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Abstract

The scope of this thesis is the study of community currencies for basic income pilots

and cash transfer programmes. I empirically study and analyse the network structure and

the dynamics of two community currency systems with the aim of assessing their socioe-

conomic impact by using network science tools. The first case study is the Sarafu token

network, a community currency used in cash transfer programmes for humanitarian aid in

Kenya during the COVID-19 emergency. The second case study is Circles UBI network, a

pilot project for universal basic income in Berlin, which was also active during the COVID-

19 emergency. In both cases, the use of a digital infrastructure allows for analysis of the

topology of the economy underneath, study of user behaviour, and assess the state of the

currency network. The contribution of this work is two-fold. First, I provide a comprehen-

sive transaction network analysis of these two types of social innovation for humanitarian

aid. Second, I provide a new approach for studying an economic system, in particular,

related to the problems of recirculation and economic synergy. The tools introduced in

the present study have a broad field of applications. They can help policymakers to assess

similar projects, and in general those that include monetary interventions through a digital

infrastructure.
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1 Introduction

Community Currency Systems (CCSs) are payment systems that circulate in a limited geo-

graphic region in parallel with the official currency. A Community Currency System (CCS) is

not enforced by the state but is based on agreements among members of the community (Blanc,

2011, 2012; Gomez, 2018; Gómez and Dini, 2016; Greco, 2001; Greco, 2013). CCSs have

been explored as innovative methods for social and humanitarian interventions that could in-

duce endogenous local development, empower local communities, and at the same time deliver

humanitarian aid (Fare et al., 2015; Gomez, 2018; Lim and Nakazato, 2019; Martı́n Belmonte

et al., 2021; Nakazato and Hiramoto, 2012; Nakazato and Lim, 2017; Ruddick et al., 2015;

Ussher et al., 2021; Zeller, 2020). Furthermore, their countercyclic (or macrostabiliser) effect

and the local multiplier effect may play an important role in improving the resilience of the

local economy (Gelleri and Stodder, 2021; Groppa, 2013; Lucarelli and Gobbi, 2016; Martı́n

Belmonte et al., 2021; Roca et al., 2024; Stodder, 2000; Stodder and Lietaer, 2016). In recent

decades, several CCSs digitalised their payment infrastructure, opening new possibilities for

research. As a payment system, the transaction network spans a directed, weighted, tempo-

ral network, where the nodes are the individuals or companies, and the time-stamped directed

weighted edges correspond to transactions. In this work, the transactions are temporally aggre-

gated into weighted directed edges; however, the analysis of some temporal dynamics is also

included in the study of currency recirculation.

This work analyses two CCSs, the Sarafu token and the Circle UBI networks. Sarafu token

network is a digital CCS used as a payment system in Kenya and organised by the non-profit

organisation Grassroots Economics (Mattsson, Criscione, and Ruddick, 2022). In the period

analysed, it was used as part of an emergency cash transfer programme during the COVID-19

emergency (Ruddick, 2021). The humanitarian aid campaign was co-designed with the Kenyan

Red Cross and named ”Community Inclusion Currency”. A cash transfer programme is used

in emergency contexts to transfer money or vouchers to people in need which allow them to

buy goods and services. A ”Community Inclusion Currency” is a specific type of local voucher

system implemented for those humanitarian cash transfer programmes, which can be used only
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in a predefined geographic region and/or within a local network of participants. It is argued that,

once this local voucher is issued and its recirculation is bounded to a defined geographic area, it

could also boost local development. Local development is triggered whenever an increase in the

demand for goods and services satisfies the unused productive capacity of the region (Ussher

et al., 2021). However, a very limited number of quantitative studies analysed the economic

impact of local voucher systems in humanitarian cash transfer programmes.

The second project analysed is the Circles UBI Berlin pilot. Circles UBI was used as a

digital CCS in Berlin and was organised by the Circles Coop cooperative. The Circles Coop

was active in Berlin (Germany) from October 2021 until December 2023 (Avanzo et al., 2023;

Longo et al., 2024; Papadimitropoulos and Perperidis, 2024). It was the first Universal Basic

Income (UBI) project designed around a community currency network that adopted blockchain

technology. The decentralised technology was designed to empower the self-organisation of the

participants, who met regularly in democratic monthly assemblies and weekly markets (Avanzo

et al., 2023; Longo et al., 2024; Papadimitropoulos and Perperidis, 2024). As summarised

by Papadimitropoulos and Perperidis (2024) and Longo et al. (2024), a UBI must have four

main characteristics: 1. universality, each individual is entitled to get it; 2. unconditionality,

the distribution does not depend on certain requirements; 3. permanent throughout life and

regularly disbursed; and 4. payment in cash which can be used to claim enough goods and

services to cover ’basic’ needs. During the COVID-19 emergency, the pilot project successfully

helped to support some unemployed people and some businesses in the network, as reported

by a recent qualitative study (Longo et al., 2024). It is worth mentioning that there are only

two other similar projects of UBI adopting a local currency: Maricá Basic Income in Brazil

(Balakrishnan et al., 2022) and REC Barcelona in Spain (Martı́n Belmonte et al., 2021; Roca

et al., 2024). Quantitative studies on Maricá Basic Income are still ongoing, while studies on

REC Barcelona are reported in the Literature Review.

The main contributions of this work can be summarised as follows. This work tries to cover

a gap in the literature by providing quantitative analytical tools which can be used to assess

the circulation of a digital community currency system. First, the role of cyclic structures is

analysed by applying a novel topological categorisation for directed networks. Only a few
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recent studies focused on the analysis of the role of cyclic structures in transaction networks

(Iosifidis et al., 2018; Mattsson et al., 2023), but limited to cycles of length 2, 3, 4, and 5. The

author has already developed and tested this technique in a previous work (Criscione, 2024)

which is based on the distinction between cyclic and acyclic components. Second, the role of

recirculation is analysed between different components and time periods. In fact, the networks

are divided into three periods each, according to the structural changes identified quantitatively

using the causal fidelity index (Avanzo et al., 2023; Lentz et al., 2013) and qualitatively based on

previous studies (Longo et al., 2024; Mattsson, Criscione, and Ruddick, 2022). Third, a novel

measure of local circulation is introduced, called circular network synergy. As explained in

the Literature Review, this metric is deeply connected to other existing economic phenomena,

namely the local multiplier effect and the synergy effect. Finally, the work concludes with

a comparison of the evolution of both networks, Sarafu and Circles, which was never done

before.

The main research questions that are unfolded throughout this work are the following:

1. RQ1. How did the network topology of the Sarafu and Circles networks change over

time? Structural changes are detected and used to split the temporal networks into three

periods each. Each period is analysed separately by considering the aggregated network.

After that, a topological categorisation uniquely assigns a label to nodes and edges. The

categorisation is based on the detection of cyclic and acyclic components, and single-

nodes.

2. RQ2. How did the currency recirculation in these two networks change over time? After

having defined these topological components, the currency recirculation and its frequency

are analysed in both networks.

3. RQ3. How did the economic synergy in these two networks change over time? A novel

metric called circular network synergy is applied to measure the participation of users in

cyclic components. This metric is also compared to evolving capacity metrics (ascen-

dency and systemic reserve) and economic multiplier.

In Chapter 2, a comprehensive review of the literature is provided. The first part of the
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literature review introduces the concept of local multiplier effect and synergy effect, as described

in the economic literature. These two concepts clearly describe a specific type of network effect,

which could be partially caused by the presence of directed network cycles that allow for regular

and consistent currency recirculation. The following part of the literature review presents the

role of directed network cycles in payment systems and economic theory. The final part of the

literature review is dedicated only to network science methods for community currency systems

and the relative contribution of this work.

In Chapter 3, the data from the two transaction networks are presented. The most important

information about the history of the projects is also reported. The networks are then divided

into three periods, in line with structural changes that occur during the observed period. Some

analytical information on degree, transactions, and volume distributions is also added.

In Chapter 4, the methods adopted in this work are presented. An analytical model using

graph theory is used to show the limits of the economic multiplier as it is currently measured

and estimated in economics. The topological categorisation and the study of recirculation are

presented (from Criscione (2024)). Finally, a novel metric is introduced that aims to measure

economic synergy in a transaction network, called circular network synergy.

In Chapter 5, the results of the analyses are shown for both projects, Sarafu token and

Circles UBI networks. The sections reflect the methods used in this paper: topological analysis,

recirculation, and circular network synergy. A comparison of the systems concludes the chapter.

Finally, in Chapter 6 a discussion of the results concludes the work.

2 Literature Review

CCSs are payment systems that circulate in a limited geographic region in parallel with the of-

ficial currency. A community currency is not enforced by the state but is based on agreements

among members of the community (Blanc, 2011, 2012; Gomez, 2018; Gómez and Dini, 2016;

Greco, 2001; Greco, 2013). Community currency systems have been explored as innovative

methods for social and humanitarian interventions that could induce endogenous local develop-

ment, empower local communities, and at the same time provide humanitarian aid (Fare et al.,

2015; Gomez, 2018; Lim and Nakazato, 2019; Martı́n Belmonte et al., 2021; Nakazato and
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Hiramoto, 2012; Nakazato and Lim, 2017; Ruddick et al., 2015; Ussher et al., 2021; Zeller,

2020). Furthermore, their countercyclic (or macrostabilizer) effect and the local multiplier ef-

fect may play an important role in improving the resilience of the local economy (Gelleri and

Stodder, 2021; Groppa, 2013; Lucarelli and Gobbi, 2016; Martı́n Belmonte et al., 2021; Roca

et al., 2024; Stodder, 2000; Stodder and Lietaer, 2016).

It is argued that CCSs can promote sustainable development, but empirical evidence is not

yet sufficient (Michel and Hudon, 2015; Silva et al., 2024). The main systematic review of the

topic reports about 3000 clusters of projects in 23 countries and 6 continents in 2015 (in Michel

and Hudon (2015) from Seyfang and Longhurst, 2013). The authors (in Michel and Hudon

(2015)) reviewed 48 major studies that attempt to assess the economic, social, and environmen-

tal impact of CCSs projects. One of the main conclusions is that most of the methodologies

adopted in those studies are not sufficient to estimate the impact of a CCS project, due to the

lack of control groups or similar techniques to test the statistical significance of empirical find-

ings. In addition, a standardised and accepted impact assessment procedure is still lacking,

although one was proposed and used in a few cases (Place and Bindewald, 2015), and another

recent one was recently proposed but not yet applied (Diniz et al., 2024). With this premise,

the authors did not find any study reporting a meaningful and significant economic and envi-

ronmental impact. On the other hand, the impact on social sustainability seems to have some

evidences: community building and empowerment, social inclusion, etc. Since this systematic

review of the literature was published in 2015, a few progresses have been made in studying

the countercyclic effect (or macrostabilizer) (Gelleri and Stodder, 2021; Stodder and Lietaer,

2016), estimating the local multiplier effect (Martı́n Belmonte et al., 2021; Roca et al., 2024),

and analysing the socioeconomic network (Appleby et al., 2024; Criscione, 2024; Iosifidis et

al., 2018; Lim and Nakazato, 2019; Mattsson, Luedtke, and Takes, 2022; Mattsson et al., 2023;

Nakazato and Lim, 2017, 2024; Nakazato et al., 2022) of CCSs. However, statistical methods

adopted in the field are still very few and this work aims to fill the gap by providing techniques

for the impact assessment of CCS using network science tools.

Some studies on digital community currencies used network science techniques for their

characterisation. One of the first studies focused on a convertible community currency, Tomamae-
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cho, which was active in Hokkaido for only three months (Kichiji and Nishibe, 2008). Their

findings confirmed that the transaction network was characterised by a power law decay of the

degree distribution, dis-assortative behaviour, and a ”small world” feature. The authors found

that the ratio of the exponents of in-degree to out-degree distributions decreases with the ve-

locity of the currency. They also measure the network centralisation (Freeman, 1978) of the

transaction graph defined as the ”ratio of the sum of actual difference between the degree cen-

trality of the most central actor and that of all the other actors in the network and the theoretical

maximum possible sum of differences in actor degree centrality” (from p.282, note 15 in Kichiji

and Nishibe (2008)). One of their main findings is that network centralisation is positively

correlated with transaction volume. Regarding the Sarafu data used in this paper, the decay

of the power law and the disassortative behaviour were already confirmed in a previous work

(Mattsson et al., 2023). In this work, the power law decay is confirmed and reported in both

networks, Sarafu and Circles (see Chapter 3). This may also confirm the strong role of pref-

erential attachment in CCSs, as suggested by recent agent-based simulations (Reyns, 2024).

According to Reyns (2024), the formation of the network of CCSs is mainly driven by a value

alignment between members, which redirects their consumption preferences towards the cur-

rency network. However, according to the author, the economic impact on members would be

effective as long as a club effect is in place. In practice, a club effect means that members are

capable of discounting goods and services to each other, and this is possible up to a certain size

(of the network) and within certain financial limits. In this work, the club effect is explored from

a network perspective through the concept of circular network synergy by noticing a strong con-

nection with two other similar topics in the economic literature - i.e., the local multiplier effect

and synergy effect.

Local Multiplier Effect In the economic literature, a local multiplier effect is defined as the

long-term change in employment at the local level (usually, municipal level) due to an exoge-

nous shock (Moretti, 2010) - e.g., flow of investments, subsidies, etc. According to Moretti

(2010), due to the interplay between tradable and non-tradable sectors1, the effect could turn

1The term tradable sector is used to indicate all those economic activities which produce goods and services
for export. In contrast, the term non-tradable sector indicates economic activities mainly producing for local
consumption.
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positive, null, or even negative. After a shock expanding the economic network, if supply

chains adapt to stay localised (or relocalize their activities), then there is a positive effect, which

is also called agglomeration externality (or spillover) (Greenstone et al., 2010). The shift in

expenditures towards local businesses (or not) is the key to understanding the local multiplier

effect (Lafuente-Sampietro, 2021). However, most of the research on the topic is focused on

estimating the multiplier effect using econometric techniques instead of directly measuring the

changes happening in the economic network (Dijk, 2018; Moretti, 2010; van Dijk, 2017). Dif-

ferent approaches were recently adopted in the CCSs field by directly observing the transaction

network, either through direct measurement or indirect estimation by using the LM3 technique

(Sacks et al., 2002).

In Martı́n Belmonte et al. (2021), the authors studied the local multiplier effect, the recircu-

lation rate, and the circulation velocity of a local currency issued as a basic income pilot (called

REC) in Barcelona, Spain. The REC was issued and used for a basic income pilot project that

lasted 13 months between 2018 and 2019. During this period, 600 low-income families re-

ceived 25% a guaranteed minimum income (called the Municipal Inclusion Subsidy) in local

currency for a total amount of 789,592 REC. The total amount of volume generated in this pe-

riod was equal to 901,004 REC and 643,532 REC were exchanged back to Euros by the partner

businesses. The partner businesses (and other private users) were entitled to cash out, and they

were committed by contract to use the currency in parity with Euros. Only direct beneficiaries

of the subsidy in REC were not allowed to cash out in Euros. Since this basic income pilot and

the disbursement in REC was over, the REC has been still circulating as a local currency even

though it is no longer backed by Euros.

During the pilot, the monthly multiplier was calculated by taking the ratio of the transaction

volume to the total of REC disbursements. A cumulative monthly multiplier at the end of the

analysed period was equal to 2.11 (October 2019). The recirculation rate was calculated as

the ratio of REC outgoing to REC ingoing per month, which in the observed period peaked

at 33.4%. Finally, the velocity of circulation per month was calculated as the ratio between

the transaction volume divided by the average amount of REC in circulation, multiplied by 12

to annualize the monthly value, and was equal to 5.80 in the observed period. In conclusion,
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the main quantitative indicators adopted indicated a positive effect. However, as stated by the

authors, the main limitation of the study was the lack of control groups to assess the observed

effects. To overcome this limitation, the same authors published a follow-up work in which

control groups were used to estimate the local multiplier effect by using the LM3 technique.

The LM3 technique (Sacks et al., 2002) is calculated by looking at all the ego networks (at depth

three) of each receiver, namely three degrees of separation from the initial receiver of funds. In

this way, researchers observe the percentage of expenditures kept in the local economy at each

degree of separation from the initial receiver. In formula, the LM3 is equal to

LM3 =
I +E1 +E2

I
(1)

Where I is equal to the initial injection, E1 is the amount of local expenditure of the first re-

ceiver, E2 is the amount of local expenditure of those who gets funds from the first receiver.

Using this technique, the authors could compare the LM3 in REC with a control group of 4984

beneficiaries of a subsidy in Euros. The results show a slightly higher LM3 in REC (2.09) than

the LM3 in Euros (1.94). In another study about two French CCSs (Lafuente-Sampietro, 2021),

the formula used to calculate the LM3 is based on the original definition of Keynesian multiplier

in an open economy,

M =
1

(1− c+m)
(2)

Where c is the propensity to consume goods and services produced locally (within the network),

while m is the propensity to consume goods and services produced outside the network. The

authors proceed by calculating the average propensity to consume within the network (c) per

each user as the ratio of expenditures in local products over the entire income. As a result, the

two anonymous French CCSs have a yearly local multiplier effect of 2.05 and 2.34, respectively.

A different approach is taken by Groppa (2013), where the multiplier is related to a completely

different concept, the monetary multiplier. The monetary multiplier is the ratio between the

amount of currency in circulation and in deposits over the total amount of currency created in

the system. The main argument by Groppa (2013) is that a CCSs do not have any incentive to

be hoarded (e.g. no banking system, no interest rates, etc.) and therefore by recirculating faster
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in the economy, they allow for a multiplier to be effective. However, the model is based on the

assumption that what is not saved automatically recirculate, therefore it ignores any dynamic

happening in the economic network, besides the financial one.

In summary, the literature around the local multiplier effect explored so far has two types of

limitations. First, it is usually described as a network effect, but is not measured as that. It has

been effectively estimated through econometric methods, but not directly measured. Second,

direct measurement through the transaction network has been limited to a maximum of three

degrees of separation from a sample of initial receivers, that is, LM3 technique (Sacks et al.,

2002). This means that it measures the effect of recirculation occurring after only three steps

in the network. From a network perspective, this is equivalent to considering only cycles and

chains (or paths) of length 3 (see the Appendix Glossary for definitions 7.1; see also Chapter 4

for ’Limits of Economic Multiplier’).

Synergy Effect The concept of synergy in economic literature has been used mainly in strate-

gic management to indicate both the qualitative process and the result of an operational merging

(or integration) of two or more systems (e.g. departments, industries, companies, working units,

markets, etc.) and/or the integration of one element in an existing system (Ansoff and McDon-

nell, 1988; Geipele et al., 2018; Hernandez and Shaver, 2019). In general, a synergy, synergic

or synergistic effect is measured as the resulting impact on the outcomes after the network

is adaptively restructured into a new morphology. In institutional economics (Dopfer, 1991,

the concept of synergy has been linked to Myrdal’s concept of circular cumulative causation

(Berger, 2009; Myrdal, 1957; Myrdal et al., 1944), which he explains by comparing the corre-

lation among multipliers of different sectors after an exogenous shock occurs. The basic idea of

circular cumulative causation is that firms from different sectors are circularly interconnected

in their supply chain. This interconnectedness can have positive or negative effects, according

to the exogenous shock that affects the network and the dynamics triggered in it. Both the

synergy effect and the local multiplier effect have been recognised to be deeply connected to a

specific type of network phenomenon. However, studies based on network theory are very few

and limited. In Stan and Jivan (2012), synergy is described as a relational potential which is
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measured by the density of the ego-network2 of a firm weighted by a ’quality’ factor for each

of its link; a ’quality’ factor which needs to be estimated using qualitative methods.

A more advanced approach was to measure synergy in an economic network using informa-

tion theory (Ivanova et al., 2019; Nijkamp and Reggiani, 1995). In these cases, several metrics

derived from entropy, relative entropy, conditional entropy, and mutual information were used.

Before exploring the literature on synergy, a brief explanation of these concepts is provided in

the Appendix 7.2. In Ivanova et al. (2019), the Triple-Helix (TH) model of innovation is used to

quantify the phenomenon of economic synergy caused by the mutual information occurring in

three dimensions: governmental, technological and organisational. The basic idea behind this

approach is that the redundancy of links among firms in multiple dimensions decreases the level

of uncertainty in the system, and therefore innovation becomes less risky. The mutual informa-

tion of a business network, which is happening at the intersection of these three dimensions is

defined by the authors as

IG,O,T = HG +HO +HT −HG,O −HG,T −HO,T +HG,O,T (3)

where the H is the Shannon entropy of each dimension. The firms in the business network

are then grouped by geographic area (G), number of employees (organisational dimension, O)

and technological class (T ). The Shannon entropy of each dimension and cross-dimension is

formulated as follows

H =−∑
i

pi log pi (4)

where i correspond to G, O, T, or any other combination of dimensions, as in Equation 3. The

value of pi is measured as the ratio of the number of firms in dimension i to the total number of

firms in the whole system. For example, the value of pGOT = nGOT
N is measured as the ratio of

the number of firms nGOT in the geographic area G, in the technological sector T , and in the or-

ganisational class O, to the total number of firms N in the entire system. It is therefore assumed

2The ego-network refers to the network of a single central agent, in this case a firm. An ego-network can include
different levels of depth or degree of separation from the central agent. For example, if I include the suppliers and
the customers, I will get an ego network of depth 1; but if I also include their first connections, then I will get
an ego network of depth 2. The density of a network is the ratio of existing links over the theoretical maximum
possible number of links a firm can have in its environment.
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that there are links between firms which are similar across the three considered dimensions (ge-

ographical, organisational, and technological). According to the authors, this multilevel linkage

creates redundancy which reduces the level of uncertainty and therefore makes it more prof-

itable to invest in innovation. Following the previous definitions, the authors conclude that if

mutual information (Equation 3) is negative, then this decrease in uncertainty can be called

economic synergy. The authors estimate in this way the synergy in two different counties in

Norway, and then they considered only national and only international firms. One of their main

conclusions is that where the synergy of international firms is higher, the expected turnover of

the county is also higher. A different approach was taken by Nijkamp and Reggiani (1995),

where the authors use the concept of Shannon-Wiener formula to measure the ”diversity of a

system”3. The authors used this concept to characterise the potential (or productive capacity)

of a network. The first level of analysis in Nijkamp and Reggiani (1995) is the minimisation

of the costs per link. The authors first define the potential (productive capacity, space of pos-

sibilities) Pi of each link, which is a function of network coverage Ri (i.e., network benefits or

externalities) and network connectivity Ci (i.e., synergy effect due to a particular topology of the

network). In formula,

Pi = fi(Ri,Ci) (5)

In this view, the potential Pi defines the upper-bound and lower-bound of the performance (out-

come, actual production) Yi of each link i. Therefore, it is expected to have increasing scale

returns in the range (Pmin,P∗), decreasing scale returns in the range (P∗,Pmax), and negative

scale returns in the range (Pmax,P∞). A similar mathematical definition of economic synergy

can be found in Yerznkyan et al. (2023).

The second level of analysis in Nijkamp and Reggiani (1995) is at the network level, one

layer in a multilayer network. As defined by the authors, the potential of each link Pi depends

on the ”connectivity” of the entire network. Therefore, it is necessary to maximise this ”con-

nectivity effect” to increase the outcome at the individual and network level. To do this, the

3A definition of Shannon-Wiener entropy formula is provided in Appendix 7.2
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authors suggest to measure it as diversity H of the network performance Yi:

H =−∑
i

Yi lnYi (6)

where i = 1, ..., I is any of the links in the network. In this context, the authors interpret the

”diversity” of the system as the maximum combination of all link performance Yi in the network.

