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Abstract

In many complex systems, interactions occur not just between pairs but among
groups involving three or more entities. Higher-order networks are mathematical frame-
works that extend traditional network models by capturing these multi-way interactions.
Recognizing and modeling higher-order interactions is crucial because they provide a
more accurate representation of real-world systems, leading to a deeper understanding
of emergent behaviors that cannot be explained by pairwise interactions alone.

In the first part of this thesis, we develop a mathematical framework to analyze net-
works incorporating higher-order interactions. We introduce an extension of the Hidden
Variables formalism tailored for higher-order networks, which allows for the character-
ization of systems with multi-way interactions. Through this formalism, we explore
key structural properties such as hyper-degree distributions, degree correlations, and
the overall connectivity of the network, revealing that higher-order interactions signif-
icantly influence network topology, particularly in aggregated structures generated by
higher-order interactions that accumulate over time. Building upon this methodology,
future research can extend the Hidden Variables formalism to a broader class of gen-
erative network models based on intrinsic node properties, such as fitness models or
embedding space models, while accounting for any order of interactions.

In the second part of this thesis, we examine how higher-order interactions influ-
ence the dynamics of random walks on hypergraphs. Specifically, we focus on rare
events in which the behavior of the random walk deviates significantly from what is
typically expected. By exploring both quenched and annealed scenarios, correspond-
ing respectively to cases where we compute fluctuations over static networks and en-
sembles of networks, we investigate how higher-order interactions impact dynamical
fluctuations in different settings. Our analysis reveals that higher-order interactions can
either suppress or amplify fluctuations from the typical behavior depending on the net-
work configuration. The approach proposed in this thesis can be further used in the
future to investigate rare events in a wider class of dynamical systems whenever they
can be mapped onto Markovian processes opening possibilities for studying dynamical
fluctuations beyond random walks on hypergraphs, such as investigating the control-
lability of epidemic models or other types of spreading processes not exclusively on
higher-order structures.

In the final part of this thesis, higher-order network analysis is applied to the study
of brain networks in epilepsy patients. A neighborhood-based description of brain con-
nectivity is introduced to identify pathological hubs, which are regions that play a cru-
cial role in the spread of seizures but are not the primary epileptogenic focus (i.e., not
the initial source of epileptic activity). By employing higher-order network metrics, the
study offers new perspectives on brain network organization. The findings suggest that
surgical strategies should account for the higher-order structure of the neighborhoods
of these pathological hubs, potentially leading to more effective treatments that reduce
seizure recurrence while preserving essential brain functions. This higher-order rep-
resentation of brain data offers innovative perspectives for investigating neurological
disorders beyond epilepsy, such as Alzheimer’s disease and schizophrenia.
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1 INTRODUCTION

1 Introduction

1.1 Network representation of complex systems

Complex systems are prevalent across diverse domains, including ecosystems, human soci-
eties, and technological infrastructures [10-13]. These systems are characterized by com-
plex, often non-linear interactions among their components, which lead to emergent behav-
iors that cannot be deduced by examining the individual parts in isolation [14, 15]. For
instance, in ecosystems, the interdependencies between species give rise to population dy-
namics that are inherently complex [16]. Similarly, in human societies, social interactions
often result in the spontaneous formation of communities and the spread of ideas, illustrating
the intricacies of social dynamics [17].

Network theory has become a fundamental tool for representing and analyzing such sys-
tems [18, 19]. By abstracting complex systems into graphs, where nodes represent entities
and edges depict interactions between them, networks provide a structured way to capture
the relationships within the parts of these systems. This approach has proven invaluable
across various fields, as illustrated in Figure 1.1, which highlights the applicability of net-
works to numerous real-world scenarios. In epidemiology, for example, networks are used
to model the spread of diseases by representing individuals as nodes and their contacts as
edges, helping to predict and control outbreaks (Figure 1.1 (c)) [20,21]. In ecology, net-
works model the complex interactions within ecosystems, where nodes represent different
species and edges represent interactions such as predation or symbiosis, providing insights
into the balance and stability of ecosystems (Figure 1.1 (d)) [22]. In social sciences, net-
works provide insights into the structure and dynamics of social groups, including the spread
of information and influence, the formation of social capital, and the dynamics of collabo-
ration (Figure 1.1 (b)) [23]. For instance, the study of online social networks has revealed
how information and behaviors spread through populations, leading to phenomena like viral
marketing and the rapid adoption of innovations [17].

However, while traditional network models focus predominantly on pairwise interac-
tions, these models often fail to capture the true complexity of real-world systems. As
illustrated in Figure 1.1, the examples provided are pairwise representations of real-world
phenomena that, in reality, often exhibit group interactions. In nature, interactions not al-
ways occur solely between two entities; instead, they frequently involve groups, where three
or more components engage simultaneously. In reality, complex systems are often composed
of parts that interact in groups, and and in most of the cases, reducing the system to pair-
wise interactions obscures the true dynamics that are driven by these group-level relation-
ships. Furthermore, many of the dynamics observed in complex systems are driven by group
mechanisms, which are the underlying processes that cause the observed emergent behav-
iors. Understanding a mechanism can explains how the global effect of the interactions of a
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(a) ) () )

Figure 1.1: Illustration of network representation of complex systems. (a) A simple network
as a mathematical entity, consisting of nodes and edges, models pairwise interactions. (b)
Social Networks: Nodes represent individuals and their connections, illustrating social in-
teractions within a community. (c) Epidemiology: Networks model the spread of diseases,
where nodes represent individuals, and edges represent potential transmission pathways.
(d) Ecological Networks: Nodes represent different species, and edges represent interac-
tions such as predation, illustrating the complexity of ecological systems.

system leads to a specific collective behaviour, and therefore using the wrong representation
of a mechanism, for instance, not taking into account group interactions, can lead to wrong
predictions of the emergent property of the system we are studying. In the next subsection,
we will explore several real-world examples of group interactions and mechanisms in more
detail, illustrating how going beyond pairwise network models are essential for accurately
describing the collective behaviors in complex systems.

