CEU eTD Collection (2017); Pavlovic, Edi: The Quantified Argument Calculus: An Inquiry into Its Logical Properties and Applications

CEU Electronic Theses and Dissertations, 2017
Author Pavlovic, Edi
Title The Quantified Argument Calculus: An Inquiry into Its Logical Properties and Applications
Summary The topic of this dissertation is the Quantified Argument Calculus, or Quarc, and its goal to explore its formal properties, and to investigate its application to issues in philosophy.
Chapter 1 briefly introduces the motivation for the forthcoming inquiry and lays out the plan of the rest of the dissertation.
Chapter 2 presents the formal system of Quarc and demonstrates the completeness of it, as well as some additional features.
Chapter 3 presents the sequent-calculus representation of Quarc, the LK-Quarc. It demonstrates that Quarc and LK-Quarc are deductively equivalent, and establishes the cut elimination property and its corollaries, as well as some additional features, for a series of subsystems, and finally for the full system LK-Quarc.
Chapter 4 follows up on the previous chapter by demonstrating that the Craig interpolation property holds of a system closely related to LK-Quarc, and outlines venues of further research.
Chapter 5 discusses the modal expansions of Quarc and LK-Quarc, as well as their relation. Cut elimination property and its corollaries are established for a range of modal systems.
Chapter 6 applies some of the lessons of previous chapters to a case study of a part of Aristotle's modal syllogistic. Quarc is shown to be an appropriate tool for study of Aristotle, and then applied to establish some indicative difficulties for the modal syllogistic.
Supervisor Ben-Yami, Hanoch
Department Philosophy PhD
Full texthttps://www.etd.ceu.edu/2017/pavlovic_edi.pdf

Visit the CEU Library.

© 2007-2021, Central European University