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Abstract

Uncertainty is an inevitable companion of life in our complex world. It is increasingly be-
lieved that to act effectively under such circumstances, humans and animals rely on approx-
imately probabilistic computation and an internal model that becomes attuned to environ-
mental regularities and can efficiently complement the incomplete sensory observations with
insights distilled from past experiences. However, for efficient behavior, the internal model
must maintain veridical information about its own uncertainty. While there is increasing
evidence that humans and animals are aware of the uncertainty associated with their deci-
sions, the extent of their uncertainty representations is unclear. Specifically, it is unknown
whether they represent uncertainty in a task-dependent manner, solely at the level of de-
cisions, or in a fully Bayesian manner, representing uncertainty just about every aspects of
their internal model. In this dissertation, | address this gap by first arguing for the preemi-
nence of fully Bayesian models in terms of their generalization abilities over the alternative
candidates. Then, | present three studies that clarify different characteristics of human and
animal internal models relevant to assessing the degree to which uncertainty is encoded in

biological internal models.

Chapter 1 provides a normative justification for the use of fully Bayesian representations,
demonstrating their superior data and memory efficiency compared to task-dependent rep-
resentations. | critically review the literature, highlighting the lack of conclusive evidence on
the extent of the brain’s uncertainty representation, and propose experimental paradigms to

address this gap, setting the stage for the subsequent chapters.

In Chapter 2, | present experimental evidence based on a novel behavioural paradigm that
human internal models meet one of the fundamental prerequisites for fully Bayesian mod-
els: they simultaneously represent uncertainties about multiple internal variables. Moreover,
| found that explicit uncertainty reports about a variable (e. g., orientation) are based on
gradually emerging probabilistic perceptual representation of that variable rather than on

other, related variables (e.g., contrast) that can serve as proxies for the sensory reliability.
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In Chapter 3, | use another novel behavioural paradigm and ideal observer analysis to demon-
strate that humans automatically employ complex internal models with multiple variables
and parameters, even in simple decision-situations where such complexity may not seem
necessary. These complex internal models are then updated in a Bayesian manner when
changes in task statistics are encountered, providing further support for the fully Bayesian

brain hypothesis.

In Chapter 4, | propose a novel hybrid experimental paradigm combining neural and behav-
ioral approaches to identify the neural traces of the potential perceptual uncertainty rep-
resentation that are distinct from the representation of uncertainty directly related to the
decision. Next, | demonstrate the practical application of this method to behavioral data
from mice performing an orientation estimation task together with neural activity from their
primary visual cortex (V1) recorded with calcium imaging. This data provides preliminary
evidence that mouse V1 represents perceptual, rather than decision uncertainties, which is
encoded in the temporal activity patterns within a trial, rather than in the spatial activity

patterns across the population.

Together, these results shed a more focused light on the hitherto unexplored extent to which
uncertainty is encoded in the brain and provide a consequential support to the proposal that
complex brains use complex, approximately probabilistic processes and a broad representa-

tion of uncertainties to cope with challenges of their complex and uncertain environment.
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Chapter 1

Normative justification for a broad

representation of uncertainty

Perception is often described as probabilistic inference requiring an internal representation of
uncertainty. However, it is unknown whether uncertainty is represented in a task-dependent
manner, solely at the level of decisions, or in a fully Bayesian manner, across the entire percep-
tual pathway. To address this question, we' first codify and evaluate the possible strategies
the brain might use to represent uncertainty, and argue for the advantages of fully Bayesian
representations. In such representations, uncertainty information is explicitly represented at
all stages of processing, including early perceptual areas, allowing for flexible and efficient
computation in a wide variety of situations. Next, we critically review neural and behavioral
evidence about the representation of uncertainty in the brain agreeing with fully Bayesian
representations. We argue that sufficient behavioral evidence for fully Bayesian represen-
tations is lacking and suggest experimental approaches for demonstrating the existence of

multivariate posterior distributions along the perceptual pathway.

This chapter has been published, and therefore, | use plural pronouns.
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1.1 Introduction

In order to efficiently interact with our environment, we need to evaluate the potential con-
sequences of our decisions. Critically, these decisions are usually based on information that
is limited and ambiguous in several ways. For example, when we choose where to look for
our bicycle at the parking station at the end of the day, we are coping with occlusions by
other similar bikes, low visibility, and incomplete memories about where our bike was left
when we came to work. Therefore, in general, we cannot know with certainty the values of
those variables that are relevant to our decisions, and optimal decision making requires that

we take this uncertainty into account.

Indeed, a large body of evidence indicates that humans, and other animals, make decisions by
representing their uncertainty (Knill and Pouget, 2004; Griffiths et al., 2010; Bach and Dolan,
2012; Ma and Jazayeri, 2014). However, it remains unclear how general a computational strat-
egy it is for the brain to represent and compute with uncertainty in complex environments
characterised by many interacting variables (i.e. arguably just about any real-life scenario). In
particular, it is largely unknown whether the brain represents uncertainty “opportunistically”,
only about the variables that are relevant for the decision at hand, or “constitutively”, about
many variables simultaneously, including ones that are not directly relevant for the current
decision making situation. In the context of our example above, the opportunistic strategy
would only represent uncertainty about the single high-level decision variable (the location
of the bike relative to where we stand). In contrast, the constitutive strategy would represent
uncertainties about several perceptual and other variables that feed into the decision process,
such as the reliability of perceived color in the darkness, the ambiguity of shape information
given partial occlusions within the crowd of bikes, and the precision of our memories about

the layout of the parking station.

The distinction between opportunistic and constitutive representations of uncertainty has
not been explicitly articulated before and is therefore the main focus of this review. We begin
by building on the classical framework of Bayesian decision theory (Jaynes, 1996) to for-

malise the distinction between these representational strategies as task-dependent and fully
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Bayesian recognition models, evaluate their respective theoretical advantages and disadvan-
tages, as well as the empirical evidence that may be interpreted as supporting them. We also
explore different hybrid solutions between these two extreme representational strategies, and
discuss the consequences of each of them for the neural representation of uncertainty. We
then argue that current evidence is insufficient to clearly distinguish between these different
strategies, and propose experimental approaches that are appropriate for identifying their

behavioral signatures.

1.2 Representing uncertainty: the basics

In order to understand the distinction between opportunistic and constitutive representations
of uncertainty, we first take a step back, and briefly discuss why representing uncertainty at
all is relevant for decision making in the first place. The mathematical framework of Bayesian
decision theory provides an answer to this question (Box 1), (Jaynes, 1996). In this framework,
the problem of optimal decision making — and the role of uncertainty in it —, can be formalised
by defining a relationship between a handful of key variables in the observer’s internal model
of the decision making situation (Fig. 1.1, 1st column): the decision variable (in our running
example: expressing the location of the bicycle relative to where we stand now), the utility
(time spent searching for the bike), the action (turning right or left, or going straight), and
the observation (current visual input as well as the memory traces stored from the time when
we left the bike at the station). The specific decision making task is ultimately defined by
the utility function (also called the reward or loss function) that determines how the utility
obtained depends on the decision variable and the action taken. The internal model that de-
fines the relationships between all these ingredients is also called a generative model because
it describes the observer’s beliefs about how the world generates observations and utilities

(the latter contingent upon their own actions).

Critically, as the decision variable itself is not observed directly (it is a latent variable), its
value can only be inferred (based on the observations), and this inference usually carries un-

certainty. This uncertainty is formalised by the Bayesian posterior as the probability that the
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Figure 1.1. Taxonomy of generative and recognition models in decision making.
Blue and green backgrounds correspond to the two components of Bayesian decision the-
ory: the observation and decision processes of the generative model (orange), and the per-
ception and action selection modules of the recognition model (purple), respectively. Note
that ‘perception’ here is broadly construed to include all cognitive processes (e.g. sensory
perception or memory) that have access to information (‘observations’) that is relevant for
the decision making task. Rectangles indicate observed variables (), circles indicate latent
variables (including the decision variable, z) which are part of the generative model and are
probabilistically computed in the recognition model, diamonds indicate non-probabilistically
computed internal variables of the recognition models, hexagons indicate variables specific
to the decision process: the action (a) and the utility obtained (u). The utility function (&)
is shown without a bounding box to indicate that it is a parameter that is constant across
trials or time steps, while other quantities change over time or trials. Left: generative models.
All generative models describe how z is related to x, and how it (exclusively) determines the
u obtained for a given a (as parameterized by /). Simple generative models only have a
single latent variable, z. Complex generative models have multiple latent variables beside
z. Right: recognition models. All recognition models compute action a from observations .
Probabilistic recognition models compute a posterior over z given z (Eq. 1.1), which they
then combine with U to compute a (Egs. 1.2a and 1.2b). The non-probabilistic recognition
model computes a directly from x, without computing a posterior over z, and without explic-
itly representing U. Probabilistic recognition models are further subdivided based on what
other variables are computed probabilistically while computing the posterior over z: simple
models do not have any other variables, complex models do, with fully Bayesian, hybrid,
and task-dependent models probabilistically computing all variables, a subset of them, or
none of them, respectively.

decision variable might take any particular value given the information in the observations
(Eq. 1.1). Thus, computing the optimal action under a given internal model requires 1. com-
puting the Bayesian posterior over the decision variable, and then 2. computing the expected
utility of each available action under this posterior (Eq. 1.2a). The optimal action is simply the
one that yields the highest expected utility (Eq. 1.2b). Straightforward this description may

sound, the corresponding computation is anything but: in fact, both steps have prohibitive
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computational costs in the general case. Borrowing (and slightly extending) the standard
terminology from machine learning (Dayan and Hinton, 1996), we call the algorithmic archi-
tectures that implement (at least approximately) optimal decision making recognition models.
Although, in order to rigorously formalise the concept of uncertainty, we derived the defini-
tion of a recognition model based on a generative model, it is only the recognition model that
needs to be actually implemented in the brain for decision making (though see Hinton et al.,
1995, for potential uses and signatures of generative models also being implemented). A key
question is then what recognition models the brain employs and specifically which, if any, of
their internal variables are computed probabilistically, i.e. such that uncertainty about their

values is represented.

The conceptually most straightforward recognition model is broken down into two discrete
steps that directly correspond to the observation and decision process components of the
generative model: computing the posterior, and choosing the action (Fig. 1.1, 3rd column).
Indeed, these two steps have been suggested to correspond more broadly to the computa-
tions underlying perceptual (and memory; Hemmer and Steyvers, 2009) processes, and action
selection, respectively (Yuille and Bulthoff, 1996; Kérding and Wolpert, 2006). In this case,
the representation of uncertainty is a given: the perceptual module computes a (potentially
approximate) posterior probability distribution over the decision variable. Thus, such recog-
nition models are probabilistic. However, note that, ultimately, the optimal action is just a
function of the observations (Eq. 1.2b). This function could be implemented directly without
having to ever compute explicitly the posterior over the decision variable. In this case, even if
the computation of the optimal action is broken down to several internal steps and quantities,
none of these need to correspond to the decision variable as such, or its Bayesian posterior.

Thus, the resulting recognition model is non-probabilistic (Fig. 1.1, 7th column).

If optimal actions can be computed non-probabilistically, why bother with the costly com-
putation of a posterior over the decision variable at all? Indeed, some of the most successful
deep learning architectures of today do not use probabilistic representations (LeCun et al.,
2015). Yet, there is widespread evidence for uncertainty about decision variables being rep-

resented in the brain (Fiser et al., 2010; Vilares et al., 2012; Walker et al., 2020). This suggests
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Box 1 - Bayesian decision theory

According to the agent’s internal model (Fig. 1.1, 1st column), there is a decision vari-
able, z, of which the value determines how the utility, u, depends on the different
actions they might choose, a (decision process). The exact form of this dependence is
determined by the utility function u = U(a, z). However, z is not directly accessible to
the agent, hence it is a latent variable. Instead, the agent makes observations, x, that
refer to all the information that are available to them at the time of making the de-
cision (observation process). Importantly, the agent must also have some knowledge
about the (potentially noisy and ambiguous) relationship between z and z (Fig. 1.1, 1st
column, arrow connecting z and ).

Given these ingredients, Bayesian decision theory proceeds in two steps to compute
the optimal choice of a. First, the value of 2 needs to be inferred based on . As z cannot
be determined with certainty, Bayes’ rule is used to compute a posterior distribution
that expresses the probability with which z might take any particular value given the
information in :

P(x|z) P(z)

Plelz) = [ P(x|z') P(z') d2’ (1.1)

where P(x|z) (the likelihood) expresses the probability of observing x when z takes
on a particular value, and P(z) (the prior) expresses the overall frequency with which
z is believed to take on any particular value. Second, the utility expected from choos-
ing each action is computed by considering all possible settings of z, computing the
corresponding utilities and then taking the average of these utilities weighted by the
corresponding posterior probabilities:

Ua,z) = /U(a, z) P(z|z) dz (1.2a)
and the action with the maximal expected utility is chosen

a(x) = argmax U(d', z) (1.2b)

a/
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a normative reason for such probabilistic representations. Here we briefly review four such
reasons, each of which implies that the additional computational cost of probabilistic repre-
sentations can be offset by their increased data- and memory-efficiency (i.e. that they can

perform well with less learning and require less memory):

Task-flexibility. The modular architecture of probabilistic recognition models endows them
with great flexibility when a new task is encountered (Houlsby et al., 2013). In this case, the
‘perception’ module of the recognition model can be kept the same, and only ‘action selec-
tion’ needs to be adapted to the new task by incorporating the corresponding new utility
function into it. For example, if one day a car blocks your way to the right at the parking
station, then the action of turning right suddenly yields very low utility no matter where
your bike is parked. Nevertheless, with a probabilistic recognition model, we can keep us-
ing the same perceptual module to compute the relative location of the bike as you have
always done. In contrast, an altogether new non-probabilistic recognition model would need
to be constructed (or learned) whenever the utility function changes, precisely because non-
probabilistic recognition models allow no neat splitting between perception and action selec-

tion.

Information fusion. When information from multiple observations needs to be fused, prob-
abilistic recognition models for each observation can be combined efficiently. This is because
the posterior (or, more precisely, the likelihood; Box 1) over the decision variable they com-
pute is the ‘sufficient statistic’ of the corresponding observation. Information fusion is not
only relevant for classical cases of (multi)sensory cue combination, when the different obser-
vations correspond to different sensory modalities (Ernst and Banks, 2002; Alais and Burr,
2004) or cues (Moreno-Bote et al., 2011) (e.g. depth cues for judging the distance of our bike)
or memory (Kording and Wolpert, 2004) (as when combining our current percept of a bike that
looks like ours in the distance and our memory of where we left our bike), but also for accu-
mulating evidence across successive observations over time (Brunton et al., 2013) (successive
views of the parking station as we walk towards our bike). Optimal sensory cue combination
can be achieved by combining the individual probabilistic recognition models appropriate for

each sensory (or memory) observation (Ma et al., 2006), and optimal evidence accumulation
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can be performed by applying the same probabilistic recognition model recursively (Beck
et al., 2008) (also known as Bayesian filtering (Chen et al., 2003)). In contrast, to achieve the
same performance with non-probabilistic recognition models, different models need to be
constructed (or trained) for each combination of sensory cues that may need to be combined
in sensory cue combination. For evidence accumulation, they would need to have access to

the entire relevant history of observations at once.

Active sensing. Information gathering is often an active rather than a passive process: we
can control our sensors (e.g. move our eyes) so that we receive information that is most useful
for solving a task (finding our bike). The Bayesian posterior over the decision variable, as
computed by probabilistic recognition models, can be directly used to form an objective for
active sensing (Yang et al., 2016a). For example, active sensing can be achieved by actions
whose predicted sensory consequences would leave the least amount of uncertainty about the
decision variable (quantified by the entropy of the posterior), or by actions that would result
in a posterior under which the expected utility (using the optimal action) is the highest (Yang
et al., 2016b). Importantly, for computing the possible sensory consequences of these actions
in both cases, the same generative model of decision making can be extended to include
the effects of active-sensing-related actions on observations (Fig. 1.1). Such a recycling of
resources makes active sensing data-efficient. In contrast, information gathering in non-
probabilistic recognition models implies an extension of the space of possible actions (e.g.
in the case of our bike search, our actions become tuples consisting of which way to look
and then turn) requiring to learn an entirely new recognition model for each active sensing
action. Even worse, the available supervision for information gathering actions in this case
is very sparse and indirect - we make many eye movements while searching for our bike,
these eye movements by themselves are not rewarded, and each of them contributes only
very indirectly to our ultimate success or failure to find the bike. In sum, achieving efficient

active sensing by this method is just altogether impractical.

Learning. In most cases, the recognition model can be improved with experience, such as
learning to distinguish our bike from similar bikes often parked at the same station. However,

this can be a non-trivial task without receiving ground-truth information. For example, if we
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accept occasionally a colleague’s offer of a lift home while hesitating at the station about
the direction to find our bike, we learn neither the true value of the decision variable (where
the bike was), nor the correctness of the action we would have chosen (which way to go).
Thus, there is no obvious way to learn from those occasions - as long as one uses a non-
probabilistic recognition model. In contrast, by using a probabilistic recognition model, one
can still take advantage of such ‘unlabelled’ data for improving the recognition model by
averaging over the possible adjustments that would be appropriate for different values of the
decision variable. Importantly, to weight appropriately the different terms in this average,
the uncertainty about the decision variable (as quantified by its likelihood or the posterior,
Box 1) needs to be taken into account. In other words, probabilistic recognition models are

particularly well-suited for un- or semi-supervised forms of learning.

There are also ways to interpolate between probabilistic and non-probabilistic models in an
attempt to combine the best of both worlds: the data- and memory-efficiency of probabilistic
models on one hand, and the computational efficiency and direct performance guarantees

on the relevant decision tasks of non-probabilistic models on the other (Box 2).

1.3 Representing uncertainty in a complex world

Although the simplest two-step generative model described above succinctly summarizes
the essential elements of Bayesian decision making (Fig. 1.1, 1st column), it belies the real
complexity of the natural environment. In most cases, our observations are generated by
a complex mesh of interactions between a large number of latent variables, of which the
decision variable is but one (Fig. 1.1, 2nd column). For example, our perceived view of the
parking station is jointly determined by a number of features characterizing each individual
bike and car (their make, model, color, accessories, locations, etc.) as well as the lighting

conditions and our viewing angle among other aspects.

In complex environments, of which the internal generative model includes multiple latent

variables, probabilistic recognition models can be further subdivided based on how many
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Box 2 - Between probabilistic and non-probabilistic recognition models

Amortized inference

Definition: Computational resources are shared across subsequent uses of the recog-
nition model. In the context of Bayesian inference, this can be accomplished by treating
latent variables as if they were observed, substituting a previously inferred value for
them.

Machine learning application: Once a non-probabilistic deep neural network has
been extensively trained on some tasks, it can be reused almost entirely (bar the final
one or few layers) in novel but related tasks, such that it can achieve state-of-the-art
performance already after only minimal training on those tasks (Mathis et al., 2018).

Behavioural evidence: “Certainty-equivalent” form of amortisation has been shown
to account for suboptimalities in high-level human probabilistic reasoning (Gershman
and Goodman, 2014) as well as lower level “conditioned perception” effects, whereby
an earlier perceptual discrimination decision biases later perceptual estimates of the
same variable (Stocker and Simoncelli, 2008).

Loss-calibrated inference

Definition: Rather than using general-purpose algorithms to speed up probabilistic
inference, knowledge about the utility (or loss) function specific to the current task is
used for setting up the particular approximate inference algorithm to be used.

Machine learning application: Loss-calibration increases the expected utility of de-
cisions during variational inference (Lacoste-Julien et al., 2011).

Behavioural evidence: A particular form of loss-calibration, called “utility-weighted
inference”, has been shown to account for a number of widely observed, seemingly ir-
rational cognitive biases in human decision making, including the over-representation
of extreme event probabilities (Lieder et al., 2018).

10
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of the latent variables they represent probabilistically. As mentioned, the conceptually most
straightforward, but computationally most ambitious, recognition model is based on a direct,
fully Bayesian inversion of the generative model (Fig. 1.1, 4th column). In fully Bayesian recog-
nition models, the (joint) posterior over all latent variables of the generative model implies
a constitutive representation of uncertainty because uncertainty is represented for variables
irrespective of whether they are directly relevant for the current decision making task (i.e.
whether they are the designated decision variable). At the other — but still probabilistic —
extreme, the recognition model only computes a posterior over the decision variable, but not
over any of the other variables of the generative model (Fig. 1.1, 6th column). Of course,
there may still be multiple internal variables storing interim results of the computations of
recognition, but those need not correspond to the latent variables of the generative model,
and even if they do, no posterior needs to be computed over them at all (e.g. even when
representing the color of each bike in a visual scene, only the single best estimate of each
color is represented, rather than its full posterior.) Thus, in this case, the recognition model
remains task-dependent as it represents uncertainty opportunistically only for the decision
variable relevant for the current task. Finally, there also exists a continuum of intermediate,
hybrid models between these two extremes: these models compute the posterior over, and
thus represent uncertainty about only a subset of latent variables but not all of them (Fig. 1.1,

5th column).

Note that the benefits of probabilistic recognition models enumerated in the previous section
already apply to even the least ambitious of these models, the task-dependent recognition
model. Meanwhile, the computational complexity of inference in a fully Bayesian recognition
model grows exponentially with the number of latent variables in the general case. Thus,
extending our previous discussion, we can ask why bother with the costly computation of
a joint posterior over all (or a large number of) the latent variables? Indeed, the training of
deep neural networks, for example for image classification, usually requires uncertainty to be
correctly represented only in the decision variable (image class label) — if at all —, and can still
lead to human- or even super human-level performance (Krizhevsky et al., 2012). However,
there are indications that the brain may be closer to the fully Bayesian model and represents

uncertainty about sensory as well other variables, and not just the ones related directly to the
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decision (Bach and Dolan, 2012). The normative reasons for following this strategy are based
on the same general trade-off between computational costs and data- and memory-efficiency

that we argued underlay the benefits of probabilistic recognition models:

Task-flexibility. Just as different tasks may differ in their utility function over a particular
latent variable, they may also differ in the identity of the latent variables (or subsets of latent
variables) upon which the utility function depends. For example, it is only in the context
of the specific task of locating our bike that out of all the latent variables characterising
the parking station, it is the location of our bike that happens to play the special role of
the decision variable. Once we find our bike and cycle through the station, suddenly other
variables (the location of the exit, the predicted trajectory of an approaching car, etc) would
subsume the status of the decision variable for choosing our actions (which way to turn the
handle bar). In such cases, when using task-dependent recognition models, separate models
need to be constructed for each of these tasks. A fully Bayesian recognition model is much
more economical in that perception can proceed unchanged, as it constitutively computes
the posterior distribution over all the latent variables, and only action selection needs to be

modified to reflect the new utility function.

Information fusion. As we argued above, efficient information fusion across different ob-
servations (as in sensory cue combination or evidence accumulation) requires probabilistic
representations. Importantly, this efficiency of probabilistic recognition models is only guar-
anteed as long as they represent uncertainty about a sufficiently large set of variables. This is
because the computations underlying cue combination and evidence accumulation can only
be performed efficiently (by a simple combination of individual recognition models for cue
combination, and by simple recursive operations, one observation at a time, for evidence ac-
cumulation) if different observations are statistically independent given the latent variables
about which uncertainty is represented (Clark and Yuille, 2013). However, in complex envi-
ronments, observations are rarely dependent only on the single latent variable that happens
to determine the utility of our actions (i.e. the decision variable). For example, two subsequent
views of the parking station (the observations) across which we need to fuse information to

better infer the location of the bike (the decision variable), will not be statistically indepen-
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dent given the location of our bike, because there are a number of other latent factors which
influence both views (the location of other bikes, lighting conditions, etc.). In turn, condi-
tioning on all these latent variables can make the observations independent. (Sidenote: this
is closely related to the problem of what constitutes an appropriate representation of ‘state’
in sequential decision making tasks, which are an extension of the non-sequential decision
making tasks we are considering here, and which can be formalised as Markov decision pro-
cesses in the realm of reinforcement learning; Sutton and Barto, 2018.) Thus, in these cases,
only recognition models that are sufficiently close to being fully Bayesian will be able to fuse
information efficiently. In contrast, task-dependent recognition models, in which only the
decision variable is represented probabilistically, inherit the same problems that we argued
non-probabilistic recognition models have: information fusion requires a separate recogni-

tion model for each combination of cues, or access to a history of observations.

The advantage of inferring multiple latent variables jointly is particularly well exposed in
tasks that require “explaining away”: a special form of credit assignment in updating beliefs
when an additional observation leads to drastic changes in the posterior. Such updating
occurs when the additional observation reveals that previous observations that have been
attributed to a particular cause should in fact be credited to an entirely different cause. A
classical example for this is when an object that initially looks convex based on its shading
suddenly looks concave when we receive evidence that it is actually lit from below not above
(Adams et al., 2004). This can be implemented naturally in a recognition model that jointly

infers the shape of the object and the direction of light.

Active sensing. Generally, active sensing is a sequential process: it takes multiple adjust-
ments of our sensors to collect adequate information before making a decision. For example,
when looking for our bike at the parking station, we move our gaze to several locations to
reduce our uncertainty about the location of our bike before we decide which way we turn.
Merging information across consecutive observations is precisely the problem of information
fusion we discussed above. Therefore, the very same arguments explain why fully Bayesian

representations are useful for active sensing in complex environments.

13
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Learning. Formally, learning is ‘just’ another type of information fusion, albeit on a slower
time scale than what we considered so far. Instead of fusing information across multiple ob-
servations within a single trial to update the decision variable or other latent variables (as in
evidence accumulation), learning requires fusing information across multiple trials to update
the recognition model itself. Therefore, the same arguments that justify representing uncer-
tainty about latent variables in a recognition model also apply to representing uncertainty
about the recognition model itself (its parameters, structure, or form; Kemp and Tenenbaum,
2008): efficient online learning requires probabilistic representations. As in all these cases un-
certainty needs to be represented about quantities (parameters, etc) in the recognition model
other than the decision variable, such recognition models are not task-dependent any more
by our definition, and are closer to the fully Bayesian end of the spectrum. For example, in
neural networks, a probabilistic representations of synaptic weights (the parameters of the
recognition model) has been shown to be advantageous as it allows optimal adaptation of
learning rates on novel tasks (Aitchison and Latham, 2014) and helps avoiding catastrophic

forgetting across multiple tasks (Huszar, 2018).

Moreover, just as representing uncertainty about the decision variable (and other variables,
as we saw above) can allow efficient information gathering in active sensing, representing
uncertainty about the recognition model can allow efficient information gathering for active
learning, i.e. to choose inputs that are expected to improve the future performance of the
recognition model most (Yang et al., 2016b). On the first occasion when we search for our
bike at the parking station, we might choose a direction that leads to a longer expected
searching time than the optimal choice, and use the extra time to familiarise ourselves with
the station so that to improve our recognition model and thus our future search performance.
Representing uncertainty about the recognition model can help us focus our exploration of
the station where we know least about it. Eventually, once we have little uncertainty left

about it, we can decide to stop exploring altogether.
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recognition
model

implementation

behavioural data

neural data

task-
dependent

DDM

PPC

DNN

psychometric & chronometric

curves of perceptual decisions
(Gold and Shadlen, 2007;
Kiani and Shadlen, 2009)

psychometric & chrono-
metric curves of perceptual
decisions (Beck et al., 2008);

cue combination (quali-

tatively) (Ma et al., 2006)

object recognition and
categorisation performance
(LeCun et al., 2015;
Yamins and DiCarlo, 2016)

decision-related ramping
activity of LIP single cells
(Kiani and Shadlen, 2009;
Shadlen and Newsome, 2001;
Gold and Shadlen, 2007)

Poisson-like variability of
cortical neurons (Ma et al.,
2006); single cell activity
in LIP (Beck et al., 2008)

feature selectivity along
the hierarchy of visual
cortex (Kriegeskorte, 2015)

hybrid

CRP

human categorization
(Griffiths et al., 2007)

fully
Bayesian

belief
propagation

extended
PPC

DDC

sampling

bistable perception (Lep-
tourgos et al., 2020),
hallucinations (Jardri et al., 2017)

cue combination (Moreno-
Bote et al., 2011); multistable
perception (Moreno-Bote et al.,
2011; Gershman et al., 2012)

tight balance between excitation
and inhibition (Deneve, 2005)

anatomy and physiology of
the olfactory bulb (Grabska-
Barwinska et al., 2017)

dopaminergic or hippocampal
activity (Vértes and Sahani, 2019)

various static (Berkes et al.,
2011; Orban et al., 2016; Haefner
et al.,, 2016) and dynamic
(Echeveste et al., 2020) activity
patterns of the early visual cortex

Table 1.1. Compatibility of specific implementations of probabilistic recognition
models with behavioural and neural data. Details of the specific models are discussed in
the main text. As we also note there, implementations appropriate for fully Bayesian recog-
nition models could also implement task-dependent recognition models (but not vice versa).
Thus, data listed here as supporting such implementations (e.g. multistable perception for
sampling) does not necessarily provide support for fully Bayesian recognition models per se.
Experiments providing support for fully Bayesian recognition models are discussed later (see

also Table 1.2).
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1.4 Implementing probabilistic recognition modelsin the

brain

Whether probabilistic recognition models in perception are task-dependent, fully Bayesian,
or hybrid, has important implications for how they might be implemented in the brain. For
example, at the broadest level, fully-Bayesian recognition models must maintain a globally
coherent representation of their latent variables’ joint posterior. This requires that informa-
tion about higher level cognitive variables should have effects on inferences about lower-
level variables, i.e. potentially strong top-down influences on sensory cortical areas (Lee and
Mumford, 2003). There is a large swathe of experimental data on such top-down interactions
(Gilbert and Li, 2013). More specifically, recent studies provided evidence for trial-specific pri-
ors, cued by auditory stimuli, affecting both overt decisions and early visual cortical responses
in a visual perceptual decision making task (Kok et al., 2013; Aitken et al., 2020). While task-
dependent models may not be formally incompatible with such top-down influences, they

also do not make any specific prediction about them.

In the following, for a finer level of distinction, we review previous specific suggestions for
how the brain might represent uncertainty, and group these representations by the kind of
recognition models they may be able to implement. In Table 1.1, we also provide pointers to
some of the key empirical data that have been suggested to support them. We note, however,
that most of these data only provide circumstantial evidence for the corresponding represen-
tations as yet. Thus, more work will be necessary that directly contrasts the predictions of

different representations and compares them to experimental data (Echeveste et al., 2020).

There have been three influential proposals for how task-dependent recognition models might
be implemented in the brain (Fig. 1.1, 6th column): the drift diffusion model (DDM; Gold and
Shadlen, 2007), probabilistic population codes (PPCs; Ma et al., 2006), and deep neural net-
works (DNNs; Kriegeskorte, 2015; Yamins and DiCarlo, 2016). The DDM is a psychological
process-level model of decision making, of which the behavioral signatures and neural under-
pinning have been extensively investigated (Table 1.1). According to the DDM, decisions are

based on gradually accumulating noisy evidence obtained from sensory inputs (Kiani and
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Shadlen, 2009) or memory traces (Shadlen and Shohamy, 2016). Optimal decision making
requires both the accumulated evidence and the time elapsed since the beginning of accu-
mulation in such tasks (Kiani and Shadlen, 2009), such that these two quantities together
form the (sufficient statistic of the) ‘decision variable’, z, in our formulation (Fig. 1.1). Im-
portantly, the evidence accumulated by the DDM is always about a specific decision variable
that is relevant for the current task (e.g. saccade left or right). Therefore, the DDM is a bona

fide task-dependent probabilistic recognition model.

According to probabilistic population codes (PPCs), neural populations encode probabilistic
information in a format that is both easy to read out by downstream areas and allows sim-
ple, biologically plausible neural operations (e.g. linear summation of inputs) to implement
probabilistically optimal processing of such information (Ma et al., 2006; Beck et al., 2008).
As some PPCs were specifically designed to capture hierarchical probabilistic computations
for example in a cue combination task (Ma et al., 2006), they might superficially appear to
be fully Bayesian. Indeed, the neural architecture of such PPCs typically consists of several
(feed-forward connected) layers, each encoding probabilistic information. Nevertheless, in
our classification, they implement task-dependent recognition models because, at least in
their originally proposed form (Ma et al., 2006), all layers encode probabilistic information
about the same single decision variable (its likelihood based on different subsets of observed

variables).

