron 0.119 0.092 0.884 0.004

monkey neuron 0.169 0.170 0.062 0.170
zebrafish neuron < 10−3 0.029 0.076 0.201

vascular 2 0.186 0.357 0.443 0.564
vascular 3 0.816 0.697 < 10−3 0.024
vascular 1 0.140 0.383 0.795 0.180

mitochondrial < 10−3 0.046 0.098 0.103
root 1 0.369 0.311 0.807 0.080
root 2 0.760 0.830 0.730 0.461
anthill 0.314 0.545 0.642 0.951

fruit fly 1 < 10−3 < 10−3 < 10−3 < 10−3

fruit fly 2 0.055 0.182 0.425 0.780
fruit fly 3 < 10−3 < 10−3 < 10−3 0.002
fruit fly 4 < 10−3 0.006 0.595 < 10−3

Table 4.8: Link confinement distributions. Using powerlaw Python package [163], we
compare how well the exponential distribution describes the tail of the link confinement
distribution against several candidate distributions: stretched exponential, truncated power
law, lognormal, and power law distributions. Our results indicate that the link confinement
distributions of the most linked trees (fruit fly networks) follow a heavy-tailed distribution.

77

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 5

Physical network robustness

5.1 Introduction
From the earliest days of complex network research, percolation processes were used to
study the robustness of networks against external perturbations [104, 105, 164]. Since
then, various variants have been introduced, including percolation on spatially embedded
networks [165, 90, 166, 167], interdependent percolation [168, 169, 170], explosive perco-
lation [171, 172], and many others [173, 174]. Here, we explore the robustness of spatial
networks against physical damage. By physical damage, we mean the random or targeted
removal of entire regions of the space where the network is embedded, such that all links
and nodes passing through are disrupted. Note that recent literature defined physical net-
works as networks where volume exclusion plays an important role, i.e., the network is
composed of tightly packed nodes and links [6, 8, 9]. Here, we model a broader class of
systems that include networks such as the air traffic network, where volume exclusion is
irrelevant, nonetheless, links can be disrupted by physical perturbations such as storms,
volcano eruptions, or military conflicts.

To study the robustness of such physically embedded networks, we introduce and analyze
a percolation process, where in each step we damage not single links, but a region of the
embedding space, removing any links that pass through. Motivating examples of spatially
correlated disruption include damage to the brain through injury or diseases [175, 176],
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natural disasters, such as floods or storms, affecting critical infrastructure [177, 178, 92,
91], or even the effect of traffic on road networks [179].

To formally set up the problem, we represent a physically embedded network by a com-
binatorial network G and a physical layout P , the latter provides the location and shape
of the physical nodes and links. Here, we focus on physical nodes represented by a point
in space connected by straight or curved lines; however, our framework easily extends
to alternative physical network representations, including nodes and links that occupy a
positive volume [6, 8] or network-of-networks representations [180, 181, 9].

To capture spatially correlated damage, we first tile the D-dimensional space occupied by
a physical network P with D-dimensional cubes of side length b (Fig. 5.1a). We then
damage tiles sequentially, and when a tile t is damaged, we remove from G each link e
intersected by t. As the tiles are removed, the combinatorial network G undergoes a con-
tinuous percolation transition, which is a mixture site and bond percolation: If a node is
inside a tile being damaged, all of its links are removed simultaneously, in effect removing
the node. On the other hand, if a link is traversing a tile that is being damaged, the link
is removed, but its endpoints are not. In this paper, we aim to understand how the phys-
ical layout P and the structure of the combinatorial network G jointly affect this critical
transition.

The remainder of the chapter is organized as follows. In the next section, we introduce
the intersection graph, an auxiliary graph that captures how tile damage translates to link
removal. The intersection graph and its randomizations serve as our main tool to nu-
merically and analytically study the percolation transition. In Secs. 5.3 and 5.4, we use
randomly embedded model networks to analytically and numerically investigate the ro-
bustness of networks against random damage and targeted attacks. Finally, in Sec. 5.5,
we use randomizations of the intersection graph to probe how physical layout affects the
critical transition in several empirical networks.

5.2 Intersection graph
We start by introducing the intersection graph I to represent concisely how tile damage
translates to link removal. First, we identify which physical link e intersects which tile t
and we summarize these intersections as a bipartite graph I: on one side of I each vertex
represents a tile t, on the other side each vertex represents a physical link e; a tile t and a
link e is connected in I if they intersect in physical space (Fig. 5.1b).
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The intersection graph I encodes potential sources of heterogeneity of the physical layout
that affect link removal. Fig. 5.1c illustrates this using a single randomly embedded Erdős-
Rényi (ER) network with N = 105 nodes, an average degree of c = 4, and a tile density
ρ = 4 (nodes per tile): (i) long links intersect more tiles than short links, captured by the
degree distribution Pl(k) of the vertices which represent physical links in I (Fig. 5.1c);
(ii) in absence of periodic boundary conditions, centrally located tiles are expected to
intersect more links than peripheral tiles, captured by the degree distribution Pt(k) of the
vertices which represent tiles (Fig. 5.1c); and (iii) spatial organization of P is captured
by structural correlations of I, for example, two physical links running approximately
parallel to each other tend to intersect the same tiles, leading to an abundance of length-4
cycles in I.

Beyond its structure, an additional way I carries information relevant to the percolation
process is through its link-side vertex labels which connect I and G. For example, physical
links attached to the same node v must all intersect the tile t that contains v, therefore, if
t is damaged, all links incident on v are removed together from G. Furthermore, because
long links intersect many tiles, making them vulnerable to tile damage, and if such links
tend to be important in G, the combinatorial network inherits this vulnerability.
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Figure 5.1: Spatially correlated damage and the intersection graph. (a) We tile a
physical network with D-dimensional square tiles. Damaging a tile t removes all links e
intersecting t, for example, damaging tile (3, 3) (light blue) removes blue and red links
from G. (b) The bipartite intersection graph I captures how tile damage of P translates
to link removal in G. Vertices on the left represent tiles and vertices on the right represent
links; a tile and a link are connected, if they intersect in the layout. (c) The tile-side
and link-side degree distribution of I for a single randomly embedded ER network (N =
105, c = 4, ρ = 4). In random embeddings, links typically span the entire system, hence I
becomes dense. (d) We increasing the network size N while keeping the expected number
of nodes per tile ρ constant. Both the tile-side average degree ct and link-side average
degree cl scale as ∼ N−1/D. Networks are generated using parameters c = 4 and ρ = 4;
each marker represents an average of 20 independent runs and the error bars represent the
standard error of the mean.
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To understand how the above heterogeneities and correlations of I affect the robustness of
physical networks, we randomize I and compare the percolation transition guided by the
original I and its randomized version Ir. Different randomizations allow us to probe the
role of different features of the physical embedding. For instance, substituting I with a bi-
partite configuration model with the same degree distributions Pl(k) and Pt(k), preserves
link and tile heterogeneity but removes any additional structure (e.g., structure originating
from parallel links or links sharing an endpoint) from I. To remove link heterogeneity, we
homogenize I by setting the vertices representing links to have approximately the same
degree equal to the average cl. In practice, this means that in the randomized Ir the link-
side vertices are a mixture of vertices with degree ⌈cl⌉ and ⌊cl⌋ in a way that ensures that
the overall average degree remains cl. Applying the same degree-homogenization to the
tile vertices leads to four possible degree-preserving (DP) or homogenized (H) randomiza-
tion protocols of I: (i) tile and link degree-preserved (tDP-lDP), (ii) tile degree-preserved
and link homogenized (tDP-lH), (iii) tile homogenized and link degree-preserved (tH-
lDP), and (iv) tile and link homogenized (tH-lH). Note that the randomized intersection
graphs do not correspond to valid physical layouts because a link in Ir generally intersects
non-adjacent tiles.

