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Abstract

In many complex systems, interactions occur not just between pairs but among
groups involving three or more entities. Higher-order networks are mathematical frame-
works that extend traditional network models by capturing these multi-way interactions.
Recognizing and modeling higher-order interactions is crucial because they provide a
more accurate representation of real-world systems, leading to a deeper understanding
of emergent behaviors that cannot be explained by pairwise interactions alone.

In the first part of this thesis, we develop a mathematical framework to analyze net-
works incorporating higher-order interactions. We introduce an extension of the Hidden
Variables formalism tailored for higher-order networks, which allows for the character-
ization of systems with multi-way interactions. Through this formalism, we explore
key structural properties such as hyper-degree distributions, degree correlations, and
the overall connectivity of the network, revealing that higher-order interactions signif-
icantly influence network topology, particularly in aggregated structures generated by
higher-order interactions that accumulate over time. Building upon this methodology,
future research can extend the Hidden Variables formalism to a broader class of gen-
erative network models based on intrinsic node properties, such as fitness models or
embedding space models, while accounting for any order of interactions.

In the second part of this thesis, we examine how higher-order interactions influ-
ence the dynamics of random walks on hypergraphs. Specifically, we focus on rare
events in which the behavior of the random walk deviates significantly from what is
typically expected. By exploring both quenched and annealed scenarios, correspond-
ing respectively to cases where we compute fluctuations over static networks and en-
sembles of networks, we investigate how higher-order interactions impact dynamical
fluctuations in different settings. Our analysis reveals that higher-order interactions can
either suppress or amplify fluctuations from the typical behavior depending on the net-
work configuration. The approach proposed in this thesis can be further used in the
future to investigate rare events in a wider class of dynamical systems whenever they
can be mapped onto Markovian processes opening possibilities for studying dynamical
fluctuations beyond random walks on hypergraphs, such as investigating the control-
lability of epidemic models or other types of spreading processes not exclusively on
higher-order structures.

In the final part of this thesis, higher-order network analysis is applied to the study
of brain networks in epilepsy patients. A neighborhood-based description of brain con-
nectivity is introduced to identify pathological hubs, which are regions that play a cru-
cial role in the spread of seizures but are not the primary epileptogenic focus (i.e., not
the initial source of epileptic activity). By employing higher-order network metrics, the
study offers new perspectives on brain network organization. The findings suggest that
surgical strategies should account for the higher-order structure of the neighborhoods
of these pathological hubs, potentially leading to more effective treatments that reduce
seizure recurrence while preserving essential brain functions. This higher-order rep-
resentation of brain data offers innovative perspectives for investigating neurological
disorders beyond epilepsy, such as Alzheimer’s disease and schizophrenia.
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Qui su l’arida schiena
Del formidabil monte
Sterminator Vesevo,
La qual null’altro allegra arbor nè fiore,
Tuoi cespi solitari intorno spargi,
Odorata ginestra,
Contenta dei deserti.

– La ginestra, Giacomo Leopardi
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1 INTRODUCTION

1 Introduction

1.1 Network representation of complex systems

Complex systems are prevalent across diverse domains, including ecosystems, human soci-
eties, and technological infrastructures [10–13]. These systems are characterized by com-
plex, often non-linear interactions among their components, which lead to emergent behav-
iors that cannot be deduced by examining the individual parts in isolation [14, 15]. For
instance, in ecosystems, the interdependencies between species give rise to population dy-
namics that are inherently complex [16]. Similarly, in human societies, social interactions
often result in the spontaneous formation of communities and the spread of ideas, illustrating
the intricacies of social dynamics [17].

Network theory has become a fundamental tool for representing and analyzing such sys-
tems [18, 19]. By abstracting complex systems into graphs, where nodes represent entities
and edges depict interactions between them, networks provide a structured way to capture
the relationships within the parts of these systems. This approach has proven invaluable
across various fields, as illustrated in Figure 1.1, which highlights the applicability of net-
works to numerous real-world scenarios. In epidemiology, for example, networks are used
to model the spread of diseases by representing individuals as nodes and their contacts as
edges, helping to predict and control outbreaks (Figure 1.1 (c)) [20, 21]. In ecology, net-
works model the complex interactions within ecosystems, where nodes represent different
species and edges represent interactions such as predation or symbiosis, providing insights
into the balance and stability of ecosystems (Figure 1.1 (d)) [22]. In social sciences, net-
works provide insights into the structure and dynamics of social groups, including the spread
of information and influence, the formation of social capital, and the dynamics of collabo-
ration (Figure 1.1 (b)) [23]. For instance, the study of online social networks has revealed
how information and behaviors spread through populations, leading to phenomena like viral
marketing and the rapid adoption of innovations [17].

However, while traditional network models focus predominantly on pairwise interac-
tions, these models often fail to capture the true complexity of real-world systems. As
illustrated in Figure 1.1, the examples provided are pairwise representations of real-world
phenomena that, in reality, often exhibit group interactions. In nature, interactions not al-
ways occur solely between two entities; instead, they frequently involve groups, where three
or more components engage simultaneously. In reality, complex systems are often composed
of parts that interact in groups, and and in most of the cases, reducing the system to pair-
wise interactions obscures the true dynamics that are driven by these group-level relation-
ships. Furthermore, many of the dynamics observed in complex systems are driven by group
mechanisms, which are the underlying processes that cause the observed emergent behav-
iors. Understanding a mechanism can explains how the global effect of the interactions of a
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1 INTRODUCTION

Figure 1.1: Illustration of network representation of complex systems. (a) A simple network
as a mathematical entity, consisting of nodes and edges, models pairwise interactions. (b)
Social Networks: Nodes represent individuals and their connections, illustrating social in-
teractions within a community. (c) Epidemiology: Networks model the spread of diseases,
where nodes represent individuals, and edges represent potential transmission pathways.
(d) Ecological Networks: Nodes represent different species, and edges represent interac-
tions such as predation, illustrating the complexity of ecological systems.

system leads to a specific collective behaviour, and therefore using the wrong representation
of a mechanism, for instance, not taking into account group interactions, can lead to wrong
predictions of the emergent property of the system we are studying. In the next subsection,
we will explore several real-world examples of group interactions and mechanisms in more
detail, illustrating how going beyond pairwise network models are essential for accurately
describing the collective behaviors in complex systems.

1.2 Group mechanism and interactions in the real world

Understanding collective behaviors in complex systems requires capturing the group-wise
interactions that drive these phenomena. As we have said, many real-world systems exhibit
interactions that occur at the group level rather than just between pairs, significantly influ-
encing the overall system dynamics. Below, we explore several real-world examples where
group mechanisms play a key role, highlighting the need to move beyond pairwise models.

In social systems, sociological mechanisms such as peer pressure and social influence
play a crucial role. Individuals are often influenced by the behaviors and opinions of groups,
leading to phenomena like peer pressure and social reinforcement [24, 25]. Collaborations
and group decision-making processes in workplaces and project teams also involve multi-
way interactions, impacting productivity and outcomes [26–28].

In addition, collaboration and co-authorship networks offer another clear example of
group interactions in action. In research, collaboration often involves teams of scientists
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1 INTRODUCTION

working together, with many scientific papers that are the product of large, multi-disciplinary
teams, where the contributions of each member are interdependent.

Also in ecological and animal systems, group dynamics such as flocking and schooling
are driven by interactions among multiple individuals. The collective movement patterns ob-
served in bird flocks or fish schools emerge from group-level interactions, not just pairwise
connections [29]. Predator-prey dynamics also involve complex multi-species interactions,
such as coordinated hunting or defense mechanisms [30].

Lastly, neuroscience provides another compelling example, where brain functions result
from interactions among groups of neurons. The functional connectivity of the brain cannot
be adequately represented by pairwise connections alone; group-level activities are essential
for understanding cognitive processes and neurological diseases [31, 32].

1.3 Limitations of Pairwise Models

Whether in social, biological, ecological, or neural networks, the dynamics of these systems
are often shaped by interactions involving three or more entities simultaneously. Pairwise
models, by reducing all interactions to dyads, overlook critical aspects of these systems,
leading to oversimplified or inaccurate conclusions. This section examines the circum-
stances in which these models fail to capture the complexity of real-world interactions.

In social networks, for instance, group dynamics—such as team collaborations or group
discussions—cannot be fully captured by pairwise interactions alone. The influence exerted
in a group setting is often the result of multiple individuals acting together, creating effects
like social reinforcement or peer pressure that require modeling interactions between more
than two members at a time [24, 25]. Pairwise models reduce these dynamics to isolated
interactions, which oversimplifies the processes driving phenomena like group decision-
making or rumor spreading. For example, group collaborations in co-authorship networks
have been shown to significantly increase research impact, with large collaborative teams
producing more influential work than smaller, isolated teams [33].

Similarly, complex contagion in social systems demonstrates the limitations of pairwise
models. The adoption of behaviors, norms, or innovations often requires reinforcement
from multiple contacts, not just one [34]. Rumor spreading and information diffusion pro-
vide further evidence that modeling interactions between only two individuals misses key
aspects of how information propagates. Such processes are more effective within clusters of
interconnected individuals rather than isolated pairs [35, 36].

In biological systems, reducing interactions to pairwise models also falls short. For ex-
ample, many cellular processes rely on complexes of three or more proteins interacting
cooperatively. Pairwise models cannot fully capture the cooperative nature of these multi-
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1 INTRODUCTION

protein assemblies, resulting in an incomplete understanding of key biological mechanisms.
In areas like signaling pathways and structural biology, considering only pairwise interac-
tions often fails to account for the broader, cooperative interactions necessary for proper
cellular function [37, 38].

In ecology, multi-species interactions such as mutualistic networks and predator-prey
dynamics also illustrate the inadequacy of pairwise models. The survival or success of
one species may depend on the combined influence of others, and these group interactions
are crucial to understanding ecosystem stability [39, 40]. For instance, predator-prey rela-
tionships that involve multiple species can lead to cascading ecological effects that are not
visible in a pairwise framework.

Finally, neuroscience is another domain where pairwise models struggle to capture the
full complexity of brain dynamics. Brain functionality arises not from isolated interactions
between neuron pairs, but from coordinated activity across multiple brain regions. Cognitive
processes such as decision-making and memory retrieval depend on the collective behavior
of large groups of neurons. Models based solely on pairwise interactions risk missing the
higher-level coordination that drives these complex brain functions [31, 41].

In summary, while pairwise models have been instrumental in advancing the study of
complex systems, they fail to account for the full range of interactions that occur in the
real world. Systems across diverse domains often involve multi-way interactions, where
the behavior of the whole cannot be reduced to individual pairwise connections. Under-
standing these interactions requires moving beyond pairwise models to more comprehensive
approaches that capture the true complexity of these systems.

1.4 Limits of traditional representation and loss of information

The reason a pairwise representation of complex systems often falls short in predicting be-
haviors is that this leads to a loss of crucial information about the system’s structure and
dynamics. This loss of information is analogous to the projection of temporal data into static
representations, which aggregates and obscures the temporal dynamics of interactions. In
temporal networks, ignoring the timing of interactions and collapsing them into static snap-
shots can significantly alter the perceived structure and function of the network [42]. The
same issue arises in group interactions when they are reduced to pairwise approximations.

To make this more clear, consider a scenario where three researchers are working to-
gether. In one case, they are collaborating on a single paper as a group, and in another case,
each pair of researchers is working on separate papers. Traditional pairwise models would
represent both scenarios similarly, as sets of pairwise interactions between the researchers.
However, these representations fail to capture the distinct nature of the group collabora-
tion versus the separate pairwise collaborations. In the group collaboration, the interactions
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Figure 1.2: Schema portraying two different social situations: (a) three distinct conversa-
tions among three agents and (b) on group conversation engaing all of them togheter.

are collective, with all three researchers contributing simultaneously and influencing each
other’s work directly. In contrast, the separate pairwise collaborations do not involve this
group dynamic and are instead a series of independent interactions (Fig. 1.2).

1.5 Higher-order networks

Given that collective behaviors are inherent in complex systems, representing such systems
using traditional pairwise networks has often been insufficient, especially for describing
interactions that involve more than two entities simultaneously.

For this reason, higher-order networks, where nodes can interact in groups beyond the
pairwise level, have emerged as an essential framework for understanding the complexity
of interactions in many real-world systems. Higher-order network models, such as hyper-
graphs and simplicial complexes, address these limitations by allowing for the modeling
of multi-way interactions [43, 44]. By extending the analysis beyond pairwise interactions,
researchers can explore phenomena that are not observable in traditional models, such as
group synchronization, higher-order contagion processes, and the formation of multi-scale
structures [43, 45, 46].
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1 INTRODUCTION

Historically, the recognition of higher-order interactions dates back several decades [47],
but it is only in recent years that a wave of enthusiasm for these representations has revo-
lutionized our understanding and capability to tackle real-world systems characterized by
more than simple dyadic connections. Early works laid the foundation, but contemporary
advancements have significantly deepened our comprehension and application of higher-
order models. For instance, in epidemiology, higher-order models are used to study the
spread of diseases through populations, considering the effects of group gatherings and
community-level interactions on disease dynamics [48]. In social sciences, these models
help in understanding the spread of behaviors and information through communities, taking
into account the influence of group interactions [49, 50].

In conclusion, higher-order networks represent a significant advancement in the study of
complex systems. By capturing multi-body interactions, these models provide a more accu-
rate and comprehensive representation of real-world systems. The ability to analyze higher-
order interactions opens up new avenues for research and applications, offering deeper in-
sights into the structure and dynamics of complex networks. As the field continues to evolve,
higher-order network models are expected to play an increasingly important role in under-
standing complex systems across various domains.

1.6 Representations of Higher-Order Networks

Here we briefly present the two representations of higher-order networks used in this thesis
and necessary to understand the upcoming chapters: hypergraphs and simplicial complexes.

1.6.1 Hypergraphs

A hypergraph, illustrated in Fig. 1.3, is a generalization of a traditional graph where edges,
known as hyperedges, can connect any number of nodes. Formally, a hypergraph H is
defined as H = (V,E), where V is a set of nodes and E is a set of hyperedges, each of
which is a subset of V . This allows hypergraphs to model interactions involving more than
two entities, which is essential for representing systems such as social networks, biological
networks, and collaboration networks.

1.6.2 Simplicial Complexes

A simplicial complex is a collection of simplices, which are generalizations of points, line
segments, triangles, and higher-dimensional polytopes. A k-simplex is a set of k+ 1 nodes.
For example, a 0-simplex is a node, a 1-simplex is an edge, a 2-simplex is a triangle, and
so on [51]. Hence, a simplicial complex K is a collection of simplices that satisfies the

15

C
E

U
eT

D
C

ol
le

ct
io

n



1 INTRODUCTION

Figure 1.3: Example of a hypergraph plotted with the python package HGX.

condition that any face of a simplex in K is also in K, and the intersection of any two
simplices in K is either empty or a common face [52].

1.6.3 Differences between Hypergraphs and Simplicial Complexes

While both hypergraphs and simplicial complexes are used to model higher-order interac-
tions, they differ in how they represent these interactions and their suitability for different
types of analyses. Hypergraphs are particularly effective for modeling systems where inter-
actions among any number of entities need to be captured without enforcing a specific topo-
logical structure. This flexibility makes hypergraphs suitable for social networks, biological
networks, and collaboration networks, where the focus is on the presence and diversity of
group interactions rather than their geometric or topological properties [43].

In contrast, simplicial complexes are better suited for situations where the topologi-
cal structure of interactions is important. By including all faces of each simplex, simpli-
cial complexes inherently capture the hierarchical relationships and topological features of
multi-way interactions. This makes them ideal for topological data analysis and for studying
systems like neural connectivity, where the geometric configuration of connections provides
significant insights, or ecological networks, where interactions often form nested, hierarchi-
cal patterns [40, 41]. Therefore, the choice between hypergraphs and simplicial complexes
depends on whether the primary interest lies in the general multi-way interactions (favoring
hypergraphs) or the detailed topological structure of these interactions (favoring simplicial
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Figure 1.4: Illustration comparing hypergraphs (a) and simplicial complexes (d) , and their
interactions. Panels (b) and (e) show the three-body interactions of respectively (a) and (d)
while (c) and (f) the two-body ones.

complexes). In Figure 1.4, we show an example of the same system portrayed with these two
representations. The figure illustrates the differences between first and second order interac-
tion that constitute both the hypergraph and simplicial complex representations. As shown
in the figure, when broken down into its components, the hypergraph exhibits fewer first-
order interactions than the simplicial complex. The hypergraph includes only interactions
that are purely first-order (Figure 1.4 (c) ), whereas the simplicial complex also incorporates
all the first-order interactions that are part of second-order simplices (Figure 1.4 (f)).
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1 INTRODUCTION

1.7 Outline of the thesis

The thesis is structured into three main chapters, each addressing a significant aspect of
higher-order networks.

In Chapter 2, we will introduce the Hidden Variables formalism for higher-order net-
works. The primary objective of this chapter is to provide an analytical tool for solv-
ing higher-order generative models. We aim to derive key topological properties such as
hyper-degree distributions, hyper-degree correlations, and temporal properties like percola-
tion time of networks generated with these models. By developing this formalism, we can
analytically characterize higher-order networks that evolve over time providing insights on
what happen if one generate networked structures with higher-order interactions. In par-
ticular, we will apply this formalism to solve a temporal and higher-order network model,
the higher-order activity-driven (HOAD). The HOAD model extends the traditional activity-
driven model, which is commonly used to represent temporal networks where nodes acti-
vate over time and form connections. In traditional activity-driven models, nodes have an
associated activity rate determining the probability of becoming active and forming links
with other nodes. This model is widely used to study dynamic processes such as infor-
mation diffusion, social contagion, and disease spreading. The HOAD model incorporates
higher-order interactions, allowing nodes to participate in group interactions rather than just
pairwise connections, providing a more accurate representation of real-world systems, such
as social networks, where interactions often occur in groups rather than pairs. Furthermore,
we will apply our analytical tool to real-world data, particularly focusing on empirical ac-
tivity data gathered from a scientific collaboration dataset. We will study the implications
of generating models from data using an incorrect order of representation and highlight the
potential errors and misinterpretations that may arise. For instance, generating networks
based on empirical activity without considering higher-order representations can lead to a
significant underestimation of the percolation time of such networks.

In Chapter 3, we will present an extensive study on the out-of-equilibrium dynamics of
higher-order networks. The primary objective of this chapter is to understand how higher-
order interactions influence rare events of dynamic processes on these networks. We will
delve into the mathematical formulations and analytical techniques used to study these pro-
cesses by means of large deviation theory, a theory utilized in out-of-equilibrium thermo-
dynamics to study rare events and fluctuations. Among the many dynamical processes on
higher-order networks, we will study random walks on hypergraphs. This process has been
used for describing diffusion phenomena, such as the spread of information or rumors, in
systems where interactions occur in groups. We will explore how random walks on hy-
pergraphs differ from those on traditional networks, particularly in terms of the time that
a walker unexpectedly spends on specific nodes over time. In particular, we will apply our
theoretical framework to structures generated by a toy model that we propose, allowing us to
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1 INTRODUCTION

combinatorically solve the probability of configurations of such structures. We will validate
our theoretical results on more general structures via extensive Monte Carlo simulations,
ensuring the robustness of our findings across different network topologies. Lastly, we will
extend our results to more general dynamics by introducing the biased random walk on hy-
pergraphs, a more general dynamical process in which random walkers can be positively or
negatively biased towards highly connected nodes.

In Chapter 4, we will explore the application of higher-order network representation
and topological data analysis (TDA) in understanding the functional organization of brain
networks, particularly in the context of epilepsy. The primary objective of this chapter is to
uncover topological signatures that identify pathological hubs in the brain, which are cru-
cial for understanding seizure dynamics and improving epilepsy surgery outcomes. We will
delve into the methodological framework that integrates TDA with network neuroscience,
focusing on how topological features can be used to characterize the functional properties
of brain networks. We will apply TDA to magnetoencephalography (MEG) data from a
cohort of epilepsy patients, aiming to identify the extended neighbourhoods of brain re-
gions. Extended neighbourhoods provide a mesoscopic description of brain organization,
capturing the regional influence of each node. This analysis will show how a higher-order
perspective of brain networks can reveal centrality and connectivity patterns of the epilep-
togenic zone (EZ) and its surrounding areas, providing insights into the emergence and role
of pathological hubs. Our findings will show that both the resection area and its neighbour-
hood are more central in the brain network compared to other regions with respect to several
higher-order metrics. These findings will give us predictive power in classifying resected
and non-resected areas of the networks build from our data. Regarding the classification of
different patients, or equivalently the classification on networks, we will observe that the
relative centrality of these regions varies significantly among patients, suggesting the need
for personalized approaches in epilepsy surgery and not giving us the same predictive power
we have for node classification.

Lastly, in Chapter 5, we will present our conclusions and outlook for future research.
This final chapter synthesizes the key findings from the previous chapters and discusses
their broader implications for the field of network science. We will reflect on how our work
advances the understanding of higher-order interactions in complex networks. Specifically,
we will highlight how higher-order interactions can drastically alter network topology and
influence rare events in dynamical systems. Furthermore, we will outline potential direc-
tions for future research. One avenue is extending the Hidden Variables formalism to other
established network models, such as spatial, gravity, geometric, and fitness models, to bet-
ter understand how higher-order interactions affect different types of networks. We will
also consider investigating the influence of specific higher-order structural features on dy-
namical fluctuations and rare events, which could reveal how heterogeneity and community
structures impact system behavior. Additionally, we will discuss applying the methodolo-
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1 INTRODUCTION

gies developed to other dynamical processes beyond random walks, such as social contagion
and percolation, to explore how higher-order interactions affect the spread of information
or diseases. Lastly, we will explore expanding the higher-order network analysis to other
neurological disorders beyond epilepsy, such as Alzheimer’s disease and schizophrenia, to
uncover new insights into their underlying network dynamics. By highlighting these oppor-
tunities, we aim to inspire further studies that build upon our contributions and continue to
explore the rich complexities of higher-order networks.
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La consapevolezza,
Che con l’aiuto del tempo,
anche un Magikarp è in grado
Di diventare Gyarados

– Tetris, Pinguini Tattici Nucleari

21

C
E

U
eT

D
C

ol
le

ct
io

n



2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

2 Analytical Framework for Higher-Order Network Mod-
els

As previously discussed, networks allow us to describe and study a wide variety of complex
systems. However, scientific interest extends beyond merely describing these systems; it
also involves making predictions and anticipating behaviors. To achieve this, theoretical
models are employed to simplify and model real-world scenarios, enabling us to predict
properties and characteristics of complex systems or to interpret the emergent behaviors
observed in these networks. In network science, generative network models are central for
these reasons. Based on simple foundational rules, often incorporating random mechanisms,
they lead to the emergence of non-trivial structures. The ability to analytically solve these
models allows for accurate predictions and deeper understanding of emergent properties in
complex systems.

Outline In this chapter, we aim to develop and analyze solvable structural models of
higher-order networks. We will begin by reviewing the most well-known generative models
for pairwise interactions, to highlight the need for moving beyond traditional frameworks
and into higher-order models. Following this historical overview, we will introduce the hid-
den variables formalism, which allows for the analytical characterization of higher-order
networks models. This formalism will be employed to derive key properties such as the
hyper-degree distribution and hyper-degree correlations. We will then extend our analysis
to temporal systems by introducing the higher-order activity-driven (HOAD) model. This
model captures the dynamic nature of interactions within higher-order networks. We will
investigate the topological properties of the HOAD model, including the distribution and
correlation of hyper-degrees over time. Furthermore, we will explore temporal percolation
in hypergraphs, providing analytical estimates for the percolation times in both uncorrelated
and correlated hypergraphs. Finally, we will apply our theoretical framework to empiri-
cal data, quantifying the difference in computing the percolation time between generating
networked structures with higher-order or first-order activity distributions observed in real-
world datasets. Through these analyses, we aim to provide a comprehensive understanding
of the structural and dynamical properties of higher-order networks and which mistakes can
arise if one neglects the intrinsic higher-order nature of data.

2.1 Random Network models

Review on Random models One of the foundational approaches in network science is the
use of random network models. These models serve as null hypotheses or baseline scenarios
against which the structure and dynamics of real-world networks can be compared. By
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2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

applying simple probabilistic rules to the formation of networks, random models help us
understand the essential properties that emerge in complex systems. These models have
proven powerful, revealing key insights into the nature of connectivity, robustness, and the
spread of information within networks [19, 53, 54].

The simplest random network model is the Erdős-Rényi (ER) model. In this model,
each pair of nodes is connected with a fixed probability. This model has been widely used
in epidemiology and communication networks to understand how connectivity and robust-
ness manifest in random structures [53, 55]. Despite its simplicity, the ER model reveals
important emergent properties, such as the percolation threshold, where a giant connected
component suddenly forms as the average degree increases, marking a phase transition in
network connectivity [54]. Another notable property that emerges from the ER model is
disassortativity—a tendency for high-degree nodes to connect with low-degree nodes. This
is not a property explicitly encoded in the model but arises naturally from the random con-
nection process [56].

Following the ER model, we look at the Barabási-Albert (BA) model, which offers a
more refined approach by incorporating growth and preferential attachment into the net-
work formation process. Unlike the ER model, where connections are made randomly, the
BA model assumes that new nodes are more likely to attach to existing nodes with higher
degrees. This mechanism, often referred to as the “rich-get-richer” phenomenon, leads to
the emergence of scale-free networks characterized by a power-law degree distribution [57].

