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Abstract

This thesis improves on the elastic Gradient Boosting Decision Tree algorithm (eGBDT) by

limiting its memory use and increasing its accuracy. eGBDT is a successful incremental learning

algorithm. Because it deletes weak learners which are outdated, it maintains high accuracy on

conceptually drifted data. This thesis offers two versions which improve on eGBDT’s accuracy

and memory use. The first version contribution-based eGBDT (cbeGBDT) improves eGBDT

by making weak learner deletion dependent only on performance and not on index as in the

original eGBDT. The second version, Accuracy Updated eGBDT (AUeGBDT) adds to cbeGBDT

weighting mechanism inspired by the Accuracy Updated Ensemble. Improving eGBDT accuracy

and memory use is motivated by the new and important application of incremental learning on

smart meter time series data. Smart meter data need to be accurately forecasted to maintain

energy grid stability in the times of the massive renewable energy sources roll out and transport

electrification. On this regression task, the cbeGBD outperforms the original eGBDT, non-

retraining GBDT, but is comparable to a non-icrementally learning GBDT model which retrains

on every batch.
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Chapter 1

Introduction

There is a growing need to predict the production and consumption of energy by limited

memory devices such as smart meters to maintain the stability of the electric grid. Thanks to

the much-needed rise of renewables, our energy mixes are more environmentally sustainable;

however, they create new pressures on electric grid stability [2, 3, 4]. Most households in

the most developed nations have smart meters installed. Until now, these simple devices were

only sending data to some data center where crude aggregate forecasts on energy consumption

were made [5]. To improve grid stability, scientists are experimenting with the deployment of

forecasting software into the edges of the grid itself such as into smart meters [5]. Accurate

forecasts could substantially improve grid stability. This thesis aims to further the development

of such software by proposing a new low-memory, low-compute algorithm.

Since smart meters are highly limited in both memory and computational power, their pre-

dictive algorithms need to learn incrementally (continually) from incoming data while forgetting

old data. Smart meters cannot store data from the previous years due to memory constraints.

In addition, energy consumption patterns shift when consumers adopt new energy-consuming

or producing appliance such as kettle, vacuum cleaner or a solar panel; external factors such

as seasons, holidays, or climate change further alter demand patterns. These shifts, known

as concept drift, make accurate forecasting challenging. Concept drift, as defined in Concept

Drift 2.1, refers to the degradation of a machine learning model’s predictive performance due

to discrepancies between the training data and the data encountered during deployment. Effec-

tive incremental learning would address the issue of concept drift by continuously adapting to

changing characteristics of the data. Such incremental learning is not applicable only in edge

computing but in many other areas where concept drift occurs.

Gradient boosting decision tree algorithm (GBDT) is a good starting point for building

incremental learning extensions for edge computing due to its relatively high predictive accuracy

combined with low computational and memory requirements (compared to neural networks and
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other complex models). Moreover, GBDT does not rely on a specific type of weak learner such

as Hoeffding tree. That makes GBDT versatile in its application as any type of weak learner

can be chosen for a specific task.1 Its elastic version (eGBDT) learns incrementally and in

two published paper it has outperformed other incremental learning approaches on most tested

datasets [6, 7]. However, so far these were classification tasks and allowed eGBDT’s memory

use to be potentially infinite. The current discussion prompts the research question:

How can the Elastic GBDT algorithm be adapted for regression tasks to limit memory use

and computational resources while enhancing predictive accuracy, and ensuring compatibility

across various types of decision trees?

We will now present in a very abbreviated form the original elastic GBDT as proposed by

Wang et al. and our improvements to it [6]. The full explanation of eGBDT is in Section 2.2.3

while our improvements are in Section 3.1. Elastic GBDT is used in a context where it continually

receives data-batches and makes prediction based on the latest data-batch for the next data-batch.

This is called batch learning. The main innovation of the elastic GBDT proposed by [6] is that

it either deletes (prunes) all trees after index 𝑚 or retrains the whole ensemble depending on

the value of 𝑚. If 𝑚 < 𝑀 , where 𝑚 is the index of the lowest error on the latest data batch and

𝑀 is some minimal size of the ensemble, the whole model is retrained. If 𝑚 > 𝑀 , only trees

𝑚 + 1, 𝑚 + 2, ..., 𝑛 are deleted (where 𝑛 is the last tree) and 𝐿 new so called ’incremental trees’

are trained with indices 𝑚 + 1, 𝑚 + 2, ..., 𝑚 + 𝐿. The new either fully retrained or incrementally

trained model makes predictions for the next data-batch. Because of the dependency on indexing

of trees and to differentiate from our version of eGBDT, I call this version index-based elastic

GBDT.

We believe that this model can be improved because within the group of the pruned trees (trees

after index𝑚), contribution to the reduction of the prediction error can be highly heterogeneous.

Perhaps, the whole error is created by a single tree while the remaining trees are reducing the

error, but they do not reduce it enough to balance for the one conceptually outdated tree. The

main research contribution of this thesis is to delete trees based on their individual contribution
1Base-learner and weak learner are used in this text interchangeably. Full explanation of Hoeffding tree and

why it might be good to have incremental learning algorithm independent from the choice of weak learner is in
Section 2
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in reducing prediction error in wholly non-index-based manner. This contribution-based elastic

GBDT (ebeGBDT) prunes only the trees whose contribution deteriorates with the arrival of

batch. The more targeted pruning can save training costs by not deleting and training as many

trees as the index-based elastic GBDT does. In addition, only as many trees as were deleted are

trained. That keeps the number of trees and thus memory constant. We offer two different ways to

determine how many trees should be pruned and retrained at the end of each batch. Furthermore,

we propose a second algorithm where we combine the contribution-based pruning approach with

weighting introduced by different incrementally learning algorithm named Accuracy Updated

Ensemble (AUE first propsed Brezinsky et al. [8]). Weighting should improve accuracy even

further, because it adapts on a more granular level than pruning and building new trees does.

The structure of the thesis is the following. The first section was the introduction. The

second section is the literature review which presents what concept drift formally is and what

are the incremental learning strategies we are building on. The third section presents the result

of our work which cover the theoretical explanation of the two proposed algorithms, the setup

of the experiment including the datasets, preprocessing steps, and the experimental results. The

fourth section is the discussion of the limitations. The final fifth section is the conclusion.

3
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Chapter 2

Literature Review and Methodology: Concept Drift and

Incremental Learning

This chapter presents what concept drift is and what are the methods we are building on when

proposing the two algorithms in the next section. Concept drift is explained here both formally

and informally. The methods for incremental learning presented here are not exhaustive. While

we the major approaches which gave rise to their own lineages and improvements are discussed,

only the algorithms directly relevant to this research are explained in greater detail.

2.1 Concept Drift

The main challenge for accurately predicting energy data within smart meters is the issue of

concept drift. Lu et al. define concept drift as "a phenomenon in which the statistical properties

of a target domain change over time in an arbitrary way" [1]. Since smart meters cannot support

large models or store extensive data, the concepts they have learned from training data change

after and during deployment; thus, leading to less accurate predictions of the target domain.

However, concept drift is not an issue peculiar to smart meters, but for energy data more

generally. Reasons why the concept drift occurs in energy data are numerous: low quality and

size of training data, qualitative difference between the context of training data and deployment

data (e.g. training data come from less energy-consuming households whereas the model is

deployed in an industrial setting), climate change slowly but surely changes weather patterns

and therefore heating and energy patterns, households may arbitrarily change their energy

consumption pattern by e.g. buying new appliance. There are many more reasons for concept

drift occurring in energy data see various kinds of research working with concept drift in energy

data: [9, 10, 11]. The listed examples served us to understand concept drift informally and to

argue that concept drift occurs in smart meter energy data. However, concept drift has been
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mathematically formalized. We will now present the formal definition of the three sources of

concept drift which give rise to its four types. The formalization uses the language of probability

distributions and it is elegantly illustrated by two figures borrowed from Lu et al. [1].

2.1.1 Sources of Concept Drift

The formal definition begins by the joint distribution 𝑃(𝑋,𝑌 ) [1, 12]. Where X are the inde-

pendent variables and Y the dependent variables. The sources are visualized here: 2.1. For

simplicity the visualization uses X as one independent variable, but there is no reason to limit the

scope just to one. The 𝑃(𝑋,𝑌 ) distribution can be decomposed by the chain rule of probability

into:

𝑃(𝑋,𝑌 ) = 𝑃(𝑋) · 𝑃(𝑌 | 𝑋).

Hence, there can be three sources of concept drift which result from the joint distribution

𝑃𝑡 (𝑋,𝑌 ) at time 𝑡 not being equal to 𝑃𝑡+Δ(𝑋,𝑌 ) at time 𝑡 + Δ, for Δ > 0. Why are there three

possible sources and not a one more nor less? Because the decomposition leads to possible three

combinations of changes over time:

1. Source I (Virtual Drift):

𝑃𝑡 (𝑋) ≠ 𝑃𝑡+Δ(𝑋) and 𝑃𝑡 (𝑌 | 𝑋) = 𝑃𝑡+Δ(𝑌 | 𝑋).

2. Source II (Actual Drift):

𝑃𝑡 (𝑌 | 𝑋) ≠ 𝑃𝑡+Δ(𝑌 | 𝑋) and 𝑃𝑡 (𝑋) = 𝑃𝑡+Δ(𝑋).

3. Source III (Mixed Drift):

𝑃𝑡 (𝑋) ≠ 𝑃𝑡+Δ(𝑋) and 𝑃𝑡 (𝑌 | 𝑋) ≠ 𝑃𝑡+Δ(𝑌 | 𝑋).

for some Δ > 0.

5
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Figure 2.1: Concept Drift Sources. Adapted from Lu et al. (2018) [1]

The Source I is called Virtual Drift, because there is no actual change in concepts [13, 12, 1].

The concepts capturing the relationship between the X characteristics and the Y outcome variable

are not changing. What is changing is the distribution of X and accordingly Y. This means that

the production data are consistently e.g. of higher values than training data. Although the

relationship between X and Y does not change, the model’s performance is still likely to worsen,

because the such higher values were hardly present in the training data. Hence it ’understands’

them less than lower values.

