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Abstract 

Over the past decade, exchange-traded funds (ETFs) have revolutionized retail investing by 

providing low-cost access to diversified portfolios that typically track an index or sector rather 

than a single stock. This shift raises the question of how portfolio optimization methods 

perform when applied solely to ETF-based, multi-asset class portfolios. This research evaluates 

the out-of-sample performance of five advanced portfolio optimization methods relative to the 

naïve equal-weighted (1/N) rule from the perspective of a retail investor. The analysis is based 

on a portfolio comprising 30 U.S.-listed ETFs that represent both traditional and alternative 

asset classes. A 252-day rolling-window simulation is used to generate daily out-of-sample 

performance data from March 30, 2009, to May 7, 2025, with daily rebalancing2. I test the 

optimization methods using two approaches. First, I apply optimization methods at the whole 

portfolio level without any constraints on asset class exposure. Second, I impose asset-class-

specific weight constraints and perform optimization within each asset class. The results show 

that in the first case, complex optimizers often produce portfolios heavily concentrated in short-

term Treasuries, allowing the naïve strategy to outperform substantially. In the second case, 

performance improves as optimizers operate within asset classes that share similar 

characteristics; however, this improvement still does not substantially outperform the naïve 

approach. Overall, the equal-weighted strategy consistently matches or outperforms the 

complex methods in terms of Sharpe ratio, turnover, and computation time. These findings 

suggest that for retail investors, the theoretical benefits of complex optimization are often 

outweighed by estimation error, high turnover, and computational cost. 

Keywords: Portfolio Optimization, Retail Investors, Multi-Asset Portfolios, Rolling-Window 

Analysis  

 

2 As the main analysis relies on daily rebalancing, quarterly rebalancing results - provided in the Appendix 8.3 - 

show similar performance patterns. 
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1. Introduction  

Portfolio optimization originates from the fundamental principle of diversification, often 

captured by the phrase "not putting all your eggs in one basket." It is a quantitative approach 

that helps investors identify the most efficient combination of assets within a portfolio. The 

objective is typically to achieve the highest expected return for a given level of risk or to 

minimize risk for a given level of return. The field has been extensively studied since 1952 

when Harry Markowitz introduced the Modern Portfolio Theory (Markowitz 1952). Since then, 

the growth of data availability and computational capabilities has led to the development of 

more advanced optimization techniques. 

At the same time, the investment landscape has evolved in response to the rapid growth 

of exchange-traded funds (ETFs). ETFs are investment vehicles listed on stock exchanges that 

seek to replicate the performance of a particular index, sector, or asset class. Since 2008, ETFs 

have experienced considerable growth, with global assets under management (AUM) reaching 

11.1 trillion USD by the end of 2023. This corresponds to a compound annual growth rate of 

19.8% (Morningstar 2023, cited in State Street Global Advisors 2024). According to a recent 

survey, nearly one-third of respondents expect global ETF AUM to more than double, reaching 

30 trillion USD within the next five years, while 60% anticipate that ETF assets will reach at 

least 26 trillion USD by June 2029 (PwC 2024). 

While a substantial body of academic research has focused on portfolio optimization 

using individual stocks, such as S&P 500 constituents or bond funds, relatively few studies 

have analyzed optimization within ETF-only portfolios. As retail investors with limited 

resources and practical constraints increasingly favor ETFs over individual securities to reduce 

company-specific risk, it becomes especially relevant to examine how portfolio optimization 

performs in portfolios composed entirely of ETFs. This raises an important question: Do 
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 2 

complex optimization methods significantly outperform the naïve equal-weighted (1/N) rule 

when applied to retail-level, multi-asset portfolios made up entirely of ETFs? 

This study evaluates the out-of-sample performance of five advanced portfolio 

optimization methods in comparison to the naïve (1/N) strategy, using a dataset of 30 U.S.-

listed ETFs representing both traditional and alternative asset classes. A rolling-window 

approach with a 252-day horizon is applied to simulate daily out-of-sample portfolio 

performance from March 30, 2009, to May 7, 2025, with daily rebalancing5. The analysis is 

conducted under two frameworks: an unconstrained setting, where optimizers freely allocate 

across all assets, and a constrained setting, where weights are fixed at the asset class level, and 

optimization is applied within each class. 

The results reveal that in the unconstrained case, complex optimization techniques tend 

to produce impractical portfolios, often heavily concentrated in ETFs that track short-term 

Treasuries, leading to underperformance relative to the naïve strategy. Although performance 

improves under the constrained framework, the naïve (1/N) strategy portfolio still performs 

comparably or better in terms of Sharpe ratio, turnover, and computational efficiency. These 

results suggest that for retail investors, the naïve (1/N) strategy can offer more robust and cost-

effective outcomes than complex optimization methods, particularly when accounting for 

estimation error and implementation challenges. These findings provide practical guidance for 

retail investors, financial advisors, and policymakers, underscoring the importance of 

simplicity. 