While the BA model focuses on the preferential attachment mechanism, spatial network
models introduce the concept of physical space into network formation. In spatial networks,
nodes are placed in a geometric space, and the probability of a connection between two
nodes decreases with the distance between them. This reflects the intuitive notion that con-
nections are more likely to form between geographically proximate entities [58]. Despite the
constraints imposed by spatial separation, these networks often exhibit small-world proper-
ties, characterized by short average path lengths and high clustering [58, 59].

Building on spatial models, the gravity model refines the spatial approach by incorporat-
ing the concept of node “mass,” which can represent factors like population size, economic
strength, or other measures of importance [60]. In this model, the probability of interaction
between two nodes is proportional to their masses and inversely proportional to the dis-
tance between them [61]. The gravity model is widely used in trade networks, where larger
economies engage in more trade with each other, and in urban planning, where the con-
nectivity of cities depends on both their size and proximity. By capturing these real-world
dynamics, the gravity model provides insights into how large, influential nodes dominate
interactions within a network, while still respecting spatial constraints [62].

The geometric model extends these ideas into more abstract or higher-dimensional spaces.
Nodes are placed in a geometric space, and connections are established based on distance
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thresholds or more complex geometric relationships [63]. This model is particularly useful
for studying networks where connections depend on multiple factors beyond mere physical
distance. For instance, in wireless sensor networks, connectivity might depend on both the
physical proximity of sensors and their functional compatibility [64]. Similarly, in biologi-
cal networks, interactions might depend on spatial positioning within a cellular environment
as well as other biochemical factors.

Further extending the concept of geometric embedding, hyperbolic models place net-
works in hyperbolic space, a non-Euclidean space that combines geometric proximity with
scale-free degree distributions [65]. For example, the internet can be modeled in hyperbolic
space, where the hierarchical organization of domain names and the clustering of websites
are naturally represented [66]. Hyperbolic models also help explain the small-world phe-
nomena observed in many networks, where short paths exist between any two nodes despite
the network’s large size. This is crucial for understanding how information or diseases
spread efficiently in these networks, balancing the need for local clustering with global con-
nectivity [67].

The fitness model introduces another layer by considering the intrinsic “fitness” of each
node—a measure of its ability to attract connections independently of its degree [68]. In this
model, connections are more likely to form between nodes with higher fitness, allowing for
the emergence of super-hubs—nodes that become highly connected due to their inherent
properties rather than their position in the network. This model is particularly relevant
in contexts where the inherent characteristics of nodes, such as popularity, influence, or
productivity, play a significant role in network dynamics. For example, in social networks,
individuals with greater social capital or influence can become central nodes, regardless of
their initial connectivity. Similarly, in scientific collaboration networks, highly productive
researchers are more likely to collaborate with others, leading to the formation of hubs based
on fitness [69].

From Nodes’ Properties to Global Behaviors Despite the diversity of these models, they
share a common foundation: the probability of connections between nodes depends on spe-
cific properties of the nodes themselves. Whether these properties are homogeneously dis-
tributed (as in the ER model), based on preferential attachment (as in the BA model), influ-
enced by spatial coordinates (as in spatial and geometric models), or determined by intrinsic
fitness (as in the fitness model), the connection probabilities are rooted in the local character-
istics of the nodes. These models attempt to replicate real-world scenarios by starting from
these localized rules or individual behaviors, allowing researchers to explore how complex
global patterns emerge from simple, well-defined interactions.

These local rules, though simple, can lead to the emergence of complex global proper-
ties, such as scale-free distributions, small-world characteristics, and hierarchical structures.
These emergent properties are not explicitly programmed into the models but arise naturally
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from the interactions defined by the nodes’ properties. This principle of emergence has been
observed across various domains, from biology (e.g., neural or genetic networks) to sociol-
ogy (e.g., social influence and community formation) to technology (e.g., the robustness of
the internet or power grids) [13]. By understanding these emergent properties, researchers
can gain valuable insights into the underlying mechanisms that drive the behavior of com-
plex systems.

Beyond Pairwise Interactions: Higher-Order models While the models discussed so
far have focused on interactions at the level of pairs of nodes, recent advances in network
science emphasize the importance of considering higher-order interactions.

This shift towards higher-order network models raises an important question: can the
principles and local rules that underpin traditional network models be extended to account
for higher-order interactions? By exploring this question, we can develop models that not
only capture pairwise relationships but also the rich, multi-node interactions inherent in
complex systems. Incorporating these higher-order interactions allows for the study of new
emergent phenomena, which cannot be explained by pairwise interactions alone [1, 43, 46].
Additionally, these models can capture the collective dynamics of systems more accurately,
making them essential for applications in fields like neuroscience, where group activities
are crucial, or in epidemiology, where the spread of diseases often occurs through group
interactions rather than simple pairwise contacts.

For these reasons, in the following subsections, we aim to build upon the foundation
of traditional network models to develop and analyze solvable structural models of higher-
order networks.
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2.2 Hidden variables formalism for higher-order networks

Here, we introduce a general approach to analytically characterize higher-order time-varying
networks by means of a hidden variables (HV) framework. In pairwise networks, HV were
introduced to model the presence of links in networks with structural correlations [70].

Until now, the HV formalism has been employed across a vast spectrum of first-order
generative processes, such as to map networks into embedded spaces, including latent [71]
and hyperbolic spaces [72], fitness models [69, 73], protein interaction [74] and social dis-
tance [75]. Furthermore, the HV formalism has been applied to networks evolving over
time [76], networks with inherent correlations [70], and subsequently employed to pinpoint
the topological characteristics of activity-driven networks [77–79]. However, the aforemen-
tioned works neglected the higher-order organization of the considered social and biological
systems.

To this end, we start by developing the HV formalism for higher-order networks. Each
node i of a network of N nodes is endowed with an intrinsic vectorial HV
h⃗i = (h

(1)
i , h

(2)
i , . . . h

(m)
i , . . .), where the HV h

(m)
i determines the m-order interactions of

node i. For each order m, h(m)
i is drawn from an independent distribution ρ(h(m)). The

higher-order HV model assumes that the existence of an m-order hyperlink (m-link) among
m+1 nodes depends only on their HV, i.e., a connection probability IP(h(m)

1 , . . . , h(m)
m , h

(m)
m+1).

The main idea of the HV approach to solve network models is then to write temporal
and structual properties as a function of IP, and therefore the knowledge of the connection
probability allows one to approximate network properties.

2.2.1 Hyper-degree distribution

To start, we show how to approximate one of the main topological properties of a higher-
order generative model, the hyper-degree distribution. The goal here is to write the m-order
degree distribution P (k(m)) as a function of IP.

As a first step, the m-order degree distribution P (k(m)) can be written as

P (k(m)) =
∑
h(m)

g(k(m)|h(m))ρ(h(m)), (2.1)

where the propagator g(k(m)|h(m)) is the probability that a node with hidden variable h(m)

ends with an m-order degree equal to k(m), i.e., it has k(m) incident m-links. Note that∑
k(m)

g(k(m)|h(m)) = 1.

As it has been done for pairwise networks [70], we can express the propagator as the
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convolution of all possible conditional probabilities that lead to it, namely the partial prop-
agators. For the 2-order case:

g(k(2)|h(2)) =
∑

k
(2)
11 ,k

(2)
12 ,...k

(2)
CC

δk
(2)

k
(2)
11 +k

(2)
12 +...+k

(2)
CC

g
(h(2))
11 (k

(2)
11 |h(2)

1 , h
(2)
1 )

g
(h(2))
12 (k

(2)
12 |h(2)

1 , h
(2)
2 ) . . . g

(h(2))
CC (k

(2)
CC |h

(2)
C , h

(2)
C ),

shortly,

g(k(2)|h(2)) =
∑
{k(2)ij }

δk
(2)∑
k
(2)
ij

C∏
i≥j

g
(h(2))
ij (k

(2)
ij |h(2)

i , h
(2)
j ), (2.2)

where g(h
(2))

ij (k
(2)
ij |h(2)

i , h
(2)
j ) is the probability that a node (with hidden variable h(2)) ends up

with a number of 2-order interactions with neighbors of hidden variables h(2)
i and h

(2)
j equal

to k
(2)
ij . In the convolution, we take into account all the possible pairs of classes of hidden

variables excluding permutations (i ≥ j), being h
(2)
C the maximum value of h(2) and we

sum over the set of all possible 2-degree values {k(2)
ij } = {k(2)

11 , k
(2)
12 . . . k

(2)
CC}. Note that the

number of all possible partial propagators is equal to the number of multisets of cardinality 2

among C elements,
((

C

2

))
=

(
C + 2− 1

2

)
. The term δk

(2)∑
kij

constraints the sum of partial

degrees to be equal to k(2). For simplicity, from now on we omit the explicit dependence of
h(m) in m without losing generality in the discussion.

For the m-order case, one has to consider that an m-order interaction between the node
with hidden variable h and other m nodes involves m (not necessarily different) hidden
variable classes, hi1 , hi2 , . . . , him . Notice that we have dropped the explicit dependence of
h on m to have a lighter notation, h = h(m). The propagator thus reads

g(k(m)|h) =
∑

{ki1i2...im}
δk

(m)∑
ki1i2...im

C∏
i1≥i2≥...≥im

g
(h)
i1i2...im

(ki1i2...im|hi1 , hi2 , . . . , him), (2.3)

As in the m = 2 case, g(h)i1i2...,im
(ki1i2...im|hi1 , hi2 , . . . , him) is the probability that a node

with hidden variable h has exactly ki1i2...im m-order interactions with neighbours of hidden
variables hi1 , hi2 , . . . , him . In this case, the convolution is done again considering i1 ≥
i2 ≥ . . . ≥ im in order to avoid all repetitions given by the permutation of the indexes.
As for the second-order case, C is the number of hidden variable classes. The number of

partial propagators in the convolution is
((

C

m

))
=

(
C +m− 1

m

)
, namely the number of

27

C
E

U
eT

D
C

ol
le

ct
io

n



2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

multisets with m possibly repeated items, chosen from a set of C distinct elements. The
term δk

(m)∑
ki1i2...im

constraints the sum of partial degrees to be equal to k(m), and {ki1i2...im} is
again the set of all possible values of m-degree.

For the purpose of solving the convolution in Eq. (2.3), we resort to the properties of
generating functions. The generating function of the propagator is defined as

ĝ(z|h) =
∑
k

zkg(k|h), (2.4)

where we omit the m index on the hyper-degree k(m). Since the propagator is given by a
convolution of Eq. (2.3), we can write its generating function as the product of the generating
functions of the partial propagators. For a general order m we have

ĝ(z|h) =
∏

i1≥i2≥...≥im

ĝ
(h)
i1,i2,...,im

(ki1,i2,...,im |hi1 , hi2 , . . . , him). (2.5)

Since the m-links between vertices with hidden variables h, hi1 , hi2 , . . . , him are indepen-
dently drawn with probability IP(h, hi1 , hi2 , . . . him), the partial propagator
g
(h)
i1,i2,...,im

(ki1,i2,...,im|hi1 , hi2 , . . . , him) is simply given by a binomial distribution, as in the
first order case. Consequently, its generating function reads

ĝ(h)(z|hi1 , hi2 , . . . , him) =
[
1− (1− z) IP(h, hi1 , hi2 , . . . , him)

]Ni1i2...im , (2.6)

where Ni1,i2...im is the number of possible sets with nodes of hidden variables hi1 , hi2 , . . . , him ,
that can be written as Ni1i2...im = Ni1Ni2 . . . Nim , where Ni1 = Nρ(hi1) is the number of
nodes with hidden variable hi1 .

By taking the logarithm of the full propagator, one obtains

ln ĝ(z|h) = Nm
∑

i1≥i2≥...≥im

ρ(hi1)ρ(hi2) . . . ρ(him) ln[1− (1− z)IP(h, hi1 , hi2 , . . . , him)].

(2.7)
In the limit C ≫ m, the number of elements in the summation, equal to the number

of multisets
((

C

m

))
, is equal to

Cm

m!
. We can thus sum over m independent indexes

i1, i2 . . . im = 1, 2, . . . C, and divide by m!. At this point, since Eq. (2.7) does not depend
anymore on the specific indexes i1, i2 . . . , im, we can simplify the notation and directly sum
over different hidden variable classes h1, h2 . . . , hm,

ln ĝ(z|h) = Nm

m!

∑
h1,h2...,hm

ρ(h1)ρ(h2) . . . ρ(hm) ln[1− (1− z)IP(h, h1, h2, . . . , hm)]. (2.8)
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We now consider the limit of sparse networks N ≫ 1 and small connection probability
IP(h, h1, h2, . . . , hm) ≪ 1, which allows us to write ĝ(z|h) as a pure exponential generating
function, as in the first order case. Consequently, the propagator takes the form of a Poisson
distribution

g(k(m)|h) ≃ e−k(m)(h)k(m)(h)k
(m)

k(m)!
, (2.9)

where k(m)(h) is the expected m-degree of a node of hidden variable h, that can be obtained
by taking the first derivative of ĝ(z|h) evaluated at z = 1,

k(m)(h) =
Nm

m!

∑
h1,...,hm

ρ(h1) . . . ρ(hm)IP(h, h1, . . . , hm). (2.10)

By inserting the form of the propagator Eq. (2.9) and its mean Eq. (2.10) into the gen-
eral Eq. (2.1), one can obtain the m-degree distribution as a function of the hidden vari-
able distribution. The form of the propagator is exponential (as in the first order case) and
the value of its mean depends explicitly on the connection probability. Remarkably, the
problem-specific piece of information that allows us to treat different models is contained in
Eq. (2.10) through the connection probability IP(h, h1, . . . , hm), which is the key ingredient
to find the hyper-degree distribution, given by Eq. (2.1). In the following parts, we will
discuss how to find IP(h, h1, . . . , hm) in the case of a higher-order activity-driven model.

2.2.2 Hyper-degree correlations

As well as hyper-degree distribution, hyper-degree correlation plays an important role in
understanding the structural dependencies within higher-order networks. This correlation
describes how the hyper-degrees of neighboring nodes are related, shedding light on the net-
work’s tendency to form group connections among nodes with similar or dissimilar hyper-
degrees. Here we show how to obtain general analytical expressions for the hyper-degree
correlations.

We start by writing k
(m)
nn (h), namely the average m-degree of the nearest neighbors of

a node with hidden variable h. For m = 2, one has to average over all possible hidden
variables hi and hj of the two neighbors i and j in the 2-link,

k
(2)
nn (h) =

∑
hi,hj

(
k(2)(hi) + k(2)(hj)

2

)
p(hi, hj|h), (2.11)

where p(hi, hj|h) is the conditional probability that a node with hidden variable h is con-
nected to nodes with hidden variables hi, hj . Such conditional probability can be written
as
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p(hi, hj|h) =
N2ρ(hi)ρ(hj)IP(h, hi, hj)

2 k(2)(h)
, (2.12)

where N2ρ(hi)ρ(hj) is the total number of all possible pairs made up of one node with hid-
den variable hi and one with hj , N2ρ(hi)ρ(hj)IP(h, hi, hj) represents the expected number
of 2-links that a node with hidden variable h shares with this type of pair, and the factor 2
at the denominator ensures that the probability is correctly normalized when we sum over
independent indexes,

∑
hi,hj

p(hi, hj|h) = 1 .

For general m, the average m-degree of neighbors of a node with hidden variable h reads

k
(m)
nn (h) =

∑
h1,h2...hm

(
k(m)(h1) + k(m)(h2) . . .+ k(m)(hm)

m

)
p(h1, h2 . . . hm|h), (2.13)

where p(h1, h2 . . . hm|h) is the conditional probability that a node with hidden variable h is
connected in an m-links with neighbours h1, h2 . . . hm, which reads

p(h1, h2 . . . , hm|h) =
Nmρ(h1)ρ(h2) . . . ρ(hm)IP(h, h1, h2 . . . , hm)

m! k(m)(h)
, (2.14)

where, again, the correct normalization over independent indexes is ensured by the term m!

leading to
∑

h1,h2...hm

p(h1, h2 . . . , hm|h) = 1.

The average m-degree of the nearest neighbors of a node with degree km can be obtained
by following Ref. [70],

k
(m)
nn (k(m)) = 1 +

1

P (k(m))

∑
h

g(k(m)|h)ρ(h)k(m)
nn (h). (2.15)

equivalently to the first-order case.

At this point, knowing the relations between P (k(m)), g(k(m)|h) and IP found in previous

subsection, one is able to explicitly write k
(m)
nn as a function of h.
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2.3 The activity-driven model

As an example of HV’s possible applications, in this section, we propose the activity-driven
model as a representative network model that can be analytically solved using such a tech-
nique.

The activity-driven (AD) model has been instrumental in capturing the temporal aspects
of network interactions and is particularly useful for representing systems where the interac-
tions between entities are not static but change over time, such as social networks, commu-
nication networks, and epidemiological networks [80]. This model has been widely studied
and applied in various contexts. For instance, it has been used to model contagion dynamics
in time-varying metapopulation networks [81], analyze random walks and search strategies
in time-varying networks [82], and control contagion processes [83]. Furthermore, the AD
model has been extended to account for heterogeneous activity and tie allocation in social
networks [84], and to study the impact of committed activists on social consensus [85]. Ap-
plications in epidemiology include modeling the effects of self-initiated behavioral changes
on disease dynamics [86], and understanding phase transitions in information spreading on
structured populations [87]. Additionally, the model has been used to explore the effects of
attractiveness on random walks [88], and to develop frameworks for the study of epidemic
models [89].

In the AD model, each node is assigned an activity rate ai, drawn from a distribution
F (a), which determines the probability of the node becoming active at each time step. When
a node becomes active, it creates edges with a fixed number of randomly selected nodes.
This simple yet powerful mechanism allows the model to capture the dynamic formation
and dissolution of connections, which is characteristic of many real-world networks. The
model has been used to study various phenomena, including the spread of information,
disease dynamics, and synchronization processes.

Formally, the AD model operates as follows: at each discrete time step t, the network
Gt starts with N disconnected nodes. Each node i becomes active with probability ai∆t
and creates m links to m other randomly selected nodes. Over a given time window T , the
aggregated network GT is formed by the union of all the edges created during this period,
allowing for the analysis of cumulative interaction patterns.

Note that the activity-driven model is a temporal network model, but our framework is not
explicitly meant to solve temporal models. We will show how we are able to predict topolog-
ical information over time by studying the aggregated networks at every T by expressing the
probability that two nodes are connected as a function of T , while the aggregated structure
gets more and more connected.
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2.3.1 Higher-order activity-driven model

Simplicial activity-driven model To extend the AD model to account for higher-order
interactions, Petri et al. introduced the Simplicial Activity-Driven (SAD) model [46]. In
many biological and social systems, interactions involve more than two entities, making
simplicial complexes a more suitable representation. The SAD model generalizes the AD
model by allowing interactions to involve multiple nodes simultaneously, forming simplices
instead of simple edges. This approach captures the complex nature of group interactions,
such as collaborations in scientific research or multi-agent interactions in social networks.

The SAD model operates similarly to the AD model but with a crucial difference: when
a node becomes active, it creates a simplex involving m other nodes, forming a higher-
order structure that represents a group interaction. This results in a network composed of
simplices, which can be aggregated over time to study the cumulative interaction patterns.
The model has been shown to capture important structural differences and dynamics that are
not evident in pairwise interaction models, making it valuable for studying processes such
as disease propagation and social contagion.

HOAD model In this thesis, we make use of a similar extended model called the Higher-
Order Activity-Driven (HOAD) model, which focuses on generating hypergraphs instead
of simplicial complexes. While the underlying principles are similar to the SAD model, the
HOAD model uses hyperedges to represent many-body interactions. This approach provides
a more flexible framework for modeling higher-order interactions in various systems.

Formally, the higher-order activity-driven model (HOAD model) is defined as follows.
Each agent i in a population of size N is endowed with a higher-order activity potential
ai = (a

(1)
i , a

(2)
i , ..., a

(m)
i ) for every interaction order m.

The activities of the agents are random variables, extracted from distributions

ρ(a) = (ρ(a(1)), ρ(a(2)), ..., ρ(a(m))),

which we assume independent. The activity of node i at order m, a(m)
i , represents the

probability that they engage in an interaction with m other nodes in a certain time-interval
∆t.

The activity potentials can be measured in empirical data by considering that the activity
a
(m)
i is proportional to n

(m)
i , the number of interactions of order m involving node i in ∆t.

The proper normalization of a(m)
i ,

∑
i,m

a
(m)
i = 1, implies that a(m)

i is equal to the number of

interactions of order m involving node i in ∆t, divided by the total number of interactions
of any order all nodes are involved in ∆t, a(m)

i = n
(m)
i /

∑
i,m

n
(m)
i .
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Time
Figure 2.1: Illustration of a hypergraph generated via HOAD model growing over time.

The HOAD model generates temporal hypergraphs starting by N initially disconnected
nodes. At every time step, each node i generates one hyperlink of order m towards ran-
domly selected nodes, with probability proportional to their activity a

(m)
i . At the following

time step, the existent higher-order interactions are erased and the process continues. The
temporal hypergraph is defined by the sequence of instantaneous, sparse hypergraphs gen-
erated at each time step. One can obtain a static hypergraph by integrating all instantaneous
hypergraphs up to a certain time T , where two nodes i and j will be connected if any hyper-
edge between them exists in any instantaneous hypergraph in t ∈ [1, T ], Figure 2.1.

Mapping HOAD model into HV formalism A node i of the HOAD network with activity
ai can be mapped as ai → h⃗i. Since hyperlinks of different orders are generated indepen-
dently, we can treat all orders separately by means of m distinct scalar hidden variables. For
every m we can write a

(m)
i → hi.

2.4 Topological properties in the HOAD model

In this section, we utilize the mapping from hidden variables to activity potentials to trans-
late the general formulas previously derived into the specific context of the HOAD model.
This allows us to analytically determine the topological properties, such as hyper-degree
distribution and hyper-degree correlations, within this model framework.
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2.4.1 Hyper-degree distribution

We now derive the analytical form of the distribution P (k(m)) by means of the hidden vari-
ables formalism. For the sake of simplicity, we first focus on the second-order case and
compute the IPT (ai, aj, ak) that three nodes i, j, k with hidden variables, ai, aj , and ak are
connected by at least one 2-link in the aggregated HOAD network at time T . By follow-
ing [77], we start from the probability that these nodes are not connected, QT (ai, aj, ak) =
1 − IPT (ai, aj, ak). Let ni, nj, nk be the number of activations of the three nodes until time
T . Since every time a node is active it selects two random neighbors, we have

QT (ai, aj, ak) =
∑

ni,nj ,nk

ρT (ni)ρT (nj)ρT (nk)

(
1− 1(

N
2

))ni
(
1− 1(

N
2

))nj
(
1− 1(

N
2

))nk

,

(2.16)
where ρT (ni) is the probability that node i has been activated ni times at time T , given by a
binomial distribution

ρT (ni) =

(
TN

ni

)(
ai
N

)ni
(
1− ai

N

)TN−ni

. (2.17)

Substituting ρ(ni) into QT (ai, aj, ak), and using the binomial theorem to solve the sum in
equation (2.16), we find

QT (ai, aj, ak) =

[(
1− ai

N
(
N
2

))(1− aj

N
(
N
2

))(1− ak

N
(
N
2

))]TN

≃ e
− T

(N2 )
(ai+aj+ak)

,

where the last equivalence holds for
(
N

2

)
≫ T . Therefore, IPT (a, ai, aj) reads as

IPT (ai, aj, ak) ≃ 1− e
− T

(N2 )
(ai+aj+ak)

≃ 2T

N2
(ai + aj + ak), (2.18)

where we have approximated
(
N

2

)
≃ N2

2
.

Following analogous steps, the probability IPT (a, a1, a2 . . . , am) that m + 1 nodes with
hidden variables a, a1, a2 . . . , am are connected by at least one m-link in the aggregated
HOAD network at time T is

IPT (a, a1, a2 . . . , am) ≃ 1− e
− T

(Nm)
(a+a1+a2+...am)

≃ m!

Nm
(a+ a1 + a2 + . . . am)T. (2.19)

From Eq. (2.10), the expected degree is thus

k(m)(a) = (a+m⟨a⟩)T. (2.20)
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This means that, on average, the m-order degree of a node with activity a at time T is
given by Ta outgoing m-links plus mT ⟨a⟩ received from random neighbors.

Inserting this expression into Eq. (2.9), we finally get

g(k|a) = e−T (a+m⟨a⟩) [T (a+m⟨a⟩)]k(m)

Γ(k + 1)
. (2.21)

The propagator of the order m is thus functionally equivalent to the first-order one [77], but
with a different mean. Again following [77], one can now find the explicit expression of the
m-degree distribution of the aggregated network until time T , PT (k

(m)). Inserting Eq. (2.21)
into Eq. (2.1) and taking the continuum limit of latter, for T 2 ≫ k(m) ≫ 1, performing a
steepest descent approximation we find the asymptotic form of the degree distribution

PT (k
(m)) ≃ 1

T
ρ(k(m)/T −m⟨a⟩). (2.22)

We recall that in the approximation above we have considered a sparse hypergraph.
Hence, the goodness of the approximation above depends on time T , which regulates the
density of the higher-order network. Indeed, the HOAD model starts from disconnected
nodes, which over time are connected by m-links, eventually percolating the network. From
Eq. (2.19), such hypergraph sparsity condition for a HOAD model for general order m is

fulfilled when T ≪ Nm

m!
.

Figure 2.2 shows the hyper-degree distribution PT (k
(m)) of HOAD networks integrated

at time T , as obtained by numerical simulations. We arbitrarily select a power-law activity
distribution, yet Eq. (2.22) is general for any distribution ρ. The model is implemented as
part of the library HGX [4]. One can see a good agreement with the asymptotic behavior
indicated by Eq. (2.22).