Recently, the most popular recognition models have been deep neural networks (DNNs).
DNNs are typically trained on a given task in an end-to-end fashion by providing (a typi-
cally large set of) example input-output pairs from which these architectures can learn to
generalise and generate the correct output to novel inputs. As such, DNNs are often used -
and certainly construed — as fundamentally non-probabilistic recognition models that gener-
ate their output (the equivalent of a in our terminology) without performing any probabilistic
computations on the way. Nevertheless, when trained with the appropriate (cross-entropy
based) loss function, routinely used for example in image classification tasks, neural activities
in the layer before a (the last hidden layer) come to essentially encode the posterior distribu-

tion of the decision variable z. As this probabilistic representation only emerges at this final
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stage, these DNNs are task-dependent probabilistic recognition models. In addition, even
the probabilistic representation of z can be poorly calibrated in these models, as has been
demonstrated, for example, with so-called ‘adversarial samples’ (Goodfellow et al., 2014). We
posit that this lack of proper calibration in the last hidden layer might be the consequence
of the missing representations of uncertainty in the intermediate layers. Indeed, it has been
suggested that endowing DNNs with more fully Bayesian probabilistic representations (e.g.
by dropout) might improve their calibration of uncertainty on adversarial samples (Smith and

Gal, 2018).

Regarding fully Bayesian recognition models (Fig. 1.1, 4th column), there have been two dif-
ferent classes of neural representations suggested. In principle, each of these neural rep-
resentations is also able to support task-dependent recognition models, but the differences
between them are best exposed when applied to fully Bayesian recognition models. In the
first such representation, neural activities represent parameters or sufficient statistics of the
posterior over all relevant latent variables. One recent example of this class is distributed
distributional codes (DDCs; Vértes and Sahani, 2018). DDCs have been shown to have a
number of computationally appealing properties, in particular when the recognition model
corresponds to a complex hierarchical generative model (i.e. the very setting which moti-
vates fully Bayesian recognition models in the first place, Fig. 1.1, 2nd column) and needs to

be learned in an unsupervised way from experience.

Other examples of parametric neural representations do not attempt to represent the full
joint posterior over all latent variables and instead use a cruder factorised approximation,
in which only the marginal posteriors over individual latent variables are represented (Raju
and Pitkow, 2016; Deneve, 2005; Grabska-Barwinska et al., 2017). Although such “marginally”
fully Bayesian recognition models lose all information about posterior correlations between
latent variables, this simplification also greatly reduces the complexity of neural dynamics
required to implement them based on methods borrowed from machine learning, such as
belief propagation (Raju and Pitkow, 2016; Deneve, 2005) or more general variational approx-
imation schemes (Grabska-Barwinska et al., 2017). Some models in this class can be seen as

extensions of PPCs to the (marginally) fully Bayesian case (Raju and Pitkow, 2016; Grabska-
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Barwinska et al., 2013), inheriting some of their appealing properties, albeit with substantially

more complex neural dynamics.

The other class of fully Bayesian recognition models uses a sampling-based representation
of uncertainty (Hoyer and Hyvérinen, 2003; Fiser et al., 2010). In these models, neural re-
sponses represent the latent variables themselves such that the distribution of neural re-
sponses generated by the network’s dynamics over some time period represents the joint
posterior distribution of the recognition model. As such, these models again approximate the
full joint posterior over all latent variables. There is substantial converging behavioral and
neural evidence for sampling-based fully Bayesian recognition models at least in the early
visual cortex (Table 1.1). Nevertheless, it remains to be seen whether such models apply to
other perceptual domains and brain areas. This will be particularly interesting in settings in
which inference over dynamically changing variables needs to be performed, as the time re-
quirements of sampling may produce unique testable predictions in these domains (Lengyel

et al., 2015).

There is one specific domain where hybrid recognition models (Fig. 1.1, 5th column) have — by
necessity — been proposed in cognitive science. When the generative model includes an infi-
nite number of latent variables, Bayesian inference necessarily needs to focus on a finite sub-
set of these to tractably compute the posterior. This is the realm of non-parametric Bayesian
inference in machine learning (Orbanz and Teh, 2010). Such non-parametric Bayesian mod-
els have been suggested to underlie a number of cognitive processes (Austerweil et al., 2015).
For example, a non-parametric Bayesian inference algorithm (called the “Chinese restaurant
process”, CRP) can be used to infer which out of a potentially infinite number of categories
does each item in a training set belongs to, and what the common characteristics of items
in each category are (Aldous, 1985). Nevertheless, a systematic exploration of hybrid recog-
nition models has not been pursued in cognitive neuroscience. This could be an interesting
avenue for future research because these models have the potential to achieve a useful bal-

ance between performance and efficiency.
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normative advantages

recognition model task-flexibility information fusion active sensing learning

Kording and
. Wolpert, 2004;
probabilistic vs. Whitisligy 21 Lengyel et al.,, 2015; | Paulun et al., 2015; Zylberberg et al,
non-probabilistic Sahani, 2008; Drugowitsch et al., | Yang et al., 2016a 2018; Behrens
P Qamar et al., 2013 2(%16' Van den 0 > et al., 2007
Berg et al., 2017

fully Bayesian vs. | Denison et al., 2018;
task-dependent Lengyel et al., 2015

Table 1.2. Behavioral evidence for probabilistic and fully Bayesian recognition models. The studies providing behavioural sup-
port that the brain’s recognition model is probabilistic (top row) or fully-Bayesian (bottom row) are organized according to the normative
advantage of the probabilistic or fully Bayesian recognition model they verified behaviorally (columns). Below we summarize the evidence
for probabilistic recognition models only, the existing evidence (or lack thereof) for fully-Bayesian recognition models is discussed in the
main text. Task-flexibility. Humans (or monkeys) were found to exhibit a high degree of task-flexibility in tasks requiring generalization
either to new utility functions (Whiteley and Sahani, 2008) or to new stimuli giving rise to posterior distributions that are qualitatively
different from those previously experienced in the task (Qamar et al., 2013). Information fusion. Studies of information fusion showed
that humans can near optimally combine two sources of information. Notably, in several classical cue-combination studies, participants had
plenty of everyday experience with combining the information from the two tested sensory modalities to enhance the absolute accuracy
of their decisions (Ernst and Banks, 2002; Alais and Burr, 2004). Thus, these tasks required only modest generalization, and as such could
be solved with non-probabilistic recognition models. Other studies showed optimal information fusion even when participants needed
to combine two sources of information information that they had never combined before (Kérding and Wolpert, 2004), or a sequence of
observations while the number and informativeness of observations was varied (Drugowitsch et al., 2016). In these cases, having a separate
(non-probabilistic) recognition model for each task condition would be infeasible. Moreover, humans provided reliable uncertainty reports
about their own performance when the difficulty of trials was modulated by multiple task parameters (e.g. the number and contrast of items
in a scene) (Lengyel et al., 2015), suggesting that uncertainty reports were based on a unified representation of uncertainty (i.e. a single
posterior distribution) rather than heuristic estimates corresponding to the different task parameters. Furthermore, in line with the unified
uncertainty representation, the reported uncertainties also reliably predicted stimulus-independent fluctuations in performance over and
above those controlled by the experimentally defined cues (Van den Berg et al., 2017; Koblinger et al., 2019, COSYNE, conference). Active
sensing. Eye movements are almost never rewarded directly as such, but typically depend on participants’ inferences about the currently
viewed stimulus. Thus, they offer an ideal test bed for assessing behavioral signatures of probabilistic representations. For example, while
performing the same visual search task in widely different lighting conditions, humans near-optimally adjusted their eye-movements to
the changed lighting conditions, suggesting that they could efficiently generalize their eye-movement strategies across a wide range of
posteriors (Paulun et al.,, 2015). In a visual pattern categorization task, eye movements were also shown to be optimized for information
search (Yang et al., 2016a). Critically, this eye movement strategy correctly took into account the constantly evolving posterior distribution
that a probabilistic recognition model computed over pattern category (the decision variable) based on (the growing set of) previous fix-
ations in a trial (observations). Learning. As non-probabilistic recognition models provide no principled basis for unsupervised learning,
appropriate stimulus reliability-dependent updating of a recognition model can be taken as a hallmark of the recognition model being
probabilistic. Such optimal updating was reported in a perceptual discrimination task without feedback, in which human participants used
their uncertainty estimates about the stimulus (the decision variable) to correctly update their estimate of the base rate of the stimulus (a
parameter of the recognition model) (Zylberberg et al., 2018). Similarly, in an economic decision task (Behrens et al., 2007), participants
near-optimally adjusted the learning speed of a dynamically fluctuating reward rate (decision variable), despite a lack of direct feedback
about reward rates.

1.5 Behavioural evidence for fully Bayesian recognition

models

The top row of Table 1.2 summarizes the four normative advantages of probabilistic recog-
nition models over non-probabilistic ones that we discussed above and show how these ad-
vantages translate into experimental designs that distinguish between these classes. Our ap-
proach is based on the superior generalization properties (high data and memory efficiency)

of probabilistic recognition models. The critical insight is that while non-probabilistic recog-
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nition models can also learn to solve any decision making task, they can only do so after
sufficiently long training. Thus, a proper test of probabilistic recognition models must create
a situation in which the data- (or memory)-inefficient strategy of non-probabilistic models
would be pushed to its limits. The strongest experimental tests capitalize on the extreme
data efficiency of probabilistic models allowing one-shot generalization, previously investi-
gated under the rubric of “Bayesian transfer” (Maloney and Mamassian, 2009). In addition,
Table 1.2, top lists other, more subtle experimental tests that can still provide supporting ev-
idence, based on the data and memory efficiency of probabilistic recognition models. While
there have been previous proposals for the criteria that such experiments must meet (Mal-
oney and Mamassian, 2009; Ma and Jazayeri, 2014), our approach based on normative prin-
ciples allowed us to extend these proposals to other kinds of experiments that had not been

considered in this context before.

Analogously to the probabilistic vs. non-probabilistic distinction, we can also use the nor-
mative advantages of fully Bayesian vs. task-dependent recognition models to suggest ex-
perimental strategies for distinguishing these in behavioral measurements (Table 1.2, bottom
row). As a disclaimer, we note that the experimenter can never have perfect knowledge about
which latent variables constitute the internal generative model of the subject, and therefore,
behavioral tests are insufficient to distinguish between fully Bayesian and hybrid recogni-
tion models. Nevertheless, by demonstrating that participants represent the uncertainty of
latent variables other then the decision variable, one may be able to exclude task-dependent

recognition models.

In general, there is a basic experimental criterion that needs to be met regardless of the
specific normative advantage we aim to utilize: we need to use complex stimuli that are
characterized by multiple latent variables that differ in the level of (un)certainty with which
they can be inferred. Without this across-variable diversity in uncertainty, one cannot exclude
the possibility that participants summarize the uncertainty of the whole stimulus in a single

value.
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Task-flexibility. Given the constitutive uncertainty representation of a fully Bayesian recog-
nition model, it can rapidly switch between utility functions that treat different latent vari-
ables as the decision variables. This can be tested in a sequential manner by making each
latent variable the decision variable, one-by-one, by changing the utility function of the task
across the trials. There is, however, a caveat of this method, that once the identity of the
decision variable is revealed, a task-dependent recognition model is sufficient to solve the
task. Nevertheless, this problem can be eliminated by revealing the identity of the decision
variable only after the stimulus presentation, a typical strategy in multi-item working mem-
ory tasks (Ma et al., 2014). Multi-item working memory tasks represent a special case of this
approach in which separate latent variables correspond to distinct items in a multi-element
visual scene, and the identity of the queried item is only revealed once the stimulus disappears
(typically after a delay period). Despite the widespread use of working memory experiments,
only a small fraction of them is appropriate for identifying probabilistic recognition models
at all (Van den Berg et al., 2017; Denison et al., 2018; Lengyel et al., 2015), and even within this
smaller set of studies, we are only aware of two which were appropriate for distinguishing
fully Bayesian from task-dependent recognition models (Denison et al., 2018; Lengyel et al.,
2015). In these studies, the uncertainties associated with different items within the same
scene were systematically varied by their contrast (Lengyel et al., 2015) or by an extraneous
attentional cue (Denison et al., 2018). The representation of uncertainty about the queried
item was assessed directly from participants’ uncertainty reports (Lengyel et al., 2015; Deni-
son et al., 2018), or indirectly from their categorization decisions (with non-trivial category
boundaries, thus requiring an appropriate representation of uncertainty about stimulus ori-
entation; Denison et al., 2018). Both studies provided evidence for participants’ simultaneous

representation of probabilistic information about multiple items in a scene.

The main drawback of the method used in typical working memory experiments is that it tests
the (probabilistic) representation of latent variables (items in scene) one-by-one. Therefore,
it can only provide evidence for the representation of the marginal posterior distributions of
individual latent variables, not a full joint posterior over all of them. Testing the representa-
tion of joint posteriors would require complex utility functions that depend on more than a

single latent variable. Spatial tasks, in which latent variables correspond to different spatial
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dimensions rather than different items, seem a natural choice for this. Indeed, humans have
been shown to be able to integrate their uncertainty with complex utility functions in such
tasks (Maloney et al., 2007). We suggest that adapting this approach to the study of fully

Bayesian recognition models is a promising avenue for future research.

Information fusion. An important advantage of fully Bayesian recognition models over
task-dependent ones is that they can efficiently fuse information across observations that
are not independent given the decision variable. In order to experimentally test this, there
need to be decision variable-independent correlations among observations due to additional
latent variables in the task’s generative model. In the domain of motor control, it has been
argued that not only the state of the environment (decision variable) but also that of the
body (additional latent variable) determine motor errors (observations), (Berniker and Kord-
ing, 2008). Critically, just as the state of the environment changes continually so does the
state of the body, thus creating correlations across the sequence of motor errors that we ex-
perience, requiring a joint probabilistic representation of environmental and body state for
optimal behavior. Indeed, a fully Bayesian recognition model jointly inferring both latent
variables successfully accounted for behavior in a variety of motor adaptation experiments
(Berniker and Kording, 2008, 2011). Nevertheless, without explicitly investigating how well
alternative models might be able to fit the data, the possibility of task-dependent recognition

models cannot be fully excluded.

Interestingly, this kind of information fusion has not been exploited more generally to test
for fully Bayesian recognition models. We suggest that future experiments could investigate
information fusion in paradigms in which the decision variable (e.g. the color of a different
object on each trial) needs to be estimated (e.g. based on observations of reflected light from
the surface of the object) in the presence of non-decision (“nuisance”) latent variables that
have predictable temporal correlation structure across trials (mimicking e.g. slowly changing
lighting conditions across the day). A key manipulation would be providing extra information
about the nuisance variable (e.g. by revealing the color of the lighting source) on some trials.
Solving such tasks successfully requires both dynamical inference over the nuisance vari-

able and explaining away between the nuisance and decision variables, which taken together
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implies performing joint inference over both variables — something that a task-dependent

recognition model only inferring the decision variable could not achieve.

Active sensing. Just as in the case of passive information fusion, there can also be deci-
sion variable-independent co-variation across actively selected observations, which in turn
can depend on nuisance variables. If these correlations modulate the informativeness of ob-
servations about the decision variable, then the active control of the sensors (presumably
optimizing information about the decision variable) can benefit from representing the un-
certainty of these nuisance variables. Although, once again, we are not aware of using such
an active sensing approach to studying fully Bayesian recognition models, we suggest that
it could be a fruitful future research direction. For example, the visual pattern categorization
experiment used to study active sensing by (Yang et al., 2016a; described in Table 1.2), could
be extended such that correlations across observations (pixels of an image) not only depend
on the decision variable (stripy vs. patchy pattern, respectively defining the fall-off of spatial
correlations between pixels to be longer in one direction than the other, or to be isotropic)
but also on a nuisance variable (e.g. wavelength or spatial scale) that is not directly relevant
for the task, but still influences correlations among observations. In this case, active sensing
eye movements can benefit from inferring this nuisance variable (together with the decision

variable), and this benefit should lead to behaviorally identifiable signatures.

Learning. As we saw previously, when learning needs to proceed unsupervised, the optimal
adjustment of model parameters depends on the posterior distribution of the decision vari-
able. The more accurately the recognition model approximates this posterior distribution,
the more efficient learning will be. Thus, the efficient information fusion of fully Bayesian
recognition models that improves inferences about the decision variable by also representing
uncertainty about other latent variables (see above) should also improve unsupervised learn-
ing. Once again, this advantage of fully Bayesian recognition models has not been used to
design specific experiments, although it could potentially reveal deep connections between

the representation of uncertainty and learning.
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1.6 Conclusion

In contrast to distinguishing probabilistic from non-probabilistic recognition models (Ta-
ble 1.2, top), there is a notable paucity of behavioural experiments studying the fully Bayesian
vs. task-dependent distinction (Table 1.2, bottom). This is not surprising given that this dis-
tinction has so far attracted little attention even at a conceptual level. The goal of this review

was precisely to fill this gap.

First, we discussed a spectrum of possible recognition models with different uncertainty rep-
resentations that can all compute optimal decisions in a given task, albeit at very different
computational, data and memory costs. We argued that in this respect, fully Bayesian recog-
nition models stand out with their superior data and memory efficiency, which allows for
efficient generalization across a wide range of tasks and observation conditions. Given the
parsimony of the hypothesis, it seems appealing to assume that general-purpose human and
animal brains implement fully Bayesian recognition models in order to flexibly use the lim-
ited amount of experience they may have with any one task. Although there are neurally
plausible implementations of fully Bayesian recognition models that can explain a number of
neurophysiological observations, the available evidence is not conclusive and, ultimately, be-
havioral evidence will also be necessary to establish whether the recognition models the brain
implements are task-dependent or closer to being fully Bayesian. Therefore, in this chapter,
we organized the normative benefits of probabilistic and, more specifically, fully Bayesian
recognition models from the perspective of the key cognitive advantages they offer (task-
flexibility, information fusion, active sensing, learning). This allowed us to establish a set of
experimental criteria that is suitable for distinguishing task-dependent and fully Bayesian

(or hybrid) recognition models.

In the following chapters, guided by these experimental criteria, | will explore the extent
to which the brain’s recognition model represents probabilities. In Chapter 2, building on
the concept of task-flexibility, | will examine whether the simultaneous representation of
multiple marginal posterior distributions observed in working memory is already present in

perception, and if so, what processes shape these representations. In Chapter 3, | will test the
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probabilistic nature of implicit learning by investigating human decision-making in complex
dynamic situations with multiple internal variables of the task. In Chapter 4, | approach the
question from a different direction by introducing a novel hybrid approach and combining
behavioral and neural data analysis of mice to search for neural traces of perceptual poste-
rior distributions, distinct from the decision variable’s posterior. Finally, in Chapter 5, I will
conclude the findings regarding how the brain’s recognition model manages uncertainty and

propose potential future directions for further investigation.
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Chapter 2

Uncertainty representations beyond the

decision variable

| found that explicit uncertainty reports consistently reflected the manipulations of difficulty
across the three stimulus features and remained predictive of accuracy even when the mean
effect of stimulus features was factored out. Furthermore, the explicit uncertainty reports
became increasingly predictive of estimation accuracy as presentation time became longer.
| analyzed the data within the framework of sequential sampling models (SSMs). The mod-
elling allowed me to distinguish between whether uncertainty is directly encoded in the per-
ceptual representation or inferred from proxies provided by the stimulus features. | confirmed
the generality of my method using two separate versions of SSMs — noisy evidence accumu-
lators and probabilistic samplers. My experimental findings were in line with the behavior
of SSMs that utilize genuine probabilistic perceptual representations rather than cognitive
proxies for assessing uncertainty. Notably, as contrast in our trials was manipulated at the
level of individual items, my results imply that perceptual uncertainty during such tasks is
encoded at the item level, offering a more nuanced representation of uncertainties beyond a

mere summary statistic of overall uncertainty.
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2.1 Introduction

As discussed in detail in the introductory chapter, representing all latent variables of inter-
est to the brain with their uncertainty is particularly useful for data and memory efficiency.
However, the growing evidence supporting the existence of probabilistic representations in
the brain concerns almost exclusively the decision variables of the task. The technical dif-
ficulty of measuring the representation of other types of variables (and parameters) of the
internal representation has left the nature of these other representations largely unexplored.

The present chapter aims to fill this gap.

Most studies testing the hypothesis of probabilistic decision making — whether focusing on
the optimal computation (Kérding and Wolpert, 2004; Zylberberg et al., 2018) or utilization
(Whiteley and Sahani, 2008; Qamar et al., 2013) of the decision variable — have leveraged the
direct measurability of the decision variable’s representation. In contrast, directly measuring
the representation of variables other than the decision variable (e.g. perceptual variables) is
typically not feasible and this makes the testing of these representations complicated. How-
ever, there are exceptions, for example those working memorys (WM) experiments that use
visual stimuli with multiple items, each with a unique visual feature (perceptual variable),
and only reveal some time after the stimulus offset which item was the “target” whose visual
feature (decision variable) needs to be recalled. In these tasks, the identity of the decision
variable is unknown to participants during the formation of perceptual representation. By
converting one of the perceptual variables into the decision variable only after the stimulus
presentation is over, it becomes possible to test whether this variable was encoded probabilis-
tically from the outset before it become the decision variable. In this study, | took inspiration
from these WM experiments and developed a perceptual (orientation) estimation task with
exactly such a structure. My task contained stimuli with multiple oriented items in each trial,
and the target item’s identity was revealed only after the presentation of the stimulus was
completed. The participants task was then to report their best estimate of the target item’s
orientation (decision variable) and their subjective uncertainty about this estimate. To avoid
confusion, here | note that although mine is an estimation task, throughout the chapter |

will sometimes refer to the orientation of the target item as the decision variable, and con-

28



CEU eTD Collection

sequently | will refer to the estimation process as decision making, in order to be congruent

with the terminology of the rest of the thesis.

To test the core hypothesis that uncertainty is represented at the level of individual items, it
was necessary to modulate task difficulty at this granular level, thereby making the individ-
ual items’ impact on uncertainty identifiable. | achieved this by independently adjusting the
contrast of each item within the same display. Similar item-specific stimulus manipulations
have been used in earlier working memory (WM) studies. These studies successfully demon-
strated that both humans (Denison et al., 2018; Yoo et al., 2021) and animals (Devkar et al.,
2017) take into account item-specific WM uncertainty in their decisions. However, my study
focused on perceptual rather than WM representations and this led me to diverge from the
traditional WM paradigm in two key ways. First, | completely eliminated the delay between
the stimulus offset and the exposition of decision variable (the target item’s identity), which
is typical in WM tasks (= 1 sec or more). By testing the nature of the representation right
after the end of stimulus presentation, | potentially reduced the involvement of WM in the
decision process. Second, to gain a deeper understanding of the nature of the subject’s per-
ceptual representation, | gathered information on its temporal evolution by manipulating the
stimulus presentation time. This manipulation allowed me to test whether the formation of
the perceptual representation is instantaneous or requires time, and if the latter is true, ex-
actly what processes take up time. In my study, | opted for using static stimuli — for which all
relevant information is present at the moment of stimulus onset — rather than dynamic stim-
uli, e.g. random dot motion patterns. This is because collecting information about relevant
dynamic variables such as speed or direction of motion, by definition, requires time due to the
physical constraints of the stimulus and this could be confounded with time requirements of

the underlying general mechanisms of perceptual processing.

Although my paradigm is suitable for testing the perceptual representation at the level of
individual items, to draw meaningful conclusions about the item-level uncertainty represen-
tations, it is crucial to first confirm that the perceptual representation is, indeed, probabilis-
tic. For this, | must rule out the possibility that uncertainty reports are based on the value of

other nuisance variables that affect the quality of representation rather than on the percep-
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tual representation itself. For example, the observed value of the target’s contrast provides a
reliable proxy for the accuracy of orientation representation, which can potentially be used
to provide sensible uncertainty reports without having a truly probabilistic perceptual repre-
sentation of orientation. There have been two distinct approaches in the literature to address
such confounds. The first approach builds on the idea that a proper representation of uncer-
tainty should act as a common currency between distinct stimulus manipulations, thereby
naturally using a common scale to express the expected effects of these manipulations on
accuracy (De Gardelle and Mamassian, 2014; de Gardelle et al., 2016). In the absence of in-
trinsic uncertainty representations, it would require considerable cognitive effort to learn
the appropriate mapping between individual proxies and their combinations to the quality
of the representations, which might even be intractable for the large number of latent vari-
ables needed to describe everyday decision situations. Hence, demonstrating that equal-sized
changes in accuracy, caused by two or more distinct stimulus manipulations, result in equal-
sized changes in reported uncertainties — thus putting these manipulations on a common
scale — would bolster the assumption that uncertainty is indeed properly represented. The
second approach posits that a proper uncertainty representation should also reflect variabil-
ity in the quality of representation that is independent of the stimulus — variability that is
present even if the same stimulus is presented multiple times (Ma, 2012; Honig et al., 2020).
This variability might originate from the fluctuation of internal processing, e.g. due to at-
tentional fluctuations, in which case this approach is essentially equivalent to the common
scale approach, by extending it to include not only the effect of stimulus manipulations but
also those of internal states to which the experimenter may have no access (at least when
attention is not experimentally modulated as in Denison et al., 2018). To be comprehensive, |
employed both approaches here. On the one hand, | used a total of three nuisance parameters
to control task difficulty: contrast, presentation time, and set size (number of items simul-
taneously presented in a display). On the other hand, each stimulus was presented multiple

times to the participants to assess stimulus-independent fluctuations in behaviour.

Importantly, manipulating presentation time allowed me to fit process-level computational
models to the potentially time-dependent behavioural performance of the subjects. These

models, part of the sequential sampling family (Forstmann et al., 2016), explained perceptual
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processing in terms of the gradual accumulation of temporally fluctuating evidence samples.
The models varied along two dimensions: the type of information represented by the samples
and the extent to which uncertainty judgements were aided by proxies. The samples could ei-
ther provide noisy information about a point estimate (e.g. drift diffusion model; Ratcliff and
McKoon, 2008) or act as probabilistic samples representing the histograms of an entire pos-
terior distribution (Fiser et al., 2010). These samples were then evaluated by ideal observers,
which relied on proxies to varying extent to infer the uncertainty of the target orientation
estimate. At one end of the spectrum, the observer neglected the samples altogether, basing
its uncertainty judgments entirely on proxies (Fig. 2.1, first pink arrow), assuming a perfect
mapping of proxies to uncertainties. In this scenario, the recognition model might still be
probabilistic based on our definition (depending on how well it generalizes to novel stimuli),
as it provides meaningful uncertainty reports, but the probabilistic computation occurs only
at the decision phase and thus it is entirely task-dependent, with no uncertainty evaluated
(only proxies encoded) at the perceptual phase. Importantly, such a model lacks information
about potential proxy-independent fluctuations in the quality of perceptual representations,
and is potentially very fast compared to the sampling-based models, as only point estimates
of the proxies need to be encoded. At the other end of the spectrum, the ideal observer
bases its uncertainty judgments entirely on the samples (Fig. 2.1, second pink arrow). In this
case, the samples carry information about the quality of perceptual representation, which, if
item-specific, makes the recognition model (at least up to a certain extent) task-independent.
This perceptual representation is inherently time-dependent — more samples lead to a more
accurate representation — and as | will show, it improves both the estimation accuracy and
the reliability of uncertainty judgments over time. Finally, there is an in-between model
that primarily relies on samples but takes advantage of proxies to enhance the quality of the
ideal observer’s inference, particularly in situations with a small number of samples (Fig. 2.1,
second and third pink arrows jointly). Initially, this model leans more heavily on proxies,
gradually shifting to rely more on the samples as more time passes. Importantly, this model

is again task-independent, although it is optimized through clever “proxy-based” priors.
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Figure 2.1. Potential processes behind the cognitive reports. The sensory input (orange box)
contains information about both the decision variable (orientation) and the nuance variables (e.g.,
contrast), which contribute to forming the perceptual representations (blue boxes). (Although orien-
tation and contrast representations are depicted separately for clarity, they may not be as distinct
in reality. This distinction only serves to illustrate the role of proxies here.) In terms of cognitive
reports (green box), the orientation estimate is derived from the (sample-based) perceptual represen-
tation of orientation, but the uncertainty judgement is not necessarily so (pink arrows). Uncertainty
judgements may rely entirely on proxies (first arrow), or alternatively, it could be inferred from the
perceptual representation of orientation (second arrow), provided it contains probabilistic informa-
tion. This inference could be enhanced by the use of proxies (third arrow).
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| conducted extensive simulations with all model variants and compared the synthetic behav-
ioral patterns to the experimentally measured human behavior to reveal the nature of human

uncertainty representations.

2.2 Sequential sampling models

To understand how uncertainty representations are formed and what information they rely
upon, | turned to Sequential Sampling Models (SSMs), the dominant process-level models of
perceptual decision making (Gold and Shadlen, 2007; Forstmann et al., 2016). These models
have been successful in explaining the time dependence of decision accuracy and subjective
confidence reports (Kiani and Shadlen, 2009; Kiani et al., 2014) and, by considering norma-
tive factors, they could elucidate the distribution of reaction times in a wide range of con-

ditions (Drugowitsch et al., 2012). Moreover, recently these models have also been proposed
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as suitable models for working memory, capturing its capacity limits in tasks similar to my

experiment (Schneegans et al., 2020).

In order to keep my model-based analysis general, | tested two fundamentally different
classes of SSMs that attribute sample variability to different causes: either to the presence of
noise both in the external sources and in the internal sensory processes (Ratcliff and McKoon,
2008; Shadlen and Kiani, 2013), or to the stochastic nature of the approximate Bayesian com-
putations that the brain is assumed to perform (Fiser et al., 2010; Orban et al., 2016; Pitkow,

2016).

These models enabled me to generate specific predictions regarding how certainty correlates
with the accuracy of perceptual estimates. | tested three variants of each model, differenti-
ated by the extent to which they rely on proxies for certainty computation. By comparing
the predictions of these models to human behaviour, | was able to assess whether humans
employ probabilistic perceptual representations that contain information about their own re-
liability, or if they merely rely on proxies to estimate the reliability of their non-probabilistic

perceptual representations.

2.2.1 Noise model (classical evidence accumulation)

In traditional SSMs, samples carry noisy pieces of evidence about the decision variable. By
accumulating multiple independent samples, the noise-related uncertainty can be effectively
reduced and eventually eliminated over time. In my model, to be consistent with the experi-
mental paradigm, samples carry information about the perceptual variables, but | only model

the particular variable that later becomes the decision variable.

At equal time intervals, N independent evidence samples (Z,, n € {1,2,..., N}) about the
true stimulus orientation (x) are drawn from a circular normal (von Mises) noise distribu-
tion centered on the ground truth (Fig. 2.2A, left side). This distribution is characterized by

its circular precision (pg) that varies from trial to trial expressing the natural variability of
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uncertainty and the effect of stimulus features:

Eo ~ vM(z, ps) 2.1)

(Note that | use an unconventional notation here, parameterising the von Mises distribution
by its precision rather than its concentration, see the conversion in Eq. A.9). These sam-
ples constitute the noisy sensory representation. A hypothetical downstream ideal evidence
accumulator (IEA), acting as the ideal observer of the evidence samples, accumulates these
samples and, based on the generative model of the samples (Fig. 2.2B, left side, without gray

part), computes the posterior distribution of the target orientation (Fig. 2.2C, left side):

Plx | #1y) o P(z) [[P(@n | ) (2.2)
~Pla) [dpsPlos) [ M2 . ps) 23

n=1

(For the full expression, including all the potential variables of the generative model, including
stimulus strength, see the Appendix, Section A.2.1.) | refer to this distribution as the (poste-
rior) predictive distribution of the IEA to avoid confusion with the perceptual posterior that
will be introduced later at the description of the Signal model. | assume that this predictive

distribution forms the basis of explicit uncertainty reports.

Importantly, in the Noise model, all the IEA’s uncertainty stems from the noisiness of the
samples. Since this uncertainty can, in principle, be completely eliminated over time, it is a

reducible form of uncertainty.

