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ABSTRACT

Human progress is driven by actions of successful individuals. For this rea-
son, quantifying patterns and habits of success in major human endeavors is
a key challenge in computational social science. Yet, its quantification is of-
ten challenging due to its subjective nature, and the lack of fine-grained data
about human performance. The recent availability of large scale datasets in a
variety of social contexts– from Science to Businesses and Sports– presents an
opportunity for success to be rigorously quantified. The first part of this thesis
explores temporal patterns of success in individual careers. First, I unveil how
social network and collaboration structure determines funding success of sci-
entists in academia. Furthering our data-driven approaches to sports, I delve
into the evolution of chess careers, tracking the career trajectories of successful
chess players, and their temporal evolution. Beyond single individuals, I then
move on characterizing success in teams. Focusing on publication data, I ex-
tract persistent collaborations and extend the investigation of scientific careers
from single scientists to team trajectories. I investigate how persistent collab-
orations emergence and eventually dissolve, and which compositional factors
make some teams more successful than others. Lastly, I explore the spread of
ideas and innovations through social contagion modeling, highlighting the im-
portance of group contagion and temporal persistence in shaping population-
level spread of ideas. By quantifying patterns success across careers in different
domains, this thesis contributes to the evolving discourse on successful careers
and their correlates.
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CHAPTER 1

INTRODUCTION

Success is a driving force behind many human endeavors, fueling innovation,
progress, and societal advancement at large. Throughout history, achievements
born of success in science, arts, and technology have propelled civilizations for-
ward. From Marie Curie’s groundbreaking discoveries in physics and chem-
istry to Leonardo da Vinci’s iconic masterpieces, success manifests in diverse
forms across disciplines. Something as fundamental as hiring—whether in sci-
ence, business, or even sports—often relies on clear, quantifiable measures of
success. In academia and business, metrics like publications or sales achieve-
ments are key, while in sports, evaluating a player’s performance is essential
to make informed hiring decisions. Besides hiring, governments and NGOs of-
ten rely on quantifiable success measures to evaluate public policies and social
programs. For instance, metrics like poverty reduction, employment rates, or
school enrollment rates are essential in assessing whether programs meet their
objectives and justify continued investment. Similarly, in the entertainment in-
dustry, success metrics like box office revenue, streaming numbers, and social
media engagement shape content creation, casting, and marketing to align with
audience interests and profitability. Overall while the definition of success is
domain-specific, its quantification is universally important.

Nevertheless, properly quantifying success is a challenging task. In science,
it was historically limited due to fragmented bibliometric sources and man-
ual compilations, as noted in the Royal Society Catalogue of Scientific Papers
(1867-1925). Only after the digital revolution and the advent of comprehen-
sive databases like Google Scholar in 2004 did unified data sources become
widely available. This trend paralleled developments in sports, where data-
driven analysis was similarly constrained. The Oakland Athletics’ use of sports
analytics in the early 2000s, as chronicled in Michael Lewis’ book ”Moneyball,”
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2 CHAPTER 1. INTRODUCTION

[1] brought data-driven decision-making in sports to mainstream attention. Sec-
ondly, relevant metrics may not be clearly defined or agreed upon, making it
challenging to determine what data should be collected. In the arts for exam-
ple, success is influenced by historical context, market demand, and cultural
appreciation [2]. In other words, success may be also associated with recog-
nition, popularity and other collective measures that quantify a community’s
response to performance [3, 4]. While measures like popularity often corre-
lates with perceived quality, overall quantifying success still remains challeng-
ing due to the subjective nature of art and lack of data arising from the opacity of
transaction records [5, 6, 7]. Success is not simply the objective performance [8]
which represents the measurable achievements and their relationship remains
unclear. The distinction between success and performance is evident in terms
like ‘celebutante,’ or ‘faminess,’ which describe individuals who lack concrete
achievements yet are recognized primarily for being famous [9, 10]. Such ob-
servations further distance the two concepts [11, 12], increasing the difficulty of
pinning down a definition of success.

Recent availability of large-scale data has facilitated advancements in quan-
tification of success. In Science, for instance, the accessibility of multiple, mas-
sive data sources such as Web of Science (WoS), Scopus, and OpenAlex [13, 14],
along with the collaborative and interdisciplinary effort of scientometricians,
natural, computational, and social scientists, has led to the emergence of the in-
terdisciplinary field of Science of science [15, 16, 17, 18, 19, 20], which aims at
quantifying the fundamental mechanisms underlying patterns and behaviors
in scientific research.

In particular, over the last decade, a large body of literature has focused on
the unfolding of individual scientists’ careers. The temporal patterns of pro-
ductivity and impact of researchers were investigated in detail, revealing that
the most-cited work of a scientist occurs randomly within her career [21], and
that her high-impact papers are likely to come in close succession [22, 23]. Fur-
ther research explored how the career of scientists is affected by their individual
characteristics, such as gender [24, 25] and ethnicity [26], as well as their aca-
demic choices and opportunities, including being affiliated with certain institu-
tions [27, 28, 29], moving to a different one [30], switching research topic [31],
or dropping out of academia [32]. Funding acquisition is another pivotal for in-
dividual scientific careers and their success, supporting crucial aspects such as
hiring staff and covering costs of research. However, various factors influence
funding success, including disparities faced by women, minority researchers,
and those from smaller institutions [33, 34, 27]. Biases against interdisciplinary
research exist, while past grant winners tend to receive future funding, per-
petuating imbalances in allocation [35, 36]. Elite academic institutions often
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3

receive disproportionate funding, fostering exclusive research circles and im-
pacting faculty hiring dynamics [37, 38, 39]. In chapter 2, I provide a new per-
spective on success in scientific careers, revealing the role of the social network
of scientist in funding acquisition. I analyze the careers of ERC winners in Eu-
rope and compares them with NSF winners in the US, providing a data-driven
comparison of how individual funding success depends on the social network
of the scientist. I identify potential hidden biases in ERC grant awards based
on the cross-continental collaboration patterns of grant applicants. Moreover,
the analyses reveals concerning indicators that research funded by the Euro-
pean Union relies disproportionately on US collaborations. Such a bias risks
compromising the independence of European researchers.

Beyond science, temporal career trajectories are also important in Sports.
Sports analytics are now commonplace in most major sports, providing clues
for individual and team performance to boost success rates [40, 41]. Interest-
ingly, while sports have benefited from scientific methods [1], , they have in
turn become a frontier to develop new scientific tools [42] to investigate suc-
cess, innovation, and learning, as one of the primary domains where growth
and success are measurable in a data-driven fashion. Chess serves as a good
laboratory to study success as it is a highly intellectual activity that shares simi-
larities to science. Thus, it is often located amid the two domains, a game where
players use simple rules resulting in highly complex plays, often developing
different personal styles able to influence long-term success in the game. Be-
sides, the volume of online chess games freely available for analyses (several
billions), makes chess a perfect candidate for testing hypotheses involving hu-
man performance in competitive settings. In chapter 3, I focus on individual
careers in the competitive sport of chess. So far chess has predominantly been
looked at at the level of single games. Indeed, little attention has been devoted
to individual careers and their evolution. I focus on the following question —
what separates skilled players from the rest? Earlier studies found that the answer
is not intelligence [43], and the role of deliberate practice remains heavily de-
bated [44, 45, 46]. quantification of human behaviors and patterns of success. I
quantify patterns of success and the effect of skill and career stage on the game
openings.

Advancing the discussion from success of single entities, next I focus on
teams. Teams are important as many significant advancements are not the re-
sult of individual effort alone but rather the outcome of collaborative work of
teams. Landmark scientific discoveries such as the identification of the struc-
ture of DNA by James Watson and Francis Crick, alongside contributions from
Rosalind Franklin and Maurice Wilkins, highlight the power of teamwork in
driving scientific innovation. Similarly, the monumental achievement of land-
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4 CHAPTER 1. INTRODUCTION

ing humans on the moon was made possible by the collective expertise and
coordination of NASA’s Apollo program team. This highlights the importance
of going beyond individual careers. Indeed, in the last decades teams increas-
ingly dominate solo authors and in knowledge creation, not only in sheer vol-
ume but also in the attention they receive as citations [47, 48]. The increasing
predominance and success of teams have been linked to the increasing need for
specialized knowledge and interdisciplinary collaborations in solving modern-
day scientific problems [49, 50]. Advent of technology and the internet plays a
major role by allowing communication and thus, collaborations that transverse
large geographical distances[51]. Inevitably, composition of scientific teams
have garnered increasing interest [47, 50, 52, 53, 54, 55]. More fine-tuned in-
vestigation going beyond this simple dichotomy into solo-authors and teams,
reveals that the science produced by large teams differs in character from that
of small teams. Small teams disrupt science by creating articles which are not
often co-cited with its references, while, large teams develop science[56]. Iden-
tification of drivers of success in teams becomes crucial. There is not a single
driver of success and scientific impact in teams but the picture is complex and
multifaceted. Known determiners of impact include team diversity via multi-
university collaborations [50], inter-member familiarity [57] and prior shared
successes of teams [54]. Team diversity in terms of ethnicity, discipline, gender,
affiliation, and academic age also has been shown to positively affect impact on
the level of disciplines, with ethnic diversity in particular showing the strongest
effect on impact [58]. Mechanisms which govern team assembly [47] as well as
analytical models which attempts to explain the evolution of team sizes over
time on an aggregated level [59] have also garnered some attention.

Despite the vast literature on team science, the temporal patterns of scien-
tific collaborations has so far been largely overlooked and team careers remain
an uncharted territory. Akin to those of individual scientists, some scientific
teams follow consistent career trajectories, the features of which remain largely
unknown. Persistent collaborations among “science buddies” [60] are indeed
considered pivotal to scientific research [61], positively contributing to produc-
tivity and impact [62, 63]. The few works accounting for the temporal charac-
teristics of collaborations are limited to pairs of scientists [64], or focus on their
impact on individuals researchers [62]. In chapter 4, I fill this knowledge gap on
career of scientific teams and explore the temporal patterns behind their forma-
tion, activity and eventual dissolution. I characterize the composition of persis-
tent cores along multiple dimensions, including age composition, geographical
diversity and disciplinary expertise, as well as the role of transient team mem-
bers. I conclude this chapter by investigating the temporal patterns of success
across the career of teams and identifying the compositional correlates of their
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5

success.
The exploration of team success in science, particularly through the lens of

persistent core and transient team members, leads me to consider how scientific
ideas propagate within these temporally dynamic populations. This line of my
research connects to broader themes of how social contagions spread through
networks, a topic that has received significant attention [65]. More closely re-
lated to my interest in understanding the effect of time-evolving groups inter-
action on contagion, is the sub-field of complex contagions [66] Complex con-
tagion, as defined by Centola and Macy [67], requires multiple sources of acti-
vation for transmission. In simpler terms, a single active contact isn’t enough
to spark adoption; multiple exposures to the same stimulus are necessary for
contagion to occur. This concept has been supported by empirical evidence
across various contexts and experiments [68, 69, 70, 71, 72]. However, pairwise
interactions alone are insufficient to accurately describe social contagion pro-
cesses such as opinion formation or the adoption of new ideas, which involve
intricate mechanisms of influence and reinforcement. A higher-order model of
social contagion was proposed [73], where the social system was represented
as a simplicial complex, where contagion occurs through interactions within
groups of varying sizes. Building on this literature and incorporating the dy-
namic nature of interactions, in Chapter 5, I model the spread of ideas across
populations with evolving structures using an agent-based approach to social
contagion. Recognizing that human interactions vary over time, I introduce
temporally evolving population structures represented by temporal simplicial-
complexes. Using simulations, I reveal the crucial role of persistent groups
and temporal correlations in the contact structure in the spreading of innova-
tions. By studying how ideas flow through groups that vary in their stability
and member composition, we can uncover strategies to accelerate the diffusion
process and potentially enhance the rate of collective scientific discovery.

Overall my investigations of successful careers of individuals and teams in
a variety of domains add to the scientific conversation on the emerging field of
Science of Success, opening directions for further investigations on identifying
the paths to success in scientific and sports careers.
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CHAPTER 2

ROLE OF COLLABORATION NETWORK
IN SECURING INDIVIDUAL SCIENTIFIC
FUNDING

2.1 Introduction

Thousands of scientists regularly submit grant applications to secure funding
and develop their most innovative ideas and propel their careers forward. In
a scientist’s career, funding is required for multiple aspects, including hiring
postdocs and PhD students, renovating labs by acquiring new instruments
and equipment, and covering publishing fees. Hence, it is crucial to under-
stand what factors influence funding success of a scientist. However, selec-
tion biases have been documented to impact different groups of researchers.
Women [33], researchers from minority groups [34] and from small institu-
tions [27] are known to have lower grant success rates. A funding bias has also
been observed against interdisciplinary research [35], possibly due to the diffi-
culty of satisfying the requisites of multiple scientific communities. Moreover,
past grant winners are more likely to win future funding [36], suggesting the
existence of a Matthew effect that potentially reinforces small initial imbalances
in funding allocation leading to large disparities later in the careers. At the uni-
versity level, closed circles of elite academic institutions often receive dispro-
portionate amounts of funding [37], giving rise to rich clubs [38] of researchers
who collaborate predominantly among themselves, eventually affecting the dy-
namics of faculty hiring processes [39].

The ERC and the NSF are among the major research funding agencies in Eu-
rope and the US, providing crucial support in the establishment and consolida-
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8
CHAPTER 2. ROLE OF COLLABORATION NETWORK IN SECURING

INDIVIDUAL SCIENTIFIC FUNDING

tion of successful careers across a variety of scientific domains. Within the EU,
the funding landscape is heterogeneous [74], with a preference towards coun-
tries that can retain their scientists and attract outside talent [75]. However, little
is known about the intertwined nature of the European and American funding
landscape.

In this chapter, I focus on careers of ERC and NSF awardees, and deter-
mine the role of their social network on funding acquisition. I detect asymme-
tries in the distribution of cross-continental collaborations among top-funded
researchers in Europe and the US, discovering a consistent pattern of collabora-
tion in the careers of successful ERC grant winning scientists.

2.2 Data

The data from openalex.org used in this chapter is openly accessible for down-
load using the API https://api.openalex.org/works. Details of awardees were
downloaded for ERC from https://erc.europa.eu/project-statistics/project-
database and for NSF from https://www.nsf.gov/awardsearch/download.jsp.
I considered the careers of ERC winners since 2008, and compared them to those
of NSF awardees over the same timeframe. As the countries eligible to receive
ERC awards have changed since the launch of the funding program in 2008, I
narrowed the analysis to 6,260 ERC winners from 2023-eligible countries [76].
In particular, I used disambiguated authors from the OpenAlex dataset [13] —
an open and comprehensive catalog of scholarly papers, authors, institutions
and related data [77].

2.3 Cross-continental collaborations of ERC and
NSF awardees

As a first step, I quantified the relevance of US/EU collaborators for ERC/NSF
awardees as a function of their academic age, measured from the date of their
first publication (Fig.2.1).

Specifically, by measuring the fraction of cross-continental collaborations
per paper, I found that ERC winners have the largest share of US-based collabo-
rations early in their career, with a sharp decline after about 7 years. By contrast,
no significant temporal trend is observed for NSF awardees, whose fraction of
European collaborators remains approximately constant over the first twenty
years of their careers. I obtained consistent results after splitting ERC winners
by grant type, finding that winners of ERC Starting Grants — awarded on av-
erage 11.3 years after their first publication — have the highest share of US col-
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Figure 2.1. Asymmetric collaborations of European and American funded re-
search.
Mean percentage (error bars represent standard error) of cross-continental coauthors per paper
by ERC awardees (green line) and by NSF winners (purple line) and as a function of career age.

laborations before winning the grant (20.9%), followed by Consolidator (13.6%,
14.6 years) and Advanced (13.3% for, 24.8 years) awardees.
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Figure 2.2. Collaboration imbalances between EU based scientists and US
based scientists.
EU-based scientists, who exclusively operate within the EU, exhibit considerably fewer collabo-
rations with their US counterparts compared to ERC winners.