The remainder of this thesis is structured as follows. Chapter 2 reviews the relevant 

literature. Chapter 3 describes the dataset and the ETF selection process. Chapter 4 outlines the 

optimization setup and performance evaluation metrics. Chapter 5 presents the empirical 

 

5As the main analysis relies on daily rebalancing, quarterly rebalancing results - provided in the Appendix 8.3 - 

show similar performance patterns. 
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 3 

results and their interpretation. Chapter 6 proposes policy recommendations. Chapter 7 

concludes with a summary of the main insights and suggestions for future research. Chapter 8 

provides an appendix with supplementary results, including full dataset details and rolling 

Sharpe ratios. It also presents an extended analysis of portfolios composed of 60 ETFs. To 

assess the robustness of the findings, results for a quarterly rebalanced portfolio of 30 ETFs 

are also included. 
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 4 

2. Literature Review  

The literature on portfolio optimization is well-established, with most research focusing on 

methods for selecting the most efficient mix of securities within a single asset class, such as 

stocks, bonds, or commodities. However, the growing use of exchange-traded funds (ETFs) by 

retail investors – attracted by their low costs, liquidity, and built-in diversification – raises 

questions about the relevance of traditional optimization approaches when applied to portfolios 

composed entirely of ETFs. This thesis addresses this gap by evaluating whether complex 

optimization strategies provide added value over the naïve equal-weighted approach in ETF-

based portfolios that are already diversified across sectors or asset classes. 

DeMiguel, Garlappi, and Uppal (2009) provide a foundational study for evaluating 

portfolio optimization methods. They compare thirteen optimization strategies against the 

naïve equal-weighted (1/N) rule using seven monthly datasets of U.S. equity market returns, 

including sector, industry, international, and factor portfolios. Their findings reveal that none 

of the optimized strategies consistently outperform the 1/N rule out-of-sample in terms of 

Sharpe ratio, certainty-equivalent return, or turnover. This underperformance is primarily 

attributed to estimation error in return and risk parameter inputs derived from historical data. 

While the study is critical in challenging the practical utility of theoretically optimal models, it 

remains limited to equity portfolios and does not address ETF-specific characteristics. 

Plyakha, Uppal, and Vilkov (2012) further explore portfolio construction by comparing 

equal-, value-, and price-weighted strategies using data from 1000 randomly generated 

portfolios composed of 100 stocks from the S&P 500 index. Their findings show that equal-

weighted portfolios, rebalanced monthly, outperform the alternatives on key performance 

metrics, including total mean return, four-factor alpha, Sharpe ratio, and certainty-equivalent 

return. This outperformance is attributed mainly to a rebalancing premium and higher 

systematic risk. Despite these contributions, the study also remains confined to equity 
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 5 

portfolios and does not examine how such strategies perform in multi-asset, ETF-based 

settings. 

Jacobs, Müller, and Weber (2014) take a broader view by evaluating diversification 

strategies not only across equities but also across asset classes. Their study compares eleven 

optimization models with a set of heuristic allocation rules using a dataset that spans nearly 

four decades and includes global equity indices (MSCI regional), euro-denominated bonds 

(iBoxx Euro Overall Index), and commodities (S&P GSCI). Although the study does not use 

ETF return series directly, it uses indices that are transparent, investable, and commonly 

tracked by ETFs, thereby making the results applicable to ETF-based portfolio strategies. The 

authors find that heuristic strategies such as equal weighting and GDP-weighting offer 

diversification benefits comparable to those of advanced portfolio optimization methods. 

Together, these studies make a significant contribution to the understanding of portfolio 

optimization and highlight the challenges associated with implementing complex models in 

practice. However, they do not fully capture the realities of ETF-based investing. Unlike 

individual securities, ETFs already encapsulate a degree of diversification by tracking entire 

sectors, indices, or asset classes. This raises doubts about the incremental benefits of applying 

optimization techniques to portfolios exclusively composed of such instruments. 
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 6 

3. Data 

This study analyzes a diversified portfolio composed of 30 U.S.-listed ETFs. The 

selection is based on TradingView's list 6 of the 100 most-traded ETFs, ranked by daily trading 

volume multiplied by share price. While narrowing the list to 30 required discretionary 

judgments, the selection prioritized highly liquid and widely recognized ETFs to minimize 

subjective bias and enhance the validity of the analysis. A full description of the selected ETFs 

is provided in Appendix 8.1.1: Dataset Details – 30 ETFs. 

Daily adjusted closing price data were retrieved via the Yahoo Finance API and 

converted into return series, covering the period from March 31, 2008, to May 7, 2025 (4,305 

observations per ETF). The start date of March 31, 2008 was chosen to ensure a consistent and 

complete time series across all selected ETFs. ETFs with shorter trading histories, such as 

XLRE (Real Estate) and XLC (Communication Services), were excluded to maintain 

consistency. For out-of-sample analysis, the period from March 30, 2009, to May 7, 2025 

(4,054 observations) is used. The final portfolio includes the following ETFs, classified as 

shown in Table 1 below. 

