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Guimerà endorse this statement with their signatures below.

ii

C
E

U
eT

D
C

ol
le

ct
io

n



Signature of PhD Candidate:

Date:

Signature of Dr. Tiago P. Peixoto, endorsing statement of joint work:

Date:

Signature of Dr. Marta Sales-Pardo, endorsing statement of joint work:

Date:
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Abstract

The structure of real-world networked systems is crucial for understanding their origin, evo-
lution, and behavior. Network structure can be summarized by decomposing the network into
subsets of elements and assuming that the rate of interactions between individual elements is
driven by such groupings. These groups, commonly referred to as “communities”, play an im-
portant role in the network formation process and may significantly shape the behavior of the
underlying system.

Generative network models are flexible and robust approaches to detect communities in net-
work data. The family of Stochastic Block Models (SBMs), along with Bayesian inference
tools, has proven useful for community detection and link prediction tasks. SBMs yield a
coarse-grained description of the network data in a statistically principled way, which prevents
drawing misleading conclusions due to spurious patterns, and simultaneously, allows the dis-
covery of existing patterns in the data.

However informative, SBMs are approximations of real-world networks and rely on several
simplifying assumptions that are unlikely to be valid in various empirical settings. Currently,
neither the extent of these potential discrepancies in empirical network data nor the conse-
quences that SBM modeling inconsistencies can introduce are well understood. This disser-
tation aims to address this issue by conducting large-scale studies of SBM fits to hundreds of
empirical networks to uncover systematic patterns in SBMs performance. We consider two
complementary approaches to assess the quality of the model, namely model checking and
model selection.

In model checking, the goal is to understand how the model fails in describing the data, as a path
towards model comprehension, revision, and improvement. To this end, we first use posterior
predictive checks, which involves comparing networks generated by the inferred model with the
empirical network, according to a set of network descriptors. Additionally, we conduct another
study in a scenario with noisy network measurements, where we use a network reconstruction
framework to test the accuracy of SBM estimates of underlying patterns of empirical networks.
In both analyses, we observe that while the SBM provides accurate descriptions or estimates
for most networks in the corpus, it does not fulfill all modeling requirements, particularly for
transportation networks.
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Finally, we study model selection approaches, considering several variants of the SBM. We
evaluate the models based on their compression ability and predictive power, and examine
the agreements and disagreements between these model selection criteria. Overall, we find
consistency between such criteria, i.e., the most compressive model is also the most predictive.
Nevertheless, compression criteria tend to be more reliable for model selection, as predictive
criteria cannot always determine which SBM variant is better. Thus, this dissertation aims to
provide a better understanding of the behavior of SBMs, their capabilities, and limitations as
approximations of true underlying models of real-world networks.
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Chapter 1

Introduction

In this Chapter, we explain the motivation of this work (Sec. 1.1), the rationale of the ap-
proaches that we take to study SBMs (Sec. 1.2 and 1.3), and the summary of results and main
contributions of this dissertation (Sec. 1.4).

1.1 Motivation

The structure of real-world networked systems, i.e., the connection patterns between the ele-
ments of the system, is of crucial importance to understand their origin, evolution, and behavior.
One of most active directions of research to learn about network structure is based on the as-
sumption that the network can be meaningfully divided into subsets of elements, commonly
referred as “communities” or “blocks”. These groups can play a significant role in network
formation processes and have implications for the behavior of dynamic phenomena occurring
on such networks.

In the past two decades, the task of finding such groups in networks, known as community

detection, has received increasing attention. Various scientific domains have benefited from
the application of community detection methods. Relevant examples include studying groups
in social networks [3, 4], biological functions in metabolic networks [5, 6], fraud in telecom-
munications networks [7], and homology in genetic similarity networks [8]. Alongside the
growing number of applications, many competing approaches have been proposed in the litera-
ture [4,9], which differ not only on the motivations and goals they pursue, but also on how they
define “community” [10]. One useful way to navigate through such diversity of approaches
and gain intuition on how appropriate they are to describe the structure of real-world networks,
is by using a statistical taxonomy. More specifically, we can distinguish between “descriptive”
and “inferential” approaches to community detection [11].

Descriptive methods rely on heuristics to find a partition that fulfills some definition of com-

1

C
E

U
eT

D
C

ol
le

ct
io

n



munity structure, focusing on a feature of the data rather than its generation. Often, these
approaches have varied origins and goals, leading to disagreements on the meaning of commu-
nity structure. Although the resulting partition can be used to describe the network, it remains
unclear what is the role of the groups in forming connections between the elements of the
system. Among these approaches, modularity maximization [12] is arguably the most popular
one. Its goal is to find the partition that maximizes the modularity function, i.e., the number of
connections within-groups minus the expected fraction of such quantity in a randomized ver-
sion of the network. Despite its wide adoption, modularity maximization method suffers from
several limitations. The most prominent problem from which this, and other descriptive meth-
ods, suffer is overfitting, which means that the algorithm finds spurious communities because
it conflates structure with randomness in the data. In particular, this method finds partitions
with high modularity in fully random graphs [13] and in graphs with non-assortative structures,
such as lattices, trees, and tree-like networks [14, 15]. Additionally, this method suffers from a
resolution limit [16,17], i.e., it finds a number of groups no larger than

√
2E in a connected net-

work, being E its number of edges. This occurs because optimizing modularity in sufficiently
large networks entails merging the small clusters. This behavior would, in turn, prevent the
method from finding small communities in large networks, even if there is sufficient statistical
evidence to support them. In other words, modularity maximization not only overfits, but it is
also prone to underfitting the data.

In contrast, inferential approaches rely on generative models of network structure, explicitly in-
corporating modeling assumptions such as network formation mechanisms, prior information
about model parameters, and data collection processes. These methods aim to infer the most
likely latent groups of nodes which would have been responsible for the placement of edges in
the observed network. The most prominent of inferential approaches is the family of Stochas-
tic Block Models (SBMs) [18–22]. In its simplest version, the SBM divides the nodes in an
undirected network into B groups, with the probability of having an edge between two nodes
depending only on their group memberships. If we denote by bi the group to which node i be-
longs, then we can define a B×B matrix p, such that the matrix element pbib j is the independent
probability of having an edge between nodes i and j. In this way, SBMs can describe structures
with arbitrary mixing patterns, such as assortative, bipartite, and core-periphery structures.1

The combination of SBMs with Bayesian inference [22] has proven powerful for analyzing
network data. This framework allows us to be agnostic about what kind of structure is to
be inferred and overcomes the limitations of descriptive approaches. Overfitting is addressed
by incorporating regularization in the inferential framework [22], via the Minimum Descrip-
tion Length (MDL) principle [24], which prefers simpler hypotheses unless evidence in data
supports more complex ones. This means that the description length also serves as a model
selection criterion. Underfitting is tackled by incorporating suitable prior knowledge about the

1We refer the reader to Ref. [22, 23] for a description on different variants of SBMs.
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parameters of the model, e.g., through a hierarchy of priors and hyperprior distributions [25].
This ensures that statistically significant patterns are uncovered, avoiding overly simplistic ex-
planations. Thus, Bayesian SBMs protect against both overfitting and underfitting, preventing
misleading conclusions when analyzing real-world networks.

However expressive and reliable our models are, it is important to evaluate whether SBMs pro-
vide an accurate description of real-world networks. Once an SBM is fitted, it is essential to
understand the behavior of the model and assess its quality of fit to the data [26]. SBMs rely on
several simplifying assumptions that may not hold in various empirical settings. Currently, nei-
ther the extent of these potential discrepancies in empirical network data nor the consequences
that SBM modeling inconsistencies can introduce are well understood. This dissertation aims
to address this issue by conducting large scale studies of SBM fits to hundreds of empirical net-
works to uncover systematic patterns in SBM performance. We consider two complementary
approaches to assess the quality of the model, namely model checking and model selection. In
the following sections, we provide further details on how we used these approaches to evaluate
the quality of fit of SBMs.

1.2 Evaluating SBMs with Model Checking

Model checking consists on comparing the data to replicated data under the model. In our
Bayesian framework, a useful and direct way of assessing the fit of the model to various aspects
of the data is through posterior predictive checking. In Chapter 3, we use this approach to
explore which aspects of empirical networks, according to a set of network descriptors, are
not well described by the SBMs expectations. The goal is not to test whether the model’s
assumptions are “true”, because all models are approximate. Instead, the goal is to assess
exactly how the model fails in describing the data, as a path towards model comprehension,
revision, and improvement.

While informative, posterior predictive checking might be overly simplistic as it does not fully
reflect real-world situations. Many empirical studies rely on indirect measurements that yield
noisy, incomplete, or unreliable network data. For example, measuring technological networks
can involve incomplete sampling and technical limitations [27–29]; measurements of social
networks might be affected by subjectivity, accuracy, and reliability of both participants and
experimenters [30–32]; natural variation and inconsistent lab measurements might introduce
significant variability and discrepancies in the measurement of biological networks [33–35].
Despite the pervasiveness of measurement errors in empirical studies, many practitioners nei-
ther acknowledge nor incorporate these aspects into their modeling frameworks. Instead, they
assume that the measured network is the “true” underlying network, conduct the analysis, and
draw conclusions, which might be erroneous or misleading [36–38].
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In the network science literature, several attempts have been made to address this issue, with
link prediction [39–42] being one of the most common approaches. The drawback of this
method is that it does not explicitly incorporate a mechanism for measurement error. A more
robust approach for obtaining the best possible estimates of network structure, given unreliable
data, is network reconstruction [43, 44]. In this framework, it is possible to combine a model
of measurement with a model of network structure, where the SBM is a suitable candidate for
the latter [43] due to its high expressiveness. Most evaluations of network reconstruction or
link-prediction methods are confined to relative comparisons between competing algorithms.
Although the SBM has been shown to consistently outperform alternative methods for link
prediction [42], evaluations of the reconstruction performance of the SBM in absolute terms
are lacking. Specifically, we lack understanding on how accurate SBM estimates of underlying
network patterns of empirical networks are. We address this issue in Chapter 4.

1.3 Evaluating SBMs with Model Selection

When evaluating SBMs with model checking, we considered one model class of the SBM. In
practice, even when working with a single network, we often fit several models. Although these
models might disagree with the network data in various ways, it might be still valuable to com-
pare them. Thus, we can also evaluate the quality of a model by testing its performance against
alternative models, and consequently, doing model selection. Two principled approaches for
model selection are compression ability — where the best model is the one that compresses the
data most effectively — and predictive power — where the best model is the one that is able to
generalize from data and predict missing observations accurately.2 In the community detection
literature, some examples of using compression criteria can be found in Ref. [11,49], while for
predictive criteria in Ref. [42, 50, 51]. Both approaches aim to prevent overfitting by favoring
the most parsimonious model that yields the best performance. Consequently, one might expect
that the most predictive model among a set of alternative models is also the most compressive
one. However, Vallès-Català et. al [2] showed that although compression and prediction are
consistent in most networks in consideration, there are also notable instances where they do
not agree. While their work offered valuable insights, it was constrained by the available tools
at the moment, such as mostly using point estimates for compression indices and considering
a few dozen empirical networks. Since then there have been significant advances in area of
statistical inference of network structure. First, a robust network reconstruction framework for

2We discard other approaches to compare models due to their unrealistic assumptions. One such method in-
volves measuring the agreement between the obtained partition and node metadata, which is assumed to represent
“ground truth” communities. We refer the reader to Ref. [45, 46] for a discussion on how such comparison can
be misleading. Additionally, other approaches use synthetic graphs or artificial benchmarks for comparisons [47],
which may not be representative of real-world networks. For example, some of these benchmarks assume that
the degrees are broadly distributed following a power law, yet one can find networks whose degree distribution
significantly deviates from such assumption, as in the friendship networks of Ref. [48].
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link prediction has been developed [43], which is summarized and used in Chapter 4. Second, a
method has been introduced to characterize the posterior distribution of network partitions [52],
which, in turn, can be used to approximate a measure of compression known as model evidence.
Third, more efficient MCMC algorithms to sample from the posterior distribution of network
partitions are now available [53]. Finally, access to hundreds of network datasets in network
repositories has become possible [54]. In Chapter 5, we harness these innovations to revisit and
extend upon the work of Vallès-Català et. al [2] in a more systematic way.

1.4 Outline and Contributions of the Dissertation

We start this dissertation by describing the methodological background of SBMs that is used
throughout this work in Chapter 2. In particular, we refer to the generation and inference
of SBMs, some relevant model variants, a model selection approach based on the Minimum
Description Length principle, and the realism of the underlying modelling assumptions.

In Chapter 3, we perform a systematic analysis of the quality of fit of the SBM for 275 empirical
networks spanning a wide range of domains and orders of magnitude in size. We employ
posterior predictive model checking as a criterion to assess the quality of fit, which involves
comparing networks generated by the inferred model with the empirical network, according
to a set of network descriptors. We observe that the SBM is capable of providing an accurate
description for the majority of networks considered, but falls short of saturating all modeling
requirements. In particular, networks possessing a large diameter and slow-mixing random
walks tend to be badly described by the SBM. However, contrary to what is often assumed,
networks with a high abundance of triangles can be well described by the SBM in many cases.
We demonstrate that simple network descriptors can be used to evaluate whether or not the
SBM can provide a sufficiently accurate representation, potentially pointing to possible model
extensions that can systematically improve the expressiveness of this class of models. The
results of Chapter 3 have been published in the following article:

Systematic assessment of the quality of fit of the stochastic block model for empirical

networks. Felipe Vaca-Ramı́rez & Tiago P. Peixoto. Physical Review E. 2022. [1].

In Chapter 4, we assess the performance of the stochastic block model (SBM) in reconstructing
248 empirical networks spanning several domains and orders of size magnitude. We simulate
a noisy measurement process and evaluate the model’s ability at recovering various descriptors
of the network structure. We observe that the SBM yields accurate estimates for most net-
works in the corpus, but this behavior is not ubiquitous. In particular, we mostly observe large
reconstruction errors in networks having large diameter and slow-mixing random walks — cor-
responding typically to networks embedded in space. Contrary to what is often assumed, the
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SBM is able to provide accurate estimates on networks with a high abundance of triangles. We
also demonstrate that incorporating a more detailed error assessment while doing measurement
tends to improve the quality of the reconstruction.

In Chapter 5, we study the agreements and disagreements between compression criteria and
predictive criteria for selecting a model variant of the SBM while performing community de-
tection in networks. We consider a corpus containing 392 empirical and synthetic networks,
and fit two SBM variants to them. Then we obtain compression and predictive indices, and
select the best model according to them. This allows us to determine whether the most com-
pressive model is the same as the most predictive one or not, when disagreements occur, and
in which magnitude. For synthetic networks, we find consistency between model selection
criteria, i.e., the most compressive model is also the most predictive one, while for empirical
networks, consistency is often the case, with few exceptions. Although agreements between
model selection approaches are quite frequent, we observe that predictive criteria cannot al-
ways tell which model is better, since there are many cases in which the AUC of competing
models is statistically equivalent. On the contrary, both the description length or evidence al-
ways tells us which model compresses more the data, and provides a degree of confidence for
ruling out the alternative model. In that sense, compression criteria would be more a reliable
approach for model selection in the context of community detection.

In writing this dissertation, we have aimed to provide a better understanding of the behavior
of SBMs in empirical settings. In particular, we focused on the capabilities and limitations
of SBMs as approximations of true underlying models of real-world networks. In turn, this
should have provided insights on which improvements may be necessary to be introduced in
the models. Additionally, we payed attention to model selection approaches of SBMs, which
can be viewed as another way to understand and compare multiple model variants fitted to
the same data. Since both model selection and model checking should go hand-in-hand when
analyzing the structure of networks, we hope that, by reading these pages, the reader also feel
motivated to think about the assessment of network models, and more broadly, about the whole
process of analysis of network data. Nevertheless, because of the focus of the dissertation, there
have inevitably been extensions and topics that are beyond its scope. Therefore, in Chapter 6,
we provide conclusions of this work and comments on future directions of research.
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Chapter 2

Methodological Background

In this chapter, we present relevant terminology and technical background used in this disser-
tation. Specifically, in Sec. 2.1, we refer to networks and network data. In Sec. 2.2, we refer to
network models, focusing on two relevant examples. Finally, in Sec. 2.3, we refer to Stochastic
Block Models, which are central to this dissertation. We note that the purpose of this chapter is
to provide a common framework rather than an exhaustive treatment of the aforementioned top-
ics. For a more detailed treatment of the first two sections, we refer the reader to Ref. [55, 56],
and for the latter section, to Ref. [22, 23, 57].

2.1 Elementary Network Theory

A network or graph is a mathematical object G = (V ,E) formed by a set of vertices (or nodes)
V and a set of edges (or links) E , where an edge is an unordered pair of vertices (i, j), such
that i ̸= j. The number of nodes N and the number of edges E are sometimes referred as the
size of the network.

There is an important connection between graph theory and matrix algebra that offers tools to
characterize graphs, and in general, treat them rigorously. In fact, a graph can be fully defined
by its adjacency matrix AAA = {Ai j} of dimension N ×N, where

Ai j =

1, if there is an edge between nodes i and j.

0, otherwise.

Furthermore, a graph can be represented graphically, as shown in Fig. 2.1.

This is the simplest type of graph, being called simple graph, and there exist several extensions
of the concepts mentioned above to incorporate other features. If the graph contains self-loops
and multi-edges, it is called multigraph. Furthermore, if edges contain directions, i.e., the pair
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(a) (b)

0

1 2

3

4
AAA =


0 1 1 1 0
1 0 1 0 1
1 1 0 0 0
1 0 0 0 1
0 1 0 1 0



Figure 2.1: (a) An example of a graph having N = 5 nodes and E = 6 edges, in which nodes
are labelled by an index. (b) The adjacency matrix of the graph shown in (a).

(i, j) is ordered and indicates that the edge goes from i to j, then we have a directed graph.
If edges contain weights, then we have a weighted graph. Note that these features are not
exclusive, but can be combined.

Since a graph is connected to an adjacency matrix, the latter is also modified accordingly. In the
simplest case, the adjacency matrix is symmetric, but for directed graphs it is not. Additionally,
entries are binary for simple graphs, while in weighted graphs they can be integers or real
numbers. In the simplest case, the diagonal contained zeros, but in multigraphs, this is not
necessarily the case.1 Some examples are shown in Fig. 2.2.

(a) directed (b) weighted (c) multigraph

0

1 2

3

4

0

1 2

3

4

0

1 2

3

4

(d) (e) (f)

AAA =


0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0
0 1 0 1 0

 AAA =


0.0 1.2 5.3 3.8 0.0
1.2 0.0 2.1 0.0 1.7
5.3 2.1 0.0 0.0 0.0
3.8 0.0 0.0 0.0 1.4
0.0 1.7 0.0 1.4 0.0

 AAA =


2 1 1 2 0
1 0 3 0 1
1 3 0 0 0
2 0 0 0 1
0 1 0 1 2


Figure 2.2: (a-c) Examples of directed graph, weighted graph, and multigraph, respectively.
(d-f) The adjacency matrices of the graphs shown in (a), (b), and (c).

An important feature of a vertex is its degree. The degree of a vertex i in a simple graph is
defined as the number of connections it has, i.e.,

ki =
N

∑
j=1

Ai j.

1For multigraphs, self-loops appear in the adjacency matrix with a value of 2, since for every self-loop, there
are 2 half-edges incident to the node.
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The sum of all degrees is equal to twice the number of edges, i.e.,
N

∑
i=1

ki = 2E. Additionally, the

average degree summarizes the density, or equivalently the sparsity, of the graph,

⟨k⟩= 1
N ∑

i
ki

=
2E
N

.

In the case of other types of graphs, such as directed and weighted graphs, the definition of
degree is modified accordingly. In this dissertation, we only deal with simple graphs.

A more informative picture of the graph connectivity can be obtained by looking at the distri-
bution of vertex degrees, or degree distribution. This distribution indicates the probability that
a randomly selected node has degree k. Importantly, its shape and broadness may also give
insights about the process of formation or the robustness of a network. We will refer to some
cases of interest in Sec. 2.2.

2.1.1 Network Data

The term network has several uses in the scientific literature, depending on the context in which
it appears. In the field of network science, a network is a representation of a complex system.
Specifically, nodes represent elements of the system and edges represent interactions or re-
lations between these elements. Therefore, how we define nodes and edges in the network
becomes an important choice, as it influences the way the network will be analyzed and, ul-
timately, the conclusions drawn about the system. The term network data corresponds to the
measurements of a system conceptualized as a network, or the behavior coming from it. In
other words, a network is constructed from network data. Although we acknowledge the dis-
tinction between these terms, and recognize that we almost always deal with data rather than
the underlying network, we use them interchangeably for ease of exposition.

The collection and analysis of network data dates back to at least to 1930s, with the works of
Helen Jennings and Jacob Moreno [58, 59]. Since the beginning of the 21st century, there has
been a surge in the applications that involve networks, so one can find examples of them in a
variety of contexts.

In biology, molecular biologists study protein-protein interaction networks, in which nodes
are proteins, and a link represents an interaction between proteins, whose measurements come
from experiments [60]. Neuroscientists study brain networks, in which nodes represent neurons
or brain regions, and an edge represents an anatomical or functional connection. The data
sometimes is derived from functional MRI or magnetoencephalography [61]. Ecologists study
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food webs, in which nodes represent species, and edges represent feeding of one species on
another [62].

In the social sciences, sociologists study interactions or relations (e.g., friendship) between
people or groups of people. Surveys are often conducted to collect data [48]. Political sci-
entists are interested in political discussion and collective demonstrations. Examples include
the study of a network of political blogs, in which nodes are blogs, and edges are references
between blogs [3], and the study of online social media networks during public protests, in
which accounts are nodes, and there is a directed edge if one account follows another [63].
Data collection methods for such studies include web crawling and APIs usage.

In engineering, researchers study technological networks or networks of physical infrastructure.
One relevant example is the Internet, where nodes represent computers or related devices, and
edges represent physical connections between them [64]. Another example corresponds to
transportation networks, such as urban street networks. Nodes can represent street junctions
and edges can represent street segments. They are often obtained by processing maps [65–67].

Besides the diversity of sources and data collection techniques, network data have other char-
acteristics that introduce intricacies in their analysis [56]. The first is high dimensionality.
Network data not only contains nodes and edges, but also attributes on each of them (e.g., de-
mographic characteristics of people or strength of relations), on parts of the graph, or even on
the entire graph. A combination of such characteristics is sometimes represented as a multilayer
(attributed) network [51, 68–70].

The second aspect that brings challenges to analyzing network data is dependency. The creation
of a link might be influenced by other already existing links (e.g., via triadic closure [49,71,72]),
node attributes (e.g., via homophily [73–76]), or a combination of both. Furthermore, networks
can change in time [77–79], which might introduce a temporal dependency.

The third aspect is the size of datasets, which are currently much larger than in the past, with
some datasets containing millions of nodes2. Some approaches to analyzing network data
involve taking parts of the graph and aggregating the results to draw conclusions about the
whole system. These approaches can be potentially misleading, as taking subsets of data might
distort the structure of the network and the behavior of dynamical processes occurring on it in
unexpected ways. Therefore, designing efficient algorithms to analyze network data is still a
non-trivial task and remains an active area of research.

Finally, network data might contain errors (data is noisy), or there might be some parts of the
graph that have not been measured (missing data). Sometimes, measurements of a network
might come indirectly, e.g., by thresholding matrices whose entries indicate some relation be-
tween pairs of elements. The structure of the resulting graph might be sensible to the imposed
threshold, which in turn, may impact the robustness of conclusions. Developing modeling

2For instance, see Ref. [80, 81]
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frameworks that incorporate these aspects into the analysis is another area that offers avenues
of research.

2.2 Network Models

An important part of the foundations of network science corresponds to network models. Here,
we are especially interested in models of network structure, i.e., models whose goal is to gen-
erate patterns of connection similar to those observed in real-world networked systems, and
subsequently, understand the implications of such patterns in the behavior of the system under
study. Of particular interest are the so-called random graph models, i.e., probabilistic models
that, given a pre-specified set of parameters or network features, randomly generate a collection
(or ensemble) of networks.3

These models serve various purposes in the study of networks. Due to their relative simplic-
ity, structural and dynamical properties can be derived analytically, offering insights about the
interplay between structure and dynamics in networks. Consequently, they have also been
used as a starting point for understanding a variety of dynamical processes on networks, be-
fore considering other networks generated with more complicated models or even real-world
networks. Sometimes, these models are also used as a reference or “null” model to test the
“significance” of a network property. In such cases, the property measured in an empirical
network is compared with the property computed across the ensemble of networks. Examples
of such applications include the detection of motifs [92, 93] and, as mentioned earlier, com-
munity detection based on modularity maximization [12]. Finally, they are also incorporated
in studies either as benchmarks for testing the accuracy or performance of other models or as
parts of the sampling design or estimation strategy, e.g., in the inference of population graph
parameters [94].