2.4.2 Hyper-degree correlation

We start by computing p(a1, a2 . . . , am|a), the probability of randomly choosing an m-link
made of neighbours with activities a1, a2 . . . , am among all m-links of a, which is given by
Eq. (2.14)

p(a1, a2 . . . , am|a) =
Nmρ(a1)ρ(a2) . . . ρ(am)

m! k(m)(a)
IPT (a, a1, a2 . . . am). (2.23)

By inserting the approximation for IPT (Eq. (2.19)) and k(m) (Eq. (2.20)), for small T we
find

p(a1, a2 . . . , am|a) ≃
ρ(a1)ρ(a2) . . . ρ(am)(a+ a1 + a2 . . . am)

(a+m⟨a⟩) . (2.24)
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Figure 2.2: Hyper-degree distribution PT (k
(m)), Eq. (2.22) shown as a dashed line. Network

size N = 106, orders m = 1, 2, 5, integration time T = 103. The activity distributions ρ(a)
of order m have power-law form for every order with exponent γ = 2.25.

Inserting Eq. (2.24) into Eq. (2.13) we finally get

k
(m)
nn,T (a) =

T

a+m⟨a⟩

[
⟨a2⟩+ (m+ 1)⟨a⟩a+ (m2 +m− 1)⟨a⟩2

]
. (2.25)

Eq. (2.15) relates k(m)
nn (k) with k

(m)
nn (a). Inserting Eq. (2.25) into Eq. (2.15), and follow-

ing equivalent steps done in [77], in the limit of k(m) ≫ 1 we find that the hyper-degree-
degree correlation of order m reads

k
(m)
nn,T (k) = 1 +

T 2

k(m)
σ2 + (m+ 1)⟨a⟩T, (2.26)

being σ2 = ⟨a2⟩ − ⟨a⟩2. One can rewrite the latter expression,

k
(m)
nn,T (k)− 1

T
= (m+ 1)⟨a⟩+ T

k(m)
σ2, (2.27)

that gives an asymptotic form of k(m)
nn,T (k).

The last expression, valid in the limit of k(m) ≫ 1 and sparse network, gives an asymp-
totic prediction of k

(m)

nn,T (k) as a function of the first two momenta of the activity distribution
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Figure 2.3: Hyper-degree correlations k
(m)

nn,T (k), Eq. (2.27) shown as a dashed line. Network
size N = 106, orders m = 1, 2, 5, integration time T = 103. The activity distributions ρ(a)
of order m have power-law form for every order with exponent γ = 2.25. See Figure 2.5
for additional plots in the case of m = 1, 3,& 4.

of order m. Figure 2.3 shows the correlations minus its first moment of HOAD networks
integrated at time T , as obtained by numerical simulations. As for the degree distribution,
we plot the rescaled hyper-degree correlations, the differences between the correlations and
their leading approximation in order to show how it decays with T/k(m) and the collapse of
the curves for three different orders m = 1, 2, 5. One can see that the disassortative behav-
ior proportional to (k(m))−1 and governed by σ2, as predicted by Eq. (2.27), is confirmed by
numerical simulations. See Figure 2.4 for additional plots in the case of m = 1, 3,& 4.

2.5 Temporal percolation HOAD networks

The connectivity properties of the time-integrated HOAD networks allow us to characterize
the temporal percolation, i.e., the time Tp marking the onset of a giant connected compo-
nent in the integrated network. The percolation time Tp corresponds to the time at which
the system reaches the structural percolation threshold. This threshold marks the point at
which long-range connectivity appears for the first time. Below this threshold, the system
remains fragmented, and any dynamic process (like information spreading, epidemic trans-
mission, etc.) will not reach all nodes because the network is insufficiently connected. The
percolation threshold essentially sets a lower bound on dynamic processes like spreading or
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Figure 2.4: Hyper-degree distribution PT (k
(m)), Eq. (2.22) shown as a dashed line. Network

size N = 106, orders m = 1, 3, 4, integration time T = 103. The activity distributions ρ(a)
of order m have power-law form for every order with exponent γ = 2.25.

diffusion. For a process to fully propagate through a network, the network must be above
its percolation threshold. Below this critical point, the process might only affect small,
disconnected clusters, not the entire system [90].

For instance, in Fig. 2.6 we illustrate how the same spreading process can behave differ-
ently depending on the network’s structure. In temporal networks that have not yet perco-
lated, the process cannot reach the entire network because it is not fully connected, making
the network’s structure a bottleneck for the dynamics. On the contrary, if the structure al-
ready contains a giant component, the network no longer restricts the dynamics, allowing
the spreading process to reach the entire system.

For this reason, being able to predict the percolation time of a system that increases its
interactions over time tells us what is the minimum time scale that a process must have to
being able to propagate entirely over such evolving structure.

Here, we discuss temporal percolation for uncorrelated and correlated hypergraphs. We
consider hypergraphs formed by hyperlinks of the same order m. Before discussing tem-
poral percolation, we shortly introduce higher-order percolation in static hypergraphs. We
consider arbitrary hypergraphs whose nodes may be removed with probability 1− p: when
p = 0, no node remains from the original higher-order network; by contrast, when p = 1 all
nodes are retained. With an approach inspired by [91], we consider the probability xk that,
if an m-order hyperlink (connecting m + 1 nodes) is attached on one side to a node with
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Figure 2.5: Hyper-degree correlations k
(m)

nn,T (k), Eq. (2.27) shown as a dashed line. Network
size N = 106, orders m = 1, 3, 4, integration time T = 103. The activity distributions ρ(a)
of order m have power-law form for every order with exponent γ = 2.25.

hyper-degree k (where we omit the dependency in m of the hyper-degree), then, following
the hyperlink to its other m ends, we will not end in a giant connected component. To this
end, one needs to impose that none of the m nodes (with hyper-degree k′) leads (through
any of its remaining k′ − 1 hyperlinks) to the giant component, thus we write:

xk =

[
1− p+ p

∑
k′

P (k′|k)xk′−1
k′

]m
, (2.28)

where we assume that the probability xk′ of each of the m nodes to be connected to the
giant component is independent of each other, so exponentiate the same probability to the
m. P (k′|k) is the probability that a node with m-degree k is connected with a node of m-
degree k′. Close to the percolation threshold, xk ⪅ 1, hence defining yk = 1 − xk ⪆ 0 we
write

1− yk =

[
1− p+ p

∑
k′

P (k′|k)(1− yk′)
k′−1

]m
. (2.29)

We then expand at the first order (1 − yk)
k−1 as (1 − yk)

(k−1) ≃ 1 − (k − 1)yk, and we
write
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Time

(a)

(b)

Figure 2.6: Illustration of a spreading process on two fixed hypergraph structures: one
without a giant connected component (a) and one with a giant component (b). Both panels
show the same spreading process, with the same diffusion rate of two nodes at every time
step. In (a), the spreading halts, confined to a small, disconnected part of the network,
while in (b), the process propagates across the entire network as it benefits from the global
connectivity provided by the giant component.

yk = mp
∑
k′

B(m)
kk′ yk′ , (2.30)

where we have defined the m-order branching matrix as
∑
k′

B(m)
kk′ yk′ =

∑
k′

P (k′|k)(k′ − 1)yk′

and have expanded (1−p
∑
k′

B(m)
kk′ yk′)

m. Moreover, following the procedure defined in [78],

we can easily prove that for every order m the corresponding branching matrix B(m)
kk′ has the

same element-wise form of the first-order case:

B(m)
kk′ = (k′ − 1)

[
ρ(k′ − 1) +

ρ(k − 1)

kρ(k)
(k′ρ(k′)− ⟨k⟩ρ(k′ − 1))

]
. (2.31)

Hence, we can solve Eq. (2.30) as for the first-order case by considering the associated
dominant eigenvalue (λ1) equation of the branching matrix:

λ2
1 − ⟨k⟩λ1 − ⟨k2⟩+ ⟨k⟩2 + ⟨k⟩ = 0. (2.32)

40

C
E

U
eT

D
C

ol
le

ct
io

n



2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

Notice that the last equation holds for every order and that the differences in terms of per-
colation time are implicitly contained in the hyper-degree momenta.

One can also release the condition of m-degree correlation and by means of an analogous
approach can find the percolation threshold for uncorrelated hypergraphs:

x =

[
1− p+ p

∑
k′

k′ρ(k′)

⟨k⟩ xk′−1

]m
, (2.33)

where the probability xk = x does not depend on k anymore. Defining x = 1 − y and
developing till the first order we find the m-order Molloy-Reed criterion:

y = m p
⟨k2⟩ − ⟨k⟩

⟨k⟩ y, (2.34)

and for p = 1, last expression has non-trivial solution in x for:

⟨k2⟩ − ⟨k⟩
⟨k⟩ >

1

m
(2.35)

In the uncorrelated case, we found that the results were consistent with those by Sun et
al [92].

2.5.1 Temporal percolation in the HOAD model

We now consider the related problem of temporal percolation in the HOAD model. To this
end, we utilized calculations equivalent to those presented by Starnini et al. [78], but we
report them here for clarity. To find the percolation time we need to express the hyper-
degree momenta as a function of the activity variable momenta. We can write the hyper-
degree momenta ⟨kn⟩T at a time T with respect to the time-dependent propagator gT (k|a)
as

⟨kn⟩T =
∑
a

ρ(a)
∑
k

kngT (k|a). (2.36)

Since the propagator has the form of a Poisson distribution, the momenta of the degree
distribution simply read as

⟨kn⟩T =
n∑

i=1

{
n

i

}
T iκi, (2.37)
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where
{
n

i

}
are the Stirling numbers of the second kind and

κi =
∑
a

ρ(a)(a+m⟨a⟩)i =
i∑

j=0

(
i

j

)
⟨aj⟩(m⟨a⟩)i−j. (2.38)

Explicitly, ⟨k⟩T and ⟨k2⟩T can be written as a function of the first two activity momenta
as

⟨k⟩T = Tκ1 = T (m+ 1)⟨a⟩, (2.39)

⟨k2⟩T = Tκ1 + T 2κ2 = T (m+ 1)⟨a⟩+ [⟨a2⟩+ (m2 + 2m)⟨a⟩2]T 2. (2.40)

Using the last expressions we can find an analytical approximation for the percolation time
of hypergraphs with no hyper-degree correlations as a function of the different orders of
interactions present in the hypergraphs. For instance, we can solve Eq. (2.32) by means
of Eqs. (2.36) (2.37) (2.38), leading to the following formula for the percolation time of
correlated hypergraphs for any order m:

T (m)
c =

2

(m+ 1)⟨a⟩+
√

(m2 + 2m− 3)⟨a⟩2 + 4⟨a2⟩
. (2.41)

Notice that the last equation holds for every order and that the differences in terms of
percolation time are implicitly contained in the hyper-degree momenta.

We test the validity of the prediction given by Eq. (2.41) by running extensive numerical
simulations.

Figure 2.7 shows the growth of the giant component size S over time and the peak of
its variance, σ(S)2, indicating the estimated percolation time, for several orders m. The
percolation time predicted by Eq. (2.41) has a decent agreement with numerical results,
yet they do not exactly coincide. We thus run a finite-size scaling analysis, by assuming
that the relative difference between the actual percolation time T (m)

c in the thermodynamic
limit and the one found in a network of size N , T (m)(N), follows a scaling law of the
form (T (m)(N) − T (m)

c )/T (m)
c ∼ N−ν for every m. Figure 2.8 shows that the finite-size

hypothesis holds, the percolation time estimated by the peak over time of the variance of the
giant component size actually approaches T (m)

c for any order m in the thermodynamic limit
N → ∞.

Equivalently, for uncorrelated hypergraphs, exploiting again the relation between the
momenta ⟨(k(m))n⟩ and ⟨an⟩ (Eqs. (2.36),(2.37),(2.38)), we find a general prediction of the
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Figure 2.7: Giant component size S/N (continuous line) and the peak of its variance σ(S)2

(dashed line) over time. The theoretical prediction given by Eq. (2.41) is indicated as a
vertical line. Results are averaged over 102 runs. Orders m = 1, 2, 5.

103 104 105 106 107

N

10−2

10−1

100

T
(m

) (
N

)/
T

(m
)

c
−

1

ν = 0.35

m = 5

m = 2

m = 1

Figure 2.8: Finite-size scaling analysis of the relative difference (T (m)(N) − T (m)
c )/T (m)

c

(circles) and corresponding scaling law N−ν (dashed line). Results are averaged over 102

runs. Orders m = 1, 2, 5.
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percolation time for uncorrelated temporal higher-order networks:

T (m)
unc =

(m+ 1) ⟨a⟩
m
[
(m+ 2)⟨a⟩2 + ⟨a2⟩

] . (2.42)

2.5.2 Hyper-degree correlation’s effects on percolation time

We now compare the analytical prediction of percolation time for uncorrelated and corre-
lated hypergraphs by plotting the ratio T (m)

unc /T
(m)
c (Eq. (2.43)) for different orders m and

different power-law exponents γ of the activity distribution:

T
(m)
unc

T
(m)
c

=
(m+ 1) ⟨a⟩

(
(m+ 1) ⟨a⟩+

√
(m2 + 2m− 3)⟨a⟩2 + 4⟨a2⟩

)
2m [(m+ 2)⟨a⟩2 + ⟨a2⟩] . (2.43)

Figures 2.9 and 2.10 present the results of these comparisons visually. In Figure 2.9,
we plot the ratio T (m)

unc /T
(m)
c as a function of γ for various values of m. It is evident that

for lower values of γ, particularly around γ = 2, the disparity between T (m)
unc and T (m)

c

is more pronounced, indicating a significant underestimation of the percolation time by
the uncorrelated model. As γ increases, the ratio approaches unity, suggesting that the
difference between the uncorrelated and correlated percolation times diminishes.

This highlights the importance of considering correlation when computing the percola-
tion time, especially for systems with strong heterogeneity in activity distribution (low γ) or
lower-order interactions (small m).

Similarly, Figure 2.10 illustrates the ratio T (m)
unc /T

(m)
c as a function of m. Here, we ob-

serve that for small values of m, the uncorrelated percolation time significantly underesti-
mates the correlated one. However, as m increases, the ratio approaches unity, indicating
that for higher-order interactions, the difference between uncorrelated and correlated models
becomes negligible.
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Figure 2.9:
Tunc

Tc
as a function of γ. Network size N = 106, orders m = [1, 2, 5, 10] and γ ∈ [2, 4].

The activity distributions ρ(a) are power-law distributions with ϵ = 10−3.
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Figure 2.10:
Tunc

Tc
as a function of m. Network size N = 106, orders m = [1, . . . , 20]. The

activity distributions ρ(a) have the same power-law form for every order with exponent γ = 2.25,
with ϵ = 10−3.
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2.6 Temporal percolation on empirical Data

In network science, random models often rely on empirical parameters to simulate and an-
alyze network behavior. For instance, null models of temporal networks frequently use
activity-driven frameworks based on observed activity rates. However, empirical data are of-
ten interpreted as first-order interactions and subsequently represented as simple networks,
despite their inherent higher-order nature. This simplification can lead to significant inaccu-
racies in understanding network dynamics.

In this section, we explore the consequences of this common misassumption. Specifi-
cally, we compare the outcomes of using a first-order activity-driven model versus a higher-
order activity-driven model to create random null models. For the former case, we project
all interactions into the first order, thus representing higher-order data as a simple network,
losing part of the information contained therein.

In particular, we consider two data sets of scientific collaboration networks in the fields
of Geology and History, collected by the Microsoft Academic Graph. We inform first-order
and higher-order activity-driven models with empirical activities extracted from the dataset,
and compare the first-order (T (1)) and m-order (T (m)) percolation times of the networks.
The percolation points are obtained by calculating the time for which the variance of the
component sizes distribution is maximum.

2.6.1 Data Description

The two datasets we utilized two datasets, coauth-mag-geology and coauth-mag-history,
were obtained from the data repository of XGI [93]. These datasets consist of timestamped
higher-order interactions, where each interaction is represented as a set of nodes. Specifi-
cally, the coauth-mag-geology dataset includes publications tagged with Geology in the Mi-
crosoft Academic Graph, while the coauth-mag-history dataset includes publications tagged
with History in the same dataset. Nodes within these datasets correspond to authors, and the
timestamps indicate the year of publication. The projected graphs are weighted undirected
networks, where the weights reflect the frequency of co-authorship within the higher-order
interactions. In Table 2.1 we report the general properties of the two datasets.

Even if the two datasets contained interactions up to the 25th order, for our analysis, we
focused on interactions involving up to 11 nodes (10th order).

2.6.2 Quantifying higher-order and first-order activity distributions

The higher-order activity potential of individuals has been extracted from data as detailed
in the definition of the HOAD model. Specifically, we counted the number of interactions

46

C
E

U
eT

D
C

ol
le

ct
io

n

https://gitlab.com/complexgroupinteractions/xgi-data


2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

Time

3 links 6 links 9 links 12 links

(a)

(b)

Figure 2.11: Comparison of temporal networks generated using higher-order activities (a)
and first-order activities (b), preserving the same number of links when projecting the
higher-order case.

each node participated in for different orders and divided by the total number of interactions
across all orders. The first-order activity potential of individuals has been extracted from
data as detailed in the definition of the activity-driven model [80].

We then directly compare the higher-order percolation threshold with the first-order one.
To this aim, we project all interactions into the first order, thus representing higher-order
data as a simple network, and measure the activity potential in this case. We note that,
in order to meaningfully compare the two cases, the first-order activities of nodes must be

multiplied by the factor
(
m+ 1

2

)
, indicating the number of equivalent links included in an

m-order interaction. In this way, we ensure that, at any given time T , the simple activity-
driven network and the higher-order activity-driven network projected to the first-order have
the same number of links (Fig. 2.11).
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2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

Statistic coauth-MAG-History coauth-MAG-Geology
Number of nodes 1,014,734 1,256,385
Number of timestamped hyperedges 1,812,511 1,590,335
Number of unique hyperedges 895,668 1,207,390

Table 2.1: Statistics of coauth-MAG-History and coauth-MAG-Geology Datasets

2.6.3 Effects of neglecting higher-order interactions on percolation time

Figure 2.12 shows that the m-order percolation time T (m) estimated by numerical simula-
tions of the HOAD model informed by empirical data is in good agreement with the theo-
retical prediction T (m)

c given by Eq. (2.41), for every order m. Moreover, Figure 2.12 shows
that the first-order percolation time T (1) is much smaller than the actual m-order one T (m),
and such a difference increases with the order m.

2 3 4 5 6 7 8 9 10

m

0.3
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(m

)
C

/T
(m

)

Figure 2.12: Percolation times in empirical data. Scientific Geology (stars) and History
(circles) collaboration networks. Blue points: Ratios between the first-order (T (1)) and
m-order (T (m)) percolation times of networks informed by empirical activities, estimated
from numerical simulations. Yellow points: Ratios between the theoretical prediction from
Eq. (2.41), T (m)

c , and the percolation times of networks informed by empirical activities
estimated from numerical simulations, T (m).

Therefore, an incorrect representation of higher-order data as classic, dyadic interactions
leads to a substantial underestimation of the true, higher-order percolation times, up to 50%
already for m = 5, that is, small groups of 6 people.
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2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

2.7 Conclusions

In this chapter, we showed that the topological and percolation properties of temporal higher-
order networks can be obtained by mapping such networks to a higher-order HV formalism.
We illustrate the potential of our theoretical framework by quantitatively showing how much
the percolation times of higher-order empirical social networks are underestimated if higher-
order interactions are neglected. This result is particularly interesting within the framework
of epidemic processes: a disease spreading with a short timescale is expected to percolate
when the underlying contact network is assumed to be formed by dyadic interactions, but it
would not percolate in the corresponding higher-order network representation. Note, how-
ever, that our finding holds within the specific activity-driven modeling framework. Further
research should be devoted to addressing this setting in different modeling frameworks and
on real contact networks.

The higher-order HV framework we developed holds potential for future applications
across a wide array of higher-order and temporal generative models. For instance, it could
be applied to higher-order fitness models [69] or social dynamics models including higher-
order interactions mapped into latent spaces [75]. Likewise, it could be extended to describe
network models incorporating Non-Markovian dynamics [79], which has shown to have a
deep impact on epidemic processes.

Future research could quantify and model the presence of correlations between different
interaction orders, as well as their effects on the connectivity and percolation properties of
time-integrated networks. We hope that our work will stimulate further research to apply
the higher-order HV framework to other empirical, time-varying complex systems.
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Hito no yume wa owaranai!

– Marshall D. Teach, One Piece
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3 LARGE DEVIATIONS THEORY FOR DYNAMICAL PROCESSES ON
HIGHER-ORDER NETWORKS

3 Large deviations theory for dynamical processes on higher-
order networks

The study of dynamical processes on networks [94, 95] has been a cornerstone of under-
standing complex systems, where the interactions between components can lead to emer-
gent behavior. For instance in epidemiology, modeling the spread of diseases through net-
works helps in devising strategies for containment and vaccination [20, 96–98]. More in
general, dynamical processes on networks are fundamental to understanding how systems
evolve over time and the study of these processes encompasses both equilibrium and non-
equilibrium dynamics, each offering unique insights and challenges [99, 100].

Outline Despite many efforts in studying higher-order dynamical models, all the works
primarily focus on the equilibrium state of such processes. In this chapter, we propose the
first study of rare events on the dynamics of higher-order processes, highlighting the impor-
tance of understanding fluctuations and rare events in higher-order networks to predict the
behavior of real-world systems. We begin by providing a brief overview of rare events and
out-of-equilibrium dynamics, highlighting their significance and relevance to the study of
dynamical processes on networks. This is followed by a general, non-technical introduction
to large deviations theory, which forms the foundation of the analytical approach used in this
study. Then, we explore the application of large deviations theory to out-of-equilibrium dy-
namics on higher-order networks, focusing on the effect that group interactions have on dy-
namical fluctuations. Subsequently, we delve into how this theoretical framework is applied
to study random walks on higher-order networks, highlighting how higher-order interactions
affect out-of-equilibrium dynamics.

3.1 Large deviations and rare events

Typical and Atypical Behaviors In physics and stochastic processes, the primary focus
is often on typical behaviors—those outcomes we expect to observe most frequently. These
typical outcomes correspond to the average or most probable results of a system. However,
there are instances where understanding atypical behaviors, which are not impossible but
simply less likely by definition, becomes equally important. Atypical behaviors allow us to
explore the full range of potential outcomes of a process, including catastrophic or unex-
pected events that could have significant consequences. Studying these less probable events
helps us control and predict the distribution of all possible outcomes, which is crucial for
assessing risks in various systems.

For example, in statistical physics, one often examines the equilibrium distribution of
particles in a system using ensemble theory. In a canonical ensemble, for instance, the
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typical behavior corresponds to the most probable configuration of particles at a given tem-
perature, such as particles evenly distributed in a box. However, it is also possible, though
less likely, for the system to fluctuate into configurations far from this typical state, like a
temporary clustering of particles in one corner of the box. These rare configurations, while
improbable, are still part of the ensemble’s distribution and contribute to our understanding
of fluctuations and stability in physical systems.

In stochastic processes, a classic example is the flipping of a fair coin N times. The
typical or expected outcome would be to get tails approximately N/2 times. However, the
process is stochastic, meaning that the actual outcome might deviate from this expectation.
One might be interested in understanding the probability of getting tails significantly more
or less than N/2 times, which, though rare, is entirely possible.

Similarly, in dynamical systems on networks, many processes, such as random walks,
are inherently stochastic. In a random walk, a walker moves from one node to a neighboring
node chosen at random. A typical question in this context is determining the fraction of time
the walker spends at a particular node, a result that is well-known to be linked to the spectral
properties of the network’s adjacency matrix. However, studying atypical behaviors in this
scenario involves asking about the chances that the walker behaves in an unexpected way,
such as spending significantly more or less time on a given node than predicted. While such
outcomes are less likely, they are not forbidden by the stochastic nature of the process and
provide valuable insights into the underlying dynamics of the network.

Large deviations To rigorously analyze these behaviours, large deviations theory offers
a powerful mathematical framework [101–104]. This theory focuses on the probabilities
of rare events that deviate significantly from the average behavior, providing insights into
the stability and variability of complex systems [105]. By applying large deviations the-
ory to dynamical processes on networks, we can quantify the likelihood of rare events and
understand their impact on the overall system behavior.

The theory of large deviations is fundamentally concerned with the study of rare events
in stochastic systems, specifically focusing on the exponential decay of probabilities associ-
ated with these events [105]. Originating from statistical mechanics [106], large deviations
theory provides a framework for understanding the probabilities of deviations from typical
behavior in random processes [107–111]. It refines and generalizes classical results such
as the law of large numbers and the central limit theorem by providing a more detailed
description of the tail behavior of probability distributions. The cornerstone of large devi-
ations theory is the large deviations principle (LDP), which quantifies the exponential rate
at which probabilities of rare events decay as a function of system size . This is typically
expressed through a rate function, which encapsulates the cost of deviations from the mean
behavior [101].
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Going beyond thermodynamics, large deviations theory provides also a powerful frame-
work for understanding the probabilistic structure of rare events in stochastic systems, par-
ticularly in the context of dynamical processes on networks [5, 112–114]. When applied
to random walks on complex networks, large deviations theory enables the quantification
of the probabilities of significant deviations from typical behavior. Specifically, it focuses
on the time-integrated functionals or observables of a random walk, such as the degree of
nodes visited or the trajectory entropy, and examines their fluctuations over time. For in-
stance, considering an unbiased random walk on a graph, large deviations theory can be
used to study the rare fluctuations of the mean degree of nodes visited by the walker [112].