The randomizations that preserve link-side degree in I (tDP-lDP and tH-lDP) do not re-
move correlations between G and I: if long links are important in G, then important links
in G tend to have high degree in I. To study the effect of this correlation we introduce
an additional randomization procedure called “label shuffle” (LS): we shuffle the vertex
labels in I and create a randomized ILS that is uncorrelated with G but otherwise has the
same structure as I. This means that dismantling G using ILS removes, on average, the
same number of links as I, but the links are chosen randomly in G independent of the orig-
inal layout. We summarize in Table 5.1 the main features of the randomization protocols
introduced above.
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tDP-
lDP

tDP-lH tH-lDP tH-lH LS

Pt(k) ✓ ✓ ✗ ✗ ✓

Pl(k) ✓ ✗ ✓ ✗ ✓

k(e)-G
correla-
tion

✓ ✗ ✓ ✗ ✗

Shared
endpoint

✗ ✗ ✗ ✗ ✗

Table 5.1: Randomizations of the intersection graph. Brief summary of properties pre-
seved by each randomization; shared endpoint means that all links connected to a node v
intersect the tile that contains v.
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5.2.1 Link-side degree
The degree k(e) of a link e in the intersection graph I determines the vulnerability of e to
tile damage: the more tiles e intersects, the more likely e is removed. In this section, we
describe the relation between the length of e and k(e). We consider a physical network
with N nodes and M links embedded in the unit D-dimensional cube such that the links are
straight segments. We tile the network with cubes of side length b, hence the intersection
graph I contains nt = b−D vertices representing tiles and nl = M vertices representing
links. A link e with endpoints r = (r1, r2, . . . , rD) and s = (s1, s2, . . . , sD) following
a straight trajectory intersects a sequence of tiles (t1, t2 . . . , tk(e)). Whenever e crosses
from a tile ti to the next ti+1, it punctures the shared face of ti and ti+1, the probability of
crossing at an edge or a corner is zero. Therefore, link e must cross at least |si− ri|/b tiles
along each axis i, hence the approximate number of tiles intersected by e, i.e., its degree
in I, is

k(e) = 1 +
∑
i

|si − ri|
b

, (5.1)

where the plus one corresponds to the starting tile. Note that it is not the Euclidean but
the Manhattan distance of the endpoints of e that determines k(e). For example, in a
randomly embedded network the typical link length ℓ is on the order of the system size,
ℓ ∼ 1, meaning that a typical link intersects cl ∼ Db−1 tiles and a typical tile is intersected
by ct ∼ MDbD−1 links. Therefore, in the N → ∞ large network limit, if we fix the
average degree of G as ⟨d⟩ = 2M/N and the tile density as ρ = N/b−D, the intersec-
tion graph has diverging average degrees cl ∼ N1/D and ct ∼ N1/D (Fig. 5.1d). On the
other extreme, if the physical network is lattice-like, i.e., nodes connect to their immediate
spatial neighborhood and ℓ ∼ b, the average degrees cl and ct remain constant. The diverg-
ing average degree ct indicates that randomly embedded networks are more susceptible to
physical damage than lattice-like networks. In the following, we systematically investigate
the role of physicality in random and targeted damage by relying on I both numerically
and analytically.

5.3 Random damage
In this section, we explore the effect of the combinatorial network G and the layout P on
the physical percolation of randomly embedded networks. Fig. 5.2 shows the relative size
S of the largest component during random tile removal for randomly embedded Erdős-
Rényi (ER) networks and scale-free (SF) networks generated by the static model [182,
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183]. We recall that the static model generates networks by fixing the expected degree of
each node and allows controlling both the degree exponent γ and the average degree of the
network c. We compare S of the original I to the five randomized null models: protocols
tDP-lDP, tH-lDP, and LS that preserve Pl(k) follow the original percolation transition
(S ≈ StDP-lDP = StH-lDP = SLS), while link-homogenized randomizations tDP-lH and tH-
lH accelerate the transition, shifting f ∗

t to the left (StDP-lH = StH-lH < S). This means that
when tiles are damaged independently, only the heterogeneity of the link lengths affects
robustness, while tile heterogeneity and correlations between adjacent tiles have negligible
effects. To explain these observations and to systematically investigate random damage,
we first develop an analytical solution for the relative size of the giant component. Then,
we use this analytical characterization together with the numerical randomizations of the
intersection graph to explore the role of the degree distribution in randomly embedded
networks.
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Figure 5.2: Random tile damage in randomly embedded networks. We show the
relative size S of the largest connected component as a function of the fraction of tiles re-
moved for randomly embedded (a) Erdős-Rényi (ER) networks in D = 2, (b) ER networks
in D = 3, (c) scale-free (SF) networks in D = 2, and (d) SF networks in D = 3 dimen-
sions. The dashed line represents the theoretical prediction obtained solving Eqs. (5.6) and
(5.7). Networks were generated with N = 105 nodes and average degree c = 4; for SF
networks the degree exponent is γ = 2.5, and the tile density is set to ρ = 4. Each curve
is an average of 10 independent realizations.
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5.3.1 Analytical characterization
We start by calculating S for the case when G is generated using the configuration model
and tiles are removed in random order. We rely on the standard generating function for-
malism with the addition that link removal depends on the intersection graph I, leading to
an analytical characterization similar to the so-called feature-enriched percolation [184].
In our solution, we assume no correlations between the removed links, an assumption in
general only valid for the randomized versions of the intersection graph. We focus on the
sparse large network limit N → ∞, where the average degree of the combinatorial net-
work c remains constant, and we also fix the tile density ρ = N/b−D, i.e., the expected
number of physical nodes contained in a tile. This means that the total number of tiles
scales as

nt ∼ N, (5.2)

and the tile size scales as
b ∼ n

−1/D
t ∼ N−1/D. (5.3)

Link e is removed if we damage any of its neighbors in I; therefore, the probability that e
is removed after independently damaging K random tiles is

f(k(e)) = 1−
(
1− K

nt

)k(e)

= 1− (1− ft)
k(e) ≈ 1− e−k(e)ft , (5.4)

where ft = K/nt is the fraction of tiles removed, and the exponential approximation
assumes large k(e). For straight links, Eq. (5.1) connects the degree of links with its length
as k(e) = 1+ b−1l, which means that the survival probability of a link drops exponentially
with l, making long links extremely vulnerable to random tile damage.

Let s(k) denote the probability that a random link with link-side degree k leads to the
giant component in G. Assuming no correlation between the degree of a link in I and its
position in G, we write the self-consistent equation for s(k)

1− s(k) = f(k) + (1− f(k))
∑
d

q(d)

(∑
ki

Pl(ki) (1− s(ki))

)d

, (5.5)

where q(d) = (d+1)/cp(d+1) is the excess degree distribution of G. Averaging Eq. (5.5)
over k, we obtain

s = Gl (1− ft) [1−H (1− s)] , (5.6)
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where H(z) =
∑

d q(d)z
d is the generating function of q(d), and Gl(z) =

∑
k Pl(k)z

k is
the moment generating function of the link-side degree distribution of I. Similarly, we
can obtain the relative size of the giant component S as

S = 1−G(1− s), (5.7)

where G(z) =
∑

d p(d)z
d is the generating function of the degree distribution p(d) of G.