The network potential of a i-th link depends on the connectivity Ci. If the network topology

changes by maximising Equation 6, a synergy effect is triggered. In simple words, according to

the authors, the synergy can be triggered by creating new diversifying connections.

In summary, the mathematical formulation of synergy in economic theory defines it as a

”quality” of network connectivity, an effect which is due to the network topology. In the lit-

erature, this ”quality” has been measured by using the concepts of mutual information and the

Shannon-Wiener formula. The maximisation of this network ”quality” can only happen at the

network level due to changes in its topology. Nevertheless, one of the limitations of using such

concepts is that they do not give precise information about the network topology, but only es-

timate a network externality. In this work, a measure of synergy and local multiplier effect

is suggested, and it can be directly related to some precise topological characteristics of the

economic network. In particular, the circular network synergy proposed in this work is mea-

sured by solving a minimum-cost circulation problem (Ahuja et al., 2014; Edmonds and Karp,

1972; Goldberg and Tarjan, 1989) in a transaction network and can be related to the presence

of weighted directed network cycles (Fleischman and Dini, 2020; Simic and Milanovic, 1992).

Evolving Capacity in Ecological Networks As explained so far, mutual information, en-

tropy, and circular causation have been linked to a synergy effect in economic networks. From

a network topological perspective, the cycles in a flow graph could be used to describe the

emergence of such phenomena. This approach was already partially suggested in the literature

on ecological complexity. In Ulanowicz et al. (2009) and Zorach and Ulanowicz (2003), three

metrics based on entropy, mutual information and conditional entropy are used to describe the

so-called evolving capacity of a living complex system: capacity C, ascendency A, and sys-

temic reserve φ . These metrics will also be used in this work to assess the evolving capacity of
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the currency network by comparing them with the circular network synergy and the economic

multiplier.

In Ulanowicz et al. (2009) and Zorach and Ulanowicz (2003), the authors interpret the en-

tropy of a probability mass function pi as a measure of its indeterminacy, also measure of

uncertainty around a random variable (see Appendix 7.2 for mathematical definitions). The

aggregate system indeterminacy H (or the space of possibilities) is defined as

H = ∑
i

hi =−k∑
i

pi log pi (7)

where H is seen by the authors as the the total system capacity for change (or evolving capacity)

for the ensemble of events i.

Considering the joint probability pi j that event i and j occur, a measure of joint non-

occurrence (surprise) is given by

si j =−k log pi j (8)

If events i and j are completely independent of each other, then their joint probability can

be defined by the product of their marginal distributions pi. = ∑ j pi j and p. j = ∑i pi j. The

authors therefore assume that the surprise (Equation 8) is maximal when events i and j are

totally independent.

However, if the two events are not totally independent, they can directly or indirectly influ-

ence each other. Similarly to the definition of mutual information (see Appendix 7.2, Equation

32), the difference between the maximal surprise s∗i j and the actual surprise si j is interpreted as

a measure of constraint of i over j (and vice versa).

xi| j = s∗i j − si j

=−k log(pi.p. j)+ k log(pi j)

=−k log
pi j

pi.p. j

(9)

The average mutual information (or mutual constraint) X in the whole system is given by
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the weighted sum of all combinations xi| j of i and j by the respective joint probability pi j

X = ∑
i, j

pi jxi| j

= k∑
i, j

pi j log
pi j

pi.p. j

(10)

Finally, due to the convexity of the logarithmic function, it can be stated that H ≥ X ≥ 0. If

H > X , then the conditional entropy ψ is defined as follows

ψ = H −X

=−k∑
i, j

pi j log
p2

i j

pi.p. j

(11)

In summary, the authors define entropy as capacity for evolution H, the indeterminacy of

the system that allows for changes. This is equal to the sum X +ψ . In fact, X is the mutual

information in the system, which the authors claim to be a measure of order, coherence and

efficiency (i.e., used capacity, expressed potential, contraction of the space of possibilities).

Finally, the authors interpret ψ as a measure of conditional entropy, which for them is also

related to disorder, incoherence, and inefficiency (i.e., unused capacity, unexpressed potential,

what is left outside such contraction of the space of possibilities). In practical terms, considering

a weighted adjacency matrix T , the authors use these definitions above to derive network metrics

by applying the following transformations:

pi j ∼
Ti j

T..

pi. ∼
Ti.

T..

p. j ∼
T. j
T..

(12)

where Ti j is the weighted link from i to j, Ti. = ∑ j Ti j is the total outflow of node i, T. j = ∑ j Tji

is the total inflow of node i, and T.. = ∑i j Ti j is the total flow of the system. Therefore, the

following network metrics are defined below,

14

C
E

U
eT

D
C

ol
le

ct
io

n



C = T..H =−∑
i j

Ti j log
Ti j

T..
(13)

A = T..X =−∑
i j

Ti j log
Ti jT..
Ti.T. j

(14)

φ = T..ψ =−∑
i j

Ti jlog
T 2

i j

Ti.T. j
(15)

C = A+φ (16)

Note that the definitions of evolving capacity C, ascendency (or mutual constraint) A, and

systemic reserve φ (or conditional entropy) are formulated according to condition 16. In fact,

the authors speculate on the existence of an optimal balance between ascendency A and sys-

temic reserve φ , by finding some empirical evidence in ecological networks which may prove

a so-called ”window of vitality” (Goerner et al., 2009). According to Ulanowicz (2009), ”as-

cendency” (or mutual constraint) is associated with autocatalytic growth processes of living

systems, a particular type of feedback loop in which there is selective pressure on each node.

This means that the topology of the network is characterised by weighted directed network cy-

cles, where the nodes in them are associated to centripetality (i.e., accumulation of resources

by those in the cycle from the rest of the network) and mutuality (i.e., reciprocal transfer of

resources among those within the cycle) (Ulanowicz, 2009). On the other hand, system reserve

was associated with ”redundancy”, the existence of parallel directed simple paths (Kharrazi et

al., 2020). It was suggested to extend this approach to the study of economic systems, espe-

cially to test their resilience as a dynamical equilibrium between ascendency and reserve, or

in other words, exploitation of resources and creation of reserves (Fath, 2015; Goerner et al.,

2009; Kharrazi et al., 2020).

In summary, in the literature on ecological complexity, a relation between mutual informa-

tion (also called ”ascendency”, systemic efficiency) and cycling in autocatalytic growth pro-

cesses was theorised. This work also tries to cover this gap by empirically testing this hypoth-
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esis in economic networks. In Chapter 5, ascendency and systemic reserve are compared to

circular network synergy and economic multiplier. The circular network synergy measures the

percentage of volume flowing through weighted directed network cycles. This metric is based

on a minimum-cost transformation of the real graph, which cancels out directed cycles based

on their flow. The network metrics of evolving capacity (ascendency and systemic reserve) and

circular network synergy could be used to explain the network causation behind economic phe-

nomena such as local multiplier effect and synergy effect. In the next section, a brief review of

the literature on cycles in payment systems is reported.

Network Cycles in Payment Systems In the previous paragraphs, the role of cycles in the

local multiplier effect and synergy effect was explored. Both economic phenomena are caused

by the recirculation of currency; therefore, most of the measurements adopted so far try to esti-

mate directly or indirectly the potential embedded in currency flow cycling. As described in the

previous paragraph, in this work, the circular network synergy index is used. The index is based

on the ratio between the volume of transfers in the transformed graph (using the minimum-cost

algorithm) and the volume of transfers in the original graph. As suggested by Fleischman et al.

(2020) and Simic and Milanovic (1992), this operation is equivalent to clearing the network

cycles of obligations and is one of the possible ”netting” techniques (or ”net settlement”).

The techniques for settling payments can be categorised into three main families (Roberds,

1999): gross settlement, net settlement, and gross settlement with queueing systems (or hybrid

systems). Gross settlement techniques imply that each payment obligation is settled by a trans-

fer of an offset amount within a limited predefined period after its issuance. Net settlement

techniques (or netting) imply that the payment obligations are first collected by a central entity

or ledger (e.g., clearing house, central bank) which is used to calculate net debt and net credit

positions. This process reduces the number of transfers and the amount of liquidity necessary

to settle all obligations. Finally, a gross settlement with a queuing system tries to integrate the

benefits of having an immediate settlement (gross settlement) but partially keeping the benefit

of a net settlement. In fact, using a queueing system, the net is calculated in real time consid-

ering the inflow and outflow of each participant. If there is enough credit in the account, the

payment is immediately settled; otherwise, it is left in the queue.

16

C
E

U
eT

D
C

ol
le

ct
io

n



The existence of netting techniques by merchants can be traced back to medieval and early

modern European trade fairs (Börner and Hatfield, 2017). In a recent work (Börner and Hat-

field, 2017), historians referred to it as rescontre procedure, and it was practised by merchants

gathering about four times a year in several European capitals. On the first days, merchants

would trade, while the last days were dedicated only to settlement of payments. In that work,

two main procedures are described: cycle clearing and chain clearing.

In Figures 6 and 7, both procedures are described. In each figure, the net flow of each

node reflects its debt position (negative net) or credit position (positive net). Cycle clearing is

equivalent to the procedure described in Figure (6). The transaction graph (a) is the original

graph. The minimum-cost transformation leads to graph (b). Figure (b) can be reached by

subtracting the minimum due amount from all the obligations in the cycle. Note that in graph

(b), the final flow satisfies the net flow of each node also in graph (a). In Figure 6(c), the

obligation with the minimum amount (that is, 3) is used to discount all other obligations in the

cycle, and the result is an empty graph. In fact, every node in the cycle owes the next node

exactly 3 and expects 3 from a previous node. The net of each node is equal to zero. This

means that if all nodes can coordinate, they can cancel all pending obligations.

In Figure (7), the chain clearing is represented. Assuming that every node owes the next

node on the chain the same amount, every bold arrow is a debt relation (or obligation). For

instance, A owes to B, B owes to C, etc. Consequently, A has a negative net flow, while E has

a positive net flow. All other nodes have a net flow of zero. This means that A is expected to

pay, while E is expected to receive money. The chain is cleared out by simply asking Node

A to pay Node E, even if they do not know each other. Instead of solving the network in four

transactions, the payment system can be resolved by simply allowing cash flow from A to E

(dotted arrow). This operation is also called ”delegation” or ”novation”, because it requires the

creation of a new link (or contract) between a debtor (A) and a creditor (E).
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Figure 6: Application of the minimum-cost algorithm as cycle clearing.
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Figure 7: Chain clearing.

A first family of netting techniques includes Deferred Net Settlement (DNS) and Batch Net

Settlement (BNS) techniques which are based on algorithms that can be launched at a fixed time

of the day, after a certain amount of payments orders (or obligations) is reached, or prioritising

older obligations by settling them in batches (Armour et al., 2016; Humphrey and Bank, 1995;

Martin and McAndrews, 2008; Mikesell, 1948; Summers, 1994). Once the obligations are

collected, the network is constructed and, finally, the netting procedure delivers a transformed

graph. These netting techniques delivering a transformed graph can be based either on cycle

detection and simplification (see Figure6) (Božić and Zrnc, 2023; Cui, 2021; Cui et al., 2017;

Gazda, 2001; Shafransky and Doudkin, 2006), or based on the equivalent minimum-cost flow

problem (Bottazzi et al., 2024; Buchman et al., 2024; Fleischman and Dini, 2020; Gavrila and

Popa, 2021; Schara and Bric, 2018; Simic and Milanovic, 1992), or on heuristics methods based

on the subset-sum problem (Amato et al., 2021; Guichon et al., 2023; Verhoeff, 2004) (see
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Figure 7). A second family of netting techniques includes Continuous Net Settlement (CNS)

techniques and Liquidity Saving Mechanisms (LMS) (or queuing systems) in Real-Time Gross

Settlement (RTGS) environments (Armour et al., 2016; Humphrey and Bank, 1995; Martin and

McAndrews, 2008; Mikesell, 1948; Summers, 1994). These net settlement techniques take

advantage of the properties of temporal graph dynamics (Bech and Soramäki, 2001; Martin and

McAndrews, 2008; Patcas, 2011; Patcas and Bartha, 2014) and temporal cycle detection (Jong,

2018). In addition to these two families, some other recent models for decentralised systems

based on blockchain and zero-knowledge cryptography proposed different ways to deal with

net settlement payment systems (Bottazzi et al., 2024; Buchman et al., 2024; Dandekar et al.,

2012; Jong, 2018; Ramabaja, 2022).

In conclusion, the role of cycles in payment systems has a long history, but only in the last

decades has been increasingly studied and applied. Cycles not only allow for the recirculation

and autocatalytic growth of an economic network but can also be used to increase the efficiency

of payment systems, reduce their liquidity costs, and risks. For this reason, in this work, a cate-

gorisation based on cyclic and acyclic components is implemented. Lastly, the implications for

recirculation and circular network synergy are analysed. In the next paragraph, some theoretical

findings on the role of network cycles in economic theory are reported.

Network Cycles in Economic Theory The relation between topology and dynamics in eco-

nomic and financial networks has already been partially explored in the literature. In network

game theory, degree centrality and sparseness of the network are proved to be the major causes

of inequality, keeping all other conditions fixed (Cassese and Pin, 2024). In an agent-based

model simulation, nodes with a high level of betweenness centrality on specific trading paths

imposed a mark-up on their transactions, and therefore, affecting the formation of prices on the

entire network (Cardoso et al., 2020). In a recent discussion paper (Criscione et al., 2022), the

authors suggested that the presence of directed cycles in a payment system may theoretically be

linked to a redistribution of economic power in it. In fact, economic power can be defined by

the degree and the betweenness centrality4. Therefore, assuming equal weights on each edge,

4In a graph made of a unique directed cycle, every node has the same level of degree and betweenness centrality.
In-degree and out-degree centrality can be related to monopolistic and monopsonistic power, while betweenness
centrality is related to ”brokerage” power.
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a perfect market competition would imply that the nodes are involved in the same number of

cycles, so that they all have the same economic power (Criscione et al., 2022).

In Jackson (2008)(pp. 384-388), a Nash stable directed cycle economy is reached only in a

particular circumstance. A distance-based individual utility is a utility function in which agents

get benefits from direct and indirect connections. When direct benefits are shared by both nodes

(source and target), it is called the two-way flow utility. However, when benefits are only falling

on the side of the sender/source, it is called the one-way flow utility. Considering a directed

graph G with n players and a one-way distance-based utility function ui(G), where direct and

indirect connections give the same benefit (i.e. absence of decay factor). In the formula, the

utility (or payoff) of i is

ui(G) = Ri(G)− cdi(G) (17)

where Ri(G) is the number of players that can be reached by i through a directed path in G,

di(G) is the out-degree of i (i.e., the number of receivers from node i), and c is the marginal cost

of each link. A directed Nash stable network is said to be strictly Nash stable when the removal

or addition of one link by a node would strictly decrease its payoff. Therefore, the following

cases are possible:

c < n−1 : n-cycle

c > n−1 : null graph, only strictly Nash stable solution

c < 1 : n-cycle is the only strictly Nash stable solution

1 < c < n−1 : both n-cycle and null graph are the only strictly Nash stable solutions

(18)

The n-cycle emerges when the cost of a link c is less than the number of remaining players

n−1. It is also strictly Nash stable when c < 1. In simple words, in an economic network, when

direct and indirect benefits are equivalent and the cost of each link is not too high (c < n−1), it

is convenient for all the players to create a directed cycle.

The literature reported in this paragraph analysed the theoretical conditions and conse-
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quences of a network topology in an economic system. In particular, directed cycle formation

was explored in very simple and limited scenarios. This emphasises the need to study the cycle

components in this work and its impact on the economy. In the next paragraph, the literature

review on network analysis of community currency systems is reported and relations to this

work are briefly explained.

Community Currency Networks The very first work that examined the network structure of

a community currency system was already mentioned at the beginning of this Literature Review

(Kichiji and Nishibe, 2008). A second work focused on time banks (Collom, 2012). A time

banking system is a specific type of community currency system in which time is used as a unit

of account and organised as a mutual credit group. In that work (Collom, 2012), two sets of

performance indicators were applied to the case of the Portland West Time Dollar Exchange

in Portland, Maine. The first set reported the number of active members, new members join-

ing each month, transaction volume, average transaction volume, and account balance per user.

The second set reported the number of trading partners, the number of reciprocated links, the

density of the ego network5, and the diversity of services traded. In particular, the second set

of indicators aims at measuring reciprocity and resilience in such a time-based currency. In this

work, topological components are identified in the Sarafu and Circles networks. Each topo-

logical component is analysed by looking at the following network metrics: number of weakly

connected components, number of nodes, number of directed links, number of transactions, and

volume of exchange. In a third paper adopting such techniques, the network analysis mainly

focused on detecting central players and identifying a rich-club of prominent users in the Ro-

zLEŤSe system active in Brno, Czech Republic (Franková et al., 2014). The identification of

a rich-club was then used to study the resilience of the economic network by implementing a

stress test using an experiment in which users have been removed from the system.

Some recent works focused on Sardex network, a business-to-business mutual credit system

operating in Sardinia, Italy. In the most recent (Appleby et al., 2024), the connectivity of the

network is analysed over time by looking at the average directed path length, average degree,

diameter, clustering coefficient, and average degree centrality. The authors concluded that the

5See previous note on the definition of ”ego-network” and ”density”.

21

C
E

U
eT

D
C

ol
le

ct
io

n



connectivity of the network increased with time. In another work on the Sardex network (Iosi-

fidis et al., 2018), it was found that a statistically significant presence of directed cyclic motifs

is beneficial for that payment system. Moreover, they define prominent nodes based on their

participation in directed cycles. The findings suggest that the most prominent nodes in fact have

a better performance over time. However, their analysis is focused only on static directed sim-

ple cycles of lengths 2, 3, 4, and 5. Following the same methods adopted in Criscione (2024),

also in this work the role of cyclic and acyclic components is explored. In fact, a cyclic com-

ponent can include many cycles of different lengths. In this work, the comparison between the

cyclic and acyclic components is then carried out to show differences in the evolution of both

networks and their relationship with circular network synergy, ascendency, systemic reserve,

and economic multiplier.

A recent work analysed the transaction network of a mutual credit system (Hanbat LETS)

in Korea as a multiplex network (Nakazato and Lim, 2024). The authors wanted to characterise

the emergence of social capital through three main types of connections: bonding, bridging, and

linking. In particular, they could distinguish by economic transactions, share of used goods, and

provision of support. According to the authors, bonding can be related to dyadic reciprocity

(that is, cycles of length 2) and transitive closure (that is, cycles of length 3). On the other

hand, bridging can be related to formation of k-out-star and k-in-star. And finally, linking can

be related to degree assortativity. In terms of the bonding process, the authors found that while

transitive closure is significant in the transaction network, dyadic reciprocity is significant only

from a multiplex perspective. In terms of bridging process, degree assortativity is significant at

both the transactional and multiplex levels. The results suggest that different relational dimen-

sions could complement each other and, therefore, a multiplex approach is advised in assessing

the socioeconomic impact of similar projects. In Lim and Nakazato (2019) and Nakazato and

Lim (2017), the authors try to assess the socioeconomic impact of a disaster response emer-

gency community currency in Japan. To do so, they try to estimate how the social network

grows according to the individual perception of community resilience. The authors detected a

disassortative mixing based on the heterogeneous perception of community resilience, the ab-

sence of homophily, and a high level of clustering. In other words, people who were positive
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about the resilience of the community played a key role in the formation of social networks. In

this work, only the transaction network is analysed, and only from its economic interpretations.

However, it may not be completely excluded that studies on recirculation and circular synergy

can also have implications for the literature on social capital and community resilience.

Similarly, a triadic census analysis in the Sarafu token network was recently performed

comparing it with two other decentralised socioeconomic networks, the NFT (Non-Fungible

Tokens) market and Steemit (Ba et al., 2023a). The authors analyse directed triads from a

static and dynamic perspectives. As expected, dyadic reciprocity is higher in Sarafu (that is,

cycles of length 2), which also has a larger strongly connected component and less chain-like

structures than other online social networks. In particular, most of the open and closed triads that

include a reciprocal dyad are significant. This is probably due to the fact that group accounts

are included in the data, which are run by Chamas (i.e. rotating savings and credit groups).

Finally, the authors report interesting statistics on the dynamics of the triadic closure process:

on average there are 283 new links per day and a peak-day of 1370, on average there are also

540 closing triads per day with a peak-day of 7328, and finally, on average there is a triad/link

ratio of 1.73 and a peak of 15. The triad/link ratio started to grow in July 2020 with a peak in

January 2021, and decreased after that. Finally, 23% of the closures happen in less than a day

and 89% in less than 3 months. These results are an important starting point for the analyses

carried out in this work. First, group accounts are excluded in this work because the focus is on

economic processes and not on financial processes. In fact, dyadic reciprocity between groups

and individuals can be easily confused by borrower-lender transactions. Second, a static triadic

census analysis is considered only for acyclic components to detect anomalies in the economic

behaviour of agents excluded from trading cycles. Finally, the temporal pattern observed by Ba

et al. (2023a) confirms the presence of structural changes that are reported in Chapter 3, and is

used to split the network into three periods. As in Ba et al. (2023b) and Ba et al. (2022), each

period corresponds to a particular internal policy framework, but also a different external policy

change due to the COVID-19 emergency.

Another recent quantitative study on the Sarafu network focused on an inverse estimation

of transfer velocity and effective balance (Mattsson, Luedtke, and Takes, 2022). In their work,
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the inverse estimation of the transfer velocity is defined as the average holding time of received

funds and calculated on a ”first-in first-out” basis (Mattsson and Takes, 2021). Its findings sug-

gest a high level of geographic and temporal heterogeneity in the usage of the currency. In

particular, transfer velocity and effective balance generally had a sharp increase in the first half

of 2020, but with some variations between urban and rural areas. Another study on the Sarafu

network analysed some aspects of currency circulation (Mattsson et al., 2023). In particular,

in that work the Sarafu network appears to be characterised by three main factors: geographic

localisation, cycle motifs (of length 2, 3, 4, and 5), and structural correlations. Moreover, the

authors detected key players using PageRank centrality: savings groups and faith leaders seem

to play a key role in the circulation of Sarafu. In another work, the cooperative behaviour of

the savings groups is analysed over time using Sankey diagrams (Ba et al., 2022, 2023b). In

that work, the network was split into different periods according to the application of restric-

tions due to the emergency of COVID-19. The authors observed that the role of savings groups

increased, especially when the strictest COVID-19 restrictions were implemented. The percent-

age of transactions from group accounts to users increased from 8% to 25%, the sectors of food

and shop gained importance during the same period and finally, the geographical heterogeneity

increased in terms of spending behaviour.

