CEU eTD Collection

Simple vs. Sophisticated Portfolio Optimization:

U.S. Retail Level Portfolio Study Case

By
Adiletkhan Nassylkhan

Submitted to
Central European University

Department of Economics and Business

In partial fulfillment of the requirements for the degree of

Master of Arts in Economic Policy in Global Markets

Supervisor: Professor Tomy Lee

Vienna, Austria

2025



CEU eTD Collection

Copyright Notice

Copyright © Adiletkhan Nassylkhan, 2025. Simple vs. Sophisticated Portfolio Optimization:

U.S. Retail Level Portfolio Study Case - This work is licensed under Creative Commons

Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) 4.0 International license.

[lose)

For bibliographic and reference purposes this thesis should be referred to as: Nassylkhan,

Adiletkhan. 2025. Simple vs. Sophisticated Portfolio Optimization: U.S. Retail Level Portfolio

Study Case. MA thesis, Department of Economics and Business, Central European University,

Vienna.

! Icon by Font Awesome.


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://fontawesome.com/

CEU eTD Collection

Author's Declaration

I, Adiletkhan Nassylkhan, the undersigned candidate for the MA degree in Economic Policy
in Global Markets, declare herewith that the present thesis titled "Simple vs. Sophisticated
Portfolio Optimization: U.S. Retail Level Portfolio Study Case" is exclusively my own work,
based on my research and only such external information as properly credited in notes and
bibliography.

I declare that no unidentified and illegitimate use was made of the work of others, and
no part of the thesis infringes on any person's or institution's copyright.

I also declare that no part of the thesis has been submitted in this form to any other

institution of higher education for an academic degree.

Vienna, on 9" June 2025

Full Name: Adiletkhan Nassylkhan

il



CEU eTD Collection

Abstract

Over the past decade, exchange-traded funds (ETFs) have revolutionized retail investing by
providing low-cost access to diversified portfolios that typically track an index or sector rather
than a single stock. This shift raises the question of how portfolio optimization methods
perform when applied solely to ETF-based, multi-asset class portfolios. This research evaluates
the out-of-sample performance of five advanced portfolio optimization methods relative to the
naive equal-weighted (1/N) rule from the perspective of a retail investor. The analysis is based
on a portfolio comprising 30 U.S.-listed ETFs that represent both traditional and alternative
asset classes. A 252-day rolling-window simulation is used to generate daily out-of-sample
performance data from March 30, 2009, to May 7, 2025, with daily rebalancing?. 1 test the
optimization methods using two approaches. First, I apply optimization methods at the whole
portfolio level without any constraints on asset class exposure. Second, I impose asset-class-
specific weight constraints and perform optimization within each asset class. The results show
that in the first case, complex optimizers often produce portfolios heavily concentrated in short-
term Treasuries, allowing the naive strategy to outperform substantially. In the second case,
performance improves as optimizers operate within asset classes that share similar
characteristics; however, this improvement still does not substantially outperform the naive
approach. Overall, the equal-weighted strategy consistently matches or outperforms the
complex methods in terms of Sharpe ratio, turnover, and computation time. These findings
suggest that for retail investors, the theoretical benefits of complex optimization are often
outweighed by estimation error, high turnover, and computational cost.

Keywords: Portfolio Optimization, Retail Investors, Multi-Asset Portfolios, Rolling-Window

Analysis

2 As the main analysis relies on daily rebalancing, quarterly rebalancing results - provided in the Appendix 8.3 -
show similar performance patterns.
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1. Introduction

Portfolio optimization originates from the fundamental principle of diversification, often
captured by the phrase "not putting all your eggs in one basket." It is a quantitative approach
that helps investors identify the most efficient combination of assets within a portfolio. The
objective is typically to achieve the highest expected return for a given level of risk or to
minimize risk for a given level of return. The field has been extensively studied since 1952
when Harry Markowitz introduced the Modern Portfolio Theory (Markowitz 1952). Since then,
the growth of data availability and computational capabilities has led to the development of
more advanced optimization techniques.

At the same time, the investment landscape has evolved in response to the rapid growth
of exchange-traded funds (ETFs). ETFs are investment vehicles listed on stock exchanges that
seek to replicate the performance of a particular index, sector, or asset class. Since 2008, ETFs
have experienced considerable growth, with global assets under management (AUM) reaching
11.1 trillion USD by the end of 2023. This corresponds to a compound annual growth rate of
19.8% (Morningstar 2023, cited in State Street Global Advisors 2024). According to a recent
survey, nearly one-third of respondents expect global ETF AUM to more than double, reaching
30 trillion USD within the next five years, while 60% anticipate that ETF assets will reach at
least 26 trillion USD by June 2029 (PwC 2024).

While a substantial body of academic research has focused on portfolio optimization
using individual stocks, such as S&P 500 constituents or bond funds, relatively few studies
have analyzed optimization within ETF-only portfolios. As retail investors with limited
resources and practical constraints increasingly favor ETFs over individual securities to reduce
company-specific risk, it becomes especially relevant to examine how portfolio optimization

performs in portfolios composed entirely of ETFs. This raises an important question: Do
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complex optimization methods significantly outperform the naive equal-weighted (1/N) rule
when applied to retail-level, multi-asset portfolios made up entirely of ETFs?

This study evaluates the out-of-sample performance of five advanced portfolio
optimization methods in comparison to the naive (1/N) strategy, using a dataset of 30 U.S.-
listed ETFs representing both traditional and alternative asset classes. A rolling-window
approach with a 252-day horizon is applied to simulate daily out-of-sample portfolio
performance from March 30, 2009, to May 7, 2025, with daily rebalancing®. The analysis is
conducted under two frameworks: an unconstrained setting, where optimizers freely allocate
across all assets, and a constrained setting, where weights are fixed at the asset class level, and
optimization is applied within each class.

The results reveal that in the unconstrained case, complex optimization techniques tend
to produce impractical portfolios, often heavily concentrated in ETFs that track short-term
Treasuries, leading to underperformance relative to the naive strategy. Although performance
improves under the constrained framework, the naive (1/N) strategy portfolio still performs
comparably or better in terms of Sharpe ratio, turnover, and computational efficiency. These
results suggest that for retail investors, the naive (1/N) strategy can offer more robust and cost-
effective outcomes than complex optimization methods, particularly when accounting for
estimation error and implementation challenges. These findings provide practical guidance for
retail investors, financial advisors, and policymakers, underscoring the importance of
simplicity.