1.2 Group mechanism and interactions in the real world

Understanding collective behaviors in complex systems requires capturing the group-wise
interactions that drive these phenomena. As we have said, many real-world systems exhibit
interactions that occur at the group level rather than just between pairs, significantly influ-
encing the overall system dynamics. Below, we explore several real-world examples where
group mechanisms play a key role, highlighting the need to move beyond pairwise models.

In social systems, sociological mechanisms such as peer pressure and social influence
play a crucial role. Individuals are often influenced by the behaviors and opinions of groups,
leading to phenomena like peer pressure and social reinforcement [24,25]. Collaborations
and group decision-making processes in workplaces and project teams also involve multi-
way interactions, impacting productivity and outcomes [26—28].

In addition, collaboration and co-authorship networks offer another clear example of
group interactions in action. In research, collaboration often involves teams of scientists

11



CEU eTD Collection

1 INTRODUCTION

working together, with many scientific papers that are the product of large, multi-disciplinary
teams, where the contributions of each member are interdependent.

Also in ecological and animal systems, group dynamics such as flocking and schooling
are driven by interactions among multiple individuals. The collective movement patterns ob-
served in bird flocks or fish schools emerge from group-level interactions, not just pairwise
connections [29]. Predator-prey dynamics also involve complex multi-species interactions,
such as coordinated hunting or defense mechanisms [30].

Lastly, neuroscience provides another compelling example, where brain functions result
from interactions among groups of neurons. The functional connectivity of the brain cannot
be adequately represented by pairwise connections alone; group-level activities are essential
for understanding cognitive processes and neurological diseases [31,32].

1.3 Limitations of Pairwise Models

Whether in social, biological, ecological, or neural networks, the dynamics of these systems
are often shaped by interactions involving three or more entities simultaneously. Pairwise
models, by reducing all interactions to dyads, overlook critical aspects of these systems,
leading to oversimplified or inaccurate conclusions. This section examines the circum-
stances in which these models fail to capture the complexity of real-world interactions.

In social networks, for instance, group dynamics—such as team collaborations or group
discussions—cannot be fully captured by pairwise interactions alone. The influence exerted
in a group setting is often the result of multiple individuals acting together, creating effects
like social reinforcement or peer pressure that require modeling interactions between more
than two members at a time [24,25]. Pairwise models reduce these dynamics to isolated
interactions, which oversimplifies the processes driving phenomena like group decision-
making or rumor spreading. For example, group collaborations in co-authorship networks
have been shown to significantly increase research impact, with large collaborative teams
producing more influential work than smaller, isolated teams [33].

Similarly, complex contagion in social systems demonstrates the limitations of pairwise
models. The adoption of behaviors, norms, or innovations often requires reinforcement
from multiple contacts, not just one [34]. Rumor spreading and information diffusion pro-
vide further evidence that modeling interactions between only two individuals misses key
aspects of how information propagates. Such processes are more effective within clusters of
interconnected individuals rather than isolated pairs [35, 36].

In biological systems, reducing interactions to pairwise models also falls short. For ex-
ample, many cellular processes rely on complexes of three or more proteins interacting
cooperatively. Pairwise models cannot fully capture the cooperative nature of these multi-
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protein assemblies, resulting in an incomplete understanding of key biological mechanisms.
In areas like signaling pathways and structural biology, considering only pairwise interac-
tions often fails to account for the broader, cooperative interactions necessary for proper
cellular function [37, 38].

In ecology, multi-species interactions such as mutualistic networks and predator-prey
dynamics also illustrate the inadequacy of pairwise models. The survival or success of
one species may depend on the combined influence of others, and these group interactions
are crucial to understanding ecosystem stability [39,40]. For instance, predator-prey rela-
tionships that involve multiple species can lead to cascading ecological effects that are not
visible in a pairwise framework.

Finally, neuroscience is another domain where pairwise models struggle to capture the
full complexity of brain dynamics. Brain functionality arises not from isolated interactions
between neuron pairs, but from coordinated activity across multiple brain regions. Cognitive
processes such as decision-making and memory retrieval depend on the collective behavior
of large groups of neurons. Models based solely on pairwise interactions risk missing the
higher-level coordination that drives these complex brain functions [31,41].

In summary, while pairwise models have been instrumental in advancing the study of
complex systems, they fail to account for the full range of interactions that occur in the
real world. Systems across diverse domains often involve multi-way interactions, where
the behavior of the whole cannot be reduced to individual pairwise connections. Under-
standing these interactions requires moving beyond pairwise models to more comprehensive
approaches that capture the true complexity of these systems.

1.4 Limits of traditional representation and loss of information

The reason a pairwise representation of complex systems often falls short in predicting be-
haviors is that this leads to a loss of crucial information about the system’s structure and
dynamics. This loss of information is analogous to the projection of temporal data into static
representations, which aggregates and obscures the temporal dynamics of interactions. In
temporal networks, ignoring the timing of interactions and collapsing them into static snap-
shots can significantly alter the perceived structure and function of the network [42]. The
same issue arises in group interactions when they are reduced to pairwise approximations.

