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Abstract

Socioeconomic status (SES) has a profound influence on human life, shaping health
outcomes, social mobility, and access to resources. Beyond these well-recognized effects,
SES also impacts how people navigate physical spaces and build social connections,
contributing to patterns of segregation and social cohesion. Recent advancements in
large-scale digital data offer an opportunity to explore these interactions in unprece-
dented detail. This thesis combines digital, traditional, and innovative data sources to
analyze the connections between SES, mobility, and social networks.

First, we introduce a methodology for observing SES patterns in large-scale mobil-
ity and social network data by aligning two sources of individual digital traces with
socioeconomic maps. Building on the first source, we explore how the COVID-19 pan-
demic influenced social and spatial interactions, finding that while mobility segregation
increased as expected under movement restrictions, social segregation decreased, with
individuals maintaining broader social ties to offset reduced physical contact. Finally,
using the second source of combined digital and socioeconomic data, we investigate indi-
vidual deviations from the Exploration and Preferential Return (EPR) model, revealing
that the model’s accuracy varies across different populations, with significant biases
emerging among specific sociodemographic groups.

In sum, this thesis contributes to understanding SES’s role in mobility and social
networks, providing insights for policies that promote inclusion, resilience, and equitable
access to resources.
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Chapter 1

Introduction

1.1 Context

Socioeconomic inequalities remain one of the most pressing global challenges, influencing
a wide range of outcomes, including health, education, and quality of life. Addressing
these inequalities is essential for promoting inclusive societies and achieving sustain-
able development, as recognized in the United Nations Sustainable Development Goals
(SDGs), particularly Goals 1 (No Poverty), 3 (Good Health and Well-being), 4 (Quality
Education), and 10 (Reduced Inequality) [6]. Understanding socioeconomic disparities
and their impacts is crucial, as they can create feedback loops that reinforce existing
social divisions and hinder social mobility. Studies across disciplines emphasize that
socioeconomic inequalities not only affect individual prospects but also shape collec-
tive outcomes by impacting social cohesion, access to resources, and overall economic
stability [7–9].

Socioeconomic status (SES) is a construct that represents an individual’s or group’s
economic and social position relative to others. The conceptualization and measurement
of SES are among the most contested topics in social science due to its broad and often
elusive definition [10–12]. Indeed, there is no consensus on a single, definitive defini-
tion of SES. In some instances, SES is measured based on a theoretical framework that
associates it with perceived social position and the personal evaluation of occupational
prestige [13, 14]. In other cases, a more objective definition of SES is used, relying
solely on direct measurements of well-defined characteristics such as income and educa-
tion level [15, 16]. This thesis does not aim to resolve these complex debates or take a
particular stance. Instead, we acknowledge that the appropriate definition of SES often
depends on the specific research question or the data available [17]. Moreover, deter-
mining the most explanatory definition of SES for a given outcome can be the central
focus of a study. Here, when referring to high and low SES, we primarily consider the
most commonly used variables in the literature, such as income, wealth, education, and
employment status. However, we also adopt a broader definition of SES that includes
demographic traits like gender, age, and ethnicity. These traits are not only interre-
lated with socioeconomic variables but also play complex roles in shaping individual
behavior and collective phenomena, such as social segregation. In some contexts, these
demographic attributes amplify socioeconomic disparities, intensifying their effects on
mobility and social networks. In others, they act more as correlates of SES, reflecting
associated patterns without necessarily driving them. This distinction underscores the
need to carefully consider their roles depending on the specific research question and
context.
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The variables constituting SES are generally neither equally nor equitably distributed,
often interconnected through complex and multifaceted mechanisms. Wealth [18] and
income [19, 20] are unequally distributed across all population scales, with clear indica-
tions of rising inequalities [21]. The share of economic resources owned by the wealthiest
individuals is increasing globally [22]. Economic inequalities have direct consequences for
education and opportunities, where the more advantaged individuals have better access
to higher quality education [23, 24]. This, in turn, leads to unequal access to employment
and the job market, creating a vicious cycle that hinders social mobility and meritoc-
racy [25, 26]. Moreover, persistent social norms and discrimination exacerbate existing
inequalities, particularly in terms of gender and race. Women and ethnic minorities
face greater barriers to education, fewer work opportunities, and pay gaps [27–31]. The
complex interplay between these variables prevents a straightforward stratification into
social classes, resulting in nontrivial definitions of vulnerable groups.

The study of inequalities is crucial not only for understanding their relationship with
sociodemographic characteristics and the mechanisms that reinforce these disparities but
also, and perhaps more importantly, for examining their impact on various outcomes
of human life [9]. Among these outcomes, physical and mental health stand out as
particularly significant [32]. On average, individuals with higher socioeconomic status
enjoy better health across multiple dimensions and for various reasons. They tend to
have a longer life expectancy [33–35], lower mortality rates [36], and a lower prevalence of
chronic diseases [37]. Additionally, they are less likely to suffer from mental disorders and
mental illnesses [38–40]. Health outcomes are influenced by SES through both structural
factors—such as the ability to afford quality housing [41] and greater capacity for health
expenditures [42]—and socialization factors, including diet and health habits [43] and
social support [44].

Beyond health outcomes, SES is intricately linked to various aspects of human be-
havior. The goal of this thesis is to investigate, through extensive analysis of digital
data, the association between SES and two critical facets of human behavior: human
mobility, i.e., how people move and explore physical space, and social networks, i.e., the
creation, structure, and dynamics of social relationships.

This chapter provides the theoretical, empirical and methodological foundation nec-
essary to introduce the results presented in the following chapters. We begin by contex-
tualizing the study introducing the concepts of human mobility and and social networks
in Section 1.2. Next, we examine the direct connections between SES and individual-
level behaviors in mobility and social networks in Section 1.3, highlighting how personal
SES influences physical movements and social interactions. Moving beyond individual
patterns, the chapter explores emerging collective phenomena in Section 1.4, such as seg-
regation, which arise from the aggregation of individual behaviors. In Sections 1.5 and
1.6 we address the observation, modeling and measurement of these processes, discussing
key data sources, models and metrics used to study SES-related patterns in mobility and
social networks. Finally, in Section 1.7, we briefly introduce the content the following
chapters. This structure aims to provide a comprehensive framework for understanding
the interplay between SES, mobility, and social networks.

1.2 Human mobility and social networks

Human movement has long been essential to societal development, from migration for
resources to daily commutes for work and education. From the earliest days of human
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history, mobility has been crucial for survival, as people migrated to escape inhospitable
environments, find resources, and adapt to changing conditions [45]. As societies evolved,
the purpose of mobility expanded beyond mere survival to include the pursuit of oppor-
tunities, escape from conflicts, territorial expansion, and the exploration of new frontiers.
The movement of people played a central role in the rise of civilizations, enabling the
spread of cultures, trade, and ideas across vast distances. On a more personal level,
daily movements, such as commuting for work, accessing education, or seeking leisure
activities, form a vital part of modern routines, though access to these activities can dif-
fer significantly depending on individual possibilities and constraints. These movements
are not only about navigating physical space but also about engaging with economic,
social, and cultural opportunities [46]. The patterns of human mobility, shaped by both
necessity and choice, have long influenced the way societies are structured and how
individuals interact within them.

Equally fundamental to human existence is the need for social connection. From the
earliest human groups to the intricate societies of today, forming and maintaining social
relationships has been essential not just for survival but for the flourishing of communities
[47]. Early human societies were built on close-knit ties of kinship and cooperation,
which gradually expanded into broader networks that included alliances, trade partners,
and cultural exchanges. These social networks have always been more than just a web
of personal relationships; they are the channels through which knowledge is shared,
resources are distributed, and social norms are established. In modern times, the role
of social networks has grown even more complex, encompassing everything from family
bonds to global professional connections. These networks not only provide emotional
support and a sense of belonging but also serve as a means for economic opportunities
and social mobility. The nature and strength of these connections, influenced by both
individual agency and structural factors, play an important role in shaping the social
fabric of communities and the opportunities available to individuals [48, 49].

Human mobility and social networks are often deeply intertwined, influencing and
shaping each other [50–52]. People frequently move to places where they have pre-
existing social connections, reinforcing their network ties [53–55]. Conversely, mobility
itself can foster the creation of new social relationships. When individuals travel or
commute for work, education, or leisure, they encounter others, and these physical in-
teractions can lead to the formation of new social ties, which can then be predicted from
their movements [56, 57].

SES plays a pivotal role in both human mobility and social networks, influencing
individual behaviors and broader societal patterns. On a personal level, SES directly
impacts how people move and form social connections. Additionally, the influence of
SES on the places people frequent and the relationships they establish leads to notable
collective outcomes, particularly in the form of segregation observed in both mobility
and social networks. The following sections will explore the direct individual connections
between SES and human mobility, as well as SES and social networks, while also exam-
ining the emergence of segregation. In the following sections, we will first explore the
relationship between SES and aspects more closely tied to individual behavior, such as
relocation patterns, city exploration habits, and the formation of personal networks and
social capital. Then, we will shift to a broader perspective, examining the emergence
of social segregation in mobility and social networks as a property of the system as a
whole, shaped by the interplay and aggregation of individual behaviors.
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1.3 Individual patterns

1.3.1 Socioeconomic patterns in human mobility

Individual movements are closely linked to both personal SES and the SES of the places
visited. Whether considering long-distance relocations driven by large migration flows
or short-distance movements typical of daily routines, distinct socioeconomic patterns
shape how individuals navigate physical space.

Long-distance mobility. Economic opportunities and social relations are crucial
driving forces behind global migrations and relocations [58]. Major centers of commerce
and industry have historically attracted significant population flows [59]. Long-distance
movements are driven by the availability of opportunities at a destination and can be
influenced by the number of intervening opportunities encountered along the journey
[60]. Wage differences between regions are a primary reason for labor migrations, of-
ten leading to flows from low-income to high-income areas [61, 62]. Higher economic
inequalities tend to increase awareness of existing opportunities, motivating people to
relocate [63]. Similarly, trade with more advanced economies can incentivize the start
of migration processes [64]. Additionally, a variety of social linkages between locations,
such as cultural affinities, former colonial connections, and family or personal networks,
stimulate, direct, and sustain the movement of people [58, 65]. Beyond the socioeco-
nomic contexts of both origin and destination, the decision to migrate is also influenced
by an individual’s SES. Migration intentions are closely tied to individual wealth [66],
gender [67], and ethnic similarities between origin and destination regions, as well as
within migrant networks [58, 68].

Urban mobility. At a different spatial scale, SES also shapes human mobility within
cities, which are becoming increasingly central to social development and daily life as
the global urban population continues to surge. Socioeconomic factors such as income,
education, employment status, and ethnicity significantly influence urban mobility pat-
terns.

Depending on the spatial arrangement of housing and job opportunities, wealthier
individuals travel shorter distances in some cities but longer distances in others [69].
Ethnic differences also impact mobility, with variations in the number of locations visited
and the extent of activity spaces [70, 71]. Additionally, individuals with lower SES,
particularly in less developed areas, tend to have smaller activity spaces and travel
shorter distances [72, 73]. Higher SES individuals, on the other hand, display greater
diversity in their location visits, though not necessarily traveling longer distances, and
tend to concentrate their activities at different times of the day [74–76].

In some cases, the poor travel longer distances but visit fewer places, indicating a
complex relationship between travel distance and the diversity of locations visited [77,
78]. Transportation modes are also influenced by SES, with factors such as employment,
income, car ownership, and education determining how people move within cities [79].

Gender further complicates mobility patterns, with women generally traveling shorter
distances, making fewer trips, and showing less spatial diversity than men, influenced by
higher levels of daytime fixity constraints and by the quality of infrastructures [80–84].
The unemployed tend to travel less overall, reflecting their limited economic engagement
[85]. Additionally, areas with higher education levels and better access to urban centers
see more frequent mobility [86].
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Urban mobility patterns also reflect socioeconomic inequalities, as regions with more
diverse mobility fluxes and earlier diurnal rhythms tend to have lower unemployment
rates [87]. The interplay between SES and urban infrastructure further influences mobil-
ity, with cities varying in how strongly SES correlates with movement patterns; in some
cities, this correlation is less pronounced due to equitable access to public transportation
and amenities [88]. Moreover, SES affects where people spend their time, with certain
points of interest, such as dining establishments, being frequented differently depending
on one’s income and employment status [89].

The relationship between SES and human mobility is complex, influencing movement
patterns across various scales, from international migrations to movements in urban
environments. Socioeconomic factors such as income, education, and employment status
shape where, how, and why individuals move, reflecting broader social and economic
inequalities. Moreover, as previously mentioned, mobility patterns are shaped not only
by an individual’s SES but also by their interactions with social contacts, which can
introduce additional dynamics [50–55]. For instance, engaging with individuals from
a different SES can influence mobility decisions, altering typical movement patterns in
response to social, temporal, and spatial factors. Recognizing the interplay between
all these dimensions is essential for addressing mobility-related disparities and creating
policies that promote equitable access to opportunities and resources.

1.3.2 Socioeconomic patterns in social networks

SES is intricately linked to the structure and dynamics of social networks, profoundly
influencing the resources and opportunities available to individuals. Social networks
are not merely a reflection of individual social behavior; they play a pivotal role in
determining access to information, economic mobility, and career advancement, thereby
perpetuating or mitigating social stratification.

Personal networks. A key aspect of personal social networks related to SES is the
structure of the ego network itself, though the impact of SES on network structure can
vary significantly across cultural and societal contexts. Most observations on how SES
influences the flow and quality of information and subsequently affects economic decisions
and career outcomes stem from studies conducted in Western, urbanized societies. In
these contexts, diversity is among the main structural features of social networks shaped
by social status and, vice versa, facilitates access to opportunities [90]. Diversity relates
both to the type and intensity of connections, ranging from intense personal relations
to loose professional links, and to the ability to connect with a range of different social
circles that are loosely connected with each other. Being able to reach multiple commu-
nities through various connections increases the chances of accessing diverse information
and resources. Indeed, individuals with higher SES in these settings often maintain more
diverse social networks and extend their connections outside their immediate community
[91]. This diversity is positively correlated with economic development, as it provides
access to a broader range of information and resources that can enhance individual and
community socioeconomic outcomes [92]. The geographical spread of social connections,
or spatial diversity, further enhances economic opportunities by allowing individuals to
span across different regions. Conversely, lower SES in these societies is often associated
with more homogeneous networks, which may limit access to diverse resources and re-
inforce existing inequalities. Age also plays a role in the diversity of personal networks,
with younger people in urbanized settings being more prone to establish new and diverse
connections [93].
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The concepts of network diversity can be analyzed through the lenses of structural
holes and weak ties. Structural holes refer to gaps between non-redundant contacts
within a network [94, 95], while weak ties refer to loose connections that are important
for accessing disparate information [48]. Weak ties and structural holes are strongly
related, as the former serve as bridges to connect unconnected disparate groups. On the
other hand, strong ties usually develop within communities, characterized by dense local
networks. Individuals who bridge the gaps between various groups, known as brokers,
gain access to diverse information and control over resources, which can be leveraged
for socioeconomic success. Networks rich in structural holes enable access to unique
information and resources, facilitating higher performance, faster career advancement,
and greater rewards. Conversely, networks characterized by closure, where everyone
is interconnected, may foster trust and cooperation but often limit exposure to new
information, potentially restricting upward mobility. Thus, the balance between weak
and strong ties in a network is crucial for leveraging the benefits of both diversity and
trust. Entropy provides a well-established approach to quantifying this balance and,
more generally, the diversity and heterogeneity of connections [92].

In the job market, weaker ties are more likely to connect individuals to different
parts of the social structure, offering access to more diverse job opportunities [96]. In
organizational settings, individuals with entropic personal networks rich in weak ties
and structural holes are better positioned to connect with higher organizational levels
and bridge different functions within an organization, leading to greater career success
[97, 98]. However, in some contexts, strong ties are equally important; having a friend
within the organization, especially a high-ability individual, can significantly increase
negotiated salary outcomes and enhance career success [99, 100]. Additionally, in job
allocation systems that rely heavily on personal networks, where trust and obligations
are critical, strong personal connections may be more valuable than the information
exchanged through weak ties [101]. The advantages of weak ties may also vary depending
on SES, with different outcomes for individuals based on their initial socioeconomic
position [102].

Another important structural property is centrality, i.e. the position an individual
holds within a social network, which also determines access to resources and influence.
An individual’s centrality in a social network can be a strong indicator of their financial
status [91]. Those who are central within networks, especially in organizational settings,
tend to have greater influence and are often better positioned for promotions [97, 103].
However, the effects of network centrality and the associated benefits are often dependent
on SES aspects, particularly gender, leading to disparities in career advancement [104].
Therefore, while centrality can offer significant advantages, these benefits are not evenly
distributed and may compromise fairness and equal opportunities.

Social capital. To fully understand the interplay between social networks and SES,
it is essential to consider not only the structure of connections but also the personal
characteristics of those connections. Social resources—defined as the advantages one
derives from one’s social network—are crucial for status attainment and socioeconomic
mobility. The accumulation of these resources shape one’s social capital, which, along
with economic and cultural capital, influences an individual’s position and potential
within society, where individuals leverage connections to gain advantages aligned with
their social standing [49]. Transitions between these forms of capital are possible, where,
for instance, social capital gained through cross-class connections can foster access to
educational and employment opportunities, thereby translating into economic or cul-
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tural capital over time. For example, the degree to which individuals from low SES
backgrounds are connected to those with higher SES is a strong predictor of upward
economic mobility [105, 106]. Areas with greater economic connectedness exhibit higher
rates of income mobility, emphasizing the importance of cross-class social ties in break-
ing cycles of poverty. Consequently, the social capital developed through relations and
connections has significant implications for status outcomes and well-being [107–109].

The SES of an individual’s contacts significantly influences their own socioeconomic
outcomes, starting from childhood. Social capital within families and communities is
critical for developing human capital, particularly in education. Indeed, the relation-
ships among parents and their interactions with schools and other institutions provide
a supportive environment for children’s education [108]. Additionally, the SES of neigh-
bors during childhood significantly influences educational outcomes, underscoring the
long-term impact of social networks on social mobility [110]. Moreover, children who
live near peers involved in early childhood intervention programs experience significant
spillover effects on educational and developmental outcomes [111]. Even in later ed-
ucational stages, the presence of high-achieving peers positively influences educational
performances, although there is considerable heterogeneity in the effects [112].

After education, the SES of contacts continues to be important for employment status
and career development. The occupational status of contacts and weak ties to higher-
status individuals significantly influence occupational prestige [113, 114]. Employment
status itself has a significant positive impact on the likelihood of being employed, with
the effect being particularly prominent for veterans and refugees [115, 116]. Additionally,
peer effects contribute to economic behaviors, such as housing market decisions, where
individuals are more likely to transition from renting to homeownership if their social
contacts experience positive housing price changes [117].

In conclusion, as with human mobility, the relationship between SES and social net-
works is complex and multifaceted. SES influences not only the structure and diversity
of social networks but also the resources and opportunities that individuals can access
through these networks. In turn, the interplay between network structure, the strength
of ties, and the distribution of social resources shapes socioeconomic outcomes, as so-
cial capital can, under certain conditions, be leveraged or transformed into economic or
cultural capital, influencing one’s overall social mobility and well-being.

1.4 Emerging collective phenomena

Up to this point, we have focused on how SES influences individual behavior or pop-
ulation patterns, affecting both physical mobility and the structure of personal social
networks. However, we have yet to explore the role of SES in the emergence of collective
phenomena, i.e., patterns that arise from interactions among individuals. These patterns
cannot be fully understood by examining single units alone but require a perspective that
considers the system formed by interacting individuals as a whole. This approach aligns
with the principles of complex systems, where collective behaviors emerge from the in-
terplay of many interconnected elements, giving rise to new properties at the population
level [118].

Specifically, the microscopic mechanisms related to status homophily and environ-
mental constraints that limit movements and social opportunities contribute to segre-
gation in social systems. This collective phenomenon is characterized by the social or
physical isolation of individuals belonging to different social groups, who predominantly
interact with others similar to themselves. In this section, we will examine how segre-

7

C
E

U
eT

D
C

ol
le

ct
io

n



gation forms and manifests in neighborhoods, social networks, and mobility.

1.4.1 Mechanisms of segregation formation

Homophily. Homophily is a fundamental principle in the formation and evolution of
social networks, wherein individuals are more likely to form connections with others
who are similar to them [119, 120]. This similarity-based connection pattern extends to
human mobility, as physical contacts are a specific type of social connection, and the type
of people encountered in different places strongly influences movement patterns [121]. In
fact, the principle of homophily applied to human mobility results in people being more
likely to visit places where they expect to meet others similar to themselves. For the
purposes of this discussion, we will refer to homophily primarily as a mechanism in social
network formation, while acknowledging that it similarly applies to physical spaces and
human mobility, leading to comparable segregation dynamics, as we will explore further.

All dimensions of SES play a significant role in homophily-induced link formation.
These include ascribed characteristics such as race [122, 123], age [124, 125], and gender
[104, 122, 126, 127], as well as achieved characteristics like education [126, 128], income
[129], and occupation [130]. Homophily based on these dimensions often leads to the
creation of relatively homogeneous communities, as individuals with similar SES are more
likely to interact and form enduring ties. Moreover, when multiple status dimensions
are correlated, individuals are more likely to form relationships with those who are
similar across several characteristics, leading to even greater homophily [131]. This
homogeneity is further reinforced by the tendency for ties between dissimilar individuals
to dissolve more quickly, thereby deepening the homophilous nature of social networks
[119, 132, 133].

Homophily affects a wide range of relationships, including marriage, professional
connections, friendships, and even casual interactions in physical spaces. In marriage
and close friendships, homophily is particularly pronounced, often reinforcing social ties
within similar SES groups [123, 124, 134]. Both work and school or college networks are
shaped by homophily, where co-workers or students are more likely to engage, study, or
collaborate with those who share similar backgrounds or characteristics [122, 127, 135].
This pattern extends to weaker ties and even casual encounters, where brief interactions
are influenced by common SES traits [136]. This latter effect closely connects with
human mobility, as such encounters are not entirely random; people are more likely
to spend time in places they know are frequented by others with similar backgrounds
[121]. Moreover, the impact of homophily intensifies when multiple types of relationships
overlap between individuals, leading to stronger homophilous ties in multilayer networks
compared to single-layer ones, a cumulative effect that further entrenches the social
boundaries shaped by SES [137].

Opportunities and constraints. Despite the undeniable role of homophily in link
formation, attributing the observation of homophilic links and, more broadly, social seg-
regation solely to personal preferences would be misleading. While other link formation
mechanisms like preferential attachment [138, 139] or triadic closure [140] can also lead
to homophilic links, the focus here is on the environmental constraints that shape the
available opportunities for contact [141, 142]. First of all, there is a cognitive limit
to the number of people with whom one can maintain stable social relationships [143],
and individuals tend to exhibit unique and stable ”social signatures” in how they allo-
cate time and resources across these relationships, even as specific contacts change over
time [144]. Moreover, the opportunities for forming connections are neither infinite nor
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evenly distributed; they are significantly shaped by the context in which we live and
grow, offering limited and often biased opportunities [131]. This distinction underpins
the difference between choice homophily, which reflects individual preferences for asso-
ciating with similar others, and baseline homophily, which arises from the distribution
of characteristics within the available pool of potential ties [119].

Geography is one of the strongest constraints on social connections; physical distance
acts as a major barrier because it requires more effort to connect with those who are
farther away compared to those who are nearby [145]. As a result, people are more likely
to form connections with those who live close by, simply because of the higher exposure
to nearby individuals [146, 147]. Residential segregation further amplifies this effect, as
neighborhoods tend to be highly homogeneous in traits like race or income, leading to
a much higher likelihood of connecting with similar others—not due to personal choice,
but due to environmental factors [148–150]. Another strong constraint is family, where
individuals have no control over the SES of their parents, siblings, or extended relatives,
who influence their early social networks from birth. Family ties are typically homoge-
neous across many traits, though they do offer diversity in gender due to the prevalence
of heterosexual couples and the equal likelihood of male and female children [119]. Ad-
ditionally, settings such as schools, workplaces, and voluntary organizations naturally
foster interpersonal ties through shared activities, with their demographic compositions
influencing the level of similarity among those who connect [122, 131, 141]. Group size
effects also drive the level of homophily in a network; larger groups offer more opportu-
nities for heterogeneous links, while an imbalance between minority and majority groups
can lead to strong baseline homophily and different perception biases [131, 151].

While the distinction between individual preferences and environmental constraints is
an important consideration in understanding the formation of social networks, our focus
is not on determining whether homophilic networks arise mostly from personal choices
or from the opportunities available within a given context [152]. Instead, our interest lies
in examining the outcome of these processes: social segregation. In fact, it is also crucial
to recognize that homophily and opportunities are deeply interlinked, as the contexts
shaping opportunities often reinforce homophilous tendencies, creating feedback loops
that intensify segregation. By focusing on the resulting patterns of segregation, we can
better understand how these dynamics manifest in various social and physical spaces,
influencing the broader structure of society. In the next section, we will delve into the
phenomenon of social segregation, exploring how it emerges and the implications it has
for neighborhoods, social networks, and mobility.

1.4.2 Segregation

Segregation is a deeply ingrained phenomenon that manifests across various aspects of
social life, influencing where people live, whom they interact with, and the experiences
they encounter daily. It tends to create environments where individuals with similar
traits cluster together, often leading to significant social isolation from other groups.

Residential segregation. Residential segregation, one of the most prominent forms,
is characterized by the physical separation of groups within urban environments, observ-
able at various spatial scales [153]. Quantifying this phenomenon accurately remains a
challenge due to its complex, multidimensional nature [149, 154, 155]. This separation is
not merely a reflection of economic disparities, which restrict residential choices, but is
also deeply influenced by historical and ongoing patterns of discrimination [148]. Even
as economic opportunities improve, allowing for some degree of residential integration,
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the persistence of racial and ethnic divides underscores the complex interplay between
socioeconomic mobility and deeply rooted biases [148, 156, 157].

Seen at a broader scale, residential segregation is closely tied to economic inequalities
[158, 159] and is linked to broader trends in globalization and economic restructuring
[158, 160–162]. Despite some recent reductions in racial segregation [163–165], the divide
along economic lines has become more pronounced, not only in the United States but
also in Europe [154, 160–162].

The implications of residential segregation are far-reaching, as it perpetuates inequal-
ity and limits social mobility, particularly across generations. Children growing up in
high-poverty neighborhoods often face significant barriers to economic advancement, re-
inforcing cycles of poverty and limiting their potential for upward mobility [166, 167].
Consequently, it exacerbates disparities in access to quality education, healthcare, and
employment opportunities, further amplifying social divides [168–173].

Experienced segregation. Beyond residential segregation, which primarily reflects
the physical separation of groups within urban environments, experienced segregation
captures the social and economic divides that individuals encounter throughout their
daily lives across various contexts, such as workplaces, shopping areas, and public spaces.
Unlike residential segregation, experienced segregation considers the dynamic interac-
tions that occur as people move through different spaces and interact with diverse groups
[121, 174–176]. Importantly, the segregation people experience in their daily encounters
is typically lower than residential segregation, as daily mobility and interactions in more
socially mixed areas often reduce segregation [177–183].