Unlike those previous works on the Sarafu token network, in this work only the transactions

among users are considered (i.e. group accounts are excluded). Instead of considering the

velocity of circulation (as in Mattsson, Luedtke, and Takes, 2022), recirculation operations

are defined and analysed. Furthermore, like some of the other works mentioned above (Ba

et al., 2022, 2023b), the circulation analysis is carried out in three different periods, where

each period defines a temporally aggregated graph. In this work, topological components are

identified, recirculation and circular network synergy are analysed. This is the main difference

from previous works that focused on the activity of user and group accounts at the network level

(Ba et al., 2022, 2023b; Mattsson et al., 2023). Since the main focus is on cyclic structures, the

triadic census is only partially carried out on acyclic components (see Appendix 7.6). Finally,

instead of focussing on cycle motifs (of lengths 2, 3, 4, and 5) as in a previous work on Sarafu

data (Mattsson et al., 2023), in this work cyclic components are considered. As explained
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before, each cyclic component is defined here as a strongly connected component, where every

node can be involved in one or more cycles of any length.

Some studies have been already carried out on Circles UBI network as well. The first study

is a network analysis of the system (Avanzo et al., 2023), where the authors split the network

into two periods by calculating the characteristic time through the causal fidelity index (Lentz

et al., 2013). The causal fidelity index helped identifying structural changes in the network.

In particular, from July 2021 until September 2023, a subsidy program for a small group of

business partners was introduced, and the topology of the network slowly changed dramatically.

The subsidy program would allow those businesses to cash-out monthly the 90% of accumulated

Circles tokens to get Euros in exchange. The subsidized businesses became the most central

actors in the system and their core number increased 6. The network of subsidized businesses

and relative partners increased in the first six months, and then stabilized in terms of volume

and transactions. However, most of their Circles units were used to trade ”food” products and

to cash-out. This means that they partially failed in creating a self-sustained business network.

In two other qualitative studies, similar conclusions were reached. In Longo et al. (2024), a

survey was carried out in November 2023, one month after the subsidy program stopped and

one month before the Circles Coop was shut down. The study involved twenty-five individuals

engaged in the system in different ways. There are three main findings that it is worth to report

here. First, policy changes affected the engagement of members over time. For example, it is

mentioned that the introduction of the subsidy program or a yearly demurrage7 was a reason

for engaging differently with the system. Second, the study reports the case of a person who

lost her job during the COVID-19 emergency. She managed to engage in the system actively

which helped her having access to products and services, otherwise unaffordable to her. As

an example, access to locally produced food and holistic healthcare services. Third, the study

also reports cases of economic synergies, where local businesses involved in Circles started to

cooperate buying and selling each other products, or even starting new partnerships. Finally, it is

worth to mention that the main motivation for these businesses to join was mostly political. As

6A k-core level identify a node with at least k in-degrees and k-out-degrees. In fact, it is a measure of connec-
tivity which can be used to analyse the hierarchy of a network (Batagelj and Zaversnik, 2003).

7Demurrage is a negative interest rate on the deposit or holding tax. It is a ”forced” inflation rate which is used
to avoiding currency hoarding.
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already suggested by Reyns (2024), it was not an economic rationale to motivate businesses to

join Circles, but their alignment in shared values. A similar conclusion was reached by another

smaller qualitative study (Papadimitropoulos and Perperidis, 2024), where the perception of

”money as a commons” was found to be fundamental for people to join Circles. Based on

thirteen interviewed people involved in Circles Coop, the authors pointed out some criticisms

in the governance model as a major weakness. For example, it is reported that the project failed

in actively creating closed-loops in the business network. On the other hand, there was strong

alignment in shared values that allowed the system to attract a consistent amount of members

and businesses.

Following the same techniques in Avanzo et al. (2023), in this work the Sarafu and Circles

networks are split into three periods according to structural changes identified using the causal

fidelity index (see Chapter 3). Each time period is then analysed separately by temporally ag-

gregating the graph and studying its topology. The main goal is to observe and compare the

topological changes, in accordance with some events that signed the history of the projects. In

addition, a further goal is to observe how recirculation and circular network synergy changed

over time. Qualitative studies about Circles network (Longo et al., 2024; Papadimitropoulos

and Perperidis, 2024) and Sarafu network (Kiaka et al., 2024) are used to interpret and give

context to the quantitative analysis presented in this paper.

Contribution At the beginning of this chapter, a study was reported that informed the reader

about the lack of quantitative impact assessment techniques for CCSs (Michel and Hudon,

2015). More recent studies rely on the estimation of a local multiplier effect, but some lim-

itations have been already pointed out (see also Chapter 4 on ’Limits of the Economic Mul-

tiplier’). Although these techniques are trying to measure a network effect, they fail in fully

accounting, describing, and explaining the mechanisms behind. Similarly, the phenomenon of

the synergy effect in economics was not adequately explored in a quantitative way. Some of

the mathematical models exploring synergy relies on entropy and mutual information. In this

work a circular network synergy index is suggested as a possible alternative. This metric is not

only backed by economic theory, but is also explicitly implied in the study of payment systems.

Indeed, the literature about ’cycles’ in payment systems and in economic theory was reported.
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This chapter concluded with a brief review of the literature on other network methods used in

the study of community currency networks. A special room was given to studies on Sarafu and

Circles networks, which are the two case studies presented in this work.

In conclusion, the main contributions of this work can be summarised as follows. This work

tries to cover a gap in the literature by providing quantitative analytical tools which can be used

to assess the circulation of a digital community currency system. First, the role of cyclic struc-

tures is analysed by applying a novel topological categorisation for directed networks. Only a

few recent studies focused on the analysis of the role of cyclic structures in transaction networks

(Iosifidis et al., 2018; Mattsson et al., 2023), but limited to cycles of length 2, 3, 4, and 5. The

author has already developed and tested this technique in a previous work (Criscione, 2024)

which is based on the distinction between cyclic and acyclic components. Second, the role of

recirculation is analysed between different components and time periods. In fact, the networks

are divided into three periods each, according to the structural changes identified quantitatively

using the causal fidelity index (Avanzo et al., 2023; Lentz et al., 2013) and qualitatively based

on previous studies (see Chapter 3 for more details). Third, a novel measure of local circulation

is introduced, called circular network synergy. As explained, this metric is deeply connected to

other existing economic phenomena, namely the local multiplier effect and the synergy effect.

This work is focused on studying the circulation in two economic networks, the Sarafu and

Circles community currency networks. For this reason, differently from previous works (Ba

et al., 2022, 2023a, 2023b; Mattsson, Luedtke, and Takes, 2022; Mattsson et al., 2023), savings

groups are excluded from the Sarafu network. This can help us identify the network effects

behind the local multiplier effect and the economic synergy effect without the bias introduced

by financial operations, i.e. borrowing and lending money. In fact, abstract monetary exchange

for financial purposes does not reveal any information about the flow of real goods and services,

and therefore about real and actual economic synergies happening in the system.
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3 Data

3.1 Sarafu Network

The information in this section on the history of Sarafu and other technical details is taken from

Mattsson, Criscione, and Ruddick (2022). The data used in this work are timestamped trans-

actions from the Sarafu system in Kenya collected between 25 January 2020 and 15 June 2021

(Ruddick, 2021). The data also include some user data: geographical location, business sector,

and gender. Grassroots Economics (GE) in collaboration with the Kenyan Red Cross (Mattsson,

Criscione, and Ruddick, 2022) designed the currency as part of a COVID-19 disaster response

intervention in the Mukuru kwa Njenga slum, Nairobi, and in Kisauni, Mombasa. In such hu-

manitarian interventions, the Sarafu token was used as a cash transfer programme. In practice,

new users could receive an initial payment after their registration: 400 Sarafu (from January

until May 2020), 50 Sarafu (from May until June 2021) (Mattsson, Criscione, and Ruddick,

2022). In parity with the Kenyan Shillings, the Sarafu circulated locally among businesses,

groups, and individuals.

It is also important to mention that since 2017 the Kinango area (Kwale county) has been

targeted by Grassroots Economics for specific development interventions: donations have been

collected to build community-owned assets with the purpose of enhancing community socioe-

conomic resilience (e.g., maize milling, refrigeration, water storage equipment, etc.)(Mattsson,

Criscione, and Ruddick, 2022). In the data, Kinango, Mukuru kwa Njenga slum, and Kisauni

are the most active geographical areas. About 86% of the users come from one of those treated

areas, so any comparison with the untreated areas would be unbalanced.

In the Sarafu token network, a key role is played by savings groups, also called Chamas

(Ba et al., 2022, 2023b; Mattsson, Criscione, and Ruddick, 2022; Mattsson et al., 2023). Local

savings groups are very well known in Kenya for their old tradition (Anderson et al., 2009;

Barinaga, 2020). Chamas are Rotating Savings and Credit Associations (ROSCAs), which are

structured as informal cooperative groups where participants pool, invest, and lend their savings

among each other. In the data, they are identifiable as group accounts (savings groups verified

by GE) or savings business accounts (savings groups not verified by GE). From January until

28

C
E

U
eT

D
C

ol
le

ct
io

n



July 2020, some donors backed the initial fund, so the cash-out in Kenyan shillings was limited

to some users and vendors through savings groups, under certain constraints. In particular,

savings groups were allowed to exchange back Kenyan shillings up to 30,000 Sarafu per month.

However, between August and December 2020, savings groups could indicate a vendor from

which to buy food. Subsequently, local vendors indicated by the Chamas could cash out their

Sarafu to get Kenyan shillings back from GE. After December 2020, the currency exchange

system stopped, and only in-kind donations kept going.

The main focus of this paper is to study the economic behaviour of Sarafu users. For this

reason, the financial network of savings groups (or Chamas), admin operations, and vendors

were removed from the dataset. The global network of standard operations has 40 767 nodes,

422 721 transactions, 296 991 019.65 in volume, 592 weakly connected components, and 619

strongly connected components. By excluding admin accounts, vendors, and savings group

accounts, there is left a subnetwork with 39 355 nodes, 355 070 transactions (132 420 directed

links), 175 704 135.68 of volume (in parity with Kenyan Shillings), 696 weakly connected

components and 619 strongly connected components. In this subnetwork of individual users,

114 417 690.48 Sarafu were disbursed mainly to new members and to reward existing members.

The users are grouped into 10 main geographic areas: Kilifi, Kinango (Kwale County), Kisauni

(Mombasa County), Mombasa, Nairobi, Rural Counties, Mukuru (Nairobi County), Nyanza

County, Turkana County, and other/unknown.

As described in a previous work (Mattsson et al., 2023), the degree distributions of this

network are heavy-tailed. The degree distributions are built by aggregating all the transactions

that happen between each pair of nodes and preserving their directionality. The in-degree and

out-degree distributions can be well approximated by power laws, respectively, with exponents

1.53 and 1.47 (see Table 1). Similarly, the distribution of the number of transactions per link

also behaves as a power law with an exponent of 1.44. This means that a very high number

of links have one or few transactions happening on them, while a few links are responsible for

a very high number of transactions. The distribution of volume per link (that is, total amount

transferred) is also well approximated by a power-law distribution with exponent 1.85. The

Pearson correlation between the distribution of the number of transactions and the total weight
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per edge is equal to 0.58 significant at 1% (p-value<0.01).

Out-
Degree

In-
Degree

Transactions Volume

LLR p-
value

LLR p-
value

LLR p-
value

LLR p-
value

lognormal -1.33 0.18 -1.5 0.13 -0.25 0.8 -1.82 0.06
exponential 6.19 ∼0.0 6.67 ∼0.0 5.25 ∼0.0 7.44 ∼0.0
truncated
power law

-1.29 0.26 -1.08 0.45 -1.29 0.26 -1.27 0.38

stretched
exponential

1.2 0.22 2.34 0.018 0.39 0.69 2.31 0.02

lognormal
positive

2.5 0.012 3.68 ∼0.0 1.28 0.19 3.42 ∼0.0

Table 1: Comparison of power-law distribution with other well-known distributions in Sarafu
network. LLR is the log-likelihood ratio. The LLR is positive when it is more likely to be
approximated by a power-law (first distribution in the ratio in this case), and negative otherwise.
The p-value is the significance test of the result. Notice that when the LLR is negative, the p-
value is too high, and therefore, the LLR is not significant. This means that the power-law
distribution better represents the real data.

The temporal accessibility analysis is used to measure the ratio of shortest temporal paths

over static ones, also called causal fidelity (Lentz et al., 2013). Following a similar procedure

explained in Avanzo et al. (2023), the Sarafu network is split into three periods (see Figure 8).

The first structural change is identified around 6 August 2020, right after the policy change for

savings groups to cash-out was introduced. The second structural change is identified around

31 January 2021, right after the stop on the currency exchange system through vendors was

introduced. These two dates identify three main periods for which the network can be split and

temporally aggregated. The causal fidelity of the entire graph is only 14.3%. The identification

of the two points in time is carried out following the instructions of previous works (Avanzo et

al., 2023): after the first peak and dip, the first local maximum is considered (with causal fidelity

0.129); after the plateau, the last local maximum is considered before a permanent change in

the trend (with causal fidelity 0.141). A network per each period is therefore identified:

• Period 1. 22 022 nodes, 171 223 transactions, 71 792 directed links, an exchanged vol-

ume of 83 583 846.76 Sarafu, and 16 067 969.07 Sarafu disbursed

• Period 2. 14 687 nodes, 122 031 transactions, 46 931 directed links, an exchanged vol-
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ume of 82 030 707.46 Sarafu, and 7 060 433.27 Sarafu disbursed

• Period 3. 11 692 nodes, 61 816 transactions, 28 150 directed links, an exchanged volume

of 10 089 581.45 Sarafu, and 1 653 613.64 Sarafu disbursed

0 100 200 300 400 5000.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Causal Fidelity in Sarafu Network

Figure 8: Causal fidelity in Sarafu network. Each time-step on the x-axis is equal to one day.

3.2 Circles UBI Network

The Circles UBI data used in this work are time-stamped transactions from 16 October 2020 to

14 December 2023. The blockchain technology used to store transaction data is a worldwide

distributed database. However, the data used here refer only to the Berlin pilot. Only transaction

data are used, but some additional information about 19 business partners in Berlin is available.

In fact, only the Largest Weakly Connected Component (LWCC) is considered in the analysis,

which includes all business partners in Berlin. The global network has 15 063 nodes, 80 824

transactions, 5 523 498.71 in volume, 1 454 weakly connected components, and 146 strongly

connected components. The LWCC, which includes business partners in Berlin, has 8 598

nodes, 70 696 transactions, 4 686 294.87 of volume, and 146 strongly connected components.

In LWCC the amount of Circles distributed as universal basic income was equal to 129 936

579.25.

A new user willing to be registered on the system must be endorsed by at least 3 other

accounts (CirclesCoop, 2021). All endorsements in the system span a Web of Trust, which is a

network of trust connections among members. The Web of Trust is excluded from the analysis

31

C
E

U
eT

D
C

ol
le

ct
io

n



of this work, but it is essential to understand the back-end functioning of the system. In fact,

two users can exchange Circles only if they are connected to the Web of Trust. In the back-end,

each account technically mints its own personal currency, which is automatically assigned after

registration using Circles DApp 8. In the front-end, the personal currencies are exchanged as

Circles units (CRCs). The system is based on the Gnosis blockchain for the implementation of

smart contracts 9.

Two types of accounts can be created on the Circles UBI network (Longo et al., 2024):

Individual accounts and Shared accounts. Individual accounts are those that receive monthly

UBI payments, which are designed to be matched to a single verified identity. Shared accounts

do not receive the UBI, they are created by single individuals, but other can be connected to it.

The Shared accounts are the most used by companies. However, this information is not present

in the available data, except for the 19 business partners.

The number of business partners oscillated throughout the period (Longo et al., 2024). The

business partners received a subsidy from July 2021 to September 2023 (Avanzo et al., 2023).

The subsidy allowed them to cash out back in Euros on a monthly basis, under some constraints.

The business partners belong to six main sectors (Avanzo et al., 2023): Food and Beverage, Art,

Care/Health, Consulting, Bikes, Books.

From October 2020 until May 2022, the Circles system issued 8 CRCs per day per partic-

ipant (Longo et al., 2024). After May 2022, the daily rate was increased to 24 CRC per day

and a yearly demurrage (i.e., negative interest rate) policy was introduced. A 7% yearly rate

of demurrage was meant to discourage hoarding and inactivity (CirclesCoop, 2022). In this

period, also the cash out for subsidised business changed exchange rate from 1:1 to 1:10 (i.e.,

10 CRCs for 1 Euro).

Also in the Circles network, the degree distributions are well-approximated by power-law

distributions of exponents 1.62 (in-degree) and 1.55 (out-degree) (see Table 2). The distribution

of the number of transactions per each link can also be fit by a power-law distribution with an

exponent equal to 1.44. Similarly, the distribution of volume per link (that is, the total amount

transferred) can be approximated by a power-law distribution with an exponent equal to 1.85.

8https://circles.garden/
9https://www.gnosis.io/
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The Pearson correlation between the distributions of transactions and the volume of the links is

equal to 0.4 (p-value<0.1).

In-
Degree

Out-
Degree

Transactions Volume

LLR p-
value

LLR p-
value

LLR p-
value

LLR p-
value

lognormal -1.49 0.13 -1.04 0.29 -0.23 0.81 -1.75 0.078
exponential 7.36 ∼0.0 6.57 ∼0.0 4.72 ∼0.0 6.35 ∼0.0
truncated
power law

-0.72 0.64 -0.97 0.39 -1.08 0.31 -0.96 0.54

stretched
exponential

2.64 0.008 1.74 0.08 0.14 0.88 1.85 0.06

lognormal
positive

3.69 ∼0.0 2.86 0.004 0.78 0.43 2.77 0.005

Table 2: Comparison of power-law distribution with other well-known distributions in Circles
network. LLR is the log-likelihood ratio. The LLR is positive when it is more likely to be
approximated by a power-law (first distribution in the ratio in this case), and negative otherwise.
The p-value is the significance test of the result. Notice that when the LLR is negative, the p-
value is too high, and therefore, the LLR is not significant. This means that the power-law
distribution better represents the real data.

Similarly to Sarafu, the temporal accessibility analysis is used here also to measure the ra-

tio of the shortest temporal paths to static ones, also called causal fidelity (Lentz et al., 2013).

Following a similar procedure explained in Avanzo et al. (2023), the Circles network is divided

into three periods (see Figure 9). The first structural change is identified around 18 November

2021, four months after the beginning of the subsidy programme. The second structural change

is identified around 29 June 2023, right after the announcement of the end of the subsidy pro-

gramme (which took place effectively at the end of September 2023) (Longo et al., 2024).

These two dates identify three main periods for which the network can be split and temporally

aggregated. The causal fidelity of the entire graph is only 10.7%.

As before, the identification of the two points in time is carried out following the instructions

of previous works (Avanzo et al., 2023). However, following the findings in Avanzo et al.

(2023), the strategy slightly changed. After the first peak and dip, the causal fidelity slowly

drops. This is probably due to attempt of Sybil attacks, namely fake accounts trying to hoard

Circles in the first period. For this reason, the first local maximum is considered only later

(with causal fidelity 0.129); after the plateau, the last local maximum is considered before a
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permanent change in trend (with causal fidelity 0.137)(see Figure 9). A network per each period

is therefore identified:

• Period 1. 4074 nodes, 18 534 transactions, 8 943 directed links, an exchanged volume of

565 283.7 Circles, 4 415 449.7 Circles disbursed

• Period 2. 2 510 nodes, 15 884 transactions, 5 611 directed links, an exchanged volume

of 2 444 959.09 Circles, 3 988 687.81 Circles disbursed

• Period 3. 3 622 nodes, 36 278 transactions, 17 590 directed links, an exchanged volume

of 1 676 052.06 Circles, 2 302 230.16 Circles disbursed
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Causal Fidelity in Circles Network

Figure 9: Causal fidelity in Circles network. Each time-step on the x-axis is equal to one day.
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4 Methods

4.1 Limits of the Economic Multiplier

In this section, an analytical explanation of the limits of the multiplier effect is used to justify

the main contributions of this work. Two economies, a directed cycle graph and a directed line

graph, are presented as the simplest examples of cyclic and acyclic components. An injection

of liquidity in both graphs is analytically represented. It is shown that in a directed cycle the

volume of transactions depends on the number of nodes, their savings, and the number of times

the currency recirculates throughout the graph. In the case of a directed line graph, this is not

the case because it depends only on the number of nodes, while the rest of the liquidity is kept

outside of the system and/or only by the last node in the chain. In simple words, in the short

term, the two economies with the same number of nodes could show a similar volume, but in

the long term the injection in a line graph economy fade out faster. This is crucial to understand

the role of cycles in an economic network and to explain the meaning of autocatalytic growth.

The usual way to measure the multiplier effect can be partially blinded to such network effects,

and therefore it cannot tell much about the network ’quality’ of economic growth induced by

topological changes. This should convince the reader about the distinction of cyclic and acyclic

components explained in the next section.

Consider first a directed graph G = (N,E) which is structured as a directed cycle. It is

assumed that every node moves sequentially, so that at each time step every node is spending

α of its endowment. This implies that 1−α of its endowment is saved and the node spends it

only if a predecessor sends some currency to it again. It is also assumed that 0 < α < 1. The

sequential movement of actions is a useful simplification. Policymakers are interested in the

recirculation that occurs after a specific amount of liquidity T is injected through monetary or

fiscal interventions. In this simple model, it is assumed that there are only five nodes and only

the first node A receives the initial injected liquidity T .

In the first round (a), the volume of each transaction sequentially decreases by a factor α

(Figure 10(a)). In the second round, each node already has some savings from the previous

iteration. Every node spends α of its endowment. In Figure 10(b), this is indicated by the
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Figure 10: On the first round (a), the volume of each transaction sequentially decreases by a
factor α . From the second round (b) on, this quantity is multiplied by τ factors which essentially
depend on savings (from the previous node and the previous round).

factors τ . The analytical form of τ factors is the following.

τ0 = α5 +(1−α)

τ1 = τ0 +(1−α)

τ2 = τ1 +(1−α)

τ3 = τ2 +(1−α)

τ4 = τ3 +(1−α)

(19)

Iterating this s rounds10, the cumulative transaction volume Ŵ of a directed cycle graph with

N nodes is given by the following formula.

Ŵ =
s

∑
i=1

Wi

=

(
α

1−αNs

1−α
+

s

∑
t=2

(1−α)(t−1)
s

∑
i=t

α
N(i−t)

N

∑
j=1

α j

t

∏
k=2

N(i− t)+ j+ k−2
k−1

)
T

(20)

Where Wi is the transaction volume in round i, s is the number of rounds, T is the initial

injection. Note that the last addend in Equation 20 depends on savings in an iterative way,

and, in particular, the last multiplication factor follows Pascal’s Triangle coefficients. The first

addendum is the result of a partial sum of elements strictly less than 1, since it is assumed α < 1.

Note that this addend depends on the number of nodes N and rounds s.

10This means that the cycle is repeating s times. In other words, the currency flows s times through all nodes.
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This result can be compared with a directed line graph with N nodes. There is no recircu-

lation of currency, so savings are taken out of the system at each step, from every node. The

result can be expressed by the following equation.

Ŵ =
s

∑
i=1

Wi

=

[
α

(
1+α

2 +α
3 +α

4 + ...+α
N
)]

T =

(
α

N−1

∑
i=0

α
i

)
T = α

1−αN

1−α
T

(21)

where the last step is possible only because it is assumed that α < 1, and therefore, the sum

is converging. Note that in this case, the partial sum depends only on the number of nodes N.

In conclusion, measuring the multiplier as the ratio of transaction volume to injected liq-

uidity is a very limited way of assessing a policy intervention. See also Appendix 7.3, for a

numerical example. In fact, the simple ratio does not take into account the topology of the

graph that is growing underneath. This section shows that a cyclic component (i.e. a directed

cycle graph in the example) and an acyclic component (i.e. a line graph in the example) can im-

ply entirely different dynamics. This is especially important for long-term policy interventions.