The remainder of this thesis is structured as follows. Chapter 2 reviews the relevant
literature. Chapter 3 describes the dataset and the ETF selection process. Chapter 4 outlines the

optimization setup and performance evaluation metrics. Chapter 5 presents the empirical

3As the main analysis relies on daily rebalancing, quarterly rebalancing results - provided in the Appendix 8.3 -
show similar performance patterns.



CEU eTD Collection

results and their interpretation. Chapter 6 proposes policy recommendations. Chapter 7
concludes with a summary of the main insights and suggestions for future research. Chapter 8
provides an appendix with supplementary results, including full dataset details and rolling
Sharpe ratios. It also presents an extended analysis of portfolios composed of 60 ETFs. To
assess the robustness of the findings, results for a quarterly rebalanced portfolio of 30 ETFs

are also included.



CEU eTD Collection

2. Literature Review

The literature on portfolio optimization is well-established, with most research focusing on
methods for selecting the most efficient mix of securities within a single asset class, such as
stocks, bonds, or commodities. However, the growing use of exchange-traded funds (ETFs) by
retail investors — attracted by their low costs, liquidity, and built-in diversification — raises
questions about the relevance of traditional optimization approaches when applied to portfolios
composed entirely of ETFs. This thesis addresses this gap by evaluating whether complex
optimization strategies provide added value over the naive equal-weighted approach in ETF-
based portfolios that are already diversified across sectors or asset classes.

DeMiguel, Garlappi, and Uppal (2009) provide a foundational study for evaluating
portfolio optimization methods. They compare thirteen optimization strategies against the
naive equal-weighted (1/N) rule using seven monthly datasets of U.S. equity market returns,
including sector, industry, international, and factor portfolios. Their findings reveal that none
of the optimized strategies consistently outperform the 1/N rule out-of-sample in terms of
Sharpe ratio, certainty-equivalent return, or turnover. This underperformance is primarily
attributed to estimation error in return and risk parameter inputs derived from historical data.
While the study is critical in challenging the practical utility of theoretically optimal models, it
remains limited to equity portfolios and does not address ETF-specific characteristics.

Plyakha, Uppal, and Vilkov (2012) further explore portfolio construction by comparing
equal-, value-, and price-weighted strategies using data from 1000 randomly generated
portfolios composed of 100 stocks from the S&P 500 index. Their findings show that equal-
weighted portfolios, rebalanced monthly, outperform the alternatives on key performance
metrics, including total mean return, four-factor alpha, Sharpe ratio, and certainty-equivalent
return. This outperformance is attributed mainly to a rebalancing premium and higher

systematic risk. Despite these contributions, the study also remains confined to equity
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portfolios and does not examine how such strategies perform in multi-asset, ETF-based
settings.

Jacobs, Miiller, and Weber (2014) take a broader view by evaluating diversification
strategies not only across equities but also across asset classes. Their study compares eleven
optimization models with a set of heuristic allocation rules using a dataset that spans nearly
four decades and includes global equity indices (MSCI regional), euro-denominated bonds
(iBoxx Euro Overall Index), and commodities (S&P GSCI). Although the study does not use
ETF return series directly, it uses indices that are transparent, investable, and commonly
tracked by ETFs, thereby making the results applicable to ETF-based portfolio strategies. The
authors find that heuristic strategies such as equal weighting and GDP-weighting offer
diversification benefits comparable to those of advanced portfolio optimization methods.

Together, these studies make a significant contribution to the understanding of portfolio
optimization and highlight the challenges associated with implementing complex models in
practice. However, they do not fully capture the realities of ETF-based investing. Unlike
individual securities, ETFs already encapsulate a degree of diversification by tracking entire
sectors, indices, or asset classes. This raises doubts about the incremental benefits of applying

optimization techniques to portfolios exclusively composed of such instruments.
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3. Data

This study analyzes a diversified portfolio composed of 30 U.S.-listed ETFs. The
selection is based on TradingView's list © of the 100 most-traded ETFs, ranked by daily trading
volume multiplied by share price. While narrowing the list to 30 required discretionary
judgments, the selection prioritized highly liquid and widely recognized ETFs to minimize
subjective bias and enhance the validity of the analysis. A full description of the selected ETFs

is provided in Appendix 8.1.1: Dataset Details — 30 ETFs.

Daily adjusted closing price data were retrieved via the Yahoo Finance API and
converted into return series, covering the period from March 31, 2008, to May 7, 2025 (4,305
observations per ETF). The start date of March 31, 2008 was chosen to ensure a consistent and
complete time series across all selected ETFs. ETFs with shorter trading histories, such as
XLRE (Real Estate) and XLC (Communication Services), were excluded to maintain
consistency. For out-of-sample analysis, the period from March 30, 2009, to May 7, 2025
(4,054 observations) is used. The final portfolio includes the following ETFs, classified as

shown in Table 1 below.

Table 1: Classification of 30 ETFs

Number of
Asset Class ETFs Examples

U.S. Equity Sectors 9 Financials, Technology, Healthcare (e.g., XLF, XLK, XLV)

U.S. Equity Indices 4 Broad Market, Small/Mid Cap (e.g., SPY, QQQ, IWM)

International Equity 3 Global and Emerging Markets (e.g., ACWI, EEM)

Fixed Income 8 Corporate, Treasury, and Muni Bonds (e.g., TLT, LQD, BND)
Alternative Investments 3 Gold, Silver, Real Estate (e.g., GLD, SLV, VNQ)
Cash Equivalents 3 Short-Term Treasuries (e.g., BIL, SHY)
Total 30 ETFs

Figure 1 displays the annualized risk-return profiles of the 30 selected ETFs over the

full sample period from March 31, 2008, to May 7, 2025. Each point represents an ETF,