A crucial quantity in Eq. (5.6) is 1−Gl (1− ft) ≡ f providing the probability that a ran-
dom link is removed, which we calculate by averaging Eq. (5.4) over Pl(k). Equivalently,
for straight links, we can leverage Eq. (5.1) connecting the degree of a link in I to its
length to obtain f by averaging over the link lengths, i.e.,

1− f =

∫
dlp(l) (1− ft)

1+l/b ≈
∫

dlp(l)e−(1+l/b)ft , (5.8)

where l is the link length measured by its Manhattan distance and p(l) is the link length
distribution. Equation (5.8) is valid for the original I and the randomizations that do not
modify the link-side degree (tDP-lDP and tH-lDP). On the other hand, randomizations
tDP-lH and tH-lH homogenize the link degree in I, i.e., k = 1+ b−1 ⟨l⟩ for all links in Ir,
where ⟨l⟩ is the average Manhattan link length. Therefore, tDP-lH and tH-lH also modify
the link removal probability as

1− flH = e−(1+⟨l⟩/b)ft . (5.9)

Invoking Jensen’s inequality, we find that

f(ft) ≤ flH(ft), (5.10)

for any p(l), meaning that link length heterogeneity always decreases the number of links
removed for a given ft (for example, see Fig. 5.2).

Note that Eqs. (5.6) and (5.7) are exactly the equations describing bond percolation in the
configuration model with link removal probability f = 1 − Gl (1− ft). When Eqs. (5.6)
and (5.7) hold, the only relevant feature of the layout is the link-side degree distribution
Pl(k) of I, which affects the percolation transition only through a number of links re-
moved.

The main assumptions we made when deriving these equations are that (i) G is gener-
ated by the configuration model, allowing the use of generating functions based solely
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on degree distributions; (ii) the links removed from G are uncorrelated, enabling a bond
percolation framework; and (iii) there are no correlations between a link’s degree in I
and its importance in G, which allows us to treat link removal as independent from the
network’s topological structure. While these assumptions hold in randomly embedded or
randomized networks, they are generally violated in empirical systems (for more details,
see SI Sec. 5.7.1). Consequently, in Sec. 5.5, we extend beyond this minimal model to
quantify the effects of such correlations using simulations on real networks.

5.3.2 Effect of degree distribution
To investigate the role of the degree distribution of the combinatorial network G, we focus
on purely random embeddings. We select the position of physical nodes uniformly at
random from the D-dimensional unit cube, BD = [0, 1]×D, and connect pairs of nodes
with straight links. The Manhattan length of a link e is l(e) =

∑
|ri − si|, where r ∈ BD

and s ∈ BD are the endpoints of e, since ri and si are chosen uniformly from the unit
interval, their difference x = |ri − si| follows the distribution p(x) = 2(1 − x). Hence,
following Eq. (5.8), we get that the average link removal probability is

f =1− (1− ft)

(
2

∫ 1

0

dx(1− x)(1− ft)
x/b

)D

≈

≈ 1− e−ft

(
2

∫ 1

0

dx(1− x)e−xft/b

)D

=

=1− e−ft

(
2
e−b−1ft − 1 + b−1ft

b−2f 2
t

)D

,

(5.11)

which is valid for the original I and the randomizations that do not modify the link-side
degree (tDP-lDP and tH-lDP). For randomizations tDP-lH and tH-lH that homogenize the
link degree, the link removal probability is obtained using Eq. (5.9), providing

flH ≈ e−(1+⟨l⟩/b)ft = e−fte−(1+
Dft
3b ). (5.12)

In the N → ∞ large network limit, keeping the tile density ρ = N/b−D constant makes
the side length of the tiles scale as b ∼ n

−1/D
t → 0. Hence, the majority of links are

removed after damaging only a vanishing fraction of the tiles for both the original and the
homogenized distributions Pl(k). Notice, in fact, that the second term of both Eqs. (5.11)
and (5.12) indicates that almost all links are removed on the scale ft ∼ n

−1/D
t , while the
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first term for vanishing ft is e−ft ≈ 1. This means that the number of tiles to destroy a
positive fraction of links in a randomly embedded network scales as ∼ n

(D−1)/D
t , i.e., it is

on the order of the number of tiles needed to be damaged to cut the network into two parts.

Fig. 5.2 compares numerical simulations with the analytical estimate of S obtained by
inserting Eqs. (5.11) and (5.12) into Eq. (5.7). We find that the analytical solutions align
perfectly with the randomizations and also closely follow the simulations using the orig-
inal I. We observe small deviations between the predicted S and the original simulated
S, particularly for ER networks in D = 2. To explain this, recall that our calculations
assumed that the links are removed from G in an uncorrelated fashion. This assumption
only holds approximately for the original I: links connected to the same node v tend to
intersect the same tiles near the vicinity of v, hence having a higher chance of getting
removed together. The effect of such correlations depends on the typical link length ℓ
and tile size b, if ℓ ≫ b the likelihood of removing a link near its endpoint diminishes.
In the limit N → ∞ with fixed tile density ρ, the relevant length scales are ℓ ∼ 1 and
b ∼ N−1/D; therefore, we expect that the above analytical solution correctly captures S
for large networks.
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Figure 5.3: The scaling of the critical point for scale-free networks. We simulate
random tile damage on randomly embedded SF networks with increasing size N and fixed
tile density ρ, and we measure the location of the critical point f ∗

t by finding the maximum
of the second largest component. We show the scaling of f ∗

t with N for (a) D = 2 and
(b) D = 3 dimensions: markers represent numerical simulations, dashed lines represent
the scaling ∼ N−(τ−1)/D predicted by Eq. (5.17) for networks with diverging ⟨d2⟩, and
the dotted lines represent the scaling N−1/D predicted for networks with finite ⟨d2⟩. We
generated networks using c = 4 and ρ = 4, the markers represent the average of 50
independent runs, and the error bars represent their standard deviation.
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The location of the critical point where the giant component is destroyed is often used to
quantify the robustness of networks. For a network with average degree ⟨d⟩ and degree
second moment ⟨d2⟩, this critical point f ∗

t can be determined using the percolation-based
Molloy–Reed criterion [185, 186], given by

f ∗
t = 1− 1(

⟨d2⟩
⟨d⟩ − 1

) . (5.13)

To determine the critical point f ∗
t in our setup, we insert Eq. (5.11) into the Eq. (5.13)(

2
e−b−1f∗

t − 1 + b−1f ∗
t

(b−1f ∗
t )

2

)D

=
1

⟨d2⟩ / ⟨d⟩ − 1
, (5.14)

where the left-hand side only depends on the physical layout, while the right-hand side
only depends on the abstract network structure. For combinatorial networks with finite
second moment ⟨d2⟩, the right-hand side does not depend on N and hence on b, while the
left-hand side only depends on b−1ft = Nt1/Dft. Therefore, the critical point vanishes as

f ∗
t ∼ N−1/D (5.15)

in the large network limit.

Scale-free combinatorial networks with γ < 3 have diverging second moments, hence,
almost all links need to be removed to destroy the giant component in random fashion in
the N → ∞ large network limit, i.e., f ∗ ≈ 1. For traditional random percolation, the
finite size scaling of the critical point is characterized by the scaling 1− f ∗ ∼ N−τ , where
the exact value of the critical exponent τ depends on the subtleties of how the scale-free
networks are generated [187, 188, 189]. Inserting the scaling relation into Eq. (5.14) and
keeping only leading terms in b−1ft yields

(b−1ft)
−D ∼ N−τ . (5.16)

This leads to the finite-size scaling

f ∗
t (γ) ∼ N− τ−1

D , (5.17)

for 3 < γ < 2. To test the above relation, we first numerically estimate the critical expo-
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nent τ by simulating traditional bond percolation on SF combinatorial networks and insert
these numerical estimates into Eq. (5.17). Fig. 5.3 compares the theoretically obtained
scaling relation to numerical simulations of f ∗

t for physically embedded SF networks,
finding a good agreement for large N .