In fact, as shown before, in an acyclic graph the effect of the intervention slowly dies out with

the number of nodes. However, in a cyclic graph, the role of the number of nodes, their savings,

and the number of cyclic recirculations plays a key role in the long run. In the next section, the

topological categorisation is presented. The topological categorisation is based on the assump-

tion that the distinction between cyclic and acyclic components is extremely important for the

study of economic networks, as has been shown here in this simple analytical model.

4.2 Topological Components

This section is taken entirely from Criscione (2024). In this work, the topological categorisation

of cyclic components, acyclic components, and single-nodes is used for behavioural investiga-

tions on the economic network. Previous studies have already analysed the inner structure of

directed networks (Broder et al., 2000; Donato et al., 2008; Dorogovtsev et al., 2001; Timár

et al., 2017). According to the existing literature, directed networks are generally characterised
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by a bow-tie structure with a largest strongly connected component (SCC) as the core where

nodes are mutually reachable from each other, a set of nodes which are only sending to the

SCC, called IN-component, and a set of nodes which are only receiving from the SCC, called

OUT-component. Attached to the IN- and OUT-components there are tendrils which can be

either sets of nodes that a) can be reached only from the IN-component or b) sets of nodes which

do not belong to the SCC but can reach nodes of the OUT-component. Other groups of nodes,

called tubes, connect the IN-component with the OUT-component without passing through the

SCC. Finally, isolated groups of nodes are just described as disconnected components. The

bow-tie description was successfully applied to study the structure of directed graphs. In par-

ticular, it can be used to study some of their properties, such as their expected size, degree

distributions, and resilience to random failures and targeted attacks (Dorogovtsev et al., 2001;

Newman et al., 2001). A subsequent work on the web graph reviewed the bow-tie structure sug-

gesting a daisy shape, where the IN- and OUT- components are highly fragmented into many

petals, which are chains of nodes connected with the same component of origin (Donato et al.,

2008). Finally, a more advanced version of the bow-tie (Timár et al., 2017) was recently intro-

duced where tendrils and tubes are categorised based on their distance from the IN- and OUT-

components. The results of these works also have important implications for the study of the

resilience of directed networks.

In this work, the inner structure of a directed network is studied as well but from a com-

pletely different perspective. Contrary to the bow-tie description, the core, IN- and OUT- com-

ponents, and relative connections are not considered in this work. Instead, the differentiation

between cyclic and acyclic components is the key aspect considered here. A cyclic component

is a portion of the network structured as a strongly connected component (SCC), whereas an

acyclic component is a portion of the network structured as a directed acyclic graph (DAG).

To understand the difference between cyclic and acyclic components consider the Figures 11(a)

and 11(b). In Figure 11(b), the white node in the centre of a DAG can move and leave its

position but cannot return to it following the direction of the arrows. On the other hand, in Fig-

ure 11(a), the white node in the centre of a SCC can move and leave its position and return to it

by following at least 4 different directed paths which do not cross the same node twice. These
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directed paths identify directed simple cycles, because they start and end at the same white

node position. For this reason, in this work, the cyclic component and the strongly connected

component (SCC) are used as synonyms. Similarly, the acyclic component and directed acyclic

graph (DAG) are also used as synonyms. Because only cyclic and acyclic components are iden-

tified, their connectivity with the rest of the network characterises the categorisation procedure

adopted in this paper. In Table 3, the directed network is split into 14 different components:

11 including nodes and edges, 3 including only edges (see Table 3 for definitions). This is a

comprehensive categorisation which uniquely assigns each node and edge into one and only

one of those categories, and therefore, one and only one related network component.

The logic of this categorisation is explained in Figure 11 and Figure 12. In Figure 11, the

objects and the relations among them are defined. The objects can be either a cyclic compo-

nent (SCC, ⟳)(Figure 11(a)), an acyclic component (DAG, ⟨↕⟩)(Figure 11(b)), or a single-node

(⃝)(Figure 11(c)). Every pair of objects can have three types of relation with each other. Please

note that each relation considered here between each pair of objects cannot change the nature

of the object itself. For instance, a cyclic component cannot become an acyclic component by

adding any of the relations considered between them. The first type of relation considered here

is a directed link (−→) from one object to another (Figure 11(d)). A directed link corresponds to

one or more transactions (flow of currency) from one object to another following the direction of

that link. The second type of relation (⇆) is a connection between two objects which includes

links in the opposite direction, but without creating a cycle which involves nodes from both ob-

jects. This type of relation is illustrated in Figure 11(e), where we could imagine that the white

nodes can move and jump into the opposite component following their white arrows, but we

also notice that they eventually cannot return to their original position following the direction

of the arrows. Obviously, this also implies that any two nodes from two different components

cannot exchange back and forth; otherwise they would create a cycle of length 2. Finally, a

third type of relation is a connection between two components that involves one node only (↬).

In other words, one node is receiving from one component and sending to another component

(see Figure 11(f)). For the last case, note the difference between Figure 11(c), Figure 11(d),

and Figure 11(f). In Figure 11(d), one node connects a SCC to a DAG (that is, a chain of nodes
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is part of the DAG); in Figure 11(f) one node receives from one SCC and sends to another;

finally, in Figure 11(c) a node is sending or receiving from a SCC. Obviously, a single-node

sending to or receiving from another node in a DAG is part of that DAG itself. Similarly, a

single-node sending or receiving from another single-node is a pair which constitutes a DAG.

The categorisation procedure is explained in further detail in Figure 12.

SC
C

(a) Cyclic Component

D
A
G

(b) Acyclic Component

In-Single-Node SCC

Out-Single-Node

(c) Single-nodes

SCC DAG

(d) Directed link (−→).

SCC DAG

(e) Double-link (⇆).

SCC SCC

(f) Link through one node (↬).

Figure 11: Objects and relations for the topological categorization. In Figures (a), (b), and (c),
the considered objects are represented. In Figures (d), (e), and (f), the considered relations are
represented. Figure from Criscione (2024).

In the previous paragraph, objects and relations for the topological categorisation were intro-

duced. In this paragraph, each object is categorised based on its relationship to another object.

In Figure 12, the logic of this categorisation is explained by showing 8 simple cases, where there

are only two objects in relation to each other. First, four types of cyclic components are defined:

sccTin, sccTout, sccTmix, and scc0. While scc0 is simply a strongly connected component only

connected to other SCCs or isolated, the other categories can emerge in one of the cases repre-

sented in Figures 12(a) and 12(b). A sccTout component emerges if a SCC sends to a DAG or

an out-single-node (N.1 and N.2, Figure 12(a)). A sccTin component emerges if a SCC receives

from a DAG or a in-single-node (N.3 and N.4, Figure 12(a)). A sccTmix component emerges if

a SCC sends to and receives from a DAG, an in-single-node, and / or an out-single-node (N.5

and N.6, Figure 12(b)). Note that different types of SCCs can still be connected to each other
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without losing their identity. In fact, their identity is only defined by their connections with

DAGs, in-single-nodes, and out-single-nodes.

Secondly, the typology for the acyclic components is also categorised as: dagTin, dagTout,

dagTmix, and dag0. In this case, dag0 is an isolated acyclic component, while the other cate-

gories can also emerge in one of the cases represented in Figure 12(a) and 12(b). A dagTout

component emerges if a DAG receives from a SCC (N.1, Figure 12(a)). A dagTin component

emerges if a DAG sends to a SCC (N.3, Figure 12(a)). A dagTmix component emerges if a

DAG sends to and receives from a SCC (N.5, Figure 12(b)), obviously without creating a cycle

with it. Unlike SCCs, when DAGs of different types connect to each other, they change their

identity. For example, if a dagTin gets a connection to a dagTout, the resulting DAG would be

a dagTmix.

The edges between SCC and DAG are considered as a separate category. From a cyclic

component to an acyclic component (edge scc2dag in N.1 and N.5 in Figure 12(a) and 12(b))

and from an acyclic component to a cyclic component (edge dag2scc in in N.3 and N.5 in

Figure 12(a) and 12(b)). Similarly, the edges between different SCCs (edge scc2scc) are also

considered separately (N.8 in Figure 12(c)).

The only special case left to be discussed is single-nodes, which are nodes that cannot really

be associated to cyclic or acyclic components. Splitting a directed network only into cyclic and

acyclic components (and link between them) is not sufficient to identify a comprehensive and

unique categorisation for each node and edge in the network. Indeed, the inclusion of single-

nodes complete its description. A single-node receiving from one SCC and sending to another

SCC is called bridge scc (N.7 in Figure 12 and in Figure 11(f)). A single-node only sending to

SCCs is called in-single-node (N.4 in Figure 12 and Figure 11(c)). A single-node only receiving

from SCCs is called out-single-node (N.2 in Figure 12 and Figure 11(c)). Any connection to a

DAG will categorize the single-node as a part of that DAG itself. A single-node connected to

another single-node will obviously create a DAG. In Table 3, a description of these categories

is reported. Since each category corresponds to a uniquely identified network component, the

sum of the volume of each component corresponds to the total volume of the network. For this

reason, we conclude that this topological categorization completely and successfully describe
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the whole network under examination. Nevertheless, we do not exclude that future studies may

find a better way to improve this technique and adapt it to different contexts and purpose.

Node Edge Definition
sccTmix = SCC sending to and receiving from a DAG, an in-

single-node, and / or an out-single-node.
in-single-
node

= Single-node sending to a SCC.

dagTin = DAG sending to a SCC.
dag0 = Isolated DAG.
out-single-
node

= Single-node receiving from a SCC.

scc0 = SCC not connected neither with a DAG, an in-
single-node, nor an out-single-node.

sccTin = SCC receiving from a DAG or an in-single-node.
dagTmix = DAG sending to and receiving from a SCC.
dagTout = DAG receiving from a SCC.
sccTout = SCC sending to a DAG or an out-single-node.
bridge scc = Single-node connecting two or more SCCs.
– edge dag2scc Link from a DAG to a SCC.
– edge scc2dag Link from a SCC to a DAG.
– edge scc2scc Link connecting two SCCs.

Table 3: Description of topological categories for edges and nodes. SCC is used as abbreviation
for strongly connected component. DAG is used as abbreviation of directed acyclic component.
Note that edge dag2scc, edge scc2dag, and edge scc2scc do not have a corresponding node be-
cause their nodes are already assigned to different components. For example, one edge scc2dag
is made of one sender in a SCC and one receiver in a DAG. Similarly, bridge scc is only one
single-node receiving from one SCC and sending to another SCC. However, if there is a chain
of nodes where the first node is receiving from a SCC and sending to another SCC through its
last node, this is considered as dagTmix. Any connection between different types of SCCs does
not change their nature. Any connection between different types of DAG does change their
nature. Table from Criscione (2024).

4.3 Recirculation

This section is taken in part from Criscione (2024). In this work, the characterisation of the

dynamics of the network is carried out using the recirculation time. The velocity of circulation

was used in a recent work to describe the circulation of Sarafu using the same data (Mattsson,

Luedtke, and Takes, 2022). In that work, the authors were interested in the time between one

incoming operation and the first outgoing operation (”first-in, first-out” in Mattsson and Takes,

2021), and then averaging this quantity to define the ”holding time” per each user. The authors
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Symbol SCC DAG Single-
Node Edge

N.1 sccTout dagTout edge_scc2
dag

N.2 sccTout out-single-
node

N.3 sccTin dagTin edge_dag2
scc

N.4 sccTin in-single-
node

(a)

Symbol SCC DAG Single-
Node Edge

N.5 sccTmix

dagTmix OR 
dagTout & 
dagTin OR 

dagTmix & any 
other DAG

edge_scc2
dag
& 

edge_dag
2scc

N.6 sccTmix

in-single-
node &

out-single-
node

(b)

Symbol SCC DAG Single-
Node Edge

N.7 bridge_scc

N.8 edge_scc2
scc

(c)

Strongly Connected Component (SCC), Cyclic 
Component
Directed Acyclic Graph (DAG), Acyclic 
Component

Single-node

One directed link from one object to another

One directed link per each direction, but without 
creating a cycle involving nodes from both objects

Linked through one node

(d) Legend

Figure 12: Label per each topological component. The logic of this categorisation procedure
is explained by showing 8 cases in Figures (a)-(c). In each case, there are only two objects in
relation to each other. The objects can be either a cyclic component (SCC, ⟳), an acyclic com-
ponent (DAG, ⟨↕⟩), or a single-node (⃝). Each pair of objects can have three types of relation
exclusively. The first type of relation is a directed link (−→) from one object to another. The
second type of relation (⇆) is a connection which includes links in opposite direction between
two objects (without creating a cycle). The third type of relation is a connection between two
objects which involves one node only, which is receiving from one component and sending to
another one (↬). In reality, there is often a combination of these 8 cases represented above. For
example, a strongly connected component can receive from a DAG and send to a single-node,
and therefore, being identified as a sccTmix. Finally, consider also that a bridge scc is a node
receiving from a SCC and sending to another SCC, a behaviour which is described by the re-
lation ↬. As already mentioned, it is important to point out that a single-node sending to or
receiving from another node in a DAG is part of that DAG itself, and one single-node sending
or receiving from another single-node is a pair which constitutes a DAG. Figure from Criscione
(2024).
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then analyse the ”holding time” in relation to business sectors and geographic areas. As de-

scribed in Figure 13, the recirculation time here is measured as the time difference between the

first of all incoming operations and the last of all outgoing operations before another incoming

operation arrives. Moreover, the recirculation time is not aggregated (or averaged) per user. In

fact, each individual is assigned to one or more temporal categories, depending on the speed

of their recirculation operations. Instead of focussing on circulation in business sectors and

geographic areas, the recirculation time is then analysed in relation to predefined topological

categories, as described in Section 4.2. The main intent is to observe how the recirculation

speed changes in the network, revealing patterns between structure (or topology) and dynamics

in the network. This temporal categorisation for recirculation operations can be used to analyse

how recirculation itself changed over time (Research Question N.2, RQ2).

In
co
m
in
g

In
co
m
in
g

O
ut
go
in
g

O
ut
go
in
g

In
co
m
in
g

t t+1 t+2 t+3 t+4

Recirculation Operation

Figure 13: Illustration of a recirculation operation as defined in this work. One recirculation
operation includes many incoming and outgoing operations. The node in the figure receives two
incoming transactions at time t and t+1. After that, it sends currency twice at t+2 and t+3. At
t+4, it receives again some currency, so the recirculation operation closes.

The frequency (or speed) of recirculation is therefore defined as the time difference between

the first incoming operation (at time t in Figure 13) and the last outgoing operation (at time t+3

in Figure 13). In the example of Figure 13 the speed is equal to 3. This value is then used to

categorise the recirculating operations from low to high frequency. In Table 4, the recirculation

operations in Sarafu are categorised according to their speed in each period. Similarly, in Table

5, the categories of recirculation for Circles are reported. In the appendix, the distributions

of the recirculation speed for Sarafu (Figure 52) and Circles (Figure 56) are reported. The

distribution of recirculation speed per each operation is first ordered in ascending order, then
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its quartiles are detected. The acronym HF stands for high frequency. The acronym LF stands

for low frequency. The suffices Q1, Q2, and Q3 indicate the inter-quartile ranges considered

in each category. Q1 for operations in the first quarter of the distribution (inter-quartile range

0-25%). Q2 for operations in the second quarter (interquartile range 25-50%). High frequency

Q3 (HFQ3) for operations in the third quarter (interquartile range 50- 75%). And finally, low

frequency Q3 (LFQ3) for operations in the last quarter of the distribution (interquartile range >

75%).

Period 1
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 9 minutes, 15 second 0-25%
HFQ2 9 minutes, 15 seconds 3 hours, 21 minutes 25-50%
HFQ3 3 hours, 21 minutes 23 hours, 58 minutes 50-75%
LFQ3 23 hours, 58 minutes 23 weeks, 6 days >75%
Period 2
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 1 hour, 10 minutes 0-25%
HFQ2 1 hour, 10 minutes 15 hours, 48 minutes 25-50%
HFQ3 15 hours, 48 minutes 2 days, 6 hours 50-75%
LFQ3 2 days, 6 hours 24 weeks, 3 days >75%
Period 3
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 27 minutes, 3 seconds 0-25%
HFQ2 27 minutes, 3 seconds 19 hours, 41 minutes 25-50%
HFQ3 19 hours, 41 minutes 2 days, 23 hours 50-75%
LFQ3 2 days, 23 hours 17 weeks, 4 days >75%

Table 4: Speed of recirculation in Sarafu.
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Period 1
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 3 hours, 31 minutes 0-25%
HFQ2 3 hours, 31 minutes 22 hours, 57 minutes 25-50%
HFQ3 22 hours, 57 minutes 5 days, 4 hours 50-75%
LFQ3 5 days, 4 hours 54 weeks, 2 days >75%
Period 2
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 6 hours, 13 minutes 0-25%
HFQ2 6 hours, 13 minutes 3 days, 12 hours 25-50%
HFQ3 3 days, 12 hours 2 weeks, 4 days 50-75%
LFQ3 2 weeks, 4 days 62 weeks, 6 days >75%
Period 3
Freq. From To Inter-Quartile Range
HFQ1 ∼1 second 55 minutes, 45 seconds 0-25%
HFQ2 55 minutes, 45 seconds 1 day, 7 hours 25-50%
HFQ3 1 day, 7 hours 1 week, 1 day 50-75%
LFQ3 1 week, 1 day 16.0 weeks, 5.0 days >75%

Table 5: Speed of recirculation in Circles.

4.4 Circular Network Synergy

As mentioned in the Literature Review, it is possible to find a measure of the synergy effect and

the local multiplier effect which can be directly related to the precise topological characteris-

tics of the economic network that cause them. In this work, the circular network synergy is

proposed, which is measured by solving a minimum-cost circulation problem in a transaction

network (Ahuja et al., 2014; Edmonds and Karp, 1972; Goldberg and Tarjan, 1989; Simic and

Milanovic, 1992). Following Fleischman and Dini (2020) and Simic and Milanovic (1992), the

transaction network is considered as an obligation network, where all transactions are tempo-

rally aggregated, creating a directed weighted graph11. In an obligation network, every link

represents a debt between two nodes and not an actual transfer of currency. As suggested by

Fleischman and Dini (2020) and Simic and Milanovic (1992), the minimum-cost algorithm can

be used to minimise the transfers and liquidity necessary to pay all debts. In particular, the algo-

rithm works by taking advantage of the simplification of its cycles. In Figure 6, it is represented

how the algorithm works. The cycle in Figure 6(a) is simplified, and the network is transformed

11The temporal aggregation implies that reciprocal links are solved. In fact, if A owes to B and B owes to A,
then only the difference is considered.
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into Figure 6(b).

The minimisation of transfers and liquidity necessary to clear out an obligation network

is called in this work minimum-cost graph transformation. The maximum level of circular

network synergy is reached in a topology where every node has the same value of inflow and

outflow in the system, and therefore all cycles in the graph can be cancelled. In this optimal case,

the minimum-cost graph transformation leads to a null graph. This optimal graph is represented

in Figure 6(c). In economic terms, this is theoretically equivalent to an ideal perfect market

competition, where a zero-profit condition is satisfied, i.e. revenues equal to costs, inflow equal

to outflow (Criscione et al., 2022; Mas-Colell et al., 1995). From a network perspective, this

situation implies that every node is involved in a balanced cyclic component (Fleischman and

Dini, 2020), where all directed weighted cycles can be offset12. In short, it is assumed that

the higher the number of cycles in the graph, the more similar the weights are, the higher its

expressed synergy. Therefore, this optimal topology can be found using the minimum-cost

transformation of the real graph.

In short, it is assumed that the higher the number of cycles in the graph, the similar weights

they have, the higher its synergy interpreted as circular codependency. Therefore, the distance

between the topology of the real graph and its optimal topology can be measured by using the

minimum-cost transformation of the real graph. The ratio between the debt on the real graph

W and the debt in the transformed graph W ′ is captured by the circular network synergy. This

index is equal to 1 when the real network is close to its maximum synergistic potential, which

means that it is made only of cyclic components that compensate for each other (Figure 6(c), as

an example).

Consider a directed weighted graph G = (V,E) with V as the set of nodes and E the set of

edges, where ∀i ∈V and ∀ j ∈V , (i, j) ∈ E. The graph G is weakly connected, every node can

reach every other node ignoring the direction of the arrows. Every link in G ((i, j) ∈ E) has a

capacity ui j, a cost ci j, and an actual final flow xi j. Every node has a net flow (or balance) bi. A

12”Offsetting” a cycle means that all the obligations in it can be cleared out. In the literature, this operation is
also called net settlement. More details are provided in the next paragraphs. As an example, if A owes to B, B
owes to C, and C owes to A, then the three agents can agree on subtracting the minimum due amount among them.
If they all owe the same amount, then the cycle is said to be ”balanced” and no liquidity is necessary to pay out
outstanding debts (Fleischman and Dini, 2020).
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minimum-cost graph transformation problem can be formulated as follows (Kovács, 2015)

min ∑
(i, j)∈E

ci jxi j

subject to ∑
i j∈E

xi j − ∑
ji∈E

x ji = bi,∀i ∈V,

0 ≤ xi j ≤ ui j,∀(i, j) ∈ E

(22)

Here, the first constraint is called flow conservation constraints and the second capacity

constraints. As described in Kovács (2015), to solve the problem it is assumed that the capac-

ities are finite, the costs are non-negative, and there is an optimal solution with integer values.

This also implies ∑i∈V bi = 0.

An obligation network G needs to be transformed using the minimum-cost algorithm to find

a topology that minimises the number of transfers and the volume of currency required to pay

all debts. The capacity of each link ui j is equal to the amount of debt associated with that link

wi j, such that

W = ∑
i j

wi j,∀(i, j) ∈ E (23)

∑
i j∈E

wi j − ∑
ji∈E

w ji = bi,∀i ∈V (24)

where W is the total amount of initial debt in the network. Note that Equation 24 is used

to calculate the net balance of each node i. The value xi j is the actual final transfer of currency

that should take place after the graph transformation. The problem can be rewritten as follows.

min ∑
(i, j)∈E

xi j

subject to ∑
i j∈E

xi j − ∑
ji∈E

x ji = bi,∀i ∈V,

0 ≤ xi j ≤ wi j,∀(i, j) ∈ E

(25)

The final transfer of currency must respect the net flow (or balance) of each node i, as

described by Equation 24. In the second constraint, the edge (i, j) has a final actual flow xi j,

which can be any value between 0 and the initial amount of debt wi j. Obviously, xi j would be

48

C
E

U
eT

D
C

ol
le

ct
io

n



zero if it is part of one or more cycles ”balancing” each other (see Figure 6(c), as an example).

The solution of this transformation of the graph is a transformed graph with a minimum-cost

G′ = (V,E ′) for which |E ′| ≤ |E| and W ′ ≤W , where |E ′| is the number of edges and W ′ is the

total amount of debt in G′. The circular network synergy is therefore defined as

CNS = 1− W ′

W
(26)

W ′ is the volume of transactions in G′. G′ is the minimum-cost transformation of the original

graph G. In other words, W ′ is the amount of liquidity that the system requires to pay all

outstanding debts. W is the volume of transactions in the original graph G.