In order to assess whether this imbalance is simply a byproduct of a different
collaboration culture between EU and US, I checked the trends of cross conti-
nental collaborations for all EU and US based scholars. To test this hypothesis,
I have considered two groups of scientists. Operationally, two strict definitions
have been considered, where I defined as EU based scientists all researchers
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in the OpenAlex dataset with at least 20 papers and having only being affili-
ated to the EU, and as US based scientists all researchers with at least 20 papers
and having only being affiliated to the US. I evaluated the percentage of cross-
continental collaborations among EU-based scientists by compiling the papers
of all scientists in the considered cohort published in the nth year of their ca-
reer. I then calculated the average percentage of US coauthors per paper across
the collected papers. This procedure is performed for various career ages, di-
vided into 1-year age bins. The same procedure is applied to the US-based pool
to compute the corresponding measure. Looking at the percentage of cross-
continental coauthors for EU and US based researchers as a function of time, I
find that scientists who are and have been exclusively based in the EU collabo-
rate notably less with their US counterparts compared to ERC winners (Fig.2.2).
Moreover, US based scientists tend to have more cross-continental collaborators
than EU based ones, a trend which is stronger later on in their career. These find-
ings — opposite of what observed for ERC and NSF awardees — suggest that
the patterns of cross-continental collaborations observed for grant awardees are
not a simple consequence of general unbalanced patters of collaborations be-
tween the EU and the US, and that the award of ERC grants is linked in a non-
trivial way to the existence of scientific links with the US research ecosystem.
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Figure 2.3. Differences in collaboration patterns before and after winning the
grant.
Mean percentage (error bars represent standard error) of cross-continental coauthors per paper
by ERC awardees (green line) and by NSF winners (purple line) and as a function of career age.
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2.4. US collaborations before and during an ERC grant 11

2.4 US collaborations before and during an ERC
grant

Investigating the asymmetry between ERC and NSF winners further, I com-
pared the fraction of US collaborations before and after winning the grant in a
five-year time window (Fig.2.3). The results showed that, before winning the
ERC grant, EU scientists tend to include significantly more US based coauthors
(194.0% more than EU collaborations by NSF). However, these cross-continental
collaborations typically wane after receiving the award, as the US collabora-
tor fraction decreases during the grant period (101.0%). On average, there are
208.8% more US collaborations before winning the grant than during the grant
period. By contrast, I found no significant change in number of EU collabora-
tions for NSF awardees. These findings suggest the presence of potential selec-
tion biases when awarding ERC grants to early career EU scientists that have a
strong network of collaborations in the United States. After winning the grant
and securing a stronger academic stability and independence, the weight of US
based collaborations typically starts to decay for EU researchers.

Given the ERC’s aim to foster academic independence, an alternative possi-
ble explanation for the decline in US collaborations among ERC winners post-
grant a trend could be an overall post-award collaboration decrease. To inves-
tigate such a possibility, I computed the number of ERC winner coauthors be-
fore and during grants (in both cases I considered 5 year windows). Then, I
measured the percentage change in the number of unique coauthors during the
grant compared to before (Fig.2.4).

100 0 100 200 300 400
% change in unique coauthors 

during grant vs. before

0.000

0.002

0.004

pd
f

Figure 2.4. Number of collaborators before and during an ERC grant.
Distribution of percentage change in number of unique coauthors during ERC grant as com-
pared to before winning the grant. Vertical black line marks the positive mean of the distribution.
Most ERC winners expand the set of their collaborators after receiving the award.
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I found that majority of ERC winners explore more diverse collaborations
after winning, instead of exploiting fewer collaborators. This suggests that the
decrease in post-grant US collaborations is not associated with a reduced open-
ness of ERC awardees to collaborate with colleagues.

Each year, a significantly greater number of scientists receive funding from the
National Science Foundation as compared to the European Research Council.
Thus, it is important to verify whether the imbalances in cross-continental col-
laborations before and after the grant award are due to the larger bases of NSF
funded researchers. To test such an hypothesis, here I limit the analysis to the
top NSF recipients, selected to match the number of ERC winners. Specifically,
for each year from 2008 onwards I select the top ‘x’ NSF awardees based on their
ranking by citation counts or alternatively by the grant award amounts, where
‘x’ is the number of recipients of ERC award. My findings remain qualitatively
unchanged with both criteria, indicating that the collaboration imbalance be-
tween the European Union and the United States persists (Fig.2.5).

While imbalances between ERC and NSF awardees persist, it is worth noting
that elite NSF winners do exhibit a greater tendency to engage in international
collaborations with EU scientists. This interesting outcome merits further in-
vestigation in future research.
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Figure 2.5. Comparison between ERC winners and top NSF awardees.
When compared to those authored by top-cited NSF researchers, EU funded papers had 99.7%
more cross-continental collaborators before grant award and 35.3% after the award. When se-
lecting top NSF researcher in terms of grant award amount, EU funded papers had 142.0%
more cross-continental collaborators before grant award and 78.1% after the award.
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2.5 Pre-award mobility of ERC vs NSF awardees
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Figure 2.6. Asymmetric mobility of European and American funded researchers.
Box plots of the number of distinct universities appearing in the papers’ affiliations of ERC
(green boxes) and NSF (purple boxes) winners conditioned on the academic age at the time of
grant award. Horizontal black lines represent the median of the distributions.

Furthermore, my results indicated a higher mobility of ERC awardees be-
fore winning the award when compared to their NSF counterparts. I found that
early career stages for both EU-based and US-based awardees are character-
ized by an increasing mobility, but visible differences appear after the first five
years of their career (a typical length of a doctoral degree in many countries).
Specifically, the median number of distinct universities appearing in the affilia-
tions reported on ERC awardeess papers is consistently higher than affiliations
per NSF awardees of comparable academic age (Fig.2.6). Considering the num-
ber of different countries, instead of different affiliations, yielded similar results
(Fig.2.7).

The greater number of countries visited by ERC awardees might in principle
be a byproduct of the different countries within the EU. To test for this hypoth-
esis, I have produced a similar analysis where I regard the European Union as a
unified entity and I do not consider traveling between its constituent countries
as a form of mobility. The main observation remains unaltered, with recipients
of European Research Council grants exhibiting greater levels of mobility than
recipients of National Science Foundation grants (Fig.2.8).

Thus, mobility patterns between the EU and the US exhibit an imbalance
similar to the one I observed for collaborations. This suggests that the markedly
different career trajectories and degrees of international experience of ERC and
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Figure 2.7. Mobility of scientists across countries before grant award.
Comparison of mobility measured as number of distinct countries appearing in papers’ affiliation
before winning the grant. Dashed horizontal black lines indicate the mean values.

NSF awardees may have implications for their research perspectives. Indeed,
although a substantial proportion (49.7%) of ERC winners had prior affiliations
with US institutions, NSF winners were considerably less likely (only 13.5%) to
have had previous affiliations in any EU-based academic institution.
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Figure 2.8. Mobility differences before grant award: EU as a single state.
Comparison of mobility before winning the grant between ERC and NSF recipients if EU is
regarded as a unified entity. Dashed horizontal black lines indicate the mean values.
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2.6 Wider collaboration patterns of ERC and NSF
funded researchers

Figure 2.9. Ratio between percentages of ERC and NSF collaborations with EU
countries.
A value greater than 1 indicates that ERC winners exhibit a higher preference for collaborating
with researchers from the country in question, while a value of less than 1 value suggests that
NSF winners show a greater inclination towards collaborating with scientists from this country.

Subsequently, I aimed to quantify the likelihood of finding collaborators
across different countries for ERC and NSF winners, as a measure of embed-
dedness within the ERC and NSF funding landscape. Thus, I computed the
ratio between the percentage of ERC and NSF winners’ collaborators that be-
long to a given EU country(Fig.2.9). As expected, EU countries contribute more
to the collaboration network of ERC awardees than NSF ones. On average, EU
countries produce 8.4 times more collaborators to ERC awardees than to NSF
ones. Large countries such as Germany, France, Spain, and Italy are predictably
among the top ERC-embedded EU nations. Central european countries such as
Belgium and the Netherlands, also hosting EU institutions, emerge as leaders,
with the highest overabundance of collaborators for ERC awardees.

I then broadened the analysis to non-EU countries, finding that Taiwan,
China, Georgia, South Korea, and Singapore, host a greater fraction of collabo-
rators for NSF winners compared to ERC ones. Countries such as Switzerland,
United Kingdom, Serbia and Russia attract instead more ERC collaborations
(Fig.2.10). The case of the UK is particularly interesting, as UK-based scientists
had received approximately 20% of all ERC awards prior to Brexit. The find-

C
E

U
eT

D
C

ol
le

ct
io

n



16
CHAPTER 2. ROLE OF COLLABORATION NETWORK IN SECURING

INDIVIDUAL SCIENTIFIC FUNDING

Figure 2.10. Ratio between percentages of ERC and NSF collaborations with
non-EU countries.
A value grater than 1 indicates that ERC winners exhibit a higher preference for collaborating
with researchers from the country in question, while a value less than 1 suggests that NSF
winners show a greater inclination towards collaborating with scientists from this country.

ings revealed that the UK exhibits only weak ties with EU-based ERC awardees,
while maintaining strong connections with NSF researchers based in the US. In-
deed, the UK only produce 1.8 times more collaborators to ERC awardees than
NSF ones, against an EU average of 8.4 times, outranked only by Bulgaria. A
similar situation is observed for Switzerland.

2.7 Universality of the EU-US imbalance

Finally, I explored the cross-continental EU-US imbalance in collaboration pat-
terns across different scientific disciplines as per OpenAlex Dataset (Fig.2.11).
The analysis suggested that the imbalance is present across the top ten largest
fields for both ERC and NSF winners. Geology (244.6% more US collaboration
by ERC winners), Medicine (208.5% more) and Biology (189.7% more) are the
most unbalanced fields, while Physics (99.4%), Mathematics (73.3%) and Mate-
rials Science (46.0%) the least unbalanced ones. I also measured the fraction of
cross-continental collaborations across the different ERC-specific domains, and
how they changed before the award and during the grant period (Fig.2.12). I
grouped winners based on the issuing ERC panel [78] into Physical Sciences and
Engineering (PE), Life Sciences (LS) and Social Sciences and Humanities (SH).
Overall, LS winners have the highest percentage of US collaborators (20.1% be-
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Figure 2.11. Discipline-wise quantification of asymmetrical cross-continental
collaborations patterns for ERC and NSF awardees.

fore and 11.6% during the grant), but also the largest decrease once funding
have been awarded (-42.2% ). PE (15.2% before and 10.2% during) awardees
tend to rely less on US collaborations than SH (15.8% before and 12.2% during),
particularly so after the grant award (-32.9% and -26.4% respectively).

At the level of the individual panels, “Individuals, Markets and Organisa-
tions” (SH1) records the highest fraction of US collaborations (30.3%), while
“Synthetic Chemistry and Materials” (PE5, 11.2%) the least before securing
funding. Awardees from almost all panels display a drop in US ties after win-
ning the grant, with “Physical and Analytical Chemical Sciences” (PE4) display-
ing the largest decrease (-50.0%). The only exception appears to be “The Study
of the Human Past” (SH6, 9.4% increase). In physics, “Universe Sciences” (PE9)
awardees have the tightest links with the US (20.3% of collaborators) before the
grant is awarded, and display the small decrease in cross-continential collab-
orators afterwards (-18.0%). “Fundamental Constituents of Matter” (PE2) and
“Condensed Matter Physics ” (PE3) winner tend to have fewer US collaborators
before award (16.4% and 14.5%), and among the largest drops in such numbers
among all panels as a consequence of receiving an ERC (-33.5% and -42.2%).

2.8 The case of physics

Collaboration and mobility imbalances

As a case study, I analyze collaboration and mobility imbalances for researchers
recognized as physicists as per the OpenAlex dataset. In particular, I select all
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Figure 2.12. Percentage of US coauthors per paper for ERC winners from dif-
ferent grant panels before and after winning the grant.

researchers who score above 90 (over 100) for physics in the OpenAlex dataset,
leading to 1295 ERC awardees and 10249 NSF awardees for physics (19.0% of
the whole populations. Fig.3a on imbalances in cross-continental collaborations
was produced with the same choice of the threshold for disciplinary categoriza-
tion. I note that researchers may be assigned to multiple disciplines).

The dataset includes 85.0% of the awardees from PE2, 79.2% from PE3, and
87.0% PE9, the three main ERC panels for physics and astrophysics. The dataset
also includes 607 ERC winners recognized as physicists awarded from different
panels, recognizing the interdisciplinary nature of some physics topics, applica-
tions of physics to other domains, and the interdisciplinary nature of some ERC
panels (e.g. PE8, PE11). Results reported below are not significantly affected
by the exact choice of the threshold for physics categorization in the Open Alex
dataset.

I observe similar trends compared to the full population of grant recipients.
However, cross-continental collaboration imbalance for physicists is generally
less pronounced. The maximum imbalance is still observed at the initial stages
of an academic career, in particular around the sixth year (Fig.2.13a). Physicists
who received funding from the European Union (EU) exhibited a 112.7% in-
crease in cross-continental collaborators prior to receiving the grant, compared
to a higher value of 194.0% for all ERC winners. After receiving the grant, this
percentage decreased to 51.1% for physicists, in contrast to 101.0% for all ERC
winners (Fig.2.13b). As for the general population of researchers, ERC awarded
physicists are more mobile than their NSF counterparts (Fig.2.13c).
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Figure 2.13. Co-authorship and mobility differences between funded physicists
in the EU and the US.
a) Mean percentage (error bars represent standard error) of cross-continental coauthors per
paper by ERC (green lines) and NSF (purple lines) physics awardees (solid lines) as a function
of career age, compared to the whole population of grant recipients (dashed lines). Physicists
exhibit a comparatively reduced collaboration imbalance in comparison to the overall group of
winners. b) Average percentage of cross-continental coauthors per paper by ERC winners’
(green bars) and NSF awardees (purple bars) in physics before grant award and during the
grant period. Vertical black lines represent standard errors of the values. c) Box plots of the
number of distinct universities appearing in the papers’ affiliations of ERC (green boxes) and
NSF (purple boxes) winners for physics at the time of grant award.

Country-wise collaboration patterns for physics awardees

In the previous section, I quantified the fraction of collaborators across different
countries for ERC and NSF winners, as a measure of embeddedness within the
ERC and NSF funding landscape. I find that similar trends is observed if con-
sidering only physicists, both within (Fig.2.14a) and outside (Fig.2.14b) the EU.
Countries like Cyprus or Lithuania appear to be more embedded in the ERC
collaboration network when focusing on physics only.

To summarize, focusing on physics, similar imbalance trends persist, with
a similar peak of US collaborations for ERC winners around the sixth year of
their careers, although less pronounced (Fig.6a). Physicists funded by ERC had
112.7% more US coauthors than vice versa pre-grant, while post-grant this per-
centage tapered to 51.1% (Fig.6b). ERC winners in the physics domain are also
more mobile than their US counterparts (Fig.6c).

2.9 Discussion

In this chapter, we tracked careers of individual funded scientists to reveal the
role of scientists’ social network in successful career. Our results shed new light
on the ties between the EU and the US academic ecosystems. The findings high-
light the unbalanced relationship between the two, with early collaborations
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Figure 2.14. Countrywise collaboration patterns of ERC and NSF winning
physicists.
a) Ratio between percentages of ERC and NSF collaborations with EU countries. A positive
value indicates that ERC winning physicists exhibit a higher preference for collaborating with
researchers from the country in question, while a negative value suggests that NSF winning
physicists show a greater inclination towards collaborating with scientists from this country. b)
Ratio between percentages of ERC and NSF collaborations with non-EU countries.

with US institutions providing a crucial advantage for success in securing top
EU funding.

Such imbalance might compromise the independence of European re-
searchers, in particular during early career stages, by pressuring them to align
with the interests of the US scientific community in order to secure academic
success [79]. Moreover, such selection bias in EU funding might be associated
with a number of possibly unnecessary collaborations or career moves, moti-
vated more on strategic rather than scientific grounds. In fact, according to my
analysis, researchers willing to receive major funding from the EU are expected
to be more mobile and go through a wider diversity of relocating experiences
than their American counterparts. In particular, landing a job in the US appears
as a key factor to secure an ERC award later on, while I found no evidence of
the opposite.

Overall, the results draw a worrying picture of the potentially subordinate
role of the European research community with respect to the American one.
Such a claim would already be supported by independent studies on the hir-
ing market [80], which showed that American top universities hire a substan-
tial fraction of researchers from European universities that score far below than
them in international rankings. It is possible that the influence of US collabo-
rations might be mitigated in the future years, following the recent changes in
ERC evaluations guidelines, which give more weight to the scientific content of
project proposals over applicants’ resumes [81].

The analysis does not explicitly account for NSF’s exclusion of certain disci-
plines, such as medical sciences, which are typically sponsored by NIH. Addi-
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tionally, differences in grant durations between ERC and NSF awards, ranging
from a few months to five years for NSF and typically five years for ERC, are not
factored into the results. While our analysis of the top 10 fields demonstrated
that the imbalance in US-EU collaborations is likely universal, it is possible that
this imbalance is absent in some of the fields funded by NIH, a potential result
which would merit further investigation. Furthermore, the variation in grant
durations may influence collaboration dynamics, with longer ERC grants fos-
tering sustained, stable partnerships which might be harder to maintain across
continents explaining the decrease in US collaborations after winning an ERC
grant. To address these issues, future research could employ a matched pair
analysis, pairing researchers based on grant duration. This approach would
help control for structural differences between the two funding systems. Ex-
panding the analysis to include NIH-funded projects could facilitate a more fair
comparison of the US ecosystem with the EU.

Code availability

The code used in this chapter is available at
https://github.com/chowdhary-sandeep/NSF vs ERC.
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CHAPTER 3

QUANTIFYING PERFORMANCE IN
CHESS CAREERS

3.1 Introduction

In the previous chapter I have discussed quantitatively how social networks
help in developing a successful careers in science. Beyond science, underpin-
ning quantitatively the drivers of success is a key problem in sports. Indeed,
the recent availability of large-scale datasets is nowadays providing an unprece-
dented opportunity to study the drivers of human performance in all such dif-
ferent domains. Analyzing individual performance with data has become es-
sential in sports. The impact of this approach was evident in baseball with the
transformative story depicted in ”Moneyball” [1]. The realization that statisti-
cal data can inform strategies and player evaluations revolutionized the game.
Similarly, in tennis, network techniques revealed Jimmy Connors as a stand-
out player from the past [42]. Today, sports analytics are widespread, offering
insights to enhance both individual and team performance [40, 41]. Notably,
sports have not only benefited from scientific methods but have also become a
testing ground for developing new scientific tools to study success, innovation,
and learning in a data-driven manner.