Overall, we demonstrated that randomly removing a vanishingly small fraction of tiles is
sufficient to dismantle randomly embedded networks and that higher dimensional embed-
dings increase their vulnerability. The reason for this is the presence of long links that do
not scale with the network size N , causing them to intersect a number of tiles that diverge
as ∼ b−1 ∼ N1/D, thus making them extremely vulnerable to physical damage. We also
found that the analytical solution, which in general is valid for the randomized versions of
the intersection graph, well describes the percolation transition for the original I in large
networks, revealing that random tile damage is equivalent to a random bond percolation,
where the number of links we remove is determined by the layout P . In the next section,
we study networks where we restrict the typical link length ℓ to study the effect of more
realistic layouts.

5.4 Targeted damage
We now turn our attention to targeted physical attacks, where we iteratively damage a frac-
tion ft of the tiles having the highest degree in I. More formally, given a tiling described
by the intersection graph I:

1. We find tile t with the highest degree in I;

2. We remove t from I together with each of its neighbors, i.e., with each link e that
intersects t;

3. We repeat steps 1 and 2 until all links are removed.

In the following, we investigate targeted attacks in detail: first, we explore the effect of the
degree distribution for randomly embedded networks, then the effect of restricting the link
length.
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Figure 5.4: Targeted attack of randomly embedded networks. We show the relative
size S of the largest connected component as a function of the fraction of tiles removed
for randomly embedded (a) Erdős-Rényi (ER) networks in D = 2, (b) ER networks in
D = 3, (c) scale-free (SF) networks in D = 2, and (d) SF networks in D = 3 dimensions.
Networks were generated with N = 105 and c = 4, for SF networks, the degree exponent
is γ = 2.5, and the tile density is set to ρ = 4. Each curve is an average of 10 independent
realizations.
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5.4.1 Effect of degree distribution
As before, to investigate the role of the degree distribution of G, we focus on randomly
embedded networks. Figs. 5.4a, b show the size of the largest component of a randomly
embedded Erdős-Rényi (ER) network in D = 2 and D = 3 dimensions under targeted
attack. In Sec. 5.3, we found that the only relevant property affecting S during random tile
removal is the link-side degree distribution of I. In the case of targeted physical attacks,
a richer picture emerges. By comparing the original I to its randomized versions, we find
that StDP-lH < StDP-lDP < S ≈ SLS < StH-lH < StH-lDP for the entire range of ft. This means
that (i) tile heterogeneity increases the vulnerability of the network, (ii) correlations in
I (such as short loops caused by neighboring links intersecting the same tiles), and link
heterogeneity makes the network more robust against targeted attacks. Finally, we find that
S for the original I is identical to the case where we randomly remove the same number
of links (LS randomization), meaning that for the ER network, targeted attack dismantles
the network faster than random tile removal because it damages more links per tile, but
does target links that are important for the cohesion of the network.

Figs. 5.4c, d show instead the relative size of the giant component, S, for SF networks
with degree exponent γ = 2.5, thus having a divergent second moment. The portrait, in
this case, is analogous to the one observed in ER networks, with one key exception: while
initially S ≈ SLS, near the critical point the original network falls apart faster than the LS
and even the tDP-lDP version, i.e., f ∗

t < f ∗
t, tDP-lDP < f ∗

t, LS. This means that correlations
between I and G accelerate the targeted disruption of the network.

To clarify the role of degree heterogeneity in G, we plotted the location of the initial 50
tiles removed for a D = 2 SF network with γ = 5 and with γ = 2.1, for both the
original network (Fig. 5.5a and d) and the tDP-lDP randomization (Fig. 5.5b and e). For
the original homogeneous network (γ = 5), the initial removal of the tiles concentrates in
the center of the embedding square, forming a neat spatial structure that cuts through the
network along a straight line (for D = 3, such a structure is less apparent). In contrast, for
the heterogeneous network (γ = 2.1), the removed tiles are randomly scattered in space.
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Figure 5.5: Example targeted tile removal. (a) The location of the first 50 tiles removed
from a SF network with degree exponent γ = 5. The removed tiles (b) The tDP-lDP
randomization of the network removes the overlap between the links intersected by neigh-
boring tiles, therefore, the attack targets the center tiles. (c) The spatial distribution of
the tile-degree shows that the center tiles intersect the most links and monotonically drops
towards the edges of the square. (d) The first 50 tiles removed from a SF network with
degree exponent γ = 2.1 target the hubs in G. (e) In the case of the tDP-lDP random-
ization, tile removal targets the tiles surrounding the highest degree nodes. (f) The spatial
distribution of the tile-degree has peaks at tiles that contain hubs of G. Figure shows single
networks with N = 50, 000, c = 4, and ρ = 4, the color of the tiles in (a), (b), (d), and (e)
indicates the order of the tile removal.
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To understand this pattern, consider that the spatial distribution of links in homogeneous
networks is approximately the same as picking uniformly random segments from the unit
square. As a result, the expected tile degree kt is the highest in the center of the embed-
ding square and monotonically decreases toward the edges (Fig. 5.5c), explaining why the
center tiles are picked initially. However, the highest-degree center tiles are redundant:
they are intersected by the same links, i.e., they share many neighbors in the intersection
graph I. The one-dimensional structure of the removed tiles emerges as a result of the
targeted attack greedily minimizing the redundancy between the removed tiles. Indeed,
the tDP-lDP randomization keeps the degree of the tiles but removes correlations between
them, hence, the initially removed tiles concentrate at the center of the embedding square,
forming a two-dimensional patch (Fig. 5.5b). This also means that the total number of
links removed by the tDP-lDP randomization increases compared to the number of links
removed by the original I, explaining the observation StDP-lDP < S.

For heterogeneous networks, on the other hand, links are not uniformly distributed: tiles
that contain the hubs of G intersect an out-sized number of links, resulting in an uneven
spatial distribution of the tile-degree (Fig. 5.5f). The random distribution of the initially
removed tiles is a result of the target attack selecting tiles that contain the hubs of G.
The tDP-lDP randomization removes redundancy between the tiles surrounding the hubs,
hence tile removal is concentrated on the few largest hubs of the network, explaining
StDP-lDP < S in the early stages of the targeted attack. The LS and tDP-lDP randomizations
remove links in an uncorrelated way from G, this means that hubs are not removed in a
single step, but lose links continuously (for more details, see SI Sec. 5.7.2). The fact that
tile removal for LS and tDP-lDP does not eliminate hubs entirely, delays the critical point
of the transition, explaining the observed f ∗

t < f ∗
t, tDP-lDP < f ∗

t, LS.

In the above, we have shown that, for homogeneous networks, tiles with the most links
passing through get targeted first, while, for heterogeneous networks, the location of the
hubs of G determines which tiles get removed. To explore when node degree dominates
tile removal, with divide degree k(t) of tile t in I into two contributions:

k(t) = kpass(t) + knodes(t), (5.18)

where kpass(t) is the number of links that pass through t, i.e., links that intersect t, but have
endpoints outside t, and k(t)nodes is the number of links that have at least one endpoint
in t. We estimate the maximum of the two contributions in the N → ∞ large network
limit with fixed tile density ρ = NbD. First, note that the tile t0 at the center of the
unit square or cube has the highest expected number of links passing through, i.e., links
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that intersect t0 but have endpoints outside of t0. The probability that a randomly placed
segment e intersects t0 is proportional to the cross section of t0 perpendicular to e which
is ∼ bD−1 ∼ N−D−1

D . The number of links in the network is ∼ N ; therefore, the total
number of links passing through t0 scales as

max [k(t)pass] ∼ N ·N−D−1
D = N

1
D . (5.19)

The scaling of the maximum contribution of knodes(t) is provided by scaling the largest
degree node in G, hence, it depends on the topology of the network. For heterogeneous
networks generated in the static model [190], this is given by kmax ∝ N θ with θ = 1/(γ−
1), so that

max [knodes(t)] ∼ N
1

γ−1 . (5.20)