However, experienced segregation can also be high and is not uniform across so-
cioeconomic classes and ethnic groups. Higher SES individuals, as well as majority
ethnic groups, often have more exclusive and dispersed activity spaces, reducing their
chances of interacting with lower SES individuals or ethnic minorities [70, 184]. This
segregation is evident in both offline activities, such as where people shop and socialize,
and online interactions, where wealthier and majority groups remain more segregated
[185–187]. Conversely, ethnic minorities and lower SES individuals tend to have more
concentrated activity spaces, limiting their exposure to diverse groups and reinforcing
divisions [188–190].

While residential segregation remains relatively static, experienced segregation is
highly dynamic, fluctuating not only throughout the day but also across weekdays,
weekends, and even seasons. Segregation tends to decrease during the day when indi-
viduals engage in various parts of the city, leading to temporary reductions in social
and economic divides [191, 192]. These reductions are generally more pronounced on
weekdays when work and other activities draw people out of their residential areas into
more diverse urban spaces. In contrast, during nights, weekends, and in suburban areas
with concentrated wealth or poverty, segregation often persists, reflecting the uneven
impact of daily and weekly mobility patterns [177, 193].

Social network segregation. Building on the concepts of residential and experi-
enced segregation, segregation in social networks reflects the separation between social
groups in social ties, with people forming connections primarily within their socioeco-
nomic and ethnic groups [187, 194, 195]. Core friendship networks, for instance, are
more segregated by ethnicity and gender than broader, weaker ties, especially among
ethnic majority members who maintain more homogeneous networks [196]. However,
this pattern also extends to acquaintanceship networks, which show significant segrega-
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tion by race, political ideology, and religiosity, similar to what is observed in close ties
[197]. Even in broader online networks, ethnic segregation remains pronounced, with
smaller ethnic groups often displaying greater diversity in their social connections due
to their smaller size [198, 199].

The interaction between social network segregation and residential segregation can
either exacerbate or mitigate social isolation. Social networks often reinforce spatial
segregation, as individuals tend to form connections within their socioeconomic class,
reflecting the composition of their neighborhoods [200, 201]. Physical barriers, such
as those found in urban environments, can further fragment social networks and con-
tribute to greater income inequality over time [202]. However, mobility patterns, such
as longer commutes, have the potential to diversify social networks by connecting indi-
viduals across different socioeconomic strata, potentially reducing segregation in social
interactions [53, 203]. Despite these potential mitigating factors, social networks often
remain highly stratified, particularly in contexts where structural divisions like caste,
gender, or income are deeply entrenched [57, 185, 204]. This segregation is particularly
pronounced in wealthier individuals’ communication networks, where interactions tend
to remain within specific socioeconomic strata [187].

Although the composition of social ties often mirrors physical segregation, behav-
ioral observations illustrate how social network segregation can persist independently of
physical proximity. This concept is evident in communication patterns, where people
frequently interact with others who share similar characteristics, and where behavioral
patterns are often ascribable to common traits. For instance, in Istanbul, significant dif-
ferences were found in the communication patterns between Syrian refugees and the local
Turkish population, highlighting how behavioral segregation can exist even when spatial
segregation is moderate [205–207]. These patterns are also observed in gender-segregated
networks within organizations, where men and women form separate networks, influenc-
ing career advancement and social influence [104, 208].

1.5 Types of data and data integration

Studying the effects of SES on human mobility and social networks requires comprehen-
sive data collection across three primary elements: (1) socioeconomic status (SES), (2)
human mobility, and (3) social networks. Accurately observing these elements demands
data sources that can reliably capture the nuances within each category. The accurate
collection and integration of different sources is itself a broad and complex area of re-
search, as discussed in Chapter 2. This section first defines each observational category,
then examines the major data sources, highlighting their strengths, limitations, and suit-
ability for analyzing SES, mobility, and social networks. Finally, we explore methods for
combining these data sources to create integrated datasets, enabling a more complete
empirical analysis of mobility and social network patterns related to SES.

1.5.1 Key Observational Categories

Socioeconomic Status (SES): SES encompasses a range of indicators that reflect
the social and economic positioning of individuals or groups, including income, wealth,
education, employment, and demographic factors (e.g., gender, ethnicity, age). Col-
lecting SES data is essential, as it provides a foundational context to understand how
socioeconomic factors may shape patterns in both mobility and social network structures.
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Human Mobility: Studying mobility patterns is key to understanding how individu-
als navigate physical space, access resources, and engage in economic and social activities.
Mobility data sheds light on spatial behaviors and movement patterns, which often vary
based on SES, revealing insights into access to opportunities and spatial segregation.

Social Networks: Social networks capture the structure, diversity, and strength of
individuals’ connections. Observing these networks allows for analysis of how SES influ-
ences social connectivity, the types of relationships individuals maintain, and access to
social and economic opportunities within their networks.

Data on SES, human mobility, and social networks can be collected at varying levels
of granularity, from large administrative regions to individual-level data. A primary
challenge in this process is balancing the need for high-resolution individual data with the
requirement for a large sample size. Achieving both precision and scale simultaneously is
often difficult, as they tend to involve trade-offs. As a result, a variety of data collection
methods have been developed to capture information on SES, human mobility, and social
networks, along with strategies for integrating these components effectively, as discussed
in detail in the following subsection.

The different observational categories are inherently interconnected, with strong cor-
relations observed between SES and the ways individuals move or connect socially, as
we mentioned in the previous sections. This interconnectedness becomes particularly
complex when examining the socioeconomic and behavioral aspects (mobility or social
networks or both) together. If the same data source is used to observe both aspects, it
can lead to trivial correlations unless handled with care. For example, using a mobile
phone dataset to infer the spatial distribution of wealth and subsequently analyzing the
correlation between mobile phone behavior (e.g., social connections or mobility activity)
and the inferred wealth risks introducing circular reasoning or producing correlations
that are not meaningful.

To address this challenge, it is preferable to use data sources that are independent
when measuring these different aspects, thereby avoiding trivial correlations. An even
more robust approach involves adopting multimodal data collection, where a variety of
distinct data sources are used to measure each of the different observational categories.
This approach not only mitigates the risk of circular reasoning but also leads to better
proxies for each category, enhancing the validity and richness of the analysis.

1.5.2 Data sources

Surveys and Interviews

Surveys and interviews are among the most direct and customizable methods for col-
lecting data on SES. They allow researchers to ask targeted questions that capture the
specific SES indicators relevant to the study, such as income, education, employment
status, and demographic information. A key advantage of surveys is the control they
provide over data collection design, enabling the collection of detailed, nuanced, and
individual-level data. Additionally, study groups can be carefully selected to ensure
that the sample aligns closely with research objectives, making surveys a valuable tool
for precise socioeconomic data collection [209]. However, surveys are resource-intensive,
requiring significant time and financial investment, especially for large, representative
samples [210]. They are also prone to participation and response biases, where respon-
dents may give socially desirable rather than truthful answers [211].
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When it comes to social network data, surveys and interviews allow researchers to
gather detailed information on the types and quality of relationships, including family
ties, friendships, professional connections, and the frequency or intensity of interac-
tions. Surveys can capture important nuances, such as emotional closeness, relationship
types (e.g., support, advice, companionship), and other qualitative details that are often
missing from digital data sources [123, 212]. This high level of control makes surveys
particularly useful for exploring specific social phenomena [122, 131]. However, social
network surveys face unique challenges, including scalability and issues like recall bias,
which can affect the accuracy of reported relationships, and the time-intensive nature
of collecting connected social network data across large samples [96]. Recently, plat-
forms like Amazon Mechanical Turk have enabled the collection of survey data from
large, diverse, and geographically distributed samples, addressing some of the scalability
limitations of traditional survey methods [213].

Research surveys are less commonly used for directly collecting human mobility data,
as such data typically require either institutional efforts through census travel surveys or,
more commonly, digital sources. In fact, the digital data revolution has fundamentally
changed the study of human mobility, greatly expanding research possibilities. The
advantages of using digital data sources often outweigh their limitations. Indeed, research
on human mobility surged following the availability of GPS and mobile phone traces, as
detailed later in this section [214]. Just as with mobility data, the collection of social
network data has evolved significantly, transitioning from traditional survey methods
to more sophisticated digital data collection techniques. However, while digital data
has been transformative, its impact on social network studies has not been as ground-
breaking as in the field of human mobility, even though it has played a key role in the
rise of computational social science [215]. The complexity of social networks, which
includes aspects such as tie strength, relationship types, and actor attributes, remains
fundamental to measure and is often better captured through controlled studies and
surveys.

Despite all the challenges, surveys and interviews remain essential tools for capturing
both SES and social network information, though their cost, time demands, and certain
biases can limit their applicability for large-scale or real-time monitoring.

Census and Administrative Data

Censuses and administrative data provide a comprehensive, population-level view of so-
cioeconomic conditions, contrasting with the customizable but limited scope of research
surveys. National and international agencies conduct censuses and large-scale surveys,
gathering extensive data on key indicators such as income, poverty indices, education,
employment, and demographics across entire populations. These sources are invaluable
for identifying large-scale trends; for instance, the American Community Survey (ACS)
provides annual updates on socioeconomic conditions in the U.S., while the Demographic
and Health Surveys (DHS) offer detailed demographic and health data across many de-
veloping countries, supporting longitudinal SES studies [216, 217]. Administrative data
sources, including tax records, social security databases, and healthcare utilization data,
are collected regularly and provide high-accuracy insights into specific socioeconomic
areas [167, 218, 219]. Additionally, real estate prices serve as an indirect but power-
ful indicator of SES, reflecting neighborhood wealth, access to resources, and general
economic conditions [220].

In addition to socioeconomic data, census data and government-led travel surveys
have historically been used to capture human mobility patterns over extended periods
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and across large populations. These datasets provide a macro-level view of mobility,
capturing information on long-term residential changes and commuting behaviors, often
detailing work locations or changes in residence [221–223]. This macro-level insight is
especially useful for understanding broader mobility trends, although these sources are
less effective for capturing dynamic or real-time changes in movement patterns.

While both censuses and administrative data offer extensive coverage and reliability,
they are not without limitations [224, 225]. Censuses are typically costly and conducted
infrequently, which can result in outdated data, particularly in developing regions. Ad-
ministrative data, though more timely, is often restricted to predefined categories and
geographic areas, limiting its flexibility compared to surveys. Additionally, census and
travel survey data generally have low temporal resolution and may focus primarily on
work-related movements, making them less suitable for detailed, dynamic mobility anal-
ysis. Despite these constraints, they remain essential for large-scale, longitudinal anal-
ysis, providing critical context for understanding socioeconomic patterns and long-term
mobility trends.

Mobile Phone Data: Call Detailed Records (CDRs)

Call Detail Records (CDRs) from mobile phone data offer an innovative, scalable ap-
proach to studying both socioeconomic status (SES) and behavioral patterns, providing
extensive, individual-level information on a large scale. Collected primarily for billing
purposes, CDRs capture information on call frequency, duration, location, and airtime
purchases, offering insights into socioeconomic indicators at individual and regional lev-
els [2, 226, 227]. By analyzing these usage patterns, researchers can estimate wealth and
SES, making CDRs particularly valuable in contexts where traditional data sources are
unavailable or outdated. Additionally, the high temporal resolution of CDRs enables
near real-time monitoring, offering a dynamic view of socioeconomic changes and shifts
in behavior over time.

In the study of human mobility, CDRs provide spatially detailed insights by logging
user locations each time a call or text is made, enabling researchers to model movement
patterns across large populations [228–230]. Furthermore, CDRs are a powerful tool for
mapping social networks, as they capture who communicates with whom, along with
the frequency and duration of interactions, thus providing a large-scale, real-time view
of social ties and network dynamics [231, 232]. This makes CDRs particularly useful for
understanding the strength and structure of social connections [233, 234].

Mobile phone data presents several challenges. CDRs typically lack information
on the context, content, and quality of interactions, limiting the depth of analysis,
particularly in social network studies. Privacy concerns are also significant; although
anonymization can help, the individual-level granularity of CDRs raises ethical issues
around data confidentiality [235]. Access to CDRs is often restricted, as they are owned
by telecommunication companies, which may only provide data through costly and re-
strictive agreements. Additionally, mobile phone ownership and usage vary across pop-
ulation segments, especially in low-income or rural areas, introducing potential biases
and limiting representativeness [236–239]. Moreover, associating a mobile device with
a unique individual can be misleading, as multiple users may share a device, further
complicating data interpretation [240]. Finally, while CDRs offer extensive mobility in-
sights, they remain incomplete, as user locations are only logged during a call or message
activity, potentially overlooking periods of inactivity or travel.

Despite these limitations, CDRs remain an invaluable tool for studying SES, mobility,
and social networks, offering detailed, large-scale insights that support dynamic and
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spatially refined analyses.

Remote Sensing

To overcome the limitations of traditional socioeconomic data collection methods, par-
ticularly in terms of outdated information and resolution, satellite imagery has emerged
as a valuable tool for inferring socioeconomic conditions. Nighttime light (NTL) data,
for example, has been widely used as a proxy for economic activity, with brighter ar-
eas typically indicating higher levels of development [241, 242]. However, NTL data
can be less effective in capturing variations in poorer areas, which are often uniformly
characterized by low levels of lighting. To address this limitation, combining NTL with
daytime satellite imagery has proven effective, as daylight images provide rich informa-
tion about landscape features [243]. For instance, objects such as buildings, roads, and
other infrastructure can be detected from daytime satellite imagery and used as proxies
for wealth and development [244–246]. These remote sensing approaches offer the ad-
vantage of potentially continuous, real-time data collection across extensive areas at a
relatively low cost, due to the availability of temporally and spatially extensive remote
sensing data.

Such methods have been particularly effective in low-income regions, where tra-
ditional data collection methods are often expensive and logistically challenging [2].
However, the indirect nature of remote sensing requires combining these data with
ground-truth information from surveys or administrative records to enhance accuracy
and capture the nuances of local socioeconomic conditions. As mentioned earlier, such
ground-truth data is often outdated, coarse-grained, or entirely unavailable in many
regions. Furthermore, despite the high accuracy achieved through deep learning mod-
els trained on remote sensing data, their lack of interpretability presents challenges in
policy-making contexts, emphasizing the need for more interpretable models that can
inform decision-makers effectively [3].

Figure 1.1: Socioeconomic data from different sources. A) Average income in France
coming from the census (figure taken from [1]. B) Wealth predicted from CDRs data in Rwanda
(figure taken from [2]). C) Average income predicted from satellite images in Paris (figure taken
from [3]).

Social Media Data

Social media platforms provide an innovative means of deriving socioeconomic data
and analyzing human behavior on both individual and aggregate levels. By examining
aspects such as language use, sentiment in posts, network structures, and online behavior,
researchers can infer various demographic and socioeconomic characteristics, including
economic well-being and unemployment rates [1, 87, 247–250]. Compared to mobile
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phone data, social media data is generally more accessible and cost-effective, making it
an attractive option for research. For instance, Twitter’s API, widely used for human
behavior studies, has historically offered broad access, though recent restrictions have
limited availability. Additionally, the Facebook Marketing API offers unique insights for
socioeconomic research by providing aggregated demographic data on users, which can
be useful for examining socioeconomic distributions and trends across different regions
[251].

Social media platforms also enable researchers to observe mobility patterns through
geotagged posts, check-ins, and location-sharing services, which provide insights into
urban mobility and place-based activities. Platforms such as Twitter and Foursquare
allow researchers to infer movement patterns, though these insights can be biased due
to selective user engagement and platform-specific behavior [252, 253].

In terms of social networks, social media data allows for large-scale mapping of social
interactions, facilitating the tracking of information exchange, analysis of interaction
patterns, and even testing of traditional social network theories, such as the “six degrees
of separation” [202, 254, 255]. Social media data is often rich in detail, capturing not
only who is connected to whom but also the context and content of interactions. For
example, ‘likes,’ comments, shares, and tags can reveal relationship types and strengths.
However, this type of data presents challenges: it is typically platform-specific, subject
to privacy constraints and access restrictions, and may not accurately reflect offline
social ties [256, 257]. Furthermore, the nature of interactions is influenced by each
platform’s specific norms and functionalities, which may not fully capture real-world
social behaviors.

Social media data also faces representativeness issues that are more pronounced than
those seen in mobile phone data. Internet access and social media adoption vary signif-
icantly, particularly in low-income areas, introducing potential biases in socioeconomic
inference. As a result, social media data may underrepresent populations in poorer
regions or those with limited internet access, thus limiting its comprehensiveness for
assessing SES across diverse communities.

Emails

Email exchanges provide a unique opportunity to analyze large-scale networks of social
interactions, offering insights not only into the frequency and structure of communica-
tion but, in some cases, the content itself. This can allow researchers to infer the nature
of relationships through textual analysis techniques, identifying patterns of information
exchange and social ties [258]. However, email data is highly sensitive and confiden-
tial, which presents significant challenges for collection and analysis due to stringent
privacy concerns. Despite these barriers, some notable exceptions exist, such as the En-
ron email dataset, which has served as a valuable resource for studying organizational
communication networks under special circumstances [259].

GPS Data

GPS data offers highly accurate and continuous tracking of individual movements, sur-
passing the resolution and detail of CDRs, and enabling in-depth study of travel be-
haviors and patterns. This data can be collected from various sources, including smart-
phones, vehicle tracking systems, dedicated GPS devices, and increasingly through app
aggregators, which compile GPS data from multiple mobile applications to create ex-
tensive datasets [260, 261]. GPS data is particularly valuable for analyzing short-term
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mobility patterns in urban areas, providing high spatial resolution that allows for de-
tailed insights into urban mobility [262–264].

However, GPS data presents challenges similar to those of CDRs, especially concern-
ing privacy and potential biases. The use of app aggregation raises additional privacy
concerns, as data from multiple applications is collected and combined, potentially with-
out full user awareness. Additionally, GPS tracking can be limited by battery constraints
on mobile devices, and user behavior may vary based on factors such as device usage
patterns and app permissions, which can introduce biases in data representativeness.

Banknote tracking

An interesting, though less common, method for studying human mobility is tracking
the movement of banknotes. Projects such as the ”Where’s George?” initiative provide
unique insights into human mobility by monitoring the circulation of paper currency
[265]. This method has been effective in understanding long-distance travel patterns
but lacks the spatial granularity and real-time accuracy offered by other data sources,
making it less suitable for studying everyday mobility [266].

Experimental Studies and Sensor-Based Approaches

Recent advances in wearable technology and sensor-based data collection have enabled
more direct and accurate measurement of social interactions and movements. Several
notable studies have employed such methods to understand the dynamics of social net-
works:

• Reality Mining [267]: One of the earliest large-scale social network studies using
digital data, the Reality Mining project tracked the interactions of 100 MIT stu-
dents and staff over nine months using mobile phone data. By combining Bluetooth
proximity data, CDRs, and survey information, the study provided a comprehen-
sive view of both the physical and social networks of participants, demonstrating
how digital traces can be leveraged to map social connections and study behavioral
patterns.

• SocioPatterns [268]: This interdisciplinary project focuses on collecting high-
resolution face-to-face interaction data using wearable sensors. These sensors, often
embedded in badges, detect close-range interactions between individuals, providing
detailed information about who interacts with whom, for how long, and in what
context. SocioPatterns has been applied in various settings, such as schools, con-
ferences, hospitals, and workplaces, enabling the analysis of how social networks
form and change in different environments.

• The Copenhagen Networks Study [269]: This large-scale experiment collected
data from over 700 university students using smartphones, capturing both social
interactions and mobility patterns over an extended period. The study combined
Bluetooth signals, location data, CDRs, and questionnaire data to map out partic-
ipants’ social networks with high temporal resolution, providing rich insights into
how social ties evolve over time.

• DyLNet [270]: DyLNet is a large-scale longitudinal social experiment designed to
study the relationship between socialization and language development in preschool
children. Over three years, DyLNet tracked the proximity interactions of around
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200 children and adults every five seconds using RFID sensors, along with socio-
demographic and language survey data. This comprehensive dataset offers a unique
view into the co-evolution of social and linguistic networks, capturing real-world
interactions in classroom and play settings.

These experimental studies represent a significant leap forward in our ability to collect
social network and mobility data, capturing real-world, face-to-face interactions with
unprecedented granularity and accuracy. However, they also present challenges, such as
the need for participant compliance, concerns about data privacy, and the potential for
behavior to be altered by the awareness of being monitored.

Multimodal Data

As mentioned in Section 1.5.1, the different observational categories are deeply intercon-
nected, so using one data source to observe both the socioeconomic and the behavioral
aspects can be risky and may lead to circular correlations. One effective approach to
mitigate this risk is to use multiple data sources as proxies not only for the different cate-
gories but also within each category. For behavioral aspects, combining multiple sources
at the individual level is often very challenging, primarily due to privacy concerns that
make it nearly impossible to deanonymize and link datasets. However, at an aggregate
level, such combinations are feasible—for example, when analyzing aggregate mobility
flows or social connections between spatial regions.

On the other hand, a combination of techniques and data sources has been exten-
sively used to infer SES, aiming to balance the limitations of some methods with the
strengths of others. By integrating data from multiple sources, such as high-resolution
satellite imagery, social media, and mobile phone data, researchers can overcome the
weaknesses inherent in individual methods, achieving more accurate and representative
SES estimates [271–273]. Ground-truth data from accurate surveys, combined with
complex multi-step machine learning models applied to diverse data sources, has further
enhanced the accuracy and representativeness of SES inference.

1.5.3 Data combination

Now that we’ve discussed how to collect the two essential elements—SES data and
behavioral data—it is crucial to explore how to combine these elements to effectively
link observed behavior to SES. Ideally, the most direct and informative approach would
involve access to complete data at the individual level, where each person’s SES variables
are paired with exhaustive details about their social contacts and movements. This would
include comprehensive information on all SES indicators, a fully detailed social network
with exact contact relationships and tie strengths, as well as an accurate log of all places
visited along with the duration of stay.

However, such ideal data is rarely available due to practical limitations, including
privacy concerns, data accessibility, and the challenges of collecting such extensive in-
formation. Consequently, various data merging and combination techniques are used to
approximate this ideal scenario.

One example is fully survey-based studies, where respondents are asked to provide
information on their SES and social network (or, more rarely, human mobility) patterns
simultaneously [123, 131], or information on both their social connections and travel
history [274]. These approaches offer detailed individual-level insights into both elements
but, due to the inherent limitations of surveys, are typically restricted to smaller sample
sizes.

18

C
E

U
eT

D
C

ol
le

ct
io

n



Another approach involves combining digital behavioral data, such as mobile phone
usage or social media activity, with survey responses on SES [226, 237, 275]. This method
enables to pairing of precise behavioral information with individual-level SES indicators,
although the reliance on survey data again limits the sample size and generalizability.

For larger-scale analyses, digital behavioral data may be linked with banking trans-
action records, from which SES can be inferred through expenditure patterns [187, 276].
This technique offers the advantage of capturing detailed financial behaviors alongside
mobility or social interactions. However, such coupled datasets are exceedingly rare due
to stringent privacy constraints and the limited availability of banking information.

A more widely used method, particularly for large-scale studies, involves combining
digital behavioral data with socioeconomic maps [72, 74, 121, 185, 200]. In this approach,
a user’s home location is inferred from their digital traces, such as the geolocation of
activities captured through mobile phones or social media posts [277, 278]. This inferred
location is then matched with socioeconomic indicators associated with that geographical
area. By utilizing median values from fine-grained socioeconomic maps, users’ SES can
be estimated and analyzed alongside extensive data on mobility and social networks.

This last method is often considered optimal for studying large populations, as it
provides a balance between accuracy and privacy. It allows to work with broad, repre-
sentative samples while maintaining user anonymity, as the exact SES values, metadata,
and precise home locations remain undisclosed. The granularity of the socioeconomic
map plays a pivotal role in ensuring the accuracy of this approach: the finer the map, the
more precise the SES inference, allowing for robust analyses of the relationship between
SES and human behavior.

1.6 Metrics and models

Beyond the collection and integration of relevant data, analyzing socioeconomic effects in
human mobility and social networks requires both appropriate metrics and robust mod-
eling frameworks. While data collection offers a foundation for observing behaviors and
patterns, metrics provide the quantitative tools necessary for measuring key aspects of
mobility and social interactions. These metrics help translate raw data into interpretable
indicators that highlight differences in movement and social network structure.

Complementing these metrics, models formalize our understanding of the underlying
principles and mechanisms that shape these patterns. Models enable us to link theoret-
ical frameworks with observed data, allowing for the exploration of how people move,
with whom they interact, and how these behaviors contribute to broader phenomena
like segregation and inequality. Together, metrics and models deepen our insights, un-
cover latent patterns, and enable predictions about future behaviors based on observed
dynamics.

In this section, we provide a brief overview of the metrics and models of human
mobility and social networks that are most relevant to this thesis. For completeness,
additional metrics and models relevant to the field can be found in Appendix A.

1.6.1 Human mobility metrics and models

Human mobility metrics and models together provide a comprehensive approach for ana-
lyzing how people navigate physical space, capturing both individual-level behaviors and
broader, population-level movement patterns. Mobility metrics quantify concepts such
as distance traveled, movement frequency, and spatial patterns, providing insights into
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both micro and macro-level mobility behaviors. On the other hand, mobility models
help formalize our understanding of movement, with individual-based models empha-
sizing the stochastic and behavioral drivers of personal mobility, and population-level
models focusing on aggregate flows between geographic locations. This section provides
an overview of the most relevant metrics and models used in human mobility, particularly
those pertinent to this thesis [214].

Metrics

Below, we outline the most significant metrics for studying human mobility:

• Jump lengths: The jump length refers to the straight-line distance between two
consecutive locations visited by an individual. This metric is crucial for under-
standing the scale of human movement, as it reflects a combination of frequent
short-distance trips and occasional long-distance journeys. The jump length be-
tween two positions i and i + 1 can be described as:

di,i+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2

where (xi, yi) and (xi+1, yi+1) are the coordinates of the respective locations. In
many studies, the distribution of jump lengths follows a heavy-tailed form, indi-
cating that long journeys, though rare, still occur with non-negligible frequency
[266].

• Radius of gyration: The radius of gyration measures the spatial extent of an
individual’s movement by quantifying the average distance between visited loca-
tions and their center of mass. It captures how dispersed or localized a person’s
movements are. The radius of gyration Rg is defined as:

Rg =

√√√√ 1

N

N∑
i=1

(r⃗i − r⃗cm)2

where N is the number of locations visited, r⃗i is the position of the i-th location,
and r⃗cm is the center of mass of the individual’s movements, given by:

r⃗cm =
1

N

N∑
i=1

r⃗i

This metric often follows a heavy-tailed distribution, indicating that some individ-
uals exhibit highly localized movement patterns, while others travel widely across
larger areas [228].

• Most frequent locations: Identifying the locations that an individual visits most
frequently, such as home, work, or favorite social venues, helps to decode their daily
routines. Typically, the frequency of visited locations, ranked from most visited
to least visited, follows Zipf’s law. More specifically, the visitation frequency fk
of the k-th most visited location is proportional to k−γ , where γ is a parameter
determined from empirical data [279].
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• Inter-event time: Inter-event time refers to the time interval between two con-
secutive movements or transitions between locations. This metric captures the
temporal dynamics of mobility by measuring how much time elapses between suc-
cessive events, which can include both the time spent at a location and the travel
time to the next one. Inter-event times often follow heavy-tailed distributions, indi-
cating that short intervals of activity are common, but longer periods of inactivity
also occur occasionally, reflecting the irregularity of human movement patterns
[266].