The Source II is called Actual Drift, because the relationship between X and Y captured by

𝑃(𝑌 | 𝑋) after time Δ actually changed [1, 12]. This means that the concepts understood from

the data at time 𝑡 no longer apply 𝑡 + Δ. Inevitably, the performance of the model will worsen.

Because it does not capture the new concepts of 𝑃𝑡+Δ(𝑌 | 𝑋).

The Source III is called Mixed Drift because it mixes Sources I and II [1].

2.1.2 Types of Concept Drift

The three sources of concept drift give rise to four recognized types of concept drift [1, 14]. These

are formally described as: sudden, gradual, incremental and recurring ([12] make introduce

detailed sub-types). Of course, these can be combined together. The types are well visualized

in Concept Drift Types by Lu et al.: 2.2.

6

C
E

U
eT

D
C

ol
le

ct
io

n



Figure 2.2: Concept Drift Types. Adapted from Lu et al. (2018) [1].

1. Sudden Drift: The concept changes suddenly at time 𝑡0 [1, 14]:

𝑃𝑡 (𝑋,𝑌 ) =


𝑃(1) (𝑋,𝑌 ), 𝑡 < 𝑡0,

𝑃(2) (𝑋,𝑌 ), 𝑡 ≥ 𝑡0.

Where 𝑃(1) denotes the pre-concept drift joint distribution and

2. Gradual Drift: The concept transitions between two distributions over an interval [𝑡0, 𝑡1]

[1, 14]:

𝑃𝑡 (𝑋,𝑌 ) = (1 − 𝛼𝑡) 𝑃(1) (𝑋,𝑌 ) + 𝛼𝑡 𝑃(2) (𝑋,𝑌 ), 𝑡 ∈ [𝑡0, 𝑡1],

where 𝛼𝑡 is a monotonically increasing function with 𝛼𝑡0 = 0 and 𝛼𝑡1 = 1. In gradual

drift, the change is progressive, allowing for a smooth transition between the old and new

concepts, which can sometimes be tracked and adapted to more effectively.
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3. Incremental Drift: The concept evolves continuously over time, modeled as [1, 14]:

𝑃𝑡 (𝑋,𝑌 ) = 𝑃(1) (𝑋,𝑌 ) + 𝛿(𝑡),

where 𝛿(𝑡) represents a small, continuous change with respect to time. Incremental drift

reflects ongoing, subtle shifts in the data distribution, requiring models that can adapt

incrementally without the need for a complete retraining.

4. Reoccurring Drift: A previously observed concept reappears after a period of change

[1, 14]:

𝑃𝑡𝑟 (𝑋,𝑌 ) ≈ 𝑃(1) (𝑋,𝑌 ),

for some reoccurrence time 𝑡𝑟 > 𝑡0. This type of drift occurs when cyclic or seasonal

patterns cause old concepts to re-emerge, enabling the reuse of historical models or

patterns for improved prediction accuracy.

The examination of concept drift sources and types showed that it is a rigorously defined

phenomenon in machine learning [1, 14, 12]. The beginning of this section motivated the need

of researching adaptation to concept drift in smart meter data and how concept drift occurs in

smart meter data (new home appliance, qualitative differences between training and deployment

data, and others). Subsequently, GBDT algorithm on top of which my incrementally learning

approaches will be build was presented. Lastly, concept drift was presented in its mathematical

formality. The next section presents the key developments of the approaches for tackling concept

drift. I finish the section with a deeper explanation of index-based eGBDT the improvement of

which is the main contribution of this research.

2.2 Incremental Learning Methods

This subsection presents the different clusters of approaches to tackling concept drift in con-

tinually received data. Due to the limits of scope, we present only a selection of algorithms

deemed either foundational or relevant to our research. The task has been defined as incremental
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learning, 1 because the ML model needs to incrementally learn new concepts due to conceptually

drifting data. If the data are coming in batches of two to hundreds of instances, the task is called

batch learning. Alternatively, there can be a single data instance continually received. Such one

data-point batch is referred to in the literature as online learning. We will begin by presenting the

foundational algorithms in the history of incremental learning: namely window-based methods

and performance-based methods. Subsequently, we present in greater detail ensemble methods

into which eGBDT and AUE2 fall. We are improving on these two methods in the next section.

2.2.1 Window-Based Methods

Although many if not most incremental learning approaches employ number of different pre-

viously rivaling approaches, the oldest approach we find focuses on instance selection which

quickly developed into window-based method. The oldest approach named STAGGER uses

concept descriptions of instances and instance weighting and forgetting [17]. STAGGER uses

Bayes rule to update the weights of specific instances with their concept descriptions where

descriptions are initially individual classes of a given feature, but gradually they get more

complex.

Although concept descriptions continued to be used for bit longer, the approach of selecting

relevant instances as a solution to incremental learning problems pivoted towards windowing

or window-based methods. At its simplest, window of fixed size merely forgets oldest instance

when a new instance is processed. Such fixed size windows are explored in [18, 19, 20].

Combination of forgetting and concept descriptions gave rise to FLORA algorithms [21].

There are four versions of the FLORA algorithm all presented in the original paper. They

all maintain a window of data over time and calculate statistics of the variables’ (or concept

description) distributions [21]. The instances which are the most representative of the current

window are used for retraining or updating. 2

More flexible approach than FLORA was published in 2004 [22]. Instead of using only one

fixed size window, the Lazarescu et al. version uses three windows simultaneously. The authors
1Incremental learning is sometimes called learning in non-stationary environments sometimes shortened as

NSE (such as in the Learn++.NSE algorithm [15]) or alternatively learning from data streams [16].
2FLORA maintains the set of relevant instances. Whether there will be retraining or updating depends on the

ability of the predictive model to update or merely fully retrain.
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argue that one window, regardless of size, is not going to fit all types and sources of concept

drift. For example, in case of a small incremental change the single fixed size window will react

in a stepwise fashion; whereas, multiple window approach can react more smoothly.

Next generation of windowing algorithms made the window sizes flexible. Adptive windowing

(ADWIN) finally drops concept descriptions and focuses only on improving windowing by mak-

ing its size dependent on concept drift. It creates a window with two sub-widows in continually

received data [23]. If the distribution statistics of the two sub-windows differ more than a given

threshold, the algorithm triggers full retraining because a concept drift occurred. If the statistics

are differing less than a specified threshold, the big window and hence the two sub-windows

continue to grow because data distributions have not drifted enough. The ADWIN approach

was expanded to improve its performance and runtime into number of variants many of which

are compared by Moharram et al. [24].

2.2.2 Performance-Based Methods

Another family of approaches solves the problem of incremental learning by looking at the

performance of the model. One of the oldest and subsequently most built upon algorithms

within this approach is called simply Drift Detection Method (DDM) [25]. It considers the error

of an incrementally learning classifier as a Bernoulli random variable, which follows a Binomial

distribution. It monitors the probability of misclassifications at time 𝑡, denoted by 𝑝𝑡 , and its

standard deviation 𝑠𝑡 computed as:

𝑠𝑡 =

√︂
𝑝𝑡 (1 − 𝑝𝑡)

𝑖
(2.1)

At each time step 𝑡, the minimum observed values 𝑝min and 𝑠min are updated as follows:

if (𝑝𝑡 + 𝑠𝑡) < (𝑝min + 𝑠min), then 𝑝min = 𝑝𝑡 , 𝑠min = 𝑠𝑡 (2.2)

The method defines two thresholds for monitoring the error rate:

10
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• A warning state is triggered when:

𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 2𝑠min (2.3)

• A drift state (indicating detection of significant concept drift) is triggered when:

𝑝𝑡 + 𝑠𝑡 ≥ 𝑝min + 3𝑠min (2.4)

The predicting model is then trained only on instances received during the period between

the warning state and the drift state.

DDM developed into many variations. For example, Early Drift Detection Method (EDDM)

tracks the distance between two pairs of consecutive misclassifications rather than error rate

[26]. EDDM proved to be more efficient in detecting gradual concept drifts [27]. Another

variation is Reactive Drift Detection Method (RDDM) which improves the performance of

DDM by removing old data instances without loss of accuracy though with a slight delay of

drift detection [28]. DDM was also extended to find the specific location of the drift by the local

drift degree algorithm (LDD) [29]. Last but not least, DDM was extended by the the Hoeffding

bound into Hoeffding DDM (HDDM) [30]. Hoeffding bound, which will be further explored

in the next subsection, enables us to give definite statements about data distributions which are

infinite; this is highly useful for evolving data streams.

2.2.3 Ensemble Methods

Although ensemble methods are sometimes distinguished as either active or passive, we will

focus on passive methods, partly because the two algorithms we improve on are passive ensemble

methods and partly because we have explored the active methods. Active ensemble methods

are defined as first using one of the drift detection methods, which can be window-based,

performance-based or combination of both. Once the drift detection method detects a drift,

the ensemble retrains or updates itself. In contrast, passive methods continually update their

ensemble with new data rather than actively triggering update or retraining after a drift detection
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method triggers such update. In contrast, active ensemble methods have drift adaptation built

into the model itself. Sometimes both window-based and performance-based methods are

considered active ensemble methods and the whole incremental learning taxonomy collapses

into passive and active ensemble methods. 3 While active/passive taxonomy is taken by [31], the

taxonomy of widow-based, performance-based and ensemble methods we are using aligns with

Bayram et al. They established a thorough systematic literature review of incremental learning

approaches [16]. Hence, from now on we will focus on what [31] calls passive ensemble methods

and Bayram et al. merely ensemble methods.

Hoeffding Tree as Base Learner

A successful family of ensemble methods use Hoeffding trees as base-learners. Hoeffding trees

adapt quickly to concept drift by growing sub-tree structures [32]. They use the Hoeffding bound

to probabilistically select the best split given a finite data sample, ensuring the split is as good

as one made with infinite data given a user specified confidence parameter. 4 Specifically, with

probability 1 − 𝛿, the true mean differs from the empirical mean by at most:

𝜖 =

√︂
ln(1/𝛿)

2𝑛

where 𝜖 is the Hoeffding bound, 𝑛 the number of observations, and 𝛿 the confidence param-

eter. Due to their speed, Hoeffding trees are also called Very Fast Decision Trees (VFDT).