The index CNS is equal to 1 when the amount of debt in G′ is completely offset, and so

W ′ = 0 (see Figure 6 (c)); while it is 0 when no cycles can be simplified and so W ′ =W (that is,

an acyclic graph). The CNS can also be expressed as the ratio (W −W ′)/W , which is the ratio

between the amount of debt cleared using a minimum-cost algorithm (W −W ′) and the total

amount of debt in the system W .

In other words, it represents the relative amount of liquidity that can be saved by using a net

settlement technique based on cycle clearing. It represents the percentage of volume passing

through directed network cycles. It can also be interpreted as a measure of the distance of the

real network from an optimal state where all debts can be compensated without using liquidity

because every node is involved in offsetting cycles.

In this work, the circular network synergy is compared to other three metrics: the ”ascen-

dency ratio”, the ”systemic reserve ratio”, and the economic multiplier. The ascendency ratio

and the systemic reserve ratio are calculated following Ulanowicz et al. (2009). In particular,

the ”ascendency” is calculated as a scaled mutual information of network flow, while the ”sys-

temic reserve” is calculated as its conditional entropy. Both measures are normalised by the

”system capacity”, which is calculated as a scaled entropy of network flow. The ”synergy” (or

circular network synergy) represents the percentage of volume that is going through weighted

and directed cycles. And finally, the economic multiplier is the ratio of transaction volume to

injected liquidity. The network metrics and the economic multiplier are calculated in LWCC

only. The exclusion of components outside of LWCC allows one to focus on the main core
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of the economic network. Especially because of the significant presence of small dag0 com-

ponents which in both networks can be related to users who are simply trying the system. In

Section 5, the comparison of these four metrics is reported with tables and graphs.

4.5 Significance

This section is taken in part from Criscione (2024). The statistical significance is computed

by comparing the empirical results with null models. Three types of null models are built by

adopting different edge-swap techniques. Each model is swapped 10 times the number of edges,

and a creation of 100 models is created per each type (Milo et al., 2004). In the first type of null

model, only the targets are swapped (”target-swap”), in the second only the sources (”source-

swap”), and in the third either the source or target is swapped with a chance sampled from

a uniform distribution (”both-swap”). When swapped, each directed link between two nodes

carries with it the weights and timestamps of its transactions which took place between those

two nodes.

The Z-Scores are calculated as the ratio between the difference of the empirical value (x)

and the average of the null distribution (µ) over the standard deviation of the null distribution

(σ ):

Z =
x−µ

σ
(27)

The interpretation of the results for Z-Score is the following. When the Z-Score is close

to zero, the empirical value is not statistically significant, so it is very likely drawn from the

same distribution of the null models, which is close to random. When the Z-score has a very

high positive value, it means that the network feature is over-represented with respect to the null

models. Similarly, when the Z-score has a very high negative value, it means that the network

feature is under-represented with respect to the null models. The Z-score can be read as the

distance between the empirical value and the average of the null models, but expressed as the

number of standard deviations.
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5 Results

5.1 Sarafu Network

5.1.1 Topological Components

In this section, the topological analysis of the Sarafu network is presented. In Table 6, the

characteristics of the topological categories presented in the previous paragraph are reported.

The largest category in terms of volume is sccTmix with 162 627 643.89 Sarafu. In fact, the

largest strongly connected component (LSCC) in all periods belongs to this category. Recall that

sccTmix is a strongly connected component (or cyclic component) that sends to and receives

from an acyclic component or a single-node. The size of LSCCs for each period is reported

below.

LSCC

• LSCC in Period 1 has 10 353 nodes, 142 115 transactions, 78 421 361.09 of exchanged

volume, 9 911 926.52 Sarafu disbursed

• LSCC in Period 2 has 5 432 nodes, 102 517 transactions, 75 693 128.54 of exchanged

volume, 4 373 017.01 Sarafu disbursed

• LSCC in Period 3 has 5 252 nodes, 45 249 transactions, and 5 827 070.75 of exchanged

volume, 1 023 995 Sarafu disbursed

LWCC

• LWCC in Period 1 has 21 079 nodes, 170 074 transactions, 83 392 072.71 of exchanged

volume, 15 624 709.96 Sarafu disbursed

• LWCC in Period 2 has 12 618 nodes, 116 773 transactions, 80 713 105.97 of exchanged

volume, 6 612 599.05 Sarafu disbursed

• LWCC in Period 3 has 8 656 nodes, 52 647 transactions, and 75 36 134.35 of exchanged

volume, 1 349 068.5 Sarafu disbursed
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Figure 14: Single-nodes, cyclic, and acyclic components in Sarafu network. The four largest
categories (in terms of volume) are sccTmix, dagTin, dag0, and in single nodes. Notice the
presence of dagTmix in the first two periods. Notice also the general drop in volume in the third
period.
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In Figure 14, the size of strongly connected components (or cyclic components, SCCs),

directed acyclic graphs (or acyclic components, DAGs), and single-nodes is reported. It can

be observed that, for all periods sccTmix among cyclic components, dagTin and dag0 among

acyclic components, and in single nodes among single-nodes are the most relevant categories

in terms of number of nodes, transactions, and volume exchanged. Among acyclic components,

the main difference between periods is due to the presence of dagTmix which drops in the third

period. Notice also how the volume moved by those four major categories was notably reduced

in the third period as well. In the third period, there was a drastic policy change which was

discussed in Chapter 313.

In Table 6, the second biggest category are in single nodes with a total exchanged volume

of 4 709 640.97 Sarafu. These are users who sent their Sarafu to another user in a sccTmix or

in sccTin. The third category is sccTin (2 148 894.71 Sarafu) followed by scc0 (1 277 729.65

Sarafu), edge dag2scc (1 042 953.26 Sarafu), and sccTout (1 001 581.49 Sarafu). This gives

an impression of the importance of cyclic components in this economic network. Most of

the exchanged volume is happening within strongly connected components: SCCs which are

also receiving from acyclic component (sccTin)s and in single nodes, SCCs isolated from the

rest of the network (scc0), SCCs which are also sending to acyclic components (sccTin) and

out single nodes. The category edge dag2scc indicates the volume transferred from acyclic

components to cyclic components.

The above findings show that cyclic components play a fundamental role in this economic

network. However, it is important to compare these findings with null models to understand

the role played by randomness. First, in all the null models of different types, the strongly

connected components generally disappear. Null models generally only have one large strongly

connected component (LSCC) of sccTmix type. However, the null model LSCC usually has

fewer transactions and fewer volume exchanged than the empirical one (see Figure 15(a)) . This

first result tells us that the presence of sccTmix components in the empirical network is generally

13In Period 1, registered savings groups could cash-out the Sarafu of their members into Kenyan shillings. The
monthly procedure was limited to a certain amount per group. In Period 2, savings groups could indicate one or
more local businesses (vendors) which were entitled to cash out. Savings groups organised monthly collective
purchases in Sarafu in those local businesses. At the end of the month, local businesses could cash out their Sarafu
in Kenyan shillings. In Period 3, this currency exchange stopped.
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SCCs WCCs Nodes Dir.Links Transact. Volume
edge bridge scc 0 27 100 75 98 74743.0
edge dag0 0 1017 2725 1717 2073 325203.0
edge dag2scc 0 551 2784 2422 3932 1042953.26
edge dagTin 0 893 3410 2569 3063 624216.41
edge dagTmix 0 144 1027 920 1139 283889.06
edge dagTout 0 186 613 440 527 102052.47
edge in single node 0 2167 17723 17651 26433 4709640.97
edge out single node 0 786 2535 1763 2342 355133.03
edge scc0 493 493 1313 1769 3494 1277729.65
edge scc2dag 0 308 1028 778 1158 328492.14
edge scc2scc 0 344 1425 1127 1716 801962.6
edge sccTin 361 361 1286 2446 6248 2148894.71
edge sccTmix 150 150 22294 112250 300338 162627643.89
edge sccTout 113 113 394 946 2509 1001581.49

Table 6: Topological components in Sarafu network. For this table, the network was temporally
aggregated across the whole observed period.

significant and over-represented (positive Z-score) (Figure 15(a)). The absence of some SCCs

categories is not due to the lack of significance but to their complete absence in those null

models. The result on acyclic component and single-nodes complements those observations.

Generally, acyclic components and single-nodes are under-represented in empirical networks

with the only exception of dag0. This means that the absence of these categories is not due

to pure randomness. In summary, the role played by the cyclic components is statistically

significant and over-represented, along with the dag0 components.

In conclusion, the presence of cyclic components in the Sarafu network is considerable and

significant. This means that the cyclic structures in this currency network cannot simply be

explained by randomness, but reflect a precise economic phenomenon. The only exception to

this conclusion is the presence of dag0. In Criscione (2024), it was shown that this topological

category is mostly associated with groups of users who are simply trying the system. In the next

section, recirculation and one-time usage is analysed using these topological categories.

5.1.2 Recirculation

A recirculation operation is a collection made of incoming transactions followed by outgoing

transactions before another incoming transaction follows. Recirculation operations are classi-

fied according to their speed, the time interval between the first incoming transaction and the
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Figure 15: Significance of topological components in Sarafu over time. Value of the Z-Score
less than 5 in absolute value are excluded from the plot. There is some little variations across
all the other null models (see also Appendix, Figure 43). As explained before, this is due to
the fact that this type of randomization generally eliminate strongly connected components.
Therefore, in most of the cases, only one strongly connected component of sccTmix type is left.
This implies that the absence of some cyclic component categories is due to their absence in
the null models, and not to their lack of significance. Note also that the number of weakly and
strongly connected components is not reported here, but in Appendix.
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(a) Subgraph Sarafu Network

0.04 0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04
sccTmix (55.17%)
in-single-node (25.29%)
dagTin (5.75%)
out-single-node (3.07%)
dagTmix (3.07%)
sccTin (2.68%)
dagTout (1.53%)
scc0 (1.15%)
sccTout (1.15%)
dag0 (1.77%)
bridge_scc (0.38%)

(b) Legend

Figure 16: Subgraph of 261 nodes and 524 directed links. The subgraph is created by merging
ego graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The
subgraph is made by aggregating the network on the whole observed period. Each link takes
the color of the source (i.e. node sending). This plot is made out of a sample of ego graphs,
hence, it is very likely that some connections are missing within the same components. In the
legend, the proportion of users per each category in parenthesis.

56

C
E

U
eT

D
C

ol
le

ct
io

n



last outgoing transaction per each account (see Chapter 4 for details). In Table 7, a summary

of recirculation in Sarafu is reported. Note that a recirculation operation can involve more than

two transactions (one incoming, one outgoing). Conversely, one transaction can be part of one

or more recirculation operations, when the outgoing transaction in one operation becomes the

incoming transaction of another. In those cases, one single transaction can be part of max two

recirculation operations. In Table 7, in Period 1 the recirculating users were 22.7% of the total

number of users14 and exchanged between them 84.6% of the total volume15. In Period 2, recir-

culating users were 22.3% of the total number of users and exchanged among them 86% of the

total volume. Finally, in Period 3, they were 33% of the total and exchanged 74% of the total

volume. In summary, a small minority of users is responsible for most of the volume exchanged

on the Sarafu network.

Period 1
Operations Transactions Volume Users

Tot. 203 350 150 837 76 203 610.65 18 458
Recirc. Only – 115 968 70 761 076.1 5 003

Period 2
Operations Transactions Volume Users

Tot. 138 858 108 336 73 917 070.6 11 643
Recirc. Only – 92 046 70 554 924.04 3 274

Period 3
Operations Transactions Volume Users

Tot. 69 197 50 424 8 415 057.45 8 203
Record. Only – 42 832 7 554 553.09 3 906

Table 7: Recirculation in Sarafu network. The Recirc. Only indicates operations happening
only among recirculating users. In practice, the outgoing transaction of a recirculating user is
also the incoming transaction for another recirculating user.

In Figure 17(a), the majority of recirculating users in all periods belong to cyclic components

(or strongly connected components). In Figure 17(b), the number of transactions in recirculation

operations across topological groups, periods, and temporal categories is generally dominated

by cyclic components and in single nodes. In the third period, also out single nodes gained im-

portance in recirculation. This means that some of those operations ended up in nodes that did

14This is the ratio of Recirc. Only (users) in Period 1 in Table 7 and total number of users in Period 1 (22 022,
from Chapter 3)

15This is the ratio of Recirc. Only (Volume) in Period 1 in Table 7 and total volume in Period 1 (83 583 846.76,
from Chapter 3)
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not recirculate afterwards. Similar conclusions can be reached by observing the recirculated

volume in Figure 17(c). Looking at each topological group separately, it is possible to iden-

tify a very weak tendency to move more volume and have more transactions when the speed of

recirculation slows down (from HFQ1 to LFQ3). In summary, cyclic components played an im-

portant role in currency recirculation. Nonetheless, also in single nodes and out single nodes

played a relevant role in initiating and finalising those recirculation operations.
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Figure 17: Recirculation in Sarafu per topological group. When the same transaction is taking
part into two recirculation operations its weight is split into two. This explains the meaning of
the ”w-” as prefix of each temporal category in Figure (c).
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The role of cyclic components in recirculation could be due only to randomness, and for

this reason the findings are compared to null models. Null models are created by randomising

empirical networks. However, almost all null models show one type of strongly connected

component, which is a unique large sccTmix component. This means that the existence of

other types of cyclic component (and the recirculation in them) is already significant. In Figure

18(a), the number of recirculating users is significantly over-represented for temporal categories

HFQ1, HFQ2, and HFQ3, across all periods. In other words, the presence of users in the

sccTmix components that recirculating in less than ∼3 hours (HFQ3, Periods 1), ∼15 hours

(HFQ3, Periods 2), ∼19 hours (HFQ3, Periods 3) is generally significant. A similar pattern can

be observed for the number of transactions (Figure 18(b)) and the volume (Figure 18(c)).

However, there are four important observations to add. First, the number of users, trans-

actions, and exchanged volume in sccTmix for the category of ”slow” recirculation operations

(LFQ3) is under-represented in the first two periods and not significant in the last period. Sec-

ond, in the ”faster” categories (HFQ1, HFQ2, HFQ3) also dagTin and dagTmix are playing a

significant role in recirculation due to their over-representation. Third, in single nodes are also

playing a significant role in ”slow” recirculation operations (LFQ3, i.e. greater than or equal

to ∼2-3 days) in Period 1. Finally, in terms of volume exchanged in recirculation, only trans-

actions among cyclic components (edge scc2scc) seem to play a significant role in the third

period.

In summary, cyclic components play a statistically significant role in recirculation of the

currency. Figure 17 shows that most of the recirculation occurs in these components. However,

the existence of those components cannot generally be attributed to randomness because they

are not present in null models. The only type of cyclic component that exists in all null models

is sccTmix. For sccTmix components, the Z-Score shows an over-representation in number of

users, transactions and volume. The only exception is the loss of significance for the exchanged

volume in the third period.
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Figure 18: Significance of recirculation in Sarafu per topological group. Value of the Z-Score
less than 5 in absolute value are excluded from the plot. Only null models with ”target-edge”
swap are considered in this Figure. Other null models are compared in the Appendix (Section
7.7). Besides sccTmix components, consider that other types of strongly connected components
are generally not present in null models due to the randomization of the empirical graph. Their
absence in the plots is not due to lack of significance, but the opposite.

The last aspect to be considered in the analysis of currency recirculation is the presence

of ’one-time’ users, namely users that participated in one transaction only before quitting the

system (see also Tables 14 and 15 in the Appendix). This phenomenon can be explained by

the presence of users creating fake accounts or simply a group of users trying out the system

(see Criscione (2024) for more information). Figure 19 shows that this phenomenon is closely

related to some specific topological groups. On the one hand, the majority of one-time users

60

C
E

U
eT

D
C

ol
le

ct
io

n



who made one outgoing transaction is categorised as dagTin and in single node. Both of those

categories moved a considerable amount of value decreasing over time: in single node spent

1 145 684.21 (Period 1), 867 213 (Period 2), and 184 734 (Period 3); users in dagTin spent

156 395 (Period 1), 157 414 (Period 2), 67 127 (Period 3). On the other hand, the major-

ity of one-time users who only received one incoming transaction is categorised as dag0 and

out single node. Both categories moved less volume than the previous ones: out single nodes

received 27 206.03 (Period 1), 43 394 (Period 2), and 65 599 (Period 3); in dag0 the volume

exchanged by one-time receivers was 32 186 (Period 1), 50 419 (Period 2), and 44 141 (Period

3). In summary, one-time users are associated with specific topological categories, mostly in

acyclic components and single-nodes. In particular, one-time users as in single nodes injected

in the system more than 2 million Sarafu in the system in the first two periods. Also in this

case, in the third period there is a considerable change in the internal dynamics, probably due

to policy change discussed before.
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Figure 19: One-time users in Sarafu

In conclusion, recirculation in the Sarafu network occurs mostly in cyclic components,

especially in the sccTmix components. This result is statistically significant for at least the

first two periods. The role of other topological categories is generally marginal, except for
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in single nodes which initiated recirculation of a considerable amount of Sarafu in the first two

periods: 2 361 672.29 (Period 1), 1 162 150.42 (Period 2), and 205 043.1 (Period 3). In ad-

dition, users outside of the cyclic components can be partially associated with one-time usage.

Especially, in single nodes are associated with one-time outgoing transactions: 1 145 684.21

(Period 1), 867 213 (Period 2), and 184 734 (Period 3). This means that about 60% of the

volume spent by in single nodes was coming from one-time users. In the next section, the pres-

ence of cyclic components and recirculation is studied using some of the network performance

metrics presented before in this work.

5.1.3 Circular Network Synergy

In this section, the state of the Sarafu network is analysed using the four metrics presented in

the Methods section 4.4. That is, the ascendency ratio, the systemic reserve ratio, the circular

network synergy, and the economic multiplier. The network metrics and the economic multiplier

are calculated in LWCC only. The exclusion of components outside of LWCC allows one to

focus on the main core of the economic network. Especially because of the significant presence

of small dag0 components which in both networks can be related to users who are simply trying

the system.

In Figure 20, the circular network synergy is close to 0.6 in the first two periods. This means

that about 60% of the flow was going through weighted directed cycles. In the first two periods,

the ascendency ratio and the reserve ratio also agree towards 0.5. This means that in the first

two periods, the system was converging toward a state of balance between used capacity (i.e.

expressed potential) and unused capacity (i.e. unexpressed potential), as defined by Ulanowicz

et al. (2009). Notice how the closer these two metrics are, the higher is the level of circular

network synergy. In contrast, a larger difference between the ascendency ratio and the reserve

ratio is associated with a lower level of circular network synergy and multiplier, like in the third

period.

A weak monotonic relation of these network metrics to the economic multiplier can also

be seen in Figure 20. From the previous section on recirculation, a considerable decrease in

activity was observed in the third period across any topological category. This explains why
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both the multiplier and the circular network synergy decrease in Period 3. Another important

topological change can explain the change from Period 1 to Period 2. As discussed in the

previous sections on topological components and recirculation, the presence of in single nodes

and one-time users (in acyclic components and single-nodes) was high in the first two periods.

This means that the multiplier was kept artificially high because it did not completely reflect

the recirculation of currency. In addition, recirculation in sccTmix also loses importance in the

third period, so these two factors together may have caused the multiplier to fall close to zero.

Period 1 Period 2 Period 3
Ascendency Ratio 0.56 0.54 0.77
Reserve Ratio 0.44 0.46 0.23
Synergy 0.58 0.61 0.18
Multiplier 2.73 1.77 0.06

Table 8: Systemic metrics of Sarafu circulation over time.
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Figure 20: Systemic state of Sarafu over time. In the case of Sarafu, the injected liquidity is
equal to the initial disbursement to new users and the rewards disbursed to registered users,
minus the reclamation (i.e. cashing-out operations and demurrage). In Sarafu, in the first two
periods an increasing level of ”synergy” is associated to a convergence of ”ascendency” and
”systemic reserve”. However, in the third period, a higher difference between the two is asso-
ciated to a lower level of ”synergy”. The multiplier is decreasing over time, probably reflecting
the decreasing level of exchanged volume.

In Figure 21, the network metrics are compared to three types of null models. A consistent

result is the statistical significance and over-representation of circular network synergy across

all null models and periods. On the other hand, the ascendency ratio and the reserve ratio have

less significance with a Z-score oscillating between 5 and 10 in absolute value. The two metrics
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are complementary by design to each other, and this is also reflected in the graph. Finally, the

ascendency ratio and the reserve ratio are not significant in Period 3 for source-edge swap null

models and in Period 1 for target-edge swap null models. In this context, circular network

synergy seems a more statistically significant network metric.
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Figure 21: Significance of systemic state metrics of Sarafu over time. Circular network synergy
is significantly over-represented in all three periods. In a complementary way, the reserve ratio
is over-represented, while the ascendency ratio is under-represented. However, their Z-scores
oscillates between 5 and 10 in absolute value.
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5.2 Circles UBI Network

5.2.1 Topological Components

In this section, the topological analysis of the Circles network is reported. In Table 9, the largest

topological group is sccTmix with a volume of 2 758 315.52 Circles units exchanged throughout

the period. The second largest group is in single nodes (629 161.09 Circles units), the third one

is dag0 (347 374.34 Circles units), and the fourth one is edge dag2scc (312 393.91 Circles

units). In each period, the largest strongly connected component was classified as sccTmix (in

P1 and P2) and sccTout (in P3) and its size changed as follows.

LSCC

• LSCC in Period 1 has 734 nodes, 10 029 transactions, 123 938.8 of exchanged volume,

1 145 999.19 Circles disbursed

• LSCC in Period 2 has 391 nodes, 7 467 transactions, and 1 402 281.8 of exchanged

volume, 912 023.8 Circles disbursed

• LSCC in Period 3 has 1 398 nodes, 26 355 transactions, and 1 163 821.9 of exchanged

volume, 1 327 801.51 Circles disbursed

LWCC

• LWCC in Period 1 has 3490 nodes, 17 078 transactions, 522 612.39 Circles in exchanged

volume, 4 109 380.76 Circles disbursed

• LWCC in Period 2 has 1895 nodes, 14 874 transactions, 2 099 228.62 Circles in ex-

changed volume, 3 020 645.72 Circles disbursed

• LWCC in Period 3 has 3 309 nodes, 35 535 transactions, 1 585 583.484 Circles in

exchanged volume, 2 150 600.16 Circles disbursed

The first evident difference between the Sarafu and Circles networks is the lower presence

of different types of cyclic components in the Circles network. In fact, sccTin, sccTout, and scc0

components are generally smaller and less active in Circles than in Sarafu (see Figure 22(a)).
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However, the number of nodes, transactions, and volumes moved by the acyclic components is

very similar between the two networks (see Figure 22(b)). Finally, also single-nodes in Circles

are generally less and with less volume than in Sarafu (see Figure 22(c)).

Figure 22 also shows the most relevant topological categories among cyclic and acyclic

components, and single-nodes. Among cyclic components, Figure 22(a) shows that, after sc-

cTmix, the second largest category is sccTout and the third one scc0. Cyclic components had

a reduction in volume in the third period (negligible for sccTmix components). Figure 22(b)

shows that the three largest categories of acyclic components are (in order of size, in terms of

volume): dag0, dagTmix, and dagTin. The main difference between all periods is the negligible

presence of dag0 in the first and its importance in the second and third periods. Finally, Figure

22(c) shows that out single nodes played a relevant role in the first and third period, but never

moved a considerable amount of volume. On the other hand, even if in fewer numbers and with

fewer transactions, in single nodes moved the majority of volume across all periods.