Individual-level models

Individual-based models attempt to simulate and reproduce the paths and decision-
making processes of individuals as they move through space. These models are especially
helpful for analyzing short-term, spatially fine-grained, and local movements, and the
patterns of day-to-day travel behaviors.

• Brownian motion: Brownian motion models random movement where each step
is taken in a random direction [280]. While useful as a simple baseline, it often
fails to capture the structured patterns of real human mobility. Lévy flights, on
the other hand, offer a better fit by combining frequent short trips with occasional
long-distance moves, reflecting observed human behavior [281].

• Continuous-time random walk (CTRW): Unlike Brownian motion, CTRW
incorporates waiting times between movements, reflecting the fact that individuals
typically spend time stationary between trips [266]. This model is well-suited for
understanding urban commuting or daily mobility patterns, where people regularly
alternate between periods of movement and stationary activity.

• Exploration and preferential return (EPR): While continuous-time random
walks (CTRW) account for waiting times, they fall short of capturing individuals’
strong tendency to revisit familiar locations frequently. The EPR model addresses
this limitation by incorporating two core mechanisms: exploration and preferential
return, enabling it to replicate scaling laws observed in human mobility patterns
[279].

In the EPR model, exploration reflects an individual’s likelihood of visiting new
locations. This probability decreases as the individual accumulates more unique
locations in their travel history, indicating a saturation effect where the number
of new places visited grows sublinearly with time. This diminishing exploration
probability aligns with empirical evidence showing that people gradually settle into
a routine of familiar places, with exploration playing a smaller role as this routine
stabilizes.

The preferential return mechanism captures the strong propensity for individuals
to return to previously visited locations, such as home, work, or other frequently
visited sites. Each location’s attractiveness, or likelihood of revisitation, increases
with the frequency of past visits. This mechanism allows the model to replicate
cyclical travel routines and to account for the spatial and temporal regularity
observed in empirical mobility data.

By combining exploration and preferential return, the EPR model successfully
reproduces notable scaling laws in human mobility at the aggregate level. Specif-
ically, it explains the sublinear growth in the number of unique locations visited
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over time. Additionally, the model captures the Zipf distribution of visitation fre-
quencies, where a small number of locations are visited very frequently while most
locations are visited only occasionally. These scaling properties reflect a balance
between novelty-seeking behavior and habitual routines, making the EPR model
a robust tool for modeling real-world human mobility patterns. Due to its robust-
ness, the EPR model has inspired extensions incorporating factors such as physical
constraints [282], recency effects [283], ranking mechanisms [284], place relevance
[285], routine behaviors [286], and social preferences [121]

Population-level models

Population-level models aggregate individual behaviors to understand collective flows
across larger geographic regions. These models are better suitable for analyzing tempo-
rally aggregate movements between neighborhoods, cities, regions, or countries.

• Gravity models: Gravity models are widely used in human mobility studies to
predict the flow of people Wij between two locations i and j. Inspired by Newton’s
law of gravitation, these models assume that movement between two locations
is positively influenced by the ”mass” (or population size) of each location and
inversely influenced by the distance between them [145]. The basic form of the
gravity model is:

Wij = C
Nα

i N
β
j

dγij
(1.1)

where:

– Ni and Nj represent the population sizes of locations i and j,

– dij is the distance between the two locations,

– C is a proportionality constant, and

– α, β, and γ are exponents typically fitted from empirical data.

In this model, population size acts as an attraction factor: the larger the popu-
lations Ni and Nj , the more likely people are to travel between these locations.
Distance dij functions as a deterrent, with longer distances generally reducing the
likelihood of travel between two places. The parameters α, β, and γ are crucial
for capturing the specific dynamics of human mobility. Typically:

– α and β capture the sensitivity of movement flow to the populations of the ori-
gin and destination locations, respectively. These values reflect how strongly
population density or size influences the propensity for travel, often with
larger exponents indicating a higher dependence on population size.

– γ reflects the friction of distance, with larger values implying a sharper decline
in travel likelihood as distance increases.

By fitting these parameters to empirical data, gravity models can be adjusted to
reflect the unique travel behaviors within different regions or countries.

Gravity models have been successfully applied to analyze various types of human
flows, including commuting patterns, migration, and even the spread of infectious
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diseases. Despite their simplicity, they provide an intuitive framework to under-
stand how both urban centers and rural areas interact, often showing that highly
populated locations (such as cities) exert a stronger ”pull” on surrounding regions.

1.6.2 Social network metrics and models

Metrics and models of social networks provide a structured framework for analyzing how
individuals form social ties and how these relationships scale up to create complex social
structures. Social network metrics quantify key features such as connectivity, clustering,
and centrality, while social network models capture the microscopic rules that govern
tie formation and evolution, such as homophily and preferential attachment, which help
explain the fundamental principles shaping social networks. Together, these tools allow
us to explore both the formation of social networks and the emergence of macro-level
patterns. This section reviews essential metrics and models used to study social networks
[287].

Metrics

Below, we outline the most significant metrics for studying social networks.

• Degree and degree distribution: The degree of a node represents the number
of direct connections (edges) it has to other nodes. In directed networks, this can
be broken down into in-degree (incoming connections) and out-degree (outgoing
connections). The degree distribution gives a probability distribution of degrees
across the network and is crucial for understanding the network’s structure. For
example, random networks have a Poisson degree distribution, while scale-free
networks follow a power law. The degree of a node ki can be written as:

ki =
∑
j

Aij

where Aij is the adjacency matrix. The degree distribution helps identify whether
the network has highly connected hubs or is more evenly distributed in terms of
node connectivity.

• Link weight: In many social networks, edges or links between nodes are not
binary but weighted, representing the strength or intensity of a connection. For
example, in communication networks, link weight might represent the number of
calls, messages, or emails exchanged between two individuals. This adds an extra
layer of information by not only counting the existence of a connection but also
measuring its strength. The total weight of connections for a node i (weighted
degree) is given by:

wi =
∑
j

wij

where wij is the weight of the link between nodes i and j. Link weights provide
insights into the intensity of interactions in a social network and can highlight
strong ties versus weak ties.
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Network models

Below, we review the most notable network models that are suitable for social network
studies.

• Erdős–Rényi (ER) random graph: The ER model is one of the simplest mod-
els for generating random networks, where each pair of nodes is connected with a
fixed probability [288]. This model assumes that all connections are equally likely
and independent of each other, resulting in networks with a Poisson degree distri-
bution. While it provides a useful baseline, it fails to capture the clustering and
degree heterogeneity observed in real social networks, making it most valuable for
benchmarking more sophisticated models.

• Barabási–Albert (BA) scale-free network: The Barabási–Albert model ex-
plains the emergence of hub nodes in networks through the principle of preferential
attachment, where nodes with more connections are more likely to attract new
links [138]. This process generates networks with a power-law degree distribution,
meaning a few highly connected nodes dominate, while most nodes have few con-
nections. This model accurately reflects real-world social networks, where a small
number of individuals (e.g., influencers or leaders) accumulate a disproportionate
number of connections.

• Configuration model: The configuration model generates random networks that
preserve a given degree distribution, ensuring that each node retains its pre-
assigned number of connections [287]. By maintaining the degree heterogeneity
observed in real-world social networks, the configuration model provides an essen-
tial tool for studying the effects of degree distribution on network structure. It
serves as a valuable benchmark for comparing how other factors, like homophily or
social influence, contribute to network formation beyond simple structural proper-
ties.

• Homophily models: Homophily models explain how individuals tend to form
connections with others who share similar attributes. This principle, as we have
seen, is a key driver of clustering and network segregation. By modeling tie forma-
tion based on shared characteristics, homophily models help explain the emergence
of tightly knit, homogeneous groups within social networks and the resulting social
stratification [139, 289].

• Gravity model: Despite being mostly used in the context of mobility flows, the
gravity model described in the previous section can be applied to social networks
as well [290]. Indeed, as we have seen, social ties are strongly related to physical
distance, as people living nearby are more likely to establish a link than people
living away [234, 291, 292]. Therefore, the strength of social links between locations
can be also modeled with Newton’s gravity law.

1.6.3 Segregation metrics and models

Segregation metrics and models offer a quantitative and theoretical foundation for un-
derstanding how individuals or groups become separated within social or spatial environ-
ments. Segregation metrics measure the degree of separation across various dimensions,
such as socioeconomic status, race, or geographic location, highlighting disparities within
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and across networks or regions. Complementing these metrics, segregation models pro-
vide insights into the underlying mechanisms that drive separation, such as homophily
and resource inequality. Together, these tools enable a deeper exploration of how struc-
tural patterns of segregation emerge and persist, as well as their broader social and
economic implications.

Metrics

Below we outline the main metrics used to quantify segregation, both in mobility and
in social networks.

• Assortativity: Assortativity is a widely used network metric that measures the
tendency of nodes to connect with others that share similar attributes, such as
SES, degree, or other characteristics [293]. This metric can be applied to both
social networks, where nodes represent individuals, and mobility networks, where
nodes represent locations and links represent the number of trips between them.
A positive assortativity coefficient indicates that nodes are more likely to connect
with others who have similar attributes, a clear signal of segregation. Conversely, a
negative assortativity coefficient suggests disassortative mixing, where nodes con-
nect with others who have dissimilar attributes. The assortativity coefficient ρ is
given by:

ρ =

∑
i,j Aij(si − s̄)(sj − s̄)∑

i,j Aij(si − s̄)2
(1.2)

where Aij is the adjacency matrix of the network, s represents a generic socioe-
conomic attribute of the nodes, and s̄ is the mean value of s across the network.
This formulation essentially calculates the Pearson correlation coefficient between
the attributes si and sj at either end of an edge (i, j).

• Individual assortativity: The assortativity defined above measures a unique
value for a whole network. A natural extension for an individual (node-level)
metric is the generalized assortativity [294], defined for every node u as:

ru =
∑
ij

wmulti(i;u)
Aij

ki
x̃ix̃j (1.3)

where wmulti(i;u) is the multiscale distribution defined in [294], Aij is the adja-
cency matrix, ki is the degree of node i, and x̃i = (xi − x̃)/σ is the standardized
socioeconomic attribute considered. A positive value indicates the tendency for a
node to connect to others with similar SES, while a negative value indicates the
tendency to connect to dissimilar nodes.

• Diversity: Diversity measures the heterogeneity of a group or community by
quantifying the variety of attributes present [121, 295]. It can refer to the diversity
of places visited by a person or the diversity of contacts in a social network. Entropy
is often used to measure diversity, with higher entropy indicating a more diverse,
less segregated group [296]. Given a group of places or contacts of a person u, the
diversity is defined as:

Du = −
n∑

c=1

Pu(c) logPu(c)
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where c is a given discrete socioeconomic characteristic (e.g., the income class),
and Pu(c) is the normalized frequency of visits to places or connections to people
that belong to class c.

Models

Below we provide an overview of the main segregation models.

• Residential and experienced segregation: The most foundational model for
understanding residential segregation is the Schelling model of segregation, devel-
oped by Thomas Schelling in the 1970s [297, 298]. This agent-based model illus-
trates how individual preferences for neighbors of similar characteristics can lead
to large-scale patterns of segregation. In the basic version of the model, agents are
placed on a grid, representing a city, and each agent belongs to one of two groups.
Agents assess their satisfaction based on the proportion of neighbors from their
own group. If this proportion falls below a predefined threshold, agents move to a
new location. Even when agents have relatively mild preferences, the system tends
to evolve toward highly segregated outcomes, showing how micro-level behaviors
aggregate into macro-level segregation.

The most notable result of the Schelling model is the demonstration of how even
small individual preferences for similarity can lead to widespread segregation. It
highlights the non-linear and emergent nature of segregation, where individual
choices, without strong discriminatory intent, can still result in significant spatial
separation of groups. Since the original Schelling model was proposed, numerous
variants have been developed to capture more realistic aspects of segregation dy-
namics. Relevant extensions have considered factors such as relocation distance
and place relevance [299], neighborhood awareness of agents [300], agents’ income
inhomogeneity [301], rewards for interactions [302], actual geographical regions
[303, 304], neighborhood sizes and shapes [305], aging effects [306], different inte-
gration or relocation policies [307, 308], and urban venues [309].

To model experienced segregation in daily mobility, the most notable approach
still builds on the Schelling model. Specifically, it incorporates social preferences
into the Exploration and Preferential Return (EPR) model by introducing an ad-
ditional parameter that quantifies an individual’s propensity to visit places where
they are part of a minority group [121]. Another model examines the role of multi-
layered transport systems, analyzed through the frameworks of random walks and
Lévy flights, in generating experienced segregation in urban environments [310].
Additionally, depending on the distribution of SES in the sample population un-
der consideration, any of the mobility models previously mentioned can lead to
experienced segregation and can serve as null models for empirical observations.
For instance, in cases where nearby places have similar SES configurations and
neighborhoods with significantly different groups are physically separated by large
distances (as is often the case in real-world scenarios), gravity models can also
result in segregation. This is because individuals are more likely to visit nearby
places and, therefore, predominantly interact with those of similar socioeconomic
status, as diverse individuals tend to live and visit far locations.

• Social network segregation models: Social network segregation models ex-
plore how social ties form between individuals based on attribute similarities, such
as race, ethnicity, or socioeconomic background. Schelling-like approaches to social
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networks demonstrate that even a mild bias against forming ties with dissimilar
individuals can result in significant segregation over time [311]. Alternatively, seg-
regation can also arise from the assumption that individuals form or sever social
ties through a utility maximization process, where agents seek to maximize their
benefits from social connections [312]. Moreover, extensions of Schelling’s model
to more complex network structures, like random and scale-free networks, reveal
that segregation can emerge across various topologies, with lower connectivity am-
plifying segregation effects [313]. Furthermore, analogously to mobility models,
many of the previously discussed social network models can also produce segrega-
tion under certain conditions. For instance, a configuration model with a specific
degree-SES distribution can naturally lead to segregation. Such models, includ-
ing the configuration model, can serve as null models to test the significance of
observed segregation, helping to assess whether the level of segregation in real net-
works exceeds what would be expected by chance or inherent structural properties.

1.7 Structure of the thesis

This thesis delves into the complex relationship between SES and human behavior, focus-
ing on mobility patterns and social networks at both the individual and collective levels.
Specifically, the following research questions are explored in the subsequent chapters:

1. Chapter 2: Observation of socioeconomic patterns in mobility and social networks
How can we obtain accurate and representative observations of large-scale popula-
tions that account for both SES and their mobility and social network behaviors?
This chapter develops methodologies for inferring SES and observing human mo-
bility and social networks using digital traces, and traditional and non-traditional
data sources, ensuring accurate measurement across large, diverse populations.

2. Chapter 3: Socioeconomic reorganization of mobility and communication net-
works in response to external shocks
How do external shocks, particularly emergency policies, affect social and mobility
network segregation?
This chapter investigates the impact of lockdown policies during the COVID-19
pandemic, analyzing how these measures reshape mobility and social networks and
whether they exacerbate or mitigate pre-existing socioeconomic segregation.

3. Chapter 4: Deviations from universality in human mobility modeling
What are the consequences of applying universal mobility models to populations
with significant heterogeneity in movement behaviors?
This chapter critically assesses individual deviations from the universal scaling laws
of the Exploration and Preferential Return model, and how these are not uniformly
distributed across the population but affect specific socioeconomic groups.
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Chapter 2

Observation of socioeconomic
patterns in mobility and social
networks

2.1 Introduction

In Chapter 1, we emphasized that a critical aspect of studying the socioeconomic effects
in human mobility and social networks is data collection. Specifically, two essential types
of data need to be gathered and, more importantly, accurately integrated: socioeconomic
data and behavioral data related to physical movements and social connections. As
discussed, there are various methods and sources to obtain and combine these empirical
observations, with the choice of approach strongly dependent on the research objectives
and the desired balance between scale and accuracy.

This thesis aims to study these phenomena on a large scale while maintaining an
individual-level perspective. Ideally, we would have access to extensive datasets, encom-
passing millions of individual observations, with the following characteristics:

• A comprehensive history of places visited over an extended period, with temporal
and spatial resolution, including duration of stay, type of location, and reason for
visit (e.g., work, transit transfer, leisure).

• Complete information on social connections for the same set of individuals during
the same period, with temporal information, spatial geolocation for both ends of
the connection, the type of interaction (e.g., face-to-face, phone, online), the nature
of the relationship (e.g., family, friends, colleagues), and a self-assessed measure of
the relationship’s strength.

• Detailed personal socioeconomic variables, ranging from income and wealth to
profession, education level, demographic features (such as ethnicity, gender, and
age), and precise home and work locations.

In this chapter, we present the methodological and technical solution developed to
approximate the ideal configuration. We describe the characteristics of the collected
data and the methodology used to integrate multiple data sources. In particular, we
outline how the spatial resolution of the socioeconomic data was aligned with that of the
digital behavioral data, how the two sources were combined to infer individuals’ SES,
how the methodology can be adapted to different types of data and contexts, and how
population representativity was maintained throughout the process.

28

C
E

U
eT

D
C

ol
le

ct
io

n



2.2 Data Description

The behavioral data used in this thesis are derived from two major sources of large-scale
digital data. The first source consists of GPS location data from mobile phone devices
in the United States. The second source is a dataset of Call Detail Records (CDRs)
obtained from a telecommunications company in Sierra Leone. Each of these digital
data sources is paired with corresponding socioeconomic data, as detailed below.

2.2.1 Mobile Phone GPS Traces

Our first source of behavioral data consists of GPS location data from mobile phone
devices in the United States, collected between October 2016 and March 2017. The data
was provided by Cuebiq, a location intelligence company that gathers anonymized loca-
tion data from mobile applications used by opted-in users. These users gave their consent
to share data in compliance with the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA). The data was shared through Cuebiq’s
Data for Good initiative, which ensures that access is limited to qualified academic or
humanitarian researchers under strict contractual agreements that prohibit data sharing
or any attempt to re-identify individuals.

The GPS dataset consists of location pings, with each ping containing the following
details: user ID, latitude, longitude, date, and time. The raw dataset comprises approxi-
mately 70 billion pings from 14 million devices. While previous work has performed much
of the data filtering and processing [121], we summarize the key steps here for complete-
ness. Initially, pings were restricted to 11 core-based statistical areas (CBSAs) [314],
specifically: New York-Jersey City (New York), Los Angeles-Long Beach-Anaheim (Los
Angeles), Chicago-Naperville-Elgin (Chicago), Dallas-Fort Worth-Arlington (Dallas),
Philadelphia-Camden-Wilmington (Philadelphia), Washington-Arlington-Alexandria (Wash-
ington), Miami-Fort Lauderdale-West Palm Beach (Miami), Boston-Cambridge-Newton
(Boston), San Francisco-Oakland-Hayward (San Francisco), Detroit-Warren-Dearborn
(Detroit), and Seattle-Tacoma-Bellevue (Seattle). Additionally, only devices with at
least 2,000 pings were retained, resulting in a dataset of 67 billion pings from 4.5 million
devices.

Pings are simple data points that can be recorded at any time, even during transit
periods. However, for our study and mobility studies in general, what is most important
is to detect stays, i.e., single stop-over locations where a user spent some time. If
multiple consecutive pings are close in space, with at least some time spent between the
first and last ping, we can infer that this collection of pings represents a stay. This is the
logic behind the algorithm proposed by Hariharan and Toyama [315], which represents
the state-of-the-art methodology. The algorithm is governed by two parameters that
represent the maximum distance between each ping and the centroid of the stay and the
minimum duration between the first and last ping. Since we are interested in leveraging
the very high spatial resolution of our GPS data, stays were identified when the maximum
distance from the cluster’s centroid is under 50 meters and the time occurring between
the first and last ping was at least 5 minutes. Moreover, to avoid extremely long stays
that are meaningless for our study, only stays lasting less than 24 hours were retained.
Pings not being assigned to a stay were ignored. To validate the stays identified by this
algorithm, previous studies, including the original paper, have cross-verified its outputs
with ground truth data from known locations or comparisons with other methods [315–
319].

These stays form the primary units of analysis in this study. Each stay is defined
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by attributes including user ID, centroid latitude, centroid longitude, start time, and
duration. After the stay detection step and after discarding users with less than 10 stays
during nighttime, necessary for the home location inference step (see further sections
for details), 976 million stays from 3.6 million anonymous individuals were obtained.
However, only stays that can be associated with well-defined and categorized places are
worth keeping for our analysis. To do this, Foursquare venue data were used, i.e., an
extensive and detailed list of 1.1 million points of interest (POIs), each assigned to a well-
defined category, such as shops, cafes, and offices. This matching was performed in [121]
using a nearest-neighbor search with a maximum distance of 200 meters, i.e., assigning
each stay to the closest Foursquare venue; if the closest venue was more than 200 meters
away from the stay’s centroid, the stay was discarded. Hence, all the remaining stays
have an additional Foursquare venue feature. Despite the simplicity of the approach, this
strategy has been shown to work well for mobility data [320]. Moreover, the robustness
of the methodology has been tested in [121], using different values instead of 200 meters
as the maximum distance for venue coupling.

Every Foursquare venue is already assigned to a place category by Foursquare clas-
sification, which is regularly updated and consists of 592 categories such as Coffee Shop,
Art Studio, Office, Building, Department Store, and Park. Consequently, each remaining
stay, which was assigned to a Foursquare venue, is automatically assigned to a Foursquare
category. Moreover, these categories have also been manually grouped in [121] into a
taxonomy of 13 groups: Art / Museum, City / Outdoors, Coffee / Tea, College, Enter-
tainment, Food, Grocery, Health, Education, Service, Shopping, Sports, Transportation,
and Work. The detailed mapping of each place category to the taxonomy of 13 groups
can be found in the Supplementary Information of [121]. Due to privacy reasons, stays
associated with sensitive venues have been discarded [321]. Only venues visited by at
least 20 users were included in the analysis, and only users with valid Foursquare visits
were considered. Finally, for the purpose of this study, users in the bottom 20% in
terms of the number of distinct visited places (less than 11 distinct visited places) were
discarded, as the individual-level analysis in Chapter 4 requires a minimum amount of
distinct visited places.

At the end of this pipeline, we are left with 389 million stays associated with
Foursquare venues and categories from 1.5 million users. This significant reduction—nearly
two-thirds from the original 976 million stays—results from the cleaning and filtering
steps outlined above. These steps ensure precise home location and SES inference, suf-
ficient statistics for user-level analysis in Chapter 4, and the inclusion of only stays with
accurately assigned POIs.

2.2.2 Call Detail Records

The second source of digital data consists of anonymized Call Detail Records (CDRs)
provided by a major mobile phone operator in Sierra Leone, covering the mobile phone
communication activity of 1,270,214 anonymized users (16% of the country’s population)
between March 17 and April 17, 2020. The raw data was made available specifically for
this research, following best data protection practices, through a collaboration with
UNICEF’s Frontier Data Technology Unit.

Each data point in the CDRs contains the following information: caller ID, callee
ID, date and time, event type, and tower ID. The caller is the user who initiated the
call or sent an SMS, while the callee is the recipient of the communication. The event
type indicates whether the communication was a call or an SMS, and the tower ID is
a numerical identifier of the mobile network tower that handled the communication.
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CDRs are collected by mobile operators for billing purposes, so the raw data includes
other details that are not relevant to our study. The anonymization of customer IDs was
performed via random hashing by the provider to ensure privacy protection.

The cell tower ID is key to analyzing user mobility. By associating it with its geo-
graphical coordinates (longitude and latitude), the tower ID can serve as a proxy for the
user’s location at the time of communication. Unlike GPS pings, which can be generated
anywhere, CDRs are restricted to fixed tower locations, which are unevenly distributed
across space. While this enhances user privacy by preventing precise location tracking,
it also presents challenges for SES inference, as described later in the section on spatial
matching.

Despite its lower geospatial accuracy compared to GPS data, CDR data offers a
significant advantage. It can be viewed as both:

• A record of users’ movements in physical space.

• A network of links between pairs of users in the communication space.

This dual property allows us to simultaneously track two behavioral aspects of the
same set of individuals: their mobility and their communication patterns.

Although CDR data has lower geospatial accuracy compared to GPS data, it pos-
sesses a unique quality that makes it invaluable for our study. Specifically, CDR data
provides simultaneous insights into two aspects of individual behavior for the same sam-
ple of users:

• Movements in physical space, allowing for the study of mobility patterns.

• Connections in the communication space, capturing social network interactions.

This dual property enables an integrated analysis of mobility and social networks,
which is not possible with GPS data alone. While GPS data offers higher spatial res-
olution and greater precision for tracking movements, it lacks information about social
interactions. The ability to analyze both mobility and communication behaviors within
the same dataset makes CDR data uniquely suited for exploring the interplay between
these dimensions of human activity.

2.2.3 Socioeconomic Data

As mentioned in Chapter 1, the most accurate technique for merging our digital data
with individual SES information involves direct surveys of mobile phone device owners,
asking specific questions about income, education, ethnicity, gender, profession, and
more. However, in our case, this approach is not feasible for several reasons:

• The data is strictly anonymized, and any attempt to de-anonymize users would
not only be unethical and dangerous for privacy protection but is also strictly
prohibited.

• The large scale of the data makes it practically unfeasible to conduct traditional
surveys on such a vast sample of users, even without anonymization.

Therefore, we must employ an alternative methodology to infer SES. The general
approach follows these steps:
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1. Obtain spatially aggregated data for the desired socioeconomic indicator (e.g.,
median income at the regional level).

2. Infer the home location of users from their digital traces.

3. Assign users the socioeconomic indicator corresponding to the spatial unit (e.g.,
the region) in which their inferred home location is situated.

Below, we describe the two sources of spatially aggregated socioeconomic data that
are coupled with our behavioral data.

American Community Survey

The socioeconomic data used alongside the GPS data were obtained from the American
Community Survey (ACS) for the year 2017, ensuring temporal alignment with the
GPS data [216]. The ACS is an annual survey conducted by the U.S. Census Bureau,
providing comprehensive demographic, social, economic, and housing data across the
United States. For this study, we utilized data at the block group level, which is the
most fine-grained spatial resolution available for socioeconomic indicators.

The variables extracted from the ACS include:

• Median Income: The median income for each block group, representing the
central point of income distribution.

• Education Level: The number of individuals with secondary education, from
which we derive the fraction relative to the total population in the block group.

• Ethnicity: Data on the number of individuals identifying as white, black, Asian,
Native American, Hawaiian, or other ethnic groups. We calculate the proportion
of each group relative to the total population within the block group.

• Means of Transportation: Information on how individuals commute to work,
specifically the number of people using cars and those using public transportation.
From this, we calculate the fraction of each mode of transport relative to the total
commuting population.
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Figure 2.1: ACS data. Median household income in the Boston area at the Census Block
Group level.

Although the ACS data is not at the individual level, it allows us to analyze so-
cioeconomic patterns with a high degree of spatial precision. In urban environments,
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where most of our users are located, block groups often consist of only a few buildings,
as seen in Fig. 2.1, ensuring minimal income variation within each block group. Thus,
assigning the median income of a block group to individuals residing there provides a re-
liable estimate of their actual income. Similarly, for ethnicity and transportation means,
the assigned values can be interpreted as probabilities—representing the likelihood of
belonging to a particular ethnic group or using a specific mode of transport.

Relative Wealth Index for Sierra Leone

To complement the behavioral data derived from Call Detail Records (CDRs) in Sierra
Leone, we utilized a dataset offering microestimates of wealth for low- and middle-
income countries, including Sierra Leone [271]. This dataset provides a Relative Wealth
Index (RWI), inferred from nontraditional data sources such as satellite imagery, mobile
phone usage patterns, and topographic maps. Machine learning algorithms trained on
nationally representative household surveys were used to generate wealth estimates at a
spatial resolution of 2.4 km.