The first VFDTs only grew trees, risking infinite size and memory use. The Concept-

adapting VFDT (CVFDT) [33] introduces forgetting mechanisms. Subsequent extension of

VFDT, Hoeffding Option Trees (HOT), stores multiple promising splits [34].

Although Hoeffding trees are widely and successfully used as base learners, I believe there

are at least three reasons why their use for incremental learning is problematic. First, VFDTs

are incompatible with models relying on different base learners, such as oblivious decision trees

used in CatBoost [35]. Good incremental learning should not require changing successful base

learners. Second, VFDTs track the number of seen instances per potential split [32], possibly
3That is if the underlying model is an ensemble model. We have not found a case where the underlying method

is not an ensemble. It remains unclear how such situation would be called.
4In data streams, data is considered infinite.

12

C
E

U
eT

D
C

ol
le

ct
io

n



increasing memory use, especially with larger trees or HOT versions which also track alternative

best splits. Moreover, oblivious trees, due to their symmetric structure, are likely more memory-

efficient 5. Thirdly and most importantly, Hoeffding trees require variable memory as they grow

and prune sub-structures, which is in conflict with the fixed memory limits of edge computing.

Limiting VFDTs to a maximum memory cap constrains their core advantage of growing tree

sub-structures. Fortunately, weighting or removing base learners does not depend on Hoeffding

trees, and it is this approach that we improve in our research.

Weighting and Pruning Ensemble Methods

The earliest framework in this approach is the Streaming Ensemble Algorithm (SEA), it laid

the groundwork for passive ensemble learning founded on pruning and incremental training of

trees directly on data streams [37]. SEA aggregates predictions via simple majority voting of

the individual classifiers. This approach builds on off-line ensemble models (non-incrmentally

learning models). However, SEA employs it in an incremental batch-learning environment.

When a new batch arrives, SEA trains and evaluates a new classifier (𝐶′) on the new batch.

If there is a space in the ensemble for a new classifier, then 𝐶′ is automatically added to the

ensemble. If the maximum number of classifiers in the ensemble is reached, 𝐶′ needs to

outperform at least one of the current classifiers. Subsequently, the worst performing classifier

which is outperformed by 𝐶′ is pruned and 𝐶′ is added to the ensemble. SEA thus relies on

removing and building new trees. It experimented with weighting, but its results do not show

consistent improvement of weighting over mere building and pruning.

A foundational paper which successfully introduced weighting as a strategy for incremental

learning is called Accuracy Weighted Ensemble (AWE) [38]. AWE is similar to SEA in

maintaining a fixed maximum number of classifiers K. Adding and pruning of classifiers is also

similar, because the worst classifier is pruned. However, apart from classifier replacement, AWE

adjusts weights to each classifier based on how much it outperforms a random classifier.

𝑤𝑖 = MSE𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 −MSE𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟_𝑖 (2.5)

5Supported by research into cache-oblivious structures [36]
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Algorithm 1: Accuracy Weighted Ensemble (AWE)
Input: 𝑆: a dataset of ChunkSize from the incoming stream
𝐾: the total number of classifiers
𝐶: a set of 𝐾 previously trained classifiers
Output: 𝐶: a set of 𝐾 classifiers with updated weights

1 Train classifier 𝐶′ from 𝑆;
2 Compute error rate of 𝐶′ via cross-validation on 𝑆;
3 Derive weight 𝑤′ for 𝐶′ using Equation 2.5;
4 for each classifier 𝐶𝑖 ∈ 𝐶 do
5 Apply 𝐶𝑖 on 𝑆 to derive MSE𝑖 or 𝑏𝑖;
6 Compute 𝑤𝑖 based on Equation 2.5;
7 end
8 𝐶 ← the top 𝐾 weighted classifiers in 𝐶 ∪ {𝐶′};
9 return 𝐶;

Accuracy Updated Ensemble (AUE) presented by Stefanowski et al. builds on AWE by

putting Hoeffding trees as its base learners and changing the weighting equation [8]. Stefanowski

et al. argue that changing merely the weights of classifiers leads to the problem of "tuning the

block size". Which means that the performance of the weighting mechanism is tied to the size

of the block (which can be independent from the predicted batch) after which the weights are

changed.

Using VFDTs allows updating without such block size tuning. In AUE, the trees will update

whenever the Hoeffding bound, given the user inputted confidence parameter, reaches enough

data to perform attribute split. Hence, for a series of non-drifting batches both AWE and AUE

will not change their weights substantially, but AUE will be able to adapt to it through growing

tree sub-structures. In addition, AUE maintains a larger set ("a buffer") of classifiers from which

only a subset with the lowest MSE on the latest batch is selected to predict the next batch. Such

selecting revives old classifiers in case of recurrent drift. Lastly, Stefanowski et al.l drop the

comparison to random classifier during the weight calculation, because "in rapidly changing

environments with sudden concept drifts (as the Electricity data set) this threshold can "mute"

all ensemble members causing no class to be predicted." The 𝜖 in 2.6 is a very small value added

in case the classifier is perfect and MSE is 0. The rest of AUE is the same as AWE.

𝑤𝑖 =
1

MSE_𝑖 + 𝜖
(2.6)
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Brezinski and Stefanowski, authors of AUE, two years after the publication of AUE pub-

lished AUE2. AUE2 somewhat improves AUE accuracy while not increasing memory and

computational costs [32]. Firstly, they criticize AUE and AWE for using 10-fold cross valida-

tion when computing error rate of 𝐶′ on 𝑆. AUE2 removes the cross validation and uses 2.6

to immediately calculate the weight of the new classifier using its error; this seems to be the

main source of accuracy increase compared to AUE. Secondly, AUE2 drops the buffer set as

it improved accuracy ever so slightly while roughly doubling memory usage. Thirdly, AUE2

solves the mentioned problem of potentially infinitely growing Hoeffding trees by dropping

the least active leaves to match user inputted memory limits. In addition, the AUE2 paper

experimentally shows that updating the weights of only a subset of base learners decreases the

overall accuracy while not providing justifiably large memory saving. In the experiment, AUE2

outperforms AUE and AWE on most datasets with having roughly equal computational time and

memory requirements. Our second incrementally learning algorithm presented in Section 3.1 is

a combination of AUE2 and GBDT adapted for regression tasks.

There are many other weighting approaches which sprouted their own lineages of improved

version. For the sake of minimal completeness of related work we will present the main ones.

The Dynamic Weighted Majority (DWM) introduced weighting even before AWE (despite AWE

not citing DWM) [39]. Outperforming STAGGER, DWM introduced normalization of weights,

and a constant multiplicative degradation factor 0 ≤ 𝛽 ≤ 1. Thus DWM considers only age

in determining classifier’s weight. To consider performance as well, DWM was extended into

DWM-WIN [40]. Further, Recurring Dynamic Weighted Majority (RDWM) built on DWM by

maintaining two ensembles. The primary ensemble performs well on current concepts, while

the secondary ensemble consists of the most accurate learners in a long term horizon [41].

Another important algorithm is the Learn++.NSE. Recall that NSE stands for non-stationary

environments. Inspired by incrementally learning algorithms for Neural Networks called

Learn++ [15], Learn++.NSE weights new data instances before training a new classifier on

them. This way the new classifier complements the old classifiers which might understand some

instances in the new batch but not all. Sigmoid function which combines classifier’s age and

accuracy is used to calculate final classifier weights. Learn++.NSE does not drop classifiers
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so that it can quickly adapt to recurrent drifts. Since its memory can grow infinitely large, the

same authors add forgetting mechanism in their subsequent paper [42]. Learn++.NSE was also

developed into two parallel ensembles approach, but unlike RDWM, the Learn++.NSE exten-

sion aims at tackling class imbalanced datasets [43]. One of the very few presented algorithms,

Learn++.NSE was adapted and tested for regression task under the name On-line Weighted

Ensemble (OWE) [44]. We take from Learn++.NSE for our second algorithm in Section3.1 the

idea of using sigmoid function to calculate weights. Having presented the foundational papers

for solving incremental learning by weighting classifiers, we will now turn to two recent papers

which combine classifier training and pruning with GBDT into eGBDT. Our two algorithms are

building on top of eGBDT.

Elastic GBDT leverages the already powerful GBDT model but adds a simple incremental

learning and pruning. Published first by Wang et al. [6], elastic GBDT prunes by finding the

index 𝑚 of the classifier at which the ensemble as a whole has the lowest Mean Absolute error

(MAE):

𝑚 = arg min MAE(𝑅𝑚) (2.7)

If this index 𝑚 is lower than some threshold 𝑀 (line 4 of Algorithm 2), then there is a strong

concept drift and the whole ensemble is retrained on the latest batch. If, however, 𝑚 ≥ 𝑀 ,

then all classifiers with indices greater than 𝑚 (i.e., 𝑚 + 1, 𝑚 + 2, . . .) are pruned (deleted) (line

8 of Algorithm 2). Then 𝐿 new trees are fitted on the pseudo-residuals left by 𝐹𝑚 (line 9 of

Algorithm 2). These 𝐿 trees are then added to the ensemble at indices 𝑚 + 1, . . . , 𝑚 + 𝐿. Lastly,

the updated ensemble makes predictions for the next batch using the relevant data it has at its

disposal (usually 𝐷batch, but if it has larger memory it can use older data as well).
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Algorithm 2: Elastic GBDT (eGBDT) for a Single Batch
Input: Training dataset 𝐷train

New batch 𝐷batch

Output: Updated GBDT model 𝐹′
𝑀
(𝑥)