2.2.2 Signal model (probabilistic sampler)

Sampling-based probabilistic models can be seen as special versions of SSMs (Lengyel et al.,
2015). In the probabilistic sampling model, it is the perceptual posterior that is stochastically

represented by the samples, in such a way that the histogram of samples approximate the
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A SEQUENTIAL SAMPLING MODELS
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Figure 2.2. Sequential sampling models of perception. A. Graphical comparison of the noise
model (gray) and the signal model (orange). In the noise model, the sampling distribution is centered
on the true target orientation of the stimulus (green), while in the signal model, the true target ori-
entation acts as if it was also sampled from the perceptual posterior. B. Graphical representation of
the sample generating processes. (For the signal model, only the variables that differ from the noise
model are labeled.) Gray arrows indicate the potential presence of proxies — additional observations
of nuisance variables beyond the orientation samples—that assist in inferring the posterior precision.
C. The (posterior) predictive distributions computed by the downstream ideal evidence accumula-
tors. In both models, the predictive distributions become narrower with increasing sample size. In the
noise model, the distribution converges to a Dirac-delta distribution (infinitely narrow distribution)
centered on the ground truth, eliminating all uncertainty in the orientation estimate. In the signal
model, it converges to the finite precision perceptual posterior, indicating an irreducible part of the
uncertainty that cannot be eliminated by further sample accumulation.
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actual (and generally intractable) posterior. Thus, sample variability serves as a signal — hence

the name —, encoding the precision of the posterior, rather than being mere noise.

In our model, the perceptual posterior of the stimulus orientation is a von Mises distribution
parameterized by its mean (ug) and precision (pg), both of which vary from trial to trial,
expressing the natural variability of uncertainty and the effect of stimulus features (Fig. 2.2A,
right side). At equal time intervals, an independent probabilistic sample (Z,,) is drawn from

this posterior:

jn ~ VM(,LLS: PS) (24)

Importantly, due to the nature of probabilistic representations, the true stimulus orientation
acts as if it was just another sample drawn from this posterior (Fig. 2.2A, upward pointing

orange arrow):

T~ VM(MS? pS) (25)

To put the Noise and Signal models on equal footing, here again, an IEA, which knows the
generative model of the samples (Fig. 2.2B, right side), is assumed to compute the (posterior)

predictive distribution of target orientation given the samples (Fig. 2.2C, right side, without

gray part):
N
Pz | #1y) o< Pla) [[ P(@n | ) (2.6)
n=1 N
= P(@) [dps Plos) [ams Mipsizps) [[Mlainseps) @)

n=1
(For the full expression, see the Appendix, Section A.2.1.) This distribution forms again the

basis of decisions.

In contrast to the Noise model, just one part of the total uncertainty is reducible. This re-
ducible uncertainty arises because a finite number of samples cannot capture perfectly an

underlying distribution. The remaining uncertainty, controlled by ps, is irreducible (Fig. 2.2C,
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right side), and its presence is precisely what makes probabilistic perceptual representations

desirable.

2.2.3 Comparing the two SSM models

The main difference between the two SSM approaches can be summarized neatly using the
Bayesian encoding-decoding terminology (Zemel et al., 1998; Lange et al., 2023). In both
models, the IEA acts as a Bayesian ‘decoder’, performing optimal perceptual inference based
on the true generative model of the observed samples. However, in the Signal model, the
samples themselves ‘encode’ Bayesian posteriors, whereas in the Noise model, the samples

encode only a point estimate, albeit noisily.

2.2.4 Proxies for inference

In both the Noise and Signal models, | assume that presentation time controls the number of
samples (V) accumulated during stimulus presentation, while contrast and set size determine
ps, the precision of the sampling distribution (at least in expectation). | refer to the combined
effect of the last two factors as stimulus strength (y € [0, 1]). The IEAs are assumed to fully

observe the sample number (V) but not necessarily stimulus strength.

In both models, pg defines the reliability of the individual samples about the ground truth

(t)

target orientation (z*). In a given trial, t, py” is inferred based on the empirical sample distri-

bution (fgt)N) and the (potentially noisily observed) stimulus strength (7®). This knowledge is
incorporated in the computation of the posterior predictive distribution (Eq. 2.3 and Eq. 2.7).

The predictive distribution, now including ¢, can be expressed as follows:

Po |50 ") = [a0 P (a2 00) (o 175,57) (28)

x [as (a2 ) (50 16) P(AV159) 29
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This formulation shows that, in the large sample limit, §) has minimal influence on the
predictive distribution because 5:% already provides strong evidence about pg). However, in
the low sample limit, 7 becomes more critical. In the extreme case of having only a single
sample, and when pg is independent of z, *) serves as the only trial-specific information
about p(St). Interestingly, in this case, if y(t) wasn’t observed at all, there would be no variability
in the shape (just the position) ofP(a: ] 55%, g@)) = P(m \ :1:'@) across trials. Intuitively,
the IEA’s uncertainty should be reflected in the shape of the posterior predictive distribution,
therefore if its shape remains constant, the model’s uncertainty will also stay constant across
trials, even though its estimation accuracy is still be modulated by ). Thus, when the

sample size is small, j*) serves as a useful proxy for estimating the i dependence of the IEA’s

accuracy.

| developed three different base versions of the IEA model, each corresponding to varying

degrees of reliance on proxies:

1. Proxy-only (no inference): This model relies solely on proxies, not accounting for
the variability of samples to estimate p (or the IEAs predictive distribution). In this
case, only the stimulus-specific prior mean is taken into account for making certainty

reports (Fig. 2.3F leftmost image)

2. IEA without proxies: This model does not observe the stimulus strength variable (y)
at all (Fig. 2.2B models without the gray arrow), so it cannot use it as a proxy for pg,

and the IEA needs to rely on a stimulus-agnostic pg prior (Fig. 2.3C leftmost image).

3. IEA with proxies: This model fully observes stimulus strength (Fig. 2.2B models with
the gray arrow, which, in this case, expresses an identity relation between y and v).
This knowledge puts stimulus-specific constraints on the shape of the pg prior (Fig. 2.3E

leftmost image).

Besides the three base models, there could be a range of models between version 1 and 2
in which stimulus strength is imperfectly observed (or observed with noise). In these cases,

y is modelled as being drawn from a noise distribution (see, Methods) that depends on the

38



CEU eTD Collection

true stimulus strength and a single ‘observedness’ parameter, A, which interpolates smoothly
between the fully unobserved (A = 0, version 1) and fully observed (A = 1, version 2) stimulus

strength scenarios.

2.2.5 SSM predictions

Model simulation

| simulated the behavior of each variant of the Noise and Signal models at different presen-

tation times, i.e. samples sizes (IV), and stimulus strengths (y € [0, 1]).

Generative model of the samples: In each simulated trial, the true target orientation, z*,
was fixed to 0° (unbeknown to the model, thus without loss of generality). The precision of
the sampling distribution, pg, was randomly drawn from a Beta distribution centered on the

stimulus strength, y:

ps ~ Beta(y- K (y), (1 —y)  K(y)) (2.10)

such that the variance (v) of the distribution was kept fixed across all stimulus strengths:

K(y)ZM—l (2.11)

In the Noise model, the mean of the sampling distribution, ug, was set to equal z* (i.e., 0°).
In the Signal model, us was drawn from a circular normal distribution centered on z* with

precision pg:

ps ~ vM(0, ps) (2.12)

Next, N independent samples were drawn from the sampling distribution:

i‘lzN ~ VM(MSMpS) (213)
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and a noisy observation of the stimulus strength was generated:
g ~ Beta (u(y, A), () (2.14)

where

Py ) = Ayt TSN ) = (1 AP (215)

The \ parameter governs the observedness of y. When A = 1, the observation is noiseless
(¥ = y), meaning that the stimulus strength is perfectly observed. When A = 0, the stimulus
strength is not observed (g ~ Unif(0, 1)), so 4 contains no information about y. Intermediate
values of A\ smoothly interpolate between these two extremes, such that the variance is y

independent.

Behavioural reports: The orientation estimate, y, was always the sample mean:

= %an (2.16)

which equaled the mean of the IEAs’ posterior predictive distribution (see Appendix, Sec-

tion A.2.1), due to the flat orientation prior (matching the experimental distribution).
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The certainty judgement depended on the model variant:
1. For the IEA models, with or without proxy, it was the expected cosine error under the

I[EAS’ predictive distribution:
p= /dx cos(x — p) P(x|Z1.n, T) (2.17)

The solution for this integral, across different models, is provided in Appendix Sec-

tion A.2.1.

2. For the proxy-only variants, it was assumed that the model knew (e.g. from previous
experience) the expected cosine error’s (p) dependence on proxies (y) and the sample

number (N):

p= /de cos(e)P(e | g, N) (2.18)
where

e=1"—pi (2.19)
and used this p to make a certainty judgment.

To increase the predictions’ generality, | introduced a potential noise to the uncertainty re-
ports, which could deteriorate the accuracy of uncertainty estimates. Noisy certainty reports

were sampled from a Beta distribution centered on the noiseless certainties:

Proisy ~ Beta(p ¢, p(1—()) (2.20)

(now, parameterized by its mean and variance) where ( is the parameter that defines the

magnitude of noise. Later on, | denote the noise on a given trial with €, which is simply

Pnoisy — P-
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Evaluation of the model performance

| used the accuracy metric to characterize the performance of the model and later of the
participants (Fig. 2.3B), which is defined as the average cosine distance between the true

stimulus orientation, 2*, and the IAE’s estimate, 11, computed on some subset of trials (7):

1
accuracy = Z cos(py — xy) (2.21)
teT

Data analysis

To find qualitative differences between the model variants, | examined the relationship be-
tween their reported certainty and their measured accuracy in the simulated data. Since the
I[EAs are ideal observers of the orientation samples and the (potential) proxies, in the noiseless
case, their certainty reports would accurately predict their accuracy at the reported certainty
level, and we call them well-calibrated. However, in the presence of noise, the IEAs won’t ap-
pear well-calibrated anymore based on their noisy certainty reports. One way to address this
issue is by grouping the trials according to the variables that define their stimulus properties,
which would average out the noise in the certainty reports at the group level. Critically, how-
ever, the well-calibrated property of the ideal observer does not automatically manifest once
trials are grouped in such a way. Instead, the form of the certainty-accuracy relationship de-
pends on both the chosen model variant and the specific method used for grouping the trials
(Drugowitsch et al., 2014). Specifically, the certainty-accuracy relationship will only appear
well-calibrated when the variables according to which trials are grouped are also available
to (i.e. observable by) the ideal observer, thus providing a diagnostic for identifying which
variables are and are not available to the ideal observer. | will exploit this dependency to dis-
tinguish between the different model variants. Specifically, | will examine how the certainty-
accuracy relationship apparently deviates from being well-calibrated when different grouping

strategies are used.
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In the following analysis, | will use three distinct grouping methods. Trials will be grouped
based on (1) the subjective certainty (p) the model expresses (Fig. 2.3C, second column), (2) the
objective strength of the stimulus (y) (Fig. 2.3C, third column), or (3) the subjective certainty
the model expresses, but with the effect of the stimulus marginalized out (Fig. 2.3C, fourth
column; see Methods). For all three methods, trials of different presentation times will be

analysed separately (Fig. 2.3C, second to fourth column).

Before | go into the details of the model prediction, | give a brief summary of the main results:
As shown in Fig. 2.3 C-F and Fig. 2.4, the model variants using proxies to different extents
can be distinguished from each other based on the qualitative differences observed in the
three types of trial grouping, but these might not necessarily suffice to separate the Noise

and Signal models.
Prediction of the Signal models

First, | discuss the Signal model’s predictions in detail, then | apply the same line of arguments

to the Noise model to highlight the similarities and differences between the two.

In the Signal model, the sampling distribution’s precision (ps) on a given trial determines the
magnitude of irreducible uncertainly corresponding to the discrepancy between the sampling
distribution’s mean (ug) and the ground truth (z*). To make accurate uncertainty judge-
ments, the model must infer pg based on the available samples and proxies (Eq. 2.9). The IEA
ultimately computes p, instead of pg, as the ultimate predictor of accuracy by also taking into

account the reducible part of its uncertainty (due to the finite number of samples).

| consider first the without-proxy variant of the IEA model, which does not observe the stim-
ulus strength, and thus relies on a generic prior of pg in every trial, regardless of stimu-
lus strength (Fig. 2.3C, first column, upper row). In the very short presentation time limit,
when only a single sample is available, the best estimate of pg for each trial is simply the
generic prior’s mean, and thus all variation in the certainty reports, p, is due to noise. This
makes certainty-based grouping effectively equivalent to random grouping (with respect to
accuracy), resulting in constant accuracy across certainty bins. Therefore, the slope of the

accuracy-certainty regression is zero (Fig. 2.3C, second column, upper row, bright purple line).
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Figure 2.3. Behavioural predictions of the Sampling model’s Ideal Evidence Accumulators
(IEAs). A. IEAs compute the predictive distribution of stimulus orientation and report its mean (1) and
noisy circular precision (p + €) as the orientation estimate and its uncertainty, respectively. B. Behav-
ioral measures used for analysis are accuracy, defined as the average cosine error of estimates across a
set of trials, and uncertainty, defined as the expected cosine error (plus potential noise) on a given trial
according to the IEA. C-F. Behavioural predictions of the model variants differing in their reliance on
proxies. 15 column: Priors of the sampling distribution’s precision. 2% to 4*": Accuracy vs. certainty
as a function of sample size (purple shades), averaged according to either the certainty reports (green
shades), stimulus strength (e.g., contrast, red shades), or the stimulus-marginalized certainty reports

(blue shades).
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This slope will increase with presentation time (Fig. 2.3C, second column, upper row, purple
gradient), as accumulated samples gradually reveal the true shape of the sampling distribu-
tion in the current trial, and it will asymptotically converge to a limit-slope, slightly below
the 45° slope of the well-calibrated line. This limit slope is determined by the conditional
distribution of pg given the stimuli (Fig. 2.3C, first column, middle row, red lines) and the

magnitude of certainty noise controlled by (.

Crucially, the certainty-accuracy relationship looks very different if we choose to group the
data according to the objective stimulus strength, y, instead of the subjective certainty re-
ports, p. In this case, the stimulus feature used to bin data strongly influences accuracy,
but this variant of the model has no access to it. In the limit, when responses are based
on a single sample, stimulus strength strongly modulates the informativeness of this single
sample about the ground truth, but certainty reports do not reflect this modulation at all (a
single sample carries no information about its own informativeness). This implies that the
accuracy-certainty slope is at the other extreme, being 90°. This slope is not much affected
by the certainty noise, as random noise largely averages out across the trials within a stimu-
lus strength bin. Again, as more samples are collected, and consequently the trial-specific pg
(which is affected by the stimulus strength) is getting better estimated by the observer, the
slope gradually regresses back to the well-calibrated line. (There is no limit line in this case,
as the effect of noise largely averages out.) The slopes exceeding 45° (at small sample sizes)
reflect a regression to the generic prior mean effect, which diminishes as additional samples
provide more evidence. This leads to the overestimation of easy trials and the underestima-
tion of hard trials, a phenomenon known as the ‘hard-easy effect’ (Drugowitsch et al., 2014;
Khalvati et al., 2021). An important prediction of the sequential sampling framework is that

the strength of the hard-easy effect varies over time.

In the IEA model with proxies (that are perfectly observed), the accuracy-certainty regression
shows quite different patterns. | explore this variant under conditions where the stimulus-
induced variability of pg is comparable to the magnitude of stimulus independent fluctua-
tions, and both are significantly larger then the magnitude of certainty noise. In the IEA

plus proxy model, the pg prior on any given trial is conditioned on the observation of the
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nuisance variable (Fig. 2.3E, first column). Therefore, when we bin the data according to
the certainty reports, the slope is already very close to the limit-line with just a single sam-
ple available, and there is no significant improvement over time (Fig. 2.3E, second column).
Interestingly, the proxies also provide sufficient information for an exact estimate of the ac-
curacy within a stimulus strength condition, therefore the accuracy-certainty points are on
the well-calibrated line irrespective of the sample size when grouped by stimulus strength

(Fig. 2.3E, third column).

If we now consider a model where the stimulus strength is only partially observed (A =
0.5 in the simulation), then its pg prior interpolates between the priors of the IEA model
with no proxies and the IEA model that relies on noiseless proxies (Fig. 2.3D, first column).
As a consequence, this model’s behavior will also interpolate between the former model’s
behavior (Fig. 2.3D, second and third column). In this case, the slopes deviate from the 45°
well-calibrated line when the sample size is small, but not to the same extent as in models

that do not use proxies.

Up to this point, none of the arguments above utilized the fact that the stimulus-conditioned
ps prior still has a finite width, therefore the same arguments and consequently the same
accuracy-certainty patterns hold for the proxy-only model, which has only access to the prior
means (Fig. 2.3F, second-third column). This is because the information conveyed by the
samples were obscured by the information contained in the proxies. To differentiate between
the two models that use proxies, we factored out the effect of the stimulus. We divided the
trials into low and high certainty groups (median split) within each stimulus condition and
compared the across-condition averages between these groups. If samples provide additional
information about pg beyond the proxies, certainty should still predict accuracy even after
factoring out the stimulus effect, resulting in a slope greater than 0 for sample sizes greater
than 1 (Fig. 2.3C-E, fourth column). Otherwise, if only the proxies are used, the slope would

be zero regardless of presentation time (Fig. 2.3F, fourth column).
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Prediction of the Noise models

As we saw in the foregoing section, analyzing the slopes of the certainty-accuracy lines pro-
vides a way to distinguish between the different variants of the Signal model. We can follow
very similar arguments for the Noise model. There, the lack of irreducible uncertainty means
that the quantity that predicts accuracy is the reducible uncertainty that a finite amount of
evidence accumulation leaves behind. In order to correctly estimate this, the observer needs
to know the precision of the sampling distribution (ps) and from this point the arguments
are essentially the same as for the Signal model. The main difference between the Signal and
the Noise models’ predictions (Fig. 2.4A and B) is that in the Noise model there is a more
pronounced improvement in accuracy (and, consequently, in certainty) with the progression

of time.
Incorporating attentional lapses into the model

When the same task is carried out by humans, it is conceivable that in some proportion of
the trials, no samples are collected at all - or at least not from the target item’s location. On
these lapse trials both accuracy and certainty are minimal. To explore how such lapses affect
the qualitative model predictions, we included lapse trials to the model. In the simulations,
orientation estimates on lapse trials were randomly selected from the range [0°, 180°], and
certainty was set to zero. We modeled the probability of a lapse as being proportional to the
product of presentation time and stimulus strength, indicating that more challenging trials

are more likely to result in lapses.

Interestingly, the inclusion of lapse trials did not change most of our qualitative predictions
(Fig. 2.4C and D). The only significant change was that the slope was greater than zero in the
stimulus-marginalized grouping condition, even for the proxy-only model. This effect was
due to the binary nature of behavior introduced by the lapses (lapse vs no-lapse). However,
it can be easily tested whether the slopes are real by excluding the zero-certainty trials from

the analysis and checking if the slopes remain positive.

47



CEU eTD Collection

samp. size certainty stim.str.  stim.-mara.
SIGNAL MODEL M high M high M high I high
low low low low
A without lapse C with lapse
1 1 1 1 1 1
>
=
8 N4 / . / /
a 05 - 05 05 4 05 4 05 05
o . . ) e
2 {
EE— 0 0 0 0 0 0
0 05 1 05 1 0 05 1 0 05 1 0 05 1 0 05 1 0 05 1
> 35 1 1 1 S 1 1 1
é < / <
S ~ = =
©“
Qo g)' 05 o 05 05 g 05 o 05 / 05
I x z
E A é / . § / <
3 - O o0 0 0 O o0 0 0
0 0.5 1 o] 0.5 1 0 0.5 1 0 0.5 1 O 0 0.5 1 0 0.5 1 0 0.5 1
> 1 1 1 1 1 1
<
[} /
2
a 0.5 “ 0.5 0.5 0.5 “ 0.5 0.5
> 7 2y
z A Ve
o 0 0 0 0 0 0
0 0.5 1 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
ps (AU) certainty (AU) certainty (AU)
NOISE MODEL
B without lapse D with lapse
; 1 1 1 1 1 1
o of .
[+4 . .
o 05 A osf . 05 o 05 . 05f e 05 o
o . % ‘e . ! ‘e
z
0 0 0 0 0 0
0 05 10 05 1 0 05 1 0 05 1 . 05 1 0 05 1 0 05 1
2 1 1 1 2 1 1 1
o ~ V4
& o > >
o 8 os 05 / 05 < 8 os 05 / 05 g
T S . . - Je o . - - )
[ =1 ‘e S T
= o} o}
= o o
S o 0 0 S o 0 0
0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0.5 1 0 0.5 1 0 0.5 1
1 1 1 1 1 1
>
2 / /
3 /
& / ,
o 05 4 05 / 05 05 ; 05 05
2 7e® 7o
z
o 0 0 0 0 0 0
0 1 0 0.5 1 0 0.5 1 0 0.5 1 0.5 1 0 0.5 1 0 0.5 1

0.5
ps (AU)

certainty (AU)

certainty (AU)

Figure 2.4. The comparison of different Sequential Sampling Model variants. A-B. Compar-
ison of the Signal (A) and Noise (B) models’ predictions when there are no lapse trials. Noise model
predicts a more pronounced shift of the accuracy-certainty points towards the upper right corner
(indicative of a the reducibility of uncertainty), compared to the Signal model. C-D. When incorpo-
rating lapse trials, the accuracy-certainty slopes in the stimulus-marginalized grouping condition are
no longer zero.

2.3 Certainty-accuracy relationship in an orientation es-

timation task

2.3.1 Experimental paradigm

In order to asses the extent and algorithmic realization of human uncertainty representa-

tions, | developed a new experimental paradigm. The basis of my paradigm was a standard
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orientation estimation task, implemented in two slightly different versions. I will first detail
one version of the task (fig. 2.5A), and summarize the differences between the two versions

at the end.

In each trial, subjects first saw a blank screen with a fixation dot. After maintaining fixation
continuously for 1100 msec, which was verified by an eyetracker, a display appeared with a
variable number ("set size": 1-6, randomly chosen) of 1-degree-long line segments equidistant
(with a randomly chosen rotation) around a circle (extending 7° of visual angle in diameter).
The line segments’ contrast levels were sampled randomly (without replacement within a
display) from the set {0, 0, 30, 40, 50, 60, 70, 80, 90, 100%} (zero contrast appeared twice as
frequently as the other contrasts), and orientations uniformly from 0° — 180°. The display
appeared for one of nine possible durations (“presentation time”): 50, 75, 100, 133, 167, 200,
300, 400, or 600 msec. If participants broke fixation during stimulus presentation, the trial
was omitted from the later analyses. After the display disappeared, a mask of random noise
appeared with a small red circle identifying the position of one of the segments in the pre-
ceding display. The subject’s task was to report as quickly as they could their estimate of the
orientation of the segment in the cued position simultaneously together with the subjective
assessment of uncertainty in their estimate by drawing a single line on a tablet with a sty-
lus (fig. 2.5B-C). The orientation of the line indicated the estimated orientation of the line
segment, while the length of the line corresponded to subjective uncertainty (a longer line
indicated less certainty). After the subject responded, the mask and cue disappeared and a
small segment appeared at the tested location with the orientation chosen by the subject and
with a gray wedge around the line segment with a width (subtended angle) corresponding
to the reported uncertainty. (The true orientation of the segment was not displayed.) This

feedback display appeared for 500 msec, after which a new trial began.

The wedge provided a natural way to express circular uncertainty, representing a range within
which the target line has a "high probability" of falling. To concertize "high probability" and
to enhance the quality of subjective uncertainty estimation, a scoring function (Eq. 2.28) was
used to assess subjects’ performance on each trial. Subjects were instructed that their goal

was to maximize their score which was calculated by combining the accuracy and certainty
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Figure 2.5. Experimental design. A. In each trial, the subject made an orientation estimation
judgement and provided information about the orientation and their subjective uncertainty by draw-
ing a single stroke on a tablet. See text for details. B. Estimation error between the true and reported
orientations, and level of certainty were the dependent variables in the experiment. C. Wacom Bam-
boo tablets were used to record the subjects’ responses.

of their response. As a scoring function, | used the log probability of the true stimulus orien-
tation under a circular Gaussian (von Mises) distribution defined by the subject’s response
(segment orientation — mean, wedge width — precision). This scoring function can be max-
imised if the subject’s uncertainty report reflects their true subjective uncertainty which in
turn is predictive of the errors they are making (Jaynes, 1996). To prevent subjects from de-
veloping simple feedback-based strategies while keeping them alert, subjects received only
grouped feedback after every 10 trials in the form of an average score. Subjects completed
3-4 sessions of 900 trials across multiple days. To familiarize themselves with the procedure
and to facilitate the precision of mapping from uncertainty to line length, prior to each test
session subjects had a practice session with 50 trials during which they received feedback
after every trial including the true orientation of the cued segment. Practice trials were twice

as long as the test trials and data from these trials was not included in the analyses.

In the other version of the task (not shown), Gabor patches were used as items instead of

line segments, the set size options were limited to 3 or 6, contrast levels were sampled from

{0,5,8,14,22,37,61,100%} and presentation times were chosen from {33, 50, 83, 133, 200, 600 msec}.

Unlike the other version, the Gabor patch variant included only a single practice session
prior to the first test session, featuring a restrictive stimulus set to minimize the poten-
tial for learning an optimal heuristic strategy (presentation times: {83,200, 600}; contrasts:
{0,14,22,37,61,100%}). This time, | added another practice task that | designed to teach
participants how to accurately produce wedges of varying sizes with a single stroke. Aside

from these differences, the two experimental variants were identical.
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2.4 Results

In the experiment using line segments, we collected data from a total of NV = 6 subjects, five
of whom were naive while the last one was informed about the goal of the experiment. We
found no difference in performance between the naive and informed subjects confirming that

the paradigm measured direct reactions of the subjects without much cognitive influence.

For the version of the experiment using Gabor patches, data were again collected from a total
of N = 6 subjects, all naive about the purpose of the experiment. However, two of them were
excluded from subsequent analysis based on post hoc considerations (see Methods). These

exclusions were due to the virtual absence of certainty-error correlations in their data.

2.4.1 Basic measurements and controls

First, | checked whether in my paradigm | measured the relevant aspects of human perfor-
mance. In order to measure the typical pattern of trial-by-trial error and uncertainty, the
stimuli must cover the entire space of orientation, the subject’s perception needs to follow
the true stimuli, and response movements need to be ballistic. Fig. 2.6 confirms the uni-
form stimulus orientation distribution and the ballistic response movements, but especially
for the Gabor patch version, responses were biased away from the vertical (90°) orientation
(Fig. 2.6A), but this bias decreased as confidence increased (Fig. A.2). Nevertheless, on av-
erage, subjects’ judgement closely followed the true orientation of the target line segment
(Fig. 2.6B), therefore | neglected this repulsive effect in the later analyses. Moreover, their
stroke was a straight line (Fig. 2.6C) with an average deviation from the straight line between
the starting and endpoints below 3.6 +1.6% of the length of the stroke for both stimulus type.
In addition, | calculated the time profile of the strokes and found that subjects’ mean dura-
tion of drawing was 390 msec with a standard deviation of 270 msec for the line segment
version, and 330 msec with a standard deviation of 220 msec for the line segment version.
This suggests that subjects drew the line segments with a fast, single stroke without much

fine-tuning, explicit cognitive deliberation, or modulation by different aspects of the task.
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Figure 2.6. Control measures. Experiments with both stimuli (upper raw - line sigment, lower row -
Gabor patch) give veridical trial-by-trial information about subjects’ error and subjective uncertainty.
A. The distributions of the test items’ true (blue) and reported (orange) orientation (blue). B. Trial-
by trial correspondence between the line segments’ true orientation and the signed error of reported
orientation across all subjects and trials. Red line indicates the circular average error as a function of
target orientation. C. Trajectories of strokes for all subjects normalized (rotated and scaled) such that
they go from (0,0) to (1,0).

2.4.2 The representation of error and uncertainty

Next, | tested whether subjects’ uncertainty reports were predictive of their estimation er-
rors. Fig. 2.7 shows the results for each subject from both experiments with trials binned by
reported certainty and the resulting error histograms fitted with a circular Gaussian. Despite
individual variations, each subject showed the same general relation of increasing certainty
corresponding to steadily decreasing error in their performance. This suggests that subjects
had a reliable representation of the quality of their perceptual information and faithfully
reported this through their stroke. Thus, my experimental paradigm and response method

successfully captured subjects’ trial-by-trial error and certainty.

2.4.3 Stimulus-dependence of accuracy and certainty

Subsequently, | analysed the impact of the applied stimulus manipulations on performance.

Specifically, | tested how they affect the certainty-accuracy relationship. For this analysis, it
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Figure 2.7. Relation between error and subjective uncertainty. Subjects’ orientation estimation
error changed according to their subjective certainty. A. Circular gaussian fit of orientation estimation
error histograms (dots) corresponding to different levels of reported certainty for stimuli containing
line segments. B. Same as A., but for stimuli containing Gabor patches.

was essential to correctly interpret the participants’ certainty reports. However, despite the
applied scoring, there is no guarantee that participants could perfectly learn the intended cer-
tainty scale. To minimize errors arising from discrepancies between the intended and actual
scales, | monotonically rescaled the reported certainties (Eq. 2.28). | used the mapping that
minimized the mismatch between the average accuracy and certainty of long presentation

time trials for which even the no-proxy model anticipated well-calibration.

First, | tested the effect of presentation time (Fig. 2.8A), while averaging trials across contrast
and set size conditions to marginalize out the influence of these stimulus manipulations. Re-
gardless of the type of items used in the experiment (lines vs. Gabors), the reported certainty
closely matched the accuracy at all presentation times. Initially, both measures improved
monotonically with increasing presentation time — justifying the choice of SSMs — until they
reached a saturation point. | approximated the time of saturation by identifying the smallest
presentation time at which accuracy and certainty were no longer significantly lower than
the time-averaged accuracy and certainty at longer presentation times. To factor out the ef-
fect of inter-subject variability from this analysis, | first z-scored the measures within each
subject. In the experiment with line segments, the (approximate) saturation point for accu-
racy was at 133 msec (one-tailed paired t-test: ¢(5) = —0.09, p = 0.46; compared to 100
msec, t(5) = —2.1, p = 0.04) and for certainty was at 100 msec (t(5) = —1.2, p = 0.14; com-
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Figure 2.8. Stimulus dependency of accuracy and certainty. A. Certainty closely matches accu-
racy and both improves with the length of presentation time (log scale) until it reaches an asymptote
at around the saturation-point (dashed black line). B. Average certainty from the repeated presenta-
tion of stimuli closely matches the accuracy measured on the corresponding stimuli (small black dots),
with a better match observed after the saturation-point compared to before (right vs. left column, re-
spectively). This relationship also holds true for the group averages when the grouping is based on
the different stimulus manipulations (larger color dots).

pared to 83 msec: t(5) = —6.6, p < 0.001). In the Gabor experiment, the saturation point of
accuracy was also at 133 msec (t(3) = —0.89, p = 0.22; compared to 83 msec: t(3) = —3.27,
p = 0.023) and of certainty was at 83 msec (£(3) = —2.3, p = 0.052; compared to 50 msec:
t(3) = —10.9, p < 0.001). Based on these results, | conclude that both accuracy and cer-
tainty reached their asymptote at around 133 msec (or maybe a little earlier), therefore | set

the saturation point for 133 msec for the later analysis.

Next, | compared the different stimulus manipulations based on their effect on the certainty
calibration. For this | first computed accuracy and certainty separately for each individual
stimulus (Fig. 2.8B, black dots), where a stimulus was defined by a feature-combination triplet
(presentation time, contrast, set size). | then evaluated the marginal influence of each feature
type by grouping the stimuli according to the feature being analyzed and averaging accuracy
and certainty across the other features. According to the models, if participants are nearly

ideal observers, accuracy and certainty should align with the 45° line of well-calibration,
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regardless of the grouping method, provided that either the feature in question was observed
or the asymptotic region has reached. To test this, | analyzed the effects of contrast and set
size separately for presentation times below and above the saturation point. | note here, that

no such separation is needed for presentation time if, as assumed, it is observed.

The results shows that regardless of the type of stimuli and the the grouping method, the
accuracy-certainty points are close to the 45° well-calibrated line even for short presentation
times, and the closeness improves further after the saturation point (Fig. 2.8B). This result
already suggests that certainty acts as a common currency across very different difficulty
manipulations, but time is needed to fine-tune the calibration. In the next section, | provide

a more detailed analysis of this time dependence.

2.4.4 Time-dependence of certainty calibration

To determine which SSM variant aligns best with behavior, | conducted tests as outlined in

Section 2.2.5.