¢ TradingView, Most Traded ETFs, accessed June 7, 2025, https://www.tradingview.com/markets/etfs/funds-
most-traded/.
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positioned according to its annualized average return (y-axis) and annualized standard
deviation (x-axis). The ETFs are color-coded by asset class, clearly revealing clustering
patterns that reflect the distinct characteristics of each asset class. As expected, ETFs such as
SHY and BIL (black), which track short-term Treasuries, exhibit the lowest volatility and
returns. In contrast, equity ETFs (blue) show higher volatility accompanied by higher returns.
Fixed-income ETFs (yellow) fall into a moderate risk-return range, while international equities
(red) and alternatives (green) exhibit greater dispersion. This highlights the variation in risk-

return profiles across asset classes and supports the case for diversified, class-aware portfolio

construction.
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4. Methodology

Let P;, denote the closing price of asset i at time t. The corresponding simple return in

(Pit—Pit-1)

percentage terms is given by: r;, = 100 X Pirs
Let r, = (r1t,..., Ty ) represent the vector of asset returns at time ¢, and let w =
(w4q,..., wy) be the vector of portfolio weights. The return of the portfolio at time t, denoted
by R;, is then computed as the weighted sum of individual asset returns:
Ry = w'ry = wyry ¢ +... FwyTy
Since portfolio return is the weighted sum of asset returns, the main goal of portfolio
optimizers is to determine the set of weights that balances risk and return. To achieve this,

optimizers use historical asset return data as input and compute weight allocations based on

specific optimization criteria.

4.1 Optimization Setup

To evaluate the performance and robustness of the optimization strategies, two approaches
were applied: unconstrained and constrained. In the unconstrained setting, optimization was
applied at the whole portfolio level without any restrictions on asset class exposures. This
allowed the optimizers to allocate freely across all 30 ETFs based solely on historical risk and
return characteristics. Such a setup is valuable for evaluating how each optimizer performs
under maximum flexibility without any predefined guidance or human-imposed structure on
asset class weights.

Under the constrained approach, the process began by assigning fixed weights to each
asset class, as shown in Table 2. Optimization was then applied individually within each asset
class. This structure leverages the fact that assets within the same class tend to exhibit similar
behavior, thereby making within-class optimization more reliable. Additionally, when

optimization is applied at the overall portfolio level, it must select among all 30 ETFs. In
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contrast, optimizing within asset classes reduces the dimensionality of each problem — for
example, choosing among only 16 ETFs in the equity class or 8 in fixed income — thereby

lowering estimation error and improving stability.

Table 2: Portfolio Weights by Asset Class

Asset Class Weight Allocation
Equities 55%
Fixed Income 35%
Alternatives 5%
Short-Term Treasuries 5%

4.2 Walk-Forward Optimization

Given that the optimizer's input is historical data, their outputs are sensitive to the specific
sample used. To address this and reduce the risk of overfitting, a rolling window approach — a
dynamic form of walk-forward optimization — is used to enhance the robustness and
generalizability of the results. This method follows the structure outlined by Jacobs, Miiller,
and Weber (2014). Still, it is adjusted based on daily frequency and daily rebalancing to
generate rolling estimations for evaluating the out-of-sample performance of portfolio
strategies. The process is structured as follows:
e Step 1: Training window — The model is trained on a rolling window of the most
recent 252 trading days (app. one year) to compute optimal portfolio weights.
e Step 2: Testing window — These weights are then applied to the following trading day,
which serves as out-of-sample data to evaluate performance.
e Step 3: Iteration — The window is rolled forward by one day, and the process is
repeated. Thus, the portfolio is rebalanced daily. For quarterly rebalancing results,
please refer to the Appendix 8.3.
Overall, this approach generates a sequence of daily out-of-sample returns, allowing for a more

realistic and reliable evaluation of each strategy's performance over time.
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4.3 Portfolio Allocation Strategies

This section provides a brief overview of six optimization methods used in this research to find

the optimal portfolio weights, w = (wy, ..., Wy).

4.3.1 Equally Weighted (EW)

Also known as the naive or 1/N strategy, the equally weighted portfolio is one of the simplest
forms of portfolio optimization. It assigns an equal share of capital to each asset in the portfolio
without relying on expected return or risk estimates. Despite its simplicity, it often serves as a

surprisingly difficult benchmark to outperform. For a portfolio with N assets, the weights are:

1
w; =N,fori =1,...,N.

4.3.2 Inverse-Volatility (IV)

Originally proposed by Carvalho, Xiao, and Moulin (2011), the Inverse-Volatility (IV) strategy
assigns asset weights based on the inverse of each asset's historical volatility (standard
deviation). Assets with lower risk receive higher weights, thereby contributing to a reduction
in overall portfolio risk. It is essential to note that this approach relies on historical volatility

and assumes that past volatility will continue to persist in the future. The weights are:

1/0;
w, = ———
l Zszl(l/O-i)

4.3.3 Maximum Diversification (MD)

Introduced by Choueifaty and Coignard (2008) and further developed by Choueifaty et al.
(2013), the Maximum Diversification (MD) optimizer aims to construct the most diversified
portfolio by maximizing the diversification ratio D. This ratio is defined as the weighted

average of individual asset volatilities divided by the portfolio volatility. The strategy allocates

10
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higher weights to assets that contribute more to diversification. The optimization problem is

formulated as follows:

wlo

VoTZw

N
max D = subject to Z w;=1Lw; =20

i=1

4.3.4 Maximum Sharpe Ratio (MSR)

The Maximum Sharpe Ratio (MSR) strategy builds on the mean-variance optimization
framework introduced by Markowitz (1952) and was further developed by Sharpe (1966), who
introduced the Sharpe Ratio. This strategy seeks to identify the portfolio on the efficient
frontier that maximizes the Sharpe Ratio by achieving the best trade-off between expected
return and volatility. The optimization problem is formulated as follows:

W'y — 15
VoTZw

Where p is the vector of expected returns, is the risk-free rate, and X is the covariance matrix

max

of asset returns. To enhance stability and mitigate estimation error, the covariance matrix in

this study was estimated using the Ledoit-Wolf shrinkage method (Ledoit and Wolf 2004).