To make this more clear, consider a scenario where three researchers are working to-
gether. In one case, they are collaborating on a single paper as a group, and in another case,
each pair of researchers is working on separate papers. Traditional pairwise models would
represent both scenarios similarly, as sets of pairwise interactions between the researchers.
However, these representations fail to capture the distinct nature of the group collabora-
tion versus the separate pairwise collaborations. In the group collaboration, the interactions
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Figure 1.2: Schema portraying two different social situations: (a) three distinct conversa-
tions among three agents and (b) on group conversation engaing all of them togheter.

are collective, with all three researchers contributing simultaneously and influencing each
other’s work directly. In contrast, the separate pairwise collaborations do not involve this
group dynamic and are instead a series of independent interactions (Fig. 1.2).

1.5 Higher-order networks

Given that collective behaviors are inherent in complex systems, representing such systems
using traditional pairwise networks has often been insufficient, especially for describing
interactions that involve more than two entities simultaneously.

For this reason, higher-order networks, where nodes can interact in groups beyond the
pairwise level, have emerged as an essential framework for understanding the complexity
of interactions in many real-world systems. Higher-order network models, such as hyper-
graphs and simplicial complexes, address these limitations by allowing for the modeling
of multi-way interactions [43,44]. By extending the analysis beyond pairwise interactions,
researchers can explore phenomena that are not observable in traditional models, such as
group synchronization, higher-order contagion processes, and the formation of multi-scale
structures [43,45,46].
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Historically, the recognition of higher-order interactions dates back several decades [47],
but it is only in recent years that a wave of enthusiasm for these representations has revo-
lutionized our understanding and capability to tackle real-world systems characterized by
more than simple dyadic connections. Early works laid the foundation, but contemporary
advancements have significantly deepened our comprehension and application of higher-
order models. For instance, in epidemiology, higher-order models are used to study the
spread of diseases through populations, considering the effects of group gatherings and
community-level interactions on disease dynamics [48]. In social sciences, these models
help in understanding the spread of behaviors and information through communities, taking
into account the influence of group interactions [49, 50].

In conclusion, higher-order networks represent a significant advancement in the study of
complex systems. By capturing multi-body interactions, these models provide a more accu-
rate and comprehensive representation of real-world systems. The ability to analyze higher-
order interactions opens up new avenues for research and applications, offering deeper in-
sights into the structure and dynamics of complex networks. As the field continues to evolve,
higher-order network models are expected to play an increasingly important role in under-
standing complex systems across various domains.

1.6 Representations of Higher-Order Networks

Here we briefly present the two representations of higher-order networks used in this thesis
and necessary to understand the upcoming chapters: hypergraphs and simplicial complexes.

1.6.1 Hypergraphs

A hypergraph, illustrated in Fig. 1.3, is a generalization of a traditional graph where edges,
known as hyperedges, can connect any number of nodes. Formally, a hypergraph H is
defined as H = (V, E), where V is a set of nodes and F is a set of hyperedges, each of
which is a subset of V. This allows hypergraphs to model interactions involving more than
two entities, which is essential for representing systems such as social networks, biological
networks, and collaboration networks.

1.6.2 Simplicial Complexes

A simplicial complex is a collection of simplices, which are generalizations of points, line
segments, triangles, and higher-dimensional polytopes. A k-simplex is a set of £ + 1 nodes.
For example, a 0-simplex is a node, a 1-simplex is an edge, a 2-simplex is a triangle, and
so on [51]. Hence, a simplicial complex K is a collection of simplices that satisfies the
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Figure 1.3: Example of a hypergraph plotted with the python package HGX.

condition that any face of a simplex in K is also in K, and the intersection of any two
simplices in /K is either empty or a common face [52].

1.6.3 Differences between Hypergraphs and Simplicial Complexes

While both hypergraphs and simplicial complexes are used to model higher-order interac-
tions, they differ in how they represent these interactions and their suitability for different
types of analyses. Hypergraphs are particularly effective for modeling systems where inter-
actions among any number of entities need to be captured without enforcing a specific topo-
logical structure. This flexibility makes hypergraphs suitable for social networks, biological
networks, and collaboration networks, where the focus is on the presence and diversity of
group interactions rather than their geometric or topological properties [43].

In contrast, simplicial complexes are better suited for situations where the topologi-
cal structure of interactions is important. By including all faces of each simplex, simpli-
cial complexes inherently capture the hierarchical relationships and topological features of
multi-way interactions. This makes them ideal for topological data analysis and for studying
systems like neural connectivity, where the geometric configuration of connections provides
significant insights, or ecological networks, where interactions often form nested, hierarchi-
cal patterns [40,41]. Therefore, the choice between hypergraphs and simplicial complexes
depends on whether the primary interest lies in the general multi-way interactions (favoring
hypergraphs) or the detailed topological structure of these interactions (favoring simplicial
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Figure 1.4: Illustration comparing hypergraphs (a) and simplicial complexes (d) , and their
interactions. Panels (b) and (e) show the three-body interactions of respectively (a) and (d)
while (c) and (f) the two-body ones.

complexes). In Figure 1.4, we show an example of the same system portrayed with these two
representations. The figure illustrates the differences between first and second order interac-
tion that constitute both the hypergraph and simplicial complex representations. As shown
in the figure, when broken down into its components, the hypergraph exhibits fewer first-
order interactions than the simplicial complex. The hypergraph includes only interactions
that are purely first-order (Figure 1.4 (c) ), whereas the simplicial complex also incorporates
all the first-order interactions that are part of second-order simplices (Figure 1.4 (f)).
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1.7 Outline of the thesis

The thesis is structured into three main chapters, each addressing a significant aspect of
higher-order networks.