Table 1: Classification of 30 ETFs 

 
 

Figure 1 displays the annualized risk-return profiles of the 30 selected ETFs over the 

full sample period from March 31, 2008, to May 7, 2025. Each point represents an ETF, 

 

6 TradingView, Most Traded ETFs, accessed June 7, 2025, https://www.tradingview.com/markets/etfs/funds-

most-traded/. 
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 7 

positioned according to its annualized average return (y-axis) and annualized standard 

deviation (x-axis). The ETFs are color-coded by asset class, clearly revealing clustering 

patterns that reflect the distinct characteristics of each asset class. As expected, ETFs such as 

SHY and BIL (black), which track short-term Treasuries, exhibit the lowest volatility and 

returns. In contrast, equity ETFs (blue) show higher volatility accompanied by higher returns. 

Fixed-income ETFs (yellow) fall into a moderate risk-return range, while international equities 

(red) and alternatives (green) exhibit greater dispersion. This highlights the variation in risk-

return profiles across asset classes and supports the case for diversified, class-aware portfolio 

construction. 

 
Figure 1: ETFs Risk-Return Profile Full Sample Period  
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4. Methodology  

Let 𝑃𝑖,𝑡 denote the closing price of asset 𝑖 at time 𝑡. The corresponding simple return in 

percentage terms is given by: 𝑟𝑖,𝑡 = 100 ×
( 𝑃𝑖,𝑡−𝑃𝑖,𝑡−1)

𝑃𝑖,𝑡−1
. 

Let 𝑟𝑡 = (𝑟1,𝑡 , . . . , 𝑟𝑁,𝑡) represent the vector of asset returns at time 𝑡, and let 𝜔 =

(𝜔1, . . . , 𝜔𝑁) be the vector of portfolio weights. The return of the portfolio at time 𝑡, denoted 

by 𝑅𝑡, is then computed as the weighted sum of individual asset returns: 

𝑅𝑡 = 𝜔′𝑟𝑡 = 𝜔1𝑟1,𝑡+. . . +𝜔𝑁𝑟𝑁,𝑡  

Since portfolio return is the weighted sum of asset returns, the main goal of portfolio 

optimizers is to determine the set of weights that balances risk and return. To achieve this, 

optimizers use historical asset return data as input and compute weight allocations based on 

specific optimization criteria. 

4.1 Optimization Setup 

To evaluate the performance and robustness of the optimization strategies, two approaches 

were applied: unconstrained and constrained. In the unconstrained setting, optimization was 

applied at the whole portfolio level without any restrictions on asset class exposures. This 

allowed the optimizers to allocate freely across all 30 ETFs based solely on historical risk and 

return characteristics. Such a setup is valuable for evaluating how each optimizer performs 

under maximum flexibility without any predefined guidance or human-imposed structure on 

asset class weights. 

Under the constrained approach, the process began by assigning fixed weights to each 

asset class, as shown in Table 2. Optimization was then applied individually within each asset 

class. This structure leverages the fact that assets within the same class tend to exhibit similar 

behavior, thereby making within-class optimization more reliable. Additionally, when 

optimization is applied at the overall portfolio level, it must select among all 30 ETFs. In 
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 9 

contrast, optimizing within asset classes reduces the dimensionality of each problem – for 

example, choosing among only 16 ETFs in the equity class or 8 in fixed income – thereby 

lowering estimation error and improving stability. 

Table 2: Portfolio Weights by Asset Class 

 

4.2 Walk-Forward Optimization 

Given that the optimizer's input is historical data, their outputs are sensitive to the specific 

sample used. To address this and reduce the risk of overfitting, a rolling window approach – a 

dynamic form of walk-forward optimization – is used to enhance the robustness and 

generalizability of the results. This method follows the structure outlined by Jacobs, Müller, 

and Weber (2014). Still, it is adjusted based on daily frequency and daily rebalancing to 

generate rolling estimations for evaluating the out-of-sample performance of portfolio 

strategies. The process is structured as follows: 

● Step 1: Training window – The model is trained on a rolling window of the most 

recent 252 trading days (app. one year) to compute optimal portfolio weights. 

● Step 2: Testing window – These weights are then applied to the following trading day, 

which serves as out-of-sample data to evaluate performance. 

● Step 3: Iteration – The window is rolled forward by one day, and the process is 

repeated. Thus, the portfolio is rebalanced daily. For quarterly rebalancing results, 

please refer to the Appendix 8.3. 

Overall, this approach generates a sequence of daily out-of-sample returns, allowing for a more 

realistic and reliable evaluation of each strategy's performance over time. 
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4.3 Portfolio Allocation Strategies 

This section provides a brief overview of six optimization methods used in this research to find 

the optimal portfolio weights, w = (ω1, . . . , ωN).  

4.3.1 Equally Weighted (EW)  

Also known as the naïve or 1/N strategy, the equally weighted portfolio is one of the simplest 

forms of portfolio optimization. It assigns an equal share of capital to each asset in the portfolio 

without relying on expected return or risk estimates. Despite its simplicity, it often serves as a 

surprisingly difficult benchmark to outperform. For a portfolio with 𝑁 assets, the weights are: 

𝜔𝑖 =
1

𝑁
, 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑁. 