4.3.5 Global Minimum Variance (GMYV)

The Global Minimum Variance (GMV) strategy represents a special case of mean-variance
optimization, as proposed initially by Markowitz (1952). On the efficient frontier, it represents
the portfolio with the lowest possible risk, regardless of the expected return. This approach
completely disregards return forecasts and focuses solely on minimizing total portfolio

volatility. The optimization problem is defined as:

N

min w"Xw  subject to Z w; =1
i=1
As with the MSR strategy, the covariance matrix £ was estimated using the Ledoit—Wolf

shrinkage method (Ledoit and Wolf 2004).
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4.3.6 Hierarchical Risk Parity (HRP)

Hierarchical Risk Parity (HRP), introduced by Lopez de Prado (2016), constructs portfolios
based on a hierarchical clustering algorithm that groups assets according to their similarities.
Unlike traditional optimizers that rely on inverting the covariance matrix, HRP allocates
weights based on the hierarchical structure of asset correlations, aiming to form risk-balanced
clusters. This technique enhances stability and reduces estimation error, particularly in high-
dimensional settings.

Although HRP lacks a closed-form optimization expression, its procedure typically
involves four key steps: (1) estimating the correlation matrix, (2) constructing a hierarchical
clustering dendrogram, (3) reordering the matrix using quasi-diagonalization, and (4)

allocating weights recursively based on cluster variances.

4.4 Statistical Measures

To evaluate each portfolio optimizer, this study uses the built-in performance evaluation
methods provided by Skfolio, a Python library developed by Delatte and Nicolini (2023) (see
Appendix). Among the available metrics, the following key performance indicators are
selected, as they are widely used in portfolio optimization research:

Cumulative Returns: Captures the total percentage gain or loss over the investment
period, taking into account compounding. It is computed as the product of sequential daily
returns minus one:

Cumulative Returns = (1 + 13,) X (1 +140) X oo (L +144p) — 1

Sharpe Ratio: Measures risk-adjusted performance by comparing excess return
(portfolio return minus the risk-free rate) to volatility (Sharpe 1966). A higher Sharpe ratio
indicates a more favorable return per unit of risk. This study sets the risk-free rate to 0%, a
common simplification in daily return-based analysis to avoid adding noise from near-zero

short-term rates.
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Ry — 15

Sharpe Ratio =

Op

Average Daily Turnover: Measures the frequency of portfolio weight changes,
calculated as the average absolute change in weights between consecutive daily rebalancing
periods. Higher turnover implies increased trading costs.

Maximum Drawdown: This represents the largest decline from a portfolio's peak to
its trough, highlighting the worst-case loss scenario and providing insight into the portfolio's
downside risk.

CVaR at 95%: Conditional Value at Risk (CVaR) at 95% measures the expected
average loss in the worst 5% of cases. Unlike Value at Risk (VaR), which indicates the
minimum loss beyond a confidence threshold, CVaR quantifies the severity of losses that
exceed that threshold. This makes CVaR a more comprehensive measure of tail risk and is
particularly useful for assessing downside exposure in portfolio optimization, especially when

return distributions exhibit fat tails or skewness (Rockafellar and Uryasev 2000).
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5. Results and Discussion

This section presents the main results of the portfolio optimization analysis, which is based on
a portfolio composed of 30 ETFs. It compares performance under both unconstrained and
constrained settings, highlights limitations of the optimizers, and evaluates computational
efficiency alongside key portfolio metrics such as turnover and the average number of assets.
Additional analyses using a 60-ETF portfolio and quarterly rebalancing — designed to test
model robustness on larger samples and different rebalancing frequencies — are provided in

Appendix 8.2 (Portfolio of 60 ETFs) and Appendix 8.3 (Results: Quarterly Rebalancing),

respectively.

5.1 Results: Unconstrained Optimization

Table 3: Unconstrained: Out-of-Sample Performance Metrics (30 ETFs)

Performance Metrics EW v MD MSR GMV HRP
Ann Mean 9.74% | 2.51% | 146% | 4.13% | 1.67% | 1.14%
Ann Std Dev 10.72% | 1.63% | 043% | 7.22% | 1.09% | 0.22%
Ann Sharpe Ratio 0.91 1.54 3.38 0.57 1.54 5.15
MAX Drawdown 26.08% | 3.65% | 095% | 26.64% | 4.51% | 0.31%
CVaR at 95% 1.59% | 0.24% | 0.057% | 1.18% | 0.14% | 0.023%
Unconstrained: Cumulative Returns by Optimization Strategy
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Figure 2: Unconstrained: Out-of-Sample Cumulative Portfolio Returns (30 ETFs)
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Table 3 and Figure 2 summarize the out-of-sample performance metrics under the
unconstrained setting, where optimizers were applied at the overall portfolio level without any
limits on asset class exposure.

The Equal Weight (EW) strategy delivered the highest annualized mean return (9.74%)
and achieved over 300% cumulative growth over the 16-year period, outperforming all other
methods. However, this performance was accompanied by relatively high volatility (10.72%)
and a maximum drawdown of 26.08%, resulting in a Sharpe ratio of 0.91. Despite its simplicity,
EW achieved strong risk-adjusted returns. This aligns with evidence that many individual
investors tend to favor such straightforward allocation approaches (Benartzi and Thaler 2007).
In contrast, the Maximum Sharpe Ratio (MSR) strategy yielded weaker outcomes, with a lower
Sharpe ratio (0.57) and a comparable drawdown of 26.64%, indicating limited robustness —
likely due to instability in the covariance matrix and resulting estimation errors.

Hierarchical Risk Parity (HRP) and Maximum Diversification (MD) delivered
exceptionally high Sharpe ratios — 5.15 and 3.38, respectively — primarily due to their
concentrated allocations to short-term Treasury bills. This resulted in extremely low portfolio
volatility (0.22% for HRP and 0.43% for MD) but also low annualized mean returns: 1.14%
for HRP and 1.46% for MD. Consequently, both strategies achieved low cumulative returns
over the full period despite their high Sharpe ratios.