In the remaining of this section, we refer to two of the most widely studied and simplest random
graph models, namely the Erdős-Rényi Model and the Configuration Model. In the next section,
we refer to the Stochastic Block Model (SBM), which can be seen as a generalization of these
models.

3There are several relevant models of network structure that are beyond the focus of this thesis. Relevant ex-
amples include the preferential attachment models [82–84], whose goal is to generate networks having a power
law degree distribution; the Watts and Strogatz model [85], which attempts to reproduce high clustering (or abun-
dance of triangles) observed in real-world networks; Latent Space Models [86–88], which embed nodes in a
lower-dimensional latent space to capture network structure; and the family of Exponential Random Graph Mod-
els [89–91], which are statistical models of network structure relying on local edge-based structures.
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2.2.1 The Erdős-Rényi Model

Given a certain number of nodes N and edges E, one of the simplest ways to generate networks
is by choosing E node pairs uniformly at random from all possible pairs, and creating an edge
for each of them. This model is known as the G(N,E) model and each graph GGG in the ensemble
has a probability of being drawn with probability P(GGG) = 1/Ω, where

Ω =

((N
2

)
E

)
, (2.1)

(
N
2

)
is the binomial coefficient that indicates the total number of node pairs, and E is the

number of edges in the graph.

Another version of this model is the so-called G(N, p) model, which sometimes is preferred to
the G(N,E) model because some calculations are easier to handle. In the G(N, p) model, the
number of edges is not fixed. Instead, for a given number of nodes N, each edge is placed with
a probability p. Thus, the probability of a simple graph GGG is given by

P(GGG) = pE(1− p)(
N
2)−E . (2.2)

The study of this model can be traced back to at least the works of Solomonoff and Rapoport
(1960) [95] and Gilbert (1959) [96]. However, in the literature, it is commonly referred as the
Erdős-Rényi Model [97], due the seminal contributions of Paul Erdős and Alfréd Rényi to the
model [97–99].

Considering Eq. (2.2), the probability of observing a simple graph having N nodes and E ver-
tices is given by the following binomial distribution,

P(E) =
((N

2

)
E

)
pE(1− p)(

N
2)−E . (2.3)

Thus, the expected number of edges in the G(N, p) model is given by

⟨E⟩=
(N

2)

∑
E=0

E P(E) =
(

N
2

)
p. (2.4)

In the previous section, we mentioned that the average degree in a graph can be computed as
⟨k⟩= 2E/N. Using this relation, the mean degree of a node in this model is given by

⟨k⟩= 2⟨E⟩
N

=
2
(N

2

)
p

N
= (N −1)p. (2.5)
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Finally, we focus on the degree distribution of the G(N, p) model. Since each node can connect
to another node with probability p, the probability that a given node is connected to a specific
set of k other nodes is given by

pk(1− p)N−1−k. (2.6)

Since the number of ways in which k nodes can be chosen from the N − 1 total candidates is(
N −1

k

)
, the total probability of a node being connected to k others is

P(ki = k) =
(

N −1
k

)
pk(1− p)N−1−k, (2.7)

which means that the degree distribution of the G(N, p) model is binomial.

If we assume that the number of nodes N is large, i.e., N → ∞, so that the probability of
connection p = ⟨k⟩/(N −1) becomes vanishingly small; and ⟨k⟩ is fixed, it can be shown that
the degree distribution of Eq. (2.7) becomes a Poisson distribution. It is for this reason that the
G(N, p) model is sometimes referred in the literature as the Poisson random graph. A reference
to other properties of this model can be found in Ref. [55].

2.2.2 The Configuration Model

The Configuration Model [100,101] is a generalization of the Erdős-Rényi Model, in the sense
that, it is not restricted to a Poissonian degree distribution, but admits arbitrary degree distri-
butions. More precisely, this model generates networks with a fixed degree sequence, i.e., the
list of degrees of each node in the network, instead of a pre-established degree distribution.4

The procedure used to generate a network having a degree sequence relies on “stub matching”,
which we describe in the following.

Assume that, for every node i, we fix its degree ki. This assumption, in turn, fixes the number
of edges E, since 2E = ∑

i
ki. Another way to interpret this assumption is that each node i

has ki labelled half-edges or “stubs”, existing a total of 2E stubs in the network. We form an
edge by choosing two stubs uniformly at random and connecting them. Then we repeat this
procedure with the 2E − 2 remaining stubs, and continue until all stubs have been matched
or paired. In this way, the configuration model generates multigraphs, i.e., networks that may
have self-loops and multiedges, since there is no restriction for its formation. This might turn
the configuration model into an unrealistic model for real-world networks. However, this might

4It is possible to adapt the model to the case when only the degree distribution is known. The idea is to draw
a degree sequence from the specified distribution, and use such sequence along with the configuration model to
generate the network.

13

C
E

U
eT

D
C

ol
le

ct
io

n



not represent a problem, because in sufficiently large and sparse networks, the probability of
finding a self-loop or a multiedge between any two specific nodes tends to zero.

It should be noted that, the configuration model defines an ensemble of pairings, in which,
each possible pairing has the same probability of being drawn. Nevertheless, since stubs are
labelled, different matchings can create the same network, and consequently the networks in the
ensemble do not have the same probability of being drawn. The reason is that a permutation of
the stubs at each node creates the same graph. Thus, the probability of drawing a graph GGG under
the configuration model is given by the ratio between the number of matchings ν corresponding
to GGG, and the total number of matchings Ω in the ensemble, i.e., P(GGG) = ν/Ω. In principle,
there are ∏

i
ki! matchings for a given network. However, for each multiedge, there are Ai j!

permutations of stubs at one end, which do not generate new matchings. Furthermore, for each
self-loop, there is a further factor of two since permutations on both ends do not generate new
matchings either. Therefore, the number of matchings corresponding to a network is given by

ν =
∏i ki!

∏i< j Ai j!∏i Aii!!
, (2.8)

where n!! = n(n−2)(n−4)...2, with n even. The total number of matchings Ω is given by

Ω =
(2E)!

E!2E ∏k(k!)Nk
, (2.9)

where Nk is the number of nodes having degree k. The edge probability in the configuration
model can be also derived by looking at stubs. Consider a pair of nodes i and j, having ki and
k j stubs, respectively. If we take one stub of i, there are in total 2E − 1 other stubs to form a
connection, from which only k j belong to node j. Since there are ki possibilities in which we
could have chosen the initial stub of node i, the probability of a connection between nodes i

and j is given by

pi j =
kik j

2E −1
. (2.10)

It should be noted that Eq. (2.10) corresponds to the expected number of edges between nodes
i and j rather than the probability of having an edge between those nodes. However, they
coincide when E → ∞ and ki and pi j < 1 for given ki and k j. This equation does not hold
for self-loops; for further details on this and other aspects of the model, we refer the reader to
Ref. [55].

We conclude this section by noting that the configuration model provides useful tools to study
structural properties of networks, such as degree distributions, clustering coefficients, and con-
nected components. Many researchers have used this model, often in combination with power
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law degree distributions to model real-world networks having a heterogeneous distribution of
degrees. However, despite its usefulness, the configuration model still contains assumptions
that are unrealistic for real-world networks. For instance, it generates networks with vanish-
ingly small clustering as the number of nodes increase, and it does not incorporate correlations
in the network generation process. Therefore, more complex models are needed to learn the
structure of real-world networks. We devote the next section to one of such models, namely
the Stochastic Block Models. They are not only generalizations of the Erdős-Rényi Model and
Configuration Model, but also the focus of this dissertation.

2.3 Stochastic Block Models

Stochastic Block Models are probabilistic models of network structure. They allow us not only
to generate networks with arbitrary group structure, but also to infer such structure when we
provide a network as input. In the following, we present foundations of SBMs that are relevant
for this dissertation: an overview of the model from the perspective of generation and inference
(Sec. 2.3.1 and 2.3.2), microcanonical formulations of the model (Sec. 2.3.3 and 2.3.4), a con-
nection between inference and information theory (Sec. 2.3.5), MCMC methods for inferring
network partitions (Sec. 2.3.6), and a brief discussion on how realistic SBM assumptions are
(Sec. 2.3.7). We refer the reader to Ref. [22, 23, 57] for further details of these models.

2.3.1 Generative Model

The stochastic block model is a generative model for blocks, groups, or communities in net-
works. In its simplest version, it takes as parameters the partition of the nodes into B groups,
denoted by a vector bbb, with bi ∈ {1, . . . ,B}, and a B×B matrix of probabilities ppp, where prs is
the independent probability of having an edge between a node from group r and a node from
group s. This means that the probability of having an edge between nodes i and j only depends
on their group membership. Thus, a network having adjacency matrix AAA is generated according
to the following likelihood

P(AAA|ppp,bbb) = ∏
i< j

pAi j
bi,b j

(1− pbi,b j)
(1−Ai j), (2.11)

By changing the parametrization of the matrix ppp, it is possible to generate networks having
different kind of structures, such as assortative, core-periphery, bipartite, or even a combination
of them (see Fig. 2.3).

The model of Eq. (2.11) has its origins in the social sciences [18, 102, 103] and appears un-
der different names [104–109], being one of them Bernoulli SBM since it relies on Bernoulli
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(a) assortative (b) core-periphery (c) bipartite
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Figure 2.3: Examples of network structures that can be generated by the SBM. On top, we
show the connectivity matrix between groups, and on the bottom, an instance of the model. (a)
assortative structure, where there are more links inside groups than between groups. (b) core-
periphery structure, where there is a dense group called core, and a sparse group that mostly
connects to the core, called periphery. (c) bipartite structure, where nodes of one group only
have connections with the other group. The labels of the connectivity matrices correspond to
the node shapes in the generated graphs.

random variables to sample edges. It generates simple undirected networks, but it can be very
easily modified to generate directed networks instead, by making ppp an asymmetric matrix, and
adjusting the model likelihood accordingly.

This model generates networks where nodes belonging to the same group tend to have very
similar degrees. Specifically, the Bernoulli SBM implicitly assumes that the expected degree of
nodes within the same community is identical, with the expected degree of any node i approxi-
mately following a Poisson distribution if the communities are large. This is a major drawback
of the model, as many empirical networks exhibit degree heterogeneity [55,84], often spanning
several orders of magnitude. Consequently, when applying this version of the SBM to such
networks, the model would tend to group nodes according to their degree, resulting in groups
that would not exhibit heterogeneous degree distributions found in real-world networks.

An improved model which can generate networks with arbitrary mixing patterns and accom-
modate degree heterogeneity is the so called degree-corrected SBM (DC-SBM) [110]. This
model uses a Poisson distribution to sample edges and introduces an extra parameter θθθ = {θi},
one θi per node, which allows us to control the number of edges connecting to each node. This
model generates multigraphs with probability
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P(AAA|θθθ,λλλ,bbb) = ∏
i< j

e−λbib j θiθ j(λbib jθiθ j)
Ai j

Ai j!
×∏

i

e−λbibiθ
2
i /2(λbibiθ2

i /2)Ai j/2

(Ai j/2)!
, (2.12)

where λrs controls the expected number of edges between groups r and s, θi is the propensity
of node i to receive edges, which is proportional to its expected degree. It can be assumed that
the node propensities are normalized for each group,

∑
i

θiδbi,r = 1,

such that the value λrs will correspond to the average number of edges between groups r and
s (or twice that if r = s). The non-degree-corrected SBM, also known as Poisson SBM, is
recovered from the model in Eq. (2.12) by setting θi = 1/nbi , where nbi is the number of nodes
in group r. For conciseness, we will describe other relevant variants of the SBM in Sec. 2.3.3.
Now that we have defined how networks with prescribed modular structure are generated, we
will consider the reverse procedure, i.e., how to infer the modular structure from data.

2.3.2 Nonparametric statistical inference

The inference task consists on determining which partition bbb generated an observed network
AAA, assuming the generative model is a variant of the SBM (e.g., see Fig 2.4). Specifically, we
can express our uncertainty about the network partition bbb, conditioned on the network data AAA,
according to the Bayesian posterior probability

P(bbb|AAA) = P(AAA|bbb)P(bbb)
P(AAA)

, (2.13)

where
P(AAA|bbb) =

∫
ΘΘΘ

P(AAA|ΘΘΘ,bbb)P(ΘΘΘ|bbb)dΘΘΘ (2.14)

is the marginal likelihood integrated over the remaining model parameters ΘΘΘ, P(bbb) and P(ΘΘΘ|bbb)
are the prior probabilities of the model parameters, which encode our prior beliefs about the
model, and

P(AAA) = ∑
bbb

P(AAA|bbb)P(bbb) (2.15)

is a normalizing constant called the model evidence, and corresponds to the total probability of
the data summed over all model parameters. The computation of P(AAA) is intractable, but fortu-
nately, the inference procedure only requires to evaluate P(bbb|AAA) up to a normalizing constant.
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(a) (b)

Figure 2.4: (a) A network of cortical regions in the Macaque cortex [112]. For visualization
purposes, multiple edges are deleted. (b) An SBM fit to network data of (a). Node colors
indicate the inferred groups.

Besides the marginal likelihood, the prior probabilities are important elements of the inference
procedure, since they will affect the shape of the posterior distribution, and ultimately, our
inference results. We postpone the choice of priors to Sec. 2.3.3, where we introduce a more
convenient formulation of the SBM.

The inference procedure considered here will consist in either finding a network partition that
maximizes Eq. (2.13), or sampling different partitions according to its posterior probability. In
both cases, we rely on efficient Markov Chain Monte Carlo (MCMC) methods [53,111], which
are described in Sec. 2.3.6. Furthermore, this inference approach is non-parametric, to the
extent that, the number of groups B will be an outcome of the inference procedure, rather than
an input. Thus, the posterior of Eq. (2.13) will put low probabilities on partitions that are not
backed by sufficient statistical evidence in the network structure, i.e., it will prevent overfitting.
The reason why this approach prevents overfitting is based on a connection between Bayesian
inference and information theory, which we refer to in Sec. 2.3.5.

To conclude this section we note that, when fitting an SBM to a network, we infer P(bbb|AAA), i.e.,
the posterior probability of the partition bbb. Since SBMs are generative models, the estimated
parameters can be used not only to simulate new predictions but also for model criticism and
revision. We will turn our attention to this task in Chapter 3.

2.3.3 Microcanonical versions of the SBM

The models presented in Sec. 2.3.1 are canonical versions of the SBM. The term “canonical”
comes from the field of statistical physics, and in such context, means that the model param-
eters correspond to “soft” constraints imposed on the ensemble of generated networks, i.e.,
constraints (e.g., the total number of edges) are only fulfilled on average. These models can be

18

C
E

U
eT

D
C

ol
le

ct
io

n



reinterpreted and reformulated in a “microcanonical” way, i.e., model parameters (such as the
total number of edges) correspond to “hard” constraints, so that they are fulfilled without any
variation.

The microcanonical formulation of the degree-corrected SBM (DC-SBM) [57] combines arbi-
trary mixing patterns between groups together with arbitrary degree sequences. The parameters
of this model are the partition of the nodes into B groups, bbb = {bi}, with bi ∈ [1,B] being the
group membership of node i; the degree sequence kkk = {ki}, where ki is the degree of node
i; and the edge counts between groups eee = {ers} (or twice that number for r = s), given by
ers =∑

i j
Ai jδbi,rδbi,s. Given these constraints, the network is generated like in the configuration

model [100, 101], with probability [57]

P(AAA|kkk,eee,bbb) = ∏r<s ers!∏r err!!∏i ki!
∏i< j Ai j!∏i Aii!!∏r er!

, (2.16)

where AAA = {Ai j} is the adjacency matrix of an undirected multigraph with potential self-loops,
and er =∑

s
ers. In this case, all the samples of the model have the same edge count matrix eee and

the same node degree sequence kkk. This differs from the parameters λλλ and θθθ in Eq. (2.12), which
determine only the average number of edges between groups and the average node degrees. The
actual values of these parameters fluctuate between samples.

One advantage of the microcanonical formulation over its canonical counterpart is that the
former does not require any actual computation of the marginal likelihood.5 In particular, the
marginal likelihood of the microcanonical DC-SBM is given by

P(AAA|bbb) = ∑
kkk,eee

P(AAA|kkk,eee,bbb)P(kkk|eee,bbb)P(eee|bbb) (2.17)

= P(AAA|kkk(AAA),eee(AAA),bbb)P(kkk(AAA)|eee(AAA),bbb)P(eee(AAA)|bbb). (2.18)

Notably, the summation over kkk and eee of Eq. 2.17 reduces to a single term because only one
term in the summation is compatible with the observed network. Given a network partition bbb,
there is only one pair of (kkk,eee) that matches the observed network data. All other parameter
values are inconsistent and have zero probability.

Since P(AAA|kkk,eee,bbb) was already defined in Eq. (2.16), we still need to chose the priors P(kkk|eee,bbb)
and P(eee|bbb). One approach is to select these priors such that the microcanonical and canonical
versions of the DC-SBM are equivalent, i.e., their marginal likelihoods are the same. As we will

5There are canonical formulations of the SBM for which the marginal likelihood can be computed exactly, e.g.
see Ref. [25,41,113–115]. However, these models only include simple non-informative or conjugate priors, which
potentially prevents the identification of all groups in large networks [116].
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use the microcanonical formulation of the SBM in the following chapters, we omit the deriva-
tion of such equivalence and refer the reader to Ref. [22]. Instead, we focus on microcanonical
priors, which, without requiring to compute the marginal likelihood, can be incorporated in
Bayesian hierarchies of priors and hyperpriors. This approach leads to fewer assumptions on
the data generating process and improves the quality of fit to data [57].

Priors of the SBM Parameters

Prior for the node partition

At the very first, we refer to the prior for the node partition. The simplest choice consists
on being completely agnostic about the partitions, and choose among all of them with equal
probability,

P(bbb|B) = B−N . (2.19)

However, this uniform prior is not suitable for modeling real-world networks. The main reason
is that most partitions into B groups have similar groups sizes N/B. Consequently, assuming
a uniform prior becomes unrealistic and limits the potential of the inferential framework to
achieve a better compression of the network data. A better prior relies on a parametric distri-
bution, which is conditioned on the group sizes nnn = {nr}, where nr is the number of nodes in
group r,

P(bbb|nnn) = ∏r nr!
N!

. (2.20)

This is a maximum entropy distribution (all allowed configurations are equally likely), con-
strained on the fixed group sizes. In order to be agnostic about the size of communities, we can
use a noninformative hyperprior on the node counts,

P(nnn|B) =
((

B
N

))−1

, (2.21)

where
(( n

m

))
=

(
n+m−1

m

)
counts the number of m-combinations from a set of size n, or

equivalently, the number of possible histograms with n bins with counts that sum to m. It
should be noted that, this prior also generates groups with size zero, which implies that we can
also find partitions containing empty groups in the posterior distribution. This would force us
to treat the number of groups as a free variable, since the nominal number of groups is not
necessarily equal to the actual (nonempty) number of groups [115]. In order to avoid dealing
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with such empty groups, we simply exclude them from our prior distribution, by using instead

P(nnn|B) =
(

N −1
B−1

)−1

, (2.22)

which is a uniform distribution over all histograms with B nonempty bins and counts that sum
to N. With this modification, the number of groups becomes a hard constraint as well, being
always tied to the partition.

Lastly, the number of nonempty groups becomes a hyperparameter, for which, we can choose
a uniform hyperprior, i.e., P(B) = 1/N, for B ∈ [1,N]. Therefore, the nonparametric prior for
the node partition is given by

P(bbb) = P(bbb|nnn)P(nnn|B)P(B) = ∏r nr!
N!

(
N −1
B−1

)−1

N−1. (2.23)

Before specifying the priors for the remaining parameters, it should be noted that, we could
have increased the depth of the Bayesian hierarchy by introducing a hyperhyperprior on other
higher-order aspect of the group sizes nnn. We do not proceed in that direction, and thus, remain
with Eq. (2.23). As shown in Peixoto (2017) [22, 57], the reason is that we would gain at most
a fairly marginal improvement proportional to lnN in the log-probability of the data generating
process lnP(bbb). Consequently, for most cases, this would make little practical difference in the
inference outcome.

Prior for the degrees

For the microcanonical degree-corrected SBM, the simplest choice we can make for the prior
of degrees is to sample the degrees inside each group from a uniform distribution,

P(kkk|eee,bbb) = ∏
r

((
nr

er

))−1

, (2.24)

where
((

nr

er

))
counts the number of possible degree sequences on nr nodes, constrained such

that their total sum equals er. This uniform prior may not be suitable for modeling real-world
networks, as sampling from it will result in degree sequences where most nodes have very
similar degrees. Specifically, if the number of nodes is sufficiently large, this prior will lead
to exponential degree distributions within each group [57]. These distributions have a much
smaller variance than what is observed in empirical networks [117].

A better prior for kkk should be conditioned on an arbitrary degree distribution ηηη = {ηr
k}, with

ηr
k being the number of nodes with degree k that belong to group r,
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P(kkk|eee,bbb) = P(kkk|ηηη)P(ηηη|eee,bbb). (2.25)

The first term of the right hand side is a uniform distribution of degree sequences constrained
by the overall degree counts, i.e.,

P(kkk|ηηη) = ∏
r

∏k ηr
k!

nr!
. (2.26)

The second term is the distribution of the overall degree counts, i.e.,

P(ηηη|eee,bbb) = ∏
r

q(er,nr)
−1, (2.27)

where q(m,n) is the number of different degree counts, such that the sum of degrees is exactly m

and the number of non-zero counts is at most n. This is also known as the number of restricted

partitions of the integer m into at most n parts [118]. The function q(m,n) can be computed
recursively using the following expression:

q(m,n) = q(m,n−1)+q(m−n,n), (2.28)

with boundary conditions q(m,1) = 1 for m > 0, and q(m,n) = 0 for m ≤ 0 or n ≤ 0.

Prior for the edge counts

As a starting point, we can assume again a uniform prior for the edge counts between groups,
i.e.,

P(eee) =

((B
2

))
E

−1

, (2.29)

where

((B
2

))
E

 counts the number of symmetric ers matrices with a constrained sum

∑
rs

ers = 2E.

As before, the uniform prior is not a good choice either. In this case, this assumption in-
troduces a “resolution limit”, where the largest number of groups that can be inferred scales
as Bmax ∼

√
N [116], similarly to what is observed with the modularity maximization ap-

proach [16]. Roughly speaking, this means that smaller groups are typically merged together
with neighboring blocks, so the methods cannot retrieve the true community structure. We
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describe a solution to this limitation in the next section.

2.3.4 Nested DC-SBM

In practice, the “resolution limit” affects a community detection approach by limiting its ability
to find small groups in very large networks. Although the Bayesian approach is robust against
overfitting, it is still susceptible of underfitting due to the “resolution limit”. Underfitting occurs
when the model yields an overly simplistic partition compared with the actual pattern in the
network data, i.e., when it mistakes statistically significant structure for randomness. Peixoto
(2014) [25] proposed a solution to this problem by deepening the Bayesian hierarchy, i.e., the
noninformative priors are replaced by a hierarchy of priors and hyperpriors. This new version
of the model is called nested SBM or hierarchical SBM.

The main idea consists on viewing the matrix eee as the adjacency matrix of a multigraph with
B (meta)nodes and E edges. A reasonable assumption is that this multigraph is generated by
another SBM, such that each group r belongs to one of another set of (meta)groups. The SBM
at one level above the original model serves as a prior for the edge count matrix at the bottom
level. This procedure can be repeated recursively L times until we end up with one node at the
highest level, i.e.,

P({eeel}|{bbbl}) =
L

∏
l=1

P(eeel|eeel+1,bbbl), (2.30)

where bbbl is the partition of the groups in level l, eeel is the (weighted) adjacency matrix at level
l, and we enforce always that BL = 1.

The probability of sampling a multigraph from the microcanonical SBM at each level l is given
by [119]

P(eeel|eeel+1,bbbl) = ∏
r<s

((
nl

rn
l
s

el+1
rs

))−1

∏
r

((
nl

r(n
l
r +1)/2

el+1
rr /2

))−1

. (2.31)

In this regard, the uniform prior of Eq. (2.29) is a special case of Eq. (2.30) when L = 1. Since
we have a partition per level, we also need to choose a prior for them, i.e.,

P({bbbl}) =
L

∏
l=1

P(bbbl), (2.32)

where Eq. (2.23) is used accordingly at each level, replacing B for Bl , and N for Bl−1, with
B0 = N.