In Chapter 2, we will introduce the Hidden Variables formalism for higher-order net-
works. The primary objective of this chapter is to provide an analytical tool for solv-
ing higher-order generative models. We aim to derive key topological properties such as
hyper-degree distributions, hyper-degree correlations, and temporal properties like percola-
tion time of networks generated with these models. By developing this formalism, we can
analytically characterize higher-order networks that evolve over time providing insights on
what happen if one generate networked structures with higher-order interactions. In par-
ticular, we will apply this formalism to solve a temporal and higher-order network model,
the higher-order activity-driven (HOAD). The HOAD model extends the traditional activity-
driven model, which is commonly used to represent temporal networks where nodes acti-
vate over time and form connections. In traditional activity-driven models, nodes have an
associated activity rate determining the probability of becoming active and forming links
with other nodes. This model is widely used to study dynamic processes such as infor-
mation diffusion, social contagion, and disease spreading. The HOAD model incorporates
higher-order interactions, allowing nodes to participate in group interactions rather than just
pairwise connections, providing a more accurate representation of real-world systems, such
as social networks, where interactions often occur in groups rather than pairs. Furthermore,
we will apply our analytical tool to real-world data, particularly focusing on empirical ac-
tivity data gathered from a scientific collaboration dataset. We will study the implications
of generating models from data using an incorrect order of representation and highlight the
potential errors and misinterpretations that may arise. For instance, generating networks
based on empirical activity without considering higher-order representations can lead to a
significant underestimation of the percolation time of such networks.

In Chapter 3, we will present an extensive study on the out-of-equilibrium dynamics of
higher-order networks. The primary objective of this chapter is to understand how higher-
order interactions influence rare events of dynamic processes on these networks. We will
delve into the mathematical formulations and analytical techniques used to study these pro-
cesses by means of large deviation theory, a theory utilized in out-of-equilibrium thermo-
dynamics to study rare events and fluctuations. Among the many dynamical processes on
higher-order networks, we will study random walks on hypergraphs. This process has been
used for describing diffusion phenomena, such as the spread of information or rumors, in
systems where interactions occur in groups. We will explore how random walks on hy-
pergraphs differ from those on traditional networks, particularly in terms of the time that
a walker unexpectedly spends on specific nodes over time. In particular, we will apply our
theoretical framework to structures generated by a toy model that we propose, allowing us to
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combinatorically solve the probability of configurations of such structures. We will validate
our theoretical results on more general structures via extensive Monte Carlo simulations,
ensuring the robustness of our findings across different network topologies. Lastly, we will
extend our results to more general dynamics by introducing the biased random walk on hy-
pergraphs, a more general dynamical process in which random walkers can be positively or
negatively biased towards highly connected nodes.

In Chapter 4, we will explore the application of higher-order network representation
and topological data analysis (TDA) in understanding the functional organization of brain
networks, particularly in the context of epilepsy. The primary objective of this chapter is to
uncover topological signatures that identify pathological hubs in the brain, which are cru-
cial for understanding seizure dynamics and improving epilepsy surgery outcomes. We will
delve into the methodological framework that integrates TDA with network neuroscience,
focusing on how topological features can be used to characterize the functional properties
of brain networks. We will apply TDA to magnetoencephalography (MEG) data from a
cohort of epilepsy patients, aiming to identify the extended neighbourhoods of brain re-
gions. Extended neighbourhoods provide a mesoscopic description of brain organization,
capturing the regional influence of each node. This analysis will show how a higher-order
perspective of brain networks can reveal centrality and connectivity patterns of the epilep-
togenic zone (EZ) and its surrounding areas, providing insights into the emergence and role
of pathological hubs. Our findings will show that both the resection area and its neighbour-
hood are more central in the brain network compared to other regions with respect to several
higher-order metrics. These findings will give us predictive power in classifying resected
and non-resected areas of the networks build from our data. Regarding the classification of
different patients, or equivalently the classification on networks, we will observe that the
relative centrality of these regions varies significantly among patients, suggesting the need
for personalized approaches in epilepsy surgery and not giving us the same predictive power
we have for node classification.

Lastly, in Chapter S, we will present our conclusions and outlook for future research.
This final chapter synthesizes the key findings from the previous chapters and discusses
their broader implications for the field of network science. We will reflect on how our work
advances the understanding of higher-order interactions in complex networks. Specifically,
we will highlight how higher-order interactions can drastically alter network topology and
influence rare events in dynamical systems. Furthermore, we will outline potential direc-
tions for future research. One avenue is extending the Hidden Variables formalism to other
established network models, such as spatial, gravity, geometric, and fitness models, to bet-
ter understand how higher-order interactions affect different types of networks. We will
also consider investigating the influence of specific higher-order structural features on dy-
namical fluctuations and rare events, which could reveal how heterogeneity and community
structures impact system behavior. Additionally, we will discuss applying the methodolo-
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gies developed to other dynamical processes beyond random walks, such as social contagion
and percolation, to explore how higher-order interactions affect the spread of information
or diseases. Lastly, we will explore expanding the higher-order network analysis to other
neurological disorders beyond epilepsy, such as Alzheimer’s disease and schizophrenia, to
uncover new insights into their underlying network dynamics. By highlighting these oppor-
tunities, we aim to inspire further studies that build upon our contributions and continue to
explore the rich complexities of higher-order networks.
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2 Analytical Framework for Higher-Order Network Mod-
els

As previously discussed, networks allow us to describe and study a wide variety of complex
systems. However, scientific interest extends beyond merely describing these systems; it
also involves making predictions and anticipating behaviors. To achieve this, theoretical
models are employed to simplify and model real-world scenarios, enabling us to predict
properties and characteristics of complex systems or to interpret the emergent behaviors
observed in these networks. In network science, generative network models are central for
these reasons. Based on simple foundational rules, often incorporating random mechanisms,
they lead to the emergence of non-trivial structures. The ability to analytically solve these
models allows for accurate predictions and deeper understanding of emergent properties in
complex systems.