The RWI provides an asset-based measure of relative wealth, capturing economic
disparities across small geographical areas. This approach yields a more up-to-date and
granular understanding of wealth distribution compared to traditional census data. In
Sierra Leone, existing census data on wealth are outdated and available at much coarser
spatial resolutions, which would lead to imprecise socioeconomic indicators at the indi-
vidual level. In contrast, the RWI enables a more accurate assignment of socioeconomic
characteristics, reflecting local economic conditions, as illustrated in Fig. 2.2 B, where
the raw data is displayed.

As discussed in Chapter 1, using nontraditional data sources such as the RWI helps
overcome the limitations of traditional institutional surveys, especially in contexts where
data collection is less frequent or granular. While this type of inference may not be
necessary in countries like the United States, where the ACS provides regularly updated
and fine-grained data, it is invaluable in regions like Sierra Leone, where traditional data
collection mechanisms are limited [272].

2.3 Spatial Matching

In this section, we explain how we spatially combined the socioeconomic and behavioral
data to ensure alignment. Achieving this alignment is critical, as the spatial resolution
of the socioeconomic data must match that of the digital behavioral data to preserve
the accuracy of our analysis. For example, if the digital data has a coarse spatial reso-
lution, such as tens of kilometers, using a highly detailed socioeconomic map would be
ineffective. It would be unclear which small socioeconomic area to assign to a user. On
the other hand, if the digital data has very high spatial resolution, using low-resolution
socioeconomic data would result in significant information loss, as distinct user locations
would be aggregated into broad socioeconomic regions.

In the case of GPS pings, as previously mentioned, space is not restricted to prede-
fined areas, meaning that users can, in theory, be located anywhere. While measurement
uncertainties exist, they are minor and hard to quantify, especially when compared to
the granularity of any available socioeconomic data. Therefore, we can confidently uti-
lize the most fine-grained socioeconomic data available from the ACS, specifically at the
block group level.

Conversely, for CDRs, space is not uniformly distributed, and users’ exact locations
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are inherently uncertain due to the spatial distribution of cell towers. As such, we need to
adopt a different methodology to match the socioeconomic data to the spatial resolution
of the CDR data, which involves applying specialized geospatial analysis techniques.

Figure 2.2: Raw geospatial data. A) Spatial distribution of cell towers. B) Spatial distribu-
tion of RWI values. C) Spatial distribution of population. All the data shown here (raw data)
are points georeferenced in WGS84 (longitude and latitude).

Cell tower locations are georeferenced using geographic coordinates (longitude and
latitude) in the WGS84 system. By clustering cell tower IDs with nearly identical
coordinates (less than 1 meter apart), we identified 405 unique tower locations, as shown
in Fig. 2.2 A. Our objective is to assign a unique socioeconomic value to each of these
cell tower locations. The RWI dataset covers Sierra Leone with 8,435 grid points, each
representing a 2.4 km by 2.4 km patch. These points are also georeferenced using WGS84
but are arranged on a regular square grid in the WGS84/Pseudo-Mercator projection.
This means that each RWI value corresponds to a square area of 2.4 km on a planar
surface. Fig. 2.2 B displays the raw RWI values, color-coded to show wealth distribution
across these patches.

Our goal is to aggregate the RWI data so that each cell tower location is assigned
a single corresponding RWI value. To achieve this, we need to account for population
density distribution across the region. For this purpose, we utilize high-resolution pop-
ulation density data from Meta’s Data for Good initiative [4]. This dataset provides
population estimates at a 1 arcsecond grid resolution, where each point represents the
number of people living within a 1 arcsecond-sided cell, which is approximately 30 meters
across on a spherical surface. Fig. 2.2 C illustrates this population distribution.

To summarize, we work with three key georeferenced datasets:

1. Cell tower locations: points in WGS84.

2. RWI cells: points in WGS84, each representing a 2.4 km square in the WGS84/Pseudo-
Mercator projection.

3. Population density: points in WGS84, corresponding to 1 arcsecond grid cells.

We approximate the area covered by each cell tower using a Voronoi tessellation [322].
A Voronoi tessellation divides space such that the boundary between any two adjacent
regions is equidistant from the corresponding cell towers. Consequently, each tower’s
Voronoi cell contains all the locations that are closer to that tower than to any other.
To generate this tessellation, we first project the cell tower coordinates into the UTM
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Figure 2.3: Processed geospatial data. A) The intersection between the Voronoi tessellation
and the country’s border (grey polygons) based on cell tower locations (red points). B) RWI
square cells. C) Aggregated RWI map. All data are polygons georeferenced in UTM 29.

29 coordinate system (the system covering much of Sierra Leone). Using these projected
coordinates, we apply Euclidean distance calculations to construct the Voronoi diagram.
For each Voronoi cell, we then clip the boundaries to match Sierra Leone’s geographic
borders, as shown in Fig. 2.3 A.

The next step is to aggregate the RWI values across these Voronoi cells, taking popu-
lation density into account. The RWI data points are projected into the WGS84/Pseudo-
Mercator coordinate system (the RWI’s native system). Each RWI point is treated as
the center of a square polygon with a 2.4 km side, which we project into UTM 29 to
align it with the cell tower locations, as illustrated in Fig. 2.3 B. Given the dispropor-
tionately high resolution of the population data (one arcsecond at the equator is around
30 meters, and the maximum value of a population cell is 73 people), we did not find
it necessary to consider the spatial extension of the population cell grids. Instead, we
treated them as points. There are two main reasons behind this choice:

1. 30 meters is several orders of magnitude higher resolution than both the RWI map
(2.4 km) and the Voronoi partitions. Further, as mentioned earlier, population
cells, due to their high spatial resolution, are populated by at most 73 people.
Since we use the population data to weight the RWI values inside a single Voronoi
cell to obtain an aggregate RWI value for the Voronoi cell (as explained in detail
below), considering the area of the population cells would add or remove at most a
few dozen people in the weight of a single RWI cell, which would marginally affect
the computation of the aggregate RWI.

2. Treating them as points instead of polygons drastically decreases the computational
cost, while representing population cells as approximately 30 m2 areas instead of points would add only an insignificant value to the final spatial aggregation, considering the orders of magnitude difference between the resolution of the RWI map and the population map.

For these reasons, we treat the population data as discrete points and project them
into UTM 29, ignoring the area each grid cell covers.

Now that all three datasets are aligned within the same coordinate system (UTM
29), we can aggregate the RWI values across each Voronoi cell v using the following
steps. An example of this process for one Voronoi cell is illustrated in Fig. 2.4:

1. Identify the spatial intersections between the RWI cells and each Voronoi cell v
(Fig. 2.4 A). These intersections are denoted as Av, with their respective RWI
values R(Av). If the square area of an RWI cell falls completely within a Voronoi
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Figure 2.4: Spatial mapping. A) Spatial intersections of RWI cells (color-scaled) with a
given Voronoi cell (red), located at the country’s northern border. B) Population points within
the intersections. C) Aggregate population within each intersection. All data are georeferenced
in UTM 29.

cell v, like the cells in the middle of the Voronoi cell in Fig. 2.4 A, then Av

corresponds to the entire original square area of the RWI cell. If the square area of
the RWI cell falls only partially within a Voronoi cell v, like the cells at the border
of the Voronoi cell in Fig. 2.4 A, then Av corresponds only to the portion of the
RWI cell that falls within the Voronoi cell.

2. Identify the population points p within each RWI intersection Av. In Fig. 2.4 B,
population points p are colored according to their population count, and intersec-
tions Av are also shown to visualize which points fall within each intersection.

3. Sum the population values wp within each RWI intersection Av to calculate the
weight for RWI aggregation:

W (Av) =
∑

p within Av

wp

Fig. 2.4 C shows the population weights for the example cell, resulting from the
sum of the population points shown in Fig. 2.4 B.

4. Compute the aggregate RWI value Rv for each Voronoi cell v by taking a population-
weighted average of the RWI values:

Rv =

∑
Av

W (Av)R(Av)∑
Av

W (Av)

To further clarify our methodology, we will illustrate it with a toy example. Let’s
consider a Voronoi cell v with only three RWI cells partially overlapping with it, having
RWI values of 0.5, 0.7, and 0.9, respectively. The spatial intersections Av of the three
RWI cells are populated by weights W (Av) of 50, 100, and 120 people, respectively. The
resulting aggregate RWI value Rv is given by:

Rv =

∑
Av

W (Av)R(Av)∑
Av

W (Av)
=

50 × 0.5 + 100 × 0.7 + 120 × 0.9

50 + 100 + 120
= 0.75

The final aggregated RWI map is displayed in Fig. 2.3 C. This map now accurately
reflects the spatial resolution of the CDR data, with RWI values appropriately aggregated
based on population density distribution and cell tower coverage.

At this stage, we have generated two distinct socioeconomic maps that correspond to
the respective digital traces. These maps offer socioeconomic indicators at the following
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spatial resolutions:

• U.S. map: Census block group

• Sierra Leone map: Mobile network cell tower

The next step is to couple these socioeconomic maps with the digital traces by
inferring the home locations of mobile phone users and subsequently assigning SES based
on the spatial units corresponding to the inferred home locations. The methodology
for this coupling process differs slightly depending on the data source—GPS traces or
CDRs—due to the differences in spatial resolution and the nature of the data.

2.3.1 GPS traces

For users in the GPS dataset, home locations were inferred based on the most frequently
visited Census block group between 10:00 p.m. and 6:00 a.m., which is assumed to be
when individuals are most likely at home. To improve the reliability of this inference, we
applied a filter to include only users who had at least 10 recorded nights at their inferred
home location. Additionally, to focus on users with sufficiently rich mobility patterns,
we excluded those in the lowest quintile in terms of the number of distinct places visited
(resulting in a minimum of 11 distinct visited places per user). This relatively strict filter,
which by definition removed 20% of users, was necessary for our analysis in Chapter 4,
where the focus is on understanding asymptotic mobility laws, which require robust data
on the diversity of places visited.

Once the home locations were established, we assigned the corresponding socioeco-
nomic indicators of each block group. The indicators included median income, education
level, racial composition, and transportation data, which collectively serve as proxies for
the users’ SES.

2.3.2 CDRs

For users in the CDR dataset from Sierra Leone, the home location inference followed
a similar approach. Since each communication event is linked to a cell tower rather
than an exact GPS coordinate, we used the cell tower with the most activity during
nighttime hours (9:00 p.m. to 6:00 a.m.) as a proxy for the user’s home location. Due
to the COVID-19 lockdowns and curfews in place during the data collection period, we
gave double weight to activity recorded during those periods, as users were more likely
to stay at home.

Given the smaller sample size and shorter observation period compared to the GPS
dataset, we applied a less stringent activity filter. Users with fewer than two distinct
geolocated communication events during nighttime were excluded. Additionally, we
removed the top 0.5% of users who had highly anomalous behavior, such as receiving a
large volume of incoming communication but recording no outgoing communication, or
vice versa. Such patterns often indicate automated systems like call centers, which are
unsuitable for reliable analysis.

We also introduced a filter based on spatial uncertainty, which accounts for potential
errors in detecting home locations from CDR data [323]. Spatial uncertainty is measured
by considering the distances between candidate home locations and the distribution of
observations at each location. If the candidate locations are close together and one
location has significantly more observations than the others, the spatial uncertainty is
low, suggesting higher confidence in the home location inference. Conversely, if the
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candidate locations are far apart with similar observation counts, spatial uncertainty is
high. In our analysis, users with spatial uncertainty greater than 25 km for their inferred
home location were excluded.

Finally, as with users in the GPS dataset, we matched the home towers of CDR users
to the RWI map created in the previous section. Each user was then assigned an RWI
value based on their home tower, serving as a proxy for their SES.

2.4 Final outcome

After completing the entire data processing pipeline, we are left with the following clean,
individual-level datasets that couple behavioral data with socioeconomic indicators:

1. 1,511,393 users in 11 major U.S. metropolitan areas (CBSAs), with six months of
observation on their visited locations. Each user is associated with socioeconomic
data, including income, education, ethnicity, and usual means of transportation.

2. 505,676 users in Sierra Leone, with one month of observation on both their phys-
ical movements and social communication history, alongside socioeconomic data
representing their wealth.

We conclude this chapter by analyzing the representativity of our filtered sample of
users in Sierra Leone. A similar analysis of the representativity for the GPS users in the
U.S. has been previously done and can be found in the Supplementary Information of
[121].

2.5 Representativity

To evaluate whether the spatial distribution of mobile phone users’ home locations is
representative of the actual population distribution, we compared it to aggregations of
Facebook high-resolution population density maps at various spatial resolutions. The
Facebook dataset is the same that has already been described and used to compute the
population weights in Section 2.3, and can be seen in Fig. 2.2 C.

We first conducted this comparison at the most fine-grained resolution, the cell tower
level. For the mobile phone data, we simply counted the number of users with inferred
home locations at each tower. For the Facebook population data, we discarded the spa-
tial areas of the data points, treating them as individual points (as we did in the spatial
matching section), and summed the population values of all points falling within the
Voronoi cell of each tower. To standardize the comparison, we divided both population
counts by the area of the Voronoi cells to obtain population density values. The re-
sulting comparison is shown in Fig. 2.5 A and B. As illustrated in Fig. 2.5 C, the two
population densities are highly correlated (ρ = 0.80), demonstrating that the inferred
home location population density for mobile phone users is a strong representation of
the actual population density, even at the highest resolution.

Further validation of our home location inference is achieved by aggregating the data
at coarser spatial resolutions. Specifically, we compared the data at three administrative
census levels: chiefdoms, districts, and provinces, each offering increasingly lower spatial
resolution. For both mobile phone users and the Facebook population data, we counted
the number of individuals within each census area. As shown in Fig. 2.5 D, E, and F,
our home location inference remains highly representative at the chiefdom level (with a
correlation of ρ = 0.94). Chiefdoms have approximately half the resolution of cell towers
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Figure 2.5: Population density validation. (Left panels) Population density in each Voronoi
cell (A), chiefdom (D), district (G), and province (J) from Facebook high-resolution population
density data [4]. (Middle panels) Population density in each Voronoi cell (B), chiefdom (E),
district (H), and province (K) from mobile phone user’s home locations. (Right panels) Relation
between the population density from Facebook data (left panels) and mobile phone users (middle
panels) at Voronoi cell (C), chiefdom (F), district (I), and province (L) level. The red lines are
the results of OLS linear regressions. ρ is the Pearson correlation coefficient.

(with 405 towers and 207 chiefdoms). At even coarser resolutions, the correlations reach
near-perfect levels at both the district (Fig. 2.5 G, H, and I) and province levels (Fig.
2.5 J, K, and L.

In conclusion, our home location inference is highly representative of the actual
population density distribution, both at the tower level and across all administrative
census levels.

39

C
E

U
eT

D
C

ol
le

ct
io

n



2.6 Discussion

This chapter demonstrates the value of integrating behavioral and socioeconomic data
to analyze mobility and social network patterns at both large and individual scales.
By employing a consistent and coherent methodology, we have successfully combined
GPS and CDR data with socioeconomic indicators, despite significant differences in
the nature and resolution of these datasets. This underscores the versatility of our
approach, which adapts to varying geographic and socioeconomic contexts. In particular,
we have shown how to accurately aggregate socioeconomic data to match the spatial
resolution of behavioral data, ensuring that socioeconomic indicators reflect the actual
areas covered by each digital trace. Moreover, careful filtering of outliers and accurate
home location detection were critical for achieving robust SES inferences. Ultimately,
the representativeness of the inferred home locations, validated for both GPS and CDR
data, highlights the robustness of our methodology.

However, our approach also has limitations. Digital data, whether collected for billing
purposes (CDRs) or other reasons (GPS), do not directly measure physical movements
or social connections, but rather serve as proxies for these aspects of human behavior.
Additionally, the accuracy of our SES inferences is constrained by the spatial resolution
of the data, which, while fine-grained in both the U.S. and Sierra Leone, still presents
some uncertainty. Despite these challenges, the ability to analyze large-scale, fine-grained
data on both mobility and socioeconomic factors represents a substantial opportunity,
allowing us to overcome the inherent limitations in data precision for the purposes of
this thesis.

In summary, this chapter highlights the significant potential of using digital traces
and combining traditional with non-traditional data sources to infer SES and analyze
individual mobility patterns and social behaviors at scale. The successful integration of
behavioral and socioeconomic data sets the stage for exploring critical phenomena such
as social segregation and inequalities, which we will investigate in the next chapters.
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Chapter 3

Socioeconomic reorganization of
mobility and communication
networks in response to external
shocks

3.1 Introduction

Segregation patterns among people stem from opportunity constraints and mechanisms
that drive homophilic ties across various socioeconomic dimensions, as discussed in Chap-
ter 1 [119, 198, 311]. While factors like gender, education, age, and ethnicity contribute to
these patterns, income and wealth stand out as key contributors in social network segre-
gation, characterized by the separation of different socioeconomic groups [158, 162, 187].
Similarly, economic background affects mobility patterns, shaping the places individuals
visit, events they attend, and their transport choices. As a result, people tend to inter-
act within their own socioeconomic spheres, reinforcing segregation in mobility networks
[121, 185, 186, 200, 203, 297].

While segregation in social and mobility networks is generally regarded as stable and
slow to change [148, 324], external shocks—like a global pandemic—can force abrupt be-
havioral shifts, leading to a sudden reorganization of socioeconomic networks. During the
early phase of the COVID-19 pandemic, most countries implemented non-pharmaceutical
interventions [325] to reduce mobility and social contact, aiming to slow viral spread.
These measures, including lockdowns and curfews, effectively mitigated outbreaks [326–
330], but also triggered severe disruptions to the economy [331], mental health [332, 333],
and even food consumption [333].

These interventions inevitably impacted social and mobility networks from a so-
cioeconomic perspective, as different groups adapted to varying degrees [326, 328, 334–
336]. Wealthier individuals were more capable of adapting by avoiding public trans-
portation and shifting to remote work [328, 337, 338], while lower SES groups faced
greater challenges due to job insecurity and the need for physical presence in essential
roles [339]. This disparity, alongside limited access to resources, resulted in dispropor-
tionate health impacts on poorer populations, including higher mortality rates during
the pandemic [340, 341].

Given these observations, an essential question arises: How did abrupt behavioral
changes and varying adjustment capacities reorganize social and mobility networks in
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the short term? This chapter addresses this question by analyzing the CDRs data
preprocessed as outlined in Chapter 2, which was collected in Sierra Leone during the
early phase of the COVID-19 pandemic. The dataset spans from before the interventions
to the first national lockdown and curfew periods in April 2020. This enables us to track
the mobility and communication behaviors of half a million anonymized individuals.
Through this analysis, we investigate how social and mobility networks were reorganized
in the short term and explore shifts in socioeconomic segregation patterns, revealing
potential new phenomena driven by external shocks.

Figure 3.1: Processed data. A) Dynamics of the recorded data volume measured as the daily
number of data points in the raw data (green curve), in the social-communication network (blue
curve), and in the mobility network (red curve). Shaded area refers to the lockdown intervention
period. B) Socioeconomic class segmentation based on the empirical Lorenz curve defined as the
cumulative fraction of RWI of the sorted fraction of individuals by their inferred RWI.

3.2 Results

3.2.1 Socioeconomic networks

In response to the rapid global spread of COVID-19 in 2020, the government of Sierra
Leone implemented a three-day full lockdown from April 5 to 7, followed by a 14-day
nationwide nighttime curfew starting on April 9, alongside other travel and shopping
restrictions (further details are provided in Appendix B). To understand the impact of
these measures on mobility and communication behaviors, we use CDR data, cleaned
and combined with RWI estimates, covering the activity of 505,676 individual mobile
phone users with associated home locations and RWI. As mentioned in Chapter 2, this
user sample is highly representative of the population distribution in Sierra Leone. Our
observation spans from March 17, 2020, covering one month and including two weeks of
a reference period (denoted as R1 and R2), followed by the lockdown (LD) and curfew
(CF) periods. For accurate comparison, these periods correspond to the same weekdays
(Sunday-Tuesday) across the observed weeks, aligning with the days of the LD period.

Using this combined dataset, we construct two socioeconomic networks: a social-
communication network (GS(t)), where nodes represent individuals and links reflect
time-varying mobile communication between them, and a mobility network (GM (t)),
where nodes correspond to home and visited locations, with links capturing mobility
patterns.

In the social-communication network GS(t), each node represents a mobile phone
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user, and link weights correspond to the number of communication events observed
between pairs of nodes. We include only events (caller, callee) where both the caller
and callee have inferred home locations and corresponding RWI values. This filtering
also results in fewer communication events than those present in the raw data, as seen
in Fig. 3.1 A.

The mobility network GM (t) is built by converting communication events (caller,
callee, tower) into mobility events (home tower, tower), where the home tower refers to
the caller’s inferred home location, and the tower indicates the caller’s location during
the event. Thus, the nodes in GM (t) are tower locations, and the links represent home-
to-location movement events. Due to the limited number of events for which tower IDs
are available and the restricted number of towers with inferred aggregate RWI, the total
number of movement events is also limited, as shown in Fig. 3.1 A.

To prevent spurious correlations due to spatial effects, we exclude links that originate
and terminate at the same location (see Appendix B for results without this exclusion).
Each node, whether representing an individual or a place, is assigned an RWI index
following the methodology outlined in Chapter 2. For simplicity, we standardize RWI
values from 0 (poorest) to 1 (richest). The Lorenz curve from our sample, shown in
Fig. 3.1 B, yields a Gini coefficient of 0.38, closely matching the World Bank’s value
of 0.36 [342]. To create socioeconomic groups, we sort users by RWI and divide them
into nine classes, ensuring the groups are as balanced as possible in size while keeping
individuals with identical RWI within the same class. The resulting class divisions are
illustrated in Fig. 3.1 B.

Figure 3.2: Impacts of interventions on social and travel patterns. Evolution of A)
average trip length and B) number of mobile communication events for people belonging to
different socioeconomic classes, from class 1 (poorest) to class 9 (richest).

GM (t) and GS(t) are two socioeconomic networks where nodes represent locations
and users, respectively. Links represent home-to-location trips and communication
events between users, respectively. Each node has an associated socioeconomic value
(RWI) and, in turn, an associated socioeconomic class (calculated as described above).

3.2.2 Effects of lockdown on dynamics of social and mobility activities

We begin by analyzing the impact of the lockdown on mobility and social behavior
across different socioeconomic classes, tracking the daily evolution of these activities.
The lockdown significantly affected people’s activities, but the extent of the impact
varied across socioeconomic groups. For each class, we measured the average travel
distance (across all trips recorded at time t) for mobility and the average number of
communication events per person (among all active users at time t) for social interactions.
These metrics (shown in Fig. 3.2 A, B) reveal distinct patterns of behavioral change in
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response to the lockdown (LD). While both travel distances and communication activities
were significantly reduced for all groups during this period, the ability to adapt to the
restrictions differed noticeably between socioeconomic classes.

For mobility, prior to the lockdown (R1 and R2 weeks in Fig. 3.2 A, B), higher
socioeconomic classes exhibited regular weekly travel patterns, with an average daily
travel distance of about 14 km. These individuals, likely white-collar workers with
office jobs, were able to adjust more easily to the lockdown, reducing their daily travel
distance to the bare minimum. In contrast, lower socioeconomic classes, who traveled
greater distances (around 37 km on average) during the reference period, were less
able to reduce their mobility during the lockdown, managing to cut travel distances to
approximately 20 km. Although this represents a larger relative reduction, it was still far
from the level achieved by higher SES individuals. During the curfew period, mobility
gradually returned to near-normal levels, though none of the classes fully resumed their
pre-lockdown travel behaviors. The large disparity between the travel distances of poorer
and wealthier groups can be also attributed partially to the differences in the size of
Voronoi cells in rich and poor areas.

A similar socioeconomic disparity is evident in communication dynamics, as shown in
Fig. 3.2 B. Individuals from lower socioeconomic classes made fewer calls (approximately
4 calls on average) on reference days, with no distinct weekday-weekend pattern. Dur-
ing the lockdown, they experienced the smallest reduction in communication activities
(about 25%), continuing to make the fewest calls in the population. In contrast, higher
socioeconomic classes, who typically made more calls and displayed clear weekly cycles
(with fewer calls during weekends), experienced a larger relative reduction in communi-
cation activities (around 40%) during the lockdown. However, they still remained the
most active group in terms of communication. This suggests that wealthier individuals
were able to adjust their mobile communication volume more readily, which may have
influenced the structure of their social networks.

In summary, the lockdown disrupted both mobility and social interactions, but the
extent of the disruption varied by socioeconomic class. While the reduction in mobility
was expected due to stay-at-home orders [330, 343], the corresponding changes in social
communication are more surprising, as these interactions were not directly restricted by
physical movement constraints.

3.2.3 Dynamics of network segregation patterns

After assessing the unequal impact of lockdown policies on mobility and communica-
tion across socioeconomic classes, we now turn our focus to the effects on segregation.
As discussed in Chapter 1, network segregation patterns can be examined through the
concept of network assortativity [293], which measures connection preferences between
similar nodes (whether people or places). We use the inferred RWI as a node charac-
teristic in assortativity calculations to quantify segregation, ensuring that the results
are not influenced by the adopted division into classes. Consequently, due to the scalar
nature of the RWI, assortativity can be interpreted as the Pearson correlation between
the RWIs of connected nodes. Segregation patterns are visualized through assortativity
matrices [187], which depict the probabilities of connections (either through communi-
cation or visits) between people from different SES groups. The assortativity coefficient,
ρ[293], defined in Chapter 1, summarizes the overall socioeconomic segregation observed
in the assortativity matrix. This coefficient, which ranges from -1 (disassortativity or
anti-segregation) to 1 (maximum segregation), indicates how much the assortativity ma-
trix is concentrated around its diagonal. A value of ρ = 0 reflects no segregation in
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Figure 3.3: Socioeconomic segregation dynamics in mobility and social communi-
cation networks. A-D) Socioeconomic assortativity matrices (shown as the kernel density of
the joint probability of RWIs) of the mobility network during the two reference (R1 and R2),
lockdown (LD), and curfew (CF) periods. E) The dynamics of the ρ socioeconomic assortativity
index computed for the mobility (red) and social communication (blue) networks. F-I) Same
as A-D) but for the social communication network. J) Relative number of travels within WA,
OWA, and between the areas WA-OWA (also accounting for OWA-WA trips). K) Number of
communication events between people living in WA and OWA, or between the two geographic
areas. All curves are normalized by their average computed over the full data period. For cal-
culations on panels E, J and K we used 3-day symmetric rolling time windows with 1-day shift
to obtain aggregated networks around the middle day at time t of the actual window. For the
corresponding non-aggregated results see Appendix B

the network. While entropy-like metrics have also been used to quantify segregation in
populations[92, 121], assortativity provides a clearer understanding of network effects,
such as homophilic mechanisms and relative differences in socioeconomic diversity be-
tween individuals and their peers. It also addresses data sparsity issues more effectively
(for a detailed analysis using entropy measures, see Appendix B).