Inverse Volatility (IV) and Global Minimum Variance (GMV) delivered more balanced
and consistent performance profiles. IV achieved a moderate return of 2.51% with low
volatility (1.63%), resulting in a Sharpe ratio of 1.54. GMV showed a comparable outcome,
yielding a return of 1.67% with lower volatility (1.09%) and an identical Sharpe ratio of 1.54.

In summary, EW outperformed in cumulative returns and delivered results more
consistent with investor preferences. At the same time, models like HRP and MD excelled on

risk-adjusted metrics — primarily due to their heavy exposure to short-term Treasury bills.
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These findings highlight the limitations of unconstrained optimizers in multi-asset portfolios

and underscore the importance of incorporating practical constraints in model design.

5.2 Optimizer's Limitations

In the unconstrained setting, all optimizers — except Equal Weight (EW) and Maximum Sharpe
Ratio (MSR) — produced allocations heavily concentrated in short-term Treasury ETFs. As
shown in Figure 3, Hierarchical Risk Parity (HRP) consistently allocated a large portion of the
portfolio to Ultra-Short Treasuries (SHV) and 1-3 Month Treasury Bills (BIL), reflecting its

strong preference for low-volatility assets throughout the full out-of-sample period.

Hierarchical Risk Parity Portfolio Weights
(Top 10 Average Allocated Assets)

ETFs
- sHY
 BIL
— SHY
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Time Period: 2009-03-30 to 2025-05-07
Figure 3: Unconstrained: HRP Portfolio Weights (Top 10 Average Allocated Assets)
While this allocation effectively reduced volatility, it also significantly constrained
return potential, resulting in portfolios that were highly stable but lacked meaningful growth.
This outcome reflects how certain optimizers rank assets based on return per unit of risk, as
illustrated in Figure 4. Under this criterion, short-term Treasury bills with near-zero volatility
appear disproportionately attractive, often leading optimizers to favor these instruments and

construct overly concentrated portfolios.
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Return per Unit of Volatility for ETFs (2008-2025)
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Figure 4: Return per Unit of Volatility for ETFs

The MSR portfolio exhibited unstable and unpredictable allocation patterns, as
illustrated in Figure 5, where asset weights shifted abruptly over time. This instability arises
from estimation errors in both expected returns and the covariance matrix, two critical
components of the MSR optimization process. Because the method relies on inverting the
covariance matrix and is highly sensitive to even slight inaccuracies in return estimates, minor
errors can lead to substantial and erratic changes in portfolio composition (DeMiguel, Garlappi,
and Uppal 2009). When applied to a universe of 30 ETFs within a rolling-window framework,
the inversion process became particularly unreliable, resulting in highly volatile and
unbalanced allocations. However, when constraints were introduced, and MSR was applied
separately within individual asset classes, performance improved. The smaller number of assets
within each class enhanced the stability of the optimization and produced more interpretable

and consistent portfolio weights, as discussed in the following section.
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Figure 5: Unconstrained: MSR Portfolio Weights (Top 10 Average Allocated Assets)

5.3 Results: Constrained Optimization

Table 4: Constrained: Out-of-Sample Performance Metrics (30 ETFs)

Performance Metrics EW v MD MSR GMV HRP
Ann Mean 9.69% | 934% | 857% | 813% | 7.79% | 9.02%
Ann Std Dev 10.62% | 10.13% | 10.10% | 12.19% | 8.14% 9.59%
Ann Sharpe Ratio 0.91 0.92 0.85 0.67 0.96 0.94
MAX Drawdown 2593% | 25.44% | 3041% | 26.46% | 22.96% | 24.60%
CVaR at 95% 1.58% 1.50% 1.48% 1.92% 1.18% 1.42%
Constrained: Cumulative Returns by Optimization Strategy
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Table 4 and Figure 6 summarize the out-of-sample performance metrics under the constrained
setting. First, fixed weight allocations were assigned to each asset class, and then optimization
was performed within each class individually.

Under this setup, all strategies produced more balanced and interpretable results. Equal
Weight (EW) remained one of the top performers, achieving the highest annualized mean
return (9.69%) and maintaining a decent Sharpe ratio (0.91). While it exhibited moderate
volatility (10.62%) and a relatively high drawdown (25.93%), its consistent growth makes it a
reliable benchmark for comparison.

Inverse Volatility (IV) and Hierarchical Risk Parity (HRP) also delivered strong results,
with annual returns of 9.34% and 9.02%, respectively. Their Sharpe ratios (0.92 for IV and
0.94 for HRP) were slightly higher than that of EW, reflecting improved risk-adjusted
performance. Importantly, their maximum drawdowns and CVaR levels were also marginally
lower than those of EW, suggesting better downside protection within a diversified structure.

Maximum Diversification (MD) achieved a return of 8.57% but experienced the largest
drawdown (30.41%) among all strategies, along with a relatively lower Sharpe ratio of 0.85.
This indicates that while MD benefited from diversification, it remained vulnerable to market
corrections even under the constrained setting.

Maximum Sharpe Ratio (MSR) showed noticeable improvement compared to the
unconstrained case. Its Sharpe ratio increased to 0.67, and its return (8.13%) was decent,
though it still lagged behind other strategies in terms of risk-adjusted efficiency.

Global Minimum Variance (GMYV) continued to prioritize portfolio stability, yielding
the lowest annualized volatility (8.14%) and the lowest CVaR (1.18%) among all strategies.
Although it had the lowest return (7.79%), its Sharpe ratio (0.96) was the highest, indicating a

highly efficient balance between risk and return in this setting.
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In summary, applying fixed-weight constraints led to more realistic and robust
optimization outcomes. Risk-focused strategies such as IV, HRP, and GMV became more
competitive, while MSR showed improved stability. These results highlight the value of
assigning asset-class weights and applying optimization within each class — particularly in
multi-asset portfolio construction, where managing a broad set of asset classes can introduce
significant estimation challenges. However, it is worth noting that none of the more complex
optimizers significantly outperformed the simple EW strategy across the key performance

metrics.