By putting together the model likelihood with all the priors, we obtain the joint distribution for
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the hierarchical microcanonical DC-SBM,

P(AAA,kkk,{eeel},{bbbl}) = P(AAA|kkk,eee,bbb1)×P(kkk|eee1,bbb1)×P({eeel})×P({bbbl})

=
∏i ki!∏r<s ers!∏r err!!
∏r er!∏i< j Ai j!∏i Aii!!

×∏
r

∏k ηr
k!

nr!
q(er,nr)

−1×

L

∏
l=1

∏
r<s

((
nl

rn
l
s

el+1
rs

))−1

∏
r

((
nl

r(n
l
r +1)/2

el+1
rr /2

))−1

×

∏r nl
r!

Bl−1!

(
Bl−1 −1
Bl −1

)−1 1
Bl−1

. (2.33)

Thus, the nested SBM accounts for a nested hierarchy of partitions, which besides improving
the resolution limit, allows us to describe the data at multiple scales, having the possibility of
uncovering potentially different mixing patterns at each level.

2.3.5 The Minimum Description Length Principle

We can interpret the Bayesian approach outlined above in an information-theoretic way, through
the so-called minimum description length (MDL) principle [24]. This equivalence does not de-
pend on a model variant, but holds in general. Nevertheless, it becomes clearer and more direct
to appreciate through the microcanonical formulation.

We start by recalling that the inference procedure consists on finding the most likely partitions
of the network supported by the data, either by sampling from or maximizing the posterior
distribution of Eq. (2.13). The numerator of this equation can be rewritten as

P(AAA|bbb)P(bbb) = 2−Σ(AAA,bbb), (2.34)

where Σ(AAA,bbb) is called the description length of the network AAA. [24, 120]. Considering the
DC-SBM, whose marginal likelihood was given in Eq. (2.17), Σ(AAA,bbb) is computed as

Σ(AAA,bbb) =− log2 P(AAA|kkk,eee,bbb)︸ ︷︷ ︸
D(AAA|kkk,eee,bbb)

− log2 P(kkk|eee,bbb)− log2 P(eee|bbb)− log2 P(bbb)︸ ︷︷ ︸
M (kkk,eee,bbb)

, (2.35)

where the sum has been dropped since only one term is non-zero given a fixed network AAA.
In Eq. (2.35), the second set of terms M (kkk,eee,bbb) quantifies the amount of information in bits
necessary to encode the parameters of the model, while the first term D(AAA|kkk,eee,bbb) measures the
number of bits needed to encode the network, once the model parameters are known. This con-
nection between Bayesian inference and information theory allows us to draw an equivalence
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between inferring a partition in a network and compressing it. Thus, inferring the partition that
maximizes the posterior distribution of Eq. (2.13) is equivalent to finding the partition that most
compresses the data, according to the description length of Eq. (2.35).

Importantly, the MDL approach to inference implements a principle of parsimony (or Occam’s

razor), as it penalizes overly complex models that are not supported by the data. For instance,
consider two examples of the DC-SBM used to describe a network: a simpler one with few
groups and a more complex one with many groups. For the complex example, the model
term of the description length M (kkk,eee,bbb) will be large because there are more parameters to
encode compared to the simpler model. However, an increase in model complexity results
in a reduction of the first term, D(AAA|kkk,eee,bbb), since fewer networks are compatible with the
complex partition, and consequently, less information is needed to encode the network once
the parameters are known. In this sense, the term M (kkk,eee,bbb) functions as a penalty term. Thus,
compressing a network involves finding a balance between model fit and model complexity,
where simpler models are preferred unless increasing the model complexity is justified by a
significant reduction in the total description length.

The reason why the compression approach, and consequently inference, prevents overfitting
lies in a fundamental theorem from information theory, known as Shannon’s source coding
theorem [121]. This theorem establishes the statistical limits to possible data compression.
Specifically, it states that the optimal compression of a sufficiently large sample of data xxx,
drawn from a probability distribution P(x), can only be achieved using the code associated
with the true probability distribution. In our framework, where data compression and infer-
ence are equivalent, Shannon’s theorem implies that the best compression of an instance of the
Erdős-Rényi model is achieved with an SBM that has only one group. Consequently, dividing
the network in more groups does not yield additional compression or explanatory power. This
result holds exactly when the size of the networks tend to infinite, while for finite-sized net-
works, the probability of better compression becomes vanishingly small. In Fig. 5.4, the reader
will find the results of an experiment that are consistent with these statements.

Since the MDL approach prevents overfitting, the description length Σ can also be used as a
criterion to select between models of different classes, i.e., having a different internal structure
and set of parameters (such as the degree-corrected and non-degree corrected SBMs). The
result of the model comparison should be the simplest model that is able to explain the data
according to its statistical significance. As we will see in Chapter 5, besides the MDL principle,
there are other approaches to do model selection.
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2.3.6 Inference using Markov Chain Monte Carlo (MCMC)

Considering the Nested DC-SBM, the inference task consists on sampling from (or maximiz-
ing) the posterior distribution of the hierarchical partition,

P({bbbl}|AAA) =
P(AAA,{bbbl})

P(AAA)
. (2.36)

Our approach is based on an efficient Markov chain Monte Carlo (MCMC) algorithm [111],
which attempts to move the membership of nodes in different hierarchical levels at random, so
that by accepting or rejecting such proposed moves after a sufficiently long time, the hierarchi-
cal partitions are sampled according to the posterior distribution of Eq. (2.36). The procedure
is summarized in the following, and we start by noting that such posterior can be factorized as

P({bbbl}|AAA) = ∏l P(eeel−1,bbbl|eeel)

P(AAA)

= ∏
l

P(bbbl|eeel−1,eeel) (2.37)

with per-level posteriors

P(bbbl|eeel,eeel+1) =
P(eeel|eeel+1,bbbl)P(bbbl)

P(eeel|eeel+1)
, (2.38)

where we assume eee0 = A, and P(eeel|eeel+1) is a normalization constant. Thus, we can sample
partitions at each level separately, according to its individual posterior conditioned on the re-
maining levels, which are fixed temporarily. This approach ensures ergodicity, i.e., every state
is eventually visited. Furthermore, if the moves at each individual level are reversible, the over-
all distribution will correspond to the desired full posterior of Eq. (2.36). It is important to note
that this procedure should only allow node membership moves at level l that do not invalidate
the partition at level l +1.

At each individual level l, we select a node i and propose moving it from its current group r to
a new group s. This move is made with probability P(b(l)i = r → s), whose definition will be
provided shortly. Then, we compute the corresponding difference in the log-likelihood ∆ lnPl

, and employ the Metropolis-Hastings criterion [122, 123], which states that we should accept
the move with probability

a = min

{
1,e∆ lnPl

P(b(l)i = s → r)

P(b(l)i = r → s)

}
, (2.39)
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where P(b(l)i = s→ r) is the probability of the reverse move being proposed. The log-likelihood
difference at level l is computed as

∆ lnPl = ln
P(b(l)i = s,bbbl ∖b(l)i |eeel,eeel+1)

P(b(l)i = r,bbbl ∖b(l)i |eeel,eeel+1)
, (2.40)

where bbbl ∖ b(l)i means the partition of the remaining nodes excluding node i. Computing
Eq. (2.40) does not require the normalization constant of Eq. (2.38); it only needs a subset
of terms in the joint distribution in Eq. (2.33). The number of these terms is proportional to the
degree ki of node i. Furthermore, the number of groups in the bottom level (l = 0) is typically
much larger than in the upper levels, showing an exponential decrease. Consequently, an entire
“sweep” of the algorithm — attempting one move per node in the network — can be completed
in O(E) time, independent of the total number of groups, which makes the algorithm suitable
for inference in very large networks.

Importantly, the use of the Metropolis-Hastings criterion enforces the property of detailed bal-

ance, which in combination with ergodicity, provides theoretical guarantees that the hierarchi-
cal partitions are eventually sampled from the correct posterior distribution P({bbbl}|AAA). How-
ever, in practice, the equilibration time might be prohibitively large for some choices of move
proposals we make unless they are close to the actual posterior. According to Ref. [57], a move
proposal that can significantly improve mixing times is given by Ref. [111]:

P(b(l)i = r → s) = ∑
t

P(t|i, l) el
ts + ε

el
t + ε(Bl +1)

, (2.41)

where P(t|i, l) =∑
j

A(l)
i j δ(b(l)j , t)/k(l)i is the fraction of neighbors of node i in level l that belong

to group t, and ε > 0 is an arbitrary parameter that enforces ergodicity, without other significant
impact in the algorithm, provided it is sufficiently small. Importantly, these move proposals do
not affect the computation time, which remains O(E), and they eliminate the dependency on
the number of groups B.

Additionally, the efficiency of the algorithm might also be significantly impacted by the starting
state. For instance, starting from a random partition can lead to metastable states, from which
the chain takes a long time to escape. To reduce the tendency to get trapped in a metastable
state and to have an initialization protocol that reduces the mixing time of the MCMC, Peixoto
(2014) [111] proposed an agglomerative approach. This approach initially places each node in
their own group and then progressively chooses between merging groups or making individ-
ual node moves. This procedure is iteratively run for each hierarchical level as described in
Ref. [25].

The approach outlined above serves for sampling from the posterior distribution of Eq. (2.36).
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However, if the goal of inference is maximizing the posterior, it can be easily adapted by
introducing an “inverse temperature” parameter β in Eq. 2.39 and replacing ∆ lnPl with β∆ lnPl .
By making β → ∞ the algorithm becomes a greedy heuristic that provides a reliable estimate
of the maximum, as long as the procedure is repeated many times. Alternatively, one can start
with β = 1, and gradually increase β at each step until β → ∞. This method is also known as
simulated annealing [124].

Additionally, we note that the MCMC algorithm from Ref. [25], which we described, considers
single node moves at each step. Peixoto (2020) [53] proposed a refined version of the algorithm
which in addition to single node moves, implements merges and splits of groups. Since this
version tends to produce faster mixing times, we consider it in this work. Specifically, we use
the implementation of these methods available in the graph-tool library [125].

2.3.7 Model Realism

In the previous sections, we have highlighted the flexibility of the SBMs to model arbitrary
mixing patterns and the robustness of the Bayesian inferential framework to prevent overfitting
and underfitting when modelling empirical networks. We have seen that the degree-corrected
SBM is able to accommodate arbitrary degree distributions, and we note that the models pre-
sented above can be easily extended to consider networks with directed edges. Despite these
features, SBMs remain as approximations of real-world networks, so it is legitimate to ask to
which extent their modelling assumptions are accurate representations of these networks. In
this section we discuss some relevant cases where the previously described models might need
extension or revision.6

Nodes might belong to more than one group

The versions that we have considered yield “hard” partitions of the set of nodes, meaning
that each node can only belong to one group. Nevertheless, there are situations in which it
is intuitively appealing to assume that nodes belong to more than one group simultaneously.
For example, in social support networks, individuals share attributes such as kinship, religious
beliefs, caste [130]. Similarly, proteins can belong to several protein complexes at the same
time [131]. In these scenarios, the connection patterns of the nodes are assumed to be a mixture
of the “pure” groups, leading to a richer type of model [132].

A relevant family of statistical models that relaxes the single-membership assumption and al-
lows nodes to belong to multiple clusters is known as mixed membership models. These models
have been applied in various domains for non relational data, including the analysis of survey

6Regarding extensions of the model for dynamical networks, we refer the reader to Ref. [126–128], and for
multilayer networks to Ref. [127, 129].
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data [133], text analysis [134], and image processing [135]. For a comprehensive review of the
topic, we refer the reader to Ref. [136]. In the context of network data, the first approaches were
mostly concerned with mixed membership models for single layer networks [132, 137–141],
while more recent works have aimed to account for richer scenarios, such as multilayer net-
works [51, 142], noisy multiple reported network data [143], and hypergraphs [144].

In the context of microcanonical versions of SBMs, an overlapping variant was introduced in
Ref. [145]. This model also incorporates the MDL principle in the inference process and allows
for extensions to nested variants, as in the case of its non-overlapping counterparts. A detailed
description of these extensions, along with a comparison of different SBM variants (both over-
lapping and non-overlapping) fitted to 42 empirical networks can be found in Ref. [145]. In
this comparison, the non-overlapping degree-corrected SBM systematically yielded smaller de-
scription lengths and better fits than other model variants, implying that the overlapping models
tend to overfit, especially in larger networks. In turn, this suggests that degree heterogeneity
might be more pervasive than overlapping groups in real-world networks, at least within the
current modelling framework.

Many real-world networks are simple graphs, not multigraphs

The DC-SBM generates multigraphs with potential self-loops according to Eq. (2.16). How-
ever, an important fraction of real-world networks are simple graphs, for which the above model
can give only an approximation. Peixoto (2020) [146] demonstrated that the use of multigraph
models based on the Poisson distribution (or equivalently, microcanonical models based on the
pairing of half-edges, as above) cannot ascribe probabilities to simple edges (i.e. Ai j = 1) that
are larger than 1/e ≈ 0.37. This limits the applicability of such models on networks with het-
erogeneous density, either due to broad degree distributions or sufficiently dense communities,
which are common properties of empirical networks.

To address this limitation, Peixoto (2020) [146] proposed a Latent Poisson Multigraph model,
which assumes that an underlying unobserved multigraph AAA is in fact responsible for the ob-
served simple graph GGG simply via the removal of the edge multiplicities and self-loops, i.e.

P(GGG|AAA) = ∏
i< j

(
1−δAi j,0

)Gi j δAi j,0
1−Gi j . (2.42)

Note that P(GGG|AAA) can only take a value of 0 or 1, depending on whether GGG and AAA are compatible.
Via this mathematical construction, the final model

P(GGG|kkk,eee,bbb) = ∑
AAA

P(GGG|AAA)P(AAA|kkk,eee,bbb) (2.43)
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can express both arbitrary mixing patterns between groups as well as degree correction, without
the limitations of the multigraph model for networks with large local densities [146]. The
inference of this model is performed by sampling from the posterior distribution

P(AAA,kkk,eee,bbb|GGG) =
P(GGG|AAA)P(AAA|kkk,eee,bbb)P(kkk,eee,bbb)

P(GGG)
, (2.44)

which remains tractable. A suitable choice for P(kkk,eee,bbb) is the hierarchy of priors and hyperpri-
ors described in Refs. [25, 57], which attempt to prevent underfitting, as mentioned previously.
Furthermore, experiments on empirical networks from Ref. [146] suggest that the Latent Pois-
son Multigraph DC-SBM outperforms the Nested Poisson DC-SBM in the task of community
detection. The former model reveals a larger number of groups due to its increased ability of
identifying heterogeneous densities. Additionally, within a small corpus of empirical networks,
Peixoto (2021) [52] showed that this model yields smaller description lengths than other SBM
variants, suggesting it might be a better fit for these networks. In Chapter 3, we will extensively
use this model to fit it on hundreds of empirical networks and evaluate its quality of fit.

The network formation process might not only depend on the groups

The basic versions of the SBM assume that the creation of edges depends solely on the group
membership of the nodes. However, other mechanisms might be simultaneously responsible
for the network formation. Neglecting this possibility and directly inferring a partition of the
network, might result in spurious patterns and misleading conclusions due to the conflation of
such mechanisms.

A relevant example is the conflation between homophily — the tendency of similar nodes,
based on their attributes, to be connected — and transitivity — the tendency of two nodes to
be connected if they share a common neighbor.7 On one hand, homophily may induce the
formation of triangles between similar nodes. On the other, triadic closure may induce locally
dense regions. Both cases might result in a similar pattern, i.e., abundance of triangles, making
it difficult to interpret which process is responsible for what we observe.

Some recent studies have integrated both concepts into their modeling framework and provided
insights into the interplay between triangles and homophily [148–152]. However, they have not
directly addressed the process of formation of triangles, the presence of large-scale homophily,
or the specific contributions of each mechanism. A widely used approach in the social sciences
to model the occurrence of triangles and homophily is the family of Exponential Random Graph
Models (ERGMs) [89–91]. Although ERGMs are conceptually appealing because they rely
on local edge-based structures that could explain the network formation, they suffer from de-

7For another interesting example involving the conflation of ranking and preference of connections (via degree
imbalance), we refer the reader to Ref. [147].
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generacy [89, 153–155]. This means that the large majority of the probability distribution is
concentrated on either an empty or a full graph, which makes these models implausible for
real-world networks.

In the context of Bayesian SBMs, Peixoto (2022) [49] proposed a modified version of the SBM
that incorporates triadic closure (SBM/TC). This approach, combined with Bayesian inference
can determine the most plausible mechanism responsible for the existence of every edge in the
network, in addition to the underlying community structure.

The main assumption of the model is that the observed network GGG is composed by a seminal
or substrate network AAA, which is generated by the DC-SBM conditioned on a partition bbb of the
nodes, and a set of ego graphs ggg potentially containing triadic closure edges, i.e., edges that
connect two nodes if they share a common neighbor in the substrate network AAA.

The inference procedure consists on sampling from the posterior distribution

P(ggg,AAA,bbb|GGG) =
P(GGG,ggg,AAA|bbb)

P(GGG)
, (2.45)

which encompasses all possible divisions into seminal and triadic closure edges, weighted ac-
cording to their plausibility. For further details, we refer the reader to Ref. [49].

Experiments conducted in empirical networks show that, in most cases, the observed structure
can be better explained by a non-trivial combination of underlying mixing patterns (commu-
nity structure) with a tendency of forming triangles (triadic closure). The relevance of each
component depends on the network and must be inspected individually. Additionally, the SB-
M/TC systematically performs better in reproducing the clustering coefficient of such networks
compared with the DC-SBM. As before, this behavior cannot be solely explained by a single
mechanism.

The model might be misspecified

Finally, we should note that inferential methods are not one-size-fits-all approaches, and there
might be situations where they are unrealistic. If our model poorly represents relevant aspects
of the true data-generating process, i.e., the model is misspecified, then our inferences might be
inaccurate and our conclusions misleading. However, even though the model is misspecified,
we may still want to use it in the hope that our inferences reveal some structure of the underlying
generating process. Below, we illustrate these ideas with an example.

In Fig. 2.5(a), we show an urban street network along with the node partition obtained by fitting
the Latent Poisson Multigraph Model from Ref. [146] to such network8. The inference proce-
dure yielded groups that primarily correspond to contiguous spatial regions. This partition is

8We also considered the DC-SBM and hierarchical priors [25, 57] as part of the whole model.
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interpretable and captures some patterns that might appear using a more suitable model (e.g., a
latent space model [86]). This suggests that we can achieve some degree of data compression
and predictive accuracy with an SBM, although they may not be optimal. However, the SBM
may not be a suitable choice for describing this empirical network, as the model would assign it
a very low probability. By inspecting a sampled network from the fitted model (see Fig. 2.5(b))
we note that edges are sampled in a way that violate spatial constraints, creating longer con-
nections than those observed in the data, consequently distorting the distances between nodes
and potentially other network properties. Models better suited to capture relevant properties of
spatial networks may include geometric graphs [156, 157], spatial growth models [158–164],
and optimal network models [159, 165, 166]. For a comprehensive review on spatial network
models, see Ref. [67].

Importantly, the inferential framework described above provides tools for detecting signs of
poor fit or model misspecification. One of them consists on checking how close summaries
of the data are to those computed in networks sampled from the model. Large deviations
might indicate poor fit (see Chapter 3). Another approach consists on inspecting the posterior
distribution of network partitions [52] (see Chapter 5). If the posterior is too broad, i.e., there
are many alternative hypotheses for the same data being equally plausible, then the model
structure might be unable to capture the structure in the data.

(a) Empirical network (b) Sampled network

Figure 2.5: (a) Cairo street network [167, 168] where nodes represent street junctions and
edges represent street segments. The node colors correspond to the groups inferred by the
Latent Poisson Multigraph Model from Ref. [146], along with the DC-SBM and hierarchical
priors [25,57], by minimizing the description length. (b) A sampled network from the SBM fit
described in (a).
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Chapter 3

Quality of fit of the SBM for empirical
networks

The SBM is a widely used model for community detection and link prediction tasks [22]. The
parameters of this model, i.e., the partition of the nodes and the affinities between groups, are
latent information that need to be obtained via inference algorithms. The family of SBMs also
serve as generalizations of more fundamental random network models. For instance, the Erdős-
Rényi model [97] can be recovered with the traditional non-degree corrected SBM with one
group, while the configuration model [169] is analogously recovered with the degree-corrected
version of the model. In fact, it has been shown that the SBM is able to approximate a broad
class of generative models that are different from it [170]. In this regard, approximating the
generative mechanism of a network with an SBM would be analogous to approximating the
underlying probability distribution of some quantity. In the first case, we infer the partition of
the observed network and affinities between groups, while in the second, we infer the bins of a
histogram by fitting it to the data.

The level of complexity of the SBM can be controlled by the number of latent groups form-
ing the partition. By increasing the number of groups, we can express increasingly elaborate
types of network structures, being the rate of connections between nodes determined by their
group membership. However, the expressiveness of the SBM is not absolute, especially when
the networks are sparse, i.e. when their average degree is much smaller than the total number
of nodes. In such a situation, there is no guarantee that the SBM is capable of arbitrarily ap-
proximating the true underlying model, regardless of how we infer it. By increasing the model
complexity we move from a situation where we are underfitting, i.e. extracting patterns that do
not sufficiently capture all the features of the true model, to a situation where we are overfit-

ting, i.e. incorporating randomness into the model description. In both cases, we significantly
deviate from the true model. When we find the most adequate inference that balances statistical
evidence against model complexity to prevent overfitting, we might still be missing important
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features of the true model, simply because it cannot be sufficiently well captured under the
SBM parametrization.

In this work, we are not interested in evaluating the SBM as a plausible generative process of
networks across all domains, since it does not represent an ultimately credible mechanism for
any of them. Instead, our objective is to assess how capable it is of providing a general effective

description of empirical networks, and in which aspects and to what extent (and not whether) it
tends to be misspecified (see Sec. 2.3.7). Understanding the limits of the SBM representation in
empirical settings is therefore a nuanced undertaking that is likely to be affected by a variety of
possible sources of deviations (e.g., network size, structure, and domain). Since the SBM tends
to yield very good comparative performance in link prediction tasks [42, 50], it is therefore
known that it tends to outperform alternative models in capturing the structure of networks, but
we still lack a more accurate assessment of its qualities and shortcomings in absolute terms.

In this chapter, we evaluate the quality of fit of the SBM in empirical contexts by performing
model checking on Bayesian inferences. Based on a diverse collection of 275 networks span-
ning various domains and several orders of size magnitude, we compare the values of many
network descriptors computed on the observed network with what would be typically obtained
with networks sampled from the inferred SBM. In this way, any significant discrepancy can be
interpreted as a form of “residual” that points to a shortcoming of the SBM in capturing that
particular network property.

Overall we find that the SBM is capable of encapsulating the network structure to a significant
degree for a large fraction of the networks studied, but falls short of completely exhausting the
modelling requirements in many cases. We find that for networks with very large diameter or
a very slow mixing random walk [171] the SBM tends to provide a poor description.1 This
includes, for example, many transportation networks — which are typically embedded in a
low dimensional space — as well as some economic networks.2 However, for other types of
networks the quality of fit tends to be good overall.

In the remainder of this chapter, we describe in detail the model and inference procedure
(Sec. 3.1), our criteria to evaluate the quality of fit (Sec. 3.2), the network corpus in which
we assessed the model and the results of our analysis (Sec. 3.3). We finalize in Sec. 3.4 with a
conclusion.

1These network properties are defined formally in App. A.2. For now, it is enough to consider the diameter of
a network as the longest of all shortest paths in a network, and the mixing time of a random walk as the time it
takes for a random walker to converge to a “stable” distribution over the nodes.

2See Ref. [55] for a qualitative overview of the different network classifications we consider.
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3.1 Model and inference

For our analysis we will use the microcanonical degree-corrected SBM (DC-SBM) [57, 110],
which combines arbitrary mixing patterns between groups together with arbitrary degree se-
quences. This was introduced in Eq. (2.16). Since all the networks we will be studying are
undirected simple graphs, we will use the Latent Poisson Multigraph Model from Ref. [146],
which was described in Sec. 2.3.7. For P(kkk,eee,bbb), we assume the nonparametric microcanonical
hierarchical priors and hyperpriors described in Refs. [25,57]. For the inference procedure, we
use the merge-split Markov chain Monte Carlo (MCMC) algorithm described in Ref. [53] to
efficiently sample from the posterior distribution of Eq (2.44).