The assortativity matrix for the two pre-lockdown reference periods (R1 in Fig.
3.3 A, F and R2 in Fig. 3.3 B, G) displays a strong diagonal component, indicating
positive assortative mixing in both networks. This is further confirmed by the relatively
high assortativity indices: ρM ∼ 0.65 for the mobility network (red) and ρS ∼ 0.5 for
the social communication network (blue) during the R1 and R2 periods (Fig. 3.3 E). In
other words, under normal conditions, both networks exhibit a high degree of segregation,
where individuals tend to visit places and interact with peers from similar socioeconomic
groups rather than engaging with other groups. These findings align with similar studies,
such as Dong et al. [185], where ρ ∼ 0.4 − 0.8 was observed in both mobility and online
networks across multiple countries. As discussed in Chapter 1, such patterns can emerge
simply due to confounding factors like working hours, spatial distance, RWI distribution,
or because of network characteristics rather than meaningful socioeconomic interactions.
To assess the significance of our results, we calculated the segregation levels generated
by simple null models, including the gravity law and configuration model, in Appendix
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B. None of these models replicated the segregation levels observed in the empirical data.
These segregation patterns changed dramatically during the national lockdown, which

began on April 5, 2020 (LD period in Fig. 3.3 E). Once the lockdown was announced
(April 1, 2020), the mobility segregation index began to rise, reaching its peak during
the lockdown. This increase in mobility segregation was expected and has been ob-
served in other studies [327, 344]. During the lockdown, non-essential workplaces were
closed, and a stay-at-home order was enforced, which limited people’s mobility and con-
centrated their movements around residential areas. This is reflected in the stronger
diagonal component of the mobility assortativity matrix in Fig. 3.3 C, compared to the
reference periods (Fig. 3.3 A, B). Interestingly, this heightened segregation did not per-
sist after the lockdown and returned to near pre-lockdown levels during the curfew period
(CF in Fig. 3.3 D, E). This is somewhat different from other studies, where increased
mobility segregation remained residual in US cities even after lockdown periods [295].

In contrast, communication dynamics, which are not constrained by physical prox-
imity, followed a different segregation pattern. Remarkably, we observed that socioeco-
nomic assortativity in the social communication network decreased during the lockdown,
reaching its lowest point. The network reorganized into a less segregated configuration,
with increased communication between different socioeconomic classes compared to the
pre-lockdown periods (R1 and R2 in Fig. 3.3 E). These opposing segregation trends in
mobility and social communication suggest that, with mobility restricted, individuals
compensated by increasing communication with peers from other socioeconomic classes.
However, as with mobility, the altered segregation patterns in the social communication
network were short-lived and soon returned to pre-lockdown levels. It is important to
note that all results presented in Fig. 3.3 reflect averages aggregated using a 3-day
sliding window with a 1-day shift. For the non-aggregated results, refer to Appendix B

Figure 3.4: Dynamics of individual-level segregation patterns. The P (ru(t)) individual
assortativity index distributions computed from the mobility (panels A-B), in red) and social
communication (panels D-E), in blue) networks for the poorest (class 1 in panels A) and D)) and
the richest (class 9 in panels B) and E)) socioeconomic classes for the two reference periods (R1
and R2, thin dashed lines), the lockdown (LD, solid line), and curfew (CF, dashed thick line).
Panels C) and F) depict the pairwise differences of median assortativity values of P (ru(t)) for
each nine socioeconomic group in the mobility and social networks (respectively). Differences
are calculated between R1 and the R2, LD and CF periods. The asterisks symbols over the bars
(when bars are positive, otherwise under them) in panels C) and F) indicate statistical significant
differences computed with the one-tailed Mann-Withney U-test (with p-value < 0.01). The full
list of p-values is shown in Appendix B.
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3.2.4 Socioeconomic network reorganization

The baseline segregation levels and the contrasting network reorganization patterns ob-
served during the lockdown are deeply rooted in Sierra Leone’s socioeconomic structure
and the sharp urban-rural divide. The capital, Freetown, located in the predominantly
urban Western Area (WA) province, holds a disproportionately high concentration of
wealthy individuals compared to the rest of the country, referred to as outside the West-
ern Area (OWA), which is more rural and has, on average, twice the multidimensional
poverty rates [345] (see Appendix B for the geographical division of WA and OWA).
While local spatial factors do not fully account for the observed segregation patterns
(as detailed in Appendix B), interactions between WA and OWA—whether through mo-
bility or communication—play a key role in shaping overall network segregation. To
investigate this, we classify each edge of the mobility network GM (or social network
GS) into three categories: edges within WA, within OWA, or between WA and OWA.
It’s important to note that mobility links represent trips from individuals’ home loca-
tions to other places, while social links represent communication between individuals
with different home locations.

To capture network reorganization, we track the relative changes in mobility and
communication volumes over time by measuring the number of interactions within or
between WA and OWA areas, relative to the overall average throughout the observation
period. Our results show that mobility patterns (Fig. 3.3 J) changed drastically during
the lockdown. The number of trips began to drop even before the lockdown, likely
in response to the early announcement of restrictions. During the lockdown itself, the
largest relative decrease (∼95%) was observed in trips between WA and OWA, while trips
within WA and within OWA saw smaller relative declines compared to the reference
periods. The sharp reduction in long-distance travel between urban and rural areas
contributed significantly to the rise in mobility network segregation, as it amplified the
relative share of short-distance trips within areas of similar socioeconomic status (i.e.,
within WA or within OWA).

Conversely, the dynamics of the social communication network (Fig. 3.3 K) ex-
hibited a different pattern of reorganization. While communication volumes initially
increased before the lockdown (possibly reflecting a form of coordination), they dropped
significantly just before the restrictions took effect, across all categories. Notably, com-
munication within WA decreased the most (∼30%), while the decline within OWA was
smaller (∼10%). However, the relative volume of communication between WA and OWA
remained relatively stable during the lockdown. This greater reduction in communica-
tion within each area, combined with the maintained communication between WA and
OWA, accounts for the overall decrease in social network segregation observed in Fig.
3.3 E.

As a result, during the lockdown, the wealthiest (WA) and poorest (OWA) regions of
Sierra Leone became less physically connected, with mobility largely restricted to local
movements. However, while this led to an increase in mobility network segregation,
the relatively higher importance of long-distance communication between urban and
rural areas resulted in a decrease in social network segregation. This highlights the
contrasting effects of lockdown on physical movements and social communications, with
mobility becoming more localized, while communication remained an essential bridge
between different socioeconomic regions.
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3.2.5 Individual-level segregation

So far, we have examined segregation dynamics at the global network level, but this ap-
proach provides limited insight into individual behavioral responses. By analyzing how
the personal networks of individuals reorganize, we can assess whether different socioe-
conomic classes responded to external shocks in distinct ways. To track the segregation
changes of an individual u within the network (a location in the mobility network or a
person in the social network), we compute the individual assortativity index, ru(t), as
introduced by Peel et al. [294] and defined in equation 1.3 in Chapter 1. This index
quantifies the homogeneity of an individual’s local network based on the SES of their
neighbors compared to their own SES. By calculating ru(t) for each node within a so-
cioeconomic class, we can monitor the segregation dynamics of the class through the
distribution of individual assortativity indices, P (ru(t)). Note that ru(t) is unbounded
and can take both positive and negative values, indicating assortative and disassortative
mixing, respectively.

For mobility, both the lowest (class 1, Fig. 3.4 A) and highest socioeconomic classes
(class 9, Fig. 3.4 B) displayed positive assortativity values during the reference periods,
suggesting that mobility segregation is present under normal circumstances, albeit with
considerable variability. The lowest class showed stronger mobility segregation, with
a median ru(t) around 0.4, compared to the highest class, with a median of 0.32 (see
Table S1 in the Appendix B for precise values across all classes). The assortativity values
remained relatively stable between the reference periods (R1 and R2 in Fig. 3.4 A, B).
However, the lockdown triggered a notable increase in the assortativity distributions
for all classes, with the magnitude of change varying by class (the median differences
from the R1 distribution are shown in Fig. 3.4 C, LD bar). Specifically, the lockdown
caused more than a threefold increase in the median assortativity values for the poorest
class (from ∼0.41 to ∼1.28) and almost doubled the value for the richest class (from
∼0.34 to ∼0.62). Consequently, individuals from lower socioeconomic classes experienced
greater mobility segregation, while those from middle and higher classes also became
more segregated, but to a lesser extent (all differences are statistically significant based
on one-tailed Mann-Whitney U Tests compared to R1). During the curfew (CF) period,
mobility segregation relaxed closer to pre-lockdown levels for the wealthier groups, while
the lower socioeconomic classes exhibited some residual segregation (see CF bars in Fig.
3.4 C).

In the social communication network, individual assortativity indices were also mostly
positive during the reference periods. However, the social network exhibited slightly
smaller median values for the poorest class (∼1.18) and stronger segregation for the
richest class (with a median of ∼1.28, see Fig. 3.4 D, E, and Table A.10 in Appendix
B). Although this indicates baseline assortativity in the social network, the P (ru(t))
distribution also included negative values, signaling disassortative mixing for some indi-
viduals.

The lockdown led to unexpected changes in the social communication network. While
global assortativity suggested an overall decrease in segregation, individual-level analysis
revealed that this effect was not homogeneous across socioeconomic classes. As shown in
Fig. 3.4 D, the reduction in global assortativity was primarily driven by individuals from
lower socioeconomic classes. For the poorest class, the median assortativity decreased
from 1.24 in the reference period to 1.02 during the lockdown (see Table S1 in Appendix
B.10 for all values). This shift is reflected as negative median differences in Fig. 3.4 F
(LD bar) compared to R1. During this period, poorer individuals interacted with a more
diverse set of peers from higher socioeconomic classes, shifting their P (ru(t)) distribution
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leftward (in Fig. 3.4 D). Conversely, the wealthiest classes became more segregated
during the lockdown, as indicated by the rightward shift of their LD distribution in
Fig. 3.4 E and the increase in their median assortativity from 1.28 to 1.38, resulting in
positive median differences in Fig. 3.4 F. Thus, while the majority of individuals from
lower classes experienced a significant reduction in network segregation, leading to a
moderate decrease in global assortativity (as seen in Fig. 3.3 C), wealthier individuals
remained more isolated. Interestingly, unlike mobility, the top socioeconomic classes
displayed some residual positive assortativity during the curfew period (Fig. 3.4 E), as
they remained relatively isolated even after the lockdown. Spatial effects alone cannot
explain the observed assortativity levels in either the mobility or social communication
networks (see Appendix B for more details).

These findings demonstrate that interventions can have vastly different effects on
individuals and communities based on socioeconomic background. Focusing exclusively
on mobility or social communication provides only a partial picture of how people adapt
to external shocks. Our analysis highlights the importance of simultaneously tracking
multiple aspects of human behavior to fully understand the socioeconomic determinants
of responses to crises.

3.3 Discussion

This chapter explored how external shocks, such as the COVID-19 lockdown, affected
segregation dynamics in both mobility and social communication networks in Sierra
Leone. Our findings reveal significant differences in how socioeconomic classes responded
to these measures, particularly in terms of mobility restrictions and communication
patterns. Segregation patterns in mobility networks intensified during the lockdown, as
individuals from lower socioeconomic backgrounds experienced a larger reduction in their
mobility compared to wealthier groups. The lockdown constrained people’s movements
to local areas, increasing the relative segregation within both urban and rural regions.

In contrast to mobility, the lockdown led to a surprising decrease in social network
segregation. Individuals from lower socioeconomic classes showed a reduction in their
assortativity, indicating increased communication across class boundaries. This suggests
that in response to physical isolation, individuals compensated by reaching out to con-
tacts from different socioeconomic groups, especially in rural and urban regions. Wealth-
ier individuals, however, became more socially segregated during the lockdown, further
emphasizing the unequal ways different classes adapted to these external constraints.
Interestingly, while mobility segregation patterns normalized after the lockdown, some
residual social segregation remained among wealthier groups during the curfew period.

These contrasting dynamics highlight the complex interplay between mobility and
communication behaviors in response to external interventions. While our findings pro-
vide novel insights into mobility and social reorganization during the COVID-19 pan-
demic, they also align with broader research showing how mobility shifts were influenced
by socioeconomic disparities. Studies in other contexts have demonstrated similar pat-
terns of mobility reduction among lower-income populations and an uneven capacity to
adapt to pandemic restrictions [326, 328, 334–339, 346, 347]. Our study further confirms
that, due to restrictions, the overall social mixing was reduced during the lockdown,
which increased experienced segregation in mobility [295, 327, 348]. However, this effect
was only observed during the lockdown phase, after which mobility segregation returned
to previous levels, contrary to findings from other studies [295, 349]. Additionally, the
observed increase in cross-class communication echoes findings from studies that em-
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phasize the role of digital communication in mitigating the impacts of physical isolation
[350]. The main contribution of our study within the existing literature is its ability to
connect these two aspects—mobility and communication—through an individual-level
and bidimensional analysis, providing a more comprehensive understanding of behav-
ioral adaptations during the pandemic. By examining both the mobility and communi-
cation networks of the same sample of users, this chapter underscores the importance of
a multi-dimensional approach to understanding segregation and adaptation in times of
crisis.
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Chapter 4

Deviations from universality in
human mobility modeling

4.1 Introduction

Effective modeling of urban mobility is essential not only for urban planning [351] and
infrastructure development [352], but also for optimizing public services [353], reducing
traffic congestion [354, 355], enhancing social integration [121], and managing the spread
of diseases [356, 357].

Human mobility models aim to identify and replicate universal laws governing move-
ment patterns, such as the distribution of travel distances [266, 358], the scaling of mobil-
ity flows with distance and population size [145, 359], and the spatiotemporal dynamics
of aggregate movements [360]. While these models have advanced our understanding
of general mobility behaviors, their applicability across diverse populations is still un-
certain. It remains unclear whether such models adequately capture the behaviors of
all individuals or, conversely, may favor certain demographic characteristics, potentially
overlooking others.

Among individual-level models, the Exploration and Preferential Return (EPR)
model [279] is particularly notable for its simplicity and its ability to replicate key
scaling laws in human mobility. By introducing lower stochasticity than random walk
models [51, 266], it enhances predictability [228, 229] by focusing on two main principles:
individuals explore new locations less frequently over time, and they revisit familiar lo-
cations more often. However, the model assumes uniform mobility mechanisms across
all individuals, overlooking variations due to socioeconomic backgrounds and lifestyles.
In Chapter 1, we discussed how factors like socioeconomic status influence travel behav-
iors, affecting daily travel distances, travel frequency, and the socioeconomic profiles of
visited locations. Furthermore, different demographic groups exhibit distinct responses
to mobility constraints during emergencies. Additionally, people’s visitation patterns
often align with identifiable lifestyle and activity profiles that cut across socioeconomic
groups [361]. These factors likely affect the balance between exploration and recurrent
visits, which are not considered by the EPR model, potentially leading to varying levels
of accuracy across demographic and lifestyle groups.

In this chapter, we evaluate the EPR model’s performance at the individual level, fo-
cusing on mobility scaling laws related to exploration dynamics and visitation frequency.
Our analysis aims to determine whether the model accurately represents mobility across
diverse individual profiles. We introduce metrics to quantify deviations from the ex-
pected scaling laws and investigate how these deviations are associated with violations
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of the model’s assumptions, particularly in non-bursty exploration and preferential re-
turn. Furthermore, we examine the types of places visited when these assumptions are
not met and analyze the socioeconomic and lifestyle characteristics of individuals who
most frequently deviate from the model’s predictions.

4.2 Results

To address our research question, we analyze the micro-scale movements of 1.5 mil-
lion anonymized users across 11 core-based statistical areas (CBSAs) in the United
States [314], with data spanning from October 2016 to March 2017. The dataset has
been thoroughly cleaned and preprocessed, as detailed in Chapter 2. For each user,
we capture a list of temporally and spatially fine-grained visits, each associated with
a Foursquare venue and its corresponding category [362]. In the following analysis, we
focus specifically on a subsample of 51,648 users within the Boston-Cambridge-Newton
CBSA (referred to as Boston for simplicity). Results for other CBSAs are presented in
Appendix C.
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Figure 4.1: Individual deviations beyond population-wide accuracy. A) The average
exploration inter-event time as a function of the number of distinct places S for users with
different values of ρu (thin lines) and the corresponding predictions by the EPR model (thick
lines). B) Individual-level observations of exploration inter-event time as a function of S (thin
lines) and the predictions of the EPR model (thick lines) for two example users who visited 20
distinct places and that show, respectively, well-fitting (upper panel) and deviating (lower panel)
behavior compared to the model. C) Distribution of individual deviations ϵu from the data (light
blue) and from stochastic simulations of the EPR model (orange). The inset shows the mean and
standard deviations of the same distributions across all CBSAs. D) Average visitation frequency
of ranked locations according to the EPR model (thick black line) and for users with different
values of S. E) Same as B) but for visitation frequency. F) Same as E) but for ηu.

4.2.1 Individual-level deviations

In the Exploration and Preferential Return (EPR) model, users move between locations
with each step representing either a return to a previously visited place (return step) or
an exploration of a new place (exploration step). The likelihood of a user u exploring,
given they have already visited S distinct locations, is captured by the exploration
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probability Pu(S) = ρuS
−γ . This probability is controlled by the individual parameter

ρu, calculated based on the total number of distinct places Su visited by u relative to
the total number of visits Nu, as:

ρu =
Sγ+1
u

(γ + 1)Nu
,

where the parameter γ = 0.22 has been computed on same dataset and for the same
sample of users in [121] and it is fixed for all users.

The EPR model accurately reproduces two main aspects of human mobility: ex-
ploration dynamics and visitation frequency, at least on average. For exploration dy-
namics, we examine the inter-event time τu,S , defined as the number of steps after
which a user u visits a new location given that they have already visited S distinct lo-
cations. According to the model, given the exploration probability Pu(S) = ρuS

−γ ,
the probability that the next exploration step will occur after T steps is given by
P (τu,S = T ) = (1 − Pu(S))T−1Pu(S), which is a geometric distribution. From this
distribution, we get that the expected inter-event time for the EPR model ⟨τu,S⟩ is given
by ⟨τu,S⟩ = P−1

u (S) = Sγ/ρu. For visitation frequency, the EPR model predicts that the
frequency with which a user u visits their kth most frequented location follows Zipf’s
law, with ⟨fu,k⟩ ∼ k−γ .

While averaging τu,S or fu,k across users in our dataset (as shown in Fig.4.1 A and
D) shows that the EPR model accurately captures both exploration inter-event time
and visitation frequency at the population level, this does not guarantee precision at the
individual level. Since these properties can be measured for each user, we can assess
how well the model represents individual behaviors.

To illustrate, Fig.4.1 B and E (upper panels) show an example of a user whose τu,S
and fu,k align well with the model’s scaling laws, while Fig.4.1 B and E (lower panels)
present a user whose behavior deviates from the model’s predictions. To quantify these
deviations, we define two individual metrics that measure the discrepancies between
observed and expected scaling for both inter-event time and visitation frequency. For
exploration inter-event times, we introduce ϵu, defined as the symmetric mean absolute
percentage error (SMAPE) between τu,S and ⟨τu,S⟩ for each user u:

ϵu =
1

Su

Su∑
S=1

|τu,S − ⟨τu,S⟩|
|τu,S | + |⟨τu,S⟩|

,

where Su is the total number of distinct places visited by user u. For visitation frequency,
we define ηu as the Kullback-Leibler divergence between fu,k and ⟨fu,k⟩:

ηu =

Ku∑
k=1

fu,k log
fu,k
⟨fu,k⟩

,

where Ku is the rank of the least visited location, excluding locations visited only once
to reduce the tail effect visible in Fig.4.1 B. These metrics can be calculated for both
observed data and EPR model simulations, allowing us to compare individual deviations
between real and simulated trajectories.

The distributions of ϵu and ηu for users in Boston and for simulated trajectories
based on the EPR model are shown in Fig.4.1 C and F. To enable direct comparison,
we normalize these distributions to a 0–1 range. The results indicate that while the
EPR model captures the average dynamics of exploration and visitation frequency well,
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it does not equally represent all individuals. The observed deviations are not solely
attributable to the stochastic nature of the model. The orange distributions in Fig.4.1
C and F represent the outcomes from stochastic EPR simulations for the same user set
(see Appendix C for details). Although stochasticity accounts for some of the variance
(particularly in ηu), substantial differences remain, especially in the largest deviations,
which cannot be explained by model stochasticity alone. This pattern is consistent across
all CBSAs, as indicated in the subpanels of Fig.4.1 C and F, where mean and standard
deviations of real and simulated distributions of ϵu and ηu are shown for all CBSAs.

Interestingly, despite capturing distinct mobility properties, ϵu and ηu are strongly
correlated (Pearson correlation of 0.75). This suggests that users who deviate signifi-
cantly from the model in terms of exploration dynamics are also likely to show deviations
in visitation frequency (see Appendix C for additional details).
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Figure 4.2: Deviations are related to violations of the EPR model’s microscopic
mechanisms. A) Average values of the deviation ϵu (color-coded as in the color bar) for users
grouped in quantiles of ρu and exploration burstiness. Controlling for stochasticity with ρu, ϵu
increases with burstiness. B) Average values of the deviation ηu (color-coded as in the color
bar) for users grouped in quantiles of ρu and preferential return error (P.R. error). Controlling
for stochasticity with ρu, ηu increases with P.R. error. C) Characterization of bursty trains,
i.e., sequences of consecutive exploration steps, in terms of relative visits to defined categories,
compared to all visits (blue bars, left y-axis) and to exploration steps only (red bars, right y-axis).
D) Characterization of recency trains, i.e., sequences of consecutive visits to the same place, in
terms of relative visits to defined categories, compared to all visits (blue bars, left y-axis) and to
return steps only (red bars, right y-axis).
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4.2.2 Microscopic mechanisms

Given the range of deviation metrics that cannot be fully explained by stochasticity alone,
we aim to investigate the underlying microscopic characteristics associated with these
deviations. Specifically, we seek to identify mobility behaviors that the EPR model does
not account for due to its assumptions, which may contribute to poorer representativity
for certain users.

We begin by examining individual exploration tendency, represented by the parame-
ter ρu, which impacts both ϵu and ηu by influencing the stochastic component. As shown
in Fig.4.1 C and F, ρu shapes the distribution of these deviations in model simulations
(see Appendix C for details). Although ρu clearly relates to deviations in ϵu and ηu,
it is already part of the EPR model, providing a baseline for variability. Here, we aim
to isolate characteristics that fall outside the model’s assumptions. By controlling for
exploration tendency, we focus on deviations attributable to features beyond the model’s
stochastic framework, refining our question to: for users with similar exploration ten-
dencies (and thus similar stochastic uncertainty), what characteristics make some users
more accurately represented by the model than others, with smaller observed deviations?

Burstiness

For exploration inter-event times, the EPR model assumes a steady decrease in explo-
ration probability as the number of distinct places grows, represented by Pu(S) = ρuS

−γ .
This approach neglects burstiness—a common feature in human activity where periods
of low activity alternate with short bursts of high activity [231], also present in human
mobility [363]. We hypothesize that users who exhibit bursty exploration patterns, al-
ternating between intense exploration phases and long inactive periods, tend to have
higher ϵu values. Such users display mobility behaviors that the EPR model does not
capture.

To test this hypothesis, we measure each user’s exploration burstiness and analyze
its relationship with ϵu, controlling for stochastic uncertainty via ρu. For a user u with
Nu total visits and exploration inter-event times {τu,S}Su

S=1, we compute the burstiness
coefficient Bu for finite sequences as defined in [364]:

Bu =

√
Nu + 1r −

√
Nu − 1(√

Nu + 1 − 2
)
r +

√
Nu − 1

,

where r = σ(τu,S)/µ(τu,S) is the coefficient of variation (with σ and µ as the empirical
standard deviation and mean of the {τu,S}Su

S=1 sequence).
The relationship between Bu and ϵu, controlling for ρu, is shown in Fig.4.2 A. Group-

ing users into quantiles of ρu and Bu and calculating the average ϵu within each group
reveals that, beyond the dependency on ρu, ϵu is positively associated with burstiness.
Specifically, for users with similar exploration tendencies, those with higher burstiness
are less accurately represented by the EPR model in terms of exploration dynamics.

Preferential return

The EPR model’s prediction of visitation frequency distribution, ⟨fk⟩ ∼ k−γ , is driven
by the preferential return mechanism, a widely observed phenomenon in human sys-
tems [138]. However, this assumption may not equally apply to all individuals. Ac-
cording to the preferential return criterion, the probability Πi of visiting a location i is
proportional to the fraction of prior visits ϕi to that location. We hypothesize that users
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who follow this criterion less closely will display visitation frequency distributions that
deviate more from the model’s expected scaling.

To quantify adherence to the preferential return principle, we introduce a prefer-
ential return error (P.R. error). This error measures the deviation from Πi = ϕi by
analyzing the empirical likelihood of returning to previously visited locations based on
their visitation frequencies. We bin ϕ (a continuous variable in (0, 1]) into 20 equally
spaced intervals, ϕb, and for each return step, assign a 1 to the Πϕb

list of the location
returned to and 0 to others. For each bin, we compute the observed probability Π̃ϕb

as
the empirical average of the binary values in Πϕb

. We then calculate the preferential
return error P.R.E. as the symmetric mean absolute percentage error (SMAPE) of Π̃ϕb

from ϕb:

P.R.E. =
1

20

20∑
b=1

|Π̃ϕb
− ϕb|

|Π̃ϕb
| + |ϕb|

.

Like burstiness, we group users into quantiles of ρu and P.R. error, then compute the
average ηu deviation within each group. Fig.4.2 B shows that ηu is positively associated
with P.R. error, beyond its dependency on ρu, particularly for users with lower ρu. For
users with similar low exploration tendencies, the more they deviate from the prefer-
ential return criterion, the less their visitation frequency aligns with the EPR model’s
expected distribution. However, for users with high exploration tendencies, adherence
to preferential return does not strongly influence the model’s accuracy.

To test the robustness of these findings, we replicated the analysis across all CBSAs,
confirming that the roles of burstiness and preferential return in shaping deviations ϵu
and ηu are consistent across locations (see Appendix C for details).

4.2.3 Characterization of assumptions’ violations

After assessing the direct and individual-level relationship between deviations from scal-
ing laws and violations of the EPR model’s assumptions, we aim to characterize these
violations from a behavioral perspective. In other words, we investigate the types of
places people visit when they deviate from the smooth exploration dynamics of the EPR
model, instead engaging in bursty exploration periods. Similarly, when people violate
the preferential return criterion, where do they tend to return?

We can address these questions because each step in our dataset is associated with
a Foursquare category, as described in Section 2.2.1. Foursquare categorization consists
of 592 categories which are regularly updated. Additionally, categories have been man-
ually grouped into 13 macro groups [121]: Art/Museum, City/Outdoors, Coffee/Tea,
College, Entertainment, Food, Grocery, Health, Service, Shopping, Sports, Transporta-
tion, Work. Details on the precise assignment of each category to a macro group are
provided in the Supplementary Information of [121].

To characterize exploration burstiness, we analyze the places visited during bursty
exploration trains, i.e., sequences of consecutive exploration steps. In other words, bursty
trains are sequences of visits to new places, all of which have been never explored before.
Specifically, we compare the frequency of visits to a given category with its overall
frequency, as well as its frequency during exploration steps only. For example, let’s
say a user visits Food places in 20% of their recorded stays. However, during bursty
exploration trains, they visit Food places in 30% of their ”bursty” stays. Finally, when
they explore new places—not necessarily in bursty trains—they visit Food places in
23% of their exploration stays. This means that the user visits Food places 50% more
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often during bursty trains compared to any other time, and 15% more than when they
normally explore new places. Both comparisons are important: the first reveals how
much more or less a category is visited during bursty trains compared to any other
step, while the second restricts the comparison to exploration steps only, acknowledging
that some categories may generally be explored more but not necessarily during bursty
periods. We measure both this relative frequencies for all the 13 taxonomy groups to
characterize what places people visit more likely when they explore in a bursty manner.