1 Train the initial GBDT model 𝐹 (𝑥) on 𝐷train;

2 Compute residuals 𝑅𝑚 for each tree 𝑚 on 𝐷batch;

3 Find the best tree index 𝑚 using Equation 2.7;

4 if 𝑚 < 𝑀 then

5 Retrain the GBDT model 𝐹 (𝑥) on 𝐷batch;

6 end

7 else

8 Prune trees after index 𝑚:

9 Update model: 𝐹′
𝑀
(𝑥) ← 𝐹𝑚 (𝑥);

10 Fit 𝐿 new trees on the pseudo-residuals left by 𝐹𝑚 on 𝐷batch;

11 Add the 𝐿 new trees into the ensemble:

12 Update model: 𝐹′
𝑀
(𝑥) ← 𝐹′

𝑀
(𝑥) + 𝐹𝐿 (𝑥);

13 end

14 Predict the next batch using 𝐹′
𝑀
(𝑥) based on 𝐷batch data;

15 return 𝐹′
𝑀
(𝑥);

In Wang et al.’s experiment, index-based eGBDT outperformed all competing algorithms

including the original Learn++.NSE, two newer versions of HDDM, and one newer version of

AUE (we did not present the newer versions, only the foundational ones) [6]. Furthermore, Chen

et al. used index-based eGBDT to detect bot attacks on internet of things with similar success

[7]. However, index-based eGBDT was outperformed by OnlineAUE (newer version of AUE)

on one type of data in Chen et al.’s experiment. Because of its persuasive performance, we have

decided to adapt eGBDT for the regression task of energy time series data prediction. However,

the adaptation needs to solve two issues while ideally increasing model’s accuracy. Firstly,

index-based eGBDT needs to be adapted for regression rather than classification. Secondly,

its memory has to be clipped. Since in a string of non-drifting batches, index-based eGBDT

continually builds new weak learners, but does not prune any old ones, its memory usage can
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infinitely grow. Our solutions as well as experimental testing are presented in the next section.

18

C
E

U
eT

D
C

ol
le

ct
io

n



Chapter 3

Results

We have adapted index-based eGBDT into two versions for regression tasks. Both versions

use regression trees as its base learners and prune based only on tree’s contribution to the

reduction of error disregarding tree’s index. The first version is called contribution-based eGBDT

(cbeGBDT). The second version not only prunes but also weights its trees on a contribution-based

mechanism with weighting mechanism similar to AUE2; hence we call it Accuracy Updated

eGBDT (AUeGBDT). We first present the two algorithms including their order of complexity.

We then test their accuracy in an experiment comparing them to: baseline GBDT model which

does not retrain, baseline model which fully retrains on the latest batch, index-based eGBDT

just presented and index-based eGBDT with constant number of trees.

3.1 Theoretical Results

Contribution-based eGBDT tracks the error improvement 𝐼𝑖 for each tree 𝑖 with multiplier 𝛾

(found by line search A.3) as it is added to the cumulative prediction (lines 3-6 in Algorithm

3). The worst 𝐾 trees are considered non-contributing and are pruned from the ensemble (lines

9-10). The calculations determining K are presented in the next paragraph.1 The new smaller

ensemble is then tested on the current batch and its residuals are obtained (line 15). 𝐾 new trees

are then trained on these residuals (line 16) and added to the ensemble (line 17). If 𝑀 = 𝐾 i.e.,

all trees were deleted the prediction is the mean of 𝑦 which is one of the initial prediction of

standard GBRT model [45]. Finally the updated ensemble makes predictions for the next batch

(line 19).

As was mentioned, 𝐾 can be determined in a number of ways (line 8). We have experimented

with exponential moving average (EMA), but the early experiments already showed that this
1We experimented with a threshold of contribution; e.g. 0 which would mean that all tress which increase the

error pruned but also other thresholds. This led to lower performance than pruning based on ranking. Arguably,
threshold value is less dependent on data than ranking which better determines outdated trees relative to the rest of
the ensemble.
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method leads to high per-batch pruning and thus high computational cost while having low

accuracy. The second method we tried is a ratio between the whole ensemble’s error on the

current and the last batch multiplied by a tuned multiplier. The result is rounded to an integer

(ratio method). The third method is a four ratios long chain of such batch-to-batch error ratios.

Each with its own tuned multiplier. The results from each ratio are added together and then a

tuned multiplier is applied. The final result is also rounded to an integer value (contribution

ratio). While ratio method has only one hyperparameter - the multiplier-, contribution ratio

method has 4 - 3 for each ratio and the last multiplier for the sum.
Algorithm 3: Contribution-Based eGBDT for a Single Batch

Input: Trained GBDT model 𝐹𝑀 (𝑥) with 𝑀 trees notated as ℎ𝑖

New batch 𝐷batch = {𝑋, 𝑦}

Tuned hyperparameter: Learning rate 𝛾 , Threshold of retraining 𝑇 , choice of

calculation method for 𝐾 with its own parameters

Output: Updated GBDT model 𝐹′
𝑀
(𝑥)

1 Initialize prediction with mean: 𝑦̂ ← 𝑦̄;

2 Compute initial error: 𝐸0 ← MAE(𝑦, 𝑦̂);

3 for each tree 𝑇𝑖 in the ensemble do

4 Predict: 𝑦̂𝑖 ← 𝑦̂𝑖−1 + 𝛾 · ℎ𝑖 (𝑋);

5 Compute error: 𝐸𝑖 ← RMSE(𝑦, 𝑦̂𝑖);

6 Compute improvement: 𝐼𝑖 ← 𝐸𝑖−1 − 𝐸𝑖;

7 end

8 Determine 𝐾 using a function of choice;

9 Prune least contributing 𝐾 trees:

10 Update model: 𝐹′
𝑀
(𝑥) ← 𝐹𝑀 (𝑥) \ {ℎ𝑖 ∈ 𝐾};

11 Test 𝐹′
𝑀−𝐾 (𝑥) and compute residuals 𝑅;

12 Train 𝐾 new trees on residuals 𝑅;

13 Update model: 𝐹′
𝑀
(𝑥) ← 𝐹′

𝑀−𝐾 (𝑥) ∪ {new 𝐾 trees};

14 Predict the next batch using 𝐹′
𝑀
(𝑥) based on 𝐷batch data;

15 return 𝐹′
𝑀
(𝑥);

The order of complexity of contribution-based eGBDT can be analyzed in terms of the
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number of trees 𝑀 , the number of samples in a batch 𝑁 , and the depth 𝑑 of each decision

tree. For each batch, the algorithm evaluates all 𝑀 trees with their depth 𝑑 in the ensemble to

compute their contribution, resulting in a computational complexity of O(𝑀 · 𝑁 · 𝑑) due to tree

traversal per sample (line 3). At line 4, it computes error for each tree for each sample, but since

predictions of the samples are now in vectorized form this constant time for each tree 𝑂 (𝑀 .

Equally at line 5, the contribution of each tree is calculated by subtraction of two numbers;

hence it is at constant time for each tree 𝑂 (𝑀 . Together lines 3-6 cost:

𝑂
(
𝑀𝑁𝑑 + 2𝑀

)
.

The leading term is the ensemble traversal 𝑂 (𝑀𝑁𝑑). It scales with both the batch size 𝑁 and

the ensemble size 𝑀 , while the additive term 𝑂 (2𝑀) is dominated.

The pruning step (lines 9-10) involves ranking contributions, which takes O(𝑀 log𝑀) if

using merge sort and the calculation of 𝐾 [46]. Ratio method involves two multiplications

which is computationally complexity of a constant O(2). Weighted ratio method involves three

multiplications of ratios, one addition of the total product and one final multiplication. This also

leads to a constant complexity of O(5). Constants are negligible compared to the other terms.

If there is pruning of one tree or more i.e., 𝐾 > 0, the next step inevitably costs O(𝑀 ·𝑁 · 𝑑).

This is in case of the full retraining of all 𝑀 trees, but also in case of mere training of 𝐾 trees,

because firstly the pseudo-residuals on which the 𝐾 trees will be trained need to be calculated by

the prediction of 𝑀 − 𝐾 trees. With pseud-residuals established by O((𝑀 − 𝐾) · 𝑁 · 𝑑), 𝐾 trees

will be trained O(𝐾 · 𝑁 · 𝑑). Hence, if there is pruning of even a single tree the computational

complexity is the same as if the model were fully retraining. This means that in case of pruning

the contribution-based eGBDT requires computational costs for both ranking and full model

retraining. This leads to extra costs of O(𝑐 + 𝑀 log𝑀) compared to a model which retrains

fully on every batch. Together with contribution calculation and in case of pruning contribution

e-GBDT costs:

𝑂
(
𝑀𝑁𝑑 + 2𝑀

)
+𝑂 (𝑀 log𝑀) +𝑂 (𝑀𝑁𝑑) = 𝑂

(
2𝑀𝑁𝑑 + 2𝑀 + 𝑀 log𝑀

)
.
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Hence, O(𝑀 · 𝑁 · 𝑑) remains the leading term just as it is in GBDT.