QOutline In this chapter, we aim to develop and analyze solvable structural models of
higher-order networks. We will begin by reviewing the most well-known generative models
for pairwise interactions, to highlight the need for moving beyond traditional frameworks
and into higher-order models. Following this historical overview, we will introduce the hid-
den variables formalism, which allows for the analytical characterization of higher-order
networks models. This formalism will be employed to derive key properties such as the
hyper-degree distribution and hyper-degree correlations. We will then extend our analysis
to temporal systems by introducing the higher-order activity-driven (HOAD) model. This
model captures the dynamic nature of interactions within higher-order networks. We will
investigate the topological properties of the HOAD model, including the distribution and
correlation of hyper-degrees over time. Furthermore, we will explore temporal percolation
in hypergraphs, providing analytical estimates for the percolation times in both uncorrelated
and correlated hypergraphs. Finally, we will apply our theoretical framework to empiri-
cal data, quantifying the difference in computing the percolation time between generating
networked structures with higher-order or first-order activity distributions observed in real-
world datasets. Through these analyses, we aim to provide a comprehensive understanding
of the structural and dynamical properties of higher-order networks and which mistakes can
arise if one neglects the intrinsic higher-order nature of data.

2.1 Random Network models
Review on Random models One of the foundational approaches in network science is the

use of random network models. These models serve as null hypotheses or baseline scenarios
against which the structure and dynamics of real-world networks can be compared. By
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applying simple probabilistic rules to the formation of networks, random models help us
understand the essential properties that emerge in complex systems. These models have
proven powerful, revealing key insights into the nature of connectivity, robustness, and the
spread of information within networks [19, 53, 54].

The simplest random network model is the Erdés-Rényi (ER) model. In this model,
each pair of nodes is connected with a fixed probability. This model has been widely used
in epidemiology and communication networks to understand how connectivity and robust-
ness manifest in random structures [53, 55]. Despite its simplicity, the ER model reveals
important emergent properties, such as the percolation threshold, where a giant connected
component suddenly forms as the average degree increases, marking a phase transition in
network connectivity [54]. Another notable property that emerges from the ER model is
disassortativity—a tendency for high-degree nodes to connect with low-degree nodes. This
is not a property explicitly encoded in the model but arises naturally from the random con-
nection process [56].

Following the ER model, we look at the Barabasi-Albert (BA) model, which offers a
more refined approach by incorporating growth and preferential attachment into the net-
work formation process. Unlike the ER model, where connections are made randomly, the
BA model assumes that new nodes are more likely to attach to existing nodes with higher
degrees. This mechanism, often referred to as the “rich-get-richer” phenomenon, leads to
the emergence of scale-free networks characterized by a power-law degree distribution [57].

While the BA model focuses on the preferential attachment mechanism, spatial network
models introduce the concept of physical space into network formation. In spatial networks,
nodes are placed in a geometric space, and the probability of a connection between two
nodes decreases with the distance between them. This reflects the intuitive notion that con-
nections are more likely to form between geographically proximate entities [58]. Despite the
constraints imposed by spatial separation, these networks often exhibit small-world proper-
ties, characterized by short average path lengths and high clustering [58, 59].

Building on spatial models, the gravity model refines the spatial approach by incorporat-
ing the concept of node “mass,” which can represent factors like population size, economic
strength, or other measures of importance [60]. In this model, the probability of interaction
between two nodes is proportional to their masses and inversely proportional to the dis-
tance between them [61]. The gravity model is widely used in trade networks, where larger
economies engage in more trade with each other, and in urban planning, where the con-
nectivity of cities depends on both their size and proximity. By capturing these real-world
dynamics, the gravity model provides insights into how large, influential nodes dominate
interactions within a network, while still respecting spatial constraints [62].

The geometric model extends these ideas into more abstract or higher-dimensional spaces.
Nodes are placed in a geometric space, and connections are established based on distance
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thresholds or more complex geometric relationships [63]. This model is particularly useful
for studying networks where connections depend on multiple factors beyond mere physical
distance. For instance, in wireless sensor networks, connectivity might depend on both the
physical proximity of sensors and their functional compatibility [64]. Similarly, in biologi-
cal networks, interactions might depend on spatial positioning within a cellular environment
as well as other biochemical factors.

Further extending the concept of geometric embedding, hyperbolic models place net-
works in hyperbolic space, a non-Euclidean space that combines geometric proximity with
scale-free degree distributions [65]. For example, the internet can be modeled in hyperbolic
space, where the hierarchical organization of domain names and the clustering of websites
are naturally represented [66]. Hyperbolic models also help explain the small-world phe-
nomena observed in many networks, where short paths exist between any two nodes despite
the network’s large size. This is crucial for understanding how information or diseases
spread efficiently in these networks, balancing the need for local clustering with global con-
nectivity [67].

The fitness model introduces another layer by considering the intrinsic “fitness” of each
node—a measure of its ability to attract connections independently of its degree [68]. In this
model, connections are more likely to form between nodes with higher fitness, allowing for
the emergence of super-hubs—nodes that become highly connected due to their inherent
properties rather than their position in the network. This model is particularly relevant
in contexts where the inherent characteristics of nodes, such as popularity, influence, or
productivity, play a significant role in network dynamics. For example, in social networks,
individuals with greater social capital or influence can become central nodes, regardless of
their initial connectivity. Similarly, in scientific collaboration networks, highly productive
researchers are more likely to collaborate with others, leading to the formation of hubs based
on fitness [69].