4.3.2 Inverse-Volatility (IV) 

Originally proposed by Carvalho, Xiao, and Moulin (2011), the Inverse-Volatility (IV) strategy 

assigns asset weights based on the inverse of each asset's historical volatility (standard 

deviation). Assets with lower risk receive higher weights, thereby contributing to a reduction 

in overall portfolio risk. It is essential to note that this approach relies on historical volatility 

and assumes that past volatility will continue to persist in the future. The weights are: 

𝜔𝑖 =
1/𝜎𝑖

𝛴𝑗 = 1
𝑁 (1/𝜎𝑖)

 

4.3.3 Maximum Diversification (MD) 

Introduced by Choueifaty and Coignard (2008) and further developed by Choueifaty et al. 

(2013), the Maximum Diversification (MD) optimizer aims to construct the most diversified 

portfolio by maximizing the diversification ratio 𝐷. This ratio is defined as the weighted 

average of individual asset volatilities divided by the portfolio volatility. The strategy allocates 
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higher weights to assets that contribute more to diversification. The optimization problem is 

formulated as follows:  

𝑚𝑎𝑥 𝐷 =
𝜔𝑇𝜎

√𝜔𝑇𝛴𝜔
    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   ∑ 𝜔𝑖

𝑁

𝑖 = 1

= 1, 𝜔𝑖 ⪰ 0 

4.3.4 Maximum Sharpe Ratio (MSR) 

The Maximum Sharpe Ratio (MSR) strategy builds on the mean-variance optimization 

framework introduced by Markowitz (1952) and was further developed by Sharpe (1966), who 

introduced the Sharpe Ratio. This strategy seeks to identify the portfolio on the efficient 

frontier that maximizes the Sharpe Ratio by achieving the best trade-off between expected 

return and volatility. The optimization problem is formulated as follows: 

𝑚𝑎𝑥 
𝜔𝑇𝜇 − 𝑟𝑓

√𝜔𝑇𝛴𝜔
 

Where μ is the vector of expected returns, is the risk-free rate, and Σ is the covariance matrix 

of asset returns. To enhance stability and mitigate estimation error, the covariance matrix in 

this study was estimated using the Ledoit-Wolf shrinkage method (Ledoit and Wolf 2004). 

4.3.5 Global Minimum Variance (GMV) 

The Global Minimum Variance (GMV) strategy represents a special case of mean-variance 

optimization, as proposed initially by Markowitz (1952). On the efficient frontier, it represents 

the portfolio with the lowest possible risk, regardless of the expected return. This approach 

completely disregards return forecasts and focuses solely on minimizing total portfolio 

volatility. The optimization problem is defined as: 

𝑚𝑖𝑛 𝜔𝑇𝛴𝜔        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      ∑ 𝜔𝑖

𝑁

𝑖=1

= 1 

As with the MSR strategy, the covariance matrix Σ was estimated using the Ledoit–Wolf 

shrinkage method (Ledoit and Wolf 2004). 
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4.3.6 Hierarchical Risk Parity (HRP) 

Hierarchical Risk Parity (HRP), introduced by López de Prado (2016), constructs portfolios 

based on a hierarchical clustering algorithm that groups assets according to their similarities. 

Unlike traditional optimizers that rely on inverting the covariance matrix, HRP allocates 

weights based on the hierarchical structure of asset correlations, aiming to form risk-balanced 

clusters. This technique enhances stability and reduces estimation error, particularly in high-

dimensional settings.  

Although HRP lacks a closed-form optimization expression, its procedure typically 

involves four key steps: (1) estimating the correlation matrix, (2) constructing a hierarchical 

clustering dendrogram, (3) reordering the matrix using quasi-diagonalization, and (4) 

allocating weights recursively based on cluster variances. 

4.4 Statistical Measures 

To evaluate each portfolio optimizer, this study uses the built-in performance evaluation 

methods provided by Skfolio, a Python library developed by Delatte and Nicolini (2023) (see 

Appendix). Among the available metrics, the following key performance indicators are 

selected, as they are widely used in portfolio optimization research: 

Cumulative Returns: Captures the total percentage gain or loss over the investment 

period, taking into account compounding. It is computed as the product of sequential daily 

returns minus one:  

𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 = (1 + 𝑟𝑡+1) × (1 + 𝑟𝑡+2) × . . . (1 + 𝑟𝑡+𝑛) − 1 

Sharpe Ratio: Measures risk-adjusted performance by comparing excess return 

(portfolio return minus the risk-free rate) to volatility (Sharpe 1966). A higher Sharpe ratio 

indicates a more favorable return per unit of risk. This study sets the risk-free rate to 0%, a 

common simplification in daily return-based analysis to avoid adding noise from near-zero 

short-term rates. 
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𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑅𝑝 − 𝑟𝑓

𝜎𝑝
 

Average Daily Turnover: Measures the frequency of portfolio weight changes, 

calculated as the average absolute change in weights between consecutive daily rebalancing 

periods. Higher turnover implies increased trading costs. 

Maximum Drawdown: This represents the largest decline from a portfolio's peak to 

its trough, highlighting the worst-case loss scenario and providing insight into the portfolio's 

downside risk. 