These findings can be summarised and explained as follows. First, the presence of less

diverse cyclic components than in Sarafu could be a hint of less economic synergy. Second,

a new user who wants to join and test the system needs to be validated by at least three other

members of the Web of Trust (see Chapter 3). This means that existing members often were

onboarding new users by sending a request in the Web of Trust and sending them Circles units

to let them try the system. If the new member would not further engage with the system, then

this could be visible as out single node16. In fact, in the first and third periods the number of

out single nodes was high, but their volume was low. This probably means that in both periods

there was a great deal of effort to welcome new members. The third finding is about the presence

of dag0 and dagTmix, especially in the second and third period. The increasing number of dag0

in the second and third periods may be related to the group of users trying the system out or

using it marginally (e.g., as a secondary currency).

The findings should be compared with null models to understand the role of randomness

in them. In Figure 23, the empirical network is compared with null models created using a

”target-edge” swap technique (other null models can be found in Appendix 7.5). In Circles,

16As a reminder, a out single node is a node which is only receiving from another node in a cyclic component
of type either sccTmix or sccTout
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Figure 22: Single-nodes, cyclic, and acyclic components in Circles network. The four largest
categories (in terms of volume) are: sccTmix, in single nodes, dag0, and edge dag2scc. Notice
the presence of dag0 in the last two periods. Notice the drop in volume in the third period.
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SCCs WCCs Nodes Dir.Links Transact. Volume
edge bridge scc 0 14 65 53 106 10831.73
edge dag0 0 207 661 497 863 347374.34
edge dag2scc 0 161 1277 1868 3686 312393.91
edge dagTin 0 206 698 518 784 53111.81
edge dagTmix 0 123 1357 1433 2329 147258.56
edge dagTout 0 172 597 451 745 36392.48
edge in single node 0 209 2055 2371 4864 629161.09
edge out single node 0 375 2969 3424 5348 75478.18
edge scc0 52 52 108 115 270 26847.66
edge scc2dag 0 158 1359 1764 3195 152728.97
edge scc2scc 0 77 430 447 825 74720.8
edge sccTin 44 44 103 118 215 24757.6
edge sccTmix 94 94 3010 18422 46407 2758315.52
edge sccTout 78 78 293 663 1059 36922.16

Table 9: Topological components in Circles network. Temporal aggregation includes the whole
observed period.

as in Sarafu, randomisation often destroys most of the cyclic components, leaving only one

large strongly connected component of type sccTmix. This implies also that the calculation

of Z-Score may fail because the standard deviation is equal to zero and not because of lack

of significance. Figure 23(a) shows that sccTout and edge scc2scc play a significant role in

this network across all periods. Figure 23(b) shows also bridge scc is over-represented in the

empirical network. The significant presence of edge scc2scc and bridge scc can be explained

by the general absence of many different strongly connected components in null models. In

Figure 23(b), the role played by dag0, dagTin, and out single node changed over time: from

being under-represented in Period 1 to being over-represented in Period 3. This could confirm

the explanation provided before about the role played by dag0 and out single node. Although

it is marginal, the presence of dagTin could be associated with a systemic inability to close

’loops’.

In summary, cyclic components in Circles have less diversity than in Sarafu, but their pres-

ence is still statistically significant. A particular role in this network is played by in single nodes,

out single nodes, dagTin, and dag0. In single nodes are users who spent their Circles units

without accepting them back. Out single nodes could be explained by the onboarding process

of new members. DagTin could be related to missing ”linkages” in the supply chain or eco-

nomic network. While dag0 could be connected to small groups of users simply trying out
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Figure 23: Significance of topological components in Circles over time. Value of the Z-Score
less than 5 in absolute value are excluded from the plot. There is some little variations across
all the other null models (see also Appendix, Figure 49). As explained before, this is due to
the fact that this type of randomization generally eliminate strongly connected components.
Therefore, in most of the cases, only one strongly connected component of sccTmix type is left.
This implies that the absence of some cyclic component categories is due to their absence in
the null models, and not to their lack of significance. Note also that the number of weakly and
strongly connected components is not reported here, but in Appendix.

69

C
E

U
eT

D
C

ol
le

ct
io

n



the system or marginally using it. In the next section, the recirculation in Circles network is

explored with a particular regard to its topological structure.

(a) Subgraph Circles UBI Network

0.04 0.02 0.00 0.02 0.04
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0.04 sccTmix (41.35%)
out-single-node (18.77%)
dagTmix (16.42%)
dagTout (7.33%)
dagTin (7.04%)
in-single-node (2.64%)
sccTout (2.64%)
sccTin (2.35%)
scc0 (0.88%)
bridge_scc (0.59%)

(b) Legend

Figure 24: Subgraph of 341 nodes and 825 directed links. The subgraph is created by merging
ego graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The
subgraph is made by aggregating the network on the whole observed period. Each link takes
the color of the source (i.e. node sending). This plot is made out of a sample of ego graphs,
hence, it is very likely that some connections are missing within the same components. In the
legend, the proportion of users per each category in parenthesis.

5.2.2 Recirculation

In this section, the recirculation in Circles is analysed with respect to its topological structure. A

recirculation operation is made by an incoming transaction followed by an outgoing transaction.
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Recirculation operations are classified according to their speed, the time interval between the

first incoming transaction and the last outgoing transaction (see Section 4 for details). In Table

10, a description of the recirculation operation in Circles over time is reported. Notice that

in Period 2 the highest volume of recirculated currency occurred. However, in this period,

fewer users were involved in recirculation. This means that the currency was circulating a lot

among fewer people. In the third period, the opposite was true: many users participated in the

recirculation of currency, even though the total volume was lower. It should also be considered

that Period 2 is the longest one (∼16 months), while Period 3 is the shortest (∼6 months). This

means that recirculation performed overall better in Period 3 than in Period 2.

In Table 10, in Period 1 the recirculating users were 20.5% of the total17 and exchanged

between them 21.4% of the total volume18. In Period 2, recirculating users were 18.3% of the

total number of users and exchanged 52. 6% of the total volume. Finally, in Period 3, they were

31.1% of the total and exchanged among them 57.7% of the total volume. In summary, a small

minority of users were responsible for half of the volume exchanged on the Circles network in

the last two periods, while in the first period the amount of recirculation was negligible.

Period 1
Operations Transactions Volume Users

Tot. 14 570 11 668 305 339.46 1 994
Recirc. Only – 9 137 121 012.09 837

Period 2
Operations Transactions Volume Users

Tot. 13 457 11 674 1 839 116.48 1 380
Recirc. Only – 7 510 1 286 352.73 461

Period 3
Operations Transactions Volume Users

Tot. 26 313 23 096 1 314 987.48 2 433
Recirc. Only – 18 138 967 279.39 1 129

Table 10: Recirculation in Circles network. The Recirc. Only indicates operations happening
only among recirculating users. In practice, the outgoing transaction of a recirculating user is
also the incoming transaction for another recirculating user.

In Figure 25, almost all topological categories increase in terms of users, transactions, and

17This is the ratio Recirc. Only (Users) in Period 1 in Table 10 and total number of users in Period 1 (4 074,
from Chapter 3)

18This is the ratio of Recirc. Only (Volume) in Period 1 in Table 10 and total volume in Period 1 (565 283.7,
from Chapter 3)
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volume with respect to their speed of recirculation. For instance, ”fast” operations (HFQ1) have

generally less users, transactions and volume than ”slow” operations (LFQ3). This is generally

what we expect in a normal economic network: most users recirculate currency on a weekly

basis, and large transaction volume moves slower and less frequently. This was not the case in

Sarafu, where we generally observed the same activity across temporal categories. One possible

explanation is that users were rewarded and / or penalised weekly (and then monthly) for their

usage (see also Criscione (2024) and Mattsson, Criscione, and Ruddick (2022)).

Figure 25(a) shows that the most important categories in terms of number of users are sccT-

mix, sccTout, dagTmix, dagTin, and marginally sccTin, with very little variation in all periods

and temporal categories. Figure 25(b) shows the most important categories in terms of number

of transactions are sccTmix, in single nodes, edge dag2scc, and out single nodes. There are

very little variations between periods. For instance, in the edge scc2scc components in Peri-

ods 1 and 2 there were more transactions happening than in Period 3. Similarly, in Period 1,

sccTout had a more important role in terms of number of transactions. These observations are

also confirmed in Figure 25(c), the categories with more number of transactions also moved

more volume, with the only exception of out single nodes. In particular, in the sccTmix com-

ponents there was very little recirculation in Period 1 (10 months long; 116 597.67 Circles units

in volume), the highest amount in Period 2 (19 months long; 1 349 120.72 Circles units in vol-

ume) and a very high amount in a short time in Period 3 (6 months long; 1 037 278.57 Circles

units in volume). In Circles, as in Sarafu, the second largest category that played a key role in

recirculation is in single node. Also in single nodes provided the highest amount of liquidity

used for recirculation operations especially in the second period (245 694.91 Circles units in

volume), while in the first and third periods the volume sent to cyclic components was similar

(131 050.86 Circles units in volume, Period 1; 111 469.08 Circles units in volume, Period 2).
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Figure 25: Recirculation in Circles per topological group. When the same transaction is taking
part into two recirculation operations its weight is split into two. This explains the meaning of
the ”w-” as prefix of each temporal category in Figure (c).

The statistical significance of these findings can be studied by comparing them with null

models. In the first period, the number of users (Figure 26(a)) and the number of transactions

(Figure 26(b)) is over-represented for the sccTmix category in the ”fastest” recirculation opera-

tions (less than HFQ3; that is, less than ∼ 5 days in Period 1). In the second period, the number

of transactions (Figure 26(b)) is over-represented for the categories of in single nodes and sccT-
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mix (less than HFQ3; that is, less than ∼ 2 weeks in Period 2). In the third period, the presence

of recirculation operations becomes significant for sccTout, dagTin, dag0, and sccTmix. In this

period, most of the significant volume is moved by ”slow” operations for more than ∼ 1 week

(more than LFQ3 in Period 3). In the last period, sccTout, dagTin and dag0 made a significant

contribution to the number of transactions and volume exchanged. In this period, the LSCC is

of sccTout type.
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Figure 26: Significance of recirculation in Circles per topological group. Value of the Z-Score
less than 5 in absolute value are excluded from the plot. Only null models with ”target-edge”
swap are considered in this Figure. Other null models are compared in the Appendix (Section
7.7). Besides sccTmix components, consider that other types of strongly connected components
are generally not present in null models due to the randomization of the empirical graph. Their
absence in the plots is not due to lack of significance, but the opposite.

Recirculation findings need to be complemented with data on one-time usage. Figure 27

shows that most of the one-time users are associated to in single nodes, out single nodes, and

dag0 components. However, out single nodes moved a limited amount of volume19, and this

could confirm the explanation that this is a practice associated simply with onboarding new

192 355.29 Circles units in Period 1; 2 870.23 Circles units in Period 2; 4 351.25 Circles units in Period 3
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members. The high presence of one-time users in dag0 could be associated with a group of

members who tested the system and their activity increased during the last two periods20. Fi-

nally, the major role played by in single nodes is left to be explained. An explanation could be

the creation of fake accounts to exploit the system, as in Sarafu (Criscione (2024)). However,

peer validation in Circles should theoretically avoid these kind of practices (i.e. Sybil attacks)

(see Chapter 3). The question is left open, but the data show the presence of accounts that

were used one time to send Circles units to users in strongly connected components. In general,

in single nodes moved the largest share of volume among one-time users: 29 906.96 in Period

1, 27 903.65 in Period 2, and 33 832.5 in Period 3 (see also Tables 16 and 17 in Appendix).
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Figure 27: One-time users in Circles

In conclusion, in this section the recirculation in Circles network was analysed. The main

findings can be summarised as follows. First, recirculation is happening at a slower pace than

in Sarafu. Second, a large part of the recirculated volume is moved by in single nodes (similar

to Sarafu) and dag0, and this is statistically significant mostly in the third period. Third, con-

nections across strongly connected components moved a significant amount of volume mostly

in the second period (bridge scc, edge scc2scc). Fourth, the presence of one-time users in

202 939.1 Circles units in Period 1; 37 443.63 Circles units in Period 2; 24 162.51 Circles units in Period 3
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in single nodes, out single nodes, and dag0 components is not negligible. In the next section,

the systemic state of Circles over time is also analysed in relation to these findings.

5.2.3 Circular Network Synergy

In this section, the state of the Circles network is analysed using the four metrics presented in

the Methods section 4.4. That is, the ascendency ratio, the systemic reserve ratio, the circular

network synergy, and the economic multiplier. The network metrics and the economic multiplier

are calculated in LWCC only. The exclusion of components outside of LWCC allows one to

focus on the main core of the economic network. Especially because of the significant presence

of small dag0 components which in both networks can be related to users who are simply trying

the system.

In Figure 28, the values of the network metrics are reported for each period. In Period 1,

the circular network synergy is almost zero. This means that in the first period, the number of

directed weighted cycles is negligible. Only in Period 2, the circular network synergy grows to

1%, and in Period 3 it reaches 7%. This means that only in the last two periods has some eco-

nomic synergy been created. This is also reflected by the slow convergence of the ”ascendency

ratio” and the ”systemic reserve ratio”, as in Sarafu. In fact, according to Ulanowicz et al., 2009

these two values should balance each other; the first can be interpreted as used capacity (i.e.

expressed potential) and the second as unused capacity (i.e. unexpressed potential). Conse-

quently, the multiplier was also growing with time. The network metrics adopted in this section

fail to capture the spike of the multiplier in Period 2, but flipped their position showing a spike

in ”systemic reserve ratio”. One possible explanation comes from a previous work (Avanzo et

al., 2023). In that work, the authors observed that in that period most of the subsidised business

partners were mostly accepting Circles as a means of payment but regularly cashing out at the

end of the month. The authors also observed a core-periphery structure in that period, where

the core is made up of the subsidised businesses. Thus, in the second period, the increase in the

multiplier is probably not related to any relevant synergistic effect.
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Period 1 Period 2 Period 3
Ascendency Ratio 0.58 0.43 0.51
Reserve Ratio 0.42 0.57 0.49
Synergy 0.00 0.01 0.07
Multiplier 0.12 0.26 0.14

Table 11: Systemic metrics of Circles circulation over time.
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Figure 28: Systemic state of Circles over time. In the case of Circles, the injected liquidity is
equal to the universal basic income provided in Circles units. In Circles, an increasing level of
”synergy” is associated to a convergence of ”ascendency” and ”systemic reserve” as well. This
means that probably in the last period the system was going towards a stabilization phase. This
explains also the increasing level of multiplier over time. Nonetheless, the level of ”synergy” is
still below 0.1 and the multiplier below 0.26. In conclusion, even though the system was going
towards a maturity phase, the evidence of a ”synergy effect” and/or ”multiplier effect” was still
too low.
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Figure 29: Significance of systemic state metrics of Circles over time. Circular network syn-
ergy is significant only in the third period. In a complementary way, the reserve ratio is over-
represented, while the ascendency ratio is under-represented. This can be interpreted as if the
system had a lot of unused capacity, especially in the first two periods.

Finally, the significance of the network metrics is compared with three types of null models.

In Period 1, the network metrics are not significant for ”source-edge” swap null models. In
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the second period, circular network synergy is not statistically significant, while in the third

period it is. This confirms the suspect that the subsidy programme in Period 2 probably failed

to create economic synergy in the network. In other words, the presence of weighted directed

cycles was too low to be statistically significant. In Period 3, only close to the end of the subsidy

programme, the synergetic effect started to be significant. This is partially confirmed by a recent

qualitative study (Longo et al., 2024), in which some economic synergy among businesses was

reported in that last period.

5.3 Comparison

In this section, a brief comparison of the results for the Sarafu and Circles networks is re-

ported. In the Sarafu network, the empirical findings can be summarised as follows. Across

all periods, cyclic components are the largest, and their presence is statistically significant and

over-represented. Other topological categories are generally under-represented, with the only

exception of dag0, namely isolated acyclic components. This is also reflected in the recircula-

tion analysis, with more than 20% of the users recirculating around 85% of volume in the first

two periods. However, in Period 3 the share of recirculated volume decreased to 74%, and gen-

erally recirculation had less statistical significance. A particular role in recirculation was played

by in single nodes which sent to cyclic components about 2 million of Sarafu in the first two

periods and then almost stopped in Period 3. About 60% of in single nodes were accounts used

only once. These findings are also reflected in the systemic state analysis. First, the highest

multiplier was in Period 1, when the injection by in single nodes was the highest. Second, the

highest circular network synergy level is in Period 2, when the recirculated volume was also the

highest. Finally, both multiplier and circular network synergy decreased drastically in Period

3, when recirculated volume reduced, and volume in LWCC shrunk by 1 order of magnitude.

For a detailed recap, Table 12 summarises the main findings and also provides some context.

For all the reasons mentioned above, it is possible to conclude that Sarafu was indeed used as a

primary currency, especially in the first two periods. A primary currency is a currency used as

means of payment to finalise daily (ordinary and extraordinary) trades.

In Circles network, the empirical findings can be summarised as follows. Period 1 is a pe-

79

C
E

U
eT

D
C

ol
le

ct
io

n



riod of not significant activity. In Period 2, a core-periphery structure is observed. Unlike in

Sarafu, in Periods 2 and 3, the presence of acyclic components is as significant as that of cyclic

components. In these two last periods, 20-30% of the users recirculated about 50% of volume.

Most of one-time users are located in dag0, in- and out- single-nodes, with volume peak in Pe-

riod 2. The level of circular network synergy (CNS) is very low in Circles, but slowly increases

in the last two periods, and statistically significant only in Period 3. In Period 2, the multiplier

and the systemic reserve ratio show a peak, not registered by the CNS. This is probably due to

one-time usage and circulation initiated by in single nodes and happening through acyclic com-

ponents. In this period, the network was also shaped as a core-periphery structure (subsidised

businesses in the core; Avanzo et al., 2023), which is also reflected in the low number of recir-

culating users. The CNS is significant only in Period 3, when the number of recirculating users

and the volume of recirculation increased. For a detailed recap, Table 13 summarises the main

findings and also provides some context. For all the reasons mentioned above, it is possible

to conclude that Circles was indeed used as a secondary currency, especially in Periods 2 and

3. A secondary currency is a currency used to complement the means of payment to facilitate

otherwise unaffordable trades. This is also confirmed by a recent qualitative study (Longo et al.,

2024), in which the authors found that some users were using Circles to buy products that were

otherwise unaffordable to them.

There are a few key considerations that can be made in the comparison of the two sys-

tems. In the first period, both systems were launched adopting different strategies. Sarafu token

was launched during the first wave of COVID-19 emergency as part of a community disaster

response strategy in collaboration with the Kenyan Red Cross. In this period, the recircula-

tion was apparently very efficient, but also caused by two factors. First, because of a system

of rewards and penalties (demurrage), we cannot measure the exact economic impact of such

stimulated and fast recirculation. Second, one-time usage from single-nodes extensively con-

tributed to such recirculation, too. On the other hand, the Circles network had a very slow start.

The most mature period for Circles was the second period when the subsidy programme was

fully implemented. Only in this period does recirculation reach the maximum absolute amount

in terms of volume, but with the minimum number of recirculating users. In this second period,
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single-nodes were also contributing to recirculation, but in a comparable lesser amount than

in Sarafu. The speed of recirculation was also much slower than in Sarafu. In both systems,

the last period seems to be a period of consolidation. Although volume was decreasing in both

cases, the number of recirculating users was increasing.

The adoption of an open-access digital currency comes with some drawbacks. In fact, in

both networks, there is a large amount of one-time users and isolated components21 which

can also be a source of bias for the calculation of the economic multiplier. Furthermore, in

similar projects, the presence of single-nodes and acyclic components needs to be accurately

considered in the evaluation process. Single-nodes are very numerous in both networks, they

represent users only interested in receiving or sending, therefore lacking further reciprocity

with the network22. The acyclic components are groups of nodes among which the currency

flows only in one direction. On the one hand, monitoring such situations can be useful in

understanding where and how to intervene to close loops in the supply chains. On the other

hand, acyclic components may also indicate some ’fire sale’ when users are just trying to get

rid of the currency as soon as possible (increasing also the multiplier), but no one is willing to

accept it back. Last but not least, especially when associated to rewards or regular income, a

digital currency is exposed to Sybil attacks and identity theft. This means that the creation of

malicious software can also be used to take advantage of those systems. Unfortunately, such

drawbacks for any currency system cannot be fully solved as long as the medium is perceived as

a financial asset in itself, instead of a personal commitment towards a real economic community.

In conclusion, the use of CCSs for humanitarian aid can induce endogenous local develop-

ment. A digital CCS allows for a quantitative assessment of the impact in the local economy. In

this work, a novel measure was introduced for this scope, that is, the circular network synergy.

This measure can help identify the main network process behind the synergy effect and the lo-

cal multiplier effect, which is the creation of circular flow (or weighted and directed network

cycles). For this reason, a monetary intervention must be complemented with suitable network

21For example, in both networks there are many isolated acyclic components dag0, which are probably linked
to group of users simply trying out the system.

22In the context of an humanitarian project, this is an expected outcome. However, it is important to monitor
such single-nodes to avoid overwhelming local businesses. In such a scenario, the synergy between local businesses
needs to be sustained to avoid gridlocks and deadlocks in the payment system.
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monitoring tools and with side projects aiming to stimulate economic synergies by reinforcing

circular linkages in the local supply chain.

In the case of the Sarafu network, in Periods 1 and 2, the reward and cash-out programmes

in place seem to have created some synergies, but partially depending also on liquidity injected

by in single nodes which sustained recirculation operations. In Period 3, the Red Cross Sarafu

purchase programme stopped and the synergy decreased to 18%. In the following periods not

treated in this work, the Sarafu network evolved into a decentralised producer voucher system

(Ruddick, 2023a, 2023b). In the case of the Circles UBI network, in the first two periods there

is no significant synergetic process going on. This means that the subsidy program23 generally

failed to trigger local recirculation, and therefore a synergistic effect. However, in Period 3, a

low and significant level of synergy was observed.

In summary, the presence alone of a CCS is not sufficient for its recirculation, but there

need to be some side projects to trigger local economic synergy among local businesses. In

both cases, the cash-out policy was the necessary but not sufficient condition for their success.

Local businesses may prefer to keep the currency as long as a synergistic effect is in place.

This means that they can reliably spend and accept the currency with ordinary business partners

and, therefore, they can satisfy their demand locally. This ultimately requires an analysis of the

supply chain network, a preventive supply chain design, and a constant effort in supply chain

management. Finally, the findings confirm that a reward program24 in this context is highly

discouraged, according also to previous studies (Criscione, 2024, Kiaka et al., 2024, Barinaga,

2020).

23It is called ”subsidy programme”, but in fact, it is a cash-out policy for a limited number of local businesses.
24The reward scheme was applied mostly in three cases: 1. bringing new users, 2. usage in volume, 3. recircu-

lation, measured as triadic closure
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6 Conclusion

The contribution of this work covers several aspects related to the study of economic networks,

payment systems, and especially CCSs. In Chapter 2, it was mentioned that the literature on

CCSs generally lacks quantitative methods to test the socioeconomic impact of those projects.

In addition, there is a lack of methods to test the statistical significance of quantitative findings.