Although, during development, cbeGBDT outperformed index-based GBDT, its adaptability

was not as granular as it was desirable. For ensembles of 20, 30 or 40 trees removing whole trees

even one tree can have a big impact on the ensemble’s prediction. Moreover, the model disregards

indexes when pruning trees. This leads to the the possibility of removing the first tree which;

however, can have very large impact on the prediction. Vis versa, not removing a tree could lead

to the model not adapting to smaller incremental drifts. The strategy of removing and building

new trees leads to desired adaptive granularity for models with hundreds of trees. For example,

Wang et al. used 250 initial trees with 25 incrementally trained trees while Chen et al used even

10.000 trees [6]. However, edge computing limitations demand that the ensemble is capped at

dozens rather than hundreds of trees. Hence, to achieve greater adaptive granularity I decided

to introduce weighting to the contribution-based eGBDT. Inspired by the successful AUE (see

Section2.2.3) and Learn.NSE++ (Section2.2.3), below we present the Accuracy Updated Elastic

GBDT.
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Algorithm 4: Relative Contribution–Based Weight Update for a Single Batch
Input: Trained GBDT model 𝐹𝑀 (𝑥) with 𝑀 trees notated as ℎ𝑖

Set of per–tree weights {𝑤𝑖}𝑀𝑖=1 all initialized at 1

New batch 𝐷batch = {𝑋, 𝑦} of 𝑁 examples,

Tuned hyperparameter: learning rate 𝛾, sigmoid slope 𝑘 , weight–scale 𝑤scale,

weight update strength 𝜌, pruning threshold 𝜃, small constant 𝜀

Output: Updated weights {𝑤′′
𝑖
}𝑖∉R and index set R of removed trees

1 Initialize prediction with mean: 𝑦̂ ← 𝑦̄;

2 Compute initial error: 𝐸0 ← RMSE(𝑦, 𝑦̂);

3 for each tree 𝑇𝑖 in the ensemble do

4 Predict: 𝑦̂𝑖 ← 𝑦̂𝑖−1 + 𝛾 𝑤𝑖 𝑇𝑖 (𝑋);

5 Compute error: 𝐸𝑖 ← RMSE(𝑦, 𝑦̂𝑖);

6 Compute relative improvement (contribution):;

7

cont𝑖 =
𝐸𝑖−1 − 𝐸𝑖
𝐸𝑖−1 + 𝜀

;

8 end

9 Convert the raw contributions directly into proposed weights using a sigmoid

transformation:;

10

𝑤′𝑖 =
𝑤scale

1 + exp
(
−𝑘 cont𝑖

)
11 Identify and remove trees whose proposed weight falls below the fixed threshold:;

12

R = { 𝑖 | 𝑤′𝑖 < 𝜃}

Remove these trees and their weights from the ensemble, and let 𝐾 = |R |.;

13 For every remaining tree 𝑖 ∉ R blend the previous weight toward the proposal:;

14

𝑤′′𝑖 = (1 − 𝜌) 𝑤𝑖 + 𝜌 𝑤′𝑖

15 If 𝐾 > 0, update the current prediction on 𝑋 using the blended weights for the retained

ensemble:;

16

𝑦̂new =
∑︁
𝑖∉R

𝛾 𝑤′′𝑖 𝑇𝑖 (𝑋)

Compute new pseudo-residuals 𝑅 = 𝑦 − 𝑦̂new, train 𝐾 new trees on 𝑅, and add them to

the ensemble.;

17 return 𝐹′
𝑀
(𝑥), weights {𝑤′′

𝑖
}𝑖∉R , and removal set R
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• Sigmoid slope 𝑘: controls the slope of the sigmoid
𝑤scale

1 + exp(−𝑘 cont𝑖)
. High 𝑘 yields a

near-step function (sharp distinction), a low 𝑘 results in a more gradual curve.

• Weight-scale 𝑤scale: sets the upper bound of the updated weight 𝑤′′
𝑖
. If 𝑤scale = 1, weights

lie in (0, 1); setting it above 1 allows strong contributors to be weighted more than 1.

Given the default weight of 1 for every tree, setting 𝑤scale = 2 leads to contributing trees

having weights between 1 and 2, but trees which worsen the prediction will have their

weights reduced below 1.

• Weight update strength 𝜌: determines how quickly old weights adapt toward the newly

estimated weights. A small 𝜌 keeps the ensemble memory strong (slow adaptation); a

large 𝜌 moves weights rapidly toward the latest estimates.

When a new batch of size 𝑁 arrives, the total computation breaks down as follows:

Evaluate existing trees and their contributions. This is the same as in the contribution-based

eGBDT. Each of the 𝑁 examples must traverse all 𝑀 trees and there are two calculations for

each tree. Hence:

𝑂
(
𝑀𝑁𝑑 + 2𝑀

)
.

Weight update (Alg. 4, lines 4–6) involves three constant-time operations for each of the 𝑀

trees:

• computing the sigmoid 𝑤′
𝑖
,

• checking 𝑤′
𝑖
< 𝜃 to mark pruning candidates,

• blending 𝑤′′
𝑖
= (1 − 𝜌)𝑤𝑖 + 𝜌𝑤′𝑖.

Since each is 𝑂 (1) per tree, updating all weights costs

𝑂 (3𝑀).

The remaining costs are the same as in the contribution-based eGBDT (Alg. 3):

𝑂
(
𝑀 log𝑀

)︸         ︷︷         ︸
ranking (lines 9–10)

+ 𝑂
(
(𝑀 − 𝐾) 𝑁 𝑑 + 𝐾 𝑁 𝑑

)︸                           ︷︷                           ︸
retraining (lines 15–17)

.
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Putting everything together, the computational per-batch complexity of Alg. 4 is the same as in

the contribution-based eGBDT (Alg. 3) but with the addition of 𝑂 (3𝑀):

𝑂
(
𝑀 𝑁 𝑑 + 2𝑀

)︸               ︷︷               ︸
contribution & pruning

(Alg. 4)

+ 𝑂 (3𝑀)︸  ︷︷  ︸
weight update

(Alg. 4, lines 4–6)

+ 𝑂
(
𝑀 log𝑀

)︸         ︷︷         ︸
ranking

(Alg. 3, lines 9–10)

+ 𝑂
(
𝑀 𝑁 𝑑

)︸      ︷︷      ︸
retraining

(Alg. 3, lines 15–17)

.

Again, the ensemble traversal term 𝑂 (𝑀𝑁𝑑) is the leading term, because it scales with

both the batch size 𝑁 and the ensemble size 𝑀 . The remaining terms grow only linearly or

logarithmically with 𝑀 , so the incremental extension of weight update and new tree training

does not create more computationally complex leading term.

There are three significant differences between cbeGBDT and AUeGBDT. Firstly, the con-

tribution is calculated as a relative improvement on the inherited pseudo-residuals (line 6 Alg. 4)

rather than absolute improvement on them (line 6 Alg. 3). This is because empirically the results

were shown to be slightly better for each algorithm to calculate it thus. My hypotyhesis is that

cbeGBDT maintains stronger interdependence between the trees; whereas AUeGBDT breaks

this interdependence of trees even further with the introduction of weights. Dividing the im-

provement by the original pseudo-residuals reflects the relatively smaller tree interdependence.

Secondly, there is the weight update which introduced three new hyperparameters and the

sigmoid activation function. As was explained earlier, this is aimed to allow incremental learning

at greater granularity then pruning and building trees allows. It further expands the space for

tuning because it introduces three new hyperparamaters to tune. One can also change the

activation function which creates a new hyperparameter. Expanding tuning space is not strictly

desirable, because ideally the tuning would take place within the edge device, but with larger

optimization space optimal tuning becomes unfeasible.

Finally, the AUeGBDT is much less likely to prune and build new trees, because the weight

calculation already introduces high degree of adaptability. Therefore, the additional retraining

computational cost 𝑂 (𝑀𝑁𝑑) will happen sparsely. However the retraining term has the same

complexity as the batch traversal term.
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3.2 Experiment

In this section the introduced algorithms are applied on the smart meter time series dataset. It

starts with the description of the dataset and preprocessing steps. Subsequently, the compared

models with, the error metrics, training and hyperparameter tuning are presented. Finally, the

results are plotted.

3.2.1 Dataset and Preprocessing

The smart meter time series dataset from Kaggle [47] was chosen due to its quality and public

availability. Since the primary contribution of this research is theoretical, the empirical part

follows the core principles of time series data preprocessing rather than introducing novel

approaches for improvement.

The dataset covers energy consumption from December 2006 to November 2010 with mo-

mentary readings stored every minute. It consists of 9 columns. Two describe the time of the

recording: one is a date and another is the time of day. These were collapsed these into a single

datetime column. The only other original variable we kept is global_active_power. The six

remaining columns were dropped, namely: sub_metering_1, 2 and 3 which corresponded to

the different phases, global_reactive_power, voltage and global_intensity. The reason

for dropping all other columns is that we wanted to keep feature engineering as simple as pos-

sible. While this might have lower predictive accuracy of all models, the main task is not to

achieve the highest accuracy on this particular dataset, but rather to compare different models

and their adaptation to concept drift as it occurs in energy data. For that all that is needed is a

representative dataset and not necessarily highly complicated one.

Arguably, global_active_powermeasured in kW is not the most suitable physical quantity

to conduct experiments on, because its values are momentary and as such its values can be

haphazard. Ideally, the predicted quantity would be in kWh, but such high quality energy data

are rarely public and in the interest of replicability we chose to predict public kW dataset rather

than undisclosed kWh dataset. Nonetheless, the relatively high 1-minute granularity partially

makes up for the disadvantage of the momentary value. In EU, smart meter readings are recorded

in a 15-minute interval while in the UK the interval is 30 minutes [48, 49, 50]. To compensate for
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Figure 3.1: Daily Energy Consumption Profile for Months

the haphazardness of momentary values and to imitate EU energy distributing company which

could be interested in 15-minute predictions the data were aggregated into 15-minute readings.

However, before the aggregation, the issue of missing values neeeded to be dealt with.

The dataset had total of 2075259 1-minute measurements with 25979 missing values. This

corresponds to roughly 1.25% of values. We simply interpolated the missing values as a mean

of the last recorded measurement and the next recorder measurement. Only afterwards was

the 15-minute aggregation applied. Thus processed data need to be explored to establish the

presence of concept drift.

In Figure 3.1 the daily profiles for every calendar month are averaged. If data from that month

were collected repeatedly - e.g. 4 times in the 4-year dataset -, these are also averaged. The daily

profiles of the processed dataset are analogous to daily profiles visualized elsewhere [51, 52].

They have the typical morning and and evening peaks when people use their house appliances

the most and mid-day trough when people are at work. Furthermore, the Figure 3.2 shows the

whole dataset after 15-minute aggregation was applied. We can clearly see the seasonality of

energy consumption. If the model does not train on year or more of data, then it will be difficult

for it to predict the conceptually drifted data as previously unseen season comes.

Next step is feature engineering. Fourier Transform, PACF and ACF are applied to see if
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Figure 3.2: Global Active Power with 15-Aggregation and Polynomial Line of Best Fit
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Figure 3.3: PACF and ACF
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Figure 3.4: Fourier Transform

the data are not stochastic and which lags should be engineered [53, 54]. The ACF (Figure 3.3)

shows some continuity of the data up until roughly 15th data-point in past which corresponds to

3 hours and 45 minutes. This supports the claim that there is a continuity of past data influencing

the current data and the whole time series is not stochastic.