CVaR at 95%: Conditional Value at Risk (CVaR) at 95% measures the expected 

average loss in the worst 5% of cases. Unlike Value at Risk (VaR), which indicates the 

minimum loss beyond a confidence threshold, CVaR quantifies the severity of losses that 

exceed that threshold. This makes CVaR a more comprehensive measure of tail risk and is 

particularly useful for assessing downside exposure in portfolio optimization, especially when 

return distributions exhibit fat tails or skewness (Rockafellar and Uryasev 2000). 
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5. Results and Discussion 

This section presents the main results of the portfolio optimization analysis, which is based on 

a portfolio composed of 30 ETFs. It compares performance under both unconstrained and 

constrained settings, highlights limitations of the optimizers, and evaluates computational 

efficiency alongside key portfolio metrics such as turnover and the average number of assets. 

Additional analyses using a 60-ETF portfolio and quarterly rebalancing – designed to test 

model robustness on larger samples and different rebalancing frequencies – are provided in 

Appendix 8.2 (Portfolio of 60 ETFs) and Appendix 8.3 (Results: Quarterly Rebalancing), 

respectively. 

5.1 Results: Unconstrained Optimization 

Table 3: Unconstrained: Out-of-Sample Performance Metrics (30 ETFs) 

 
 

 
Figure 2: Unconstrained: Out-of-Sample Cumulative Portfolio Returns (30 ETFs) 
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Table 3 and Figure 2 summarize the out-of-sample performance metrics under the 

unconstrained setting, where optimizers were applied at the overall portfolio level without any 

limits on asset class exposure.  

The Equal Weight (EW) strategy delivered the highest annualized mean return (9.74%) 

and achieved over 300% cumulative growth over the 16-year period, outperforming all other 

methods. However, this performance was accompanied by relatively high volatility (10.72%) 

and a maximum drawdown of 26.08%, resulting in a Sharpe ratio of 0.91. Despite its simplicity, 

EW achieved strong risk-adjusted returns. This aligns with evidence that many individual 

investors tend to favor such straightforward allocation approaches (Benartzi and Thaler 2007). 

In contrast, the Maximum Sharpe Ratio (MSR) strategy yielded weaker outcomes, with a lower 

Sharpe ratio (0.57) and a comparable drawdown of 26.64%, indicating limited robustness – 

likely due to instability in the covariance matrix and resulting estimation errors. 

Hierarchical Risk Parity (HRP) and Maximum Diversification (MD) delivered 

exceptionally high Sharpe ratios – 5.15 and 3.38, respectively – primarily due to their 

concentrated allocations to short-term Treasury bills. This resulted in extremely low portfolio 

volatility (0.22% for HRP and 0.43% for MD) but also low annualized mean returns: 1.14% 

for HRP and 1.46% for MD. Consequently, both strategies achieved low cumulative returns 

over the full period despite their high Sharpe ratios. 

Inverse Volatility (IV) and Global Minimum Variance (GMV) delivered more balanced 

and consistent performance profiles. IV achieved a moderate return of 2.51% with low 

volatility (1.63%), resulting in a Sharpe ratio of 1.54. GMV showed a comparable outcome, 

yielding a return of 1.67% with lower volatility (1.09%) and an identical Sharpe ratio of 1.54. 

In summary, EW outperformed in cumulative returns and delivered results more 

consistent with investor preferences. At the same time, models like HRP and MD excelled on 

risk-adjusted metrics – primarily due to their heavy exposure to short-term Treasury bills. 
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These findings highlight the limitations of unconstrained optimizers in multi-asset portfolios 

and underscore the importance of incorporating practical constraints in model design. 

5.2 Optimizer's Limitations 

In the unconstrained setting, all optimizers – except Equal Weight (EW) and Maximum Sharpe 

Ratio (MSR) – produced allocations heavily concentrated in short-term Treasury ETFs. As 

shown in Figure 3, Hierarchical Risk Parity (HRP) consistently allocated a large portion of the 

portfolio to Ultra-Short Treasuries (SHV) and 1–3 Month Treasury Bills (BIL), reflecting its 

strong preference for low-volatility assets throughout the full out-of-sample period.  

 

Figure 3: Unconstrained: HRP Portfolio Weights (Top 10 Average Allocated Assets) 

While this allocation effectively reduced volatility, it also significantly constrained 

return potential, resulting in portfolios that were highly stable but lacked meaningful growth. 

This outcome reflects how certain optimizers rank assets based on return per unit of risk, as 

illustrated in Figure 4. Under this criterion, short-term Treasury bills with near-zero volatility 

appear disproportionately attractive, often leading optimizers to favor these instruments and 

construct overly concentrated portfolios. 
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Figure 4: Return per Unit of Volatility for ETFs  

The MSR portfolio exhibited unstable and unpredictable allocation patterns, as 

illustrated in Figure 5, where asset weights shifted abruptly over time. This instability arises 

from estimation errors in both expected returns and the covariance matrix, two critical 

components of the MSR optimization process. Because the method relies on inverting the 

covariance matrix and is highly sensitive to even slight inaccuracies in return estimates, minor 

errors can lead to substantial and erratic changes in portfolio composition (DeMiguel, Garlappi, 

and Uppal 2009). When applied to a universe of 30 ETFs within a rolling-window framework, 

the inversion process became particularly unreliable, resulting in highly volatile and 

unbalanced allocations. However, when constraints were introduced, and MSR was applied 

separately within individual asset classes, performance improved. The smaller number of assets 

within each class enhanced the stability of the optimization and produced more interpretable 

and consistent portfolio weights, as discussed in the following section. 
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Figure 5: Unconstrained: MSR Portfolio Weights (Top 10 Average Allocated Assets) 