5.4 Cumulative Computation Time

Table 5: Computation Time in Seconds (30 ETFs)

Optimizers | Unconstrained | Constrained
EW 3 5
v 18 36
MSR 76 350
GMV 76 395
MD 85 449
HRP 320 421

When evaluating portfolio optimizers for retail-level applications, computation time becomes
a practical concern. Unlike institutional settings with access to high-performance computing,
individual investors typically rely on personal devices with limited processing power. In such
cases, optimizers that are too resource-intensive may not be suitable for frequent rebalancing
or responsive portfolio adjustments. Therefore, understanding how long each method takes to
run can help determine which strategies are both practical and accessible for everyday use.
Table 5 presents the computation times for each optimizer under both unconstrained
and constrained conditions. These results were obtained using a MacBook Air 13" (2020) — a
commonly used consumer laptop — making the findings directly relevant for retail investors.

As expected, the Equal Weight (EW) strategy was the fastest, completing the task in just 3
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seconds without constraints and 5 seconds with constraints due to its simple, non-iterative
logic. Inverse Volatility (IV) was also efficient, though its computation time doubled from 18
to 36 seconds when constraints were applied — due to the added steps needed to enforce asset
class limits.

More complex strategies, such as Maximum Sharpe Ratio (MSR), Global Minimum
Variance (GMV), and Maximum Diversification (MD), required substantially longer runtimes.
For example, MD took 85 seconds in the unconstrained case and 449 seconds in the constrained
setup. These increases reflect the additional computational burden of working with large
covariance matrices and solving iterative optimization problems. Hierarchical Risk Parity
(HRP) had the highest overall computation time (320 seconds unconstrained, 421 seconds
constrained), though it remained relatively stable across settings due to its clustering-based
approach.

In summary, while all strategies remained computationally feasible on a standard
laptop, the gap between simple and complex methods is noticeable. For retail investors
managing their own portfolios, strategies such as EW and IV offer not only reasonable
performance but also practical speed and ease of use. For those willing to wait longer or

rebalance less frequently, more advanced methods, such as HRP or MD, remain viable.
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5.5 Average Active Assets and Turnover

Table 6: Average Active Assets and Turnover (30 ETFs)

Optimizers Unconstrained Constrained
Avg. Active Assets Avg. Daily Turnover | Avg. Active Assets Avg. Daily Turnover

EW 30.00 0.56% 30.00 0.54%
v 30.00 0.36% 30.00 0.59%
HRP 10.43 0.77% 30.00 1.33%
MD 11.92 1.43% 16.29 1.97%
GMV 9.63 0.55% 12.83 1.76%
MSR 8.45 9.64% 9.14 13.05%

When evaluating portfolio strategies, it is essential to look beyond returns and risk-adjusted
metrics to consider indicators that reflect real-world usability — particularly for retail investors.
Two such indicators are the average number of active assets and average daily turnover, both
of which provide insight into a strategy's diversification and cost efficiency. A higher number
of active assets suggests broader diversification, while a lower count indicates concentration.
Turnover was calculated as the average sum of absolute changes in portfolio weights between
consecutive days, reflecting how frequently and substantially the portfolio is rebalanced.
Higher turnover implies more trading activity, which may result in increased transaction costs
— a crucial consideration for retail investors managing their own portfolios.

Table 6 compares these two indicators across all portfolio strategies under both
unconstrained and constrained settings. As expected, Equal Weight (EW) and Inverse
Volatility (IV) maintain complete diversification across all 30 ETFs in both setups, with
minimal daily turnover — demonstrating high stability and low trading costs. These
characteristics make them particularly well-suited for retail investors seeking simplicity and
cost control.

In the unconstrained case, more complex optimizers, such as the Maximum Sharpe
Ratio (MSR), Global Minimum Variance (GMYV), and Hierarchical Risk Parity (HRP), allocate
to a narrower subset of assets, averaging only 8 to 10 ETFs. This reflects a strong tendency

towards concentration, likely due to their sensitivity to estimated risk-return trade-offs. These
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optimizers also show relatively low turnover in the unconstrained setting, as they repeatedly
favor a small set of preferred assets.

Under constrained optimization, however, all strategies shift toward broader
diversification. HRP reaches full asset inclusion, and both GMV and MSR increase their
average number of holdings. Yet, this diversification comes at a cost: higher daily turnover.
Notably, MSR's turnover climbs to over 13%, implying more frequent trading and potentially
higher transaction costs.

In summary, while constraints enhance diversification and reduce concentration risk,
they also tend to increase portfolio activity. For retail investors, this underscores a critical trade-
off between stability and realism in portfolio design. Simpler strategies such as EW and IV

may offer a more accessible balance of performance, diversification, and operational ease.
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6. Policy Implications

The findings of this thesis highlight the value of promoting simple, transparent, and accessible
investment strategies for retail investors. The equal-weight (EW) approach consistently
delivered strong performance while remaining low in complexity and transaction costs. As
such, financial literacy programs and digital investment platforms should prioritize teaching
and enabling this method. EW should also be considered a default benchmark against which
more complex optimization strategies are evaluated. Educational initiatives — especially those
targeting first-time investors — should include practical modules that cover basic ETF investing,
risk diversification, and rebalancing techniques using intuitive strategies, such as EW.
Moreover, robo-advisors and investment platforms should offer EW and other low-turnover
strategies as default or entry-level options to support informed and cost-effective decision-

making.
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7. Conclusion

With exchange-traded funds (ETFs) now forming a major part of retail-level portfolios, it is
essential to assess whether complex portfolio optimization methods offer meaningful
advantages over the naive equal-weighted (1/N) rule. While much of the existing research
focuses on optimizing portfolios of individual securities, this study evaluates how complex
optimization methods perform when applied to portfolios composed entirely of ETFs, which
themselves offer built-in diversification by tracking broad indices, sectors, or asset classes.

Using a dataset of 30 U.S.-listed ETFs and a rolling-window approach with a 252-day
window, I evaluated out-of-sample performance from March 30, 2009, to May 7, 2025,
comparing five optimization strategies under both unconstrained and asset class-constrained
frameworks. The findings show that in unconstrained optimization — where allocation was
applied at the whole portfolio level without any restrictions on asset class exposures — many
advanced strategies, despite their theoretical appeal, produced highly concentrated portfolios
in short-term Treasuries. This resulted in limited long-term cumulative returns and
underperformance compared to the naive strategy.