Fig. 2.9 illustrates how the calibration of certainty changes over time under the three different
grouping conditions: certainty-based, stimulus-based, and stimulus-marginalized certainty-
based grouping. In the behavioral experiments, unlike in the simulations, stimulus strength
was influenced by the complex interaction of two stimulus features (contrast and set size).
This interaction prevented me from establishing a priori the order of the stimuli based on
their strength, and thus I could not apply the same colour scheme in the empirical plots that
was used for the synthetic plots. Instead, | color-coded the certainty-accuracy points based
on presentation time. To assess the participants’ level of calibration, | calculated the best fit
lines for each participant’s certainty-accuracy points. This line minimized the total squared
distance of the certainty-accuracy points from their orthogonal projections. | show here the
average best-fitting lines across participants for the shortest presentation times below the
saturation point, as well as for the asymptotic data pooled across presentation times at and
above the saturation point (Fig. 2.9 A and C). In addition, | plot separately the slopes of the

best fitting lines (Fig. 2.9 B and D).
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Figure 2.9. Calibration of certainty as a function of time. A. and c. Best fitting lines to the
accuracy-certainty points computed using different grouping methods at various presentation times
(purple shading). B. and D Across-subject averages and standard errors of the best fitting lines’
slope. For the certainty- and stimulus-based grouping (green and red lines, respectively), stars indicate
significance levels from post-hoc multiple-comparisons following repeated measures of ANOVA (**:
0.01; *: < 0.05; (*): < 0.01). For stimulus-marginalized certainty grouping, stars indicate the deviation
of individual points from 0, measured by two-tailed t-tests (same significance notations as before).

The empirical results are in qualitative agreement with the predictions of the IEA models that
may noisily observe the proxies or may not observe them at all. There is a general tendency
for the slope to increase over time when data is grouped based on the explicit certainty reports
(Fig. 2.9 B and D, green lines) and to decrease over time when grouped based on the stimulus
features (Fig. 2.9 B and D, red lines), gradually approaching the well-calibrated line in both
cases. | tested the significance of these trends using repeated measures ANOVA, and found
significance only in a subset of cases. Specifically, for the certainty-based grouping, the slope
increase was significant only for the line stimuli (F(3,15) = 5.21, p = 0.012), while for the same
stimuli the decrease for stimulus-based grouping was just not significant (F(3,15) = 3.22, p
= 0.053). For the Gabor stimuli, the stimulus-based grouping showed a significant decrease,
with a strong level of significance (F(3,9) = 13.84, p = 0.001). The lack of significance might
be due to the low number of participants. The slope’s relative proximity to the 45° line, even
at very short presentation times, suggests that participants either have access to multiple
samples by that time or they are relying on proxies that they perceive with some level of

noise.
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Furthermore, when | divided the data into high- and low-certainty groups after accounting
for the effect of the stimulus, | consistently obtained fits with positive slopes (Fig. 2.9 B and D,
blue lines). When pooling the data across all presentation times (not shown), accuracy in the
high-certainty group (lines: M = 0.92, SD = 0.02; Gabors: M = 0.67, SD = 0.24) was significantly
higher than in the low-certainty group (lines: M = 0.7, SD = 0.08; Gabors: M = 0.25, SD = 0.14),
as measured by a one-tailed paired t-test (lines: t(5) = 7.67, p < 0.001; Gabors: t(3) = 7.96,
p = 0.002). Even after excluding trials with 0 certainty and 0 contrast (where 0 certainty is
justified), the difference between the high-certainty (lines: M = 0.96, SD = 0.01; Gabors: M =
0.77, SD = 0.23) and low-certainty groups (lines: M = 0.86, SD = 0.04; Gabors: M = 0.57, SD
= 0.33) remained significant (lines: ¢(5) = 8.32, p < 0.001; Gabors: t(3) = 3.96, p = 0.026).
These results indicate that participants were sensitive to fluctuations in the quality of their
perceptual representations beyond what could be explained by visible stimulus features or

the observability of the item.

2.4.5 Presentation time-dependence of accuracy, certainty and reac-

tion time

Up until this point, | have examined the effects of different difficulty manipulations collec-
tively. Now, to reveal their individual impacts on accuracy and certainty, | plot these quan-
tities as functions of presentation time, with the data grouped by either contrast or set size
(Fig. 2.10). Additionally, | analyze reaction times in a similar fashion to see how the exper-
imentally identified decision process (IEA with partially observed proxies) is influenced by

the proxies.

Overall, both accuracy and certainty increase, while reaction time decreases with increasing
presentation time and stimulus strength (higher contrast and smaller set size). However,
there are two notable exceptions: First, for zero-contrast stimuli, certainty actually decreases
with longer presentation times. Second, in the experiment using Gabor stimuli, after an initial

decrease, reaction time starts to increase again as presentation time lengthens.
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Figure 2.10. Presentation time dependence of accuracy, certainty and reaction time The figure
shows the average accuracy, certainty, and reaction time across participants as a function of presen-
tation time, along with the standard errors. Data is grouped either by set size (yellow) or by contrast
(red), with 0 contrast data omitted in the set size grouping. The gray line corresponds to the certainty
on empty stimuli.

The decrease in certainty of the zero-contrast trials with longer presentation times can can
be naturally explained with SSMs. In this framework, accurate certainty estimation takes
time. At short presentation times (or small sample sizes), the pg prior dominates certainty
estimation. This is a regression-to-prior-mean effect, the strength of which is modulated by
the observedness of stimulus strength. As presentation time increases (more samples are
collected), this regression effect is getting weaker. In the case of zero-contrast trials, there
is increasing evidence that the sampling distribution is broad (in this case, samples are from

the uniform distribution), which consequently reduces the IEA’s certainty. Importantly, this
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argument is only valid if we assume that samples are taken even from those locations where
the item’s contrast is zero (or nothing has been displayed). Therefore, if this argument is
true, it has the important implication that the representation of local features is automatic
in the brain, which fits well with the fully Bayesian view. One might consider an alternative
explanation, that this effect is due to swap-errors, i.e. the incorrect reporting of a non-target
item as in Bays (2016). If the probability of these errors were time dependent, this would seem
to explain the error in question. However, since the effect is present even when the stimulus
consists of a single zero-contrast line (effectively being an empty stimulus), and thus there is

nothing to swap, the swap error-based explanation of the effect can be rejected.

The stimulus dependence of reaction times suggests that not only perception but also decision
making requires time, despite that all sensory evidence have been presented before the onset
of decision making process. One possible explanation of this is that the (sampling-based)
perceptual representation is only accessible to the decision mechanism through a secondary
sampling process, which again takes time. Alternatively, it is possible that it is the process of
perceptual sampling that continues after the stimulus offset. In either case, the termination
of sampling process(es) are likely governed by a subjective cost-benefit trade-off — balancing
the accuracy gained from collecting more samples against the cost of both the sampling and
the time investment (opportunity cost) (Drugowitsch et al., 2012). An interesting avenue for
future research is to distinguish between these alternatives, with a particular focus on the
somewhat unexpected asymptotic increase in reaction times, that seemingly contradicts the

predictions of the standard normative models (Drugowitsch et al., 2012).

Finally, there is another interesting pattern in my data. While the set size-driven differences
in accuracy and certainty persist even asymptotically, differences driven by contrast diminish
over time (except for the zero-contrast condition), at least for the line stimuli. These asymp-
totic behavioral differences might imply that the two manipulations introduce different types
of uncertainty. Set size appears to induce irreducible uncertainty, meaning that representing
more items comes at the cost of sacrificing the precision of the individual item’s representa-
tion, while contrast induces reducible uncertainty, likely related to the signal-to-noise ratio

of the representation or maybe to the delayed onset of sampling. Crucially, however, explicit
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reports seem to reliably track both types of uncertainty manipulations. Constructing an SSM
that can accurately track its own uncertainty in the presence of both reducible and irreducible

uncertainties presents an intriguing challenge for future research.

2.5 Discussion

In this study, utilizing a novel perceptual estimation paradigm with multi-item stimuli, |
demonstrated that the human brain relies on probabilistic perceptual representations that
simultaneously encode variable-specific uncertainty information about multiple internal vari-
ables (items). This was an important step in the progress of my Thesis, as the capacity for
variable-specific uncertainty representation is a prerequisite for fully Bayesian representa-

tions.

In addition to the main result, my work provides new ways to investigate the nature of un-
certainty representations. For example, by experimentally separating perceptual processing
from decision making and by manipulating the stimulus presentation time, I could gain new
insights to the temporality of perceptual decision making and could show that both the for-
mation of perceptual representation and the process of decision making requires time. Pre-
vious approaches either ignored the time aspect of perceptual decision making altogether
(Maloney and Mamassian, 2009) or did not distinguish the two subprocesses (Kiani et al.,
2008; Kiani and Shadlen, 2009; Kiani et al., 2014). My purely behavioural approach also com-
plements research on perceptual decision making that also seeks to dissociate the two pro-

cesses by focusing primarily on neural measures (Wyart et al., 2012; Mostert et al., 2015).

| was also able “to look under the hood”, that is, to gain information about the sources upon
which explicit uncertainty reports rely — whether they are based on genuinely probabilistic
representations or on “proxy” variables that directly affect the quality of these representa-
tions (Barthelmé and Mamassian, 2010; De Gardelle and Mamassian, 2014; Meyniel et al.,
2015b; de Gardelle et al., 2016; Adler and Ma, 2018). By developing the first formalization

of the concept of a “proxy” in the sequential sampling context, | could investigate how they
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could enter to the perceptual decision making at different stages of the process. While han-
dling proxies at the cognitive level may seem intractable under realistic conditions — given the
numerous factors influencing uncertainty at the same time — | could demonstrate that using
proxies as informed priors for perceptual inference, particularly in the low-sample limit, may
still be a viable strategy for improving the quality of inference. By showing that the calibra-
tion of certainty reports were notably high already at the shortest presentation times, | also

identified the traces of such behavior in my experimental data.

My task design also comes with certain limitations. For instance, latent variables can only
be measured one at a time, which restricts the approach to examining marginal distributions
rather than joint distributions. To overcome this, one would need to use stimuli with corre-
lated item features and potentially complex utility functions that take more than one item as
input. When complex utility functions are used, the ability to measure the (joint) perceptual
probabilities through explicit reports would likely be lost, as expressing complex multivariate
functions with simple experimental methods (like making a stroke) is challenging. However,
model-based approaches (Denison et al., 2018; Yoo et al., 2021) could still be used to recon-

struct the multivariate perceptual distribution underlying behavioral judgments.

A further limitation of my method is that, although the decision variable is not known during
the accumulation of sensory evidence, the possible options are limited to a narrow set (1-6
item directions). As a result, uncertainty might only be represented for this limited set of
variables. While this strategy is sufficient for efficiently solving the experimental task, it falls
short in real-world scenarios, where complex scenes, involving many latent variables, must
be processed, and the future decision situations are often unpredictable. To better approxi-
mate these real-world conditions, one could increase the “richness” of latent variables (both
in number and type) that constitute the set of potential decision variables, making the iden-
tity of upcoming decision variable less predictable. In our experimental paradigm, | could
simulate this scenario by incorporating contrast and set size estimation tasks in addition to
orientation estimation, and by randomly alternating between these tasks across trials. How-

ever, modifying the task to this extent — where participants must first figure out the type
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of task to answer before preparing the response — risks disrupting participants’ spontaneity

(i.e., answering without deliberation) and may lead them to adopt other cognitive strategies.

Finally, although our goal was to assess the quality of perceptual representation rather than
that of working memory, it is questionable how well this can be achieved in a paradigm where
decisions are based on prior observations, even if those observations are made just before the
decision. This concern is directly tied to the issue of how distinct perceptual and working
memory representations are (Bays et al., 2024). Specifically, whether working memory sim-
ply maintains the perceptual representation (even if the code is dynamic) or rather transcribes
it into a qualitatively different form. Especially in the latter case, a critical question is how
much of the uncertainty measured in our task is attributable to perceptual uncertainty versus
to the process of storing information in working memory. The influence of working memory
might dominate in two scenarios. First, when the limitations of working memory are greater
than the limitations of perceptual representation. Second, when the perceptual representa-
tion does not encode uncertainty at all (or at least if working memory is insensitive to this
uncertainty). Under both of these conditions, working memory becomes sensitive mostly
to its own uncertainty limitations and it contaminates the uncertainty measured under the
label of "perceptual uncertainty". To minimize this confound, we omitted the gap between
stimulus offset and target cue onset and introduced a noise mask immediately after stimulus
offset, which has been proposed to curtail ongoing activity related to the previous perceptual
stimulus (Tomi¢ and Bays, 2024). However, to ensure we capture the momentary perceptual
experience, we could no longer hide the decision variable during perception. In this case,
the representation of other variables than the decision variable could only be investigated

indirectly through the advantages of probabilistic representations enlisted in Chapter 1.

While the current experimental paradigm has its limitations, it also offers several promising
avenues for further exploration. For example, it offers the possibility to distinguish Noise and
Signal models — a topic I’ve begun to explore, though without reaching a definitive conclusion
so far. The two models differ in how they explain sensory variability: one attributes it to the
presence of noise, while the other attributes it to the nature of probabilistic code. Importantly,

in both cases, downstream computations have the potential to explicitly evaluate the uncer-
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tainty arising from the two processes, provided they implement ideal evidence accumulators.
My initial results in this exploration, based on the line stimulus experiment, indicated that
the Signal model provides a better qualitative and quantitative fit to the data than both the
vanilla Noise model and its extended version (Koblinger et al., 2019, COSYNE, conference). In
the extended Noise model, the sampling distribution can be biased, but unlike in the Signal
model, this bias is independent of variability. However, later | incorporated the possibility of
early termination of the sampling process into the models, a phenomenon that has been doc-
umented in animal perceptual decision making studies (Kiani et al., 2008), and the qualitative
differences between the two models types diminished, and their quantitative distinctions be-
come less pronounced. Whether the two models can still be distinguished quantitatively with
more refined experiments (such as the one using Gabor stimuli) and improved data analysis

remains an open question for future research.

Another potential avenue for future research stems from the fact that our paradigm inher-
ently separates perceptual and decision-making processes, allowing them to be studied inde-
pendently. Just as analyzing presentation time provided insights into the perceptual process,
examining reaction times can offer valuable information about the decision making process.
Staying with the SSM models, and building on normative assumptions on when to termi-
nate the sampling process and commit to a decision (Drugowitsch et al., 2012) we may be
able to answer what kind of samples - i.e. probabilistic samples (Fischer and Whitney, 2014),
noisy memory samples (Shushruth et al., 2022), or ongoing sensory samples that persists after

stimulus offset (Tomi¢ and Bays, 2024) — take time to process during the decision process.

In conclusion, this study advances our understanding of the scope and temporal-nature of
probabilistic perceptual representations, and it lays the groundwork for future research that
seeks to clarify the content of momentary perceptual activity (probabilistic vs noisy infor-
mation) and the complexities of the decision making processes. Despite the simplicity of
the paradigm used, it demonstrates considerable potential for further exploration into the

internal representations of a probabilistic brain.
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2.6 Methods

2.6.1 Inclusion Criteria

To determine which subjects to include in the analysis, the raw certainty reports (p.) were
linearly transformed so as to maximize the log-likelihood of signed errors (¢) under the trans-

formed certainty reports:

put = bo + b1 pe (2.22)
such that
N
{bo, b1} = argmax H vM(en; 0, pie(ao, ar)) (2.23)
@0,41 1

Only subjects for whom b; was significantly positive were included in the further analysis.

2.6.2 Scoring Function

The scoring function was the log probability of the true stimulus orientation (z*) under a
circular Gaussian (von Mises) distribution defined by the subject’s response (segment orien-

tation — mean (i), wedge width (w) — concentration (k)):

score = k(w) cos(z* — p) — In Iy (k(w)) (2.24)

where w/2 was defined as the distance at which the distribution decreases to half its peak.

This gives the following equation for the concentration:

In2
k= —— 2 (2.25)

- w
1 Cos 3
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We applied a correction to x to ensure that the maximal w expresses maximal uncertainty

(k =0):

In2
K=k — —2 (2.26)

From the concentration, certainty (circular precision, p) can readily be computed:

(2.27)

2.6.3 Rescaling Certainty Reports

The scoring scheme was designed to teach subjects the ideal mapping (which maximizes the
obtained cumulative score) between wedge width (w) and the predictive posterior’s concen-
tration (k, related to the precision of internal representation). However, it is not guaranteed
that subjects accurately learned this mapping during the short training session. To account
for this possibility, we estimated the actual w to K mapping that was used by the subjects
through function fitting. We still assumed that w is related to the width of the posterior, but
allowed for the possibility that at a distance of w/2, the posterior distribution decreases not

necessarily to half its peak value, but to another proportion, 1/C"

,_ InC  InC (2.28)
—1—COS%U 2 '

K

with C being the free parameter.

This type of correction only makes sense if the subjects are well-calibrated. Therefore, we
fitted the model to data grouped by stimulus, since this method is the least sensitive to noise
and we only analyzed trials with presentation times above 200 msec, as performance has
already saturated at this point, and according to the IEA models, the regression-to-prior-

mean effect is minimal.
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2.6.4 Simulating the Ideal Evidence Accumulator

For each model variant, | used three stimulus strengths and simulated a total of 30,000 trials
(10,000 per stimulus strength condition). In each trial, | simulated 10 samples for the Signal
model (Z1.19) and 20 samples for the Noise model (Z1.59). | computed the model responses for
each cumulative subsets of the 10 or 20 samples (1, Z1.2,...). The derivations of the relevant

computations are in Chapter A.

2.6.5 Stimulus-marginalized certainty

To evaluate how well certainty predicts accuracy while controlling for the effect of stimulus
strength, | grouped trials by stimulus. For each stimulus, | performed a median split on the
trials based on the reported certainty, dividing them into a low-certainty and a high-certainty
group. | then calculated the accuracy and average certainty within each of these groups. This
process was repeated for every stimulus. Finally, | averaged the accuracy and certainty across

all stimuli.
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Chapter 3

On the complexity of internal models

We' investigated the rules of human perceptual decision making in complex dynamic situa-
tions when changes in the external conditions could be explained by multiple, equally feasible
adjustments of the internal model rather than by one possible interpretation. Using hierar-
chical Bayesian modeling and a novel behavioral paradigm, we identified through response
biases the internal representations observers used during their decision and found that in
such situations observers’ interpretation is strongly modulated by the specific dynamics of
the input sequence. We show that this behavior could be captured by assuming that ob-
servers rely on representations with detailed dynamics of each parameter of their internal
model and use this information to readjust their model to properly account for changes in
the input sequence. These results are compatible with a fully Bayesian view of perceptual
decision making, in which uncertainty at various levels of the external input is optimally

accounted for.

This chapter is being prepared for publication. It therefore uses plural pronouns.
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3.1 Introduction

Making decisions is one of the most fundamental cognitive act performed by humans and an-
imals that includes just about every type of behavior (Mellers et al., 1998; Kahneman, 2013;
Newell et al., 2022). Importantly, everyday decision making always occurs in context and
this context changes perpetually. These changes could be continuously evolving small alter-
ations (e.g. feeling an increasing discomfort), (Newell and Shanks, 2014) or occasionally oc-
curring major modifications through distinct events (e.g. receiving the news about the crash
of the stock market), (Resulaj et al., 2009). Experimental investigations of decision making
imitate this evolving context by repetitive sequence of trials (Goldstone, 1998; Heilbron and
Meyniel, 2019; Lengyel and Fiser, 2019; Lee et al., 2020) and the effect of event-based changes
by volatility-based adaptation studies (Nassar et al., 2010; Gallistel et al., 2014). These simpli-
fied studies identified sequential adaptation effects influencing the current decision due to
the stimuli and decisions of the preceding trials (Fischer and Whitney, 2014) and volatility-
specific adaptation of the single learning parameter of the decision process (Behrens et al.,
2007; Glaze et al., 2015; Piray and Daw, 2020). However, these studies do not explore the feasi-
ble situation when the decision process can be influenced by multiple adaptable parameters
and the problem is not only how much “the” parameter needs to be changed but also “which”

parameter(s) need to be adjusted.

To address this gap, in the present study, we explored how well a multi-parameter model can
capture human behavior in a classical sequential 2-AFC decision making paradigm when the
context and its change during decision making are more reminiscent to natural conditions.
We designed our experiment so that multiple equally adequate but contradicting interpre-
tations of the circumstances could generate different “contexts” that the decision could be
based on during the trials. We also varied the dynamics of the changes across contexts on a

wide range to explore the effect of these different types of changes on decisions.

Based on our experiments, we obtained three fundamental results. First, we show that un-
der these conditions, human decision making behavior cannot be explained by the presently

available decision making models as they are fundamentally controlled by other aspects than
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the known serial effects and overall volatility of the input. Second, through detailed computa-
tional analysis and modeling, we show that explaining our results requires a decision making
process that automatically maintains a sophisticated internal model of multiple aspects of the
complex setup with corresponding parameters and with their unique dynamics well beyond
merely capturing a general volatility measure of the observed situation. Third, we generate a
number of counter-intuitive predictions based on our model and show by testing that human

behavior confirm them.

Our findings clarify the scope of earlier decision making results based on simple experimen-
tal setups and suggest that the general mechanism of human sequential decision making
involves an implicit and automatic inferential process that uses a complex internal represen-
tation of the current situation and a probabilistic explaining-away-based mechanism to select
between multiple plausible interpretations of the current observation based on all parameters

of the internal representation.

3.2 Unexpected pattern of human decision making results

after detecting a change in context

To test human decision making behavior in changing context, first we ran two different vari-
ants of the classical sequential 2AFC categorization task. The general design of these two
and all the other experiments in the present study followed the simple structure of a 2AFC
decision task, in which participants decide which of the two possible shapes is hidden under
the variable amount of Gaussian noise on a given trial (Figure 1TA). In all experiments, the
following three general features of the setup were fixed across trials except for changing at
one or two change-points (CP) during the entire course of the experiment: 1) the temporal
noise structure (how the noise level of the next stimulus was selected), 2) the appearance
probability (AP, in what fraction of the trials the more frequent shape appeared), and 3)
whether there was a feedback or not at the end of the trial (Fig. 3.1B). The changes occurring
at the CP were either abrupt from one trial to the next one or gradually introduced in the

course of 80 trials called the transition period (TP). Importantly, feedback was provided to the
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participants about the correctness of their choice only up to the change point, and they were
not informed about the presence and nature of changes in the features to avoid influencing

them how to set up and update their internal model.

In Experiments 1-2, we varied the experimental parameters abruptly vs. gradually at a single
CP located after the 200th trial in the 500-long sequence to test whether these variations
altered the participants’ decision behavior (Fig. 3.1C inset). The first 200 trials (Training) used
identical parameter settings in both experiments. In particular, a) the Gaussian noise added
to the shape image on each trial followed an adaptive staircase to identify the noise level at
which the participants’ performance was around chance level, b) the two shapes appeared
equally often across trials (AP =50%), and c) the participants received feedback about the
correctness of their answers to bring their assumptions about the task statistics closer to a
common baseline. In both experiments, all the parameters changed at the single CP after
the 200th trial. Specifically, feedback after each trial was not provided any more and the
noise level of each trial was selected randomly from a uniform distribution between the Min
("No noise") and the Max value identified by the adaptive staircase during the training. Most
importantly, APs also changed to the same new level (AP =65%) either instantaneously (Exp
1) or gradually in an 80-trial-long TP (Exp 2) so that one of the shapes became more frequent

across the trials.

By the 80th trial after the CP, all changes were completed and the last 220 trials (Test) the
conditions across the two experiment were again identical. Response biases based on these
last 220 trials of the Test were assessed to identify the internal models the participants used
in response to the introduced changes. For both of these two and all subsequent experi-
ments, two biases were computed for the first and second half of the Test trials, respectively,
to quantify the persistence of biases. The biases were the offset parameters of the best-fit
psychometric curves to the data. Note that participants performed exactly the same task in
all the trials during the Training, the TP and the Test periods of all the experiments, only the
underlying structure of the task changed: Training and TP set up the context and the Test

section provided the measure of human decision making.
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Figure 3.1. Diverging change induced behaviour. A. Temporal trial structure. B Three
task features change at the CP, separating the Training and Test phases: 1) Feedback is re-
stricted to the Training phase. 2) Training employs a 2up-2down adaptive staircase method
to determine the maximal value of random uniform noise in the Test phase (black dots, with
a temporal average represented by the yellow dotted line). 3) The AP of shapes (blue line)
changes either abruptly or gradually over 80 trials (dotted blue arrows). C. The measured
ratio of frequent choices (dots) in relation to stimulus strength (inverse variance of Gaussian
pixel noise), with best-fitting sigmoid curves (lines) for the two experimental conditions (or-
ange and green) shown in the inset. The two psychometric curves are shifted in the opposite
direction and this bias is persistent throughout the experiment (bar plot). D. The impact of
stimulus and decision from n trials ago on the current decision (dotted lines - best exponential
fits). E. The biases in figure C are the sum of an experimental conditioned-dependent bias
term and the average short-term serial effects of past decisions.

We conducted Experiments 1 and 2 with two separate groups of participants (N; = 18, Ny =

19) and obtained two counter-intuitive results compared to common sense expectations. First,
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according to conventional accounts of decision making in changing environments (Behrens
et al., 2007; Nassar et al., 2010), the decision making behavior in these two experiments in-
cluding trials with high noise level, should be identical from about 100 trials on in the Test
session after AP stabilizes at 65%. Second, observers in both experiments should choose,
especially in trials with high noise, the shape that has appeared 65% of the time in the pre-
ceding dozens and hundreds of trials, reflecting the accumulated prior knowledge about the
shape APs. We found that the observers’ behavior followed a completely different pattern.
Specifically, the responses in Exp 1 showed the polar opposite bias from that in Exp 2. Ob-
servers in Exp 2 followed the expected pattern of choosing the overall more frequent shape
(M =0.24 +£0.1, t13 = 2.518, p = 0.021, Cohen’sd = 0.021), whereas observers in Exp 1
preferred to chose the shape that they saw half as often in the preceding trials (M = —0.18+
0.07, t17 = —2.49, p = 0.023, Cohen’s d = 0.023). The difference between the biases of Exp1
and Exp2 was significant in both the first (t35 = —2.59, p = 0.014, Cohen’sd = 0.83 ) and
in the second halves (¢35 = —4, p < 0.001, Cohen’sd = 1.29)) of the Test period (Fig. 3.1C).
In addition, we found no significant difference between the biases measured in the first and
second half of the same experiments (Exp1: t17 = 0.946, p = 0.357, Cohen’sd = 0.201; Exp2:
t1s = 0.202, p = 0.842, Cohen’sd = 0.052), indicating that much of the internal model ad-
justment responsible for the biases occurred at the CP, without major revisions later. In sum,
neither the similarity of the results in Exps 1 and 2 nor the preference for the more likely
shape in Exp 1 was confirmed and this pattern remained the same across the 220 trials of the

Test session.

One set of the mechanisms potentially capable to explain multiple-trial-based higher-order
phenomena in sequential perceptual decision making has been intensively explored under
the label of Short-Term Serial Effects (STSE). STSE incorporates a combination of negative
biases due to short-term stimulus adaptation and positive biases due to short-term attractive
serial dependence induced by past stimuli and decisions and other post-perceptual processes
(Fischer and Whitney, 2014; Fritsche et al., 2017). However all these processes reportedly act
based on the past 5-10 trials at a time scale of 10-15 sec making them an unlikely candidate
for explaining our results. Nevertheless, to assess the contribution of STSE in our paradigm,

we calculated the STSE bias, defined as the change in the probability of giving a ’frequent’
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response depending on whether the stimulus or response n'” trial back was *frequent’ rather
then ’rare’ (Methods). We found that prior decisions, but not stimuli, had a strong influence
on current decision (Fig. 3.1D) and this effect diminishes roughly exponentially over time
(dotted lines) with the time scale compatible with previous reports (Fritsche et al., 2017). More
importantly, these STSE were highly similar across these two (Fig. 3.1D) and all following
experiments in this study (Supplementary, Fig. B.1) and thus, they could not explain our
results of diverging and long-lasting biases. Since in this study we focus on the long-term
biases, in the rest of this paper, we always remove the biases of STSE and present only the
purely long-term ones (Fig. 3.1E). We note that due to interactions between long- and short-
term effects, the removal of the biases due to STSE does not amount to the same simple
subtraction across all the experiments. Instead, we included an independent predictor in the
psychometric function to account for the STSEs, effectively factorizing out the STSE from the

bias term (Section 3.7.3).

3.3 Computational analysis of complex human decision

making

To find an explanation to our puzzling results, we start this section with forming a hypothe-
sis about human decision making. Next we formalize our experimental paradigm in a prob-
abilistic model based on our hypothesis and conduct a thorough computational analysis of
the model. Finally, we evaluate how the model explains our results and derive a number of
concrete and testable hypotheses for our subsequent empirical investigation which we will

test in the subsequent section.

3.3.1 Human decision making is based on choosing between compet-

ing dynamic interpretations

Our starting point is the earlier assertion that capturing the real complexity of the world
necessitates a complex internal model endowed with multiple parameters (Koblinger et al.,

2021). The main hypothesis of the present study is that the fundamental challenge that
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humans resolve during decision making in a complex dynamic environment after detecting an
alteration in the surrounding context is interpreting the detected alteration as a change in one
rather than some other subset of parameters of their complex internal model. Importantly,
the alternative interpretations could — in various combination — describe the input equally
well but promote very different decisions. To illustrate with an example, if someone is driving
on a road full of potholes in foggy weather and she sees no more potholes for a while, she
could reason that either the road ahead has already been resurfaced or that the fog has
increased. Both options are perfect descriptions of the sensory evidence, but they support
very different decisions to make about what to do next when a darker spot suddenly appears
on the road: drive around the spot if it is interpreted as a pothole or go through it, if the road
is assumed to be fine and the fog thinner at that spot. We posit that the largest fraction of

human decision making cases under natural conditions represent samples of such a situation.

In such complex cases, the changes in the characteristics of the observed stimuli do not reveal
univocally the changes of the latent model parameters and inferring the current state of
the parameters becomes impossible without additional knowledge, for example knowing the
dynamic properties of the parameters. In our example, an easy interpretation of the driving
situation becomes impossible based exclusively on the apparent frequency of spots on the
road since this frequency is not directly related to either the rules of construction or the
accumulation of fog. On the other hand, if the observer has access to the dynamics of the
two alternative explanations and those are different (e. g. when a road gets repaired, it
tends to be done for a large segment, whereas fog accumulation on the road seems to vary
quickly within some dozen meters), this difference can be used for making the right decision.
In principle, such a solution would require our perceptual system monitoring and storing
information of the dynamics of individual internal parameters and automatically use this
information in the inference process during sensory decision making. Our second hypothesis
is that humans follow such a dynamical context-based decision making process and given the
contextual richness of our experimental paradigm, this interpretation process is responsible

for our intriguing results.

74



CEU eTD Collection

Presently, there is no empirical evidence in the literature suggesting that the brain involun-
tarily maintains and uses a detailed internal representation of each internal parameter and
their dynamics instead of simply encoding a limited number of decision parameters and using
only the global volatility of the environment. This is because almost all previous investiga-
tions of sequential decision making processes used a task design with the strong simplifying
feature that there was only a single parameter in the corresponding internal model that could
change, e.g. the mean of the stimulus distribution (Behrens et al., 2007; Nassar et al., 2010;
Gallistel et al., 2014; Glaze et al., 2015; Zylberberg et al., 2018), and this fact was obvious to
the observers. Therefore, the underlying task can be framed as a tracking problem, in which
successful behaviour requires the accurate detection of changes in a single parameter embed-
ded in noise followed by a proper adjustment of the parameter. Some of these models also
used information about the dynamics of the relevant parameter to improve change-detection
efficiency (Behrens et al., 2007; Glaze et al., 2015; Piray and Daw, 2020). However, due to hav-
ing a single dynamic parameter in these studies, the dynamics of this parameter and of the
observed variables become directly linked thereby greatly simplifying the tracking problem
since monitoring the overall volatility of the observed variable was sufficient to estimate the
dynamics of the relevant parameter. Such a modelling setup captures well the structure of
the typical behavioral and neurophysiological decision making experiments, but it fits only
a small fraction of real life situations. In contrast, as demonstrated below, our experimental
setup is suitable to investigate complex decision making since human behavior after the CP
in this setup can be captured only by a model that possesses two characteristics. First, it
includes two latent parameters that, in different combinations, can give two or more equally
good description of the statistics of observations. Second, these parameters can in princi-
ple have distinct dynamics, so this information could be utilized to select the appropriate

interpretation when facing a change.