5.3 Results: Constrained Optimization 

Table 4: Constrained: Out-of-Sample Performance Metrics (30 ETFs) 

 

 

Figure 6: Constrained: Out-of-Sample Cumulative Portfolio Returns (30 ETFs) 
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Table 4 and Figure 6 summarize the out-of-sample performance metrics under the constrained 

setting. First, fixed weight allocations were assigned to each asset class, and then optimization 

was performed within each class individually.  

Under this setup, all strategies produced more balanced and interpretable results. Equal 

Weight (EW) remained one of the top performers, achieving the highest annualized mean 

return (9.69%) and maintaining a decent Sharpe ratio (0.91). While it exhibited moderate 

volatility (10.62%) and a relatively high drawdown (25.93%), its consistent growth makes it a 

reliable benchmark for comparison.  

Inverse Volatility (IV) and Hierarchical Risk Parity (HRP) also delivered strong results, 

with annual returns of 9.34% and 9.02%, respectively. Their Sharpe ratios (0.92 for IV and 

0.94 for HRP) were slightly higher than that of EW, reflecting improved risk-adjusted 

performance. Importantly, their maximum drawdowns and CVaR levels were also marginally 

lower than those of EW, suggesting better downside protection within a diversified structure.  

Maximum Diversification (MD) achieved a return of 8.57% but experienced the largest 

drawdown (30.41%) among all strategies, along with a relatively lower Sharpe ratio of 0.85. 

This indicates that while MD benefited from diversification, it remained vulnerable to market 

corrections even under the constrained setting.  

Maximum Sharpe Ratio (MSR) showed noticeable improvement compared to the 

unconstrained case. Its Sharpe ratio increased to 0.67, and its return (8.13%) was decent, 

though it still lagged behind other strategies in terms of risk-adjusted efficiency. 

Global Minimum Variance (GMV) continued to prioritize portfolio stability, yielding 

the lowest annualized volatility (8.14%) and the lowest CVaR (1.18%) among all strategies. 

Although it had the lowest return (7.79%), its Sharpe ratio (0.96) was the highest, indicating a 

highly efficient balance between risk and return in this setting.  
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In summary, applying fixed-weight constraints led to more realistic and robust 

optimization outcomes. Risk-focused strategies such as IV, HRP, and GMV became more 

competitive, while MSR showed improved stability. These results highlight the value of 

assigning asset-class weights and applying optimization within each class – particularly in 

multi-asset portfolio construction, where managing a broad set of asset classes can introduce 

significant estimation challenges. However, it is worth noting that none of the more complex 

optimizers significantly outperformed the simple EW strategy across the key performance 

metrics. 

5.4 Cumulative Computation Time 

Table 5: Computation Time in Seconds (30 ETFs) 

 

When evaluating portfolio optimizers for retail-level applications, computation time becomes 

a practical concern. Unlike institutional settings with access to high-performance computing, 

individual investors typically rely on personal devices with limited processing power. In such 

cases, optimizers that are too resource-intensive may not be suitable for frequent rebalancing 

or responsive portfolio adjustments. Therefore, understanding how long each method takes to 

run can help determine which strategies are both practical and accessible for everyday use.  

Table 5 presents the computation times for each optimizer under both unconstrained 

and constrained conditions. These results were obtained using a MacBook Air 13" (2020) – a 

commonly used consumer laptop – making the findings directly relevant for retail investors. 

As expected, the Equal Weight (EW) strategy was the fastest, completing the task in just 3 
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seconds without constraints and 5 seconds with constraints due to its simple, non-iterative 

logic. Inverse Volatility (IV) was also efficient, though its computation time doubled from 18 

to 36 seconds when constraints were applied – due to the added steps needed to enforce asset 

class limits.  

More complex strategies, such as Maximum Sharpe Ratio (MSR), Global Minimum 

Variance (GMV), and Maximum Diversification (MD), required substantially longer runtimes. 

For example, MD took 85 seconds in the unconstrained case and 449 seconds in the constrained 

setup. These increases reflect the additional computational burden of working with large 

covariance matrices and solving iterative optimization problems. Hierarchical Risk Parity 

(HRP) had the highest overall computation time (320 seconds unconstrained, 421 seconds 

constrained), though it remained relatively stable across settings due to its clustering-based 

approach.  

In summary, while all strategies remained computationally feasible on a standard 

laptop, the gap between simple and complex methods is noticeable. For retail investors 

managing their own portfolios, strategies such as EW and IV offer not only reasonable 

performance but also practical speed and ease of use. For those willing to wait longer or 

rebalance less frequently, more advanced methods, such as HRP or MD, remain viable. 
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5.5 Average Active Assets and Turnover 

Table 6: Average Active Assets and Turnover (30 ETFs) 

 

When evaluating portfolio strategies, it is essential to look beyond returns and risk-adjusted 

metrics to consider indicators that reflect real-world usability – particularly for retail investors. 