Although constrained optimization — where fixed-weight exposure to asset classes was
imposed and optimizers were used within each asset class — improved portfolio balance and
stability, the equal-weight approach still performed comparably or better across key metrics,
such as the Sharpe ratio, turnover, and computational efficiency. These results suggest that for
retail investors, the 1/N strategy remains a robust, cost-effective, and easy-to-implement
solution.

This study provides several key insights for retail investors, financial advisors, and
policymakers. First, the equal-weight strategy remains a difficult benchmark to surpass.

Second, applying asset class constraints enhances optimization by reducing overfitting and
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improving portfolio structure. Third, optimizers should be used within the same asset classes;
otherwise, differences in asset characteristics can distort allocations and reduce effectiveness.
Future research could implement other optimization strategies, expand the ETF
universe to include international or thematic exposures and integrate tax and transaction cost
considerations. It would also be worthwhile to explore weekly, monthly, or yearly rebalancing
using different rolling windows, such as 100 or 252 days. Assessing how these results
generalize to institutional settings or different market regimes may also offer more profound

insight into the trade-off between optimization complexity and practical performance.
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8. Appendix

Methodological Tools: PyPortfolioOpt and Skfolio

For portfolio optimization, I used two Python libraries: PyPortfolioOpt and Skfolio.
PyPortfolioOpt was applied to compute portfolio weights for the HRP, MSR, and GMV
strategies (Martin 2021), offering flexible implementations of risk- and return-based
allocations. In parallel, Skfolio was used for EW, MD, and IV portfolios (Delatte and Nicolini
2023). Its compatibility with scikit-learn, built-in performance metrics, and pipeline-friendly
design made it suitable for comparative analysis. Performance metrics were calculated using
Skfolio's Population class (from Skfolio import Population), ensuring reproducibility through
a documented, open-source package. These tools enabled the consistent construction and

evaluation of diverse portfolio strategies.
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8.1 Portfolio of 30 ETFs
8.1.1 Dataset Details: 30 ETFs

Table 7 provides a brief description of the ETFs, including their tickers and asset classes, all
of which can be found and downloaded via the Yahoo Finance API.

Table 7: Overview of ETF asset classes, tickers, and descriptions

Asset Class ETF Ticker | Description
U.S. Equity Sectors (9 ETFs) XLF Financials: banks, insurance, capital markets
XLV Health Care: pharmaceuticals, biotech, medical devices
XLK Technology: software, hardware, IT services
XLE Energy: oil, gas, and energy equipment
XLI Industrials: aerospace, transportation, construction
XLY Consumer Discretionary: retail, autos, entertainment
XLU Utilities: electric, gas, and water utilities
XLP Consumer Staples: food, beverages, household goods
XLB Materials: chemicals, packaging, metals, mining
U.S. Equity Indices (4 ETFs) SPY S&P 500 index ETF
QQQ Nasdaqg-100 index ETF
DIA Dow Jones Industrial Average ETF
WM Russell 2000 small-cap ETF
International Equity (3 ETFs) ACWI Global equity: All Country World Index
EFA Developed Markets ex-US
EEM Emerging Markets
Fixed Income (8 ETFs) LQD Investment-grade corporate bonds
HYG High-yield corporate bonds
TLT Long-term U.S. Treasuries
AGG Total U.S. bond market
IEF 7-10 Year U.S. Treasuries
MUB Municipal bonds
EMB Emerging markets sovereign bonds
BND Broad U.S. bond market
Alternative Investments (3 ETFs) | GLD Gold ETF (SPDR)
SLV Silver ETF (iShares)
VNQ U.S. Real Estate Investment Trusts
Cash Equivalents (3 ETFs) BIL 1-3 Month Treasury Bills
SHV Ultra-short Treasuries
SHY 1-3 Year U.S. Treasuries
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8.1.2 Rolling Sharpe Ratios

Unconstrained: 252-Day Rolling Sharpe Ratios of 30 ETFs
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Figure 7: Unconstrained: 252-Day Rolling Sharpe Ratios (30 ETFs)
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Figure 8: Constrained: 252-Day Rolling Sharpe Ratios (30 ETFs)
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8.2 Portfolio of 60 ETFs

The Equal Weight (EW) strategy consistently performs well across 60 ETFs defined in Table
8 below — twice the number analyzed in the original study — based on Sharpe ratio, turnover,
and computation time. In the unconstrained setting, EW achieved nearly a 500% return, as
shown in Figure 9, while other optimization methods failed to surpass 100%. Although all
strategies performed better in the constrained setting, EW still outperformed the rest. Its Sharpe
ratio remained within a practical and reasonable range of 0.81 to 0.84. In terms of computation
time, EW was completed within 3-4 seconds, and its daily turnover and number of active assets
were among the lowest, ranking second only to the IV strategy in the unconstrained setting.
These findings suggest that for retail investors, the potential advantages of complex
optimization methods are often offset by estimation errors in expected returns and risk

parameters.

8.2.1 Dataset Details: 60 ETFs

Table 8 presents the expanded 60 ETF portfolio, offering significantly greater diversification
compared to the 30 ETF version. The equity category alone increased by 28 ETFs, primarily
due to the inclusion of additional U.S. equity sectors and broad market indices. In contrast,
other asset classes saw only modest increases or remained unchanged, primarily due to the
limited availability of highly liquid ETFs that specifically track Fixed Income, Alternative
Investments, and Cash Equivalents.