The PACF plot however tells little of substance and perhaps even suggests there is stochasticity

in the data. The fact that only lag of 1 data point is significant is problematic. There is likely

no energy-consuming activity which repeats with 15-minute interval. Rather many energy-

consuming activities last 15 minutes. It is these roughly 15-minute activities which are picked

up by the lag of 1 in the PACF plot. We have decided not to include the lag of 1. While it might

be highly significant it would likely lead the model to simply predict the next value to be the

same as the preceding value. Why exactly this might happen will be explained after establishing

the lag selection using Fourier Transform.

Taking and plotting Fourier Transform of the dataset decomposes the original time series into

the periods of the different signals which are in a superposition in the original data; assuming the

original time series is a superposition of a number of different signals. Lag feature engineering
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with Fourier Transform thus means choosing whichever period is identified as a strong signal

in the plot [55]. Indeed, Fourier Transform of the chosen dataset provides better information

for determining lag feature engineering than PACF and ACF (see Figure 3.4). As we can see

the signal slightly more frequent than 10−5 is strong. This corresponds to one day period (pink

full line).2 12 hour signal is even a bit stronger (yellow dashed line). Another strong signal

is 6 hours (light green dotted line). We also decided to use 1 week lag even though its signal

is relatively weak (grey dashdot line). Nevertheless, some energy consuming activities repeat

with weekly basis or are associated with a specific day of the week. The most prominent signal

which occurs a bit more frequently than 10−8 is not included into the lag selection, because it

corresponds a to a year. Such a lag is impossible to store in a limited memory edge device. In

contrast, month (1 through 12) is used as a static feature (as opposed to lag). Hence, when a

new row of data arrives the algorithm knows the month. Unlike lag, which requires 12-month

large memory storage, knowing the month of the row of data is an immediate value which does

not create any such memory requirements.

Since the forecast horizon is the whole day and 6 and 12 hour lags are used, the recursive time

series forecasting method is used [56]. Recursive time series forecasting uses past predictions

as features for subsequent predictions. One day of 15-minute predictions corresponds to 96

data-points. Hence, with 6-hour lag the prediction of first 23 data-points use recorded 6-hour

lag data. However, for the remaining 73 data-points the numbers for 6-hour lag feature are the

already made predictions. Because the 6-hour lag feature 15 hours from now is the outcome

variable 9 hours from now and so it not yet recorded.

For this reason the lag of 1 data point mentioned two paragraphs ago was not included.

Highly important feature - the lag of 1 - which however is for 95 out of 96 data-points a result of

previous predictions propagates error and thus increases it. Even though for the first prediction

lag of 1 will likely reduce error, because in 15 minutes the next value is highly correlated with

the immediately preceding value as was shown by the PACF (Figure 3.3).

In addition, the recursive time series forecasting creates a new question regarding the features

for trees’ contribution calculation. Currently, individual tree contribution calculation for both
2The period in seconds is attained using 1/ 𝑓 . For example, 1/10−5 results in 100.000 seconds which is a bit

over 27 hours.
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Alg. 3 and Alg. 4 is calculated based on recorded rather than recursively predicted features.

Since the contributions are calculated only once the algorithm receives the recorded new data

batch, all features for all 96 data-points are available. Hence, there is no need for recursive

forecasting. Instead, contribution of each tree is calculated based on every tree’s reduction of

error given the recorded features rather than recursively predicted features. While this approach

establishes the contribution of each tree on real data, it differs from the prediction for next batch

where recursive forecasting is used again. However, using recursive forecasting in contribution

calculation calculates trees’ contribution given predicted and therefore incorrect features. The

question of whether to use recursive forecasting, recorded data or some combination of the two

in contribution calculation is reopened in Discussion Section 4.

Another preprocessing step was the Box–Cox transformation. The original consumption

data are highly left-skewed: the histogram in Figure 3.5 shows two clear peaks—one between

about 0.3 kW and 0.5 kW and another around 1.5 kW—with a long tail extending up to 8 kW.

Training directly on such skewed data risks over-fitting the small-value region and under-fitting

the longer tail. By applying a Box–Cox power transform [57], the distribution becomes more

symmetric: the two original peaks map to approximately –0.8 and 0.4 in the transformed scale

(see Figure 3.5), stabilizing variance and reducing skewness. The transformation should enable
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models to fit well to both modes of the data [58]. The final predictions of the models will be

inverted to be on the scale of the original values. The scipy implementation of the Box–Cox

transformation was used [59]. The transformation is defined as:

𝑦 (𝜆) =


𝑦𝜆 − 1
𝜆

, 𝜆 ≠ 0,

ln(𝑦), 𝜆 = 0.

For our data, the estimated parameter was:

𝜆 = −0.0690.

𝜆was determined by maximizing the log-likelihood of the transformed data under the assumption

of normality using the scipy implementation of the function [59].

The last preprocessing step was changing the time series data into a dataset which can be

used for machine learning model training and prediction. This is a simple data manipulation

task. Assuming, there is lag of 1 of the outcome variable 𝑦 at time 𝑡 it is turned into a feature 𝑋

at time 𝑡 +1 for predicting 𝑦𝑡+1. Such data manipulation is called the sliding window method and

it is commonly used in time series data preprocessing [60, 61]. Of course, this done according

to the chosen lags.

Thanks to the Fourier Transform, it was argued that the data are structured around period-

ical energy use rather than being highly stochastic and therefore unpredictable. The Fourier

Transform also led us to engineer four lagged versions of the target variable at 6, 12, and 24

hours, as well as a week-long lag. In addition, the following static time features were included:

hour, minute, day, and month (where day refers to the day of the month). Although the current

selection of time lags may be naive and there is a flourishing research exploring more nuanced

procedures for choosing the right time lags [62], the main research goal of this thesis is the

improvement of incremental learning algorithms rather than attaining the highest possible ac-

curacy on this specific dataset. Because of that the conducted preprocessing steps including the

recursive forecasting are following established foundational time series procedures. Similarly,

we are not testing for stationarity of the time series. Good incremental learning algorithm
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should have strong predictive accuracy regardless of the stationarity of data. That is indeed

why Learn++.NSE has the "non-stationary environment" in its name. On the other hand, if

the data were completely or largely stochastic, then comparing models on it would not yield

representative results. However, it has been argued by e.g. taking the Fourier Transform that the

dataset is not too stochastic and that such model comparison is feasible.

3.2.2 Models and Error Metrics

Seven models are compared on four different error metrics (MAE, RMSE, MSE, MAPE). The

model trainings and hyperparameter tunings are highly limited to simulate the limitations of

edge computing. We now briefly present each of the models, its training and hyperparameter

tuning.

Out of the seven models one is a called Plain, because it is a GBDT model which is left

unchanged once it has trained on the training data. Then there are five models which received

initial training but they also learn incrementally. Finally, there is the Retrain model which also

received initial training but it retrains fully on every batch while in use.

One of the incremental learning algorithms is the index-based elastic GBDT (Alg. 2). It is

abbreviated in the results figures as Index-Stat, because it trains a static number of incremental

trees on every batch, if it does not retrain itself fully on it. In contrast, Index-Dyn is an

abbreviation for a model which works the same way as index-based elastic GBDT with two

key differences. It has a retrain threshold equal to 0 and it does not train new trees on every

batch. It too finds the index of the tree with the least error on the current batch and it too prunes

all remaining trees. But here Index-Stat would be retraining if the index is too low. Whereas,

Index-Dyn regardless of the index trains as many trees as were deleted on the current batch. If

the index is the initial guess than the whole ensemble is retrained; otherwise, some trees remain

untouched. Index-Dyn is thus our idea of memory stable elastic GBDT as introduced by Wang

et al [6].

Another two incremental learning algorithms are the contribution-based elastic GBDTs. The

one abbreviated as Contrib in the results figures uses weighted contribution ratio to determine

how many trees to prune (𝐾 in the Alg. 3 explanation). The second is abbreviated as Ratio in

33

C
E

U
eT

D
C

ol
le

ct
io

n



the figures and uses the two batch ratio to determine 𝐾 .

The last incremental learning algorithm is abbreviated in the result figures as Accuracy. It

is the Alg. 4.

The incremental learning algorithms have two sets of hyperparameters to tune. The first set

defines the GBDT model on which the incremental learning extension is built. The second set

is associated with incremental learning mechanism. Thus, at first trained and using grid search

tuned the underlying GBDT model on three weeks of data. Subsequently, thus tuned and trained

GBDT model was used as a basis for each incremental learning model. All incremental models,

including the Plain model, thus used six weeks of learning data. The difference is that the Plain

model used in the model comparison received all six weeks of training data in one training;

whereas, incrmental learning models trained and tuned in two phases each consisting of three

weeks.

The choice of six weeks on 4-year long time series is intended to simulate the limited edge

computing memory which might be even stricter. However, if only 3 or 4 weeks of data were used

for the training and two sets of hyperparameter tuning, the tuning would hardly be meaningful.

Arguably, even now the models are not trained and tuned enough. In the tradeoff between proper

training and tuning versus credible simulation of edge computing environment, this research

opted for a compromise leaning towards credible simulation of edge computing limitations.

The base GBDT model was trained and tuned using scikit-learn’s TimeSeriesSplit [63].

We used two splits, each holding one week of data as the test set with the following parameter

grid:

pa r am_gr id = {

’ n _ e s t i m a t o r s ’ : [ 3 0 , 50 , 70 ] ,

’ max_depth ’ : [ 3 , 5 ] ,

’ l e a r n i n g _ r a t e ’ : [ 0 . 0 5 , 0 . 1 ]

}

Results of the tuned base GBDT model:

• 2 folds for each of 12 candidates, totalling 24 fits
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• Best params: {learning_rate: 0.1, max_depth: 3, n_estimators: 50}

• CV-RMSE: 0.8704

Thus tuned GBDT model was then used as the base for each incremental learning variant.