From Nodes’ Properties to Global Behaviors Despite the diversity of these models, they
share a common foundation: the probability of connections between nodes depends on spe-
cific properties of the nodes themselves. Whether these properties are homogeneously dis-
tributed (as in the ER model), based on preferential attachment (as in the BA model), influ-
enced by spatial coordinates (as in spatial and geometric models), or determined by intrinsic
fitness (as in the fitness model), the connection probabilities are rooted in the local character-
istics of the nodes. These models attempt to replicate real-world scenarios by starting from
these localized rules or individual behaviors, allowing researchers to explore how complex
global patterns emerge from simple, well-defined interactions.

These local rules, though simple, can lead to the emergence of complex global proper-
ties, such as scale-free distributions, small-world characteristics, and hierarchical structures.
These emergent properties are not explicitly programmed into the models but arise naturally
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from the interactions defined by the nodes’ properties. This principle of emergence has been
observed across various domains, from biology (e.g., neural or genetic networks) to sociol-
ogy (e.g., social influence and community formation) to technology (e.g., the robustness of
the internet or power grids) [13]. By understanding these emergent properties, researchers
can gain valuable insights into the underlying mechanisms that drive the behavior of com-
plex systems.

Beyond Pairwise Interactions: Higher-Order models While the models discussed so
far have focused on interactions at the level of pairs of nodes, recent advances in network
science emphasize the importance of considering higher-order interactions.

This shift towards higher-order network models raises an important question: can the
principles and local rules that underpin traditional network models be extended to account
for higher-order interactions? By exploring this question, we can develop models that not
only capture pairwise relationships but also the rich, multi-node interactions inherent in
complex systems. Incorporating these higher-order interactions allows for the study of new
emergent phenomena, which cannot be explained by pairwise interactions alone [1,43,46].
Additionally, these models can capture the collective dynamics of systems more accurately,
making them essential for applications in fields like neuroscience, where group activities
are crucial, or in epidemiology, where the spread of diseases often occurs through group
interactions rather than simple pairwise contacts.

For these reasons, in the following subsections, we aim to build upon the foundation
of traditional network models to develop and analyze solvable structural models of higher-
order networks.

25



CEU eTD Collection

2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

2.2 Hidden variables formalism for higher-order networks

Here, we introduce a general approach to analytically characterize higher-order time-varying
networks by means of a hidden variables (HV) framework. In pairwise networks, HV were
introduced to model the presence of links in networks with structural correlations [70].

Until now, the HV formalism has been employed across a vast spectrum of first-order
generative processes, such as to map networks into embedded spaces, including latent [71]
and hyperbolic spaces [72], fitness models [69, 73], protein interaction [74] and social dis-
tance [75]. Furthermore, the HV formalism has been applied to networks evolving over
time [76], networks with inherent correlations [70], and subsequently employed to pinpoint
the topological characteristics of activity-driven networks [77-79]. However, the aforemen-
tioned works neglected the higher-order organization of the considered social and biological
systems.

To this end, we start by developing the HV formalism for higher-order networks. Each
node ¢ of a network of IV nodes is endowed with an intrinsic vectorial HV
hy = (B P, R™ ), where the HV h{™ determines the m-order interactions of

node :. For each order m, hgm) is drawn from an independent distribution p(h(m)). The
higher-order HV model assumes that the existence of an m-order hyperlink (m-link) among

m~+1nodes depends only on their HV, i.e., a connection probability ]P(hgm), o b h,;n le)

The main idea of the HV approach to solve network models is then to write temporal
and structual properties as a function of IP, and therefore the knowledge of the connection
probability allows one to approximate network properties.

2.2.1 Hyper-degree distribution

To start, we show how to approximate one of the main topological properties of a higher-
order generative model, the hyper-degree distribution. The goal here is to write the m-order
degree distribution P(k(™)) as a function of IP.

As a first step, the m-order degree distribution P (k(m)) can be written as

= gkt |t p(hm), Q2.1)

h(m)

where the propagator g(k™|h(™) is the probability that a node with hidden variable /™
ends with an m-order degree equal to k(m), 1.e., it has k(™ incident m-links. Note that

Zg m)|pm)y = 1.

k(m)
As it has been done for pairwise networks [70], we can express the propagator as the
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convolution of all possible conditional probabilities that lead to it, namely the partial prop-
agators. For the 2-order case:

@) 52y _ k(2 (R®) (1.(2)7(2) 7(2)
gk |h) = N ; " 5,€§21 Dy 152, gin - (kay'|ha™ hy)
k17 k1o 7"'kc

h(2) 2 2 2 h(2) 2 (2
gty (KD BS) gl (RGBS B,
shortly,

c
(2) n(2)
g In) = 3 0w [T 107, 1), (2.2)
k) =
where gZ ’ (k‘(2 |h§2 , h§2)) is the probability that a node (with hidden variable 2(?)) ends up
with a number of 2-order interactions with neighbors of hidden variables hl@ and hf) equal

to k:l(f) In the convolution, we take into account all the possible pairs of classes of hidden

variables excluding permutations (¢ > j), being hg) the maximum value of h® and we
sum over the set of all possible 2-degree values {kl(f)} = {kﬁ), k:g) e k:(c%} Note that the
number of all possible partial propagators is equal to the number of multisets of cardinality 2
C C+2-1 ) .
among C' elements, (( 5 )) = ( + 5 ) . The term (5%2@ constraints the sum of partial
degrees to be equal to k®. For simplicity, from now on we omit the explicit dependence of

R in m without losing generality in the discussion.