The above two scaling relations determine whether the center tile or the tile containing
the largest hub of the network gets removed in the first step of the targeted tile removal:
for γ < D + 1, the value of max [knodes] outgrows max [kpass] and initially the hubs get
removed, otherwise the targeted attack removes the tiles close to the center. Fig. 5.6 il-
lustrates the scaling of the maximum tile degree. For γ = 2.1, the contribution of hubs
max [knodes] dominates both in D = 2 and D = 3 dimensions. In contrast, for γ = 3.5, the
contribution max [kpass] dominates for D = 2, while for D = 3, hubs eventually outgrow
the effect of links passing through. Note, however, that the latter only happens for very
large networks outside of the regime of most real networks.
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Figure 5.6: Scaling of the maximum tile-degree. We measured the maximum tile degree
(circles) for increasing size N for SF networks embedded in D = 2 and D = 3 dimensions
and with γ = 2.1 and γ = 3.5 degree exponents and average degree c = 4. We randomly
placed cN/2 segments in the unit square and measured the maximum number of segments
intersecting a tile (circles), and we also measured the maximum degree of the combinato-
rial networks (triangles). The dashed lines represent the scaling predicted by Eqs. (5.19)
and (5.20). (a,b) For γ = 2.1, the contribution of the hubs dominates the maximum tile
degree for both D = 2 and D = 3. (c) For γ = 3.5 and D = 2 dimensions, γ > D + 1,
hence the contribution of max kpass dominates. (d) In contrast, for γ = 3.5 and D = 3,
we predict that max knodes dominate. However, extrapolating the simulations shows that
max knodes only outgrows max kpass for extremely large networks. Circle markers represent
the average of 20 independent physically embedded networks, while triangles and squares
represent the average of 100 runs.
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5.5 Empirical networks
In this section, we analyze the robustness of three empirical networks using the intersection
graph: an airline network, a vascular network, and a neural network. For each case study,
we tile the network and calculate the intersection graph. We then perform both random and
targeted tile removal, and we compare the percolation transition obtained for the original
layout against the randomized null models. Finally, we test the robustness of our results
by systematically changing the size of the tile.

A difference between model networks and empirical data is that we embedded model
networks in the unit square or cube. Real networks, on the other hand, typically have a less
regular shape, hence, their bounding box may contain large empty regions. Therefore, to
tile an empirical network, we identify its axis-aligned bounding box, we tile this bounding
box with cubic boxes, and, crucially, we leave out the empty tiles from our analysis. In
other words, we remove isolated vertices from the intersection graph I before simulating
tile removal. In the following, we discuss each case study separately.

5.5.1 Airline network
Our first case study is a network representing air traffic in the contiguous US, which we
constructed using data available from the Bureau of Transportation Statistics for the year
2023 [191]. The network contains N = 419 nodes representing cities, and we added a
link between two cities if the total number of passengers on direct flights between the pair
exceeded 1000, resulting in an average degree of c ≈ 16.7. We obtain the coordinates
of the cities from OpenStreetMap, and we transform the longitude and latitude pairs to
Euclidean space using the Albers equal area projection. We consider flight paths to be
straight lines between cities.

Fig. 5.7a shows the degree distribution p(d) of the combinatorial network G. We find that
p(d) is highly heterogeneous: the median degree is 4, while the largest hub is connected
to 194 nodes, representing close to half of the cities. To construct the intersection graph I,
we tile the network such that we place 40 square tiles along the longest axis of its bounding
box, resulting in nt = 743 non-empty square tiles and tile density ρ ≈ 0.56. Flights often
traverse the US, hence the longest links in the network are comparable to the size of the
bounding box. As a consequence, the tile-side degree distribution Pt(k) and the link-side
degree distribution Pe(k) of I resemble the degree distributions observed in randomly
embedded networks (Fig. 5.7b), where there is also no constraint on the maximum link
length.
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Fig. 5.7c shows the size of the largest component S as a function of the tiles removed. Due
to the high average degree c ≈ 16.7, a large fraction of the links need to be removed to
dismantle the network: for traditional bond percolation, we must remove approximately
f ≈ 0.97 fraction of the links from G to reduce its largest component to S = 0.1. In
stark contrast, the same reduction in S is achieved by randomly removing only ft ≈ 0.24
fraction of the tiles. Comparing the original intersection graph I to its randomizations, we
find that tile-degree heterogeneity by itself has little effect and that the link-side degree
heterogeneity delays the percolation (StDP-lH ≈ StH-lH < StDP-lDP ≈ StH-lDP), similarly to
randomly embedded model networks (Fig. 5.2). However, in contrast to randomly embed-
ded networks, we find that the LS randomization initially reduces S faster than the original
I (S > SLS), but eventually, LS delays the percolation transition (S < SLS). Recall that
LS randomization removes the same number of links from G, but randomly; therefore, the
above observations suggest that there is a correlation between a link’s degree in I and its
importance in G. Indeed, calculating the Pearson correlation between link-degree and the
product of the degree of a link’s endpoints in G, we find a positive correlation of r ≈ 0.26.
This means that the original tile removal tends to remove links connecting hubs faster than
the LS randomization, which explains the observed pattern: removing links between hubs
in the network with high c initially does not reduce S, but in the long run accelerates the
destruction of the largest component.

For targeted tile removal, in Sec. 5.4, we found that tiles containing the largest hubs are
removed first from degree heterogeneous networks, hence, we expect a similar pattern for
the airline network. Indeed, the first five tiles removed, for example, all contain major
airline hubs, such as Denver, Dallas, or Atalanta. Fig. 5.7d compares the original S to its
randomized counterparts, and we find a similar pattern to randomly embedded networks:
S ≈ SLS < StDP-lH < StDP-lDP < StH-lH < StH-lDP, meaning that tile-degree heterogeneity
accelerates, while link-degree heterogeneity slows down the percolation process. A key
difference compared to model networks is that the original removal decays even faster than
the tDP-lH and tDP-lDP randomizations. To explain this observation, note that the links
intersecting tiles that contain hubs in I have less overlap than in the randomized versions.
For example, in our network Dallas has 194 and Denver has 182 connections, but only one
of these connections, namely flights between Dallas and Denver, overlap. The expected
overlap between random sets of links of the same size is 194·182/3500 ≈ 10, hence, when
removing the tiles containing Dallas and Denver, more unique links are damaged by the
original process than by the randomized variants. For the visual representation of targeted
damage on the airline network, see SI Sec. 5.10.

Finally, to test the effect of tile size, we measure the fraction of tiles ft,10% needed to be
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removed to reduce the largest component to S = 0.1 for tilings of various sizes. Fig. 5.7e
and f show that the order of the randomizations does not change in the entire range of tiles
that we tested both for random and targeted percolation.
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Figure 5.7: Airline network robustness. (a) The degree distribution p(d) of the com-
binatorial network. The largest hub is connected to 194 of the N = 419 nodes of the
network. (b) The tile-side degree distribution Pt(k) and the link-side degree distribution
Pe(k) of the intersection graph I. (c,d) The size of the largest component S during random
and targeted tile removal. (e,f) The fraction of tiles ft,10% needed to be removed to reduce
the largest component to S = 0.1 for random and targeted tile removal as a function of
the number of non-empty tiles nt used to cover the network. The order of the randomized
variants is insensitive to the choice of tile size. In panels (c-f), lines and markers represent
an average of 20 independent randomizations, and the error bars indicate the standard de-
viation.
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5.5.2 Vascular network
Our second case study is a network representing the vasculature in a sample of the brain
of a mouse [4]. In the network, nodes represent branching points of the vessels or terminal
points at the edge of the sample, while links represent vessels in between branching points,
overall resulting in N = 1558 nodes and M = 2359 links. Note that links are not straight
lines, but follow a winding trajectory. Fig. 5.8a shows that the degree distribution p(d) is
highly homogeneous, largely concentrated on d = 3, which indicates that most branching
points split vessels into two new branches. For more details about the properties of the
network see Ref. [17].