In this work, an assessment method based on network science was proposed and empirically

tested on two community currency networks, the Sarafu token in Kenya and Circles UBI in

Berlin, Germany.

Sarafu token network is a digital CCS used as a payment system in Kenya and organised by

the non-profit organisation Grassroots Economics (Mattsson, Criscione, and Ruddick, 2022). In

the period analysed, from 25 January 2020 to 15 June 2021, it was used as part of an emergency

cash transfer programme during the COVID-19 emergency (Ruddick, 2021). Circles UBI was

used as a digital CCS in Berlin to distribute universal basic income. It was organised by the

Circles Coop cooperative. The Circles Coop was active in Berlin (Germany) from 16 October

2020 to 14 December 2023 (Avanzo et al., 2023; Longo et al., 2024; Papadimitropoulos and

Perperidis, 2024).

In both networks, three main periods are identified (Data section 3) which also corresponds

to periods where different policies were applied. This can facilitate the interpretation of the

results that are mainly based on static metrics (that is, aggregating the temporal networks). After

that, each network was divided into topological components that can reflect different types of

involvement within the system (Methods section 4.2). The temporal behaviour of recirculation

was also analysed (Methods section 4.3). This technique can be used to understand where

and how fast recirculation is occurring in the network. Finally, network metrics and economic

multiplier were measured in the networks. In particular, a novel measure called circular network

synergy was introduced (Methods section 4.4).

In the economic literature, the local multiplier effect and the synergy effect have been de-

scribed as economic network phenomena, but never directly measured as such. The circular

network synergy (CNS) is suggested here to cover this gap (Section 4.4). CNS measures the
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percentage of volume that flows through weighted directed cycles. The advantage of using cir-

cular network synergy to assess the socio-economic impact of CCS projects is twofold. First, it

can be related to an autocatalytic growth process25, as mentioned in the Literature Review. In

fact, it overcomes the limitations of the economic multiplier (Section 4.1). Second, its statistical

significance can be tested using appropriate null models (Section 4.5).

The circular network synergy (CNS) was also tested in relation to the topology of the net-

work and the recirculation of the currency, in response to RQ1 and RQ2. To do this, the

topology of the network was analysed by distinguishing it into cyclic and acyclic components,

and single-nodes (Section 4.2). These techniques were developed in a previous work by the au-

thor and were successfully tested to identify anomalies in the Sarafu network (Criscione, 2024).

Empirical evidence shows that the CNS is related to the structure of cyclic components and the

recirculation that occurs in them. This means that a change in the number of nodes, edges, and

volume in cyclic components can affect the economic synergy of the network, and it can be

measured by the CNS.

The relation between circular network synergy (CNS), the evolving capacity network met-

rics, and the economic multiplier have also been measured in the LWCC of both networks (in

response to RQ3). The evolving capacity of the networks has been measured using two exist-

ing metrics, the ascendency ratio and the systemic reserve ratio (Ulanowicz et al., 2009). The

first can be interpreted as a measure of the evolving capacity used, while the second can be

interpreted as the unused evolving capacity. In this work, empirical evidence also shows that a

convergence between the two appears to be associated with an increase in circular network syn-

ergy. More research is needed to explain this phenomenon. However, the relationship between

the CNS and the multiplier worked as expected. The CNS and the multiplier are generally

monotonically related; however, there are some important differences to point out. The CNS

measures autocatalytic growth (that is, the volume of currency going through network cycles),

while the multiplier is only a general measure of growth. In other words, the multiplier grows

when the increased exchanged volume flows through any simple path in the network, not only

network cycles. The CNS grows when the volume exchanged through network cycles increases.

25A growth in volume sustained by cyclic structures, and therefore, currency recirculation.
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As explained in the Methods section 4.1 and in the Appendix section 7.3, the flow of currency

through network cycles allows recirculation over time (autocatalytic growth), whereas the flow

of currency through acyclic paths does not.

The policy recommendations resulting from this work are mainly three. First, the estima-

tion and measurement of the economic multiplier as a policy assessment technique should be

complemented with network-based metrics, especially for the study of CCSs. Second, circu-

lar network synergy can be used not only to measure the socioeconomic impact of monetary

and fiscal interventions, but also to assess the state of an entire economic network and eventu-

ally design specific network interventions. Circular network synergy measures the amount of

liquidity that could be saved by simply coordinating the local business network using a mul-

tilateral compensation framework. In fact, the assessment of circular network synergy can be

used to build and monitor the local business network, eventually boosting local development by

directly stimulating economic network effects discussed in this work 26. Similar projects reduce

the dependency of local businesses on money, credit, the banking sector, and financial markets,

ultimately protecting local economies from global crises (Lucarelli and Gobbi, 2016).

For the reasons mentioned above, a third policy recommendation is to introduce a local

payment system that adopts net settlement techniques for local business networks. Similar

projects have recently sprouted in Europe also with the support of local governments, such as

in Bosnia and Herzegovina (Božić and Zrnc, 2023), in Slovenia (Fleischman et al., 2020), in

Romania (Gavrila and Popa, 2021), but also as private initiatives such as Cycles (Buchman et

al., 2024), Local Loop Merseyside27, and LedgerLoop (Jong, 2018). In fact, the introduction of

credit and debt clearing houses for local business networks can be beneficial to the economy in

many aspects. First, it reduces the need for liquidity to settle firm obligations, thus reducing

liquidity costs and risks (Božić and Zrnc, 2023). Second, they reduce internal debt in the

economy28, especially improving the financial condition of small and medium firms (Božić and

Zrnc, 2023; Fleischman et al., 2020). Third, by helping firms save more liquidity, it gives them

incentives to increase their level of investment (Božić and Zrnc, 2023). Finally, it gives local

26local multiplier effect, synergy effect, agglomeration externality, circular cumulative causation, etc.
27https://localloop-merseyside.co.uk/
28The ’netting’ itself is justified by reducing the number of transactions and the amount of liquidity necessary

to settle all the payments.
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businesses the incentive to search for local partners, potentially increasing the level of circular

network synergy and therefore triggering a long-term and sustainable local multiplier effect (as

shown in the Results section 5). In conclusion, this work can also have policy implications for

policies related to local economic development and financial stability, both in developing and

developed countries (Gaffeo et al., 2022; Lucarelli and Gobbi, 2016).

More research is needed to empirically test circular network synergy and its relationship to

the local multiplier effect and synergy effect in economic networks. In addition, the algorithm

used in this work requires additional improvements to be used in larger networks. This algo-

rithm works only on static networks, while other solutions have been proposed that could be

more appropriate for temporal networks (Jong, 2018; Patcas and Bartha, 2014). In fact, future

research is also needed to provide a systematic review of those algorithms and their applica-

tions. Finally, the CNS should also be analysed in relation to other network and economic

metrics (e.g., the Gini index). As an example, the relationship between the CNS, the ascen-

dency ratio, and the systemic reserve ratio observed in this work could be further explored

using numerical and agent-based simulations.
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7 Appendix

7.1 Glossary

In the following section, a comprehensive glossary is reported to explain the context of the

methods adopted in this work. This section is partially taken from Criscione (2024).

• Graph, directed graph, network (Newman, 2018). A graph G of size V is defined by

a pair G = (V,E) where V is a set with elements vi ∈V with i = 1,2, ...,N (vertices) and

the set E consists of pairs of vertices vi,v j (edges). The graph is undirected, if the pair

is unordered and it is directed, if the pair is ordered. The following synonyms are used:

”network” for graph, ”link” for edge, and ”node” for vertex. Graphs are represented by

points (vertices) connected by lines (edges); for directed graphs arrows are drawn instead

of lines.

• Subgraph. If G = (V,E) is a graph, G′ = (V ′,E ′) is its subgraph if G′ ⊆ G and E ′ ⊂ E

such that if ei j ∈ E ′ then {i, j} ∈ G′.

• Strongly Connected Component (SCC) (Newman, 2018). In a directed graph, two

nodes A and B are path equivalent if there is a path from A to B and from B to A. A SCC

is the set of mutually path equivalent nodes. The detection algorithm for SCC by Nuutila

and Soisalon-Soininen (1994) and Tarjan (1972) is implemented in NetworkxHagberg et

al., 2008. SCCs have implications for the study of human behaviour when studying cur-

rency flow. Every node in a SCC is involved in at least one of its directed simple cycles,

the length of which can vary between 2 to the size of the SCC itself. Consequently, every

node in a SCC is both ”sending to” and ”receiving from” at least another node in the same

SCC. In the context of a transaction network, single isolated nodes are not present. There

are four types of SCCs identified in this paper: sccTin, sccTout, sccTmix, and scc0. If it

is a strongly connected component (SCC) receiving from a DAG (or a in-single-nodes),

it gets the suffix -in. If the SCC is sending to a DAG (or a out-single-nodes), it gets

the suffix -out. If the SCC is both sending to and receiving from one or more DAGs

(or single-nodes), it gets the suffix -mix. Otherwise, if it is not connected to DAGs or
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a single-node, the SCC component gets the suffix -0. In this work, strongly connected

component is used a synonym of cyclic component.

• Path (Newman, 2018). A path on a directed graph is a sequence of adjacent edges fol-

lowing the same direction, where neither nodes nor edges are repeated.

• Cycle (Newman, 2018). A cycle on a directed graph is a sequence of adjacent edges

following the same direction, where the last vertex is the same as the first one. A simple

cycle is a cycle where no other vertex is repeated except the first (=last) one. A simple

cycle is therefore a path where only the first (=last) node is repeated.

• Directed Acyclic Graph (DAG) (Newman, 2018). A DAG is a directed network without

cycles. For algorithms, see NetworkxHagberg et al., 2008, Karrer and Newman (2009)

and Newman (2018). In this work, a DAG is a group of nodes which are connected within

themselves in acyclic way. If connected to a strongly connected component, a DAG does

not get involved in any of its cycles. There are four types of DAGs identified in this paper:

dagTin, dagTout, dagTmix, and dag0. If it is a DAG receiving from one or more SCCs, it

gets the suffix -out because it is a flow going ’out’ from a SCC. If the DAG is sending to

one or more SCCs, it gets the suffix -in because it is a flow going into a SCC. If the DAG

is both receiving and sending to one or more SCCs of different type, it gets the suffix -mix.

Otherwise, when isolated, the DAG component gets the suffix -0. In this work, directed

acyclic graph is used a synonym of acyclic component.

• Single-node (Newman, 2018). A single-node is a node connected to one strongly con-

nected component without getting involved in any of its cycles. There are three types

of single-nodes identified in this paper. If the single-node is sending to a strongly con-

nected component, it is called in-single-nodes because it is a flow going into a SCC. If

the single-node is receiving from a strongly connected component, it is called out-single-

nodes because it is a flow going out from a SCC. If the single-node is receiving from a

SCC and sending to another SCC (without closing a cycle), then it is called bridge scc.
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7.2 Entropy, Mutual Information, and Conditional Entropy

In this section a brief explanation of the four concepts used in the literature review on the

synergy effect is provided following Cover and Thomas (2005). Entropy is defined as a measure

of uncertainty around a random variable X. Considering a discrete random variable X in the

alphabet χ and with a probability mass function p(x) = Pr(X = x),x ∈ χ , then the entropy of X

can be defined as

H(X) =− ∑
x∈χ

p(x) log p(x) (28)

where the log is often on base 2, so that entropy is expressed in bits. Considering two events, the

definition can be extended to a pair of random variables (X ,Y ) which is considered a random

variable with a single vector value29. In this way, the joint entropy becomes

H(X ,Y ) =− ∑
x∈χ

∑
y∈Y

p(x,y) log p(x,y)

H(X ,Y ) = H(X)+H(Y |X)

H(X ,Y ) = H(Y )+H(X |Y )

(29)

If one of the two events (Y ) is conditioned by the other event (X), then a conditional entropy is

defined as
H(Y |X) =− ∑

x∈χ

∑
y∈Y

p(x,y) log p(y|x)

H(Y |X) = H(X ,Y )−H(X)

(30)

The measure of the distance between two probability mass functions, p(x) and q(x), is called

relative entropy, and it defined as

D(p||q) =− ∑
x∈χ

p(x) log
p(x)
q(x)

(31)

It can also be considered as a measure of inefficiency of assuming that the distribution is q

when the true distribution is actually p. Therefore, this measure is always nonnegative and is

zero if and only if p = q. Furthermore, the mutual information is the relative entropy of a joint

29It maps from a probability space to a vector of numbers.
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distribution (X ,Y ) and the distribution of the product between X and Y , such that

I(X ,Y ) = ∑
x∈χ

∑
y∈Y

p(x,y) log
p(x,y)

p(x)p(y)

I(X ,Y ) = H(X)−H(X |Y )

I(X ,Y ) = H(Y )−H(Y |X)

I(X ,Y ) = H(X)+H(Y )−H(X ,Y )

I(X ,Y ) = I(Y,X)

(32)

The mutual information measures the reduction in the uncertainty of X due to the knowledge of

Y . As shown in Equation 32, the opposite is also true, since I(X ,Y ) = I(Y,X). This means that

it also measures the reduction in the uncertainty of Y due to the knowledge of X .

Finally, the Shannon-Wiener formula is derived by the definition of entropy, but with some

differences to apply for the study of socio-ecological systems (Spellerberg and Fedor, 2003):

H(X) =−
S

∑
i=1

p(i) ln p(i) (33)

where S is the total number of species or categories and pi is the proportion of individuals be-

longing to the i-th specie or category. Note that the natural logarithm is used in this formulation

and that p(i) is interpreted as a fraction of the i-th individuals on the total population.

7.3 Limits of the Economic Multiplier

In this section, a numerical example of the limits of the economic multiplier is provided (see

the Methods section 4.1 for further details). In Figure 30, an economy structured as a cycle

graph is represented. In Figure 31, an economy structured as a line graph is represented. A

fixed propensity for consumption α is assumed, which is equal to 0.8. The initial injection in

both economies is equal to 10. It is assumed that liquidity is injected only into the first node

A. It is also assumed that nodes spend sequentially only if they receive some currency from

another node. Given these assumptions, the cycle economy is the only one that allows for the

recirculation of currency. In fact, the recirculation of currency can potentially go to infinite (if
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any rational number can be considered as an acceptable amount for a transaction). For practical

reasons, only the first two periods of the cycle economy are considered.

In the first period, the cycle economy and the line economy have the same transaction vol-

ume and, therefore, the same multiplier (2.68928). In the same period, the circular network

synergy is 0.61 in the cycle economy, while obviously it is zero in the line economy. In the

second period, the circular network synergy in the cycle economy increases to 0.93 and the

multiplier to 4.949. In the line economy, there is no second period. In such an economy, recir-

culation cannot happen in this network topology, and the currency that is not spent goes out of

the economy.

This simple example shows that circular network synergy (CNS) captures a network struc-

ture and a dynamic otherwise ignored by the multiplier. In fact, in the first period the multiplier

in both economies is equal, while the CNS is not. The CNS can actually measure the percent-

age of volume potentially recirculated. This static CNS is actually agnostic of the sequential

order of payments (e.g., first A, second B, etc.). Therefore, it considers all the obligations si-

multaneously. However, this index does show its efficacy in measuring the volume of circular

exchanges induced by the initial injection.
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(a) First Period
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(b) Second Period

Figure 30: Example of a cycle graph economy. The topology of the network as a cycle graph
allows for recirculation over time. At each round the economic multiplier increases.
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Figure 31: Example of a line graph economy. The topology of the network as a line graph does
not allow for recirculation over time. The node F accumulates currency which is not put again
into circulation (e.g., import, hoarding, emigration, financial investment, death). Note that the
multiplier induced on the first round in the cycle graph is equal to the multiplier in the line
graph.
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7.4 Topological Changes per Period

7.4.1 Sarafu Network

32 33 34

(a) Subgraph Sarafu Network (Period 1)

sccTmix
dagTin
in_single_node
out_single_node
dagTmix
sccTin
dagTout
scc0
sccTout
dag0
bridge_scc

(b) Legend

Figure 32: Subgraph of 431 nodes and 937 directed links. The subgraph is created by merging ego
graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The subgraph is
made by sampling nodes from the network in Period 1. Each link takes the colour of the source (i.e.
node sending). This plot is made out of a sample of ego graphs, hence, it is very likely that some connec-
tions are missing within the same components. Period: 25/01/2020 - 06/08/2020 (6 months). Cash-out
through savings groups. Reward schemes in place. Full lockdown (Ba et al., 2023b). Topology: Large
Cyclic Component, LSCC (sccTmix). Significance: sccTmix*, scc0*, dag0*. Recirculation: 22.7% of
the users recirculated 84.6% of volume. Significance: sccTmix* (<LFQ3), dagTmix* (<LFQ3), and in-
single-nodes* (>LFQ3) (LFQ3: 23 hours, 58 minutes). Synergy*: 0.58. Multiplier: 2.73. (*): Positive
Z-score.
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(a) Subgraph Sarafu Network (Period 2)

sccTmix
dagTin
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dagTout
scc0
sccTout
dag0
bridge_scc

(b) Legend

Figure 33: Subgraph of 217 nodes and 380 directed links. The subgraph is created by merging ego
graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The subgraph
is made by sampling nodes from the network in Period 2. Each link takes the colour of the source
(i.e. node sending). This plot is made out of a sample of ego graphs, hence, it is very likely that some
connections are missing within the same components. Period: 06/08/2020 - 31/01/2021 (6 months).
Cash-out through vendors. Reward schemes in place. Partial lockdown (Ba et al., 2023b). Topology:
Acyclic Uprise, LSCC (sccTmix). Significance: sccTmix*, scc0*, dag0*, dagTmix*. Recirculation:
22.3% of the users recirculated 86% of volume. Significance: sccTmix* (<LFQ3), dagTmix* (<LFQ3),
dagTin* (<LFQ3), in-single-nodes* (LFQ3) (LFQ3: 2 days, 6 hours). Synergy*: 0.61 Multiplier: 1.77.
(*) Positive Z-score.
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(a) Subgraph Sarafu Network (Period 3)

sccTmix
dagTin
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scc0
sccTout
dag0
bridge_scc

(b) Legend

Figure 34: Subgraph of 211 nodes and 682 directed links. The subgraph is created by merging ego
graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The subgraph
is made by sampling nodes from the network in Period 3. Each link takes the colour of the source
(i.e. node sending). This plot is made out of a sample of ego graphs, hence, it is very likely that some
connections are missing within the same components. Period: 31/01/2021 - 15/06/2021 (5 months).
Only in-kind donations. Topology: Cyclic Fragmentation, LSCC (sccTmix). Significance: sccTmix*,
sccTin*, sccTout*, scc0*, dag0*. More components of sccTmix(*). Recirculation: 33% of the users
recirculated 74% of volume. Significance: sccTmix* (<LFQ3) (LFQ3: 2 days, 23 hours). Synergy*:
0.18 Multiplier: 0.06. (*) Positive Z-score.

97

C
E

U
eT

D
C

ol
le

ct
io

n



7.4.2 Circles Network

35 36 37

(a) Subgraph Circles Network (Period 1)

sccTmix
dagTin
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out_single_node
dagTmix
sccTin
dagTout
scc0
sccTout
dag0
bridge_scc

(b) Legend

Figure 35: Subgraph of 288 nodes and 651 directed links. The subgraph is created by merging ego
graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The subgraph
is made by sampling nodes from the network in Period 1. Each link takes the colour of the source
(i.e. node sending). This plot is made out of a sample of ego graphs, hence, it is very likely that some
connections are missing within the same components. Period: 16/10/2020 - 18/11/2021 (11 months).
8 CRC/day basic income. The business subsidy programme started on 07/2021 (cash-out at 1:1)(Longo
et al., 2024). Topology: Low-key state, LSCC (sccTmix). Significance: sccTout*, in-single-nodes*.
Recirculation: 20% of the users recirculated 21.4% of volume. Significance: sccTmix* (<LFQ3) and
dagTin* (<LFQ3), and in-single-node* (LFQ3) (LFQ3: 5 days, 4 hours). Synergy: ∼0.00. Multiplier:
0.12. (*) Positive Z-score.
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(a) Subgraph Circles Network (Period 2)

sccTmix
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in_single_node
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dagTmix
sccTin
dagTout
scc0
sccTout
dag0
bridge_scc

(b) Legend

Figure 36: Subgraph of 267 nodes and 898 directed links. The subgraph is created by merging ego
graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The subgraph is
made by sampling nodes from the network in Period 2. Each link takes the colour of the source (i.e. node
sending). This plot is made out of a sample of ego graphs, hence, it is very likely that some connections
are missing within the same components. Period: 18/11/2021 - 29/06/2023 (16 months). After 05/2022:
24 CRC/day basic income. Cash-out subsidy programme at 1:10. Topology: Core-periphery (Avanzo
et al., 2023), LSCC (sccTmix). Significance: dag0*, dagTout*, dagTin*, in-single-nodes*, sccTin*,
sccTout*. Recirculation: 18.3% of the users recirculated 52. 6% of volume. Significance: sccTmix*
and in-single-nodes* (any speed) (LFQ3: 2 weeks, 4 days). Synergy: 0.01. Multiplier: 0.26. (*)
Positive Z-score.
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(a) Subgraph Circles Network (Period 3)
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sccTout
dag0
bridge_scc

(b) Legend

Figure 37: Subgraph of 202 nodes and 535 directed links. The subgraph is created by merging
ego graphs at depth 2 and 3 of 11 nodes, one random node per each topological category. The
subgraph is made by sampling nodes from the network in Period 3. Each link takes the colour of
the source (i.e. node sending). This plot is made out of a sample of ego graphs, hence, it is very
likely that some connections are missing within the same components. Period: 29/06/2023 -
14/12/2023 (6 months). Announcement end of the subsidy programme from 09/2023 (Longo
et al., 2024). Topology: Fragmentation, LSCC (sccTout). Significance: sccTout*, dag0*,
dagTin*, out-single-nodes*. Recirculation: 31. 1% of the users recirculated 57. 7% of volume.
Significance: sccTmix* (<LFQ3), sccTout* (<LFQ3), dagTin* (<LFQ3), and dag0* (LFQ3)
(LFQ3: 1 week, 1 day). Synergy: 0.07. Multiplier: 0.14. (*) Positive Z-score.
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7.5 Topological Components

7.5.1 Sarafu Network

38 39 40 41 42 43
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(a) Cyclic components
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(b) Acyclic components

Figure 38: Size of single-nodes, cyclic, and acyclic components in Sarafu network. In Figure
(a), it is possible to notice that across all periods scc0 and sccTin generally have less nodes, but
are more numerous than other categories; while sccTmix generally have more nodes, but they are
much fewer than other categories. For this plot, the largest strongly connected components are
excluded. In Figure (b), it is possible to notice that across all periods dag0 and dagTin generally
have less nodes, but are more numerous than other categories; while dagTmix generally have
more nodes, but they are much fewer than other categories.
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Figure 39: DAGs over time for size 2,3,4 and 5 in Sarafu Network. The dagTin and dag0
dominate across all three periods. However, the number of dag0 increases, while the dagTin
decreases over time.
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Figure 40: SCCs over time for size 2,3,4 and 5 in Sarafu Network. Remember that the largest
strongly connected component (sccTmix type) is excluded from this plot. The number of scc0
and sccTin dominate all other categories across all periods.
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Figure 41: Significance of topological components in Sarafu over time (SCCs excluded). Com-
parison of different types of null models. Consider that, in the null models the randomisation
often creates only one unique strongly connected component of sccTmix type. Value of the
Z-Score less than 5 in absolute value are excluded from the plot. The dag0 components are
largely over-represented with respect to all null models and across all periods. Some other cat-
egories are slightly under-represented in the empirical network: edge dag2scc, edge scc2dag,
in single nodes, out single nodes, dagTin, and dagTout (only second and third periods). In the
second period only, dagTmix are slightly over-represented in the empirical network with respect
to all the null models.
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Figure 42: Significance of topological components in Sarafu over time (SCCs only, part 2).
Comparison of different types of null models. Value of the Z-Score less than 5 in absolute
value are excluded from the plot. Consider that, in the null models the randomisation often
creates only one unique strongly connected component of sccTmix type. In terms of number of
components only, the sccTmix and edge scc2scc are over-represented in the empirical network,
especially in Periods 1 and 2.
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Figure 43: Significance of topological components in Sarafu over time (SCCs only, part 3).
Comparison of different types of null models. Value of the Z-Score less than 5 in absolute
value are excluded from the plot. Consider that, in the null models the randomisation often
creates only one unique strongly connected component of sccTmix type. In the first period,
scc0, edge scc2scc, and sccTmix are generally over-represented with respect to all the null
model except one (target-edge swap null model type). In the second and third period, these
topological categories partially lose significance, but with very little variation across all null
models. As explained before, this is due to the fact that this type of randomisation generally
eliminate strongly connected components. Therefore, in most the cases, only one strongly
connected component of sccTmix type is left.