In this chapter, I focus on individual careers in the competitive sport of chess,
extending my exploration of success in individual careers in this thesis. Chess,
as a domain bridging intellectual pursuit and competitive sport, provides a
unique model for studying performance and career dynamics. Thus, it is often
located amid the two domains, a game where players use simple rules resulting
in highly complex plays, often developing different personal styles able to influ-
ence long-term success in the game. Besides, the volume of online chess games

23

C
E

U
eT

D
C

ol
le

ct
io

n



24 CHAPTER 3. QUANTIFYING PERFORMANCE IN CHESS CAREERS

freely available for analyses (several billions), makes chess a perfect candidate
for testing hypothesis involving human performance in competitive settings.
So far chess has predominantly been looked at at the level of single games.
For example, past research focused on the role of memory in games [82] and
showed that opening popularity follows the well-known Zipf’s law [83]. How-
ever, these analyses did not use individual player-level data, treating games
from different players on equal footing[82, 83], or focused on a small number
of players [84]. Indeed, little attention has been devoted to individual careers
and their evolution. In particular I ask—what separates skilled players from the
rest? Earlier studies found that the answer is not intelligence [43], and the role
of deliberate practice remains heavily debated [44, 45, 46].

Here I perform a comprehensive large-scale analysis of the habits of skilled
and less skilled individual players over time, providing an anatomy of human
performance in the popular game of chess. I characterize players’ careers in
terms of hot-streaks, diversity and specialization in the opening sequences of
their games, and analyze their diversity as a function of career stage. I find
evidence for the presence of both hot and cold streak phenomena, revealing a
surprising tendency for beginners to have longer hot-streaks as compared to
expert players. By sequencing the opening moves of players at different skill
levels, I show that beginners start with more diverse set of first moves, while
advanced players and experts rarely start their games differently when playing
as white. Yet, expert players display a broader response repertoire, showing
the ability to surprise their opponent with a greater variety of responses. More-
over, when accounting for different variations of the openings, experts show
a deeper knowledge of different variations within the same line, hinting at a
deeper understanding of the game. Lastly, analyzing behaviour in time, I find
that players explore more during the beginning of their careers, but tend to spe-
cialize using and exploiting only fewer openings at later career stages. Overall,
this large-scale characterization of individual gaming behavior supports chess
as a suitable laboratory to quantitatively investigate individual careers and hu-
man performance, demonstrating simple differences in playing habits and be-
haviours of beginners and experts.

3.2 Methods

Data

Lichess provides an extensive game database, and my analysis is based on
its publicly available dataset. The data is openly accessible for download
from https://database.lichess.org/. I use all games played on the online chess
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3.2. Methods 25

server from lichess.org between 2013 and 2016. There are different games avail-
able to the players on the platform: bullet, blitz, and rapid. The analysis pre-
sented in this chapter is restricted to Blitz games, which are fast and tactical but
still allow for some strategy in the game overall unlike bullet games which last
only 1 minute at most and littered with pre-moves. The most popular time con-
trols for blitz are 5 mins and 3 mins. I specifically focused on this type of games
since “speed” chess is played across all levels, from beginners to grandmasters.
The most popular blitz time controls are 5 minutes and 3 minutes. Regarding
data cleaning, I applied a filtering criterion where players with fewer than 100
games in their career were removed. This choice was motivated by the obser-
vation that player ratings fluctuate significantly during their first 100 games
before stabilizing. While this early career phase may be interesting in its own
right, it introduces additional variability that is beyond the scope of this study
and may be the target of future investigations. Our final dataset includes 123
million games played by 0.98 million players.

Matching on lichess.com

Overall, Lichess.com offers three primary pairing methods to cater to different
player preferences: Quick Pairing, where players select preset time controls like
3+0 or 5+3 and are automatically matched with opponents of similar ratings,
typically within a ±100 to ±150 point range; Arena Tournaments, which priori-
tize fast matchmaking by pairing players based on availability and similar rank-
ings, allowing multiple games within a set duration but occasionally leading to
repeat opponents; and Swiss Tournaments, a structured format where players
are paired based on their current scores and tie-breaks, ensuring competitors
face others with similar performance levels while avoiding repeat matchups,
with all players waiting for each round to conclude before proceeding to the
next, promoting fairness and a standardized competitive experience. Poten-
tially there is a way to play friends repeatedly on lichess.com who can act as
teachers– a motif which can be explored in further research with this data. I
will add these insights in the methods section, as well as limitations in the dis-
cussion section.

Measuring opening diversity

I measure the diversity of openings of a player by calculating the Shannon en-
tropy [85] of the distribution of frequency of opening moves or opening se-
quences (see Fig. 3.12, 3.13 and Fig. 3.16 respectively). Note that for the analysis
in Fig. 3.13, I selected only games where the player starts as white.
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Null models for hot and cold streaks

To calculate the expected lengths of hot streaks in a player’s career, I build a null
model where I reshuffle the temporal order of the player’s games, but preserv-
ing the total number of victories, losses and draws. Such shuffling of the order
of games within each player’s career breaks the temporal correlations between
game outcomes[22].

Then, I compute the length of each hot and cold streak (sets of consecutive
wins and loses) observed in this reshuffled sequence. The presence of hot- and
cold-streak phenomena can be then investigated by comparing the number of
hot and cold streaks of a given length ℓ in the actual careers with respect to these
reshuffled sequences.

Chess concepts

Openings

A chess opening is the initial stage of a chess game—a sequence of first few
moves. It usually consists of established theory; the other phases are the mid-
dlegame and the endgame. All games can be associated with a unique main
opening line, within which there can be many variations. Many opening se-
quences have standard names such as the Sicilian Defense, Ruy Lopez, Italian
Game, Scotch Game etc.

Chess rating systems

I present a very short overview of different rating approaches developed for
chess. This analyses are based on the Glicko-2 rating systems.
Elo system, invented by Arpad Elo,is the most common rating system for
chess. It is used by FIDE, other organizations and some Chess websites such
as Internet Chess Club and chess24.com. Games are scheduled by matching
together players of similar ratings.
Glicko-1 system[86] is a more modern approach, invented by Mark Glickman
as an improvement of the Elo system, which preserves the philosophy or the
Elo rating approach while making it more accurate. In the Glicko system, a
player’s rating not only changes due to game outcomes, but also from their
“ratings deviation”, which measures the uncertainty in a rating due to both
game outcomes and also from the passage of time when not playing. At the
cost of being more mathematically complex, the Glicko rating system is known
to have a better prediction accuracy than Elo, and it is a popular choice for new
games and sports. The Glicko system has a initial rating starting at 1500. It
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3.2. Methods 27

is used by Chess.com, Free Internet Chess Server and other online chess servers.

Figure 3.1. Distribution of player ratings in data.
Distribution of Glicko-2 ratings averaged over the career of a player separately for the different
time controls i.e. Bullet, Blitz and Rapid.

Glicko-2 system is a refinement of the original Glicko system and is used
by Lichess, Australian Chess Federation and other online websites. It achieves
even better accuracy by controlling for volatility. Volatility measures the degree
of expected fluctuation in a player’s rating– it is low when the player performs
at a consistent level and high when a player has erratic performances (e.g., when
the player has had exceptionally strong results after a period of stability). I show
the Glicko-2 ratings of all players in my dataset in Fig. 3.1. Initial ratings start at
1500. Here, I associated to each player its rating averaged in all their games (to
account for common early fluctuations, for each player I do not consider their
rating in the first 100 games). The career lengths of players as a function of their
skill is shown in Fig. 3.2. As shown, on average experts tend to play more games
than beginners. I note that players of similar ratings are matched to compete.
However, small rating differences among matched players might persist.

Separating players by skill level

I separated the player into the 4 skill levels as follows. I first arranged the play-
ers in ascending order of their Glicko-2 rating (average calculated over all their
games). I then created Glicko-2 rating bins that divide players in 4 equally sized
skill categories. Finally, I labelled these bins as— beginner, intermediate, advanced,
expert respectively.
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28 CHAPTER 3. QUANTIFYING PERFORMANCE IN CHESS CAREERS

Opening variations

For a given chess opening there are multiple variations, as players can explore
different moves after the main opening line is established. For example, the
Sicilian Defence begins with the following moves 1. e4 c5. The Sicilian Defence:
Najdorf Variation of Sicilian is 1.e4 c5 2.Nf3 d6 3.d4 cxd4 4.Nxd4 Nf6 5.Nc3 a6,
while the Sicilian Defence: Dragon Variation is 1.e4 c5 2.Nf3 d6 3.d4 cxd4 4.Nxd4
Nf6 5.Nc3 g6.

3.3 Careers in chess

In this chapter, I rely on large-scale data extracted from lichess.org, a popular
open-source Internet chess server, consisting of 123 million games between 0.98
million players (see Methods). In the lichess dataset, each player’s career can be
tracked over time, with detailed information on each of the played games, i.e.
moves, opening, win/loss, and its skill level. This is quantified by the Glicko-2
rating (see Methods for a detailed discussion of different ways to measure skill in
chess), which measures the level of past performance of the player, it increases
when a player beats an opponent and decreases upon a loss. As an illustrative
example, in Fig. 3.3 I show the career of Grandmaster (GM) Magnus Carlsen on
lichess.org, indicating his Glicko-2 rating in each game and the game outcome:
win, loss or draw.

3.4 Hot and cold streaks in chess careers

Figure 3.3 suggests that for GM Carlsen wins and losses tend to be clustered
together. Indeed, prior works tracking wins and losses in sports hotly debate

Figure 3.2. Distribution of the number of games per player.
Distribution of the total number of games by a player for the 4 skill categories.
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3.4. Hot and cold streaks in chess careers 29

Figure 3.3. Visualization of the career of the Grandmaster (GM) Magnus
Carlsen.
Wins and losses of GM Carlsen drive the rating up or down.

the existence of hot-streaks [87, 88], a phenomenon that has also been found to
be ubiquitous in artistic and scientific careers [22, 23].

Long streaks of chess wins are reminiscent of players entering the so-called
zone, a state of focus where peak performance is possible [89, 90].Detecting hot-
streaks by comparing against a shuffling model. To quantitatively check for
the existence of such phenomena in all chess careers, I calculate the length of hot
(series of wins) and cold (series of losses) streaks for each player in the dataset,
and compare them with lengths expected in a null model for each player which
shuffles the temporal order of the player’s games, thus washing out tempo-
ral correlations in game outcomes (see Methods for details). In Fig. 3.4 I show
the resulting curves, properly normalised with the null model. I find the exis-
tence of statistically significant hot streaks, possibly associated with confidence
spillovers from previous victories. Long streaks of chess wins are reminiscent
of players entering the so-called zone, a state of focus where peak performance
is possible [89, 90].

Autocorrelation test for hot-streaks. Here the definition of hot-streaks is
based on a hard constraint, where one loss ends a hot-streak. A more loose
statistical way of quantifying hot-streak phenomena is via measuring autocor-
relations, a method which has been used for detecting hot-streaks in literature
[91, 92]. I compute auto-correlation with a lag of one game among the outcomes
and find it to be positive for all skill levels (Fig. 3.5). This finding suggests that
consecutive games have similar outcomes, thus further confirming the presence
of hot-streaks via.
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30 CHAPTER 3. QUANTIFYING PERFORMANCE IN CHESS CAREERS

Figure 3.4. Hot and cold streaks in chess careers.
Relative number of hot streaks (red) and cold-streak (blue) of length ℓ ≥ Lstreak as a function of
Lstreak calculated for each player. Results are averaged over all players. Losses tend to be more
clustered than victories as individual cold streaks

Role of rating advantage over opponent in hot-streaks

Observed hotstreaks could also occur simply due to consecutively facing weak
opponents or large time-gaps between consecutive games. Players are selected
to play together if they have similar rating scores. However, small rating dif-
ferences might still exist, and impact the length of hot streaks, which could
be positively influenced by consecutively facing weaker opponents. To test
this, in Fig. 3.6 I plot the average rating advantage over the opponent in hot
streaks as a function of their length. Results are averaged by considering all
the games composing a given hot streak of a certain length, and over all hot
streaks of that length. I find that longer hot streaks are associated to a higher
average advantage over opponent, thus supporting the idea that weaker oppo-
nents might cause hot-streaks. Thus I find that the length of hot-streak and the
average rating-advantage over the opponent in the streak are slightly correlated

Figure 3.5. Autocorrelation test for hot-treaks.
Distribution of autocorrelation in game outcomes for a player’s career with lag 1 aggregated into
4 skill categories.
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3.4. Hot and cold streaks in chess careers 31

Figure 3.6. Role of rating advantage over opponent in hot-streaks.
Average rating advantage over opponent during the hot-streak as a function of hot-streak length
ℓhotstreak.

(ρspearman ∼ 0.28), explaining only partially the observed behavior.
In Fig. 3.7, I also compare the rating advantage over the opponent who broke

the hot-streak with respect to the one of the opponent in the preceding game
(the last one composing the hot-streak) as a function of hot-streak length. The
relative advantage is negative, which implies that opponents who break a hot-
streak are consistently stronger than opponents who got beaten during the hot-
streak. However, I note that this result is somehow expected, as in the chess
gaming platform analysed in this chapter, a player who keeps winning consis-
tently (in a hot streak) will likely be matched with higher-rated opponents in
the next game.

Role of time-difference between successive games in hot-streaks

I also investigated the effect of time-difference between games and possible
breaking of hot-streaks due to time gaps. In Fig. 3.8 I plot the difference be-
tween the time-gap before the game where the hot-streak was broken and the
time-gap before the preceding game as a function of hot-streak length. For
short hot-streaks (lengths 2,3,4) I find a positive relative time-gap before the
streak ending game, hinting that such hot streaks could also be disrupted by
player taking a break before the next game. The overall trend remains unclear
for longer streaks, which are the ones which are really associated with the so-
called hot streak phenomenon. I quantify this effect by performing a Spear-
man’s correlation test between the time-gaps before the streak breaking game
and the length of the hot-streak. I found a significant but very weak correlation
(ρspearman ∼ 0.05), hinting that timegaps between games do not play a major
role in breaking hot-streaks.
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32 CHAPTER 3. QUANTIFYING PERFORMANCE IN CHESS CAREERS

Figure 3.7. Rating disadvantage in the hot-streak breaking game.
Average rating advantage in the streak ending game compared to the advantage in preceding
game as a function of hot-streak length ℓhotstreak. On average, players have a rating disadvantage
in the game where they finally lose after a hot-streak.

Effect of repeated matches with the same opponent on hotstreak
behaviour

In other sports, it is well known that players need to vary their strategies against
an opponent, so that habits are not exploited for strategic advantage. However,
such variation in strategy is not very relevant in online chess games, where
repeated matches are rare. Fig. 3.9 shows the frequency of repeated matching
of players. I find that 81% of player matches never repeat, and only 1.6% player
pairs play more than 5 games with each other. Thus, repeated games do not
significantly affect these results.

In addition, to specifically check what happens when opponents are re-
peated, I investigate the balance of wins and losses in repeated match-ups
among two players (with at least 20 games between them). In Fig.3.10, I show
the balance of outcomes, computed as | nwins

ngames
− 0.5|. I find that while a major-

ity of repeated match-ups lean towards balance (50-50), there exist some pairs
which are highly imbalanced, with one player dominating and winning consis-
tently, which might result in some hot-streaks. However, as stated earlier, these
repeated games represent only a tiny fraction of all the games. Thus my results
are not affected by repeated matches against the same opponent.

3.5 Effect of player skill on likelihood of hot-
streaks.

I refine the analysis of hot-streaks by further separating players by skill (Glicko-
2 rating). Categorizing players into 4 categories - beginner, intermediate, advanced,
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Figure 3.8. Role of time-difference between successive games in hot-streaks
Relative timegap before streak-ending game– calculated as the difference of timegap before the
streak ending game compared to the timegap in preceding game as a function of hot-streak length
ℓhotstreak.

expert (see Methods). I find that weaker players experience comparatively longer
hot streaks than stronger players (Fig. 3.11). A reason for this could be that con-
fidence spillovers from last victory may have greater impact on future outcomes
at a lower skill levels.

Figure 3.9. Distribution of number of repeated matches in the dataset.
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34 CHAPTER 3. QUANTIFYING PERFORMANCE IN CHESS CAREERS

Figure 3.10. Distribution of balance in outcomes in player match-ups for the 4
skill categories.
Distribution of balance in outcomes in player match-ups for the 4 skill categories. A match-up
is balanced (=0) if the players had as many wins as losses, and completely imbalanced (=0.5) if
one players always beats the other.

Figure 3.11. Hot-streaks and player skill.
Relative number of hot streaks of length ℓ ≥ Lhotstreak as a function of Lhotstreak, averaged over
the players in each skill categories separately (i.e. beginner, intermediate, advanced, expert).
Weaker players have longer hot streaks than more expert ones.C
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3.6. Specialization in opening play and skill level 35

Figure 3.12. Diversity and specialization in the first move of the game.
Boxplots showing diversity (entropy) of first move by a player as white, calculated over all
players individually and aggregated into the 4 different skill levels. Weak players start games
with diverse collection of first move as white when compared to stronger players.