In practice, the application of large deviations theory to networked systems has revealed
intricate behaviors such as dynamical phase transitions and localization phenomena. For
example, the study of the mean degree of nodes visited by a random walk on Erdős-Rényi
graphs demonstrates how high or low degree fluctuations can be linked to localized regions
within the network [112]. Similarly, examining the trajectory entropy provides insights into
the maximum entropy random walk, which maximizes the entropy rate and represents a
uniform distribution over all paths in the network [5]. These analyses highlight the utility
of large deviations theory in capturing the complex interplay between network structure
and dynamical processes, offering a comprehensive tool for studying rare events and their
implications in various applications, including communication networks, epidemiology, and
transport systems.

Dynamical Processes in Higher-Order Networks Higher-order networks models con-
sider the collective influence of groups rather than just individual pairs, offering new in-
sights into dynamical processes. Higher-order models account for complex interactions by
considering structures such as hypergraphs and simplicial complexes, which better repre-
sent real-world systems like social and biological networks. For instance, simplicial conta-
gion models [49], illustrate how group interactions can accelerate the spread of information
or diseases compared to traditional models, effectively portraying social influence and the
spread of information over groups. In social networks, the presence of higher-order inter-
actions can enhance the diffusion of information, making it faster and more robust than
diffusion processes limited to pairwise interactions [115]. Random walks on hypergraphs
also reveal that higher-order structures can significantly impact diffusion processes, often
leading to more intricate spreading patterns and varying timescales, which portrays the dif-
fusion of ideas or rumors, generally enhanced by group interactions [116]. Additionally,
in synchronization phenomena, such as those seen in neural networks, higher-order interac-
tions can profoundly influence the dynamics [117–119]. The traditional Kuramoto model,
extended to include higher-order coupling terms, leads to more complex synchronization
patterns, where higher-order interactions can stabilize or destabilize synchronous states de-
pending on the nature and strength of the coupling, thus portraying complex coordination in
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biological systems. Moreover, in the context of evolutionary dynamics, higher-order inter-
actions in evolutionary games reveal different equilibria compared to pairwise interactions,
promoting cooperation under certain conditions and providing insights into the evolution
of cooperative behavior in social systems, thus portraying collective decision-making pro-
cesses [120–122].

3.2 Fluctuations of dynamics on networks

The appearance of fluctuations in dynamical processes is central in determining the future
evolution of many real-world systems [123]. The emergence of rare events may be bolstered
or hindered by the hosting complex environment, often conveniently modeled as a complex
network [124–126]. Large fluctuations in complex networks have been studied across a
variety of processes, including percolation [112, 127–129], spreading [130, 131], and trans-
port [132–135]. A stream of research has focused on random walks as a versatile model of
diffusion in discrete spaces [136–140] and on their rare event properties [141–143]. Large
deviations theory has revealed that low-degree nodes are more susceptible than hubs to the
appearance of atypical loads, possibly leading to dynamical phase transitions [113, 144–
146].

Regarding dynamical systems on networks, despite their success, graphs can only pro-
vide a constrained description of real-world systems, as links are inherently limited to model
pairwise interactions only [43,147]. Yet, from social [27,44,148,149] to biological [37,38,
41, 150] networks, in a wide variety of real-word systems interactions may occur among
three or more units at a time. Interestingly, taking into account higher-order interactions has
shown to lead to new collective phenomena in a variety of dynamical processes [151], in-
cluding diffusion [152, 153], contagion [49, 154, 155], synchronization [117, 119, 156–158]
and evolutionary games [120, 121, 159]. While such studies have focused on characterising
dynamical behavior at the typical state, understanding fluctuations and rare events driven by
the presence of higher-order interactions is to this day still an open problem.

To this end, in the next sections of this chapter we propose a study of fluctuations and rare
events on higher-order networks using large-deviation theory tools. We focus on random
walks on higher-order networks and on a particular time-additive observable that monitors
the time the random walker spends in certain regions of the hypergraph. Our study reveals
how fluctuations arise in time for a random walk on a fixed hypergraph structure (quenched
case), and which higher-order structure is optimal to achieve them (annealed case). In the
quenched case the density of higher-order interactions regulates fluctuations of occupation
times, which are hampered around well-connected nodes and enhanced elsewhere. In the
annealed case, where the structure of interactions is not a-priori fixed, the random walk dy-
namics select the optimal higher-order structure that maximises fluctuations and rare events
are boosted.
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3.3 Random walk on hypergraphs

In this section, we provide a detailed characterization of the random walk on hypergraphs,
introduced in [116]. In a first-order unbiased random walk, a walker in a node i moves to one
of its neighbours j choosing with equal probability among its links. In the case of a higher-
order unbiased random walk, we want to define a dynamics in which the walker chooses with
equal probability among its hyperlinks and then selects one of the nodes belonging to such a
higher-order structure, favouring intrinsically those neighbours that belong to highest-order
hyperlinks, Figure 3.1.

Figure 3.1: Illustration of the random walk on hypegraph.

Such a dynamic portrays the diffusion of ideas or the spreading of rumours or misin-
formation that is generally enhanced by group interactions. In order to write the transition
matrix of this process, we start defining the hyper-incidence matrix eiα telling if a node i
belongs to a hyperlink Eα, namely:

eiα =

{
1 if i ∈ Eα

0 otherwise
. (3.1)

From the hyper-incidence matrix one can define the hyperadjacency matrix as follows:

A = eeT , (3.2)

where Aij represents the number of hyperlinks containing both nodes i and j.

Furthermore, one can build the hyperedges matrix, Cαβ ,

C = eT e, (3.3)
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whose entry Cαβ counts the number of common nodes between Eα and Eβ (Eα ∩ Eα)
and Cαα is the size of an hyperlink Eα, or equivalently its order of interaction plus one,
|Eα| = Oα + 1.

By means of C and e, we can construct the weight of the transition matrix of the unbiased
random walk, kH

ij , that reads,

kH
ij =

∑
α

(Cαα − 1)eiαejα = (eĈeT )ij − Aij, (3.4)

where its entries represent the sum of the orders of all the common hyperlinks between i
and j. For instance if two nodes i and j share one link, two second-order hyperlinks (three
body interactions) and one third-order hyperlink (four body interactions), kH

ij = 1× 1+2×
2 + 1× 3 = 8.

Summing kH
ij over all neighbours of a node i, one obtains the order-weighted hyper-

degree,
kH
i =

∑
l

kH
il , (3.5)

namely the sum of the orders of all the hyperlinks belonging to i.

Therefore, the transition matrix of the unbiased random walk on hypergraphs reads

Πij =

∑
α(Cαα − 1)eiαejα∑

l

∑
α(Cαα − 1)eiαelα

=
kH
ij∑
l k

H
il

=
kH
ij

kH
i

. (3.6)

Note that in the case of simple graphs, having only first-order interactions, and therefore
Cαα = 2 for every link Eα, we obtain the transition matrix of the unbiased random walk on
simple graphs:

Πij =

∑
α(Cαα − 1)eiαejα∑

l

∑
α(Cαα − 1)eiαelα

=
2
∑

α eiαejα − Aij

2
∑

l

∑
α eiαelα − ki

=
Aij

ki
. (3.7)
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3.4 Dynamical fluctuations of random walks in higher-order networks

In this section, we outline the core methodology of our approach. We begin by defining
a higher-order network model whose configuration probabilities can be analytically com-
puted, enabling us to determine the rate functions without resorting to Monte Carlo simu-
lations. We then delve into the study of dynamical fluctuations of a random walk on this
structure.

3.4.1 Model

We consider a hypergraph G = (V,E), where V represents the set of nodes, and
E = {E1, E2, . . . , EM} the set of hyperedges, i.e., Em is an unordered collection of nodes
belonging to the same hyperedge m. We focus in particular on an illustrative structure
consisting of a core node, labelled 0, connected with peripheral nodes through a varying
number of higher-order connections, labelled by i ∈ {1, . . . , N − 1}. As shown in Fig. 3.2,

the graph is composed by |V | = N nodes, a fully connected pairwise structure, i.e.
(
N

2

)
binary edges Ei(2N−i−1)/2+j = {i, j} for (i, j) ∈ [0, N − 1]2 and i < j, and a number
η drawn from a binomial distribution of parameter p ∈ [0, 1] of three-body interactions
EN(N−1)/2+i = {0, i, j} where i is an odd node and j− i = 1, i.e., all triangular interactions
are centered in 0. Intuitively, the greater the number of higher-order interactions the better
connected the core node is with the periphery of the hypergraph. For simplicity, in the
following we constrain the higher-order structure so that each peripheral node can participate
in at most one three-body interaction. As we will show, for this symmetric model, non-
pairwise interactions affect the statistics of the core occupation time only through their total
number η. In particular, the probability of drawing a hypergraph with a number of three-
body interactions H = η is given by

P(η) := P(H = η) =

(
N△
η

)
pη(1− p)N△−η , (3.8)

where N△ = ceil [(N − 2)/2] is the maximum number of possible three-body interactions
that the hypergraph can have.

In summary, for the model we consider here, G comes as an instance of an ensemble of
hypergraphs whose higher-order structure is fully described by two parameters only, namely
N and p. We consider on G an n-step discrete-time random walk X = {Xl}nl=1, where Xl

denotes the node where the random walk sits at time l [153]. The random walk is charac-
terized by an unbiased dynamics given by the transition matrix Π = {πij} whose entries
are

πij =
kH
ij∑N

l=1 k
H
il

, (3.9)

57

C
E

U
eT

D
C

ol
le

ct
io

n



3 LARGE DEVIATIONS THEORY FOR DYNAMICAL PROCESSES ON
HIGHER-ORDER NETWORKS

1

j2

3 4

N

...

N-1

0

Figure 3.2: Illustration of our model. Dashed lines represent pairwise interactions that
form the underlying complete graph. In pink, two higher-order interactions connect the
core node 0 with the peripheral nodes (1, 2), and (3, 4). The random walk’s dynamics are
represented by arrows departing from certain nodes and pointing towards others, where
different thicknesses refer to different jump probabilities.

where kH
ij represents the hyper-degree, i.e., the number of nodes, excluding i, that are present

in the hyperedges that are common to i and j. As the random walk explores the graph, it
collects information in the form of the time-additive observable

Tn =
1

n

n∑
l=1

δXl,0 , (3.10)

which measures the fraction of time the random walk has spent on the core node 0 up to
time n. In the limit of n → ∞, the typical fraction of time Tη,typ the walker spends in 0 for
a number H = η of three-body interactions reads [153]

Tη,typ =
4η +N − 1

8η + (N − 1)2
. (3.11)

The higher the number of triangular interactions, the better connected the core with the
periphery of the graph, and the longer the time the random walk will spend in 0. Having
delineated the typical behavior of the dynamical process, we now focus on its finite-time
fluctuations. We consider dynamical fluctuations in two different physical scenarios. First,
we study the mean behavior of rare events of Tn over the ensemble of possible hypergraphs
of our model (quenched case). Then, at the expense of an entropic cost associated with
the logarithm of P (η) in (3.8), we let the random walk choose the optimal hypergraph that
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generates a particular atypical fluctuation of Tn (annealed case). Results for more complex
higher-order topologies, and for more general dynamics considering random walks biased
on the higher-order structure, are qualitatively consistent and illustrated in following sec-
tions.

3.4.2 Quenched and annealed scenarios

The properties of the time-additive observable we have defined in the previous subsection
can be computed in two different key scenarios often considered in statistical mechanics:
quenched and annealed. In the quenched scenario, the structure of the hypergraph is as-
sumed to be fixed, allowing us to analyze dynamics on a static network where only the state
of the system evolves over time. In contrast, the annealed scenario introduces an ensemble
of possible structures, where each configuration is sampled at each time step, leading to
a dynamic interpretation of both the structure and the observable being measured. These
differing approaches provide distinct insights into system behavior, with the quenched case
emphasizing stability and path-dependence, and the annealed case offering a probabilistic
view over possible configurations.

In the quenched scenario, the observable is computed on a fixed structure, meaning that
its evolution is determined solely by the dynamics of the system. For example, if the ob-
servable tracks the position of a random walker on the hypergraph, each time step reflects
movement within the same structural constraints. On the other hand, in the annealed sce-
nario, the observable is influenced by both the dynamics of the system and the varying
structures at each time step. Here, the observable is recalculated each time a new structure
from the ensemble is selected, offering a more generalized, averaged perspective across dif-
ferent realizations of the hypergraph. This duality in interpretation allows for a more flexible
analysis of dynamic processes on hypergraphs.

These concepts are illustrated in Fig. 3.3, by means of a sketch portraying random walks
on hypergraphs in the quenched and annealed cases, highlighting how we track the evolution
of a chosen physical observable under each scenario.

3.4.3 Quenched fluctuations

In the quenched scenario, we consider averaged fluctuations in static hypergraph struc-
tures with η three-body interactions and investigate how higher-order network configura-
tions impact the dynamics of random walks. To do so, we employ large deviations the-
ory [101,102,160], making use of the leading scaling behavior of the probability distribution
Pη,n(t) := Pη,n(Tn = t) that is exponential in time, i.e.,
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(a)

(b)

Time

Figure 3.3: Illustration of quenched and annealed scenarios in random walk on hypergraphs.
In panel (a), the quenched case is shown where the hypergraph structure remains fixed. A
random walker, represented by the red node, moves across the static structure. At each time
step, we count a physical observable, such as whether the walker visits a specific node. In
panel (b), the annealed case is depicted. Here, there is an ensemble of possible structures,
with independent random walkers on each structure. At every time step, one structure from
the ensemble is selected (highlighted by the small circles), and the observable is measured
for that particular realization. The process is repeated with different structures selected at
each time step, resulting in the observable being counted over varying structures.

Pη,n(t) = e−nIη(t)+o(n) , (3.12)

where Iη(t) is the non-negative large-deviation rate function containing the relevant infor-
mation about rare events and o(n) denotes sub-linear corrections in n. Evaluating Iη directly
is often non-trivial, thus we resort to a change of ensemble to get meaningful information on
fluctuations. To this end, we introduce the Scaled Cumulant Generating Function (SCGF)

Ψη(s) = lim
n→∞

1

n
lnGη,n(s) = lim

n→∞
1

n
lnE

[
ensTn

]
, (3.13)

which characterizes the leading exponential behavior of the moment generating function
Gη,n(s) associated with Tn. Here, s, the Laplace parameter that enters in the SCGF, plays
the role of the conjugate parameter to Tn. Intuitively, as much as the inverse temperature in
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equilibrium statistical mechanics is connected to the internal energy of a system through the
derivative of the canonical free energy, s is connected to the observable Tn. When s > 0,
Tn will more likely take values that are larger than the typical value and viceversa when
s < 0. For finite and connected hypergraphs, Ψη(s) is analytic, and one can calculate Iη(t)
via the Gartner–Ellis theorem [101, 102, 160, 161] that makes use of the Legendre–Fenchel
(LF) transform

Iη(t) = sup
s∈R

(st−Ψη(s)) , (3.14)

which links the Laplace parameter s with a fluctuation Tn = t as

t = Ψ′
η(s) . (3.15)

Because the random walk X is ergodic, the SCGF can be obtained as

Ψη(s) = ln ζs , (3.16)

where ζs, computed numerically, is the dominant eigenvalue of the so-called tilted matrix

Πs = {(πs)ij} =
{
πije

sδ0,j
}
. (3.17)

To account for average properties of the ensemble of hypergraphs considered, one can
take a quenched average over the disorder—here characterized by the number η of higher-
order interactions—of the function Ψη. Recalling that H is a binomially distributed random
variable with parameter p and that the maximum number of higher-order interactions is N△,
the quenched average can explicitly be written as

Ψq(s) =

N△∑
η=0

P(η)Ψη(s) , (3.18)

where ‘q’ stands for quenched. Remarkably, the quenched average (3.18) takes such a sim-
plified form because for a fixed number η of higher-order interactions, we have only one
possible transition matrix. However, we note that more complicated models might lead to
different disorder configurations and therefore different transition matrices. In the latter
case, to disentangle disorder and dynamics one would need to carefully study combina-
torially how many different configurations arise by fixing η. Given Ψq(s) in (3.18), the
quenched rate function Iq(t) can be obtained via an LF transform of Ψq (rather than Ψη) in
(3.14).

To understand the role of higher-order interactions, we first look at whether fluctuations
of a given magnitude are more or less likely to appear on higher-order networks generated
with different values of p. To understand this, we re-scale t in Iq(t) with the typical fraction
of time spent in 0 by the random walk at a fixed parameter p, namely Ttyp, obtained by
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averaging (3.11) over P(η). In Fig. 3.4 we plot the rate functions Iq(t̃ = t/Ttyp) (t̃: time
fraction on the core node relative to typical time) for different values of p and compare them
with the rate function for a graph with no higher-order interactions (p = 0 case). Because of
the re-scaling, all rate functions are 0 at the typical value t̃ = 1. The likelihood is encoded in
the shape of the rate function branches, the higher (lower) the branch the exponentially-less
(more) likely is a fluctuation t̃ ̸= 1 to appear. We notice that with increasing p the average
number of higher-order interactions pointing to node 0 grows generating a ‘confinement’
effect, which has two consequences on the dynamics.

On the one hand, at fixed p, fluctuations are more likely for times greater than the typ-
ical time, making it easier to visit the core node than peripheral nodes, as revealed by the
asymmetric shape of the rate functions in Fig. 3.4. On the other hand, as p increases, more
probability weight is concentrated in nodes connected to the core node via higher-order in-
teractions. This means that, the greater the p, the harder it is for the random walk to leave
earlier these nodes or stick to them for too long, as both behaviours become costly in terms
of probability. In Fig. 3.5, the rate functions plotted against the non-rescaled time t show
that typical time increases with p, but also that relative time changes are associated with
bigger absolute fluctuations (the level lines of Iq(p, t) are not parallel to Ttyp). Thus, higher
values of p result in wilder relative fluctuations and make it harder for the random walk to
visit a core/localized or periphery/delocalized phase in the fluctuations.

More in detail, in Fig. 3.5 we show how Iq depends both on t and p. Comparing with the
case of a fully pairwise graph (p = 0), on the one hand we show that the typical behavior
at greater p is atypical for the case p = 0. On the other hand, rare values of Tn greater
than the typical one for the case p = 0 can become typical just by increasing the number of
higher-order interactions. By contrast, rare values of Tn smaller than the typical one become
even more atypical by introducing higher-order interactions. We show fluctuations of the
occupation time on peripheral nodes (all nodes but the core). Noticeably, we observe the
opposite behavior, with an enhancement of fluctuations far off the typical occupation time.
In summary, by introducing higher-order interactions we make it easier for the random walk
to spend more time on the core node and less time on peripheral nodes.

Differently from the core-periphery case, in subsection 3.6.1 we also discuss the case of
homogeneous hypergraphs, where higher-order interactions are not created around a given
core node but distributed at random. There, we observe that the probability of the occupation
time on a random node varies non-monotonically as a function of p, showing that there is an
optimal value of higher-order interactions that generates wider fluctuations of the dynamics.

3.4.4 Dynamical fluctuations on peripheral nodes

Here we investigate the dynamical fluctuations of the time a random walk spends on periph-
eral nodes of the model presented in the section 3.4. Specifically, in Fig. 3.6, we show the
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Figure 3.4: Rate functions Iq(t̃) as a function of the rescaled time t̃ for different densities
of higher-order interactions in the hypergraph p. The higher the p, the narrower the rate
functions for |t̃| > 1.
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Figure 3.5: Heatmap representing how the rate function Iq(t) behaves as a function of t and
p (for visualisation purposes we plot

√
Iq). The light-blue line represents the typical value

Ttyp which linearly increases with p. Plots obtained for a hypergraph with N = 1000 nodes.
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rate functions considering as observable the occupation time on peripheral nodes (all nodes

but the core), i.e., T̄n =
1

n

n∑
l=1

N−1∑
i=1

δXl,i. We refer to Īq(t̃) as the rescaled rate function as-

sociated with the new observable T̄n. Noticeably, we observe the opposite behavior, with an
enhancement of fluctuations far off the typical occupation time. In summary, by introducing
higher-order interactions on a fully-pairwise network we make it easier for the random walk
to spend more (less) time on the core (peripheral) node(s).
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Figure 3.6: Rate functions Īq(t̃) as a function of t̃ observing the occupation time on all
peripheral nodes ({1, . . . N − 1}).

3.4.5 Annealed fluctuations

We now consider random walks defined on non-static hypergraphs. Such annealed [162]
scenario is relevant to predict dynamical behaviors in time-varying systems where the struc-
ture evolves at a rate which is comparable to the time-scale of the process on top [163], or in
large systems whose precise characterization is often limited by lack of data or noise [164].
In particular, we investigate the annealed fluctuations of the occupation time observable in
(3.10) over non-fixed realizations of three-body interactions for the model introduced above.
In such a scenario, large fluctuations of a dynamical observable, such as Tn, could be gen-
erated by an optimal, albeit rare, realization of the underlying structure.

We consider the joint probability of obtaining a realization of the higher order structure
and the occupation time in (3.10), and compute the moment generating function Gn(s)
associated with the observable Tn with respect to this probability. We notice that Gn(s)
takes the form of an annealed average of the moment generating function Gη,n over the
disorder
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Gn(s) =

N△∑
η=0

P(η)Gη,n(s) , (3.19)

where we remind the reader that fixing s corresponds to fixing a fluctuation t (on average)
according to (3.15).

We consider the regime of long times and large graphs, with the condition n ≫ N△ ≫ 1,
and introduce the fraction of total triangles h = η/N△. The moment generating function
Gn(s) can be expressed using a saddle point approximation in (h, t), i.e.,

Gn(s) ≈ en(ℓ
−1 log P(h∗)+Ψη∗ (s)) , (3.20)

where we call ℓ = n/N△ the annealing parameter and indicate the saddle-point solution
with (h∗, t∗), adopting the shorthand notation η∗ = h∗N△. In the following, we focus on the
non-trivial exponent of (3.20):

Ψ̂ℓ(s) := ℓ−1 logP(h∗) + Ψη∗(s) . (3.21)

We can obtain the annealed SCGF from (3.21) by taking the infinite ℓ limit, that is
Ψa(s) := Ψ̂ℓ→∞(s). The function Ψa(s), together with its LF transform Ia(t), completely
describes atypical fluctuations of occupation times in the annealed regime. For large values
of ℓ, disorder and dynamics ‘interact’ at the saddle-point solution of (3.20) selecting the most
likely structure that realises the occupation-time fluctuation associated with s. We remark
that (3.20) is valid as long as ℓ is large. In particular, for ℓ finite and small, one has N△ > n
and therefore the ergodicity assumption necessary to derive Ψη∗(s) falls. Indeed, for finite
ℓ spurious contributions of O(ℓ−1) appear in (3.21) and shift Îℓ, the LF transform of Ψ̂ℓ(s)
in (3.21), upwards. However, since the disorder is self-averaging, in the limit ℓ → 0 all
probability concentrates around the typical number of higher-order interactions, recovering
the quenched average (3.18) for a fixed p.

In Fig. 3.7 we plot Îℓ for several values of ℓ. As expected, for small ℓ we retrieve
the quenched rate function Iq (for the parameter p = 0.5 used here) which is realised by
the typical number of higher-order interactions η∗ = h∗N△ ∼ ceil [N△/2] throughout all
fluctuations shown in Fig. 3.8. As we increase ℓ, the function Îℓ tends to flatten, and in
the limit ℓ → ∞ the annealed rate function Ia develops a plateau of zeros. That an an-
nealed rate function is a lower bound of a quenched one is known in the mathematics liter-
ature [103, 111, 165, 166]. Intuitively, this is a consequence of picking an optimal structure
to generate fluctuations in the dynamics rather than having it fixed as in the quenched case.
Although Ia exhibits a continuous range where it equals zero, not every occupation time t
within this range is a typical event. Only the times resulting from the most probable network
configurations, which manifest at the boundaries of this zero plateau, truly represent the
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Figure 3.7: Rate functions Îℓ functions for different ℓ, as a function of t. Monte-Carlo
quenched simulations for the three cases with no (left-most), maximum (right-most), and
half-maximum (center) number of higher-order interactions are plotted as cross-shaped scat-
ter points. Annealed simulations’ results are plotted as round scatter points for different
values of ℓ, colored according to the legend. Results are obtained for a hypergraph with
N = 21 nodes and p = 0.5.

typical behavior of the observable Tn. These specific configurations emerge from the saddle
point calculation (3.20) and, therefore, are statistically favored and dominate the ensemble.
To further validate our observations, in Fig. 3.7 we also plot Monte-Carlo (MC) simulations
for both the quenched and annealed case. Quenched simulations appear as coloured cross-
shaped scatter points for three different scenarios of random walks exploring a graph with
no (left-most gray), max (right-most gray), and half-max (orange) number of higher-order
interactions. Annealed simulations appear as enlarged green and gray scatter points for two
different values of ℓ. In particular, orange crosses well describe the shape of the quenched
rate function Iq and gray circles well show the flattening of the function Îℓ at large values
of ℓ. Noticeably, from the saddle-point calculation in Fig. 3.8 it is evident that for large
values of ℓ as one slightly moves from the typical scenario s = 0 and looks into fluctuations
for either s < 0 or s > 0, the structure η∗ optimally realising such fluctuations abruptly
changes from, respectively, a graph with no higher-order interactions, i.e., min (η∗) = 0, to
a structure that maximizes their number, i.e., max (η∗) = 10 for N = 21.