Note that for P(kkk,eee,bbb) we use the nonparametric microcanonical hierarchical priors and hyper-
priors described in Refs. [25,57]. Importantly, this kind of approach determines the appropriate
model complexity (via the number of groups) according to the statistical evidence available in
the data. As has been shown in these previous works, this choice guarantees that only com-
pressive inferences are made in a manner that prevents overfitting (finding a number of groups
B that is too large), but also with a substantial protection against underfitting (finding a number
that is too small), which tends to happen when noninformative priors are used instead.

In addition to the DC-SBM we will also use the configuration model as a comparison, obtained
by reshuffling the edges of the input network while preserving its degree sequence (here we
use the edge-switching MCMC algorithm [169]). We note that the configuration model is an
approximate special case of the DC-SBM considered above when there is only a single group.3

Therefore, whenever the Bayesian approach above identifies more than one group with a large
probability, this automatically implies a selection of the DC-SBM in lieu of the configuration
model. This happens for every network that we consider in this work, meaning that the DC-
SBM is the favored model for all of them. Nevertheless, the configuration model serves as a
good baseline to determine to what extent the quality of fit obtained with the DC-SBM can be
ascribed to the degree sequence alone or to the group-based mixing patterns uncovered.

3.2 Assessing quality of fit

Posterior Predictive Distribution

The approach we use to assess the quality of fit of the DC-SBM consists on obtaining the
posterior predictive distribution [172,173] of certain network descriptors and checking whether
the model is able to capture such aspects of the network or not. More precisely, for a scalar

3This is only approximately true since the configuration model and the latent Poisson models are not identical,
but sufficiently similar for the purposes of this work [146].
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network descriptor f (GGG), its posterior predictive distribution is given by

P(y|GGG) = ∑
GGG′,AAA′,AAA

kkk,eee,bbb

δ(y− f (GGG′))P(GGG′|AAA′)×P(AAA′|kkk,eee,bbb)P(AAA,kkk,eee,bbb|GGG), (3.1)

where δ(x) is the Dirac delta function. In other words, for each inferred parameter set (kkk,eee,bbb),
weighted according to its posterior probability, we sample a new network GGG′ from the model
defined above (which can be done in time O(E +N) where E and N are the total number of
edges and nodes, respectively, as we show in Appendix A.1), and obtain the descriptor value
y = f (GGG′).4

Note that we could consider only one point estimate of the parameters (e.g., the one that maxi-
mizes the posterior distribution), sample networks, and compute descriptors to check the model.
However, this not desirable, because we may loose all the information about uncertainty in the
entire posterior distribution. This loss of information may lead us to overconfidence, to the
extent that, the posterior would produce a narrower distribution than the posterior predictive
distribution. Therefore, we may be tempted to believe that the model is more consistent with
the data than it really is, if we find that our replicated data is similar to our observations. Instead,
we would like to propagate the parameter uncertainty, i.e., carry it forward, as we evaluate the
implied predictions. In this sense, the posterior predictive distribution of Eq. (3.1) can be seen
as averaging across parameters and implied distributions of outcomes.

Measures of discrepancy

We know how to obtain predictive posterior distributions of network descriptors, but we still
need to define how to quantify the magnitude of discrepancies between the simulations and the
network data. We can say that a model captures well the value of a descriptor if its predictive
posterior distribution ascribes high probability to values that are close to what was observed
in the original network. We can obtain a compact summary of the level of agreement in two
different ways. The first measures the statistical significance of the deviation, e.g. via the
z-score [174]

z =
f (GGG)−⟨y⟩

σy
, (3.2)

where ⟨y⟩ and σy are the mean and standard deviation of P(y|GGG). The second criterion is the
relative deviation, which here we compute in two different ways,

∆1 =
f (GGG)−⟨y⟩

f (GGG)
, ∆2 =

f (GGG)−⟨y⟩
fmax − fmin

, (3.3)

4The posterior predictive distribution for the configuration model is analogous, i.e. P(y|GGG) = ∑
G′

δ(y −

f (GGG′))P(GGG′|kkk), where kkk are the observed degrees, and P(GGG|kkk) is the likelihood of the configuration model.
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Symbol Descriptor Range ∆

r Degree assortativity [−1,1] ∆2
⟨c⟩ Mean k-core value [0,∞] ∆1
Cl Mean local clustering coefficient [0,1] ∆2
Cg Global clustering coefficient [0,1] ∆2
λA

1 Leading eigenvalue of the adjacency ma-
trix

[0,∞] ∆1

λH
1 Leading eigenvalue of the Hashimoto ma-

trix
[0,∞] ∆1

τ Characteristic time of a random walk [0,∞] ∆1
∅ Pseudo-diameter [1,∞] ∆1
Rr Node percolation profile (random removal) [0,1/2] ∆2
Rt Node percolation profile (degree-targeted

removal)
[0,1/2] ∆2

S Fraction of nodes in the largest component [0,1] ∆2

Table 3.1: List of network descriptors used in this work, with their respective symbol, range of
values, and how the relative deviation was computed. More details on how the descriptors are
computed are given in Appendix A.2.

depending on whether the descriptor values are bounded in a well defined interval [ fmin, fmax]

(∆2) or not (∆1).

The z-score and relative deviation measure complementary aspects of the agreement between
data and model, and represent different criteria which should be used together. While a high
value of the z-score can be used to reject the inferred model as a plausible explanation for the
data, by itself it tells us nothing about how good an approximation it is. Conversely, the relative
deviation tells us how well the descriptor is being reproduced by the model, but nothing about
the statistical significance of the comparison.

In Fig. 3.1 we show examples that illustrate how the different criteria operate. In Fig. 3.1(a) and
(b) we see examples that show good and bad agreements between model and data, respectively,
according to both criteria simultaneously. In these cases, the conclusion is unambiguous: we
either see no reason whatsoever to condemn the model, or we see a definitive reason to do so.
However, in Fig. 3.1(c) and (d) we reach mixed conclusions. Fig. 3.1(c) the model typically
yields different values than observed in the data, but it still ascribes a large probability to it.
We cannot condemn the model as an implausible explanation for the data, but it is conceivable
that the true generative model would be more concentrated on the observed value. Conversely,
in Fig. 3.1 (d) we see a situation where the model ascribes close to zero probability to the
actual descriptor value seen in the data, but, in absolute terms, the discrepancy is quite small.
Although we find evidence to condemn the plausibility of the model, we could still claim that
it is a good approximation.

Overall, since we know that a model like the DC-SBM cannot possibly correspond to the true
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(a) Small disagreement (b) Large disagreement

(c) Large but insignificant (d) Small but significant

Figure 3.1: Examples of posterior predictive distributions for some descriptors (see Table 3.1
for definitions) using the DC-SBM, together with z-score and relative deviation. The solid
black line shows the empirical value of the descriptor f (GGG), and the dashed green line the
mean of the predictive posterior distribution. In (a) and (b) we see examples where employing
both criteria reveal unambiguously good and bad agreements, respectively, between data and
model. However, in (c) we see a situation where despite a substantial disagreement with respect
to the relative deviation, the z-score indicates that the model cannot be discarded as a plausible
explanation for the data. In (d) we see a situation where the z-score points to decisive rejection
of the model, but the small relative deviation allows us to accept it as an accurate approximation.
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generative model of empirical networks, we should expect that in situations where the network
is sufficiently large, and hence there is more abundant data, the values of the z-score will tend
to be high. Here we argue that since the objective of a model like the DC-SBM is to obtain a
good approximation of the underlying model, not an exact representation, the ultimate criterion
is a combination of the two, where we may deem the model compatible with the data when
either the z-score or the relative deviation has a sufficiently low magnitude. For the purpose
of clarity and simplicity of our analysis, we will consider the thresholds |z|= 3 and |∆|= 0.05
as reasonable choices to deem the model compatible with data, although our results will not
depend on these particular choices, and we will always report the full range of values.

Before continuing, some important considerations regarding model checking should be made.
While an excellent model should fulfill both of the above criteria simultaneously, we need to
observe that a model that maximally overfits, i.e. ascribes to the observed network a probability
of one, and to any other a probability of zero, will achieve the best possible performance ac-
cording to both relative deviation and statistical significance. This occurs because we are using
the same data to perform both the model inference and evaluate its quality, which is an invalid
approach for model selection. Therefore, it is important to recognize the crucial difference

Figure 3.2: (Top) Number of nodes and edges for the networks in the corpus used in this
work, and their domain composition (inset). (Bottom) Distribution of descriptor values for the
networks in the corpus. The horizontal line marks the median values.
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(a) Configuration model (b) DC-SBM

Figure 3.3: Distribution of relative deviation (top), z-score (middle), and fraction of networks
reproduced (bottom) for (a) the configuration model and (b) the DC-SBM, according to their
respective predictive posterior distributions for each descriptor. We also show the median and
mean of the absolute values for all descriptors for each network. The solid blue lines mark the
negative and positive median values, and the dashed red line marks the values of |∆|= 0.05 and
|z| = 3. The fraction of networks reproduced correspond to those that have the absolute value
of either ∆ or z below these thresholds. The points in green color correspond to the networks
that are not reproduced according to this combined criterion.

between model checking and model selection: the latter attempts to find the model alternative
that is better justified according to statistical evidence, while the former simply finds system-
atic discrepancies between the inferred model and data. In our analysis, protection against
overfitting is obtained via Bayesian inference, and we use model checking only to evaluate
the discrepancies (indeed, the fact we find discrepancies to begin with shows that we cannot
be massively overfitting). Another observation is that when performing multiple comparison
over many networks and descriptors, some amount of “statistically significant” deviations are
always expected, even if the models inferred correspond to the true ones, unless we incorpo-
rate the fact that we are doing multiple comparisons in our criterion of statistical significance,
which would be the methodologically correct approach. We will not perform such a correction
in our analysis, because we do not seek to demonstrate the absolute quality of DC-SBM as a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Relative deviation and z-score values for the global and mean local clustering coef-
ficients, Cg and Cl , as well as diameter and characteristic time of a random walk, ∅ and τ, as a
function of their empirical values, for every network in the corpus, when using the DC-SBM.
The dashed red line marks the values of |∆| = 0.05 and |z| = 3. The size of the symbol corre-
sponds to the logarithm of the number of edges in the network, and the darkness to the mean
degree.

ultimately plausible hypothesis for network formation. As we will see from our results, such a
correction would gain us very little.

Finally, in Table 3.1 we list the network descriptors that are used in this work. Our approach
requires scalar values, so we constrained ourselves to this category, and furthermore we chose
quantities that can be computed quickly, so that robust statistics from the predictive posterior
distributions can be obtained. Given these restrictions, we then chose descriptors that measure
different aspects of the network structure, both at a local and global levels. Further details on
the network descriptors are given in Appendix A.2.

3.3 Quality of fit of the SBM in empirical networks

We carry out our analysis on a corpus containing 275 networks spanning various domains and
several orders of size magnitude, as shown in Fig. 3.2. We have not collected every network
at our disposal, but instead chosen networks that are as diverse as possible, both in size and
domain, and avoided many networks that are closely related by belonging to the same subset.
The networks in our corpus can be downloaded from the Netzschleuder repository [54]. In this
work, every network is a simple graph, i.e., we considered symmetrized versions of directed
networks removing parallel edges and self-loops.
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Figure 3.5: Absolute value of the relative deviation (top), z-score (middle) and fraction of
reproduced descriptors (bottom), as a function of the number of edges, for every network in
the corpus. The dashed red line marks the values of |∆| = 0.05 and |z| = 3. The fraction of
descriptors reproduced correspond to those that have the value of either ∆ or z below these
thresholds. The points in green color correspond to the descriptors that are not reproduced
according to this combined criterion.
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(a) Median
z-score Relative deviation Combined

(b) Mean
z-score Relative deviation Combined

Figure 3.6: Fraction of reproduced networks according to their domain, considering the (a)
median and (b) mean values of either the z-score, the relative deviations, or their combined
values, for both models (as shown in the legend). When the combined values are used, this
means that a model is deemed compatible with a network when we obtain either |∆|< 0.05 or
|z|< 3.
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In Fig. 3.3, we show the summaries of the posterior predictive checks for each descriptor,
network, and model to be assessed. We observe a wide variety of deviation magnitudes, both for
the same descriptors across networks, and across descriptors. As expected, the DC-SBM results
show systematically better agreement with the data when compared with the configuration
model. Overall, the descriptors that show the worst agreement are the characteristic time of a
random walk (τ) and the diameter (∅), both of which are particularly high for networks that
are embedded in two dimensions, and for which the DC-SBM is an inaccurate approximation.
Nevertheless, there is no single descriptor that the DC-SBM does not capture for fewer than
50% of the networks. For descriptors like S, Rr, Rt and ⟨c⟩, the difference between the DC-
SBM and the configuration model are relatively minor. This indicates that these descriptors can
be captured to a substantial extent by the degree sequence alone.

When considering all descriptors simultaneously for each network, either by the median or
mean of the absolute values of the z-score and relative deviation, we observe a substantial
majority of networks showing a good agreement with the DC-SBM. On the contrary, a small
minority of networks agree with the configuration model. The difference between the median
and the mean indicates that there is a sizeable fraction of the networks where the agreement is
spoiled by a few outlier descriptors — typically τ and ∅.

It is particularly interesting to see that in most cases the clustering coefficients are well repro-
duced by the DC-SBM, while it is commonly assumed that such model should not be able to
capture the abundance of triangles often seen in empirical networks. The argument is that the
DC-SBM becomes locally tree-like [175], with a vanishing probability of forming triangles, in
the limit where the number of groups is much smaller than the total number of nodes. There-
fore, one may imagine that the situations where there is an agreement with the DC-SBM are
those where the clustering values are low. However, Fig. 3.4(a) to (d) suggest that this is not
quite true, i.e., we observe good agreements even when the clustering values are high. This
illustrates a point made in Ref. [49], that it is possible to obtain an abundance of triangles with
the SBM simply by increasing the number of groups, in which case it can be explained as a
byproduct of homophily. Indeed this is a situation we see in Fig. 3.4(a) to (d), where both the
relative deviation and z-score values can be quite small even for extremal values of clustering.
However, we do notice a substantial variability between agreements, and a fair amount of in-
stances where the DC-SBM cannot capture the observed clustering values, even when they are
moderate or even small. This seems to indicate that there are a variety of processes capable of
resulting in high clustering values, with homophily being only one of them [49]. Overall, the
mean local clustering values tend to be harder to reproduce than the global clustering values.
In both cases, the z-scores are systematically high, indicating that the clustering values are in
general a good criterion to reject the DC-SBM as a statistically plausible model, although the
relative deviation values tend to be lower than what one would naively expect, meaning that the
model can still serve as a reasonably accurate approximation for clustered networks in many
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cases.5

On the contrary, we observe a different behavior for the diameter and characteristic time of
a random walk, which are the least well reproduced descriptors, as shown Fig. 3.4(e) to (h).
These descriptors are closely related, since a network with a large diameter will also tend to
result in a slow mixing random walk. For both of them it is rare to find a network having
very high empirical values, and simultaneously the DC-SBM being able to accurately describe
it. Therefore it seems indeed that the DC-SBM offers an inadequate ansatz to describe the
structure of these networks, even by optimally adjusting its complexity.

In Fig. 3.5, we show how the model assessment depends on the size of the network. As one
could expect, the z-score values tend to increase for larger networks, as more evidence becomes
available against the plausibility of the DC-SBM as the true generative model. Nevertheless,
the values of the relative deviation do not change appreciably for larger networks, indicating
that it remains a good approximation regardless of the size of the system.6

Furthermore, in Fig. 3.6 we show a summary of the fraction of all networks for which we
obtain good agreement with either model, according to the network domains. Overall, we
see that most domains show similar levels of agreements, except transportation and economic
networks. Transportation networks are often embedded in two-dimensional spaces, resulting in
large diameters and slow-mixing random walks. The economic networks considered also tend
to show large values of these quantities, so the explanation for their discrepancy is the same.

Predicting quality of fit

Now we address the question of whether it is possible to predict the quality of fit of the DC-
SBM and Configuration Model solely based on the empirical values of the networks descrip-
tors. If we can isolate the descriptors which are most predictive, this would give us a general
direction in which more accurate models could be constructed.

In order to evaluate such predictability, we frame it as a binary classification problem. For
each network i, we ascribe a binary value yi = 0 if we have simultaneously |zi| > 3 and
|∆i| > 0.05, or otherwise yi = 1 (the network is well-described by the model). The fea-
ture vector for each network is composed of the empirical values of the descriptors, xxxi =

(r,⟨c⟩,Cl,Cg,λA
1 ,λ

H
1 ,τ,∅,Rr,Rt ,S,E), with the addition of the number of edges E. For each

network i, we train a random forest classifier on the entire corpus with that network removed,
and evaluate the prediction score on the held-out network. We then repeat this procedure for

5See also Fig. A.3, where we show model deviations as a function of the number of nodes in the network. We
also show that the inferred number of groups B generally increases, and for networks with high clustering, B is
large rather than constant. Despite this growth, the scaling of B does not follow in a simple way.

6Sampling issues with MCMC could also contribute to the elevated z-scores for larger networks, as we discuss
in Appendix A.1.
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(a)

(b)

(c)

(d) (e)

(f) (g)

Figure 3.7: Predictiveness of the quality of fit of the generative models considered, according
to the empirical descriptor values, framed as a binary classification problem, as described in the
text. (a) ROC curve for a leave-one-out random-forest classifier, (b) Gini feature importance
for the configuration model, (c) same as (b) but for the DC-SBM. Panels (d) and (e) show the
best ROC AUC obtained for a set of descriptors of a given size, for the configuration model and
DSCBM, respectively. Panels (f) and (g) show the same as (d) and (e), respectively, but with
the number of edges excluded from the analysis.
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all networks in the corpus, and evaluate how well the classifier is able to predict the binary
label. We present the results of this experiment in Fig. 3.7 (top) which shows the receiver op-
erating characteristic (ROC) curve, where the true positive rate and the false positive rate are
plotted for all threshold values used to reach a classification. The area under the ROC curve
(AUC), shown in the legend, can be equivalently interpreted as the probability that a randomly
chosen true positive has a prediction score higher than a randomly chosen true negative. For
the DC-SBM and configuration model, we obtain AUC values of 0.91 and 0.88, respectively.
This indicates a fairly high predictability, from which we can conclude that it is indeed often
possible to tell whether the models will provide a good or bad agreement, based only on the
descriptor values.

Further insight can be obtained by inspecting the importance of each descriptor in the overall
classification. We compute this via the so-called Gini importance [176], defined as the total
decrease in node “impurity” (i.e. how often a node in decision tree contributes to a decision),
weighted by the proportion of samples that reach that node, averaged over all trees in the clas-
sifier.7 The results can be seen in Fig. 3.7 (b) and (c). In both cases, we note that the number of
edges is the most predictive descriptor, which is compatible with what we had already seen in
Fig. 3.5, namely that the larger the networks are, the easier it becomes to reject a model accord-
ing to the z-score. Otherwise, as one would expect, the importance of the remaining descriptors
is largely compatible with their reproducibility shown in Fig. 3.3, where the descriptors that
agree the least with the inferred models tend to be the most useful at predicting quality of fit
beforehand.

This analysis allows us to emphasize two points: the characteristic time of a random walk τ
and the diameter ∅, both extremal quantities of the network structure that are closely related,
are the most difficult descriptors to be captured by the DC-SBM. Therefore, an extension of the
model that would cater for these properties would bring the most benefit across all networks.
However, beyond these two descriptors, there is no substantial difference between the ones that
remain, indicating that there is no obvious direction that would bring a systematic modelling
improvement over all networks. On the other hand, as we show in Appendix A.2, the descriptor
values and their predictive posterior deviations show nontrivial correlations, which means that
if some of them are specifically targeted, it could potentially improve the quality of fit of other
descriptors.

Finally, we would like to determine what is the minimal amount of information required to
predict the suitability of both models, and in this way remove the redundancy provided by
the different descriptors. In order to address this question, we computed the best ROC AUC
obtained by a combination of descriptors of a given size, as shown in Fig. 3.7(d) and (e). In both

7We also computed different a measure, called permutation importance, which leads to very similar results
(not shown).
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cases, we see that the predictability is saturated by only few descriptors.8 For the configuration
model, most of the predictability is already achieved by a combination of (Cl,τ,E). For the
DC-SBM we get instead (r,∅,E). If we remove the number of edges from the set of features
(since it is not informative on the actual network structure), we obtain instead (Cg,λA

1 ,τ) and
(Cl,λH

1 ,∅), for the configuration model and DC-SBM, respectively. It should be emphasized
that if a descriptor does not appear in the minimal set, it does not mean that such descriptor is
not predictive of the quality of fit, but only that it offers largely redundant information in that
regard. Thus, for both models, replacing ∅ with τ or λH

1 with λA
1 , etc, yield similar results. This

suggests that, besides spatial embeddedness (which influence ∅ and τ the most), the addition of
explicit mechanisms for triangle formation (which affects Cg,Cl,λH

1 ,λ
A
1 directly) might improve

the overall expressiveness of the DC-SBM — which in fact has been observed in a more limited
dataset [49].

3.4 Concluding Remarks

We performed a systematic analysis of posterior predictive checks of the SBM on a diverse
corpus of empirical networks, spanning a broad range of sizes and domains. Using a variety
of network descriptors, we observed that the SBM is able to accurately capture the structure of
the majority of networks in the corpus. The types of networks that show the worst agreement
with DC-SBM tend to possess a large diameter and a slow mixing of random walks — features
that are commonly associated with a low-dimensional spatial embedding, and a violation of the
“small-world” property. For the other types of networks the agreement tends to be fairly good,
even for many networks with an abundance of triangles. This contradicts what it is commonly
assumed to be possible with this class of models.

We have also identified the minimal set of network descriptors capable of predicting the quality
of fit of the SBM, which is composed of the network diameter and characteristic time of a
random walk as the most important, followed by clustering as a secondary feature. This points
to the most productive directions in which this class of models could be improved.

It is worth emphasizing that the consistency analysis that we have performed, which compares
a posteriori the modelling assumptions with the actual properties seen in the data, is only
possible if these assumptions are made explicitly via a generative model. Community detection
methods that are only descriptive in nature (such as modularity maximization [177]) cannot be
used for this purpose. Not only are these methods not guided by statistical evidence and prone
to systematic overfitting, but they also provide no direct way to scrutinize the validity of their

8We optimized exhaustively for all descriptor combinations of a given size. Therefore, despite the leave-one-
out cross-validation, care should be taken to avoid overfitting, because the optimization was performed on the
same set of networks. Because of this, we always consider the smallest set of descriptors that reaches a ROC AUC
close to the optimum, not the actual optimum which is likely to be overfitting.
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implicit assumptions [11].

One of the limitations of our analysis is that it is conditioned on the set of descriptors used.
Thus, shortcomings or successes of the model with respect to other properties not analyzed
here are not uncovered. A natural extension of our work would be to consider an even broader
set of descriptors that could reveal more relevant dimensions for the comparison. This kind of
analysis is open ended, as there is no short supply of possible network descriptors. We hope
our work will motivate further study in this direction, and with a larger variety of generative
models within or beyond the SBM family.
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Chapter 4

Reconstruction performance of the SBM
in empirical networks

Empirical networks may contain errors or be incomplete. For instance, when measuring techno-
logical networks, one might encounter incomplete sampling and technical limitations [27–29].
Measurements of social networks might be affected by subjectivity, accuracy, and reliability
of both participants and experimenters [30–32]. Natural variation in biological systems and
inconsistent measurements in a lab might introduce large variability and discrepancies in the
measurement of biological networks [33–35]. Thus, instead of directly analyzing the data and
letting the error pollute the analysis pipeline, one should first infer — or reconstruct — the
original network. In doing so, we may prevent misleading and erroneous conclusions [36–38].

Although network measurements are virtually always noisy, they are most often reported with-
out any information on measurement uncertainty. In this situation, it becomes possible to re-
construct — or “denoise” — a network only if we possess suitable models for the measure-
ment process together with generative models for the underlying network structure [43]. The
stochastic block model (SBM) is a state-of-the-art approach for modelling network structure
that has many useful characteristics for this purpose. Although it was initially motivated for
community detection, and operates under the notion of preferences between groups of nodes, it
can approximate a wide class of generative models when the number of such groups is suitably
chosen [170]. In a recent comprehensive comparative analysis [50], the SBM was shown to
consistently outperform alternative methods for link prediction. However, despite its high ex-
pressiveness, the SBM is not without limitations, as there might be underlying network patterns
that the model cannot recover.

Most evaluations of network reconstruction or link-prediction methods are confined to rela-
tive comparisons between competing algorithms. In contrast, in our work we are interested
in comparing the reconstruction performance of the SBM in absolute terms. We do so by not
only computing its overall accuracy at recovering the missing edges and eliminating the spuri-
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ous ones, but also in its ability to recover different kinds of descriptors that measure different
aspects of the network structure. This kind of evaluation can determine the suitability of the
reconstruction for different tasks, and provide different dimensions to judge its overall perfor-
mance.