3.6 Specialization in opening play and skill level

Another possible driver of the observed disparity in hot streaks across begin-
ners and experts can reside in how experts diversify their moves. In com-
petitive sports, some players diversify their techniques while others may spe-
cialize. Strategy diversification might make players harder to predict, thus
enabling them to surprise their opponents. By contrast, specialization, e.g.,
deeper knowledge of certain opening positions, may allow players to ex-
ploit opponents navigating familiar situations. Indeed, such an exploitation-
exploration (specialization-diversification) dichotomy is a common mechanism
governing the dynamics of many diverse self-organized and adaptive systems
[93, 94, 95, 96].

In chess—and sports in general—the balance of this trade-off may depend
on skills. I thus investigate the extent to which skill level influences the ap-
proach to the game. In particular, I study the diversity in the player’s arsenal
of game openings across different Glicko-2 ratings. I calculate the Shannon en-
tropy of the distribution (see Methods) of first move as white for each player and
report the results in Fig 3.12. I find that beginners tend to open games with a
diverse collection of first moves (as white) when compared to stronger players.
Thus, the analysis captures beginners exploring a wider variety of first moves
than experts, who instead are likely to begin with a typical move. At a first
glance, this result might seem surprising, as skilled players are supposed to
have better knowledge of opening theory. Yet, this may be linked to the ability
of more skilled players to easily transpose into different opening variations in
the following moves. Better awareness of transposition theory among experts
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(a) (b)

Figure 3.13. Diversity in the black’s response to white’s first move.
Boxplots showing diversity of black’s response experienced by white player, for each of white’s top
5 most played first moves- e4, d4, N f 3, c4 and e3 (in descending order of popularity). As white,
weakest players encounter lowest diversity in responses captured by low response entropy– for
all of white’s most played opening moves, except Nf3.

may allow them to reach many different openings from the same starting move,
thus potentially eliminating the need to diversify in the first move itself.

So, overall, do experts specialize at the cost of diversity? To investigate fur-
ther, I ask—how does skill level determine response diversity (as black)? For
the top 5 white moves observed—e4, d4, N f 3, c4 and e3, I group the games of
each player based on these moves and calculate the response diversity of the
black to the white player. Results are shown in the different boxplots of Fig
3.13. Surprisingly, I observe a contrasting result. As white, beginners encounter
the lowest diversity in black responses. This is captured by the low response
entropy for all 5 of white’s most played opening moves. Hence, beginners lack
experience to the plethora of possible responses, which perhaps leaves gaps in
their game.

Lastly, I point out that this increase in the diversity of responses at higher
skill levels, might be what prevents players from increasing their Glicko-2 rat-
ing, as the potential to be surprised by your opponent keeps increasing as one
climbs the skill ladder.

From the first move onward, players enter into established chess theory,
where the many top variations of opening moves are well-explored. The next
natural question to ask at this point is—How do players diversify beyond the
first move as player move into opening theory? The beginning usually plays
out like a well-choreographed dance, evolving in already classified opening
sequences with standard names such as “Sicilian Defense”, “Queen’s Pawn
Game”, and so on. In Fig. 3.14, I show the top 9 openings used by players
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3.6. Specialization in opening play and skill level 37

Figure 3.14. Top 9 favorite openings among all players on lichess.

on lichess.com. Focusing on such opening sequences, I explore the specialization
players achieve in the opening sequence. Results are shown in Fig. 3.15, where
I define the ”favorite opening” of a player as the most used one, assuming it is
played at least 100 times.

Interestingly, the majority of players end up in their favorite openings only
around 10% to 30% of the time. Furthermore, I find that expert players start
with their favorite opening significantly more times than their second favourite.
This is marked by the distribution falling below the diagonal line. Contrarily,
beginners lie much closer to the diagonal, indicating that their favorite opening
is played comparably to the runner up, thus pointing out a lack of specialization
in a single opening.

Further analyses reveal that expert playing behavior comes in a variety of
shapes and sizes, i.e., there are players who specialize and players who flexibly
switch openings (diversify), see Fig. 3.15, column 4.

At the individual level, I find on average less diversity in opening selection
(main lines) among experts, as shown in Fig. 3.16. As mentioned earlier, the
ability to arrive into known openings through transposition, i.e., different se-
quences of moves that players may use to reach the same final configuration,
might be unique to expert players. Arriving into fewer openings may allow ex-
perts to use learned chess theory and use optimal moves from memory, saving
crucial time and preventing build-up of mental fatigue during the game.

However, accounting for the many different variations of the openings (see
Methods), it is the experts instead who encounter the most diversity. This hints
that experts like to enter into certain main openings—perhaps the ones they
specialize in—which they follow-up by expanding their repertoire in the vari-
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Figure 3.15. Usage of the top-2 favourite openings of a player.
Fraction of times players use their top-2 favourite openings. Different panels correspond to
different skill levels. Density plots are used for better visualization. Expert players play more
often their favorite opening sequence as compared to beginners.

Figure 3.16. Diversity and specialization in the opening sequence of moves is
governed by skill level.
Distribution of diversity (entropy) of openings calculated for players of four different skill levels.
Main lines and the variations are respectively depicted as solid and dashed curves.
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3.7. Performance and opening diversity 39

Figure 3.17. Opening switches in a player’s career properly normalised with
the null model
Distribution of the number of opening switches in a player’s career properly normalised with
the null model aggregated into 4 skill categories. For the null model, I reshuffle the temporal
order of the associated sequence of games, thus preserving the total number of victories, losses
and draws.

ations to surprise opponents and catch them off-guard, a strategy not unique
to chess but key in many competitive sports. Furthermore, upon investigating
temporal organization of openings (main lines) used by a player, I find that ex-
perts switch openings between consecutive games more often than beginners
(see Fig. 3.17). Thus, experts encounter higher temporal diversity in openings.

3.7 Performance and opening diversity

At this point one might wonder—how much exactly does specialized knowl-
edge of favorite openings aid in victory? A naive argument would suggest that
players would tend to prefer those main lines that give them the best results.
If this is the case, the favourite opening of each player—the one mostly used—
would be the one that gives the best performance, that is the highest winrate.
To investigate this, I calculate for each player the winrate of each of the player’s
top-3 most played openings and plot it against the frequency of their use. Re-
sults are shown in Fig. 3.18 for a sample of the players. Surprisingly, there are
players whose top used opening performs worse than their lesser used open-
ings. Besides, optimal players (black curves)—those who play more often their
better performing openings—are just a few.

To quantify this effect in the whole population, I calculate for each player
the difference in the winrate of the most played opening and the second most
played one, showing its distribution in Fig. 3.19. The analysis reveals that when
expert players do encounter their favorite opening, their winrate is more likely
to be lower than their second favourite opening, when compared to beginners.
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Figure 3.18. Winrate of top 3 openings of a player against opening frequency.
Each connected curve corresponds to a player. I show 15 random players who play at least 100
games with each of their top 3 openings. Curves of players whose winrate increases monotoni-
cally with the frequency of the associated opening are depicted in black and are deemed optimal.

Figure 3.19. Sub-optimal opening encounters.
Distribution of difference δw in winrate of associated to favourite and second favourite opening
and winrate of their second favourite opening for the whole population of players. Different
curves correspond to different skill levels. Dashed lines indicate mean values of the distributions.
Stronger players encounter less optimal openings more often than weaker players.
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I note that players who do better in their second most played opening—as com-
pared to their most played one—are experiencing sub-optimal opening encoun-
ters. Thus, I find that stronger players encounter sub-optimal openings more
often than weaker players. In other sports, players are known to change their
strategies over opponents and games so that specific habits are not exploited by
opponents for strategic advantage. I speculate that such variations from opti-
mal strategy might serve only a minor role in online play, where opponents are
randomly selected from a large pool of millions of players. Thus, discovered
sub-optimal encounters may be an opportunity for players to improve.

3.8 Diversity vs Career stage

Lastly, I explore diversity as a function of different stages of players’ careers.
Selecting players with at least 3000 games, I split them into 3 equal stages: early
(0-1k), mid (1k-2k), and late career (2k-3k). For each play, I compute open-
ing diversity in the different career stages and report it in Fig. 3.20. For both
the opening move (top panel) and the opening sequence (main lines) (bottom
panel), I find that players explore more in the initial stages of their careers, be-
coming more specialized in later stages, perhaps exploiting the knowledge of
certain openings they have learned.

3.9 Discussion

This chapter extends the broader theme of success in careers by exploring chess
as a unique context in which individual trajectories unfold, shaped by skill and
patterns of specialization. In this chapter, I propose chess as a “natural labora-
tory” to investigate human behavior and performance [97, 98, 99, 100]. Chess
offers a unique case as it lacks a stochastic component, allowing performance
to be directly tied to skill, quantified here through the Glicko-2 rating. Ana-
lyzing nearly 1 million careers on lichess.org, I found patterns, including hot
and cold streaks, reflecting bursts of victories and losses, seen in other domains
such as science and business [22, 101, 23]. These findings suggest a possible
universality to performance cycles across domains. Further analysis revealed
that beginner players experience more frequent winning streaks, while streak
length relates directly to skill level. Yet, irrespective of skill, players often face
longer periods of repeated failure

Even just looking at simple patterns in the openings—thus neglecting the
full complexity of game sequences—, I was able to characterize individual play-
ing behavior across different career stages. In particular, expert players were
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Figure 3.20. Diversity in opening with career stage.
Diversity in the opening move (top) and opening sequence (bottom) of moves. In later parts of
one’s career, diversity decreases, players prefer certain openings and specialize in them—playing
them more often.

shown to behave differently from the very first move of the game, displaying
a lower diversity in openings. Looking at chess as a process of interactions
and reactions, I focused on the black’s response to the white player’s moves,
finding that experts encounter the highest diversity from black. However, after
accounting for different variations within the openings I discovered that experts
were more diverse instead, hinting at a deeper understanding of the complex-
ity of the different variations within the same line. Such findings corroborates
some very recent ideas on opening similarity and complexity independently
presented in Ref. [102], focusing on prediction of future openings and opening
preparation.

Looking at individual careers over time, opening diversity was found to de-
creases at their later stages, pointing towards higher specialization as a player
becomes more experienced. In addition, experts tend to play their favorite
opening sequence much more than beginners, providing evidence for a ten-
dency towards specialization. Nevertheless, counter-intuitively, I also found
that players often do not have the ability to recognize their most successful
opening, i.e. the one associated with the highest win-rate. Surprisingly, this
is particularly true for more expert players, who have a higher chance of sub-
optimal encounters in opening, possibly because of the depth of responses and
variations within opening lines coming from a skilled opponent. Indeed, in gen-
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eral decision making [103, 104, 105] and particularly in chess [99, 106], humans
are known to work with heuristic approaches relying of intuition rather than
searching for optimal solutions. The observed deviation from optimal strate-
gies in the data might hence also hint at the existence of adaptive strategies
with “fast and frugal” heuristics by players [107].

The analysis I have presented has some limitations. First, it focuses solely
on openings—one of several chess phases. Nevertheless, this simple approach
proved to be enough to reveal how experts differ from beginners in simple
quantifiable ways. It also complements existing work on recall abilities of play-
ers for chess positions as a function of skill level [98]. A first natural extension
in this direction would consist in analysing also other parts of the game, such
as middle game and endings. A second limitation is that, when associating a
skill level to a player, I inevitably considered Glicko-2 rating as a static, im-
mutable measure. Instead, this rating systems is clearly in constant evolution
throughout the career of a player. While including this dynamical aspect of
ranking would surely add a missing aspect to the analysis, it is worth stressing
that the measure is still a good proxy for skill level, as I have neglected the ini-
tial phase of the careers—associated to the steepest growth/change in Glicko-2
rating. Third, we observe in Fig. 3.2 that the number of games played by a
player increases with skill level of the player. At the same time, the number of
games also influences the opening behavior of the players as seen from career
stage analysis in Fig. 3.20. Together this suggests that in future work, ”number
of games played” should be used as a control in addition to player ratings by
which the players are currently stratified..

Taken together, this chapter represents a first step towards understanding
the game mechanisms associated to performance in the careers of chess play-
ers. Future work might enrich this analysis by considering the complexity of
chess games as a whole via considering the full sequences of moves instead of
focusing on the important phases of the game only. Taken together, this chapter
marks a step toward understanding performance mechanisms across competi-
tive careers, with chess as a model. Future research could broaden this investi-
gation to other sports, such as Go, tennis, or boxing, where opening moves and
responses critically shape success and successful careers.

Code availability

The code used in this chapter is available at https://github.com/chowdhary-
sandeep/lichess.git.
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CHAPTER 4

TEAM CAREERS IN SCIENCE:
FORMATION, COMPOSITION AND
SUCCESS OF PERSISTENT
COLLABORATIONS

4.1 Introduction

Moving beyond success of individual entities, in this chapter, I focus on team ca-
reers. Teams are engines of innovation that propel collective scientific discovery.
Large-scale collaborations such as CERN, the Human Genome project, LIGO,
LHC, and the International Space Station are well-known endeavors created to
expand the human frontier. Even at a smaller scale, the majority of research is
increasingly produced by teams of pairs and triads of scientists, not individ-
ual researchers [48]. Moreover, recent work revealed that small teams tend to
disrupt science and technology while large teams develop past research [56],
highlighting the importance of underpinning the dynamics of smaller teams. In
the age of the internet, research teams leave footprints in their lives that can be
tracked retrospectively using data. The recent creation of large datasets docu-
menting the evolution of science allows investigation of the multifaceted land-
scape of academia – from scientists and collaborations to funders, publishers,
and institutions. Indeed these rapid developments have led to the emergence
of the field of Science of science [16, 19], which aims to quantify the machinery
underlying scientific production.

Nowadays much is known about the patterns in careers of individual sci-
entists and what makes them impactful. For instance, scientific careers are
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known to display random occurrences of the most impactful work [21] and the
presence of hot streaks [22, 23]. Role of mobility on impact [30], changes in
research-interests [108] and an increasing trend to switch topics [31] have also
been quantified in individual careers. Last decades however have seen a regime
shift towards team science with teams increasingly dominating solo authors in
knowledge creation, not only in sheer volume but also the attention they re-
ceive in the form of citations [47, 48]. The increasing predominance and success
of teams have been linked to the increasing need for specialized knowledge
and interdisciplinary collaborations in solving modern-day scientific problems
[49, 50]. Inevitably, determiners of team impact are a highly active area of in-
vestigation. Factors such as– team size [48, 56] and diversity in geography and
affiliation [50, 109, 110, 111], ethnicity [58], gender [112] and team freshness
[113]— are known to significantly affect scientific impact. Mechanisms govern-
ing and analytical models of team assembly [47, 59] have also garnered some
attention.

Although many factors governing scientific team assembly and determiners
of impact have been studied, teams in science have only been viewed from the
static lens. So far, team careers have received little attention. Few works that do
consider the temporal aspect of collaborations are limited to ego-centric [62] or
pairwise analysis [64]. Temporal dimensions of teams in science remains unex-
plored territory and the anatomy of a team’s career remains largely unknown.
Teams follow a dynamic lifecycle, akin to the trajectory of individual scientists’
careers. They come together (form), achieve varying levels of productivity and
impact, followed by eventual disbanding. Here I perform a large-scale study of
teams careers in science. I extract the core members of a team, allowing me to
track the life trajectory of a persistent team. Using a statistically-validated ap-
proach to disentangle the higher-order network of collaborations [114] I identify
the scientific cores in teams and analyse half-a-million teams. I discern the pat-
terns of formation, production, composition and impact of persistent scientific
collaborations.

4.2 Methods

Extracting persistent cores

In this chapter I analysed publication data from OpenAlex [13, 14]. This
database provides publication metadata, topic classification and citation
records for around 205 million journal papers since 1900, covering 90 million
scientists disambiguated using machine learning algorithms and integration
with ORCID ids of scientists to identify authors [115]. I curate all scientists
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with substantial publication records, keeping those with at least 20 papers, re-
sulting in 4, 000, 926 scientists. In this context, identifying the core members of
long-lasting scientific teams corresponds to detecting the maximal sets of sig-
nificantly co-publishing authors [116]. In fact, these sets represent groups of au-
thors that consistently work together, pruned from the members who only occa-
sionally have published with them. To extract those, I start by constructing the
underlying hypergraph of scientific collaborations, i.e. a generalized network
that naturally encodes group relationships, usually called hyperedges[117].
Specifically, I construct a hypergraph whose nodes are authors and whose hy-
peredges represent joint publications among them.