Table &: Classification of 60 ETFs

Number of
Asset Class ETFs Examples
U.S. Equity Sectors 16 Financials, Tech, Healthcare (e.g., XLF, XLK, XLV)
U.S. Equity Indices 14 S&P 500, Nasdag-100, Small/Mid-Cap (e.g., SPY, QQQ, IWM)
International Equity 8 Global, Emerging, Europe (e.g., ACWI, EEM, VGK)
Other Equity ETFs 6 Growth, Value, Semiconductors (e.g., VUG, IWD, SOXX)
Fixed Income 8 Long and Short-Term Bonds (e.g., TLT, LQD, BND)
Alternative Investments 5 Commodities, Real Estate (e.g., GLD, VNQ, USO)
Cash Equivalents 3 Treasury Bills and Short-Term Bonds (e.g., BIL, SHY)
Total 60 ETFs
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8.2.2 Results: Unconstrained Optimization (60 ETFs)

Table 9: Unconstrained: Out-of-Sample Performance Metrics (60 ETFs)

Performance Metrics EW v MD MSR GMV HRP
Ann Mean 11.84% | 3.76% | 1.39% | 4.04% | 1.68% | 1.15%
Ann Std Dev 14.65% | 3.37% | 0.46% | 799% | 1.27% | 0.22%
Ann Sharpe Ratio 0.81 1.12 3.02 0.51 1.32 5.16
MAX Drawdown 33.77% | 7.55% | 1.07% | 23.87% | 5.23% | 0.31%
CVaR at 95% 2.19% | 0.51% | 0.060% | 1.36% | 0.16% | 0.023%
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Figure 9: Unconstrained: Out-of-Sample Cumulative Portfolio Returns (60 ETFs)
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Figure 10: Unconstrained: 252-Day Rolling Sharpe Ratios (60 ETFs)
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8.2.3 Results: Constrained Optimization (60 ETFs)

Table 10: Constrained: Out-of-Sample Performance Metrics (60 ETFs)

Performance Metrics EW v MD MSR GMV HRP
Ann Mean 9.44% | 9.20% 8.41% 7.29% 7.54% 8.80%
Ann Std Dev 11.21% | 10.66% | 10.83% | 13.12% | 8.06% | 10.03%
Ann Sharpe Ratio 0.84 0.86 0.78 0.56 0.94 0.88
MAX Drawdown 26.83% | 25.99% | 28.68% | 26.02% | 22.01% | 25.21%
CVaR at 95% 1.66% 1.59% 1.59% | 2.07% 1.17% 1.49%
Constrained: Cumulative Returns by Optimization Strategy (60 ETFs)
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Figure 11: Constrained: Out-of-Sample Cumulative Portfolio Returns (60 ETFs)
Constrained: 252-Day Rolling Sharpe Ratios of 60 ETFs

Time Period: 2010-03-29 to 2025-03-31

Figure 12: Unconstrained: 252-Day Rolling Sharpe Ratios (60 ETFs)
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8.2.4 Cumulative Computation Time (60 ETFs)

Table 11: Computation Time in Seconds (60 ETFs)

Optimizers | Unconstrained | Constrained
EW 4 3
IV 22 39
MSR 137 295
GMV 79 241
MD 109 511
HRP 632 555

8.2.5 Average Active Assets and Turnover (60 ETFs)

Table 12: Average Active Assets and Turnover (60 ETFs)

Optimizers Unconstrained Constrained
Avg. Active Assets Avg. Daily Turnover | Avg. Active Assets Avg. Daily Turnover

EW 60.00 0.59% 54.00 0.59%
v 60.00 0.45% 54.00 0.62%
HRP 9.90 0.73% 54.00 3.39%
MD 14.10 1.69% 18.51 2.22%
GMV 11.68 0.62% 15.45 1.88%
MSR 9.91 10.94% 10.66 15.49%
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8.3 Results: Quarterly Rebalanced (30 ETFs)

8.3.1 Results: Quarterly Rebalanced, Unconstrained Optimization (30 ETFs)

Table 13: Unconstrained: Quarterly Reb, Out-of-Sample Performance Metrics (30 ETFs)

Performance Metrics EW v MD MSR GMV HRP
Ann Mean 9.55% | 2.46% | 1.39% | 4.08% | 1.69% | 1.14%
Ann Std Dev 10.64% | 1.76% | 0.53% | 7.15% | 0.98% | 0.22%
Ann Sharpe Ratio 0.90 1.40 2.62 0.57 1.73 5.13
MAX Drawdown 24770% | 4.29% | 1.88% | 13.03% | 3.28% | 0.35%
CVaR at 95% 1.60% | 0.26% | 0.66% | 1.19% | 0.13% | 0.023%

Unconstrained: Quarterly Rebalanced, Cumulative Returns by Optimization Strategy
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Figure 13: Constrained: Quarterly Reb, Out-of-Sample Cumulative Portfolio Returns (30

ETFs)

8.3.2 Results: Quarterly Rebalanced, Constrained Optimization (30 ETFs)

Table 14: Constrained: Quarterly Reb, Out-of-Sample Performance Metrics (30 ETFs)

Performance Metrics EW 1A% MD MSR GMV HRP
Ann Mean 9.53% 9.24% 8.29% 9.20% 7.73% 8.93%
Ann Std Dev 10.52% | 10.12% | 10.25% | 12.710% | 8.56% 9.70%
Ann Sharpe Ratio 0.91 0.91 0.81 0.72 0.90 0.92
MAX Drawdown 24.51% | 24.74% | 30.07% | 26.52% | 26.56% | 25.46%
CVaR at 95% 1.58% 1.52% 1.52% 1.99% 1.24% 1.45%
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Constrained: Quarterly Rebalanced, Cumulative Returns by Optimization Strategy
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Figure 14: Constrained: Quarterly Reb, Out-of-Sample Cumulative Portfolio Returns (30
ETFs)

8.3.3 Quarterly Reb: Cumulative Computation Time (30 ETFs)

Table 15: Quarterly Reb, Computation Time in Seconds (30 ETFs)

Optimizers | Unconstrained | Constrained
EW 4 4
IV 6 5
GMV 6 12
MSR 7 13
MD 8 16
HRP 12 9

8.3.4 Quarterly Reb: Average Active Assets and Turnover (30 ETFs)

Table 16: Quarterly Reb, Average Active Assets and Turnover (30 ETFs)

Optimizers Unconstrained Constrained (Quarterly)
Avg. Active Assets Avg. Daily Turnover | Avg. Active Assets Avg. Daily Turnover

EW 30.00 0.06% 30.00 0.06%
v 30.00 0.08% 30.00 0.08%
HRP 10.85 0.13% 30.00 0.18%
MD 12.15 0.19% 16.42 0.31%
GMV 941 0.12% 12.48 0.34%
MSR 8.29 0.96% 8.98 1.04%
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