Two such indicators are the average number of active assets and average daily turnover, both 

of which provide insight into a strategy's diversification and cost efficiency. A higher number 

of active assets suggests broader diversification, while a lower count indicates concentration. 

Turnover was calculated as the average sum of absolute changes in portfolio weights between 

consecutive days, reflecting how frequently and substantially the portfolio is rebalanced. 

Higher turnover implies more trading activity, which may result in increased transaction costs 

– a crucial consideration for retail investors managing their own portfolios. 

Table 6 compares these two indicators across all portfolio strategies under both 

unconstrained and constrained settings. As expected, Equal Weight (EW) and Inverse 

Volatility (IV) maintain complete diversification across all 30 ETFs in both setups, with 

minimal daily turnover – demonstrating high stability and low trading costs. These 

characteristics make them particularly well-suited for retail investors seeking simplicity and 

cost control.  

In the unconstrained case, more complex optimizers, such as the Maximum Sharpe 

Ratio (MSR), Global Minimum Variance (GMV), and Hierarchical Risk Parity (HRP), allocate 

to a narrower subset of assets, averaging only 8 to 10 ETFs. This reflects a strong tendency 

towards concentration, likely due to their sensitivity to estimated risk-return trade-offs. These 
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optimizers also show relatively low turnover in the unconstrained setting, as they repeatedly 

favor a small set of preferred assets.  

Under constrained optimization, however, all strategies shift toward broader 

diversification. HRP reaches full asset inclusion, and both GMV and MSR increase their 

average number of holdings. Yet, this diversification comes at a cost: higher daily turnover. 

Notably, MSR's turnover climbs to over 13%, implying more frequent trading and potentially 

higher transaction costs.  

In summary, while constraints enhance diversification and reduce concentration risk, 

they also tend to increase portfolio activity. For retail investors, this underscores a critical trade-

off between stability and realism in portfolio design. Simpler strategies such as EW and IV 

may offer a more accessible balance of performance, diversification, and operational ease. 
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6. Policy Implications  

The findings of this thesis highlight the value of promoting simple, transparent, and accessible 

investment strategies for retail investors. The equal-weight (EW) approach consistently 

delivered strong performance while remaining low in complexity and transaction costs. As 

such, financial literacy programs and digital investment platforms should prioritize teaching 

and enabling this method. EW should also be considered a default benchmark against which 

more complex optimization strategies are evaluated. Educational initiatives – especially those 

targeting first-time investors – should include practical modules that cover basic ETF investing, 

risk diversification, and rebalancing techniques using intuitive strategies, such as EW. 

Moreover, robo-advisors and investment platforms should offer EW and other low-turnover 

strategies as default or entry-level options to support informed and cost-effective decision-

making. 
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7. Conclusion 

With exchange-traded funds (ETFs) now forming a major part of retail-level portfolios, it is 

essential to assess whether complex portfolio optimization methods offer meaningful 

advantages over the naïve equal-weighted (1/N) rule. While much of the existing research 

focuses on optimizing portfolios of individual securities, this study evaluates how complex 

optimization methods perform when applied to portfolios composed entirely of ETFs, which 

themselves offer built-in diversification by tracking broad indices, sectors, or asset classes. 

Using a dataset of 30 U.S.-listed ETFs and a rolling-window approach with a 252-day 

window, I evaluated out-of-sample performance from March 30, 2009, to May 7, 2025, 

comparing five optimization strategies under both unconstrained and asset class-constrained 

frameworks. The findings show that in unconstrained optimization – where allocation was 

applied at the whole portfolio level without any restrictions on asset class exposures – many 

advanced strategies, despite their theoretical appeal, produced highly concentrated portfolios 

in short-term Treasuries. This resulted in limited long-term cumulative returns and 

underperformance compared to the naïve strategy. 

Although constrained optimization – where fixed-weight exposure to asset classes was 

imposed and optimizers were used within each asset class – improved portfolio balance and 

stability, the equal-weight approach still performed comparably or better across key metrics, 

such as the Sharpe ratio, turnover, and computational efficiency. These results suggest that for 

retail investors, the 1/N strategy remains a robust, cost-effective, and easy-to-implement 

solution. 

This study provides several key insights for retail investors, financial advisors, and 

policymakers. First, the equal-weight strategy remains a difficult benchmark to surpass. 

Second, applying asset class constraints enhances optimization by reducing overfitting and 
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improving portfolio structure. Third, optimizers should be used within the same asset classes; 

otherwise, differences in asset characteristics can distort allocations and reduce effectiveness. 

Future research could implement other optimization strategies, expand the ETF 

universe to include international or thematic exposures and integrate tax and transaction cost 

considerations. It would also be worthwhile to explore weekly, monthly, or yearly rebalancing 

using different rolling windows, such as 100 or 252 days. Assessing how these results 

generalize to institutional settings or different market regimes may also offer more profound 

insight into the trade-off between optimization complexity and practical performance. 
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8. Appendix 

Methodological Tools: PyPortfolioOpt and Skfolio 

For portfolio optimization, I used two Python libraries: PyPortfolioOpt and Skfolio. 