In order to assess the statistical significance of collective interactions among
sets of nodes in a hypergraph, one needs to take into account the heterogeneity
of node activity. Indeed, if on one side the easiest way would be setting a fixed
threshold on the minimum number of repeated interactions needed to consider
a group of nodes a statistically validated set, this approach is sub-optimal, due
to the multiscale nature of collaboration networks and the varying activity lev-
els among scientists (the same threshold can be too restrictive for a author with
limited publication records and very permissive for a more prolific author). To
overcome this limitation,the method is based on a null hypothesis approach,
that naturally tunes this threshold on the activity of the involved nodes. For
simplicity, I start from the case of 3 nodes i, j, k that co-interact Nijk times in
hyperedges of size n >= 3. The three nodes appear respectively in Ni, Nj, Nk
hyperedges. Under the null hypothesis that each node selects randomly the hy-
peredges to which it participates - and thus its n− 1 counterparts in a hyperedge
of size n - the probability of observing i, j, k interacting Nijk times is

p(Nijk) = ∑
X

H(X|N, Ni, Nj)× H(Nijk|N, X, Nk)

=
1

(N
Nj
)( N

Nk
)

∑
X

(
Ni
X

)(
N − Ni
Nj − X

)(
X

Nijk

)(
N − X

Nk − Nijk

)
, (4.1)

where H(NAB|N, NA, NB) is the hypergeometric distribution that computes the
probability of having an intersection of size NAB between two sets A and B of
size NA and NB given N total elements. The probability p(Nijk) in Eq. 4.1 rep-
resents the probability of having a random intersection of size Nijk between the
three sets of hyperedges of nodes i, j, k out of N total hyperedges [118], and is
obtained through the convolution of two instances of the hypergeometric dis-
tribution. Starting from Eq. 4.1, I then compute a p-value for the triplet that
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contains i,j and k through the survival function,

p(x ≥ Nijk) = 1 −
Nijk−1

∑
x=0

p(x). (4.2)

The p-value represents the probability of observing Nijk or more hyperedges
that contain - but are not limited to - the nodes i, j, k. The smaller the p-value,
the higher the possibility that i, j, k constitute a significant set of size 3.

In the approach of [114, 116], N corresponds to the total number of papers in
the corpus. In this case, this choice for the value of N implies that all hyperedges
are equally accessible by all nodes. It is, however, unrealistic that a scientist
could have participated in all papers, due to limited time and resources. Thus,
I decided to bound the number of papers a scientist or a group of scientists
could have worked on. Specifically, I approximate N by summing the number
of unique publications by the scientists and all their coauthors, for each of the
members of the group I am testing for significance.

For a generic hyperedge of n nodes, Eq. 4.1 becomes

p(N1...n) = ∑
X12

H(X12|N, N1, N2)×

× ∑
X123

H(X123|N, X12, N3)× ...

... × ∑
X12...n−1

H(X12...n−1|N, X12...n−2, Nn−1)×

× H(N12...n|N, X12...n−1, Nn). (4.3)

How to set a rigorous criterion to assess whether a group of n scientists is
statistically significant, once I have calculated the associated p-value? In order
to do so, I test all p-values against a threshold of statistical significance α, after
including a multiple hypothesis test correction which is needed because of the
high number of tests - one per each group. In all the results presented in this
chapter I use α = 0.01. Coherently with the approach in [116]. I consider all
smaller combinations of nodes constituting a significant set to be themselves
significant sets. In other words, if the interaction i, j and k is significant, I do
not test also the three couple obtained through combination of the triplet. This
means that I start testing from the largest set and I then proceed towards the
smallest. If a set of size n passesthe statistical test and is thus selected as sig-
nificant because it rejects the null hypothesis, I do not test any of its smaller
subsets. In this way, the obtained statistically significant sets can be considered
maximal, i.e. for each of them there is no larger set that includes all its members
that is also statistically significant.
The extraction of team cores resulted in over half-a-million persistent collabora-
tions, with size ranging from 2 to 10. Yet, I limit the analysis to cores of size 2 to

C
E

U
eT

D
C

ol
le

ct
io

n



4.2. Methods 49

6, as bigger cores are rare and statistics are insufficient for an in-depth analysis.

Knowledge broadness and knowledge diversity

In later analysis, I will use knowledge broadness and diversity to characterise
team compositions. Here I show the method of evaluation for these measures.
I start from the OpenAlex dataset, where researchers are associated with differ-
ent scientific concepts with a score varying between 0 and 100. The concepts
are organized in a hierarchy with 19 root-level concepts representing major dis-
ciplines such as physics, chemistry, computer science and so on, and 5 layers of
descendants branching out from them, for a total of 65,000 concepts [119]. For
this analysis, I consider the topmost layer of the concept hierarchy, namely the
scientific disciplines. For each member of the team, I evaluate a knowledge vec-
tor where each component represents how strongly that scientist is associated
with a scientific discipline. Each entry of the vector consists of the topic score
normalized by the sum of the scores.

Knowledge broadness captures the breadth of the combined expertise of the
persistent core. To calculate it, I first consider the sum of the knowledge vec-
tors of the core members, normalized so that the components of the combined
knowledge vector sum to 1. I then evaluate the entropy of this combined knowl-
edge vector, calculated as −∑x pxlog2px, where x is a scientific discipline and
px represent how strongly the team is connected to it. Finally, to obtain the
knowledge broadness, the entropy of the vector is normalized by its maximum
theoretical value of log2(N) which corresponds to the case where the team is
uniformly spread across all N disciplines. In particular, as Openalex has 19
disciplines in the top layer of its concept hierarchy here I have N = 19. For
illustration, consider a core of three members, A, B, and C, whose knowledge
vectors are A:[physics: 0.5, chemistry:0.5], B:[physics:0.7, chemistry: 0.1, biol-
ogy: 0.2], C:[physics:1]. The combined knowledge vector for this team would
be: [physics:0.85, chemistry: 0.077, biology: 0.077]. The knowledge broadness
of the team is thus ∼ 0.18. The value of knowledge broadness ranges from 0 to
1. A value of 0 indicates a team where all members are associated to a single
topic, i.e., a monodisciplinary team, while a value of 1 corresponds to a team in
which the joint knowledge vector of the team is uniformly distributed across all
possible topics in the data.

Knowledge diversity, on the other hand, quantifies how much team mem-
bers are different with regard to the scientific disciplines they are associated
with. Given the knowledge vectors of the core members, I quantify the knowl-
edge diversity as 1 minus the the average cosine similarity between all pairs of
knowledge vectors. For instance, in the example above, the cosine similarity
between members A and B (∼ 0.77) is calculated, then B and C (∼ 0.95), then

C
E

U
eT

D
C

ol
le

ct
io

n



50
CHAPTER 4. TEAM CAREERS IN SCIENCE: FORMATION, COMPOSITION

AND SUCCESS OF PERSISTENT COLLABORATIONS

t

Figure 4.1. Identification of persistent core members in a team’s career
A network of scientific collaborations (grey-shaded areas) is built based on the publication
records. Then, two groups of scientists are identified in a team: core members (red), who consis-
tently collaborate, and transient members (other colors), who publish together with core mem-
bers only occasionally.

C and A (∼ 0.71). The values are then averaged and subtracted from 1 to ob-
tain the knowledge diversity of the core (∼ 0.19). Knowledge diversity ranges
between 0 and 1, where a value of 0 indicates all members have the identical
knowledge vectors, i.e., all members are associated with the same strength to
the same disciplines, whereas a value of 1 indicates that knowledge vectors of
all members are non-overlapping, i.e., they are associated to completely differ-
ent scientific disciplines.

Knowledge broadness and knowledge diversity cover complementary di-
mensions of team topic composition, as the first describes how different are the
topics associated to the team, while the second captures how the members of
the team are diverse among each other. For instance, a collaboration among sci-
entists working in the same discipline will have low knowledge diversity and
low knowledge broadness, while a team where members are associated with
the same set of multiple disciplines will have low knowledge diversity but high
knowledge broadness.

4.3 Formation, productivity and dissolution of per-
sistent scientific collaborations.

Not all members of a scientific team collaborate in the same way. In science,
a team is often composed of core members, who work persistently and recur-
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rently together over the years, surrounded by transient members, who come
and go in the collaboration. Since the exact set of co-authors can change from
paper to paper, this makes following the trajectories of teams much more com-
plicated than the careers of single individuals. To study team careers, my first
step is thus to identify persistent scientific collaborations from empirical data. I
analyze a large dataset collected from OpenAlex [13, 14], consisting of 248 mil-
lion journal papers published since 1900, covering 90 million scientists across
various scientific disciplines. From the publication records, I build a hyper-
graph [117] of scientific collaborations, where each hyperedge encodes the set
of co-authors of a paper, and use a statistically-validated approach [114, 116] to
extract those groups of scientists that have persistently published together over
their careers (Fig. 4.1, see the Methods for a detailed description of the data
and the methodology). Through this procedure, I identify 511, 550 persistent
scientific collaborations.

I begin by investigating the typical number of members in persistent scien-
tific teams. I compute the distribution of core sizes (Fig. 4.2), finding that the
greatest percentage of cores (42%) have 3 members, followed by cores of size 2
(31%) and 4 (20%). Larger persistent collaborations are rarer, with the fraction
of cores of size 7 or higher being less than 1 in 100.

Typically, the formation of a scientific team requires a significant amount of
time. Indeed, a persistent team may start as a small number of scientists work-
ing together, and gather further members around it later on. I thus ask: How
fast do cores assemble? To examine this, I evaluate the time elapsing from the
first publication authored by any subgroup of core members to the first publica-
tion authored by all members of the team. I refer to this quantity as the forma-
tion time. Note that, by my definition, teams of two members are established
with a formation time of zero. The average formation time for cores of different
sizes is shown in Fig. 4.3. I observe that smaller cores gather faster than bigger
ones. In particular, teams of three members typically take 4.6 years to form,
while larger cores take more and more time to gather, i.e., 7.3 years for cores of
size 4, 9.2 years for cores of size 5, and 10.4 years for cores of size six. Further-
more, I note that a certain percentage of cores are formed instantaneously, i.e.,
they have a formation time of zero, meaning that the first publication by the
team includes all of its core members. Out of all cores of size 3, nearly 16.8%
assembled instantaneously. For larger cores, this number drops, 5% (for size 4),
2.3% (size 6), and only 1.4% (for size 6).

After their formation, teams start collaborating and publishing about their
research. While the efficiency of scientific teams is hard to quantify, as I have no
information on how long a team worked on a publication, I can analyze their
career in terms of the number of joint publications as a function of time. To this
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Figure 4.2. Distribution of core sizes.
Distribution of the number of scientists per team core. The greatest percentage of cores have 3
members.
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Figure 4.3. Formation time of persistent teams.
Formation time of cores as a function of core size. Smaller cores take less time to form compared
to larger ones.

end, I consider all cores of a given size that have published a certain number of
scientific papers and measure the average time taken to produce them (Fig. 4.4).
Moreover, I compute the yearly-production-rate, i.e., the productivity, for differ-
ent core sizes (inset). The analysis reveals that bigger cores outproduce smaller
cores, taking less time on average to publish the same number of scientific ar-
ticles. Such a result calls for an in-depth analysis of how persistent scientific
teams communicate, coordinate and organize as a function of the number of
their members [55]. This observation may also partly explain the increasing
dominance of teams in the production of science and arts [48].

Though they may persist for a long time, all scientific collaborations even-
tually end. Therefore, I examine the typical lifespans of persistent scientific
teams. I calculate the survival probability of cores as a function of the career
length, i.e., the time elapsed from their first to their last publication. I find that
smaller cores are typically more persistent (Fig. 4.5). For instance, nearly 45% of
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Figure 4.4. Productivity of persistent team cores.
Production time for a given number of papers for cores of different sizes. Inset: average number
of papers published per year as a function of the core size. Bigger cores produce research articles
at a faster rate.

scientist-duos work together for at least 5 years, while some of them can keep
working together for as long as 30 years after their first joint publication. Larger
cores, instead, have shorter careers: It is highly atypical for team cores of 4 or
more scientists to continue publishing together after 10 years since their first
publication. A possible explanation might be that a common grant limit the
lifetimes of larger cores to 5-6 years (typical funding timelines). By combining
our data with funding data, this question might be answered.

4.4 Composition.

The members of a persistent collaboration can be identified by various char-
acteristics, including age, affiliations with universities, and scientific expertise.
Understanding the composition of persistent teams in terms of the individual
characteristics of their members, i.e., whether they overlap, match, or integrate,
can shed light on the mechanisms that facilitate long-lasting collaborations. For
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Figure 4.5. Dissolution of persistent team cores.
Survival probability of a core as a function of the career length, i.e., the time since its formation.
Smaller cores have longer lifespans.

instance, a persistent team may show age-homophily among its members or, in-
stead, it may comprise young researchers and older experienced scientists, e.g.,
a long-standing collaboration between mentor and mentee. To understand the
role played by age in persistent collaboration, I compute the career age of each
scientist in the team (i.e., the time passed since the scientist’s first publication),
which I then use to characterize the age-composition of persistent teams at the
time of core creation (i.e., the first joint publication).

I divide scientist into three age groups, namely young (”Y”, career age less
than 7 years), emerging (”Em”, between 7 to 14 years) and established scientists
(”Es”, more than 14 years). I thus assign each core to one of 7 possible cate-
gories based on the age groups of the members. I distinguish cores where all
scientists belong to the same age group (only young, only emerging, or only
established), cores where two age groups are represented (young + emerging,
young + established, or emerging + established), and cores with scientists from
all three groups. The percentage of each category in the data is shown for var-
ious core sizes in Fig. 4.6. For dyadic cores, the most predominant age com-
position at time of assembly is a young and an established scientists working
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Figure 4.6. Age composition of persistent scientific cores.
Percentage of each possible age composition of the core as a function of core size.

together, a typical Student-Professor motif. This is followed in frequency by
the young+emerging motif. For triadic cores, the mixed age composition i.e.
Y+Em+Es likely corresponding to the typical PhD-PostDoc-PI core, starts to be
a prominent age composition. Still, the dominant composition is of only Young
+ Established researchers. Beyond triads, for core size 4 and higher, mixed cores
become increasingly common. I also analyze how the formation time and career
length of a core vary as a function of its age composition, revealing shorter as-
sembly times and longer careers for teams featuring younger members (Fig. 4.9a
and 4.10a).

Next, I characterize how diverse persistent collaborations are in terms of
academic affiliation. I will refer to this as the affiliation diversity of the cores.
To quantify it, for each paper of the core, I consider the set of affiliations that
the members have at the time of publication, and evaluate the minimum num-
ber of affiliations needed to represent all members of the core. For illustra-
tion, consider a core of 3 members, A, B, and C, having the affiliations A:[MIT,
UCSD], B:[MIT, UCSD], C:[MIT]. In this case, the minimum number of affili-
ations needed to represent the core is 1, as all members share one affiliation
(MIT). Instead, if I consider the case A:[Caltech, UCSD], B:[UCSD, Indiana],
C:[Caltech], I would need at least 2 affiliations (Caltech and Indiana) to cover
all members of the core. As the core members can change academic affiliation
during the lifetime of the collaboration, I evaluate the minimum number of af-
filiations for each article published and define the affiliation diversity of the
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Figure 4.7. Co-localization of persistent scientific cores.
Percentages of cores that are spread across 1 (mono), 2 (bi), 3 (tri), and 4 or more universities as
a function of core size.

core as the most common value. Fig. 4.7 shows the fraction of cores of differ-
ent sizes being covered by one, two, or three universities. Possibly surprisingly
and in contrast with an increasing trend to collaborate remotely [51], I note that
75.8% of cores are situated at the same university, hinting at the importance that
common institutions play in sustaining long-term collaboration. It is also worth
noting that cores that are not based at the same university are usually located
at 2 universities (21.7%), while only very rarely persistent cores span 3 or more
institutions (2.5%). Geographically speaking, 78.1% (84.7%) of persistent cores
are situated within the same country (continent). I also find that co-presence
at the same institution is associated with a shorter formation time and a longer
lifespan of the core (Fig. 4.9b and 4.10b).

Finally, I aim to comprehend how diverse are core members in terms of their
scientific expertise, namely whether the teams are mono-disciplinary or inter-
disciplinary. To achieve a data-driven understanding of the extent to which
topic composition affects persistent collaborations, I measure two complemen-
tary dimensions of team interdisciplinarity, namely knowledge broadness and
knowledge diversity. Knowledge broadness captures the breadth of the com-
bined expertise of the persistent core. knowledge diversity, by contrast, quan-
tifies how much team members are diverse with regards to the disciplines they
are associated with. Both measures range from 0 to 1, where 1 are achieved
for maximum values of multidisciplinarity of the team (broadness) and topic

C
E

U
eT

D
C

ol
le

ct
io

n



4.4. Composition. 57

0.0 0.2 0.4 0.6 0.8 1.0
knowledge broadness

0.0

0.5

1.0

kn
ow

le
dg

e 
di

ve
rs

ity

100

101

102

103

104
number of cores

Figure 4.8. Interdisciplinary diversity of persistent scientific cores.
Interdisciplinary diversity. The joint distribution knowledge diversity (quantifying cross-
member conceptual distances) and knowledge broadness of the team (entropy of the sum of in-
dividual concept vectors of members). For monodisciplinary cores where all members belong to
the same one field both knowledge broadness and core diversity are zero.

complementarity across members (diversity, see Methods for details).
Fig. 4.8 shows the joint distribution of knowledge broadness and knowl-

edge diversity across the cores. I observe that only a small fraction of teams,
almost 3%, are completely mono-disciplinary, namely all members work in one
scientific field. Also, I notice that the density of cores tapers off as diversity
increases, with few cores having a diversity larger than 0.5. This suggests that
the core members should have a minimum amount of disciplinary overlap for
their collaborations to persist. The vast majority of cores, however, are broad
in their knowledge base (over 50% have more than 0.6). In particular, a signifi-
cant proportion of cores (∼ 9.1%) display broadness larger than 0.75, indicating
teams which work at the interface of several disciplinary fields. Yet, knowledge
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diversity never gets close to its maximum value, which would correspond to
a team where no shared topics exist between its members. This highlights the
importance of topic overlap to sustain persistent collaborations. Moreover, I
find that teams with low knowledge diversity across members take less time
to form and have longer careers, further supporting the association between
team persistence and topic synergy, whereas low knowledge broadness, on the
other hand, is associated with shorter lifespans and a slower formation process
(Fig. 4.9c and 4.10c).
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Figure 4.9. Formation time as a function of core knowledge composition.
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Figure 4.10. Career length as a function of core compositions.