To formalize our main hypothesis, we describe our experiment in a hierarchical Bayesian
observer model (Fig. 3.2A). In our model, the observed stimulus z; of each trial ¢ is generated
by the combination of two latent variables, the shape identity z; and the magnitude of noise y;
superimposed on the shape image. To make a decision, the ideal observer infers the identity of

shape, i. e. the decision variable z;, by combining its prior assumptions about the appearance

75



CEU eTD Collection

probability (AP) of the two shapes, with the likelihood of shapes given the observations
P(z|x) < P(x|z) - P(z; AP) (3.1
Importantly, the likelihood function:

P(x]z) = / P(zly, 2) - P(y]) dy (32)

could be distorted if one of the shapes, on average, tends to be either more noisy (related to
the second term of the integral in Eq. 3.2) or just less detectable in equal amount of noise
(related to the first term of the integral in Eq. 3.2). This potential imbalance of noisiness is
formalized in our model by a prior on the shape of the likelihood function by introducing the
second main parameter of our model, normalized relative visibility (RV), that is scaled to be
compatible with the first main parameter AP (Fig. 3.2A). Specifically, we parameterized RV
so that arbitrary change in AP could be replaced by a change in RV and at the AP = 0.5
RV = 0.5 condition the model is unbiased (see Methods). Notably, when RV deviates from
the unbiased condition, the nuisance variable y;, which originally is not related directly to
the decision, becomes informative about the shape identity z;, thus allowing y; to indirectly
influence the decision via explaining away. Under this condition, when feedback is not pro-
vided about the correctness of the choice in a trial, the ambiguities of the two latent variables
propagate one level up in the hierarchy and effectively couple the inference making on the
priors AP and RV thereby eliciting an explaining away situation at the level of the param-
eters. This setup provides the first necessary conditions of a model suited for investigating
complex decision making, having the potential for multiple competing interpretations of the

observed stimuli.

To satisfy the second condition, we made our model dynamic by assuring that both prior
parameters could change at any point in time during the experiment. This was implemented
by two additional parameters in the model D ,p and Dgy, called hyperpriors, that encoded
the dynamics of the parameters (Fig. 3.2A). Due to the dynamic variability of the setup, D4p
and Dgy hyperpriors must also be involved in the inference of the two latent prior parameters

AP and RV. This experimental design and the corresponding generative model represent a

76



CEU eTD Collection

A GENERATIVE MODEL B MULTIPLE PLAUSIBLE INTERPRETATIONS
hyper- parameter set 1 parameter set 2
£ priors .
% different AP same AP
g * * @ ft:; o000 0
= — — | e °
s e ) )
priors
l | experiment z z
shape
decision
var. A ~
5
R
Y
(%]
@ .
-g nuisance @
= var.
o
> /
\ stimulus
observed . "% =
var. Xt =
C BEHAVIOURAL PREDICTIONS
opposite bias
' ' 8‘_ A
—_ E
= )
g o interpretation 1 interpretation 2
= . 3
o= == unbiased 2
I - diff. AP ¥ | think it’s B, I think it’s A,
& == diff. RV 2 because B is because A is generally
& g more frequent less visible

X

Figure 3.2. Modeling equally plausible interpretations. A. Variables and parameters of
the complex generative model. The two-way branching structure induces the explaining away
effect at the level of prior parameters. B. lllustration of how two distinct parameter sets can
produce the same perceptual statistics, with each interpretation leading to different decision
strategies. C. Biases of the psychometric curve corresponding to the two interpretations in
B.

minimal setup in a 2-AFC classification paradigm required to investigate decision making

based on choosing between competing interpretations.
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3.3.2 Treating complex decisions with competing interpretations within

a static model

To illustrate how our model can capture our experimental results by interpreting the same
observations differently with different parameter combinations, we use the simplified static
version of our model, momentarily omitting parameters D,p & Dpgy for the sake of clar-
ity. Building on the intuition of our example with the patchy road in foggy weather, the
key insight of our approach can be captured as follows. Without feedback in the Test trials
following the CP, observers have no direct information about the AP and RV parameters,
therefore, they have to infer them from the observed noisy stimulus distribution. However,
the same stimulus distribution can be elicited by different parameter settings. For example, if
shape B seems to be noticeably more frequent in the sequence than shape A after the CP, this
may actually be true (Fig. 3.2B, parameter set 1). Alternatively, the two shapes may appear
equally often but shape A generally embedded in more noise compared to shape B (Fig. 3.2B,
parameter set 2), and this fact of A being less noticeable creates the illusion of appearing less
frequently. While both interpretations are equally valid descriptions of the observed statis-
tics (Fig. 3.2B, yellow distribution), they lead to very different decisions, especially on the
noisiest trials. In trials where the shape is completely covered by noise, the first alternative
assuming different APs suggests to chose shape B as it is overall more frequent, while ac-
cording to the second alternative based on different RV's, the observer would imply that the
noise covers shape A since A tends to be more noisy in general. In short, the two alterna-
tive interpretations induce opposite biases in the observer’s decision and this difference in
biases can be experimentally tested by measuring the horizontal shift in the psychometric
curve. (Fig. 3.2C). We used this measure in our experiments to asses the generative models

that observers use in their decisions (Methods).

To obtain specific model-based predictions, we formalize the above rationale within a prob-
abilistic framework. In the case of a two-dimensional likelihood function over AP and RV,
the maximum values of the function are located in a continuous region and we confirmed
by simulations that in our experimental setup, these values are grouped along a straight

ridge (Fig. 3.3A). The area under the ridge includes two special points and the correspond-
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Figure 3.3. Behaviour of the static model. A. Heatmap and contour plot of the two
dimensional parameter likelihood function in the AP — RV space, with the observations
generated by the parameter combination indicated by the red dot. There are two special
points on the maximum likelihood ridge: one where AP is unbiased (= 0.5) and the bias of
the perceptual statistics is fully explained by the RV parameter (red dot), and another where
the reverse is true (blue dot). B. Predictive distributions of two models corresponding to the
special points in A. C. Simulated trajectories of the MAP parameter estimates across trials
(dotted arrowa) after a sudden change in the stimulus-generating parameters from the black
cross to the red dot. Initial conditions are compared based on whether the RV parameter (red
ellipse and trajectory) or the AP parameter (blue ellipse and trajectory) is more uncertain a
priori. D. Heatmap and contour plot of the decision bias in the two dimensional parameter
space. We show potential parameter trajectories (arrows) between the unbiased parameter
combination and the special parameter combinations. This trajectories could belong to hypo-
thetical update processes. E. Simulated psychometric functions corresponding to the special
parameter combinations. The shifts in the psychometric functions (inset arrows) align with
the parameter trajectories shown in panel D. F. Bias difference between the endpoints of the
trajectories in D and E (bar colors correspond to the arrow colors in D and E).

ing models, one with different appearance probabilities (AP # 0.5) but the same relative
visibility (RV = 0.5) for shapes A and B and another one with identical appearance prob-
abilities (AP = 0.5) but biased relative visibility (RV # 0.5), (Fig. 3.3A, blue and red dots,
respectively). These models correspond to the two parameter sets in Fig. 3.2B. Importantly,
although each point around the ridge with approximately equal likelihood values represent

different models with distinct parameter settings, these models predict roughly the same
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stimulus distribution thus providing an almost equally good explanation of the sensory in-

put as confirmed by simulations using the two special models (Fig. 3.3B).

While our model so far satisfies the requirement of providing multiple alternative internal
representations of the sensory input stream, it raises a new question: How to choose be-
tween these equally suitable models? For example, when the observer having an unbiased
model (AP = 0.5 and RV = 0.5) detects a discrepancy between the perceived stimulus
distribution and the one predicted by her model, how does she adjust the parameters of her
model to choose between different new models that offer equally plausible interpretations
of the discrepancy? Following probability theory, the model parameters should be updated
in proportion to their prior uncertainty. After accumulating sufficient evidence, the chosen
model will eventually converge to the one with maximum likelihood parameter setting, if
any, or settle in one of the equally good options, but the exact trajectory of the convergence
is determined by the priors used in the starting model. In particular, the initial part of this
trajectory will be strongly attracted towards models that differ from the starting model in the
less certain parameter, that is models positioned along a trajectory more aligned with the RV
axis for the starting model with higher RV uncertainty and conversely, models positioned
along a trajectory more aligned with the AP axis for the starting model with higher AP
uncertainty (Fig. 3.3C). We confirmed by simulations that this difference between the initial
part of the two trajectories is manifested by markedly different decision biases of the psycho-
metric curves depending on the parameter priors (Fig. 3.3D). Establishing a direct mapping
between this probabilistic framework and the logical reasoning about biases presented in
the previous section has an important consequence: if human decision making is, indeed,
probabilistic and it is controlled by the relative uncertainty in the parameters of the two al-
ternative interpretations, a change in this relative uncertainty should make the observer alter

her interpretation as well. We use this feature to link our model to our experimental results.

3.3.3 Treating competing interpretations based on a dynamic model

One way to manipulate uncertainties for changing the observer’s interpretation is to adjust

the dynamics of the system: the faster a parameter tends to change, the more uncertain the
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observer is about its future value. This dynamics-related uncertainty contributes to param-
eter uncertainty and hence, to the interpretation of the stimulus statistics in the same way
as other uncertainties do in the static case, but only if the observer has knowledge about the
dynamics of the parameters. As mentioned above, in simple models, this information can be
easily estimated by using a simplified proxy, namely the volatility of the environment due
to the direct link between the dynamics of the single decision variable defining the prob-
lem and the dynamics of the observed variables. However, this strategy does not generalize
to more complex internal models with several differently behaving latent parameters since,
the observed volatility only reflects the intertwined aggregate dynamics of the interacting
parameters, not the individual dynamics separately. To disentangle the dynamics in such

situations, a more detailed characterization of parameter dynamics is required.

Such a more detailed characterization can be given by using the 2D-space specified by the
axes of change frequency and change magnitude (Fig. 3.4A). Change of each parameter in this
space may occur (1) infrequently but with a large magnitude (change-point process), (2) fre-
quently but with a small magnitude (diffusion process),(3) not at all along either axis (static)
or (4) frequently with a large magnitude along both axes (unpredictable). Each of these con-
ditions specifies a transition probability function with a distinct and parametrizable shape
expressed by the hyperpriors (Fig. 3.2B, Dsp &Dyp). In principle, both hyperpriors of our
model can be located in any of these four regions, but if one of the them is either unpre-
dictable or static, then the task itself is either unpredictable or equivalent to the simple case
with one dynamic prior parameter. Therefore, we focus on the interesting situation when
the two hyperpriors define dynamics that are sufficiently different from each other along the
diffusion process vs. change-point process axis (Fig. 3.4A). In this case, the characteristics of
the observed changes do provide a strong cue for interpretation: a prior parameter with a
more change-point (CP) type dynamics can explain a large and rapid observed change, while
a prior with a more diffusion process-like dynamics is more suitable to describe a slow drift
of the observed statistics. As a consequence, while a complex model with multiple hyper-
priors defining latent variables with different dynamics can provide more than one equally

adequate interpretations of the steady-state behavior of the observed variables through dif-
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ferent interactions, these models can be clearly distinguished in their adequacy based on

their dynamics.

To illustrate such equally adequate interactions more formally, we ran simulations with dif-
ferent dynamic versions of our Bayesian model described in Fig. 3.2A. We investigated how
simple and complex dynamic versions of the model starting from a highly confident initial
state with unbiased parameters (i.e. both AP and RV being at 50%) would adapt to a novel
and biased statistics defined by AP changing to 75% (i.e. shape A appears in 75% of the tri-
als), when this transition from 50% to 75% bias is introduced either abruptly or gradually over
the coarse of 120 trials. We compared three models: two simple models with one dynamic
parameter, where the transition of single AP parameter followed either a drift diffusion or
a change-point dynamics (Fig. 3.4B orange and green, respectively), and one complex model
with two dynamical parameters, a drift diffusion type AP dynamics and a change-point type

RV dynamics (Fig. 3.4C burgundy).

Our simulations with the simple models revealed that the resulting representation of the
dynamic parameter, defined by the posterior over AP (Fig. 3.4B, left panels), is largely inde-
pendent of both the parameter dynamics (orange and green) and the actual speed of change
(light and dark colours). This illustrates that with one dynamic parameter, there exists only
one interpretation of the novel statistics, in our case the true steady-state AP after the 120-
trial-long transition period. Consequently, the response biases are almost identical in all
conditions, and these biases persist long after the transition period (Fig. 3.4B, right panels).
In contrast, the complex model arrives at different representations depending on the actual
speed of change. When the observed change is sudden, model states with parameter com-
binations that require more change from the current state by the parameter that has CP
dynamics (here, RV') have relatively higher posterior values compared to combos that would
change more the parameter with diffusion dynamics (here, AP) (Fig. 3.4C, left panel). Con-
versely, in response to slow changes, the complex model prefers combos for explaining the
new condition that change more the parameter with diffusion dynamics (AP) (Fig. 3.4C,

middle panel).
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Crucially, this leads to very different (even opposite) response biases in the two cases, and
this difference persists long after the change occurred (Fig. 3.4C, right panel). This persistence
indicates that both interpretations fit the observed data equally well, which eliminates the
need for the observer to revise the initially selected interpretation in the close future. We ver-
ified by simulation that both the two simple and the complex models arrived and remained
at a state after the change, in which their posterior predictive distributions of the observa-
tions were identical and veridical (Fig. 3.4D). For completeness, we tested all other possible
scenarios of parameter and dynamics combinations of simple and complex models and found
results similar to the ones obtained by using the above setups with the only difference that

the generated biases had the opposite sign (nor shown).

This analysis provides an explanation to our initial results. If humans use specific information
about the dynamics of the latent parameters of their internal model according to the proba-
bilistic computation specified above, introducing the same parameter change either abruptly
or gradually in our experiments should prompt the observers to choose different interpreta-
tions of the input according to the predictions of our complex dynamic internal model, and
their selected interpretation should be manifested by opposite observed biases in their re-
sponses (Fig. 3.3D, inset). Moreover, we predict that a targeted experimental manipulation
of the observers’ prior experience about the dynamics of the two parameters (Dap &Dpgy)
that alters the relative uncertainty of those parameters should lead to observers changing
their interpretation of the same input sequence and selecting a different adjustment of their

internal model with a bias opposite to those measured without the targeted manipulation.
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Figure 3.4. Characterization of parameter dynamics and the behaviour of the dy-
namic model. A. Volatility can be decomposed according to the frequency and expected
magnitude of individual changes. In the resulting 2D space of dynamics, four characteristic
regions can be distinguished based on the corresponding transition probability distributions
[TPD]: 1) narrow TPDs define diffusion processes (orange), 2) however, if the TPD is extremely
narrow the environment is approximately static (yellow), 3) the mixtures of narrow and wide
TPDs define change-point processes (green), 4) and if the TPD is too wide, the environment
is unpredictable (gray). B. Simple models with either drift (orange) or CP (green) type AP
dynamics end up with similar AP posteriors by the end of the TP (left column) and pro-
duce roughly equal behavioural biases (right column) short and long (1. and 2. half) after
the TP, regardless of whether the change was sudden (light color) or gradual (dark color).
The marginal posterior distributions are concentrated on the true AP = 75% value (blue
dot) in either case. C. A complex dynamic model, with diffusion type AP and CP type RV
dynamics, will end up with different joint parameter posterior distributions depending on
whether the change is sudden (left panel) or gradual (middle panel). As a consequence, sig-
nificantly different long-term biases emerge in the two cases (right panel). D. For all models,
the posterior predictive distribution (solid lines) is approximately the same as the true stim-
ulus distribution (dotted blue line).

84



CEU eTD Collection

3.4 Evidence of humans choosing between competing dy-

namic interpretations during decision making

3.4.1 Assuming internal selection between interpretations captures

unexpected human decision making behavior

The two predictions derived from the probabilistic model in the previous section not only
allow a direct comparison between outcomes of the model’s simulation and the results of
Experiments 1&2, but it also provides a further surprising prediction for a new Experiment 3
(Fig. 3.5). Experiment 3 is identical to Exps 1&2 in all respect except that two changes were
concatenated at the CP, first an instantaneous increase of AP from 50-50% to 65-35% and then
immediately a gradual decrease of AP back to chance level over 80 trials. This manipulation
resulted in a 500-long trial sequence, in which apart from a brief 80-trial-long spike at the CP

all trials were presented in the unbiased AP condition.

The simple and complex models described in Section 3.3 make qualitatively distinct predic-
tions and provide confirmatory simulation results about the expected relative response biases
measured during the Test of Exps. 1-3 (Fig. 3.5B). If the participants use the simple model, the
bias after the CP is ultimately determined by the steady-state statistics of the Test and not
influenced by the type of transition. In this case, Exp1 & Exp2 that have identically biased
steady-state statistics should generate equal biases during the Test that significantly differ
from zero either positively or negatively depending on whether the AP or the RV parameter
is dynamic, respectively (Fig. 3.5B, upper row, green and orange bars). The same model pre-
dicts that the bias in Exp3 should be zero given the balanced steady-state statistics (Fig. 3.5B,

upper row, yellow bar).

In contrast, if participants use a complex model, their behavior would show a completely
different pattern matching the two counter-intuitive features found empirically in Exps 1&2.
First, the temporal characteristics of the transition at the CP should have a strong influence
on the interpretation leading to a significant difference between the biases of Exp1 & Exp2

despite their identical steady-state observed statistics. The sign of the difference would be
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Figure 3.5. Experimental dissociation of simple and complex models. A. Experimental
conditions. B. Qualitative predictions of the simple (upper) and complex (lower) models. Hy-
pothetical trajectories in the parameter space (arrows within the heatmaps on the left) and
the long-lasting biases (bar plot) are shown for the experimental conditions when AP is the
dynamic parameter (upper left) or it has the more CP-like dynamics along the diffusion-CP
axis compared to the RV parameter (lower left). Biases are also shown for the reverse pa-
rameter allocations, when the role of AP and RV are swapped. C. Experimentally measured
biases during the first and second half of the test phase.

determined by the relative position of the two parameters’ dynamics along the diffusion - CP
axis. Specifically, if AP has the more CP-like dynamics, a more positive bias should follow
the instantaneous (Exp 1) than than the gradual change (Exp 2), while the opposite pattern
should hold if RV has the more CP-like dynamics (Fig. 3.5B, lower row, green and orange
bars). The second predictions is that either in Exp 1 or Exp 2 (the one with negative bias), the
participants should systematically choose the shape appearing significantly less frequently

in the preceding tens and hundreds of trials.

The third counter-intuitive predictions of the model is that the bias in Exp3 should not be-
come zero even long after the AP perturbation is completed and the sequence returned to
the balanced steady-state statistics (Fig. 3.5C, lower panel, yellow bar). This occurs because
the internal parameter with a more CP-like dynamics is mostly involved in explaining the
initial sudden increase of the observed AP and less so in the subsequent gradual return to
the balanced state, while the opposite is true for the other internal parameter with more
diffusion-like dynamics. This two-step adjustment in the AP — RV parameter space results

in a return to a different segment of the ML ridge that crosses the coordinates of the neutral
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bias model, settling on a model in which the bias will be positive or negative depending on
which of the RV and AP parameters is assumed to have more CP-like dynamics. This leads
to a bias in Exp3 that differs significantly from that of Exp2 and has the same direction as

the bias of Exp1 (Fig. 3.5B, lower panel, yellow vs. green).

To test these predictions, we have run Experiments 3 with a new group of participants (N3=20)
and found that participants’ bias in Exp 3 as well as the combined pattern of the aver-
age biases across the three experiments was highly compatible with the bias pattern pre-
dicted by the complex internal model having more CP-like RV dynamics without any ad-
justment of parameters between experiments. The difference between Exp1 and Exp2 was
significant in both the first (t35 = —2.85, p = 0.007, Cohen’sd = 0.92) and the sec-
ond halves (t35 = —6.09, p < 0.001, Cohen’sd = 1.96) of the Test period (now, with
STSEs factored out from the bias). The same was true for the difference between Exp2 and
Exp3 in both the first (t3; = 2.24, p = 0.031, Cohen’sd = 0.7) and the second halves
(tss = 3.84, p < 0.001, Cohen’sd = 1.21) of the Test period. Thus the qualitative pat-
tern of results remained the same again across the two halves of the Test period also in line
with the predictions of the complex model. We found no significant difference between the
biases measured in the first and second half of Exp2 and Exp3 (Exp2: t;5 = —0.21, p =
0.836, Cohen’sd = 0.055; Exp3: t19 = 1.13, p = 0.272, Cohen’s d = 0.232), but the negative
counter-intuitive bias of Exp1 became slightly, but significantly stronger in the second half
of the Test phase (t;; = 2.582, p = 0.019, Cohen’sd = 0.446). The relative stability of the
biases indicates that much of the internal parameter adjustment occurred at the CP, with-
out major revisions later, since all interpretations described the post-CP steady-state equally

well.

3.4.2 Snapshot models of local steady state statistics cannot describe

human decision making

In Exp1and Exp3 that produced similar biases, the APs in the first 20 trials of the Test phase
were the same, while they were quite different form the AP in Exp2 that produced a different

bias. This rises the possibility that after noticing a CP, observers start tabula rasa and the bias
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Figure 3.6. Testing the snapshot model. A. Experimental conditions. B. Qualitative
predictions of the snapshot model (left) and the complex dynamic model (right). C. Experi-
mental results.

in their behavior is determined by the statistics of the stimulus sequence provided immedi-
ately after the CP rather than by the full set of characteristics (i.e. starting and end point and
dynamics) of the change. To compare the predictions of this alternative snapshot model and
the complex model, three additional experiments were run. Specifically, in Exp4 (N4 = 18),
AP was set to 65% in both the training and the test phase, completely eliminating the AP
change during the experiment. In Exp5 & Exp6 (N5 = 16 & Ng = 19), the AP was 75% during
the training, and reduced to either 65% or 50% during the test phase, respectively, reversing
the direction of change compared to Exp1. The snapshot model would predict the same bias
in Exp4 and Exp5 as in Exp1, and a near-to-zero bias in Exp6 as in Exp2 (Fig. 3.6B, left side).
In contrast, the previously identified complex dynamic internal model with more CP-like RV
dynamics makes specific predictions about the ordering of the biases measured in Exp1 and
in the three control experiments (Fig. 3.6B, right side). Conceptually, since according to this
model the sudden AP change in Exp1 elicited a negative bias, the complete elimination of the
change in Exp4 should reduce the negativity of this bias. In addition, reversing the direction
of change in Exp5 & Exp6 should further shift the bias to the positive direction. Interestingly,
since the sudden change in Expé6 is larger then in Exp5, the model should predict more pos-
itive bias in Exp6 than in Exp5, despite that the actual AP being larger in the test phase of
Exp5 (Fig. 3.6C). Notice that with the complex model, specific predictions can be made only
about the relative magnitude and ordering of the biases and not of their exact sign since that

would require more specific knowledge of the model parameters.
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The behavioral results of the three experiments showed that the participants’ biases clearly
followed the ordering predicted by the complex dynamic model (Fig. 3.6B-C), and there were
no significant differences across the two halves of the Test phase in any of the new control
experiments (Fig. 3.6C, see the statistics in Fig. 3.7D). All the predicted differences between
biases were significant (p < 0.05) in both the first and the second half of the Test, except for
one condition (Exp1-Exp4, first half), which was not significant but approached significance
(see details in Fig. 3.7C). These results confirm that the observed behavioral biases are not
determined by the local statistics observed immediately after the CP, but by the combination
of the perceived direction, magnitude, and speed of the change, as predicted by the complex

model.

3.4.3 Changing the history of observed dynamics can strongly influ-

ence the choice of the implicitly applied internal model

The preceding results confirm that during even the simplest perceptual decision, humans
make up their mind in a complex manner relying on multiple internal variables including z
and y, and their prior parameters, AP and RV that reflect summary statistics of z and y based
on earlier experiences. These results also suggest that observers selected their internal models
idiosyncratically by implicitly assuming more or less CP-like dynamics to RV and AP. A
relevant question is whether observers’ assumptions about the dynamics of AP and RV,
captured by the hyperparameters (D ap, Dgy) in our model, is predetermined or, similarly to

AP and RV, they can change flexibly based on previous experience.

To address this question, we investigated which local changes at the CP could be primarily
responsible for the observers assumption about the dynamics of AP and RV'. First, we ex-
amined whether the abrupt change in the local noise distribution around the CP alone could
cause the RV parameter appearing as having more CP-like dynamics. In Exp7 (N; = 33),
we made one modification compared to Exp1 by introducing a 100 trial long second training
phase (Training2) between the original training phase (Training1) and the Test (Fig. 3.7A).
Training1 and Training2 were identical with one difference: instead of using the adaptive

staircase method, noise in Training2 was drawn from the same P(y) marginal distribution as
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Figure 3.7. Training the dynamic hyperpriors. A. The experimental conditions were
extended with a second training phase, featuring the same noise statistics as the test phase.
B. Experimental results of the new experiments compared to the results of Exp 1. C. De-
tailed statistics of the two-sample t-tests comparing participants’ biases across different ex-
periments. Tests were conducted separately for comparing the first halves (FH) and second
halves (SH) of the Test phases. D. Detailed statistics of the paired t-tests comparing partici-
pants’ biases across the two halves of the Test phase within each experiments.

in the Test thereby eliminating the change of the marginal noise distribution at the CP. Had
the abrupt change P(y) been the main reason why RV seemed to have more CP-dynamics,
our change in Exp7 should reduce the negativity of bias found in Exp1 (Fig. 3.7B). However,
we found the bias in Exp7 not being significantly different from the bias in Exp1 (Fig. 3.7C,
Ref Table) eliminating the change in local noise distribution at the CP as the main factor

determining the choice of parameter dynamics.

Next, we tested whether longer-term observed statistics could control the choice of parame-
ter dynamics. In Exp8 (/Ng = 35), we introduced one further change to Exp7: the experimen-
tal AP alternated between 70% and 30% in 20 trial long blocks during the middle 80 trials
of Training2 (Fig. 3.7A). With the introduction of frequent and abrupt changes in AP dur-
ing Training2 with feedback still provided, the observers perceived the AP dynamics being
more volatile and CP-like. If this alternation in the level of AP experienced before the Test
session influences the observers’ internal description of AP dynamics as more CP-like, the

AP parameter should be involved more in the interpretation of CP-type changes, which in
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turn should decrease the negativity of the bias found in Exps 1&7. Indeed, observers’ bias in
Exp8 was significantly less negative than in Exp7 confirming the cardinal role of previously
collected information on dynamics of AP in selecting the internal model after a CP model
(Fig. 3.7B, Table). In summary, the combined results of the eight experiments together sug-
gest that observer using a complex internal model that can simultaneously capture diverse
parameter dynamics. When more than one equally fitting interpretations of an observed
change is available, observers incorporate in their decision the dynamic characteristics of the
change as well as high-level and specific knowledge about the dynamics of the parameters of
the internal model to determine which interpretation will be selected for explaining the new

condition.

3.5 Reaction time-based confirmation of the internal model’s

complexity

In the previous sections, we used the qualitative predictions of an abstract Bayesian model
to argue that human decision making adapts to dynamic changes in the input by relying on
a complex internal model. In this section, we further validate this result by linking the prior
parameters of the abstract Bayesian model (AP and RV') to the parameters of a process-level
model — the bounded evidence accumulator (BEA), (Forstmann et al., 2016; Ratcliff and McK-
oon, 2008) — to explain idiosyncratic reaction time (RT) patterns in the data that are beyond
the explanatory scope of the original Bayesian model. By showing that the complexity of
the internal model is critical in explaining the diversity of reaction time patterns across the

experiments, we provide strong confirmation of our initial findings.

According to the BEA framework, 2AFC (perceptual) decisions are driven by the accumulation
of evidence about the relative probability of the two options until a decision threshold in
favour of one option is reached. This modeling framework is well suited to explaining how
different factors, such as prior beliefs and stimulus strength, affect reaction time. The BEA

models have two key parameters: (1) the starting point of the accumulation process and (2)

91



CEU eTD Collection

the bias of the accumulation rate towards one option. Importantly, these two parameters can

be conceptually linked to the AP and RV parameters of the complex Bayesian model.

The key observation to link the abstract model to the process-level model is that the AP
and RV parameters have conceptually very different roles in the trial-by-trial perceptual
inference when it is modelled as Bayesian inference. The AP parameter defines the prior
term of Bayes’ rule expressing the beliefs of the participants prior to the observations and,
therefore, is independent of the stimulus. In contrast, the RV parameter is related to the
likelihood term that defines the statistical relationship between the decision options and the
observed stimulus. As a result, the two types of parameters influence the process of decision
formation and, thus, the within-trial time-courses of stimulus-dependent vs. -independent
parameters biases qualitatively differently (White and Poldrack, 2014). Specifically, biases
related to stimulus-independent parameters show up much stronger when the decision is
fast compared to when it is slow (Fig. 3.8A, top, left). In contrast, biases related to stimulus-
dependent parameters are equally present in both fast and slow decisions (Fig. 3.8A, top,
right). These effects are usually described with BEA models (White and Poldrack, 2014), by
assuming that the starting point of the accumulation process is influenced by the stimulus-
independent parameters (such as AP; Fig. 3.8A, bottom, left) while the rate of accumulation

is biased by the stimulus-dependent parameters (such as RV’; Fig. 3.8A, bottom, left).

These observations indicate that after establishing the monotonic relationship between the
parameters of the abstract Bayesian model and the parameters of the BEA model, the abstract
parameters should capture the experimentally measured time dependence of the behavioural

biases within trials.

We tested this prediction in two steps. First, we independently estimated the best-fitting AP-
RV combinations of the abstract model for each participant (Fig. 3.8B), and validated through
simulation that the model accurately captured the data (Fig. 3.8C). In the second step, we
freeze the per-participants AP and RV parameter estimates and use them as regressors for
the BEA’s parameters to fit the response-times-augmented data assuming a linear relation-
ship between the abstract and the process-level parameters. During this step, short-term

response patterns were also allowed to affect the reaction times in addition to the AP and
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Figure 3.8. Reaction time-based validation of the complex model. A. Top row: Typ-
ical RT-dependent bias patterns associated with parameters affecting stimulus-dependent
and stimulus-independent aspects of the decision making process. The figures were simu-
lated using the BEA model. The FC bias is the difference between the fraction of correct
responses measured for the frequent and rare objects. Bottom row: Illustration of the key
BEA model parameters and their link to the abstract model parameters. B. Best-fit parame-
ters of the complex model (mean & sem across participants), with the parameters constrained
to the maximum likelihood ridge corresponding to the steady-state experimental statistics.
C. Fraction of frequent responses (mean + sem) as a function of stimulus strength com-
puted either from the experimental data (black circles) or from the synthetic data (colored
lines) simulated by the EA model with best fitting parameters. D. FC biases (mean + sem;
see the definition in panel A) as a function of reaction time category (equale percentile split),
computed either from the experimental data (black circles) or from synthetic data simulated
by the BEA model with the best fitting parameters (coloured lines).

RV parameters. Importantly, all the remaining parameters in this step were shared across all
the participants and experiments, since the goal was to find a general mapping between the
abstract and the process-level parameters that holds for each participant irrespective of which

experiment they participated in. We found that the process-level model with its parameters
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being tied to the corresponding abstract Bayesian model’s parameters could reliably capture
the reaction time-dependence of the behavioural biases (Fig. 3.8D). Furthermore, Bayesian
model comparison showed that the simple models, which scaled only one parameter of the
BEA model, or a BEA model that relied exclusively on short-term response history could not
fit the reaction time patterns as well as the complex model did (Section B.4). In summary,
this independent verification method confirmed that a complex model with two adjustable

parameters was, indeed, necessary to describe the full complexity of the behavioural data.

3.6 Discussion

In this chapter, we explored the simplest forms of complex decision situations where the pre-
cise underlying structure remained undisclosed to the observer despite an extended period of
familiarization. We found that in these situations, participants exhibited seemingly counter-
intuitive behaviour that could not be adequately captured by standard, simplistic models
of sequential decision making that attribute all changes to a single hidden cause. Specifi-
cally, we observed that in some cases participants developed long-term biases against the
observed statistics, and even short-term perturbations of otherwise balanced statistics were
able to induce persistent behavioral biases. Moreover, participants’ performance was notably
influenced by the dynamics of the perturbation suggesting that this dynamics is exquisitely
encoded in the their internal representation. Our results contribute two important novel in-
sights to the field of complex decision making: 1) In ambiguous decision situations, regardless
of the task’s simplicity, participants automatically resort to their complex hierarchical inter-
nal models with multiple dynamic parameters. 2) When encountering changes in the task
statistics, participants adjust those parameters of their complex internal model the dynamics

of which are best aligned with the change.