For the m-order case, one has to consider that an m-order interaction between the node
with hidden variable h and other m nodes involves m (not necessarily different) hidden
variable classes, h;,, hi,,...,h;, . Notice that we have dropped the explicit dependence of

h on m to have a lighter notation, h = k™. The propagator thus reads

C
m (m) h
g(k( )|h) = Z (5% Kijio...im H gz(lz)g A (ki1i2---im |hi1= hi27 R him)v (23)
{Kiqio...im } i1>02>.. >im

As in the m = 2 case, ¢ im (Kivig iy [Py s Ry . hy,)) is the probability that a node

21%2...
with hidden variable % has 1e)zgactly Kiyi,.. 4, m-order interactions with neighbours of hidden
variables h;,, h;,,...,h; . In this case, the convolution is done again considering i; >
19 > ... > 1, in order to avoid all repetitions given by the permutation of the indexes.
As for the second-order case, C' is the number of hidden variable classes. The number of

: . . C C+m-—1
partial propagators in the convolution is =
m

) , namely the number of
m
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multisets with m possibly repeated items, chosen from a set of C' distinct elements. The
term 5§§7Zi1i2”'im constraints the sum of partial degrees to be equal to k™, and {k;,;, ; }is
again the set of all possible values of m-degree.

For the purpose of solving the convolution in Eq. (2.3), we resort to the properties of
generating functions. The generating function of the propagator is defined as

gzlh) =) 2Fg(klh), (2.4)

k

where we omit the m index on the hyper-degree k™). Since the propagator is given by a
convolution of Eq. (2.3), we can write its generating function as the product of the generating
functions of the partial propagators. For a general order m we have

gzl =TT 0% i i iy By B (2.5)

112022...2%m

Since the m-links between vertices with hidden variables h, h;,, h;,, ..., h;, are indepen-
dently drawn with probability P(h, h;,, hi,, .. . h;, ), the partial propagator

gz(lh)l2 77777 i (Kiriigooiim |y s Py . -, By,,,) is simply given by a binomial distribution, as in the
first order case. Consequently, its generating function reads

G lhiy s By, hiy) = [ = (1= 2) P(B, hay, iy, By )] 2, (2.6)

is the number of possible sets with nodes of hidden variables h;,, h;,, ..., h;,,
where N;, = Np(h;,) is the number of

where N;, i, i,
that can be written as N; i, i, = Ny Niy ... N; .,
nodes with hidden variable h;;, .

By taking the logarithm of the full propagator, one obtains

mg(z[h) =N" > p(hi)p(hiy) - . p(hi, ) (L = (1= 2)P(h, hiy iy, R )
112022 >0,

(2.7)
In the limit C' > m, the number of elements in the summation, equal to the number

: C . " . :
of multisets (( , 1s equal to — We can thus sum over m independent indexes
m m

11,7 ...%9n = 1,2,...C, and divide b.y m!. At this point, since Eq. (2.7) does not depend

anymore on the specific indexes 71, %5 . . . , i,,, we can simplify the notation and directly sum
over different hidden variable classes h{, hy ..., hy,,
R N™
Ing(zlh) = — > p()p(ha) ... p(hm) L = (1= 2)P(h, by, ha, . h)). (2.8)
" hiho.hm
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We now consider the limit of sparse networks N > 1 and small connection probability
IP(h, hy, ha, ..., hy,) < 1, which allows us to write §(z|h) as a pure exponential generating
function, as in the first order case. Consequently, the propagator takes the form of a Poisson
distribution -

e—k(m) (h)W(h)k(M)

RED] , (2.9)

g(k™ ) =

where k(™) (h) is the expected m-degree of a node of hidden variable h, that can be obtained
by taking the first derivative of §(z|h) evaluated at z = 1,

- N™

By inserting the form of the propagator Eq. (2.9) and its mean Eq. (2.10) into the gen-
eral Eq. (2.1), one can obtain the m-degree distribution as a function of the hidden vari-
able distribution. The form of the propagator is exponential (as in the first order case) and
the value of its mean depends explicitly on the connection probability. Remarkably, the
problem-specific piece of information that allows us to treat different models is contained in
Eq. (2.10) through the connection probability IP(h, hy, ..., h,,), which is the key ingredient
to find the hyper-degree distribution, given by Eq. (2.1). In the following parts, we will
discuss how to find IP(h, A4, ..., h,,) in the case of a higher-order activity-driven model.

2.2.2 Hyper-degree correlations

As well as hyper-degree distribution, hyper-degree correlation plays an important role in
understanding the structural dependencies within higher-order networks. This correlation
describes how the hyper-degrees of neighboring nodes are related, shedding light on the net-
work’s tendency to form group connections among nodes with similar or dissimilar hyper-
degrees. Here we show how to obtain general analytical expressions for the hyper-degree
correlations.

We start by writing kfﬁf)(h), namely the average m-degree of the nearest neighbors of
a node with hidden variable h. For m = 2, one has to average over all possible hidden
variables h; and h; of the two neighbors ¢ and j in the 2-link,

) = 3 (B ), 1)

2
hih;

where p(h;, h;|h) is the conditional probability that a node with hidden variable / is con-
nected to nodes with hidden variables h;, h;. Such conditional probability can be written
as
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N2p(hs)p(hy)P(h, hi, hy)
2 k@) (h)
where N?p(h;)p(h;) is the total number of all possible pairs made up of one node with hid-
den variable h; and one with h;, N?p(h;)p(h;)IP(h, h;, h;) represents the expected number
of 2-links that a node with hidden variable / shares with this type of pair, and the factor 2
at the denominator ensures that the probability is correctly normalized when we sum over
independent indexes, Z p(hi, hjlh) =1.
hishj

p(hi, hyj|h) = : (2.12)