For finite ℓ we observe a continuous crossover centered in s = 0 between these two
regimes. For large ℓ, such crossover appears to be much steeper, hinting at the existence of
a transition in the limit ℓ → ∞ between two regimes, one where the random walk spreads
over the entire graph, and one where it spends more time on the core node due to higher-
order interactions. As discussed in the subsection, this is due to the use of the saddle-point
approximation, and the existence of a phase transition is not confirmed by an analysis of
the distribution of Tn at large ℓ of simulations of random walks on evolving hypergraphs,
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Figure 3.8: The optimal value η∗ of the number of higher-order interactions plotted as a
function of s (the fluctuation parameter). Results are obtained for a hypergraph with N = 21
nodes and p = 0.5.

which converge to an unimodal distribution with ℓ → ∞. This suggests that the observed
flattening might be due to neglecting sub-leading o(n) terms in Eq. (3.20). This results
in heavier tails in the Tn distribution, allowing rare events to occur more frequently. In
summary, while the saddle-point solution is limited in describing fluctuations of the system
close to the typical time, it allows to correctly capture the extreme values of the annealed
rate function, as confirmed by the good matching between MC simulations and analytical
predictions in the tails of the rate functions.

3.4.6 Monte Carlo simulations for the quenched and annealed scenarios

Given a hypergraph of size N = 21 with a configuration of higher-order interactions η
sampled from the binomial distribution in Eq. (3.8), we run 104 simulations (the more the
smoother the statistic) of length n = 104 (the number of time steps of the random walk).
The result of this is a histogram of values for the observable Tn (fraction of time the random
walk has spent on the core node) for a given hypergraph. We then calculate the rate function
(see Eq. (3.14)) for the observable Tn as

I sim
η (t) = − 1

n
lnPhist

η (t) , (3.22)

where superscript ‘sim’ indicates that the function is obtained from ‘simulations’ and ‘hist’
refers to the fact that the distribution is approximated by the ‘histogram’ related to the simu-
lations. We repeat the procedure for 104 configurations of the hypergraph randomly selected
from the binomial distribution in Eq. (3.8) and calculate the rate functions by averaging as
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follows

I sim
q (t) =

N△∑
η=0

Phist(η)I sim
η (t) , (3.23)

where Phist(η) is the probability distribution of configurations η at a fixed p obtained with
the random generation of graphs (it converges to Eq. (3.8) for infinitely many simulations).
Notice that the cumulative statistics over different hypergraphs come only after re-scaling
with 1/n ln each distribution of Tn.

These are the quenched simulations represented as gray (p = 0 and p = 1) and orange
(p = 0.5) circular dots in Fig. 3.7. They are used as a sanity check both for the quenched
limit of our annealed calculation for p = 0.5 in the middle and, in the case of the annealed
rate function, to check that the extrema of the zeros plateau corresponds to the two opposite
situations of a graph with no triangular interactions for p = 0 (on the left) and a graph with
N△ (the maximum possible) triangular interactions for p = 1 (on the right).

In order to carefully calculate (from simulations) the Legendre transform of Eq. (3.21),
which is the asymptotic leading behaviour of Eq. (3.19), and visualise the rate functions
appearing in Fig. 3.7 we generate 105 trajectories (the more the smoother the statistics) of
the random walk of length n = 104 (which in turn fixes the parameter ℓ = n/N△ for a
graph of N = 21 nodes) where each one is initialised over a hypergraph with a number of
triangular interactions picked up at random from the binomial distribution in Eq. (3.8). The
graph is resampled over the trajectory of the random walk at a fast rate. For the simulations
shown the graph is resampled at every time step of the random walk. However, we have
seen that changing the rate slightly does not qualitatively change the results.

Once all the trajectories are obtained we calculate the cumulative statistic (the histogram)
of the observable Tn and, only after that, re-scale the properly normalised histogram by
1/n ln. It is important to stress here that in the annealed scenario the re-scaling comes
after obtaining the full statistics over all hypergraphs for the observable Tn (notice that
this procedure is inverted in the quenched scenario), which is the reason why at the saddle
point of Eq. (3.20) dynamics and disorder ‘interact’. This procedure already generates a
distribution Phist

a for the observable Tn and from it we directly calculate the rate function

I sim
a (t) = − 1

n
lnPhist

a (t) .

This is the procedure followed to obtain the annealed simulations plotted in Fig. 3 (a).
These, as expected, show a flattening of their shape towards the asymptotic annealed be-
haviour at increasing ℓ confirming our annealed large deviations approach to study fluctua-
tions of the observable Tn.
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Figure 3.9: Histograms of observable Tn from annealed simulations at different values of n
(ℓ = n). The simulations are performed considering N = 21, and 105 different trajectories.

3.4.7 Histograms of Tn in annealed simulations for different n

In this section, we present the histogram of the observable Tn obtained from annealed sim-
ulations for different values of n. For all simulations, we consider the annealing parameter
ℓ = n, where n represents the time length of the simulations, with each simulation per-
formed as described in the previous section. The histograms reveal a significant finding:
there is no observable flattening across the simulations. Instead, as n increases, the his-
tograms converge, indicating no true phase transition in the system. This suggests that the
flattening of the rate function observed in the annealed scenario is caused by solely examin-
ing the saddle point in the study of dynamics using large deviations, neglecting sub-leading
contributions.

3.4.8 Flattening of the rate function in the annealed scenario

Now, we further investigate the flattening of the rate function derived from large-deviation
theory tools in the annealed scenario and presented in section 3.4. In subsection 3.4.8, after
having defined how to numerically calculate rate functions in the annealed scenario, we will
give further insights on the nature of such a presumed phase transition, showing that what
we observe is actually caused by solely examining the saddle point in the study of dynamics
neglecting sub-leading contributions.

Given this, resorting to the saddle point approximation defined in Eq. (3.20), as pre-
sented in Fig. 3.8, we observe that when one considers the two regimes of optimal number
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Figure 3.10: (a) Quenched Ψq and annealed Ψa SCGFs as a function of s. The latter shows
a discontinuity in its first derivative at s = 0.
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Figure 3.11: Scaling, in log-log scale, of the width ∆s as a function of the annealing param-
eter ℓ.
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of higher-order interactions η∗ for which the system maximizes the fluctuations, (one for
η∗ = 0 for s < 0 and another one for η∗ = max(eta) for s > 0), for finite ℓ we observe
a continuous crossover centred in s = 0 between these two regimes. For large ℓ, such
crossover appears to be much steeper, suggesting the existence of a phase transition in the
limit ℓ → ∞. However, as discussed in detail in Section 3.4, where the large deviations
solution is compared with simulations of random walk on evolving hypergraphs, this is due
to neglecting sub-leading terms in the saddle point approximation.

In addition, we show the scaling analysis in Fig. 3.11 where we observe a power-law
decay of ∆s = smax (η∗) − smin (η∗), i.e., the distance in terms of s between the two extreme
three-body interaction regimes, as a function of ℓ. Lastly, in Fig. 3.10, we plot Ψq(s) and
Ψa(s). For the latter, differently from the quenched case, we observe a discontinuity in the
first derivative at s = 0.

3.5 Results on more general processes

To validate the solidity of our results on more general dynamics, we apply our approach to
a broader class of stochastic processes. Our method is easily adaptable to any stochastic
process described by a transition matrix. Among the various processes, we focus on the
biased random walk, which, being more general than the unbiased random walk, can portray
diverse dynamics such as spreading where more connected nodes are either more repulsive
or more attractive than usual. For example, the biased random walk can describe scenarios
in social networks where influential individuals (more connected nodes) either facilitate or
hinder the spread of information, or in transportation networks where certain hubs attract or
repel traffic flow.

3.5.1 Biased random walk on hypergraphs

Here we introduce a new class of random walks on hypergraphs, specifically a hyper-degree-
biased random walk. In analogy with the biased random walk on simple graphs [167], such
a dynamic extends the unbiased random walk introducing a bias that enhances or hampers
the attractiveness of nodes with respect to their hyper-degree.

For the first-order case (pairwise interactions only), every node j has a bias equal to kγ
j

(kj is the degree of j) and the transition matrix reads

ΠB
ij =

Aijk
γ
j∑

j Aijk
γ
j

, (3.24)

where γ is the bias exponent. For γ > 0, the transition towards large-degree nodes is
favoured, while for γ < 0 nodes with small degrees attract the walker more. For γ = 0, the
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transition matrix retrieves the unbiased case, being kγ
j = 1.

Following a similar approach, for the higher-order case we can define a hyper-degree-
biased random walk that depends on the order-weighted hyper-degree kH

j . Resorting the
definition of kH

j from Eq. (3.4) and (3.5), we can write the transition matrix as

ΠHB
ij =

kH
ij (k

H
j )γ∑

l k
H
il (k

H
l )γ

. (3.25)

Again, this dynamic favours the transition towards nodes with large kH when γ > 0,
makes less attractive the same nodes when γ < 0 and returns the unbiased case shown in
Eq. (3.6) for γ = 0.

Intuitively, by means of this generalization of the random walk on hypergraphs, we can
portray a large class of processes where one might need to tune the effects of group inter-
actions. For instance, the diffusion of trends or norm adoption can be accelerated in large
groups because of conformism mechanisms and peer pressure (γ > 0), or exploratory be-
haviors in information-seeking processes, where individuals or algorithms prioritize novel
or less popular sources over well-known ones (γ < 0).

3.5.2 Results on biased random walk

In this Subsection, we detail the results of the biased random walk, previously defined. As
an observable, we focus on the fraction of time spent on the core node over the hypergraph
model introduced in section 3.4. Fig. 3.12 shows our findings for the quenched calculations.
In panel (a), we plot the rate function for diverse values of the bias parameter γ. We ob-
serve that the rate functions (as a function of the rescaled time t̃) are narrower at increasing
γ > 0, indicating that an attractive bias towards higher-order interactions reduces fluctua-
tions beyond the unbiased scenario. This aligns with our observations in section 3.4 where
higher-order interactions were seen to suppress fluctuations, with increased attractiveness
further intensifying the ‘confinement’ effect and thus, reducing fluctuations. In contrast,
γ < 0 leads to a broader rate function, signifying that this kind of higher-order interactions
allows for larger fluctuations.

Panel (b) of Fig. 1 provides a complementary analysis by displaying the rate function in
relation to both γ and t.

In Fig. 3.13 we show two heatmaps for distinct γ values, displaying the rate function’s
dependency on t and p.

Turning our attention to the annealed case, Fig. 3.14 delineates the rate functions for
varying annealed parameters across two distinct values of γ. Remarkably, in Fig. 3.14, we
observe a flattening of the rate function equivalently to the unbiased case (see discussion on
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Figure 3.12: (a) Rate functions Iq(t̃) as a function of the rescaled time t̃ for different bias
parameters γ. The larger the γ, the narrower the rate functions for |t̃| > 1. (b) Heatmap
representing how the rate function Iq(t) behaves as a function of t and γ. Plots obtained for
a hypergraph with N = 100 nodes and density of higher-order interactions p = 0.5.
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Figure 3.13: Heatmaps representing how the rate function Iq behaves as a function of t and
p for two different values of γ: γ = −0.5 panel (a) and γ = 0.5 panel (b).
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the limits of the validity of the saddle-point approach presented in subsection 3.4.8 to fully
capture such a behavior).
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Figure 3.14: Annealed rate function Îℓ for different ℓ as a function of t, and the charac-
teristic times (vertical dashed lines) for η = 0 and η = max(η). The results are obtained
considering γ = −2 (a) and γ = 2 (b).
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Figure 3.15: The optimal value η∗ of the number of higher-order interactions as a function
of the tilting parameter s for p = 0.5, and different γ : [−2,−1, 0, 1, 2].

Lastly, we examine which configurations of higher-order interactions maximize the fluc-
tuations in the annealed scenario considering different values of the bias parameter γ. In
Fig. 3.15, we show that the biased random walks maximize fluctuations in two different
regimes. For γ > −1, the dynamical system behaves accordingly to the unbiased case,
γ = 0, having the optimal configuration with no higher-order interactions for fluctuations
of the residence time on the core node smaller than the typical value (η∗ = 0, for s < 0)
and with the totality of such interactions for fluctuations of the residence time greater than
the typical value (η∗ = N∆, for s > 0). On the contrary, for γ < −1 in Fig. 3.15 (a), the
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optimal configurations are inverted with respect to positive and negative fluctuations. In-
tuitively, in the original unbiased case, the higher-order interactions increase the transition
probability proportionally to the generalized hyper-degree kH

i . When one inserts a negative
bias with respect to kH

i , the attractivity of nodes with higher-order interactions is reduced,
and at γ = −1 the topological bias on higher-order interactions is compensated dynami-
cally, with this interplay between structure and dynamics making the random walk not feel
the effect of higher-order interactions anymore.
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Figure 3.16: Heatmaps representing how the SCGF Ψ behaves as a function of η and s for
five different values of γ : [−2,−1, 0, 1, 2].

To further validate this idea, we plot in Fig. 3.16 the SCGF Ψ with respect to the number
of triangular interactions η and the tilting parameter s. We observe that, for γ = −1, Ψ
does not depend on η (panel (b)) and therefore is independent with respect to the number of
higher-order interactions. While for γ < −1 (panel (a)), Ψ has an inverted behaviour with
respect to the case γ > −1 (panels (c), (d), (e)).

3.6 Results on more general structures

The results presented so far are based on the model we have proposed, chosen for its compu-
tational simplicity that allows for the calculation of the SCGF knowing the probabilities of
every configuration. Here, we consider more general structures whose configuration prob-
abilities cannot be found analytically and must instead be determined through extensive
Monte Carlo simulations. The rest of the approach remains equivalent, and we show that
the findings are consistent with the results obtained previously. Specifically, we analyze var-
ious star-like hypergraph models with different topologies, such as those with overlapping
or non-overlapping triangles and underlying random regular graphs.
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3.6.1 Dynamical fluctuations in a homogeneous higher-order network

In the following, we investigate a model with no preferential / core node, where the three-
body interactions are randomly distributed among any triplet of nodes (i, j, k) with proba-
bility p on top of a fully-connected structure in the quenched scenario.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

t̃
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0.5

1.0
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p =0.1
p =0.15

1.78 1.79 1.80
1.4

1.5

1.6
×10−2

0.20 0.21 0.22
2.4

2.6

×10−2

Figure 3.17: Rate function Iq(t̃) as a function of the rescaled time t̃ for several densities of
three-body interactions p in a hypergraph of N = 20 nodes with homogeneously distributed
triangles. In the insets we zoom on both tails to highlight the non-monotonicity with respect
to p.

In particular, in Fig. 3.17, we plot the large deviations rate function Iq(t̃) associated with

the occupation-time observable T n =
1

n

n∑
l=1

δXl,j for a randomly chosen node j as a function

of the rescaled time t̃ for several values of p. The two insets zoom on the non-monotonic
tails –with respect to p– of the rate functions for values of t̃ far from Ttyp. Additionally, in
Fig. 3.18, we plot the rate function, Iq(t̃) as a function of p, for two values of t̃, one larger
and one smaller than the typical time Ttyp.

In summary, the magnitude of fluctuations in homogeneous hypergraphs with no pref-
erential core node display a non-monotonic dependence on the density p of higher-order
interactions. Remarkably, this indicates the existence of an optimal value of p that mini-
mizes Iq(t̃), and therefore maximizes the appearance of atypical occupation times.
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Figure 3.18: Iq for two fluctuations t̃ as a function of p for two values of t̃, in a hypergraph
of N = 20 nodes with homogeneously distributed triangles.

3.6.2 Dynamical fluctuations in star-like hypergraph models with more complex topol-
ogy

In this section we discuss the atypical behavior of random walks on three additional star-
like hypergraph models. While these models preserve the main features behind the model
considered in section 3.4, their analysis presents additional complications. The model has
the advantage of being extremely simple from a combinatorial point of view, allowing us to
compute both quenched and annealed averages without making use of a numerical sample
of all possible realizations of the model. Specifically, Eq. (3.8) describes the probability
of drawing a hypergraph with a certain number of three-body interactions, and inserted
in Eqs. (3.18) and (3.19) allows us to obtain respectively the quenched and the annealed
Scaled Cumulant Generating Function. By contrast, these additional models are more costly
because the weights P(η) used in both the quenched and annealed average (Eqs. (3.18) and
(3.19)) can only be found by an extensive numerical sample.

Model S1: Core-node, All-possible triangles, underlying complete pairwise graph Model
S1 extends Model A by allowing the formation of all possible triangles that include the cen-
tral node 0 and any two peripheral nodes i and j. These triangles are generated with a
probability p. Similar to Model A, this model also features a complete pairwise graph that
fully interconnects all nodes.
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Model S2: Core-node, Non-overlapping triangles, underlying random regular pair-
wise graph Model S2 maintains the same central node and non-overlapping triangles as
the original Model A. However, the underlying pairwise connectivity is described by a reg-
ular random graph with pairwise degree k = 3, rather than being a complete graph. This
introduces additional randomness in the connectivity patterns of the nodes.

Model S3: Core-Node, All-possible triangles, underlying random regular pairwise
graph Model S3 combines elements of Model S1 and S2. In particular, it includes a
central node 0 and allows the formation of all possible triangles involving 0 and any pair of
peripheral nodes i and j as in Model S1. These triangles are realized with a probability p.
The underlying pairwise connectivity of this model is a regular random graph with pairwise
degree k = 3.

Results In Fig. 3.19 we investigate dynamical fluctuations in both the quenched and an-
nealing scenario by reproducing some of the plots presented in section 3.4 for Models S1
(top row), S2 (middle row) and S3 (bottom row). In particular, the left panels (a, d and g)
refer to the quenched scenario discussed in Figure 3.4. By contrast, the middle (b, e and h)
and right panels (c, f and i) characterize the annealed scenario and should be compared with
Figure 3.7 and Figure 3.8 respectively.

In particular, in Fig. 3.19, panels (a, d and g) for the quenched scenario we plot the
quenched rate functions Iq(t̃ = t/Ttyp) as a function of the rescaled time t̃ = t/Ttyp for
various values of p. The rate function reflects the likelihood of dynamical fluctuations, with
a higher one indicating a lower probability for fluctuations with t̃ ̸= 1. We observe that,
for p > 0, the presence of higher-order interactions consistently reduces the probability
of deviations from the typical value, thereby restricting the random walk’s ability to visit
either a core-localized or periphery-delocalized phase during fluctuations. Increasing p the
average number of higher-order interactions pointing to node 0 grows generating the same
‘confinement’ effect on the dynamics discussed in section 3.4. As a consequence, escaping
from node 0 becomes harder and dynamical fluctuations are suppressed.

In Fig. 3.19, panels (b, e and h), we display the annealed rate functions Îℓ sa a function
of the rescaled time t̃ for various levels of the annealing parameter ℓ, for a density of higher-
order interactions given by p = 0.5. For lower values of ℓ, we recover the quenched rate
function Iq, which is realised by the typical number of higher-order interactions η∗ across
all fluctuations. For higher values of ℓ, the function Îℓ begins to exhibit a flattening trend, in
analogy to what we observed in the simpler model discussed in section 3.4.

Lastly, in Fig. 3.19, panels (c,f and i), for the same three values of ℓ we plot the op-
timal number of three-body interactions η∗ that corresponds to the minimum of the rate
functions in panels (b, e and h), namely the specific configuration that maximizes the fluctu-

78

C
E

U
eT

D
C

ol
le

ct
io

n



3 LARGE DEVIATIONS THEORY FOR DYNAMICAL PROCESSES ON
HIGHER-ORDER NETWORKS

ations over the annealed average. For the lowest value of ℓ, the behavior of η∗ is practically
undistinguishable from the quenched scenario. For an intermediate value of the annealing
parameter, ℓ = 2 × 102, we observe that for negative values of s the optimal fluctuations
are obtained for small η∗ , while for positive values of s these are obtained for large η∗. The
continuous crossover between these two regimes, centered in s = 0, becomes much steeper
for the highest value of the annealing parameter, ℓ = 2× 109, supporting the existence of a
transition between such two regimes in the limit of ℓ → ∞.

In summary, the patterns of dynamical fluctuations observed in the more complex higher-
order topologies considered in Models S1, S2 and S3, are consistent to the ones observed in
the simpler model of section 3.4, for both the quenched and annealed scenario.
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Figure 3.19: (a,d,g) Quenched rate functions Iq(t̃) for different densities of higher-order interactions
p. (b,e,h) Functions Îℓ(t) for different values of the annealing parameter ℓ for p = 0.5. (c,f,i) The
optimal value η∗ for the number of higher-order interactions as a function of the tilting parameter s
for p = 0.5. Results are obtained for hypergraphs generated for Models S1 (top row), S2 (middle)
and S3 (bottom), with N = 20 nodes.
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3.7 Conclusions

In this chapter we have shed light on the impact of higher-order interactions on the atypical
behaviors of dynamical processes on networks. In particular, we have investigated random
walks dynamics in a simplified higher-order model, which allowed us to gain insights on
dynamical fluctuations of diffusive processes in hypergraphs. By applying large deviations
tools we have derived the leading exponential scaling of fluctuations for a dynamical ob-
servable, here considered to be the mean fraction of time the random walk spends on the
system nodes. In the quenched case, where the structure of the system is fixed, higher-order
interactions inhibit random walk fluctuations of the occupation time at the core, but enhance
it elsewhere. In the annealed case, averaging over dynamics on non-fixed structures, the
random walk dynamics select the optimal structure that realises a particular fluctuation. In
such a scenario, rare events of the occupation time are more likely to appear, and by means
of a saddle-point approximation, it is possible to capture dynamical fluctuations far from the
typical time. We have also considered the case of homogeneous hypergraphs, showing the
existence of a non-trivial value of density of higher-order interactions boosting fluctuations
in higher-order networks. Finally, results shown here for random walks extend to broader
dynamics, such as for large values of the biasing parameter for biased random walks on
hypergraphs, where the bias promotes or hampers the visit of nodes with many higher-order
interactions. In the future, it might be interesting to broaden our understanding of the im-
pact of specific higher-order structural features, such as hypergraphs displaying a scale-free
distribution of higher-order interactions [168], community structure [169], or directed hy-
peredges [170].

Beyond random walks, our work lays the groundwork for a broader and more general the-
ory of fluctuations in higher-order networks. The framework developed here can be extended
to a wide range of dynamical processes on networks, especially those that can be modeled
as Markov processes. In particular, this approach has significant potential for applications
in epidemiology, where studying rare events in contagion processes could yield valuable
insights into the controllability and mitigation of disease spread. Epidemic models based on
Markov chain approaches have been extensively studied in the literature [98,171–173], pro-
viding a natural context for applying large deviations theory. By capturing the likelihood of
extreme fluctuations in infection patterns, large deviations theory could inform strategies to
prevent outbreaks or reduce their impact. Furthermore, higher-order interactions are known
to alter the typical behavior of processes like social contagion [49] and percolation [1], mak-
ing this framework especially relevant for analyzing rare and catastrophic events in complex
systems. Extending these ideas to networks with features such as scale-free distributions,
community structures [169], or directed hyperedges [170], will deepen our understanding
of how structural characteristics influence both typical and rare dynamical behaviors in real-
world systems.
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Not a dog. Not a wolf.
All he knows is what he’s not.
If only he could see what he is.

– Boris the Goose, Balto
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4 Application of higher-order networks metrics to epilepsy

The network description of complex systems such as the brain is a remarkable tool to unveil
their underlying organization and emergent dynamics. Such a description has enriched our
understanding of brain organization both at the macroscopic [32,174–176] and microscopic
[177] levels, and has found remarkable clinical applications [178, 179]. The study of brain
networks is crucial for understanding the neural basis of cognitive functions and behaviors
[178]. By analyzing brain networks, researchers gain valuable insights into how different
regions of the brain interact to orchestrate various cognitive processes [31].

Outline In this chapter, we focus on the application of a higher-order network perspective
in the study of epilepsy. To investigate the role of regional brain organization in epilepsy
surgery, we propose a neighbourhood-based description of brain connectivity. Firstly, we
consider the differential connectivity between pairs of node types by implementing a three-
group partition of the brain regions, namely into resection area (RA), its neighbourhood
and the remaining network. By doing so, we were able to specifically address the ques-
tion of the emergence of pathological hubs in the vicinity of the RA, and its relation to
surgical outcome. Secondly, we introduce a novel analysis framework to quantify regional
brain organization based on the notion of extended neighbourhoods, following a previous
theoretical study that generalizes the notion of clustering coefficient [180]. The extended
neighbourhood of a node describes its area of influence, providing a mesoscopic descrip-
tion of brain organization that can inform us of e.g. the existence of regions with strong
recurrent connectivity. By characterizing the network neighbourhood of each brain region
through topological data analysis, we propose the generalization of local node-based cen-
trality metrics to regional descriptors encoding regional organization.

4.1 Brain networks

The human brain operates as a highly complex system, wherein interactions between dis-
tinct regions of the brain enable the execution of cognitive, sensory, and motor functions.
These interactions can be studied through the lens of network theory, where brain regions
are treated as nodes and the connections between them as edges. The study of these inter-
actions has led to the identification of two primary types of brain networks: structural and
functional. While structural networks map the physical connections between brain regions,
functional networks capture the dynamic interactions that emerge from brain activity.

Structural and functional brain networks Structural brain networks, formed by phys-
ical connections (white matter tracts) between brain regions, provide the anatomical foun-
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dation for these interactions [181, 182]. Functional brain networks, on the other hand, are
defined by statistical dependencies between the activities of different brain regions, reflect-
ing dynamic interactions that can change over time [183]. The first provide insight into
the physical pathways that enable connectivity, while functional networks reveal how these
pathways are utilized during different cognitive tasks and states [184–186]. The integration
of these two perspectives allows researchers to study the brain’s architecture and its dynamic
use, providing a holistic understanding of neural processes [187].