In this chapter, we evaluate the performance of the SBM in reconstructing network structure
from a corpus of 248 networks spanning various domains and several orders of size magnitude.
For this purpose, we assume each empirical network as error-free. Then we simulate a noisy
measurement process that assumes the original network was measured once, and uniform error
rates on both edges and non-edges. In this way, the noisy data would contain missing edges
and spurious edges. Then we perform network reconstruction on the noisy network using the
SBM. Finally, we assess the model by comparing the estimations of network descriptors with
the descriptor values of the original network and those of the simulated noisy measurements.
Large errors would mean that the SBM is incapable of reconstructing some aspect of the net-
work. This outcome is complemented by comparing the error after reconstruction with the error
before it. This comparison would tell us whether we gained something from the reconstruction
procedure.

Our analysis reveals that the SBM yields small errors and more accurate estimates of the true
network properties than those provided by the noisy observations. However, we also observe
large reconstruction errors in networks having large diameter and slow-mixing random walks.
These cases include many transportation networks — which are typically embedded in a low
dimensional space — and some technological networks. Overall, our results show an encom-
passing delineation of the difficulty of the network reconstruction task and the suitability of the
SBM for this purpose.

In the rest of this chapter, we describe the general framework of the network reconstruction
procedure (Sec. 4.1.1), the setup of our evaluation (Sec. 4.1.2), our criteria to evaluate the
accuracy of the reconstruction (Sec. 4.1.3), and the network corpus in which we assessed the
model along with the results of our analysis (Sec. 4.2). Finally, we provide some concluding
remarks in Sec. 4.3.

4.1 Network Reconstruction Framework

4.1.1 The goal of Network Reconstruction

Let AAA be a network and DDD the observed data, i.e., a noisy measurement that only contains
indirect information about AAA. The task of Bayesian network reconstruction consist on using
statistical inference to obtain AAA from DDD. In particular, the network can be reconstructed accord-
ing to the posterior distribution [43]:
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P(AAA,bbb|DDD) =
P(DDD|AAA)P(AAA,,,bbb)

P(DDD)
, (4.1)

where the likelihood P(DDD|AAA) models the measurement process, and the prior P(AAA,,,bbb) is the
SBM.

This means that when performing reconstruction, we sample both the community structure and
the network itself from the posterior distribution. From it, we can obtain the marginal posterior
probability of each edge (or non-edge), i.e.,

πi j = ∑
AAA,,,bbb

Ai jP(AAA,bbb|DDD). (4.2)

This allows us not only to infer the underlying network AAA, but also to compute predictive indices
(e.g., the area under the ROC curve) for model comparison purposes, or structural descriptors
of the network to assess the model in absolute terms.1

4.1.2 Outline of the Analysis

The goal of this work is to test the reconstruction performance of the SBM in empirical net-
works using the framework described in section 4.1. In the following, we explain the pipeline of
analysis for evaluating the SBM, and refer the reader to Fig. 4.1 for a schematic representation
of the process.

We consider a simple undirected empirical network AAA, with N nodes and E edges. We also take
into account the model of the measurement process from Ref. [179], which assumes that the
node pairs (i, j) were measured ni j times, and an edge has been recorded xi j times. A missing
edge occurs with probability p, and a spurious edge occurs with probability q, uniformly for all
node pairs, yielding a likelihood:

P(xxx|nnn,AAA, p,q) = ∏
i< j

(
ni j

xi j

)[
(1− p)xi j pni j−xi j

]Ai j ×
[
qxi j(1−q)ni j−xi j

]1−Ai j . (4.3)

This equation can be rewritten in the following terms:

P(xxx|nnn,AAA, p,q) =

[
∏
i< j

(
ni j

xi j

)]
(1− p)T pE−T qX−T × (1−q)M −X−E+T , (4.4)

where M = ∑
i< j

ni j; X = ∑
i< j

xi j; E = ∑
i< j

ni jAi j; T = ∑
i< j

xi jAi j.

1In this work, we made a correction of our estimates of marginal probabilities in a way that the sampled
networks preserve the total number of edges of the original network. We provide further details in Appendix B.1.
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Empirical Network Measurement Noisy Data Reconstruction Estimate
AAA P(DDD|AAA) DDD P(AAA,bbb|DDD) ÂAA

Figure 4.1: Schematic representation of our analysis on network reconstruction. We consider
an empirical network AAA (here, the karate club [178]), add noise according to a measurement
model, and try to reconstruct the original network from the noisy measurement DDD, where some
edges were deleted and spurious edges are colored in red. The result of the reconstruction
procedure is a set of marginal probabilities of node pairs, which are represented as the thickness
of edges in ÂAA.

We note that M is the total number of measurements (edge or non-edge), X is the total number
of observed edges, and T is the total number of correctly observed edges. From these summary
quantities, we can also identify the total number of false positives (spurious edges) as X −T
and the total number of false negatives (missing edges) as E −T .

In this work, we focus on the case of single measurements, i.e., ni j = 1 and xi j ∈ {0,1} for
every pair (i, j), so that {xi j} corresponds to the reported adjacency matrix. Furthermore, we
assume uniform error rates on edges and non-edges, setting both p and q to positive values,
resulting in a mixture of edge- and non-edge denoising.2 Here, p ∈ {0.1,0.3}, representing
small and large values of noise level, respectively. The value of q is chosen so that the same

number of affected edges and non-edges is on average the same, i.e., q = pE/
((

N
2

)
−E

)
.

Given these positive error rates p and q, we simulate a measurement xxx (i.e., a noisy network)
following Eq. (4.3). Specifically, we erase a fraction of edges (i, j) from AAA (according to p)
and set ni j = 0, xi j = 0 for the affected entries, creating missing edges. Additionally, we add a
fraction of non-edges (i, j) as spurious edges to AAA (according to q), and set ni j = 1, xi j = 1 for
the corresponding entries. We note that the measured network has the same average density as
the original network AAA.

To conduct the reconstruction, we assume P(AAA,bbb) to be the nested degree-corrected SBM (DC-

2Another possible scenario is network completion, where some edges or non-edges have not been observed,
i.e., ni j = 0 and xi j = 0 for every pair (i, j). This is conceptually different to our setting since we assumed that
measurements are performed, but they contain errors, while in network completion there are no measurements,
and the error rates are zero. An evaluation of the SBM within this scenario is beyond the scope of this work. We
refer the reader to Ref. [43] for further details.
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SBM) [57, 110] and sample from the posterior of Eq. (4.1) using MCMC. During the MCMC
sweeps, we collect the posterior probabilities of the affected entries πi j and the group member-
ships of nodes.3

4.1.3 Assessing reconstruction performance

When assessing the reconstruction performance we are interested in understanding how close
an inferred network ÂAA is to the true network AAA underlying the data. There are several ways
in which one can address this question. For instance, one could choose a measure of simi-
larity or the area under the ROC curve (AUC) to assess the performance of the model in the
reconstruction task.

In this work, we are interested in evaluating the model in its capacity to recover structural
descriptors of the original network. This is done by getting estimates of such descriptors and
quantifying the corresponding error of reconstruction, as described in the following.

Reconstruction error

Within the reconstruction framework of Eq. (4.1), we can compute estimates ŷ of arbitrary
scalar network properties y(AAA) by averaging over the joint posterior P(AAA,bbb|DDD), i.e.,

ŷ = ∑
AAA,,,bbb

y(AAA)P(AAA,bbb|DDD), (4.5)

with uncertainties given by σy, such that

σ2
y = ∑

AAA,,,bbb
(y(AAA)− ŷ)2P(AAA,bbb|DDD). (4.6)

Then we summarize the level of agreement via the relative error, which here we compute in
two different ways,

∆1 =
y(AAA∗)− ŷ

y(AAA∗)
, ∆2 =

y(AAA∗)− ŷ
ymax − ymin

, (4.7)

depending on whether the descriptor values are bounded in a well defined interval [ymin,ymax]

(∆2) or not (∆1). In this work, we consider the same descriptors used in Chapter 3, which were
listed in Table 3.1.

3The initial state of the MCMC algorithm is the best fit of the nested DC-SBM to the measurement xxx. During
the sampling, we monitor the equilibration of the description length and number of groups.
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The procedure outlined above is repeated for several measurements, i.e., for a given empirical
network AAA, we consider k noisy measurements (DDD111, ..., DDDkkk), and perform network reconstruc-
tion from each Di, i = 1, ...,k. Then we summarize the capacity of the SBM in reconstructing a
network descriptor y(AAA) as follows:

∆̄ =
1
k ∑

i
∆i, (4.8)

where ∆i is the relative error (as in Eq. (4.7)) corresponding to the reconstruction from DDDiii, the
i-th noisy measurement. The uncertainty is given by σ∆̄ = σ∆/

√
k with

σ2
∆ =

1
k ∑

i
(∆i − ∆̄)2. (4.9)

We emphasize that in this work, we are interested in determining whether we can get accurate
enough estimates using our framework, rather than showing that it is the best approach to
network reconstruction when compared to other methods. Therefore, as a baseline, we use
the value of the descriptor when no reconstruction is done along with its corresponding error.
This would mimic a rather common practice in network data analysis, which is assuming the
observed network is the true network. We present the results of these analyses in the next
section.

4.2 Reconstruction performance of the SBM in empirical net-
works

We carry out our analysis in a corpus of 248 real-world networks spanning various domains
and several orders of size magnitude (see Fig. 4.2). As before, when gathering the networks,
we attempted to have networks in the corpus as structurally diverse as possible. Furthermore,
every network in the corpus is a simple graph, i.e., we considered symmetrized versions of
directed networks removing parallel edges and self-loops. These networks can be downloaded
from the Netzschleuder repository [54].

For conciseness, in the remainder of this chapter, we focus on the results obtained with a level
of noise p = 0.1, i.e., when on average 10% of edges have been removed. We include the
results for a higher level of noise (p = 0.3) in Appendix B.2, where we observed qualitatively
similar patterns. As expected, the performance of the algorithm deteriorates with a larger level
of noise, resulting in larger errors and a lower percentage of reproduced networks. However,
the improvement with respect to not doing any reconstruction at all becomes more noticeable.
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Figure 4.2: Number of nodes and edges of the networks in the corpus, and its domain compo-
sition.
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Figure 4.3: (Top) Distribution of relative error. The red dashed line corresponds to 0.05, and
the black continuous lines to the medians. (Middle) Average difference between the error
before reconstruction and after reconstruction. (Bottom) Percentage of networks whose error
improved (i.e., the error after reconstruction is smaller than before reconstruction), did not
change, or worsened but the descriptor was still reproduced (error is smaller than 0.05) for
each descriptor. Noise level p = 0.1.
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In Fig. 4.3, we show summaries of the reconstruction error for each descriptor and network. We
observe a wide variety of error magnitudes, both for the same descriptors across networks, and
across descriptors. Fig. 4.3 (top panel) shows that some descriptors are harder to estimate than
others, i.e., the reconstruction approach has different accuracy. In particular, most errors are
smaller than 0.05. However, the diameter (∅) and the characteristic time of a random walk (τ)
are the most challenging descriptors. We note that these descriptors were also the ones which
showed the worst agreement in the previous chapter. We will return to this point later.

It should also be noted that we cannot assess the accuracy of reconstruction based only on
the magnitude of the error. Instead, we should also take into account that some descriptors
are more sensitive to noise than others, i.e., noise has different impact on different structural
features. Thus the accuracy of estimations should be compared against a baseline. As men-
tioned, we consider the error in which we incur by not doing reconstruction and assuming the
noisy network as the true one, as a baseline. As expected, on average, the SBM-reconstruction
provides smaller errors compared with not reconstructing (see Fig. 4.3 (middle panel)). Once
again, the exception is the characteristic time of a random walk (τ). Furthermore, we note
that the best reproduced descriptors (e.g., r, ⟨c⟩, S), are not necessarily the same for which we
obtained larger improvements in an absolute sense.

Overall, we would expect that our approach is accurate enough to the extent that, for every
descriptor, it yields smaller errors, or at least not (drastically) worse than those of the baseline.
In Fig. 4.3 (bottom panel), we observe that this is the case, since the algorithm is able to
accurately estimate all descriptors for the majority of networks in the corpus.

In Chapter 3, we observed that the clustering coefficients were well reproduced by the DC-
SBM, which contradicted the common assumption of the SBM being unable to capture abun-
dance of triangles in empirical networks. The current scenario includes the presence of noise,
so we expected it to be more challenging for the SBM to capture clustering coefficients. How-
ever, it is remarkable that in most cases the SBM-reconstruction approach not only is better than
the baseline, but also yields relatively small errors.4 In Fig. 4.4 (a) and (b), we observe that
reconstruction errors are small when clustering is low. Moreover, when clustering is high, the
reconstruction mostly yields better estimates than the baseline, and in some cases even small
errors.

On the contrary, the performance of our approach decreases as the empirical values of the
diameter (∅) and the characteristic time of a random walk (τ) increase (see Fig. 4.4 (h) and
(k)). This finding agrees with what we observed in the previous chapter, namely there exist large
discrepancies between the DC-SBM and the network data when the empirical values of such
descriptors are large. We expected that adding noise to the network make more challenging the
task of getting accurate values of such descriptors, since noise removes information from the

4Peixoto (2018) [43] showed similar results for a network of political weblogs [3] and a network of flights
among airports [180].
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Figure 4.4: Relative error before and after reconstruction (joined by a line segment) as a func-
tion of the original value of the descriptor. The color indicates if the error after reconstruction
is smaller than before doing it (i.e., there is improvement) or not. Dashed line at 0.05. Noise
level p = 0.1.

data. Certainly, the reconstruction performance depends on how sensitive are such descriptors
to noise. We observe that the diameter has high sensitivity, since a small amount of spurious
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edges might significantly change the value of this descriptor. We illustrate this by an example of
an urban street network (see Fig. 4.5). The reconstruction approach destroys spatial constraints,
introducing links between distant nodes in the reconstructed networks, which would be unlikely
in reality, and consequently yielding much smaller diameters than the original one. A similar
explanation follows for τ, since it is closely related to ∅. This behaviour suggests that our
assumptions may be incorrect for certain networks, particularly those with 2D embeddedness.
Therefore, the SBM would not be a suitable prior for these networks when our focus is on ∅
and τ.

(a) True network (b) Measurement

(c) Reconstruction (d) Sample

25 50 75 100
diameter ∅

0

1000

2000

de
ns

ity

true
average
measurement
SBM

Figure 4.5: Estimation of diameter ∅ in Venice street network [167, 168] using SBM-
reconstruction. (a) Original network, whose diameter is highlighted in blue. (b) Measured
network obtained containing missing edges and spurious edges from (a). (c) Distribution of
estimates of ∅. (d) One sample of the reconstructed networks with its diameter.

Furthermore, we summarize the reconstruction results by domain in Fig. 4.6. For most of the
networks in every domain, we obtained accurate estimates of their descriptors, with the ex-
ception of ∅ and τ. Additionally, when comparing the SBM-reconstruction with a baseline,
Transportation networks are systematically the harder to reconstruct, i.e., improvements in the
error of reconstruction of all descriptors tend to be rare. Transportation networks are often em-
bedded in two-dimensional spaces, resulting in large diameters and slow-mixing random walks.
Some Technological networks have similar characteristics. Once again, this suggests that our
assumptions are wrong for some networks, especially when having 2D embeddedness. In these
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cases, our reconstruction would yield networks that violate spatial constraints, introducing links
between distant nodes, creating triangles, and reducing the diameter of the network.
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Figure 4.6: Reconstruction summaries by network domain. (Top) Fraction of reproduced net-
works (same criteria as before). (Middle) Average difference between error before reconstruc-
tion and after reconstruction. (Bottom) Fraction of networks whose error improved (same cri-
teria as before). Noise level p = 0.1.

Increasing the number of measurements from 1 to 3

In the previous sections, we assumed that every node pair was measured once, i.e., n = 1. Al-
though we showed that an accurate reconstruction was possible, we did not fully take advantage
of our framework, since the procedure might have mostly relied on the model of network struc-
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ture (SBM). If more repeated measurements n were available, there might have been sufficient
information about the network structure, and therefore, the reconstruction procedure could have
also relied on the error model. As a result, we would expect significant improvements in the
performance of the reconstruction procedure.
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Figure 4.7: Summaries of the reconstruction error for 1, 2, and 3 measurements and noise level
p = 0.1. (Top) Distribution of the reconstruction error. The red dashed line corresponds to
0.05, and the black continuous lines to the medians. (Middle) Average difference between the
error before reconstruction and after reconstruction. (Bottom) Percentage of networks whose
error improved (i.e., the error after reconstruction is smaller than before reconstruction), did
not change, or worsened but the descriptor was still reproduced (error is smaller than 0.05) for
each descriptor.

In this section, we attempt to obtain some insights on the effect of doing more measurements
n on the reconstruction performance. We conduct a new analysis reverting to the denoising

scenario described above. Here we set ni j = n, pi j = p, and qi j = pE/
((

N
2

)
−E

)
, such

that the expected number of edges remain the same. Then we simulate xi j from a binomial
distribution with parameters 1− p and n if Ai j = 1, or parameters q and n otherwise.

We conducted this analysis on a subset of 188 networks of the original corpus, which corre-
spond to those networks having at most 104 edges. We also considered the cases n ∈ {2,3}.

In Fig. 4.7, we show that the quality of reconstruction of our framework systematically in-
creases with a larger number of measurements n. The reconstruction error decreases in one
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order of magnitude compared with the single measurement case (top panel). Furthermore, as n

grows, the error after reconstruction is significantly smaller than before reconstruction.5 When
n = 3, almost all descriptors of the networks in our corpus are accurately estimated, with few
exceptions occurring for τ.

It should also be noted that, the improvements obtained by increasing n from 1 to 2 are larger
than from 2 to 3. This suggests that there might be a saturation after several increments of the
number of measurements. Since researchers might have resource constraints for doing mea-
surements (e.g., budget or time), it might be relevant to determine how many measurements
one should make at most in order to obtain the maximum benefit from the reconstruction pro-
cedure. This issue is left as a further direction of research.

4.3 Concluding Remarks

In this chapter, we carried out a systematic analysis of the reconstruction performance of the
SBM on a diverse corpus of empirical networks, spanning a broad range of sizes and domains.
Using a variety of network descriptors, we observed that the SBM can provide accurate esti-
mations of relevant features of empirical networks, even when we have only one measurement
n = 1. Furthermore, for most networks and descriptors, we obtain smaller errors by doing
reconstruction than by not doing so. The exceptions mainly include networks having large
diameter and slow-mixing random walks. Most of them are transportation networks, which
have a low-dimensional spatial embedding, where the “small-world” property is not fulfilled.
We have also illustrated that by acknowledging the existence of errors in networks along with
increasing the number of measurements, we can obtain significant improvements in our estima-
tions. In this regard, it would be interesting to determine how fast this improvement changes,
so that we obtain perfect or close to perfect reconstruction. This issue is left for future work.

It should also be noted that we can achieve such performance since our framework incorpo-
rates structured models (in this case, the SBM) that can recognize the structure in the data and
extrapolate from it. Another benefit of our framework is that we can scrutinize the assump-
tions and assess the effectiveness of generative models incorporated as a prior. This kind of
assessment is not possible under other non-statistical community detection methods which do
not make their assumptions explicit.

Additionally, the conclusions obtained in this study are limited by the setup of our evaluation.
First, we assumed uniform noise rates on node pairs. One possible direction for future work
might consider other models of noise, e.g., having larger error rates around hubs. This might
provide insights on how we can deal with systematic (or correlated) errors. Second, we focused

5For n > 1, the error before reconstruction is computed as the average error of an ensemble of graphs, such
that for each entry (i, j) we sample an edge with probability xi j/ni j.
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on two levels of noise. Thus, it would be interesting to consider larger levels of noise and study
the sensitivity and reconstructability of structural descriptors. Another possibility consists on
analyzing a larger set of descriptors that could reveal more relevant dimensions for the assess-
ment, e.g., those related with dynamics happening on top of networks. Finally, we used the
SBM as a prior, but our framework is flexible enough to incorporate other generative models.
We hope to motivate future studies in this direction. In particular, it would be interesting to
see if other models improve the estimation of some descriptors (e.g., diameter) and worsens
others.
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Chapter 5

Agreements and disagreements between
compression and prediction of the SBM in
empirical networks

In Chapter 3, we assessed the quality of fit of the SBM using posterior predictive checks. This
allowed us to improve our understanding of the ways in which the model fits or deviates from
data. Although this is an absolute assessment, one might be tempted to repurpose posterior
predictive checks for model selection. Specifically, given network data and a set of competing
models, we could compute discrepancy measures between summaries of fits and summaries of
data. Then we could consider the most appropriate model to be the one that minimizes such
discrepancies, i.e., the one that best reproduces the network summaries.

We argue that following such an approach might be misleading. If the goal is to get the model
that is able to better reproduce network properties, we could consider an SBM that places each
node in its own group. In this way, the adjacency matrix would be the same as the connectivity
matrix between groups, and the features of sampled networks (there is only one possibility if the
total number of edges is preserved) would be identical to the empirical one. Even though this
model would achieve a perfect fit to the observed data, we would not learn anything meaningful
about it, i.e., we would end up overfitting. Thus, to compare models and choose the most
appropriate one, we need approaches that deal with overfitting and underfitting. In other words,
to learn from the network data, we need models that are simple, but not too simple.

Two principled approaches to do model selection that address overfitting and underfitting are
compression and prediction. The first approach relies on the Minimum Description Length
(MDL) principle [24], described in Sec 2.3.5. It considers the best model as the one that most
compresses the data, according to the description length. This approach penalizes overly com-
plex models not supported by the data, thus preventing overfitting. In our initial example, when
each node is placed in its own group by the model, there is no compression at all, as the model
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merely encodes the network in a different form, using parameters (i.e., node memberships)
instead. Consequently, we learn nothing about the network data from such model. To gain
insights on the structure of the network, we need a simpler model that balances model fit and
model complexity.

In contrast, the predictive approach to model selection favors the model that yields the best
predictions. This approach can be framed in several ways, being link prediction one of the
most common ones. Roughly speaking, link prediction involves using a model to predict links
that have not been observed or have been removed. Returning to our initial example, when
a model places each node in its own group, the link prediction performance within-sample
is perfect, since the adjacency matrix, and consequently, summary descriptors are perfectly
captured. However, the model will fail massively in predicting yet-to-be-observed links (e.g.,
true links that were not initially measured), thus lacking the ability to generalize. Once again,
a simpler model (e.g., with fewer groups) is needed for achieving a better performance in the
prediction task. The model should not be too simple (like an Erdős-Rényi model), because it
would not be able to predict yet-to-be-observed links either.

Regardless of the approach we take to do model selection, we would like them to be consistent.
In other words, if the true model, i.e., the model that generated the data, is among the set
of competing models, we would expect that a given model selection approach favors the true
model. Unfortunately, such consistency cannot always be achieved in every scenario. For
instance, in the case of non-network data, Shao (1993) [181], and more recently Gronau and
Wagenmakers (2019) [182], reported that data prediction using leave-one-out cross validation
is not consistent, i.e., it does not favor the true model enough. However, Shao (1993) [181]
also showed that consistency can be achieved when using instead k-fold cross validation. In
the case of network data, Vallès-Català et al. (2018) [2] confirmed such inconsistency when
removing one link, which would be the analogous of leave-one-out cross validation, and also
when removing a fraction of links.

Although we may be willing to accept the limitations mentioned above, we may still expect that
both compression and predictive approaches agree on the preferred model, since both attempt
to deal with overfitting and underfitting. However, Vallès-Català et al. (2018) [2], using several
variants of SBMs and network data, also showed that there might be discrepancies between
model selection criteria, to the extent that, overly complex models give better predictions than
more compressive models.

In this chapter, we revisit and expand upon such work in a more systematic way, by incor-
porating recent advances in SBMs. First, when doing link prediction, we utilize the network
reconstruction framework from Peixoto (2018) [43], summarized in Chapter 4, as it allows us
to address the predictive task in a principled and nonparametric manner. Second, we incorpo-
rate a measure of uncertainty for the predictive criterion, specifically the area under the ROC
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curve (AUC), proposed by Hanley and McNeal (1982) [183]. Although the AUC is computed
on the data, and thus has a corresponding uncertainty, this fact is often overlooked in studies
evaluating the predictive performance of link prediction algorithms. Third, besides using the
description length as compression criterion, we compare models according to the model evi-

dence (see Eq. (2.15)). Although its computation is intractable, there have been attempts to
approximate model evidence by first characterizing the posterior distribution of network par-
titions. We consider the approach proposed by Peixoto (2021) [52]. Finally, we harness the
availability of more efficient MCMC algorithms to sample from the posterior distribution of
network partitions [53], as well as the availability of more network datasets [54].