As shown in Fig.4.2 C, bursty trains are indeed characterized by specific categories.
In particular, places of amusement such as museums and art galleries, coffee shops, and
shopping locations are visited significantly more often during bursty exploration trains.
Conversely, routine locations such as workplaces are rarely explored during bursty trains.
Additionally, the macro category City/Outdoors, which includes parks, neighborhoods,
playgrounds, and residential places, is typically not explored in a bursty manner. The
other categories show either small or varied differences depending on the comparison.

Regarding violations of preferential return, recency has been observed as a charac-
teristic of human mobility not captured by the EPR model [283]. Recency describes a
memory effect, indicating that humans tend to return not only to frequently visited lo-
cations but also more often to those visited recently. In contrast, the preferential return
criterion assumes that all locations can be revisited based solely on their past visitation
frequency, without considering the temporal order of visits. To capture this effect while
drawing a parallel with bursty trains, we introduce the concept of recency trains, i.e.,
sequences of consecutive return visits to the same place. We characterize these recency
trains using the same methodology applied to bursty exploration trains, comparing the
frequency of visits to a given category with both its overall frequency and, in this case,
its frequency during return steps only. Let’s consider the same example of a user who
visits Food places in 20% of their recorded stays. However, during recency trains, they
return to Food places in 10% of their ”recency” stays. Finally, when they return to
previously visited places—not necessarily in recency trains—they visit Food places in
8% of their return stays. This means that the user returns to previously visited Food
places 10% less often during recency trains compared to any other time, and 2% more
often than when they normally return to previously visited places.

The results are shown in Fig.4.2 D, where we observe a pattern somewhat opposite
to bursty trains. When people repeatedly return to the same place, they tend to do
so at routine and habitual locations, such as residential areas, workplaces, as well as
transportation hubs and sports venues. In contrast, amusement places like coffee shops,
restaurants, and shopping malls are not typically revisited continuously. Interestingly,
entertainment places also appear in recency trains, though not significantly. It is also
notable that routine categories such as College and Groceries are absent from recency
trains.

The results of this section are consistent across all CBSAs, as detailed in Appendix
C.

4.2.4 Vulnerable groups

Finally, having identified the microscopic mechanisms whose violations are associated
with deviations from the model, and how these violations are characterized from a be-
havioral perspective, we aim to characterize who is more prone to these patterns and,
hence, at risk of not being modeled correctly. To answer this question, we test whether
the deviations are related to any individual traits concerning the SES and life habits of
people. Our goal is to explore whether deviations are uniformly distributed across the
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Figure 4.3: Deviations are biased towards SES and lifestyles. A) The income distribution
of users in the highest (blue) and lowest (yellow) 10% quantiles of the deviation ϵu. B) Same as
A) for car usage. C) Same as A) for the probability of being white. D) Results of the LASSO
regression: true ϵu vs predicted ϵ̂u based on census and lifestyle features. R2 is the coefficient
of determination, and α is the regularization parameter. E) Coefficients of the census features
from the LASSO regression. F) Coefficients of the life habit features (showing only the highest
and lowest 5) from the LASSO regression.

population or if there are specific groups that show significantly larger deviations, mean-
ing they are less well-represented by the EPR model. As detailed in Chapter 2, users are
assigned SES indicators related to wealth, education, race, and means of transportation.
Moreover, we assign each user a category score for each of the 592 Foursquare categories,
based on the fraction of visits spent in places classified in each category. We use these
features as lifestyle indicators.

Given an indicator obtained from census, like income, means of transportation, and
race, we compute its distribution for people in the highest and lowest 10% quantiles of
the ϵu and ηu distributions. These are users who are respectively described as the worst
and best by the EPR model. In Fig.4.3, we show these distributions for the variables
of income (panel A), car usage (B), and the probability of being white (C) for the two
extreme quantiles of ϵu. The income distribution of the worst-described users in the
highest 10% of ϵu is shifted to lower values compared to the best-described users in the
lowest 10%. This implies a possible correlation between income and the ϵ deviation,
suggesting that the EPR model predicts the mobility of people with lower incomes less
accurately. Meanwhile, the same distributions computed for white people and car owners
are less concentrated but skew towards lower values for those in the highest 10% of ϵ
errors. Additionally, similar observations appear when investigating the ηu deviations
(for details, see Appendix C). These findings suggest that users poorly represented by
the EPR model, in terms of both exploration dynamics and visitation frequency, are
more likely to be poorer, less likely to own a car, and less likely to be of white racial
origin than those who are well-represented by the model.

To establish a more robust observation of these biases, not only for extreme quantiles
but for all users, we perform a regression analysis. We use the deviation metrics (ϵu or ηu)
as dependent variables and all census and life habit features as predictors. Moreover, we
also include Su and Ku, respectively for ϵu and ηu, as control variables, as they indicate
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the number of elements in the sum of either ϵu or ηu, respectively. In this way, we
avoid measuring an effect due to varying sample sizes used for the computation of the
dependent variables. Given the high number of features (one control, 10 census, 592 for
life habits), we consider a Least Absolute Shrinkage and Selection Operator (LASSO)
regression, whose objective function is:

min
β

 n∑
i=1

(yi − β0 −
p∑

j=1

βjxij)
2 + α

p∑
j=1

|βj |

 ,

where yi is the dependent variable, βi’s are the coefficients, xij are the independent
variables and α is the regularization parameter. There are numerous reasons to use this
type of model in our case. Indeed, through the regularization parameter α, it performs
automatic feature selection by shrinking the least important coefficients to zero, thus
handling multicollinearity and preventing overfitting at the same time. We estimate
the parameter α through 10-fold cross-validation with 3 repeated randomizations. All
variables, including the dependent ones, have been standardized by subtracting the mean
and scaling to unit variance.

Interestingly, we achieve R2 = 0.21 correlation between the observed ϵu and predicted
ϵ̂u (R2 = 0.22 for ηu, see Appendix C), indicating that the deviations are not randomly
distributed. On the contrary, they can be partially predicted by the socioeconomic and
life habit features of users, as seen in Fig.4.3 D and in Appendix C. Similar scores are
achieved for all 11 CBSAs (see Appendix C for details).

The different features ranked by their regression coefficients (in Fig.4.3 E) identify
income as the most relevant socioeconomic characteristic in determining the ϵ error (and
also η, see Appendix C). Indeed, this significantly negative coefficient of income in both
regressions verifies our earlier observation that users who are poorly represented by the
model are more likely to be poorer. Moreover, this observation is robust across all
CBSAs analyzed (for details, see Appendix C), with income consistently showing the
largest negative coefficient. Exceptions appear for ηu in New York and Los Angeles,
where income has the second most negative coefficient (details in Appendix C). On the
other hand, the coefficient for car use behaves differently for the two deviation metrics,
being negatively associated with ϵu and positively with ηu, not only in Boston but
in most CBSAs (details in Appendix C). Finally, contrary to our earlier conjecture,
ethnicity does not strongly influence model performance in Boston, but it is significant
in some CBSAs (details in Appendix C). In particular, the probability of being white
is negatively associated with ϵu in many CBSAs, indicating that white individuals are
often more likely to be well-represented by the model in terms of exploration dynamics.
On the other hand, black people are often more likely to be well-represented by the EPR
in terms of visitation frequency.

Similar to the census variables, model deviations are also strongly biased concerning
certain life habits, as shown in Fig.4.3 F, where we present five features with the highest
and lowest coefficients. A positive coefficient for a given category indicates that users
who spend a large fraction of their time visiting that category are likely to exhibit higher
deviations and, consequently, be poorly represented by the model. Conversely, a negative
coefficient indicates that users who spend a large fraction of their time in that category
are more likely to adhere to the model. Places like offices, factories, and buildings are
primarily positively associated with larger deviations. In contrast, negatively correlated
categories include restaurants like Sushi and American . In Appendix C, we show the
results for all categories, grouping them by the macro category they are assigned to. Most
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place belonging to the ”Food”, ”Shopping”, and ”Arts / Museum” macro categories are
negatively related with deviations, while most places belonging to the ”Work” and ”City
/ Outdoor” macro categories are positively related with deviations. Similar patterns are
observed across all CBSAs (see Appendix C for details). Overall, these results indicate
that mobility constraints and routines have a strong impact on the adherence with the
EPR scaling laws: users with more work-driven daily routines, who spend more time in
offices and factories, are more likely to be poorly represented by the model, while users
who spend more time in restaurants, museums and shops are less likely to experience
deviations.
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Figure 4.4: Urban-rural divide. A-K) U.S. census tracts division of the 11 CBSAs under
consideration, where each tract is colored according to the difference count between the number
of users in the highest and lowest 10% of ϵu + ηu with estimated home location in the tract.

4.2.5 Spatial distribution

In the previous section, we demonstrated how deviations from the EPR model are not
random but biased towards certain groups of individuals, both in terms of socioeconomic
indicators and life habits. A notable implication of these findings is the unequal spatial
accuracy of the EPR model. Due to residential segregation and urbanization patterns
in metropolitan areas, deviations follow certain spatial distributions.

Similar to the previous section, we examine this consequence by considering the
distributions of the two deviation metrics, ϵu and ηu. However, as noted above, these
variables are highly correlated, so we use their sum as a unique variable to provide a
comprehensive picture of the model’s combined accuracy at the individual level. We
consider U.S. census tracts as spatial units and count how many users in the highest
and lowest 10% of the combined deviation metric live in each tract. The difference be-
tween these values indicates the model’s combined accuracy within a given tract. If this
difference is close to 0, the number of well- and poorly-represented users are compara-
ble, reflecting balanced model predictions. Conversely, if the difference is positive (or
negative), well-represented users exceed poorly-represented ones (or vice versa).

The results for the Boston CBSA, focusing on Boston City and its surroundings, are
shown in Fig.4.4 A. This map reveals a clear pattern: users who are best-represented by
the model are predominantly located further from the city center, in larger and more rural
census tracts. In contrast, the worst-represented users are mostly concentrated closer
to the city center, in smaller and more urban tracts, though in the very central areas
of the city, the two categories are relatively balanced. This finding has notable policy
implications, as it indicates that the EPR model, widely used (with its many variations)
to model urban mobility, performs better for individuals living outside urban areas,

60

C
E

U
eT

D
C

ol
le

ct
io

n



while it underperforms in describing the mobility of those living within urban areas.
Examining spatial distributions in other CBSAs (see Fig.4.4 B to K), we consistently
observe this urban-rural division pattern, more evident in some areas (e.g., Washington,
Dallas) than in others (e.g., San Francisco, New York).

This spatial pattern reflects residential segregation by income, with wealthier indi-
viduals typically residing outside city centers. In conclusion, we paradoxically observe
that due to socioeconomic biases the EPR model, designed to simulate urban mobility,
performs better in rural settings.

4.3 Discussion

The results in this chapter highlight the limitations of evaluating human mobility models
based solely on population-wide behavior and the risks of assuming universality across
diverse populations. By analyzing the GPS traces described in Chapter 2, we compared
individual exploration dynamics and visitation frequency with the predictions of the
EPR model, revealing significant variations in adherence that cannot be fully explained
by stochasticity.

Our results demonstrate that individuals who deviate from the EPR model share
distinct behavioral patterns. They tend to visit habitual locations in consecutive se-
quences and rarely engage in exploration. When they do explore, it happens in short
bursts, predominantly at non-routine and amusement places. These behaviors are not
randomly distributed across the population but are strongly linked to socioeconomic fac-
tors, with lower-income individuals being particularly poorly represented by the model.
The observed correlation between behavioral traits and income aligns with expectations:
individuals with higher income face fewer spatial and temporal constraints in their daily
mobility [72, 75, 365]. This advantage stems from their access to greater resources,
enabling them to explore a wider variety of destinations, including those often inacces-
sible to less affluent individuals [74, 78, 87]. Their mobility patterns are less likely to
be dictated by work routines and necessities; instead, they are frequently shaped by
leisure activities [69, 81]. Moreover, wealthier individuals benefit from enhanced access
to transportation, such as private vehicles, which further increases their flexibility and
range of movement [79]. Our findings highlight that this association between socioeco-
nomic status (SES) and behavioral constraints significantly contributes to the poorer
representation of less affluent individuals by the EPR model. Additionally, spatial anal-
ysis reveals that individuals in suburban and rural areas are generally better represented
by the model than those in urban centers, underscoring a spatial bias likely influenced
by residential and income segregation.

While these findings highlight certain limitations of the EPR model, they should be
understood in the context of its original design. As a minimalistic framework, the EPR
model seeks to capture broad statistical patterns of mobility using universal parameters,
rather than to reflect individual or group-level variability. Rather than viewing devia-
tions as shortcomings of the model, these results reveal an opportunity to expand its
scope. By incorporating factors such as socioeconomic or spatial heterogeneity, future
adaptations of the EPR model could better capture the nuanced behaviors of specific
population groups, particularly those in urban settings. While unified models can offer
valuable insights at the population level, it is essential to recognize that their accuracy
will not be uniform across all individuals, and may be particularly poor for some.
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Chapter 5

Conclusion

5.1 Main contributions

This thesis has investigated the intricate relationships between socioeconomic status
(SES), human mobility, and social networks, aiming to understand how SES shapes
movement patterns and social connections. Through deep and extensive analysis of
large-scale data, this work provides insights into both individual behaviors and collective
phenomena, such as segregation and socioeconomic disparities within universal modeling
frameworks. By leveraging a combination of digital, traditional, and non-traditional data
sources, this research underscores the role of SES in influencing physical movements and
social ties, revealing how these interactions contribute to broader social patterns.

Chapter 1 contextualizes this thesis with an extensive review of theoretical frame-
works, methods, metrics, and models. It constructs a comprehensive background, draw-
ing on a range of studies to highlight the complexity of the interplay between SES,
physical movement, and social interactions. By integrating diverse approaches from so-
cial science, network theory, data science, and mobility studies, Chapter 1 provides a
strong foundation for the data-driven analysis that follows.

Chapter 2 lays the methodological groundwork for observing socioeconomic patterns
in mobility and social networks by establishing a cohesive approach for data collection, in-
tegration, and analysis. Addressing the core challenge of accurately and representatively
capturing large-scale, fine-grained socioeconomic and behavioral data, this chapter seeks
an optimal balance between scale and accuracy. It introduces general methodologies for
inferring SES from behavioral and socioeconomic data, incorporating refined techniques
for spatially matching diverse data sources. The result is a statistically representative
sample of individuals with detailed SES indicators, alongside precise, granular proxies
for their movements and social connections. This chapter thus provides a robust frame-
work for the in-depth analyses in the following chapters on SES-related behaviors across
diverse populations.

Chapter 3 delves into the socioeconomic reorganization of mobility and social net-
works in response to the COVID-19 pandemic, investigating how sudden and widespread
mobility restrictions impacted social and spatial interaction patterns. Using Call Detail
Records (CDRs) from Sierra Leone during the early lockdown and curfew periods, this
chapter explores shifts in socioeconomic segregation as individuals from different socioe-
conomic backgrounds adapted to the restrictions at varying rates and capacities. The
analysis reveals two key findings: First, while mobility segregation increased as expected
due to travel restrictions, social segregation notably decreased. It appears that people
compensated for reduced physical interactions by maintaining a more diverse set of so-

62

C
E

U
eT

D
C

ol
le

ct
io

n



cial connections, creating a more integrated pattern in social communication networks.
Second, the analyses show that, while some aspects of mobility and social interactions
were universally affected, the degree of impact differed significantly based on SES, high-
lighting the complex dynamics and rich phenomenology that can arise from an external
shock to human behavior.

Chapter 4 provides an in-depth examination of deviations from established models in
human mobility, specifically focusing on the Exploration and Preferential Return (EPR)
model. This chapter investigates individual mobility behaviors that diverge from the
universal scaling laws of the EPR model, highlighting how these deviations are related
to violations of the model’s assumptions, particularly regarding bursty behavior and
adherence to the preferential return mechanisms. The analysis further shows that these
violations occur more frequently during visits to specific categories of places. Moreover,
the chapter demonstrates how such deviating behavioral traits are not uniformly dis-
tributed across socioeconomic groups and underscores that socioeconomic factors play
a critical role in shaping mobility behaviors, suggesting that models based solely on ag-
gregate or population-wide metrics may fail to capture the nuanced variations present
in heterogeneous populations. Consequently, Chapter 4 illustrates the importance of
tailoring mobility models to better account for the diversity of socioeconomic factors
influencing individual behaviors.

5.2 Implications

The findings in this thesis underscore the importance of socioeconomically disaggregated
analyses in understanding mobility and social interactions. Examining human behavior
through multiple, stratified behavioral traits provides critical insights with implications
for public health, policy-making, and equity. These results highlight how mobility and
social networks vary across socioeconomic groups, illuminating differences that, if over-
looked, can deepen existing disparities.

One major implication is for epidemic modeling and emergency policy design. So-
cioeconomically stratified data can be instrumental in developing more equitable policies,
particularly in public health. Recognizing the differing mobility and social patterns of
lower-income groups—who often have limited flexibility to stay at home—can help pre-
vent an uneven burden of disease exposure and secondary economic impacts on econom-
ically disadvantaged populations. Tailoring interventions based on stratified data helps
ensure that policies do not disproportionately impact vulnerable groups, as observed
during the COVID-19 pandemic, when lower-income individuals faced higher exposure
risks due to constrained mobility options [326, 328, 335, 340].

The study also underscores the importance of diverse behavioral representation in
mobility models. Conventional models that assume population-wide universality fail to
capture the heterogeneity across socioeconomic groups, especially in urban environments
where external constraints heavily influence mobility. Such assumptions risk obscuring
the unique mobility needs and constraints of lower-income individuals. This adds an
additional burden to vulnerable groups, who are also often underrepresented in digital
data, resulting in models that may inadequately reflect their reality and overlook their
specific needs in urban planning, transportation, and resource allocation [330, 366–368].

An additional implication involves residential segregation and its impact on model
accuracy. Our findings reveal that the EPR model, commonly used to simulate urban
mobility, demonstrates unequal spatial accuracy, performing better in suburban and ru-
ral areas than in densely populated urban centers. This discrepancy likely stems from
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socioeconomic residential segregation, as wealthier individuals, who generally live in less
dense areas, align more closely with model predictions. This mirrors the WEIRD prob-
lem in social science, where findings disproportionately represent certain demographic
groups (Western, Educated, Industrialized, Rich, and Democratic), leading to skewed
conclusions and biases [369]. In this context, the EPR model similarly performs best
for a subset of the population—those with greater flexibility in time and financial re-
sources—while underrepresenting lower-income groups in urban settings. Rather than
framing this as a fundamental limitation of the EPR model, these deviations highlight
the need for adaptations or extensions of the model to account for the population het-
erogeneities revealed by our analysis. Factors such as SES, demographics, and cultural
differences significantly influence mobility patterns and should be integrated into more
flexible or context-specific versions of the model. This perspective reinforces the EPR
model’s validity as a baseline while emphasizing the importance of refining mobility mod-
els to capture the full spectrum of human behavior. For equitable policy-making, mo-
bility models must be refined to represent the diversity of human behavior, particularly
in cities where these patterns are most complex. Investments in public infrastructure
and service allocation should reflect the actual mobility patterns of all groups, especially
lower-income populations, to provide adequate support where it is most needed.

In summary, this thesis illustrates that a nuanced understanding of SES-related mo-
bility and social interaction patterns is essential for informed policy-making. By moving
beyond population-wide assumptions and being mindful of behavioral differences, future
research can support a more equitable approach to urban planning and public health
interventions.

5.3 Limitations

While this thesis makes notable contributions, several limitations must be acknowledged,
especially concerning data quality. These limitations arise from various aspects of the
study, particularly in the use of large-scale behavioral datasets. Recognizing these con-
straints is essential for accurately interpreting the findings and for guiding future research
that may refine the approaches used here.

Data Quality Limitations

Data quality presents key limitations to this study, many of which were discussed in
Chapter 1. Large-scale behavioral datasets, such as Call Detail Records (CDRs) and
GPS data, offer undeniable advantages for studying populations at scale, yet they are
also prone to issues related to privacy, accuracy, and the challenges of inferring SES at
the individual level. Despite efforts to address these issues, certain constraints remain
due to the sensitive nature of location and communication data, as well as the inherent
uncertainties in using socioeconomic proxies.

Firstly, privacy concerns are a major consideration when analyzing CDRs and GPS
data, given the sensitivity of individuals’ location and communication patterns. To ad-
dress this, user data are fully anonymized in both datasets to ensure that no identifiable
information could be linked back to individuals. Additionally, we refrained from display-
ing any sensitive information about individual whereabouts or inferred home locations,
presenting only aggregated results to maintain user privacy.

Secondly, mobile phone data serves as a proxy for social networks and mobility
behaviors, but it cannot directly verify that users visited specific locations or maintained
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genuine social ties with their contacts. This is particularly relevant for social contacts
in the CDR dataset from Sierra Leone. One way to limit the inclusion of non-social
contacts could have been to set a threshold on the minimum number of calls between
two users to consider their interaction a genuine social tie. However, such a threshold
was not applied due to the short time window of the dataset, which covers only one
month. Applying this threshold would have significantly reduced the dataset, which is
already sparse due to the filtering steps and the SES inference process. Moreover, it
would likely remove many interactions that may actually represent real social contacts,
as only a small fraction of social ties are expected to share more than one call within
a one-month period. Nevertheless, we mitigated the presence of non-social contacts by
excluding users with anomalous behaviors or insufficient activity, thereby reducing data
points that might distort the analysis.

A further limitation concerns the inference of home locations and the assignment of
SES indicators. Home locations are estimated based on nighttime movement patterns,
while SES is assigned using average or median values within specified geographic areas.
These proxies naturally carry some uncertainty. To improve confidence in inferred home
locations, we included only users with a high degree of spatial certainty, minimizing
the likelihood of misclassification. For SES assignments, we relied on high-resolution
socioeconomic maps, and in the case of CDR data, we matched their spatial resolu-
tion as closely as possible to that of communication towers. This approach provided
representative SES values for each tower location. However, despite these efforts, the
final SES map still shows variable spatial resolution, often resulting in larger SES tracts
in rural areas due to the distribution of mobile cell towers, which may obscure finer
socioeconomic distinctions in these regions.

Finally, the categorization of venues used in Chapter 4 relies entirely on Foursquare
classification. While we have no control over this categorization and cannot test its
validity, Foursquare is a leading company in POI data provision and regularly updates
its categorization. Therefore, we hypothesize that this limitation does not significantly
affect our results. Additionally, the further manual classification into 13 macro groups,
as done in [121], is subject to some level of uncertainty. For some venues, the assignment
to a specific macro group might be open to interpretation. However, we believe that such
cases are limited to a small number of venues and are unlikely to significantly impact
the results.

In sum, while these mitigation strategies helped address data quality concerns, the
limitations reflect the inherent challenges of using large-scale behavioral proxies, under-
scoring the need for cautious interpretation of results based on indirect data sources.

Confounding Factors

Although this thesis identifies significant relationships between SES and social and mo-
bility behaviors, establishing a causal relationship remains challenging. Specifically, it
is difficult to assert that a user or a group behaves in a certain way solely because of
their socioeconomic background. Similarly, determining whether the observed segrega-
tion is truly significant from a socioeconomic perspective—or if it emerges naturally from
complex interactions between users—is hard. The observed patterns may result from
confounding factors that correlate with socioeconomic indicators, which could lead to
similar empirical patterns.

In our research, we undertook various measures to account for confounding factors.
In Appendix A, we assessed segregation levels using different null models, including
the gravity model, the configuration model, and a random SES-rewiring model. This
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approach helped isolate the contributions of physical distance, degree distribution, and
SES distribution to observed segregation. Our findings indicate that segregation levels
derived from these null models never reach the empirical levels observed, suggesting a
significant degree of socioeconomic preferences in behavior. For instance, assortativity
in the gravity model structures was relatively high but did not fully reproduce empirical
patterns, indicating that distance effects contribute to but do not fully explain observed
segregation. Additionally, in Appendix A, we confirm that the observed patterns are
not influenced by work constraints or other confounding factors, such as public holidays
or conflict events.

In Chapter 4, to strengthen the association between SES and deviations from the
model, we implemented a LASSO regression. This method helps mitigate overfitting by
automatically selecting statistically significant features, effectively ruling out variables
that lack explanatory power regarding deviations from the model. Furthermore, we
controlled for the inherent stochasticity of the EPR model to ensure that the observed
patterns were not simply due to varying exploration tendencies. Additionally, we ac-
counted for data size in the regression to prevent deviations that could arise merely from
differences in the volume of data available for each individual.

Despite these efforts, establishing a statistically robust and causal link between be-
havior and SES remains challenging, partly due to the nature of the data. Despite
some recent significant efforts [152], addressing this limitation will require further stud-
ies and potentially different data collection methodologies to determine the distinct and
unambiguous role of SES in shaping behavior.

5.4 Future Research

This thesis sets the stage for future research that could extend and refine the findings
presented here. Two main directions for future work are especially promising: enhancing
the generalizability and robustness of these findings and developing models that more
accurately capture the complexities observed.

Firstly, validating generalizability and robustness is crucial to assess whether the ob-
served patterns between SES, mobility, and social interactions hold in different contexts.
This could involve studying populations across varied geographic, economic, and cultural
landscapes, as well as examining different time periods, to determine if the results are
universally applicable or context-specific. Such studies would strengthen the findings and
provide insights into how SES-driven mobility and social behaviors vary across settings,
potentially revealing location- or time-specific influences that shape these dynamics.

Secondly, advancing mobility and social interaction models represents an impor-
tant frontier. While this thesis linked various modeling frameworks to observations and
critically examined their limitations (particularly in Chapter 4), there remains a need
to develop new models that can more accurately replicate observed patterns while ac-
counting for behavioral differences across socioeconomic groups. In terms of segregation,
exploring the interplay between external constraints, activity levels, SES homophily, and
spatial distribution could yield new insights, not only by explaining observed phenomena
but by enabling scenario simulations through parameter tuning. Such models could help
simulate potential outcomes under varying conditions, providing valuable foresight for
policy applications.

Regarding the unequal representation of different groups in the EPR model, future
work could involve developing a modified version of the EPR model that incorporates
SES distinctions, allowing for memory effects like burstiness and recency. Such an ex-
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tension would capture the diversity of movement patterns and increase the model’s
applicability in urban, socioeconomically diverse settings.

Importantly, future models should strive to balance simplicity with realism: moving
beyond overly simplistic frameworks that fail to capture real-world complexity, while
avoiding excessive parameterization that could lead to overfitting. This balanced ap-
proach would produce models that are both theoretically meaningful and practically
useful, capable of revealing underlying mechanisms without merely replicating observa-
tions.

In summary, we hope that this thesis serves as a catalyst for future, exciting research
exploring these complex phenomena. By continuing to investigate the nuanced rela-
tionship between SES, mobility, and social connections, future research can contribute
to a deeper understanding of human behavior and inform policies that promote social
equity.
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Appendix A

Additional metrics and models

In this chapter, we provide a brief overview of the additional metrics and models of
human mobility and social networks, that are not explicitly mentioned in Chapter 1 but
are still relevant to the fields of human mobility and social networks.