Furthermore, advancements in neuroimaging techniques, such as diffusion tensor imag-
ing (DTI), functional magnetic resonance imaging (fMRI), electroencephalography (EEG),
and magnetoencephalography (MEG), have significantly enhanced our ability to study brain
networks [188]. These technologies provide detailed maps of structural connections and
high-resolution data on functional interactions, enabling a deeper exploration of the brain’s
complex network dynamics [189].

Higher-Order Brain Networks A critical aspect of brain networks is their ability to sup-
port complex higher-order interactions, where multiple brain regions interact simultane-
ously, adding layers of complexity beyond simple pairwise connections [43]. These higher-
order interactions are essential for capturing the full extent of brain network dynamics and
organization.

A prominent example of higher-order structure in brain networks is the homological scaf-
fold, identified using topological data analysis (TDA) to reveal multi-scale structures within
brain networks. This approach uncovers the underlying geometric and topological proper-
ties that govern brain function, providing insights that are not evident through traditional
pairwise analysis [38].

Another significant study utilized clique topology to uncover intrinsic geometric struc-
tures in neural correlations, highlighting the importance of higher-order connectivity pat-
terns. Such studies illustrate the significance of higher-order interactions and introduce new
tools and frameworks for analyzing brain networks [41].

Furthermore, recent advancements in higher-order information theory have significantly
enhanced the understanding of brain networks. Techniques have been developed to decom-
pose information into unique, redundant, and synergistic components, offering a nuanced
view of brain network interactions [190–193]. This framework emphasizes the importance
of higher-order interactions in understanding complex cognitive functions and their break-
down in neurological disorders. Redundancy in brain networks is linked to robust commu-
nication within specialized sensorimotor systems, ensuring reliable information transfer. In
contrast, synergistic interactions, which emerge from the integration of information across
different regions, are crucial for higher-order cognitive functions and complex behaviors.

By applying such higher-order methods, researchers can unravel the informational ar-
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chitecture of the brain, providing a comprehensive understanding of how multiple regions
coordinate to perform tasks and how disruptions in these interactions can lead to cognitive
impairments.

4.2 Clinical Applications of Brain Network Analysis

Disruptions in brain networks are closely linked to various neurological and psychiatric
disorders, underscoring their significance in maintaining neurological health [178]. Under-
standing how these networks function normally and how they are altered in disease states
can lead to better diagnostic and therapeutic strategies [194].

The insights gained from studying brain networks have significant clinical applications,
particularly in diagnosing and treating neurological disorders [178].

For instance, Alzheimer’s disease is characterized by reduced clustering and increased
path length in brain networks, indicative of a loss of small-world properties crucial for ef-
ficient information transfer [195]. Schizophrenia involves disruptions in network hierar-
chy and connectivity patterns, contributing to the cognitive deficits observed in patients
[196–198].

4.2.1 Brain Networks for Epilepsy

A remarkable example, which is the focus of this chapter, is the case of epilepsy surgery.
This is the treatment of choice for drug-resistant epilepsy patients, and it entails the removal
or disconnection of a set of brain regions –the epileptogenic zone (EZ)– with the goal of
stopping seizure generation and propagation [199, 200].

Epilepsy surgery is preceded by an extensive presurgical evaluation, involving different
imaging modalities such as magnetic resonance imaging (MRI) or electro- and magneto-
encephalography (E/MEG). However, positive outcome rates (i.e. seizure freedom after the
surgery) are not optimal, and around 30% of the patients continue to present seizures one
year after the resection, although this number can go up to 50% for cohorts with compli-
cated etiology. With the goal of improving these outcome rates, network-based studies have
investigated in detail the brain network organization of epilepsy patients in order to unveil
pathological effects that may predict surgical outcome [201, 202]. In practice, there is no
gold standard to identify the actual EZ, instead this may be approximated by the resection
area (RA) in combination with surgical outcome: for patients with good outcome the EZ
is included in the RA, whereas for patients with bad outcome the EZ was at least partially
preserved by the surgery. Within this context, a big conceptual leap has taken place, from
the notion of individual epileptogenic zones, to the consideration of epileptogenic networks
that arise from the interplay between different brain regions in promoting and inhibiting ictal
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activity [187, 203–205]. According to this perspective, the effect of a given surgery cannot
be determined alone by the characteristics of the RA, but needs to measured against the
whole epileptogenic network [194]. Data-driven and modeling studies seem to support this
hypothesis, and thus network mechanisms are recognized to participate in the generation
and propagation of seizures [188, 189, 206–213].

Substantial evidence underscores changes in structural and functional brain networks in
epilepsy [214, 215], particularly related to the epileptogenic zone [181]. Whether there is
an increase or decrease in connectivity of the EZ compared to healthy individuals, however,
remains an open question. fMRI-based studies initially pointed towards a disconnection
of the EZ [216–218], but more recently MEG and invasive EEG studies have suggested
hyperconnectivity of the EZ and neighbouring regions [181,183,187,219–224], which may
indicate the tendency to generate and spread seizures [219]. At the same time, however, the
suppression hypothesis of the EZ has been supported by other invasive EEG [225] and MEG
studies [226].

Pathological changes in brain connectivity in epilepsy are disproportionally associated
with the network hubs [227] –highly central or important regions in the network architec-
ture of the brain– a finding echoed in other neurophysiological disorders such as Azheimer’s
Disease, multiple sclerosis, or stroke [195, 214]. In the case of epilepsy, pathological hubs
that facilitate seizure generation and propagation may be present. The spatial and network
properties of brain hubs, as well as their removal during surgery, are both associated with
epilepsy surgery outcome [228–233]. Notably, however, hubs can also have an inhibitory
effect to prevent the ictal state [225,232], and it should be noted that hub removal is associ-
ated with increased side-effects from the surgery. The RA and the EZ have been associated
with brain hubs by several studies, both in the ictal [234–236] and interictal [221, 234, 236]
states. Such studies found associations between hub removal and seizure-freedom with dif-
ferent MEG-based connectivity measures [221, 237], although in a recent study involving a
large cohort (n = 91) of epilepsy surgery patients we could not confirm these findings [222].
In a recent MEG study with a smaller cohort of 31 epilepsy patients, [224] were able to
classify epilepsy surgery patients according to surgical outcome (79% accuracy and 65%
specificity) by comparing the degree centrality (a measure of hubness given by the number
of neighbours of a node) of the RA to the remaining network nodes.

Overall, although hub removal has been associated with a favorable outcome of epilepsy
surgery, this does not seem to be a necessary condition for a good outcome. Indeed,
brain hubs do not always overlap with the RA, even for patients with a good outcome
[207, 208, 210, 222]. These findings motivated the hypothesis that the epileptogenic fo-
cus, the region where seizures start (i.e., the seizure onset zone), need not coincide with the
pathological hubs but may be strongly connected to them, in which case removal of either
the epileptogenic focus, the pathological hub, or even the connection between them may
be enough to prevent seizure propagation and achieve a good outcome [207, 222]. Thus,

86

C
E

U
eT

D
C

ol
le

ct
io

n



4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

regional brain organization around the epileptogenic focus, as opposed to only its centrality,
becomes a promising target to understanding the effect of a given resection.

4.3 Dataset description

4.3.1 Patient group

The patient cohort derived from the one presented in [222]. Three cases were removed,
two due to existence of a previous resection, and one due to withdrawal of patient consent.
The final patient cohort thus consisted of 91 patients with refractory epilepsy, with heteroge-
neous seizure etiology. All included patients (i) received a clinical MEG recording as part of
their presurgical evaluation between 2010 and 2015 at Amsterdam University Medical Cen-
ter, location VUmc; (ii) subsequently underwent epilepsy surgery at the same center; (iii)
surgery outcome information was available following the Engel classification [200] either 1
year (88 patients) or at least 6 months (3 patients) after the surgery. No rules or procedures
were imposed other than routine clinical care, accordingly no approval for this study by
the institutional review board (Medisch Ethische Toetsingscommissie VUmc) and informed
consent were needed according to the Dutch health law of February 26, 1998 (amended
March 1, 2006), i.e. Wet Medisch-Wetenschappelijk Onderzoek met mensen (WMO; Med-
ical Research Involving Human Subjects Act), division 1, section 1.2.

The patient group was heterogeneous with temporal and extratemporal resection loca-
tions and different etiology. Surgical outcome was classified according to the Engel classi-
fication [200]. 64 patients were deemed seizure free (SF).

4.3.2 Individualized Brain Networks

Individualized brain networks were derived for each patient from 10 to 15 minute resting-
state MEG (magnetoencephalography) recordings, using the Automated Anatomical Label-
ing (AAL) atlas [238] to define a brain parcellation of 90 Regions of Interest (ROIs), with 78
cortical and 12 subcortical ROIs, excluding the cereberallar ROIs [239]. The pre-processing
steps, as well as the procedures to reconstruct the activity of each source are described in
detail in [222]. We derived 7 brain networks for each patient: a broadband network (B,
0.5− 48.0Hz) and six frequency-band specific networks: δ (0.5− 4.0Hz), θ (4.0− 8.0Hz),
α1 (8.0 − 10.0Hz), α2 (10.0 − 12.0Hz), β (12.0 − 15.0Hz) and γ (15.0 − 30.0Hz), by
filtering the source-reconstructed data in the corresponding frequency bands.

Each ROI defined one node in the network, and the coupling strength or link weight be-
tween each pair of nodes wij was estimated with the Phase Lag Index (PLI). The PLI is a
functional connectivity metric that measures the asymmetry in the distribution of instanta-
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neous phase differences between two times series [240]. The PLI is insensitive to zero-lag
coupling and thus it is robust against volume conduction or field spread [240]. 174 epochs
of 4096 samples (3.28s) where used for each patient to estimate functional coupling.

4.3.3 PLI matrices thresholding

Raw PLI matrices were thresholded and binarized with a disparity filter method [241]. The
disparity filter extracts the connectivity backbone (aij > 0 if there is a significant con-
nection between i and j and 0 otherwise) of a network by removing connections that are
not statistically significant. The disparity filter accounts for node heterogeneity in the edge
weight distribution: weak edges are identified on a node-by-node basis, by comparing their
strength to that of the remaining node’s edges with a given significance threshold α which
we set to 0.1. This resulted in sparse networks (with network densities of about 5%; range:
0.047 − 0.051, see Table 4.1) with giant components spanning the majority of the nodes
(range: 84.49− 89.1).

Band B δ θ α1 α2 β γ
L 384.15 416.63 393.74 395.90 403.04 385.15 392.84
S 84.49 89.91 89.09 89.32 89.38 89.10 89.81

Table 4.1: Basic network statistics. We report the average number of edges L remaining in
the network after the thresholding procedure, and the average size of the largest component
S, for each frequency band.

In figure 4.1 we report the distribution of node-set sizes for each frequency band.

4.3.4 Resection area and node sets

We consider the differential connectivity between pairs of node types by implementing a
three-group partition of the brain regions, namely into resection area (RA), its neighbour-
hood and the remaining network. The resection area is the region of the brain removed
during surgery, conducted on subjects suffering from epilepsy and who have shown resis-
tance to pharmacological treatments. It is typically associated with the presence of hubs
identified as central in the brain network. The resection area was determined for each pa-
tient from the three-month post-operative MRI. This was co-registered to the pre-operative
MRI (used for the MEG co-registration) using FSL FLIRT (version 4.1.6) 12 parameter
affine transformation. The resection area was then visually identified and assigned to the
corresponding AAL ROIs, namely those for which at least 50% or the centroid had been
removed during surgery.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.1: Distributions of the size of each node-set (as indicated by the general legend)
over the patient population, for each frequency band as indicated by the panel title (B stands
for the broadband).

Based on the resection area, we identified four sets of nodes: RA, or resected nodes, are
the nodes that belong to the resection area. RA, or non-resected nodes, are the nodes that
do not belong to RA. We further considered two subsets of RA nodes. This partition was
based on the connectivity of the resection area, and was thus different for each frequency
band: N , or neighbours, are the nodes that are connected to RA nodes and that do not
themselves belong to the resection area. O, or other nodes, are the remaining nodes in the
network, that is, nodes that do not belong to the resection area and are not connected to any
RA nodes.

4.4 Simplicial complex description of brain data

Simplicial complexes represent higher-order networks which allow for interaction between
two but also more nodes, described by simplices. A d-simplex is formed by a set of d + 1
nodes and all their possible connections. For instance, a 0-simplex is simply a node, a 1-
simplex a link and the two corresponding nodes, a 2-simplex is a triangle, a 3-simplex is a
tetrahedron and so on. A simplicial complex K is formed by a set of simplices such that i) if
a simplex belongs to K then any simplex formed by a subset of its nodes is also included in
K, and ii) given two simplicies of K, their intersection either also belongs to K, or it is a null
set [180]. A simplicial complex representation of a network can be built deterministically by
defining the clique complex of the network. A k-clique is a subgraph of the network formed
by k all-to-all connected nodes. That is, 1-cliques correspond to nodes, 2-cliques to links,
3-cliques to triangles, and so on. Thus, in order to build a simplicial complex of dimension d
from a network, we identify all d+ 1-cliques [180, 242]. This choice for creating simplices
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

from cliques has the advantage of using pairwise signal processing to create a simplicial
complex from brain networks [243]. Other strategies to build simplicial complexes beyond
pairwise signal processing have been proposed, such as approaches combining information
theory and algebraic topology [190, 244–248].

The mesoscopic structure of a complex network can be described in terms of extended
neighbourhoods or ego networks [180], as illustrated in figure 4.2 Starting from a given
node i, we define its d-extended neighbourhood EN d

i as the subgraph induced by the set of
nodes at hopping distance δ equal or smaller to d, δ ≤ d (see figure 4.2b). EN d

i generalizes
the concept of clustering coefficient, as it allows us to capture the connectivity not only
between the first neighbours of a node, but of its general area of influence characterized by
the hopping distance parameter d.

EN d
i can be characterize by its size (number of nodes, NEN d) and connectivity (num-

ber of links, EEN d). NEN d generalizes the notion of node degree, and indeed the de-
gree of a node equals to NEN d=1 . Similarly, the local clustering coefficient reduces to

CCi = 2
EEN d=1

NEN d=1(NEN d=1 − 1)
.

Finally, we also characterized the topological organization of the extended neighbour-
hoods by the notion of Betti numbers. The first Betti number β0 measures the number of
connected components on a network. Subsequent Betti numbers βi describe the topology of
the simplicial complex associated with the network. Generally, the Betti numbers βi, i ≥ 1
are topological invariants derived from the simplifical complex that measure the number of
linearly independent i-dimensional holes in the simplicial complex. Thus, β1 provides the
number of 1-dimensional cycles that are not boundaries of 2-dimensional simplices of the
associated simplicial complex, and similarly β2 indicates the number of 2-dimensional cy-
cles (i.e. over triangles) that are not boundaries of 3-dimensional simplices of the simplicial
complex. β0 indicates the number of connected components of the local neighbourhood.
Thus, large values indicate a hub that connects otherwise disconnected regions of the net-
work [180]. β1 indicates the number of cycles forming 1-dimensional holes. Therefore, a
large value of the ratio β1/β0 indicates a sparse neighbourhood. Similarly, larger values of
β2 indicate the tendency to form planar (i.e. triangular) structures. The Betti numbers are
non-linearly influenced by the size and density of the neighbourhood, and integrate infor-
mation of the mesoscopic structure of the network in a non-trivial manner.

4.5 Topological metrics

To quantify the connectivity and network properties of brain nodes, we utilized a variety of
metrics. These metrics can be categorized into node-level metrics and neighbourhood-level
metrics. Below is a detailed description of each metric:
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

4.5.1 Node-level Metrics

We characterized the local structure of the network by three nodal properties. In particular,
for each node i we considered its centrality (as given by the betweenness centrality BCi),
clustering coefficient CCi, and curvature Ci.

• The Betweenness Centrality BC measures the influence of a node over the flow of
information within the network. It is calculated by determining the fraction of all
shortest paths in the network that pass through a given node. Nodes with high be-
tweenness centrality are considered critical for information transfer and can be iden-
tified as hubs within the network [18].

• The Local Clustering Coefficient c quantifies the extent to which nodes in a graph
tend to form clusters or groups. For a given node i, the clustering coefficient is defined
as the ratio of the number of closed triplets (or triangles) to the total number of triplets
(both open and closed) centered on that node. Mathematically, it is given by:

ci =
2× Number of closed triangles including node i

ki(ki − 1)
(4.1)

where ki is the degree of node i. A higher clustering coefficient indicates a greater
tendency for node i to form tightly-knit groups with its neighbors [18].

• The Local Curvature C captures how paths bend around a node in its vicinity, offer-
ing insights into the local geometric structure More specifically:

Ci =
kmax∑
k=1

(−1)k+1Clik
k

, (4.2)

where Clik is the number of k-cliques to which i belongs, and kmax represents the
size (i.e. number of nodes) of the largest clique in the network (kmax = 3 considering
interactions up to three-node ones.). It generalizes the concept of curvature from
differential geometry to network theory. Nodes with high curvature tend to have a
significant influence on the robustness and stability of the network [249].

4.5.2 Neighbourhood-level Metrics

The extended neighbourhood EN of a node encompasses all nodes within a certain distance
(or hops) from the given node, excluding the node itself [180].

• The Number of Nodes in the Extended Neighbourhood N measures the size of the
EN and it generalizes the concept of node degree.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.2: Schematic description of extended neighbourhoods. (A) Illustrative representa-
tion of the extraction of a node’s neighbourhood for d = 2. The nodes are color-coded to
show the central node (red), its first (orange) and second (yellow) neighbours and the re-
maining network nodes (green). (B) Extended neighbourhood of the node. The central node
is not included in its neighbourhood, therefore it is shown here with low opacity (light pink
node) and its edges are removed (dashed lines). The topological organization of the neigh-
bourhood can be observed. In this case, e.g. two different connected components emerge,
as well as two closed triangles.

• The Number of Edges in the Extended Neighbourhood E quantifies the total num-
ber of pairwise edges within the EN , reflecting the local connectivity density.

• The Betti Numbers (β0, β1, β2) are topological invariants that describe the connec-
tivity of simplicial complexes (contructed in this case from the node neighbourhoods)
at different dimensions, generalizing the notion of clustering coefficient:

– β0 represents the number of connected components in the EN , indicating the
degree of fragmentation. A higher β0 indicates a node that acts as a broker
between different communities.

– β1 quantifies the number of one-dimensional holes or open loops representing
independent cycles within the EN . It provides information on the presence of
circular structures that are not filled in by higher-dimensional simplices.

– β2 measures the number of two-dimensional voids, reflecting higher-order con-
nectivity patterns such as cavities within the EN .
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.3: Illustration of the properties of simplicial complexes and extended neighbour-
hoods. (a) Schematic network where we highlight two nodes: a regional hub (node H)
with high degree (7 neighbours) and high BC since it brokers two communities, and a local
hub (node W ) with high degree (5 neighbours) but low BC. Panels (b) and (c) illustrate
extended neighbourhoods of W and H , respectively. The different topology of ENW and
ENH is encoded by the regional and local metrics, as shown in panel (d). Whenever there is
a closed clique in the original network, simplices are built in the extended neighbourhood.
For instance, in panel (b), the grey triangle represents a 2-dimensional simplex built accord-
ing to this rule.

4.6 Neighbourhood topology to characterize epilepsy seizures

To characterize regional brain organization, we have considered the notion of the extended
neighbourhood EN of a node [180]. Extended neighbourhoods, also called ego-centered
networks, define the area of influence of a node. Mathematically, the extended neigh-
bourhood of node i, EN d

i , is defined as the subgraph conformed by nodes at distance δ,
0 < δ ≤ d, of node i (which, crucially, excludes node i), as depicted in figure 4.2. By
changing the radius d of the extended neighbourhood we can access different scales of net-
work organization, going from the local to the global perspective. To quantify the structure
of EN d

i , and thus regional network organization, we have considered five topological mea-
sures: the size or number of nodes Nd

i , the number of edges Ed
i , and the first three Betti

numbers quantifying the number of connected components βd
0,i, the number of loops βd

1,i

(not accounting for triads which are always considered to be filled), and the number of
cavities or 2-dimensional loops, βd

2,i. These metrics quantify the topology of the extended
neighbourhood of each node. The number of nodes and edges indicate the regional connec-
tivity of the node, and can be interpreted as centrality metrics. Similarly, a high value of the
first Betti number indicates that node i acts as a broker between different otherwise discon-
nected components of its neighbourhood [180]. In figure 4.3 we provide an illustration of
these different metrics.

In order to quantify the structure of EN d
i , and thus regional network organization, we

consider the following two classes of metrics: neighbourhood-level and node level metrics.
The first class refers to those metrics that describe the structure around a node i.e depending
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

on the connectivity of its first and second neighbours, while the second class gather metrics
that directy depend on local node properties such as node’s edges.

Concerning neighbourhood-level metrics, we have considered five topological measures:
the size or number of nodes of Nd

i , the number of edges Ed
i , and the first three Betti num-

bers quantifying the number of connected components βd
0,i, the number of loops βd

1,i (not
accounting for triads which are always considered to be filled), and the number of cavities
or 2-dimensional loops, βd

2,i. These metrics are node-dependent as they quantify the topol-
ogy of the extended neighbourhood of each node. The number of nodes and edges indicate
the regional connectivity of the node, and can be interpreted as centrality metrics. Similarly,
a high value of the first Betti number indicates that node i acts as a broker between different
otherwise disconnected components of its neighbourhood [180]. In figure 4.3 we provide an
illustration of these different metrics.

As a benchmark, we have considered also three node-based metrics, namely the be-
tweenness centrality BCi, the local clustering coefficient ci, and the local curvature Ci. The
betweenness centrality is a standard measure to quantify node-centrality and define hubb-
ness [207, 214, 221]. It quantifies the extent to which a node lies on the shortest paths be-
tween other nodes, thus capturing its role in controlling information flow in the network [18].
Node curvature measures how paths in the simplicial complex diverge or converge around
a node, capturing the local geometric properties of the space. Specifically, in a simplicial
complex, curvature reflects how higher-dimensional simplices (such as triangles or tetra-
hedra) connect around a node, influencing the shape and flow of the network structure. It
is associated with network robustness, and also identifies brain hubs, with large negative
values being indicative of hub status [250]. The clustering coefficient captures the connect-
edness of a node’s neighbours, and has previously been associated with epilepsy surgery
outcomes [206].

4.7 Analysis

4.7.1 Statistical analysis

We first performed an individualized node-based analysis by which we tested whether the
hub-status of the different node-sets differed significantly for each patient and metric X .
We considered two types of comparisons: a) two-node-set setting, where we tested whether
X (RA) > X

(
RA

)
, and b) three-node-set setting, where we tested whether X (RA) >

X
(
N
)
, X (RA) > X

(
O
)
, X (N ) > X

(
O
)
. We quantified whether the hubness distribu-

tions were significantly different via bootstrapping analyses with 104 replicas to determine
the z-score and p-value of the difference. The sign of the difference indicated whether
it was in the direction of the hypothesis or against it. The z-score was computed as the
mean of the differences of the bootstrapped samples divided by the standard deviation of
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

these differences. The 2-tailed p-value associated with the z-score was determined using
the cumulative distribution function of a standard normal distribution. Considering the large
number of comparisons performed, we applied the Bonferroni correction to account for mul-
tiple testing and control the false discovery rate. Specifically, the Bonferroni correction was
applied by dividing the original significance level (α = 0.05) by the number of comparisons
made. For each pairwise comparison of node-sets, we conducted 56 statistical comparisons
(7 bands times 8 metrics). Thus, for every pair of nodes, we used the Bonferroni correction
by adjusting the significance level to α′ = 0.05/56 ≈ 8.9−4.

To determine whether the results held at the group level, for each patient we estimated
the average of each hubness metric for each of the node sets. We then performed a paired
bootstrapping analysis to test whether the distribution of average metrics was significantly
different, for each of the four pairs of node-comparisons as defined above.

We subsequently utilized the results of the node-based analyses to perform a receiver
operating characteristic (ROC) curve classification of the patients (SF or NSF). The result
of each node-based test was quantified in the variable rin1,n2

(X ) for each patient i, hubness
metric X , and node-set sets n1 and n2. rin1,n2

(X ) = 1, −1 or 0 indicating whether the
node-sets were significantly different in the direction of the hypothesis, contrary to it, or
not significantly different, respectively. We then summed over hubness metrics to define a
distinguishability score Di

n1,n2
for each patient and node-based comparison [224]. To sum

up the results of the three-node-set analysis, we defined a combined distinguishability score,
Di

comb, by summing over the corresponding three pairwise comparisons. The distinguisha-
bility score according to each test was then used to classify the patients with a ROC curve
analysis, and the goodness of the classification was measured with the area under the curve
(AUC).

Finally, to enable a more direct comparison with the previous study by [224], we also
estimated the distinguishability score as originally proposed by calculating the AUC of the
node ROC-classification (instead of using rin1,n2

(X )), for each metric X and pair of node-
sets. Patient-classification based on this score was then performed similarly to the previous
analysis. For this test we also considered the node strength (the sum of its non-zero weights
after thresholding) as a metric to allow for a more direct comparison with [224].