In order to fully grasp the true nature of the decision situation, we developed a complex
Hierarchical Bayesian Model (HBM) and demonstrated that this model could qualitatively
capture all the idiosyncrasies of our data. This HBM was complex in the sense that it im-

plicitly represented multiple alternative interpretations of the observations through differ-
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ent parameter settings. When the need for revise the current interpretation emerged due to
changes in the conditions, this model relied on higher-order statistics encoded by the dynam-
ics of the parameters to select between the alternatives to explain the data. In this way, our
complex HBM could naturally exhibits a fundamental phenomenon of complex probabilistic
models at the level of parameters, known as "explaining away". Explaining away refers to the
phenomenon that the system maintains multiple possible interpretations of the observations
(weighted by their probabilities) until an internal need or external information is received

that can resolve the ambiguity.

The idea that complex HBMs are suitable models of human cognition has been around before
(Griffiths et al., 2008; Orbanz and Teh, 2010; Austerweil et al., 2015; Whittington et al., 2020).
For example, HBMs have previously been successfully used to elucidate a remarkable human
capacity: the ability to efficiently build abstract knowledge from limited evidence (Tenen-
baum et al., 2011). For this purpose, the key property of HBMs was their ability to dynam-
ically grow based on simple rules, enabling them to effectively discover complex structures
underlying raw observations (Kemp and Tenenbaum, 2008). However, computational explo-
rations of how to tune the parameters of such an existing HBM and relating the obtained
results to human behavior has been restricted mostly to very simple chain or tree struc-
tures (Behrens et al., 2007; Heilbron and Meyniel, 2019; Piray and Daw, 2020). For example,
while Heilbron and Meyniel (2019) emphasised the importance of deviating from the chain-
structure when investigating the hierarchical nature of human cognition, they still used a
simple tree structure that did not allow for competing interpretations of a given input. As a
result, very few studies could focus even theoretically on the important effect of explaining
away on parameter learning in complex probabilistic networks let alone relating this effect

to behavioral data.

The current study aimed at filling this gap by exploring the consequences on decision-making
based on a complex and dynamic internal model in a changing environment. Our findings
revealed a nuanced interaction between the speed of environmental changes and the idiosyn-
cratic parameter dynamics of the complex internal model. Importantly, our results concern-

ing the mechanism of perceptual decision making are conceptually consistent with previous
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findings in the field of motor-learning. In that domain, employing a complex model rep-
resenting both internal (body-related) and external (environment-related) parameters could
explain the change speed-dependent arbitration between explaining motor errors with these
two types of parameters (Berniker and Kording, 2011). The consistency of results from these
two distinct domains implies that the same universal mechanism may underlie the adapta-

tion of both motor responses and abstract decisions.

The explaining away phenomenon has mainly been discussed in the context of momentary
perceptual inference, (Adams et al., 2004) even if the information triggering the phenomenon
was obtained over a longer period of time (Sotiropoulos et al., 2011). In our study, we specif-
ically investigated how explaining away impact parameter learning, when not only the indi-
vidual observations, but also the statistical regularities across these observations have mul-
tiple interpretations. Our finding that humans automatically employ complex HBMs when
faced with such complexity indicates that explaining away is a fundamental aspect of cogni-

tion that is also present in learning situations.

The prior work by (Courville, 2006; Dayan and Kakade, 2000) also investigated explaining
away at the level of parameters by using the framework of Bayesian causal modelling and
focusing on the classical conditioning phenomenon known as backward blocking. However,
in classical conditioning, the two latent parameters representing the causal strength of the
two conditioning stimuli on the Unconditioned Stimulus are direct memory representations
of the sensory input. In our case, the internal parameters created a latent space of possible
and equally good solutions for interpretations and the explaining away effect operated on
implicit equivalence classes of possible interpretations rather than on directly represented
sensory items. Therefore, a significant contribution of our study is providing a demonstration
that humans utilize complex models even when the actual task does not explicitly calls for
this, and showing that explaining away emerges even when the competing effect of the two
parameters could be distinguished only indirectly by relying on more nuanced second-order

statistics such as the dynamics of observations.

Explaining away effects can be described by the concept of contextual modulation. For ex-

ample, in a recent study, Heald and colleagues showed that observers could quickly switch
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between different previously stored contexts in a sensory-motor learning task (Heald et al.,
2021). In particular, Heald and colleagues investigated whether, and if so then how the brain
could choose between gradually learning a new interpretation (either by slowly adapting the
current parameter combination or by abandoning the present combination and find a new
combination from tabula rasa) vs. reactivating an already stored parameter setting represent-
ing an earlier context. In this framework, context is defined at the level of parameters by a
vicinity of a particular set of these parameters and the input dynamics provide a cue to de-
cide whether to stay in the current context or to change (i.e. weather to adjust or completely
reset a single parameter while storing the old one). In contrast, in our case, the dynamics of
the parameters set up the context at a higher level by determining which parameters should
be used to explain the observed changes (i.e. which parameters to adjust among the many)
without specifying what values these parameters need to take for the explanation. Both of
these two complementary processes are likely to be present and cooperate in human decision
making in a format where the larger decision situation modelled in our work determines the
context in which the more specific mechanism modelled by Heald and colleagues completes

the adjustment of the parameters.

In my work, | focused on the decision behavior after an individual Change Point (CP) and
identified a new effect that influenced this behavior across a couple of hundred trials after
the CP. Being an effect that depends on multiple trials, a potential candidate to explain our
effect is short-term serial effects (STSEs) identified in previous studies and also present in
our sequential decision-making experiments. In the literature, STSEs have been explained in
various ways and through different assumed mechanisms including sensory adaptation, hot-
hand, balancing between local and global statistics, Bayesian adaptation (Cicchini et al., 2024)
and resource rational computation (Prat-Carrabin et al., 2024). In these proposals, STSEs have
been linked both to attractive biases of previous decisions, (e.g. hot hand bias) and to repulsive
effects of previous stimuli (due to e. g. adaptation) (Bosch et al., 2020). In our experiments, we
observed a strong attractive bias, which decreased over time but remained constant across
all experimental conditions and was independent of the long-term effects induced by CPs
(see Supplementy, Section B.1). Thus, this attractive STSE lasting for 5-7 trials we found can

explain neither the long-term speed-dependent biases nor the non-intuitive negative bias
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that we observed in Exp1. or the between-experiment variations of biases. Our results are
not compatible with another proposed explanation based on a balancing mechanism either
that was hypothesised to explain short-to-intermediate term effects in a tilt estimation task
by bringing the statistics observed in the recent past closer to the statistics of long-term past
(Chopin and Mamassian, 2012), because that mechanism evokes a repulsive STSE in contrast
to what we found in our experiments. In sum, none of the proposed mechanisms the literature
can provide a viable alternative to our complex HBM to capture the effects reported in this
chapter. It should be noted that, in contrast, our complex HBM can in principle, capture the
emerging short-term effects, since the observed waning attractive STSE can be induced by

the Bayesian update of the drifting AP parameter.

3.7 Methods

3.7.1 Stimuli and Procedure

Two shapes out of a set of 11 were randomly selected for each participant to serve as the
discrimination stimuli. On each trial, the stimulus of size of 204*204 pixels (=~ 4.7 visual
angle) was presented centrally (circa 4.7 visual angles) on an iMac 27” (2560*1440) using Psy-
chophysics Matlab toolbox. Participants watched a screen in a dimly lit room at a viewing
distance of 60 cm and used the left/right buttons of the keyboard to provide responses. In-
structions emphasized accuracy over reaction times but did ask for timely responses as there
was an upper limit of four seconds to respond. The instructions did not mention stimulus
probabilities nor changes in task structure. Trials were presented on a grey background dis-
play within a blue “box”, a 256256 pixels large blue square, spanning approximately 5.7 visual
angles. On each trial, a shape embedded in Gaussian noise was presented for 200 ms, while
the thin frame of the box (12 pixels wide) remained visible. After the stimulus disappeared,
the center of the box turned white until the participant responded. After the response it re-
verted to blue until the next stimulus. The interval from the response to the next stimulus
(RSI) was sampled randomly from a normal distribution with mean=1100 ms and SD=100

ms. During the training block, negative feedback was given after each mistake (in the form
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of red exclamation marks) and no feedback after correct responses. During the test block
there was only feedback if participants made a mistake on the 1/8th lowest noise trials in
order to maintain attention (performance was over 90% in these trials, totaling to approxi-
mately 1% of test trials with feedback). At each trial, varying levels of Gaussian noise were
added to the grayscale stimulus (Fig 4.1B). The training started at a low noise level, and the
variance of the Gaussian noise was gradually increased with a “2up/2down” adaptive stair-
case procedure. The training lasted for 180-200 trials, to have an estimate of discrimination
threshold. After 15-30 seconds of break, a 300-trial long test phase followed, where the Gaus-
sian noise was sampled uniformly-randomly between low noise and the threshold reached

during training.

3.7.2 Participants

189 Hungarian students (18-30 year old) participated in 8 experiments (between 18 and 34
in each experiment) and received monetary compensation. The participants gave informed

consent before the start of the experiment and were unaware as to the purpose of the study.

Subject inclusion criteria

We used weak inclusion criteria to exclude from further analysis participants who were likely
inattentive to the task or incorrectly used the response button. Participants data need to met
two inclusion criteria: 1) There had to be a significant positive Pearson correlation (p < 0.05)
between the responses, r, and the signed stimulus strength y - z. 2) The Pearson correlation
between the stimulus strength y and the correctness of responses » = 2 had to be positive
for both 2 = 1 and z = —1. Altogether 11 subject out of 189 couldn’t meet the criteria,
the average inclusion rate was 0.94 + 0.05 (£std) in the eight experiments, and the lowest

inclusion rate was 0.86 in Exp1.

3.7.3 Psychophysical analysis

We estimated the behavioral biases of participants by employing hierarchical logistic regres-

sion, simultaneously fitting all participants’ data from all experimental conditions using the
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numpyro probabilistic programming language (Phan et al., 2019). This allowed us to sepa-
rate long-term behavioural biases (which depend on experimental condition) from short-term

serial effects (which are the same in all experiments).

In the model, the behavioural bias of participant p within the i*" half of the Test phase was
defined as the constant coefficient (52" ) of the logistic function (.5) fitted to the participant’s

bias

responses:

. : \P
PP =11y, 2) = (L= ) S (B + B =+ e Re) 45 63)
t

This equation establishes a relationship between the probability of a "frequent” response
(ry = 1) in trial t and two predictors: the signed strength of the current stimulus (z;/y;), and
the weighted sum of the past 30 responses (R;). The later term accounts for short-term serial
effects, which were consistently observed in the data regardless of experimental manipula-
tions (see Section B.1). However, when computing the overall bias for Fig. 3.1C, the (.4
coefficient was set to 0. Otherwise, the impact of past responses was incorporated using

exponential discounting with a decay parameter, 7:

30 e~ T

Ry =) = Tt (3.4)

—Tn
n=1 2un=1¢€

To account for potential attentional lapses, on A, proportion of the trials responses were

selected randomly with equal probability instead of relying on the logistic function S.

Considering that short-term effects exhibited similar patterns across different experimen-
tal conditions, we assumed that the two corresponding parameters, {45, 7}, were shared

among all participants across all experimental conditions. The rest of the parameters were

p7Z
bias

P

tim? also for

independent across participants {3 Ay} and in case of the bias parameter,3
the two halves of Test phase. To express the assumption that the bias is primarily determined
by the experimental condition, we incorporated an experimental condition-dependent prior

for the bias parameter:

Bhias ~ Normal(5y;,., o) (3.5)
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whose standard deviation (o) was fitted to the data.

3.7.4 ldeal observer analysis

Ideal observer model

We modelled the participants’ decisions with the ideal observer model illustrated in Fig. 3.2B.
In each trial ¢, the ideal observer computes the posterior distribution over stimulus categories
(2¢ € {£1}) based on the noisy observation in the current trial (x;) and the prior beliefs pa-
rameterized by AP, & RV;. Since the prior parameters are latent parameters in the hierarchi-
cal model, their values also need to be inferred based on all the previous observations, x1.;_;.

When computing the posterior of z,, the prior parameters are integrated out as follows:
Pafrr) = / / AP, dRV.P(u|x,, AP, RV,) - P(AP, RViayyy)  (3.6)
This posterior distribution forms the basis of the ideal observer’s decisions (r; € {£1}).

Learning (in the dynamic model)

We treated the ideal observer as a Bayesian learner, optimally updating its prior parameters
with the noisy observations according to its internal model. We put the assumption into
the internal model that the prior parameters, AP, & RV}, change over time independently
of each other, following separate first-order Markov processes characterized by the transi-
tion probabilities, P(Q:|Q:-1), @ € {AP, RV }. With the Markov assumption, the posterior

distribution of the prior parameters are computed iteratively:

P<ARE7RV;€’$1:t) X P($t|APt, RVt) : P(APMRVAIMA) =
_ P(x| AP, RV}) / / AAP,_, dRV,_, P(AP,|AP,_y) - P(RV|RV,_) - P(AP_y, RV |z14-1)

(3.7)
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The transition probabilities were defined as the mixtures of a beta and a Dirac-delta distri-

butions:

Q; ~ v - Beta(mean = Q;_1,std = 8) + (1 — ) - dpirac(Q—1) (3.8)

The specific type of parameter dynamics determined the parameters of the mixture distribu-
tion. For drift diffusion dynamics, v was fixed to 1 and s was small (relative to its theoretical
maximum). For CP dynamics, s was large and v was much smaller than 1 (see Supplemen-
tary). In in the graphical model of Fig. 3.2B, the abstract D4p and Dgy hyperpriors stands

for the parameters of the mixture distributions.
Noisy observations

We characterize the stimulus with a single real number, y, (in this part, we omit the trial
index, t, for simplicity), whose sign is determined by the stimulus identity, 2z, and whose
absolute magnitude increases monotonically with stimulus strength, s = 1/y (defined as the
inverse standard deviation of the Gaussian pixel noise, y):

,Ux(y, Z) =z <,U/amp : (M) + /vLmin) (3-9)

Smax — Smin

Here, spmin = min(s), Smax = max(s), and famp, fimin and « are three scalar parameters that

scale the stimulus strength.

To capture the imperfections of the sensory system (e.g. internal noise), we model the sensory
observation, x, as a random sample drawn from a unit standard deviation normal distribution

centered on the stimulus value, p,:
x ~ Normal(pu,(y, z),1) (3.10)

Note, that we don’t loose generality by setting the standard deviation to one, since the signal-

to-noise ratio can be arbitrarily adjusted by appropriately setting the parameters ftamp & fimin-

While we, as experimenters, need to represent separately the functions P(y) and P(z|y, z) to
leverage our knowledge about the noise when fitting the model parameters, the participants,

who do not have access to y, can suffice with representing only the integral of the two func-
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tions, P(x|z), implicitly marginalizing out the unknown y. We parameterize this likelihood

with RV in such a way that

1 1
P(z) =) P(x|z RV =05)- P(2;AP = q) = » P(x|2; RV = q) - P(z; AP = 0.5)
2=0 z=0
(3.11)
where
P(z|z; RV =0.5) = /dyP*(:zc|y) - P*(y) (3.12)

and P*(y) is the experimental noise distribution and P*(z|y) is the estimated noise likeli-
hood from the model fitting. The P(z|z; RV = q) distributions are numerically computed

following the method discussed in the Supplementary Information (Section B.4.1).

While P*(y) was continuously changing during the training due to the adaptive staircase
method, moreover underwent an abrupt change at the CP, we could not be sure that partic-
ipants could learn its Test distribution perfectly. Therefore we allowed it to deviate from the

uniform distribution. Instead of the uniform P*(y) distribution we used P*(s)

With the above parametrisation {AP = ¢, RV = 0.5} and {AP = 0.5, RV = ¢} generate
the same P(x), and roughly the same is true for each combination where AP+ RV = ¢+0.5
and ¢ € [0.5, AP].

Response model

Ideally, participants would always choose the option with the higher posterior probability
(maximum a posteriori, or MAP decision), because this strategy would maximize the rate
of correct responses. This is the strategy that we used for simulating the responses of the
dynamic model. However, when fitting the static model we allowed two deviations from the
ideal response strategy: First, to model the potential attentional lapses of the participants,
on X proportion of the trial the model choose the responses randomly instead of relying on
the posterior. 2) To account for the short-term serial effects that were present in the data, but

were independent from the experimental conditions (see Supplementary), we transformed
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the log posterior ratio, forming the basis of decision, by adding a past-dependent term (R;)
to it:

1

P = ) = A o (PG = Tlen) — PCer = O] + w F)

+X-05 (3.13)

R; was the term that we used for fitting the psychometric curve defined in Eq. 3.4, and 3 was
set to 100 making it virtually equivalent to choosing the maximum of the transformed log

posterior ratio.
Model fitting (of the static model)

We employed hierarchical Bayesian inference (using numpyro probabilistic programming
language; Phan et al., 2019) to estimate the parameters of the static model. This hierarchi-
cal model was fitted to data from all participants across all experimental conditions at once.
The parameters AP, RV and A were estimated individually for each participants, while all
the remaining parameters, {/tamp, fimin, @, T, K, B}, were shared across participants and con-
ditions. Sharing the parameters allowed us to independently estimate the long-term biases
associated with AP and RV from the STSE, and made the inference more robust overall. We
searched for the { AP, RV} parameter combinations on the maximume-likelihood parameter
ridge (to ensure model identifiability) defined by the linear equation APgp = AP+ RV — .5,

where APgr is the ground truth appearance probability of the experiment.

When fitting the reaction time data, using both the simple and complex models, we allowed
a simple one-parameter transformation to the AP-RV parameter pairs, applying the same
transformation for all participants across all sessions (see Section B.5). We justified this be-
cause there was an experimental parameter that participants might have misjudged, and we
could not reliably infer their beliefs about it either. The one-parameter transformation cap-
tured the effect of potential misjudgment well, but still kept the constraints imposed by the

AP-RV parameter estimates on the RT fit strong.
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3.7.5 Bounded evidence accumulator model

To capture reaction times, we employed the bounded evidence accumulator (BEA) model
with constant decision boundaries. This model posits that noisy evidence is accumulated
over time, and a decision is made when the accumulated evidence reaches one of the deci-
sion boundaries at 0 or a, corresponding to the two possible choices, r = —1 orr = —1,

respectively. The accumulated evidence at trial ¢ and time 7 is defined by the integral

e(T) = wy + /T(vt +e,)dr (3.14)
0

Here, w, is the starting point of accumulation, v; is the accumulation rate, and €, is the
momentary noise drawn from a standard normal distribution independently in each time

bin.

The parameters w; and v; varied from trial to trial based on the signed strength of the current

stimulus (%) and the past decisions (R;, Eq. 3.4). Specifically:
wy = S(Whias + K - Rt) (3.15)
U = @ - (Vbias + Vamp - Yt * 2t + Ko - Ry) (3.16)

In line with (White and Poldrack, 2014), the bias of starting point only depends on AP and
the bias of accumulation rate only depends on RV. We assume linear relationship between

the abstract Bayesian parameters and the bias terms:

Whias = W - (AP —0.5) + 0.5 (3.17)

Upias = U - (RV — 0.5) (3.18)

The distribution of accumulation termination times were computed from w,, v; and a using

the numerical method described in (Navarro and Fuss, 2009) (see Supplementary). Reaction

105



CEU eTD Collection

times were modelled as the accumulation termination time plus a non-decision time ¢,,; ~

LogNorm(log(ty), o, )-

We fitted the BEA model simultaneously to all participants in all experiments using the BADS
optimizer in Matlab. All free parameters of the model were identical for all participants, so
all the variations across participants were attributed to the estimates of AP and RV, which

were obtained from the independent static Bayesian model fits.

106



CEU eTD Collection

Chapter 4

Identifying uncertainty representations

in early visual cortex

In this chapter, | move beyond purely behavioural analysis and explore the neural traces of
posterior representations. In a fully Bayesian brain, uncertainty about all latent variables of
the internal model would be represented in the neural activity, potentially encoded in (par-
tially) distinct neural populations. Here, | introduce a novel data-driven approach — developed
in collaboration' - that was designed to test which latent variables’ posterior distributions (if
any) are encoded in specific populations. This approach combines model-based analyses of
behavioral data and population decoding analyses of simultaneously recorded neural data. |
also present proof-of-concept results from applying this analysis approach to mouse primary
visual cortex (V1) calcium imaging data recorded during a perceptual decision making task.
In line with the topic of the thesis, we? aimed to identify the traces of behaviourally esti-
mated perceptual posteriors in the neural activity, distinct from those of decision posteriors.
After the initial validation of the method on synthetic data, we found preliminary evidence
for the representation of such perceptual posteriors in mouse V1. Upon extensive validation
of the method and further confirmation of the results, this work could offer the first neural

evidence supporting the fully Bayesian brain hypothesis.

'For details regarding the distribution of contributions, please refer to the Declaration of Authorship at the
beginning of the Thesis.
2In this chapter, where | want to emphasise the joint contribution, I will use the first-person plural.
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4.1 Introduction to the approach

The ultimate product of the brain is behaviour; thus, neural activity is best understood in
light of the behaviour it brings about (Krakauer et al., 2017). Guided by this principle, we de-
veloped a novel two-staged approach to search for the neural representations of uncertainty
and tested it on mouse neurophysiological data obtained from a direction discrimination task

(Fig. 4.1, top).

The first stage of this approach focuses solely on the behaviour of the animal, temporar-
ily setting neural data aside. In this initial step, a Bayesian ideal observer - fitted to the
trial-by-trial behaviour of individual subjects — computes the posterior distributions for two
latent variables on each trial: a low-level perceptual variable (the orientation of the stimu-
lus; Fig. 4.1, bottom right) and a high-level decision variable (which of the two responses is
correct; not shown). In the second stage, these ‘behavioural’ posteriors are used as targets
for different population decoder algorithms that are applied to neural responses recorded in
the corresponding trials. Acknowledging the existence of competing hypotheses that differs
on how neural activity might represent probability distributions, two distinct decoders were
developed, corresponding to the dominant theories of probabilistic representations: (1) one
that uses the within-trial temporal patterns of responses (Fig. 4.1, bottom left), as suggested
by the neural sampling hypothesis (Fiser et al., 2010), and (2) another that uses the spatial
pattern of responses across the population (Fig. 4.1, bottom middle), as suggested by theo-
ries e.g. probabilistic population codes (Ma et al., 2006) and distributed distributional codes
(Vértes and Sahani, 2018). By quantifying the decodability of posteriors, this approach allows

testing of which variables’ uncertainties are represented in neural activity, and how.

A key advantage of this method, compared to previous approaches (Walker et al., 2020), is
that it use no neural data for estimating the subjects’ posteriors. This avoids the circularity
of reasoning that the ‘target’ perceptual posteriors would be inferred from the same neural
data in which their existence is meant to be demonstrated. Instead, we inferred the internal

representation solely from behaviour, assuming this representation is fully Bayesian, and only
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Figure 4.1. A data-driven approach for revealing the neural representations of uncertainty in
mouse V1. This approach combines model-based analyses of behavioural data and population decod-
ing analyses of simultaneously recorded neural data. Experimental data: Alongside the mouse’s lick-
ing behaviour, the activity of layer 2/3 pyramidal cells in mouse V1 was recorded using calcium imag-
ing during a 2AFC perceptual decision making task. Behavioural analysis: Based on the stimulus-
response pair data (orange box), an ideal observer provided trial-by-trial estimates for the posterior
distributions of two latent variables: a low level perceptual variable (orange distribution), and a high
level decision variable (not shown). Neural analysis: The behavioural posteriors were used as tar-
gets for two population decoders (feedforward neural networks) differing in the assumption whether
posterior distributions are represented by temporal (red, blue, green) or a spatial (purple) code (see
details in Section 4.4).

in the subsequent step, leaving the raw behavioural data behind, we assessed whether the

neural activity is consistent with the inferred representation.

Given that our primary goal was to identify the representations of perceptual posteriors, we
applied this novel approach to data obtained from mouse primary cortex (V1), which area is a

prime candidate for perceptual representations. Specifically, we recorded the activity of layer
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2/3 pyramidal cells in V1. This recording region was chosen for two main reasons: First, it is
rich in direction-selective neurons (Niell and Stryker, 2008), aligning well with the demands
of our experimental task. Second, as one would expect from a candidate area for posterior
inference — a computation involving the integration of priors (expectations of the internal
model) with likelihoods (sensory evidence), with the results then being forwarded for down-
stream computations — layer 2/3 receives both bottom-up (via layer 4) and top-down inputs
(directly and via layer 5), and it projects to higher-order (visual) areas (Lee and Mumford,

2003; Harris and Mrsic-Flogel, 2013).

By applying our data-driven approach to a specifically tailored data set, we created the first

opportunity to identify the neural traces of the putative fully Bayesian brain model.

4.2 Experimental paradigm

Here, | summarize the most important details of the experimental paradigm essential for

interpreting the results. For a more detailed description see Amvrosiadis (2023).

4.2.1 Two-alternative forced-choice (2AFC) visual discrimination task

In order to estimate the posterior distributions that are potentially represented in the neural
activity of the mice, we developed a motion direction discrimination task. In each trial, the
animal was presented with a moving grating, based on which it made a decision whether
the movement direction was closer to 45° (left) or 135° (right) by licking one of two reward

spouts that were placed on either side of the animal’s mouth (Fig. 4.2A).

Experimental protocol: For this study, we analysed data from three animals, each un-
dergoing several recording sessions over multiple days (one session per day). During these
sessions, the visual stimuli was presented on a computer screen in the right visual field of the
head-fixed animals, while their neural activity was measured with a dual two-photon laser

microscope. The mice performed the task for water reward. To maintain the animals’ moti-
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Figure 4.2. 2AFC direction discrimination task. A. Arrangement of the reward spouts in relation
to the head-fixed mouse. B. Temporal structure of the trials and the role of licks at different trial
stages. C. The stimulus set used in the experiment. Magenta arrows illustrate motion direction (note
the unconventional notation that the angles increase counterclockwise) and magenta boxes highlight
the ‘target’ stimulus pair.

vation, their general access to water was restricted, keeping them at 85-90% of their baseline

body weight.

Trial structure: Fig. 4.2B illustrates the trial structure. Each trial started with a gray screen,
during which the animal was required to withhold liking. After either successfully withhold-
ing licking for 2 seconds or a maximum wait time of 10 seconds (whichever came first), a
moving grating was presented for 2 seconds. Mice were free to lick during stimulus presen-
tation and the right lick ratio (RLR) during the second half of this period was used as an
indicator of their decision certainty. Immediately following the stimulus period, the screen
turned gray and a 2 sec long response period began, cued by an auditory stimulus (Pure tone,
500Hz, 500ms). The animal’s choice was determined by its first lick during this period. A cor-
rect choice (licking into the direction congruent with the motion) was immediately rewarded

with a 10 pl water droplet. In contrast, an incorrect lick triggered an aversive auditory tone
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lasting 100 ms and resulted in a 2 sec timeout. If the animal did not lick at all during this

period, the trial was classified as a “miss,” and a 2 sec timeout was also imposed.

Stimulus manipulations: Fig. 4.2C presents all the stimuli used in the experiment, grouped
according to the applied uncertainty manipulations. The difficulty of the trials was manip-
ulated in three distinct ways, with only one manipulation type used per session. Starting
with a pair of full contrast, unoccluded ‘target’ gratings moving either to the 45° and 135°
directions (Fig. 4.2C, magenta frames), we introduced uncertainty by adjusting either 1) the
contrast of the gratings in 7 steps, {0, 1,2, 5,10, 25, 100%}; 2) the aperture of a grid mask (a
6x9 grid of apertures) partially occluding the grating in 6 steps, {1,2,3,4,5,12°} (12° being
the unoccluded grating); or 3) the movement direction in 18 steps, {5, 15,25, ...175°} (90°

being the decision boundary).

Importantly, while the contrast and aperture manipulations were designed to influence both
perceptual uncertainty and, indirectly, decision uncertainty, the direction manipulations were
intended to affect solely decision uncertainty, but leave perceptual uncertainty unchanged -
i.e., perceptual uncertainty should remain invariant to direction manipulation (Walker et al.,
2023). This partial decoupling of the two types of uncertainty was a crucial design feature
for testing the fully Bayesian brain hypothesis, as it allowed for the potential experimental

dissociation between perceptual and decision uncertainties.

We introduced two distinct perceptual uncertainty manipulations to test whether the per-
ceptual posterior decoded from neural activity specifically represents perceptual uncertainty
rather than the variables that contribute to it (contrast and aperture) — a crucial feature of
proper uncertainty representations (Walker et al., 2023). However, we have not yet conducted

this test.

Training: Prior to the recording sessions, the mice underwent several habituation and train-
ing sessions to familiarize them with the experimental setup, reduce their default side biases,
and achieve a discrimination accuracy over 70%. During training, only the two ‘target’ stim-
uli (full contrast, full aperture, 45° or 135°) were presented to prevent the mice from learning

simpler decision strategies that wouldn’t involve the representation of uncertainty.
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4.3 Behavioural analysis

4.3.1 An ideal observer-based approach

Behavioural responses were analyzed using an ideal observer-based approach. This formal-
izes a generative model (GM) that describes the stochastic process by which stimuli are gen-
erated in the experiment (Fig. 4.3 A). Here, in each trial, the GM first samples the trial type
determining the correct decision (left or right lick; Fig. 4.3A, 2) , followed by the “true” stim-
ulus orientation and “true” stimulus strength (Fig. 4.3A, y). Lastly, it generates noisy obser-
vations based on the true value of orientation and strength (Fig. 4.3A, & and §). The formal

mathematical description of the GM is in the Methods (Section 4.6.1).

By the direct inversion of this GM, on each trial, the ideal observer (Fig. 4.3B, inset) infers
Bayesian posterior distributions (see the details in Section C.1) over two relevant latent vari-
ables (here: the orientation of the stimulus, and whether licking left or right is the correct
response) based on the (potentially noisily perceived) stimulus (here: a drifting grating char-
acterized by its direction and stimulus strength), and predicts the behavioral response (here:
the rate of licking left vs. right) based on these inferences (Fig. 4.3B). The model assumes that
the same licking strategy is maintained during both the stimulus period — used to compute
the right lick ratios (RLR) — and the first lick of the response period, which determines the

choice.

This model is fitted to stimulus-response pair data as inputs, and provides data-driven trial-

by-trial estimates of the posteriors that the subject computes as outputs (Fig. 4.1, right).

4.3.2 Biases of the ideal observer

We allowed the generative model to be biased and suboptimal in various ways, which was
necessary to account for complex patterns in the licking behavior that we will discuss in the
result section. These biases were controlled by a total of 10 parameters, visually illustrated

in Fig. 4.4A. The mathematical formalization is again in the Methods (Section 4.6.1).
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Figure 4.3. The ideal observer model. A. The graphical model of the stochastic generative process
responsible for producing the stimuli and observations. B. Generative model-based inference of the
perceptual (orange) and decision posteriors (green). The ideal observer’s inference is an intermediate
step in the process of lick generation (2) based on the stimulus features (x*, y*).

Specifically, the sensory precision of the generative model (defined as the circular precision of
the sensory likelihood) could vary significantly with the stimulus direction, being more pre-
cise around a specific direction than elsewhere (Fig. 4.4A, left). The relationship between the
physical features that determine stimulus reliability (contrast and aperture) and the model’s
stimulus strength variable, y, could be non-linear and the overall observedness of y could
range from perfect to zero (Fig. 4.4A, middle). Finally, the mapping between the decision pos-
terior and the response could follow a highly asymmetric function with respect to the signed

log posterior odds (Fig. 4.4A, right).

4.3.3 Results of the behavioural analysis

We analyzed the licking responses of three mouse subjects (in total 3053, 2252, and 985 trials,
pooled across all their sessions), fitting the model to their licking behavior during the stimulus
presentation phase of the trials. We only used data from the second half of the stimulus
presentation, as by this time both the licking behaviour and the neural signal had stabilised.
Prior to this, licking was dominated by the animal’s default behavior that was triggered by
the stimulus onset but was independent of the content of the stimulus and the neural signal

exhibited strong stimulus-induced transients.
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Inferred model parameters: For two out of three animals, the estimated model parameters
indicated a strong direction dependence in their sensory precision (Fig. 4.4B, first panel), with
much higher precision around the right target direction (135°) compared to other directions.
Only one animal observed the stimulus strength to some extent (Fig. 4.4B, third panel), and

all animals’ appeared to exhibit response biases (Fig. 4.4B, third panel).