7.5.2 Circles Network
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Figure 44: Size of single-nodes, cyclic, and acyclic components in Circles network.
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Figure 45: DAGs over time for size 2,3,4 and 5 in Circles Network. In the first period, the
number of dagTout and dagTin components is generally larger than others across all sizes. In
the second period, dag0 and dagTin are generally larger than others across all sizes. In the third
period, the number of DAGs generally shrinks and the difference across DAG-types is reduced.
Although, the number of dagTout of size 5 increases.
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Figure 46: SCCs over time for size 2,3,4 and 5 in Circles Network. The majority of SCCs have
size 2 for which scc0 components gain more importance over time.
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Figure 47: Significance of topological components in Circles over time (SCCs excluded, part
1). Comparison of different types of null models. Value of the Z-Score less than 5 in ab-
solute value are excluded from the plot. There is some difference across model types. This
means that the results of the empirical network are very sensitive to different kind of randomi-
sation techniques. In the first period, generally the presence of nodes connecting different SCCs
(bridge scc) seems to play a relevant role (over-representation). The other categories are gen-
erally under-represented or not significant (i.e., absent in the plot). For instance, edge dag2scc
and edge scc2dag are generally under-represented. The only exception is the number of trans-
actions in in single nodes which is over-represented across all null model types. In the second
period, besides bridge sccs, dagTmix, and dagTout components are generally over-represented
in the empirical network. Also here, the connection from DAGs to SCCs (edge dag2scc) are
generally under-represented. Finally, in the third period, dag0, dagTin and out single nodes are
generally over-represented. While, dagTmix and edge scc2dag are generally under-represented.
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Figure 48: Significance of topological components in Circles over time (SCCs only, part 2).
Comparison of different types of null models. Value of the Z-Score less than 5 in absolute
value are excluded from the plot. Consider that, in the null models the randomisation often
creates only one unique strongly connected component of sccTmix type. The number of strongly
connected components of type sccTmix is over-represented across all periods with respect to all
the null models. The only exception is at Period 3 for ”target-edge” swap configuration models.
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Figure 49: Significance of topological components in Circles over time (SCCs only, part 3).
Comparison of different types of null models. Value of the Z-Score less than 5 in absolute value
are excluded from the plot. Consider that, in the null models the randomisation often creates
only one unique strongly connected component of sccTmix type. The presence of sccTout,
sccTin, and edge scc2scc seem to be generally over-represented, especially in Periods 1 and 2.
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7.6 Triadic Census in DAGs

The dyadic triad 012 is a simple dyad (from A to B). The triad 021C is a “brokerage” interaction

(from A to C through B - where B is the ”broker”). The triad 021U represents one central user

collecting the currency of the other two (from A to B, from C to B, where B is the ”collector”).

The triad 021D represents one central user sending to two other users (from B to A, from B

to C - where B is the ”distributor”). The triad 003 is the ”empty” triad, a measure of potential

triads over existing ones. The triads 030T is the only closed triad, where one node is sending to

a dyad (source and target of a dyad are both receiving from one third node).
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7.6.1 Sarafu Network
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Figure 50: Significance Triads in DAGs in Sarafu Over Time. Comparison of different types
of null models. Value of the Z-Score less than 5 in absolute value are excluded from the plot.
The main consistent finding across all the null models is the significant over-representation of
triads in dag0 and dagTin. Besides the ”empty” triad (003), the most frequent triad in those
component is the ”collector” triad (021U).
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7.6.2 Circles Network
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Figure 51: Significance Triads in DAGs in Circles Over Time. Value of the Z-Score less than 5
in absolute value are excluded from the plot. In the first period, the most significant triad is the
030T in dagTout and dagTmix, while the ”collector” triad is over-represented in dagTin compo-
nents. In the second period, the ”collector” triad is the most frequent triad among all types, and
mostly appearing in dag0 components. The second most frequent triad is the ”distributor” triad
(021D) appearing in dagTin. Finally, in the third period, the dag0 is definitively the component
with more triads than others, among which the most frequent are (in order of importance): ”col-
lector” (021U), ”empty” (003), ”broker” (021C), and ”distributor” (021D) triads.
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7.7 Recirculation

7.7.1 Sarafu Network
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Figure 52: Frequency of recirculation in Sarafu. The mode in Period 1 is at 81 seconds (1
minute, 21 seconds) which happened 98 times. 75 operations took place in less than 10 seconds.
The mode in Period 2 is at 89 seconds (1 minute, 29 seconds) which happened 41 times. 42
operations took place in less than 10 seconds. The mode in Period 3 is at 105 seconds (1 minute,
45 seconds) which happened 32 times. 42 operations took place in less than 10 seconds. In
each period, the mode is visible as a peak in the plot. In each period, all the ’fastest’ users
and the users active at the mode of the distribution belong to cyclic components. As explained
in Criscione (2024) and Kiaka et al. (2024), these peaks could be related to a few groups of
users who were regularly meeting to simulate transactions and unlock rewards. A practice that
was qualitatively described in Kiaka et al. (2024). The reward system was adopted in Period 1,
reduced in Period 2, and abandoned in Period 3. This is why probably we notice a decrease in
the number of fast operations. The presence of operations happening in less than 10 seconds
hints either to users who used a software to simulate transactions and unlock rewards, or a
recording error. In fact, at the beginning some of the data had to be moved manually in batches
from a SQL database to a blockchain (Mattsson, Criscione, and Ruddick, 2022).
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Figure 53: Significance of recirculating volume in Sarafu per topological group. Comparison of
different types of null models. Value of the Z-Score less than 5 in absolute value are excluded
from the plot.
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Figure 54: Significance of recirculating transactions in Sarafu per topological group. Compar-
ison of different types of null models. Value of the Z-Score less than 5 in absolute value are
excluded from the plot.
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Figure 55: Significance of recirculating users in Sarafu per topological group. Comparison of
different types of null models. Value of the Z-Score less than 5 in absolute value are excluded
from the plot.
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7.7.2 Circles Network
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Figure 56: Frequency of recirculation in Circles. The mode in Period 1 is at 70 seconds (1
minute, 10 seconds) which happened 12 times. 12 operations took place in less than 10 seconds.
The mode in Period 2 is at 160 seconds (2 minutes, 40 seconds) which happened 8 times. 5
operations took place in less than 10 seconds. The mode in Period 3 is at 55 seconds, which
happened 25 times. 30 operations took place in less than 10 seconds. In each period, the mode
is visible as a peak in the plot. Generally, ’fastest’ operations and the users active at the mode
of the distribution belong to cyclic components, except for Period 2 when there are also users
from dag0 and dagTmix. As observed in Chapter 5, in Period 3 the network was generally very
active, most of the recirculation happened in sccTmix components. In- and out-single-nodes
are generally more present in recirculation happening in Period 2 and Period 3, respectively.
In Period 3, there could have been a general attempt to revive the network by onboarding new
members and re-involving existing ones. High-frequency recirculation happening in less 10
seconds could also be associated to software trying to simulate transactions. Although, the
web-of-trust technology embedded in the back-end of the platform should limit Sybil attacks.
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Figure 57: Significance of recirculating volume in Circles per topological group. Comparison
of different types of null models. Value of the Z-Score less than 5 in absolute value are excluded
from the plot.
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Figure 58: Significance of recirculating transactions in Circles per topological group. Compar-
ison of different types of null models. Value of the Z-Score less than 5 in absolute value are
excluded from the plot.
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Figure 59: Significance of recirculating users in Circles per topological group. Comparison of
different types of null models. Value of the Z-Score less than 5 in absolute value are excluded
from the plot.
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7.8 One-time usage

7.8.1 Sarafu Network

14 15

Period Category (1)OT Users (2)Tot. OT Users (3)Tot. Users (Category) (4)Tot. Users (Period) ((1)/(2))% ((1)/(3))% ((1)/(4))%
P1 dag0 400 5229 534 22022 7.65 74.91 1.82
P1 out single node 136 5229 182 22022 2.6 74.73 0.62
P1 dagTin 649 5229 1765 22022 12.41 36.77 2.95
P1 dagTmix 149 5229 482 22022 2.85 30.91 0.68
P1 dagTout 87 5229 152 22022 1.66 57.24 0.4
P1 in single node 3808 5229 7344 22022 72.82 51.85 17.29
P2 dag0 753 5395 1003 14687 13.96 75.07 5.13
P2 out single node 275 5395 370 14687 5.1 74.32 1.87
P2 dagTin 571 5395 1084 14687 10.58 52.68 3.89
P2 dagTmix 266 5395 442 14687 4.93 60.18 1.81
P2 dagTout 111 5395 227 14687 2.06 48.9 0.76
P2 in single node 3419 5395 4884 14687 63.37 70.0 23.28
P3 dag0 913 3332 1188 11692 27.4 76.85 7.81
P3 out single node 592 3332 803 11692 17.77 73.72 5.06
P3 dagTin 341 3332 561 11692 10.23 60.78 2.92
P3 dagTmix 26 3332 103 11692 0.78 25.24 0.22
P3 dagTout 103 3332 234 11692 3.09 44.02 0.88
P3 in single node 1357 3332 1726 11692 40.73 78.62 11.61

Table 14: One-Time (OT) Users in Sarafu. One-Time Users in Period 1 are 23.74% of the total.
One-Time Users in Period 2 are 36.73% of the total. One-Time Users in Period 3 are 28.5% of
the total.

Period Category (1)OT Volume (2)Tot. OT Volume (3)Tot. Volume (Category) (4)Tot. Volume (Period) ((1)/(2))% ((1)/(3))% ((1)/(4))%
P1 edge dag0 68751.0 1471326.24 90146.0 83583846.77 4.67 76.27 0.08
P1 edge out tendril 27206.03 1471326.24 63563.03 83583846.77 1.85 42.8 0.03
P1 edge dagTin 160476.0 1471326.24 307070.41 83583846.77 10.91 52.26 0.19
P1 edge dagTmix 46530.0 1471326.24 124045.96 83583846.77 3.16 37.51 0.06
P1 edge dagTout 22679.0 1471326.24 32532.0 83583846.77 1.54 69.71 0.03
P1 edge in tendril 1145684.21 1471326.24 2916768.35 83583846.77 77.87 39.28 1.37
P2 edge dag0 114004.0 1290051.47 158278.0 82030707.468 8.84 72.03 0.14
P2 edge out tendril 43394.0 1290051.47 162545.0 82030707.468 3.36 26.7 0.05
P2 edge dagTin 162097.0 1290051.47 242246.0 82030707.468 12.57 66.91 0.2
P2 edge dagTmix 70044.0 1290051.47 148134.1 82030707.468 5.43 47.28 0.09
P2 edge dagTout 33299.47 1290051.47 49987.47 82030707.468 2.58 66.62 0.04
P2 edge in tendril 867213.0 1290051.47 1489981.524 82030707.468 67.22 58.2 1.06
P3 edge dag0 61496.0 396812.0 76779.0 10089581.45 15.5 80.09 0.61
P3 edge out tendril 65599.0 396812.0 129025.0 10089581.45 16.53 50.84 0.65
P3 edge dagTin 69742.0 396812.0 74900.0 10089581.45 17.58 93.11 0.69
P3 edge dagTmix 934.0 396812.0 11709.0 10089581.45 0.24 7.98 0.01
P3 edge dagTout 14307.0 396812.0 19533.0 10089581.45 3.61 73.25 0.14
P3 edge in tendril 184734.0 396812.0 302891.1 10089581.45 46.55 60.99 1.83

Table 15: One-Time (OT) Volume in Sarafu. One-Time Volume in Period 1 is 1.76% of the
total. One-Time Volume in Period 2 is 1.57% of the total. One-Time Volume in Period 3 is
3.93%.
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7.8.2 Circles Network

16 17

Period Category (1)OT Users (2)Tot. OT Users (3)Tot. Users (Category) (4)Tot. Users (Period) ((1)/(2))% ((1)/(3))% ((1)/(4))%
P1 dag0 63 1281 98 4074 4.92 64.29 1.55
P1 out tendril 476 1281 735 4074 37.16 64.76 11.68
P1 dagTin 120 1281 348 4074 9.37 34.48 2.95
P1 dagTmix 184 1281 694 4074 14.36 26.51 4.52
P1 dagTout 119 1281 340 4074 9.29 35.0 2.92
P1 in tendril 319 1281 665 4074 24.9 47.97 7.83
P2 dag0 237 813 382 2510 29.15 62.04 9.44
P2 out tendril 172 813 256 2510 21.16 67.19 6.85
P2 dagTin 64 813 213 2510 7.87 30.05 2.55
P2 dagTmix 86 813 302 2510 10.58 28.48 3.43
P2 dagTout 52 813 136 2510 6.4 38.24 2.07
P2 in tendril 202 813 502 2510 24.85 40.24 8.05
P3 dag0 135 693 181 3622 19.48 74.59 3.73
P3 out tendril 280 693 846 3622 40.4 33.1 7.73
P3 dagTin 50 693 137 3622 7.22 36.5 1.38
P3 dagTmix 49 693 361 3622 7.07 13.57 1.35
P3 dagTout 34 693 121 3622 4.91 28.1 0.94
P3 in tendril 145 693 353 3622 20.92 41.08 4.0

Table 16: One-Time Users in Circles. One-Time Users in Period 1 are 31.44% of the total.
One-Time Users in Period 2 are 32.39% of the total. One-Time Users in Period 3 are 19.13%
of the total.

Period Category OT Volume Tot. OT Volume Tot. Volume (Category) Tot. Volume (Period) ((1)/(2))% ((1)/(3))% ((1)/(4))%
P1 edge dag0 2939.11 47748.505 3656.694 565283.709 6.16 80.38 0.52
P1 edge out tendril 2355.293 47748.505 13167.642 565283.709 4.93 17.89 0.42
P1 edge dagTin 2597.85 47748.505 10162.03 565283.709 5.44 25.56 0.46
P1 edge dagTmix 7288.66 47748.505 54628.622 565283.709 15.26 13.34 1.29
P1 edge dagTout 2660.63 47748.505 16967.883 565283.709 5.57 15.68 0.47
P1 edge in tendril 29906.961 47748.505 219358.016 565283.709 62.63 13.63 5.29
P2 edge dag0 37443.635 75997.101 283320.569 2444959.098 49.27 13.22 1.53
P2 edge out tendril 2870.233 75997.101 17252.894 2444959.098 3.78 16.64 0.12
P2 edge dagTin 3774.392 75997.101 25138.608 2444959.098 4.97 15.01 0.15
P2 edge dagTmix 3592.441 75997.101 40610.512 2444959.098 4.73 8.85 0.15
P2 edge dagTout 412.747 75997.101 9228.998 2444959.098 0.54 4.47 0.02
P2 edge in tendril 27903.651 75997.101 278721.63 2444959.098 36.72 10.01 1.14
P3 edge dag0 24162.519 82214.163 60397.084 1676052.066 29.39 40.01 1.44
P3 edge out tendril 4351.253 82214.163 45057.652 1676052.066 5.29 9.66 0.26
P3 edge dagTin 4089.429 82214.163 17811.174 1676052.066 4.97 22.96 0.24
P3 edge dagTmix 6929.11 82214.163 52019.427 1676052.066 8.43 13.32 0.41
P3 edge dagTout 8849.353 82214.163 10195.606 1676052.066 10.76 86.8 0.53
P3 edge in tendril 33832.499 82214.163 131081.45 1676052.066 41.15 25.81 2.02

Table 17: One-Time (OT) Volume in Circles. One-Time Volume in Period 1 is 8.45% of total
volume. One-Time Volume in Period 2 is 3.11% of total volume. One-Time Volume in Period
3 is 4.91% of total volume.
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Data availability

The Sarafu data 2020-2021 (Ruddick, 2021) are available for download on UK Data Service

(UKDS) under End User Licence (https://reshare.ukdataservice.ac.uk/855142/) after registra-

tion. A data description paper is also available for download (Mattsson, Criscione, and Ruddick,

2022). The Circles data are publicly available and can be downloaded following the instruction

in one of the official repositories (https://github.com/CirclesUBI/circles-analysis).

Software availability

All software used in this study is available under an open source licence:

• networkx v.3.1. (Hagberg et al., 2008)

• scipy v.1.9.1. (Virtanen et al., 2020)

• numpy v.1.23.0 (Harris et al., 2020)

• powerlaw v.1.5 (Alstott et al., 2014)

• seaborn v.0.11.2 (Waskom, 2021)

• matplotlib v.3.5.2 (Hunter, 2007)

• pandas v.1.4.4. (Reback et al., 2022)

• pycirclize v.1.4.0 (Wang, 2022)

• gephi v.0.10 (Bastian et al., 2009)

Supplementary material

The code used for this work is available in this public GitHub repository: https://github.com/

TeodoroCriscione/github PhD thesis Teodoro Criscione.git. Copyright Notice: CC BY-NC-
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ND 4.0. The code is licenced under a Creative Commons “Attribution- NonCommercial-

NoDerivatives 4.0 International” licence (https://creativecommons.org/licences/by-nc-nd/4.0/

deed.en). The following Python packages are required: networkx v.3.1, numpy v.1.23.0, pandas

v.1.4.4, collections, datetime, os, random.
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Gómez, G. M., & Dini, P. (2016). Making sense of a crank case: monetary diversity in Argentina

(1999–2003). Cambridge Journal of Economics, 40(5), 1421–1437. https://ideas.repec.

org/a/oup/cambje/v40y2016i5p1421-1437..html

Greco, T. (2001). Money: Understanding and Creating Alternatives to Legal Tender. Chelsea

Green Pub. https://books.google.at/books?id=Un12mAEACAAJ

Greco, T. (2013). Taking moneyless exchange to scale: Measuring and maintaining the health

of a credit clearing system. International Journal of Community Currency Research, 17,

19–25. http://dx.doi.org/10.15133/j.ijccr.2013.003

131

C
E

U
eT

D
C

ol
le

ct
io

n

http://dx.doi.org/10.15133/j.ijccr.2021.006
https://ideas.repec.org/a/oup/cambje/v40y2016i5p1421-1437..html
https://ideas.repec.org/a/oup/cambje/v40y2016i5p1421-1437..html
https://books.google.at/books?id=Un12mAEACAAJ
http://dx.doi.org/10.15133/j.ijccr.2013.003


Greenstone, M., Hornbeck, R., & Moretti, E. (2010). Identifying agglomeration spillovers: Ev-

idence from winners and losers of large plant openings. Journal of Political Economy,

118(3), 536–598. https://doi.org/10.1086/653714

Groppa, O. (2013). Complementary currency and its impact on the economy. International

Journal of Community Currency Research, 17, 45–57. http://dx.doi.org/10.15133/j.

ijccr.2013.005

Guichon, J., Fatès, N. A., Contassot-Vivier, S., & Amato, M. (2023). Properties of B2B invoice

graphs and detection of structures. Complex Networks 2023. https://inria.hal.science/

hal-04230839

Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring Network Structure, Dynamics,

and Function using NetworkX. Proceedings of the 7th Python in Science Conference, 5.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau,

D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van

Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F., Wiebe, M., Peterson, P., Gérard-

Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., & Oliphant,

T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https :

//doi.org/10.1038/s41586-020-2649-2

Hernandez, E., & Shaver, J. M. (2019). Network synergy. Administrative Science Quarterly,

64(1), 171–202. https://doi.org/10.1177/0001839218761369

Humphrey, D., & Bank, W. (1995). Payment systems: Principles, practice, and improvements.

World Bank. https://books.google.at/books?id=tJyKSyv1gM0C

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science Engineer-

ing, 9(3), 90–95. https://doi.org/https://doi.org/10.1109/MCSE.2007.55

Iosifidis, G., Charette, Y., Airoldi, E. M., Littera, G., Tassiulas, L., & Christakis, N. A. (2018).

Cyclic motifs in the Sardex monetary network. Nature Human Behaviour, 1. https://doi.

org/10.1038-s41562-018-0450-0

Ivanova, I., Strand, Ø., & Leydesdorff, L. (2019). What Is the Effect of Synergy Provided by

International Collaborations on Regional Economies? Journal of the Knowledge Econ-

omy, 10(1), 18–34. https://doi.org/10.1007/s13132-017-0480-2

132

C
E

U
eT

D
C

ol
le

ct
io

n

http://dx.doi.org/10.15133/j.ijccr.2013.005
http://dx.doi.org/10.15133/j.ijccr.2013.005
https://inria.hal.science/hal-04230839
https://inria.hal.science/hal-04230839
https://books.google.at/books?id=tJyKSyv1gM0C


Jackson, M. O. (2008). Social and economic networks. Princeton University Press. Retrieved

July 30, 2022, from http://www.jstor.org/stable/j.ctvcm4gh1

Jong, M. B. D. (2018, September). Ledger Loops: Hashlocked IOUs make the world go round.

(tech. rep.). Ledger Loops. https://ledgerloops.com/doc/whitepaper.pdf,%20Accessed%

2016-12-2024

Karrer, B., & Newman, M. E. J. (2009). Random graph models for directed acyclic networks.

Phys. Rev. E, 80, 046110. https://doi.org/10.1103/PhysRevE.80.046110

Kharrazi, A., Yu, Y., Jacob, A., Vora, N., & Fath, B. D. (2020). Redundancy, diversity, and

modularity in network resilience: Applications for international trade and implications

for public policy. Current Research in Environmental Sustainability, 2, 100006. https:

//doi.org/https://doi.org/10.1016/j.crsust.2020.06.001

Kiaka, R., Oloko, M., Ocampo, J., & Barinaga, E. (2024). Gaming the system: How commu-

nities strategize around currencies, convertibility and cash transfers in kenya. European

Journal of Social Sciences Studies, 9(6), 34–57.

Kichiji, N., & Nishibe, M. (2008). Network Analyses of the Circulation Flow of Community

Currency. Evolutionary and Institutional Economics Review, 4(2), 267–300. https://doi.

org/https://doi.org/10.14441/eier.4.267
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