PyPortfolioOpt was applied to compute portfolio weights for the HRP, MSR, and GMV 

strategies (Martin 2021), offering flexible implementations of risk- and return-based 

allocations. In parallel, Skfolio was used for EW, MD, and IV portfolios (Delatte and Nicolini 

2023). Its compatibility with scikit-learn, built-in performance metrics, and pipeline-friendly 

design made it suitable for comparative analysis. Performance metrics were calculated using 

Skfolio's Population class (from Skfolio import Population), ensuring reproducibility through 

a documented, open-source package. These tools enabled the consistent construction and 

evaluation of diverse portfolio strategies. 
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8.1 Portfolio of 30 ETFs 

8.1.1 Dataset Details: 30 ETFs 

Table 7 provides a brief description of the ETFs, including their tickers and asset classes, all 

of which can be found and downloaded via the Yahoo Finance API.  

Table 7: Overview of ETF asset classes, tickers, and descriptions 

 

C
E

U
eT

D
C

ol
le

ct
io

n



 29 

8.1.2 Rolling Sharpe Ratios 

 

Figure 7: Unconstrained: 252-Day Rolling Sharpe Ratios (30 ETFs) 

 

 

Figure 8: Constrained: 252-Day Rolling Sharpe Ratios (30 ETFs) 
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8.2 Portfolio of 60 ETFs 

The Equal Weight (EW) strategy consistently performs well across 60 ETFs defined in Table 

8 below – twice the number analyzed in the original study – based on Sharpe ratio, turnover, 

and computation time. In the unconstrained setting, EW achieved nearly a 500% return, as 

shown in Figure 9, while other optimization methods failed to surpass 100%. Although all 

strategies performed better in the constrained setting, EW still outperformed the rest. Its Sharpe 

ratio remained within a practical and reasonable range of 0.81 to 0.84. In terms of computation 

time, EW was completed within 3-4 seconds, and its daily turnover and number of active assets 

were among the lowest, ranking second only to the IV strategy in the unconstrained setting. 

These findings suggest that for retail investors, the potential advantages of complex 

optimization methods are often offset by estimation errors in expected returns and risk 

parameters.  

8.2.1 Dataset Details: 60 ETFs 

Table 8 presents the expanded 60 ETF portfolio, offering significantly greater diversification 

compared to the 30 ETF version. The equity category alone increased by 28 ETFs, primarily 

due to the inclusion of additional U.S. equity sectors and broad market indices. In contrast, 

other asset classes saw only modest increases or remained unchanged, primarily due to the 

limited availability of highly liquid ETFs that specifically track Fixed Income, Alternative 

Investments, and Cash Equivalents. 

Table 8: Classification of 60 ETFs  
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8.2.2 Results: Unconstrained Optimization (60 ETFs) 

Table 9: Unconstrained: Out-of-Sample Performance Metrics (60 ETFs) 

 

 

Figure 9: Unconstrained: Out-of-Sample Cumulative Portfolio Returns (60 ETFs) 

 

Figure 10: Unconstrained: 252-Day Rolling Sharpe Ratios (60 ETFs) 
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8.2.3 Results: Constrained Optimization (60 ETFs) 

Table 10: Constrained: Out-of-Sample Performance Metrics (60 ETFs) 

 

 

Figure 11: Constrained: Out-of-Sample Cumulative Portfolio Returns (60 ETFs) 

 
Figure 12: Unconstrained: 252-Day Rolling Sharpe Ratios (60 ETFs) 
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8.2.4 Cumulative Computation Time (60 ETFs) 

Table 11: Computation Time in Seconds (60 ETFs) 

 

8.2.5 Average Active Assets and Turnover (60 ETFs) 

Table 12: Average Active Assets and Turnover (60 ETFs) 
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8.3 Results: Quarterly Rebalanced (30 ETFs) 

8.3.1 Results: Quarterly Rebalanced, Unconstrained Optimization (30 ETFs) 

Table 13: Unconstrained: Quarterly Reb, Out-of-Sample Performance Metrics (30 ETFs) 

 

 

Figure 13: Constrained: Quarterly Reb, Out-of-Sample Cumulative Portfolio Returns (30 

ETFs) 

8.3.2 Results: Quarterly Rebalanced, Constrained Optimization (30 ETFs) 

Table 14: Constrained: Quarterly Reb, Out-of-Sample Performance Metrics (30 ETFs)  
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Figure 14: Constrained: Quarterly Reb, Out-of-Sample Cumulative Portfolio Returns (30 

ETFs) 

8.3.3 Quarterly Reb: Cumulative Computation Time (30 ETFs) 

Table 15: Quarterly Reb, Computation Time in Seconds (30 ETFs) 

 

8.3.4 Quarterly Reb: Average Active Assets and Turnover (30 ETFs) 

Table 16: Quarterly Reb, Average Active Assets and Turnover (30 ETFs) 
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