4.7.2 Topological characterization of the epileptogenic zone

Following the hypothesis that the EZ is either a hub or connected to a hub, we hypothesized
that RA nodes and their neighbourhoods will be more central than other nodes in the net-
work. To test this hypothesis, we considered an existing database comprising 91 patients
who underwent epilepsy surgery at Amsterdam UMC, location VUmc. This database had
been studied with a combination of network metrics and machine learning previously [222].
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

The brain organization for each patient was encoded in a functional brain network com-
prised of 90 regions of interest (ROIs) (according to the AAL atlas [251]), derived from
resting-state MEG, and thresholded to keep only the strongest links. MEG networks were
derived in different frequency bands, which account for different aspects of brain function.
For simplicity we have considered here first the broadband (0.5− 48.0Hz), but refer back to
a multi-frequency analysis in later sections. The resection area of each patient was derived
from post-operative MRI and was encoded in terms of AAL nodes.

Each node in the network was described by means of the 8 metrics defined in the previ-
ous section, with high values of these metrics associated with higher generalized centrality,
except for the curvature where the direction is the opposite as discussed above. Initially,
two sets of nodes were defined for each patient and network: resected nodes RA and non-
resected nodes RA. We analysed whether these nodes differed at the individual level in
any of the 8 metrics considered (bootstrapping and a Bonferroni correction were used to es-
tablish statistical significance). Details of this analysis for an exemplary case are shown in
Figure 4.5. We found that, at the individual level, RA nodes were significantly more central
according to all neighbourhood metrics, except β0, for 15% to 30% of patients (respectively
for 23, 27, 20 and 14 cases for N , E, β1 and β2). Traditional node-based metrics were less
efficient at detecting differences between the node groups: according to these metrics RA
nodes were significantly more central than RA nodes only for a handful of patients (respec-
tively 6, 3 and 6 for c, C and BC). We note that, for a few patients, the opposite result was
found and RA nodes were significantly less central than RA nodes, both with the node- and
neighbourhood-based metrics (respectively 5, 5, 7 and 3 cases for N , E, β1 and β2; and 3
and 1 cases for c and C; whereas no case was found for BC). These results are summarized
in figure 4.4 (a), whereas numerical results can be found in the Appendix in Tables A.1 and
A.2.

Our results agree with previous studies according to which the RA is not always a net-
work hub, but it is often strongly connected to a pathological hub [207, 214, 222]. Conse-
quently, the RA node set may include both nodes that are less and more central than RA
nodes. To account this effect, we split the RA set into two: nodes that were neighbours of
the RA (neighbours, N set) and nodes that were not (other, O set). According to our initial
hypothesis, within this division of the node sets we expected that both RA and N nodes
were more central than O nodes, and that RA and N nodes were similarly highly central.
As expected, we found that the node sets RA and N were in most cases significantly more
central that the O set (see figure 4.4 panels b and d). As before, neighbourhood-based met-
rics were able to capture this difference more consistently across patients than node-based
metrics. Regarding the relative hub-status of the RA and its neighbourhood, we only found
significant differences between RA and N nodes for a small fraction of the patients (figure
4.4 panel c). These went in both directions, with a tendency towards a higher centrality of
N nodes at the group level, as we discuss below. For instance, for the metric that picked up
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.4: Patient-specific comparison of different node groups for the two-group (a) and
the three-group (b, c, d) set-ups. For each panel, the hypothesis of the relation in central-
ity between the two metrics is shown in the panel title. The fraction of patients for whom
there was a significant difference in the direction (opposite direction) of the hypothesis is
shown by the blue (red) triangles in the upper-right (bottom-left) corner of each cell, respec-
tively for each frequency band (rows) and metric (columns), color-coded as indicated by the
colorbar. The corresponding numerical values are shown in Tables A.1 and A.2. The verti-
cal black line separates node-based (left) from neighbourhood-based (right) metrics. X (S)
stands for the generalized centrality metric X measured on the nodes in set S.
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Figure 4.5: Distribution of generalized centrality metrics for an exemplary case (SF patient,
broadband network) for each node-set. Each panel corresponds to a generalized centrality
metric as indicated by the labels. For each panel we show the results for the two analysis
that were performed: the two-node-set partition (left) accounting for the RA and RA node
sets, and the three-node-set partition (right) accounting for the RA, N and O node sets. In
all panels we show the distribution of values for each node-set as a violin plot, and indicate
the mean and median values with solid lines. The box-plots indicate the median, the 25%
and 75% percentiles and the extreme values. Significant differences between two groups are
indicated by black lines connecting the corresponding violins.

the most differences in the broadband, β1, RA nodes were more central than N nodes for
10 cases, but the opposite was true for 12 cases. These findings indicate heterogeneity in
the patient population regarding the relative hub-status of the resection area and its neigh-
bours. For most cases, these two sets could not be distinguished based on centrality metrics
(either node- or neighbourhood-based), indicating a similar highly-central status (note that
the remaining nodes were found to be less central).

4.7.3 Group level analyses

To gain a population-level perspective of the relative hub-status of the RA, we repeated
the previous analyses at the group level. To do so, we measured the average centrality of
the nodes in each node-set, for each patient and frequency band. We found that, when all
patients were pooled together, the differences between node-sets became more subtle, likely
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.6: Group-level comparison between nodes sets, for each considered frequency-
band (y-axis) and network metric (x-axis). From left to right, the panels indicate the dif-
ference between the node sets: i) RA vs RA, ii) RA vs N , iii) RA vs O, iv) N vs O.
X (S) stands for the generalized centrality metric X measured on the nodes in set S. The
color code indicates the z-score of the difference between the average values of each node
set, computed by bootstrapping the data (sampling size of 104). Single asterisks indicate
significant differences (p < 0.05) that did not survive the Bonferroni correction (n = 56),
and double asterisks the ones that did (p < 8.9−4). The corresponding numerical values are
shown in the Appendix in Tables A.3 and A.4

due to patient-specific variability, as shown in figure 4.6. Overall, we found in the two node-
group analysis that the RA and RA node-sets could not be significantly distinguished at the
group level, for most metrics and frequency bands, with the most notable exception of the
broadband. The three node-group analysis recovered for the most part the findings of the
individual-level analyses, i.e. O nodes were the least central, and N were somewhat more
central than RA. At the group level the betweeness centrality became the most robust metric
across frequency bands, and the broadband network was the network for which differences
between node-groups were more prevalent across metrics. Notably, three of the metrics, the
local clustering c, β0 and β2, performed poorly for the remaining frequency bands.

4.7.4 Topological signatures of the RA and surgical outcome

In order to investigate whether the hub-status of the RA was associated with surgical out-
come in this dataset, we assigned each patient a distinguishability score DRA,RA to quantify
the distinguishability between the RA and RA node-sets [224]. For each patient, DRA,RA
measures the number of tests (over the 8 network metrics considered) for which the hypoth-
esis of the hub-status of the RA is significantly fulfilled. Following our previous findings
that a three-node-group division is more informative at the node level, we also assigned dis-
tinguishability scores to the pairwise comparisons between the three node-sets RA, N and
O, namely DRA,N , DRA,O and DN ,O.

Next, to summarize the results of the three-node-group analysis into one score, we de-
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.7: Classification of SF and NSF patients based on the two-node-group (a) and three-
node-group (b) distinguishability scores. X (S) stands for the generalized centrality metric
X measured on the nodes in set S. Panels (a) and (b) show the ROC curves corresponding to
the broadband, the remaining bands are shown in Figure 4.8. The resulting AUC is indicated
by the figure legends. Panel (c) shows the resulting AUC for all frequency bands, for this
same analysis. In this representation, the SF group is assigned to be the positive class. The
color-scale is centered around AUC = 0.5, which indicates a lack of association. Blue-
colors stand for an association in the direction of the hypothesis (AUC > 0.5, i.e. the SF
group presents a higher distinguishability score) whereas red-colors stand for the opposite
(AUC < 0.5, the NSF group presents a higher distinguishability score).
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

fined a combined score of the three-node-group analysis Dcomb by summing over the corre-
sponding three pairwise comparisons. The derivation of these metrics is illustrated in Figure
4.11. We used each distinguishability score to classify the patients between the seizure-free
(SF) and non-seizure-free (NSF) groups, as shown in figure 4.7 (a statistical comparison
between the two groups was also performed, see Figure 4.12, but no statistical differences
between the two groups survived after Bonferroni correction). We found that patient classi-
fication was fair at best for any of the frequency bands or node-group montages (panel c).
The best results were found for the broadband when considering the combined information
of the three-node-group analyses, which resulted in an area under the curve AUC = 0.68.

Finally, to better contextualize and validate our findings, we considered an alternative
definition of the node distinguishability, D′, as introduced by [224]. In this case D′ is
simply the area under the curve resulting from the classification of RA and RA nodes
(see Figure 4.9). In their original study, [224] found that they could classify the patients
according surgical outcome with an AUC of 0.76 using D′ based on the degree-centrality
as metric. For our dataset, however, we found an AUC of only 0.65 when using D′ based
on the degree-centrality (see Table 4.2). When applying D′ to the 8 metrics considered, we
found AUC values ranging from 0.68 (for the neighbourhood metric N in the α1-band) and
0.36 (neighbourhood metric β1, α-band) for the two-node-sets analysis, with similar results
also for the three-node-set partition (see Figure 4.9).

X (RA) > X (RA) X (RA) > X (N ) X (RA) > X (O) X (N ) > X (O)

B 0.56 0.51 0.57 0.49

δ 0.57 0.56 0.59 0.57

θ 0.42 0.46 0.43 0.44

α1 0.39 0.41 0.40 0.51

α2 0.60 0.55 0.61 0.60

β 0.48 0.47 0.45 0.50

γ 0.64 0.58 0.65 0.57

Table 4.2: Results of the patient classification following the methodology in [224]. We
report the area under the curve (AUC) of the patient classification (SF versus NSF) based
on the distinguishability D′ between RA and RA nodes (first column), when using the
weighted degree as nodal centrality metric. X (S) stands for the generalized centrality metric
X measured on the nodes in set S. The latter three columns extend this analysis to the three-
node-set framework by considering the distinguishability between the i) RA and N nodes;
ii) RA and O nodes; and N and O node sets, respectively. Each row corresponds to a
different frequency band. We highlight in bold the results for with |AUC − 0.5| > 0.1.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

4.7.5 Alternative distinguishability score

In order to compare our findings with a recent study by Ramaraju and colleagues [224], we
repeated the patient-classification analysis using their original definition of the distinguisha-
bility score, D′

i. We also consider the same centrality metric used by [224], the weighted
degree or strength of a node (the sum of its link weights after thresholding the PLI ma-
trix with the disparity filter). The distinguishability score for each patient D′

i was defined
by [224] as the AUC of the ROC-classification analysis of the RA and RA node sets. A
D′ value close to 0.5 indicates that the two node sets cannot be classified according to the
corresponding metric, whereas values close to 0 or 1 indicate that the node sets are easily
classifiable. In particular, AUC > 0.5 indicates that the RA set is more central than the
RA set, and vice versa for AUC < 0.5. The results of this analysis are shown in Table 4.2
(first column).

We did not find a good patient classification for any frequency band. The best clas-
sification results were obtained for the γ band with AUC = 0.64, followed by the α1

(AUC = 0.39) and α2 (AUC = 0.60) bands. Interestingly, the direction of the classification
changed across frequency bands: for α2 and γ SF patients presented higher distinguishabil-
ity scores D′

i than NSF patients, whereas for α1 the opposite was true.

To exploit the three-node-set partition framework defined in subsection 4.3.4, we ex-
tended this analysis to account for three more two-class node-based classifications, namely
i) RA and N nodes; ii) RA and O nodes; and N and O nodes (Table 4.2). Swarm plots
depicting distinguishability scores are presented in figure 4.10 for the case of broad band
for a visual representation of the classification. We found that the results for the latter two
cases were very similar to the original RA and RA distinguishability. As expected from
the results in Figure 4.4 , the RA and N cannot be easily classified, resulting in low node-
distinguishability scores and in a poor patient classification.

We repeated this analysis on our proposed framework of 8 generalized centrality metrics,
the results are shown in Figure 4.9. The results were similar to those using the weighted
degree, with only fair patient classification results. The best findings were obtained when
considering the two-node-set partition (i.e. RA versus RA) in the broadband (AUC = 0.68
for the metric E), and overall showed large variability also in the direction of the AUC
(that is, whether SF or NSF patients presented larger distinguishability scores). Thus this
extended analysis was not able to improve upon our initial results.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.8: Additional results to Figure 4.7. ROC analysis of the SF and NSF groups based
on the patient scores, for each band (rows) and node-groups analysis (columns). The final
column corresponds to the compounded score of the three-node-group analysis. We indicate
the area under the curve (AUC) of each curve as the legend.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

BC c C N E β0 β1 β2

B

δ

θ

α1

α2

β

γ

0.65 0.66 0.46 0.4 0.68 0.65 0.65 0.54

0.47 0.48 0.54 0.53 0.47 0.59 0.47 0.56

0.54 0.6 0.49 0.41 0.61 0.38 0.6 0.52

0.39 0.4 0.47 0.68 0.4 0.49 0.36 0.52

0.44 0.41 0.5 0.56 0.43 0.53 0.41 0.46

0.53 0.57 0.46 0.47 0.55 0.52 0.54 0.6

0.46 0.58 0.55 0.5 0.59 0.41 0.55 0.55

X (RA) > X (RA)

BC c C N E β0 β1 β2

0.58 0.65 0.43 0.39 0.68 0.61 0.65 0.55

0.44 0.49 0.54 0.52 0.48 0.64 0.47 0.53

0.52 0.6 0.51 0.44 0.61 0.41 0.59 0.5

0.44 0.39 0.46 0.66 0.39 0.49 0.33 0.52

0.46 0.45 0.6 0.61 0.46 0.54 0.42 0.49

0.53 0.55 0.41 0.47 0.54 0.57 0.52 0.53

0.47 0.53 0.57 0.54 0.56 0.39 0.53 0.58

X (RA) > X (N )

BC c C N E β0 β1 β2

0.67 0.64 0.46 0.4 0.65 0.63 0.63 0.49

0.44 0.45 0.53 0.55 0.44 0.57 0.44 0.51

0.55 0.6 0.48 0.44 0.6 0.4 0.59 0.5

0.37 0.4 0.47 0.67 0.39 0.49 0.36 0.53

0.47 0.42 0.46 0.52 0.44 0.57 0.44 0.44

0.53 0.58 0.47 0.47 0.57 0.45 0.56 0.56

0.44 0.58 0.56 0.53 0.59 0.42 0.56 0.55

X (RA) > X (O)

BC c C N E β0 β1 β2

0.59 0.56 0.54 0.48 0.56 0.48 0.54 0.46

0.47 0.49 0.54 0.51 0.48 0.41 0.49 0.52

0.53 0.55 0.42 0.46 0.54 0.47 0.54 0.55

0.43 0.48 0.54 0.54 0.46 0.49 0.47 0.54

0.51 0.41 0.39 0.48 0.44 0.55 0.46 0.44

0.47 0.57 0.57 0.53 0.56 0.43 0.54 0.54

0.44 0.56 0.52 0.49 0.54 0.49 0.55 0.51

X (N ) > X (O)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9: Patient classification results using the methodology by [224] combined with
our proposed generalized centrality metrics. Each panel corresponds to a node-based com-
parison as indicated by the panel titles, with the vertical line separating the two-node-set
case from the three-node-set cases. X (S) stands for the generalized centrality metric X
measured on the nodes in set S. Rows correspond to frequency bands and columns to gen-
eralized centrality metrics. We show the resulting AUC both with the color-code and by
numerical values.
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Figure 4.10: Swarm plot depicting distinguishability values (D′
RS) for SF and NSF surgical

outcomes for different node-based comparisons, based on the node strength. X (S) stands
for the generalized centrality metric X (node strength here) measured on the nodes in set
S. Values close to 0 (1) indicate that high strength nodes are resected (spared). Each scatter
point represents an individual patient. The results for every band are reported in Table 4.2.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

4.7.6 Multi-frequency analysis: Individual patient results

In this subsection we detail the definition of the distinguishability score D and provide
details on the statistical analyses involving this metric. In Supp. Figure 4.11 we show
the results of the node-based analyses. Each panel corresponds to a frequency band and
a comparison between node-sets, as indicated by the panel title. For each panel, we show
the result xX

i of the statistical comparison between the two node-sets, using each of the
centrality metrics X and for each patient i with a color code. The color code indicates
whether there is a significant difference in the direction of the hypothesis (blue, xX

i = 1),
against it (red, xX

i = −1), or there is no significant difference (grey, xX
i = 0). The patient

distinguishability score Di is simply defined as the sum of the results of this statistical
comparison over generalized centrality metrics: Di =

∑
X

xX
i . Given that central nodes

have large negative curvature, this term is multiplied by −1 in the sum. The resulting patient
distinguishability score Di is thus a number between −8 and 8, where Di = 8 (−8) indicates
that the two node-sets were highly different in the direction of the hypothesis (against the
hypothesis), and Di = 0 indicates no significant or inconsistent differences (across metrics)
for the patient.

In Figure 4.12 we show the results of the statistical comparison between the SF and
NSF groups based on the distinguishability scores Di, for each of the node-based tests.
We observed a tendency towards higher scores for SF patients for the broadband, θ and
α1 bands, and in the opposite direction for δ and γ, however none of the differences are
significant after Bonferroni correcting for multiple comparisons.

Additionally, we also performed a ROC
patient-classification analysis based on the distinguishability scores, the results of which
were reported in Figure 4.7. Here we show in Figure 4.8 the ROC curves corresponding to
each of the node-based tests, for the broadband.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.11: Disthinguishability score Di. Each panel corresponds to the comparison be-
tween two node-sets as indicated by the panel titles, and a frequency band (from top to
bottom: broadband, δ, θ, α1, α2, β, γ). We show the result for each metric xH

i in the top
rows of each panel and Di in the bottom row. Both metrics are color-coded as indicated by
the colorbar. The vertical white line on each panel separate SF (left) and NSF (right) cases.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

Figure 4.12: Statistical comparison between the SF and NSF patient groups based on the pa-
tient distinguishability score Di, for each node-group-comparison (columns) and frequency
band (rows), as indicated by the axis labels. The final column combines the results of the
three-node-groups tests by adding up the patient scores. The color-code indicates the dif-
ference between the average scores of the SF and NSF groups, as given by the color-bar.
The cross markers indicate differences with p-value < 0.05 before Bonferroni-correcting
for multiple comparisons. None of the differences were significant after the correction.
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

4.8 Discussion of results

In our study involving 91 patients who underwent epilepsy surgery, we investigated the hub-
status of the resection area and its region of influence to shed new light onto the presence
of pathological hubs in the brains of epilepsy-surgery patients and their role in the outcome
of epilepsy surgery. We proposed a novel methodology based on node-neighbourhoods and
topological data analysis to quantify node centrality at a mesoscopic level. As a validation
of our novel approach, we compared our findings against established node-based metrics
such as the betweenness centrality and clustering coefficient. Moreover, by leveraging the
same database previously analyzed by [222] with traditional methodologies, we enabled a
direct comparison between the two studies.

In our study, we found that (a) the neighbours of the resection area play an important
role in brain-network organization in epilepsy and are significantly different from the re-
maining nodes in the networks (thus a three-group partition of the brain regions, where RA
neighbours are separated from the remaining brain network, is more representative than a
two-group partition); (b) the RA and its neighbours are more central than the remaining
brain regions, which holds true at the group level and also individually for most patients;
(c) the RA and its neighbours are similarly highly-central, with only some differences at
the individual level (for 10 to 20% of patients) that go in both directions, whereas at the
group level the neighbours are weakly but significantly more central; and (d) the difference
in hub-status between either the RA or its neighbours and the remaining network nodes,
but not between them, is weakly associated with surgical outcome (AUC = 0.62, 0.64 and
0.46, respectively). A main consequence of our findings is that a three-node-group partition
of the brain regions as we have introduced here, such that the RA-neighbouring regions are
separated from the remaining brain regions and considered specifically, is more representa-
tive than a two-node-group partition, in particular yielding better node-classification results.
These findings support the hypothesis of the emergence of pathological hubs in refractory
epilepsy that do not necessarily overlap with the RA, a finding that was valid for patients
with good and bad outcome. These results further highlight the need for individualized
studies that take into account patient-specific brain connectivity.

4.8.1 Hub status of the RA

In this study we considered the emergence of pathological hubs in epilepsy and their over-
lap with the resection area [214, 221]. The RA has been associated with brain hubs both in
functional and structural studies ( [187,208,219–224,234–236,252,253]; see also [214,254]
for recent reviews), and their overlap has been related to surgical outcome, with several
MEG studies finding that hub removal was associated with good postsurgical outcomes
[221, 223, 224, 253]. In particular, [221] found that the brain network hubs (defined via
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

the betweenness centrality on a minimum-spanning-tree, MST, description) were localized
within the resection cavity in 8 out of 14 SF patients and none (out of 8) NSF patients (73%
accuracy). Similarly, [253] found that removal of the most central hubs (defined via the
eigenvector centrality on weighted PLI networks) had predictive value in a study with 31
patients (17 SF). Considering a simple correlation metric as the basis for connectivity, [224]
found, in a study with 31 patients (12 SF), that SF patients had significantly more hubs sur-
gically removed. Finally, [223] also found higher functional connectivity (defined via both
the amplitude-envelope coupling and phase-locking-value on the MST description) inside
than outside the RA for SF patients, and few differences between the two for NSF patients
in a study with 37 (22 SF) patients involving both children and young adults with refractory
epilepsy. The functional connectivity measures predicted weakly the EZ location and surgi-
cal outcome (sensitivity and specificity above 0.55 with leave-one-out cross-validation).

However, the relationship between hub-removal and surgical outcome could not be vali-
dated in our previous study [222] (94 patients, 64 SF) which used the same patient cohort as
we have considered here. Nissen and colleagues defined the hub-status on the basis of the
MST betweenness centrality, and only a weak association with the RA was found (60.34%
accuracy with a random forest classifier) and none with surgical outcome (49.03% accu-
racy). In line with the suggestion that the relationship between the RA and the brain hubs
is not straightforward, several studies have pointed towards the functional isolation of the
EZ, both in invasive EEG [225] and MEG [226]. In particular, [221, 226] found that SF pa-
tients presented a more isolated resection area (relative to the contralateral hemisphere) than
NSF patients in a study with 12 patients (7 SF) based on amplitude-envelope-correlation
networks. [225] found that the seizure onset zone (SOZ) and the early propagation zone
presented increased inwards and decreased outwards functional connectivity in an invasive
EEG study involving 81 drug-resistant epilepsy patients undergoing presurgical evaluation.
Interestingly, they found that the largest difference between SF and NSF patients appeared
in the propagation zone: the connectivity profile of the propagation zone was intermediate
to that of the SOZ and the remaining networks for SF patients, whereas for NSF patients it
consistently and closely resembled that of the remaining network. It is worth noting that this
result may just reflect a difference in invasive EEG sampling between SF and NSF patients,
such that e.g., the true propagation zone of NSF patients may have been undersampled [225].

The existence of pathological hubs can reconcile these findings: a pathological hub that
may or may not coincide with the SOZ may be present facilitating seizure propagation.
Then, removal of either the SOZ, the pathological hub, or even the connection between
them, could lead to seizure freedom [210, 221]. In a previous modeling study, for instance,
we found that the link-based resections that led to the best postsurgical outcome in the model
were those linking the RA to the network hubs [207]. Our findings in the current study
support this hypothesis, as we have found that the relative hub-status of the RA varies largely
within the patient cohort, and that whether it is more or less central than its neighbours does
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4 APPLICATION OF HIGHER-ORDER NETWORKS METRICS TO EPILEPSY

not determine outcome. Therefore, removal of a hub region was not necessary in this study
to achieve seizure freedom. Of note, in this study we have considered the RA as a proxy
for the epileptogenic zone, as it commonly done in epilepsy-surgery studies [209,222,224].
However, this adds a level of inaccuracy: for NSF cases it is known to be inaccurate, but even
for SF cases it might have been larger that needed [207, 208]. This can lead to inaccuracies
in the definition of the RA, and as a consequence of the neighbourhood regions. In contrast,
the differences between either the RA or its neighbours with the remaining brain regions
proved to be a stronger indicator of surgical outcome (albeit still weak, with AUC = 0.62
and 0.64, respectively). The proposed three-node-set partition may thus provide new insight
into the effect of a particular resection, which may be missed with the standard two-node-
set partition approach. This is in agreement with the methodology and findings in [225],
but here we propose a methodology based only on resting-state MEG brain connectivity,
without the need for invasive or ictal recordings, as the notion of the propagation zone is
substituted by that of the neighbours of the RA.

4.8.2 Centrality metrics and node neighbourhoods

We proposed the use of regional centrality metrics to better account for the effect of a given
resection, following previous theoretical works [180, 255, 256]. Most previous clinical
studies have considered traditional centrality metrics that do not take the local network-
neighbourhood into account, of which the degree [221–224], betweenness centrality [221,
222], and eigenvector centrality [207, 257, 258] are predominant. Here we found that
neighbourhood-based metrics, with the exception of β0 (which equaled 1 in most cases for
the considered parameters, as a consequence of the high level of recurrent connectivity in
the networks), were able to more consistently pick up differences between RA and RA
nodes at the individual level across all frequency bands, and in particular for the broadband,
than nodal measures such as the betweenness centrality or the clustering coefficient (figure
4.4). These findings indicate that the neighbourhood of the RA is significantly different
from the neighbourhood of other nodes in the brain network, in particular denoting a higher
(generalized) centrality. In contrast, at the group level (figure 4.6) the metric that revealed
the strongest difference between RA and RA nodes was the betweenness centrality, which
is also the metric most often considered in the literature. We note this as an interesting venue
for future research: at the theoretical level to understand whether different centrality metrics
might be more or less sensitive to individual variations, and at the clinical level to validate
the generalizability of these findings. Notably, whereas the betweenness centrality requires
of global information, extended neighbourhood metrics can be computed with only regional
information, and are thus more efficient to compute for large systems.