The identified strong sensory bias may seem surprising at first, but it might be justifiable
for an observer with limited sensory resources (Lieder and Griffiths, 2020). In the presence
of such limitations, optimizing resource allocation based on task demands can significantly
improve performance, but potentially elicit strong biases (Wei and Stocker, 2015). One of our
candidate assumptions is that, rather than distinguishing between the two motion categories
(45° vs. 135°), the animals may have been performing a detection task — deciding whether
the direction matched the rightward ‘target’ (135°) or not — and optimizing their perception
based on the demands of this task. However, whether this strategy would account for the

observed biases is a question for future work.

Validation of the fitting method: To verify the reliability of the parameter fitting method,
we assessed the recoverability of the model parameters using synthetic data. First, a synthetic
responses were generated for the actual experimental stimulus sets, either with random pa-
rameter settings or using the best-fitting parameters from the animal data. Then, the model
parameters were estimated by fitting the model to the synthetic data in the same way as for
the experimental data. Based on this test, parameter recovery was not always reliable when
using random parameters (Fig. 4.4C, light grey dots), but the best fitting parameters of the

animals were always recovered with high precision (Fig. 4.4C, red dots).

Beyond assessing the quality of parameter recovery, we developed an alternative method to
evaluate the reliability of the model fitting by focusing on the feature most relevant to our
purposes: how well the posteriors estimated from the recovered parameters (see Section C.3)
matched the ground-truth synthetic posteriors. We made a pointwise comparison of the esti-
mated and ground-truth posterior distributions (Fig. 4.4D, grayscale heatmap), and to better
illustrate the trends, we also compared the average data binned according to the ground truth

posterior values (Fig. 4.4D, colored dots). To quantify the alignment between the estimated
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Figure 4.4. Behavioural model parameters and their recoverability. A. Visual representation of
the model parameters. Left: sensory precision (p = I1(k)/Iy(k), see Methods) as a function of direc-
tion; middle: distribution of observed stimulus strength () given the ground truth stimulus strength
(y) and its observedness (A); right: licking model. B. Illustration of the best fitting models for the
experimental data from three mice, one of them being the example mouse in Fig. 4.5B (black line).
C. Comparison between the estimated model parameters and the true model parameters that were
used to generate the synthetic data. True parameters were either randomly sampled (gray dots) or
were the best-fitting model parameters for the experimental data (red dots). D. Upper row: Pointwise
comparison of the estimated and true posteriors within a single session (gray heatmap), and their
averages binned by the true posterior values (coloured dots). Lower rows: Histograms of the Pearson
correlations of the heatmaps (upper row) and scatter plots (lower row) across multiple simulation ses-
sions, corresponding to the parameter values in panel C.

and ground-truth posteriors, we calculated the Pearson correlation of the pointwise value
pairs (Fig. 4.4D, gray-red histograms) as well as the correlation of their averages (Fig. 4.4D,

colored histograms). The correlation between the true and estimated posteriors were gener-
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Figure 4.5. Behavioural fits. A. The average behavior across animals in response to distinct stimulus
manipulations (black lines), along with the model predictions from the best-fitting models (shaded
areas). The z-scored certainty estimates are purely model-based, so no black lines are shown for these
plots. Error bars and shaded shading represent the across-animal standard error of the mean. B. Same
as in A, but for the example mouse. Here, the error bars and the shading represent the across trials
standard errors.

ally high, despite the inclusion of data with poorly recovered parameters ((Fig. 4.4D). These
results show that the posterior estimates are generally reliable (at least provided that the

model assumptions are close to the true generative model of the animal).

Fit quality: By fitting the model solely to licking during the stimulus presentation (Fig. 4.5A,
far left), we were able to predict, in a cross-validated way, licking during the response phase

of trials (Fig. 4.5A middle left).

Importantly, incorporating sensory bias into the model allowed it to explain complex patterns
of the psychometric curves (Fig. 4.5B), which were particularly apparent for one of the mice
(the example mouse in Fig. 4.4B). For example, there was a counterintuitive increase in the
RLR of this mouse as the contrast of leftward-moving stimuli increased that was at least qual-
itatively reflected in the model behaviour as well (Fig. 4.5B, upper far left) . According to the
fitted model, this animal accurately perceived rightward stimuli, but not so much leftward

stimuli, sometimes even perceiving them as rightward (Fig. 4.4B, left). Since the animal par-
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Figure 4.6. Ideal observer’s predictive accuracy. Across period predictive accuracy of the model
(light blue bars), the empirical RLR (dark blue line) and the stimulus-based approach (yellow line). The
table shows the numerical values (in percentages) corresponding to the bar plot.

tially observed the contrast (Fig. 4.4B, middle), when it mistakenly perceived a high-contrast
leftward stimulus as rightward, the observed high contrast boosted its confidence in this in-
correct perception, leading to an increased proportion of rightward lickings. The occasional
misperceptions of high-contrast leftward stimuli (related to the strong sensory biases) were

enough to create the unexpected contrast pattern.

Stimulus dependence of uncertainty: After fitting the model, internal estimates of percep-
tual certainty (the precision of the = posterior), and decision certainty (the negative entropy
of the z posterior) varied with stimulus attributes as expected: contrast modulated both per-
ceptual and decision certainty (Fig. 4.5A-B, right, top and middle), while orientation mainly
modulated decision certainty (Fig. 4.5A-B, right, bottom). Based on this result, dissociating

between the two types of uncertainty seems plausible.

Quantification of the predictive performance: We predicted the animals decision during
the response period based on the subjective distributions we inferred from their behaviour
during the stimulus period. To quantify the predictive accuracy of this model-based approach,
we computed the probabilistic fraction correct metric proposed by Houlsby et al. (2013). This
measure is the geometric mean of the predictive probability assigned by the model to the
subject’s actual response in each trial. To justify the validity of our model-based approach, we
compared its predictive performance to the maximal achievable performance of alternative
approaches that do not infer posteriors, but rely solely on either the empirical RLR or the

stimuli alone for making predictions.
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The predictive accuracy of the model-based approach exceeds by a large margin the accuracy
of the stimulus-based approach and showed a slight improvement over the empirical RLR-
based approach for all animals (Fig. 4.6). Although this advantage is small, it supports the

use of model-based inference for estimating subjective distributions.

4.4 Neural analysis

Neural responses were analyzed using a population decoding approach. On each trial, the in-
put to the decoder is the set of time-resolved responses of a population of neurons (Fig. 4.1B,
left, top). These responses are analyzed in two complementary ways. For evaluating a tempo-
ral code, we apply a neural network decoder for each time bin in a trial separately (Fig. 4.1B,
left, top; red, blue, and green time windows). Although we use a neural network-based de-
coder for flexibility, critically, it is the same decoder that we apply to each time window
(Fig. 4.1B, left, middle). Thus, neural responses in each time window are decoded separately
into individual distributions (Fig. 4.1B, left, bottom; red, blue, and green distributions) and
are averaged to yield a final “neural” posterior (Fig. 4.1B, left, bottom; black distribution -
this is a smoothed generalization of a simple Monte Carlo representation, in which individ-
ual distributions would effectively be deltas). For evaluating a spatial code, we simply swap
the decoding and averaging steps: we first average (or sum) responses for each cell within
a trial (Fig. 4.1B, center, top; magenta frame) and then decode this purely spatial pattern of
activities directly into a single neural posterior (Fig. 4.1B, center, bottom; magenta distribu-
tion). Note that neural decoders for temporal and spatial codes map between the same kind
of input (a single vector of neural activities) and final output (a neural posterior) for temporal
and spatial codes, and are thus chosen to be identical in their architecture and complexity
(number of parameters) for a fair comparison. Finally, in either case, the decoder is trained to
match the neural posterior to the ideal observer’s behavioral posterior trial-by-trial, by min-
imizing the average discrepancy between the two distributions, as specified by a summary

statistic-based loss-function.

Optimisation loss
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At first, we used the average KL divergence across trials (t) to quantify the discrepancy be-

tween the behavioural (P"°"2V) and neural posteriors (P""):
1 neur ehav
L= 7 Y KL[PI™ || Pp] @.1)
t

However, this approach was later replaced as it does not align well with the characteristics

of the temporal code.

Constructing a loss-function that is also suitable for a temporal code is not straightforward.
This is because a temporal code may, in the limit, imply a sampling-based code, in which
each momentary component distribution is a delta distribution, such that the full distribu-
tion is a mixture of deltas. However, standard information theoretic measures of mismatch
between two distributions (in our case: the behavioural and neural posteriors), such as the
Kullback-Leibler divergence and other measures derived from it, give degenerate results when
the optimised distribution is a mixture of deltas. Therefore, we opted for a ‘projection pur-
suit’ approach instead that was based on matching a set of summary statistics between the
two distributions. These linear projection-based summary statistics (i.e. integrals of specific,
potentially nonlinear functions over the distributions) could be readily computed even for
sample-based representations (essentially yielding Monte Carlo estimates of the integrals).
Furthermore, arguably, any posterior represented in the brain ultimately serves the purpose
of such integrals being computed over it, when being marginalised out for computing ex-
pected losses for decision making, or sufficient statistics for learning. Thus, a summary

statistic-based loss may also be considered more ‘ecological’.

One complication with using a summary statistic-based loss, compared to using an informa-
tion theoretic loss, is that it requires the specification of the particular set of statistics that
are to be matched, and this choice will inevitably entail some degree of arbitrariness. Here,
in order to make minimal assumptions, we chose an ‘unsupervised’ approach. We reasoned
that those statistics would be most important for matching the neural to the behavioural pos-
teriors that best discriminate among the behavioural posteriors themselves. We computed
the set of orthogonal functions that best discriminated the behavioural posteriors in terms of

maximising the average squared difference between their corresponding summary statistics
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(i.e. the integral of the function over the different posteriors). We achieved this by performing
principal component analysis on (the discretized version of) the posteriors. (In other words,
we computed the eigenvectors of the covariance matrix of P*"2V)) As a result, each princi-
pal component (PC;) corresponded to a function whose summary statistic could be used to
discriminate between behavioural posteriors. Intuitively, the larger its associated eigenvalue
(cv;) was, the better the function that it represented discriminated behavioural posteriors by
its corresponding summary statistic — and the more relevant it was assumed to be from the
perspective of the task. We thus used a loss-function for optimizing the decoders that pe-
chav)

nalized the discrepancy between the decoded neural posterior (P"°") and the target (P"

along each PC; commensurate with its behavioural relevance as measured by «;.

This loss-function consists of two terms expressing two independent objectives:

1 neur ehav 2 neur
L= ;Za (P2 PC,) — (PP PC,))? 4 AH,, [Pre] (4.2)

The first mismatch term penalises the average discrepancy between P}“"" and the correspond-
ing PPehav across trials (t € T), such that the discrepancy is the average squared difference

between the projections of the posteriors onto the PC;s, weighted by the «;s.

The second entropy penalty term penalises the average entropy of the momentary distribu-
tions, thereby incentivising the momentary distribution to be narrow, akin to the point-like

Monte Carlo samples. To ensure fairness, this penalty term is also applied to the spatial code.
Normalized mismatch

We evaluate the combination of a latent variable and a neural code by computing the result-
ing mismatch between the behavioral posteriors for the given latent variable and the neural
posteriors for the given neural code after optimization. As the posteriors of different can-
didate latent variables may have fundamentally different complexities (or even supports),

for a fair comparison, we normalize the mismatch by the average mismatch between every
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Figure 4.7. Neural network decoder. A. lllustration of the feedforward neural network decoder.
B. Validation of the discriminative power of the neural network decoder trained with KL-loss. Bar
plots show the average KL divergence between the neural and behavioural posteriors averaged across
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Neural decoder details:

We opted for artificial neural networks as our decoder due to their flexibility. Specifically, we
used feedforward neural networks (Fig. 4.7A) with a single hidden layer of 10 fully connected
ReLU neurons and a Softmax output layer (36 categories for decoding = posteriors, and 2 for
z posteriors). The networks were trained running the Adam optimization algorithm from 5

initial conditions, for 40 epochs each, and we used a 1:1 train:test split.
(Preliminary) validation of the neural decoder:

We aimed to evaluate each latent variable - neural code combinations to identify which one
of them explains best the neural activity of the mouse V1. To prove that our method is indeed

capable of this, the first step would be its validation on synthetic data. However, up until now,
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| have only validated the KL-based loss and | have only tested how well it can discriminate
between the temporal and spatial codes. The summary statistic-based loss, which was ac-
tually used for data analysis, and whether the method can discriminate between perceptual

and decision posteriors, have yet to be validated.

For the validation, | generated spike data from 50 Poisson neurons with circular Gaussian
shaped tuning functions (e“°*(*~™%)~1) uniformly spacing the [0°, 360°] direction range, with
their amplitudes linearly scaled by the stimulus strength (y € [0, 1]). The ‘sensory’ input to

these neurons reflected the statistics of the experimental stimulus set.

In each trial, | generated spikes for a unit time, and divided the spikes into three equal time
bins (as in the analysis of animal experiment). | then decoded the posterior distribution of
the input direction using the optimal decoder (Abbott and Dayan, 2001, p. 16-23), both from

the averaged activity and from the time-resolved activity of the neurons.

To simulate different coding schemes, | set the ‘behavioral’ target posterior in two ways: (1)
as the posterior distribution decoded from the cumulative activity, mimicking a spatial code,
or (2) as the sum of the distributions decoded from the time-resolved activities, mimicking a
temporal code. Finally, | tested how well the neural network decoder could recognize the tar-
get distributions from either the time-resolved or cumulative synthetic activities. | included
a version of models with added Dirichlet noise (symmetric, « = 3) to assess the robustness

of the method.

This limited validation demonstrated that the neural network-based decoding approach has a
potential to distinguish between temporal and spatial neural codes with high accuracy, tough
there is a slight bias against temporal codes (Fig. 4.7B). This validation, needs significant

improvements in the future, for which | provide suggestions in the discussion section.

123



CEU eTD Collection

4.4.1 Results of the neural analysis

Data

The inputs to the decoder were dF/F responses of L2/3 neurons in V1, recorded using GCaMP6s
imaging (Henschke et al., 2020). We used the data recorded in the second half of the stimulus
presentation, which coincided with the time window used for the behavioural RLR compu-
tation. Omitting the first half of stimulus presentation from the analyses had two additional
benefits: it excluded the stimulus-evoked transient activity, and since it is reasonable to as-
sume that processing motion (even if stationary) requires at least a brief evidence accumula-
tion phase, this phase was likely omitted as well, preventing it from being confounded with
the temporal uncertainty code (see Chapter 2, Noise vs. Signal model). For the temporal
code, trials were divided into 3 time bins (in the animal experiment, the autocorrelation of

the signal allowed for at most three independent samples per trial).

To compare perceptual and decision posteriors, we needed neurons that were recorded in
at least two different session types corresponding to the two types of uncertainty. This re-
quired matching the identified neurons across sessions, a process that was largely manual.
To support and verify this manual procedure, | developed an automated validation method
(see Section 4.6.3). However, no neurons were recorded across all three session types, there-
fore we excluded aperture modulation from the neural analyses. To maximize the number
of neurons analyzed, we used data from the single direction-contrast session pair for each
mouse that had the highest number of matched neurons. After matching, we were left with

277, 289, and 229 trials and 59, 57, and 132 neurons for the three tested mice, respectively.
Results

We first performed the principle component analysis (PCA) of the behavioural posteriors
(Fig. 4.8A), then we fitted all together eight neural decoders (2 latent variables and 4 coding
schemes including 2 controls) to the training set and compared their performance on the

held-out test set. Fig. 4.8B show category probabilities under the neural (y-axes) vs. behav-
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Figure 4.8. Results of the neural analysis. A. Principal component analysis of the behaviourally in-
ferred perceptual posteriors. Left: The eigenspectrum of the stimulus-conditioned average posteriors.
Middle: Mouse 1’s stimulus-conditioned average posteriors (red dots) and single-trial posteriors (gray
dots) in the space spanned by the first two principal components. Right: evolution of the perceptual
posterior along the first two principal components. B. Pointwise comparison of the behavioural-
neural posterior pairs. C. Example behavioural (orange and green) and inferred neural (colors as in
main figure) posterior pairs for each comparison in panel B. D. Normalized mismatch between the
behavioural and neural posteriors across different latent variables and coding schemes using the best
fitting A values for each coding scheme (A = 0 for the spatial code and A = 0.05 for the temporal
code; see Fig. C.2).

ioral posteriors for all the posteriors of the test set and Fig. 4.8C show example neural and

behavioral posteriors from representative trials.

As for the main test, we compared four models: encoding by temporal / spatial code of per-
ceptual / decision posteriors. The model using temporal code of perceptual uncertainty was

consistently the best across all animals (Fig. 4.8D, middle and right), albeit the difference
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was significant in only two animals, and even for them, it was significant for only one model

comparison each (see Appendix, Fig. C.1).

As controls, we checked that the temporal model, for which averaging neural posteriors
across time bins was essential, was better than using the underlying neural posteriors of
individual bins (Fig. 4.8D, left, black vs. red), or when its neural posteriors were optimized to
match trial-shuffled behavioral posteriors (Fig. 4.8D, left, black vs. gray), (see Appendix for

significance values, Fig. C.1).

4.5 Discussion

In this chapter, | presented a novel data-driven approach that we developed to investigate
whether and how uncertainty is represented in specific neural populations. We implemented
the necessary data analyses tools, and demonstrated the usage of our approach by applying
it to experimental data from a mouse decision making task with calcium imaging. This exper-
iment aimed at addressing the central quest of this thesis: detecting the traces of perceptual
posterior representations, distinct from the decision posteriors that determine behavior. In
doing so, it also tackled an inevitably related question — what coding scheme the brain uses
to represent probabilities (spatial vs. temporal). While we found preliminary evidence sug-
gesting that the mouse primary visual cortex may use temporal codes to represent perceptual
uncertainty, this evidence is currently very limited. Further synthetic validation, conceptual
refinement, and potentially improved experimental data are required to reach a more defini-

tive conclusion.

A crucial step moving forward is to rigorously validate the neural decoder on synthetic data,
ensuring that it can differentiate between coding schemes and latent variables. This valida-
tion process would ideally be built on biologically inspired, image-computable probabilistic
models of perception, corresponding to the two candidate coding schemes, as they likely
provide the closest approximations to the actual neurons of the brain. For example, for the
temporal code the Gaussian scale mixture model would be a strong candidate, as it has been

successfully used in the past to explain various stimulus-induced static and dynamic patterns
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of neural activity (Orban et al., 2016; Echeveste et al., 2020), (see Chapter 1). This validation
process should also include testing different loss functions to determine which one is the most
effective at distinguishing between alternative coding schemes, which one encourages most
the generation of point-like samples, and which normalization method is the most suitable

for comparing the posteriors of different latent variables.

In addition to testing how well our decoder can distinguish between different probabilistic
coding schemes, it is crucial to evaluate whether it can detect when the inspected code is non-
probabilistic. In this context, it is particularly interesting to compare its performance with
previous approaches that, similar to ours, also combined model-based behavioral data anal-
ysis and neural population decoding but in the opposite order (Walker et al., 2020). Walker
et al. recorded population activity from the visual cortex of monkeys during an orientation
categorization task, where the animals’ uncertainty about orientation influenced their behav-
ior. First, they decoded orientation information from neural responses with a well-calibrated
representation of uncertainty, without access to behavior. Then, using the decoder’s output,
they could predict stimulus-independent fluctuations in uncertainty that were evident in the
animals’ behavior. Walker et al. interpreted this as identifying a neural code for uncertainty.
However, it is possible that they simply decoded the quality of noisy perceptual representa-
tions optimally — something the monkey’s brain might also accomplish through downstream
processing (see Chapter 2, Noise model and the ideal evidence accumulator) — without ac-
tually identifying the probabilistic perceptual representation itself. Comparing how the two
methods perform in this regard could offer valuable insights into the methodologies used to

study probabilistic coding.

Another important issue that cannot be ignored during model validation is the potential
discrepancy between the abstract variables that intuitively characterise the task (e.g., ori-
entation) and the variables that the brain (or at least the tested neural population) actually
represents (Zemel et al., 1998; Lange et al., 2023; Lengyel et al., 2024). For example, L2/3 pyra-
midal cells in mouse V1 might be more sensitive to the direction of local image patches than
the overall stimulus direction. This raises the question of what implications it has for our

model selection method if the variable of the behavioural posterior differs from the variable
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of the neural posterior (even if the latter can be derived from the former). In such cases, local
uncertainties may either average out at the global level or the reverse may occur. For exam-
ple, in a stimulus composed of many local patches moving in different directions — such as
the one that was used in Hénaff et al. (2020) — the local image patches may be unambiguous,
but the global direction could be uncertain due to their diversity (this relates to the concept
of multiplicity discussed in Sahani and Dayan, 2003). In the latter case, even if the brain is
using a temporal code, which would be evident in the representation of the uncertain global
direction, when measuring the local directions, it might appear as though it is using a spa-
tial code. What might offer a remedy for this problem are the well-documented feedforward
and feedback connections in the cortex, which are believed to play a critical role in hierar-
chical probabilistic inference, carrying top-down prior expectations and bottom-up evidence
between the internal variables represented at different hierarchical levels (Lee and Mumford,
2003; Haefner et al., 2016). These connections could carry the imprint of the uncertainty code
between local and global variables. Future work should address this issue and validate the

approach with these considerations in mind.

Finally, there is room for improvement in the experimental paradigm as well. Although the ex-
periment was designed specifically to measure probability distributions, its implementation
in this pilot study was not ideal in several respects. On one hand, it introduced strong behav-
ioral biases, likely originating at the perceptual level (as suggested by our models). Not only
did this increase the complexity of behavioral modeling, but more importantly, it impaired
the credibility of the model-based estimates of perceptual posteriors, as their explanation
required strong modelling assumptions. On the other hand, due to the species of the tested
animals, the task’s complexity had to be kept low. As a result, even though uncertainty was
explicitly manipulated through different stimulus features, accounting for this uncertainty
in the choices was not necessary to solve the task optimally. This limits the task’s ability
to detect the use of probabilistic representations from behavior alone. We had hoped that
the animals’ uncertainty would spontaneously manifest in measurable behavioral character-
istics, but apart from the weak modulation of licking ratio during the stimulus period, we
found no behavioral measure that could be attributed to uncertainty independently of other

factors (such as contrast and aperture). Nevertheless, the decision posteriors we estimated
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from the spontaneous right lick ratios and the stimuli that elicited them were marginally
better predictors of choices during the held-out response period than the right lick ratios di-
rectly fitted to the choices, and much better predictors than the stimuli alone. This supports
the assumption that the decoded posteriors are indeed represented by the mice, but to draw
more definitve conclusions, a task would be required where optimal performance depends
on the accurate representation of the reliability of the choices. However, so far, evidence of
animals learning such tasks has only been found in other species, e.g. rats (Lak et al., 2014)
and monkeys (Walker et al., 2020). How far this approach can be taken with mice is an open

question, which we have already begun exploring in a follow-up experiment.

In summary, our achievements thus far amounts to the design and early implementation
of a promising approach that still requires further fine-tuning and testing to realize its true
potential. Once completed, however, this approach should not only provide the first neural
evidence regarding the extent of uncertainty representations but also be widely applicable

across a broad range of paradigms.

4.6 Methods

4.6.1 Ildeal observer details:

Stimulus generation: By definition, the generative model of an ideal observer exactly matches
the actual processes that generate the stimuli in the experiment. However, for mathematical
and practical conveniences, we allowed the generative model that we used for data analysis

to deviate slightly from the exact experimental conditions.

In both the model and the experiment, the binary trial type is randomly sampled with equal

probability:

z ~ Bernoulli(0.5) (4.4)
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However, in the model, conditioned on the trial type, stimulus orientation is sampled from a
continuous uniform distribution:

Uniform(90°,270°), ifz=1
x ~ (4.5)

Uniform(—90°,90°), ifz=0
This contrasts with the discrete direction values used in the experiment. The reason for this

modification was to ensure that the perceptual posterior is a continuous function.

Another difference between the model and the experiment is related to the distribution of
stimulus strengths. In the experiment, high stimulus strengths (high contrast and aperture)
were over-represented to keep the animals’ motivated. In contrast, the model samples stim-

ulus strength from a uniform distribution:

y ~ Uniform(0, 1) (4.6)

This simplification was chosen because, in preliminary synthetic tests, the shape of the actual
distribution was unreliable to recover, and adding this flexibility to the model did not seem

to visibly improve the fit to the mouse data either (not shown).

However, even if there were no discrepancies between the theoretical model and the exper-
iment, we cannot expect the internal model of a real mouse to be aligned perfectly with
the experimental setup. The experiment involved multiple training and test sessions, each
with different stimulus statistics. The mouse developed its internal representation based on
a combination of these experiences, and it is unlikely that it could rapidly adjust this generic
representation for each individual session. Taking the representation’s inertia into consider-
ation, a single generic GM, which accounted for all the potential manipulations, was used to

fit the data across all sessions, regardless of the specific manipulation applied.

Observations: In addition to the structure of the experiment, the generative model also con-
tains a model of the sensory observations. According to the model, the observed orientation

is sampled from a circular Gaussian (von Mises) distribution centered on the true grating
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direction:

T ~ vonMises (z, k) (4.7)

whose concentration (k) is linearly scaled by the stimulus strength, y, and is potentially di-

rection dependent (Fig. 4.4A, left panel):
K =Y Ko (2; 2%, prs Kamp, Fmin) (4.8)
so that
Ko = Kmin + Kamp €7 (pr) cos(z—a") (4.9)

where () function maps the von Mises distribution’s precision parameter to its concen-
tration parameter (inverse of Eq. A.9). Assuming direction dependence for the x, parameter
was crucial for capturing the asymmetries of the psychometric functions shown in the result

section.

An important part of the observation model is that it defines a mapping between the phys-
ical contrast and aperture and the model’s stimulus strength variable, y. This mapping is a
priori unknown, so assumptions are needed. We assume a monotonic scaling between the
normalized contrast (c) or aperture parameters (a) (a multiplicative normalization was used
to set their maximum to 1) and the y variable (Fig. 4.4A, middle panel) in the following form:

IH(C + 6c0nt> - ln(econt)
ln(l + Econt) — ln(Econt)

Y= (4.10)

The above equation is for the contrast case, but the same formula is applicable to the aperture
too, if we replace ¢ with a and €cont With €apert. The observation of stimulus strength was
modeld exactly as in Chapter 2 (Eq. 2.14), and was parameterized with the A\ observedness

parameter (Fig. 4.4A, middle panel).

Response model: Finally, the ideal observer’s response (here: its licking behavior) is ideally
determined by its decision posterior. In the current experiment, the animal’s choice was its

first lick during the response period. However, in reality, the animals already began licking
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shortly after the stimulus onset, and by the second half of stimulus presentation, the ratio
of right to left licks become highly predictive of their upcoming choice (Fig. 4.5, comparison
of the light and dark blue columns). Therefore, we modelled the direction of each lick (we
did not model the occurrence of licks, just their direction) as an independent sample from
a Bernoulli distribution, with a fixed parameter (ggrz: right lick probability) that remained
unchained between the stimulus and response periods, and which depended on the decision

posterior of the observer.

If behaviour were optimal, always the option with the higher posterior probability were cho-

sen (MAP, maximum a posteriori choice), meaning that:

qrr = argmax P(z|Z,7) (4.11)

z

However, to account for the suboptimalities of real mice, we modeled the response probabil-

ities as a monotonic function of the log posterior odds (Fig. 4.4A, right panel):

qre ~ (1 —a) S(Z,9; 8,7) + ad (4.12)
where
Pls— 115 &
S(7,5: ,7) = Sigmoid (6 (m % _ 7)) (4.13)

Here, « is a lapse rate, indicating that in « proportion of the trials, the animal chooses the
right option with a fixed probability, d, irrespective of its decision posterior. On the other
(1 — «) proportion of the trials, the response probability is a sigmoid function of the log
posterior odds. The [ parameter interpolates between completely random responses (6 = 0)
and a deterministic strategy (8 = o0), while v is a response bias, shifting the sigmoid in
a similar way to how unequal prior probabilities would - though, unlike priors, it does not

affect perceptual inference.
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4.6.2 Quantification of the predictive performance

The predictive performance was quantified with the probabilistic fraction correct metric (Houlsby

et al., 2013):
foron = [T Pildi) = e =i Pl (4.14)
=1

Here, n is the total number of trials, d; is the subject’s actual decision on trial 7, and P;(d;) is

the predictive probability assigned by the model to the subject’s decision on the " trial.
RLR-based approach

If each lick’s direction is sampled independently from the same Bernoulli distribution during
both the stimulus and response period, then the empirical RLR is the maximum likelihood
estimator of the Bernoulli parameter. Thus, RLR appeares to be a reasonable approximation
for the predictive probability. However, the approximation’s quality dependents heavily on
the number of licks during the stimulus presentation from which RLR is calculated. In the ex-
treme case of a single lick, the RLR’s value is binary (either 0 or 1). This becomes problematic
when there is at least one trial where the single lick during the stimulus presentation is in the
opposite direction of the upcoming decision, as this would zero out the probabilistic fraction
correct metric. To avoid this extreme behavior, we compress the RLR-based approximation
as follows:

Pi(d;) ~ (1 —¢) - RLR, +§ (4.15)

where € is set to the value that maximizes the predictive performance of the RLR-based ap-

proach in three-fold cross-validation.
Stimulus-based approach

Let ny ; be the number of trials in which response k was given to stimulus j and let n; =
>, Tk, be the total number of trials with stimulus j. The stimulus-based approach achieves

maximal predictive performance, if it assigns the following predictive probability to the trials
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based on their stimulus-response pair ({d, s}, respectively):

Pid; = kls; = j) ~ &I (4.16)

1
4.6.3 Neural data processing

Neural recording

We recorded the activity of layer 2/3 pyramidal cells in the mouse primary visual cortex using

two-photon calcium imaging (GCaMPé6s).
Neural pre-processing

| received the decontaminated fluorescence signals (F') measured in previously identified
region of interests (ROIs) corresponding to individual neurons. The neural analysis was based
on the time-dependent ¢ = % value, which | calculated for each neuron, n, and trial, 7, using

the following formula:

Fn,i(t) - Fr(z)z
Pni(t) = T (4.17)

n,t

Here, the baseline fluorescence ng was calculated for each neuron as the average activity
within the 2 s time interval before the stimulus presentations measured in five consecutive
trials centered on the current trial. This 5-trial averaging balanced the need to filter out global

trends while preserving local fluctuations in neural activity.
Matching cells across imaging sessions

To track neurons across multiple imaging sessions, ROls from different sessions that belong
to the same neuron must be matched. Initially, the matching procedure was based on the
visual comparison of ROIs (Amvrosiadis, 2023). However, this manual approach was prone
to errors, which became apparent during the visual inspection of the resulting matchings.
To address this, | developed a graph theory-based algorithm to systematically identify and

visualize erroneous matches, enabling their efficient review and correction.
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The algorithm assigns a node in a graph to each identified ROl in such a way that the ROIs
from different sessions are placed in separate rows. Then it draws edges between the nodes
that correspond to manually matched ROI pairs. A set of connected nodes (i.e. nodes that are
linked by a continuous path of edges) defines a matching, or in technical terms, connected

component (?? A). Each matching corresponds to exactly one physical neuron.

A proper matching has to meet two conditions:

« Transitivity: If two nodes are both connected to a common third node, there must also
be an edge directly connecting them, as all nodes belong to the same neuron. This re-
quirement is equivalent to stating that a proper matching forms a complete subgraph,
in which every node is connected to every other node. (??B left side illustrates transi-

tivity violation.)

« Congruence: Each matching should contain only a single node from a given row (imag-
ing session). Otherwise, two visually distinct ROIs within one imaging session would

belong to the same physical neuron. (??B left side illustrates an incongruent matching.)