For general m, the average m-degree of neighbors of a node with hidden variable / reads

EROEEDY (k(m)(hl)+k(m)(h2)”'+k(m)(h’"))p<h1,h2...hm|h)7 (2.13)

m
hi,ha...hm

where p(hy, hs ... hy,|h) is the conditional probability that a node with hidden variable A is
connected in an m-links with neighbours hy, hs . . . h,,, which reads

N"p(hi)p(hs) . .. p(hm)P(h, by, b .. . hin)

hash s o) = )
Pl e " m! k0 (h)

, (2.14)

where, again, the correct normalization over independent indexes is ensured by the term m!
leadingto Y p(h1,ha..., hylh) = 1.

hi,ha...hm

The average m-degree of the nearest neighbors of a node with degree £™ can be obtained
by following Ref. [70],

- | -
B (k™)) = 1 + e 3 (kU |R) p(h) k) (h). (2.15)
h

equivalently to the first-order case.

At this point, knowing the relations between P(k™)), (k™ |h) and IP found in previous

subsection, one is able to explicitly write k:,(fg) as a function of h.
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2.3 The activity-driven model

As an example of HV’s possible applications, in this section, we propose the activity-driven
model as a representative network model that can be analytically solved using such a tech-
nique.

The activity-driven (AD) model has been instrumental in capturing the temporal aspects
of network interactions and is particularly useful for representing systems where the interac-
tions between entities are not static but change over time, such as social networks, commu-
nication networks, and epidemiological networks [80]. This model has been widely studied
and applied in various contexts. For instance, it has been used to model contagion dynamics
in time-varying metapopulation networks [81], analyze random walks and search strategies
in time-varying networks [82], and control contagion processes [83]. Furthermore, the AD
model has been extended to account for heterogeneous activity and tie allocation in social
networks [84], and to study the impact of committed activists on social consensus [85]. Ap-
plications in epidemiology include modeling the effects of self-initiated behavioral changes
on disease dynamics [86], and understanding phase transitions in information spreading on
structured populations [87]. Additionally, the model has been used to explore the effects of
attractiveness on random walks [88], and to develop frameworks for the study of epidemic
models [89].

In the AD model, each node is assigned an activity rate a;, drawn from a distribution
F(a), which determines the probability of the node becoming active at each time step. When
a node becomes active, it creates edges with a fixed number of randomly selected nodes.
This simple yet powerful mechanism allows the model to capture the dynamic formation
and dissolution of connections, which is characteristic of many real-world networks. The
model has been used to study various phenomena, including the spread of information,
disease dynamics, and synchronization processes.

Formally, the AD model operates as follows: at each discrete time step ¢, the network
G, starts with N disconnected nodes. Each node ¢ becomes active with probability a;At
and creates m links to m other randomly selected nodes. Over a given time window 7', the
aggregated network G is formed by the union of all the edges created during this period,
allowing for the analysis of cumulative interaction patterns.

Note that the activity-driven model is a temporal network model, but our framework is not
explicitly meant to solve temporal models. We will show how we are able to predict topolog-
ical information over time by studying the aggregated networks at every 1" by expressing the
probability that two nodes are connected as a function of 7', while the aggregated structure
gets more and more connected.

31



CEU eTD Collection

2 ANALYTICAL FRAMEWORK FOR HIGHER-ORDER NETWORK MODELS

2.3.1 Higher-order activity-driven model

Simplicial activity-driven model To extend the AD model to account for higher-order
interactions, Petri et al. introduced the Simplicial Activity-Driven (SAD) model [46]. In
many biological and social systems, interactions involve more than two entities, making
simplicial complexes a more suitable representation. The SAD model generalizes the AD
model by allowing interactions to involve multiple nodes simultaneously, forming simplices
instead of simple edges. This approach captures the complex nature of group interactions,
such as collaborations in scientific research or multi-agent interactions in social networks.

The SAD model operates similarly to the AD model but with a crucial difference: when
a node becomes active, it creates a simplex involving m other nodes, forming a higher-
order structure that represents a group interaction. This results in a network composed of
simplices, which can be aggregated over time to study the cumulative interaction patterns.
The model has been shown to capture important structural differences and dynamics that are
not evident in pairwise interaction models, making it valuable for studying processes such
as disease propagation and social contagion.

HOAD model In this thesis, we make use of a similar extended model called the Higher-
Order Activity-Driven (HOAD) model, which focuses on generating hypergraphs instead
of simplicial complexes. While the underlying principles are similar to the SAD model, the
HOAD model uses hyperedges to represent many-body interactions. This approach provides
a more flexible framework for modeling higher-order interactions in various systems.

Formally, the higher-order activity-driven model (HOAD model) is defined as follows.
Each agent ¢ in a population of size N is endowed with a higher-order activity potential
a, = (a(l) al? a(m)) for every interaction order m.

i s Wy g eeey Uy

The activities of the agents are random variables, extracted from distributions

p(a) = (p(a™M), p(a®), ..., p(a'™)),
(m)

which we assume independent. The activity of node ¢ at order m, a; ’, represents the
probability that they engage in an interaction with m other nodes in a certain time-interval
At.

The activity potentials can be measured in empirical data by considering that the activity
(m) (m)

a; ~ 1s proportional to n;

The proper normalization of agm), Z agm) = 1, implies that agm) is equal to the number of

, the number of interactions of order m involving node 7 in At.

interactions of order m involving node 7 in At, divided by the total number of interactions
of any order all nodes are involved in At, agm) = ngm) / Z ngm).

i,m
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Time
Figure 2.1: Illustration of a hypergraph