Core exclusivity as a function of core composition

As the members of a persistent core may work exclusively together or explore
collaborations outside the core. I define the exclusivity of a persistent team as
the ratio of the number of publications authored by all core members to the total
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numbers of papers featuring at least one core member. In general, core tend to
be highly exclusive, as more than 30% of all papers considered are published
within a persistent collaboration. In terms of team composition, I do not observe
a significant difference between mono and multi-university cores (Fig.4.11a).
Instead, I note that cores made only of young researchers are in general more
exclusive (Fig.4.11b). Also, I find that exclusivity decreases as a function of
the knowledge broadness, while it is not strongly correlated with knowledge
diversity (Fig.4.11c).
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Figure 4.11. Core exclusivity as a function of a) diversity in the academic affiliation, b) age
composition, and c) knowledge broadness and knowledge diversity.

Contribution of transient, non-core members of teams

A team is made by core members that persistently work together and transient
members that sporadically publish with the core. So far, I have focused only on
the core members of scientific teams. Here, I expand my analysis of teams to
this latter group of members. First, I evaluate the fraction of papers published
by persistent collaborations that include a given number of transient members
(Fig.4.12a). I find that over 46.5% of papers are authored exclusively by core
members, while 24.3% (14.0%) include 1 (2) non-core members, and less than
20% feature 3 or more transient members.

When categorizing cores by age composition and comparing this to the ages
of non-core members (Fig.4.12b), I find that cores of young scientists tend to
collaborate with younger transient researchers, whereas more established cores
often work with older non-core members.

Incorporating non-core members into teams generally enhances knowledge
diversity (for +87.7% of the core teams) and knowledge broadness (+76.7% of
the cores), indicating that transient members add to persistent collaborations
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a different expertise (Fig.4.12c,d). However, for 12.3% of cores, knowledge di-
versity decreases with the addition of a transient member, suggesting potential
redundancy, which warrants further investigation. Finally, in terms of affili-
ations, in 95.0% cases non-core members are based in the same university or
institute.
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Figure 4.12. Contribution of transient members of persistent teams.
a) Percentage of papers published as a function of the additional number of non-core members.
b) Age distributions of the non-core members as a function of the age composition of the core.
c) Percentage change in the team diversity upon addition of non-core members. d) Percentage
change in the team knowledge broadness upon addition of non-core members.

4.5 Team success.
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Figure 4.13. Example of a career of a scientific team.
Number of citations received by publications of a persistent collaboration involving the Nobel
laureate Richard Henderson (Nobel Prize in Chemistry, 2017).
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Peak performance in individual scientific careers is known to be randomly
distributed, a result known as the random impact rule [21]. In other words,
the most-cited article in a scientist’s career can be, with an equal probability,
any paper they published, from the first to the very last publication. Analyzing
the publication history of persistent scientific collaborations (Fig. 4.13), I aim to
understand the pattern of success in team career, and how their composition
affects their impact. To examine whether team careers also exhibit the random
impact rule, I adopt a similar methodology as [21, 120] and measure the relative
position N* of the highest-impact paper in a core’s career, i.e., in the sequence
of its N publications. I measure the impact as the number of citations after
five years (c5), normalized to account for inflation and large variations between
different disciplines [121]. Fig. 4.14 shows the cumulative distribution function
P(≤ N∗/N), namely the probability that the most-cited work of a core appears
before the N*-th publication.
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N *
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Figure 4.14. Temporal dynamics of team success.
Cumulative distribution P(≤N*/N) for cores with joint total papers (N)≥10, where N*/N de-
notes the order of the highest-impact paper in a core’s career, varying between 1/N and 1. The
cumulative distribution of N*/N is almost a straight line with slope ≈1, indicating that N* has
roughly the same probability to occur anywhere in the sequence of papers published by a core.

I observe that the function nearly follows the cumulative probability of a
uniform distribution, which would indicate that the highest-impact article of a
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core can be published at any point in the career. While the most-cited article
can occur at any time, the average impact of a team throughout its career can
show non-random patterns. In the evolution of a team’s career, freshness de-
creases. This can have consequences for the success of the team and the impact
it gathers. To test this, I split the papers of each team (ordered chronologically)
into two halves and compute their average impact, measured as the normalized
number of citations after five years from the publication. My analysis captures a
higher average impact in the first half of the career compared to the second half,
hinting that freshness in an early career may bring a higher impact (Fig.4.15).
My findings are in agreement with results showing how the team freshness has
a positive effect on the team impact [113].
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Figure 4.15. Team impact as a function of career stage.
Boxplots show the distribution of the the average impact (c5) of the core papers in the first and
second half of their careers.

Another universal feature of individual creative careers is the presence of
hot-streaks, periods of clustered high-performance works observed in various
contexts, from science [22, 23] to arts and other creative domains[122]. My re-
sults show a tendency for highest-impact publications to be clustered, i.e., to
occur close to each other in the team’s career, thus confirming the presence of
hot-streaks ((Fig.4.16)).

Having characterized the diversity of persistent collaborations in terms of
age, affiliations, and scientific expertise, I am now interested in understanding
how those features contribute to their academic success. First, I measure the
average paper impact, i.e., the average normalized number of citations after
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Figure 4.16. Hot-streaks in team careers.
(a) Cumulative distributions P(≤(N*-N**)/N), where N*-N** denotes the distances in order of
the highest and the second-highest impact papers in a core’s career respectively. (b) P(≤(N**-
N***)/N) where N*-N*** where N*-N** denotes the distances in order of the highest and third-
highest impact papers. (c) P(≤(N*-N***)/N) where N**-N*** denotes the distances in order of
the second-highest and third-highest impact papers. The shuffled model randomizes the order of
impact within a teams career, in all three panels. Real data shows higher likelihood than shuffled
model for highest impact work to occurs in bursts (close to each other in time), indicating the
presence of hot-streaks in team careers.

five years, for all possible core age compositions in the data. Cores composed of
members from the same age groups perform typically worse than collaborations
with scientists from multiple age groups (Fig.4.17).
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Figure 4.17. Team age composition and impact.
Cores are separated based on age composition of members and the distribution of the average
impact per paper for each age composition is shown.

Besides the age composition, the working location of a core team can af-
fect the impact of the work it produces. To test this, I compare the average
paper impact after five years for mono and multi-university cores. In agree-
ment with previous research [50], at the aggregated level I observe that multi-
university teams are more successful than mono-university ones. However, a
time-resolved analysis of the average impact, consisting in comparing mono
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and multi-university cores as a function of the year of formation, reveals a more
nuanced picture Fig. 4.18. I find that the impact advantage of multi-university
core is a recent phenomenon. Mono-university cores formed before the 2000s
have on average a higher impact compared to multi-university collaborations
formed during the same years. However, while more recently formed mono-
university cores do not show a significantly higher impact compared to older
collaborations, multi-university cores formed in the last decade have almost
three times the impact of cores started in the 60s. Hence, multi-university cores
formed after year 2000 are more successful than mono-university cores formed
in the same period. A possible explanation for this observation lies in recent
technological progress, from the development of computer-based mailing sys-
tems to the advent of internet and other communication technologies, which
have enhanced the experience of remote collaboration, limiting the logistic ad-
vantage associated with working in close physical proximity.
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Figure 4.18. Team impact for mono-university and multi-university cores.
The average impact of cores that formed in a given decade, where cores are separated into those
co-located at the same university, and others with multiple institutions.

In addition to impact, I look at the productivity of teams as a function of
knowledge broadness, grouping the cores based on the level of knowledge di-
versity, i.e., low, medium, and high diversity, respectively (Fig. 4.19). I find
that the relationship between productivity and knowledge broadness approxi-
mately follows a U shape.

This suggests that teams with a focused approach are more productive than
those with moderate levels of diversity. However, productivity increases once
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Figure 4.19. Team productivity as a function of knowledge composition of
members.
The average impact of cores that formed in a given decade, where cores are separated into those
co-located at the same university, and others with multiple institutions.

again for teams exhibiting highest degrees of broadness. For a given broadness,
teams high in knowledge diversity show higher productivity. As an additional
analysis, I study how productivity depends on the core composition in terms
of age and academic affiliation, finding no significant impact of these features
(Fig.4.20).

Next, I investigate team success as a function of the knowledge diversity and
the knowledge broadness of its core members. In Fig. 4.21, I show the average
c5 of the team publications as a function of the knowledge broadness, group-
ing again cores based on their knowledge diversity. I observe an inverted U
shape relationship between impact and knowledge broadness of the core, for
all classes of knowledge diversity, with intermediate values of broadness sup-
porting highest impact. When the knowledge broadness of a core is very low,
the impact of a team’s work might be limited to narrow disciplinary fields. Yet,
when a core’s knowledge base becomes too broad, a team’s work yields a lower
impact. Similar observations were made at the level of single works, where
highest impact is obtained in papers which display a balance between conven-
tional and atypical combinations of prior work [52]. Furthermore, I observe
that, for almost any value of knowledge broadness, knowledge diversity has a
negative relationship with the average core impact. All in all, my findings com-
plement previous results on the complex relation between disciplinary diversity
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Figure 4.20. Productivity as a function of core’s geographical and age compo-
sition.

and impact in teams[58].
I conclude this analysis by assessing the role of transient members on team

performance. I classify core publications into two groups, namely those au-
thored exclusively by core members and those including other contributors, and
evaluate the average impact for these two categories. Only teams with at least
one publication with non-core members and one with only core members are
kept for a fair comparison. Fig. 4.22 shows the distribution of the average c5
across scientific cores for the two groups of papers. The analysis reveals that
publications involving transient members generally show lower impact com-
pared to those authored by the core only, suggesting that even though transient
members add diversity to the team, they might not boost impact.

4.6 Discussion

In this chapter, I moved beyond success of individual careers and introduced
the notion of team careers to unravel the determinants and the temporal pat-
terns behind persistent collaborations in science. I investigated the features of
half a million persistent teams and the patterns governing their formation and
lifespans, composition, production and eventually impact.

Core teams of three scientists were prevalent, highlighting the need to study
team careers beyond pairwise collaborations [64]. Larger cores formed slower,
and had shorter career lengths. Persistent collaborations with smaller cores of-
ten featured a mix of young and established researchers, while larger cores in-
cluded members from all age groups. Additionally, members of persistent cores
were affiliated with the same university for the majority of cores. A wide range
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Figure 4.21. Success as a function of interdisciplinary diversity of the team.
Average impact as a function of knowledge broadness of the core. Cores were also assigned
categories according to core diversity into 3 equal-sized categories –low, medium or high.

of diverse degrees of disciplinary composition was observed, including teams
with large knowledge broadness, likely linked to the rising popularity of inter-
disciplinary research topics [123, 124]. Teams with a higher knowledge diversity
were found to have shorter lifespans and longer formation times, highlighting
the importance of topic synergy for persistence.

In my examination of temporal patterns in the success of persistent teams, I
found that the highest-impact paper can occur at anytime, with the same prob-
ability, throughout the teams career. Over extended periods, however, I found
that the average magnitude of impact is higher for publications in the first half
of the team career, in agreement with earlier observations that freshness is as-
sociated with high multidisciplinary impact [113]. Besides, hot-streaks were
observed in team careers, with the highest-impact papers showing a tendency
to be clustered in time, mirroring findings on individual scientific [22, 23] as
well as artistic careers [122].

Previous research shows that a time-aggregated analysis captures multi-
university teams to be more successful [50], yet, I find that, for persistent col-
laborations, this is the case only since the 2000s. Coinciding with the advent
of ICT technologies and the internet, remote research teams achieve higher im-
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Figure 4.22. Effect of non-core members on team success.
Distribution of average impact of team publications authored solely by the core members (blue)
or involving transient, non-core members (green).

pact. Yet, recent studies indicate that remote work results in fewer bridges and
encourages asynchronous communication among employees [125], while also
being linked to a lower likelihood of disruptive scientific ideas as compared to
onsite collaborations [126]. Impactful teams seemed to strike a balance in terms
of knowledge broadness, while diversity among team members was associated
to low citation accumulation, in accordance with previous analysis at the level
of single manuscripts [52], where the highest impact is obtained for papers that
display a balance between the conventional and atypical combinations of prior
work. Contrasting with citation impact, productivity was highest for teams
that were topic focused or ones that maximized knowledge breadth. Moreover,
publications authored solely by core members yield higher impact compared
to those involving transient non-core members, hinting that expanding teams
may not always enhance outcomes for persistent collaborations.

While my analysis reveals features of successful persistent collaborations,
whether the observed patterns reflect a causal relationship between team com-
position and success, or success is simply a prerequisite for collaborations to
persist and survive, is an open question which might be clarified in future inves-
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tigations. Besides, future works investigating team composition might benefit
from integrating additional information about team members, including gen-
der and ethnicity. Indeed, I know at the level of teams defined as single set
of coauthors that gender diversity among members plays a role in the impact
achieved by the publication [127], paving the way for a similar investigation on
the role of gender diversity for persistent collaborations. I note that bibliometric
databases do not include self-declared gender or race by authors and inferring
such metadata from names often introduces algorithmic biases [128] which are
distributed unevenly among other demographic traits [129], highlighting the
difficulties in properly carrying out such analysis.

In the future, these results can be combined with prior theoretical work
[47, 130, 59] to build a more complete theory of team assembly in science. Be-
sides extracting persistent collaborations active over time, I can study team dy-
namics, how teams evolve and transform themselves and collectively adapt to a
scientific ecosystem that constantly evolves in time [131]. Furthermore, a cross-
disciplinary analysis comparing teams in rapidly evolving fields like AI with
those in more stable areas like mathematics, can guide tailored team formation
strategies.

Examining the role of funding on team careers can highlight how external
support mechanisms can promote meaningful persistent collaborations. In-
deed, the scientific ecosystem is largely shaped in response to funding. Over
time, disciplines differ in terms of funding support they receive, with interdis-
ciplinary research so far achieving lower funding success [132], likely impact-
ing the longevity of such teams. Moreover, grant success is strongly dependent
to the collaboration network [133, 79], particularly for young researchers, and
this may incentivize participation in teams on strategic rather than scientific
grounds. From the perspective of individual careers, how persistent collabora-
tions affect they way in which researchers navigate the knowledge landscape is
also an intriguing question to address [134]. Long-term career outcomes of indi-
viduals who participate in high-impact, persistent collaborative experiences can
be compared to those who work in more transient or less successful teams. No-
tably, early-career collaborations with elite scientists predict subsequent career
success [135]. Investigating this aspect further could provide insights into how
early career researchers can strategically navigate collaborations and switch be-
tween teams to enhance their professional growth and impact.

Overall, my work identifies persistent teams in science and captures tempo-
ral as well as compositional patterns of success in shared careers. This research
informs both scientists in building their collaborations and funders in choosing
which research teams to support and promote.
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Data availability

The data from openalex.org used in this chapter is openly accessible for down-
load using the API https://api.openalex.org/works.

Code availability

The code used in this chapter is available at https://github.com/chowdhary-
sandeep/sciscicareers.

C
E

U
eT

D
C

ol
le

ct
io

n

openalex.org
https://api.openalex.org/works
https://github.com/chowdhary-sandeep/sciscicareers
https://github.com/chowdhary-sandeep/sciscicareers


CHAPTER 5

MODEL OF SOCIAL CONTAGION IN A
POPULATION WITH EVOLVING GROUP
STRUCTURE

5.1 Introduction

In the previous chapter, I explored team success in science, examining the
roles of persistent core members and transient collaborators on the team per-
formance. This chapter extends that exploration and investigates how these
teams (groups of scientists) contribute to propagation of ideas throughout the
scientific ecosystem, in particular, focusing on the role of temporal persistence
of these groups. This line of research connects directly to broader questions
about how social contagions spread across networks, a phenomenon exten-
sively studied in fields from epidemiology to sociology [65]. From the viral
spread of the Ice Bucket Challenge to the rapid adoption of smartphone tech-
nology globally, social norms and ideas cascade through networks, profoundly
shaping collective behavior. Such contagion processes, including the spread
of diseases, opinions, and rumors, are ubiquitous in nature [136, 137, 138]. In
all such cases, the contact structure of the underlying population has a cru-
cial role in determining the emerging collective behavior, making network sci-
ence one of the primary tools to investigate spreading dynamics in real-world
systems [139, 140, 65, 141, 142]. For instance, pioneering investigations have
shown that heavy-tailed degree distributions in the contact structure lead to a
vanishing epidemic threshold, a behavior which can not be observed neither in
well-mixed population nor in homogeneous networks [143]. For the biological
spread of pathogens, contagion is typically mediated by pairwise interactions,
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where each link represents an independent source of infection. However, this
mechanism of simple contagion does not seem to accurately describe social con-
tagion. To acquire new ideas, norms or opinions, spreading is better modelled
by complex contagion [67, 144, 145, 146]. In this case, individuals are subject
to the simultaneous pressure of their neighbors, leading to a dynamics of cas-
cades which has also been empirically observed in a number of different con-
texts [68, 69, 70, 71, 72].