The following hyperparameter grids were defined for the different incremental learning models:

# 1) C o n t r i b u t i o n −based e l a s t i c GBDT ( Con t r i b )

c o n t r i b _ g r i d = {

" r a t i o _ f i x e d _ m u l t i p l i e r " : [ 1 , 1 . 2 5 , 1 . 5 ] ,

" a l p h a _ m u l t i p l i e r " : [ 0 . 4 , 0 . 7 ] ,

" b e t a _ m u l t i p l i e r " : [ 0 . 1 , 0 . 3 ] ,

" gamma_mu l t i p l i e r " : [ 0 . 1 ] ,

}

r a t i o _ g r i d = {

" r a t i o _ f i x e d _ m u l t i p l i e r " : [ 1 . 2 , 1 . 5 , 1 . 8 ] ,

}

a c c u r a c y _ g r i d = {

" s igmoid_k " : [ 1 . 6 , 2 , 2 . 4 ] ,

" f i x e d _ t h r e s h o l d " : [ 0 . 2 , 0 . 6 ] ,

" r a t i o _ p o w e r " : [ 0 . 2 , 0 . 6 , 1 ] ,

" w_sca l e " : [ 2 ]

}

s t a t i c _ g r i d = {

" f i x e d _ r e b u i l d _ c o u n t " : [ 2 , 5 , 8 ] ,

" m_ th r e sho l d " : [ 5 0 ] ,

" e r r o r _powe r " : [ 2 ]

}

The tuning settings for incremental learning models were the same as the training settings

for the base GBDT model. However, the following three weeks were taken (2016 data points).

There were also with two splits applied using TimeSeriesSplit and one week test size. These are
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the resulting best models:

Best Tuned Incremental Models

• AccuracyUpdatedGBDT: {sigmoid_k: 1.6, fixed_threshold: 0.2, ratio_power:

0.2, w_scale: 2}, CV-RMSE: 0.7845

• Ratio-Based:ratio_fixed_multiplier: 1.5}, CV-RMSE: 0.7829

• Index-Static: {fixed_rebuild_count: 8}, CV-RMSE: 0.9321

• Contrib-Weighted: {m_threshold: 0, ratio_fixed_multiplier: 1, alpha_multiplier:

0.4, beta_multiplier: 0.1, gamma_multiplier: 0.1}, CV-RMSE: 0.7839

Finally, a new plain GBDT model (abbreviated in the figures as Plain) was trained on six

weeks. Its hyperparamater grid was a bit expanded so as to be more comparable to the incremental

learning models which had two sets of hyperparamaters and therefore larger optimization space.

Six weeks are together 4 032 data points. TimeSeriesSplit was used with four splits. This

is supposed to be analogous to the incremental learning models which used two splits for base

GBDT and two splits for incremental learning extension parameter tuning

pa ram_gr id = {

’ n _ e s t i m a t o r s ’ : [ 2 0 , 30 , 50 , 70 ] ,

’ max_depth ’ : [ 3 , 4 , 5 ] ,

’ l e a r n i n g _ r a t e ’ : [ 0 . 0 1 , 0 . 0 5 , 0 . 1 ]

}

• Fitting 4 folds for each of 50 candidates, totaling 200 fits

• Best params: {learning_rate: 0.05, max_depth: 5, n_estimators: 30}

• CV-RMSE: 0.8189

The reason for choosing RMSE as an error metric to minimize is the compromise between

considering large and small errors. Large errors in energy consumption forecasting can lead to

spikes of shortage or oversupply of energy which can become bigger problems then aggregated
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small deviations of the same absolute value. On the other hand, MSE penalizes large errors

perhaps too severely. All in all, the choice of error metric depends on the task and here is

no other specific task than model comparison. That is why four metrics are included namely:

RMSE, MAE, MAPE, and MSE; though the choice of minimizing RMSE is somewhat arbitrary.

Good incremental learning method should be oblivious to the particular error metric and much

energy forecasting research publishes numerous metrics [64, 65].

After all models were trained and their parameters have been tuned as described, they were

used to predict the remainder of the data in 96 data-point batches which correspond to one

day. This a meaningful forecast horizon, because a key energy market is the day-ahead market

(sometimes called spot market) [66]. Again, this is a compromise between very short forecast

horizon of hours or even minutes, both of which are highly useful for intra-day energy trading

and flexibility services supply, and longer weeks or months forecast horizons which determine

equally long energy contracts [67].

The longer forecast horizon during parameter tuning (one week) and a shorter forecast

horizon (one day) during batch learning were picked to avoid overfitting during parameter

tuning. On the other hand, such short horizon during incremental learning can lead to undesired

overfitting for incremental learning models, if the concept drift is not strong. In such situation

having stronger bias and thus not forgetting recurrent concepts is useful. The short forecast

horizon thus advantages Plain model as opposed to Retrain model or to lesser extent incrementally

learning models.

To better compare the models, two other testing setups are included. In the second setup, all

models train six weeks as in the first setup, but the forecast horizon is extended from 1 day to

28 days. This should advantage Retrain and to lesser extent incremental learning models whose

newly trained trees should benefit from a larger dataset to train on. In the third setup, the base

model receives 2 years of training. Incremental learning models will receive no extra training

and their parameters will be the same as those find by tuning in the first setup. The forecast

horizon for this third setup will be a week. This setup should benefit the less flexible model such

as the Plain model, because there will be enough data to train on including seasonal trends. In

contrast, the retrain model will forget all that has learned by retraining already on first batch.
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3.2.3 Experimental Results

In this section the results ftom the three experimental setups are presented. The results of the first

setup - which imitates the edge computing and energy distribution company most faithfully - are

presented have bar plots for all error metrics. The remaining two setups and average statistics

across the three setups are presented only by tables. Furthermore, MAE and RMSE evolution

over the batches is presented for the second setup (6 weeks training, 4 weeks forecast horizon).

The remaining two setups have too many data-points (batches) to display the error evolution in

a readable format. The main conclusion of this section is that there is no one dominating model.
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Figure 3.6: Model MAE with Six Weeks of Training Data
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Figure 3.7: Model MAPE with Six Weeks of Training Data
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Figure 3.8: Model RMSE with Six Weeks of Training Data
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Figure 3.9: Model MSE with Six Weeks of Training Data
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Figure 3.10: Model Error Evolution For 6 Weeks Training, 4 Week Forecast Horizon Setup
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Table 3.1: Six Weeks of Training, One Day Forecast Horizon
Model AvgTime(s) MAE MSE RMSE MAPE

Plain 0.0376 0.6847 0.8183 0.8706 1.3260
Accuracy 0.2086 0.6813 0.8069 0.8643 1.3075
Index-Dyn 0.2081 0.6373 0.8103 0.8531 1.0311
Index-Stat 0.4324 0.6359 0.9003 0.8856 0.8764
Contrib 0.1935 0.5898 0.7369 0.8020 0.8404
Ratio 0.1807 0.5943 0.7422 0.8053 0.8512
Retrain 0.0523 0.6279 0.8836 0.8769 0.8374

Table 3.2: Six Weeks of Training, Four Weeks Forecast Horizon
Model AvgTime(s) MAE MSE RMSE MAPE

Plain 1.4664 0.6948 0.8708 0.9213 1.2122
Accuracy 8.2112 0.6890 0.8379 0.9037 1.2637
Index-Dyn 8.1394 0.6844 0.8665 0.9161 1.1309
Index-Stat 14.8051 0.6877 1.0414 1.0006 0.8368
Contrib 6.9280 0.6771 0.9023 0.9275 0.9933
Ratio 6.6706 0.6803 0.9296 0.9389 0.9345
Retrain 1.3902 0.6588 0.9543 0.9525 0.7904

Table 3.3: One Year of Training, One Week Forecast Horizon
Model AvgTime(s) MAE MSE RMSE MAPE

Plain 0.3103 0.6919 1.1328 1.0325 0.5077
Accuracy 3.1599 0.6929 1.1349 1.0335 0.5089
Index-Dyn 3.1603 0.6684 0.9466 0.9470 0.8999
Index-Stat 2.6423 0.6333 0.8304 0.8888 0.8249
Contrib 4.2390 0.6665 1.0692 1.0014 0.5071
Ratio 4.2243 0.6677 1.0655 0.9980 0.5147
Retrain 0.6020 0.6434 0.8589 0.9032 0.8367

Table 3.4: Average Metrics Across Three Setups
Model AvgTime(s) MAE MSE RMSE MAPE

Plain 0.6048 0.6905 0.9406 0.9415 1.0153
Accuracy 3.8599 0.6877 0.9266 0.9338 1.0267
Index-Dyn 3.8359 0.6634 0.8745 0.9054 1.0206
Index-Stat 5.9599 0.6523 0.9240 0.9250 0.8460
Contrib 3.7868 0.6445 0.9028 0.9103 0.7803
Ratio 3.6919 0.6474 0.9124 0.9141 0.7668
Retrain 0.6815 0.6434 0.8989 0.9109 0.8215
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Table 3.5: Average Model Ranks Across Three Setups
Model Time MAE MSE RMSE MAPE All Error Metrics

Plain 1.0 7.0 7.0 7.0 5.0 6.5
Accuracy 6.0 6.0 6.0 6.0 7.0 6.2
Index-Dyn 5.0 5.0 1.0 1.0 6.0 3.2
Index-Stat 7.0 4.0 5.0 5.0 4.0 4.5
Contrib 4.0 2.0 3.0 2.0 2.0 2.2
Ratio 3.0 3.0 4.0 4.0 1.0 3.0
Retrain 2.0 1.0 2.0 3.0 3.0 2.2
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Chapter 4

Discussion and Limitations

This section discusses the findings, limitations and avenues for future research. The main

empirical finding of this research is none of the tested models consistently outperformed the

rest. The only exception is that the Plain model was consistently the fastest model; though in

the second setup it was very tiny bit slower than the Retrain model (see Table ??). While there

is no ready-made explanation for this, it needs to be stated that the recursive forecast likely took

more time than the training. Our implementation of it is not as optimized as the scikit-learn’s

implementation of the fit() method. On the other hand, the Retrain model undertook both

recursive forecasting and retraining.