We tile the network with cubes such that 20 tiles are placed along the longest axis of
the network’s bounding box. After dropping the empty tiles, the network is covered by
nt = 3276 boxes, resulting in a tile density of ρ ≈ 0.48. In contrast to the airline network,
Fig. 5.8b shows that the link-side degree distribution Pl(k) is peaked at k = 1, meaning
that typical links are short compared to tile size b. As a consequence, the average tile-side
degree is also much lower compared to the airline network. The low link-side degrees
of I together with the homogeneous degree distribution of G make the vascular network
lattice-like, counter to the airline network and the randomly embedded model networks.

For random tile removal, Fig. 5.8c shows that the randomizations overlap, especially in
the later stages of the percolation process (StDP-lDP ≈ StDP-lH ≈ StH-lDP ≈ StH-lH). This
is explained by the fact that Pl(k) follows an exponential distribution; therefore, further
homogenizing it has little effect on random removal. A curious pattern is that the original
process is slower at dismantling the largest component than randomly removing the same
number of links (S < SLS). To understand this, notice that the majority of links intersect
only a few tiles; therefore, a link e is likely to be removed at its endpoint node v, together
with other links adjacent to v. Links connected to the same node v play a redundant role
in the connectivity of the network, hence, removing them together reduces S slower than
removing the same number of random links.

For targeted removal, Fig. 5.8d shows that tile-side degree heterogeneity matters (StDP-lDP ≈
SLS ≈ StDP-lH < S < StH-lDP < StH-lH), meaning that although Pt(k) is exponentially dis-
tributed, targeting its tail still gives an advantage. Similarly to random removal, we observe
that S < SLS, which is again explained by removing links at their endpoint and the fact
that p(d) lacks hubs that would need to be removed.

Overall, tH null models are more robust than the original layout, which would make sense
as for homogenized tiles, each one would be equally likely, thus resembling the random
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attack scenario. On the other hand, all other null models are less robust and break down
quicker than the original layout. One potential explanation is that even though some re-
gions contain many dense tiles, which might cause redundant removals that effectively just
prune the network, instead of severing it into larger disconnected components.

Finally, to test the effect of tile size, we measure the fraction of tiles ft,10% needed to be
removed to reduce S to 0.1. Similarly to the airline network, Fig. 5.8 and f show that the
order of the randomizations does not change in the entire range of tiles that we tested both
for random and targeted percolation.
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Figure 5.8: Vascular network robustness. (a) The degree distribution p(d) of the combi-
natorial network. The majority of nodes are bifurcation points with degree d = 3. (b) The
tile-side degree distribution Pt(k) and the link-side degree distribution Pe(k) of the inter-
section graph I. (c,d) The size of the largest component S during random and targeted
tile removal. (e,f) The fraction of tiles ft,10% needed to be removed to reduce the largest
component to S = 0.1 for random and targeted tile removal as a function of the number
of non-empty tiles nt used to cover the network. The order of the randomized variants is
insensitive to the choice of tile size. In panels (c-f), lines and markers represent an average
of 20 independent randomizations, and the error bars indicate the standard deviation.
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5.5.3 Neural network
As the final case study, we analyze a network of neurons comprising a region of the central
nervous systems of a fruit fly [127]. The network is composed of 96 neurons and 6249
synaptic connections. Each neuron in the data set is represented as a spatially embedded
tree and these embedded trees are bound together through synapses. Here, we focus on
a microscopic representation of this network: we treat the branching points and terminal
points of the linked trees as nodes, and we treat the connections between them as links.
This way our network contains N = 97, 588 nodes and M = 100, 388 links, making it
our largest example. Fig. 5.9a shows that the degree distribution p(d) of G is concentrated
on d = 1 and d = 3, indicating that most nodes are terminal or bifurcation points of the
neurons. For more details about the properties of this network, see Ref. [17].

We tile the network with cubes such that 40 tiles are placed along the longest axis of
the network’s bounding box. After dropping the empty tiles, the network is covered by
nt = 11, 389 boxes, resulting in a tile density of ρ ≈ 8.6. Fig. 5.9b shows that the link-
side degree distribution Pl(k) is sharply peaked at k = 1, meaning that typical links are
shorter than b and are contained inside a single tile. Note, however, that despite the peak at
k = 1 there are still a few links that span the bounding box. We observe a high maximum
tile-side degree, this is due to tiles that contain many nodes. Although there are some key
differences, the high peak of Pl(k) at k = 1 and the homogeneous p(d) make the fruit fly
neural network similar to the vascular network.

For random tile removal, Fig. 5.9c shows a very similar pattern to the vascular network,
with the difference that link-degree does have an effect. For targeted removal, shown in
Fig. 5.9d, the ordering of the randomizations is identical to that of the vascular network.

Finally, as in both cases before, Fig. 5.9e and f show that the order of the randomizations
is not sensitive to the choice of tile size in the ranges that we tested.
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Figure 5.9: Fruit fly neural network robustness. (a) The degree distribution p(d) of
the combinatorial network. The majority of nodes are terminal or bifurcation points with
degree d = 1 or d = 3, respectively. The average degree of the network c ≈ 2.06 is close
to two, which would correspond to a tree. (b) The tile-side degree distribution Pt(k) and
the link-side degree distribution Pe(k) of the intersection graph I. (c,d) The size of the
largest component S during random and targeted tile removal. (e,f) The fraction of tiles
ft,10% needed to be removed to reduce the largest component to S = 0.1 for random and
targeted tile removal as a function of the number of non-empty tiles nt used to cover the
network. The order of the randomized variants is insensitive to the choice of tile size. In
panels (c-f), lines and markers represent an average of 20 independent randomizations,
and the error bars indicate the standard deviation.
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5.6 Discussion
In this chapter, we provide a framework to study the robustness of spatially embedded
networks against physical damage. The setup aims to model spatially localized damage,
and it takes into account the routing of links. Our key observation is that long links are
necessarily susceptible to physical damage, hence, their presence can make networks vul-
nerable to localized attacks. Traditional network science focuses solely on combinatorial
networks, while spatial network theory also takes into account the coordinates of nodes but
for most cases, ignores link routing. Our results highlight that incorporating the physical
shape of links and nodes can reveal properties of networks that are otherwise missed by
more traditional approaches.

The central tool of our analysis is the intersection graph, which concisely captures how
the physical layout affects the percolation transition. Faithfully representing the shape of
physical links and nodes requires large amounts of data; therefore, directly working with
such representations is computationally expensive and makes analytical description diffi-
cult. Calculating the intersection graph provides a way to extract the relevant properties of
the physical layout of a network, thus simplifying numerical exploration and enabling us
to adapt the analytical tools of network science to characterize the percolation transition.
The intersection graph and the conceptually similar meta-graph of Ref. [8] or contactome
of Ref. [192] may provide a blueprint for tackling the complexity of physical layouts.

Our work raises several new questions. For example, we studied randomly embedded
model networks, which allowed simple analytical characterization. Future work may ex-
tend this to more realistic models that take into account distance when creating links [88]
or other physical constraints [8, 9], or may explore the role of the spatial organization of
links, such as bundling [10] and entanglement [7, 29]. Also, throughout this chapter, we
focused on network embeddings where nodes are point-like and links are extended objects
connecting them. Many physically embedded networks, however, are better characterized
by extended nodes with point-like connections between them, e.g., neurons are extended
objects with complex shapes, which connect to each other via point-like synapses. Such
physical networks are better represented as spatially embedded network-of-networks, fu-
ture work may extend the tile removal percolation to such representations [9].