For many years, the wide majority of networked systems have been repre-
sented by graphs, collection of edges and links, where interactions are naturally
limited to dyadic ones [147, 148]. However, in most real-world networks, in-
teractions can also occur among groups composed by three or more individu-
als. All these systems are better described by simplicial complexes or hyper-
graphs, which naturally take into account the presence of higher-order inter-
actions, providing a suitable extension of the traditional network framework
beyond pairwise interactions [149, 117, 150, 151]. In particular, simplicial con-
tagion is a newly proposed paradigm that allows one to model at the micro-
scopic scale the effect of group interactions (described as simplices of different
order) on spreading dynamics [73]. Interestingly, if the infection rate associated
to the higher-order interactions is high enough, this leads to the emergence of
new collective behavior, making the transition from the healthy to the endemic
phase explosive, and giving rise to metastable states. I point out that, while
explosive phenomena are in general unusual in traditional epidemic processes
[152], instances of such transitions have been observed in specific cases. A per-
tinent example is the one of cooperative [153] or synergistic contagion in net-
works [154], where a dynamical enhancement in spreading leads to an abrupt
epidemic transition. Explosive transitions have also been observed in multiplex
networks where the spreading dynamics in a layer is coupled to dynamical pro-
cesses taking place on other layers [155, 156].

In context of higher-order interactions, such result was obtained analytically
by a mean-field analysis and confirmed by numerical simulations [73, 157], has
also been replicated under different modeling frameworks, such as the mi-
croscopic Markov chain approach [158], the generalised link equation [159],
approximate master equations [160], and on different higher-order represen-
tations, such as hypergraphs [161, 162, 163]. The disruptive presence of
higher-order interactions is not limited to contagion dynamics, as new collec-
tive behavior has also been observed in the case of synchronization phenom-
ena [164, 165, 166, 167], random walk [168, 169], consensus [170, 171], ecologi-
cal [172, 173] and evolutionary dynamics [174] when extended beyond simple
dyadic ties. For pairwise contagion, the temporal nature of interactions, where
links can be created and destroyed over time, is known to significantly affect the
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5.2. Model of contagion 73

evolution and the long-term properties of the spreading process [175, 176]. In-
deed, temporal networks [177] are routinely used as a modeling framework to
properly capture diffusive processes taking place on realistic populations where
the contact structure changes over time [178, 179, 180, 181]. Recently, also
higher-order social networks have been found to have a non-trivial temporal
dynamics [182]. Yet, so far very little attention has been devoted to understand-
ing how temporality affects spreading on higher-order structures [183].

In this chapter, I extend models of simplicial contagion to the case of
time-varying networks, where both pairwise and higher-order interactions can
evolve over time. I compare the contagion process on static and temporal sim-
plicial complexes. The dynamics of the static case presents bistability, meaning
that the long-term behavior of the system is determined by the size of the ini-
tial seed of infectious nodes. I numerically characterize the basins of attraction
of healthy and endemic states in static and temporal higher-order structures,
showing that persistent temporal interactions anticipate the onset of the en-
demic state in finite-size systems. This means that the same number of initially
infected agents might or might not lead to an endemic stationary state, depend-
ing on the temporal properties of the underlying network structure. To this
aim, I propose a simple model to tune the degree of temporal correlations (per-
sistence of groups) in synthetic structures that evolve over time, and investigate
how this variable affects the long-term outcome of the spreading dynamics. I
show that temporality can significantly reduce the enhancement of epidemics
typically induced by higher-order contagion terms in the forward transition to
the endemic state. By contrast, the backward transition to the infection-free state
remains unaffected by presence of temporal correlation or lack thereof. Finally, I
study simplicial contagion on temporal higher-order networks that present de-
gree heterogeneity, showing once again that temporality hinders higher-order
spreading, but in a less pronounced way than for homogeneous structures.

5.2 Model of contagion

I study social contagion in simplicial complexes which evolve over time. In
particular, following Ref.[73], I consider an SIS model, where each one of the N
interacting nodes can be in either of two states – susceptible (S) or infected (I). I
consider interactions up to groups of three, such that 1-simplices (links) encode
standard pairwise interactions, while 2-simplices describe three individuals in-
teracting together (and this is structurally different from having three links that
form a triangle). This choice to only consider 1 and 2-simplices (pairs and triads
of nodes) is motivated by our observation in Chapter 4 featuring teams, where
we discovered that the most common type of team cores are of size 2 and 3.
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Timet=0 t=1 t=2

Figure 5.1. Temporal higher-order networks.
Schematic of a time-varying higher-order network where both pairwise and higher-order inter-
actions evolve over time.

In a time-step of the SIS model, any infected individual can infect their sus-
ceptible neighbours connected by 1-simplices with a probability β|, and infected
nodes can recover with probability µ and become susceptible again. However,
in the simplicial version of the model, 2-simplices provide an additional way
for a contagion event to happen. In particular, if a susceptible individual is part
of a 2-simplex while the other two members of the simplex are infected, there is
an additional probability β△ to also get infected – associated to a microscopic
description of social reinforcement induced by group interactions.

I write the discrete time evolution equation for the infection probabilities
of each node at a particular instant using the Microscopic Markov Chain Ap-
proach (MMCA) [184]. MMCAs have been extended to temporal networks, al-
lowing for an analytical computation of the epidemic threshold [179], and more
recently to simplicial complexes, though in this context the non-linear term as-
sociated to contagion in 2-simplices only allows a numerical solution [158]. Ac-
cording to this approach, the probability of a generic node i to be infected at
time t + 1 is

pi(t + 1) = (1 − qi(t)qi,△(t))(1 − pi(t)) + (1 − µ)pi(t), (5.1)

where the first term on the right-hand side of Eq. (5.1) represents the probability
at time t for a susceptible node to get infected. This is given by the product of
(1 − pi(t)), the probability that node i is susceptible, and (1 − qi(t)qi,△(t)), the
probability that i is infected by at least one of its neighbours. The second term,
(1 − µ)pi(t), stands for the probability that node i is already infected at time
t and does not recover. Here qi(t) defines the probability that node i is not
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5.3. Social contagion on static and temporal simplicial complexes 75

infected via pairwise interactions with its neighbours,

qi(t) = ∏
j∈Γi(t)

(
1 − β|pj(t)

)
, (5.2)

with Γi(t) denoting the set of 1-simplices containing node i at time t. Similarly,
qi,△(t) defines the probability that node i is not infected by any of its 2-simplicial
interactions,

qi,△(t) = ∏
j,ℓ∈△i(t)

(
1 − β△pj(t)pℓ(t)

)
, (5.3)

with △i(t) denoting the set of 2-simplices containing node i at time t.
Notice how, in contrast with Ref. [158], here Γi(t) and ∆i(t) are functions

of time, and allow us to generalize the MMCA approach to evolving simplicial
complexes.

5.3 Social contagion on static and temporal simpli-
cial complexes

I begin by comparing contagion processes in static simplicial complexes and in
higher-order networks that change over time. A schematic of a time-varying
higher-order network is shown in Fig.5.1 where 1-simplices and 2-simplices are
respectively coloured in blue and yellow. As stated earlier, my focus on 1- and 2-
simplices (pairs and triads of nodes) is motivated by our observation in Chapter
4 featuring teams, where we found that the most common type of team cores
are of size 2 and 3.

In particular, I consider random simplicial complexes (RSCs) with N = 500
nodes generated following the algorithm introduced in Ref. [73]. While RSCs do
not represent real dynamical systems, they provide a special (extreme) case with
zero-temporal correlation for comparison against the static case where temporal
correlation is maximum– a constraint we will relax later. The procedure allows
to obtain homogeneous simplicial complexes with controlled generalised de-
gree properties [185], namely ⟨k|⟩, the standard pairwise degree, and ⟨k△⟩, the
average number of 2-simplices incident on a node. In such model, 1-simplices
are created akin to the Erdös-Rényi model, by connecting any pair (i, j) of ver-
tices with probability p|. Similarly, 2-simplices are added by connecting any
triplet (i, j, ℓ) of vertices with probability p△. For two desired values of ⟨k|⟩
and ⟨k△⟩ it is possible to choose p| and p△ according to: p =

⟨k|⟩−2⟨k△⟩
N−1−2⟨k△⟩ and

p△ =
2⟨k△⟩

(N−1)(N−2) [73].
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Figure 5.2. Contagion on static and temporal simplicial complexes.
I show the fraction of infected nodes at the equilibrium starting from a single infected node as a
function of rescaled pairwise λ| and simplicial λ△ infection rates for static (a) and temporal (b)
simplicial complexes with N = 500 nodes. In the static case, the epidemic onset (solid black line)
as a function of λ| is anticipated as I increase λ△. This suggests that the chosen initial infection
of size 1

N belongs to the basin of the infection-free state for small values of λ△, moving into the
basin of the endemic state upon increasing λ△. For time-evolving higher-order networks such
effect is not observed, and I find a suppression of the endemic phase which can not be reached for
low values of λ|, independently on the value of λ△. The backward transition to the infection-
free state (dashed black lines) is largely unaffected by the temporality of the interactions. I set
µ = 0.1, ⟨k|⟩ = 12 and ⟨k△⟩ = 5 for both scenarios.
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0 1 2
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Figure 5.3. Size of the infected population as function of λ| obtained analyti-
cally in the mean-field limit for different values of λ△.
The basin of the infection-free state shrinks as λ△ is increased allowing earlier onset of endemic
phase for the forward transition.

I am particularly interested in studying how temporality affects the basins
of attraction in the bistable regime which separate the endemic state from the
infection-free state. Thus, I simulate the contagion process by first infecting a
single node chosen at random and check whether this is sufficient or not to fall
into the absorbing state with no epidemics. In particular, I numerically track the
temporal evolution of the system at each time step t by updating the infection
probabilities pi(t) for all nodes as dictated by Eq. (5.1). I iterate Eq. (5.1) for
long time (10000 time steps) and compute the density of infected node in the
stationary state by averaging the infection probabilities as ρ = ∑i pi

N .
In Fig. 5.2a I show ρ for a static RSC as a function of rescaled pairwise,

λ| = β|
⟨k|⟩

µ , and simplicial, λ△ = β△
⟨k△⟩

µ infection parameters. In Fig. 5.2b I
compute ρ for RSCs that change over time, where at each time t I generate a
new realisation of the RSC model with the same ⟨k|⟩ and ⟨k△⟩ of the static sim-
ulations. In both heatmaps, two distinct regions separated by the black solid
curves appear, an infection-free region where ρ = 0 and an endemic region
where a macroscopic fraction of the nodes is infected.

In the static case, as I increase λ△, the epidemic onset occurs for progres-
sively smaller values of λ| in finite-size systems. This means that the seed of in-
fectious nodes of fixed size 1

N belongs to the basin of attraction of the infection-
free state for small values of λ△, while it moves to the basin of the endemic
state upon increasing λ△. Coherently with the results obtained with the mean-
field formalism [73], above a critical value of λ|, the system always reaches a
non-zero fraction of infected agents which grows together with λ△. It is worth
mentioning that in static structures [Fig. 5.2a] I find a slight anticipation of the
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Figure 5.4. Effect of initial infection size on the onset of the endemic state.
(a) Density of infected nodes for static (b) and temporal (c) simplicial complexes as function
of λ| for three different initial infections, p0 = 0.1

N , 0.5
N , 1

N and two different values of rescaled
simplicial infectivity, λ△ = 15 (dashed curves) and λ△ = 30 (solid curves). An early onset
of the endemic phase is observed for sufficiently high values of the infected seeds and λ△ with
a MMCA approach, compatible with my observations in (a). By contrast, in temporal simpli-
cial complexes, even for higher values of initial infection 1

N and high simplicial infectivity,
(e.g.λ△ = 30), there is a striking suppression of contagion and early onset of endemic state does
not occur. I set µ = 0.1, ⟨k|⟩ = 12 and ⟨k△⟩ = 5 for both static and temporal scenarios.

epidemic threshold due to the MMCA as compared to the mean-field treatment,
according to which the critical threshold λc

| = 1 for λ△ = 0. This is consistent
with what has been already observed in Refs. [158, 159]. More interestingly,
below this critical value, it is still possible to end up in the endemic state due
to the higher-order contributions, but only if the seed of infectious nodes is big
enough (critical mass). In this case, the system undergoes an abrupt transition.

Surprisingly, by contrast, λ△ does not affect the onset of the epidemics in
temporal simplicial complexes of finite size. This is clear from Fig. 5.2b, where
the transition from the healthy to the endemic state is only observed as a func-
tion of λ|, with the critical point λc

| = 1 coinciding with what predicted by the
mean-field approach [73]. Notice indeed that critical mass effects are completely
suppressed, and below λc

| the same seed of infectious nodes can never sustain
the epidemics –as opposed to what happens in the static case for sufficiently
high values of λ∆.

So far I have focused on forward transitions from the infection-free state
to the endemic state. Yet, abrupt transitions are typically associated to the
emergence of hysteresis cycles. For this reason I also explore the backwards
transition from the endemic phase to the infection-free state by choosing the
stationary-state infection probabilities obtained at the higher value of λ| as the

C
E

U
eT

D
C

ol
le

ct
io

n



5.4. Contagion on temporally correlated higher-order networks 79

initial seeds for simulations at lower λ| values. I show the backward transitions
as dashed black lines in Fig. 5.2a, 5.2b and find that they remain unaffected by
temporality.

In Fig. 5.2, I fixed the size of the initial seed of infectious nodes at ρ(0) = 1
N .

To better characterize the two basins of attractions in the bistable regime and
the associated critical mass effects, in the follwing analyses, I vary the initial
seed size and numerically investigate the onset of the epidemic. In particular,
in Fig. 5.3 I first show the analytical solution for the stationary ρ in the mean-
field approximation derived in Ref. [73] as function of λ| for different values
of λ△. The dashed curves represent the unstable solutions that separate the
basin of the infection-free state (ρ = 0) from the endemic state (ρ > 0). As
λ△ is increased, I see that the basin of the infection-free state shrinks so that
the endemic phase can be reached for progressively smaller values of initial
infection size ρ(0). Indeed, consistent with this, my numerical investigations on
static simplicial complexes (Fig. 5.4a) reveal that while a small initial infection
of size p0 = 0.1

N does not lead to early onset of endemic phase no matter the
value of λ△, increasing the initial seed size to 0.5

N or 1
N leads to early onsets on

the endemic phase in the system with N = 500 nodes. As expected, the onset
occurs even earlier for higher values of λ△. By contrast, in temporal simplicial
complexes, as shown in Fig. 5.4b, the onset of the endemic phase in temporal
simplicial complexes is largely independent of λ△, consistently with what was
observed in Fig. 5.2b. This suggests that the basin of the infection-free state
shrinks fast in static simplicial complexes as λ△ increases. As a consequence,
the relevance of group effects is strongly mitigated when I consider temporality,
a realistic feature of many real-world social systems.

5.4 Contagion on temporally correlated higher-
order networks

In the previous section I observed that introducing time-evolving structures can
significantly impact contagion on higher-order networks, by altering the basin
of the infection-free state in finite-size simplicial complexes. However, the way
in which network structures evolve can be different. For instance, a social sys-
tem may change more or less quickly, giving rise to different temporal corre-
lations among networks at consecutive times. I thus consider as a measure of
temporal correlation:

σ =
1

2T

T

∑
t=1

n(|t ∩ |t+1)

n(|t ∪ |t+1)
+

n(△t ∩△t+1)

n(△t ∪△t+1)
(5.4)

C
E

U
eT

D
C

ol
le

ct
io

n



80
CHAPTER 5. MODEL OF SOCIAL CONTAGION IN A POPULATION WITH

EVOLVING GROUP STRUCTURE

Low correlation

Timet=0 t=1 t=2

High correlation

Timet=0 t=1 t=2

Figure 5.5. A schematic of temporal simplicial complexes with low and high
temporal correlations.

where △t is the set of 2-simplices at time t and |t is the set of 1-simplices
which are not part of any 2-simplex at time t, n(△t ∩ △t+1) is the number of
2-simplices that persist from time t to the next time step t + 1 and n(△t ∪△t+1)
is the total number of 2-simplices present at time t or t + 1. Analogously,
n(|t ∩ |t+1) and n(|t ∪ |t+1) are defined for 1-simplices.

In order to investigate how the evolution of the network affects the spread of
contagion, I introduce a model to systematically tune temporal correlations in
simplicial complexes, where at each time the network is described by a RSC.
In details, I recursively generate a new simplicial complex at time t + 1 by
randomly rewiring with probability f ∈ [0, 1] the 1-simplices and 2-simplices
present at time t. In this way, I am able to generate a temporal sequence of RSCs.
Using such a model for sparse graphs, I can tune the temporal correlation σ in
an effective range between 0, describing the absence of correlation, and 1, where
network structure does not change over time. Two schematics of temporal sim-
plicial complexes with low and high correlation are shown in Fig. 5.5.