In this work, we aim to understand the frequency and magnitude of discrepancies between
compression and predictive criteria for model selection, focusing on models of community de-
tection in networks. To this end, we consider a corpus containing 392 empirical and synthetic
networks, and fit two SBM variants (i.e., nested degree-corrected and nested non-degree cor-
rected) to them. Then we obtain compression indices (description length and evidence) and
predictive indices (AUCs obtained in a link prediction task, either by considering a point es-
timate of the node partition or the whole posterior distribution of node partitions). Based on
these criteria we select the best model, and determine whether the most compressive model is
the same as the most predictive one or not, when disagreements occur, and in which magnitude.

Our results show that, for synthetic networks, there is consistency between model selection
criteria; the most compressive model is also the most predictive one. For empirical networks,
consistency is prevalent, with few exceptions. Although agreements between model selec-
tion approaches are quite frequent, we observe that predictive criteria cannot always determine
which model is better, as there are many cases in which the AUCs of competing models are
statistically equivalent. On the contrary, both the description length and evidence consistently
indicate which model compresses the data more and provide a degree of confidence for ruling
out the alternative model. In this sense, the compression approach is more reliable for model
selection in the context of community detection.

In the rest of this chapter, we describe the versions of the SBM being compared and the model
selection criteria (Sec. 5.1), a motivating example where the predictive criteria yields mislead-
ing answers (Sec. 5.1.2), and the network corpus in which we fit the models along with the
results of our analysis for both synthetic and empirical networks (Sec. 5.2). Finally, we provide
some concluding remarks in Sec. 5.3.

5.1 Models and Model Selection Criteria

We focus on two versions of the SBMs, namely the hierarchical degree-correct SBM (HDC-
SBM) from Eq. (2.33), and the non-degree corrected version (H-SBM), being the first one the

66

C
E

U
eT

D
C

ol
le

ct
io

n



most complex model of the two.

As mentioned in Chapter 2, considering a model class (or variant) of the SBM with hierarchical
partitions, denoted by H , our inference framework consists on inferring the following posterior
distribution:

P({bbbl},H |AAA) = P(AAA|{bbbl},H )P({bbbl},H )

P(AAA)
, (5.1)

where P(AAA) = ∑
{bbbl}

P(AAA|{bbbl})P({bbbl}) is the model evidence.1

Under this approach it is possible to compare models and select the best among them. Here we
consider two principled approaches to model selection, namely compression and prediction.
Both of them attempt to deal with overfitting, although their goals are not the same. Under
the first approach, the best model is the one that most compresses the data. Under the second
approach, the best model is the one that yields better predictions. Besides this distinction, it
is important to notice that SBMs are approximations to generative mechanisms of real-world
networks. A single partition may not be a good fit for such networks, and therefore, it becomes
important to consider less likely alternative partitions in order to fully capture the posterior
uncertainty. In this regard, we consider two versions of each criterion: one that uses a single
partition, which we call point estimate, and one that averages over partitions sampled from the
posterior. We describe them in the rest of this section.

5.1.1 Compression Criterion

We present two ways in which we can do model selection using information theory, namely
comparing single partitions or entire model classes. In our case, the comparison between two
single partitions from the H-SBM and HDC-SBM is made via the ratio of posterior probabilities

Λ1 =
P({bbbl},HH-SBM|AAA)

P({bbbl}′,HHDC-SBM|AAA)

=
P(AAA,{bbbl}|HH-SBM)

P(AAA,{bbbl}′|HHDC-SBM)
× P(HH-SBM)

P(HHDC-SBM)
.

(5.2)

If we are a priori agnostic about how likely both model classes are, i.e., P(HH-SBM)=P(HHDC-SBM)=

1/2, then

1If we use a class of SBMs that does not consider a hierarchy of partitions, then {bbbl} should be replaced by bbb.
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Λ1 =
P(AAA,{bbbl}|HH-SBM)

P(AAA,{bbbl}′|HHDC-SBM)
. (5.3)

We can use this criterion to choose the most plausible model given the data. More specifically,
if Λ1 < 1, then the evidence in the data favors the particular hierarchical partition {bbbl}′ together
with the degree-corrected model variant. Contrarily, if Λ1 > 1, then the alternative model along
with its corresponding partition are favored. The value of 1 should not be taken as a hard
threshold to immediately decide in favor of one model or another. Instead, we need to also
consider the magnitude of Λ1, which can be interpreted as the number of times one model is
more likely than the alternative one, as an explanation for the data. In turn, this provides us the
degree of confidence in taking such decision.

Importantly, the reader might have noticed that the numerator (and denominator) already ap-
peared in Eq. (2.35), when referring to the description length Σ. In fact, the ratio of posterior
probabilities can be written as

Λ1 = e−∆Σ, (5.4)

where ∆Σ = ΣH-SBM −ΣHDC-SBM is the difference in description length (in nats) considering
one fitted partition per model class.

In this regard, choosing the most plausible model according to Λ1 is equivalent to choosing the
model that compresses the data the most, according to the MDL criterion. In this work, we
consider the description length as the point estimate version of the compression criterion. It is
important to note that using ∆Σ to do model selection within the same model class will favor
the most compressive partition of such model class. Therefore, performing model selection
among different model classes based on ∆Σ involves comparing the description lengths of the
most compressive partitions {bbbl} and {bbbl}′ for each model class.

Alternatively, we might want to compare entire model classes, i.e., we do not want to rely
on a specific fit, but rather consider all possible fits. This approach becomes relevant when the
posterior distribution is multimodal, i.e., when it contains several partitions having quite similar
posterior probabilities. It is possible to compute summaries for a model class by averaging over
all its possible partitions, weighting them by their posterior probability. As in the previous case,
another ratio of posterior probabilities can be defined, i.e.,

Λ2 =
P(HH-SBM|AAA)

P(HHDC-SBM|AAA) =
P(AAA|HH-SBM)

P(AAA|HHDC-SBM)
× P(HH-SBM)

P(HHDC-SBM)
, (5.5)

where
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P(AAA|H ) = ∑
{bbbl}

P(AAA|{bbbl},H )P({bbbl})

= ∑
{bbbl}

P(AAA,{bbbl}|H ) (5.6)

is the model evidence, which appeared as the normalization constant of Eq. (5.1). If we have no
prior preference for a model class, i.e., P(HHDC-SBM) = P(HHDC-SBM), then Λ2 becomes the
so-called Bayes factor [184]. It has a similar interpretation to Λ1, but the statement about the
model considers all its possible partitions. This ratio of posterior probabilities can be rewritten
as

Λ2 = e−∆L, (5.7)

where ∆L = LH-SBM − LHDC-SBM, with LH = − lnP(AAA|H ), is the difference in negative log-
evidence.

In this work, we consider ∆L, instead of Λ2, as the compression criterion that uses averages
from the posterior distribution. We do so because ∆L has the advantage of having an informa-
tion theoretical interpretation. In fact, it is possible to obtain a lower bound for the evidence
from the most likely partition, i.e.,

P(AAA) = ∑
{bbbl}

P(AAA,{bbbl})≥ max
{bbbl}

P(AAA,{bbbl}), (5.8)

where we dropped the dependence on H to simplify the expressions. Since, maximizing the
posterior is equivalent to minimizing the description length, the previous relation can be rewrit-
ten as

L =− lnP(AAA)≤ min
{bbbl}

Σ(AAA,{bbbl})

= min
{bbbl}

− lnP(AAA,{bbbl})

= min
{bbbl}

(− lnP(AAA|{bbbl})− lnP({bbbl})). (5.9)

This means that, if we consider all possible partitions in the posterior distribution, instead of
a single one, we can achieve a more efficient compression of the network data. It can be also
noted that, the description length can be interpreted as the amount of information necessary
to encode the network data in “two-parts”, i.e., by first encoding a partition {bbbl} and then the
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network AAA conditioned on such partition. Analogously, L can be also interpreted as a description
length, but considering a “one-part” encoding, since it does not need a specific partition to
encode the network. Although it seems appealing to use the evidence for achieving better
compressions and carry out model selection, its exact computation is intractable. The reason is
that, for most cases of interest, such computation involves summing over a prohibitively large
number of partitions. Unfortunately, the evidence cannot be estimated by sampling from the
posterior with MCMC algorithms either. This issue can be shown by writing the logarithm of
the evidence as the contribution of two terms, i.e.,

lnP(AAA) = ∑
{bbbl}

π({bbbl}) lnP(AAA,{bbbl})− ∑
{bbbl}

π({bbbl}) lnπ({bbbl}) (5.10)

= ⟨lnP(AAA,{bbbl})⟩+H(b), (5.11)

where

π({bbbl}) =
P(AAA,{bbbl})

P(AAA)
(5.12)

is the posterior distribution of Eq. (5.1). The first term is the mean joint log-probability com-
puted over the posterior distribution,

⟨lnP(AAA,{bbbl})⟩= ∑
{bbbl}

π({bbbl}) lnP(AAA,{bbbl}), (5.13)

and it can be estimated with MCMC methods by averaging lnP(AAA,{bbbl}) for sufficiently many
samples. The second term is the entropy of the posterior distribution,

H({bbbl}) =− ∑
{bbbl}

π({bbbl}) lnπ({bbbl}), (5.14)

which measures how concentrated is the posterior. Thus, if the posterior is concentrated in
one partition, then the entropy would be close to zero, and therefore, Λ1 ≈ Λ2, or equivalently,
Σ ≈ L. If this occurs for two model classes being compared, then the decision on which one is
better will not change between the two versions of the compression criterion. However, if there
are multiple partitions having similar probability in the posteriors, the decision of Λ2 might
lean towards the most entropic model class, even if their posterior probabilities are on average
the same [57].

Importantly, the computation of H({bbbl}) involves the computation of the log-posterior lnπ({bbbl})
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for every possible partition. In turn, this requires the value of P(AAA) which is the quantity that
we want to estimate. To overcome this problem, Peixoto (2021) [52] proposed an approach
to estimate π({bbbl}). It consists on fitting a mixed random label model to sampled partitions
from the posterior distribution, which in turn, provides an approximation to the whole posterior
distribution. With this tool in hand, we can compute the necessary terms to estimate the value
of the evidence. In this work, we follow such approach, and describe it in App. C.1.

5.1.2 Predictive Criterion

Another approach to model selection relies on comparing the predictive power of the model
candidates. One way in which this can be done is by carrying out link prediction in networks,
i.e., identifying which edges have been deleted and which non-edges have been introduced as
spurious edges. In this work, we focus in the case of edge denoising, where a fraction of edges
have been deleted from the original network, so the corresponding entries of the adjacency
matrix are assumed as observed but registered with zeros (i.e. as non-edges).

Thus, the predictive task consists on reconstructing the original network from a noisy network.
This reconstruction is done by means of the inference framework of Ref. [43], which was also
summarized in Sec. 4.1. More specifically, let AAA be the original network and assume that it
was generated by a class of the SBM, denoted by H . Let DDD be the observed data, which
was obtained by removing edges from AAA with an error rate p ∈ (0,1). The network AAA can be
reconstructed according to the posterior of Eq. (4.1), and the posterior probability of an entry
(i, j), conditioned on a partition {bbbl}, is given by

π(1)
i j = ∑

AAA
Ai jP(AAA|{bbbl},H ,DDD)P({bbbl}|H ,DDD). (5.15)

Here, we consider the partition of DDD that minimizes the description length for estimating π(1)
i j ,

i.e.,

{bbb∗l }= argmax
{bbbl}

P({bbbl}|H ,DDD). (5.16)

Under a binary classification task [185], these probabilities can be interpreted as ratings or
scores, and used to compute indices that provide information about the predictive performance
of the model. Here, we are interested in assessing the capacity of the model in distinguishing
between missing edges and true non-edges. For this purpose, we compute π(1)

i j for each of them,
and subsequently, compute a widely used index to measure the performance of a classifier,
namely, the area under the ROC curve (AUC).

The ROC curve depicts the true positive rate (in this case, the percentage of missing edges
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classified as edges) as a function of the false positive rate (in this case, the percentage of true
non-edges classified as edges), which result from varying a threshold that discriminates be-
tween positive and negative instances. In this sense, better classifiers would have ROC curves
being closer to the upper left corner, and consequently, the areas resulting from integrating
such curves over all possible discrimination thresholds, i.e. the AUC, would be close to one.
Importantly, the AUC can be also interpreted as the probability of correctly ranking a pair
(missing-edge, true non-edge), i.e., the score of the missing-edge would be larger than the
score of the true non-edge. In this regard, we expect that the AUC is 1/2 when the model is
equally predictive as a random guess, while its value is 1 when the model provides a “perfect”
ranking.

Since the estimates of the set of π(1)
i j , and consequently of the AUC, were obtained with a

single partition, we call them point estimates. Similarly, we can also obtain an estimate of the
posterior probability of a node pair (i, j) by averaging from the posterior distribution, i.e.,

π(2)
i j = ∑

AAA,{bbbl}
Ai jP(AAA|{bbbl},H ,DDD)P({bbbl}|H ,DDD). (5.17)

Thus, we get an estimate of the AUC that uses from posterior averages, by considering the
set of π(2)

i j as scores. Regardless of which scoring rule is used, this process has to be repeated
several times, in order to account for the possibility of having noisy networks with different
structures. Then we summarize the resulting AUCs by computing their average and a measure
of variability or uncertainty. Finally, when comparing two models, the best model would be the
one that yields higher AUC in statistical terms.

Spurious AUCs from fluctuations

Both compression and predictive approaches to model selection incorporate regularization (via
MDL Principle and cross-validation, respectively) and prevent overfitting. Thus, if we apply
these criteria to randomly generated networks, we would expect that the true model is preferred
over an overly complex model . However, we will demonstrate that it is possible to obtain
better predictions (in terms of the AUC) by overfitting randomly generated networks when they
are small.

In Sec. 2.2, we described the Erdős-Rényi model [97], which given fixed numbers of nodes N

and edges E, generates networks by placing E distinct pairs of nodes uniformly at random from
all possible pairs. Thus, this model can be also considered a special case of SBMs, in which all
the nodes are placed in one group and there is no degree-correction. Since we use hierarchical
priors, here we call this model class H-SBM.

We sampled hundreds of networks from the Erdős-Rényi model [97], varying the number of
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nodes N ∈ {10,20,50,100,500,100} and average degree ⟨k⟩ ∈ {4,10,20}. Furthermore, we
considered 6 model candidates, which result from combining two classes of SBMs (H-SBM and
its degree-correct variant HDC-SBM) and 3 possibilities for the number of groups B, namely B

is not fixed a priori but inferred by minimizing the description length, or B is fixed to either 4
or 10 groups. We note that, the true model is among the set of competing models, which is the
H-SBM with inference via MDL. For conciseness, we will present only the results for sampled
networks having an average degree ⟨k⟩= 4, and include the other cases in App. C.2.

Since edges are placed uniformly at random in the network generation process, no model can-
didate should be able to predict missing edges better than random chance, resulting in an AUC
of 0.5 for all candidates. Contrarily, Fig. 5.1 shows that for many cases, we can obtain bet-
ter predictions by fitting more complex models to the data. Remarkably, there is not just one,
but many ways in which we can achieve better predictions by overfitting, such as using the
true model class (H-SBM) with more groups than necessary or using a more complex model
class (HDC-SBM). Additionally, it is also possible to obtain better AUCs than those of the true
model by using non-probabilistic methods, such as the the Jaccard similarity index [186] or the
inverse log weighted similarity index [187], as shown in Fig. C.4.

We note that this inconsistency is more prevalent in smaller networks, where overfitting mod-
els yield better predictions in about 40% of sampled networks (see Figs. C.3 and C.5). This
suggests that complex models might be able to exploit random fluctuations from edge removals
in non-structured networks, particularly when these networks are small, making the AUC a po-
tentially misleading model selection criterion. Only when averaging over the whole ensemble
of networks we achieve consistency, i.e., no model outperforms the simplest one and neither
they are better than random guessing. This rises concerns about the reliability of the AUC as
a model selection criterion, especially because in real-world scenarios, we typically deal with
one network rather than an ensemble.

Importantly, although this inconsistency is more prevalent in smaller networks, for larger net-
works we still observe small but statistically significant differences in AUC (see Fig. 5.1(c)).
This prompts us to consider what constitutes a meaningful magnitude of such differences and
how to properly quantify the uncertainty in the AUC to ensure predictive differences between
models are not spurious. Here, we quantified the uncertainty in the AUC by the standard er-
ror of the mean, as is typically done in many studies comparing the predictive performance of
link prediction algorithms.While this approach somewhat accounts for fluctuations in the AUC
caused by random sampling of missing edges, it overlooks the fact that for each set of miss-
ing edges, the AUC is computed on the data, and therefore, also has an inherent uncertainty.
Thus, by comparing models using the AUC without considering this aspect, we risk making
erroneous conclusions due to spurious differences in AUC produced by random fluctuations,
especially when networks are small.2 This issue led us to consider a more suitable approach

2A related issue that might also interest the reader involves determining whether the values of the AUC obtained
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Figure 5.1: (a) AUC (point estimate) yielded by candidate models for several instances of
the Erdős-Rényi model having average degree ⟨k⟩ = 4, under an edge denoising task (at least
50 edge removal experiments removing 10% of edges on average were conducted). The point
color indicates the model, which is a combination of the model variant (either H-SBM or HDC-
SBM) and the number of groups. Each point corresponds to an instance of the Erdős-Rényi
model, having N nodes and average degree ⟨k⟩. For N ∈ {10,20} and ⟨k⟩ = 4, there are 1000
samples. For N = {50,100} and ⟨k⟩ = 4, there are 500 samples. (b) Difference between the
AUC (point estimate) yielded by simplest model AUCH−SBM and the AUC yielded by more
complex alternative models AUCalt . The point color indicates the alternative model. (c) Ratio
between the difference in AUC (in panel (b)) and the corresponding standard deviation of the
mean AUC difference.

to quantify the uncertainty in AUC and avoid misleading conclusions from spurious predictive
differences. We describe it in the following.

by generating random rankings (or scores) or reshuffling the original ones will be compatible with the AUC
computed initially. Exploring these possibilities is beyond the scope of this work.
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Uncertainty in the AUC

In this work, we quantify the uncertainty in the AUC for each realization following the approach
of Hanley and McNeal (1982) [183], which is described in the following. Consider the scores
of true positives X and true negatives Y as normally distributed according to

X ∼ N (µ+,σ2
+) and Y ∼ N (µ−,σ2

−). (5.18)

For a particular cutoff value of a criterion variable, c, the true positive rate is given by

TPR(c) = P(X > c) = 1−Φ
(

c−µ+
σ+

)
= Φ

(
µ+− c

σ+

)
, (5.19)

where Φ(z) is the cumulative distribution function of the standard normal distribution. Simi-
larly, the false positive rate is given by

FPR(c) = P(Y > c) = 1−Φ
(

c−µ−
σ−

)
= Φ

(
µ−− c

σ−

)
. (5.20)

The ROC curve is defined by tracing out the functions

[TPR(c),FPR(c)] =
[

Φ
(

µ+− c
σ+

)
,Φ
(

µ−− c
σ−

)]
. (5.21)

Then the area under the ROC curve (AUC) is defined as

AUC =
∫ ∞

−∞
TPR(c)FPR′(c)dc (5.22)

=
∫ ∞

−∞
Φ
(

µ+− c
σ+

)
Φ
(

µ−− c
σ−

)(
− 1

σ−

)
dc. (5.23)

Using this formulation, Hanley and McNeal (1982) [183] exploit the connection between the
AUC and the Wilcoxon statistic [188] to derive a standard error of the AUC that depends on
its estimated value and the imbalance between true positives and true negatives. Specifically,
given an estimate ÂUC of the AUC, its standard error is given by

sAUC =

√
ÂUC(1− ÂUC)+(ne −1)(Q1 − ÂUC

2
)+(nne −1)(Q2 − ÂUC

2
)

ne ×nne
, (5.24)

where ne is the number of true positives (in our case, removed true edges) and nne is the number
of true negatives (true non-edges), and

75

C
E

U
eT

D
C

ol
le

ct
io

n



Q1 =
ÂUC

2− ÂUC
and Q2 =

2ÂUC
2

1+ ÂUC
. (5.25)

Additionally, if we consider a simple graph having N nodes and average degree ⟨k⟩, removing
a proportion f of edges results in

ne =
f N⟨k⟩

2
(5.26)

missing edges, and

nne =

(
N
2

)
− N⟨k⟩

2
=

N(N −1−⟨k⟩)
2

(5.27)

true non-edges. Then Eq. (5.24) becomes

sAUC =

√√√√√ÂUC(1− ÂUC)+
(

f N⟨k⟩
2 −1

)
(Q1 − ÂUC

2
)+
(

N(N−1−⟨k⟩)
2 −1

)
(Q2 − ÂUC

2
)

f N2⟨k⟩(N−1−⟨k⟩)
4

,

(5.28)

with Q1 and Q2 defined as before. If N → ∞, and the network is sparse, then sAUC scales as
1/
√

N. In Fig. 5.2(a,b), we illustrate how the standard error of the AUC varies with the number
of nodes N. We note that, for the same number of nodes N, average degree ⟨k⟩, and fraction
of removed edges f , there can be a significant difference in the magnitude of the standard er-
rors as the AUC changes (here, from 0.7 to 0.9), particularly in smaller networks. Finally, in
Fig. 5.2(c) we show how the standard deviation changes with different AUC estimates, for vari-
ous number of nodes, while keeping ⟨k⟩= 5 and f = 0.2. Importantly, the observed magnitudes
of sAUC may have practical implications for interpreting the results from studies comparing the
predictive performance of multiple algorithms. For example, for N = 1000 and AUC = 0.9, the
value of sAUC is around 0.01. In several studies, comparisons often rely on AUC differences
even smaller than such sAUC value (e.g., see Ref. [189–191]).

The final standard error, which involves several sets of edge removals, is obtained via error
propagation. Specifically, if we have performed k sets of edge removals, and for each set
i ∈ {1, ...k} we compute the AUC and its uncertainty from Eq. (5.24) (ÂUCi,sAUCi), then the
final estimates for the average and standard error of the AUC are given by

AUC =
1
k

k

∑
i=1

ÂUCi, (5.29)

and
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Figure 5.2: (a) Standard error of the AUC (see Eq. (5.28)) as a function of the number of nodes
in the network N. The average degree ⟨k⟩ is 5. The line color indicates the percentage of
removed edges f , and the line type indicates different values of AUC. (b) Similar to panel (a)
with y-axis in logarithmic scale. The scaling N−1/2 is shown in black. (c) Standard error of the
AUC as a function of the AUC. The average degree ⟨k⟩ is 5, and the fraction of removed edges
f is 0.1. The line color indicates different number of nodes.

sAUC =

√
∑k

i=1(sAUCi)
2

k
. (5.30)

As shown in Fig 5.3, quantifying the uncertainty in the AUC in this way, mostly eliminates the
inconsistencies. Thus, we will use this approach in the remaining of this chapter.

Before concluding, the reader may wonder whether the description length shows any inconsis-
tency when used for model selection on random networks. Regarding our example of the Erdős-
Rényi model [97], the theory states that fitting samples from this model using the Bayesian
SBM framework described in Chapter 2.3.5 should correctly identify the true partition, where
all nodes are placed in a single group. Within this framework, inferring a partition of the net-
work is equivalent to compressing it, and overfitting can be avoided due to Shannon’s source
coding theorem [121]. As mentioned, this theorem states that the best compression can be
achieved asymptotically only with the true model, which in this case is a SBM with one group.

Previous studies [11, 22] have empirically demonstrated this, and our results align with these
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Figure 5.3: Ratio between the difference in AUC (Fig. 5.1(b)) and the corresponding standard
deviation of Eq. 5.28, for several instances of the Erdős-Rényi model having average degree
⟨k⟩= 4. The point color indicates the alternative model.

findings. Specifically, Fig. 5.4 shows that according to description length, the true model —
being the simplest— consistently achieves the smallest compression. This demonstrates that
the compression approach to model selection is also consistent in practice, even for small net-
works. Notably, even when considering only a more complex model class (HDC-SBM), the
compression approach would still favor a single-group partition. This agrees with the true
model, but requires more information to describe the additional parameters. This underscores
the usefulness of the Minimum Description Length (MDL) principle in providing meaningful
partitions, even when the true model generating the data is unknown.
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Figure 5.4: Difference between the description length of the simplest model ΣH−SBM and the
description length of more complex alternative models Σalt , for several instances of the Erdős-
Rényi model. The point color indicates the alternative model, which is a combination of the
model variant (either H-SBM or HDC-SBM) and the number of groups. Each point corresponds
to an instance of the Erdős-Rényi model, having N nodes and average degree ⟨k⟩. For N ∈
{10,20} and ⟨k⟩ = 4, there are 1000 samples. For N = {50,100} and ⟨k⟩ = 4, there are 500
samples. For the remaining values of N and ⟨k⟩, there are 200 samples.