In the case of the three-node-set partition, at the group-level the differences between
local and regional centrality metrics were larger (figure 4.6). This may be caused by the
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neighbourhood-based partition of the node sets, such that the RA neighbourhood is consid-
ered explicitly, even for the node-based metrics. At the individual level the neighbourhood-
based metrics were also slightly more sensitive to differences between both the RA (RA
set) and its neighbours (N set) with the remaining network nodes (O set). Differences be-
tween the RA and N node-sets were sparse as discussed above, and generally all metrics
performed similarly except for the clustering coefficient c, and the first and third Betti num-
bers, β0 and β2, with very low sensitivity. In particular β0 and β2, showed little variation
across nodes for the parameters considered. At the group level, however, the betweenness
centrality and curvature found the strongest and more consistent differences between node-
sets. Further studies, considering e.g., larger networks or different connectivity thresholds,
could validate the generalizability of these findings.

In order to better contextualize our study, we also considered the node strength (or
weighted degree) as a centrality metric, following [224]. In their original study the authors
found that this metric could classify RA and RA nodes for 8 out of 12 SF patients, and
that, using the area under the curve of this classification (distinguishability D′) as a patient
score, they could classify SF and NSF patients with an AUC of 0.76. In our study, however,
we have only found an AUC of 0.65 when implementing their methodology, and an optimal
value of AUC = 0.68 for the α1 band with the combined distinguishability score. These
results are in agreement with those found in subsection 4.7, and with our previous findings
with this same dataset [222]. Further studies are needed to elucidate the origin of the lower
performance found here compared to Ramaraju et al. We identify methodological consid-
erations, such as the choice of connectivity metric –we considered here a phase metric, the
PLI, that is insensitive to volume conduction, whereas Ramaraju et al. used uncorrected am-
plitude correlations [224]– or the thresholding procedure used (simple thresholding vs the
disparity filter considered here). Moreover, the small dataset considered by Ramaraju et al.
could have driven the higher performance of the classification analysis. The findings may
also reflect intrinsic differences between the patient populations: the cohort in this study is
highly heterogeneous, including patients with different etiologies.

4.8.3 Multi-frequency analysis

We adopted a multi-band description, in analogy with some previous studies [226, 228,
253, 259–262]. These studies found for the most part comparable results across frequency
bands, with significant differences in brain network organization between epilepsy patients
and controls, or between SF and NSF epilepsy-surgery patients, arising predominantly in
the θ and α bands [226, 228, 260–262], although differences have also been observed in the
δ and γ bands [259] and in the ripple and fast ripple bands [259, 260].

In our study we also found comparable results across frequency bands for the node-based
analyses, both at the individual and group level. Some metrics such as the local clustering c,
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β0 and β2 however only picked up differences between node sets in the broadband network.
Notably, only in this band were the sizes of the N and O node-groups markedly different
(when considering all ROIs and patients, see Figure 4.1 for more details). The bands for
which we found the best patient classification were the broadband and α1, in agreement
with the literature [226,228,260,262]. Remarkably, we found the strongest variations across
frequency bands in the patient classification analysis (figure 4.7). Whereas in the broadband
and the lower frequency bands (in particular δ and α1) we found a somewhat better outcome
for patients with high distinguishability score, this was not the case for higher frequency
bands (in particular β and γ, see figure 4.7).

4.8.4 Methodological considerations

In this study we considered the same patient database as in our previous study [222]. In this
previous study, a machine learning analysis was used to classify network nodes as belong-
ing or not to the resection area, and to classify patients as having good (SF) or bad (NSF)
outcomes. The performance of the node classifier was fair (60.37% accuracy), but the pa-
tient classification failed (49.03% accuracy). We have introduced several methodological
changes relative to this original study, from the consideration of multiple frequency bands,
the three-node-group partition, and the inclusion of node-neighbourhoods and topological
data analysis. The methodologies of the two studies can be compared via the betweenness
centrality, a benchmark centrality measure considered in both studies: [222] found that hub
nodes overlapped more than expected by chance with the RA . This is in qualitative agree-
ment with our finding that RA nodes are, at the group level, significantly more central than
RA nodes.

Regarding the patient classification, [222] performed a classification based on a combi-
nation of individual and average metrics, namely the averages over (a) RA nodes, (b) the
resection lobe, (c) nodes contralateral to the RA, (d) RA nodes, and two metrics measuring
the difference between the average over RA and the contralateral nodes, and over RA and
RA nodes. No significant differences between SF and NSF patients were identified at group
level, and a machine learning analysis was also unable to classify the patients according to
surgical outcome. In our study, instead of using the centrality values directly, we exploited
the results of the node-based analyses to perform a patient classification analysis, similarly
to [224]. In particular, we defined a distinguishability score based on the difference between
each of the node sets, and we found an AUC of 0.68 for the broadband network (the same
used in [222]). In this manner we were able to exploit a patient-specific analysis, account-
ing for heterogeneity in the patient population, which can be lost if comparisons of absolute
values among patients are performed. The differences in findings between the two studies,
and our finding that a population-based analysis is less sensitive than the patient-specific
analysis, highlight the need to consider methodologies that allow for individualized patient
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characterization [209, 210].

Whereas some of the studies mentioned above [224], as well as other recent studies [209],
have found better classification results than the ones found in this study, the strength of this
study lies in the much larger patient cohort considered here, which is two to three times
larger than typical cohort sizes in similar studies. Moreover, we further validated the robust-
ness of our findings with respect to several methodological choices, including the frequency
band of the MEG-based brain networks and specific analysis details, benchmarking our
findings and analysis pipelines against previous studies [222, 224].

4.9 Conclusions

In this chapter, we explored the application of higher-order network representations in
understanding the functional organization of brain networks, with a particular focus on
epilepsy. Our findings highlight the critical role of topological features in identifying patho-
logical hubs within the epileptogenic zone (EZ). Through the integration of topological data
analysis (TDA) with network neuroscience, we demonstrated that the resection area and
its surrounding regions exhibit increased centrality in the network, shedding light on the
structural and functional abnormalities associated with seizure dynamics. This higher-order
perspective not only enhances our understanding of epilepsy’s network structure but also
provides predictive power in classifying resected versus non-resected areas.

One of the significant takeaways from this analysis is the variability observed across
patients. The differences in the centrality metrics suggest that personalized approaches to
epilepsy surgery are essential, given the unique network topologies associated with each pa-
tient’s condition. While our findings offer a framework for improved prediction of surgical
outcomes, the variability among patients also points to the necessity of further research in
developing more individualized models.

Looking forward, there are several promising avenues for future research. Expanding
the application of TDA and higher-order networks to other neurological disorders, such
as Alzheimer’s and schizophrenia, could uncover new insights into the underlying dynam-
ics of these diseases. Additionally, the integration of these methods with other dynamical
processes, such as social contagion or disease spreading models, presents an exciting op-
portunity for cross-disciplinary research. By continuing to explore the rich complexities of
higher-order networks, we can further refine our models and improve their applicability to a
broader range of clinical and theoretical contexts.
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5 Conclusions and outlook

This thesis set out to advance our understanding of complex networks by moving beyond
the limitations of traditional pairwise interaction models. Across various domains, from
social to biological systems, interactions within networks often involve groups of entities
rather than just pairs. Recognizing this complexity, our work focused on the role of higher-
order interactions and their significant impact on both the structure and dynamics of these
systems.

We began by examining the structural properties of networks that incorporate higher-
order interactions, aiming to understand how these interactions influence network topology,
including the distribution of connections, the formation of degree correlations, and overall
connectivity. To achieve this, we introduced the Hidden Variables (HV) formalism, a math-
ematical framework designed to capture the complexity of higher-order interactions within
temporal networks—where interactions evolve over time, adding layers of dynamism to the
network structure. Our study revealed that higher-order interactions could drastically alter
key network properties, such as percolation thresholds—the critical points at which a net-
work transitions from a disconnected to a connected state—and the network’s robustness
against failures or targeted attacks. These findings underscore the importance of consider-
ing higher-order interactions in analyzing network structure, particularly in systems where
the timing and sequence of interactions are pivotal to network functionality.

In the context of dynamical processes, we explored how group interactions shape sys-
tem behavior, particularly in scenarios where the system is driven out-of-equilibrium. By
developing models such as random walks and diffusion processes on hypergraphs, we inves-
tigated how higher-order interactions influence system dynamics, focusing on the emergence
of rare events—extreme or unexpected outcomes with significant impacts. We demonstrated
that higher-order interactions are not merely secondary features but critical factors that can
profoundly affect system dynamics, leading to atypical behaviors often invisible in models
restricted to pairwise interactions. The presence of higher-order interactions could either
suppress or amplify fluctuations depending on the network configuration, affecting the like-
lihood and nature of rare events. This provided new insights into the dynamics of complex
systems, especially in understanding how out-of-equilibrium processes and fluctuations are
shaped by the network’s underlying interaction structure.

Bridging the gap between theory and practice, we applied these concepts and models to
the study of brain networks in epilepsy patients. We focused on identifying and analyzing
pathological hubs—regions of the brain that, while not the primary epileptogenic focus, are
crucially connected to it and may influence the spread of epileptic seizures. By integrating
higher-order network metrics with empirical patient data, we gained a deeper understand-
ing of the organization of these brain networks. This analysis provided novel insights into
how these networks function, suggesting that considering group interactions could lead to
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5 CONCLUSIONS AND OUTLOOK

more effective surgical strategies. Specifically, surgical planning should not only target the
epileptogenic zone but also account for the broader network interactions involving patho-
logical hubs, potentially improving patient outcomes by minimizing seizure recurrence and
preserving critical brain functions.

The work presented in this thesis opens several avenues for future research, both in
expanding the theoretical frameworks introduced and in applying these concepts to new
domains and challenges. For example, the HV formalism, successfully applied to model
higher-order interactions in activity-driven networks, can be extended to other established
network models. Spatial network models, where connections are influenced by physical
proximity, can be enhanced to consider group interactions based on geographic clustering,
with the HV formalism providing a framework for analyzing the resulting network proper-
ties. Similarly, gravity models, which consider the “mass” of nodes and distance in deter-
mining connection probabilities, can be generalized to higher-order scenarios where groups
of nodes interact based on collective attributes like combined mass or distance. Geometric
and hyperbolic models, which embed networks in abstract spaces, can also be extended to
consider higher-order geometrical relationships, with HV offering a method to solve and an-
alyze these complex structures. Furthermore, fitness models, where connections are formed
based on a node’s intrinsic ability to attract links, can be expanded to higher-order fitness
landscapes, allowing for the study of networks where group dynamics are driven by col-
lective fitness. Integrating the HV formalism into these higher-order versions of classical
models will enable a better understanding of how complex global behaviors emerge from
localized, group-based interactions, offering more accurate representations of real-world
networks such as transportation systems, social dynamics, and biological interactions.

In addition to these structural extensions, future research should explore how specific
higher-order structural features influence dynamical fluctuations and rare events. Investi-
gating hypergraphs that exhibit a scale-free distribution of higher-order interactions could
reveal how these heterogeneous structures affect the likelihood of rare events, such as ex-
treme fluctuations in diffusion processes. Similarly, examining the role of community struc-
tures or directed hyperedges in hypergraphs may provide new insights into the emergence of
atypical dynamics, especially in systems where group interactions follow a non-random or
preferential pattern. Beyond random walks, the methodologies developed in this thesis can
be applied to other dynamical processes sensitive to higher-order interactions. For instance,
in models of social contagion, where the spread of information or behavior is influenced
by group dynamics, understanding the role of higher-order interactions could lead to better
predictions of how ideas or innovations propagate through social networks. Extending this
work to percolation processes could also improve our understanding of how connectivity
thresholds and critical phenomena are affected by higher-order interactions, particularly in
networks with complex, multi-body connections.

Another important area for future research is developing a more general theory of fluc-
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5 CONCLUSIONS AND OUTLOOK

tuations in higher-order networks. While this thesis laid the groundwork by examining
specific cases, a comprehensive framework that captures the impact of higher-order inter-
actions across various network types and dynamical processes would be invaluable. Such
a theory could provide the tools needed to analyze the stability and robustness of networks
under various conditions, offering insights into how higher-order interactions influence the
emergence of catastrophic events, such as systemic failures in infrastructure networks or the
rapid spread of diseases in populations.

Finally, the insights gained from applying higher-order network analysis to the study of
brain networks in epilepsy patients open up several promising avenues for future research,
particularly in improving the understanding and treatment of neurological disorders. A sig-
nificant direction for future research is the further exploration of how higher-order interac-
tions within brain networks contribute to the onset and propagation of epileptic seizures.
While this thesis focused on pathological hubs and their connections within the network,
future studies could investigate the broader network environment, including how different
brain regions contribute to or inhibit seizure activity when interacting in complex, multi-
node configurations. Mapping the higher-order topological features of brain networks in
more detail, such as identifying subgraphs or motifs prone to pathological synchronization,
could provide new targets for therapeutic interventions.

Another promising area is the development of personalized models of brain networks
that incorporate higher-order interactions. Given the heterogeneity observed in patient pop-
ulations, as highlighted by this work, creating individualized network models that consider a
patient’s unique higher-order interactions could lead to more precise and effective treatment
strategies. These models could simulate different surgical approaches or other interventions,
allowing clinicians to tailor treatments to each patient’s specific network structure, poten-
tially improving surgical success rates and reducing the risk of post-operative complications.

Additionally, future research could extend higher-order network analysis beyond epilepsy
to other neurological conditions characterized by abnormal network activity, such as Alzheimer’s
disease, Parkinson’s disease, or schizophrenia. Understanding how higher-order interactions
differ between healthy and diseased brains could lead to the development of biomarkers for
early diagnosis or new therapeutic targets aimed at restoring normal network function.

Moreover, there is potential for integrating higher-order network analysis with real-time
brain activity monitoring, such as EEG or fMRI data. Dynamically tracking changes in
the brain’s higher-order network structure could improve seizure onset prediction or even
develop closed-loop systems that can intervene to prevent seizures before they fully develop.
This approach could lead to advanced neuromodulation techniques that adapt in real-time
to the evolving state of the brain, offering a new frontier in treating epilepsy and other
neurological disorders.
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[58] M. Barthélemy, “Spatial networks,” Physics reports, vol. 499, no. 1-3, pp. 1–101,
2011.

[59] B. M. Waxman, “Routing of multipoint connections,” IEEE journal on selected areas
in communications, vol. 6, no. 9, pp. 1617–1622, 1988.

[60] G. Krings, F. Calabrese, C. Ratti, and V. D. Blondel, “Urban gravity: a model for
inter-city telecommunication flows,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2009, no. 07, p. L07003, 2009.

[61] J. E. Anderson, “The gravity model,” Annu. Rev. Econ., vol. 3, no. 1, pp. 133–160,
2011.

[62] M. Lenormand, S. Huet, F. Gargiulo, and G. Deffuant, “A universal model of com-
muting networks,” 2012.

[63] M. Penrose, Random geometric graphs, vol. 5. OUP Oxford, 2003.

[64] M. Haenggi, J. G. Andrews, F. Baccelli, O. Dousse, and M. Franceschetti, “Stochastic
geometry and random graphs for the analysis and design of wireless networks,” IEEE
journal on selected areas in communications, vol. 27, no. 7, pp. 1029–1046, 2009.

[65] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguná, “Hyperbolic
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Appendix

A 1 Code availability

The data used for the material presented in Chapter 4 are not publicly available because
the patients did not consent for the sharing of their clinically obtained data. Access to
the data-sets can be provided through AUMC, access requests should be directed to the
corresponding author. All user-developed codes are available in github:
https://github.com/LeonardoDiGaetano/TDA-Epilepsy.

A 2 Supplementary information to patient-specific comparison

Here we report the number of patients for whom there was a significant difference in the
direction of the hypothesis (Table A.1) and in opposite direction (Table A.2) relative to the
results presented in Figure 4.4.

(a) X (RA) > X (RA)
BC c C N E β0 β1 β2

B 6 6 1 23 27 0 20 14
δ 3 0 1 4 6 1 6 2
θ 3 4 1 11 14 0 8 9
α1 0 4 4 6 6 0 5 1
α2 0 1 1 2 5 0 3 4
β 0 5 4 4 5 0 4 3
γ 1 0 2 5 4 0 4 1

(b) X (RA) > X (O)
BC c C N E β0 β1 β2

B 16 17 1 49 50 2 46 37
δ 5 4 0 15 18 1 15 5
θ 10 8 1 23 25 0 24 15
α1 6 6 3 22 26 0 25 10
α2 5 3 0 14 16 0 17 7
β 4 9 4 17 21 0 17 9
γ 5 1 1 11 12 0 9 2

(c) X (RA) > X (N )
BC c C N E β0 β1 β2

B 5 3 7 9 5 0 10 4
δ 2 0 2 2 2 1 2 1
θ 2 3 2 1 1 1 2 0
α1 0 2 11 1 1 0 1 1
α2 0 1 3 0 0 0 0 1
β 0 5 6 0 1 0 0 1
γ 0 1 7 1 1 0 1 0

(d) X (N ) > X (O)
BC c C N E β0 β1 β2

B 61 29 1 71 68 24 73 54
δ 45 6 0 57 54 0 56 10
θ 41 15 0 57 55 2 55 23
α1 48 10 1 61 59 2 60 18
α2 44 4 0 45 46 1 48 6
β 53 13 0 56 56 2 56 20
γ 37 4 0 44 46 1 44 4

Table A.1: Number of patients for whom there was a significant difference in the direction
of the hypothesis of Figure 4.4.
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(a) X (RA) > X (RA)
BC c C N E β0 β1 β2

B 0 2 3 5 5 0 7 3
δ 0 1 0 3 2 0 3 0
θ 0 1 7 3 2 0 2 1
α1 0 0 1 6 5 1 4 0
α2 1 2 2 3 5 1 6 2
β 3 1 1 5 6 1 5 0
γ 0 1 2 2 1 0 3 0

(b) X (RA) > X (O)
BC c C N E β0 β1 β2

B 0 2 11 5 5 0 7 4
δ 0 1 4 3 3 0 3 0
θ 0 2 9 1 1 0 1 0
α1 0 1 6 6 5 1 4 1
α2 1 3 6 2 3 1 4 3
β 2 1 4 5 6 1 4 0
γ 0 1 4 1 1 0 2 0

(c) X (RA) > X (N )
BC c C N E β0 β1 β2

B 15 4 2 14 9 3 12 7
δ 4 2 0 5 6 0 6 2
θ 7 1 4 5 4 0 4 3
α1 10 3 0 10 10 1 8 2
α2 5 1 3 5 5 0 9 1
β 10 4 1 10 8 0 11 4
γ 10 2 0 4 4 0 5 0

(d) X (N ) > X (O)
BC c C N E β0 β1 β2

B 0 6 30 0 0 0 0 0
δ 0 3 25 0 0 0 0 0
θ 0 3 20 1 1 1 0 0
α1 0 3 24 1 0 2 0 0
α2 0 0 33 1 1 1 0 0
β 0 1 32 0 0 0 0 0
γ 0 4 27 0 0 0 0 0

Table A.2: Number of patients for whom there was a significant difference in opposite
direction of the hypothesis of Figure 4.4.
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A 3 Supplementary information to group-level comparison

Here we report the numerical values presented in Figure 4.6. Table A.3 presents z-scores
presented through colors in Figure 4.6 and Table A.4 the corresponding p-values.

(a) X (RA) > X (RA)
BC c C N E β0 β1 β2

B 2.2 1.5 -1.7 4.2 3.8 2.7 2 1.4
δ 0.49 0.27 0.62 0.57 0.47 0.5 0.39 0.17
θ 0.87 1.8 -0.48 3.1 3.2 -0.097 1.2 0.9
α1 -2.1 0.52 0.83 0.25 0.67 -2.2 0.56 0.46
α2 -0.92 -0.99 -1.2 0.5 0.47 -0.75 -0.4 -0.12
β -1.2 1 0.36 0.39 0.41 -1.1 0.53 0.58
γ -2.1 -1.8 -0.42 -0.74 -0.64 -1.4 0.34 0.38

(b) X (RA) > X (O)
BC c C N E β0 β1 β2

B -4.2 0.1 1.6 -1.9 -1.4 -3.3 -1.2 -0.39
δ -3.2 0.3 3.5 -3.6 -3 0.25 -2.9 -0.38
θ -3.6 1 1.2 -2.5 -1.7 -0.68 -1.5 0.16
α1 -6.5 0.92 2.7 -2.9 -2.3 -1.9 -1.9 -0.21
α2 -5.6 0.5 0.5 -1.1 -2.3 -2.3 -0.044 0
β -7.5 0.5 2.8 -4.1 -3.5 -1.5 -4.1 -0.42
γ -6.8 -0.97 -3.7 -4.2 -4.1 -1.8 -0.2 0.052

(c) X (RA) > X (N )
BC c C N E β0 β1 β2

B 5.7 3.4 -3.7 8.1 7.7 5.4 4.4 2.9
δ 3.4 0.7 -1.6 4 3.6 0.64 0.82 0.86
θ 3.9 2.6 -2.1 6.1 6.5 0.46 3.2 2.2
α1 2.1 0.78 -0.51 4.8 3.5 0.72 0.41 1
α2 -0.6 -0.93 -0.5 4.7 3.1 -0.51 2 0.094
β 3.1 -1.5 -1.5 3.5 3.5 -0.72 1.2 1.4
γ 1.6 -2.1 -2.1 3.5 3.1 -0.1 1.3 0.61

(d) X (N ) > X (O)
BC c C N E β0 β1 β2

B 15 4.1 -5.7 13 12 8 6.2 1.2
δ 17 0.65 -7 11 8.1 7.9 7.1 1.2
θ 7.5 2.1 -3.6 11 11 1.5 5.2 2.2
α1 10 -0.25 -4.8 11 8.3 5.6 1.2 1
α2 15 -0.29 -4.7 7 7 -0.46 5.5 0.057
β 18 1.3 -5.7 13 10 1.8 7.3 1.8
γ 13 -1.5 -6.5 8.5 7.9 1.4 8 0.63

Table A.3: Numerical values corresponding to results of Figure 4.6. Group-level comparison
between nodes sets, for each considered frequency-band (y-axis) and network metric (x-
axis). X (S) stands for the generalized centrality metric X measured on the nodes in set S.
The numbers indicate the z-score of the difference between the average values of each node
set, computed by bootstrapping the data (sampling size of 104).
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(a) X (RA) > X (RA)
BC c C N E β0 β1 β2

B 0.03 0.145 0.083 0.0 0.0 0.007 0.05 0.176
δ 0.622 0.79 0.533 0.57 0.64 0.619 0.699 0.868
θ 0.386 0.07 0.632 0.002 0.002 0.923 0.212 0.218
α1 0.039 0.603 0.405 0.805 0.503 0.025 0.574 0.645
α2 0.359 0.323 0.241 0.618 0.637 0.453 0.662 0.901
β 0.214 0.295 0.722 0.7 0.684 0.268 0.599 0.562
γ 0.038 0.069 0.676 0.457 0.523 0.807 0.462 0.701

(b) X (RA) > X (O)
BC c C N E β0 β1 β2

B 0.0 0.919 0.121 0.062 0.17 0.001 0.249 0.693
δ 0.001 0.763 0.001 0.0 0.003 0.801 0.003 0.706
θ 0.0 0.306 0.215 0.013 0.087 0.495 0.122 0.872
α1 0.0 0.359 0.008 0.003 0.01 0.053 0.056 0.8
α2 0.0 0.546 0.262 0.024 0.023 0.965 0.05 0.92
β 0.0 0.517 0.005 0.0 0.0 0.121 0.0 0.671
γ 0.0 0.331 0.0 0.0 0.0 0.525 0.0 0.958

(c) X (RA) > X (N )
BC c C N E β0 β1 β2

B 0.0 0.001 0.0 0.0 0.0 0.0 0.0 0.004
δ 0.001 0.485 0.11 0.0 0.0 0.522 0.002 0.387
θ 0.0 0.01 0.079 0.0 0.0 0.645 0.001 0.03
α1 0.034 0.433 0.611 0.003 0.0 0.043 0.006 0.315
α2 0.001 0.352 0.003 0.002 0.002 0.61 0.01 0.925
β 0.002 0.139 0.122 0.0 0.0 0.472 0.003 0.163
γ 0.108 0.038 0.042 0.067 0.064 0.891 0.185 0.539

(d) X (N ) > X (O)
BC c C N E β0 β1 β2

B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
δ 0.0 0.516 0.0 0.0 0.272 0.0 0.0 0.224
θ 0.0 0.039 0.0 0.0 0.14 0.0 0.0 0.025
α1 0.0 0.806 0.0 0.0 0.408 0.0 0.0 0.248
α2 0.0 0.775 0.0 0.0 0.646 0.0 0.0 0.955
β 0.0 0.191 0.0 0.0 0.069 0.0 0.0 0.071
γ 0.0 0.127 0.0 0.0 0.519 0.0 0.0 0.531

Table A.4: p-values corresponding to results of Figure 4.6. Group-level comparison be-
tween nodes sets, for each considered frequency-band (y-axis) and network metric (x-axis).
X (S) stands for the generalized centrality metric X measured on the nodes in set S. The
numbers indicate the p-values of the comparison between the average values of each node
set presented in Table A.3 and Figure 4.6.
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