In terms of accuracy, contribution-based eGBDT and the Retrain models are the best. The

two versions of cbeGBDT calculate the 𝐾 trees to prune differently, but the Contrib model is

leading scoreboard along Retrain model while Ratio model is right behind them (see Table 3.4

and Table 3.5).

Although Plain model is the worst in Table 3.4, its performance is not as bad is it was

expected. This might indicate that the concept drift in the data is of Source I (see Figure 2.1).

Although the seasons change and the model does not know that, the relationship between 𝑋 and

𝑌 remains the same: 𝑃𝑡 (𝑌 | 𝑋) = 𝑃𝑡+Δ(𝑌 | 𝑋). The lower or higher lags inform the model

enough so that it knows it should predict lower values in summer or higher values in winter.

Nevertheless, the relationship between lags and the predicted variable is not wildly changing

over time.

However, these overall average metrics obscure the fact that in different setups different

models were the most accurate. In the third setup (Table 3.3), the classic index-based elastic

GBDT is decisively the most accurate model while in the second setup (Table 3.2) Accuracy is

performing quite well. All in all, the results show that no single model outperforms the rest in

all setups. Rather, choosing a model for deployment largely depends on the setup.
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Training size, batch size, and forecast horizon length all have major impact on model’s

performance. The first experimental setup imitated edge device limitations and instituted the

sensible forecast horizon for energy distributor application of one day. The imitation led to a

very small training dataset size compared to test dataset size. The training dataset comprised

of 3% of the data while the test dataset was the remaining 97%. While such large test size

provided space for incremental learning to really change the ensemble, it arguably advantaged

the incrementally learning models which thus could learn on more data. Yet, the Plain model

performed somewhat well. This may be due to overfitting of the incremental learning models

on the relatively short forecast horizon of one day. This seems to be confirmed by the fact that

Retrain model and index-based eGBDT models performed the worst. These three models are

the most flexible and therefore overfitting models. Hence, the fact that no single model leads

the scoreboard should be both ascribed to the different setups. But which setup will lead to the

success of which model is not clear from this research.

Another issue is the question of hyperparameter tuning vs. additional training. Perhaps, the

Plain model benefited from getting larger training dataset more than the incremental learning

models benefited from choosing their tuning paramaters. For example, the Accuracy model

tended to chose the least flexible hyperparameters and so kept itself the most similar to the

base GBDT model. This might have yielded the best performance during the three-week long

hyperparameter training, but might have led to not flexible enough model during the test dataset.

In contrast, the Plain model could have changed radically with three extra weeks of data. Thus it

could have benefited more from the three weeks than the incremental learning models benefited

from the tuning.

We can see that less flexible models have more volatile error on a batch than more flexible

models. Accuracy chose the least flexible hyperparameters and Plain did not change during

the batch learning at all. These two models consequently have lower errors when more flexible

models have high errors (see Figure 3.10). However, the same applies during batches when

more flexible models such as when Retrain, Index-Stat or Index-Dyn had their most accurately

predicted batches. The less flexible models in such situations did not manage to adapt to the

"easily" predictable batch. It seems that Retrain, Index-Stat or Index-Dyn are the most flexible
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models, Contrib and Ratio are somewhat flaxible and Accuracy with its tuned parameters along

with Plain are the least flexible models. The flexible models tend to overfit while the least

flexible models tend to have high bias.

One structural problem of the Accuracy model (Alg. 4) in its current form is that the total

weight update is independent from the error on the batch of the whole ensemble. While the

individual trees’ weights reflect their contribution to the reduction of the ensemble’s error, the

same is not true for the whole ensemble. Currently, how much the weights get updated is

determined by a fixed hyperparameter named "ratio_power". This by hypeparameter tuning

ended up to However, some kind of mechanism which would lead to faster weight update

on conceptually drifting batches and slower weight update during non-drifting periods could

improve the the model’s performance. Indeed, such mechanic is crucial for the relatively

successful Ratio model.

A major theoretical question is the calculation of tree contribution. Already talked about

in Section 3.2.1, the current implementation of tree contribution calculation uses recorded

data. Thus, the algorithm can rank and subsequently prune trees which perform poorly on new

conceptually drifted data. However, such such contribution calculation differs from the way the

algorithm predicts next batch. During prediction the algorithm employs recursive forecasting

which leads to earlier predictions being used as features for later predictions. If the contribution

was calculated with recursive forecasting as well, it would better reflect the performance during

real prediction. On the other hand, trees would be pruned not based on their predictions of

recorded input data but based on already predicted features. Those already have some error.

Hence, the pruning would be based on trees predicting outcome variables based on non-recorded

somewhat erroneous features. In this experiment only recorded features were used to calculate

contribution, but using recursive forecasting or a combination of recursive forecasting and real

features could lead to more accurate pruning and therefore better performing models.
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Chapter 5

Conclusion

This master thesis research aimed to improve Elastic GBDT model proposed by [6]. It thus

sought answer to the following research question:

How can the Elastic GBDT algorithm be adapted for regression tasks to limit memory use

and computational resources while enhancing predictive accuracy, and ensuring compatibility

across various types of decision trees?

Three distinct algorithms which departed from Elastic GBDT were presented. The simplest

Index-Dyn merely maintained a fixed number of trees and pruned all trees after the index of

the best performing tree. It then retrained as many trees as it deleted. Based on the ranking

(see Table 3.5) it already very slightly outperformed Elastic GBDT (named "Index-Stat" in the

table).

More advanced mechanic of contribution based tree pruning was presented under the name

of contribution-based elastic GBDT (for full explanation see Alg 3). CbeGBDT calculates the

contribution of each tree to the reduction of error and it prunes and subsequently retrains the least

contributing trees. Two approaches named "weighted contribution" and "ratio" determining how

many trees should be pruned and retrained were presented. This algorithm is on par with the

Retrain model which

In addition, accuracy updated elastic GBDT was presented (see Alg 4). It maintained tree

contribution calculation; however it took inspiration from Learn++.NSE and AUE. It employed

weighting mechanism (AUE) using activation function (Learn++.NSE). Although it performance

was the worst, it has the highest number of hyperparamters to tune. Hence, it may be possible

that with different hyperparameter choice and tuning length - tuning was three weeks long for

all three setups -, it could yield stronger results.

The first setup of only six-weeks long training and hyperparameter tuning with one day

forecast horizon imitated edge computing. Strongly performing incremental learning could be

employed and limited memory and compute devices to help stabilize energy grid by accurate
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energy use forecast. For this reason the research offered algorithms with non-increasing memory

requirements and the setup of very short training. However, two different setups of longer training

and longer forecast horizon showed that performance of models is strongly influenced by these

parameters.

While the contribution calculation managed to deliver version of Elastic GBDT which has

limited memory and slightly better accuracy, it needs to be further researched in recursive

forecasting applications. Currently, contribution calculation differs from batch prediction once

data-point prediction relies on a past data-point prediction as one of its features - that is when

prediction is recursive. In contrast, tree contribution calculation takes place only once the

model receives all the recorded data from the last batch. In our implementation the contribution

calcuation fully relied on the recorded data. Integrating recursive forecasting into contribution

calculation can lead to further performance improvement.
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Chapter A

Introduction to GBDT

Originally proposed by Friedman [68], Gradient Boost Decision Tree is a machine learning

algorithm which turns number of weak learners (decision trees) into a much stronger learner

by grouping them into an ensemble. Each new tree is trained to predict and thus reduce the

errors made by the immediately preceding tree. The prediction is achieved by approximating

the negative gradient of an arbitrary differentiable loss function. Final prediction of the whole

ensemble is the sum of all the individual trees’ predictions. This subsection briefly presents

GBDT algorithm on top of which my incremental learning approaches are built. The presentation

of GBDT is brief due to the word limit of this work and because the core of GBDT is left

unchanged by the proposed incremental learning approaches.

Formally, given a training dataset {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 and a differentiable loss function ℓ(𝑦, 𝑓 (𝑥)),

GBDT constructs the final model as an additive combination of 𝑀 weak learners:

𝐹𝑀 (𝑥) =
𝑀∑︁
𝑚=1

𝛾𝑚ℎ𝑚 (𝑥), (A.1)

where ℎ𝑚 (𝑥) is the 𝑚-th decision or regression tree (weak learner) and 𝛾𝑚 is its weight (or

multiplier). Classification and Regression Trees (CART) were introduced in 1984 by Breiman

et. al. [69]. Due to the limits of scope their construction will not be explored in this thesis;

however, since the data are numerical only regression trees are used.

At each iteration 𝑚, the algorithm calculates the pseudo-residuals, defined as the negative

gradient of the loss function evaluated at the model from the previous iteration 𝐹𝑚−1(𝑥):

𝑟𝑖𝑚 = −
[
𝜕ℓ(𝑦𝑖, 𝑓 (𝑥𝑖))
𝜕 𝑓 (𝑥𝑖)

]
𝑓 (𝑥)=𝐹𝑚−1 (𝑥)

, 𝑖 = 1, . . . , 𝑛. (A.2)

A weak learner ℎ𝑚 (𝑥) is then fitted to these pseudo-residuals {(𝑥𝑖, 𝑟𝑖𝑚)}𝑛𝑖=1. Subsequently,
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the multiplier 𝛾𝑚 is calculated through line search as:

𝛾𝑚 = arg min
𝛾

𝑛∑︁
𝑖=1

ℓ(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾ℎ𝑚 (𝑥𝑖)).” (A.3)

Finally, the model is updated by adding the new weighted learner (in my case regression

tree):

𝐹𝑚 (𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚ℎ𝑚 (𝑥). (A.4)

The GBDT algorithm is computationally efficient and achieves high accuracy, which makes

it particularly appealing for applications constrained by computational resources and memory,

such as forecasting in smart meters. GBDT remains unchanged by the incrementally learning

methods presented earlier. Instead, they focus on improving the model’s adaptability to evolving

data distributions by weighting and/or pruning the weak learners.
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