Finally, the reader might argue that samples from the Erdős-Rényi model are not representa-
tive examples of real-world networks, so these results should not be overemphasized. In the
following sections, we will study more realistic scenarios, including empirical networks. As
we will see, when dealing with more structured networks and incorporating Eq. (5.24) into the
analysis, consistency can be expected, albeit with several nuances.
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5.2 (Dis)agreements between Compression and Prediction

We carry out our analysis in a corpus of 196 real-world networks spanning various domains and
several orders of size magnitude, as shown in Fig. 5.5. As before, when gathering the networks,
we attempted to have networks as structurally diverse as possible. Additionally, every empirical
network in the corpus is a simple graph, i.e., we considered symmetrized versions of directed
networks removing parallel edges and self-loops. These networks can be downloaded from the
Netzschleuder repository [54].
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Figure 5.5: Number of nodes and edges of the networks in the corpus, and its domain compo-
sition.

Furthermore, we also considered a corpus of synthetic networks in our analysis. For each
empirical network, a corresponding synthetic network was sampled from the SBM fit that min-
imized the description length (either HDC-SBM or H-SBM). For convenience, we first focus on
model selection criteria based on point estimates, and then discuss the results using estimates
obtained by averaging from the posterior distribution of network partitions.

5.2.1 Model Selection according to Point Estimates

Evaluation in Synthetic Networks

Although synthetic networks may not be exact representatives of empirical networks, studying
them is valuable for two reasons. First, samples from SBM fits may contain relevant features
of its empirical counterparts, as we have seen in Chapters 3 and 4. Second, in this scenario,
we know the true model generating the network (i.e., an SBM variant), allowing us to exactly
determine whether a model selection criteria favors the true model, and thus the correct one.
This also provides a baseline for what to expect when the SBM is only an approximation of the
true network generating mechanism, as is the case with empirical networks.

In Fig. 5.6(a), we show the percentage of networks for which description length and AUC (point
estimate) agree or disagree. For almost all synthetic networks in the corpus, both criteria agree.
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However, the standard error of the difference in AUC is typically large, resulting in roughly
40% of networks where the AUC cannot definitely rule out either the true or the alternative
model. Thus, we cannot interpret these cases as disagreements, but neither can we consider
them complete agreements. It is important to note that the magnitude of these standard errors
cannot be reduced by increasing the number of edge removal sets. Each set has its own con-
fidence interval, which depends on the corresponding AUC value and the imbalance between
missing edges and actual non-edges.

In Fig. 5.6(c) we show the average difference in AUC (point estimate) as a function of the
difference in description length. This plot shows that the description length consistently favors
the true model, while the decisions given by the AUC are not always accurate. Besides the
inconclusive cases mentioned above, there are two discrepancies for which the differences in
the predictive criterion are at most 0.01. Importantly, the shape of the marginal distributions for
difference in criteria differs significantly. The description length shows a bimodal distribution,
where values do not concentrate around zero, whereas for the AUC, small differences are more
frequent. Indeed, for around 40% of networks, this criterion cannot provide a decision, i.e.,
both the true and the alternative models are equally predictive, and neither can be discarded.
This suggests that the AUC may not be sensitive enough to distinguish between competing
variants of the SBM.

To compare both criteria across the whole corpus of synthetic networks, we use precision and
recall indices. Specifically, we use a zero difference in criterion values as the threshold to prefer
one model over another, then compute precision and recall indices relative to the true model.
As shown in Fig. 5.6(b), the description length outperforms the AUC (point estimate) according
to these indices. However, a zero value difference might be too stringent for model selection,
as it does not account for the magnitude of the difference, i.e., the confidence in rejecting a
model. To address this, we consider a simple classification task of synthetic networks. In this
task, the target labels are the model variants that generated the networks, while the features are
differences in description length or AUC. The ability of these criteria to distinguish between
two competing models is measured by the AUC resulting from these classifiers (hence, an AUC
of the AUC (point estimate)). This measure shows that both criteria are statistically equally
capable of distinguishing between the true model and an alternative one.

These results suggest that both criteria are broadly consistent, although the description length
is more sensitive than the AUC (point estimate) in selecting the true model. Before we proceed
with empirical networks, we note that these results differ from those obtained for instances
of the Erdős-Rényi model. The synthetic networks in our corpus are more structured than
Erdős-Rényi instances, indicating as networks become more structured, there is less room for
fluctuations that lead to overfitting. Additionally, we incorporated the standard error of the
AUC from Eq. (5.24), which addresses the limitations of empirical studies that lack of a proper
quantification of the uncertainty in AUC, reducing the risk of incorrectly discarding a model in
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Figure 5.6: (a) Percentage of synthetic networks for which description length (Σ) and AUC
(point estimate) (AUC∗) agree, weakly disagree, or strongly disagree. We distinguish between
the two latter categories to help interpretation and visualization. For a given network, there is a
strong disagreement between model selection criteria when besides favoring different models,
the difference in compression criteria is larger than 10 and the difference in predictive criteria is
larger than 0.02. There is a weak disagreement when only one of the conditions is fulfilled. (b)
Treating model selection as a classification task, we computed precision, recall, and AUC for
both model selection criteria. Error bars are obtained by bootstrapping. (c) Average difference
in AUC (best partition) vs difference in description length. Each point corresponds to a syn-
thetic network. The error bar of points corresponds to the standard error of AUC of Eq. (5.24).
The point color indicates the SBM variant from which the network was sampled. The point
edge color highlights disagreements according to panel (a). Point sizes are proportional to the
number of nodes N. We also include marginal histograms and the medians of positive and
negative values in black lines.

the absence of statistically significant predictive differences.

Evaluation in Empirical Networks

Unlike the previous scenario with synthetic networks, we do not know the true generating
mechanism of empirical networks. Since SBMs only provide an approximation, we can expect
more disagreements between compression and predictive criteria. Furthermore, the reasons for
discrepancies in empirical networks might also differ from those in synthetic cases.

We confirm such expectation in Fig. 5.7, which is an analog to Fig. 5.6 for empirical networks.
Panel (a) shows that, overall, the description length and AUC (point estimate) agree. However,
in at least 50% of these cases, the AUC cannot distinguish between competing models. It
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becomes more challenging for the AUC to select a model when networks are empirical rather
than synthetic. In panel (b), we note that the shape of marginal histograms differ between
criteria. In particular, the bimodality persists for differences in description length, allowing
for more confident decisions using this criterion. Differently, the AUC tends to favor the more
complex model (HDC-SBM), regardless of the network domain (see Fig. C.8(b)). Despite the
difference in shapes, it is noteworthy that, values around zero are more likely for both criteria
than in the case of synthetic networks. This suggests that even for the description length,
distinguishing among SBM variants might be harder with empirical network data. Additionally,
we find some disagreements, although the magnitude of these discrepancies is usually not large.
The exception corresponds to a small friendship network among 29 seventh grade students in
Victoria, Australia [192].
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Figure 5.7: (a) Percentage of empirical networks for which description length (Σ) and AUC
(point estimate) (AUC∗) agree, weakly disagree, or strongly disagree. We distinguish between
the two latter categories to help interpretation and visualization. For a given network, there is a
strong disagreement between model selection criteria when besides favoring different models,
the difference in compression criteria is larger than 10 and the difference in predictive criteria
is larger than 0.02. There is a weak disagreement when only one of the conditions is fulfilled.
(b) Average difference in AUC (best partition) vs difference in description length. Each point
corresponds to an empirical network. The error bar of points corresponds to the standard error
of AUC of Eq. (5.24). The point color indicates the domain to which a network belongs to
(as in Fig. 4.2). The point edge color highlights disagreements according to panel (a). Point
sizes are proportional to the number of nodes N. We also include marginal histograms and the
medians of positive and negative values in black lines.

Furthermore, the results for network domains, shown in Fig. 5.7(a), prompt a reevaluation of the
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conclusions from previous chapters. Specifically, we observed that the HDC-SBM could not
accurately capture structural features of Transportation networks (e.g., see Figs. 3.6 and 4.6).
Interestingly, this is one of the domains with more agreement between description length and
AUC, with the HDC-SBM being the most favored variant by both criteria across the corpus.
This might occur because the degree distributions of transportation networks (especially urban
street networks) are highly homogeneous, even more so than a Poisson distribution, making it
difficult for the non degree-corrected SBM to account for them. This underscores the idea that
a model can be the best model among a set of alternatives but still perform poorly in capturing
certain aspects of network structure.

On the contrary, we noted in previous chapters that the HDC-SBM tends to perform well in cap-
turing properties of social networks. However, this is one of the domains with fewer agreements
between criteria. The non degree-corrected SBM is mostly preferred by the MDL approach,
while the more complex version is preferred by the AUC (see Figs. C.8(a-b)). This highlights
the potential unsuitability of using posterior predictive checks as a model selection criterion,
as more parsimonious models might capture network properties as well as their more complex
counterparts, while also offering a simpler explanation for the data.

5.2.2 Model Selection according to posterior averages

From point estimates to the posterior distribution

In the previous section, we relied on a single network partition for model selection. However,
a single partition only provides a partial view of the data and models. More specifically, if
the posterior distribution of network partitions is concentrated around a single partition, then
considering alternative partitions, computing the corresponding versions of compression and
prediction indices, and carrying out model selection, would yield similar results to what we
have already seen. Nonetheless, it is possible for the posterior to contain few closely plausible
partitions, representing the modes of the distribution, which offer different explanations for the
data. Another possibility is a significantly broad posterior distribution with no single dominat-
ing partition, which might be a sign of model misspecification. In any of the latter cases, we
have no guarantee that the same agreements or disagreements observed with point estimates
versions of model selection criteria will hold.

To gain insight into the broadness of the posterior distributions of the models discussed in
this chapter, we computed their number of modes using the approach described in App. C.1.
Fig. 5.8(b) shows the distribution of the effective number of modes3 for both SBM variants
across synthetic and empirical networks. We observe that the posterior distribution of net-

3The effective number of groups Be of a network partition is defined as: eH , with H =−∑
r

nr

N
ln

nr

N
, where nr

is the number of nodes in group r and N is the number of nodes in the network. The effective number of modes is
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Figure 5.8: Distribution of the number of modes M (a) and effective number of modes Me
(b) of the posterior distributions obtained by fitting SBM variants to synthetic and empirical
networks. Vertical dashed lines indicate the corresponding medians.

work partitions is generally broader for empirical networks compared with synthetic ones, with
median effective number of modes 7.2 and 1.5, respectively. This finding agrees with the ex-
pectation that the SBM better fits its samples than other types of networks. Another indication
of the multimodality or broadness of the posterior distributions comes from analyzing the AUC.
Fig. C.12 shows that averaging tends to improve the AUC, especially for the simplest model
variant (H-SBM) and empirical networks. This suggests that a single partition might be an
inaccurate description of the data, and other alternative explanations need to be incorporated to
achieve better predictions.

Overall, we may expect that the patterns observed on synthetic networks, i.e., agreement be-
tween compression and predictive criteria, hold. Therefore, a single-point estimate approach
could be enough to carry out model comparison on this type of networks. However, it is not
clear what we should expect for empirical networks, since they can be seen as a combination
of structure and noise, and for which the SBM is an approximation. In this section, we address
this issue by considering the model evidence as compression criteria and the AUC that results
from sampling partitions from the posterior distribution as predictive criteria.

defined analogously, with H =−∑
k

ωk lnωk, where ωk is the proportion of partitions that belong to mode k.
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Evidence and AUC (from posterior averages)

Compression and prediction fully agree in synthetic networks, as shown in Fig. 5.9(a). In
Fig. 5.9(c), there are three cases where the evidence appears to favor the wrong model. How-
ever, because the differences are small, and we have few confidence in discarding the true
model, these cannot be considered as mistakes of the criterion.4 Furthermore, for each model
selection approach, its point estimate version is consistent with its posterior averaging version
(see Figs. C.10 and C.11). This result suggests that SBMs are reliable models, to the extent
that there is consistency in the model selection approaches when networks are sampled from
the SBM.
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Figure 5.9: Panels (a), (b), and (c) have the same explanation as in Fig. 5.6, but in this case,
we consider the difference in -log-evidence (∆L), as compression criterion, and the difference
in AUC (from posterior averages) (∆AUC), as predictive criterion.

For empirical networks, Fig. 5.10(a) shows that there are mostly agreements between criteria,
with a few exceptions. In particular, Fig. 5.10(b) shows that there are three networks with
significant disagreements: two networks of social interactions among university students within
the Copenhagen Networks Study (copenhagen/calls, copenhagen/sms) [193]), and a network
of international “E-roads” (euroroad) [194]. Since both versions of the AUC are consistent
(see Fig. C.11(b)), these discrepancies can be attributed solely to disagreements between their
description length and model evidence, as shown in Fig. C.10(b).

These discrepancies between different versions of the compression criterion may not be a
4These networks have 96, 112, and 433 nodes, respectively. The effective number of groups (see footnote 3)

in the true model of these networks is 1.96, 1, and 2.11, respectively.
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Figure 5.10: Panels (a) and (b) have the same explanation as in Fig. 5.7, but in this case, we
consider the difference in -log-evidence (∆L), as compression criterion, and the difference in
AUC (from posterior averages) (∆AUC), as predictive criterion.

methodological issue, but rather a sign of model misspecification. For example, consider the
social network copenhagen/calls [193], which has 536 nodes and an average degree of 2.32.
Fig. 5.11 shows summaries of the corresponding posterior distributions of network partitions.
Initially, we observe that the posterior distributions of both SBM variants are broad, containing
at least 100 modes (panel (a)). In other words, for each model variant, there is no single mode
that dominates the corresponding posterior. Furthermore, the partition with minimum descrip-
tion length is not among the more representative modes (panel (d)). Even though the difference
in the number of groups between the mode partitions and the partition having minimum de-
scription length is small (panel (b)), the difference in description length is significant.

Additionally, Fig. 5.12 allows for a closer inspection to the network partitions of copenhagen/-

calls [193]. In some parts of the network, the mode partitions coincide5, particularly in the
largest connected component. However, discrepancies between partitions are more evident in
the smaller components. This behavior might be attributed to the sparsity of the network, i.e.,
this network is so sparse that neither variant of the SBM can accommodate one or few suitable
explanations for it, which suggests that the SBM might be misspecified for this type of net-
works. A similar explanation follows for the other two networks with disagreements (e.g., see
the case of euroroad in Figs. C.13 and C.14), which are larger than the previous example, but

5For each mode, this partition corresponds to the maximum marginal group membership for each node at
lowest level.
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have a similar average degree (i.e., no larger than 3).

Before concluding this section, it should be noted that, agreements between evidence and AUC
(from posterior averages) occur more frequently than between their point estimate versions,
even when stratified by domains. The main reason is that, while for some cases in which the
AUC (point estimate) cannot provide a decision, the AUC (from posterior averages) can provide
one, and this decision agrees with the decision based on model evidence. This highlights the
importance of considering alternative partitions when modelling network data.
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Figure 5.11: Summaries of the modes of the posterior distribution of node partitions of copen-
hagen/calls network for H-SBM (left) and HDC-SBM (right). (a) Mode fractions ωk. In the
legend, we include the number of modes M, the effective number of modes Me (see footnote 3)
and the negative log-evidence L. (b) Difference in the number of groups B corresponding to
partition modes and the MDL partition. (c) Difference in the effective number of groups Be
corresponding to partition modes and the MDL partition. (d) Difference in description length Σ
corresponding to partition modes and the MDL partition. (e) Overlap between partition modes
and the MDL partition. For panels (b) to (e), the vertical red line indicates the mode to which
the MDL fit belongs. The legend indicates the summary corresponding to the MDL fit.
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Figure 5.12: Several partitions for copenhagen/calls (a network of social interactions among
university students within the Copenhagen Networks Study [193]) obtained with the H-SBM
and HDC-SBM from (a) minimizing the description length, (b-d) fitting a mixture model to
characterize the posterior distribution of node partitions and obtaining its modes. The three
most likely modes are shown here.
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5.3 Concluding Remarks

In this chapter, we revisited and expanded upon the work of Vallès-Català et al. (2018) [2]
to study the consistency of compression and predictive criteria when selecting among SBM
variants. While we incorporated some advancements from the literature on SBMs, our results
overall align with the conclusions of that work, namely that both criteria agree in practice.
However, our analysis has revealed further nuances.

For synthetic networks, we find consistency between model selection criteria, i.e., the most
compressive model is also the most predictive. For empirical networks, consistency is also
common, though there are a few exceptions. Although agreements between model selection
approaches are quite frequent, we cannot claim that both approaches are equally reliable. The
AUC might be incapable of preferring a single model, as there are many cases where the pre-
dictiveness of competing models is statistically equivalent. In contrast, both the description
length or evidence tells us which model compresses more the data, and provides a degree of
confidence for ruling out the alternative model. In this sense, the compression approach to
model selection is more reliable.

This does not mean that predictive criteria should be abandoned in network modeling. Rather,
it highlights the need to understand their capabilities for model selection. If our goal is to select
the model that best explains the data, compression criteria should be preferred. If our goal is
to predict, we need not limit ourselves to the set of competing models and choose one among
them. Instead, combining models, for example via stacking [195], may yield a better predictive
approach.

Finally, we note that this analysis is limited to two variants of the SBM. We expect that future
research explores other variants or families of generative models. Furthermore, the standard
error of the AUC used in this work relies on distributional assumptions of normality. A more
suitable approximation might be needed to accurately quantify the uncertainty in AUC and de-
termine which magnitudes of difference should considered “significant”. Such approximation
can be particularly valuable in large scale studies comparing the predictive power of various
algorithms, helping to prevent misleading claims of superiority of a method based on spurious
differences in predictive performance.
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Chapter 6

Conclusion

In this dissertation, we aimed to deepen our understanding of the behavior, capabilities, and
limitations of Stochastic Block Models (SBMs) as approximations of true underlying models
of real-world networks. To this end, we conducted large scale studies of SBM fits to hundreds
of empirical networks to uncover systematic patterns in SBM performance. We employed two
complementary approaches to assess the quality of the model, namely model checking and
model comparison. In a Bayesian framework, these approaches are used in parallel to obtain
reliable inferences and valuable insights into model behavior. On one hand, model checking
reveals aspects of the data that the model may not accurately describe, thereby evaluating the
quality of fit of the model to the data. On the other, model comparison helps to identify poten-
tial problems of overfitting and underfitting among competing models. It is important to note
that such scrutiny is feasible in inferential approaches to community detection, because their
assumptions are made explicit. In descriptive approaches, assumptions are implicit, making it
difficult to test their validity directly. In the rest of this chapter, we summarize our results and
suggest avenues for future research.

In Chapter 3, we observed that the SBM accurately captures structural descriptors for most
networks in our corpus. The largest discrepancies between the SBM and the data typically
occur in networks with large diameter and slow mixing of random walks, which are often
embedded in a low-dimensional space. Interestingly, we also found that for the other types of
networks, including many networks with an abundance of triangles, the SBM shows a fairly
good agreement, contrary to common assumptions about the capabilities of the model. We
also identified a minimal set of network descriptors that can predict the quality of fit of the
SBM, with the most important predictors being the network diameter and characteristic time of
a random walk, followed by clustering as a secondary feature. This result points to potentially
beneficial directions for model improvement.

The conclusions of Chapter 3 are constrained by the set-up of the assessment, and consequently,
the analysis can be extended in several ways. First, it might be beneficial to consider a larger
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set of descriptors than the ones considered here. This would provide further insights into the
model strengths and weaknesses. Additionally, we only evaluated one variant of the SBM,
namely the degree corrected SBM (DC-SBM) with hierarchical priors. Future analysis could
include other generative models within or beyond the SBM family. Of particular interest are
the non-degree corrected versions and non-hierarchical versions of SBMs, since this would
not only offer insights on the quality of fit of such models, but also may inform about the
impact of degree-correction and priors on the model fit to data. Finally, we have considered
simple networks as inputs of the model. Extending the analysis to directed networks, multilayer
networks, or other types of networks could also be beneficial.

In Chapter 4, we observed that the SBM can accurately estimate relevant features of empirical
networks whose measurements are noisy, even when we have only one network measurement
at our disposal. Furthermore, we observed that in most cases, the reconstruction procedure is
beneficial in terms of the error magnitude, compared with taking the data and not doing re-
construction. The exceptions primarily include networks with large diameter and slow-mixing
random walks, being most of them transportation networks, which have a low-dimensional
spatial embedding, where the “small-world” property is not fulfilled. We also illustrated how
including more measurements of the network benefits the reconstruction accuracy. We ob-
served that reconstruction errors using one measurement are one order of magnitude larger
than when using more measurements. However, there seems to be diminishing improvements
as we gradually increase the number of measurements. It might be useful to study how fast this
improvement changes, in order to achieve perfect or close to perfect reconstruction.

Furthermore, this analysis can be extended in several ways. First, we considered uniform rates
of noise. Taking into account other models of noise, e.g., having larger error rates around hubs,
might provide insights on how we can handle systematic (or correlated) errors. We also focused
on two levels of noise, which only gives a partial picture of the capabilities and limitations of
the reconstruction framework. Thus, it would be interesting to consider larger levels of noise
not only to complete such picture, but also to study the sensitivity of descriptors to noise and
the difficulty of reconstructing structural descriptors. Another possibility consists on analyzing
a larger set of descriptors that could reveal more relevant dimensions for the assessment, e.g.,
those related with dynamics happening on top of networks. Finally, although we used the SBM
as a prior for network structure, our framework is flexible enough to allow for other generative
models. We hope to motivate further research in this direction and understand how other models
may improve or worsen the estimation of descriptors of interest (e.g., the diameter).

In Chapter 5, we observed consistency between model selection criteria under a community
detection task. Specifically, we found that the most compressive model is often the most pre-
dictive when comparing two SBM variants fitted to both synthetic and empirical networks.
However, there are few exceptions in empirical networks for which the SBM may be misspec-
ified. Furthermore, we also observed differences in the degree of reliability of these criteria. In
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many cases, both SBM variants were equally predictive in terms of their AUC, and therefore,
it was not possible to select a model with this approach. Contrarily, both the description length
and evidence provided a decision on the most compressive model along with a degree of con-
fidence for ruling out the alternative model. In that sense, the compression criterion is more
reliable for model selection within a community detection task.

Our analysis focused on two variants of the SBM, but future research can extend this by in-
corporating other generative models of network structure. It would be interesting to study how
preferred models change and whether the agreements between model selection criteria persist
or not, and why. Additionally, the predictive criterion relied on the AUC, however other indices
such as accuracy, precision, and recall might yield different results. Furthermore, we also ad-
vised caution in using discrepancies between model and data from posterior predictive checks
as a model selection criterion. Although we expect this criterion to be misleading, it remains to
be determined the magnitude of such issue, and the characteristics of the networks in which it
occurs.

Besides what has been mentioned, there are other avenues of research that could also improve
our understanding of SBMs. One of them is to evaluate their suitability in other inference
frameworks. Previously, we suggested to extend our evaluation of reconstruction performance
to study the accuracy of estimates of dynamical aspects occurring on top of the reconstructed
network. In such case the input was a noisy network. Differently, there are situations in
which only indirect measurements of the network are available. Typically, the observations
correspond to functional behavior, i.e., to a dynamical process taking place on such network.
Therefore, the network of interactions must be inferred. Examples include inferring cortical
neuronal network structure from neuronal activity [196], gene regulatory networks from ex-
pression assays [197], infection propagation networks from epidemic data [198], and financial
networks from the activity of financial institutions [199]. Peixoto (2019) [200], and more
recently Peixoto (2024) [201, 202], proposed Bayesian approaches to infer such connections
along with the community structure of the network. In this sense, it would be interesting to de-
termine how accurate the estimates of summaries of network structure are, in which instances
the reconstruction procedure is easier or more challenging, and why.

Finally, an important modelling aspect which was not covered here, but offers several prospects,
is the study of the priors. Understanding how changes in priors affect model performance and
the practical implications for different types of data could offer valuable insights. For certain
networks, changing the prior might significantly impact the inferred partition, while for others,
it may have little to no impact. Additionally, it has been shown that using a hierarchy of priors
can help addressing the underfitting issue. However, it remains unclear what is the depth of the
hierarchy of (hyper)priors needed to obtain reliable inferences in empirical data. These analyses
should also study the computational costs involved in using different priors, and weigh them
against potential inferential advantages.
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[16] S. Fortunato and M. Barthélemy, “Resolution limit in community detection,” Proceed-

ings of the National Academy of Sciences, vol. 104, pp. 36–41, Feb. 2007.