109

C
E

U
eT

D
C

ol
le

ct
io

n



5.7 Supplementary Information

5.7.1 Analytical characterization assumptions
In Chapter 5, I began with randomly embedded configuration models to construct a min-
imal, analytically tractable framework, which would allow us to fully understand basic
underlying mechanisms. The three assumptions below, which are justified in detail, were
necessary to derive closed-form results:

(i) G is generated by the configuration model

This choice concerning the abstract network allows us to use the standard generating
function formalism to calculate the size of the giant component. It also allows us
to systematically investigate the role of the degree distribution, arguably the most
important structural feature affecting percolation on complex networks.

From an analytical standpoint, Eqs. (5.6) and (5.7) rely on configuration model prop-
erties for generating function calculations.

This assumption holds in large, sparse networks where degree distribution dominates
connectivity, but real networks often violate this (e.g., due to spatial constraints,
clustering, or modularity). For example, in transportation networks, biological neu-
ral networks, or infrastructure systems, link formation is often dictated by physical
space and not purely by node degree.

(ii) Links are removed independently

This simplifies the analysis to a bond percolation problem. The assumption is used
for Eq. (5.4), where the link removal probability depends only on its degree in

The assumption formally holds for randomized versions of I, where the correlation
of the links inside tiles is removed. For example, if a hub v is contained in tile t, then
damaging t removes all links attached to v, hence, the link removal is not indepen-
dent. On the other hand, randomizing I, randomizes the links in t, and link removal
becomes independent. Additionally, in large, randomly embedded networks, most
links are long and are typically removed due to intersections with damaged tiles
along their length, not at their endpoints. Hence, links removed together typically
have endpoints far away from each other and can be considered independent. As
shown in Figs. 5.1 and 5.2, numerical simulations confirm that link removal be-
haves approximately independently, supporting this assumption empirically.
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This assumption might fail in some real systems, for example, when links are short
or, damaging a tile removes multiple links simultaneously.

(iii) No correlation between a link’s degree in I and its importance in G

This assumption naturally holds for random embeddings; however, it is often vio-
lated by real networks (e.g., the size of neurons is correlated with their synapse count
and confinement). The random embedding allowed us (i) to explicitly calculate the
probability of link removal and (ii) ensure that links are removed approximately in-
dependently. This is a limitation of the minimal model, and to go beyond it we study
empirical networks in Sec. 5.5 using simulations and randomizations of I, while the
minimal model served as a starting point to understand the patterns numerically ob-
served for real networks.

This assumption enters directly in Eq. (5.5), where s(k), the probability that a link
with degree k in I (i.e., it intersects k tiles) connects to the giant component in G, is
treated as a function of k only.

Without this assumption, we could not decouple link confinement from the topolog-
ical position, and Eq. (5.5) would require modeling the joint distribution of confine-
ment and importance—rendering the analysis intractable.

5.7.2 tDP-lDP randomization
The two mechanisms of the tile removal process in the tDP-lDP randomization discussed
in Sec. 5.4.1, at first glance, seem contradictory, yet both can hold simultaneously.

To illustrate, consider a scenario of targeted damage on a large embedded network of size
N ∼ 105, featuring one large hub with degree k ∼ 1000, one smaller hub with k ∼ 10,
and the remaining nodes having low degree on the order of k ∼ 1, all uniformly embedded
in a square, partitioned into n ∼ 105 tiles.

In the original embedding, the tile containing the largest hub and its adjacent tiles exhibit
significant link overlap, as the hub’s outgoing links traverse neighboring tiles. When the
tile containing the largest hub is attacked, all links within it are removed, and adjacent
tiles lose a substantial portion of their links. Consequently, the second attack targets an
unrelated tile containing the second-largest hub. The first attack removes approximately
∼ 1000 links, while the second removes only ∼ 10 links. The immediate removal of
hubs, which are important for maintaining global connectivity, accelerates the percolation
process.
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With the tDP-lDP randomization, tiles that previously contained the largest hub and tiles
adjacent to it, will not have the membership overlap, as the links contained in them are
now randomly selected. Once the tile with the highest number of links is attacked (which
before the randomization contained the largest hub), the number of links passing through
it drops to 0, but unlike in the original scenario, this will have a reduced impact on the
adjacent tiles. Therefore, the adjacent tiles retain their original number of links, but now
tiles are populated with random links from G. Compared to the original embedding, in
the scenario of having a single high-degree node, the number of links removed in the
subsequent attacks would be higher. The initial attack will, similarly as for the original
embedding, remove ∼ 1000 links, but, the second attack will remove ∼ 1000 links as well
(depending on the number of links in the adjacent tile), which accelerates the percolation
process. It’s important to note that although the second attack removes more links, they
are randomly selected, which slows down the dismantling process as the second largest
hub is more likely to remain intact.

Under the tDP-lDP randomization, the tiles that originally contained the largest hub and
its neighbors no longer have overlapping links, as their link content is now randomly
assigned. Attacking the tile with the most links (previously hosting the largest hub) still
removes ∼ 1000 links, but the adjacent tiles are largely unaffected, retaining their original
link count. Now, the links within tiles are randomly chosen from G. As a result, the second
attack removes approximately ∼ 1000 links as well, thereby accelerating link removal
compared to the original embedding. However, although more links are removed, they are
randomly selected. This slows down network dismantling because the second-largest hub
remains intact.

To summarize, there are two competing effects at play with the tDP-lDP randomization,
whose balance depends on the network’s size and structure:

1. By eliminating link redundancy between neighboring tiles, each targeted tile re-
moval results in more links being removed, thus accelerating the dismantling pro-
cess.

2. However, since link selection becomes random, hubs are not directly targeted. This
can slow down dismantling, especially if hubs are critical for global connectivity.

5.7.3 Targeted damage on the airline network
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a) 1st out of 52 attacks
~13.5% links removed

b) 13th out of 52 attacks
~2.7% links removed

c) 26th out of 52 attacks
~0.4% links removed

d) 38th out of 52 attacks
~0.1% links removed

Figure 5.10: Visualization of targeted damage on the airline network. Selected snap-
shots from a targeted tile removal process on the U.S. airline network, visualizing which
links are removed during attacks. Each panel (a–d) highlights the edges removed at spe-
cific stages of the 52-step attack, color-coded by the attack index (see color bar). Panel
(a) corresponds to the first attack, which removes tiles containing major hubs, resulting
in 13.5% of links being removed. In later steps, such as (b) and (c), progressively fewer
links are removed due to decreased tile connectivity. By panel (d), only 0.1% of links
are affected. The spatial pattern shows that early attacks disproportionately target central
long-range connections.
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Chapter 6

Conclusions

6.1 Summary
The findings of this thesis advance our understanding of physical networks through a com-
bination of theoretical development, empirical network analysis, and methodological in-
novation. Each chapter has contributed to this overarching goal, as summarized below:

I performed a comprehensive literature review in Chapter 2, tracing the chronological
development of the relevant fields, ending with the emerging domain of physical network
research, which is the topic of study of this thesis. This chapter provides the context for the
thesis, emphasizing how disciplines such as graph theory, polymer physics, neuroscience,
transportation networks, spatial networks, and networks-of-networks contribute tools and
principles to understand real-world physical networks. By integrating insights from these
fields, this chapter also highlights the interdisciplinary nature of physical network research
and sets the stage for investigating how spatial embedding and physical constraints influ-
ence physical network structure and robustness, the key themes explored in the subsequent
chapters.