In the following analysis, I focus on the forward transition to endemic state
only, as the backward transition is unaffected by temporality as observed in
Fig. 5.2 (dashed curves). I first infect a single node and simulate the epidemic
process on top of two distinct sequences of temporal RSCs, one with correlation
σ = 0.3 and the other with correlation σ = 0.7, and compute the fraction of
infected nodes in the asymptotic state as a function of β△. As shown in Fig. 5.6,
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Figure 5.6. Size of the infected population at the steady state as a function of
β△ for two different temporal correlations, σ = 0.7 and σ = 0.3.
The critical value of the group infection rate βc

△ to enter the endemic state is lower for higher
temporal correlation. Both curves display an abrupt transition as a function of β△. I set β| =

0.85 µ
⟨k|⟩

with ⟨k|⟩ = 12 and ⟨k△⟩ = 5.

in both cases the endemic phase is separated by an abrupt transition from the
healthy region. The critical group infection rate for the transition to occur is
higher in the first case.

I systematically investigate such phenomenon in Fig. 5.7, where I compute
the critical group epidemic threshold as a function of σ. I observe that βc

△ de-
creases monotonically with the temporal correlation σ and it takes its minimum
value for maximally correlated RSCs, corresponding to a static simplicial com-
plex. Consistently with what was observed in Fig. 5.2 and Fig. 5.4, this suggests
not only that group effects are weaker in temporal against a static setups, but
that this is also the case the more diverse the temporal evolution of the system
is.

I also note that the absence of a threshold βc
△ for values of temporal correla-

tion below a critical σc, marked by a dashed vertical line, is due to the existence
of a threshold of temporal correlation below which the transition to an endemic
state is not possible, no matter the value of β△.

5.5 Contagion on degree-heterogeneous temporal
higher-order networks

In the previous section I investigated the effects of temporality in homogeneous
simplicial complexes. I now turn my attention to the role of degree heterogene-
ity in temporal higher-order networks [161, 162, 186, 163].
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Figure 5.7. Effect of temporal correlations in higher-order networks.
Critical group infection rate computed as a function of the temporal correlation σ. The critical
value βc

△ is higher for decreasing values of σ, and the epidemic threshold disappears below a
critical value of temporal correlation σc (grey line). This indicates that group effects are stronger
in highly correlated higher-order networks. I set β| = 0.85 µ

⟨k|⟩
, and each point in (c) was

obtained by averaging over 100 RSCs with ⟨k|⟩ = 12 and ⟨k△⟩ = 5.

I generate scale-free (SF) simplicial complexes following a growth model in-
troduced in [186], where both 1-simplices and 2-simplices follow a scale-free
distribution, and where the sequences of k| and k△ are maximally correlated.
Next, I obtain a temporal sequence of SF simplicial complexes via recursively
performing degree preserved rewiring at each time step such that the degree
distribution of the simplices does not change. Desired values of temporal cor-
relation can be achieved by suitably choosing the rewiring probability.

I simulate the epidemic process on top of two distinct sequences of SF sim-
plicial complexes corresponding to the two extreme values of temporal correla-
tion σmax = 1 and σmin ≈ 0. For both configurations, I investigate two different
scenarios of seeding infection, namely on the hub or on one of the leaves, and
compute the fraction of the infected population in the long-time limit as a func-
tion of β△. As shown in Fig. 5.8a, for both hub and leaf cases, the critical value
of βc

△ to enter the endemic state is lower for higher values of temporal correla-
tion, in agreement with what I found for homogeneous structures. Again, I only
show the forward transition to the endemic state as the backward transition is
not affected by temporality. As expected, seeding the infection on the hub en-
hances the epidemics. In particular, in the considered case, βc

△ decreases by an
order of magnitude when the infection is started on the best connected node of
the network.

To properly quantify the effect of heterogeneity, I systematically compare the
onset of the endemic state in the heterogeneous simplicial complex as a function
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Figure 5.8. Effect of heterogeneity in higher-order networks.
(a): Fraction of the infected population on heterogeneous scale-free (SF) simplicial complexes
(power-law exponents γ| = 2.2 and γ△ = 2.5) as a function of β△ for maximum (dashed lines)
and minimum (solid lines) temporal correlation. I consider two different scenarios for initial
infection: hub (red) and leaf (blue). High temporal correlation reduces the epidemic thresh-
olds. (b): Epidemic thresholds as a function of βc

| and βc
△ for heterogeneous and homogeneous

simplicial complexes with the same number of interactions for the forward (solid curves) and
backward (dashed curves) transition. On temporal SF complexes with no correlation, forward
transition to the endemic state is possible for all considered values of β| upon increasing β△
both in the hub (red) and leaf (blue) seeding scenarios, in contrast with RSCs (green) where the
lack of temporal correlation prevents the onset of endemic phase entirely below a critical β|. For
both SF and RSCs, the backward transition to infection-free state occurs upon decreasing β△,
however a lower value of β△ is required for SF complex as compared to RSCs. For panel (a), I
set β| = 0.25 µ

⟨k|⟩
, for both (a) and (b), I set µ = 0.2, ⟨k|⟩ = 10, ⟨k△⟩ = 4.

of both β| and β△ against a homogeneous simplicial complex with the same
number of 1- and 2-simplices. As shown in Fig. 5.8b, in uncorrelated temporal
SF complex, for the forward transition, it is possible to reach the endemic state
for all β| below a critical value upon increasing β△. This is in contrast with
RSCs where, below a critical β|, the lack of temporal correlation prevents the
onset of the endemic phase entirely, as already observed in Fig. 5.2b. In such
uncorrelated temporal case, for both SF and RSCs, the backward transition to
infection-free state occurs upon decreasing β△, however a lower value of β△
is required for SF complex as compared to RSCs. Homogeneous structures are
the safer against contagion: when structural heterogeneity is present, starting
the epidemic from a peripheral node will have a milder effect than if contagion
begins from the hub, but the system is more prone to reach the endemic state
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EVOLVING GROUP STRUCTURE

compared to a homogeneous network with the same number of interactions.

5.6 Discussion

Motivated by data-driven investigations of careers of persistent teams in chap-
ter 4, in this chapter I have introduced a modeling framework for spreading
of ideas in temporally changing populations, which broadly speaking, lays the
foundation for investigations in how ideas spread in science. In technical de-
tails, I investigated the effect of temporality and persistence of group inter-
actions (or teams) by modeling the population as temporal higher-order net-
works. I focused primarily on the forward transition to the endemic state and
showed that contagion processes behave remarkably differently on temporal
and static finite-size homogeneous simplicial complexes. While in static net-
works the onset of the endemic state depends strongly on both β| and β△,
in random temporal networks, where no correlations are present among time-
consecutive interaction structures, the effect of the higher-order contagion pa-
rameter is much weaker. This is linked to changes in the basins of attractions
of the epidemic-free state, which shrinks fast for static structures when increas-
ing the infectivity of the 2-simplices. As a consequence, temporality can have
a direct impact on critical mass effects – already present in the static case [73]–
by reshaping the basins of attractions of the system. In this scenario, a seed
of infectious nodes of a fixed size can lead the system to both the endemic
and epidemic-free states according to the temporal properties of its interactions.
More in details, I investigated the effect of the initial infection size on the onset
of the endemic state, finding that while for very small values of initial infection
the onset of the epidemic is not impacted by group infectivity in both static and
temporal simplicial complexes, a reasonable initial infection of size 1

N leads to
striking differences between the two cases. Intermediate scenarios in the for-
ward transition can be achieved on simplicial complexes with intermediate lev-
els of temporal correlations. In contrast to the forward transition, I observed
that the backward transition to infection-free state was unaffected by presence
or absence of temporal correlations.

I also investigated the effect of degree heterogeneity on higher-order conta-
gion. I confirmed that even in scale-free simplicial complexes, the absence of
temporal correlations increases the infectivity required to achieve the endemic
phase. However, in contrast to homogeneous simplicial complexes, in hetero-
geneous structures the lack of temporal correlations does not completely hinder
the effect of group infectivity, and the endemic state can still be reached with a
high enough value of β△. The parameter space associated to the endemic phase
increases when the infection is seeded on a well-connected hub of the simpli-
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cial complex. However, even when the infection starts from a poorly connected
node, the onset of the epidemics is always easier to achieve compared to an
homogeneous simplicial complex with the same number of interactions.

As a possible limitation and future direction, I note that in this chapter, I
did not attempt a calculation of the temporal correlation in scientific collabora-
tion hypergraphs of different fields from OpenAlex data which I have used in
Chapter 2 and 4. This could feed into the framework of this chapter allowing
us to observe the effect of different discipline-specific temporal correlations in
collaboration hypergraphs on the spreading of innovations. In the future, us-
ing my framework and comparing traditional fields like mathematics with fast
changing fields like Machine learning and AI could also be interesting.

In the future, my temporal framework could be applied to investigate other
dynamical processes recently extended beyond pairwise interactions, including
opinion [170, 187], convention [171], and evolutionary dynamics [174]. Taken
together, my analysis suggests the importance of considering temporality and
persistence of interactions, a feature of many real-world systems, when inves-
tigating contagion processes on higher-order networks. As most higher-order
social networks naturally evolve, with both pairwise and group interactions
changing over time [182], my results suggest potential strategies to control con-
tagion, by suitably tuning the temporal network structure. In context of the
scientific ecosystem, this could enable achieving innovation faster by tuning
the collaboration structure.
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CHAPTER 6

CONCLUSION

This thesis set out to quantify success in a data-driven fashion across a variety of
domains, contributing to the emerging field known as Science of Success. It ad-
vances the understanding of success of single individuals by tracking them over
larger career paths and extends this investigation to team success and their role
in spreading innovations in later chapters. Unlike previous studies that focused
on individual achievements or overlooked the significance of social networks,
by looking at whole careers– for both individuals and teams– this research digs
into the correlates of success in scientific and sporting contexts.

First, I investigated success in individual scientific careers from the lens of
funding. I found that funding success depends not only on a scientist’s work
but also on where they stand in the wider network of science. Specifically, I
discovered that early-career collaborations with U.S. institutions are crucial for
securing major EU funding, revealing imbalances in EU-U.S. academic relation-
ships, highlighting the role a scientists social network plays in funding success
in the EU. This dependency suggests a potential risk of European research align-
ing too closely with American priorities, influenced more by strategic consider-
ations than by scientific merit alone.

Secondly, the research extends to success patterns in individual careers in
the sporting world, analyzing data from nearly a million chess players on
Lichess.org. I found winning and losing streaks in chess, similar to those in
scientific careers, indicating such dynamics may be common across multiple
domains. By examining chess openings, I found players focus on fewer, more
deeply understood strategies, developing a personal style over their career. In-
terestingly, players often do not end up using their most successful openings,
especially experts, possibly due to the complex counterplays by skilled oppo-
nents. This study adds to the scientific understanding of human performance
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in chess.
Thirdly, I move beyond individual entities and investigated team careers in

science, analyzing half a million teams. Teams with diverse disciplinary back-
grounds tend to have shorter lifespans, highlighting the importance of achiev-
ing synergy early in long-term collaborations. High-impact periods for teams
often cluster, similar to hot streaks in both chess and individual scientific ca-
reers. While multi-university teams have been seen as more successful since
the 2000s, this is largely due to improved remote collaboration via ICT technolo-
gies. However, impactful teams balanced knowledge breadth well, contrasting
with teams that either focused narrowly on topics or expanded knowledge too
broadly, which often resulted in lower citation impacts. My research under-
scores the complexity of team dynamics in science, suggesting that composition
may shape the success as well as longevity of collaborations. This work sets the
stage for future research on how team composition, especially gender and eth-
nic diversity, impacts team success, and how strategic collaborations influence
career trajectories in science.

Lastly, I explore how scientific ideas propagate within these temporally dy-
namic populations where members interact in groups. In particular, I explore
how sustained, long-term interactions affect the spread of innovations using
an agent-based model to social contagion. Using simulations on a temporally
evolving population structures modelled via temporal simplicial-complexes, I
found that group interactions bring about faster spreading of ideas but only
when interactions are persistent. This study reveals the crucial role of persis-
tent groups and temporal correlations in the contact structure in the spreading
of innovations. By studying how ideas flow through groups that vary in their
stability and member composition, we can uncover strategies to accelerate the
diffusion process and potentially enhance the rate of collective scientific discov-
ery.

In the future, methods I developed for quantifying human performance in
chess could be used to study successful careers in other sports such as go, tennis,
cricket etc. My results on success of scientific teams can be combined with prior
theoretical work on team assembly to build a more complete framework of how
teams form in science. Besides extracting persistent collaborations active over
time, one can study team dynamics, how teams evolve and transform them-
selves and collectively adapt to a scientific ecosystem that constantly evolves
in time. Furthermore, a cross-disciplinary analysis comparing teams in rapidly
evolving fields like AI with those in more stable areas like mathematics, can
guide tailored team formation strategies.

Future research could combine different themes of my thesis and examine
the role of funding on team careers can highlight how external support mecha-
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nisms can promote meaningful persistent collaborations. Indeed, the scientific
ecosystem is largely shaped in response to funding. From the perspective of
individual careers, how persistent collaborations affect they way in which re-
searchers navigate the knowledge landscape is also an intriguing question to
address [134]. Long-term career outcomes of individuals who participate in
high-impact, persistent collaborative experiences can be compared to those who
work in more transient or less successful teams. Notably, early-career collabo-
rations with elite scientists predict subsequent career success [135]. Investigat-
ing this aspect further could provide insights into how early career researchers
can strategically navigate collaborations and switch between teams to enhance
their professional growth and impact. Lastly, a data-driven investigation into
the roles that teams play in spreading ideas within scientific ecosystems could
be used to validate the theoretical framework developed in the final chapter of
this thesis. This approach could also help identify the types of teams that are
most effective at maximizing the spread of innovative ideas.

In summary, this thesis contributes to the emerging field of Science of Suc-
cess by identifying key factors that drive successful careers in both individual
and team settings, in science and sports. It highlights the critical role of social
networks, collaboration dynamics, and long-term interactions in shaping career
trajectories and success. By integrating these insights, this work offers valuable
guidance for funding bodies, institutions, and individuals aiming to foster sus-
tained success in competitive intellectual fields. Overall, this thesis focuses on
success in time, characterising the careers of successful individuals and teams
and quantifies the difference in behaviour of successful and the less successful
scientists and chess players.

I hope this work opens doors for future research that employs the detailed
data analysis presented in this thesis to understand the factors leading to suc-
cessful careers in intellectual domains. In Science, it can inform various stake
holders such as funding agencies and institutions on which individual careers
and teams to support. In Sports, it can serve as a roadmap for developing play-
ers on how to be shape their careers to set themselves up for success.
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[8] Burcu Yucesoy and Albert-László Barabási. Untangling performance
from success. EPJ Data Science, 5(1):1–10, 2016.

[9] Daniel J Boorstin. The image: A guide to pseudo-events in America. Vintage,
1992.

[10] Amy Argetsinger. Famesque: Amy argetsinger on celebrities famous for
being famous. Washington Post, 2013.

91

C
E

U
eT

D
C

ol
le

ct
io

n



92 BIBLIOGRAPHY

[11] Neal Gabler. Toward a new definition of celebrity. USC Annenberg: The
Norman Lear Center, 2001.

[12] Arnout Van de Rijt, Eran Shor, Charles Ward, and Steven Skiena. Only
15 minutes? the social stratification of fame in printed media. American
Sociological Review, 78(2):266–289, 2013.

[13] Openalex: A fully-open index of scholarly works, authors, venues, insti-
tutions, and concepts. https://openalex.org/.

[14] Dalmeet Singh Chawla. Massive open index of scholarly papers launches.
Nature, 2022.

[15] Diana Hicks, Paul Wouters, Ludo Waltman, Sarah De Rijcke, and Ismael
Rafols. Bibliometrics: the leiden manifesto for research metrics. Nature
News, 520(7548):429, 2015.

[16] An Zeng, Zhesi Shen, Jianlin Zhou, Jinshan Wu, Ying Fan, Yougui Wang,
and H Eugene Stanley. The science of science: From the perspective of
complex systems. Physics reports, 714:1–73, 2017.

[17] Aaron Clauset, Daniel B Larremore, and Roberta Sinatra. Data-driven
predictions in the science of science. Science, 355(6324):477–480, 2017.

[18] Cassidy R Sugimoto and Vincent Larivière. Measuring research: What ev-
eryone needs to know. Oxford University Press, 2018.

[19] Santo Fortunato, Carl T Bergstrom, Katy Börner, James A Evans, Dirk Hel-
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Barabási. Historical comparison of gender inequality in scientific careers
across countries and disciplines. Proceedings of the National Academy of
Sciences, 117(9):4609–4616, 2020.

[26] Maxwell A Bertolero, Jordan D Dworkin, Sophia U David, Claudia López
Lloreda, Pragya Srivastava, Jennifer Stiso, Dale Zhou, Kafui Dzirasa,
Damien A Fair, Antonia N Kaczkurkin, et al. Racial and ethnic imbalance
in neuroscience reference lists and intersections with gender. BioRxiv,
pages 2020–10, 2020.

[27] Dennis L. Murray, Douglas Morris, Claude Lavoie, Peter R. Leavitt, Hugh
MacIsaac, Michael E. J. Masson, and Marc-Andre Villard. Bias in research
grant evaluation has dire consequences for small universities. PloS One,
11(6):1–19, 06 2016.

[28] Sam Zhang, K Hunter Wapman, Daniel B Larremore, and Aaron Clauset.
Labor advantages drive the greater productivity of faculty at elite univer-
sities. Science Advances, 8(46):eabq7056, 2022.
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