[17] B. H. Good, Y.-A. de Montjoye, and A. Clauset, “Performance of modularity maximiza-
tion in practical contexts,” Physical Review E, vol. 81, p. 046106, Apr. 2010.

[18] P. W. Holland, K. B. Laskey, and S. Leinhardt, “Stochastic blockmodels: First steps,”
Social Networks, vol. 5, pp. 109–137, June 1983.

[19] S. E. Fienberg, M. M. Meyer, and S. S. Wasserman, “Statistical analysis of multiple
sociometric relations,” Journal of the american Statistical association, vol. 80, no. 389,
pp. 51–67, 1985.

[20] K. Faust and S. Wasserman, “Blockmodels: Interpretation and evaluation,” Social net-

works, vol. 14, no. 1-2, pp. 5–61, 1992.

[21] C. J. Anderson, S. Wasserman, and K. Faust, “Building stochastic blockmodels,” Social

networks, vol. 14, no. 1-2, pp. 137–161, 1992.

[22] T. P. Peixoto, “Bayesian Stochastic Blockmodeling,” in Advances in Network Clustering

and Blockmodeling, pp. 289–332, John Wiley & Sons, Ltd, 2019.

[23] T. Funke and T. Becker, “Stochastic block models: A comparison of variants and infer-
ence methods,” PloS one, vol. 14, no. 4, p. e0215296, 2019.

[24] P. D. Grünwald, The Minimum Description Length Principle. The MIT Press, Mar. 2007.

[25] T. P. Peixoto, “Hierarchical Block Structures and High-Resolution Model Selection in
Large Networks,” Physical Review X, vol. 4, p. 011047, Mar. 2014.

95

C
E

U
eT

D
C

ol
le

ct
io

n



[26] A. Gelman, A. Vehtari, D. Simpson, C. C. Margossian, B. Carpenter, Y. Yao,
L. Kennedy, J. Gabry, P.-C. Bürkner, and M. Modrák, “Bayesian workflow,” arXiv
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[68] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter,
“Multilayer networks,” Journal of Complex Networks, vol. 2, pp. 203–271, Jan. 2014.

[69] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance,
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Appendix A

Supplementary Material for Chapter 3

A.1 Posterior predictive sampling

As described in the main text, we obtain samples from the posterior predictive distribution of
Eq. (3.1) by first sampling from the posterior distribution of Eq. (2.44) using MCMC and then
generating new networks from the inferred models. More specifically, we sample (AAA,kkk,eee,bbb)

from

P(AAA,kkk,eee,bbb|GGG) =
P(GGG|AAA)P(AAA|kkk,eee,bbb)P(kkk,eee,bbb)

P(GGG)
, (A.1)

using the merge-split MCMC of Ref. [53], together with the agglomerative initialization heuris-
tic of Refs. [25, 111], and the multigraph edge moves of Ref. [146]. For networks of size up
to E = 105 edges we observe good equilibration of the MCMC runs, but for large networks
it becomes too slow. For these large networks we settle for a point estimate of the partition
bbb obtained by several runs of the initialization algorithm and keeping the best result, and then
we equilibrate the chain according to AAA alone (which affects kkk and eee), which tends to happen
quickly. We have verified that performing this calculation several times yields very similar re-
sults. The only noticeable outcome of this shortcut for larger networks is that it tends to reduce
the variance of the posterior predictive distributions, which can potentially contribute to the
elevated z-scores we obtained in our analysis. However, since the relative deviation values we
obtained did not seem to depend on the size of the network, this gives us confidence that this
approach does not introduce significant biases.

Given a sample (AAA,kkk,eee,bbb), we are interested only in (kkk,eee,bbb) (and hence samples from their
marginal distribution), so we discard AAA and sample a new multigraph AAA′ from the model of
Eq. (2.16). This can be done exactly with an efficient algorithm that works similarly to what was
proposed in Refs. [203, 204], but is valid for the microcanonical model: Given the parameters
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(kkk,eee,bbb) we proceed by creating for each group r a multiset of candidate nodes vvvr, containing
ki copies of each node i with bi = r. Then, for each group pair (r,s) with r ≤ s and ers > 0, we
repeat the following three steps for an ers number of times (or ers/2 if r = s):

1. We sample a node i from the multiset vvvr uniformly at random, and we remove it from the
multiset.

2. We sample a node j from the multiset vvvs uniformly at random, and we remove it from
the multiset.

3. We add an edge (i, j) to AAA (i.e. increment Ai j by one, or two if i = j).

The resulting multigraph AAA is sampled exactly with a probability given by Eq.(2.16). Since the
number of nonzero entries of eee cannot be larger than the total number of edges E, the whole
algorithm finishes in time O(N +E), where N is the number of nodes.

Given a sample AAA, we obtain a simple graph GGG simply by removing all self-loops and truncating
the edge multiplicities, i.e.

Gi j =

1, if Ai j > 0 and i ̸= j,

0, otherwise.
(A.2)

Finally, given GGG we compute the network descriptor f (GGG) of interest.

A C++ implementation of every algorithm used in this analysis is freely available as part of the
graph-tool library [125].

A.2 Network descriptors

Below are the definitions of the descriptors used in our analyses.

Degree assortativity, r Defined as [205]

r =
∑kk′ kk′(mkk′ −mkmk′)

σkσk′
,

where mkk′ is the fraction of edges with endpoints of degree k and k′, mk = ∑
k′

mkk′ , and

σk is the standard deviation of mk.

Mean k-core, ⟨c⟩ The k-core is a maximal set of vertices such that its induced subgraph only
contains vertices with degree larger than or equal to k. The k-core value ci of node i is
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(a) (b)

Figure A.1: Absolute value of the z-score versus absolute value of relative deviation, for every
descriptor value and network in the corpus, according to (a) the configuration model and (b)
the DCSBM. The dashed lines mark the values |z| = 3 and |∆| = 0.05, and the histograms the
marginal distributions. The solid blue lines mark the median values.

(a) (b) (c)

Figure A.2: (a) Kendall’s correlation coefficient τ between pairs of descriptor values across all
networks in the corpus. Panels (b) and (c) show the same but for z-score and relative deviation
values, respectively, according to the DCSBM. The insets show the correlation between coeffi-
cients from each respective panel and panel (a).

112

C
E

U
eT

D
C

ol
le

ct
io

n



the largest value of k for which i belongs to the k-core. The mean value is then

⟨c⟩= 1
N ∑

i
ci.

This can be computed in time O(N +E) according to the algorithm of Ref. [206].

Mean local clustering coefficient, Cl The local clustering coefficient [85] of node i is given
by

Ci =
∑ jk Gi jGkiG jk

ki(ki −1)
.

It measures the fraction of pairs of neighbors that are also connected. The mean value is
then just

Cl =
1
N ∑

i
Ci.

Global clustering coefficient, Cg The global clustering coefficient of is given by

Cg =
∑i jk Gi jGkiG jk

∑i ki(ki −1)
.

It measures the fraction of connected triads that close to form a triangle.

Leading eigenvalue of adjacency matrix, λA
1 The leading eigenvalue of the adjacency matrix

is the largest value of λ which solves

GGGxxx = λxxx,

where xxx is the associated eigenvector.

Leading eigenvalue of Hashimoto matrix, λH
1 The leading eigenvalue of the Hashimoto (a.k.a.

non-backtracking) matrix [207] is the largest value of λ which solves

HHHxxx = λxxx,

where xxx is the associated eigenvector, and HHH is an asymmetric E ×E matrix with entries
defined as

Hk→l,i→ j =

1 if Gkl = Gi j = 1, l = i,k ̸= j,

0 otherwise.

Characteristic time of a random walk, τ The characteristic time of a random walk is ob-
tained via the second largest eigenvalue λT

2 ∈ [0,1] of the transition matrix TTT , with entries

Ti j =
Gi j

k j
,
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where ki = ∑
j

G ji. It is defined as

τ =− lnλT
2 .

If the network is disconnected, we compute τ only on the largest component.

Pseudo-diameter, ∅ The pseudo-diameter is an approximate graph diameter. It is obtained
by starting from an arbitrary source node, and finding a target node that is farthest away
from the source. This process is repeated by treating the target as the new starting node,
and ends when the graph distance no longer increases. This graph distance is taken to be
the pseudo-diameter. The algorithm runs in time O(N +E).

If the network is disconnected, ∅ is taken as the maximum of pseudo-diameters of the
connected components.

Node percolation profile (random removal), Rr We chose a random node order, and remove
nodes sequentially from the graph according to it. If Si is the fraction of nodes in the
largest component after the i-th removal, then the profile value is

Rr =
1
N ∑

i
Si.

The value is averaged over several node orderings.

Node percolation profile (targeted removal), Rt The computation is the same as Rr, but the
nodes are always removed in decreasing order of the degree.

Fraction of nodes in the largest component, S A component is a maximal set of nodes that
are connected by a path. The largest component is the component with the largest number
of nodes, and S is the fraction of all nodes that belong to it.

In Fig. A.1 we show how the z-scores and relative deviation values are related for every net-
work descriptor, according to both models used. In Fig. A.2 we show Kendall’s τ correlation
coefficient among the descriptor values themselves, as well as their z-scores and relative devi-
ations, according to the DCSBM. The insets show how the correlations among the deviations
are themselves also correlated with the descriptor correlations.
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A.3 Model deviations in clustering coefficient
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Figure A.3: Absolute value of the relative deviation (top), z-score (middle), and average num-
ber of inferred groups (bottom), as a function of the number of nodes, for every network in the
corpus. The dashed red line marks the values of |∆| = 0.05 and |z| = 3. The points in green
color correspond to the descriptors that are not reproduced. The point size is proportional to
the empirical value of the descriptor.

115

C
E

U
eT

D
C

ol
le

ct
io

n



Appendix B

Supplementary Material for Chapter 4

B.1 Correction of marginal probabilities

To correct our estimates of marginal probabilities π(AAA) and sample networks that preserve the
total number of edges, we look for P(AAA) that can be obtained via the Lagrangian

L = ∑
AAA

P(AAA) ln
P(AAA)
π(AAA)

−β

(
∑
AAA

∑
i< j

Ai jP(AAA)−E

)
−λ

(
∑
AAA

P(AAA)−1

)
, (B.1)

where β and λ are Lagrange multipliers that enforce the constraints of total number of edges
and normalization, respectively.

Obtaining the saddle point {∂L/∂P(AAA) = 0,∂L/∂β = 0,∂L/∂λ = 0} yields

P(AAA) =
π(AAA)eβ∑i< j Ai j

Z
, (B.2)

where Z is a normalization constant given by

Z = ∑
AAA

π(AAA)eβ∑i< j Ai j . (B.3)

By enforcing the constraint on the total number of edges we get

∑
AAA

π(AAA)eβ∑i< j Ai j ∑i< j Ai j

Z
= E. (B.4)

Assume
π(A) = ∏

i< j
πAi j

i j (1−πi j)
1−Ai j . (B.5)
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This assumption is justified by observing that sampling networks directly from the posterior of
Eq. (4.1). and by considering a Bernoulli process on each entry (i, j) with probability of success
equal to the corresponding marginal probability (Eq. (4.2))on each yields similar results.

Then Eq. (B.2) can be written as:

P(AAA) =
∏i< j πAi j

i j (1−πi j)
1−Ai jeβ∑i< j Ai j

Z
. (B.6)

Furthermore, Eq. (B.3) can be written as:

Z = ∑
AAA

∏
i< j

πAi j
i j (1−πi j)

1−Ai jeβ∑i< j Ai j . (B.7)

Since eβ∑i< j Ai j = ∏
i< j

eβAi j , the last two equations become:

P(AAA) =
∏i< j(eβπi j)

Ai j(1−πi j)
1−Ai j

Z
, (B.8)

Z = ∑
AAA

∏
i< j

(eβπi j)
Ai j(1−πi j)

1−Ai j . (B.9)

Z can be written as

Z = ∏
i< j

eβπi j +1−πi j. (B.10)

Then

P(AAA) = ∏
i< j

(
eβπi j

eβπi j +1−πi j

)Ai j(
1−πi j

eβπi j +1−πi j

)1−Ai j

, (B.11)

and the probability of generating and edge for the pair (i, j) is given by

pi j =
eβπi j

eβπi j +1−πi j
. (B.12)

Note that the correction is made only for entries having positive probability πi j.

Also note that, using Eq. (B.9), ∂ lnZ/∂β = E, i.e., we get the constraint of total number of
edges.
Using Eq. (B.10), ∂ lnZ/∂β = ∑

i< j
eβπi j/(eβπi j +1−πi j).
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To obtain β, we solve numerically the equation

∑
i< j

eβπi j

eβπi j +1−πi j
= E. (B.13)

Increasing the number of measurements from 1 to 3

Although we need to make a correction in the marginal probabilities in a way that our re-
construction approach preserves the total number of edges, it should be mentioned that such
correction is less necessary as number of measurements n increase. Fig. B.1 shows that, the
uncorrected number of edges of reconstructed networks is closer to the true value when n > 1.

(a)p = 0.1 (b) p = 0.3
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Figure B.1: Average error in the number of edges (true vs inferred but uncorrected) as a func-
tion of a network index where the true number of edges is sorted in increasing order. (a) and
(b) indicate different noise levels.
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B.2 Results for noise level p = 0.3
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Figure B.2: Same as Fig. 4.3 for noise level p = 0.3.
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Figure B.3: Same as Fig. 4.4 for noise level p = 0.3.
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Figure B.4: Same as Fig. 4.6 for noise level p = 0.3.
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Appendix C

Supplementary Material for Chapter 5

C.1 Mixed Random Label Model

As a starting point, we assume a non-hierarchical partition bbb = {bi}. Let µ(r) be a bijective
function, such that

µ(bi) = ci, ∀i, (C.1)

i.e., there is a partition ccc that is identical to bbb up to a random label permutation. We denote this
equivalence by the indicator function

[bbb ∼ ccc] =

1 if bbb is a label permutation of ccc,

0 otherwise.
(C.2)

Since the posterior distribution is invariant to label permutations, then

π(bbb) = π(ccc). (C.3)

Although this relation also holds for hierarchical partitions, we need to introduce additional
details, since an invariant label permutation in a given level also affects the node labels in the
immediately superior level. In particular, consider a hierarchical partition {bbbl}. Consider also a
bijection µ(r) for labels at level l, such that µ(bl

i) = cl
i , and change the membership in level l+1

to bl+1
i = cl+1

µ(i) . Then the hierarchical partitions {bbbl} and {cccl} are identical up to a relabeling of
the groups, which is denoted by
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[{bbbl} ∼ {cccl}] =

1 if {bbbl} is identical to {cccl} up to a label permutation,

0 otherwise.
(C.4)

Additionally, π({bbbl}) = π({cccl}).

Considering these preliminary ideas, the posterior distribution of partitions can be modeled
with a mixture model, in which each partition can belong to one of K clusters, or “modes”.
More specifically, the posterior π({bbbl}) can be approximated by

π({bbbl})≈ ∑
k,{cccl}

P({bbbl}|{cccl})P({cccl}|k)P(k), (C.5)

where P(k) = ωk determines the mode mixture, i.e., the relative size of mode k, with ∑
k

ωk = 1;

P({cccl}|k) = ∏
l

∏
i

p(l,k)i (cl
i) (C.6)

are the independent1 marginal distributions of mode k, where p(l,k)i (r) is the probability that a
node i has group label r in level l and mode k; and

P({bbbl}|{cccl}) =
[{bbbl} ∼ {cccl}]

∏l q(bbbl)!
(C.7)

is the random relabeling of groups, with q(bbb)! being the total number of label permutations of
bbb. If the modes are significantly separated, we can assume that

π({bbbl})≈ max
k,{cccl}

P({bbbl}|{cccl})P({cccl}|k)P(k), (C.8)

which in turn, allows us to write the entropy as

H({bbbl})≈ H({bbbl},{cccl},k) = H({bbbl}|{cccl})+H({cccl}|k)+H(k), (C.9)

where
1The assumption is that, at every level, the labels are sampled independently.
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H(k) =−∑
k

wk lnwk (C.10)

is the entropy of the mode mixture distribution;

H({bbbl}|k) =−∑
k

wk ∑
{bbbl}

P({bbbl}|k) lnP({bbbl}|k) (C.11)

=−∑
k

wk ∑
l

∑
i

∑
r

p(l,k)i (r) ln p(l,k)i (r) (C.12)

is the entropy of mode k; and

H({bbbl}|{cccl}) =− ∑
{cccl}

P({cccl}) ∑
{bbbl}

P({bbbl}|{cccl}) lnP({bbbl}|{cccl}) (C.13)

= ∑
{cccl}

P({cccl})∑
l

lnq(cccl)! = ∑
{bbbl}

P({bbbl})∑
l

lnq(bbbl)!, (C.14)

is the relabeling entropy.

Considering all these terms, the mixed random label model provides the following approxima-
tion for the log-evidence

lnP(AAA)≈ ⟨lnP(AAA,{bbbl})⟩+∑
l

〈
lnq(bbbl)!

〉
−∑

k
wk lnwk −∑

k
wk ∑

l
∑

i
∑
r

p(l,k)i (r) ln p(l,k)i (r).

(C.15)

In order to compute each of the terms of Eq. (C.15), we first need to sample M partitions
from the posterior distribution.2 The first two terms can be computed directly by averaging the
corresponding quantities. For the remaining ones, we need to fit the mixed random label model
to the sampled partitions, obtain the estimates of ω and {pppl}, and use them in the computation
of such terms. It should be noted that, the estimate for ωk corresponds to the ratio between
the number of sampled partitions in mode k and the total number of sampled partitions, i.e.
ωk = Mk/M. In turn, this estimate can be interpreted as the relative posterior plausibility of
mode k serving as an alternative explanation for the data.

2In this work, depending on the network, we use between 104 and 105 partitions.
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C.2 Supplementary Figures
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Figure C.1: (a) AUC (point estimate) yielded by candidate models for several instances of the
Erdős-Rényi model having average degree ⟨k⟩ = 10, under an edge denoising task (at least
50 edge removal experiments removing 10% of edges on average were conducted). The point
color indicates the model, which is a combination of the model variant (either H-SBM or HDC-
SBM) and the number of groups. Each point corresponds to an instance of the Erdős-Rényi
model, having N nodes and average degree ⟨k⟩. For each combination of N and ⟨k⟩, there
are 200 samples. (b) Difference between the AUC (point estimate) yielded by simplest model
AUCH−SBM and the AUC yielded by more complex alternative models AUCalt . The point color
indicates the alternative model. (c) Ratio between the difference in AUC (in panel (b)) and the
corresponding standard deviation of the mean AUC difference.

126

C
E

U
eT

D
C

ol
le

ct
io

n



50 100 500 1000
Number of nodes N

0.0

0.2

0.4

0.6

0.8

1.0
A

U
C
∗

(a)

50 100 500 1000
Number of nodes N

−0.04

−0.02

0.00

0.02

0.04

∆A
U

C
∗

=
A

U
C
∗ al

t−
A

U
C
∗ H
−

SB
M

(b)

50 100 500 1000
Number of nodes N

−100
0

100

101

∆A
U

C
∗ /

s

(c)

Figure C.2: (a) AUC (point estimate) yielded by candidate models for several instances of the
Erdős-Rényi model having average degree ⟨k⟩ = 20, under an edge denoising task (at least
50 edge removal experiments removing 10% of edges on average were conducted). The point
color indicates the model, which is a combination of the model variant (either H-SBM or HDC-
SBM) and the number of groups. Each point corresponds to an instance of the Erdős-Rényi
model, having N nodes and average degree ⟨k⟩. For each combination of N and ⟨k⟩, there
are 200 samples. (b) Difference between the AUC (point estimate) yielded by simplest model
AUCH−SBM and the AUC yielded by more complex alternative models AUCalt . The point color
indicates the alternative model. (c) Ratio between the difference in AUC (in panel (b)) and the
corresponding standard deviation of the mean AUC difference.
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(a) ⟨k⟩= 4
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(b) ⟨k⟩= 10
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(c) ⟨k⟩= 20
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Figure C.3: Percentage of instances of the Erdős-Rényi model for which alternative more com-
plex model have better AUC than the true model. The bar color indicates the alternative model,
which is a combination of the model variant (either H-SBM or HDC-SBM) and the number of
groups. For N ∈ {10,20} and ⟨k⟩= 4, there are 1000 samples. For N = {50,100} and ⟨k⟩= 4,
there are 500 samples. For the remaining values of N and ⟨k⟩, there are 200 samples.
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(a) ⟨k⟩= 4
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(b) ⟨k⟩= 10

20 50 100 500 1000

−0.2

0.0

0.2

0.4

A
U

C
∗ al

t−
A

U
C
∗ H
−

SB
M

HDC-SBM-MDL
jaccard
inv-log-weight

(c) ⟨k⟩= 20
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Figure C.4: Difference between the AUC yield by simplest model AUCH−SBM and other non
probabilistic strategies AUCalt . We also include the results for HDC-SBM. The point color
indicates the which approach was used for link prediction. Each point corresponds to an in-
stance of the Erdős-Rényi model, having N nodes and average degree ⟨k⟩. For N ∈ {10,20}
and ⟨k⟩ = 4, there are 1000 samples. For N = {50,100} and ⟨k⟩ = 4, there are 500 samples.
For the remaining values of N and ⟨k⟩, there are 200 samples. In link prediction, 10% of edges
were removed.
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(b) ⟨k⟩= 10
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(c) ⟨k⟩= 20
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Figure C.5: Percentage of instances of the Erdős-Rényi model for which other non probabilistic
strategies have better AUC than the true model. The bar color indicates the which approach
was used for link prediction. For N ∈ {10,20} and ⟨k⟩ = 4, there are 1000 samples. For
N = {50,100} and ⟨k⟩= 4, there are 500 samples. For the remaining values of N and ⟨k⟩, there
are 200 samples.
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Figure C.6: Ratio between the difference in AUC (Fig. 5.1(b)) and the corresponding standard
deviation of Eq. 5.28, for several instances of the Erdős-Rényi model. The point color indicates
the alternative model.
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Figure C.7: Difference between the description length of the simplest model ΣH−SBM and the
description length of more complex alternative models Σalt , for several instances of the Erdős-
Rényi model. The point color indicates the alternative model, which is a combination of the
model variant (either H-SBM or HDC-SBM) and the number of groups. Each point corresponds
to an instance of the Erdős-Rényi model, having N nodes and average degree ⟨k⟩. For each
combination of N and ⟨k⟩, there are 200 samples.
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Figure C.8: Fraction of empirical networks for which a model is preferred by considered crite-
ria. Results are reported for all networks in the corpus and for each network domain.
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Figure C.9: Precision, recall, and AUC obtained by treating model selection as a classification
task. The targets corresponds to the true model, and the predictors to differences in (a) com-
pression criteria or (b) predictive criteria.
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Figure C.10: Difference in -log-evidence (∆L) as a function of the difference in description
length (∆Σ) for (a) synthetic networks and (b) empirical networks. The format of points follows
the same rules as in previous plots.
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Figure C.11: Difference in AUC from posterior averages as a function of the difference in AUC
point estimate (AUC∗) for (a) synthetic networks and (b) empirical networks. The format of
points follows the same rules as in previous plots.
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Figure C.12: Difference between AUC obtained from posterior averages (AUC) and point es-
timate (AUC∗) as a function of the latter. The color indicates which model was used in the
prediction task.
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Figure C.13: Summaries of the modes of the posterior distribution of node partitions of euro-
road network for H-SBM (left) and HDC-SBM (right). (a) Mode fractions ωk. In the legend,
we include the number of modes M, the effective number of modes Me and the negative log-
evidence L. (b) Difference in the number of groups B corresponding to partition modes and the
MDL partition. (c) Difference in the effective number of groups Be corresponding to partition
modes and the MDL partition. (d) Difference in description length Σ corresponding to partition
modes and the MDL partition. (e) Overlap between partition modes and the MDL partition.
For panels (b) to (e), the vertical red line indicates the mode to which the MDL fit belongs. The
legend indicates the summary corresponding to the MDL fit.
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Figure C.14: Several partitions for euroroad (a network of international “E-roads”, mostly in
Europe [194]) obtained with the H-SBM and HDC-SBM from (a) minimizing the description
length, (b-d) fitting a mixture model to characterize the posterior distribution of node partitions
and obtaining its modes. The three most likely modes are shown here.
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