I introduced the generalized meta-graph formalism in Chapter 3, a framework that ex-
tends the original meta-graph concept to study real-world physical networks with complex
structures. This approach allowed for the quantification of spatial proximity and physical
confinement in systems with curved links and heterogeneous geometries. The generalized
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meta-graph was adapted and applied to datasets like the fruit fly neural and vascular net-
works, therefore revealing how physical constraints shape network properties and predict
functional features, such as synapse formation or structural organization. Overall, this
chapter established a computationally efficient and versatile tool for analyzing physical
networks, providing insights into their structure and function.

In Chapter 4, I systematically processed and analyzed 15 empirical physical network data
sets from diverse domains, uncovering the relationships between their network structure
and physical properties. I adapted metrics previously used in other fields, to quantitatively
describe the shape of the network and the individual links. Also, I introduced a novel de-
scriptor called link confinement, which captures the spatial constraints of individual links.
My results have revealed correlations between physical layout and network topology, re-
vealing general and domain-specific traits, such as how physical constraints influence ab-
stract network connectivity and link trajectories. These findings demonstrate that network
properties cannot be fully understood without considering their spatial embedding.

Finally, in Chapter 5, I explored the robustness of physical networks when subjected to
spatially correlated damage, modeled as a percolation process. This study showed the
importance of physical link length, and the network layout in general in determining the
vulnerability of embedded networks. By systematically investigating random and targeted
spatially correlated damage, I demonstrated that network robustness depends not only on
the properties of the abstract networks but also on the interplay between physical layout
and combinatorial network structure. This duality offers a new perspective on understand-
ing how real-world physical networks might fail under localized or global disruptions.

Overall, with this thesis, I provided insights, data sets, methods, and results that deepen
our understanding of physical networks and provide a foundation for future work in this
interdisciplinary field.

6.2 Limitations and future extensions
The development of the theory of physical networks within network science is still in its
nascence. In this final section, I summarize the limitations of my thesis and the challenges
that physical network research faces in general. I also point out areas of potential future
research addressing these issues.
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6.2.1 Computational resources
The sheer amount of data needed to represent the detailed three-dimensional shape of
physical networks makes analyzing them computationally expensive and often requires
specialized knowledge. For example, one of the most comprehensive physical network
maps available during my research was the Hemibrain data set, which represents a portion
of a fruit fly’s central nervous system. The available data mapped 25 · 103 neurons and
20 · 106 synapse locations, using 117 · 106 straight segments. Indeed, I resorted to only
using a sub-sample of the available data for this thesis. Furthermore, the types of data
representing three-dimensional objects and the computational geometry algorithms needed
to analyze them are outside of the scope of typical research within network science, which
may discourage researchers from joining the field and hinder the development of physical
network research. One general solution is to provide easy access to the software and
computational resources that would allow for the processing of these large data sets. A
solution perhaps more aligned with the approach of network science, is to identify what
aspects of the physical layout are relevant to specific research questions, allowing for
more tractable representations. An example of such an approach from my thesis is the
intersection graph (introduced in Chapter 5). Once calculated it allows us to efficiently
analyze the robustness of physical networks using tools of traditional network science and
relying upon fewer computational resources.

6.2.2 Data standardization
Each experiment providing physical network data has its standards and idiosyncrasies
which makes cross-comparison difficult. To perform research that would encompass data
originating from different experiments or even different domains, a standardized process-
ing and representation framework is needed. In this thesis, I compiled 15 new datasets
and developed my own data standardization protocols, although, limited in their size and
scope. Furthermore, I worked with skeletonized data published by the original authors,
therefore, all previous data collection and processing steps, like imaging or choosing pa-
rameters for skeletonization algorithms, affected the data I used and potentially the results.
Therefore, a collective community effort is necessary to define and test the data collection
and processing standards and to build databases that would allow easier access to all future
network scientists venturing into this field.
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6.2.3 Incomplete data
To empirically understand how physical interaction influences the evolution of a physical
network, the mapping of the network needs to be both exhaustive and detailed, as every un-
mapped part decreases the accuracy of the results. In this thesis, I included complete or as
large as possible data sets, to minimize the effect of incomplete data. Nevertheless, all data
sources contained data about only the network itself, almost always assumed to be made of
homogenous material, while the surrounding non-network material, which interacts phys-
ically with the network, was not included. Additionally, even though these networks grow
or sustain damage, thus changing their structure in a time-dependent manner, only static
data was available. For example, during the development of a brain, neurons grow, rewire,
and die. Incorporating data describing the physical environment or temporal evolution
would inspire new theoretical research and provide a more complete understanding of the
role of physicality.

6.2.4 Additional applications
The data sources used in this thesis have mostly been from the biological domain, with
the most prominent field being neuroscience. However, extending physical network re-
search to other disciplines, such as engineering and materials science, presents significant
opportunities for interdisciplinary developments:

1. Three-dimensional metamaterials [116, 1, 117] made of specifically designed phys-
ical structures offer up new electromagnetic and acoustic properties and they can
be represented as physical networks. Closely related field of network materials re-
search [193] examines networks from the perspective of materials science, and offers
a complementary avenue of exploration.

2. All real computational systems have hardware components, which have to be de-
signed and manufactured. The field of neuromorphic engineering [194, 195] aims
to physically design and create artificial systems that exhibit similar computational
capabilities as biological neural networks. The adjacent field of wetware comput-
ing [196, 197] investigates how to utilize real biological neurons to perform com-
putation. All these networked systems have to be physically realized, which means
that research on how to realize or grow physical networks might provide principles
or results that could aid in developing a general theory of physical networks.

3. The function of many physical networks is to transfer flow, which has been explored
in microfluid network [198, 199, 200] and pore network [201, 202, 203] research.
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The field of microfluid networks mainly focuses on the design and functions of the
systems of transport and delivery of chemicals, while the study of pore networks fo-
cuses on the flow of materials through porous media - like heavy oil passing through
the pores of the soil [204]. Understanding how physical flow fluids pass throughout
the tubular structures of a physical network can be simulated or analyzed using meth-
ods of these fields, and may provide general insights into the dynamics on physical
networks.

6.2.5 Outlook
The success of network science lies in its ability to unify diverse systems under a sin-
gle framework, revealing universal patterns and principles that govern complexity across
scales and domains. In the emerging field of physical networks, this mission is extended to
spatially embedded systems, where physical constraints such as geometry, material prop-
erties, and spatial embedding influence network behavior. By bridging the connective and
the physical properties, physical network research not only deepens our understanding of
real-world systems but also potentially equips us with tools to design and optimize systems
in engineered and natural contexts.

The broader vision for the future of physical network research is to provide a unifying
framework that is versatile enough to encompass disciplines as diverse as neuroscience
and materials science, while remaining robust and generalizable. This interdisciplinary
approach advances scientific knowledge and paves the way for practical innovations in
fields like neuromorphic computing, bio-inspired design, and materials engineering.
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[198] Emmanuel Delamarche, André Bernard, Heinz Schmid, Alexander Bietsch, Bruno Michel,
and Hans Biebuyck. Microfluidic networks for chemical patterning of substrates: design
and application to bioassays. Journal of the American Chemical Society, 120(3):500–508,
1998.

[199] Kwang W Oh, Kangsun Lee, Byungwook Ahn, and Edward P Furlani. Design of pressure-
driven microfluidic networks using electric circuit analogy. Lab on a Chip, 12(3):515–545,
2012.

135

C
E

U
eT

D
C

ol
le

ct
io

n



[200] Ayokunle Olanrewaju, Maı̈wenn Beaugrand, Mohamed Yafia, and David Juncker. Capil-
lary microfluidics in microchannels: from microfluidic networks to capillaric circuits. Lab
on a Chip, 18(16):2323–2347, 2018.

[201] Fansheng Xiong, Weitao Sun, Jing Ba, and José M Carcione. Effects of fluid rheology and
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