A.0.1 Human mobility metrics and models

Metrics

• Mean square displacement (MSD): The mean square displacement (MSD)
measures the average squared distance that individuals travel from their starting
location over time. This metric is essential for capturing the spatial dispersion of
movement. MSD at a given time t is calculated as:

MSD(t) =
1

N

N∑
i=1

(r⃗i(t) − r⃗i(0))2

where N is the total number of individuals, r⃗i(t) is the position of individual i at
time t, and r⃗i(0) is their initial position. MSD has been shown to follow a slower
than logarithmic growth, indicating an ultra-slow diffusion process [279].

• Origin-destination matrix: An origin-destination (OD) matrix represents the
flow of individuals between different geographical locations over a specific time
period. The matrix M is defined as:

Mij = number of trips from location i to location j

OD matrices are widely used in transportation planning, regional mobility studies,
and traffic analysis, as they provide a comprehensive view of large-scale population
movement patterns.

Individual-level models

• Social-based models: As previously mentioned, social connections and physical
movements are often correlated. These models consider that human mobility is
influenced not just by random factors but also by social connections, as people
tend to visit places where their social ties are concentrated [51, 53, 370, 371].
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Population-level models

• Intervening opportunities model: This model hypothesizes that the movement
of people is determined not only by the distance between origin and destination
but by the availability of opportunities (e.g., jobs, services) between these points
[60]. People starting to travel tend to stop when they reach a destination that
offers sufficient opportunities.

• Radiation model: The radiation model improves upon the gravity model by
incorporating the distribution of opportunities between the origin and destination.
Rather than just distance and population size, it considers how the availability of
nearby opportunities affects movement decisions [359].

A.0.2 Social network metrics and models

Metrics

Below, we outline the most significant metrics for studying social networks.

• Clustering coefficient: The clustering coefficient quantifies the tendency of
nodes to form tightly interconnected groups. Locally, the clustering coefficient
of a node measures how many of its neighbors are connected to each other. The
local clustering coefficient for a node i is:

Ci =
2ei

ki(ki − 1)

where ei is the number of edges between the neighbors of node i and ki is the
degree of node i. The global clustering coefficient, which averages over all nodes,
provides insights into whether the network exhibits high levels of clustering, as
often found in social networks.

• Path length and average shortest path length: The path length between two
nodes is the number of edges in the shortest route connecting them. By calculating
the average shortest path length across all pairs of nodes, we can determine how
efficiently information or influence can spread through the network. The short-
est path between nodes i and j, denoted as Lij , provides insights into network
connectivity. The average shortest path length across all node pairs is:

L =
1

N(N − 1)

∑
i ̸=j

Lij

where N is the total number of nodes in the network. Networks with a low average
path length, like small-world networks, allow information to travel quickly between
nodes.

• Centrality measures: Centrality measures are used to quantify the importance
of nodes in the network. Degree centrality identifies the most connected nodes by
counting the number of direct edges they have. Betweenness centrality measures
how often a node lies on the shortest paths between other nodes, highlighting its
role in controlling information flow. Eigenvector centrality extends this by consid-
ering not only a node’s direct connections but also the influence of its neighbors.

69

C
E

U
eT

D
C

ol
le

ct
io

n



Together, these centrality measures help identify influential individuals or key hubs
in social networks, such as opinion leaders or connectors between different com-
munities.

Network models

• Watts–Strogatz small-world (SW) model: The SW model was developed
to explain the small-world phenomenon observed in real-world networks, where
most nodes can be reached from any other in just a few steps despite high local
clustering [372]. Starting with a regular lattice, the model randomly rewires some
edges, introducing shortcuts between distant nodes. This approach preserves high
clustering while ensuring short average path lengths, making it ideal for modeling
the balance between local and global connectivity seen in social networks.

• Exponential random graph models (ERGM): ERGM provides a flexible
framework for modeling social networks based on various network statistics, such
as reciprocity, clustering, and homophily [373]. Rather than treating tie formation
as independent, this model incorporates dependencies between edges, allowing for
the study of complex social structures. ERGM is particularly useful for empirical
research where network data is available, helping to reveal the social forces driving
tie formation, such as similarity or social influence.

• Stochastic block models (SBM): As a generative model, the Stochastic Block
Model (SBM) simulates networks by dividing nodes into different blocks or groups
and specifying the probability of connections both within and between these blocks
[374]. By controlling the probabilities of intra- and inter-group connections, SBM
can replicate a variety of social configurations, from strong community structures
to highly interconnected social ones. This flexibility allows it to model a wide
range of social phenomena and the incorporation of other social tie formation
mechanisms, like homophily and triadic closure [375].

• Temporal network models: Temporal network models account for the dynamic
nature of social networks, capturing how ties form and dissolve over time [376].
These models simulate evolving relationships, enabling the study of how external
factors, such as changes in social context or individual preferences, influence the
growth and decay of networks. They are particularly valuable for understanding
dynamic processes on social networks, such as how information or epidemics spread
or how social cohesion changes over time.

• Activity-driven model: The activity-driven network model is a dynamic model
used to represent networks where interactions are driven by the activity level of
each node [377]. At each time step, nodes become active with a probability propor-
tional to their activity potential, and when active, they generate a fixed number
of random connections with other nodes. These links are temporary, existing only
for a given time step. This model is particularly useful for studying time-varying
social networks, such as communication networks, where the structure of connec-
tions changes over time, and like other temporal network models is widely applied
in research on dynamic processes.

• Multilayer network models:: Multilayer network models are an extension of
traditional single-layer networks, where nodes can be connected through different
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types of relationships or interactions across multiple layers [378]. Each layer rep-
resents a different type of connection or a different dimension of the system under
study (e.g., work relationships, friendships, or family ties in social networks, or
different transport modes in mobility networks). These models allow for a more
realistic and comprehensive representation of complex social systems where inter-
actions occur on multiple fronts simultaneously.

A.0.3 Segregation metrics

• Coleman Index: The Coleman index measures the degree of homophily in social
networks, capturing how much individuals in a group tend to interact with others
from the same group. It compares the observed number of ties within a group to
what would be expected under random mixing. For a group i, it is calculated as:

hi =

eii
Ei

− fi

1 − fi

where eii
Ei

represents the proportion of ties within group i, and fi is the fraction
of nodes belonging to group i. The Coleman index varies between -1 (complete
heterophily) and 1 (complete homophily) [379].

• External-Internal (E-I) Index: The E-I index measures the balance of connec-
tions within and between subgroups in a network [380]. It is calculated as:

E-I index =
E − I

E + I

where E is the number of external ties (between different subgroups), and I is the
number of internal ties (within the same subgroup). The index ranges from -1 to
1, where values close to -1 indicate high internal connectivity, values close to 1
indicate high external connectivity, and a value of 0 represents an equal balance
of internal and external ties.

• Spectral Segregation Index (SSI): The Spectral Segregation Index (SSI) mea-
sures segregation by analyzing the eigenvalues of the network’s adjacency matrix.
The largest eigenvalue λ1 represents overall connectivity, while the second-largest
eigenvalue λ2 reflects the extent of community division. The SSI is given by:

SSI =
λ2

λ1

A higher SSI indicates stronger segregation, where distinct groups are well-separated,
while a lower SSI suggests more integration across the network [381].

• Random-walk approaches: Random-walk-based segregation measures offer a
novel perspective on understanding segregation in both social and spatial net-
works. These approaches calculate segregation by analyzing the probability that
individuals encounter members of their own or different groups during random
walks on a network [155, 310, 382].

• Residential Segregation: The Dissimilarity Index (D) is a widely used metric
for measuring residential segregation [149]. It quantifies the evenness with which
two groups (e.g., a minority group and a majority group) are distributed across
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geographic units, such as neighborhoods. The index is computed as:

D =
1

2

n∑
i=1

∣∣∣xi
X

− yi
Y

∣∣∣
where xi and yi are the population counts of the minority and majority groups,
respectively, in geographic unit i, and X and Y represent the total populations
of the minority and majority groups across all units. The index ranges from 0
(perfect integration) to 1 (complete segregation), indicating the proportion of one
group that would need to move in order to achieve an even distribution across all
areas.
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Appendix B

Socioeconomic reorganization of
mobility and communication
networks in response to external
shocks

B.1 COVID-19 timeline and restrictions in Sierra Leone

The first case of COVID-19 in Sierra Leone was confirmed on March 31, 2020. On April
1, after the second case was confirmed, the government announced a 3-d lockdown to
be put in place on April 5-7. On April 9, the government announced a restriction on all
inter-district travel for 14 days and a curfew from 9 PM to 6 AM. Also, face masks were
strongly encouraged, only shops selling essential items were left open and people were
asked to stay at home unless they had extremely urgent reason not to. There were also
other types of restrictions, like school and workplace closures. The precise timeline and
strength of the nine types of restrictions collected by [5] are shown in Fig. B.1, and the
category codes are fully listed in Supp. Tables B.1-B.9

B.2 Reference periods and confounding events

In our study, we analyze the effect of restriction policies by comparing social behavior
during lockdown and curfew to two reference periods:

• R1: March 22-24 2020

• R2: March 29-31 2020

We use these specific time windows because they are of the same length as the
lockdown (the event of our greatest interest) and during the same days of the week
(from Sunday to Tuesday).

Despite being relatively close in time to the lockdown, they are both (especially
R1) representative reference periods, in that they are still periods in which people were
not significantly affected yet by the outbreak of the pandemic and by response policies.
Indeed, we can see from Fig. B.1 that the most socially impactful restriction policies
(stay-at-home requirements, restriction to internal movements, restriction on gatherings)
were put in place only after R2. However, relevant restrictions like school closures and
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Figure B.1: COVID-19 restriction policies in Sierra Leone. Timeline of 9 restriction
measures put in place in Sierra Leone in response to the first wave of COVID-19. The meaning
of each category can be found in the Tables section or the original paper [5].

workplace closures were already put in place during R2. The only restrictions that were
put in place during R1 were the closure of public transport and the cancellation of public
events, but it is unlikely that such measures had a strong effect on people’s behavior.

To assess if mobile phone behavior was different before our reference periods we can
analyze the results obtained by Ndubuisi-Obi et al. [383]. The authors also had access
to CDRs data from Sierra Leone during the first wave of COVID-19 and used it to study
compliance with mobility restrictions. However, their data spans a longer time window
(February 2020 to May 2020). We can see from Fig. 3.3 in [383] that mobility patterns
at the national level did not change significantly in the months before the lockdown,
and actually until the very beginning of the lockdown. This demonstrates that our
reference periods are valid since a separate analysis of the same type of data shows
that the temporal patterns were not significantly different before our reference periods.
Moreover, they also show a very sharp decrease in mobility during the lockdown, similar
to what we show in Fig.1 of Chapter 3. Their results add validity to our observations.
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Figure B.2: Armed Conflict Location and Event Data. (a) Number of reported events
from different categories. (b) Number of reported fatalities in the events from different categories.
The observation period of our study (March 17 - April 17, 2020) is highlighted in light blue in
both figures.

Finally, we check if there were notable conflict events that occurred in that period
and that could have affected the segregation patterns by analyzing the publicly available
Armed Conflict and Location Events Database (ACLED) [384]. In particular, we look at
whether there were spikes of violence or protests in the same period of our observation.
Fig. B.2 shows this data. We do not observe any particular increase in any type of
events before, and during our observation period, so we can exclude that other events
could have affected segregation. Also, looking specifically at our observation period (see
Fig. B.3), we can see that there are only two reported events with zero fatalities during
the lockdown, so we can also exclude that such events have been relevant for segregation.

Figure B.3: Armed Conflict Location and Event Data (restricted). Same as Fig.
B.2 but restricted to the observation period of our study. (a) Number of reported events from
different categories. (b) Number of reported fatalities in the events from different categories.
The time windows of interest (R1, R2, LD, CF) are highlighted.

The only festivity during our observation period is the Eastern Weekend, from April
10 (Good Friday) to April 13 (Eastern Monday). This festivity falls during our CF time
window and might have had an impact on segregation that we can not disentangle from
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our observations. However, we think that the restriction policies put in place during
the curfew played a major role in driving segregation dynamics. Also, the possible
confounding effect of Eastern during the curfew is of relative interest to us as our main
focus in this study is the sharp and short-term impact on segregation observed during
the lockdown period.

From this analysis, we can conclude that we can consider R1 and R2 as valid reference
periods (especially R1) and that we do not notice other relevant events that could have
affected significantly segregation during our observation period and especially the shock
that we observed during the lockdown.

B.3 Individual segregation

We computed the individual segregation index for each nodes in each network for each
observation period (R1, R2, LD, and CF). Subsequently, we measured the P (ru(t))
distribution of this index separately for each SE class and computed the median and
standard deviation of this distribution for each period and SE class. This is summarized
in Supp. Table B.10 for the GS(t) and GM (t) networks separately. For the interpretation
of this table see Chapter 3.

Figure B.4: Event distribution (a) Distribution of the number of incoming and outgoing
communication events per user. (b) Distribution of number of visited places per user.

B.4 Segregation measured with entropy

Segregation is often measured in terms of diversity, through entropy-like metrics [92,
121, 295]. The principle behind these metrics is that the more entropic (i.e. diverse) the
SES distribution of a given person’s contacts, the less segregated the person is. In terms
of mobility, the more entropic the SES distribution of places visited by a given person
(or of people visiting the same places as a given person), the less segregated the person
is. Despite being widely used metrics, we choose not to work with entropy-like metrics
and to use assortativity for two main reasons:

• The homophily phenomenon: while entropy only considers the socioeconomic sta-
tus (SES) distribution of an ego’s neighbors without referring it to the ego’s SES,
assortativity explicitly measures the correlation between an ego’s SES and its
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neighbors’ SES. To make an example, if a node that belongs to the poorest class
has connections only with the poorest class or only with the richest class, the
entropy will be the same (zero). On the other hand, assortativity gives us two
opposite outcomes (in this case, segregation and anti-segregation). We believe it
is better to use assortativity in our case because it is more nuanced, and captures
the homophily mechanisms behind segregation.

• Data sparsity: given the typical long-tail distribution of user’s activity (see Fig.
B.4), for most individuals, we only observe a few links in a single time window.
As such, most people will be assigned low entropy values, if not exactly 0 (see
Fig. B.5). Global assortativity is not affected by this issue because it measures
one single correlation coefficient between all nodes’ SES and their neighbors’ SES.
Moreover, individual-level segregation overcomes this issue, since it captures the
correlation between an ego’s network and its local network, by assigning exponen-
tially decreasing weights to distant nodes.

Figure B.5: Users with no diversity. Fraction of active users with Dm(u) = 0 (red) or
Ds(u) = 0 (blue).

One advantage to working with entropy in mobility, however, is that we can compute
individual values not only at the location level (the diversity of users visiting a location)
but also at the user level (the diversity of places visited by a user).

In this section, we replicate the segregation analysis with an entropy-like measure
of diversity and analyze explicitly the two problems mentioned above. Likewise the
individual-level analysis, we assign each user and each location to one out of nine socioe-
conomic classes. Given the set of places visited by a user u, we compute the empirical
probability that the user visits places of a given socioeconomic class Pm(u; c), with
c ∈ {1, ..., 9}, by normalizing the frequency of visits to places of each socioeconomic
class. We then define the user mobility diversity Dm(u) as:

Dm(u) = −
9∑

c=1

Pm(u; c) logPm(u; c)

Similarly, given the set of users visiting a place p, we compute the empirical proba-
bility that the place is visited by users from a given socioeconomic class Pm(p; c), with
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c ∈ {1, ..., 9}, by normalizing the frequency of visits from users of each socioeconomic
class. We then define the place mobility diversity Dm(p) as:

Dm(p) = −
9∑

c=1

Pm(p; c) logPm(p; c)

Finally, given the set of users with whom a user u communicates, we compute the
empirical probability that the user communicates with users from a given socioeconomic
class Ps(u; c), with c ∈ {1, ..., 9}, by normalizing the frequency of communication with
users from each socioeconomic class. We then define the user social communication
diversity Ds(u) as:

Ds(u) = −
9∑

c=1

Ps(u; c) logPs(u; c)

Since we have 9 socioeconomic classes, the three metrics are all bounded between
0 (connections to a single socioeconomic class) and log 9 ∼ 2.20 (equal frequency of
connections with all socioeconomic classes). The temporal evolution of the mean values
of Dm(u), Dm(p) and Ds(u) is shown in Fig. B.6.

Figure B.6: Mean diversity. Dynamics of mean diversity for mobility in terms of locations
(dark red) and users (light red) and for social communication (blue).

Regarding mobility, we can see that places’ diversity is overall significantly higher
than users’ diversity. The main reason behind this difference is data sparsity since single
users have much fewer connections than single locations (the same number of user-to-
location links is shared among 505,676 nodes on the user side and 405 nodes on the
location side). Therefore, for many users Dm(u) = 0 simply because they have very few
recorded events. We can also see that both diversities strongly decrease during lockdown,
which is the analogous observation we do with assortativity in Fig. 1 in Chapter 3
(decreasing diversity is equivalent to increasing assortativity in terms of segregation).

Regarding social communication, the diversity measure allows us to do a direct com-
parison with mobility at the user level. We can see that on average the set of of contacts
of a user is more diverse than the set of visited places. This is likely due to the constraints
of physical distance, which are clearly stronger in mobility than in communication (it is
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easier to communicate with someone living far away than to visit a faraway location, and
at the same time faraway places are more diverse in terms of RWI). During lockdown, in
Fig. 1 in Chapter 3, we observe a decreasing assortativity, which would correspond to an
increasing diversity. However, we can see that diversity slightly decreases during lock-
down. The reasons behind this discrepancy are the two issues with entropy-like metrics
that we mentioned initially, namely data sparsity and the inability to capture homophily.
To demonstrate it, for each time step, we analyze only the set of users with Ds(u) = 0,
which are always the majority due to data sparsity (see Fig. B.5). At a given time
step, these users communicate exclusively with a single socioeconomic class. However,
entropy alone is not able to tell us if this single socioeconomic class is similar to the
user’s socioeconomic class and if this changes with time. We can measure this effect if
we group users with Ds(u) = 0 by their socioeconomic class and look at the distribution
of their aggregate interactions. For example, we take all users with Ds(u) = 0 at a given
time belonging to class 1 (the poorest). We look at the socioeconomic class distribution
of their aggregate interactions (which indicates how many of these users interacted ex-
clusively with class 1, with class 2, ...). Temporal changes of this distribution indicate
some homophily change that entropy can not capture because users are anyway assigned
with Ds(u) = 0. The two distributions for R1 and LD are shown in Fig. B.8(a). We can
see from the figure that during LD more users are communicating exclusively with richer
(i.e. more distant) socioeconomic classes than in R1. To measure this effect we calculate
the entropy of these distributions for every day. From Fig. B.8(b) we can see that during
LD the entropy is higher than during reference periods, and this observation holds for
every class (see the right panels in Fig. B.8). This indicates that in every socioeconomic
class during LD, more users are communicating exclusively (i.e. with Ds(u) = 0) with
more distant socioeconomic classes than during reference periods. This means in turn
that there is a decrease in homophily during lockdown that entropy-like metrics like
diversity are not capturing, and given the predominant number of users with Ds(u) = 0
(see Fig. B.5) this difference is determinant of the discrepancy that we observe between
assortativity and diversity in the social communication network.

Regarding mobility, the same analysis can be applied to users with Dm(u) = 0 and
it is shown in Fig. B.7. However, in this case, the effect goes in the same direction as
the mean diversity, which means that in mobility there is an even stronger increase in
homophily and segregation than what is captured by entropy-like metrics.

B.5 Effects of local spatial correlations

As discussed in Chapter 3, in the analysis of segregation dynamics we removed all home-
to-home events from both GM (t) and GS(t) networks. Here we check that the main
results of the segregation analysis are not altered by these removals. In Fig. B.9 we show
the analogous panels of Fig. 1 in Chapter 3, without removing home-to-home events. We
can see that the presence of home-to-home events induces the sharply diagonal shape
of the distributions in panel (c) of Fig. B.9, with a network assortativity coefficient
ρ close to 1, visible in panel (e). However, we can see that the main result claimed
in Chapter 3 (the opposite direction of the network assortativity change of GM (t) and
GS(t) during the lockdown) is clearly visible also in Fig. B.9, and hence not determined
by the presence/absence of home-to-home events.

Also, in Fig. B.10 we show the analogous of the bottom panels (D-F) of Fig. 2 in
Chapter 3 for the social communication network GS(t), without the removal of commu-
nication events between people with the same inferred home location. For this result, we
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Figure B.7: Homophily changes not captured by diversity in the mobility network.
(Left figures) Comparisons between the socioeconomic distribution of the aggregate interactions
of users with Dm(u) = 0 during R1 and LD, for all classes from class 1 (a) to class 9 (q). (Right
figures) Dynamics of the entropy of the socioeconomic distribution of the aggregate interactions
of users with Dm(u) = 0, for all classes from class 1 (b) to class 9 (r).

can not reproduce the results in Chapter 3 for the mobility network GM (t) without the
removal of home-to-home travels as the local assortativity index ru(t) is defined only for
a network with no self-loops. Since nodes are locations in the mobility network GM (t),
home-to-home links are trips that start and end in the same node (hence self-loops).

80

C
E

U
eT

D
C

ol
le

ct
io

n



Figure B.8: Homophily changes not captured by diversity in the social communi-
cation network. (Left figures) Comparisons between the socioeconomic distribution of the
aggregate interactions of users with Ds(u) = 0 during R1 and LD, for all classes from class 1 (a)
to class 9 (q). (Right figures) Dynamics of the entropy of the socioeconomic distribution of the
aggregate interactions of users with Ds(u) = 0, for all classes from class 1 (b) to class 9 (r).

On the other hand, in the social communication network GS(t) home-to-home links are
communication events between different nodes that live in the same place (hence are
not self-loops). We can see from panels (a), (b), and (c) in Fig. B.10 that the results
change only slightly from the bottom panels of Fig. 2 in Chapter 3. The main message
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Figure B.9: Spatial effects on global segregation. Same calculations of Fig. 1 in Chapter
3, here made without removing links between nodes located at the same location (respectively,
movements to the home locations and calls/SMSs to users with the same home location as the
caller). (a-d) SE assortativity matrices (shown as the kernel density of the joint probability of
RWIs) of the mobility network during the two reference (R1 and R2), lockdown (LD), and curfew
(CF) periods. (e) The dynamics of the ρ SE assortativity index computed for the mobility (red)
and social communication (blue) networks. (f-i) Same as (a-d) but for the social communication
network. (j) Relative number of travels within WA, OWA, and between the areas WA-OWA
(also accounting for OWA-WA trips). (k) Number of communication events between people
living in WA and OWA, or between the two geographic areas. All curves are normalized by their
average computed over the full data period. For calculations on panels (e), (j), and (k), we used
3-day symmetric rolling time windows with a 1-d shift to obtain aggregated networks around the
middle day at time t of the actual window.

remains the same, with a clear dependence on the SES of the relative shift of the distri-
bution P (ru(t)) during intervention periods (panel c). The majority of classes become
less segregated than during reference periods (the poorer the class, the higher the segre-
gation decrease) and only the richer classes become more segregated, leaving the global
segregation to decrease just like in Fig. 3E in Chapter 3.

Rolling time window

As explained in the caption of Fig. 1 in Chapter 3 for all calculations we use a 3-d rolling
time window with 1-d shift. To make an example, if t = April 10, GM (t) or GS(t) are the
aggregate networks obtained from all the movements or communication events (resp.)
recorded between April 9 and April 11. We make this choice to smooth the time series
and to reflect the 3-d nature of the lockdown implemented by the Government of Sierra
Leone during April 5-7. In this way, there is one point in the time series (April 6th) that
incorporates all and only the interactions recorded during the lockdown.

However, the rolling time window can hide or smooth weekly patterns. We show
the ”raw” time series (without a rolling time window) in Fig. B.11: in this case, every
point refers to the segregation index computed from all the events recorded within a
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Figure B.10: Spatial effects on individual segregation in the social communication
network. Same calculations of the bottom panels of Fig. 2 in Chapter 3, here made without
removing links between nodes located at the same location (calls/SMSs to users with the same
home location as the caller). The P (ru(t)) individual assortativity index distributions for the
poorest (class 1 in a) and the richest (class 9 in b) SE classes for the two reference periods (R1 and
R2, thin dashed lines), the lockdown (LD, solid line), and curfew (CF, dashed thick line). Panel
(c) depicts the pairwise differences of median assortativity values of P (ru(t)) for each of the nine
SE groups in the social communication network. Differences are calculated pairwise between R1
and the R2, LD, and CF periods. The asterisk symbols over the bars (when bars are positive,
otherwise under them) in panels (c) indicate statistically significant differences computed with
the one-tailed Mann-Withney U-test (with p-value < 0.01)

given day. We can clearly see that our main finding is not an effect of the rolling time
window. Indeed, during the lockdown days, both curves show the same trends that we
find in Fig. 1 in Chapter 3, with segregation increasing significantly in the mobility
network and decreasing significantly in the communication network, with respect to
reference periods. However, we can also clearly see that the rolling time window is
hiding some weekly patterns related to work and school routines (working days in Sierra
Leone are from Monday to Friday). From the mobility curve in Fig. B.11 we can see
that during reference times mobility segregation is higher during weekdays than during
weekends. The same can be said, to a lesser extent, for communication. We can link this
observation to the fact that people during the weekend have normally more free time to
explore different places and to communicate with a different set of people than during
work days. Also, we can distinguish Sunday during the lockdown in the communication
curve much more than in reference periods, while we can not in the mobility curve. This
means that while the weekly pattern of social mixing is flattened in the physical space
by stay-at-home requirements, it is amplified in the communication space.

B.6 Effects of professional activities

As we discussed in Chapter 3, one of the possible confounding effects that can induce the
reduction of mobility and social communication activities during the lockdown period is
the lack of professional communications due to interrupted businesses and closed offices.
Here we investigate this factor by separating the mobility and call activities in our data
for office hours, between 9 AM and 7 PM, and out-of-office hours (7 PM-9 AM) and
recompute the daily segregation indices for the networks constructed from events of
mobility and communication falling within these periods, with the same resolution we
used in Chapter 3 (three-day time window with daily shift).

We can see from Fig. B.12 that the effects of professional activities are not the
driver of the segregation changes during the lockdown, neither for the mobility nor for
the social communication network. Indeed, separating the activity during office hours
from the one during out-of-office hours, we do not find significant differences in the
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Figure B.11: Raw segregation time series. Segregation dynamics for the mobility (red)
and social communication (blue) networks, with no rolling time window (every point refers to
all events recorded within a given day).

segregation dynamics. The only relevant difference is between the two curves of social
communication segregation, where segregation during working hours is systematically
higher than during the remaining times. Nevertheless, a very similar segregation decrease
appears during the lockdown in both curves, proofing that these reorganization patterns
were not due to the interruption of professional communications.

Figure B.12: Effects of professional activities. Segregation curves for mobility (red) and
social communication (blue) networks, obtained by explicitly separating the activities during
office hours (9 AM - 7 PM, solid lines) from out-of-office hours (dashed lines).

B.7 Effects of spatial and network correlations

In Chapter 3, we have shown signs of SE segregation both in mobility and in the social
network. However, also simple random network models might produce positive segrega-
tion values, thus making our observations ambiguous from the point of status homophily.
Indeed, segregated configurations might result from the convolution of multiple factors,
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Figure B.13: Reference models. Evolution of segregation levels obtained from the data
(darkest curves with circles, the same as in Fig. 1E in Chapter 3) and from reference models
(lighter curves) in the (a) mobility and (b) social communication networks. As reference mod-
els the gravity model (diamond curve), the configuration model (square curve), and SES label
swapped reference model (triangle curve) were considered.