A MATCHING B 2 TYPES OF MATCHING ERRORS
transitivity violation incongruent matching
. S1IN1 S1IN2 S1IN1 S1IN2 SIN1 SIN2
session 1 . .
S2N2 S2N1 S2N2 S2N1 S2N2
session 2 . .
3N1 S3N2 S3N1 S3N2 3N1 S3N2
session 3 . . .
c IS A examples
':’“ N {_/" : Y 1 : e, o v "s'»m/
: T ee) L "" : : L. plnd . .'s?/w, [S7g,v72/
S L S 15 tew - o Yoo,
*K Pa W AR ok SR s 831,
R SR L SN ot
. f T, Ve ., T M o 1591, .
gl Ry S e Al Al
.. 3 .0 % {577 Nse] 2 oy
.f_. . 'é '. o Kok e 137,,‘/9] /%Ns;
L4 t . {’_. N . r Ne s H ::/: H \:) . [372N24] [877’\’77]
1 : :‘;' PRI frr O dsenan \/s;f?f‘fl@—— f’*"‘/rs,
AN {._‘ : ¥ ::'s ".’v TR 14010y Stang,

Figure 4.9. Across sessions neuron matching. A. A proper matching. Each node has a unique
identifier (S: ID of the recording session, N: ID of the ROI) B. Left side: green ROls violate transitivity.
Right side: pink ROIs are incongruent. C. An example graph’s factorization to its connected subcom-
ponents.

135



CEU eTD Collection

After constructing the graph, the algorithm identifies all matchings (??C) by detecting the
connected components (using the built in matlab function: conncomp). It then checks

whether these matchings meet the two conditions.

Specifically, transitivity is tested by checking whether the number of edges () and the num-
ber of nodes (V) in a matching is consistent with that of a complete graph, which amounts

to testing the following relationship:

(4.18)

To test for congruence, each node is assigned an attribute corresponding to the session’s ID.
Congruence is verified by ensuring that the session IDs are unique within each set of matched

nodes.
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Chapter 5

General discussion

| conclude my Thesis by recapitulating its central hypothesis and the objectives | set to sup-
port it, as well as providing an overview of what has been accomplished and what remains
to be done. Lastly, | take a broader perspective and outline potential directions for future

research, aiming to make investigations both more natural and more effective.

5.1 Primary objectives and achievements

The central hypothesis of the thesis is grounded in two well-established ideas. First, it is
increasingly believed that humans and animals rely on an internal model well adapted to
the environment and perform approximate probabilistic computations on it to handle the
abundant uncertainty inherent in the world (Fiser et al., 2010). Second, since the problems
they encounter daily are complex, interrelated, and modular in nature, recent proposals sug-
gest that the structure of internal models should mirror this modularity, which would enable
efficient generalisation across the wide variety of everyday tasks (Tenenbaum et al., 2011;
Ho et al.,, 2019; Lake et al., 2017). Combining these two ideas leads to the concept of task-
independent probabilistic representations that can be flexibly factorized in different ways

upon the changing task demands.

In Chapter 1, | argued that fully Bayesian models, which exhibit the highest degree of modu-

larity among probabilistic recognition models, offer outstanding data- and memory-efficiency,
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which makes them promising candidates for being the brain’s recognition model. However, |
also highlighted the lack of direct evidence supporting that the brain actually employs such
models. Thus, my Thesis outlined and undertook a plan to gather the first pieces of evidence

regarding the fully Bayesian brain hypothesis, which comprised three major steps.

First, in Chapter 2, | tested one of the prerequisites for fully Bayesian representations: the
ability to represent the posterior distribution of more than one variable simultaneously. |
verified that humans can maintain at least the marginal posterior distributions of several
perceptual variables concurrently, similar to what has been demonstrated in working mem-
ory before. Second, in Chapter 3, | confirmed that the internal model adapts to changes in
line with fully Bayesian models when confronted with situations that evoke complex inter-
nal representations. Finally, in Chapter 4, | introduced, implemented, and demonstrated a
novel data-driven approach to identify the neural traces of rich probabilistic representations,
including posteriors related to variables beyond the decision variable. | provided preliminary
evidence showing that mouse V1 encodes perceptual rather than decision posterior distri-
butions using a temporal rather than spatial code, though these findings requires further
validation. The results of these studies were consistent with the fully Bayesian brain hypoth-

esis, offering the first experimental evidence in its support.

5.2 An outlook on the role of proxies

The main objective of my thesis was to clarify where the brain’s recognition model is posi-
tioned within the spectrum of possible probabilistic recognition models. To address this, in
Chapter 1 Fig. 1.1, | tabulated possible probabilistic recognition models in the range between
fully probabilistic to hybrid to task-dependent and finally non-probabilistic models. In my
thesis, | clarified more precisely how different models in this tabulation can be realized and

for this process, | introduced the concept of proxies.

The definition of proxies is useful because fully Bayesian recognition models excel in data-
and memory efficiency but they come with prohibitive computational costs due to the large

number of variables needed to adequately describe the environment. As a direct consequence,

138



CEU eTD Collection

even a “globally” fully Bayesian brain, which is in principle capable of computing the posterior
of each of its latent variables, is likely to resort to hybrid strategies “locally”, in the context
of a particular task, to save on computational cost. | posit that the use of proxies is one such
hybrid strategy. Proxies serve as shortcuts to the uncertainty of particular internal variables
by leveraging point estimates of other variables that directly influence those uncertainties.
This strategy substitutes (at least partially) the proper Bayesian evaluation of the full joint
posterior distribution with simpler computations, albeit at the cost of introducing greedy

approximations.

Proxies can be handy in two scenarios: (1) when the benefits of having a properly evaluated
posterior distribution of an internal variable are outweighed by the computational costs of
the inference process or (2) when the approximation of the posterior distribution is simply
too unreliable, making proxies a valuable source of additional information. For illustration,
consider the example of inferring a vehicle’s motion in poor visibility conditions that reduce
contrast. In such a case, a fully Bayesian brain would infer the joint posterior over both the
motion direction and contrast. In contrast, the first strategy would bypass this probabilistic
inference by computing a point estimate of the contrast and using it as a substitute for the
uncertainty of the motion estimate. While this approach is manageable with a single factor
(e.g. contrast), it quickly becomes infeasible when multiple interacting factors (e.g speed and
vehicle size) are involved, which is arguably more reminiscent to the typical circumstances of
perception. The second strategy offers a more refined approach by still computing an approx-
imate joint distribution of the two internal variables, while using proxies solely to enhance
the quality of the inference. This could be particularly useful, if the approximation algorithm
is time-consuming — especially in hierarchical systems where a consistent probabilistic rep-
resentation across interacting variables must be reached under tight time constraints (Lee
and Mumford, 2003; Haefner et al., 2016). In my example, the point estimate of the contrast

could provide a valuable and fast immediate prior for estimating motion uncertainty.

Previous studies exploring the possibility of proxy-based strategies while testing the proba-
bilistic nature of perceptual decision making overlooked the implications of the approximate

nature of probabilistic inference and thus, were mainly concerned with the first scenario
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(Barthelmé and Mamassian, 2010; Meyniel et al., 2015a; Adler and Ma, 2018). As a conse-
quence, they compared two extreme cases: where proxies are entirely excluded from the
computation of decision posterior (they called it Bayesian or probabilistic model), or where
the decision posterior computation is entirely replaced by the utilization of proxies (they
called it non-Bayesian “heuristics” model). This oversimplification led to the premature con-
clusion that using proxies automatically implies a non-Bayesian internal model. In contrast,
my theoretical work points out that using proxies is the right strategy even for the most
sophisticated fully Bayesian models, given the approximate nature of inference and the re-
source constraints of the brain, while my experimental work confirms that humans likely rely

on such strategies.

The potential utility of proxies calls for further investigations as it triggers many new ques-
tions such as whether the brain uses proxies for all variables or just a selected few. Assuming
the answer that it is the latter, a subsequent challenge is identifying the factors that deter-
mine which variables are employed as proxies in specific tasks. Interestingly, proxy-based
strategies can be seen as a form of loss-calibrated inference (see Chapter 1), if the demands
of the specific task determine which variables’ proper Bayesian inference is substituted by
the use of proxies. Further questions concern the behavioral implications of using only a
subset of variables as proxies and the interpretations of such strategies in terms of the prob-
abilistic nature of the model. These open questions underscore the importance of a new look
and future research on the usage of proxies in perception and cognition to fully understand

the mechanisms behind it.

5.3 On the need for more complex and realistic experi-

ments

In Chapter 1, | proposed a set of normative criteria that can serve as a basis for testing the
probabilistic nature of the brain’s recognition model. Although the studies I’ve conducted so
far utilized these criteria to some extent, the full potential of the proposed normative frame-

work has yet to be realized in earnest. In Chapter 2, | assessed task flexibility, but due to the
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paradigm’s limitations, | was only able to test the marginals of a joint posterior. In Chap-
ter 3, | showed that learning exhibits a fully Bayesian characteristic; however, rather than
testing for the efficiency advantages proposed in Chapter 1, | demonstrated the consistency
of (group-level) behavior with a fully Bayesian model across different task conditions. Finally,
in Chapter 4, | did not require the mice to display clear signs of utilizing the advantages of
fully Bayesian models. Instead, | began with the assumption that mice employ fully Bayesian
representations to estimate posteriors from their behavior, and searched for traces of these
representations in their neural activity. Therefore, despite the progress | made, many of the

experimental proposals outlined in Chapter 1 have has not yet been implemented.

However, most of the desired tests would only be feasible with a substantial increase in the
complexity of the experimental paradigms. Take, for instance, the fully Bayesian model’s ad-
vantage in temporal information fusion: it remains memory-efficient even when the fluctu-
ation of a nuisance variable introduces correlation between separate observations. However,
the model’s efficiency in these situations can already improve a lot if the nuisance variable
is represented at all, even if only as a point estimate. Therefore, to test the fully Bayesian
brain hypothesis, tasks are needed in which the inference of the nuisance variable’s uncer-
tainty has a significant impact on performance. Such complex strategies are rarely needed in
typical psychophysical experiments, but they may be needed all the more often in everyday
situations that the perceptual system is accustomed to due to the complex interactions of

numerous environmental variables regulating these situations.

One of the main barriers to use high complexity tasks in cognitive and neuroscience exper-
iments has been the difficulty of analysing them, which requires vast computational power
and sophisticated data-analysis tools. However, significant progress has been made in these
areas recently. The rapid increasing of raw computational power of scientific computing has
been the catalyst for the development of more powerful data analysis techniques. For ex-
ample, it is now possible to analyse normative Bayesian cognitive models using Bayesian
data analysis tools as well by a doubly-Bayesian technique known as cognitive tomography
(CT), (Houlsby et al., 2013). CT demands significant computational resources, so applying it

to complex Bayesian models - such as the ones in my experiments — will require the use of
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efficient computational tools, including probabilistic programming languages (PPL), (Paszke
et al., 2017; Bingham et al., 2019; Phan et al., 2019). PPLs efficiently automate Bayesian pa-
rameter estimation, allowing data analysts to focus solely on defining generative models,
while the PPL handles the underlying inference. The use of PPLs is spreading rapidly due to
their broad application in machine learning but in some areas of research the full exploita-
tion of their power is lacking. For example, to use them successfully for CT, PPLs should be
employed twice in the task. First, they would handle the estimation of the Bayesian model’s
parameters, and second, they would be used at each iteration step of this estimation pro-
cess to evaluate the likelihood of the fitted Bayesian model parameters. Unfortunately, this

combined application of the PPLs remains a challenge that has not yet been fully resolved.

More recently, a technique called continuous psychophysics has been developed to mea-
sure behaviour through the continuous interaction of the participants with the task, rather
than through discrete trials (Straub and Rothkopf, 2022). This method offers more efficient
data collection and enables more intricate and ecological tasks designs than the standard
psychophysical experiments. It not only allows researchers to tackle complex questions -
including those in my thesis — but also has the potential to enhance the participant’s en-
gagement with the task. The importance of the latter aspect is gaining increasing attention
(Allen et al., 2024), as natural behavioural processes are arguably better reflected in more

ecological tasks, building on the internal motivation of the participants.

Finally, there have also been significant advances in studying animal cognition. Modern ma-
chine learning techniques now allow for tracking real time natural animal behavior (Mathis
et al., 2018), and for breaking down complex motion patterns to elementary behavioural “syl-
lables” (Lin et al., 2024). These techniques take experimentation to more ecological domains.
At the same time, other efficient computational tools are being developed to interpret neu-
ral activity in terms of the behavior it brings about (Schneider et al., 2023). However, the
use of these tools has so far been somewhat limited, primarily focusing on identifying low-
dimensional latent embedding spaces of high-dimensional neural activity that correspond to
low-dimensional behavior, and the application of these advanced tools beyond descriptive

analysis has yet to be developed.
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In sum, while steady advances were made in multiple domains of brain sciences, further
improvements are desired and the lack of developing new computational tools and techniques
for analyzing the available quantity and complexity of data appears to be a major obstacle
in this process. Despite the recent highest recognition of the work and results amassed in
this domain, there is a dire need for new synergistic and sophisticated experimental designs
and adequately suited analysing methods for faster advances. | hope my work can provide a

suitable stepping stone in this endeavour.
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Appendix A

Supplementary Materials to Chapter 2

A.1 Circular statistics: the basics

Here, | introduce those fundamental circular statistical quantities and identities that | utilize
for deriving the equations of the IEA models. All definitions and identities are based on

(Jammalamadaka and Sengupta, 2001).
Basic Quantities

Let P(z) be a continuous probability density function over the circular variable x, and con-

sider the following expected value:

z= /eimp(x) dz (A.1)
We define the circular mean of P(z) as:

p = arg(z) (A.2)
and the circular precision of P(z) as:

p=|z] (A.3)
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After drawing N independent samples from P(x):

Tn ~ P(2)
we call the sum
N
Ry en
n=1

and its length
R =R|
is called the resultant length.

Circular normal (or von Mises) distribution

The von Mises probability density function is given by:

B 1
- 2nly(k)

K cos(z—p)

vM(z; 1, )

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

where I is the modified Bessel function of the first kind of order 0, and « is the concentration

parameter that is tied to the distribution’s precision in the following way:

In some derivations | use the following identities:

I

E,[cosz| = /deM(x;u, K)cosx = 1) COS [t = P COS [U
Io(x)
I

E,[sinz] = /dx vM(z; p, k) sinz = 1(r) sinpu = psinp
Io(r)
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based on which the circular precision can be expressed in the following way

p(k) = |E,[cos z] + iE,[sin z]| (A.12)

The distribution of NV independent von Mises samples:

N i oIy (R )
VM (2145 1, 1) = gva;u, k) = ﬁvwwm (A13)

and the convolution of two von Mises distributions:

1

VM(0; piy, k1) % VM(0; o, ko) = 27?]0(%;1)[0(%2)[0 (\/Fa% + K3 + 2K k9 cos(0 — (1 + uz)))

(A.14)

A.2 ldeal evidence accumulators’ posterior

The following derivations are based on the work of David Zoltowski (Zoltowski, 2016).

Using Bayes rule and exploiting that orientation has a uniform prior, we can write the evi-

dence accumulator’s posterior over the orientation (x) in the following way:

P(l’ ‘ xl:tag) (8 ,P(xl:t ‘ .’L’,Zj) = /,P(xl:t ‘ x?ﬂS’) P(PS ’ g) dPS (A15)

The second term in the integral is the posterior of the sampling distribution’s precision given

the observed stimulus strength, and it is given by the following integral:

Plps | §) = / Plos | v) Ply | §)dy (A16)

where y’s posterior can be computed from the Bayes rule again.

The first “likelihood” term in the integral on the right hand side of Eq. A.15 is the probability

of the samples given x and pg. The exact formula depends on which model variant is being
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used. For the noise model it is:

21ly(ksR)

(27?]0(/£5))N vM(Z; x, ks R) (A.17)

Px(rs | 2, ps) = [ [ vM(@n; 5s) =

where | used Eq. A.13 and the notation kg := Kk(pg).

For the signal model, the bias of the sampling distribution’s mean (measured as its distance

from the ground truth) has to also be taken into account, therefore:

Ps(z1e |z, ps) = /HVM(i’n;Ms,Fvs) vM(us; @, ks) dps (A.18)
2nly(ks R

= LSBV /VM(f | ns, ks R) vM(us; x, ks) dps (A.19)
(2wl (ks))

A.2.1 Ildeal evidence accumulators’ orientation estimate and certainty

The ideal observer’s (noiseless) behavioral reports are the angle (orientation estimate) and
magnitude (certainty) of the first trigonometric moments of its posterior. The first trigono-

metric moment:

n= E$\$1:t7§[cos LE] + iEw|$1:t,z?[Sin QL“] (A-ZO)
Noise model
N = Eqj,.,glcosz] + i Eqyjp,, glsinz] = (A.21)
1 27T]0(/435R) _ ~ o
= — vM(Z; x, ks R) P d cosz + isinx)dx
/27r73($1;t | 9) / (2mlo(ks))Y ( sB) Plps | §)dps ( )
(A.22)
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utilizing Eq. A.10 and Eq. A.11 after exchanging the integrals

— / 1 [0</€SR) II(KSR)
Plxrs | 9) (2nIy(kg)™ To(rssR)

- : Il (KSR) COS T 18N T
= T e Plos | s (cosi +isin)

where

Plowa [9) = [ Plara | 2.5) Pla)do = 3 [ [ Plows | 2.05) Plos | 5)dpsda

_ L [ 2mh(ksR) o ey e )
o7 (2nly(k )) /M(’ ,ksR)dx P(ps | 7)dps
(
Io(

ksR)

= ( 1)]\[/ (()) RS) (ﬂs | y) dpS

Taken together

==

/Il('KJS
[0 K?S
/[0 HS

Io(ks

(cosz +isinz)

\_/

So the orientation estimate is

and certainty is

/is)N P(ﬂS ‘ g)dpS

K,SR

(rs)™

|
— | —

S| &
|~

p=|nl

~—

P(,Os | ?j)dps

S

Signal model

For the signal model in Eq. A.22 instead of the integral

_ .. Il(HSR) .
M(z; R dz =
/V (Z;2,ksR) (cosx + isinz) dz To(rs ) (cosT +isinz)
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the following integral has to be performed:

// vM(Z | ps, ksR) vM(us; z, ks) dps (cosx + isinz) dz

Ii(ks) ..
d =
IO</€S) (COS fts + 2SI ,US) us

(cosT +isinT)

_ /VM@ | s, i R)

_ ]1(/{5) Il(lﬁsR)
]O(Iig) Io(lisR)

otherwise the derivation is the same.

The only difference is in the certainty reports

]1(/{SR ]1(165' -
P(ps | g)dp
p—/fo(“S)Nfo(ﬁs) (ps [ 9)dps
- Iy(ksR .
P(ps | y)dps
[ e 1)
A.3 Certainty scaling
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Figure A.1. Accuracy-certainty plots before and after the certainty was rescaled. Blue connected dots represent individual partici-
pants, while red connected dots indicate the averages across all participants. Red error ellipses show the standard error of the mean.
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A.4 Orientation-dependent response bias

A B
90 - 90

certainty \
= | — high
ﬁ med.
5 low
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5}
e}
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g’ 0 — E— 0 \/, ——
)
]
o
<
o
>
o

90 90
0 90 18C 0 90 18C

true orientation (deg)

Figure A.2. Orientation-dependent response bias. Orientation-dependent response biases at different levels of certainty.

Appendix B

Supplementary Materials to Chapter 3

B.1 Short term serial effects

The STSE,(n) metric quantifies how much the probability of a “frequent” response increases
when the response n trials earlier was also frequent, compared to when it was rare, while

counterbalancing for what was the actual stimulus n trials back:

1 1
1 1
STSE,(n) = 3 E Fri=1rin=1z2z_n=10)— 3 E F(ri=1rin=—-1,2_p=1)

I=—1 I=—1
(B.1)
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where F(r; = ilri_, = j, zi—n = k) is the empirical ratio of response i € {£1} given that

the response and stimulus n trial before were j € {£1} and k € {£1}, respectively.

When measuring the effect of past stimuli, instead of past response, with STSE,(n), r;_,

and z;_, are interchanged.

effect of past effect of
responses past stimuli
0.08 0.08
w 004 0.04
(%2}
|_
(%2}
0
-0.04
5 10 15 5 10 15
n-back n-back

Figure B.1. Short term serial effects for all experiments.

B.2 Accounting for the potential difference in the relative

visibility of objects

Different abstract shapes that were used in the experiments might not be equally well de-
tectable under the same amount of noise. If that is the case, then the pair’s true relative
visibility is skewed, which biases behavior. To mitigate potential effects stemming from dif-
ferences in shape detectability, for each participant, we randomly selected which two shapes
formed a pair and what the two shapes role was (i.e. which shape was more frequent). Nev-
ertheless, to eliminate the possibility that any of the results we found is due to improper

counterbalancing, we explicitly took into account the effect of differing shape detectability

in our analysis.
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To assess the relative differences in shape detectability, we resorted to post-hoc analysis by
comparing the biases induced by the same shape in different pair configurations while its
role was reversed across different participants. Given that each shape appeared infrequently
within each experimental condition and in various pairings, we pooled the data across exper-
imental conditions, while being careful to separate the experimental condition’s impact on

the bias from the influence of the shape pairs as much as possible.

We employed two different methods for the psychometric function fitting and the static
Bayesian model fitting in accordance with what method suited best the given task. For the
psychometric analysis, the biases were corrected after curve fitting. For the Bayesian analy-
sis, we first estimated what might be the AP that the participants actually observed and just
then we fitted the model with this ‘effective’ AP, because it was important to know where

the maximum likelihood ridge fell for each participants for fitting the complex static model.

B.3 Converting noise (7) to stimulus strength (y)

The noise parameter’s distribution is uniform, which is the standard deviation of the Gaussian

pixel noise:
v ~ Uniform(a, b) (B.3)

Stimulus strength is the inverse noise:

1
y=— (B.4)
v
The probability density distribution of stimulus strength:
. dy )| 1
— 1 . —
A = () [T ®3)
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B.4 Comparingdifferent versions of the bounded evidence

accumulation model.

To verify that the complex model was indeed necessary to explain the response time data,
we compared its performance with that of the simple models. To do this, we first fitted the
simple static Bayesian models to the stimulus-response pair data (now, without constraining
the single prior parameter to the maximum likelihood point). We then fitted the bounded ev-
idence accumulator (BEA) model using the priors obtained, exactly as we did for the complex
model, but now with either the w5 or vp;s parameter set to their unbiased values (0 or 0.5,
respectively), depending on whether AP or RV (respectively) was the relevant parameter in

the simple Bayesian model.

Additionally, we also tested the performance of a BEA model variant that accounted only for

the STSEs. In this version, both wy;as and vy parameters were set to their unbiased values.

To quantify the model’s performance, we computed their Bayesian information criterion

(BIC) score (Fig. B.2).

B.4.1 Constructing the conditional distribution of observations.

Eq. 3.11 has no unique solution, introducing an arbitrariness in the definition of the biased
(RV # 0.5) likelihood function, P(x|z; RV). We choose a definition that introduces the
most distortion to the likelihood function (relative to the RV = 0.5 unbiased case) at the
observations, x, where a completely unbiased observer (AP = 0.5& RV = 0.5) would be

most uncertain in its decisions.

In subsequent derivations, we omit the explicit indication of the parameters in the notation

of the marginal distribution of x, such that:

P(z) := P(z; AP =0.5,RV = q) = P(x; AP = q, RV = 0.5) (B.6)
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Figure B.2. The comparison of different versions of the bounded evidence accumulation
model. A. Bayesian information criterion (BIC) scores for the complex model, the simple models,
and a model accounting only for the STSEs. Higher values indicate better model fit,and the values
are shown relative to the worst model’s (only STSE) BIC score. B-D. Model fits corresponding to the
models in panel A.

We define the biased likelihood via the posterior P(z = 1|z; AP = 0.5, RV = q) utilizing

the following equality:

P(z|z=1;RV =q) =2 P(z = 1|l2; AP = 0.5, RV = q) - P(x) (B.7)

We construct the posterior distribution of z under the parameters {AP = 0.5, RV = ¢}
as the sum of the posterior under the unbiased parameters {AP = 0.5, RV = 0.5} and a

“correction” term —a, - h(x):

P(z=1|z; AP =05,RV =q) = P(z =1|x; AP = 0.5,RV = 0.5) —a, - h(z) (B.8)
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For conciseness, we will use the following notation henceforth:

P(z|z =1, RV =q)
(x]z =1; RV = q) + P(z|z = 0; RV = q)
(B.9)

Pyp(z =1|z) = P(z = 1|l2; AP = 0.5, RV = 0.5) ( =5

where U B stands for the term “unbiased”.

The function h(x) is defined in such a way that the distance between the two posteriors is
the largest for those xs at which the unbiased observer is the most uncertain (i.e. it’s value

is nearest to 0.5 for both options):

2
h(z) := %2 - (PUB(Z =1|z) — %) (B.10)

Following Eq. B.7, the norm of the conditional probability distribution of z, P(z|z = 1; RV =

q), imposes the following constraint on a:

_ [daPyp(z =1]z)- P(z) — 3

a [ dzh(z) - P(x) (B.17)

The constraint that P(z = 1|z; AP = 0.5, RV = q) has to be between 0 and 1 for every z is

satisfied if and only if a, € [—1, 1]. Therefore we replace a, with a,:
a, = max(—1,min(1, a,)) (B.12)

This means that when a is negative or greater than one, a bias in the likelihood cannot com-
pletely replace the bias in the prior. When fitting the model or running the simulations, this

was never the case.

B.5 Scaling the noise distribution

When fitting the model, we assumed that participants knew the exact distribution of the

noise (P*(y)). However, this distribution changes continuously during training due to the
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adaptive staircase method applied, and then undergoes a sudden change at the beginning of

the test, so it is possible that participants do not know exactly its value during the test phase.

A uniform noise distribution was used in the experiment:
P*(y) = Unif(yminy ymax) (813)

This results in the following distribution over stimulus strength (s = 1/y):
. 1
P*(s) = (B.14)
To model participants’ potential misestimation of this distribution, we allowed the power to

deviate from 2, leading to the modified distribution:

P*(s) x L (B.15)

s

Changing the 1 parameter did not significantly alter the fitted models’ likelihood, meaning
we could not reliably estimate its value. Therefore, we tested how this model indeterminacy

effected the inference of the two key parameters, AP and RV'.

For the complex model, when the AP-RV parameter combination was sought along the
maximum likelihood ridge that passed through the unbiased point (AP = 0.5and RV = 0.5),
the n had no effect on the parameter estimates (Fig. B.3A, E3 and E6). For the other maximum
likelihood ridge, it linearly shifted the estimated AP-RV combinations along that ridge by

the same constant value, A, across all experiments (Fig. B.3A, E1, E2, E4, E5, E7, EB):

AP = AP+ A (B.16)

RV' =RV — A (B.17)

For the simple models, in which only one of the key parameters was fitted, we did not restrict

the parameter search to the trivial maximum likelihood point. There, the effect of n was
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A complex B simple
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Figure B.3. Influence of noise distribution on parameters. A. The estimate of the complex
model’s AP parameter (AP’) when 1) is either 1 or 3. (RV is trivial given the maximum likelihood
constraint.) B. Simple model with AP parameter. The estimate of the complex model’s AP parameter
(AP’) when 7 is either 1 or 3. Fitting the simple model with RV parameter would result in an almost
identical pattern (not shown).

multiplicative (Fig. B.3B):

AP = AP+ (AP —0.5) x A (B.18)

or

RV' =RV + (RV —0.5) x A (B.19)

with A again shared across all experiments.
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When fitting the BEA model, we allowed these transformations of the AP and RV param-

eters. Crucially, this reduced the constraints imposed by the static Bayesian model by only

one degree of freedom.

Appendix C

Supplementary Materials to Chapter 4

C.1 Bayesian inference

The ideal observer computes both the perceptual posterior:
1
Plali.g) x 3 [ PGle.y) PG PGPELPE
z=0
and the decision posterior:

Hmwgﬂmmmwmwwmwmm

First, | derive Eq.C.1. Starting with the Bayes rule:
P(z|z, ) o< P(Z,g|x) P(x)
using P(A, B|D) = [ P(A, B|C, D)P(C|D)dC:

P@mmmmzm@/mawWW@@@
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using that = and y are independent and = and ¢ are conditionally independent given y
Pa) [ PG@.gle.0)Plulo)dy = Pa) [ P(ale.0) PEln) Py ©3

Finally, using P(A) = > 5 P(A|B)P(B):

/ Pz, y) P(ly) P(r) P(y)dy = 3 P(x]2)P(2) / P(ilz.y)P(Aly) Py)dy  (C6)

C.2 can be derived in a similar way.

C.2 Fitting the model

We use the BADS optimizer (Acerbi and Ma, 2017) to find the parameter set

(0 = {2, pr, Kamp, Kmin, A, €cont s €aperts @ 3, 7Y, 0 }) that maximizes the probability of the ob-
served right lick ratios (RLR) during stimulus presentation while treating the total number
of licks observed:

T
P(RLR|x,y,N,0) = [ [ P(RLRy|x+, yi, Ny, 0) (C.7)

t=1

where the bold fonts denote vectors containing data for every trial ¢. For a single trial:
P(RLR|zt, yt, Ny, 0) = /P<RLRt’ft7 s Niy 0) P(Z4, G|, y, 0)d 2,7, (C.8)

and

Ne

P<RLRt’jt7ﬂt,Nt79) = <RLR
t

) F oo )N (1= f(a )N N (Co)

where f is the probability that any given lick on that trial is to the right:

f(@e,9:) = (1 — ) S (T4, §1; B,7) + ad (C.10)
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C.3 Estimation of the behavioural posteriors

If we knew the animal’s observations, we could easily compute an estimate of its perceptual
and decision posterior distributions based on the inferred internal model parameters. How-
ever, the animal’s actual observations are never accessible to us, the experimenters. Thus, the
best we can do is to infer what these observations might be on a given trial < based on the
stimulus (S; := direction, , contrast, , aperture) and the animal’s behavior (RLR; := right

lick ratio during stimulus presentation):
P(Zs,9s | Si, RLR;) (C.11)

and use this distribution, which is the experimenter’s posterior over the observations, for es-
timating the perceptual and decision posteriors of the animal. However, it’s not immediately
clear how to use the experimenters’ inferred observations to estimate the animal’s beliefs.
The strategy that we chose was to average the inferred model’s perceptual and decision pos-

terior under our posterior distribution of observations (omitting the ¢ index for clarity):
pOStanimal(l) ~ ﬂ-(l) = /P(l | jag) P(jvg ’ Sv RLR) dz dg (C12)

where [ can stand for x and z. The drawback of this choice is that the average posterior’s un-
certainty (measured as its variance) is greater then the average uncertainties of the individual

posteriors:
Vo[l S, RLR] > Eg ¢ [Vi[l|z,§] | S, RLE] (C.13)

leading to a general overestimation of the animal’s uncertainty. Another possibility would be
to use only the MAP estimate of the observations, but the risk is that the ground truth pos-
teriors and the estimated posteriors may have little or no overlap on a significant proportion

of the trials.

The Section C.3 inequality is a direct consequence of the law of total variance:

Valal =Vg[Eala|b]] + Eg[Vala | V] (C.14)
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where all terms are positive.
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C.4 Normalized mismatch statistics.

perceptual: spatial - temporal

temporal: decision - preceptual

mouse  mean sem p t df mouse  mean sem p t df
1 0.042 0.017 0.016 2430 138 1 0.008 0.019 0.686 0.405 138
2 0.038 0.057 0.506 0.666 143 2 0.150 0.059 0.012 2.550 143
3 0.051 0.071 0475 0.716 119 3 0.116  0.068 0.092 1.697 119

perceptual: momentary temporal - temporal

perceptual: shuffled - temporal

mouse  mean sem p t df mouse mean sem p t df
1 0.058  0.006 0.000 9.215 138 1 0.461 0.053 0.000 8.728 138
2 0.150 0.012 0.000 12.878 143 2 0.218 0.089 0.015 246 143
3 0.174  0.016 0.000 10.813 119 3 0.044 0.107 0.679 0.414 119

Figure C.1. Comparison of different coding scheme - latent variable combinations. Each
comparison is a paired, two-tailed t-test.
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Figure C.2. Entropy-mismatch trade-off. A. Normalized mismatch between the temporal (black)
and spatial (magenta) neural posteriors and the behavioral perceptual posterior, plotted as a function
of total neural entropy at varying values of the momentary entropy penalty’s A multiplier (dots).
B. Difference in raw mismatch (upper) and total neural entropy (lower) between the spatial and
temporal codes across different values of the momentary entropy penalty’s A multiplier.
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