Figure B.14: Gravity models The three exponents (alpha, beta, gamma) of the gravity model,
fitted with an OLS linear model, in the (a) mobility and (b) social communication network.

among which status homophily provides only one explanation. To assess the significance
of status homophily in the assortative network formation, we identify three main con-
founding factors and measure separately their contributions to the observed segregation
levels.

Physical distance

It is known that distance has a strong determining effect on spatial network forma-
tion [385]. On one hand, nearby places might host populations with similar SE profiles.
On the other hand, nearby places are likely to have more mobility or even communication
connections among each other. The convolution of these two effects could explain the
observed segregation patterns. To measure the impact of physical distance, we consider
a gravity model [385], where the number of connections Wij between places i and j is
only determined by the number of people living in the two places (Ni and Nj) and the
distance dij between them, according to the law:

Wij = C
Nα

i N
β
j

dγij
(B.1)

The three exponents α, β, and γ, and the constant C are fitted at every time t from
the data with an ordinary least square (OLS) regression. The values of the exponents
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can be seen in Fig. B.14. As evident from Fig. B.13, assortative indices computed from
the gravity model structures are relatively high but do not fully reproduce the level of
segregation observed in the real network. Consequently, distance effects contribute to
the emergence of the observed segregation but they do not fully explain them.

However, we can see that gravity model curves have similar temporal tendencies as
the empirical ones, which is due to overfitting. Indeed, we fit a gravity model per day,
instead of fitting a model for the full time-period. We say the model is overfit because we
are fitting the three exponents of the gravity model at every timestep (i.e. every day),
and predicting the weights of the same set of links on which the model was trained. The
three exponents are supposed to be universal, but as seen in Fig. B.14 they fluctuate over
time and significantly change during the lockdown. The purpose of this analysis is to
show that even the most overfitted gravity-like model, despite having strong explanatory
power, is not able to reproduce the same level of segregation, implying that there is also
a social preference mechanism that comes into play.

SE network correlations

Next, we consider the impact of SE status and network correlations on the observed
assortativity correlations to see whether they are contributing at all to the emergent
network segregation patterns. To test the impact of the RWI distribution, we randomly
swap the RWI labels among nodes (being people in Gs(t) or places in Gm(t)), keeping
the overall distributions and the network structures fixed [386]. In our implementation
we perform 100 random swap iterations and consider the mean assortativity value, for
every day, resulting from such iterations. This procedure destroys the network-SES cor-
relations and results in assortativity indices close to zero (see Fig. B.13). Consequently,
SE correlations are important in the emergence of network segregation patterns, as their
removal leads to the vanishing of the observed patterns.

Network structure correlations

Finally, our last goal is to verify how much degree heterogeneities are important for the
emergence of the segregation patterns in the networks. We test these effects by using con-
figuration network models where we swap the ending nodes of a pair of edges to remove
any structural correlations from the network [387]. Note that this method keeps intact
the degrees (number of connections) of nodes and the degree-SES label correlations.
Also in this procedure we perform 100 random swap iterations and consider the mean
assortativity value, for every day, resulting from such iterations. Results are shown in
Fig. B.13, where the assortativity indices measured in the configuration networks appear
around zero, indicating that the removal of structural correlations completely destroys
network segregation, thus the degree distribution and degree-label correlations do not
contribute at all to the original observations neither in case of the mobility or the social
communication network.
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Figure B.15: Spatial division. Western Area (WA) in grey and Outside Western Area (OWA)
in green.

Table B.1: School closures

0 No measures
1 Recommend closing
2 Require closing (only some levels or categories, e.g. just high school, or just public schools)
3 Require closing all levels

Table B.2: Workplace closures

0 No measures
1 Recommend closing (or work from home)
2 Require closing (or work from home) for some sectors or categories of workers
3 Require closing (or work from home) all but essential workplaces (e.g. grocery stores, doctors)

Table B.3: Cancel public events

0 No measures
1 Recommend cancelling
2 Require cancelling

Table B.4: Restrictions on gatherings

0 No restrictions
1 Restrictions on very large gatherings (the limit is above 1,000 people)
2 Restrictions on gatherings between 100-1,000 people
3 Restrictions on gatherings between 10-100 people
4 Restrictions on gatherings of less than 10 people
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Table B.5: Close public transport

0 No measures
1 Recommend closing (or significantly reduce volume/route/means of transport available)
2 Require closing (or prohibit most citizens from using it)

Table B.6: Public information campaigns

0 No COVID-19 public information campaign
1 public officials urging caution about COVID-19
2 coordinated public information campaign (e.g. across traditional and social media)

Table B.7: Stay at home

0 No measures
1 recommend not leaving house
2 require not leaving house with exceptions for daily exercise, grocery shopping, and ‘essential’ trips
3 Require not leaving house with minimal exceptions (e.g. allowed to leave only once every few days, or only one person can leave at a time, etc.)

Table B.8: Restrictions on internal movement

0 No measures
1 Recommend movement restriction
2 Restrict movement

Table B.9: International travel controls

0 No measures
1 Screening
2 Quarantine arrivals from high-risk regions
3 Ban on high-risk regions
4 Total border closure

Table B.10: Median values and standard deviations of individual assortativity index distribu-
tions. Values are computed for nodes (locations in the mobility network or people in the social
network) from the nine SE classes during the two reference periods (R1 and R2) and the inter-
vention periods (LD and CF). Standard deviation values are shown in parentheses.

GM class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9

R1 0.41 (0.16) 0.33 (0.14) 0.24 (0.11) 0.16 (0.1) 0.1 (0.04) 0.09 (0.01) 0.08 (0.07) 0.2 (0.11) 0.34 (0.11)
R2 0.4 (0.16) 0.33 (0.14) 0.24 (0.12) 0.15 (0.1) 0.1 (0.04) 0.1 (0.01) 0.09 (0.07) 0.21 (0.1) 0.32 (0.11)
LD 1.28 (0.32) 1.1 (0.3) 0.92 (0.29) 0.62 (0.33) 0.48 (0.24) 0.31 (0.08) 0.28 (0.06) 0.46 (0.11) 0.62 (0.11)
CF 0.59 (0.24) 0.47 (0.19) 0.4 (0.17) 0.24 (0.16) 0.15 (0.08) 0.13 (0.02) 0.12 (0.05) 0.23 (0.07) 0.34 (0.09)
GS

R1 1.24 (0.71) 0.97 (0.62) 0.78 (0.52) 0.39 (0.32) 0.17 (0.18) 0.12 (0.17) 0.18 (0.34) 0.86 (0.61) 1.28 (0.75)
R2 1.18 (0.71) 0.92 (0.6) 0.75 (0.51) 0.38 (0.31) 0.16 (0.17) 0.12 (0.18) 0.18 (0.34) 0.87 (0.62) 1.3 (0.77)
LD 1.02 (0.73) 0.78 (0.62) 0.64 (0.52) 0.31 (0.3) 0.12 (0.17) 0.12 (0.21) 0.21 (0.4) 0.88 (0.73) 1.38 (0.93)
CF 1.24 (0.72) 0.96 (0.62) 0.77 (0.52) 0.39 (0.32) 0.16 (0.17) 0.12 (0.18) 0.19 (0.35) 0.89 (0.63) 1.32 (0.78)
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Table B.11: List of p-values (order of magnitude) obtained from the statistical comparison of
distributions (shown in Fig. 2 in Chapter 3) with the one-tailed Mann-Withney U-test.

GM class 1 class 2 class 3 class 4 class 5 class 6 class 7 class 8 class 9

R2-R1 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1 10−1

LD-R1 10−20 10−21 10−19 10−9 10−9 10−10 10−8 10−10 10−10

CF-R1 10−7 10−7 10−7 10−3 10−3 10−8 10−2 10−1 10−1

GS

R2-R1 10−15 10−15 10−11 10−6 10−4 10−1 10−1 10−1 10−4

LD-R1 10−224 10−210 10−169 10−137 10−205 10−101 10−1 10−13 10−77

CF-R1 10−1 10−3 10−4 10−2 10−4 10−5 10−1 10−5 10−16
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Appendix C

Deviations from universality in
human mobility modeling

0.1 0.2 0.3 0.4 0.5
u

0.2

0.4

0.6

u

Pearson corr. = 0.75
A BOSTON

0.2 0.4 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.74
B WASHINGTON

0.2 0.4 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.75
C SEATTLE

0.2 0.3 0.4 0.5 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.73
D MIAMI

0.2 0.4 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.76
E DETROIT

0.2 0.4 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.76
F DALLAS

0.2 0.3 0.4 0.5
u

0.2

0.4

0.6

u

Pearson corr. = 0.74
G CHICAGO

0.2 0.3 0.4 0.5 0.6
u

0.2

0.4

0.6
u

Pearson corr. = 0.73
H NEW YORK

0.2 0.4 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.75
I PHILADELPHIA

0.2 0.3 0.4 0.5 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.71
J LOS ANGELES

0.2 0.3 0.4 0.5 0.6
u

0.2

0.4

0.6

u

Pearson corr. = 0.72
K SAN FRANCISCO L

Figure C.1: The relation between ϵu and ηu in all CBSAs.

C.1 Deviations

As mentioned in Chapter 4, the two deviation metrics ϵu and ηu are highly correlated,
despite measuring aspects of the EPR model apparently uncorrelated. Indeed, ϵu mea-
sures how good the EPR model is in predicting in how much time the next exploration
step is going to happen. On the other hand, ηu measures how ”far” is the final visi-
tation frequency distribution from the expected ⟨fk⟩ ∼ k−γ . The relation between the
two variables is shown in Fig.C.1, for all CBSAs. The Pearson correlation coefficients
go from 0.71 in Los Angeles to 0.76 in Dallas and Detroit, indicating that if a user’s
exploration dynamics is not well described by the EPR model, then also its visitation
frequency is likely not well described.
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Figure C.2: Results of the LASSO regression for the other CBSAs (dependent variable: ϵu):
true ϵu vs predicted ϵ̂u. R2 is the coefficient of determination while α is the regularization
parameter.
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Figure C.3: Results of the LASSO regression for the other CBSAs (dependent variable: ηu):
true ηu vs predicted η̂u. R2 is the coefficient of determination while α is the regularization
parameter.

C.2 Regression models

As mentioned in Chapter 4, both ϵu and ηu can be partially predicted from sociode-
mographic and life habits features, indicating that the EPR model is biased towards
certain groups of people. We perform a LASSO regression for both deviation variables,
estimating the regularization parameter α through cross-validation (see the Methods
section in Chapter 4 for details), to quantify this bias in every CBSA. The regression
results for ϵu are shown in Fig. C.2, where we show the relation between the actual ϵu
and the predicted ϵ̂u. The coefficient of variations goes from R2 = 0.14 for New York
to R2 = 0.24 for Seattle. The results for ηu, on the other hand, are shown in Fig. C.3,
where we show the relation between the actual ηu and the predicted η̂u. The coefficient
of variations in this case goes from R2 = 0.18 for New York to R2 = 0.25 for Seattle
and San Francisco. The results show the bias towards sociodemographic and life habit
variables is robust and consistent across all CBSAs.

91

C
E

U
eT

D
C

ol
le

ct
io

n



0 50000 100000150000200000250000
Income (USD)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
De

ns
ity

×10 5A
Highest u

Lowest u

0.0 0.2 0.4 0.6 0.8 1.0
Car

0

1

2

3

4

5

6

De
ns

ity

B

0.0 0.2 0.4 0.6 0.8 1.0
White

0

1

2

3

4

5

De
ns

ity

C

1 0 1 2
u

0.50

0.25

0.00

0.25

0.50

0.75

u

R2 = 0.22
=4 × 10 3

D

0.05 0.00 0.05
Coefficient

Income
Education

Public transport
Black
White

Hawaiian
Native
Asian

Car
Other

E

0.05 0.00 0.05
Coefficient

American
Department store

Supermarket
Pharmacy

Apparel
Automotive

Other outdoors
Park

Residential
Road

F

Figure C.4: A) The income distribution of users in the highest (blue) and lowest (yellow)
10% quantile of ηu. B) Same as A) for the use of car. C) Same as A) for the probability of
being white. D) Results of the LASSO regression: true ηu vs predicted η̂u. R2 is the coefficient
of determination while α is the regularization parameter. E) Coefficients of the socioeconomic
features. F) Coefficients of the life habit features (only highest and lowest 5 shown).

C.3 Results for ηu in Boston

The analogous results of Fig.2 in Chapter 4 for ηu are shown here in Fig.C.4. As we can
see in the figure, results are consistent with ϵu, with the only significant exception being
the use of car, which is negatively associated with ϵu and positively with ηu.

C.4 Feature importance

In Chapter 4, we measure the bias of the EPR model towards sociodemographic and life
habit characteristics in Boston through the coefficients of the LASSO regressions. Here
we analyze the same results for all the other CBSAs.

In Fig.C.5 we show the coefficients of the regressions on ϵu. As mentioned in Chap-
ter 4, the results are consistent across CBSAs. First, regarding the sociodemographic
features (first and third columns in the figure), income is always the most important
predictor, with a negative coefficient: the lower the income, the higher ϵu. Moreover,
also the use of cars has a consistent negative impact on ϵu, except for Los Angeles,
Philadelphia, and Detroit, where the coefficient is almost zero. Complementary to the
use of cars, the use of public transport is either positively associated with ϵu or irrelevant.
Education is not always significant, but when it is the coefficient is negative. Finally, the
role of race is not uniform: a negative coefficient is observed for the probability of being
white in New York, Los Angeles, Seattle, and San Francisco, while it is observed for
the probability of being black in Washington, Los Angeles, San Francisco, and Chicago.
On the other hand, the probability of being Asian is often positively associated with ϵu,
though with a small coefficient, e.g. in Washington, Dallas, Chicago, and Philadelphia.

Regarding the life habit features (second and fourth columns in the figure), we also
find some similar results as in Chapter 4 for the other CBSAs. Indeed, among the
categories of places with the highest positive coefficients, we find mostly routine places
like roads, factories, buildings, and offices. On the other hand, among places that are
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Figure C.5: First and third column: Coefficients of the socioeconomic features for the other
CBSAs (dependent variable: ϵu). Second and fourth column: Coefficients of the life habit features
(only highest and lowest 5 shown) for the other CBSAs (dependent variable: ϵu.)

negatively associated with ϵu, we find also many restaurants, like fast food and American,
and shops, like supermarkets, grocery stores, department stores, and apparel shops.

Regarding the coefficients of the regressions on ηu, shown in Fig.C.6, the only notable
difference with the ones for ϵu is the coefficient of the use of cars, which is positive and
significant in most places, like we observed for Boston in Chapter 4.

C.5 Life habits categories

From Fig.C.7 to Fig. C.19, we show the full list of coefficients of the regression on ϵu
(panel A) and ηu (panel B) for Boston grouped by macro category (as mentioned in the
main text, all categories have been manually grouped in 13 macro categories in [121]),
that have an absolute value higher than 10−3 for both regressions. In both panels of all
figures, coefficients are sorted based on the values of the regression on ϵu. Notably, the
sign of coefficients is always the same for the two regressions, except only for Cafeteria
in Fig. C.9, which has a positive relation with ϵu and a negative one with ηu. Moreover,
in addition to the sign, coefficients also share similar absolute values. In other words,
categories that are important for predicting ϵu are likely to be important for predicting
ηu, with the same direction.

As mentioned in Chapter 4 and in the previous section, categories that are most
positively associated with deviations belong to the ”City / Outdoors”, ”Entartainment”,
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Figure C.6: First and third column: Coefficients of the socioeconomic features for the other
CBSAs (dependent variable: ηu). Second and fourth column: Coefficients of the life habit
features (only highest and lowest 5 shown) for the other CBSAs (dependent variable: ηu.)
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Figure C.7: A) Coefficients of habit features grouped in the ”Arts / Museum” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

and ”Work” macro groups. On the other hand, categories that are most negatively
associated with deviations belong to the ”Food” and ”Shopping” macro groups.
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Figure C.8: A) Coefficients of habit features grouped in the ”City / Outdoors” taxonomy
for the dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A)
Coefficients of the same features as panel A for the dependent variable ηu, with a coefficient
greater than 10−3 in both regressions.
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Figure C.9: A) Coefficients of habit features grouped in the ”Coffee / Tea” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

C.6 Stochastic deviations

The stochastic deviations that we generate from simulations in the orange distributions
in panels C-F of Fig.1 in Chapter 4 are generated using the individual parameters taken
from the data, to make the results directly comparable with the empirical deviations,
shown in the light blue distributions in the same figure. To generate a stochastic devia-
tion ϵu for a user u, we run a simulation of the EPR model for a fictitious user with the
same visitation tendency ρu and the same number of distinct places Su of the real user.
On the other hand, to generate a stochastic deviation ηu, we run another simulation, us-
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Figure C.10: A) Coefficients of habit features grouped in the ”College” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.
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Figure C.11: A) Coefficients of habit features grouped in the ”Entertainment” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

ing the same ρu and number of steps Nu, then we consider only the visitation frequency
of the first Ku distinct places (where also in this case ρu, Nu and Ku are taken from
the data. The details on the simulations can be found in the following paragraphs, with
the only difference that instead of having a distribution of parameters taken from the
data of individual users, we fix all of them and tune only ρu, because we are specifically
interested in measuring the role of this parameter and to do this we need to control for
the others.

As mentioned in Chapter 4, the stochastic errors are related to the exploration ten-
dency, encoded in the parameter ρu. However, the stochastic deviations that we generate
in the orange distributions in panels C-F of Fig.1 in Chapter 4, as we mentioned above,
do not only depend on ρu but also on other individual parameters like the number of
steps Nu and the number of distinct places Su. To demonstrate the dependence on ρu,
then, we run other stochastic simulations of the EPR models where we control for the
other parameters, such that the final results can be directly associated with ρu. We run
such controlled experiments for 20 different values of ρu, keeping all the other parameters
fixed.

For ϵu, we consider simulations for Su = 100 distinct places. As explained in the
Methods section in Chapter 4, in the EPR model the inter-event time is drawn from the
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Figure C.12: A) Coefficients of habit features grouped in the ”Food” taxonomy for the depen-
dent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients of the
same features as panel A for the dependent variable ηu, with a coefficient greater than 10−3 in
both regressions.

distribution P (τu,S = T ) = (1 − Pu(S))T−1Pu(S), where Pu(S) = ρuS
−γ is the user’s

probability of exploration. In every simulation, we compute the simulation’s ϵu as:

ϵu =
1

Su

Su∑
S=1

|τu,S − ⟨τu,S⟩|
|τu,S | + |⟨τu,S⟩|

where τu,S is the random value drawn from P (τu,S = T ) and ⟨τu,S⟩ = 1/Pu(S) is the
expected value. We run 100 simulations for each value of ρu and compute ϵu for every
simulation. In other words, we consider an ensemble of 100 identical users generated
by the EPR model. In panel A of Fig.C.20 we show the mean and standard deviation
of the distribution of ϵu for every value of ρu. As can be seen in the figure, the values
that we get in the simulations decrease linearly with ρu. The result of these simulations
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Figure C.13: A) Coefficients of habit features grouped in the ”Grocery” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.
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Figure C.14: A) Coefficients of habit features grouped in the ”Health” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

indicates that the stochastic part of ϵu that we measure from data depends on ρu and
decreases with it.

For ηu, we run simulations of 100 steps, where at each step the fictitious user explores
or returns with a probability Pu(S) = ρuS

−γ . At the end of the simulation, we compute
the visitation frequency distribution and compute the ηu as the KL-divergence with
fu,k ∼ k−γ−1:

ηu =

Ku∑
k=1

fu,k log
fu,k
⟨fu,k⟩

where Ku is the rank of the least visited among the locations visited more than once
(as explained in Chapter 4, we don’t consider locations visited only once to take out tail
effects). Also in this case, we run 100 simulations for each value of ρu and compute ηu
for every simulation. In panel B of Fig.C.20 we show the mean and standard deviation
of the distribution of ηu for every value of ρu. Similarly to what we observe with ϵu, also
ηu from simulations decreases with ρu, although with a sharper decrease for low values
of ρu and a very smooth decrease for higher values. Also in this case, these simulations
indicate that the stochastic part of ηu that we measure from data depends on ρu and
decreases with it.
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Figure C.15: A) Coefficients of habit features grouped in the ”Service” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

C.7 Microscopic mechanisms

In Fig.C.21 we show the analogous results of Fig.3 A and B in Chapter 4 for all the
other CBSAs. As we can see from the first and third columns of the figure, the positive
association between exploration burstiness and ϵu, after controlling for the stochasticity
through ρu, is visible and consistent across all CBSAs. On the other hand, from the
second and fourth columns of the figure, we can see that also the role of the P.R. error
in determining ηu is visible and consistent across all CBSAs, except for the users with
an extremely high visitation tendency (similarly to what we have seen for Boston in
Chapter 4).

C.8 Characterization of assumptions’ violations

In Fig.C.22 we show the analogous results of Fig.3 C and D in Chapter 4 for all the other
CBSAs. As can be seen in the figure, bursty trains are indeed characterized by the same
specific categories in all CBSAs. Indeed, museums and art galleries, coffee shops, and
shopping locations are visited significantly and consistently in all CBSAs more often
during bursty exploration trains. Conversely and equally consistently in all CBSAs,
workplaces and venues in the City / Outdoor category, such as parks, neighborhoods,
playgrounds, and residential places, are rarely explored during bursty trains.

The same mirrored pattern as Boston in recency trains is observed in other CBSAs.
In fact, when people repeatedly return to the same place, they tend to do so at routine
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Figure C.16: A) Coefficients of habit features grouped in the ”Shopping” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.

and habitual locations, such as residential areas, workplaces, as well as transportation
hubs and sports venues, and this is consistently true across CBSAs. In contrast and
equally consistently, amusement places like coffee shops, restaurants, and shopping malls
are not typically revisited continuously.

C.9 Spatial distribution

In Fig.4 of Chapter 4 2e can see a clear urban-rural pattern in all CBSAs. Indeed,
users who are best represented by the EPR model, i.e. who are in the lowest 10% of
the distribution of the combined deviation variable ϵu + ηu, are mostly located far from
the city center, in bigger and less urban census tracts. On the other hand, the most
non-well-represented users, i.e. who are in the highest 10% of the distribution of the
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Figure C.17: A) Coefficients of habit features grouped in the ”Sports” taxonomy for the
dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients
of the same features as panel A for the dependent variable ηu, with a coefficient greater than
10−3 in both regressions.
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Figure C.18: A) Coefficients of habit features grouped in the ”Transportation” taxonomy
for the dependent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A)
Coefficients of the same features as panel A for the dependent variable ηu, with a coefficient
greater than 10−3 in both regressions.
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Figure C.19: A) Coefficients of habit features grouped in the ”Work” taxonomy for the depen-
dent variable: ϵu, with a coefficient greater than 10−3 in both regressions. A) Coefficients of the
same features as panel A for the dependent variable ηu, with a coefficient greater than 10−3 in
both regressions.

101

C
E

U
eT

D
C

ol
le

ct
io

n



0.2 0.4 0.6 0.8 1.0
u

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

u 
(S

im
ul

at
io

ns
)

A

0.2 0.4 0.6 0.8 1.0
u

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

u 
(S

im
ul

at
io

ns
)

B

Figure C.20: A) Relation between ρu and ϵu in simulated experiments. B) Relation between
ρu and ηu in simulated experiments.

BOSTON -0.40 WASHINGTON -0.32 SEATTLE -0.29
MIAMI -0.20 DETROIT -0.20 DALLAS -0.30

CHICAGO -0.16 NEW YORK -0.10 PHILADELPHIA -0.33
LOS ANGELES -0.22 SAN FRANCISCO -0.22

Table C.1: Pearson coefficients between the logarithm of tracts’ population and the difference
between the number of users in the highest and lowest 10% of ϵu and ηu.

combined deviation variable ϵu+ηu, are mostly located closer to the city center, in smaller
and more urban census tracts, though in the very central tracts, the two quantiles are
mostly balanced. These visual results are confirmed by the more robust analysis shown
in Fig.C.23, where we explicitly show the relation between a tract’s population density (a
proxy to its urbanization level) and the variable shown in the maps of Fig.4 in Chapter
4, i.e. the count difference between the two extreme quantiles. The relation is negative
in all CBSAs, with Pearson correlation coefficients that go from -0.23 in New York and
San Francisco to -0.37 in Dallas and Philadelphia and to -0.41 in Boston, as shown in
the following Table C.1:
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Figure C.21: First and third column: Average values of ϵu for users grouped in quantiles of ρu
and burstiness, for the other CBSAs. Second and fourth column: Average values of ηu for users
grouped in quantiles of ρu and P.R. error, for the other CBSAs.
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Figure C.22: Left column: Characterization of bursty trains in all CBSAs, i.e., sequences of
consecutive exploration steps, in terms of relative visits to defined categories, compared to all
visits (blue bars, left y-axis) and to exploration steps only (red bars, right y-axis). Right column:
Characterization of recency trains in all CBSAs, i.e., sequences of consecutive visits to the same
place, in terms of relative visits to defined categories, compared to all visits (blue bars, left y-
axis) and to return steps only (red bars, right y-axis).
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Figure C.23: Relation between the logarithm of tracts’ population density and the difference
between the number of users in the highest and lowest 10% of ϵu + ηu, for the other CBSAs.
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[140] Aili Asikainen, Gerardo Iñiguez, Javier Ureña-Carrión, Kimmo Kaski, and Mikko
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[202] Gergő Tóth, Johannes Wachs, Riccardo Di Clemente, Ákos Jakobi, Bence Ságvári,
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[288] P. Erdős and A. Rényi. On random graphs i. Publ. math. debrecen, 6(290-297):18,
1959.

[289] Sergio Currarini, Jesse Matheson, and Fernando Vega-Redondo. A simple model
of homophily in social networks. European Economic Review, 90:18–39, 2016.

[290] Gautier Krings, Francesco Calabrese, Carlo Ratti, and Vincent D Blondel. Urban
gravity: a model for inter-city telecommunication flows. Journal of Statistical
Mechanics: Theory and Experiment, 2009(07):L07003, 2009.

[291] David Liben-Nowell, Jasmine Novak, Ravi Kumar, Prabhakar Raghavan, and An-
drew Tomkins. Geographic routing in social networks. Proceedings of the National
Academy of Sciences, 102(33):11623–11628, 2005.

[292] Juan Antonio Carrasco, Eric J Miller, and Barry Wellman. How far and with whom
do people socialize? empirical evidence about distance between social network
members. Transportation Research Record, 2076(1):114–122, 2008.

[293] Mark EJ Newman. Assortative mixing in networks. Physical review letters,
89(20):208701, 2002.

[294] Leto Peel, Jean-Charles Delvenne, and Renaud Lambiotte. Multiscale mixing pat-
terns in networks. Proceedings of the National Academy of Sciences, 115(16):4057–
4062, 2018.

125

C
E

U
eT

D
C

ol
le

ct
io

n
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[377] Nicola Perra, Bruno Gonçalves, Romualdo Pastor-Satorras, and Alessandro
Vespignani. Activity driven modeling of time varying networks. Scientific reports,
2(1):469, 2012.
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